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Cette thèse est consacrée à l’étude de plusieurs ligands originaux appartenant à la famille 

des métallylènes, i-e germylènes et stannylènes, avec des fonctions symétriques ou 

asymétriques. Ces fonctions présentent un atome de soufre commun à toutes les molécules. Les 

fonctions soufrées ont été incorporées de manières diverses et ont permis d’obtenir différentes 

propriétés en chimie de coordination ainsi qu’en catalyse. 

 

Le premier chapitre débute dans un premier temps par une introduction sur les rappels 

historiques du développement de la synthèse des métallylènes. La nature et les propriétés des 

différents éléments du groupe 14 à bas état d’oxydation sont discutés et démontrent les 

différences et similarités entre tous les membres de cette famille (Schéma 1).  

 

 

 
Schéma 1: Les carbènes et les dérivés lourds à l’état libre 

 

 

Dans un second temps, la synthèse de dérivés du germanium (II) y est traitée selon les 

différentes voies de synthèse. Enfin, la stabilité des germylènes est abordée en discutant des 

méthodes développées dans la littérature pour stabiliser ces espèces électro-déficientes avec les 

différents substituants développés ces dernières décennies. L’utilisation des germylènes en 

chimie de coordination et particulièrement en catalyse est finalement abordée et démontre un 

engouement de plusieurs groupes et une importante multiplication des publications sur 

l’application des germylènes en catalyse, notamment ces dernières années. La dernière partie 

de l’introduction bibliographique est centrée sur la famille des sulfoxydes. Un rappel sur leurs 

propriétés, réactivités et effets électroniques est abordé ainsi que leurs applications en 
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coordination et en catalyse. Un état de l’art sur les complexes présentant un ligand du groupe 

14 et une fonction sulfoxyde est présenté ainsi que leur proportion à être décrits comme des 

ligands hémilabiles (Schéma 2). 

 

 

 
Schéma 2: Hémilabilité d’un ligand bidente par addition de CO 

 

 

Le deuxième chapitre se concentre sur la synthèse et la chimie de coordination de 

ligands germylène-a-sulfoxyde avec des complexes des groupes 6 et 8. L’approche synthétique 

des composés germylène-a- sulfoxyde a été envisagée par réaction de substitution nucléophile 

d’un atome de chlore lié au germanium avec un carbanion sulfinylé. Le synthon germylène de 

départ sélectionné est l’amidinatochlorogermylène AmGeCl publié par notre groupe en 2015 

et obtenu par condensation d’un lithien sur un carbodiimide puis transmétallation par le 

GeCl2•dioxane. L’atome de chlore du composé AmGeCl est facilement substituable par 

différents nucléophiles afin d’obtenir des architectures complexes qui ont données lieu à 

plusieurs publications dans la littérature. Cette stratégie a notamment été utilisée pour la 

synthèse de ligands de type pince publiée par le groupe de Driess en 2012. La déprotonation en 

a du sulfoxyde est facilement réalisable avec une base faiblement nucléophile comme le LDA 

(Schéma 3). 
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Schéma 3: Synthèse de 1a 

 

 

Cependant, l’addition du carbanion sulfinylé sur le composé AmGeCl n’a pas permis 

d’obtenir le composé 1a et uniquement un mélange de produits a été identifié en RMN du 1H. 

En effet, la formation de di-iso-propylamine durant la déprotonation laisse place à des réactions 

secondaires avec le germylène de départ ou le composé désiré. Afin de les éviter, la di-iso-

propylamine a été éliminée par évaporation, ce qui a permis d’obtenir 1a avec un bon rendement 

de 72%. Le produit 1a a pu être identifié de façon indubitable par RMN du 1H avec les signaux 

caractéristiques des hydrogènes en a du sulfoxyde. Ils apparaissent en effet sous forme d’un 

signal A-B correspondant à un groupement CH2 en a d’un centre asymétrique. La RMN du 13C 

montre aussi un signal caractéristique pour le carbone qui joue le rôle de pont entre le 

germanium et le sulfoxyde. En effet, ce carbone est secondaire dans le produit 1a alors qu’il est 

primaire dans le sulfoxyde de départ. 

 

La réaction a ensuite été étendue à des sulfoxydes et des germylènes possédant différents 

types de groupements (Schéma 4).  
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Schéma 4: Différent germylene-sulfoxyde synthétisé 1b-f 

 

 

1b-f ont été obtenus selon la même méthode de synthèse que 1a. Cette large gamme de 

ligands permet d’étudier l’influence de l’encombrement stérique sur le germylène, grâce aux 

groupements iso-propyle (1a-b) ou cyclohexyle (1c-d), mais aussi sur le sulfoxyde, grâce aux 

groupements aryle (1a-b-e) ou alkyle (1f).  

 

Finalement, la réaction a été étendue aux autres états d’oxydations du soufre, le S(II) et 

le S(VI) (Schéma 5). 

 

 

	
Schéma 5: Synthèse du ligand S(II) 1g et du ligand S(VI) 1h 
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1g-h ont été obtenus selon la même méthode de synthèse que 1a à l’exception de la base 

employée. Cette fois-ci, le potentiel nucléophile de la base n’est plus un problème et le n-BuLi 

est utilisé en lieu et place du LDA, et donc d’introduire directement le nucléophile lithié en 

solution avec le germylène. La synthèse de ces dérivés a permis de comparer la stabilité et 

l’influence de la fonction sulfoxyde sur le ligand germylène mais aussi de pouvoir les comparer 

en vue d’applications en chimie de coordination et en catalyse. Il est important de noter que 1h 

a pu être aussi cristallisé et analysé en diffraction des rayons X grâce à ses propriétés physiques 

uniques, comparées aux ligands thioéther et sulfoxyde qui se présentent sous forme d’huiles à 

température ambiante. 

 

L’étude de la chimie de coordination de ces différents ligands a ensuite été envisagée à 

à partir de la propriété de cette famille de germylènes à pouvoir coordiner un métal à travers un 

groupement fortement s-donneur, le germylène, et un groupement faiblement s-donneur, le 

sulfoxyde. Dans un premier temps, le tungstène a été choisi comme métal de transition. En 

effet, il a déjà été démontré dans notre laboratoire en 2012 par Annie Castel et al. qu’un 

complexe germylène bidente de tungstène peut être obtenu à partir du précurseur W(cod)(CO)4. 

La réaction de 1b avec le même précurseur de tungstène a permis l’obtention du complexe 3b 

(Schéma 6). 

 

 

	

Schéma 6: Formation du complexe bis-germylene tungstène 3b 
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Le complexe bis-germylène 3b a été caractérisé au travers de plusieurs méthodes 

d’analyses comme la RMN du 13C, la spectroscopie IR et la diffraction des rayons X. La 

réaction a été étendue à l’analogue du molybdène et Mo(nbd)(CO)4 a été choisi comme 

précurseur (Schéma 7). Ainsi, la même réactivité a pu être observée et le complexe bis-

germylène molybdène 4b a été obtenu et caractérisé à travers les mêmes analyses que 3b. 

 

 

	

Schéma 7: Formation du complexe bis-germylene molybdène 4b 

 

 

L’obtention de complexes bis-germylene tungstène et molybdène en chimie de 

coordination nous a amené à sélectionner de nouveaux métaux de transition. Dans un premier 

temps, le ruthénium est apparu comme une excellente alternative. En effet, plusieurs exemples 

de germylènes coordinés au ruthénium sont décrits dans la littérature et cette observation est 

aussi valable pour la fonction sulfoxyde. C’est pourquoi Ru(PPh3)3Cl2 a été sélectionné comme 

précurseur. La réaction avec 1a a permis d’obtenir le complexe bidente 5a avec un rendement 

raisonnable de 56% (Schéma 8). 
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Schéma 8: Formation du complexe bidente germylene ruthénium 5a 

 

 

Le complexe 5a a été entièrement caractérisé par plusieurs méthodes d’analyses comme 

la RMN, la spectroscopie IR et la diffraction des RX, démontrant ainsi une coordination bidente 

du germanium et de l’oxygène du sulfoxyde au ruthénium. Ce complexe est parfaitement stable 

à température ambiante dans des conditions inertes et nous a amenés à sélectionner un autre 

précurseur de ruthénium, (RuCl2(p-cymène))2, pour obtenir une série de complexes 

monodentes. Dans un premier temps, la réaction a été effectuée avec 1b pour obtenir 6b avec 

un bon rendement de 80% (Schéma 9). 

 

 

 
Schéma 9: Formation du complexe monodente germylene ruthénium 6b 

 

 

Le complexe 6b a été entièrement caractérisé par plusieurs méthodes d’analyses comme 

la RMN, la spectroscopie IR et la diffraction des RX. La réaction de coordination a ensuite été 

étendue à tous les ligands (Schéma 10). A nouveau, tous les complexes de ruthénium obtenus 

ont été entièrement caractérisés et sont stables à température ambiante sous atmosphère inerte. 
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Schéma 10: Formation des complexes monodente germylene ruthénium 6b-d-f-g-h 

 

 

Enfin, la chimie de coordination a aussi été étudiée avec des métaux tels que le fer, le 

cuivre et l’or mais aucun complexe n’a pu être caractérisé. 

 

Le troisième chapitre est consacré à la synthèse de nouveaux ligands germylène-

sulfoxyde avec une nouvelle architecture. Le nouveau design a été rationnalisé grâce aux 

résultats obtenus à travers la chimie de coordination de la première génération de ligands et de 

complexes, comme par exemple, l’obtention de bis-germylene pour la coordination du groupe 

6 ou l’absence de coordination du soufre du sulfoxyde pour tous les métaux. Ces observations 

nous ont motivés à augmenter la distance entre les deux groupements afin de savoir si le 

groupement espaçant le germylene et le sulfoxyde peut avoir une influence sur la chimie de 

coordination. La formation de ligands germylene-b-sulfoxyde a donc été entreprise. Cependant, 

la déprotonation en b d’un alkylsulfoxyde n’étant pas facilement accessible, il a été décidé de 

substituer la position en a avec un groupement tBu afin de permettre une réaction d’ortho-

lithiation. Le ligand 7 a été obtenu en utilisant la même procédure synthétique que la première 

génération, c’est-à-dire une substitution nucléophile (Schéma 11). 

 

 

N N

Ge
SRuCl

Cl

O

6b

N N

Ge
SRuCl

Cl

O

N N

Ge
SRuCl

Cl

N N

Ge
SRuCl

Cl

O
O

N N

Ge
SRuCl

Cl

O

6d 6f

6g 6h



Résumé de thèse 

	 -17-	

 

Schéma 11: Synthèse du ligand germylene-b-sulfoxyde 7a 

 

 

La structure du produit 7a a pu être déterminée indubitablement par RMN du 1H et 13C 

avec des signaux caractéristiques. L’hydrogène en ortho du germanium apparaît sous forme 

d’un singulet ainsi que le carbone relié au germanium qui apparaît comme un carbone 

quaternaire alors qu’il est tertiaire dans le produit de départ. 

 

Enfin, la chimie de coordination de ce ligand a été étudiée avec le même précurseur de 

tungstène utilisé précédemment (Schéma 12). 

