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Abstract

The text begins with a brief description of differential Galois theory from a geometrical

perspective. Then, parameterized Galois theory is developed by means of prolongation of

partial connections to the jet bundles. The relation between the parameterized differential

Galois groups and isomonodromic deformations is unfold as an application of Kiso-Cassidy

theorem. It follows the computation of the parameterized Galois groups of the general fuch-

sian equation and Gauss hypergeometric equation. Finally, some non-linear applications

are developed. By means of a non-linear analog, Kiso-Morimoto theorem, the Malgrange

groupoid of Painlevé VI equation with variable parameters is calculated.

Résumé

Le texte commence par une brève description de théorie différentielle de Galois dans

une perspective géométrique. Ensuite, la théorie paramétrée de Galois est développée au

moyen d’une prolongation des connexions partielles avec les fibrés de jets. La relation entre

les groupes de Galois différentiels a paramètres et les déformations isomonodromiques est

développée comme une application du théorème de Kiso-Cassidy. Il s’ensuit le calcul des

groupes de Galois a paramètres de l’équation générale fuchsienne et de l’équation

hypergéométrique de Gauss. Enfin, certaines applications non linéaires sont développées. Au

moyen d’un théorème de Kiso-Morimoto, un analogue non linéaire, on calcule le groupöıde

de Malgrange de l’équation de Painlevé VI à paramètres variables.

Resumen

El texto comienza con una breve descripción de la teoŕıa de Galois diferencial desde una

perspectiva geométrica. Luego la teoŕıa de Galois con parámetros se presenta mediante las

prolongaciones de conexiones parciales en los fibrados de jets. La relación entre el grupo de

Galois con parámetros y las deformaciones isomonodrómicas se desarrolla como una apli-

cación del teorema de Kiso-Cassidy. Se calculan los grupos de Galois con parámetros de la

ecuación fuchsiana general y de la ecuación hiper-geométrica de Gauss. Finalmente se de-

sarrollan algunas aplicaciones no lineales. Mediante un análogo no lineal, a saber el teorema

de Kiso–Morimoto, se calcula el grupoide de Malgrange de la ecuación de Painlevé VI con

parámetros variables.

Keywords: Algebraic groups, Jet bundles, Parameterized differential Galois theory,

Gauss hypergeometric equation , Painlevé VI equation
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Résumé

Contexte historique

Au début du XIX ème siècle, Emile Picard et Ernest Vessiot ont développé une théorie de

Galois pour les équations différentielles linéaires, [Pic87], [Ves04b] and [Ves04a]. Ces travaux

ont été étendus par Ellis Kolchin a un contexte multivarié et permettent de considérer, pour

toute solution fondamentale Φ d’une connection intégrable :

∂U

∂xi
= Ai(x)U, Ai(x) ∈ gln(C(x)),

∂Aj
∂xi
− ∂Ai
∂xj

= [Ai, Aj]

Un groupe de Galois définit par

GalΦ =
{
σ ∈ GLn(C) | ∀P ∈ C(u11, . . . , unn) P (Φ) ∈ C(x)⇒ P (Φ) = P (Φσ)

}
Michael Singer et Phyllis Cassidy dans [CS05] et Peter Landesman dans [Lan08] ont

développé une théorie de Galois pour les équations différentielles linéaires contenant des

paramètres:
∂U

∂x
= A(x, λ1, . . . , λm)U, A(x) ∈ gln(C(x, λ1, . . . , λm)).

Dans leurs travaux, le groupe de Galois est un groupe de matrices dont les coefficients sont

des fonctions des paramètres, λ, agissant sur une solution fondamentale Φ par multiplication

à droite et préservant toutes les relations différentielles entre les coefficients de Φ lorsque

l’on s’autorise à dériver ces coefficients par rapport aux paramètres. Le groupe obtenu

n’est plus un groupe algébrique de matrices mais un groupe différentiel, c’est-à-dire décrit

par des équations aux dérivées partielles. Cette théorie a été appliquée avec succès aux

problèmes d’hypertranscendences. Elle a aussi permis d’interpréter la notion de déformation

isomonodromique d’une équation différentielle fuchsienne en terme de structure du groupe

de Galois de la famille d’équations différentielles.

Parallèlement, Bernard Malgrange dans [Mal01] et Hiroshi Umemura dans [Ume96] ont

développé une théorie de Galois pour les équations différentielles non-linéaires. Mêmes si

elles sont équivalentes, ces deux théories paraissent très différentes. H. Umemura étudie les

extensions de corps différentiels et l’objet analogue au groupe de Galois et un foncteur de

Lie-Ritt. B. Malgrange étudie les feuilletages holomorphes singuliers, l’analogue du groupe

de Galois est un D–groupoide de Lie.
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Contenu de la thèse

Le but principal de ce travail est de clarifier les relations entre les déformations isomon-

odromique et les différentes théories de Galois différentielles, pour les équations différentielles

linéaires ou non linéaires. Nous appliquons le formalisme développé pour déterminer le

groupe de Galois ou le groupoide de Galois de familles remarquables équations différentielles

Dans leurs travaux sur la théorie de Galois à paramètres, [CS05] p.128 section 5, P.

Cassidy et M. Singer donnent une relation entre le groupe de Galois paramétré d’une famille

fuchsienne et son caractère isomonodromique.

Nous proposons une version entièrement géométrique de la théorie de Galois à paramètres

basée sur les prolongations de connections partielles D sur une fibré principal P → B au fibré

des jets J(P/B). Ce point de vu géométrique nous permets de clarifier les relations entre

le groupe de Galois et les déformations isomonodromiques. Un point clef est le théorème de

Kiso-Cassidy (Theorem A.9). Notre méthode permet de calculer simplement le groupe de

Galois de la famille générale des systèmes fuschiens de trace nulle avec n singularités ainsi

que de la famille hypergéométrique de Gauss.

Lorsque l’on s’intéresse aux équations non linéaires, il n’existe pas de théorie de Galois

à paramètres proprement dit. Plus précisement, la théorie développée par B. Malgrange

contient déjà les informations.

Dans sa thèse Damien Davy [Dav16] a fait le chemin inverse. Il a défini le groupoide de

Galois d’une famille d’équations différentielles non linéaires en preservant le statut spécial des

paramètres. Il a ainsi pu obtenir un théorème très général de spécialisation des paramètres

et retrouver les résultats de Serge Cantat et Frank Loray,[CL09], sur le groupoide de Galois

de la sixième famille d’équations de Painlevé. Ces résulats ne déterminent que partiellement

le groupoide de Galois de la sixième équation de Painlevé.

En utilisant le théorème de Kiso-Morimoto (Theorem B.4), nous montrons que le groupoide

de Galois de la sixième équation de Painlevé est déterminé par les chemins isomonodromiques

de l’espace des paramètres. Une conséquence des travaux de classification des solutions

algébriques de ces équations est l’absence de tels chemins.

Présentation des résultats

Ce travail commence par une présentation en termes géométriques de la théorie de Galois

différentielle. Nous travaillons sur un fibré principal P → B où la base est munie d’un

feuilletage F donnant les directions des variables indépendantes, l’équation est alors une

connexion D au-dessus de F intégrable et G–invariante.

Un fibré principal vient toujours avec un groupoide Iso(P ), le groupoide des isomor-

phismes de P . Il existe une correspondance naturelle entre les sous-groupoides de Iso(P ) qui

dominent la base et certains sous-fibrés de P .

La nature des objets étudiés nous impose de travailler avec des groupoides rationnels :

ce sont des sous-ensemble Zariski fermés d’un groupoide qui, en restriction à un ouvert de
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Zariski de la base ont une structure de sous-groupoides. Nous avons alors une correspondance

de Galois: {
Sous-groupoides

de Iso(P )

}
↔
{

sous-corps G-invariant de C(P )

contenant C

}
Le groupoide de Galois est le sous-groupoide correspondant au corps des intégrales

premières rationnelles de D. Le groupe de Galois classique est obtenu en prenant le sta-

bilisateur d’un point dans le groupoide de Galois. Le groupe de Galois intrinsèque ([Kat82])

est le fibré en groupes sur B obtenu en prenant la diagonale du groupoide de Galois.

Le chapitre 2 présente la théorie des fibrés de jets à travers la théorie de Weil des

points infinitésimallement proches. Nous suivons les constructions très générales faites dans

[MnRM00], ce qui nous amène à présenter le mécanisme des prolongements d’un champs de

vecteurs aux espaces de jets.

Le chapitre 3 est dédié à l’exposition de la théorie de Galois différentielle linéaire avec

paramètres. P. Cassidy and M. Singer dans [CS05] ont établit une relation entre les familles

isomonodromiques et la structure du groupe de Galois à paramètres. Afin de décrire cette

relation d’un point de vu géométrique, nous interprétons les déformations isomonodromiques

en terme de feuilletage: une extension d’une F -connection D est une F̃ -connection D̃ de reng

plus grand telle que D ⊂ D̃ et F ⊂ F̃ .

En utilisant les prolongations D(k) et D(∞) de la connection partielle aux fibrés de jets,

nous pouvons definir le groupoide de Galois à paramètres comme le groupoide des isomor-

phismes de J(D) qui fixe les invariants différentiels rationnels de D. Le fibré en groupes de

Galois est la diagonal de ce groupoide. Il peut être vu comme sous-fibré rationel en groupe

Gal∞(D) ⊂ J(Gau(P )/B). Le fibré en groupe J(Gau(P )/B) est naturellement muni d’une

structure différentielle.

Théorème 3.18 Le fibré en groupe des automorphismes de jaugecJ(D) peut

s’identifier au sous-groupe algébrique différentiel des symétries de D, définie par

la connexion de groupe D[Adj].

Gau(J(D)) ' J(D[Adj]) ⊂ J(Gau(P )/B).

Théorème 3.20 Le fibré en groupes de Galois à paramètres Gal∞(D) est un

sous-groupe algébrique différentiel de J(Gau(P )/B).

Sous l’hypothèse de simplicité du groupe structural du fibré principal, les équations des

déformations isomonodromiques sont les équations du groupoide de Galois :

Théorème 3.23 Soient P → B un fibré principal affine avec un groupe de

structure G simple, ρ : B → S une application dominante, F = ker(dρ), et D
une connexion principal avec paramètres dans S. Supposons que le groupe de
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Galois D est Gau(P ) alors il existe une déformation isomonodromique maximale

D̃ de D et le groupe de Galois à paramètres, Gal∞(D), est le groupe J(D̃[Adj])

des symétries de jauges de D̃.

Dans l’exemple 3.24 nous considérons le fibré P → B où B = Ck+1×sln(C)k avec comme

coordonnées x, a1, . . . , ak, A1, . . . , Ak; S = Ck × sln(C)k et P = SLn(C) × B. Nous notons

ρ la projection B → S. Le système fuchsien général avec k singularités et sans trace est la

SLn(C)–connection donnée par

∂U

∂x
=

(
n∑
i=1

Ai
x− ai

)
U.

Ces déformations isomonodromiques sont bien connues et données par le système

de Schlessinger :
∂Ai
∂aj

=
[Ai, Aj]

λi − λj
,

∂Ai
∂ai

= −
∑
i 6=j

[Ai, Aj]

λi − λj
,

∂U

∂ai
=

Ai
x− ai

U.

Les deux premières équations définissent le feuilletage ρ∗(F̃) des chemins isomon-

odromiques dans S. La troisième équation définit la déformation isomonodromique

D̃ en tant que F̃ -connexion. Le groupe de Galois à paramètre de l’équation fuc-

sian générale est un sous-groupe algébrique différentiel de J(SLn(C)/B) donné

par les deux premières équations et

∂σ

∂x
=

[
n∑
i=1

Ai
x− ai

, σ

]
,

∂σ

∂ai
=

[
Ai

x− ai
, σ

]
.

Nous étudions l’équation hypergéométrique de Gauss

x(1− x)
d2u

dx2
+ {γ − (α + β + 1)x}du

dx
− αβu = 0

Cette équation s’interprète comme une connexion linéaire avec paramètres. Le fibré est

P = GL2(C) × B → B où B = Cx × S et S = C3
α,β,γ. Par une série d’arguments dont

l’étude de la reduction projective à PGL2(C) × B, l’absence de chemin isomonodromique

pour l’équation projectivisée et un analogue differentiel d’un théorème de Kolchin, nous

obtenons:
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Théorème 3.31 Le groupe de Galois à paramètre de l’équation hypergéométrique

de Gauss est donné par :

Gal∞(H) = {jσ ∈ Gau(J(H)) | jdet(σ) ∈ Gal∞(Hdet)}

qui est défini par les équations différentielles,

∂xσ =

[(
0 1
αβ

x(1−x)
(α+β+1)x−γ

x(1−x)

)
, σ

]
,

∂x det(σ) = ∂c det(σ) = ∂a

(
∂a det(σ)

det(σ)

)
= ∂b

(
∂a det(σ)

det(σ)

)
= ∂b

(
∂b det(σ)

det(σ)

)
= 0.

où σ est une matrice 2 × 2 inversible dépendante de x, α, β, γ et les opérateurs

différentiels ∂a, ∂b, ∂c sont donnés par la proposition 3.28.

Le quatrième chapitre est dédié à la théorie de Galois–Malgrange des équations différentielles

non linéaires Le groupoide de Malgrange d’un champ de vecteurs est introduit suivant les

notations et outils mis en place au chapitre 2.

Un repère d’ordre k sur une variété M est le jet d’ordre k de germe de biholomorphisme

φ : (Cm, 0) → M . Le fibré des repères d’ordre k RkM → M est un fibré principal avec

groupe de structure Autk(Cm, 0).

Les prolongations X(k) de X sur RkM est Autk(Cm, 0)-invariant. La distribution 〈X(k)〉
est une 〈X〉-connexion partielle. Nous pouvons utiliser la théorie de Galois telle qu’exposée

dans le chapitre 3. Le Groupoide de Malgrange d’ordre k Malk(X) d’un champ de vecteurs

X est le groupoide de Galois de sa prolongation d’ordre k GGal(〈X(k)〉). La limite projective

(k →∞) donne le D-groupoide Mal(X) sur M .

Le groupoide de Malgrange a une D-algebra de Lie. Un théorème de Kiso and Morimoto

sur la structure des D-algèbres de Lie, qui peut être vu comme un analogue non-linéaire du

théorème de Kiso-Cassidy theorem, peut être utilisé de manière analogue à notre traitement

de l’hypergéométrique de Gauss.

Nous appliquons cette stratégie à l’équation de Painlevé VI :

u′′ = F (x, u, u′, a, b, c, e);

où F ∈ C(x, u, v, a, b, c, e) est

F (x, u, v, a, b, c, e) =
1

2

(
1

u
+

1

u− 1
+

1

u− x

)
v2 −

(
1

x
+

1

x− 1
+

1

u− x

)
v

+
u(u− 1)(u− x)

x2(x− 1)2

(
1
2
c2 − 1

2
a2 x

u2
+ 1

2
b2 x− 1

(u− 1)2
+ (1−e2

2
)
x(x− 1)

(u− x)2

)
.

qui peut être vu comme un champ de vecteurs hamiltonien non autonome X sur C7. Le

champ X donne une connexion 〈X〉 sur le fibré trivial M → B où M = C7, B = C5
x,a,b,c,e et

S = C4
a,b,c,e. Nous obtenons :
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Théorème 4.26 Le groupoide de Malgrange de la sixième équation de Painlevé

VI est donné par

Mal(X) =
{
φ | π̄ ◦ φ = φ; φ∗(dx) = dx; φ∗(X) = X;

φ∗(dp ∧ dq) ≡ dp ∧ dq mod da, db, dc, de, dx
}

Cette thèses se finit avec deux annexes contenant les preuves les résultats centraux utilisés

dans le texte: La théorie des groupes algébriques différentiels suivant Malgrange [Mal10a],

et le théorème de Kiso-Morimoto suivant et complétant [Kis79].



Introduction

Historical context

Geometrical and algebraic methods play an important role in the theory of ordinary differ-

ential equations. In particular, Picard-Vessiot theory deals with integrable systems of linear

differential equations.

∂U

∂xi
= Ai(x)U, Ai(x) ∈ gln(C(x)),

∂Aj
∂xi
− ∂Ai
∂xj

= [Ai, Aj] (0-1)

Its main object, the Galois group, is composed of transformations of the solutions of a system

that preserve the algebraic relations existing between them. If Φ is a fundamental matrix of

solutions of (0-1) then,

GalΦ =
{
σ ∈ GLn(C) | ∀P ∈ C(u11, . . . , unn) , P (Φ) ∈ C(x)⇒ P (Φ) = P (Φσ)

}
This theory was developed for the first time by Émile Picard [Pic87] and Ernest Vessiot

[Ves04b], [Ves04a] at the end of XIXth century, inspired by Galois theory of algebraic equa-

tions, and was formalized an generalized to equations with several independent variables by

Kolchin [Kol73] in the mid of XXth century, in terms of differential field extensions. When

the coefficients of such differential equations are rational functions on a variety B, then

the differential equation (0-1) is seen as a G-invariant connection D in a principal bundle

π : P → B. There are some advantages in considering not the Galois group but the Galois

groupoid GGal(D) which is the rational subgroupoid of Iso(P ) preserving the field C(P )D

of rational first integrals of D. This can be seen as a particular case of a vast generalization

of Picard-Vessiot theory proposed by Y. André [And01].

An application of Picard–Vessiot theory is the classification of linear differential equations

by whether its solutions admit expressions by means of quadratures or not. A classical

example is given by the Gauss hypergeometric equation, where the works of Schwarz [Sch73]

and Kimura [Kim69] give a complete answer to this question.

An analytic invariant of a linear differential equation is its monodromy representation.

This measures the analytic prolongation of solutions along closed paths in CP1 avoiding

singularities. It is natural to consider families of linear differential equations depending

rationally on some parameters.

∂U

∂x
= A(x, λ1, . . . , λm)U, A(x) ∈ gln(C(x, λ1, . . . , λm)). (0-2)
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Equations of the form (0-2) can be seen geometrically as partial connections π : (P,D) →
(B,F) where F is the foliation given by the parameters. The geometrical differential Galois

theory applies as it is and there is a Galois groupoid GGal(D).

Singer–Cassidy–Landesman [CS05], [Lan08] offer a theory for differential equations with

parameters(0-2). In their work, Galois group preserves not only algebraic relations but

differential relations appearing when derivation with respect to the parameters take place.

These Galois groups turn out to be differential algebraic groups. For some work and calculus

on differential galois group with parameters see [GGO13, Dre14, MS14, MOS15, Arr16,

LSN16, HMO17]. In Picard–Vessiot theory, the Galois group of an equation is an algebraic

group of matrices. It was Kolchin who set the foundations of the subject differential algebraic

geometry with the study of differential algebraic groups.

In parallel, Malgrange [Mal01] and Umemura [Ume96] continued a project begun by J.

Drach [Dra98] to extend Picard Vessiot theory to non linear differential equations. Both

paths lead to equivalent theories. In Malgrange line, the object corresponding to a non

linear equation (a vector field X in a variety M) is a D–groupoid Mal(X) ⊂ Âut(M) that

is, in general terms, a groupoid of jets of diffeomorphisms defined by a system of PDE’s.

Isomonodromic deformations are curves in the parameter space that preserve the mon-

odromy representation. Monodromy deformations can be seen geometrically as unfolding

of the underlying foliation Isomonodromic deformations play also an important role in the

theory of non-linear differential equations. When one studies isomonodromic deformations

of a fuchsian equation with four singularities there appear the so-called Schlesinger systems.

An important reduction of the Schlesinger system corresponding to an equation with four

singularities is Painlevé VI. There is an analogy between Painlevé VI and Gauss hypergeo-

metric equation; it can be seen in [IKSY13]. The other Painlevé equations (PI – PV) can

be seen as some limit cases of the PVI, as the classical special linear differential equations

appear as degenerations of the Hypergeometric equation. There is huge literature about the

non-linear monodromy, symmetries and closed form solutions of the PVI equation. From

the works of Iwasaki [Iwa08], and Lisovyy and Thykyy [LT14] we have a precise description

of the non-linear monodromy and a complete classification of the algebraic solutions of PVI.

Casale, Loray and Cantat [CL09] have calculated Malgrange groupoid for Painlevé VI

equation, for all values of the parameters. There is also a recent specialization theorem

[Dav16] that relates the Galois group obtained for specific values of the parameters with

some partial Malgrange groupoid (where the derivative with respect to the parameters is

skipped in the computation of the groupoid).

General purpose of this work

The main purpose on this work is to unfold the relation between isomonodromic deformations

and differential Galois theory (linear and non-linear). As application we will be able to

compute the differential Galois group and groupoid of some remarkable differential equations.
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In the paper on parameterized Galois theory, [CS05] p.128 section 5 Cassidy and Singer

find a relationship between parameterized Galois theory and isomonodromic families of linear

differential equations.

Here we propose a completely geometric version of parameterized Galois theory, based

on the prolongation of the partial connection D in P → B to the jet bundle J(P/B).

Such a geometrical perspective allow us to clarify the relationship between Galois group

and isomonodromic deformations. A key point in this link is Kiso–Cassidy (Theorem A.9)

theorem. By our method it is possible to calculate the Galois group of a general fuchsian

equation and of Gauss hypergeometric equation.

In the case of non linear Galois–Malgrange theory, there does not exists a parameterized

version. More precisely, the non-linear Galois–Malgrange theory in its usual presentation

already incorporates the parameters. In [Dav16] some part of the Malgrange groupoid (called

partial Malgrange groupoide) of Painlevé VI equation was calculated. However, a question

remains open: Which is its Galois groupoid when the parameters are considered as additional

variables? This groupoid should preserve differential relations satisfied by the solutions of

Painlevé VI with respect to the parameters.

By using Kiso–Morimoto theorem (Theorem B.4) and the lack of non–linear isomon-

odromy for P-VI (a consequence of the classification of its algebraic solutions) we are able

to compute the total Malgrange groupoid of Painlevé VI including the parameters.

Brief summary of the text and main results

We begin by a presentation of linear differential Galois theory in geometrical terms. To

do this it is proper to speak about principal bundles, P → B where the base comes with

a foliation F in the direction of independant variable, and the equation is a connection D
above F that is flat and G–invariant.

Each principal bundle gives rise to the groupoid Iso(P ) of gauge isomorphisms, and there

is a correspondence between subgroupoids of Iso(P ) that dominate the base and certain

families of subbundles of P . In classical terms, the Galois groupoid is defined to be the

invariance groupoid of the first rational integrals of D.

Because of the nature of objects to appear, we introduce the concept of rational groupoids:

these are Zariski–closed subsets of a groupoid that are groupoids when restricted to an open

set in the base. This setting leads naturally to a Galois correspondence{
Rational subgroupoids

of Iso(P )

}
↔
{
G-invariant subfields of C(P )

containing C

}
Classical Galois group is obtained as the stabilizer of the Galois groupoid at a point. Intrinsic

Galois group is then seen [Kat82] as a bundle in groups over the base B and is obtained as

the diagonal part of the groupoid.

In order to handle a parameterized theory, we use the concept of G–invariant connection

with parameters in S, that is a G–invariant connection D in P in the direction of F .
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Chapter 2 presents jet bundles and the theory of Weil infinitesimally near points. There

appear frame bundles and prolongation mechanisms for vector fields. We follow the general

construction as done in [MnRM00]. However, we consider the ring of functions in Weil and

jet bundles as non-classical differential fields by means of the total derivative operator.

Chapter 3 is devoted to linear differential Galois theory with parameters. Cassidy and

Singer in [CS05] established a relationship between isomonodromic families and parame-

terized Galois theory. To see this relation through a geometrical perspective, we interpret

isomonodromic deformations as extensions of vector field distributions. An extension of a

F -connection D is a F̃ - connection D̃ of bigger rank with D ⊂ D̃ and F ⊂ F̃ . For more on

isomonodromic deformations see [GO14].

We define the prolongations D(k) and D(∞) of a partial connection in a principal bundle

to the jet spaces. This allows us to introduce the Galois groupoid with parameters as the

groupoid of gauge isomorphisms of J(D) that fixes rational differential invariants of D. Then

the Galois group bundle is the diagonal part of the groupoid. Is it going to be seen as a

rational group sub-bundle Gal∞(D) ⊂ J(Gau(P )/B). This group bundle J(Gau(P )/B) has

a differential structure given by the total derivatives and a group sub-bundle is a differential

algebraic subgroup if it is defined by a differential ideal of its ring of regular functions on the

generic point of B. In this setting we prove:

Theorem 3.18 The group bundle of gauge automorphisms J(D) is identified

with the differential algebraic subgroup of gauge symmetries of D, defined by the

group connection D[Adj].

Gau(J(D)) ' J(D[Adj]) ⊂ J(Gau(P )/B).

Theorem 3.20 The parameterized Galois group bundle Gal∞(D) is a differential

algebraic subgroup of J(Gau(P )/B).

Here J(D[Adj]) ⊂ J(Gau(P )/B) is the differential algebraic group of Gauge symmetries

of the connection D. Under the hypothesis of simple structural group, isomonodromic defor-

mations provide the equations for the Galois group with parameters. Here the main result

appears:

Theorem 3.23 Let P → B be an affine principal bundle with simple group

G, ρ : B → S a dominant map, F = ker(dρ), and D a principal G-invariant

connection with parameters in S. Let us assume that the Galois group of D
is Gau(P ). Then, there is a biggest isomonodromic deformation D̃ of D and

the Galois group with parameters Gal∞(D) is the group J(D̃[Adj]) of gauge

symmetries of D̃.

In Example 3.24 we consider the bundle P → B where B = Ck+1 × sln(C)k with

coordinates x, a1, . . . , ak, A1, . . . , Ak; S = Ck × sln(C)k and P = SLn(C) × B. We also
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consider the projection ρ : B → S. In this setting we study the general fuchsian system with

k singularities and trace free matrices, with SLn(C)–connection given by

∂U

∂x
=

(
n∑
i=1

Ai
x− ai

)
U. (0-3)

Its isomonodromic deformations are well known and given by the Schlessinger

system:

∂Ai
∂aj

=
[Ai, Aj]

λi − λj
, (0-4)

∂Ai
∂ai

= −
∑
i 6=j

[Ai, Aj]

λi − λj
, (0-5)

∂U

∂ai
=

Ai
x− ai

U. (0-6)

Equations (0-4), (0-5) define the foliation ρ∗(F̃) of isomonodromic paths in S, and

equations (3-5) - (0-6) define the isomonodromic deformation D̃ as a partial F̃ -

connection. The Galois group with parameters of 3-5 is the differential algebraic

subgroup of J(SLn(C)/B) given by equations (0-4), (0-5), and

∂σ

∂x
=

[
n∑
i=1

Ai
x− ai

, σ

]
,

∂σ

∂ai
=

[
Ai

x− ai
, σ

]
. (0-7)

We also study Gauss hypergeometric equation

x(1− x)
d2u

dx2
+ {γ − (α + β + 1)x}du

dx
− αβu = 0 (0-8)

It is possible to interpret Equation (0-8) as a linear connection with parameters, in the bundle

P = GL2(C)×B → B, where B = Cx×S and S = C3
α,β,γ. Then by a series of arguments, that

include reducing the equation to PGL2(C)×B, the absence of isomonodromic deformations

for the reduced equation and also the projection given by the determinant, we arrive at the

following description of its the Galois group:

Theorem 3.31 The differential Galois group with parameters of Gauss’ hyper-

geometric equation is given by

Gal∞(H) = {jσ ∈ Gau(J(H)) | jdet(σ) ∈ Gal∞(Hdet)}
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which is defined by the differential equations,

∂xσ =

[(
0 1
αβ

x(1−x)
(α+β+1)x−γ

x(1−x)

)
, σ

]
,

∂x det(σ) = ∂c det(σ) = ∂a

(
∂a det(σ)

det(σ)

)
= ∂b

(
∂a det(σ)

det(σ)

)
= ∂b

(
∂b det(σ)

det(σ)

)
= 0.

where σ is an invertible 2× 2 matrix depending on x, α, β, γ and the differential

operators ∂a, ∂b, ∂c are those given in Proposition 3.28.

Chapter 4 is devoted to non-linear Galois–Malgrange theory. In order to introduce the

Malgrange groupoid of a vector field we use the theory of frames as exposed in chapter 2. A

k–frame in an variety M is the jet of order k of germ of biholomorphism φ : (Cm, 0) → M .

The bundle of k-frames RkM →M is a principal bundle with structure group Autk(Cm, 0).

Our framework to treat with non-linear vector field X is to consider its linearization

to each finite order. The prolongation X(k) of X to RkM is Autk(Cm, 0)-invariant. Then

the distribution 〈X(k)〉 is a partial 〈X〉-connection. We can apply differential Galois theory

as exposed in Chapter 3. The order k Malgrange groupoid Malk(X) of a vector field X is

the Galois groupoid of its k-th prolongation GGal(〈X(k)〉). By taking the projective limit

(k →∞) we obtain a D-groupoid Mal(X) in M .

The Malgrange groupoid has a D-Lie algebra. There is a result from Kiso and Morimoto

about the structure of D-Lie algebras that can be seen a non-linear analog of Kiso-Cassidy

theorem (the foliation G appearing in Theorem B.4 can be seen as a non-linear isomonodromic

deformation). We then apply this result to Painlevé VI equation:

u′′ = F (x, u, u′, a, b, c, e); (0-9)

where F ∈ C(x, u, v, a, b, c, e) is

F (x, u, v, a, b, c, e) =
1

2

(
1

u
+

1

u− 1
+

1

u− x

)
v2 −

(
1

x
+

1

x− 1
+

1

u− x

)
v

+
u(u− 1)(u− x)

x2(x− 1)2

(
1
2
c2 − 1

2
a2 x

u2
+ 1

2
b2 x− 1

(u− 1)2
+ (1−e2

2
)
x(x− 1)

(u− x)2

)
.

Which we see in its hamiltonian form as a vector field X in C7. By means of Kiso–Morimoto

theorem and interpreting X as a connection 〈X〉 in the trivial bundle M → B where M = C7,

B = C5
x,a,b,c,e and S = C4

a,b,c,e we are able to compute the Malgrange groupoid of PVI:

Theorem 4.26 The Malgrange groupoid of Painlevé VI equation is given by

Mal(X) =
{
φ | π̄ ◦ φ = φ; φ∗(dx) = dx; φ∗(X) = X;

φ∗(dp ∧ dq) ≡ dp ∧ dq mod da, db, dc, de, dx
}

Finally Appendix A. and B. are endowed to the theory of differential algebraic groups,

following Malgrange [Mal10a], and Kiso-Morimoto theorem, following [Kis79].
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Introducción

Contexto histórico

Los métodos geométricos y algebraicos juegan un papel importante en la teoŕıa de las ecua-

ciones diferenciales ordinarias. En particular, la teoŕıa de Picard–Vessiot se ocupa de los

sistemas integrables de ecuaciones diferenciales lineales:

∂U

∂x
= A(x)U, A(x) ∈ gln(C(x)),

∂Aj
∂xi
− ∂Ai
∂xj

= [Ai, Aj] (0-10)

Su objeto principal, el grupo de Galois, se compone de transformaciones de las soluciones

de un sistema, que preservan las relaciones algebraicas que existan entre dichas soluciones.

Si Φ es una matriz fundamental de soluciones de (0-10) entonces,

GalΦ =
{
σ ∈ GLn(C) | ∀P (U) ∈ C(u11, . . . , unn) P (Φ) ∈ C(x)→ P (Φ) = P (Φσ)

}
Esta teoŕıa fue desarrollada en primera instancia por Émile Picard [Pic87] y Ernest Vessiot

[Ves04b], [Ves04a] a finales del siglo XIX, inspirados en la teoŕıa de Galois de las ecuaciones

algebraicas, y fue formalizada y generalizada a ecuaciones con varias variables independi-

entes por Kolchin [Kol73] a mediados del siglo XX, en términos de extensiones diferenciales

de cuerpos. Cuando los coeficientes de dichas ecuaciones son funciones racionales en una var-

iedad B, entonces la ecuación diferencial (0-10) puede verse como una conexión G–invariante

D en un fibrado principal π : P → B. Existen ciertas ventajas al considerar no solo el grupo

de Galois sino el grupoide de Galois GGal(D) que es el subgrupoide racional de Iso(P ) que

preserva el campo C(P )D de integrales primeras racionales de D. Esto puede verse como un

caso particular de una vasta generalización de la teoŕıa de Picard–Vessiot propuesta por Y.

André [And01].

Una aplicación de la teoŕıa de Picard–Vessiot es la clasificación de ecuaciones diferenciales

lineales bajo el criterio de si sus soluciones pueden ser expresadas mediantes cuadraturas o

no. Un ejemplo clásico está dado por la ecuación hipergeométrica de Gauss, para la cual

los trabajos de Schwartz [Sch73] y Kimura [Kim69] dan una respuesta completa a dicha

pregunta.

Un invariante anaĺıtico de una ecuación diferencial lineal es su representación de mon-

odromı́a. Ésta mide la prolongación anaĺıtica de soluciones sobre caminos cerrados en CP1

que evitan las singularidades. Es natural considerar familias de ecuaciones diferenciales

lineales que depende racionalmente de algunos parámetros:

∂U

∂x
= A(x, λ1, . . . , λm)U, A(x) ∈ gln(C(x, λ1, . . . , λm)). (0-11)
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Las ecuaciones de la forma (0-11) pueden verse geométricamente como conexiones par-

ciales π : (P,D) → (B,F) donde F es una foliación determinada por los parámetros. La

teoŕıa de Galois diferencial aplica como tal y existe un grupoide de Galois GGal(D).

Singer–Cassidy–Landesman [CS05], [Lan08] ofrecen una teoŕıa para las ecuaciones difer-

enciales con parámetros (0-11). En dicho trabajo, El grupo de Galois preserva no solo las

relaciones algebraicas sino también las relaciones diferenciales que aparecen cuando se deriva

respecto a los parámetros. Estos grupos de Galois resultan ser grupos algebraicos diferen-

ciales. Algunos cálculos y desarrollos de la teoŕıa de Galois con parámetros puede verse en

[GGO13, Dre14, MS14, MOS15, Arr16, LSN16, HMO17]. En la teoŕıa de Picard–Vessiot,

los grupos de Galois de una ecuación son grupos algebraicos de matrices. Fué Kolchin quien

estableció los fundamentos de la geometŕıa algebraica diferencial con el estudio de los grupos

diferenciales algebraicos.

En paralelo, Malgrange [Mal01] y Umemura [Ume96] retoman un proyecto comenzado

por J. Drach [Dra98] para extender la teoŕıa de Picard–Vessiot a ecuaciones diferenciales no

lineales. Ambos caminos llevan a teoŕıas equivalentes. En la ĺınea de Malgrange, el objeto

correspondiente a una ecuación no lineal (un campo vectorial X en una variedad M) es

un D–grupoide Mal(X) ⊂ Âut(M) que es, en términos generales, un grupoide de jets de

difeomorfismos definido por un sistema de EDP’s.

Las deformaciones isomonodrómicas son curvas en el espacio de parámetros que preservan

la representación de monodromı́a. Dichas deformaciones pueden verse geométricamente como

desarrollos de la foliación subyacente. Las deformaciones isomonodrómicas juegan un papel

importante en la teoŕıa de las ecuaciones diferenciales no lineales. Cuando se estudian

las deformaciones isomonodrómicas de una ecuación fuchsiana con cuatro singularidades

aparecen los llamados sistemas de Schlesinger. Una reducción importante del sistema de

Schlesinger correspondiente a una ecuación con cuatro singularidades es Painlevé VI. Hay

una analoǵıa entre Painlevé VI y la ecuación hipergeométrica de Gauss; esta puede verse

en [IKSY13]. Las otras ecuaciones de Painlevé (PI–PV) pueden verse como ciertos casos

ĺımite de PVI, aśı como las ecuaciones diferenciales lineales clásicas especiales aparecen

como degeneraciones de la ecuación hipergeométrica. Hay una literatura extensa sobre la

monodromı́a no lineal, las simetŕıas y las soluciones en forma cerrada de la ecuación PVI. A

partir de los trabajos de Iwasaki [Iwa08], y Lisovyy y Thykyy [LT14] tenemos una descripción

precisa de la monodromı́a no lineal y una clasificación completa de las soluciones algebraicas

de PVI.

Casale, Loray y Cantat [CL09] han calculado el grupoide de Malgrange de la ecuación

de Painlevé VI, para todos los valores de los parámetros. Hay también un teorema reciente

sobre especialización [Dav16] que relaciona el grupo de Galois que se obtiene para valores

espećıficos de los parámetros con el grupoide de Malgrange parcial, en donde la derivada

respecto a los parámetros se evita en el cómputo del grupoide.
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Propósito general de este trabajo

El propósito principal de este trabajo es desarrollar la relación entre deformaciones isomon-

odrómicas y la teoŕıa de Galois diferencial (lineal y no lineal). Como aplicación seremos

capaces de computar el grupo de Galois diferencial y el grupoide de ciertas ecuaciones difer-

enciales importantes.

En su art́ıculo sobre teoŕıa de Galois parametrizada, [CS05] p.128 sección 5, Cassidy

y Singer encuentran una relación entre la teoŕıa de Galois con parámetros y las familias

isomonodrómicas de ecuaciones diferenciales lineales.

Nosotros proponemos una versión completamente geométrica de la teoŕıa de Galois con

parámetros de una conexión parcial D en P → B al fibrado de jets J(P/B). Dicha perspec-

tiva geométrica nos permite clarificar la relación entre el grupo de Galois y las deformaciones

isomonodrómicas. Un punto clave en este v́ınculo es el teorema de Kiso–Cassidy (Theorem

A.9). Mediante nuestro método es posible calcular el grupo de Galois de una ecuación

fuchsiana general y de la ecuación hipergeométrica de Gauss.

En el caso de la teoŕıa de Galois no lineal de Malgrange, no existe una versión con

parámetros. Mas precisamente, la teoŕıa de Galois no lineal de Malgrange en su presentación

usual incorpora los parámetros. En [Dav16] se calcula cierta parte del grupoide de Malgrange

(llamado grupoide parcial de Malgrange) de la ecuación de Painlevé VI. Sin embargo, una

pregunta queda abierta: ¿cuál es su grupoide de Galois cuando los parámetros son consider-

ados como variables adicionales? Este grupoide debeŕıa preservar las relaciones diferenciales

que satisfacen las soluciones de la ecuación de Painlevé VI respecto a los parámetros.

Usando el teorema de Kiso–Morimoto (Teorema B.4) y la carencia de isomonodromı́a

no lineal de PVI (que es una consecuencia de la clasificación de sus soluciones algebraicas)

somos capaces de calcular el grupoide de Malgrange total de la ecuación de Painlevé VI

incluyendo los parámetros.

Breve sumario del texto y los resultados principales

Comenzamos con una presentación de la teoŕıa de Galois diferencial en términos geométricos.

Para hacer esto es apropiado hablar de fibrados principales P → B donde la base viene con

una foliación F en la dirección de las variables independientes y una conexión D sobre F
que es plana y G–invariante.

Cada fibrado principal da lugar a un grupoide Iso(P ) de isomorfismos gauge, y existe

una correspondencia entre subgrupoides de Iso(P ) que dominan la base y ciertas familias de

subfibrados de P . En términos clásicos, el grupoide de Galois se define como el grupoide de

invarianza de las integrales primeras de D.

Debido a la naturaleza de los objetos que aparecen, introducimos el concepto de grupoide

racional: son los subconjuntos Zariski cerrados de un grupoide que son grupoides cuando

se restringen a un conjunto abierto en la base. Este escenario conduce naturalmente a la
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correspondencia de Galois:{
Subgrupoides Racionales

de Iso(P )

}
↔
{

Subcampos G-invariantes de C(P )

que contienen a C

}
El grupo de Galois clásico se obtiene como el estabilizador del grupoide de Galois en un

punto. El grupo de Galois intŕınseco es visto [Kat82] como un fibrado en grupos sobre la

base B y se obtiene como la parte diagonal del grupoide.

Con el objetivo de manejar la teoŕıa con parámetros, usamos el concepto de conexión G–

invariante con parámetros en S, esto es una conexión G–invariante D en P en la dirección

de F .

El caṕıtulo 2 presenta los fibrados de jets y la teoŕıa de puntos infinitesimalmente

próximos de Weil. Alĺı aparecen los fibrados de marcos y el mecanismo de prolongación

para los campos vectoriales. Seguimos la construcción general presentada en [MnRM00].

Sin embargo, consideramos el anillo de funciones en los fibrados de Weil y de jets como un

campo diferencial no clásico mediante el operador de derivada total.

El caṕıtulo 3 se dedica a la teoŕıa de Galois diferencial lineal con parámetros. Cassidy

y Singer en [CS05] establecen una relación entre familias isomonodrómicas y la teoŕıa de

Galois con parámetros. Para ver esta relación a través de una perspectiva geométrica, inter-

pretamos las deformaciones isomonodrómicas como extensiones de distribuciones de campos

vectoriales. Una extensión de una F–conexión D es una F̃–conexión D̃ de rango mayor tal

que D ⊂ D̃ y F ⊂ F̃ . Para otra presentación sobre las deformaciones isomonodrómicas

referise a [GO14].

Definimos las prolongaciones D(k) y D(∞) de una conexión parcial en un fibrado principal

a los espacios de jets. Esto permite introducir el grupoide de Galois con parámetros como el

grupoide de isomorfismos gauge de J(D) que deja fijos los invariantes diferenciales racionales

de D. Entonces el fibrado en grupos de Galois es la parte diagonal de grupoide. Este

será visto como un subfibrado en grupos racional Gal∞(D) ⊂ J(Gau(P )/B). Este fibrado

en grupos J(Gau(P )/B) tiene estructura diferencial dada por las derivadas totales y un

subfibrado en grupos es subgrupo algebraico diferencial si está definido por un ideal diferencial

del anillo de funciones regulares en el punto genérico de B. En este contexto probamos:

Teorema 3.18 El grupo de los automorfismos gauge J(D) se identifica con un

subgrupo diferencial algebraico de simetŕıas gauge de D, definido por la conexión

en grupos D[Adj].

Gau(J(D)) ' J(D[Adj]) ⊂ J(Gau(P )/B).

Teorema 3.20 El fibrado en grupos de Galois con parámetros Gal∞(D) es un

subgrupo algebraico diferencial de J(Gau(P )/B).
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Aqúı J(D[Adj]) ⊂ J(Gau(P )/B) es el grupo algebraico diferencial de simetŕıas gauge

de la conexión D. Bajo la hipótesis de grupo estructural simple, las deformaciones isomon-

odrómicas proveen las ecuaciones para el grupo de Galois con parámetros. Aqúı aparece el

resultado principal:

Teorema 3.23 Sea P → B Un fibrado principal con grupo simple G, ρ : B → S

un mapa dominante, F = ker(dρ), y D una conexión G-invariante con parámetros

en S. Asuma que el grupo de Galois D es Gau(P ). Entonces hay una deformación

isomonodrómica maximal D̃ de D y el grupo de Galois con parámetros Gal∞(D)

es el grupo J(D̃[Adj]) de simetŕıas gauge de D̃.

En el Ejemplo 3.24 consideramos el fibrado P → B donde B = Ck+1 × sln(C)k con

coordenadas x, a1, . . . , ak, A1, . . . , Ak; S = Ck × sln(C)k y P = SLn(C)×B. Además consid-

eramos la proyección ρ : B → S. En este escenario estudiamos el sistema fuchsiano general

con k singularidades y matrices sin traza, donde tenemos una SLn(C)–conexión dada por

∂U

∂x
=

(
n∑
i=1

Ai
x− ai

)
U. (0-12)

Sus deformaciones isomonodrómicas son bien conocidas y están dadas por el

sistema de Schlesinger:

∂Ai
∂aj

=
[Ai, Aj]

λi − λj
, (0-13)

∂Ai
∂ai

= −
∑
i 6=j

[Ai, Aj]

λi − λj
, (0-14)

∂U

∂ai
=

Ai
x− ai

U. (0-15)

Las ecuaciones (0-13), (0-14) definen la foliación ρ∗(F̃) de caminos isomon-

odrómicos en S, y las ecuaciones (0-12) - (0-15) definen la deformación isomon-

odrómica D̃ como una F̃ -conexión parcial. El grupo de Galois con parámetros de

(0-12) es el subgrupo algebraico diferencial J(SLn(C)/B) dado por las ecuaciones

(0-13), (0-14), y

∂σ

∂x
=

[
n∑
i=1

Ai
x− ai

, σ

]
,

∂σ

∂ai
=

[
Ai

x− ai
, σ

]
. (0-16)
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También se estudia la ecuación hipergeométrica de Gauss

x(1− x)
d2u

dx2
+ {γ − (α + β + 1)x}du

dx
− αβu = 0 (0-17)

Es posible interpretar la ecuación (0-17) como una conexión lineal con parámetros, en

el fibrado P = GL2(C) × B → B, donde B = Cx × S y S = C3
α,β,γ. Entonces, por una

serie de argumentos, que incluyen la reducción de la ecuación a PGL2(C)×B, la carencia de

deformaciones isomonodrómicas para la ecuación reducida y además la proyección obtenida

mediante el determinante, se llega a la siguiente descripción de su grupo de Galois:

Teorema 3.31 El grupo diferencial de Galois con parámetros de la ecuación

hipergeométrica de Gauss está dado por

Gal∞(H) = {jσ ∈ Gau(J(H)) | jdet(σ) ∈ Gal∞(Hdet)}

el cual está definido por las ecuaciones diferenciales

∂xσ =

[(
0 1
αβ

x(1−x)
(α+β+1)x−γ

x(1−x)

)
, σ

]
,

∂x det(σ) = ∂c det(σ) = ∂a

(
∂a det(σ)

det(σ)

)
= ∂b

(
∂a det(σ)

det(σ)

)
= ∂b

(
∂b det(σ)

det(σ)

)
= 0.

donde σ es una matriz invertible 2× 2 que depende de x, α, β, γ y los operadores

diferenciales ∂a, ∂b, ∂c son los que aparecen en la Proposición 3.28.

El caṕıtulo 4 se dedica a la teoŕıa no lineal de Galois–Malgrange. Para introducir el

grupoide de Malgrange de un campo vectorial usamos la teoŕıa de los marcos como se expone

en el caṕıtulo 2. Un k–marco en una variedad M está dado por el jet de orden k de un

germen de biholomorfismo φ : (Cm, 0) → M . El fibrado de k–marcos RkM → M es un

fibrado principal con grupo estructural Autk(Cm, 0).

Nuestra estrategia para tratar con los campos vectoriales no lineales X es considerar

su linealización a cada orden finito. La prolongación X(k) de X a RkM es Autk(Cm, 0)-

invariante. Entonces la distribución 〈X(k)〉 es una conexión 〈X〉–parcial. Podemos aplicar

la teoŕıa de Galois diferencial como se expone en el Caṕıtulo 3. El grupoide de Malgrange de

orden k Malk(X) de un campo vectorialX es el grupoide de Galois de su k-ésima prolongación

GGal(〈X(k)〉). Tomando el ĺımite proyectivo (k → ∞) obtenemos un D–grupoide Mal(X)

en M .

El grupoide de Malgrange tiene una D–álgebra de Lie. Hay un resultado de Kiso y

Morimoto sobre la estructura de las D–álgebras de Lie que puede ser visto como un análogo

no lineal del teorema de Kiso-Cassidy (la foliación G que aparece en el Teorema B.4 puede

verse como una deformación isomonodrómica no lineal). Luego aplicamos este resultado a

la sexta ecuación de Painlevé:
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u′′ = F (x, u, u′, a, b, c, e); u′ = v (0-18)

donde F ∈ C(x, u, v, a, b, c, e) es

F (x, u, u′, a, b, c, e) =
1

2

(
1

u
+

1

u− 1
+

1

u− x

)
u′

2 −
(

1

x
+

1

x− 1
+

1

u− x

)
u′

+
u(u− 1)(u− x)

x2(x− 1)2

(
1
2
c2 − 1

2
a2 x

u2
+ 1

2
b2 x− 1

(u− 1)2
+ (1−e2

2
)
x(x− 1)

(u− x)2

)
.

La cual es considerada en su forma hamiltoniana como campo vectorial X en C7. Medi-

ante el teorema de Kiso–Morimoto e interpretando X como una conexión 〈X〉 en el fibrado

trivial M → B donde M = C7, B = C5
x,a,b,c,e y S = C4

a,b,c,e se hace posible computar el

grupoide de Malgrange de PVI:

Teorema 4.26 El grupoide de Malgrange de la ecuación Painlevé VI está dado

por

Mal(X) =
{
φ | π̄ ◦ φ = φ; φ∗(dx) = dx; φ∗(X) = X;

φ∗(dp ∧ dq) ≡ dp ∧ dq mod da, db, dc, de, dx
}

Finalmente los apéndices A. y B. consisten de la teoŕıa de los grupos algebraicos diferen-

ciales, siguiendo a Malgrange [Mal10a], y el teorema de Kiso–Morimoto, siguiendo a [Kis79].



1. Some algebra and geometry

1.1. Differential Algebra

Some concepts from differential algebra are presented here with a geometrical flavour. Re-

sults to be used later are stated and some proofs are given.

Definition 1.1 A derivation in a ring A is an additive map ∂ : A→ A that satisfies Leibniz

rule: ∂(ab) = ∂(a)b + a∂(b). Derivations of A form an A–module: DerA. The commutator

[∂, δ] = ∂ ◦ δ − δ ◦ ∂ of two derivations is itself a derivation.

A differential structure in a ring A is a A-module XA of derivations of A closed under

the commutator bracket. A differential ring consist of a pair (A,XA) where A is a ring and

XA is a differential structure in A. We will say interchangeably that (A,XA) is a differential

ring or that A is a XA-ring.

Example 1.2 The ring of rational functions C(x1, . . . , xn) on an open subset of Cn, with

module of derivations generated by ∂1, . . . , ∂n where ∂ixj = δij and ∂ic = 0 for all c ∈ C is a

differential ring.

A classical differential ring (A,∆), or a ∆-ring A, is a ring with a n-tuple ∆ = {δ1, . . . , δn}
of mutually commuting derivations. It is clear that a classical differential ring is a differential

ring, just take as the module of derivations the A-module spanned by ∆.

Definition 1.3 An ideal I in a differential ring A with derivations XA is called differential

ideal (or XA-ideal) if it is closed under all the derivations : ∂I ⊂ I for all ∂ ∈ XA. An

element c ∈ A is said to be a constant if ∂c = 0 for every ∂ ∈ XA.

In the classical setting, the condition XAI ⊂ I becomes ∂iI ⊂ I for all i = 1, . . . , n, and

the property of being a constant is expressed as ∂ic = 0 for all i = 1, . . . , n. The set of all

XA-constants of A is a subring of A denoted by CA or AXA when it is necessary to point out

the differential structure.

Definition 1.4 Let A and B be two differential rings with modules of derivations XA and

XB. A ring morphism θ : A → B is differential if there is a map θ∗ : XA → XB such that

θ ◦ ∂ = θ∗(∂) ◦ θ for any ∂ ∈ XA and the image θ∗(XA) generates XB as a B–module. This

condition assures that the image of any constant is a constant.
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In classical terms, a morphism of classical differential rings is a ring morphism that

commutes with the derivations. If ∆A = {δ1, . . . , δn} is a system of commuting generators

of XA, and if ∆B = {θ∗(δ1), . . . , θ∗(δn)}, then θ : (A,∆A) → (B,∆B) is a morphism of

classical differential rings. Thus, the notion of morphism of differential rings extends that of

morphism of classical differential ring.

Definition 1.5 The algebra of linear differential operators is the non-commutative algebra

A[XA], spanned by XA and A inside EndCAA, with composition denoted by ◦. The ring

of differential polynomials in the unknowns x1, . . . , xn is defined in the following way. Let

L = ⊕ni=1Axi be the free A-module spanned by the variables. Then, the ring of differential

polynomials spanned by L is:

A{L}XA = S•
(
L⊗A A[XA]

)
where its differential structure is given by the derivations ∂ ∈ XA acting, for a ∈ A as follows:

∂(axi ⊗ θ) = (∂a)xi ⊗ θ + axi ⊗ ∂ ◦ θ

In the classical context the ring of differential polynomials is given by the next construc-

tion: See [VdPS12], Appendix D. Begin with a basis of derivations ∆ = {∂1, . . . , ∂r} and

variables x1, . . . , xn. Take Θ to be the free commutative semigroup generated by the ele-

ments of ∆. Let {θxi}θ∈Θ,i∈{1,...,n} be a set of indeterminates. Then define A{x1, . . . , xn}∆

to be A[θxi]θ∈Θ,i∈{1,...,n}. Derivations in ∆ give to A{x1, . . . , xn}∆ a structure of differential

ring by setting ∂i(θxj) = ∂iθxj.

The given definition of differential polynomials extends the classical one. In what follows

it is useful to use multi-index notation. For α a multi-index write ∂α = ∂α1
1 · · · ∂αrr .

Proposition 1.6 Let (A,XA) be a differential ring and ∆ = {∂1, . . . , ∂r} a system of com-

muting generators of XA. Let us assume that A[XA] is a free A-module spanned by the

powers ∂α. Then,

A{L}XA = A{x1, . . . , xn}∆;

that is, A{L} is the ring of polynomials in the variables θxi where θ varies in the free

commutative semigroup Θ spanned by ∆.

Proof. As A[XA] is spanned by {∂α}, write A[XA] = ⊕αA∂α. Then

(⊕Axi)⊗ A[XA] = (⊕Axi)⊗⊕αA∂α = ⊕α,iA(xi ⊗ ∂α)

A useful alternative notation is xi ⊗ ∂α := ∂αxi = xi:α. Finally, the derivation given by

∂(axi ⊗ θ) = (∂a)xi ⊗ θ + axi ⊗ ∂ ◦ θ behaves well with tensor relations:

∂(aixi ⊗ θ) = ∂(ai)xi ⊗ θ + aixi ⊗ ∂ ◦ θ
∂(xi ⊗ aiθ) = xi ⊗ (∂ai)θ + xi ⊗ ai∂ ◦ θ

�
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1.1.1. Differential field associated to a foliation

All previous notation applies to the particular case in which the ring happens to be a field.

Thus, we shall speak of differential fields, ∆-fields, XK-fields, and so on. The following result

is about the differential algebraic structure of singular foliations, the reader may check p.32

for the terminology on foliations.

Theorem 1.7 Let M be an irreducible smooth algebraic variety over C, F a singular foli-

ation on M of rank r and XF the C(M)–module of derivations tangent to F . Then there

exists a basis B of derivations of XF that commute among each other, and so (C(M),B)

admits an structure of classical differential field with |∆| = rank(F).

Proof. This is a restatement of Frobenius theorem. Take x1, . . . , xn a transcendence

basis for C(M). Write ∂i for ∂/∂xi. The collection ∆ = {∂i} is basis of Der(C(M)).

Take any basis X̃ for XF . As XF is a vector subspace of XM it its possible to express the

basis X̃ in terms of the basis ∆, so there is a matrix Ã such thatX̃1

...

X̃r

 = Ã

∂1

...

∂n


Matrix Ã have rank r and it is possible to assume that the first r columns are linearly

independent. Call B the sub-matrix of Ã that consist of those columns. Then consider the

following vector fieldsX1

...

Xr

 = B−1Ã

∂1

...

∂n

 A := B−1Ã =

1 a1r+1 · · · a1n

. . .
...

1 arr+1 · · · arn


A direct calculation shows that for 1 ≤ k ≤ r, [Xi, Xj]xk = 0 and for r + 1 ≤ k ≤ n it is

given by

[Xi, Xj]xk = ∂iajk − ∂jaik +
n∑

t=r+1

ait∂tajk −
n∑

s=r+1

ajs∂saik

Calling these coefficients Ck
ij := [Xi, Xj]xk write [Xi, Xj] =

∑n
s=r+1C

k
ij∂s.

As F is involutive, it is possible to write [Xi, Xj] =
∑
gkijXk. Expanding this expression

yields

[Xi, Xj] =
∑

gkijXk

=
∑
k=0

gkij∂k +
r∑

k=0

n∑
l=r+1

gkijakl∂l

It follows that gkij = 0 for k = 1, . . . , r, and this way the fields Xi commute. �
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1.1.2. Differentially finitely generated differential field extensions

Let (K,∆) be a characteristic 0 ∆-field, and K ⊂ L a ∆-field extension. Given a set S

of elements of L we denote by K〈S〉 to the ∆-field spanned K and the elements of S. A

classical differential field extension K ⊂ L with derivations set ∆ is said to be ∆-finitely

generated if there are elements {a1, . . . , am} such that L = K〈a1, . . . , am〉∆. The following

result, due to E. Kolchin has deep implications.

Theorem 1.8 Given a classical differential field extension K ⊂ L of characteristic 0, ∆-

finitely generated over K then any intermediate ∆-field extension K ⊂ L′ ⊂ L is also

∆-finitely generated.

Proof. See [Kol73] p.112, Proposition 14. �

It is clear that it applies to the non-classical case whenever it can be reduced to the

classical, as in Theorem 1.7.

1.2. Principal bundles and groupoids

A principal bundle π : P → B with structure group G, consist of the following data: Two

algebraic varieties P , B and an algebraic group G such that:

1. G acts on P on the right.

2. The map π is smooth and onto.

3. The map m : P ×G→ P ×B P such that (x, g) 7→ (x, x.g) is an isomorphism.

Example 1.9 Let G be the Lie group GLn(C), the set of all linear automorphisms Cn → Cn.

Let M be a smooth variety of dimension m. For a point x ∈ M define the set of 1-frames

over x as the collection of all linear isomorphisms Cm → TxM . An element of g the group

G = GLn(C) acts on a 1-frame F by composition from the right or source i.e. Fg = F ◦g The

collection of all 1-frames is called the bundle of 1-frames, denoted as R1M . As it is shown

in Subsection 2.2.2 it admit an smooth algebraic variety structure such that R1M → M is

a principal bundle. �

If U is an open subset of B then π−1(U)→ U is also a principal bundle with structural

group G. The difference with the classical definition of smooth principal bundles in differen-

tial geometry is that those are locally trivial, but in the algebraic context such requirement

might not be satisfied, and instead a different notion is needed: local isotriviality. The bun-

dle π is said to be locally isotrivial if for all b ∈ B there exist a Zariski open set U ⊂ B

containing b and a non ramified covering V → U such that P ×U V → V is isomorphic to

the trivial bundle G× V → V .
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Proposition 1.10 Let π : P → B be a morphism of varieties. Assume that an algebraic

group G acts on P in a way that π is G–invariant. Then P → B is a principal bundle if and

only if it is locally isotrivial.

Proof. See [Ser58]. �

An important consequence of the previous proposition is the following:

Corollary 1.11 Let P → B be a principal bundle with structural group G. Then there

exist an affine open set B0 ⊂ B such that π−1B0 is affine.

Proof. See [Dav16] p.18 �

Let π : P → B be a principal bundle with structure group G, let M be a variety on which

G acts on the left: ρ : G ×M → M . The group G acts on P ×M on the right diagonally

by setting

(p,m).g = (pg, g−1m)

Definition 1.12 The associated bundle of P with fiber M over B is the quotient space

P [ρ] = (P × M)/G, under the diagonal action. The projection πB : P [ρ] → B is given

by πB(pg, g−1m) = π(p). When the fiber M happens to be a vector space, then P [ρ] is

called the associated vector bundle of P . When there are no doubts about the action, it is

customary to write P [M ] instead of P [ρ].

Example 1.13 The tangent bundle TM can be identified to R1M [Cm]. This identification

is attained as follows: given a frame F ∈ R1M and a vector v ∈ Cm we can get a tangent

vector at the point in which the frame sits, F (v). To see this assignation is well defined,

observe the pair (F, v) under diagonal action of GLm(C) goes to the pair (F ◦ A,A−1v) for

A ∈ GLm(C). This last pair produces the same tangent vector because F ◦A◦A−1◦v = F (v).

In this way we obtain a bundle isomorphism R1M [Cm]→ TM .

Example 1.14 Let Gr(d,m) denote the set of all d–dimensional linear subspaces of the

vector space Cm. The Grassmann bundle of d-dimensional linear subspaces is the the associ-

ated bundle Gr(d, TM) := R1M [Gr(d,m)]. Observe that sections of the Grassmann bundle

coincide with smooth distributions on the tangent space.

Definition 1.15 Let P → G be a G-principal bundle, and H ⊂ G a subgroup. Let P ′ ⊂ P

be an H-invariant algebraic subvariety. We say that P ′ is a reduction of P from G to H if:

1. P ′ → B is surjective.

2. P ′ ×H → P ′ ×B P ′ is an isomorphism.

Note that P ′ → B is a H-principal bundle.
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It is possible to talk about reduction or extension of the structure group in terms of

associated bundles. Let H ⊂ G be an algebraic subgroup, and suppose P → B is an H–

principal bundle. Take M = G in the associated bundle construction. Observe that H acts

naturally on the left of M , therefore P [G] = P × G/H is an H–bundle. The group G acts

on the right on itself, thus it acts also on P ×G by composition on the second factor. This

action commutes with the diagonal action of H and induces an action of G on P [G], turning

it into a G–bundle.