 

 

 
Schéma 12: Formation du complexe germylene tungstène 8 

 

 

Le complexe 8 a été isolé comme un complexe bidente de tungstène avec le soufre du 

sulfoxyde et le germanium coordinés au centre métallique. La structure a pu être déterminée 

par RMN du 13C, en IR et en diffraction des rayons X. Finalement, la réaction a été étendue au 

molybdène avec le même précurseur utilisé précédemment (Schéma 13). 
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Schéma 13: Formation du complexe germylene molybdène 9 

 

 

Le changement du groupement espaçant le germylene et le sulfoxyde a définitivement 

impacté la coordination du sulfoxyde afin d’obtenir des complexes bidentes avec les métaux de 

transition du groupe 6 contrairement à des complexes bis-monodentes avec la première 

génération.  

 

La coordination a ensuite été étudiée avec le ruthénium. Le précurseur Ru(PPh3)3Cl2 a 

été sélectionné comme précédemment (Schéma 14). 

 

 

 
Schéma 14: Formation du complexe bidente germylene ruthénium 10a 

 

 

De façon surprenante, un complexe à 16 électrons a été obtenu et le complexe de 

ruthénium 10a a été caractérisé par RMN du 31P avec un singulet à 38 ppm mais aussi 
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X de ce complexe n’a pas permis de caractériser le complexe 10a car un nouveau complexe de 

bis-ruthénium 10b a été obtenu systématiquement au cours des cristallisations réalisées 

(Schéma 15). 

 

 

 
Schéma 15: Formation du complexe 10b lors de la cristallisation 

 

 

Le complexe 10b montre des déplacements chimiques différents en RMN du 31P avec 

un singulet à 29 ppm et deux doublets à 44 et 52 ppm. La particularité de ce nouveau complexe 

est d’avoir deux atomes de chlore et la fonction sulfoxyde qui joue le rôle de pont entre les deux 

atomes de ruthénium. Il s’agit du premier exemple où un atome de soufre et un atome d’oxygène 

d’un même sulfoxyde coordinent deux centres métalliques différents avec une fonction 

sulfoxyde asymétrique. 

 

Finalement, la chimie de coordination de 7 a été étudiée avec le groupe 10. Ni(cod)2 a 

été utilisé comme précurseur métallique pour conduire à la formation du complexe 11a (Schéma 

16). 
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Schéma 16: Formation du complexe de nickel 11a  

 

 

Le complexe de nickel 11a a pu être caractérisé par RMN du 1H et par diffraction des 

rayons X. Cependant la faible stabilité du complexe, qui se dégrade totalement en quelques 

heures, n’a pas permis son utilisation en catalyse. C’est pourquoi du monoxyde de carbone a 

été additionné pour stabiliser le complexe et obtenir le complexe de nickel tricarbonyle 11b 

(Schéma 17), qui a été entièrement caractérisé par RMN et diffraction des rayons X. 

 

 

 
Schéma 17: Formation du complexe de nickel 11b par addition de CO  

 

 

L’hémilabilité du ligand est indubitablement démontrée de part cette réaction et 

l’échange du ligand sulfoxyde par un ligand carbonyle sans décoordination du germylène. La 

s-donation du germylène a aussi pu être évaluée par le paramètre électronique de Tolman et 

comparer à d’autres ligands comme par exemple les NHC ou les phosphines. 

 

Le quatrième chapitre est consacré à la synthèse de nouveaux ligands germylène-

sulfonimidamide avec une nouvelle architecture basée sur l’équivalent d’un amidinate avec un 
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S(VI). La synthèse des différents sulfonimidamides a été réalisée avec plusieurs groupements 

i-Pr ou mésityle, permettant d’obtenir un soufre symétrique ou asymétrique de façon racémique 

(Schéma 18). 

 

 

 
Schéma 18: Formation des sulfonimidamides 12a et 12b  

 

 

Les sulfonimidamides 12a et 12b ont été entièrement caractérisés par RMN et 

diffraction des rayons X. Ces ligands ont ensuite permis d’obtenir les germylènes 

homoleptiques correspondants par protonolyse avec le réactif Ge(HMDS)2 (Schéma 19). 

L’élimination de l’amine formée après une nuit de réaction permet d’obtenir les germylènes 

13a et 13b avec de bons rendements selon une méthode efficace. 

 

 

 
Schéma 19: Formation par protonolyse des germylènes 13a et 13b  

 

 

Les germylènes 13a et 13b ont pu être entièrement caractérisés par RMN et diffraction 

des rayons X et comparés au ligand de départ. Cette réaction a ensuite été étendue aux dérivés 

lourds des germylènes, les stannylènes. En suivant le même protocole expérimental, les 
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stannylènes homoleptiques correspondants ont pu être obtenus par protonolyse avec 

Sn(HMDS)2 et ont été entièrement caractérisés (Schéma 20).   

 

 

 
Schéma 20: Formation par protonolyse des stannylènes 14a et 14b  

 

 

Finalement, des calculs DFT ont été réalisés pour déterminer la stabilisation 

électronique du ligand en fonction du métallylène et l’influence apportée par les différents 

substituants présents sur l’azote sur cette stabilisation.  

 

Finalement, le cinquième et dernier chapitre est consacré à l’application des différents 

complexes et métallylènes en catalyse. Les différents complexes de ruthénium de première 

génération et le complexe à 16 électrons de deuxième génération ont été testés en catalyse et 

leur activité a été comparée. La catalyse sélectionnée est la réaction de transfert d’hydrogène 

qui consiste en la réduction d’un composé carbonylé en son alcool correspondant en milieu 

protique (Schéma 21). 

 

 

 

 
Schéma 21: Réaction de transfert d’hydrogène 
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Dans un premier temps, les complexes p-cymène 6b-d-f-g-h ont été utilisés pour la 

réduction de l’acétophénone dans l’iso-propanol avec une base (KOH) et 2 mol% de catalyseur 

(Schéma 22).  

 

 

 
Schéma 22: Réduction de l’acétophénone en son alcool correspondant 

 

 

La conversion de l’alcool a été vérifiée après deux heures de réaction par RMN du 1H 

avec un étalon interne, le 1,2,4,5-tétramethylbenzène (Tableau 1). 

 

 

Catalyseur 6b 6d 6f 6g 6h 

Conversion (%) 76 57 43 29 23 

Tableau 1: Réduction de l’acétophénone en son alcool correspondant par 6b-d-f-g-h 

 

 

Après 2 heures de réactions à 80 °C, l’alcool correspondant a été obtenu avec un 

rendement de 76% en utilisant le complexe de ruthénium 6b comme catalyseur. L’augmentation 

de l’encombrement stérique avec un groupe cyclohexyle sur l’amidinate entraîne une baisse de 

l’activité et la conversion avec 6d est de 57%. 6f montre l’importance du groupement aryle car 

une chute de la conversion à 43% est observée, cette baisse peut être expliquée par l’instabilité 

du complexe et la formation d’iso-butène et d’un acide sulfinique lors du chauffage. Finalement 

l’influence du groupe sulfoxyde est notable car les dérivés thioéther et sulfone présentent des 

activités bien moindres de 29 et 23% respectivement pour 6g et 6h. Finalement, le complexe 

5a a été utilisé pour la réaction de transfert d’hydrogène avec le même substrat et dans les 

mêmes conditions en faisant varier la température et le temps de réaction.  
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Catalyseur (5a) 

Temps (h) 2 4 2 28 72 

Température (°C) 80 50 25 25 25 

Conversion (%) 97 97 26 87 97 

Tableau 2: Réduction de l’acétophénone en son alcool correspondant par 5a 

 

 

Après 2 heures de réactions à 80 °C, l’alcool a pu être entièrement converti en utilisant 

le complexe de ruthénium 5a. Cette même observation a pu être réalisée à 50 °C après 4 heures. 

La conversion complète peut aussi être atteinte à 25 °C après 72 heures. Nous observons que la 

cinétique est assez lente car après 2 heures à 25 °C, l’alcool est déjà converti à hauteur de 26%. 

C’est pourquoi la version énantiopure a été synthétisé et testée en catalyse. Cependant, les 

résultats obtenus ont montré une induction asymétrique modeste au travers d’un excès 

énantiomérique de 21%. 

 

Dans un dernier temps, le complexe 5a a été utilisé pour réduire différentes cétones et 

aldéhyde (Tableau 3).   
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Entry	 Carbonyle	 Alcool	 t	(H)	 Conversion	(%)	

1	

	 	

72	 97	

2	

	 	

72	 97	

3	

	 	

72	 97	

4	

	 	

72	 97	

5	

	 	

72	 97	

6	

	 	

4	 97	

Tableau 3: Réduction de plusieurs cétones et aldéhyde en alcool correspondant par 5a 

 

 

L’extension à plusieurs cétones para-substituées a permis d’obtenir les alcools 

correspondants chimio-sélectivement. En effet, 5a peut réduire une cétone en présence d’un 

groupement bromé, méthoxylé ou trifluorométhane sélectivement en 72 heures à 25 °C. La 

réduction dans les mêmes conditions a aussi permis de réduire la benzophénone et finalement 

le benzaldéhyde en 4 heures. Un essai avec une cétone plus encombrée, l’adamantyl-méthyl-

cétone, a montré aucune réactivité et cela même après 96 heures de réaction.  

 

Finalement, les stannylènes 16a et 16b ont été utilisés en catalyse de polymérisation de 

la e-caprolactone. Les tests ont été réalisés dans le toluène à 100 °C (Schéma 23).   
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Schéma 23: Catalyse de polymérisation de la e-caprolactone 

 

Dans un premier temps, 16a a été utilisé et a montré une conversion de 29% après une 

heure de réaction avec un bon PDI de 1.09. En laissant la réaction se dérouler, la conversion 

monte jusqu’à 77% après 7 heures. Enfin, 16b montre une activité supérieure avec une 

conversion de 89% après une 1 heure. Cependant, cette activité est associée à une réaction de 

trans-estérification des chaînes polymériques avec un PDI moyen de 1.66. 

 

En conclusion, la formation de ligands a et b sulfoxide-germylène a été réalisée avec 

une variation du groupement espaçant les deux entités. Les variations ont aussi permis d’obtenir 

des ligands germylènes avec des encombrements stériques différents et variés, mais aussi avec 

des degrés d’oxydation de l’atome de soufre différents (thioéther et sulfone). Cette variabilité 

a permis d’étudier la stabilité, l’influence de l’état d’oxydation du soufre et de l’encombrement 

stérique sur le germylène. 

 

Ces ligands ont ensuite été utilisés en chimie de coordination pour obtenir des 

complexes avec des métaux de transition des groupes 6, 8 et 10. Ces complexes ont montré 

différentes propriétés de coordination avec la formation de systèmes monodentes, bis-

monodentes et bidentes. Les complexes de ruthénium ont aussi été appliqués en catalyse pour 

la réaction de transfert d’hydrogène afin de réduire l’acétophénone. Les résultats obtenus ont 

permis une réduction à température ambiante. Une extension à plusieurs cétones substituées 

ainsi qu’à la benzophénone et au benzaldéhyde dans les mêmes conditions a été réalisée. La 

catalyse énantiosélective a été testée et les résultats obtenus ont montré une induction 

asymétrique modeste. 
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Enfin, la synthèse de nouveaux germylènes et stannylènes avec un équivalent 

d’amidinate soufré, un sulfonimidamide, a été réalisée avec succès. La caractéristique de cette 

fonction est de pouvoir modifier simplement les groupes sur les azotes mais aussi d’avoir la 

possibilité d’insérer un soufre asymétrique. Les différents stannylènes ont été utilisés en 

catalyse de polymérisation de la e-caprolactone. L’activité et les résultats obtenus sont 

encourageants pour appliquer ces catalyseurs en polymérisation de lactides. 
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General handling conditions  

All the manipulations have been carried out under inert Argon atmosphere, using the standard 

Schlenk techniques. The solvents used have been purified by a purificator MBraun SPS-800 

over filtrating columns filled with molecular sieves of 0.4 nm, and have been stocked under 

Argon atmosphere. The solids have been manipulated in glove-box under Argon atmosphere. 

The addition of carbonyl monoxide was done by removing the atmosphere of a pressure tube 

and addition of the gas at 1.5 bars. 

 

Equipment  

 

Nucleus Magnetic Resonance (NMR). 

1H, 13C, 31P and 119Sn were recorded with the following spectrometers: Bruker Avance 300, 400 

and 500 MHz.�The complete characterization of the products has been done using 1D 

experiments, as well as 2D analysis, such as COSY (1H -1H), HSQC (1H -13C), and NOESY. 

The chemical shift has been counted positively verse the low field, and expressed in part per 

million (ppm). The coupling constant are expressed in Hz. The abbreviations to describe the 

signals are: s (singlet), d (doublet), t (triplet), dd (doublet of doublets), sept (septuplet), m 

(multiplet), Ar (aromatic), Ar/q (quaternary aromatic), JAB (coupling constant between A and 

B) and br (broad signal).  

 

Melting point.  

Melting points were measured with a capillary Electrothermal Stuart SMP40 apparatus. 

samples have been prepared in the glove-box before the analysis.  
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Infrared (IR).  

IR spectra were measured on a Varian 640-IR FT-IR spectrometer. The samples have been 

prepared in nujol or in a dichloromethane solution under Argon atmosphere.  

 

X-ray diffraction analysis.  

Single-crystal X-ray data were collected at low temperature (193(2)K) on a Bruker-AXS APEX 

II Quazar diffractometer equipped with a 30W air-cooled microfocus source or on a Bruker-

AXS PHOTON100 D8 VENTURE diffractometer, using MoK radiation (λ= 0.71037 Å). The 

structures were solved by the direct method (SHELXS-97) or by direct intrinsic phasing method 

(SHELXT) and refined by full-matrix least-squares method on F2. All non-H atoms were 

refined with anisotropic displacement parameters. 

 

Mass spectroscopy.  

The mass spectroscopy analysis was done using two technics, direct chemical ionization (DCI-

CH4) methods, and recorded on a GCT Premier Waters mass spectrometer or on a Maldi micro 

MX microMass in an anthracene matrix (ratio product/matrix: 1/100).	

 

Theoretical calculations. 

The theoretical calculations have been carried out by Dr Jean-Marc Sotiropoulos (directeur de 

recherche in IPREM laboratory at the University of Pau, France). 

 

HPLC analysis. 

Determination of ee was performed on a HPLC with a chiralcel OD column at a flow rate of 1 

mL/min with a mobile phase of Heptane/i-PrOH (96/4). The two enantiomers were detected 

with an UV detector at 210 nm with a retention time of 12.4 min and 14.7min. 
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SEC analysis. 

The number-average and weight-average molar masses (Mn and Mw, respectively) and molar 

mass distributions (Đ) of the polymer samples were determined by size exclusion 

chromatography (SEC) at 35 °C with a Waters 712 WISP high-speed liquid chromatograph 

equipped with a R410 refractometer detector. Tetrahydrofuran (THF) was used as the eluent, 

and the flow rate was set up at 1.0 mL/min. A SHODEX precolumn (polystyrene AT806M/S 

Mw = 50000000 g/mol) and two STYRAGEL columns (HR1, 100–5000 g/mol, and HR 4E, 

50–100000 g/mol) were used. Calibrations were performed using polystyrene standards (400–

100000 g/mol). 
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Å = Ångström 

ACN = Acetonitrile 

AmGeCl = Amidinatochlorogermylene  

Cat = Catalyst 

cod = Cyclooctadiene 

coe = Cyclooctene 

Cy = Cyclohexyl 

DCM = Dichloromethane 

DFT = Density Functional Theory 

DIC = Di-iso-propylcarbodiimide 

Dipp = 2,6-Di-iso-propylphenyl 

DMS = Dimethylsulfur 

DMSO = Dimethylsulfoxide 

ee = Enantiomeric excess 

eq = Equivalent 

Ge(HMDS)2 = bis(Hexamethyldisilamide)germylene 

h = hour 

H-HMDS = Hexamethyldisilazane 

HMDS = Hexamethyldisilamide 

HPLC = High Performance Liquid Chromatography 

H-transfer = Hydrogen transfer 

i-Pr = iso-propyl 

IR = Infra-red 

L.B. = Lewis base 

LDA = Lithium di-iso-propylamine 

MALDI-TOF = Matrix Assisted Laser Desorption Ionisation - Time of Flight 

Me = Methyl 

mes = Mesityl 

nbd = Norbornadiene 
nBuLi = n-Butyl Lithium 

NHC = N-Heterocyclic Carbene 

NHGe = N-Heterocyclic Germylene 

NMR = Nucleus Magnetic Resonance  

oct = octoate = ethylhexanoate 
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PDI = Polydispersity index 

PES = Potential-electronic surface 

ppm = Parts per million 

REP = Ring expansion polymerization  

ROP = Ring opening polymerization 

R.T. = Room Temperature 

SEC = Size exclusion chromatography 
tBu = tert-Butyl 

T (°C) = temperature in Celsius 

t (h) = time in hour 

TEP = Tolman Electronic Parameter 

THF = Tetrahydrofuran 

Tiip = tri-iso-propylbenzene 

T.M. = Transition Metal 

TMEDA = Tetramethylethylenediamine 

TMS = Trimethylsilyl 

Tol = Toluene 

UV = UltraViolet  
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Chapter I: 

 

 

General Introduction 

 

 

Abstract 

 

 

Germylenes, heavier analogues of carbenes, have attracted considerable interest the 

last decades since the breakthrough of NHC. Although the derivatives of the group 14 family 

should present similarities, some differences are also expected. Still multiples questions are 

unsolved concerning germylenes and specially their properties as ligands and their possible 

influence in a catalytic cycle.  

 

In order to obtain a satisfactory answer, many groups have published their results 

based on the effect of stabilizing substituents on the electronic and steric properties of 

germylenes. The results showed that the stabilizing substituents have a major effect on the 

reactivity and so the further applications.  

 

Nevertheless, several groups achieved to obtain stable germylene complexes and 

applied successfully these complexes as active pre-catalysts. The results obtained from the 

catalysis and the theoretical studies performed led to envisage germylenes as a novel class of 

ligands that should be able to present new activity, selectivity or stability properties in catalysis.  
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I. Historical aspects  

 
I.1. General aspects of metallylenes 

 
Catalysis is one of the most important and useful tools of modern chemistry to form 

polymers, drugs or small molecules to sustain human needs with lower cost in time and energy. 

 

The design of new ligands for transition metals have been widely investigated to obtain 

novel electronic and steric properties and therefore novel catalytic activity. Therefore, these 

past decades, several Nobel prizes were attributed to chemists on this field like R. F. Heck, E. 

I. Negishi1 and A. Suzuki2 in 2010 for the cross-coupling reactions or Y. Chauvin,3 E. H. 

Grubbs4 and R. R. Schrock5 in 2005 for metathesis. Both of these catalyses took a renewed 

interest with the introduction of novel σ-donors ligands like N-Heterocyclic carbenes (NHC).6  

 

Metallylenes, group 14 neutral elements at the +II oxidation state (Scheme 1), are one 

of the hottest topics explored by chemists these past decades since the isolation of the first stable 

carbene by Baceiredo et al. in 1988 and due to their numerous applications nowadays as 

organoreagents, organocatalysts and ligands.7–9 

 

 
Scheme 1: Carbenes and heavier analogues in ground state 

 

These divalent species are defined as electron deficient with only 6 electrons on their 

valence shell. They possess two non-bonding orbitals defined as pπ and σ and two different 

metallylenes can be distinguished depending on the electron distribution between these orbitals 

pπ and σ (Scheme 2): triplet, with unpaired electrons in separate orbitals (nσ1nπ1) and singlet, 

with both electrons paired (nσ2nπ0).10 The difference between a triplet and a singlet will 

fundamentally depend on the energy level of the σ orbital. 
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Scheme 2: Degenerate energy levels of triplet and singlet state 

 

The ground state of metallylenes depends on the energy gap between pπ and σ orbitals 

(Table 1).8,11,12 The comparison of dihydrometallylenes showed that only dihydrocarbene is 

more stable in triplet state compared to all the heavier analogues that are stable in singlet state. 

The gap increases in favor of singlet state with the size of the group 14 elements. The difference 

remains the same even with the cyclic derivative (C4H4M:) 

 

H2M: H2C: H2Si: H2Ge: H2Sn: H2Pb: 

∆ES-T (Kcal/mol) -9 16.7 21.8 24.8 34.8 

C4H4M: C4H4C: C4H4Si: C4H4Ge: C4H4Sn: C4H4Pb: 

∆ES-T (Kcal/mol) -9.6 14.8 22.8 26.2 27.3 

Table 1: Energy gap between singlet and triplet states 

 

This observation can be explained by the size of the ns and np orbitals. The difference 

changes dramatically with the heavier analogues, np orbitals become larger than ns orbitals as 

the quantic number increases. The effect on metallylene ground state is to favor the σ orbital 

and so the singlet state and to induce difficulties to the hybridation.13–15 Another effect observed 

by the size of the orbitals is the lone pair presenting a larger s character while the empty orbital 

presents a higher electrophilic character. 
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I.2. Synthetic route to germanium (II) species 

 
The general procedure to obtain germylenes proceeds via reduction of the most stable 

Ge(IV) form to obtain the Ge(II) derivative. The synthetic pathway is essentially based on 

elimination or reduction reaction of the corresponding dihalogeno precursors (Scheme 3).16,17 

 

 
Scheme 3: Synthetic pathways to Ge(II) 

 

The main starting material used for germylenes synthesis is GeCl2•dioxane which is 

obtained from the reduction of GeCl4 with a reducing agent. This reaction, described by 

Mironov in 1975, is still used nowadays by trapping the in situ formed GeCl2 with dioxane. 

Another way to obtain functionalized germylenes was described by Herrmann in 1992 by 

reduction of Ge(IV) dichloride in Ge(II) derivative in a good 75% yield by using two 

equivalents of lithium as reducing agent (Scheme 4).18 Latter, Okazaki et al. used the same 

procedure with lithium naphthalenide to obtain a diarylgermylene from the corresponding 

dibromodiarylgermane.19 

 

 
Scheme 4: Formation of Ge(II) by metallic reduction 

 

Synthesis of germylenes via cyclo-elimination reaction was reported by Neumann et 

al. in 1980 (Scheme 5).20,21 Dimethylgermylene was formed at 70 °C by releasing the pyrene 

derivative. However, dimethylgermylene was highly reactive and trapped in situ with several 

reagents like dimethylbutadiene, (Z)-stilbene or dimethyltindichloride. 
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Scheme 5: Synthesis of Ge(II) by cyclo-elimination reaction and reactivity towards alkenes 

and tin derivatives 

 

Retro cyclo-addition was also studied by the group of Okazaki in 1995 (Scheme 6).22,23 

The novel germanium (IV) bearing a germacyclopropane group performed the retro cyclo-

addition and released the germylene with formation of phenylacetylene. Finally, Ge–C bond 

cleavage was proposed by the group of Müller in 2016.24 The addition of NHC to 7-

silanorbornadienes led to the formation of silylenes stabilized by NHC and calculation study 

with the germanium derivative suggests that this reaction could be applied to the formation of 

the corresponding germylenes. However, there are still no reports of this reaction with 

germanium to date. 