Definition 1.16 Let P → B be a H–principal bundle with H a subgroup of G. We say the

G–bundle P [G] is an extension of P with group H to group G.

Note that P ⊂ P [G] is a reduction of P [G] from the group G to the subgroup H. This

mechanism works the other way. If H ′ ⊂ H is a subgroup, and P ′ ⊂ P is a reduction of P

to H ′ then

P ′[H]→ P, (p, h)→ ph

is an isomorphism of H-principal bundles.

Example 1.17 Another particular case of associated bundle is where M is an homogeneous

space G/H. In such case we have a projection,

P → P [G/H],

where the pre-images are the H-orbits, therefore P [G/H] ' P/H. In particular, if H C G
then P/H is a G/H-principal bundle.

Observe that an associated bundle needs not to be principal.

1.2.1. Groupoids

A groupoid consist of two varieties G and B called the groupoid and the base respectively,

equipped with the following morphisms:

• Source s : G → B and target t : G → B.

• Identity e : B → G

• Partial composition m : G ×sMt G → G where the product is fibered over s and t.

• Inverse inv : G → G

Partial composition m(g, h) is usually written simply as gh. These maps are required to

satisfy, for f, g, h ∈ G with s(g) = t(h) and s(f) = t(g), the identities listed below:

• s(gh) = s(h), t(gh) = t(g)
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• f(gh) = (fg)h

• e(t(g))g = g = ge(s(g))

• s(inv(g)) = t(g), t(inv(g)) = s(g),

• inv(g)g = e(s(g)), ginv(g) = e(t(g))

Example 1.18 Given a variety M , consider the product M2 = M ×M , equipped with the

following morphisms pr1, pr2 : M2 → M of projection in the first and second component

respectively. Identity map is given by the diagonal inclusion M →M2. Partial composition

M2 ×sMt M2 →M2

is determined by the rule (y, z)× (x, y) 7→ (x, z) and inversion inv : M2 → M2 is such that

(x, y) 7→ (y, x). With these maps M2 is referred to as the pair groupoid with base M , see

[MM03] p.113. Key to note in this example, the subgroupoids of M2 are the equivalence

relations.

Definition 1.19 A morphism of groupoids G and G ′ with base B and B′ respectively is a

pair of maps φ : G → G ′ and φ0 : B → B′ such that the following diagram commutes

G
s/t
��

φ // G ′

s/t
��

B
φ0 // B′

and such that φ(gh) = φ(g)φ(h). Note that commutation of diagram guarantees this last

formula makes sense.

Definition 1.20 Let G be a groupoid with base B. A subgroupoid of G is a groupoid H
with base B′ together with injective immersions i : H → G and i0 : B′ → B such that (i, i0)

is a morphism of groupoids. See [Mac05] p.13.

Definition 1.21 The diagonal part of G is the restriction of the groupoid G to the diagonal

of B:

Gdiag = {g ∈ G : s(g) = t(g)}.

It is an algebraic group bundle s : Gdiag → B.

1.2.2. Groupoid of gauge isomorphisms

Definition 1.22 Let P → B be a principal bundle with structural group G. Denote by

IsoP the set of all equivariant bijections between one fiber of P to another (possibly the

same). In other words, for every pair (b, b′) ∈ B2 all equivariant bijections Pb → Pb′ .
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The set IsoP has the structure of a groupoid with the following mappings

• Source s and target t which assign to an equivariant map the point of the base over

which the domain fiber sits, and the base point that the codomain projects to, respec-

tively.

• The identity map assigns to every base point the corresponding identity transformation

of the fiber.

• Partial composition is allowed whenever the domain of one map coincides with the

codomain of the other.

• The inversion map takes a bijection Pb → Pb′ and gives its inverse Pb′ → Pb.

IsoP is an algebraic groupoid acting on B. This groupoid can be described as an asso-

ciated bundle,

Iso(P ) ' (P × P )/G = P [P ].

The class [p, q] of a pair (p, q) is identified with the uniqueG-equivariant map φp,q : Pπ(p) →
Pπ(q) satisfying φp,q(p) = q. It is straightforward to see that φp,q(pg) = qg is a well defined

equivariant mapping.

Definition 1.23 By Gau(P ) we mean the group bundle of gauge automorphisms of P ; the

diagonal part of Iso(P ). Another common notation for GauP is Isos=tP .

GauP is an algebraic group bundle over B. Its elements are G-equivariant maps from a fiber

of P to itself. The group bundle Gau(P ) can also be constructed as the associated bundle,

the balanced construction P [Adj] = P ×Adj G.

Lemma 1.24 Let P be a principal bundle with structural group G. The groupoid IsoP can

be given a variety structure in a way that the map Φ : P 2 → IsoP such that Φ(x, y) = φxy is

an algebraic morphism of groupoids. The map Φ descends to the quotient by diagonal action,

and is going to be denoted also by Φ. It gives a bijection between equivalence relations in

P 2 that are invariant under the diagonal action of G and the set of subgroupoids of IsoP .

Proof. A detailed one appears in [Dav16] p. 22. �

Lemma 1.25 Let P → B be a principal bundle with structure group G.

• The evaluation map IsoP ×
sB
P → P given by (φxy, z) 7→ φxy(z) is algebraic for a any

chosen point x ∈ P .

• The variety GauP is an algebraic group bundle over B, each fiber being isomorphic to

the group G; such isomorphisms depend on the choice of a point in the fiber.
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• The bundle of groups GauP = (IsoP )diag acts on IsoP over B by composition from

the source. The groupoid IsoP is a bundle of principal bundles with projection over B

given by the target. This means each fiber is a principal bundle.

Each of the fibers of IsoP is isomorphic to P , again the morphism depending on the

choice of a point in P .

• To every subgroupoid of IsoP that dominates the base corresponds a family of principal

subbundles of P , parameterized by p ∈ P , and every pair in a family are related through

translation by an element of the group. This correspondence depends on the choice of

a point in P .

Every pair of subbundles in a family have structure groups that are conjugated.

Proof. We prove the last item. Denote by Subgrd(Iso(P )) the set of subgroupoids of

Iso(P ) that dominate the base B, and Subbnd(P ) the collection of principal subbundles of

π. Lets say that L,L′ ∈ Subbnd(P ) are related if there exists g ∈ G such that L′g = L.

It is an equivalence relation, call it ∼ . For any choice of x ∈ P , define a map Θx :

Subgrd(Iso(P )) −→ Subbnd(P )/ ∼ by G 7→ [G.x] Where [G.x] denotes the class of

G.x =
{
φ(x) | φ ∈ G, s(φ) = π(x)

}
Define also the map Υ : Subbnd(P )/ ∼−→ Subgrd(Iso(P )) by [L] 7→ Iso(L).

First we observe that given x, y ∈ P there exists g ∈ G such that L = Θx(G) = Θy(G)g =

L′g. Indeed, assume we have π(x) = b and π(y) = b′. As G dominates the base, there exist

σbb′ ∈ G; Define z = σ(x). We have Gx = Gσ(x) = Gz. As z and y are in the same fiber

there is g ∈ G such that z = yg. Then

L′g = (Gy)g = G(yg) = Gz = Gx = L.

Second, lets see that Iso(G.x) = G no matter what the choice of x ∈ P be. The first

inclusion Iso(G.x) ⊂ G: For p, q in G.x, lets see fpq is in G. By definition there exist f and

f ′ both in G such that f(x) = p and f ′(x) = q. Then f ′ ◦ f−1 = fpq is in G because f ′ and

f−1 are.

The remaining inclusion: For fwz ∈ G we want to find fw′z′ that coincides with fwz
and such that fw′z′ ∈ Iso(Gx). Let b = π(x) and c = s(f). It suffices to find h such

that s(h) = b, t(h) = c. Such h exists by the hypothesis that G dominates B. Define

w′ = h(x) and z′ = f(w′). Observe that there exists g ∈ G such that w′ = wg. Then

f(w′) = f(wg) = f(w)g = zg and z′ = f ◦ h(x) then z ∈ Gx, because f, h ∈ G. We conclude

that fwz = fw′z′ ∈ Iso(Gx). Observe that the previous arguments works for any x ∈ P so

Iso(G.x) = G for all x ∈ P .

Finally we see structure groups are conjugated: Let L and Lg be subbundles, with

structure groups H and H ′ respectively. From LH ⊂ L it follows Lgg−1Hg ⊂ Lg. As H ′ is

the structural group of Lg it follows that gHg−1 ⊂ H ′.
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Also we have for L′ = Lg that L′g−1gH ′g−1 ⊂ L′g−1 and from here, LgH ′g−1 ⊂ L. But

as H is the structural group of L then it follows that gH ′g−1 ⊂ H, and H ⊂ g−1H ′g. This

proves H ′ = g−1Hg. �

Example 1.26 Let π : P = Cn×GLn(C)→ Cn be the frame bundle on Cn. An equivariant

map between two fibers of P is determined by two points in the base and an invertible matrix.

This way IsoP = Cn×Cn×GLn(C) and (IsoP )diag = Cn×GLn(C). There are two possibilities

for Cn ×GLn(C) to act on IsoP , by pre- or post- composition:(
Cn × Cn ×GLn(C)

)
×
s π

(
Cn ×GLn(C)

)
−→ Cn × Cn ×GLn(C)

(a, b, C)× (a,A) 7−→ (a, b, CA)

(
Cn ×GLn(C)

)
×
π t

(
Cn × Cn ×GLn(C)

)
−→ Cn × Cn ×GLn(C)

(a,A)× (b, a, C) 7−→ (b, a, AC)

Observe, for example, in the second case, the domains and codomains of C : Pb → Pa,

and A : Pa → Pa.

1.2.3. Lie algebroid of a Lie groupoid

Let G be a Lie groupoid with base B. There is an action of G on G itself as follows: For

h ∈ G, we have the right translation by h, Rh : s−1(t(h))→ s−1(s(h)), given by composition

Rhg = gh. Observe it is defined only for those elements g such that s(g) = t(h). Then we

obtain an action of G on TG: for ξ ∈ TgG, define ξh = dRh(ξ). This action restricts naturally

to Γ(ker ds), which is a Lie subalgebra of Γ(TG).

Definition 1.27 A vector field X ∈ Γ(ker ds) is said to be G–right invariant if Xgh = Xgh

whenever the action is defined.

Let Xs
inv(G) be the Lie subalgebra of Γ(ker ds) consisting of right invariant vector fields.

Any X ∈ Xs
inv(G) is projectable along t to B. The crucial observation is that X ∈ Xs

inv(G)

is determined by its restriction to the set of units e(B), because Xg = Xe(t(g))g. Let g =

e∗(ker ds). We have Γ(g) ∼= Xs
inv(G) as vector spaces. Each X ∈ Γ(g) can be extended

uniquely to a G–invariant field X̃ and each Y ∈ Xs
inv(G) restricts uniquely to a section of g

over B.

Then as Xs
inv(G) is a Lie algebra, there is a structure of Lie algebra on Γ(g) such that the

isomorphisms Γ(g) ∼= Xs
inv(G) is also a Lie algebra isomorphism.

Definition 1.28 The Lie algebroid of the groupoid G is g = LieR(G) = e∗(ker ds). It comes

with an anchor map an : g→ TB that is the restriction of dt : TG → TB to e∗(ker ds) seen

as a subbundle of ker ds.
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g

��

// ker ds

��
B e // G

If we write Gb• = s−1(b) then for a point b ∈ B we have gb = Te(b)Gb•. The subindex R

in LieR(G) appears because we have used the right invariant fields to define the algebroid.

Analogous constructions can be made using left invariant vector fields.

The relationship between the structure of Lie algebra and module of Γ(g) is expressed in

the following:

[X, fY ] = (f ◦ t)[X, Y ] + an(X)(f)Y

where an : Γ(g)→ Γ(TB) = X(B) such that an(X) = dt(X̃).

Example 1.29 Let π : P → B be a principal bundle with structure group G. We are going

to describe the Lie algebroid of Iso(P ). Let p, q ∈ P be points such that π(p) = π(q) = b

and p = qg for g ∈ G. Observe that Iso(P )b• = (Pb × P )/G

We have a sequence

0 // Pb
∆ // Pb × P // (Pb × P )/G // 0

Where ∆ is the diagonal inclusion ∆(q) = (q, q). The last sequence induces the following:

0 // Tq(Pb) // T(q,q)(Pb × P ) // LieR(Iso(P ))b // 0

0 // Tp(Pb) //

dRg

OO

T(p,p)(Pb × P ) //

OO

LieR(Iso(P ))b // 0

We can decompose as follows

T(p,p)(Pb × P ) = T(p,p)(∆Pb)⊕ T(p,p)({p} × P )

T(q,q)(Pb × P ) = T(q,q)(∆Pb)⊕ T(q,q)({q} × P )

There is an isomorphism T(p,p)({p} × P ) ∼= TpP , and similarly for q. From this we get

LieR(Iso(P ))b ∼= TpP ∼= TqP . We conclude that LieR(Iso(P )) ∼= (TP )/G. Note that a

G–invariant field X̃ on P induces a section X of (TP )/G over B:

TP //

��

P

��

X̃
uu

(TP )/G // B

X

ii

Finally dπ : TP → TB induces the anchor map an : (TP )/G→ TB.
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1.2.4. Distributions

Let us recall that a d–rank distribution D on M is an smoothly varying family of d–

dimensional linear subspaces of the tangent space of a variety, therefore D ⊂ TM is a

linear subbundle of TM over M .

We say that D is a d–rank rational distribution if:

(a) D is a subvariety of TM .

(b) There is a dense open subset M ′ ⊂ M such that D|M ′ is Zariski dense in D and a

d–rank distribution on M ′.

Distributions can be described locally by d linearly independent vector fields on M . These

span, at each x ∈M a d–dimensional linear subspace Dx ⊂ TxM . Rational distributions are

spanned by rational vector fields, and therefore there is a bijective correspondence between

d–rank rational distribution in M and d–dimensional C(M)-vector subspaces of Xrat(M). To

the distribution D it corresponds the C(M)-vector space XD of rational sections of D.

A rational function f is said to be a rational first integral of D if Xf = 0 for any section

of D. The field C(M)D of rational first integrals of D is a relatively algebraically closed

subfield of C(M). It is the field of constants of the differential field (C(M),XD).

Foliations

Let D be a d–rank distribution in M . An analytic submanifold S ⊂ M is said to be an

integral submanifold of M if for all x ∈ S it happens that TxS = Dx. Let us recall that

a d–rank distribution is involutive if its sheaf of sections is closed with respect to the Lie

bracket.

Frobenius theorem, [Ste99] p.132, says that a distribution is involutive if and only if its

integral submanifolds form a foliation of M . On the other hand, the tangent spaces to the

leaves of a foliation define an involutive distribution. Therefore, by a foliation in M we

understand an analytic involutive distribution. Its integral manifolds are called leaves of the

foliation.

Rational involutive distributions en M are called singular foliations in M . A singular

foliation F in M gives a foliation in a maximal open subset M ′ ⊂M . Its complement SingF
is known to be of codimension ≥ 2, see for example [CCD13] p.40. We say that F is a regular

foliation if SingF = ∅.
There is a natural one to one correspondence between d–rank singular foliations and Lie

subalgrebras of Xrat(M) of dimension d over C(M). To each foliation F corresponds its sheaf

of rational sections XF which is the Lie algebra of rational vector fields in M tangent to the

leaves of F .
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Invariant and associated distributions

Let P → B be a G–principal bundle and let D be a rational distribution in P . We say that D
is G-invariant if for each g ∈ G we have Rg∗(D) = D. The distribution D is said to dominate

the base if for x ∈ P generic it happens that dxπ(Dx) = Tπ(x)B where dxπ : TxP → Tπ(x)B.

Let D be a G-invariant distribution in P . Let ρ : G ×M → M be an action of G, so

that we have an associated bundle P [ρ] (or P [M ] whenever the action is chosen canonically).

Consider the distribution 0M ∈ TM that assigns the zero vector space to every point of M .

As a subset of TM it is {(p, 0TpM) | p ∈M}. Consider the following commutative diagram,

P ×M
π
��

T (P ×M)oo

dπ
��

P [ρ] = (P ×M)
/
G T (P ×M

/
G)oo

Definition 1.30 For D a G–invariant distribution, the induced distribution on P [ρ] is given

by D[ρ] = dπ(D×0M). If the action ρ is canonically chosen and it does not lead to confusion

we write D[M ] instead of D[ρ].

Example 1.31 Let us consider the canonical action of G in P by the left side given by

(g, p) = pg−1. Then, P [P ] = Iso P . The associated distribution D[P ] is denoted by Ds.
However there is some ambiguity in the definition. If we consider the first factor of P × P
as a left G-space and the second factor as a G-principal bundle we obtain dπ(0P ×D) that

we denote Dt. Note that inv∗(Ds) = Dt.

Definition 1.32 D �D is the distribution Ds +Dt.

Remark 1.33 The distribution pr−1
1 (D)∩pr−1

2 (D) on P ×P is invariant under the diagonal

action of G. The image on the quotient Iso(P ) is D �D.

Remark 1.34 Let us recall that GauP can be viewed as the associated bundle P [Adj]. We

have indeed D �D|Gau(P ) = D[Adj].

When P is B × GLn over a curve B with connection given by solutions of ∂Y
∂x
− A(x)Y

then D � D on Iso(P ) is given by ∂U
∂s
− A(s)U and ∂U

∂t
+ UA(t) and D[Adj] is given by

∂U
∂x
− [A(x), U ].

Partial connections

Definition 1.35 A rational partial flat Ehresmann connection in the direction of F in P is

a π–projectable, singular foliation D in P of the same rank that F such that π∗(D) = F .
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From now on we will write F–connection, to refer to partial flat Ehresmann connections.

A local analytic section u of P is D–horizontal if Du(x) ⊂ dxu(TxB) for each x in the

domain of u. This means that each restriction of u to a leaf L of F is D|π−1(L)–horizontal,

and vice versa. A vector field in P tangent to D is also called D–horizontal. Given a local

analytic vector field X tangent to F in B, there is a unique D–horizontal vector field X̃ in

P such that π∗(X̃) = X. This X̃ is called the D–horizontal lift of X. It is clear that if X

is a rational vector field then X̃ is also a rational vector field, moreover, if X is regular in

B′ ⊂ B and D is regular in π−1(B′) then X̃ is regular in π−1(B′). The D–horizontal lifting

is compatible with the Lie bracket [̃X, Y ] = [X̃, Ỹ ].

1.3. Galois Correspondence

1.3.1. Rational equivalence relations

Let P be a complex irreducible algebraic affine smooth variety. We say that a Zariski-closed

subset R ⊂ P × P is a rational equivalence relation if:

1. there is an open subset P ′ such that R|P ′ := R ∩ (P ′ × P ′) is a equivalence relation in

P ′; and it satisfies any of the following equivalent conditions:

2. for any open subset U of P , R is the Zariski closure of R|U ;

3. irreducible components of R dominate P by projections.

Remark 1.36 Meromorphic equivalence relations, and generic quotients by them, have been

already studied in [Gra86]. Generic quotients in a broader sense have been studied in SGA3

[DG70]. Galois correspondences shown here (Propositions 1.47, 1.53) can be seen as a direct

consequence of results shown in SGA3 (Théorème 8.1).

Remark 1.37 Let us recall that the diagonal ∆P ⊂ P × P is included in any rational

equivalence relation, and it dominates P by projections. Therefore, if R ⊂ P × P is an

irreducible Zariski-closed subset then it is a rational equivalence relation if and only if it

satisfies condition (1).

The following result is a particular case of [Mal01] Théorème 1.1.

Theorem 1.38 Let R be a rational equivalence relation in P . There is an open subset

P ′ ⊂ P such that R|P ′ is a smooth equivalence relation in P ′.

Example 1.39 Let P be C2 with coordinates x, y; we consider coordinates x1, y1, x2, y2 in

P × P . Then the closed subset R defined by the equation

x1y2 − x2y1 = 0

is rational equivalence relation in P .
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Rational equivalence relations are reflexive and symmetric. They are not in general tran-

sitive (as relations), but generically transitive, i.e. they become transitive after restriction

to a dense open subset. For p ∈ P let us denote [p]R its class, the set of elements that are

related by R to p, i.e. π1

(
π−1

2 ({p})
)
. It is a Zariski closed subset of P . For generic p ∈ P

we have dim([p]R) = dim(R)− dim(P ). Thus, we say that a rational equivalence relation is

finite if its dimension equals the dimension of P ; it implies that generic equivalence classes

are finite.

Irreducible rational equivalence relations

Let us proceed to the description of all irreducible rational equivalence relations in P . Let us

consider F a singular foliation in P , and let P ′ ⊂ P be the complement of sing(F). We say

that F is a foliation with algebraic leaves if for all p ∈ P ′ the leaf of F that passes through

p is open in its Zariski closure. A result of Gómez-Mont (Theorem 3 in [GM89]) ensures

that there is an algebraic variety V and a rational dominant map f : P 99K V such that the

closure of a generic f–fibre is the closure of a leaf of F .

The foliation F induces an rational equivalence relation in P ,

RF =
{

(p, q) ∈ dom(f)2 | f(p) = f(q)
}
.

where dom(f) denotes the domain of definition of f . We say that the rational equivalence

relation RF is the relation “to be on the same leaf of F”. For generic p ∈ P the class [p]RF
is the Zariski closure of the leaf passing through p.

Lemma 1.40 Let R be a rational irreducible equivalence relation in P . Then, there is a

singular foliation F with algebraic leaves in P such that, R is the relation RF “to be on the

same leaf of F .”

Proof. Let us consider R an irreducible rational equivalence relation in P . For each

p ∈ P we define Fp = Tp([p]R). This F is a singular foliation of rank dim(R) − dim(P ).

For generic p ∈ P the leaf of F that passes through p is the regular part of the irreducible

component of [p]R that contains p. Then F is a foliation with algebraic leaves. We consider

now an algebraic variety V of dimension codim(R) and a rational dominant map f : P 99K V
such that for generic p in P the leaf that passes through p is Zariski dense in f−1{f(p)}. By

definition RF is a rational equivalence relation of the same dimension of R, and contained

in R. From the irreducibility of R we conclude R = RF . �

Remark 1.41 In the open subset in which the foliation F is regular, leaves of F are irre-

ducible. A generic equivalence class is the Zariski closure of a generic leaf of F thus it is

irreducible.
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In the previous discussion, the algebraic variety V is defined up to birational equivalence.

The field f ∗(C(V )) = C(P )F of rational first integrals of F allows us to recover the rational

equivalence relation.

RF =
{

(p, q) ∈ P × P | ∀h ∈ C(P )F if p, q are in the domain of h then h(p) = h(q)
}

Let us recall that a subfield K of C(P ) is relatively algebraically closed if all elements of

C(P ) that are algebraic over K are in K. It is also well known that any function which is

algebraic over C(P )F is also a first integral of F . Thus, C(P )F is relatively algebraically

closed in C(P ). Given a rational equivalence relation R, we can always consider its field of

first integrals,

C(P )R =
{
f ∈ C(P ) | ∀(p, q) ∈ R if p, q are in the domain of f then f(p) = f(q)

}
.

Reciprocally, from any relatively algebraically closed subfield K ⊂ C(P ) containing C we

can recover a unique irreducible rational equivalence relation R having C(P )R = K. All this

can be summarized in the following lemma.

Lemma 1.42 The following maps are bijective:

(a) The assignation F  RF that sends any singular foliation F with algebraic leaves to

the irreducible rational equivalence relation “to be on the same leaf of F”.

(b) The assignation R  C(P )R that sends any irreducible rational equivalence relation

to its field of rational invariants.

(c) The assignation that sends any relatively algebraically closed subfield K ⊂ C(P ) to

the foliation F = ker(dK).

Finite rational equivalence relations

In this case dimR = dimP and the projection π1 : R→ P is a dominant map. Thus, there

is an open subset P ′ such that π1 : R|P ′ → P ′ is a covering map. Note that, in order to

construct this open set P ′ we may remove not only the ramification but its orbit by the

equivalence relation. Let us distinguish between two cases. First, let us assume π1|P ′ is a

trivial covering. We have the following result.

Lemma 1.43 Let us assume that there is an open subset P ′ ⊂ P such that π1 : R|P ′ → P ′

is a trivial covering of order d. Then, there a is free action of a finite group of order d,

G ⊂ Aut(P ′) such that:

R = {(p, g(p)) | p ∈ P ′, g ∈ G}.



1.3 Galois Correspondence 37

Proof. Let R|P ′ = R′0 ∪ R′1 ∪ · · · ∪ R′d−1 be the decomposition of R in irreducible

components. For each i = 0, . . . , d− 1 we define gi = π2 ◦ π1|−1
R′i

. By the reflexive and

transitive properties of R we have that {g0, . . . , gd−1} is a group of regular automorphims of

P ′. By definition of the gi, a pair (p, q) is in Ri|P ′ if and only if q = gi(p). Thus,

R|P ′ =
{(
p, gi(p)

)
| p ∈ P ′, i = 0, 1, . . . , d− 1

}
.

�

The quotient by free actions of finite groups is well known (see, for instance [DG70]) and

then there is a rational quotient map f : P 99K P ′/G of degree d. Note that the finite group

G acts on C(P ), and that this action fixes f ∗(C(P/G)) which is identified with C(P )G. We

have the following:

Lemma 1.44 The assignation R  C(P )R establishes a bijective correspondence between

finite rational equivalence equations that are trivial coverings of open subsets of P , and

subfields K of C(P ) such that K ⊂ C(P ) is an algebraic Galois extension.

Proof. We need only to check that starting with a Galois subfield K ⊂ C(P ) we recover a

trivial covering. Let G be the group of automorphisms of C(P ) fixing K. They are birational

automorphisms of P . We may find an open subset P ′ invariant by those automorphisms. It

is clear that this allows us to recover a trivial rational equivalence relation in P . �

Finally let us consider the second case in which π1 : R|P ′ → P ′ is a covering, but not

trivial. In such case there is finite covering ρ : P ′′ → P ′ that trivializes π1 (and π2). We

define R′′ ⊂ P ′′×P ′′ the pullback of the equivalence relation R|P ′ to P ′′. Now, R′′ is a trivial

cover of P ′′ by π1 or π2, and thus there is a group of automorphisms of P ′′ inducing R′′. We

have proven the following.

Lemma 1.45 Let R be a finite rational equivalence relation in P . There is an open subset

P ′, a finite covering ρ : P ′′ → P ′ and a finite group G of regular automorphisms of P ′′ such

that:

R = {(ρ(p), ρ(g(p)))| p ∈ P ′′ g ∈ G}.

In this case, we have that the generic quotient P/R coincides with the quotient P ′′/G

which is, up to birational equivalence, determined by its field of rational functions. We also

have:

Lemma 1.46 The assignation R  C(P )R establishes a bijective correspondence between

finite rational equivalence relations in P , and subfields K of C(P ) such that K ⊂ C(P ) is an

algebraic extension.
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General rational equivalence relations

Finally, given a non-irreducible rational equivalence relation R, we may proceed to construct

the quotient in two steps. First, we consider R0 the irreducible component containing the

diagonal ∆, see [Gra86] p.133. In this case, the quotient is given by Lemma 1.40. Then, we

project the rational equivalence relation to the quotient, obtaining a finite rational equiv-

alence relation. Then we apply Lemma 1.46. Finally we obtain that rational equivalence

relations are determined by their fields of invariants, and vice versa. Summarizing:

Proposition 1.47 (Galois corresp. for rational equivalence relations) The map,

{rational equivalence relations in P} → {subfields of C(P ) containing C}
R → C(P )R

is a bijective correspondence, and anti-isomorphism of lattices.

Remark 1.48 In the correspondence given by Proposition 1.47:

1. irreducible rational equivalence relations are given by rational foliations with algebraic

leaves and correspond to relatively algebraically closed subfields of C(P );

2. finite trivial rational equivalence relations correspond to actions of finite groups on

open subsets of P .

1.3.2. Rational groupoids

Let us fix B a complex irreducible smooth affine algebraic variety. By an algebraic groupoid

acting on B we mean a smooth algebraic complex Lie groupoid (α, β) : G → B ×B.

Definition 1.49 A Zariski-closed subsetH ⊂ G is called a rational subgroupoid if it satisfies:

1. there is an open subset B′ of B such that H|B′ is a Lie subgroupoid of G|B′ ;

and it satisfies any of the following equivalent conditions:

2. for any open subset B′ of B, H = H|B′ ;

3. irreducible components of H dominate B by the source (or target) map.

Remark 1.50 If H is irreducible, it automatically satisfies (3); it contains the identity.

It is clear that the notion of rational subgroupoid generalizes that of rational equivalence

relations, the latter being the rational subgroupoids of B ×B.

Let πG : G → B be an algebraic group bundle. The fibers of πG are complex algebraic

groups where the group operation and inversion are defined as morphisms over B. There

is a natural dictionary between group bundles over open subsets of B and algebraic groups
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defined over C(B). Thus, sections of G define an algebraic group G̃. Algebraic C(B)–

subgroups of G̃ are in bijective correspondence with rational group subbundles of G. That

is, Zariski closed subsets H ⊂ G such that:

1. there is an open subset B′ such that πG : H|B′ → B′ is an algebraic group bundle;

2. irreducible components of H dominate B by πG.

Given a rational subgroupoid H ⊂ G, the intersection H ∩ Gdiag is not a rational group

bundle over B, it may contain some irreducible components that do not dominate the basis.

Example 1.51 Let us consider B = C2, and G = C∗×B×B where the composition law is

given by (µ, x′, y′, x′′, y′′) · (λ, x, y, x′, y′) = (λµ, x, y, x′′, y′′) The equation,

λ =
x′

y′
y

x

defines an algebraic subgroupoid outside of the curve xy = 0, and thus,

H = {(λ, x, y, x′, y′) : λxy′ − x′y = 0}

is a rational subgroupoid of G, which is in fact, irreducible. However the intersection with

the diagonal group bundle,

H ∩ Gdiag = {(λ, x, y) | (λ− 1)xy = 0}

has three irreducible components. Two of them, of equations x = 0 and y = 0 do not

dominate B; the other one, of equation λ = 1 defines a rational group subbundle.

Hence, in order to define the diagonal part of a rational groupoid we have to restrict our

attention to a suitable affine open subset. It is clear that the following definition does not

depend on the choice of B′.

Definition 1.52 Let H be a rational subgroupoid of G. Let us consider an affine subset

B′ ⊂ B such that H|B′ is an algebraic groupoid acting on B′. We define the diagonal part

of H,

Hdiag = H|B′ ∩ Gdiag.