 

 
Scheme 6: Synthesis of Ge(II) by elimination reaction 

 

Finally, a synthetic route to generate germanium (II) species via photolysis was studied 

by the group of Masamune in 1985 (Scheme 7).25 The intermediate germylene was obtained 

under irradiation of  a disilagermane. However, the diarylgermylene was highly reactive and 

gave a dimer characterized after quenching with methanol. Nevertheless, formation of the 

diarylgermylene intermediate was determined by rapid addition of methanol to give the addition 

product. 
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Scheme 7: Synthesis of Ge(II) via photolysis reaction 

 
I.3. Functionalization and stabilization of germylenes 

 
Most of the research including germanium (II) is based on functionalization of 

germylenes to promote them as organoreagents, organocatalysts, ligands or even transient 

intermediates. That is why GeCl2•dioxane is the most commonly used precursor. Indeed, it can 

be easily functionalized by nucleophilic substitution of both chlorine atoms with different 

groups.  

However, due to the difference of nucleophilicity and electrophilicity of the germylene 

center compared to carbene, two different ways of stabilization were developed and employed 

in the literature: kinetic stabilization and thermodynamic stabilization. Indeed, the lack of 

stabilization of germylene can be characterized by high reactivity with other molecules or by 

dimerization reaction. As an example, Lappert et al. have reported in 1976 the synthesis of the 

first dialkylgermylene  (Scheme 8).26 It appears that the germylene has a monomeric form in 

solution and a dimeric form in solid state, the Ge=Ge double bond of the dimeric specie being 

shown by Raman spectroscopy. However, dimerization reaction can be avoided by increasing 

the steric hindrance of only one substituent on the moiety as reported by Jutzi in 1991.27 The 

publication showed that replacement of one hydrogen atom by a trimethylsilyl substituent can 

avoid the dimerization reaction in the solid state as observed on the X-ray structure. 

 

 
Scheme 8:	Effect of steric hindrance on di-alkylgermylenes 

 

Ar
Ar

Ge +Ar2Ge(SiMe3)2
hν

Ar = 2,6-diethylphenyl

Si2Me6

Ar
Ar

Ge
Ar
Ar

Ge

MeOH Ar
Ar

Ge
OMe

H

Ar
Ar

Ge
Ar
Ar

Ge
MeOH

H OMe

Ge

SiMe3

Me3Si

SiMe3

Me3Si
Ge

SiMe3

Me3Si

SiMe3

Me3Si
Ge

SiMe3

SiMe3

Lappert, 1976

SiMe3

SiMe3

Ge

SiMe3

Me3Si

SiMe3

Me3Si

Me3Si

Jutzi, 1991



Chapter I: General Introduction 

	 -58-	

The first way to stabilize a germylene center is kinetic stabilization, which implies 

bulky substituents around the germylene center to avoid any electrophilic or nucleophilic attack 

by using steric hindrance. Several examples are reported in the literature with different 

substituents (Scheme 9), going from dialkylgermylenes as seen with Lappert and Jutzi,26,27 

cyclic germylenes published by Kira in 1999,28 mono-arylgermylenes published by Power in 

199729 to di-arylgermylenes published by Matsuo in 2012.30 X-ray structures of all germylenes 

showed a V-shaped geometry with a Ge–C s-bond length of 2.00 to 2.07Å. 

 

 
Scheme 9:	Kinetic stabilization of some selected germylenes 

 

Steric hindrance has another impact on the germylenes reactivity. Matsuo et al. 

demonstrated the importance of the substituent bulkiness, in 2012, with the synthesis of 

(Eind)2Ge: that possess two bulky Eind groups (Scheme 9). The non-common steric hindrance 

around the germylene allowed an oxidation reaction and the synthesis of the first example of a 

stable germanone, heavier analogue of ketone, without stabilization by an intra or inter 

molecular Lewis base.30 

 

The second way to stabilize a germylene center is the thermodynamic stabilization. 

Two different categories will be discussed and developed due to its wide utilization in 

germylenes chemistry. The first method of stabilization consists in the p-donating of an a-

heteroatom in the p empty orbital of the metallylene. Indeed, the strategy employed 

independently by Öfele and Wanzlick,31,32 in 1968 to synthetize the first NHC-complex of 

mercury and chromium, was then used by Arduengo et al. to form the first stable and 

“bottelable” carbene.33 The method has been transferred to the heavier analogue by Hermann 

et al. who reported the synthesis of the NHGe in 1992 (Scheme 10).18,34 NHGe was obtained 

independently by nucleophilic substitution of GeCl2•dioxane with a dilithium diamide salt and 
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Scheme 10: Different pathways for the synthesis of NHGe 

   

Nevertheless, the first thermodynamically stabilized germylene was published by 

Lappert et al. in 1974.35 Chlorine atoms of GeCl2•dioxane were easily substituted by HMDS 

lithium salt in diethyl ether to afford (HMDS)2Ge: as a stable oil in 67% yield. This precursor 

was then used to obtain several substituted germylenes by protonolysis. The first example was 

also introduced by Lappert and Atwood in 1980 for the synthesis of the first bis-alkoxide 

germylene in 66% yield (Scheme 11).36 X-ray structure showed a V-shaped geometry with a 

Ge–O s-bond length of 1.81 Å. Since, the method was applied in many reactions, as example, 

in the use of sensitive ligands in basic conditions or for the easiness of removing H-HMDS as 

by-product under reduced pressure.37,38 

 

 
Scheme 11: Formation of alkoxy-germylene by protonolysis 

 

Interestingly, different NHGe were reported before the group of Herrmann with a 

similar strategy consisting to substitute the chlorine atoms of GeCl2•dioxane with the 

corresponding lithium amide salt. The different NHGe reported are the 4-member ring 

published by Veith in 1982 with a 91% yield 39,40 the 5-membered ring published by Meller in 

1985 with yields of 27% (R = CH3) and 67% (R = C6H5) respectively 41 and the benzimidazole 

ring published by Meller in 1989 with 87% yield (Scheme 12).42 The lack of X-ray structures, 

for the first two compounds, surely influenced the fact that they were unnoticed or less cited by 

other groups. However, X-ray structure of the third one was confirmed as a monomeric planar 

compound in solid state with no dimerization reaction, Ge–N s-bond presents a distance of 

1.86 Å close to the one report by Herrmann two years later.18 Recently, Cabeza et al. have 
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published a derivative in 67% yield with phosphine arm to obtain a pincer ligand.43,44 It is 

important to note that Hahn et al. have reported numerous bidentate and pincer ligands with a 

NHGe topology.45–47  

 

 
Scheme 12: Some selected NHGe 

 

Finally, the second method of thermodynamic stabilization is based on the donation 

ability of at least one Lewis base. The lone pair of the Lewis base is overlapping with the 

germylene empty orbital intramolecularly or intermolecularly (Scheme 13). Many properties 

can be easily modulated through this method by modification of the steric hindrance, the atom 

bonded to the metallylene, the nature of the Lewis base or the number of Lewis bases used. 

 

 
Scheme 13: Different methods of thermodynamic stabilization using an intra or an 

intermolecular Lewis base 
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1989 (Scheme 14).48 The polycyclic lithium silylamide salt was reacted with GeCl2•dioxane to 

form the corresponding germylene in 82% yield. The X-ray structure of the germylene was not 

reported. Nevertheless, its formation was proved via its oxidation with molecular oxygen and 

sulfur, leading to the germanone dimer and the first stabilized germanethione with 68% and 

98% yields respectively. X-ray structure of germanethione showed a trigonal-planar geometry 

with an additional Ge–N dative bond, two nitrogen are s-bonded with a length of 1.88 Å close 
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to the one reported by Meller above,42 and one nitrogen is dative bonded with a larger distance 

of 2.05 Å. 

 

 
Scheme 14: Example of donation of a Lewis base 

 

In 1997, Lappert et al., Leung et al. and Meller et al. have reported the same year the 

first diaryl and dialkyl germylenes stabilized with a Lewis base following the same 

experimental procedure, i-e nucleophilic substitution of GeCl2•dioxane with the corresponding 

aryl or alkyl lithium salts (Scheme 15).49–51 The homoleptic diarylgermylene synthesized by 

Lappert was obtained in 65% yield. 1H NMR spectrum showed only one singlet for the -2,6-

NMe2 substituents at room temperature, while two separate signals at 178 K were observed. 

This result indicates a fast exchange, at room temperature, between the -2,6-NMe2 substituents 

for the stabilization of the germylene. This exchange is slowed down with the temperature and 

gets closer to the X-ray structure with only one nitrogen donating to the germanium center. The 

homoleptic dialkylgermylene, synthesized by Meller and Leung independently, was obtained 

in 53% or 67% yield. X-ray structure showed a square-pyramidal geometry with Ge–C s-bond 

length of 2.13 and 2.14 Å, and Ge–N dative bond distance of 2.27 and 2.31 Å respectively. The 

difference in Ge–N dative bond distance compare to the structure obtained by Veith can be 

explained by variation of nitrogen donation to the germanium center. 

 

 
Scheme 15: Lewis base stabilization of some selected germylene 
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Both germylenes were characterized by X-ray crystallography and the structures showed a Ge–

C s-bond distance in allowance with the previous reported germylenes by Lappert, Meller and 

Leung (2.02 and 1.94 Å). However, Ge–N dative bond distances are totally different in both 

complexes. In the case of Jutzi, the distance is 2.09 Å, closing to the one reported by Veith with 

also one nitrogen as Lewis base.48 In the case of Couret, the distances are 2.34 and 2.57 Å, one 

nitrogen has a common dative bond when the other one presents a larger distance. In 2001, Jutzi 

et al. published a heteroleptic and a homoleptic germylene stabilized by an ether substituent in 

45% and 62% yield. Both germylene were characterized by X-ray crystallography and the 

structures showed an usual Ge–C s-bond distance (2.00 and 2.06 Å). Moreover, only one 

oxygen stabilizes the germanium center with a Ge–O distance of 2.07 (heteroleptic) and 2.19 

Å (homoleptic). The influence of the steric hindrance on the oxygen atom was investigated by 

replacing the t-Bu group by i-Pr or Me. Unfortunately, the corresponding germylenes were not 

stable and the product of insertion into O–Me bond was isolated. In order to force the 

stabilization with two oxygens, Yamamoto et al. published in 2005 a strained germylene in 

72% yield. X-ray structure showed a Ge–O distance of 2.36 and 2.39 Å. More recently, our 

group reported the stabilization of germanium center with sulfone substituent in 60% yield.54 

X-ray structure showed a distorted seesaw geometry with usual Ge–C distance of 2.03 Å and 

Ge–O dative bond distance of 2.36 Å.  