1.3.3. Rational groupoids of gauge isomorphisms

Let G be a linear algebraic group, π : P → B a principal connected fiber bundle with

structure group G. From now on, we assume that B is affine and P is affine over B; many

of our results can be stated in a more general setting.

By a rational reduction of π : P → B we mean a Zariski closed subset L ⊂ P such that:
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1. there is an open subset B′ ⊂ B such that L|B′ → B′ is a reduction of the bundle

P |B′ → B′;

2. irreducible components of L dominate B by projection.

As before, if L is irreducible then condition (1) implies condition (2).

Given a rational subgroupoid G ⊂ Iso(P ), there is a corresponding field of rational

invariants,

C(P )G =
{
f | f(p) = f(g(p)) for all p ∈ P and g ∈ G

whenever p ∈ dom(g) and p, g(p) are in dom(f)
}
.

We would like to characterize rational subgroupoids of Iso(P ) in terms of their invariants.

We say that a subfield K ⊂ C(P ) is G-invariant if right translations in P map K into itself.

Proposition 1.53 (Galois correspondence) The map,

{Rational subgroupoids of Iso(P )} → {G-invariant subfields of C(P ) containing C}
G → C(P )G

is a bijective correspondence, and anti-isomorphism of lattices.

Proof. The quotient map πP×P : P × P → Iso(P ), (p, q) 7→ φp,q establishes a bijective

correspondence between the set of subgroupoids of Iso(P ) and the set of G–invariant equiv-

alence relations in P . This induces a bijective correspondence between the set of rational

subgroupoids of Iso(P ) and G–invariant rational equivalence relations in P . Moreover, we

have C(P )G = C(P )π
−1
P×P (G).

The field of invariants of aG–invariant rational equivalence relation isG–invariant. Recip-

rocally, the rational equivalence relation corresponding to a G–invariant field, is G–invariant.

Thus, by Proposition 1.47 we finish the proof. �

Remark 1.54 Let us note that irreducible rational subgroupoids of Iso(P ) correspond to

G-invariant relatively algebraically closed subfields of C(P ) containing C. Hence, they cor-

respond to G–invariant singular foliations in P with algebraic leaves.

1.4. Differential Galois theory

1.4.1. Galois groupoid of a partial connection

Here we give a geometric presentation based on rational subgroupoids of the classical Galois

theory for G-invariant connections. The ideas of this section can be found in [Car08], see

also [Mal10b] for a non linear version. Let us consider G and π : P → B as in section
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1.3.3. Additionally, we also consider a singular foliation F in B. Note that, replacing B

by a suitable affine subset, we may assume that any G-invariant rational F -connection D is

regular.

Let D be a G-invariant F -connection on P . We consider the field C(P )D of rational first

integrals of the foliation. This field is, by definition, G-invariant. Thus, by Proposition 1.53

it corresponds to an irreducible rational subgroupoid of Iso(P). The following definition is

equivalent to that given in [Dav16].

Definition 1.55 The Galois groupoid of D is the rational subgroupoid GGal(D) of Iso(P )

such that C(P )GGal(D) = C(P )D. The Galois group bundle is the diagonal part of the Galois

groupoid, Gal(D) = GGal(D)diag. It is a rational group subbundle of Gau(P ).

By definition, it is clear that GGal(D) is irreducible in the Zariski topology. The Galois

group bundle may not be irreducible.

Remark 1.56 The classical case of Picard-Vessiot theory corresponds to the case in which

the foliation F has no rational first integrals, i.e., C(B)F = C. This setting has been exposed

in [BSC17]. The fiber of the Galois group bundle is isomorphic to the classical Galois group.

The intrinsic Galois group is the algebraic C(B)-group whose elements are the sections of

the Galois group bundle. It has been defined algebraically, with a different approach, by

Katz in [Kat82] (see also book review [Ber96] of [Mag94]).

Remark 1.57 The Galois group bundle admits also a structure of differential algebraic

group. The induced associated connection D[Adj] is a partial group connection (see Ap-

pendix A) in Gau(P ). It restricts to the group subbundle Gal(D). Thus, the pair

(Gal(D),D[Adj]) can be seen as a differential algebraic group of order 1. This differential

algebraic group structure was already pointed out by Pillay in [Pil04].

Remark 1.58 As the group bundle Gau(P ) → B admits two equivalent descriptions, so

the associated connection does. We may consider the distribution D × D in P × P . This

distribution is G-invariant under the diagonal action, thus it projects onto a distribution

D � D in Iso(P ). The intersection of this distribution with the tangent bundle T (Gau(P ))

gives us the associated connection D[Adj].

Remark 1.59 The Galois groupoid can be also constructed geometrically as the smallest

rational subgroupoid of Iso(P ) which is tangent to the distribution D � D, see [Dav16] or

[Car08].

Remark 1.60 By construction, the action Gau(P )×BP → P maps the distributionD[Adj]×B
D onto D. Therefore, D[Adj] is the equation of gauge symmetries of D. A gauge transfor-

mation is D[Adj]-horizontal if and only if it has the property of transforming D-horizontal

sections into D-horizontal sections.
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1.4.2. Connections with parameters

Let us also consider a submersion ρ : B → S, so that we have commutative diagrams as

follows,

P
π //

π̄ ��

B

ρ

��
S

C(P ) C(B)π∗oo

C(S)

ρ∗

OO

π̄∗

cc

we assume that the fibers of π̄ are irreducible. Let F be the foliation with algebraic leaves

defined by ker(dρ). By a G-invariant connection in P with parameters in S we mean a

G-invariant F -connection D in P [Mal10a, Mal10b].

For each s ∈ S we denote Bs = ρ−1(s), Ps = π̄−1(s), and πs = π|Ps . Thus, πs : Ps → Bs

is a principal fiber bundle with structure group G. The foliation D is tangent to Ps its

restriction Ds is a G-invariant connection in Ps.

We identify C(S) with its image in C(B) by ρ∗ and C(B) with its image in C(P ) by π∗ so

that we have a sequence of extensions, C(S) ⊂ C(B) ⊂ C(P ). Note that C(B) is the fixed

field C(P )G of rational invariants by the action of G and C(S) is the field C(B)F of rational

first integrals of F .

By IsoS(P ) we mean the subgroupoid of Iso(P ) consisting on fiber isomorphisms that

respect the projection ρ.

Remark 1.61 In terms of Proposition 1.53 IsoS(P ) corresponds to the subfield C(S) ⊂
C(P ) and to the equivalence relation P ×S P . Thus, we have a bijective correspondence

between irreducible rational subgroupoids of IsoS(P ) and G-invariant subfields of C(P ) con-

taining C(S).

Proposition 1.62 Let D be a G-invariant connection with parameters in S. We have

GGal(D) ⊂ IsoS(P ).

Proof. Taking into account C(S) ⊂ C(P )D we conclude using Remark 1.61. �



2. Jets and infinitesimally near points

2.1. Contact of order k

Let us discuss the notion of contact order of sections of a bundle π : P → B. Local analytic

sections have contact of order k at a point of B in its domain of definition if their Taylor

expansions in any system of adapted coordinates coincide up to terms of degree k. This

notion is, in fact, coordinate independent. It can be seen geometrically or algebraically in

several intrinsic ways. Namely.

1. Sections α, β are said to have 0-order contact at b ∈ B if α(b) = β(b). Any section

σ : B → P induces a section dσ : TB → TP . Let us write T kP for T (· · ·T (P )).

P

π

��

TP

dπ

��

T (TP )

d(dπ)

��

· · · T kP

dkπ
��

B

σ

[[

TB

dσ

[[

T (TB) · · · T kB

Sections α, β have contact of order ≥ k at b if dα and dβ have the same contact of

order k − 1 at b.

2. In terms of function rings and ideals, two sections P π
// B

α,β
ww

with α(b) = β(b) induce

maps

OP,α(b)
α∗,β∗ // OB,b

In these terms, contact order ≥ k means that α∗ − β∗ take values in mk+1
b .

3. Using differential operators in B, sections α, β have contact of order ≥ k at b if for

every function f in P and θ a differential operator in B of order ≤ k it happens that(
θ(α∗f − β∗f))(b) = 0.

4. Using adapted coordinates, contact of order ≥ k at b ∈ B is expressed as follows.

Introduce the following relation on the set of sections of P → B: Two sections σ, β :

B → P have the same 1–jet at b ∈ B if all their first order partial derivatives coincide

at b. Sections σ, β : B → P with σ(b) = β(b) will have contact of order ≤ k at b if all

their partial derivatives up to order k at b coincide.

All these definitions are equivalent. The contact relation grasps the idea of two sections

having the same Taylor series development up to order k.
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Definition 2.1 A k-jet at a point p ∈ B is an equivalence class by the relation “contact of

order ≥ k at p ” on the space of local analytic sections of π.

The bundle of order k–jets Jk(P/B) is defined as ∪p∈B(Jk(P/M))p where (Jk(P/B))p is

the set of k-jets at p of local analytic sections of π.

For a local analytic section α defined at p we write jkpα for the k-jet of α at p. There are

projections between jet bundles of different order:

B Pπ
oo J1(P/B)π1

oo · · ·oo Jk(P/B)πk
oo · · ·oo

The projection πk : Jk(P/B) → Jk−1(P/B) is simply given by πk(j
k
pσ) = jk−1

p σ. They

form a projective system and therefore we may consider the limit,

J(P/B) = lim
k
Jk(P/B).

Remark 2.2 Note that the local analytic maps of from B to M are the sections of the

trivial bundle B×M → B. Therefore we may speak of k-jets of local analytic maps. In this

sense,

Jk(B →M) = Jk(B ×M/B).

In particular, if B and M have the same dimension we can speak of jets of local analytic

biholomorphisms J∗k (B →M).

In what follows we will explore the differential algebro-geometric structure of the jet

bundles.

2.2. Infinitesimally near points

Definition 2.3 Let M be a smooth irreducible algebraic manifold of dimension n. A k-

frame in M is a k–jet of a germ of biholomorphism from a neighborhood of zero in Cn to a

neighborhood of a point p ∈ M . Define RkM = J∗k
(
(Cn, 0) → M

)
to be set of k–frames in

M . The star denotes the invertible jets.

There are natural projections πk,r : RkM → RrM for k ≥ r ≥ 0. The point πk,0(jk0ψ) =

ψ(0) is the base point of jk0ψ. There is a projective limit RM →M , namely, the set of formal

frames in M . In what follows we will describe the structure of RM , for a smooth irreducible

affine algebraic variety M , as a affine pro-algebraic bundle over M . See Malgrange [Mal10b]

or Davy [Dav16] p.44.

2.2.1. Weil bundle of infinitesimally near points

In order to see the pro-algebraic structure of RM it is useful to see it as a subset of a more

general construction, the Weil bundle of infinitely near points.
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Weil algebras

A Weil algebra is a local, finite dimensional, commutative C–algebra. For any Weil algebra

there is a canonical decomposition A = C ⊕ mA where mA denote the maximal ideal of A.

The projection onto the first component ωA : C⊕mA → C is called the rational point of A.

Let C(m,k) = C[ε]/(ε)k+1 be the algebra of polynomials in m variables ε = (ε1, . . . , εm),

truncated up to order k. It is straightforward to see that C(m,k) are Weil algebras. These

are the only ones we need to develop the theory that meets our purposes.

There is a natural projection from C(m,k) to C(m,k−1) given by the quotient map C(m,k) →
C(m,k)/m

k
(m,k) = C(m,k−1). This implies we have a projective system

· · · // C(m,k)
// C(m,k−1)

// · · · // C

The projective limit Lim
←k

C(m,k) is denoted C(m,∞). It is the ring C[[ε]] of formal power

series in m variables. It is not a Weil algebra, but it is a local C-algebra and it is endowed

with the (ε)-adic topology.

Infinitesimally near points

Let M be an algebraic variety and A a Weil algebra. A near point of M of type A, or an

A-point of M is a C-scheme morphism Spec(A) → M . By composition with the dual of

the rational point, it is clear that a near A-point has a base point in M . An A-point with

A = C(m,k) is called a (m, k)-near point or a generalized vector of order k and width m. The

set of (m, k)-near points in M is denoted by τm,kM .

Note that any analytic germ of map ϕ : (Cm, 0)→M by truncation to order k induces a

(m, k)-near point. This (m, k)-point depends on and characterizes the k-jet on ϕ at 0 ∈ Cm.

Therefore we have a canonical identification τm,kM ' Jk((Cm, 0)→M).

From now on, let M be an affine algebraic variety. Thus, an A-point of M is given by a

morphism of C–algebras C[M ]→ A. By abuse of notation we will write

M(A) = HomC−alg(C[M ], A), τm,kM = M(C(m,k)).

For a fixed m, the canonical truncation morphisms Cm,k → Cm,r with r ≤ k induce a

system of compatible projections,

· · · // τm,kM // τm,k−1M // · · · //M

and thus there is a projective limit,

τ̂mM = Lim
←−k

τm,kM ' HomC−alg(C[M ],C[[ε1, . . . , εm]])

of formal generalized vectors of with m, that we identify with C–algebra morphisms from

C[M ] to C(m,∞). The set τ̂mM is naturally identified with the set J((Cm, 0)→M) of formal

maps from (Cm, 0) to M .
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In [KSM99] chapter 35 and [MnRM00] it is shown that for a smooth variety M the space

of (real) near points M(A) is smooth bundle over M . These results can be easily translated

to the algebraic case. Since it fits our purposes, and it has a simpler presentation, we will

restrict ourselves to the particular case in which M is a smooth affine algebraic variety and

A is C(m,k). Moreover, we will see that τ̂mM is a pro-algebraic affine variety endowed with

a canonical differential structure.

Prolongation of functions

A natural basis of C(m,k) is the set of monomials {εα/α!}0≤|α|≤k. Let us denote by {ωα}0≤|α|≤k

the dual basis. Here α is a multi-index. The rational point of C(m,k) is ω0.

Any regular f ∈ C[M ] induces a function, f (m,k) : τm,kM → C(m,k) given by f (m,k)(p(m,k)) =

p(m,k)(f). We will give to τm,kM the algebraic variety structure that makes the functions

f (m,k) regular. We define f:α the α-th total derivative of f to be the composition ωα ◦ f (m,k).

The total derivatives of f up to order k are also called the complex components of the

prolongation f (m,k). We have:

f (m,k) =
∑

0≤|α|≤k

f:α
εα

α!
.

This notation is justified by the following fact. Let ϕ : (Cm, 0)→M be a germ of analytic

map. Its k-jet jk0ϕ is a (m, k)-near point in M with base point ϕ(0). For any regular function

f in M we have,

f:α(jk0ϕ) =
∂|α|

∂εα

∣∣∣∣
ε=0

(f ◦ ϕ).

Affine variety structure of τ(m,r)M

Let C[τm,kM ] be C[f:α]f∈C[M ],0≤|α|≤k, the C-algebra of complex functions in τm,kM spanned

by the α-th total derivatives of regular functions in M with 0 ≤ |α| ≤ k.

Definition 2.4 Given an ideal J ⊂ C[M ] we call it prolongation to C[τm,kM ] to the ideal

spanned by the real components of the prolongations of elements of J .

J (m,k) = ({P:α | P ∈ J, 0 ≤ |α| ≤ k})

Let us see that τm,kM is an affine variety whose ring of regular functions is C[τm,kM ].

First, let us check that the above statement is true in the case of the affine space Cn.

Proposition 2.5 τm,kCn = (C(m,k))
n and C[τm,kCn] = C[xi:α]1≤i≤n,0≤|α|≤k

Proof. Let C[x1, . . . , xn] be the ring of regular functions in Cn. A (m, k)-point is a

C-algebra morphism p(m,k) from C[x1, . . . , xn] to C(m,k) and it is determined by the images
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x1(p(m,k)), . . . , xn(p(m,k)) that are arbitrary elements of C(m,k). The set,

(Cm,k)
n =


 ∑

0≤|α|≤k

x1:α
εα

α!
, . . . ,

∑
0≤|α|≤k

xn:α
εα

α!

 : xi:α ∈ C


is an affine space whose coordinates are the functions xi:α. �

Let Φ: M → N be a regular map between affine algebraic varieties. It induces a map

Φ(m,k) : τm,kM → τm,kN by setting Φ(m,k)(jk0ϕ) = jk0 (Φ◦ϕ). This map is compatible with the

prolongation of functions, so that, we have that for f ∈ C[N ], f (m,k) ◦ Φ(m,k) = (f ◦ Φ)(m,k);

and therefore with the total derivatives, f:α(Φ(m,k)(jk0ϕ)) = f:α(jk0 (Φ ◦ ϕ)).

Proposition 2.6 LetM ⊂ Cn be an smooth affine subvariety of Cn, and let I ⊂ C[x1, . . . , xn]

be the ideal of M . Then, the induced inclusion τm,kM ⊂ (C(m,k))
n identifies τm,kM with the

subvariety of (C(m,k))
n of ideal

I(m,k) =
(
{P:α | P ∈ I, 0 ≤ |α| ≤ k}

)
⊂ C[xi:α]1≤i≤n,0≤|α|≤k.

Proof. Let p(m,k) : C[x1, . . . , xn] → C(m,k) be a (m, k)-near point in Cn. The condition

to be an (m, k)-near point in M is that, as a C-algebra morphism, it factorizes through

C[M ], i.e., I ⊂ ker(p(m,k)). That is, that for each P ∈ I we have P (m,k)(p(m,k)) = 0. By

taking complex components of P (m,k) we obtain the equations of τm,kM inside Cn
(m,k). �

Therefore, if Φ: M → N is a regular map between affine varieties, then Φ(m,k) : τm,kM →
τm,kN is a regular map. In particular, if U ⊂ M is an affine open subset, then τm,kU is an

affine open subset of τm,kM .

Affine ∂
∂ε

-pro-variety structure of τ̂mM

By definition, τ̂mM is a pro-algebraic affine variety, and its ring of regular functions is:

C[τ̂mM ] =
⋃
k

C[τm,kM ] = C[f:α]f∈C[M ],α∈Zm≥0

This ring is naturally graded by the order. By setting,

∂

∂εi
f:α = f:α+εi ,

∂

∂εi
: C[τ̂mM ]→ C[τ̂mM ]

we obtain regular derivations of degree +1 of C[τ̂mM ]. We consider in C[τ̂mM ] the classical

differential ring structure spanned by the m derivations ∂
∂εi

. In order to distinguish this

differential structure from other differential structures in the same ring we call it the ∂
∂ε

-ring

structure of C[τ̂mM ].
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Proposition 2.7 Let I ⊂ C[M ] be a radical ideal. Then, the radical ∂
∂ε

-ideal {I} ⊂ C[τ̂mM ]

spanned by I is,

{I} =
∞⋃
r=0

I(m,r)

Proof. It is clear that
⋃∞
r=0 I

(m,r) is the ∂
∂ε

-ideal spanned by I. It suffices to check that,

if I is radical, then I(m,r) is also radical. �

Proposition 2.8 Let M be a smooth affine subvariety of Cn with ideal I ⊂ C[M ]. Then

τ̂mM is a smooth pro-affine subvariety of (C(m,∞))
n and its ideal is {I}.

Proposition 2.9 Let Φ: M → N be a regular map between smooth affine varieties, and let

Φ̂(m) : τ̂mM → τ̂mN be the induced map.

(a) (Φ̂(m))∗ : C[τ̂mN ]→ C[τ̂mM ] is a ∂
∂ε

-ring morphism.

(b) (Φ̂(m))∗ is the only extension of Φ∗ : C[N ]→ C[M ] compatible with the ∂
∂ε

-ring struc-

tures.

Prolongation of vector fields to Weil near point bundles

Proposition 2.10 Let p(m,k) be in τm,kM . The space Tp(m,k)τm,kM is identified with the set

of derivations Derp(m,k)
(
C[M ],C(m,k)).

Proof. A tangent vector at p(m,k) is seen as an equivalence class of curves that passes

through that point. Let p
(m,k)
t be a smooth curve such that p

(m,k)
t |t=0 = p(m,k). Developing

around zero we get

p
(m,k)
t (ε) = γ = γ0 + γ1ε+ o(ε2)

Where

γ0 = p(m,k); γ1 =
d

dt

∣∣∣∣
t=0

p
(m,k)
t

As p
(m,k)
t is a morphism for every t we have γ(fg) = γ0(fg) + γ1(fg)ε and

γ(f)γ(g) =
(
γ0(f) + γ1(f)ε

)(
γ0(g) + γ1(g)ε

)
= γ0(f)γ0(g) +

(
γ1(f)γ0(g) + γ0(f)γ1(g)

)
ε+ o(ε2)

From this we see γ1(fg) =
(
γ1(f)γ0(g) + γ0(f)γ1(g)

)
so γ1 is a derivation over γ0, this

meaning that γ0 gives C(m,k) the structure of C[M ]–module.

If {∂i} is a basis for DerC[M ] and {aα} is a basis for C(m,k) then {aα∂i} is a basis for

Der(C[M ],C(m,k)). This way the dimensions of Tp(m,k)τm,kM and Der(C[M ],C(m,k)) coincide

so they are isomorphic. �



2.2 Infinitesimally near points 49

Let X be a regular vector field in M . We see X as a derivation of C[M ]. For each

p(m,k) ∈ τm,kM we have that the composition p(m,k) ◦X is a derivation of C[M ] with values

in C(m,k), thus an element of Tp(m,k)(τm,kM).

Definition 2.11 For a regular vector field X in M its prolongation X(m,k) to τm,kM is the

regular vector field in τm,kM whose value at each p(m,k) ∈ τm,kM is p(m,k) ◦X.

X
(m,k)

p(m,k)
= pm,k ◦X.

The fields X(m,k) can be described more explicitly as follows: if X =
∑
fi∂i then the

coefficient of X(m,k) in ∂s is given at a point p(m,k) by

X
(m,k)

p(m,k)
(xs) = p(m,k) ◦X(xs) = p(m,k)(fs) = f (m,k)

s (p(m,k))

so that X(m,k) =
∑
f

(m,k)
s ∂s.

This prolongation can be seen geometrically as follows. Let us call {σt} the flow of X.

Each σt defines a local diffeomorphism σ
(m,k)
t of τm,kM . Then, X(m,k) is the vector field in

τm,kM whose flow is {σ(m,k)
t }.

Let φ : (Cm, 0)→M be a germ of analytic map. The flow σt prolongs to τm,kM :

M

σt

��

τm,kMoo

σ
(m,k)
t
��

M τm,kMoo

By the formula σ
(m,k)
t (jk0φ) = jk0 (σt◦φ) we obtain a geometric expression for the prolongation

X(m,k):

X(m,k)(jk0φ) =
d

dt

∣∣∣∣
t=0

σ
(m,k)
t (jk0φ) =

d

dt

∣∣∣∣
t=0

jk0 (σt ◦ φ)

The vector field X(m,k) projects naturally to X(m,k−1) and there is a corresponding pro-

jective system:

· · · // Der(C[M ],C(m,k)) // Der(C[M ],C(m,k−1)) // · · ·

The limit X(m,∞) is an element in Der(C[M ],C[[ε]]). We have that X(m,∞) is a derivation in

C[τ̂mM ].

Theorem 2.12 The prolongation X(m,∞) is the unique derivation of C[τ̂mM ] that commutes

with all total derivative operators and such that its restriction to C[M ] coincides with X.

Proof. Let us see that X(m,∞) commutes with total derivatives:
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∂

∂εi
◦ X̂F =

∂

∂εi

(
fj:α

∂

∂xj:α
F

)
= fj:α+εi

∂

∂xj:α
F + fj:α

∂

∂εi

∂

∂xj:α
F

= fj:α+εi

∂

∂xj:α
F + fj:αxk:β+εi

∂

∂xk:β

∂

∂xj:α
F

and on the other side

X̂

(
∂

∂εi
F

)
= X̂

(
xk:β+εi

∂

∂xk:β

F

)
= fj:α

(
∂

∂xj:α
xk:β+εi

∂

∂xk:β

F + xk:β+εi

∂

∂xj:α

∂

∂xk:β

F

)
Observe that ∂

∂xj:α
xk:β+εi is 1 for j = k and α = β + 1 and zero otherwise. Then by an

appropriate change of summation multi-index we get the desired result. �

Finally let Ŷ be another vector field that coincides with X in C[M ] and commutes with

total derivatives. Take F ∈ C[τ̂mM ], then F is a function in some C[τm,kM ]. For F =
(
∂
∂ε

)α
f

for f ∈ C[M ] then

Ŷ F = Ŷ

(
∂

∂ε

)α
f =

(
∂

∂ε

)α
Y f =

(
∂

∂ε

)α
Xf = X̂

(
∂

∂ε

)α
f = X̂F

As the total derivatives of functions in C[M ] span the ring C[τ̂mM ] the proof is complete.

�

Action of Autk(Cm, 0)

Definition 2.13 Let Aut(Cm, 0) be the group of invertible analytic maps from a neighbor-

hood of zero into itself. The truncation of Aut(Cm, 0) to order k is the group of invertible

jets of order k of biholomorphisms from (Cn, 0) into itself and it is denoted by Autk(Cm, 0).

In what follows let us discuss the canonical algebraic group isomorphism Autk(Cm, 0) ∼=
AutC−alg(C(m,k)). A diffeomorphism g : (Cm, 0) → (Cm, 0) induces an automorphism of

algebras g∗ : C[[ε]] → C[[ε]] where g∗(a(ε)) is the Taylor expansion of a(g(ε)) w.r.t. ε. Let

Trk be the truncation morphism C[[ε]]→ C[[ε]]/(ε)k+1 = C(m,k). Since g∗ respects the ideal

(ε) it defines a quotient isomorphism g∗(k).

C[[x]]
g∗ //

Trk

��

C[[x]]

Trk

��
C(m,k)

g∗
(k) // C(m,k)
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The canonical isomorphism maps jk0g to (g∗(k))
−1.

We have the projective system of groups,

· · · → Autk+1(Cm, 0)→ Autk(Cm, 0)→ · · · → {e}

It makes sense to construct the projective limit Âut(Cm, 0) which is the group of formal jets

of biholomorphisms of (Cm, 0). On the other hand, the projective limit of the system,

. . .→ AutC−alg(C(m,k+1))→ AutC−alg(C(m,k))→ . . .→ {e}

is the group of (ε)-continuous automorphisms of C(m,∞). Let us recall that a (ε)-continuous

automorphisms is given by a formal series substitution,

(ε1, . . . , εm) 7→ (ŷ1(ε), . . . , ŷm(ε))

where ŷ1(ε), . . . , ŷm(ε) is a system of generators of the maximal (ε). Therefore, Âut(Cm, 0) ∼=
Aut(ε)−cont(C(m,∞)).

Remark 2.14 There are automorphisms of C(m,∞) that are not (ε)-continuous. For in-

stance, the series ε and eε are algebraically independent. Therefore, it should exist an

automorphism of C(1,∞) that maps ε 7→ ε, eε 7→ 2eε. The sequence of polynomials 1, 1 +

ε, 1 + ε+ ε2/2! . . . tends to eε but this limit does not commute with the automorphism, that

therefore can not be continuous.

Two actions We begin by describing the action of Autk(Cm, 0) on the right over τm,kM .

When we see τm,kM as points representing the jets of mappings F : (Cm, 0) → M then the

action is given by composition on the right: F · g = F ◦ g

(Cm, 0)
g // (Cm, 0) F //M

On the other hand AutC−alg(C(m,k)) acts on the left over τm,kM . If we look at τm,kM as

a set of algebra morphisms, then an element p(m,k) : C[M ]→ C(m,k) can be composed on the

left with an algebra morphism g∗(k) : C(m,k) → C(m,k):

C[M ]
p(m,k) // C(m,k)

g∗
(k) // C(m,k)

giving rise the the left action g∗(k) · p(m,k) = g∗(k) ◦ p(m,k).

Relationship between these two actions. As described earlier, the morphism g induces

a morphism of algebras g∗(k). We note that g∗(k) and jk0g determine each other and the map

jk0g 7→ (g∗(k))
−1 is a group isomorphism1. These two actions by left and right sides are

equivalent in the following sense:

p(m,k) · (jk0g) = g∗−1
(k) ◦ p

(m,k).
1Observe that if we omit the inverse then we get an anti morphism.
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Limit of the action of Autk(Cm, 0) For each k there is an action of Autk(Cm, 0) on

τm,kM . These actions induce an action on the projective limit: If f̂ = {fk} is in τ̂m and

g = {gk} a group element in Âut(Cm, 0) then ĝ · f̂ = {gk ◦ fk} defines an action. The action

of Aut(Cm, 0) respects prolongation. This can be seen by following the diagram:

C[M ]
p(m,k) // C(m,k)

gk // C(m,k)

C[M ]
p(m,k+1)

// C(m,k+1)

π

OO

gk+1 // C(m,k+1)

π

OO

Each square is by definition commutative. Then π ◦ gk+1 ◦ p(m,k+1) = gk ◦ p(m,k) and the

action behaves well with prolongations.

Proposition 2.15 Regular map of varieties induces equivariant maps in Weil bundles.

Proof. Let Φ : M → N be a regular map. The prolongation Φ(m,k) is such that, for

h ∈ C[N ], we have Φ(m,k)(p(m,k))(h) = p(m,k)(h ◦ Φ). Let σ be a C-algebra automorphism of

C(m,k). To see that Φ(m,k) is an equivariant map let us write:

Φ(m,k)(σ ◦ p(m,k))(h) = (σ ◦ p(m,k))(h ◦ Φ) = σ ◦ (p(m,k)(h ◦ Φ)) = σ ◦ Φ(m,k)(p(m,k))(h)

�

Lemma 2.16 Let g ∈ Autk(Cm, 0) and q(m,k) · g = p(m,k) and Rg be the right translation by

g in RkM . Let g∗−1 the induced automorphism of C(m,k) given by the canonical isomorphism.

Then the differential satisfies dq(m,k)(Xq(m,k))Rg = g∗−1 ◦ Xq(m,k) for any Xq(m,k) that we see

as a derivation of C[M ] with values on C(m,k).

Proof. Let γ be a germ of path such that γ(0) = p(m,k) and d
dt

∣∣
t=0

γ = Xp(m,k) . Develop γ

as γ(t) = p(m,k) + tXp(m,k) + o(t2), then

γ(t) · g = g∗−1
(
p(m,k) + tXp(m,k) + o(t2)

)
We get:

dp(m,k)Rg(Xp(m,k)) =
d

dt

∣∣∣∣
t=0

γ(t)g

=
d

dt

∣∣∣∣
t=0

(
p(m,k)g + t(g∗−1 ◦Xp(m,k)) + o(t2)

)
= g∗−1 ◦Xp(m,k)

�
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Proposition 2.17 The prolongation X(m,k) of a vector field X is Autk(Cm, 0)–invariant for

every k.