 

 
Scheme 16: Lewis base stabilization of some selected germylenes 
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The utilization of intermolecular Lewis base to stabilize germylenes was introduced 

by Jones et al. in 2006 (Scheme 17).55 They have reported the reaction of anionic gallium(I) N-

heterocyclic carbene analogue with Lappert dialkylgermylene dimer, which results in 

stabilization of the monomeric species in 56% yield. X-ray structure of the compound showed 

a Ga–Ge distance of 2.54 Å and typical Ge–C distance of 2.08 and 2.09 Å. Germylene is 

interacting with potassium, chelated by TMEDA, with a typical bond of 3.44 Å as reported by 

the authors. 

 

 
Scheme 17: Intermolecular Lewis base stabilization 

 

The same reactivity towards Lappert’s germylene dimer was reported with different 

NHGa in 2007.56 The same year, Baines et al. applied the utilization of NHC as intermolecular 

Lewis base in the stabilization of dialkylgermylene dimer and dichlorogermylene (Scheme 

18).57,58 X-ray structures obtained from these compounds showed pyramidal geometry with a 

Ge–CNHC length of 2.08 and 2.11 Å, in the range of Ge–C s-bond  which is particularly short 

for a dative bond.  

 

 
Scheme 18: Intermolecular Lewis base stabilization of some selected germylenes 
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Finally, germylenes can be stabilized by a combination of a p-donating heteroatom 

and a Lewis base. Thus, Hahn et al. have reported in 2017 the stabilization of a chlorogermylene 

with an intramolecular amino-NHC (Scheme 19).60 Germylene was obtained by protonolysis 

of Ge(HMDS)2 with the amino-NHC starting material in 86% yield. X-ray structure displayed 

usual bond distance for Ge–C of 2.06 Å and Ge–N of 1.89 Å. 

 

 
Scheme 19: Thermodynamic stabilization by a a–heteroatom and a Lewis base 

 

Recently, Nagendran et al. have reported a novel stable germanium (II) stabilized by 

a N-oxide function without oxidation of the germylene (Scheme 20).61 Germylene was obtained 

by metathesis in an excellent 96% yield. X-ray structure exhibits an usual Ge–S and Ge–O bond 

length of 2.44 Å and 2.03 Å. However, the monomeric form suggests that the N-oxide ligand 

acts as a strong electron donor and provides sufficient electronic stabilization to avoid 

dimerization while the compound doesn’t show steric protection. 

 

 
Scheme 20: N-oxide stabilization without direct oxidation of germylene 
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Scheme 21: Different keto-enolato based germylenes 

 

The stability of the germylenes is enhanced by electronic delocalization that gave 

enough electron to avoid dimerization of the germanium center without using bulky substituent.  

 

Karsh et al. published in 1988 a homoleptic germylene phosphorus 4p delocalized 

system (Scheme 22).64 31P NMR spectroscopy reveals that both phosphorus are equivalent at 

room temperature. However, different signals can be observed at -100 °C, which reveal a fast 

exchange between both phosphorus at higher temperature. The observation was explained by 

X-ray analysis. The structure obtained showed a pseudo trigonal bipyramidal geometry with 

two phosphorus s-bonded (2.55 Å) in axial position while the two-remaining phosphorus are 

datively bonded (2.93 Å) in equatorial position.  

 

 
Scheme 22: Phosphorus 4p delocalized stabilization of germylenes 

 

Other 4p delocalized based germylenes were developed and reported later in the 

literature (Scheme 23). The first amidinatogermylene was published by Richeson et al. in 

1997.65 Mazières et al. in 2010 synthesized a novel 2,4-diaza-3-phosphagermatidines in a low 

18% yield.66 Interestingly, X-ray structure showed a Ge–N distance similar for both nitrogen 

(1.98 Å), with also same P–N distance (1.60 Å). Latter in 2016, Singh et al. have reported an 

iminophosphonamide based germylene with different substituents on the nitrogen atoms.67 In 

2015, Stalke et al. have published a sulfur(VI)phosphanyl germylene in 68 % yield.68 Finally, 

Nakata et al. have reported another sulfurgermylene in 2017 with 59% yield.69 Again, nitrogen 

are at equal distance to the germanium center in each compounds.  
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Scheme 23: 4p delocalized stabilization of some selected germylenes 

 

Amidinate based germylenes have been widely explored after the report of Richeson.70 

It can be rationalized by their easiness of their preparation and the possibility to functionalize 

three different positions (Scheme 24). It is important to note that nitrogen atoms are located at 

the same distance to germanium in the heteroleptic compound. 

 

 
Scheme 24: Synthesis of amidinatogermylenes and further functionalizations 

 

The substituent on the nitrogen (R2) can be modulated to offer a large variety of steric 

hindrances going from the small group, i-Pr,71 to the bulky group, Diip.72 However, the steric 

hindrance has shown no notable influence on the stabilization or the reactivity of germylenes. 

Indeed, the reactivity towards potassium is the same for both t-Bu or Diip group (Scheme 25). 

The reaction leads to the formation of the dimer of germanium (I) which is stable and possesses 

a Ge–Ge single bond with a lone pair on each germanium.72,73 

 

 
Scheme 25: Reactivity of AmGeCl toward metallic reductant 
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On the other hand, the substituent on the central carbon of the amidinate group (R1) 

has an influence on the electronic properties of the metallylene. In comparison, Jones reported 

in 2008 the formation of the guanidinatechlorogermylene with a di-cyclohexylamine group at 

R2 position (Scheme 26).74 The amine group enhanced in electron the amidinate ring which 

increased the donation to the germylene. The consequence was an elongation of the Ge–Cl bond 

(2.24 Å) compared to the one reported also by Jones in 2006 with a t-Bu group at R1 position 

(2.17 Å).72 

 

 
Scheme 26: Effect of the substituent on the central carbon of the amidinate group on the 

stabilization of germylene 

 

Finally, the last position to functionalize is on the germanium. The strategy is a 

conventional nucleophilic substitution of chlorine as seen above. Alvarez et al. have published 
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yield (Scheme 27).75  

 

 
Scheme 27: Nucleophilic substitution on germylene 
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allows to different groups, such as Jones and Driess, to integrate various chemical functions 

and even to form bidentate or pincer ligands (Scheme 28).74,77,78 Thus, the amidinato system 

has been extensively studied and used in metallylene chemistry.72,74,75,79,80 

 

 
Scheme 28: Some selected amidinate based germylenes 

 

Transposition to 6p delocalized systems, as seen before with Stobbart, are numerous 

in the literature.62,81 However, β-dicetiminates and pyridyl-1-azaallyl appear to be the most used 

ligands in germylene chemistry. Leung et al. have reported in 2005 the synthesis of the 

heteroleptic germylene pyridyl-1-azaallyl in 62% yield (Scheme 29).82 X-ray structure showed 

a pyramidal geometry with regular distance of Ge–N s-bond (1.92 Å) and a short dative bonded 

length (2.02 Å). Later, Leung et al. have reported the nucleophilic substitution of the chlorine 

by nucleophiles in order to obtain several substituted germylenes.83  

 

 
Scheme 29: 6p delocalized stabilization of germylenes 
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the germanium center which reveals a delocalization of electron even at the solid state with a 

Ge–N distance of 1.96 and 1.98 Å. The distance is slightly longer than a normal s-bond and 
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gets closer to the distance of two dative bonds. Again, the chlorine atom was substituted by 

several nucleophiles to obtain numerous novel heteroleptic germylenes.81,87,88 

 

 
Scheme 30: Others 6p delocalized germylenes 

 

Finally, the last family of germylenes stabilized by delocalization is a 10p  delocalized 

system, aminotroponiminate. Dias et al. have published the first example in 1997 with an 

excellent yield of 92% (Scheme 31).89 X-ray structure showed a usual Ge–N bond distance of 

1.94 Å for both nitrogen in allowance with the literature for a delocalized compound. Later, 

several germylenes could be obtained thanks to nucleophilic substitution.90,91 

 

 
Scheme 31: 10p delocalized stabilization of some selected germylenes 

 

Recently, Castel et al. have reported, in 2015, the synthesis of new substituted 

aminotroponiminate for the synthesis of germanium nanoparticles (Scheme 32).92 They showed 

and studied the formation of Ge/GeO2 core/shell NPs. 

 

 
Scheme 32: 10p delocalized germylene applied to the formation of nanoparticles 
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I.4. Germylenes in coordination chemistry and applications in catalysis 

 
Stable germylenes can be applied in many reactions as reagents, catalysts or ligands. 

Interestingly, the method used to stabilize the germylenes plays a preponderant role in any 

reactions. Indeed, the kinetic stabilization offers steric hindrance to the center, which includes 

small electronic modification of the germylene. The empty orbital remains very reactive and 

the lone pair has a high s character. For the thermodynamic stabilization, the electronic is 

modified, that means the lone pair can be more s-donor and the empty orbital is deactivated. 

However, the reactivity of germylenes is well explored compared to their ability to act like  s-

donor ligands. In comparison, carbenes or silylenes are well known in coordination chemistry 

and their catalytic processes are well defined. The difference is mainly due to the difficulty of 

obtaining sufficiently robust germylenes complexes to envision their use in a catalytic cycle. 

 

Germylenes usually have the same type of coordination as Fischer carbene due to the 

singlet state of the free ligand (Scheme 33). However, Sekiguchi et al. have recently published 

in 2015 an example of Schrock type complex by coordination of germylenes with group IV 

metal. Hf=Ge double bond was confirmed by many analysis like DFT calculations, X-ray 

crystallography and UV measurement.93,94 

 

 
Scheme 33: Coordination of Fischer and Schrock carbenes 

 

Frenking et al. reported in 1998 a theoretical study on the σ-donor properties of 

carbenes, silylenes and germylenes with group 11 transition metals, Cu, Ag and Au.95 The study 

compared the bond dissociation energy between the metal and the group 14 element. The result 

of the calculations confirmed the general trend that metal-ligand bond strengths is stronger with 

carbene than silylene than germylene. Another general trend was observed for the metal-ligand 

bond is stronger with gold than copper than silver. However, Szilvási et al. have published 
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another theoretical study in 2017 on the s-donor and p-acceptor properties of a large panel of 

germylenes and they compared them with PPh3, PCy3 and basic NHCs.96 The results confirmed 

that germylenes are basically less s-donor than NHCs, but better than phosphines in general. 

Nevertheless, the calculations also showed that germylenes are better p-acceptors than most of 

NHCs and phosphines. That is why germylenes can be considered for performing different 

catalytic steps difficult to develop with other ligands. 

	

The method used to stabilize germylenes is fundamental to apply them in coordination 

chemistry. As seen before, germylenes can be stabilized by kinetic or thermodynamic 

stabilization. Kinetic stabilization is barely used for the coordination chemistry because the 

empty orbital remains very reactive. Nevertheless, several examples of kinetic germylenes 

complexes are available in the literature with carbonyl ligands without any application in 

catalysis. Lappert et al. have reported in 1974 the first application of dialkylgermylenes in 

coordination chemistry of several metals like iron, tungsten, chromium and platinum (Scheme 

34).97 However, only chromium complex was crystalized. Okazaki et al. have published in 1994 

the first example of diarylgermylenes complexed to a transition metal.98 The pentacarbonyl 

chromium and tungsten complexes were obtained in low 5.5% and 6.3% yields respectively. 

X-ray structure of  tungsten complex exhibits a distance for Ge–W bond of 2.59 Å in allowance 

with tungsten-germylene complex reported latter with a thermodynamic stabilization.99–101 

 

 
Scheme 34: Kinetic stabilization of some selected germylene complexes 

 

Latter, Don Tilley et al. have reported a novel efficient method to obtain group VIII 

complexes. The synthetic pathway is to incorporate a Ge(IV) species with the transition metal 

to permit an a-H migration and an elimination of toluene (Scheme 35).  
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Scheme 35: Hydrogen substituted ruthenium-germylene complex 

 

It was first published in 2009 with the synthesis of the germylene ruthenium hydride 

complex in 67% yield (Scheme 36).102 X-ray structure exhibits an extremely short Ru–Ge bond 

length of 2.28 Å compared to the cationic one reported three years after (2.33 Å).103 Tobita et 

al. expanded the reaction to iron complex in 2017 with a yield of 67%.104 Again, X-ray structure 

showed an extremely short Fe–Ge bond length of 2.19 Å. 

 

 
Scheme 36: Hydrido-germylene complexes of group VIII 

 

On the other hand, thermodynamic stabilization appears easier due to a large amount 

of transition metals examples with well-defined germylene ligands. Indeed, the electrons 

brought to the metallylene center increase the s-donation of the lone pair and decrease the 

reactivity of the empty orbital. Lewis base and p-donating of an a heteroatom are the two-

different ways to stabilize the germanium center as previously discussed (Scheme 37).  

 

 
Scheme 37: Geometry of thermodynamic germylene complexes 

 

The main difference between these two kinds of stabilization is in close relationship 

of the geometry of the complexes that directly influences the stability. Concerning the 

geometry, when germylene is coordinated to a transition metal, p-donating stabilization induces 

a planar geometry, sp2 type, whereas Lewis base induces a tri-coordinated center geometry. It 

is important to note that the hybridization of heavy atoms is very difficult due to the poor 
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overlapping between the molecular orbitals.13 That is why p-donating complexes are 

unfavoured with the planar geometry, sp2 type. Nevertheless, examples can be found in 

literature.18 One of them was reported in 2002, by Holl et al., when a germylene reported by  

Lappert is coordinated to palladium (Scheme 38).105 The lability of germanium ligand was 

tested with 1,2-diphenylethanedione helding to the decoordination and the cycloaddition 

products which was fully isolated. 

 

  
Scheme 38: Decoordination of germylene and trapping with 1,2-diphenylethanedione 

 

Another example was reported in 1992 by Herrmann et al., where t-Bu-NHGe 

coordinates a nickel carbonyl complex (Scheme 39). Unfortunately, they have only reported 

the coordination chemistry of the satured NHGe ring, the unsatured NHGe nickel complex 

appears to be unstable. IR spectra of the bis-germylene nickel (CO)2 reveal two carbonyl bands 

at 2003 and 1945 cm-1 which is particularly close to the Ni(CO)2(PPh3)2 derivative with bands 

at 2000 and 1941 cm-1. The observation showed that NHGe have a s-donation close to PPh3. 

 

  
Scheme 39: Coordination of NHGe with Nickel carbonyl 

 

Nevertheless, Hahn et al. developed an interesting synthesis of a multi-dentate ligand 

to overcome the problem with chelation stability. They have published in 2007 the synthesis of 

several benzannulated NHGe units with different linker substituents in yields from 50 to 86% 

(Scheme 40).46 Two molybdenum complexes were also obtained by addition of Mo(nbd)CO4 

to the free germylene. X-ray structure exhibits an octahedral molybdenum coordinated by two 
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germanium atoms, and the Ge–Mo bond length of 2.53 Å is in the range of the analogues 

complexes previously reported in the literature. 

 

 
Scheme 40: Bidentate molybdenum complex 

 

Hahn et al. reported afterwards a pincer ligand,45 a bi-dentate ligand with asymmetric 

arms106 and finally a macrocyclic bis-germylene.107 Recently, Cabeza et al. used the same 

approach to synthetize a pincer benzannulated NHGe with phosphine arms.43 Unfortunately, 

the coordination chemistry with palladium and rhodium led to the formation of germanium (IV) 

derivative by insertion into the metal-chlorine bond (Scheme 41).  

 

 
Scheme 41: Formation of germyl complexes 

 

Subsequently, Cabeza et al. have investigated the coordination chemistry with nickel, 

platinum and iridium, they obtained the same oxidative insertion into M–Cl bond. Surprisingly, 

ruthenium was obtained as the only complex with a chlorine atom where germylene acted as a 

ligand (Scheme 42).44,108 
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Scheme 42: Coordination or oxidative addition of pincer germylene-phosphine ligands 

 

Nowadays, Lewis base stabilization has appeared as an evidence and is mainly used 

to obtain germylene complexes stable enough to be applied in catalysis. The complexes exhibit 

a wild diversity of architecture or coordination to transition metal with new properties. On this 

path, amidinate based germylenes are surely the most used ligands for coordination chemistry 

due to their easiness to prepare as shown previously.109 Driess et al. reported in 2014 an iron 

pincer germylene complex with carbonyl ligands in 39% yield (Scheme 43).78 The complex 

was obtained by ligand metathesis of PMe3 with COgas. IR spectrum exhibits two bands for the 

carbonyl groups at 1855 and 1805 cm-1, which showed that germylene have a s-donation close, 

but still inferior than silylene (1830 and 1778 cm-1). However, the results exhibited better 

donation than NHC (1928 and 1865 cm-1) or phosphine (1950 and 1894 cm-1) derivative.110,111 

Lewis base stabilization have a remarkable influence on the coordination ability of germanium 

(II) by boosting s-donation compare to NHGe which was equivalent to phosphine as seen with 

Herrmann et al.18 

 

 
Scheme 43: Formation of iron-carbonyl complex for IR comparison 

 

The first complex was published by Jones et al. in 2008 (Scheme 44).74 The tungsten 

complex was obtained in 56% yield. X-ray structure exhibits a usual Ge–W bond length of 2.56 

Å. Since then more than a hundred of complexes based on amidinate metallylenes are reported 

to date. As examples, Castel et al. have reported a bis-germylene tungsten and molybdenum 
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complexes in 2010, Cabeza et al. have reported a germylene manganese complex in 2014 and 

Madec et al. have reported a germylene iron complex in 2015.71,112,113 

 

 
Scheme 44: Selected examples of amidinategermylene complexes 

 

An interesting observation was reported by Cabeza et al. in 2015 (Scheme 45).75 They 

evidenced the need to tuned the chloroamidinatogermylene published by Roesky,73 in 2008, to 

have access to coordination chemistry of group 11 transition metals. Indeed, the synthesis of 

AmGe-t-Bu derivative by nucleophilic substitution of AmGeCl with t-BuLi can be applied in 

coordination chemistry of copper, silver and gold complexes in good yields going from 61% to 

95%. 

 

 
Scheme 45: Importance of substituted amidinategermylene for synthesis of group 11 

complexes 

 

Starting from the same AmGe-t-Bu precursor, Cabeza et al. have published the 

coordination with iridium and ruthenium in 2015 (Scheme 46).114 Complexes were obtained in 

excellent yield of 98%. X-ray structure showed, for ruthenium, a Ge–Ru bond length of 2.43 Å 

which relies in the longest distance reported. Besides, Ge–Ir bond length is also the longest 

reported to date with 2.42 Å.  
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Scheme 46: Coordination of substituted amidinatogermylenes with group 8 and 9 complexes 

 

Ruthenium and iridium were applied in hydrogen transfer catalysis (Scheme 47). The 

goal was to reduce a ketone into the corresponding alcohol in protic media.115 Both of the 

complexes are active and can reduce cyclohexanone with 55% of conversion after 24h at 50 °C 

for ruthenium complex, whereas iridium can fully convert the ketone into alcohol after 1.5h at 

the same temperature. Surprisingly, the catalysis does not need any base as additive to form the 

active catalyst. Indeed, the proposed catalytic cycle needs the addition of external base to 

generate a hydride, which is the catalytically active species. However, Manzano et al. described 

in 2009 that the presence of a free Lewis base can act as a base to generate the active species.116 

 

 
Scheme 47: Application of group 8 and 9 complexes to hydrogen transfer catalysis 

 

Driess et al. published in 2012 a germylene iridium complex (Scheme 48). C–H 

insertion of iridium was immediate to afford the pincer hydride iridium (III) complex.77 

 

 
Scheme 48: Germylene pincer complex of iridium 
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This complex was applied in catalytic C–H borylation of benzene using HBPin with 

one equivalent of cyclooctene (coe) as additive (Scheme 49). Addition of coe enhanced 

significantly the catalytic activity of the system: without coe, after 24h at 100 °C, a conversion 

of 46% was observed whereas it increased to 80% with one equivalent of coe. Silylene 

derivative followed the same behavior with 53% of conversion without coe and 90% with one 

equivalent. These results were explained by the authors by the fact that coe acts as an H2 

acceptor which has a beneficial effect on the catalytic cycle. Finally, the catalytic activity was 

compared with phosphines. Dialkylphosphine (P-t-Bu2) and diaminophosphine (P(NCH2)2) 

analogues were prepared through the same synthetic pathway and showed unambiguously a 

drop-in activity with conversion of 64% and 21% respectively.  

 

 
Scheme 49: Application of germylene iridium pincer complex to C–H borylation of benzene 

 

The same year in 2012, Driess et al. have reported a bis-germylene presenting a novel 

ferrocene linker used to obtain a bidentate cobalt complex in 61% yield (Scheme 50).117 X-ray 

structure exhibits a Ge–Co bond length of 2.20 Å, the shortest distance known to date.   

 

 
Scheme 50: Germylene pincer complex of cobalt 
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of the Ge(II) donor centers to Co, which hampers the creation of an active site for the substrate 

coordination. 

 

Latter, Driess et al. published in 2012 two synthesis to obtain a germylene nickel 

complex (Scheme 51).118 The first synthetic approach involves a C–Br oxidative addition on 

nickel (0) (57% yield) when the second consists of  a C–H activation with nickel (II) precursor 

(88% yield). 

 

 
Scheme 51: Germylene pincer complex of nickel 

 

The complex was used in Sonogashira-Hagihara cross-coupling reaction of iodo-1-

octene with phenylacetylene (Scheme 52). After 24h of heating at 100 °C, the conversion was 

up to 53% which was the better result obtained compared to silylene (39 %) and phosphorus 

(40 %) analogues. 

 

 
Scheme 52: Application of germylene nickel pincer complex to Sonogashira-Hagihara cross-

coupling reaction 
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X-ray crystallography and showed a square planar geometry around the platinum center. 
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Scheme 53: Bis-germylene complex of platinum 

 

The platinum complex was applied in cyanosilylation of aldehydes and ketones 

successfully (Scheme 54). Benzaldehyde was fully reduced in presence of TMSCN at 50 °C 

after 6h. The method was expanded to a large variety of substituted arylaldehydes and 

alkylketones. Nevertheless, the catalyst showed no reactivity with arylketone like acetophenone 

and its substituted derivatives. 