Proof. Let g ∈ Autk(Cm, 0). We want to prove Rg∗X
(m,k) = X(m,k).

C[M ] X //

$$

C[M ]

q(m,k)

��

p(m,k)

$$
C(m,k) C(m,k)

g∗oo

From the previous diagram we get

Rg∗(X
(m,k))(p(m,k)) = dRg

(
X(m,k)(q(m,k))

)
= g∗−1 ◦X(m,k)

q(m,k)
= g∗−1 ◦ q(m,k) ◦X = p(m,k) ◦X = X(m,k)(p(m,k))

�

It follows from Proposition 2.17 that X(m,∞) is Âut(Cm, 0)–invariant in τ̂mM .

Example 2.18 There is an identification GLn(C) ∼= Aut1(Cn, 0) ∼= AutCT0Cn.

Example 2.19 Lets describe in some detail Γ = Âut(Cn, 0) for one variable, i.e. n = 1.

Let Γk = Aut
(
C[[ε]]/(ε)k+1

)
. As vector space C[[ε]]/(ε)k+1 is generated by 1, ε, . . . , εk. For

an automorphism g of C[[ε]]/(ε)k+1 such that ε 7→ y we have

ε 7→ y = y′ε+ y′′/2!ε2 + · · ·
ε2 7→ y2 = (y′)2ε2 + y′y′′ε3 +

(
2/3!y′y(3) + (y′′)2/2!2!

)
ε4 + · · ·

ε3 7→ y3 = (y′)3ε3 + · · ·

From these we get a matrix:
y′ y′′/2! y(3)/3! · · ·
0 (y′)2 2y

′y(3)

3!
+ y′′2

2!2!

0 0 (y′)3

...


�

Example 2.20 Let Γ = Âut(C, 0), the group in one variable say ε. Let V = J
(
(C, 0)→ C

)
the set of all jets. Consider the action V × Γ → V such that (φ, g) 7→ φ ◦ g. Observe that:

If g ∈ Γ and φ ∈ V then by developing in the basis {εk/k!}:

φ = φ0 + φ1ε+ φ2
ε2

2!
+ · · ·

g = g1ε+ g2
ε2

2!
+ g3

ε3

3!
+ · · ·



2.2 Infinitesimally near points 54

and developing φ ◦ g we have

φ ◦ g = φ0 + φ1g1ε+ (φ1g2 + φ2g
2
1)
ε2

2!
+ (φ1g3 + 3φ2g1g2 + φ3g1)

ε3

3!
+ · · ·

In matrix form we have

φ ◦ g =


1 0 0 · · ·
g1 0 0

g2 g2
1 0

g3 3g1g2 g3
1

...



φ0

φ1

φ2

...



2.2.2. Frame bundle

A k–frame in M is the jet of order k of an invertible map φ : (Cm, 0) → M where m is the

dimension of M . We write RkM for the set of all k–frames in M . The set of frames is an

affine Zariski open subset of the generalized tangent τm,kM .

Lemma 2.21 The open subset detxi 6= 0 is independent of the the basis of regular functions

chosen on U .

Given a system x1, . . . , xm of regular functions whose differentials are linearly independent

in an open subset U ⊂M , the equation of RkU inside τm,rU are given by the non-vanishing

of the Jacobian,

RkU = {pm,k ∈ τm,kU | det(xi:εj) 6= 0}.

this way RkM becomes itself an affine smooth algebraic variety. In the same way, the set of

formal frames RM is an affine open subset of τ̂mM .

Moreover, C[RM ] is a ∂
∂ε

-differential ring, endowed with the total derivative operators.

The ring of regular functions of C[RM ] is spanned by total derivative of regular functions

in M and the inverse of the jacobian in any system of coordinates. Let x1, . . . , xm be a

coordinate system on M . The ring of regular functions for RkM is C[xi:α, 1/ detxi:εj ].

Principal structure

Let us note that RM is an Âut(Cm, 0)-invariant set for the natural action of Âut(Cm, 0) in

τ̂mM . Moreover:

Theorem 2.22 For each k, RkM →M is a left Autk(Cm, 0)–principal bundle.

Proof. Lets see that the map

Ψ : AutC−alg(C(m,r))× RkM −→ RkM ×M RkM
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such that (g, r) 7→ (gr, r), is an isomorphism. Let (p(m,k), q(m,k)) ∈ RkM ×M RkM . As mp

is zero under p(m,k) there is an isomorphism p̃(m,k) : C[M ]/mk+1
p → C(m,k) and the same for

q(m,k), there is an isomorphism q̃(m,k) : C[M ]/mk+1
p → C(m,k).

Then q̃(m,k)◦ p̃(m,k)−1 is an algebra automorphism of C(m,k) and the map RkM×M RkM →
RkM×AutC−alg(C(m,r)) given by (p(m,k), q(m,k)) 7→ (q̃(m,k)◦p̃(m,k)−1, p(m,k)) provides an inverse

for Ψ. �

As a consequence of the previous theorem the limit RM is an Âut(Cm, 0)–principal

bundle.

Prolongation of vector fields

Definition 2.23 For a given regular vector field X in M let us denote X(k) to the restriction

of X(m,k) (see p.49, Definition 2.11) to RkM , and X(∞) to the restriction of X(m,∞) to RM .

The main properties of the prolongation of vector fields have been stated in Theorem

2.12 and Proposition 2.17. Summarizing, if X is a regular vector field in M :

1. X(k) projects to X(k−1).

2. X(∞) is the only derivation of C[RM ] that extends X and commutes with total deriva-

tive operators.

3. X(k) is Autk(Cm, 0)-invariant vector field in RkM .

4. X(∞) is Âut(Cm, 0)-invariant derivation of C[RM ].

2.3. Jet bundles

Let π : P → B be a smooth affine algebraic bundle with irreducible affine B. Here we explore

the differential geometric algebraic structure of J(P/B), as a pro-algebraic variety with a

differential structure on its ring of regular functions.

2.3.1. Algebraic and differential structure

Jets of functions

Let us consider the case P = B × C. In such case J(P/B) = J(B → C), and we speak of

jets of analytic functions. From now on by JkB we mean Jk(B → C). For a given p ∈ B let

us consider Ĉ[B]p the mp-adic completion of C[B]. It is a C-algebra isomorphic to C(m,∞)

with m = dimB.

Let p ∈ B; the fiber (JB)p is naturally identified with Ĉ[B]p, we have jpf = jpg if and

only if both local analytic functions have the same development in Ĉ[B]p. For each order
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k the fiber (JkB)p is naturally identified with Ĉ[B]p/m
k+1
p . This C-algebra isomorphic to

C(m,k).

We consider (C[B],XB) as a differential ring whose differential structure is given by the

whole module of derivations XB = Der(C[B]). The ring of differential operators

DB = C[B][XB],

is graded and we have,

D0
B ⊂ D1

B ⊂ D2
B ⊂ · · · ⊂ DB,

where DkB is the left C[B]-module of differential operators of order k. It is not difficult to

see that DkB is an space of fiber-wise C-linear functions θ in Jk(B → C) by taking,

θ(jpf) = (θf)(p).

More over, this gives an identification of DkB|(JkB) and (JkB)∗. Therefore we can give to

JkB → B the structure of an algebraic vector bundle, affine over B, such that Γ(JkB) =

(DkB)∗. In order to construct the ring of regular functions we have to consider the symmetric

algebra over the linear functions. Therefore, we take C[JkB] as the symmetric algebra

S•DkB
(DkB). In the limit, we take JB → B as a pro-algebraic vector bundle, affine over B,

with regular functions C[JB] = S•C[B](DB).

Remark 2.24 If we compare the previous with the construction done in Chapter 1, it

follows that C[JB] = C[B]{u}XB , the ring of differential polynomials in a variable u with

coefficients in C[B]. This identification is obtained by seeing the variable u as the coordinate

in the fibre C for the projection C × B → B and the operator ∂α becomes identified with

the differential function given by ∂αu = u:α.

Remark 2.25 Differential operators of order ≤ k can be seen as sections of the dual bundle

(JkB)∗ → B.

Definition 2.26 A vector field X ∈ XB acts on DB by composition on the left: X : θ 7→
X ◦ θ. By means of Leibniz rule this action extends to C[JB]. In this way we obtain a

derivation

Xtot : C[JB]→ C[JB]

that coincides with X in C[B] ⊂ C[JB]. This derivation is called the total derivative in the

direction of X.

As Xtot sends C[JkB] into C[Jk+1B], its degree is +1. If x1, . . . , xn are regular functions

whose differentials are linearly independent at any point of B (something we may find replac-

ing B by a suitable Zariski open) then the partial derivatives with respect to the variables

span XB. We have a system of linear adapted coordinates where u:α(jpf) = ∂αf
∂xα

(p) for which,

∂

∂xi

tot

=
∂

∂xi
+

∑
0≤|α|<∞

u:α+εi

∂

∂u:α
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The map,

Der(C[B])→ Der(C[JB]), X 7→ Xtot

is an injective Lie algebra, and C[B]-module morphism, therefore (C[B],XB) ⊂ (C[JB],XB)

is an extension of XB-differential rings.

As we are interested in objects that can be defined generically i.e. in some Zariski–open

subset of B, it is meaningful to allow division by non–vanishing functions on B. Let us

define

OJB := C(B)⊗C[B] C[JB]

the ring of differential functions regular along a generic open set in B. The module of total

derivatives becomes bigger, because for every X ∈ Xrat
B it is possible to calculate Xtot and

(OJB,Xrat
B ) is a Xrat

B -differential ring extension of (C(B),Xrat
B ).

2.3.2. Jets of sections of vector bundles

Let E → B be a vector bundle and assume that E is affine over B. Then there are enough

regular sections in Γ(E). Consider

Diff(Γ(E),C[B]) = DB ⊗◦C[M ] Γ(E)∗

Elements in Diff(Γ(E),C[B]) are differential operators Γ(E) → C[B] where (θ ⊗ ω)(s) =

θ(ω(s)) for s ∈ Γ(E). As before, we consider Diff(Γ(E),C[B]) filtered by the order and

Diffk(Γ(E),C[B]) the C[B]-module of differential operators of order ≤ k. For every p ∈ B,

the set (Jk(E/B))p is a C–vector space with jkpλs = λjkps and jkps+j
k
p t = jkp (s+t). Differential

operators ψ ∈ Diffk(Γ(E),C[E]) are linear along the fibers of Jk(E/B)→ B with ψ(jkps) =

ψ(s)(p). Again Jk(E/B) → B is a vector bundle and Γ(Jk(E/B)) = Diffk(Γ(E),C[E])∗.

The ring of regular functions on Jk(E/B) is C[Jk(E/B)] = S•C[B]

(
Diffk(Γ(E),C[B])

)
.

Example 2.27 Let E = Cn × Cm −→ Cm = B be the trivial bundle with coordinates

x1, . . . , xm in the base and y1, . . . , yn in the fibers. Let us denote by yj:α the differential

operator ∂αx ⊗ yj seen as a regular function on J(E/B). Then, jet bundles Jk(E/B) are

coordinated by xi, yj:α for α multi-index subject to the restriction |α| ≤ k.

We have a chain of inclusions,

C[B] ⊆ C[J1B] ⊆ . . .

As before we may consider the limit as the ring of regular functions in the pro-algebraic

bundle J(E/B)→ B,

C[J(E/B)] = S•C[B]

(
Diff(Γ(E),C[B])

)
.

We may also define total derivative operators. Let X be a regular vector field in B. First,

for F ∈ Diff(Γ(E),C[E]) ⊂ C[J(E/B)] we define,

XtotF = X ◦ F.



2.3 Jet bundles 58

Then, Xtot extends from Diff(ΓE,C[E]) to C[J(E/B)] by means of the Leibniz rule. As

before,

XB → DerJ(E/B), X 7→ Xtot

is a Lie algebra and C[B]-module morphism and we have that C[J(E/B)] is a XB-differential

ring extension of C[B]. As before, we define OJ(E/B) := C(B) ⊗C C[J(E/B)] the ring of

differential functions in a generic open set of B and (OJ(E/B),X
rat
B ) is a differential ring

extension of (C(B),Xrat
B ).

2.3.3. Jets of sections of a bundle

Let π : P → B be a smooth bundle. Assume B is affine and irreducible and P is affine over

B. Then There are u1, . . . , un regular functions in P such that

C[P ] = C[B][u1, . . . , un]/I

where I is the ideal of dependence relations between the ui’s. Therefore P can be seen as a

subbundle of a trivial bundle

P �
� i //

''

E = B × Cn
u1,...,un

��
B

where p 7→ (π(p), u1(p), . . . , un(p)).

By derivation of i we obtain that J(P/B) ↪→ (JB) × Cn/B as the zero locus of the

XB-ideal {I} generated by I in C[E/B]. Each Jk(P/B) is identified with the zero locus of

{I} ∩ C[Jk(E/B)] in Jk(E/B).

Thus, we consider the quotient C[J(E/B)]/{I} as the ring of regular functions C[J(P/B)].

As {I} is a XB-ideal, total derivatives descend to the quotient and for each X ∈ Der(C[B])

we have Xtot : C[J(P/B)] → C[J(P/B)]. As before (C[J(P/B)],XB) is seen as a XB-ring

extension of (C[B],XB). We also consider the ring of functions on J(P/B) that are regular

along a generic open subset of B,

OJ(P/B) = C(B)⊗C[B] C[J(P/B)],

which we see as a Xrat
B -ring extension of (C(B),Xrat

B ).

2.3.4. Prolongation of vector fields

There is a mechanism of prolongation of vector fields in P to vector fields in J(P/B), similar

to the one described in the case of frames. The following result can be verified in coordinates,

see for example, [KSM99].
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Theorem 2.28 Let X be a rational vector field in P . Then for every k there is a rational

vector field X(k) in Jk(P/B) such that

1. X(k+1) is projectable over X(k) by πk+1,k : Jk+1(P/B)→ Jk(P/B), and X(0) = X.

2. Prolongation commutes with total derivatives: For all Y ∈ Xrat
B we have X(k+1)◦Y tot =

Y tot ◦X(k).

Proof. The result is known for the smooth and analytic cases. Here, the reader only needs

to check that if X is rational then its prolongation X(k) is also rational. �

We can put together the successive prolongations of X, to define X(∞), a derivation of

OJ(P/B),

X(∞)F = X(k)F

for F ∈ OJk(P/B) ⊂ OJ(P/B).

Remark 2.29 Prolongation of vector fields is compatible with the Lie bracket [X, Y ](k) =

[X(k), Y (k)], for k = 0, . . . ,∞.

Remark 2.30 The prolongation of vector fields to J(P/B) has the following geometrical

interpretation. Let us assume that X has a real flow {σt}t∈R in a neighborhood of p ∈ P , let

x = π(p) and u be a local section such that u(x) = p. Let Γu be the graph of u. For small t

we have that σt(Γu) is, around x, also the graph of a local section that we name ut. Then,

X(k)(jkxu) =
d

dt

∣∣∣∣
t=0

jkπ(σt(p))ut.

Thus, the flow of X(k) is the projection in the jet space of the flow naturally induced by Y

in the space of pointed germs of submanifolds of P .



3. Linear differential Galois theory with

parameters

3.1. Galois groupoid with parameters

Let us consider, as in Section 1.4.2 an affine principal bundle π : P → B with structure

group bundle G→ S, a submersion ρ : B → S, a foliation F = ker(dρ), and D a G-invariant

connection with parameters in S meaning that dimD = dimF and π∗D = F . Some of

our arguments will require to restrict these objects to some affine subset of B. Accordingly,

without loss of generality, we assume that F and D are regular.

3.1.1. Prolongation of a principal bundle

The concepts of jet bundles, prolongation and total derivatives were introduced in Sections

2.1 and 2.3.2; here we begin with a brief recall of those. Two germs of analytic sections of

P at x ∈ B have the same jet of order k if they are tangent up to the order k. This means,

that in any analytic system of coordinates, they have the same power series development up

to degree k. The space Jk(P/B) of sections is a smooth affine algebraic variety and then

J(P/B) = limJk(P/B) is a smooth pro-algebraic affine variety. The jet of order k at x ∈ B
of the section u is denoted by jkxu, and the section of Jk(P/B) that assigns to each x in

the domain of u the jet jkxu is denoted by jku (we omit the index k =∞ for jets of infinite

order).

By OJk(P/B) we understand the ring of regular functions in Jk(P/B) with rational coef-

ficients in B, that is, OJk(P/B) = C(B) ⊗C[B] C[Jk(P/B)]. Elements of OJk(P/B) are regular

differential functions of order k with rational coefficients in B, or equivalently, regular dif-

ferential functions in Jk(P |B′/B′) for some open subset B′ ⊂ B. We have a chain of ring

extensions:

C(B) ⊂ OP/B ⊂ OJ1(P/B) ⊂ . . . ⊂ OJk(P/B) ⊂ . . . ⊂ OJ(P/B).

Differential structure of OJ(P/B)

There exists a total derivative prolongation: if X is a rational vector field in B with domain

of regularity B′ ⊂ B then its total derivative operator Xtot is a derivation of the ring of
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differential functions, defined by the rule,

(XtotF )(jk+1
x u) = (X(F ◦ jku))(x),

for any differential function F of order k; Xtot is a derivation of OJ(P/B). Note that the total

derivative increases the order of differential functions, thus Xtot is not a a rational vector

field in Jk(P/B) for k finite. We consider the differential ring
(
OJ(P/B),Xrat(B)

)
. This is a

Xrat(B)-finitely generated differential ring over C(B). See Definition 1.1, on p.21.

Remark 3.1 Here we work with a broader definition of differential field than usual (cf.

[Kol73]). We consider a differential field to be a field endowed with an arbitrary Lie algebra

of derivations. However, it is always possible to choose a finite commuting basis of Xrat(B)

in order to recover the usual definition, see Proposition 1.6 on p.22. For instance, let us take

a transcendence basis of C(B) over C. Then, the partial derivatives with respect to the basis

elements are commuting rational vector fields spanning Xrat(B). Their corresponding total

derivative operators are a basis of derivations for OJ(P/B).

Prolongation of rational vector fields in P

Given a local analytic vector field Y in P , its k-th prolongation Y (k) to Jk(P/B) can be

seen geometrically in the following way. Let us assume that Y has a real flow {σt}t∈R in a

neighborhood of p ∈ P , let x = π(p) and u be a local section such that u(x) = p. Let Γu
be the graph of u. For small t we have that σt(Γu) is, around x, also the graph of a local

section that we name ut. Then,

Y (k)(jkxu) =
d

dt

∣∣∣∣
t=0

jkπ(σt(p))ut.

Thus, the flow of Y (k) is the projection in the jet space of the flow naturally induced by Y

in the space of pointed germs of submanifolds of P . It is easy to check that prolongation

of vector fields is compatible with the Lie bracket [X, Y ](k) = [X(k), Y (k)]. The prolongation

Y (k) of a regular vector field Y is also regular. Thus, if Y is a rational vector field in P

whose domain of definition contains an open subset of the form π−1(B′) with B′ open in B,

then Y (k) is a derivation of OJk(P/B). This prolongation is possible up to arbitrary order, so

that we obtain a derivation Y (∞) of OJ(P/B) that respects the order of differential functions.

Homogeneous structure of the fibers.

In general, if G → B is a group bundle, the group composition lifts to the jets of sections of

G,

Jk(G/B)×B Jk(G/B)→ Jk(G/B), (jkxg)(jkxh) = jkx(gh).

Thus, for all k, Jk(G/B) → B is an algebraic group bundle and J(G/B) → B is a pro-

algebraic group bundle.
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Let us consider the trivial group bundle G×B → B; Jk(G/B) will stand for Jk(G×B/B).

There is a natural fibered action of this group bundle on Jk(P/B),

Jk(P/B)×B Jk(G/B), (jkxu, j
k
xg) 7→ jkx(u · g)

so that, for all x ∈ B, Jk(P/B)x becomes a principal homogeneous space for the action of

the algebraic group Jk(G/B)x. Those actions are compatible with the truncations of order;

hence, taking the limit to infinite order we have that J(P/B)x is a principal homogeneous

space for the action of the pro-algebraic group J(G/B)x.

3.1.2. Prolongation of a principal connection

The G-invariant integrable distribution D defines closed subsets Jk(D) ⊂ Jk(P/B). They

consist of k-jets of D-horizontal sections. This closed subset Jk(D) is the algebraic differential

equation of order k associated to D. The chain of maps,

J(D) = lim←Jk(D)→ . . .→ Jk(D)→ . . . J2(D)→ J1(D)→ P,

are surjective.

Jk(D) is defined by a radical ideal Ek(D) of OJk(P/B). Indeed, from the Frobenius integra-

bility condition (flatness of D) we obtain that E(D) is the radical Xrat(B)-differential ideal

of OJ(P/B) spanned by E1(D). For each k, Ek(D) is the intersection of E(D) with the ring

OJk(P/B). The ring of differential functions on horizontal sections is the Xrat(B)-differential

ring quotient OJ(D) = OJ(P/B)/E(D).

The composition with ρ induces a map ρ∗ : Jk(G/S)→ Jk(G/B). Therefore we also have

an action defined over S,

Jk(P/B)×S Jk(G/S), (jkxf, j
k
ρ(x)g) 7→ jkx(f · (g ◦ ρ))

Proposition 3.2 The action of Jk(G/S)ρ(x) on Jk(D)x is free and transitive for any x ∈ B.

Proof. Let jkxu and jkxv be in Jk(D)x. Representatives u and v can be taken as D-

horizontal sections defined in a neighborhood of x. There is a unique section g defined in

this neighborhood G such that u = v · g. Taking into account that u and v are D-horizontal,

we have that g is constant along the fibers of ρ, so it can be thought as a function from a

neighborhood of ρ(x) in S to G. Finally we have, jkxu = (jkxv) · (jkρ(x)g). �

Remark 3.3 It is important to note that the action is compatible with the truncation maps

Jk+1(G,S)→ Jk(G/S) and Jk+1(D))→ Jk(D). Hence, we have that J(G/S)ρ(x) acts freely

and transitively in J(D)x.
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Trivialization of J(G/S)

By Proposition 3.2 we have that J(D) → B is a bundle by principal homogeneous spaces.

However, the structure group varies with the parameter in S. In order to have a principal

bundle structure we should trivialize the group bundle J(G/S).

Let m be dimension of S and τm,kG be the generalized tangent bundle of G of rank

m and order k, i.e., the space of jets of order k of local analytic maps from (Cm, 0) to

G. It is an algebraic group, with the composition law, (jk0g)(jk0h) = jk0 (gh). The group

Autk(Cm, 0) of jets of automorphisms act on τm,kG by group automorphisms on the right

side by composition.

For this fixed m we may take the projective limit in k and thus we obtain the pro-algebraic

group τ̂mG of formal maps from (Cm, 0) to G. In τ̂mG the group of formal automorphisms

Âut(Cm, 0) acts by group automorphisms on the right side by composition.

By a frame of order k at s ∈ S we mean a k-jet at 0 ∈ Cm of a locally invertible map from

(Cm, 0) to (S, s). The frame bundle RkS → S is a principal bundle, modeled over the group

Autk(Cm, 0). Those bundles form a projective system and the projective limit RS → S is

the frame bundle. It is a pro-algebraic principal bundle modeled over the group Âut(Cm, 0)

of formal analytic automophisms. A section of the frame bundle is called a moving frame.

Proposition 3.4 Any moving frame ϕ̂ in S induces by composition at the right side a

trivialization,

J(G/S)
ϕ̂∗ //

##

τ̂mG× S

zz
S

and thus a structure of principal bundle in J(D),

J(D)× τ̂mG→ J(D), (jxu, j0g) 7→ jxu · (j0g ◦ ϕ̂−1
ρ(x) ◦ jxρ)

Proof. Let ϕ̂ be a moving frame in S. Then, for s ∈ S we have that ϕ̂s is a formal

isomorphism between (Cm, 0) and (S, s). Thus, it induces a pro-algebraic group isomorphism

from J(G/S)s to τ̂mG that sends jsg to j0(g ◦ ϕ̂s). In this way we obtain the trivialization of

the statement. Finally, by Proposition 3.2 and Remark 3.3 we have that the induced action

of τ̂mG in J(D) gives the structure of a principal bundle. �

Remark 3.5 Let ϕ̂ and ψ̂ be two different moving frames in S. Then, there is a regular map

map γ̂ from S to Âut(Cm, 0) such that ϕ̂(s) = ψ̂(s)γ̂(s). We have a commutative diagram:

J(G/S)
ϕ̂∗ //

ψ̂∗

))

τ̂mG× S
γ̂×IdS
��

τ̂mG× S

(j0g, s)

��
(j0g ◦ γ̂(s), s)
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The group Âut(Cm, 0) acts on τ̂mG by group automorphisms. Thus, the two τ̂mG−principal

bundle structures induced in J(D) by ϕ̂ and ψ̂ are related by the fibered automorphism γ̂

of τ̂mG× S → S.

Remark 3.6 As before, our constructions are compatible with the truncation to any finite

order. The moving frame ϕ induces frames of any order, and thus, also induces compatible

principal bundle structures in Jk(D) modeled over τm,kG in the sense that the following

diagram,

J(D)× τ̂mG //

��

J(D)

��
Jk(D)× τm,kG // Jk(D)

is commutative.

Remark 3.7 For k > ` there are natural surjective morphisms Iso(Jk(D)) → Iso(J`(D)).

The projective limit of this system yields Iso(J(D)) which is a pro-algebraic Lie groupoid

over B. The construction of Iso(Jk(D)) may depend on the global frame ϕ̂, a map between

two fibers J(D)x and J(D)y may or not be τ̂mG-equivariant for the structure induced by

some global frame. However, according to Remark 3.5, if ρ(x) = ρ(y), then a map between

the fibers J(D)x and J(D)y is τ̂mG-equivariant for some induced structure if and only if it

is τ̂mG-equivariant for any induced structure. Accordingly, the pro-algebraic Lie groupoid

IsoS(J(D)) does not depend on the choice of the global frame in S.

Example 3.8 Our main examples are linear differential equations with parameters. Here

P = GLk(C)×Cn+m, B = Cn+m, and S = Cm. We consider a linear differential system with

parameters

∂U

∂xi
= AiU, i = 1, . . . , n, (3-1)

where Ai are matrices with coefficients in C(x1, . . . , xn, s1, . . . , sm). The Frobenius integra-

bility condition imposes here the compatibility equations:

∂Ai
∂xj
− ∂Aj
∂xi

= [Ai, Aj].

Equation (3-1) can be seen itself as a sub-bundle of J1(P/B). In this case, J1(P/B) =

Ck2(n+m) ×GLk(C)× Cn+m, and Uxi , Usj , U, x, s is a system of coordinates. Equations

Uxi − AiU = 0, i = 1, . . . , n, (3-2)

define J1(D) as a subset of J1(P/B). A basis of the space of total derivative operators is

given by ∂tot
xi

, ∂tot
sj

. We differentiate equations (3-2) and obtain

Uxixk −
∂Ai
∂xk

U − AiAkU = 0, (3-3)

Uxisk −
∂Ai
∂sk

U − AiUsk = 0. (3-4)
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Equations (3-2), (3-3), and (3-4) define J2(D), and so on. Note that xi, sj, U, Usj , Usjsk , . . .

are coordinates on J(D).

Prolongation of D to J(D).

Here we show how to lift the G-invariant connection D to a projective system of τm,kG-

invariant connections D(k) in Jk(D), and thus, a τ̂mG-invariant connection in J(D).

Lemma 3.9 Let X be a rational vector field tangent to F . Along Jk(D), the total derivative

Xtot coincides with X̃(k), the jet prolongation of the D-horizontal lift of X. Therefore Xtot

and X̃(∞) coincide as derivations of OJ(D).

Proof. Let X be a rational field tangent to F . First, we have that the ideal of J(D) is

a differential ideal, so that, Xtot defines a derivation of OJ(D).

Let us fix jkxu ∈ Jk(D). Let us assume that u is a D-horizontal local section. The vector

field X̃ is tangent to the graph of u. Thus, the flow of X̃ leaves the section u invariant. Let

us consider {σt}t∈R the local flow of X around x. Then, we have,

X̃(∞)(jxu) =
d

dt

∣∣∣∣
t=0

jσt(x)u

Thus, for any differential function F of arbitrary order, we have,

(XtotF )(jxu) = Xx(F ◦ ju) =
d

dt

∣∣∣∣
t=0

F (jσt(x)u) = (X̃(∞)F )(jxu).

We have that Xtot coincides with X̃(∞) along J(D), and therefore they preserve the order of

differential functions. �

Example 3.10 Let us compute ∂tot
xj

restricted to J(D) in Example 3.8. Let uij be the (i, j)-

entry of coordinate matrix U , and ai,jk be the (j, k)-entry of matrix Ai. The usual expression

for the total derivative is:

∂

∂xj

tot

=
∂

∂xj
+ umk;xj

∂

∂umk
+ umk;x`xj

∂

∂umk;x`

+ umk;s`xj

∂

∂umk;s`

+ . . .

We have that xj, s`, umk, umk;s` , . . . is a system of coordinates on J(D). We obtain:

∂

∂xj

tot
∣∣∣∣
J(D)

=
∂

∂xj
+ aj,m`u`k

∂

∂umk
+

(
∂aj,ml
∂sr

u`k + aj,m`u`k;sr

)
∂

∂umk;sr

+ . . .

Here we see that the total derivative of a function on Jk(D) is also defined on Jk(D).

Definition 3.11 For each k = 1, . . . ,∞ we call the k-th prolongation of D the distribution

D(k) spanned by the vector fields of the form Xtot|Jk(D), where X is tangent to F .
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Remark 3.12 The above definition ensures D(k) is a regular connection on Jk(D). Another

way of defining D(k) in geometrical terms is the following. Let u be a local D-horizontal

section defined around x ∈ B,

D(k)

jkxu
= d(jku)(Fx).

The space D(k)

jkxu
⊂ Tjkxu(Jk(D)) does not depend on the choice of u. It is confined into the

fiber of ρ(x). Any other D-horizontal section passing through the same point u(x) shall

coincide with u along the fiber of ρ(x).

Proposition 3.13 The prolongation D(k) is a τm,kG-invariant connection on Jk(D) with

parameters S. The projection Jk+1(D)→ Jk(D) maps D(k+1) to D(k).

Proof. Let {Xi} be a commuting basis of the C(B)-space of rational vector fields

tangent to F . Their values span F on the generic point of B. In virtue of Lemma 3.9 we have

that D(k) is the distribution of vector fields spanned by {X̃(k)
i |Jk(D)}. From the compatibility

of the Lie bracket and the lift of vector fields we obtain that D(k) is a Frobenius integrable

distribution in J(D). Also, from the properties of the lift we obtain that D(k+1) projects

onto D(k). The invariance of D(k) with respect to τm,kG follows automatically from remark

3.12. �

The projective limit D(∞) = lim←D(k) is called the jet prolongation with respect to pa-

rameters of D. In virtue of Proposition 3.13 D(∞) it is a τ̂mG invariant F -connection in

J(D). Note that the construction of D(∞) is independent of the moving frame ϕ̂ in S that

induces the τ̂mG-principal bundle structure in J(D). Different moving frames give different

actions that are not necessarily equivalent, but at least they are equivalent along the fibers

of ρ.

3.1.3. The parameterized Galois groupoid

The field of rational differential invariants of order ≤ k of D is the field C(Jk(D))D
(k)

of

rational first integrals of D(k). We have a tower of field extensions,

C(S) ⊂ C(P )D ⊂ . . . ⊂ C(Jk(D))D
(k) ⊂ C(Jk+1(D))D

(k+1) ⊂ . . .

and the union of all its members is the field of rational differential invariants of D. If X is a

rational vector field in B and f a rational invariant of D of order ≤ k then Xtotf is a rational

invariant of D of order ≤ k + 1. Thus, we have that C(J(D))D
(∞)

is a differential field with

derivations X(B)tot. Moreover, by the finiteness of differential subfields (for instance, by

Theorem 14 in [Kol73], p. 112) we have that there is some ` such that the field of differential

invariants is spanned by C(J`(D))D
(`)

and total differentiation.

Now let us translate, by means of the Galois correspondence 1.61, this tower of fields into

a system of groupoids, and the field of rational differential invariants into a pro-algebraic

groupoid.
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In order to have a principal structure in J(D) we need to take a moving frame on S. It

is well known that there always exists a rational moving frame on S. We may, for instance,

take the frame induced by a transcendence basis of C(S). Thus, we fix a global frame ϕ̂ in

S, that we assume to be regular, after restriction to a suitable affine open subset.

Lemma 3.14 The Galois groupoid GGal(D(k)) does not depend on the choice of the moving

frame ϕ̂ on S.

Proof. Let ϕ̂ and ψ̂ two different moving frames on S, whose truncations to order k

induce respective τm,kG-structures in Jk(D) → B. Thus, there are two different groupoids

of gauge isomorphisms Isoϕ̂(Jk(D)) and Isoψ̂(Jk(D)). However, by Remark 3.7 we have

IsoS(Jk(D)) ⊂ Isoϕ̂(Jk(D)) ∩ Isoψ̂(Jk(D)). We also have C(S) ⊂ C(Jk(D))D
(k)

. By Galois

correspondence 1.61 we have that the Galois groupoid of D(k) is inside IsoS(Jk(D)), hence

independent of the choice of the global frame. �

Definition 3.15 Let us consider D a principal G-invariant connection on P with parameters

in S.

1. The Galois groupoid (and group bundle) of order k with parameters of D is the Galois

groupoid (and group bundle) of gauge isomorphisms (automorphisms) of Jk(D) that

fixes rational differential invariants of D of order ≤ k.

PGalk(D) = GGal(D(k)), Galk(D) = Gal(D(k)).

2. The Galois groupoid with parameters of D is the groupoid of gauge isomorphisms of

J(D) that fixes rational differential invariants of D.

PGal∞(D) = lim∞←kGGal(D(k)).

3. The Galois group with parameters of D is the diagonal part of the Galois groupoid

with parameters of D,

Gal∞(D) = PGal∞(D)diag.

3.1.4. Differential structure of the Gau(J(D))

The Galois group with parameters, as in Definition 3.15, is a rational subgroup bundle of

Gau(J(D)). In what follows we present its natural differential group structure.

The fibers of J(P/B)→ B are principal homogeneous spaces for the fibers of the group

bundle

J(G/B) → B (see 3.1.1). We can consider the bundle Gau(J(P/B)) → B of gauge au-

tomorphisms as the quotient (J(P/B)×B J(P/B))/J(G/B). This quotient exists as a pro-

algebraic variety (at least on the generic point of B): it can be constructed, for instance,

trivializing the group bundle J(G/B)→ B by means of a moving frame in B.
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Lemma 3.16 Let E → B be a fiber bundle and G an algebraic group acting on E and

preserving the projection to B. Assume E/G exists as smooth algebraic variety. Then there

is a canonical isomorphism J(E/B)/J(G/B) ' J((E/G)/B) of bundles over B.

Proof. Let f be the projection E → E/G and jf the induced map J(E/B) →
J((E/G)/B). Because jf(jσ) = j(f(σ)), this maps induces the wanted isomorphism. �

Proposition 3.17 For the principal bundle π : P → B there is a canonical isomorphism

Gau(J(P/B)) ' J(Gau(P )/B) of bundles over B.

Proof. It suffices to consider the case E = P ×B P in Lemma 3.16. �

From this, we know that Gau(J(P/B)) has a structure of differential algebraic group.

Let us consider now the bundle of jets of D-horizontal sections J(D) ⊂ J(P/B). It is a

differential subvariety of J(P/B) in the sense that it is the zero locus of the differential ideal

E(D) ⊂ OJ(P/B) (see Subsection 3.1.2).

Theorem 3.18 The group bundle of gauge automorphisms J(D) is identified with the dif-

ferential algebraic subgroup of gauge symmetries of D, defined by the group connection

D[Adj].

Gau(J(D)) ' J(D[Adj]) ⊂ J(Gau(P )/B).

Proof. The differential subvariety J(D) ⊂ J(P/B) is principal for the action of the

subgroup bundle J(G/S)×SB ⊂ J(G/B) (note that two D-horizontal sections are related by

a right translation which is constant along the fibers of ρ), this being a differential algebraic

subgroup of J(G/B).

By means of the general construction of Gau(P ) = (P ×B P )/G and Proposition 3.17 we

have a commutative diagram

J(D)×B J(D) //

��

J(P/B)× J(P/B)

��
Gau(J(D)) i // J(Gau(P )/B)

It is clear that if a pair (jxu, jxv) of jets of D-horizontal sections are related by an element

of J(G/B)x, then this element is constant along the fibers of ρ. Therefore, the map i is

injective. Finally, an element jxσ ∈ J(Gau(P )/B) is in the image of i if and only if it

transform D-horizontal sections into D-horizontal sections, if and only if it is a jet of a gauge

symmetry of D, if and only if it is D[Adj]-horizontal. �

Remark 3.19 The action of Gau(J(D)) on J(D) is, by definition, compatible with the

differential structure, in the sense that the co-action:

α∗ : OJ(D) → OGau(J(D)) ⊗C(B) OJ(D)

is compatible with the total derivative operators.
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Theorem 3.20 The parameterized Galois group bundle Gal∞(D) is a differential algebraic

subgroup of J(Gau(P )/B).

Proof. Let us compute the equations of Gal∞(D) inside Gau(J(D)) in order to verify

that it is the zero locus of a differential Hopf ideal in OGau(J(D)). For the concept of Hopf

differential ideal see Definition A.3. From the group bundle structure we already know that

the ideal of Gal∞(D) is a Hopf ideal; it suffices to check that it is a differential ideal.

By definition, Gal∞(D) is the group of gauge automorphisms commuting with rational

differential invariants C(J(D))D
(∞)

. This field is differentially finitely generated over C(S),

let us take a system of generators.

C(J(D))D
(∞)

= C(S)〈h1, . . . , hk〉

There is some N big enough such that the differential functions hi belong to C(JN(D)). By

construction (and restricting our considerations to a suitable open subset of B) JN(D) is an

affine algebraic variety, so that we have,

hi =
Pi
Qi

with Pi, Qi in OJ(D). Now, we define

Fi = α∗(Pi)(1⊗Qi)− α∗(Qi)(1⊗ Pi)

which are elements of OGau(J(D)) ⊗C(B) OJ(D). We consider I the radical differential ideal

{F1, . . . , Fk}. From Remark 3.19 we have that the zero locus of I is Gal∞(D) ×B J(D).

Therefore, the ideal of the Galois group bundle is the differential-Hopf ideal i∗(I) for the

canonical inclusion i∗ : OGau(J(D)) → OGau(J(D)) ⊗C(B) OJ(D). �

3.2. Examples

3.2.1. Isomonodromic deformations

An isomonodromic deformation of the connection D with parameters in S is a partial G-

invariant connection D̃ extending D. If we take F̃ = π∗(D̃), then D̃ is a partial F̃ -connection.

Paths along the leaves of ρ∗(F̃) are called isomonodromic paths. The main application is

that the monodromy representation of the connection with parameters is constant (up to

conjugation) along isomonodromic paths.

Remark 3.21 In the analytic context, the restriction ofD to a leaf of F̃ is an isomonodromic

family. Under some assumptions we have that D is an isomonodromic family if and only

if it admits an isomonodromic deformation which is a TB-connection (see [CS05] §5 and

references therein).
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An important point about isomonodromic deformations is that they give us first order

equations for the Galois group with parameters. The following lemma is a generalization (in

our geometrical setting) of Proposition 5.4 in [CS05].

Lemma 3.22 If D̃ is an isomonodromic deformation of D, then Gal∞(D) ⊂ J(D̃[Adj]).

Proof. It suffices to verify that Galk(D) ⊂ Jk(D̃[Adj]) for any finite k. Any D̃-horizontal

section is, in particular, D-horizontal. It follows that Jk(D̃) ⊂ Jk(D).

Let us consider a moving frame in S, so that we may make use of the τm,kG-structure in

J(D). From the construction of the prolongation D(k) we have that for any jkxu ∈ Jk(D̃) there

is an inclusion of vector spaces D(k)

jkxu
⊂ D̃(k)

jkxu
. Therefore Jk(D̃) is tangent to the distribution

D(k). It is in fact a reduction of structure group to τm−d,kG, where d is the codimension of

D in D̃.

From there, we have that Iso(Jk(D̃)) is a subgroupoid of Iso(Jk(D)) and it is tangent to

the distribution D(k) � D(k), as defined in Remark 1.58. From the topological construction

of the Galois groupoid (see Remark 1.59) we have GGal(D(k)) ⊂ Iso(Jk(D̃)). Now, by taking

the diagonal parts we have Galk(D) ⊂ Jk(D̃[Adj]). �

Theorems A.9 and A.11 describe all Zariski dense differential subgroupsH of J(Gau(P )/B)

for simple algebraic groups G. There exists a unique partial G-invariant connection D̃ such

that H = J(D̃[Adj]). Note that Gal∞(D) is Zariski dense in J(Gau(P )/B) if and only if

Gal(D) = Gau(P ). We can state our main result.

Theorem 3.23 Let P → B be an affine principal bundle with simple group G, ρ : B → S a

dominant map, F = ker(dρ), and D a principal G-invariant connection with parameters in S.

Let us assume that the Galois group of D is Gau(P ). Then, there is a biggest isomonodromic

deformation D̃ of D and the Galois group with parameters Gal∞(D) is the group J(D̃[Adj])

of gauge symmetries of D̃.

Proof. From Lemma 3.22 and Theorem A.9 it is clear that the Galois group with

parameters is the group of gauge symmetries of a certain isomonodromic deformation D̃ of

D. It suffices to check that any other isomonodromic deformation is extended by D̃. Let D1

be an isomonodromic deformation of D. By Lemma 3.22 we have Gal∞(D) = J(D̃[Adj]) ⊂
J(D1[Adj]). From there, and Theorem A.11 we have D1 ⊂ D̃. �

Example 3.24 Let us considerB = Ck+1×sln(C)k with coordinates x, a1, . . . , ak, A1, . . . , Ak;

S = Ck × sln(C)k with the obvious projection (forgetting the coordinate x), and P =

SLn(C)×B. The general Fuchsian system with k singularities and trace free matrices,

∂U

∂x
=

(
n∑
i=1

Ai
x− ai

)
U (3-5)
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is a SLn(C)-invariant connection D on P with parameters in S. The general isomonodromic

deformation (see, for instance, [IKSY13] §3.5) admitted by (3-5) is the well-known Sch-

lessinger system. It consists in the system of equations formed by (3-5) together with:

∂Ai
∂aj

=
[Ai, Aj]

λi − λj
, (3-6)

∂Ai
∂ai

= −
∑
i 6=j

[Ai, Aj]

λi − λj
, (3-7)

∂U

∂ai
=

Ai
x− ai

U. (3-8)

Equations (3-6), (3-7) define the foliation ρ∗(F̃) of isomonodromic paths in S, and equations

(3-5) - (3-8) define the isomonodromic deformation D̃ as a partial F̃ -connection. Thus, the

Galois group with parameters of 3-5 is the differential algebraic subgroup of J(SLn(C)/B)

given by equations (3-6), (3-7), and

∂σ

∂x
=

[
n∑
i=1

Ai
x− ai

, σ

]
, (3-9)

∂σ

∂ai
=

[
Ai

x− ai
, σ

]
. (3-10)

3.3. Gauss hypergeometric equation.

Let us consider Gauss hypergeometric equation:

x(1− x)
d2u

dx2
+ {γ − (α + β + 1)x}du

dx
− αβu = 0 (3-11)

We see equation (3-11) as a linear connection with parameters in the following way. We

set P = GL2(C) × B, B = Cx × S and S = C3
α,β,γ with the obvious projections. Then, the

hypergeometric equation is the GL2(C)-invariant partial connection H in P defined by the

differential system:

d

(
u11 u12

u21 u22

)
−

(
0 1
αβ

x(1−x)
(α+β+1)x−γ

x(1−x)

)(
u11 u12

u21 u22

)
= 0, dα = 0, dβ = 0, dγ = 0.

(3-12)

3.3.1. Projective reduction

Let us set Pproj = PGL2(C) × B. There is a canonical quotient map P → Pproj which

is a morphism of principal bundles. The projection of H is a PGL2(C)-invariant partial

connection Hproj on Pproj. This connection has a nice geometric interpretation. Let us
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consider J∗2 (C1,P1) the space of 2-jets of local diffeomorphisms from C1 to P1. Let us choose

an affine embedding ϕ of C1 in P1, for instance ϕ(ε) = [ε : 1]. Let us consider the action of

PGL2(C) in P1 on the right side, by setting:

[t0 : t1] ?

[
a b

c d

]
= [at0 + ct1 : bt0 + dt1].

We get an isomorphism of PGL2(C) bundles,

Pproj → J∗2 (C,P1)× C3
α,β,γ, (σ, x, α, β, γ) 7→ (j2

x(ϕ ? σ), α, β, γ).

Through such isomorphism, the reduced connection is seen as a third order differential

equation in the projective space, the well known Schwartzian equation: if {u1, u2} is a local

basis of solutions of (3-11) then y = u1
u2

satisfies,

Schwx(y) = ν(α, β, γ;x), (3-13)

with

ν(α, β, γ;x) =
γ(2− γ)

4x2
+

1− (γ − α− β)2

4(1− x2)
+
γ(1− γ + α + β)− 2αβ

2x(1− x)
.

Lemma 3.25 For very general values of (α, β, γ) ∈ S there is no smooth isomonodromic

path of Hproj passing through (α, β, γ).

Proof. Here we apply the description of the monodromy of (3-11) in terms of the

parameters, as explained in [IKSY13]. The eigenvalues of the monodromy matrices at 0, 1,

∞ are respectively

{1, e−2γπi}, {1, e2(γ−α−β)πi}, {e2απi, e2βπi}.

The transcendental functions,

f = e2γπi + e−2γπi, g = e2(γ−α−β)πi + e2(α+β−γ)πi, h = e2(α−β)πi + e2(β−α)πi,

are, by construction, invariants of the monodromy of Hproj. Thus, they are constant along

any isomonodromic path. A simple calculus shows that they are functionally independent

on the very general point of S. It yields the result. �

Corollary 3.26 The differential Galois group with parameters of Hproj consists in all the

gauge symmetries of Hproj, Gal∞(Hproj) = Gau(J(Hproj)).

Proof. It is a direct consequence of Lemma 3.25 and Theorem 3.23. �
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3.3.2. Differential equation for the determinant

Another reduction of (3-11) is given by the quotient map P → Pdet = C∗×B, (U, x, α, β, γ) 7→
(w = det(U), x, α, β, γ). The projection is a morphism of principal bundles and it sends H
to a partial connection Hdet in Pdet defined by the differential system:

dw − (α + β + 1)x− γ
x(1− x)

wdx = 0, dα = 0, dβ = 0, dγ = 0. (3-14)

It is convenient to consider an affine change of variables in the parameter space, by setting:

a = −γ
b = α + β − γ + 1

c = α

The equation for horizontal sections of Hdet is now written as:

dw

dx
=

(
a

x
− b

1− x

)
w. (3-15)

And its general solution is:

w = f(a, b, c)xa(1− x)b.

Let us compute the Galois group with parameters of such an equation. Note that

C(J(Hdet)) = C(x, a, b, c, w, wa, wb, wc, waa, . . .) = C(x, a, b, c)〈w〉.

Parameter c does not appear in the equation. This means that in C(J(Hdet)), the differential

function wc is an invariant. Thus,

C〈wc〉 ⊂ C(J(Hdet))
H∞det .

For the rest of the computation let us ignore the derivatives with respect to the parameter c

and let us consider the equation as dependent only of parameters a and b. This is equivalent

to projecting the equation onto a quotient basis B′. Let us consider the equation for the

second prolongation H(2)
det. It is:

wx =

(
a

x
− b

1− x

)
w

wax =
1

x
w +

(
a

x
− b

1− x

)
wa

wbx =
1

1− x
w +

(
a

x
− b

1− x

)
wb

waax =
2

x
wa +

(
a

x
− b

1− x

)
waa

wabx =
1

1− x
wa +

1

x
wb +

(
a

x
− b

1− x

)
wab

wbbx =
2

1− x
wb +

(
a

x
− b

1− x

)
wbb
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At this level, there appear three rational first integrals of H(2)
det, namely:

R =
waa
w
− w2

a

w2
, S =

wab
w
− wawb

w2
, T =

wbb
w
− w2

b

w2
.

Thus, C(J(Hdet))
H∞det contains the C∗-invariant X(B)tot-differential field spanned by wc, R, S

and T . Let us compute the differential B-group associated to this field.

The gauge group J(Gau(P/B)) is in this case isomorphic to J(B,C∗). On the other

hand, we have that the adjoint equation in dimension 1 vanish, so we also have σx = 0.

From the rational invariants we have that the equations for the Galois group Gal∞(Hdet)

should include:

σx = 0, σc = 0, σaa =
σ2
a

σ
, σab =

σaσb
σ

, σbb =
σ2
b

σ
.

The three last equations are equivalent to say that σ has constant logarithmic derivative

with respect to a and b. So, these equations define a differential algebraic group, which is in

fact a group bundle with fibers of dimension 3 over B.

G = {jpσ : σx = σc = ∂a(σa/σ) = ∂b(σa/σ) = ∂b(σb/σ) = 0}.

Let us observe that,

G ' . . . ' Gk ' . . . ' G3 ' G2 ' G1 → B.

Let us see that the Galois group is exactly this group.

Lemma 3.27 Let us fix a and b complex numbers Q-linearly independent. Let us consider

the differential system with coefficients in C(x):

d

dx

 w0

w1

w2

 =

 a
x
− b

1−x 0 0
1
x

a
x
− b

1−x 0
−1

1−x 0 a
x
− b

1−x


 w0

w1

w2


Its Galois group is a connected group of dimension 3.

Proof. A fundamental matrix of solutions: xa(1− x)b 0 0

log(x)xa(1− x)b xa(1− x)b 0

log(1− x)xa(1− x)b 0 xa(1− x)b

 .

We may compute its monodromy group. For rationally independent a and b its Zariski

closure is a connected group of dimension 3. �

We have that Gal1(H(1)
det)(x,a,b,c) must contain the monodromy at (x, a, b, c) of the connec-

tion Pdet. By Lemma 3.27 we have that the Zariski closure of the monodromy at (x, a, b, c)

contains G1,(x,a,b,c). Therefore we have:

Gal1(H(1)
det)(x,a,b,c) ⊂ G1,(x,a,b,c) ⊂ Gal1(H(1)

det)(x,a,b,c).
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Thus, we have the equality. The equations of the Galois group can be easily integrated, so

be obtain a description of the functions whose jets are elements of Gal∞(Hdet).

Proposition 3.28 The differential Galois group with parameters of Hdet is

Gal∞(Hdet) =
{
j(x0,α0,β0,γ0)σ : σ(x, α, β, γ) = exp (µ0 + µ1γ + µ2(α + β)) , µ0, µ1, µ2 ∈ C

}
,

which is the set of differential zeroes of the Hopf differential ideal,{
∂xσ, ∂cσ, ∂a

∂aσ

σ
, ∂a

∂bσ

σ
, ∂b

∂bσ

σ

}
⊂ OJ(C∗/B),

where:

∂a = −∂β − ∂γ,
∂b = ∂β,

∂c = ∂α − ∂β.

3.3.3. Computation of the Galois group

We have a 2-covering group morphism

ϕ : GL2(C)→ PGL2(C)× C∗, A 7→ ([A], det(A)).

Its kernel is {−1, 1}. Let us set Gred = GL2(C)/{−1, 1}, Pred = P/{−1, 1}. So Pred is

Gred-principal bundle. The hypergeometric distribution H induces Hred in Pred.

We have an isomorphism

ψ : Pred
∼−→ Pproj ×B Pdet,

that yields a decoupling ψ∗(Hred) = Hproj×BHdet. From the commutation of direct products

and jets, we have that Gal∞(Hred) is a differential algebraic subgroup of Gal∞(Hproj) ×B
Gal∞(Hdet) that projects surjectively onto both components. We will make use of the fol-

lowing.

Lemma 3.29 Let G be a simple algebraic group and B an algebraic variety. J(G/B) is

simple as a differential algebraic group.

Proof. Let HCJ(G/B) be a differential algebraic subgroup. Then H0 is rational group

subbundle of G×B → B, therefore either H0 = G×B or H0 = {Id}×B. In the latter case

H is the identity subgroup bundle J(G/B). In the former case, by Theorem A.9 we have

H = J(C) for a singular foliation F on B and a group F -connection C.
Let us recall the classical decomposition of the tangent group TG ' Lie(G) nG. Let us

fix x a regular point of F . The 1-jet at x of a function from B to G can be identified with
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its derivative which is a linear map from TxB to a fiber of TG → G. Therefore we have

semidirect product decomposition,

J1(G/B)x ' LinC(TxB,Lie(G)) nG.

On the other hand, let us consider L the leaf of F that passes through x. The same argument

applies, so we have

J1(G/L)x ' LinC(Fx,Lie(G)) nG.

The value of the group F -connection C at x can be seen as a section Cx from G to J1(G/L)x
that assigns to any initial condition g in G the only C-horizontal leaf that passes through

(x, g). In the following diagram, where πx is the restriction to the leaf L, we have H1,x =

π−1
x (Cx(G)).

0 // LinC(TxB,Lie(G)) //

��

J1(G/B)x //

πx
��

G //

��

{Id}

0 // LinC(Fx,Lie(G)) // J1(G/L)x // G //

Cx
ii

{Id}

If H1,x C J1(G/B)x then Cx(G) C J1(G/L)x. However, this would produce an isomorphic

direct product decomposition J1(G/L)x ' Lin(Fx,Lie(G))×G, which does not exist as the

adjoint representation is not trivial. Hence, H1,x is not a normal subgroup, except in the

case in which F is the foliation by points. �

Lemma 3.30 Gal∞(Hred) = Gal∞(Hproj)×B Gal∞(Hdet).

Proof. Here we follow a reasoning of Kolchin [Kol68]. Consider the projections

πproj : Gal∞(Hred)→ Gal∞(Hproj) and πproj : Gal∞(Hred)→ Gal∞(Hdet).

The kernel of πred is a differential algebraic group of the form,

ker(πproj) = Id×B Kdet

where Kdet is a differential algebraic subgroup of Gal∞(Hdet). Moreover, for generic p ∈ B
and any order k we have Kdet

k,p is a normal algebraic subgroup of Galk(Hdet)p. For the same

reason we have that the kernel of πproj is a differential algebraic group of the form,

ker(πproj) = Kproj ×B Id

where Kproj is a differential algebraic subgroup of Gal∞(Hdet). Moreover, for generic p ∈ B
and any order k we have Kproj

k,p is a normal algebraic subgroup of Galk(Hproj)p. The subgroup

Galk(H)p gives the graph of an algebraic group isomorphism

Galk(Hproj)p/K
proj
k,p ' Galk(Hdet)p/K

det
k,p .
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Therefore, the quotient Galk(Hproj)p/K
proj
k,p is for any k an abelian group of dimension smaller

or equal than three. By Lemma 3.29 the only possibility is Galk(Hproj)p = Kproj
k,p . This is

for generic p and all k, therefore Gal∞(Hproj) = Kproj and it follows the required statement.

�

The quotient map πred : P → Pred induces a 2-covering group bundle morphism

πred∗ : Gau(J(H))→ Gau(J(Hred))

whose restriction to the Galois group bundles gives a surjective map πred : Gal∞(H) →
Gal∞(Hred). This morphism may be either an isomorphism or a 2-covering. It turns out that

π−1
red(Gal∞(Hred)) is connected, and the smallest differential algebraic subgroup of Gau(J(H))

that projects surjectively onto Gal∞(H)red. Therefore,

Gal∞(H) = π−1
red∗(Gal∞(Hred)).

Theorem 3.31 The differential Galois group with parameters of Gauss’ hypergeometric

equation is given by

Gal∞(H) = {jσ ∈ Gau(J(H)) | jdet(σ) ∈ Gal∞(Hdet)} (3-16)

which is defined by the differential equations

∂xσ =

[(
0 1
αβ

x(1−x)
(α+β+1)x−γ

x(1−x)

)
, σ

]
,

∂x det(σ) = ∂c det(σ) = ∂a

(
∂a det(σ)

det(σ)

)
= ∂b

(
∂a det(σ)

det(σ)

)
= ∂b

(
∂b det(σ)

det(σ)

)
= 0,

where σ is an invertible 2 × 2 matrix depending on x, α, β, γ and the differential operators

∂a, ∂b, ∂c are those given in Proposition 3.28.
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4.1. Gauge groupoid of isomorphisms

We introduce the following notation: Let C[M ]p denote the set of germs functions in M at p.

Write (M, p) = specOM,p and (M, p)k = specC[M ]p/m
k+1
p where mp is the maximal ideal of

functions vanishing at p. In the limit we get (M̂, p) = spf Ĉ[M ]p, its completion in the mp–

adic topology. The purpose of this notation is the following. A k-jet of a local holomorphic

map sending p to q is interpreted as a morphism (M, p)k → (M, q)k. In the same way, a jet of

infinite order is seen a as morphism (M̂, p)→ (M̂, q). This interpretation is compatible with

the composition, and therefore it allows us to illustrate some situations of jet composition

with commutative diagrams and without the necessity of taking representatives where it is

no need of it.

Definition 4.1 Let Autk(M) be the groupoid of k–jets of local invertible biholomorphisms

of M .

We have that its limit, Âut(M), is a pro-algebraic groupoid. This space comes with source

and target maps: An element φ of Âut(M) is a formal map φ : (M̂, p) → (M̂, q). Then

source and target are given by s(φ) = p and t(φ) = q. Partial composition of two compatible

jets φ1 and φ2 is given by φ1 ◦ φ2. Finally inversion map is i(φ) = φ−1.

From Theorem 2.22 in Chapter 2, p.43, it follows that RkM is an Autk(Cm, 0)–principal

bundle. Therefore RM → M is a pro-algebraic principal Âut(Cm, 0)–bundle. They have

their corresponding groupoid of isomorphisms:

Definition 4.2 Let Iso(RkM) be the set of Autk(Cm, 0)–equivariant bijections between one

fiber of RkM and another. The limit lim←Iso(RkM) = Iso(RM) is the set of Âut(Cm, 0)–

equivariant bijections between one fiber of RM and another.

Lemma 4.3 For each k, Iso(RkM) = Autk(M).

Observe that Autk(M) is an algebraic Lie groupoid. There is an additional equivalent

definition for Iso (RM): it is the quotient of RM by the diagonal action of Âut(Cm, 0):

Iso(RM) = (RM × RM)/Âut(Cm, 0)

We have mappings
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• Φ : RM × RM → Iso(RM) such that jθ × jβ 7→ φjθ,jβ.

• Ψ : RM × RM → ÂutM such that jθ × jβ 7→ j(β ◦ θ−1).

Proposition 4.4 Âut(M) = (RM × RM)/Âut(Cm, 0).

Proof. The map Ψ descends into the quotient and is well defined there: Let ψp be a frame

at p ∈ M , φq a frame at q ∈ M and σpq : (M̂, p) → (M̂, q). Let γ ∈ Âut(Cm, 0) be a group

element. Then Ψ(ψp ◦ γ, φq ◦ γ) = φq ◦ γ ◦ (ψp ◦ γ)−1 = φq ◦ ψ−1
p = Ψ(ψp, φq). The map Ψ is

readily seen to be a bijection and groupoid morphism so the desired result follows.

̂(Cm, 0)

γ

$$
))

��

(Ĉm, 0)
ψp //

φq
��

(M̂, p)

σpqzz

(M̂, q)

�

Lemma 4.5 There are two actions over RM ,

Âut(M)×M RM × Âut(Cm, 0)→ RM

The first action Âut(M)×M RM is the action of the isomorphism groupoid. The second is

the action RM × Âut(Cm, 0) of the structural group.

Proof. The action of RM × Âut(Cm, 0) was described in Theorem 2.22. The action of the

groupoid is given by the action of Iso RM on RM . �

It follows that Iso(RM) coincides with Âut(M).

4.2. Malgrange Pseudogroup

4.2.1. Malgrange Groupoid of a vector field

Let X be a rational vector field on M which, by definition, is regular in some open subset M ′

of M . We are interested in applying differential Galois theory, as developed in Chapter 1 to

some rational connections on M that are regular along M ′. Thus, without loss of generality

let us assume that M = M ′.

By Theorem 2.22 the bundle RkM → M is a principal Autk(Cm, 0)–bundle. By Propo-

sition 2.17 the prolongation X(k) (see p.55, Definition 2.23) is Autk(Cm, 0)–invariant. The
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distribution 〈X(k)〉, spanned by X(k), projects onto 〈X〉. Therefore 〈X(k)〉 is a Autk(Cm, 0)–

invariant 〈X〉-connection. There is a differential Galois groupoid associated to it by means

of Definition 1.55.