 

 
Scheme 54: Application of bis-germylene platinum complex to catalytic cyanosilylation of 

aldehydes and ketones 

 
I.5. Sulfoxides in coordination chemistry, generalities and applications as 

hemilabile ligands 
 

A large variety of substituents has been used over the years to stabilize germylenes 

which such properties that finally allowed to obtain stable functionalized germylenes for 

applications in catalysis. The reports of Driess, Cabeza and Nagendran published over the past 

years have shown that germylenes can find interesting application in catalysis with novel 
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of our knowledge, there is no-report concerning hemilabile bi-dentate ligands with a strong σ-

donor moiety and a weaker one involving germylenes. Hemilabile concept was introduced by 

Jeffrey et al. in 1979 with the synthesis of a bis-phosphorus ether ruthenium complex (Scheme 

54).120 X-ray structure showed selective formation of only one isomer, trans phosphorus-

oxygen complex. Finally, hemilability of the compound was proven by selective substitution 
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of ether ligand with carbon monoxide which showed ether has a weaker σ-donor ligand to 

ruthenium in comparison of phosphine. 

 

 
Scheme 54: Selected example of one of the first hemilabile complex 

 

Since hemilabile complexes have found many applications in catalysis due to their 

ability to decoordinate partially a transition metal through the weak σ-donor moiety and allow 

coordination of another substrate. As examples, they were applied in ring-opening metathesis 

polymerization published by Linder in 1998,121 in transfer hydrogenation reported by Gao in 

1999,122 in hydrogenation published by Kadyrov in 1998123 and in various others catalysis.124,125  

 

In order to synthesize a first example of hemilabile germylene ligand, we selected 

sulfoxide as a valuable weak σ-donor moiety. Indeed, sulfoxide presents two major advantages, 

a large possibility of coordination through sulfur or oxygen atoms and the presence of a 

stereogenic center when the sulfur atom is substituted by two different groups (Scheme 56). 126–

128 

 

 
Scheme 56: Sulfoxide and their coordination ability 
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orbital calculations and X-ray spectroscopy have shown that sulfoxide is polarized, with a 

positive charge localized on the sulfur atom and a negative charge localized on the oxygen 

atom. These observations are in accordance with the relatively short S–O bond distance that 

indicate a resonance structure of three forms (Scheme 57).126 
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Scheme 57: Canonical forms of sulfoxide 

 

Coordination of sulfoxide can be imagined ahead of the reaction. Indeed, they follow 

the HSAB theory with a preference of oxygen for hard transition metal contrary to sulfur that 

prefers soft center. Calhorda et al. showed in 2015 that 3d transition metals prefer oxygen 

centers when 5d transition metals prefer sulfur, finally 4d transition metals can accept both 

coordination.129 It is important to note that other effects can slightly change these observations. 

Peters et al. have reported an excellent example, in 2012, with the synthesis of two pincer 

sulfoxide nickel complexes bearing two phosphine arms where the sulfur atom was coordinated 

to Ni(0) and Ni(II) instead of oxygen (Scheme 58). The explanation advanced was the favorable 

and more stable 5-membered ring formed that drives a coordination with sulfur.130  

 

 
Scheme 58: Formation of pincer sulfoxide nickel complexes bearing a coordination with 

sulfur  

 

Another factor can also influence the sulfoxide coordination and explain why a hard 
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the ligand around the metal center as shown by Calligaris et al. in 1996.127 Finally, sulfoxide 

ligands coordination is the results of different electronic and steric factors. 
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It is relevant to note that X-ray crystallography revealed a S–O bond distance of 

sulfoxide modified upon coordination, passing from ~1.49 Å to 1.47 Å in S–bonded complexes 

and 1.53 Å in oxygen-bonded complexes.127 

 

Another important physical property of sulfoxide is their characteristics by IR 

spectroscopy. Indeed, IR stretching band of sulfoxide are found at approximatively 1000 to 

1050 cm-1, whereas sulfoxide coordinating a transition metal is totally different. The band is 

between 1050 and 1200 cm-1 when sulfur is coordinated and the band is below 1000 cm-1 when 

oxygen is coordinated.132,133 The analysis of an IR spectrum can provide useful data to 

determine if the sulfoxide is free or if it is coordinated by sulfur or oxygen atoms.  

 

Sulfur and nitrogen centers are isoelectronic, it is nevertheless appropriate to 

demonstrate that racemization of enantiopure sulfur operate only under specific conditions 

compared to nitrogen. Khan et al. have published in 1964 a study to show that thermal 

racemization of sulfoxide appears only at high temperature, approximatively 200 °C.134 The 

others condition to racemize a enantiopure sulfoxide are concentrate acidic media,135 

irradiation,136,137 and finally electron transfer (Scheme 59).138 

 

 
Scheme 59: Experimental conditions to racemize chiral sulfoxide 

 

Nowadays, numerous examples of sulfoxide ligands are reported with different 

application in catalysis.139 The first example of enantioselective catalysis with ruthenium and 

chiral sulfoxide ligands was published by James et al. in 1976, with a poor enantioselectivity 

obtained of 12 % ee in catalytic hydrogenation of olefinic carboxylic acids under H2 (Scheme 

60).140 
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Scheme 60: First example of enantioselective catalysis using chiral sulfoxide ligand 

 

Since then a large variety of examples were developed, reported and applied in 

enantioselective catalysis (Scheme 61).139 For example, Dorta et al. have reported in 2008 the 

1,4–addition of arylboronic acids to cyclic a,b–unsaturated ketones and esters with a bis-

sulfoxide rhodium complex in 99% yield with 98% ee.141 Later, Liao et al. have published, in 

2012, the asymmetric addition of arylboronic acids to NH isatins with Rh(I) sulfoxide complex 

in a good yield of 95% and a 92% ee.142 Finally, Xiao et al have reported, in 2014, the 

asymmetric Tsuji–Trost reaction in presence of an amine-sulfoxide-phosphine ligand with 

yields superior to 86% and ee superior to 97%.143 

 

 
Scheme 61: Selected examples of chiral sulfoxide ligands applied in catalysis 

 

In parallel, several groups have reported the synthesis of others hemilabile ligands with 

a sulfoxide function and presenting a NHC as the strong σ-donor moiety (Scheme 62). The first 

example was reported by Huynh et al. in 2009.144,145 The novel sulfoxide ligand present two 

benzimidazole arms. However, the corresponding palladium complex obtained showed no 

coordination of the sulfoxide moiety. Later, Cardenas et al. have published in 2013 the synthesis 

of an imidazolium-sulfoxide ligand in a good 76 % yield.146 The same behavior was observed 

with the palladium complexes, sulfoxide has a weak interaction with the transition metal 

without showing any coordination. Finally, Chen et al. have reported in 2014 another 

imidazolium-sulfoxide ligand.147 Coordination of oxygen and sulfur was obtained by chlorine 

removal of the bis-NHC dichloropalladium complex with AgPF6, which was confirmed by X-

ray analysis. 
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Scheme 62: Sulfoxide-NHC complexes reported 

 

The formation of sulfoxide bidentate hemilabile complex was essentially achieved 

with phosphine and some examples are now available with stronger σ-donor ligand. All these 

results led us to the possibility of synthesizing a bidentate ligand presenting a chiral center as a 

useful demonstration and tool for group 14 heavier analogues in order to obtain an active 

catalyst, which can present asymmetric induction.  
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II. Conclusion 
 

Germylenes, heavier analogues of carbenes, have attracted considerable interest the 

last decades since the breakthrough of NHC. Their kinetic and thermodynamic stabilization was 

first studied with the development of new substituents to afford novel steric and electronic 

properties. Thus, a large variety of ligands has been described for the synthesis of heteroleptic 

or homoleptic germylenes through the development of aryl, alkyl, nitrogen, oxygen, sulfur, 

phosphorus or even 4p, 6p, 10p delocalized substituents.   

 

The synthesis of stable germylene complexes successfully applied in catalytic 

reactions was a breakthrough achieve in recent years. Interestingly, the architecture of these 

complexes was monodentate, bis-monodentate or pincer with any stereogenic information. That 

is why the lack of information about asymmetric bidentate hemilabile complexes pushed us to 

investigate the formation, characterization and properties of a germylene combined with a 

sulfoxide moiety.  

 

First, the formation of germylene-a-sulfoxide ligands was investigated and their 

properties in coordination chemistry studied with several transition metals. The design of the 

ligands was then rationalized to prepare germylene-b-sulfoxide. 

 

Then, the formation of a novel family of metallylenes with sulfonimidamide 

substituents was envisioned in order to incorporate an asymmetric sulfur (VI) directly on the 

skeleton of the group 14 stabilizing group.  

 

Finally, the catalytic activity of several complexes was tested in hydrogen transfer 

reaction. The scope of the catalysis was investigated as well as the influence of the stereogenic 

center on the substrates. Polymerization was also investigated with the novel stannylene 

sulfonimidamide. 
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Abstract 

 

 

Hemilabile amidinate germylene – sulfur (II, IV, VI) ligands have been synthesized in 

two steps in good yield from the readily available GeCl2•dioxane and commercially available 

sulfoxides.  

 

These ligands were easily converted into tungsten, molybdenum, ruthenium phosphine 

and ruthenium p-cymene complexes. NMR spectroscopy, X-ray diffraction and IR studies 

reveal that different types of coordination are possible with the amidinate germylenes -a- sulfur 

(II, IV, VI), thus confirming the hemilabile character of these ligands. Formation of mono-

dentate, bi-dentate and bis-germylene complexes were observed through the utilization of 

different transition metals or metal precursors.  
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I. Introduction  

 
Stabilization of germylenes is now well known.1 Nevertheless, germylenes are mainly 

studied in coordination chemistry with carbonyl complexes, confining their use in catalysis. 

The last chapter demonstrates that the lack of stability of germylenes is one of the reason of 

their scarcity in catalytic reactions and that thermodynamic stabilization appears as an evident 

choice for the stabilization of germylenes, 

 

Therefore, amidinate groups have been widely explored to stabilize metallylenes 

thanks to their easiness of preparation and the possibility of functionalization on three different 

positions (Scheme 1).2  

 

 
Scheme 1: Synthetic pathway of amidinatogermylenes 

 

Amidinate group is an impressive versatile tool to stabilize germylenes with a unique 

opportunity to modulate it on various positions, to change the electronic and/or the steric 

hindrance properties. That is why amidinate groups are extensively studied and used in 

metallylene chemistry, numerous amidinatogermylenes being reported to date (Scheme 2).3–7 

 

 
Scheme 2: Examples of amidinatogermylenes 
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Nevertheless, coordination chemistry of germylenes is in the early beginning in 

comparison to carbenes, and again the scarce examples reported in catalysis are generally based 

on the amidinate skeleton (Scheme 3).8–11 

 

 
Scheme 3: Germylene complexes applied in catalysis 

 

Our research project consists in the development of new bi-dentate hemilabile mixed 

metallylene-sulfoxide ligands for their application in coordination chemistry and catalysis.12 

The following part will discuss about the design, the synthesis and the properties of the ligands 

(Figure 1). Synthesis of germylenes combined with a sulfoxide group is challenging and 

attractive for multiple reasons: (i) formation of a new type of tetrylenes, (ii) possible effect of 

sulfoxide as intramolecular Lewis base and (iii) elaboration of bi-dentate ligands for 

coordination chemistry.  

 

 
Figure 1: Combination of germylene stabilized with intramolecular Lewis base and sulfoxide 
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Then, application of the bi-dentate ligands to form complexes will be discussed latter 

in the chapter. Several complexes with different properties and a hemilabile character is 

expected with the germylene and the sulfoxide toward transition metals (Figure 2).  