Definition 4.6 The order k Malgrange groupoid of a vector fieldX is Malk(X) := GGal(〈X(k)〉)
which is a subset of AutkM .

Definition 4.7 A order k differential invariant of X is a rational first integral of X(k).

Order k rational invariants of X form a field, C(RkM)X ⊂ C(RkM).

An analysis of Definition 4.6 and Galois correspondence 1.53 tell us that Malk(X) is

the rational subgroupoid of AutkM corresponding to the field of order k rational differen-

tial invariants C(RkM)X . Note that, by definition of differential invariants C(RkM)X =

C(RkM)〈X
(k)〉. There is a chain of field inclusions and groupoid projections:

· · · ⊂ C(RkM)X ⊂ C(Rk+1M)X ⊂ · · ·

· · · ←− Malk(X)←− Malk+1(X)←− · · ·

Let us see that this chain is compatible with the differential structure given in RM by the

total derivatives with respect to the infinitesimal parameters ε. Let us recall that we use

∂/∂ε as an abbreviation of {∂/∂ε1, . . . , ∂/∂εm}.

Proposition 4.8 C(RM) is a (classical) ∂/∂ε–field.

Proof. We know from chapter 2 that C[τ̂mM ] is a classical differential ring with derivations

given by the total derivatives ∂/∂ε. As RM ⊂ τ̂mM , we have C[RM ] inherits the ∂/∂ε–ring

structure. A result from differential algebra, for example [CH11] p.121, tell us that C(RM)

can be given a ∂/∂ε–ring structure as desired. �

Let us define the field of rational differential invariants of X as the union of the fields of

rational differential invariants on any order, C(RM)X =
⋃
k C(RkM)X . Note that, since the

restriction of X(∞) to any field C(RkM) yields X(k) we have C(RM)X = C(RM)〈X
(∞)〉.

Lemma 4.9 C(RM)X is a ∂
∂ε

–subfield.

Proof. If f is an invariant of order k, then ∂
∂εi
f is an invariant of order k+ 1. This follows

because prolongation commutes with total derivatives. �

Corollary 4.10 C(RM)X is a ∂
∂ε

-finitely generated.

Proof. It comes automatically from Lemma 4.9 and Theorem 1.8. �

Definition 4.11 Let K be a ∂
∂ε

-subfield of C(RM). We consider its truncations, Kj =

K ∩ C(RjM). For each Kj defines the rational grupoid Gj ⊂ Autk(M) of invariance of Kj.

The D–groupoid defined by K is G = lim← Gk.
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Theorem 1.8 guarantees that K is differentially spanned by one of the truncations Ki.

Therefore G is determined by Gk for some finite k, and G is rational subgroupoid of Âut(M).

Definition 4.12 The Malgrange groupoid of X is M̂al(X) the rational D–groupoid corre-

sponding to the field of rational differential invariants of X.

As before we have a sequence,

M̂al(X) . . . −→ Malk+1(X) −→ Malk(X) −→ . . . −→ Mal0(X) ⊂M ×M,

and M̂al(X) is identified with the limit Lim
←−

Malk(X) ⊂ Âut(M). It is determined by

Malk(X) for some finite k.

4.2.2. D-Lie algebra of a D-groupoid

Let G be D–groupoid defined as the corresponding groupoid of a subfield of invariants

C(RM)G ⊂ C(RM) and such that G = lim← Gk.

Definition 4.13 The D–Lie algebra of Gk is given by

LieGk =
{
jpX | X(k)C(RkM)G = 0

}
and LieG, the D–Lie algebra of G, is the limit lim← LieGk.

For more details on Malgrange groupoid, see [Mal01, Mal10b, Dav16].

4.2.3. Specialization theorem

Let π : M → S be a surjective smooth map of smooth varieties with smooth connected

fibers. For each s ∈ S we consider Ms the π-fibre of {s}. Let X be a rational vector field

tangent to π i.e. such that dπ(X) = 0. We assume that X restricts to a rational vector field

X|Ms at each fiber Ms. Davy in [Dav16] p.63 introduces the set of partial frames over the

fibers of π,

R(M/S) =
{

̂(Cm, 0) −→ ̂(Ms, p)
}
.

The set RM/S is an Âut(Cm, 0)–principal bundle. Observe that for s ∈ S we have R(M/S)|Ms =

R(Ms). The vector fieldX can be prolonged to a vector field (X/S)(∞) such that (X/S)(∞)|R(Ms) =

(X|Ms)
(∞). We have that 〈(X/S)(∞)〉 is a partial Âut(Cm, 0)-invariant 〈X〉-connection. Par-

tial Malgrange groupoid is defined as,

Mal(X/S) = GGal(〈(X/S)∞〉).

For each s ∈ S we have that Âut(Ms) is a Zarisky closed subset of Iso(R(M/S)). Thus, we

can speak of the restriction of the partial Galois groupoid to a fibre,

Mal(X/S)|Ms = Mal(X/S) ∩ Âut(Ms).
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Note that this restriction is D-groupoid in M for generic values of s. The following result is

a direct consequence of the specialization Theorem ([Dav16], Th. 3.6.1).

Theorem 4.14 For all s ∈ S, Mal(X|Ms) ⊂ Mal(X/S)|Ms .

4.2.4. Projection theorem

Let P →M be a G–bundle, F a foliation in M and D a G–invariant F–connection. Assume

we have a subgroup K of G and write G = G/K. The quotient q : P → P = P/K is a map

over M . It follows that P is a G–principal bundle. The actions commute: q(xg) = q(x)φ(g).

The induced distribution D = q∗D is G–principal distribution. There is also a projection of

groupoids

IsoP //

s,t $$

IsoP

s,t
��
M

where the class [p, q] is sent to [p, q].

Theorem 4.15 The map GGal(D) −→ GGal(D) is surjective.

Proof. See [Cas09]. �

Let G be the subgroup of Aut(Cm, 0) of maps that leave Cm ⊂ Cn invariant, where we

identify Cm inside Cn as Cm = {εm+1 = · · · = εn = 0}. Explicitly we have

G =
{
φ : (Cm, 0)→ (Cm, 0) | φi

∂εj
= 0 for i = 1, . . . ,m; j = m+ 1, . . . , n

}
Let us consider Rπ

kM the set of k-jets of biholomorphisms (Cm, 0) → (M, p) that send the

subspace Cm to the fiber Mπ(p). If a frame is in Rπ
kM then it can be restricted to (Cm, 0)

obtaining a frame of the fiber. By taking projective limit we obtain RπM ⊂ RM , a reduction

of RM to the subgroup G. The gauge groupoid Iso(RπM) is identified with Âut(M)π the

subgroupoid of Âut(M) of formal maps respecting the projection π. As dπ(X) = 0 we have

X(∞) is tangent to RπM and Mal(X) ⊂ Âut(M). G acts on RπM . There is a natural exact

sequence,

0→ K → G→ Aut(Cm, 0)→ 0

given by the restriction to Cm. Here, K is the subgroup of formal maps in Cn inducing the

identity in Cm. A frame in RπM can be restricted to Cm, and therefore we obtain a frame

on a fiber of π. Thus, we have a projection,

RπM −→ Rπ(M)/K ' R(M/S), φ 7→ φ|Cm .

It is straightforward that X(∞) is projectable and projects onto (X/S)∞. By Theorem 4.15

we get a surjective map,

Mal(X) −→ Mal(M/S).
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We define the restriction of the Malgrange groupoid of X to a fiber as Mal(X)|Ms =

Mal(X/S)|Ms . From Theorem 4.14 we get:

Corollary 4.16 For all s ∈ S, Mal(X)|Ms ⊃ Mal(X|Ms).

4.3. Malgrange pseudogroup of Painlevé VI equation

4.3.1. Hamiltonian form for Painlevé VI

Painlevé VI equation is a second order differential equation for function u of x a complex

variable of the form (see, for example, [IKSY13] p.119, and [O+80])

u′′ = F (x, u, u′, a, b, c, e); u′ = v (4-1)

where F ∈ C(x, u, v, a, b, c, e) is

F (x, u, u′, a, b, c, e) =
1

2

(
1

u
+

1

u− 1
+

1

u− x

)
u′

2 −
(

1

x
+

1

x− 1
+

1

u− x

)
u′

+
u(u− 1)(u− x)

x2(x− 1)2

(
1
2
c2 − 1

2
a2 x

u2
+ 1

2
b2 x− 1

(u− 1)2
+ (1−e2

2
)
x(x− 1)

(u− x)2

)
.

The variables a, b, c, e are the parameters of Painlevé VI equation. However, our interest is

to consider the role of the parameters in non-linear differential Galois theory. Therefore, we

see Painlevé VI equation as the following rational vector field in C7,

Y =
∂

∂x
+ y′

∂

∂y
+ F (x, u, u′, a, b, c, e)

∂

∂y′
. (PV I)

The trajectories of this vector field, parameterized by x are (x, u(x), u′(x), a, b, c, e) for u a

solution of PV I with fixed parameters.

Equation Painlevé VI (4-1) admits the following equivalent Hamiltonian form (see [IKSY13]

p.140) with hamiltonian function H ∈ C(x, p, q, a, b, c, e) such that

H =
1

x(x− 1)

[
p(p− 1)(p− x)q2 −

(
a(p− 1)(p− x) + bp(p− x) + (e− 1)p(p− 1)

)
q

+
1

4

(
(a+ b+ e− 1)2 − c2

)
(p− x)

]
.

and hamiltonian vector field

X =
∂

∂x
+
∂H

∂q

∂

∂p
− ∂H

∂p

∂

∂q
. (HPV I)

The map φ : C7 → C7 such that

(x, p, q, a, b, c, e) 7→
(
x, p, ∂H/∂q, 1

2
c2, 1

2
a2, 1

2
b2, 1

2
e2
)

sends the vector field X onto the vector field Y , giving the equivalence between systems (4-1)

and (HPV I). Our purpose is to compute the Malgrange groupoid of vector field (HPV I).
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4.3.2. Malgrange groupoid for PV I

Painlevé VI associated vector field HPV I gives raise to a connection 〈X〉 in the trivial bundle

M = C7 π //

ρ̄
''

C5
x,a,b,c,e = B

ρ

��
C4
a,b,c,e = S

From definition 4.12 the Malgrange groupoid of a vector field X is given by:

Mal(X) =
{
φ ∈ ÂutM | for all f ∈ C(RM)X, f ◦ φp,q = f

}
where φ : (̂M, p) → (̂M, q) is an invertible formal map, and φp,q : RpM → RqM is its corre-

sponding Âut(C7, 0)–equivariant map.

Remark 4.17 From the known invariants of X we can obtain some information of its Mal-

grange groupoid. First, the conserved quantities a, b, c, e are by themselves rational differen-

tial invariants of order 0. Therefore C〈a, b, c, e〉 ∂
∂ε
⊂ C(RM)X . The D-groupoid correspond-

ing to such field is the groupoid of formal maps respecting the projection ρ̄. Therefore,

Mal(X) ⊂
{
φ ∈ Âut(C7) | ρ̄ ◦ φ = ρ̄

}
Also, from geometric invariants we can obtain information. There is an intrinsic connection

between geometric structures and D-groupoids. As it is shown ([Cas04] Theorem 1.3.2 p. 10)

any transitive D-groupoid is the groupoid of invariance of a geometric structure. Therefore,

any geometric structure invariant by X, gives us a restriction on its Malgrange groupoid.

• We know Xx = 1 and therefore LieX(dx) = 0. Therefore, 1-form dx can be seen as a

geometric structure invariant by X, so that

Mal(X) ⊂
{
φ ∈ Âut(C7) | φ∗(dx) = dx

}
How can we obtain differential invariants of dx. Note that, in any given frame ϕ, the

pullback ϕ∗(dx)(0) is a co-vector in Cm. The coordinates of ϕ∗(dx)(0) are rational

functions on R1M .

• The coordinates Yi of a rational vector field Y can also be seen as rational functions in

R1M . If LieXY = 0 then we have that X(1)Yi = 0, and therefore the coordinates of Y

are the rational differential invariants associated to a symmetry Y of X. In particular

X is a symmetry of itself and therefore,

Mal(X) ⊂
{
φ ∈ Âut(C7) | φ∗(X) = X

}
.
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• LieX(dq ∧ dp) = 0 modπ∗Ω1
C5 . This means that the rank 2 bundle ker(d(π ◦ ρ)) is

endowed with an X-invariant volume form, this can also seen as a geometric structure

in C7 and yields the following restriction,

Mal(X) ⊂
{
φ ∈ Âut(C7) | φ∗(dq ∧ dp) ≡ dq ∧ dp mod dx, da, db, dc, de

}
.

Summarizing Remark 4.17, we have the following restrictions of the Malgrange groupoid

of X,

Mal(X) ⊂
{
φ ∈ Âut(C7) | φ∗X = X; ρ̄ ◦ φ = ρ̄;

φ∗dq ∧ dp ≡ dq ∧ dp mod dx, da, db, dc, de; φ∗dx = dx
}

(4-2)

The Picard parameters set is known in the literature to be the following subset of C4:{
(a, b, c, e) ∈ (1

2
+ Z4)

}
∪
{

(a, b, c, e) ∈ Z4 | a+ b+ c+ e is even
}

Malgrange groupoid of Painlevé VI equation has been found for fixed values of the parameters

by Casale and Cantat–Loray. In what follows it is necessary to distinguish from Picard

parameters and the other parameters. In particular, from Cantat–Loray theorem in [CL09]

p.2972 Theorem 6.1 we get the following:

Proposition 4.18 For parameters (a, b, c, e) not in Picard parameter set, Malgrange groupoid

is given by:

Mal(X|C3×{(a,b,c,e)}) =
{
φ : (C3, ∗) ∼−→ (C3, ?) | φ∗dx = dx; φ∗(X) = X;

φ∗dp ∧ dq = dp ∧ dq mod dx
}

In this formula a, b, c, e are fixed parameters. The asterisks and the star stands for any

point in C3.

Davy in [Dav16] proves a specialization theorem, that gives the relationship between the

Malgrange groupoid of a vector field tangent to the fibers of ρ : M → S and the Malgrange

groupoid of the restricted field X|Mq for a fixed parameter q. As a direct consequence of

[Dav16] Proposition 3.6.1 p.70 we have the following:

Proposition 4.19 There is an inclusion Mal(X |C3×{(a,b,c,e)}) ⊂ Mal(X) |C3×{(a,b,c,e)}.

Transversal part of Mal(X)

Let us introduce Inv(x), the pseudogroup of formal diffeomorphisms φ : (C7, ∗) → (C7, ?)

that leave invariant the x coordinate, i.e. such that x◦φ = x. We want to prove the equality
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in Equation (4-2). To do this we look at Mal(X) ∩ Inv(x). We have that

Mal(X) ∩ Inv(x) ⊂
{
φ : (C7, ∗)→ (C7, ?) | φ∗X = X; π ◦ φ = π;

φ∗(dq ∧ dp) = dq ∧ dp mod π∗Ω1
C5

}
(4-3)

The plan of the remaining proof is to obtain equality in Equation (4-3). To see this we

restrict our attention to the D–Lie algebra L = Lie
(
Mal(X) ∩ Inv(x)

)
. This Lie algebra is

seen to be of the kind described in Kiso–morimoto Theorem B.4 so we apply it. By these

means we get the desired equality but for Lie
(
Mal(X)∩ Inv(x)

)
instead of Mal(X)∩ Inv(x).

The final steps will be to “get rid” of the terms Lie and Inv(x).

Proposition 4.20 The D–Lie algebra L and π : C7 → C4 are under the hypothesis of

Theorem B.4, namely: first, that L is tangent to ρ and second, that there exists a form

ω ∈ ΩmM such that for all s ∈ S, ω|Ms is a non–identically zero m–form on Ms satisfying

L|Ms =
{
v over Ms s.t. Liev ω|Ms = 0

}
.

Proof. First, L is tangent to the fibers of π : C7 → C5. Second, it preserves the volume

form dq ∧ dp on the fibers. Finally, by Proposition 4.18 and Corollary 4.16 the restriction

of all the vector fields to the fibers coincide with the set of all vector fields that preserve

volume. �

Therefore, from Kiso–Morimoto Theorem B.4, we have that:

(a) There exists a foliation F over C5,

(b) there exists G over C7 such that π(G) = F , dimG = dimF and

(c) L is the D-Lie algebra of vector fields tangent to the fibers of π, preserving the volume

form dp ∧ dq, and preserving the F -connection G.

L =
{
v ∈ J(TM/M) | dπ(v) = 0; Lievω = 0 mod π∗Ω1

S;

∀Y ∈ X(G) [v, Y ] ∈ X(G)
}

In particular, the vector field X is tangent to G. Therefore π∗(X) = ∂
∂x

is tangent to F .

Thus, the foliation F is ρ-projectable. Let us denote by F its projection onto C4.

Affine Weyl group

Let us note that if φ is a birational automorphism of M and X is a rational vector field

on M , then the pullback by the prolongation, φ(∞) : RM → RM sends rational differential

invariants of φ∗(X) to rational differential invariants of X. If follows clearly that φ induces

an isomorphism between Mal(X) and Mal(φ∗(X)). In particular, if φ is a discrete birational
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symmetry of X, that is, a birational automorphism of M such that φ∗(X) = X, then φ

leaves Mal(X) invariant. That is,

jpσ ∈ Mal(X)⇐⇒ jφ(p)(φ ◦ σ ◦ φ−1) ∈ Mal(X).

Lemma 4.21 Foliation F in C4 is regular.

Proof. Equation (HPV I) admits a discrete group W̃ of symmetries, known as Backlünd

transformations, isomorphic to the extended affine Weyl group D
(1)
4 . All elements of this

group are birational transformations of C7. In particular this group contains a subgroup G4

isomorphic to Z4 with the following characteristics:

(a) The action of G4 in C7 is projectable by ρ̄ to the action of translations with integer

displacements in C4.

(b) The function x is invariant by the action.

This group of translations is listed in [NY02] p.6.

The action of G4 preserves Mal(X). The function x is an invariant for this action, then

Inv(x) is also preserved. It follows that G4 leaves L invariant, and its defining equations,

in particular φ∗(G) = G. Denote by φ̄ the projection of φ to C4, observe φ̄ is a translation.

Then φ̄ sends F into F , i.e. φ∗(F) = F . As the set of singularities of F is a proper Zariski

closed of C4, invariant under Z4, it must be empty. �

A result of Iwasaki, Theorem 1.3 in [Iwa08] implies the following:

Lemma 4.22 The solutions to PV I with finite monodromy are algebraic.

Lemma 4.23 F is a foliation by points.

Proof. In [LT14] a list of all possible algebraic solutions of Painlevé VI equation is

presented. These appear at special values of the parameters. The solution numbered

as 45 in [LT14] p.52 is algebraic with 72 branches, and happens at the parameter θ =

(1/12, 1/12, 1/12, 11/12).

If the dimension of F where greater than 0, we could find a path on F along which we

could prolong the given solution to a solution at another parameter, with also 72 branches.

By Iwasaki, this solution is algebraic. But we know the solution at θ is unique, and all other

algebraic solutions have less than 72 branches. We conclude that the foliation cannot have

dimension greater than 1 so it must be a foliation by points. �

Therefore F =
〈
∂
∂x

〉
and G = 〈X〉. Note that, for a vector field v tangent to ρ̄, as X is

transversal to ρ̄, it is equivalent to say that LievG ⊂ G or [v,X] = 0. This completes the

proof of the following result.
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Proposition 4.24

L =
{
~v ∈ (C7, ∗) | vx = va = vb = vc = ve = 0;

Liev(dp ∧ dq) = 0 mod da, db, dc, de, dx; [v,X] = 0
}

By integration of the D-Lie algebra L we obtain:

Proposition 4.25

Mal(X) ∩ Inv(x) =
{
φ | ρ̄ ◦ φ = φ; φ∗(X) = X;

φ∗(dp ∧ dq) ≡ dp ∧ dq mod da, db, dc, de, dx
}

(4-4)

Proof. The Lie algebra L is determined by L1, its first order part. Let us call G the right

hand side of (4-4). G is determined by G1, its first order part, and also Mal(X) is determined

by Mal1(X). It can be proved that G1 is connected with respect to source and target. Then

G1 is the least Lie subgroupoid of Aut1(C7) such that Lie(G1) = L1. By (4-3) we know that

Mal1(X) ⊂ G1. As Lie(Mal(X)) = L1 then Mal1(X) = G1. We conclude that Mal(X) = G.

�

Theorem 4.26 The Malgrange groupoid of Painlevé VI equation is given by

Mal(X) =
{
φ | π̄ ◦ φ = φ; φ∗(dx) = dx; φ∗(X) = X;

φ∗(dp ∧ dq) ≡ dp ∧ dq mod da, db, dc, de, dx
}

(4-5)

Proof. We already have pointed in (4-2) that Mal(X) is contained in the right side set

of Equation (4-5). Let us prove the remaining inclusion. Fix an integer k large enough and

let ψ : (C7, z0)→ (C7, z1) be a map that satisfy equations in the right hand side of (4-5). We

are going to show that jkz0ψ is in Malk(X). Let ε = x(z1)−x(z0). Without loss of generality,

assume that exp(−εZ) is defined in a neighborhood such that if z2 = exp(−εX)(z1) then

all the points z0, z1 and z2 are inside an open set where Mal(X) is effectively a groupoid.

Let the map φ : (C7, z0) → (C7, z2) be defined by φ = exp(−εX) ◦ ψ. Observe that φ

respects ρ̄, dp ∧ dq|C2
p,q

and the field X. By Proposition 4.25 jkz0φ is in Malk(X). Then

jkz0ψ = jkz2 exp(εX) ◦ jkz0φ is in Malk(X). �

Corollary 4.27 If y(x, a, b, c, e) is a parameters dependant solution of the sixth Painlevé

equation then its annihilator in OJ(C5,C) is the ∂-ideal generated by the sixth Painlevé equa-

tion.

Using the Hamiltonian formulation, we want to prove that the Zariski closure of a pa-

rameters dependant solution p(x, a, b, c, e); q(x, a, b, c, e) in J(C5,C2) is V : the subvariety

defined by the differential ideal generated by ∂xp− ∂H
∂q

and ∂xq + ∂H
∂p

.
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To prove this one studies the action of Mal(X) on ∂totx .This action is well defined because

the elements of Mal(X) are fiber preserving transformations of C5 × C2 → C5. Let W ⊂ V

be the Zariski closure of a parameter dependant solution.

Lemma 4.28 Mal(X) preserves W

Remark. that The restriction of ∂totx on J0(V ) = C7 is the vector field X. As V or W

are define by ∂totx -ideals, the prolongation of X on J(C5,C2) is tangent to V and to W . The

stabilizer of W is a D-groupoid containing the flows of X : it must contain Mal(X).

Lemma 4.29 Mal(X) acts simply transitively on V over the parameter space.

This means that fibers Mal(X)a,b,c,e act simply transitively on fibers Va,b,c,e.



A. Differential algebraic groups

Our treatment of differential algebraic groups is the geometrical theory proposed by Mal-

grange in [Mal10a], chapter 7. This formulation is slightly different from the better known

algebraic formulation in [Kol85]. Here we recall and comment the most important results,

including Malgrage’s version of Kiso-Cassidy theorem.

A.1. Differential algebraic groups

Let πG : G → B a group bundle. As before, we assume G to be affine over B. The jet

bundle Jk(G/B)→ B of k-jets of sections of πG is an algebraic group bundle with the group

operation (jkxg)(jkxh) = jkx(gh). We considerOJk(G/B) the ring of differential functions of order

≤ k with rational coefficients in B. We may interpret it as the ring of regular functions in

Jk(G/B) seen as an algebraic C(B)-group. The group structure induces, by duality, a Hopf

C(B)-algebra structure on OJK(G/B).

Remark A.1 Note that, by Cartier theorem (for instance, in [DG70]), C(B)-algebraic

groups are smooth (and therefore reduced), so that, Hopf ideals of OJk(G/B) are radical.

Remark A.2 There is a natural bijective correspondence between Hopf ideals of OJk(G/B)

and rational group subbundles of Jk(G/B) → B. Given a Hopf ideal E , the set of zeros of

E ∩ C[Jk(G/B)] is rational group subbundle. By abuse of notation we will refer to it as the

set of zeros of E .

The group multiplication is compatible with the order truncation, therefore we may take

the projective limit, so that the jet bundle J(G/B) is a pro-algebraic group bundle and its

ring of coordinates (on the generic point of B) OJ(G/B) = C(B) ⊗C[B] C[J(G/B)] a Hopf

C(B)-algebra.

Indeed, OJ(G/B) is endowed with a differential ring structure, with the total derivative

operators X(B)tot. The Hopf and the differential structure are compatible in the following

sense:

µ∗(Xtotf) = (Xtot ⊗ 1 + 1⊗Xtot)µ∗(f), e∗(Xtotf) = X(e∗(f)),

where µ∗ end e∗ stand for the coproduct and coidentity operators. Hence, we may say that

OJ(G/B) is a Hopf-differential algebra.

Definition A.3
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1. A Hopf-differential ideal of OJ(G/B) is a Hopf ideal E of OJ(G/B) such that XtotE ⊂ E
for every rational vector field X on B.

2. A differential algebraic subgroup H ⊂ J(G/B) is a Zariski closed subset consisting of

the zero locus of some Hopf-differential ideal E of OJ(G/B)

As differential-Hopf ideals are radical (Remark A.1) we have that the natural corre-

spondence between differential-Hopf ideals of OJ(G/B) and differential algebraic subgroups of

J(G/B) is, in fact, bijective.

Example A.4 Let G = GLn(C) × B. A differential algebraic subgroup H ⊂ J(G/B) is a

differential algebraic group of G(U) defined over C(B) in the sense of Kolchin (as in [Kol85]),

where U a universal differential field extension of C(B).

Given a Hopf-differential ideal E , its truncation Ek = E∩OJk(G/B) is Hopf-ideal ofOJk(G/B).

Thus, a differential algebraic subgroup of J(G/B) is given by a chain of Hopf ideals

E0 ⊂ E1 ⊂ . . . ⊂ Ek ⊂ . . . ⊂ E

and thus, a system of rational group subbundles of the Jk(G/B),

H → . . .→ Hk → . . .→ H1 → H0 → B.

The differential ring OJ(G/B) is, by construction, the quotient of a ring of differential

polynomials with coefficients in C(B). Thus, it has the Ritt property (see, for instance,

[Kol73]): radical differential ideals are finitely generated as radical differential ideals. Thus,

there is a smallest order k such that E coincides with {Ek}, the radical differential ideal

spanned by Ek. We have that H is completely determined by Hk and we say that H is a

differential algebraic subgroup of J(G/B) of order k.

A section of H is a section g of πG : G → B such that jxg ∈ H for any x in the domain

of definition of g. We can deal with rational, local analytic, convergent, or formal sections

of H. We can also speak of sections of H with coefficients in any differential field extension

of C(B).

Example A.5 The points of H in the sense of Kolchin (as in Example A.4) are sections

of H with coefficients in arbitrary differential field extensions of C(B). In that context, it

is useful to fix a differentially closed field extension of C(B) so that H is determined by its

sections.

A.2. Differential Lie algebras

Let us consider πG : G → B as before; let us define g = e∗(ker(dπG)), therefore πg : g→ B is

the Lie algebra bundle associated to G.
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In an analogous way the jet bundles of finite order Jk(g/B)→ B are Lie algebra bundles

and the limit J(g/B) → B is a pro-algebraic linear bundle of Lie algebras; the Lie bracket

is defined as [jxv1, jxv2] = jx[v1, v2] for jets of local analytic sections.

We consider its ring of coordinates on the generic point of B, OJ(g/B) = C(B) ⊗C[B]

C[J(g/B)]. It has a Lie coalgebra structure with the induced comultiplication,

β∗ : OJ(g/B) → OJ(g/B) ⊗C(B) OJ(g/B), β∗(f)(jxv1, jxv2) = f([jxv1, jxv2]).

Moreover, OJ(g/B) is a differential ring with the differential structure induced by total

derivative operators X(B)tot. Indeed, the linear bundle structure of J(g/B) is reflected in

the ring OJ(g/B): linear differential functions are identified with linear differential operators

from the space of sections of g on C(B). We have a sub-X(B)-module DiffB(g) ⊂ OJ(g/B)

that spans the ring of differential functions (as in [Mal10a] section 4).

Definition A.6 A differential Lie subalgebra h ⊂ J(g/B) is a Zariski closed subset consist-

ing of the zeroes of a differential ideal E of OJ(g/B) satisfying:

1. E is spanned by its linear part E ∩DiffB(g).

2. E is a Lie co-ideal.

Note that a differential Lie subalgebra is also a differential subgroup with respect to the

additive structure of g. There is an smallest k such that {Ek} = E , the order of h; and h is

determined by its truncation hk.

A differential algebraic group H has an associated differential Lie algebra h of the same

order. For each `, the Lie algebra bundle h` → B is (on the generic point of B) the Lie

algebra of the group bundle H` → B. Equations of h can be found by linearization of the

equations of H along the identity (see [Mal10a], section 4.5).

A.3. Group connections

Let us consider a regular connection C on πG : G → B, that is, a regular foliation in G
transversal to the fibers of πG. For each g ∈ G the leaf of C that passes through g is the

graph of a local analytic section g̃ of πG. The connection C defines a regular map,

γC : G → J(G/B), g 7→ jπG(g)g̃,

that is, a section of J(G/B) → G and it identifies G with the set of jets of C-horizontal

sections Γ(C).

Definition A.7 We say that C is a group connection if γC is a group bundle morphism.
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In general, a rational group connection is a regular group connection defined on some

dense Zariski open subset of B. Given a rational group connection C, the variety Γ(C) of

C-horizontal leaves is an order 1 differential algebraic subgroup of J(G/B) isomorphic (as

group bundle, on the generic point of B) to G.

Remark A.8 Differential algebraic groups of the form Γ(C), for a group connection C,
correspond to constant differential algebraic groups in the sense of Kolchin [Kol85]. The

group connection is the differential equation of the conjugation of the differential algebraic

group with an algebraic group over the constants.

Analogously, a regular linear connection L in g→ B induces a section γL of J(g/B)→ g

which is linear in fibers. We say that L it is a Lie connection if γL is a Lie algebra morphism

in fibers. A rational Lie connection is a regular Lie connection in some Zariski open subset

of B. The variety of horizontal sections Γ(L) of a rational Lie connection is a differential Lie

subalgebra of J(g/B) of order 1.

It is clear that a group connection C can be linearized along the identity, producing Lie

connection C ′ with the same domain of regularity. In this case, Γ(C ′) is the Lie algebra of

Γ(C).
We may also define partial group and Lie connections. Let us fix F a singular foliation

in B. Let us recall that a F -connection in G (resp. g) is just an foliation C of the same rank

of F and that projects onto F . A local section is C-horizontal if its derivative maps F to C.
The jets of local sections of C define a closed subset Γ(C) in J(G/B) (resp. in J(g/B)).

Γ(C) = {jxs |x ∈ B, s local C − horizontal section }.

A partial group F-connection is a partial Ehresmann F -connection C whose set of hori-

zontal sections Γ(C) ⊂ J(G/B) is a differential algebraic group. A partial Lie F-connection

is a F -connection whose set of horizontal sections is a differential Lie subalgebra. As be-

fore, those objects are of order 1, and the linearization of a group F -connection is a Lie

F -connection.

We say that a differential subgroup H ⊂ J(G/B) is Zariski dense in G if H0 = G, see

[Mal10a] p.308. In the algebraic setting, the classification of Zariski dense subgroups in

simple groups is due to Cassidy [Cas89]. We follow the exposition of Malgrange, that finds

the key argument of the proof in the a result of Kiso [Kis79].

Theorem A.9 (Kiso-Cassidy, Th. 8.1 in [Mal10a]) Let g → B be a Lie algebra bun-

dle with simple fibers. Let h ⊂ J(g/B) be a differential subalgebra such that h0 = g. Then

there is a singular foliation F in B and a partial Lie F -connection L in g such that h = Γ(L).

Corollary A.10 Let G → B be a group bundle with simple fibers. Let H ⊂ J(g/B) be a

differential algebraic subgroup such that H0 = G. Then there is a singular foliation F in B

and a partial group F -connection C in G such that H = Γ(C).
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A.4. The adjoint connection

Let us consider now π : P → B a principal bundle with structural group G. Let F be a

singular foliation on B and D be a partial G-invariant F -connection on P . Let F be an

affine G-space with an action α : G → Aut(F ). The associated bundle P [α] is defined as

the balanced construction P ×α F ; it is a bundle P [α]→ B with fibers F . The G-invariant

foliation D × {0} in P × F projects onto a foliation on P [α] that we call α(D); it is the

induced partial Ehresmann F -connection on P [α].

Let Gau(P )→ B be the group bundle of gauge automorphisms of P . Let us recall that

Gau(P ) can be constructed as the associated bundle P [Adj] = (P ×Adj G) for the adjoint

action of G on itself. The induced F -connection D[Adj] turns out to be a group F -connection

in Gau(P ).

Theorem A.11 (Th. 7.6 in [Mal10a]) Assume thatG is semi-simple and connected, and

let F be a singular foliation in B. Then all partial group F -connections in Gau(P ) are of

the form D[Adj] where D is a partial G-invariant F -connection in P .

Remark A.12 Note that, since the adjoint action of semi-simple G in itself is faithful, the

G-invariant partial connection D inducing D[Adj] is unique.

Example A.13 Let us consider compatible linear equations in P = GLn(C)× Cn+m:

∂U

∂xi
= Ai(x, s)U.

Then Gau(P ) = GLn(C)× Cn+m and the induced group connection is

∂σ

∂xi
= [Ai(x, s), σ].

The horizontal sections σ(x, s) are gauge symmetries of the equation.

Theorems A.9 and A.11 give us a complete description of Zariski dense differential alge-

braic subgroups of J(Gau(P )/B) when G is simple and connected. Such subgroups are of

the form Γ(D[Adj]) for a partial G-invariant connections D in P .



B. Kiso–Morimoto theorem

B.1. Recall about sections on jet bundle

Let M,S be smooth irreducible algebraic affine varieties and ρ : M → S be a bundle. We

set m to be the dimension of fibers and n the dimension of S.

Definition B.1 Let DM ⊂ EndCC[M ] be the ring of operators generated by

• C[M ] acting by multiplication

• The set of derivations Der(C[M ])

It is a non commutative ring. One has two different C[M ]–algebra structures on DM :

1. Left C[M ]–algebra structure given by C[M ] ⊗C DM → DM such that f ⊗ P 7→ fP

where (fP )(g) = fP (g).

2. Right C[M ]–structure DM ⊗C[M ]→ DM given by P ⊗ f 7→ P ◦ f where (P ◦ f)(g) =

P (fg). This action will be denoted by ◦C[M ].

Let V → M be a vector bundle. Its sheaf of linear functions Γ(V ∗) is a C[M ]–module.

Then the jet bundle of V over M is the vector bundle whose sheaf of linear functions is

given by DM ⊗◦C[M ] Γ(V ∗). It is a left DM–module. Note that we are using here the right

C[M ]–algebra structure for DM . That is:

Γ(J(V/M)) = (DM ⊗◦C[M ] Γ(V ∗))∗.

Definition B.2 A D–linear subspace of J(V/M) is the linear sub-bundle L ⊂ J(V/M)

annihilated by a DM–submodule N ⊂ DM ⊗◦C[M ] Γ(V ∗).

B.2. D–Lie algebras

Now we are looking specifically at V = TM . The space J(TM/M) has a Lie bracket written

in coordinates as[
jk
∑

ai(x)
∂

∂xi
, jk
∑

bi(x)
∂

∂xi

]
= jk−1

[∑
ai(x)

∂

∂xi
,
∑

bi(x)
∂

∂xi

]
=

∑
|α+β|≤k−1

1≤i,j≤n

(
ai:αbj:β+εi − bi:βaj:α+εi

)xα+β

α!β!

∂

∂xi
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Definition B.3 A DM–Lie subalgebra is a DM–subspace stable by the Lie bracket.

Let us discuss some hypothesis on a D–Lie algebra L used in the theorem we want to

prove.

Hyp1 L is tangent to ρ, meaning that L ⊂ ker dρ , or in other terms ρ∗Ω1
S ⊂ N

Hyp2 There exists a form ω ∈ ΩmM such that for all s ∈ S, ω|Ms is a non–identically zero

m–form on Ms satisfying

L|Ms =
{
v over Ms s.t. Liev ω|Ms = 0

}
. (B-1)

Let DM/S be the set of differential operators that are tangent to the fibers, and Ω1
M/S the

restriction of the 1–forms to the fibers, i.e. the sections of the dual of ker dρ. The equations

of N restricted to the fibers are given by the image of N in DM/S ⊗ Ω1
M/S. To explain this

let us note that we have the following morphisms:

• DM ←↩ DM/S because EndC(S)C[M ] ⊂ EndCC[M ],

• the map Ω1
M → Ω1

M/S is given by l 7→ l|ker dρ whose kernel is ρ∗Ω1
S.

From hypothesis 1: ρ∗Ω1
S ⊂ N . N is given by its image in DM⊗Ω1

M/S, meaning the following:

By denoting rest : DM ⊗ Ω1
M → DM ⊗ Ω1

M/S

0 // DM ⊗ Ω1
S

// DM ⊗ Ω1
M

// DM ⊗ Ω1
M/S

// 0

0 // DM ⊗ Ω1
S

// N rest // rest(N) // 0

as rest−1(rest(N)) = N + ρ∗Ω2
S and ρ∗Ω1

S ⊂ N , it follows that rest−1(rest(N)) = N . Now

rest(N) ∩ DM/S ⊗ Ω1
M/S = N are the equations of the restriction of L to the fibers.

The conditions given in (B-1) Hyp2 gives order 1 linear differential equation for L in N .

In local coordinates x1 . . . , xm, s1, . . . , sn ω = f(x, s)dx1 ∧ · · · ∧ dxm and v =
∑
ai(x, s)

∂
∂xi

.

Using Cartan’s formula for Lievω we obtain:

ιvdω + dιvω = ιv(
∑

(∂f/∂si)ds1 ∧ dx1 ∧ . . . ∧ dxm)

+ d(
∑

f(x, s)ai(x, s)dx1 ∧ . . . d̂xi ∧ . . . ∧ dxm)

= 0 +
( m∑
i=1

∂(fai)

dxi

)
dx1 ∧ . . . ∧ dxm modρ∗Ω1

S

so we get
∑m

i
∂(fai)
∂xi

= 0. Thus the form ω induces an operator of order one divω ∈ DM/S ⊗
Ω1
M/S. By hypothesis 2 we write N = DM/Sdivω and it follows DMN = DMdivω.
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Theorem B.4 (Kiso–Morimoto) Let ρ : M → S and L as above. Assume that the

hypothesis Hyp1 and Hyp2 hold. Then there exists a foliation F over S and a foliation G
over M such that ρ∗(G) = F , dimG = dimF and

L =
{
v ∈ J(TM/M) | dρ(v) = 0, Lievω = 0 modρ∗Ω1

S,

∀Y ∈ X(G) [v, Y ] ∈ X(G)
}

Remark B.5 If X ∈ X(F) and Y ∈ X(G) with ρ∗Y = X and v ∈ L then we have ρ∗v = 0

therefore ρ∗[v, Y ] = [ρ∗v, ρ∗Y ] = 0. Also [v, Y ] ∈ X(M) implies [v, Y ] = 0.

Before developing the proof of Kiso–Morimoto theorem let us analyze how the conclusion

of the theorem give us relations between the distribution G and the linear isotropy of L.

Definition B.6 For p ∈ M let L≥kp = Lp ∩ mk
pJ(TM/M)p the set of all vector fields that

vanish up to order k at p. Let gk = L≥k+1/L≥k+2.

This gk set is, up to restriction to an open Zariski subset, a subbundle of Sk+1T ∗M ⊗
TM/S described by the principal symbol of the equations of order k + 1 of L. The linear

isotropy of L is g0 ⊂ T ∗M ⊗ TM/S ⊂ End(TM).

g0 is a Lie algebra bundle.

Lemma B.7 If L is described by the expression given in Kiso–Morimoto theorem B.4 then

G ⊂ ker g0.

Proof. Let Y ∈ X(G) be a vector field projectable on S and v ∈ L that vanishes at p ∈M
with linear part v1. Then writing Y = Yi

∂
∂xi

+ o(x) and v = v1
jxi

∂
∂xj

+ o(x2)

0 = [Y, v] = Y ◦ v − v ◦ Y = Yiv
1
j

∂

∂xj
+ o(x)− o(x).

By evaluating at p we get 0 = vijYi and this implies Y (p) ∈ ker v(p) for v(p) ∈ End(TM, TM/S).

�

B.3. Proof of Kiso–Morimoto theorem

The proof is done in 3 steps.

1. Structure of g0 We have a projection T ∗M ⊗ TM/S → T ∗M/S ⊗ TM/S with kernel

b.

Lemma B.8 The image of g0 denoted by h is sl(TM/S) the lie algebra of trace free endo-

morphisms of TM/S.
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Proof. Let’s see that π(g0
p) ⊂ sl(TpM/S). Let φ ∈ g0

p. We can write φ = j1
pX for X a

vector field in L, with a zero at p and tangent to Ms. The restriction X|Ms preserves the

volume ω|Ms . We have π(φ) = j1
pX|TM/S = j1

p(X|Ms) and by Hyp.2 these have zero trace.

To see sl(TpM/S) ⊂ π(g0
p), fix φ ∈ G|TpMs . As L|Ms = Sym(ω|Ms) there exists a field X

defined around p in Ms such that j1
pX = φ.

�

Lemma B.9 If b1, b2 ∈ b then we have b1 ◦ b2 = 0

Proof. We have ker b1 ⊃ TM/S and Im b2 ⊃ T (M/S). �

Define a = b|g0 . we have an exact sequence:

0 // a // g0 // h // 0

with a ⊂ b commutative.

Lemma B.10 h acts on b and preserves a. Moreover b ∼= ρ∗T ∗S ⊗ TM/S and the action

of h on b by the Lie bracket is the action of h on the second factor.

Proof. For h ∈ h and a ∈ a, we have that the bracket [h, a] = h ◦ a − a ◦ h = h ◦ a. Also

a ⊆ b is stable by h because when seen as maps, h : TM/S → TM/S and a : TM → TM/S

are such that their composition h ◦ a is a map TM → TM/S. �

Observe that h is the set of endomorphisms of TM/S that preserve the volume ω. This

follows from LMs = Sym(ω), the symmetries of ω. Observe also that h = sl(TM/S).

Lemma B.11 There exists A ⊂ ρ∗T ∗S a C[M ]–submodule such that a = A⊗ TM/S.

Proof Lets see the case a irreducible. Let u ∈ ρ∗TS and i(u) : a → TM/S be the

contraction, i(u)(ω ⊗ X) = ω(u)X. Observe that i(u)a is irreducible. Then there exists

u1 ∈ ρ∗TS such that I(u1)a = TM/S. If u2 satisfies also that i(u2)a = TM/S, we have

i(u1) ◦ i(u2)−1 commutes with the action of h and by Schur’s lemma there exists λ ∈ C such

that i(u2) = λi(u1). It follows that N(a) = {u ∈ ρ∗TS | i(u)a = 0} have codimension 1 and

we can write a = u0 ⊗ TM/S, for u0 in N(a). See [Kis79] Proposition 4.1 p.122. �

2. Construction of the foliations. We define A = ker a, G = ker g0. Easily it follows

G ⊂ A

Lemma B.12 G ∩ TM/S = {0}.

Proof. Take v ∈ G ∩ TM/S. Recall that a ⊂ ρ∗T ∗S ⊗ TM/S. For h ∈ h chose a ∈ a such

that h+ a ∈ g0. Then h(v) + a(v) ∈ g0(G) = 0. We have a(v) = 0 and h(v) = 0. �
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Proposition B.13 The distribution G is integrable.

Proof.

Fact 1. If X ∈ ker g0 we have that for all l ∈ T ∗M/S it happens X ⊗ l ∈ Ann g0. This

means that for every l ∈ T ∗M/S and all g ∈ g0 (X ⊗ l)(g) = l(g(X)) = 0. Observe that

Anng0 ⊂ TM ⊗ T ∗M/S.

Fact 2. By definition of g0 it follows that X⊗l ∈ Ann g0 if and only if there is an equation

of the form X ⊗ l + · · · in N .

From the two previous facts we have that if l1, . . . , lm is a basis for T ∗M/S and X ∈ ker g0

then exists Aji with coefficients in C[M ] such that X ⊗ li + Aji ⊗ lj ∈ N ⊂ DM ⊗ T ∗M/S is

an equation in N .

Now take X, Y ∈ ker g0. Then the following equation belongs to N :

Y (X ⊗ li + Aji ⊗ lj)−X(Y ⊗ li −Bj
i ⊗ lj)

− Aji (Y ⊗ lj +Bk
j ⊗ lk) +Bj

i (X ⊗ lj + Akj ⊗ lk)
= Y ◦X ⊗ li + Y (Aji )⊗ lj + AjiY ⊗ lj −X ◦ Y ⊗ li − Y (Bj

i )lj −B
j
iX ⊗ lj

− Aji (Y ⊗ lj +Bk
j ⊗ lk) +Bj

i (X ⊗ lj + Akj ⊗ lk)
= [X, Y ]⊗ li − AjiBk

j ⊗ lk −B
j
iA

k
j ⊗ lk +

(
Y (Aji )− Y (Bj

i )
)
⊗ lj

In this last equation the terms −AjiBk
j ⊗ lk − B

j
iA

k
j ⊗ lk and

(
Y (Aji ) − Y (Bj

i )
)
⊗ lj are

of order zero. Then we obtain that [X, Y ] is in the annihilator of g0 and so [X, Y ] ∈ ker g0.

�

Lemma B.14 G is ρ–projectable.

Proof. Let X be a vector field inside L that do not vanish at p and is tangent to the fibers

of ρ. Let σt be the flow of X at time t.

As X is in L, the flow of X transform L into L. Then dσ : TpM → Tσ(p)M conjugates

G0
p with G0

σ(p). We get an isomorphism Gp ∼= Gσ(p). As ρ ◦ σ−1 = ρ it follows dpρ(Gp) =

dσ(p)ρ(Gσ(p)).

Then dpρ(Gp) = dqρ(Gq) whenever p and q can be joined by an integral curve in L. As

the action of L is transitive in the fibers of ρ the lemma follows. �

Lemma B.15 We have the decomposition A = ker a = TM/S ⊕ G

Consequences: ker a is projectable on S and ρ∗ ker a = F = ρ∗G thus G is a connection along

F .

Proof of the lemma.

Consider the exact sequence

0 // a // g0 // h // 0
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and take restriction to A.

0 // g0|A // h // 0

observe that g0|A ⊂ A∗⊗TM/S → T ∗M/S⊗TM/S given by TM/S ⊂ A i.e. A∗ → T ∗M/S.

Then g0|A ⊂ End(A,A) is a Lie algebra isomorphic to h, so it is a simple Lie algebra.

We have the following facts:

1. g0|A preserves TM/S.

2. Because g0|A is simple, it is completely reducible.

There exist K ⊂ A such that A = K ⊕ TM/S and g0|A(K) ⊂ K. Then g0|A(K) ⊂
K ∩ TM/S = 0 so K ⊂ g. Finally A ⊂ G ⊕ TM/S.

Here we have used a theorem that says that simple Lie algebras are completely reducible.

�

Let

L =
{
v ∈ J((TM)/M) | v ∈ ker(ρ∗Ω1

S), (ιvdω + dιvω) ≡ o Modρ∗Ω1
S, LievG ⊂ G

}
Observe that the condition LievG ⊂ G is a first order PDE on v.

Lemma B.16 We have the inclusion L ⊂ L.

Proof. By Hyp.1 L preserves the fibers of ρ. By Hyp.2 L preserves volume in the transver-

sal. As seen in the proof of B.14 the flow of vector fields transforms G into itself. This is to

say that Lie derivative of fields in G in the direction of fields in L gives fields in G.

L preserves L then L preserves g0 and then L preserves ker g0.

�

3. Proof of the equality L = L. Let us consider around a point p ∈ M a system of

adapted coordinates s1, . . . , sq, t1, . . . , tr, x1, . . . , xm, vanishing at p with the following prop-

erties. Roughly speaking ti is going to be sq+i in the previous notation. This is chosen to

simplify the writing.

(a) s1, . . . , sq, t1, . . . , tr form system of coordinates in S around ρ(p), that is, as local func-

tions in M they are constant along the fibers of ρ.

(b) The foliation F in S rectified by the coordinates t, s, that is:

F =
{
ds1 = . . . = dsq = 0

}
=

〈
∂

∂t1
, . . . ,

∂

∂tr

〉
.

(c) The functions xi are first integrals of G, thus:

G =

〈
∂

∂sq+1

, . . . ,
∂

∂sn

〉
.
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(d) The volume form ω is written in canonical form with respect to the xi functions,

ω = dx1 ∧ · · · ∧ dxm.

Let X be an analytic vector field in L defined around p. Since X preserves the projection

ρ its local expression in such system of adapted coordinates has the form

X =
∑
i

fi(x, s, t)
∂

∂xi
.

X preserves G therefore for j = 1, . . . , r we have that LieX
∂
∂tj

is a vector field tangent to

G.

LieX
∂

∂tj
= −

[ ∂
∂tj

, X
]

= −
m∑
i=1

∂fi
∂tj

∂

∂xi

Therefore, ∂fi
∂tj

= 0 for all j = 1, . . . , r. We obtain that the expression of X has the form,

X =
m∑
i=1

fi(x, s)
∂

∂xi
. (B-2)

We also know that X preserves ω. Finally we have that X is in L if and only if its local

expression is of the form (B-2), satisfying

divωX =
m∑
i=1

∂fi
∂xi

= 0.

From now restrict our analysis to the point p, therefore by gk we mean the space of

homogeneous parts of degree (k + 1) of vector fields in L having a zero of order (k + 2) at

p (Definition B.6). By definition, it is identified with a vector subspace of Sk(T ∗pM)⊗ TpM .

Analogously we have gk the space of homogeneous parts of degree (k + 1) of vector fields in

L having a zero of order (k + 2) at p.

The Lie homogeneous part of a Lie bracket depends only of the homogeneous part of the

factors, therefore the Lie bracket is defined as a graded operation,

[ , ] : gk × gl → gk+l.

Thus g =
⊕∞

k=0 g
k can be seen as a graded Lie algebra, the symbol of L.

Remark B.17 It is clear that gk ⊂ gk for all degree k (and all point p of M). Moreover,

we obtain the equality if and only if L = L. Therefore, the proof of Kiso-Morimoto theorem

is reduced to the proof the equality of such finite dimensional spaces.
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Let C[x, s]k+1 the space of homogeneous polynomials of degree (k + 1) in the variables

x1, . . . , xm, s1, . . . , sq. From the local expression of X in L around p we have that the vector

space gk is identified with a subspace of
⊕m

i=1 C[x, s]k+1
∂
∂xi

.

Let P(k+1)(x, s) be an homogeneous polynomial of degree (k + 1). It can be decomposed

in a unique way as a sum,

Pk+1(x, s) = P
(0)
k+1(x) + P

(1)
k+1(x, s) + . . .+ P

(k)
k+1(x, s) + P

(k+1)
k+1 (s),

where P
(j)
k+1 is in (C[x]k+1−j)[s]j, this is, it is an homogeneous polynomial of degree j in the

variables s1, . . . , sq whose coefficients are homogeneous polynomials in x1, . . . , xm of degree

(k + 1− j).
Given X ∈ gk we can define the valuation vals(X) as the minimum grade in s appearing

in X. It allows us to define a filtration in gk.

Definition B.18 Let (gk)≥l be the set of elements of gk with valuations in s bigger than l,

(gk)≥l = {X ∈ gk | vals(X) ≥ l}.

so that we have a filtration,

(gk)≥k+2 = {0} ⊂ (gk)≥k+1 ⊂ . . . ⊂ (gk)≥0 = gk.

And let gk,l be the consecutive quotient (gk)≥l/(gk)≥l+1.

By restriction of this filtration to the subspace gk we define the consecutive quotients

gk,l. By construction gk,l ⊆ gk,l. Since we have a finite filtration, we have that gk = gk if

and only if gk,l = gk,l for all l = 0, . . . , k + 1. Thus, the proof of Kiso-Morimoto theorem is

reduced to the comparison of the spaces gk,l to gk,l.

From the fundamental hypothesis on L we have the following.

Lemma B.19 We have g0,1 = g0,1 = a.

Proof For v1 ∈ g0,1 ⊂ g0 then its restriction to s = 0 is 0. This means that v1 ∈ a. �

Lemma B.20 (Kiso hyp 2) gk,0 = gk,0 = hk.

Next step is to propagate the equalities by means of the Lie bracket.

Lemma B.21 The Lie bracket in g is compatible with the filtration of the spaces gk, and

therefore it induces a Lie bracket between the intermediate quotients,

[ , ] : gk,l × gk
′,l′ → gk+k′,l+l′ .
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Proof. Lets take X ∈ gk,l and Y ∈ gk
′,l′ . We write here ∂i for ∂/∂xi. We have the

Taylor development X =
∑
Pi∂i + Ri∂i where Pi is an homogeneous polynomial in x and

s, with grades k + 1 − l and l respectively. The Ri have degree l + 1 in s and k + 2 in x.

Similarly write Y =
∑
P ′i∂i +R′i∂i where P ′i is an homogeneous polynomial in x and s, with

grades k′ + 1′ − l and l′ respectively. The R′i have degree l′ + 1 in s and k′ + 2 in x. The

bracket can be expressed as

[X, Y ] =
∑
i,j

(
Pi∂iqj −Qi∂iPj

)
∂i +

(
Ri∂iQj −R′i∂iPj + (Pi +Ri)∂iR

′
j − (Qi +R′i)∂iRj

)
∂i

Observe that:

Pi∂iqj −Qi∂iPj have degree ≥ l + l′ in s and k + k′ + 1 in x,

Ri∂iQj −R′i∂iRj have degree ≥ l + l′ + 1 in s,

(Pi +Ri)∂iR
′
j − (Qi +R′i)∂iRj have degree ≥ l + l′ + 1 in s.

It follows that the bracket is an element in gk+k′,l+l′ . �

...
...

...

g2 g2,0 = g2,0

[a, ]

))
⊕ g2,1

[a, ]

((
⊕ g2,2

[a, ]

''
⊕ g2,3

g1 g1,0 = g1,0

[a, ]

))
⊕ g1,1

[a, ]

((
⊕ g1,2

g0 g0,0 = g0,0

[a, ]

**
⊕ g0,1 = a

Observe that the first column of the bi-graded diagram we have equalities. Assume that

the Lie bracket,

[ , ] : a× gk,l → gk,l+1

is surjective for all k and l ≤ k. Then, by finite induction on l for all k, following the

horizontal lines of the above diagram we have gk,l = gk,l for all k and l. Thus, the proof is

reduced to the following fundamental Lemma.

Lemma B.22 Lie bracket,

[ , ] : a× gk,l → gk,l+1

is surjective for all k and l ≤ k.

To end the proof we will show by induction that gk,l = gk,l.
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Lemma B.23 For all k and l ≤ k we have gk,l = gl,k.

Proof. We proceed by fixing k and doing induction on l. The initial steps are given by

lemmas B.19 and B.20. Assume that the equality holds for l and show for l + 1 i.e. lets see

gk,l+1 = gk,l+1. Let Q ∈ sym1(s), P ∈ syml(s) and X ∈ hk−l such that QPX ∈ gk,l+1. By the

lemma B.22, there exists Y ∈ hk−l+1 such that [∂/∂y1, Y ] = X. We have Q ⊗ ∂/∂y1 ∈ g0,1

and P ⊗ Y ∈ gk,l. Therefore we get the following expression:

[Q⊗ ∂/∂y1, P ⊗ Y ] = QPX

because Y (Q) = ∂/∂y1(P ) = 0. As the elements of the form QPX form a basis for gk,l+1 we

get the lemma. �
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From Gauss to Painlevé: a modern theory of special functions, volume 16.

Springer Science & Business Media, 2013.

[Iwa08] Katsunori Iwasaki. Finite branch solutions to painlevé vi around a fixed singular
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Symbol Meaning

F Foliation

S• Algebra of symmetric tensors

DerA Module of derivations on A

XA Submodule of DerA stable by the Lie bracket

OP Ring of regular functions on P

|α| Multi-index absolute value

εi Multi-index with 1 in the i-th position

Dαxi Derivative of xi

XF C(M)–module of derivations tangent to F

xi:α i : α–coordinate in the jet space

RkM →M Bundle of k–frames on M

P [ρ] Associated bundle

G ×sMt G Fibered product over source and target

IsoP Equivariant bijections between fibers of P

GauP Diagonal part of IsoP

Iso(P )b• Equivariant bijections with source b

C(M)D Field of rational first integrals
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IsoS(P ) Fiber isomorphisms respecting the projection ρ
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Symbol Term

C(m,k) Polynomial algebra in m variables and height k

C[[ε]] Ring of formal power series in m variables

τm,kM Generalized tangent bundle of type m, k

M(A) Points of type A in M

f (m,k) Prolongation of f to τm,kM

I(m,k) Prolongation of the ideal I

X(m,k) Prolongation of the vector field X

X(m,∞) Prolongation of X to C[τ̂mM ]
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Autk(Cm, 0) Truncation to order k of Aut(Cm, 0)

Âut(Cm, 0) Limit of Autk(Cm, 0)

Ĉ[B]p The mp-adic completion of C[B]

DB Ring of differential operators C[B][XB]

Xtot Total derivative in the direction of X

Jk(P/B) Order k Jet bundle of sections of P → B

J(P/B) Infinite order Jet bundle

D,D(k) Distribution and its kth order prolongation

D(∞) Limit prolongation of D

OJB Differential functions regular along a generic open set in B

Diff(Γ(E),C[B]) Differential operators Γ(E)→ C[B]

Jk(D) k–jets of D–horizontal sections

C(Jk(D))D
(k)

Field of rational first integrals of D(k)

PGalk(D) The Galois groupoid of order k with parameters of D

PGal∞(D) The limit of PGalk(D)

Gal∞(D) Diagonal part of PGal∞(D)

Autk(M) k–jets of local invertible biholomorphisms of M

Iso(RM) Âut(Cm, 0)–equivariant bijections between fibers of RM

Malk(X) Order k Malgrange groupoid

Mal(X) The limit of Malk(X)

LieGk D–Lie algebra of Gk
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Lievω Lie derivative of ω along v

Ω1
S 1–forms on S

Ω1
M/S The restriction of the 1–forms to the fibers

DM Ring of operators on M

DM/S Differential operators that are tangent to the fibers

divω Divergence of ω

Abreviations

Abreviation Term

HG Gauss’ Hypergeometric Equation

PHG Projection of Gauss Hypergeometric equation

PV I Painlevé VI equation

HPV I Hamiltonian vector field of Painlevé VI equation

Diag Diagonal

Tot Total

Proj Projective

Red Reduced
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with parameters, 42
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Titre : Déformations isomonodromiques à travers de l’théorie de Galois différentielle 

Mots clés: Théorie  paramétrée  de  Galois,  déformations isomonodromiques,  équation 
hypergéométrique de Gauss,  équation de Painlevé VI 

Résumé : Le  texte  commence  par  une  
brève  description  de  théorie  différentielle  
de  Galois  dans une  perspective  
géométrique.   Ensuite,  la  théorie  
paramétrée  de  Galois  est  développée  au 
moyen d’une prolongation des connexions 
partielles avec les fibrés de jets.  La relation 
entre les groupes de Galois différentiels a 
paramètres et les déformations 
isomonodromiques est développée  comme  
une  application  du  théorème  de  Kiso-
Cassidy.   

 

Il  s’ensuit  le  calcul  des groupes   de   
Galois   a   paramètres   de   l’équation   
générale   fuchsienne   et   de   l’équation 
hypergéométrique de Gauss.  Enfin, 
certaines applications non linéaires sont 
développées.  Au moyen d’un théorème de 
Kiso-Morimoto, un analogue non linéaire, on 
calcule le groupoïde de Malgrange de 
l’équation de Painlevé VI à paramètres 
variables. 

 

Title : Isomonodromic deformations through differential Galois theory 

Keywords:  Parameterized Galois theory,  isomonodromic deformations,  Gauss hypergeometric 
equation,  Painlevé VI equation 

Abstract: The text begins with a brief 
description of differential Galois theory from a 
geometrical perspective. Then, 
parameterized Galois theory is developed by 
means of prolongation of partial connections 
to the jet bundles. The relation between the 
parameterized differential Galois groups and 
isomonodromic deformations is unfold as an 
application of Kiso-Cassidy theorem.  

 It follows the computation of the 
parameterized Galois groups of the general 
fuchsian equation and Gauss hypergeometric 
equation. Finally,  some non-linear 
applications are developed. By means of a 
non-linear analog, Kiso-Morimoto theorem,   
the Malgrange groupoid of Painlevé VI 
equation with variable parameters is 
calculated. 
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