 

 
Figure 2: Different possibilities of coordination of hemilabile germylene-sulfoxide ligand to a 

transition metal 
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II. Results and discussion 

 
II.1. Investigation in the formation of a germylene-sulfoxide 

 
In early exploration of the subject, the first question was: is it possible to stabilize a 

germylene center with a sulfoxide function, intra or inter molecularly? The question is 

particularly relevant to the reactivity of sulfoxide, known as oxidant for several reactions like 

Swern oxidation, oxidation of alkynes to a-dicarbonyl and oxidation of thiols to disulfides.13–

15 Certainly, the most known reaction using sulfoxide as oxidant is Swern oxidation that permits 

to obtained ketones from the corresponding alcohols with equimolar amounts of sulfoxide and 

oxalyl chloride (Scheme 4).  

 

 
Scheme 4: Swern oxidation reaction 

 

In 1987, Satgé et al. reported the use of DMSO as an oxidant to obtain a germanone-

chromium complex.16 Even though DMS was identified as resulting of the reduction of DMSO 

and confirmed that sulfoxide oxidized the germylene center, the germanone-chromium 

complex has not been isolated and only the products of further reactions were obtained. To 

elucidate the question of our model, reaction of GeCl2•dioxane with one equivalent of sulfinyl 

carbanion was carried out (Scheme 5). 

 

 
Scheme 5: Reaction of sulfinyl anion with GeCl2•dioxane 
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This result can be explained according to two hypotheses: the first one was the protonation of 

the nucleophile due to the absence of reaction with GeCl2•dioxane and protonation of the 

R2

OH
R1

Cl

O

Cl

O

1) DMSO,

2) NR'3 R2

O
R1

+ DMS + CO + CO2

1) LDA, -80 °C, 1h
2) GeCl2•dioxaneS

O

THF

S

O

Ge
Cl



Chapter II: Germylene -a- Sulfoxide Ligands: Synthesis, Characterization and Coordination of a 

Novel Hemilabile Metallylene Ligand 

 - 109 - 

carbanion by the solvent. The other possibility was the reaction with GeCl2•dioxane occurred 

with formation of an unstable product that caught proton during its degradation. As a mean to 

go further, we tried the same reaction with 0.5 equivalent of GeCl2•dioxane to obtain the 

homoleptic germylene (Scheme 6). However, the same result was observed and the protonated 

sulfoxide was recovered at the end of the reaction. Variation of temperature and order of 

addition were also investigated to obtain the product, but the same results were observed. 

 

 
Scheme 6: Reaction of two equivalents of sulfinyl carbanion with GeCl2•dioxane 

 

Therefore, the pre-stabilization of the germylene appears necessary to perform any 

nucleophilic substitution with sulfinyl carbanion because alkylarylsulfoxide seems not able to 

stabilize enough the germylene center. The role of the pre-stabilization is also to allow the 

sulfoxide to coordinate transition metal without destabilization of the metallylene.   

 
II.2. Synthesis of amidinatochlorogermylene (II) precursor 

 
Amidinatochlorogermylenes are excellent precursors that combine both stabilization 

of metallylene and a good leaving group for nucleophilic substitution.17 Indeed, chlorine atom 

is easily accessible and has been already substituted by several strong nucleophiles.5,18,19 

 

The amidinatochlorogermylene selected is one recently reported by our laboratory.18 

It shows a modest steric hindrance and a simple skeleton that should allow a convenient 

nucleophilic substitution and an easy structural analysis of the future ligands. 

 

The precursor was formed in a one-pot reaction from the di-isopropylcarbodiimide 

(DIC) (Scheme 7). The first step is a nucleophilic addition of t-BuLi on the DIC, followed by 

transmetalation with GeCl2•dioxane to obtain the amidinatochlorogermylene as a pale yellow 

solid in a good 97% yield. 
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Scheme 7: Synthesis of AmGeCl 

 

II.3. Synthesis of amidinatogermylene (II) -a- sulfur (II, IV, VI) 

 
The mixed germylene-sulfoxide ligand was obtained through a synthetic pathway that 

included a conventional nucleophilic substitution of halide. The sulfinyl carbanion was formed 

by deprotonation with a non-nucleophilic base to prevent any nucleophilic substitution of alkyl 

on the sulfur atom.20 Also, the deprotonation was selectively done in a position and the 

regioselectivity was explained by electrostatic effect.21,22 Racemic methylphenylsulfoxide was 

used first to determine the reaction conditions. 

 

Sulfinyl carbanion was formed by addition of LDA on the sulfoxide at -80 °C. After 

1h at -80 °C and 1h at room temperature, the mixture was added to the 

amidinatochlorogermylene at -80 °C (Scheme 8). 

 

 
Scheme 8: Synthetic pathway of 1a 
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or the amidinatochlorogermylene. Indeed, Power et al. reported in 2009 that germylene in 

presence of ammonia led to the insertion product.23 

 

Di-iso-propylamine has been removed to determine its influence. Evaporation under 

reduced pressure of the preformed sulfinyl carbanion was selected as the easier method to 

eliminate the amine. Besides, the stability of the carbanion after elimination of the amine was 

ascertained by a trap step with iodomethane (Scheme 9). 1H NMR analysis of the obtained 

product shown clean formation of methylated product, proving the viability of the method 

without decomposition of the carbanion during the process. 

 

 
Scheme 9: Methylation of dry sulfinyl anion 

 

From this result, the reaction of condensation with amidinatochlorogermylene was 

performed in the same conditions (Scheme 14). After extraction with pentane, NMR 

spectroscopy analysis undoubtedly shown the formation of a clean product assimilated to 1a. 

Removal of di-iso-propylamine was the key step to avoid the formation of side products in the 

synthesis. 

 

The 1H NMR spectrum exhibits an AB system at 2.74 ppm for the Ge-CH2-SO, in 

THF-d8, which is a characteristic signal for a -CH2- in a position of a chiral center (Figure 3). 

The signal (2.74 ppm) is in the same range of the starting material (2.68 ppm), it may be 

explained by the close electronegativity between germanium and hydrogen. The chiral center 

has also a noticeable influence on the amidinate iso-propyl groups, even if the -N-CH-(CH3)2 

(4.31 ppm) shows no difference compared to the starting material (4.31 ppm), the major 

difference observed concerns the -N-CH-(CH3)2. Indeed, the starting material showed two 

doublets, due to planar symmetry, contrary to four doublets in the product. The four signals for 

CH3- groups appear as the result of the loss of symmetry in the molecule brought by the 

sulfoxide moiety (Figure 3).  
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Figure 3: 1H NMR spectrum of 1a in THF-d8 

 

In addition, 13C NMR has also evidenced a solid proof on the formation of 1a (Figure 

4). A secondary carbon (61.5 ppm) was identified as the –CH2- between the sulfoxide group 

and the germylene moiety, the corresponding carbon being primary in the starting sulfoxide, 

which undoubtedly shows the formation of 1a. Again, the chiral center has a noticeable 

influence on the amidinate iso-propyl groups, each carbon was found non-equivalent due to a 

loss of symmetry in the product. The tertiary carbons (-N-CH-(CH3)2) appear as two peaks with 

almost the same chemical shift (47.7 and 47.6 ppm) and the primary carbons (-N-CH-(CH3)2) 

appear as three peaks with two carbon overlapping (26.9, 24.5 and 24.5 ppm).  

 

 
Figure 4: 13C NMR spectrum of 1a in THF-d8 
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1a appears as an oil at room temperature that degrades upon time at room temperature. 

Study of stability was realized at room temperature on a dry sample and a sample in a solution 

of THF-d8 with a 10-hour stirring. Same results were obtained and showed no particular effect 

of the solvent on the stability of 1a (Figure 5). The mechanism of degradation was not studied 

as well as the resulting products. However, it was determined that the compound 1a was stable 

at -24 °C and no degradation was observed at this temperature after a week. This observation 

led to try low temperature crystallization without any success.  

 

Mass spectroscopy analysis have been performed to validate the formation of 1a with 

another analytical method. However, only peaks corresponding to amidinatogermylene and 

methylphenylsulfoxide fragments were observed by electronic impact and MALDI-TOF 

analysis. 

 

 
Figure 5: 1H NMR of 1a after 10 hours in THF-d8 

 

1b, analogue of 1a from methyl-p-tolylsulfoxide (Scheme 9), was also synthesized 

through the same synthetic pathway. The formation of 1b was also confirmed by 1H and 13C 

NMR analysis. 1b was synthetized in order to envision an asymmetric version of our ligand. 

Indeed, enantiopure methyl-p-tolylsulfoxide was readily accessible from usual chemical 

company, or could be obtained easily from (-)-menthyl-p-toluenesulfinate.24,25 
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Although unstable at room temperature, 1a and 1b have been characterized by 1H and 
13C NMR spectroscopy analysis. These results lead us to envisage the modulation of the two 

moieties to expand the synthetic strategy to a large variety of substituents. 

 

The goal was to determine the limit of the synthetic pathway to obtain a mixed 

germylene-sulfoxide ligand. As well as the impact of the design on the thermal stability was 

studied to determine the role of the steric hindrance on the ligand.  

 

First, steric hindrance was increased successively on both moieties. To increase 

bulkiness on the amidinatogermylene moiety, N-i-Pr group was replaced by a larger substituent. 

Cyclohexyl (Cy) group was chosen as an available and versatile group that can protect and 

remain the germylene center accessible for nucleophilic substitution (Scheme 10). Moreover, 

Cy-AmGeCl have been synthetized through similar procedure described for i-Pr-AmGeCl 

derivative.3 Tipp (tri-i-propylphenyl) and t-Bu were chosen as larger substituents to increase 

steric hindrance and change nature of the sulfoxide moiety (Scheme 10). 

 

 
Scheme 10: Different germylene-sulfoxide ligands with various substituents 

 

Starting with the corresponding sulfoxides and amidinatochlorogermylenes, 1c - 1f 

were obtained through the same synthetic pathway used for 1a and 1b (Scheme 10). 1H and 13C 

NMR have exhibited similar observations (AB system, secondary carbon, loss of symmetry...) 

than 1a and 1b. The compounds were obtained as oils with the same rate of degradation at room 

temperature and same stability at -24 °C. Although, steric hindrance was increased on both 
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moieties, the bulkiness was not large enough to have any effect on the thermal stability of mixed 

germylene-sulfoxide system. However, the synthetic pathway allowed a simple method for the 

modification of the skeleton to obtain a large variety of ligands. 

 

Finally, the influence of sulfoxide moiety on the germylene was also investigated. 

Sulfur (II) (thioether) and sulfur (VI) (sulfone) were chosen to replace the sulfoxide as readily 

available derivatives of lowest and highest oxidation state of sulfur. Moreover, thioether and 

sulfone can be seen as “extreme interacting form of sulfoxide” by the only possibility of 

interaction with sulfur, in the case of thioether, or with oxygen in the case of sulfone.  

 

The synthetic pathway remains unchanged (Scheme 11). Indeed, n-BuLi can be used 

with thioether or sulfone to obtain the corresponding carbanion. It is important to note, in the 

case of thioether, that a-lithiation is preferred to ortho-lithiation.26 

 

 
Scheme 11: Synthesis of thioether (1g) and sulfone (1h) derivative  

 

1g and 1h were obtained in the same conditions and were characterized in 1H and 13C 

NMR analysis. The loss of asymmetric center had a predictable impact on the NMR which was 

to keep the same symmetry in the molecule and so the same multiplicity of peaks. The chemical 

shift corresponding to -CH2- spacer of 1g and 1h appeared as a singlet in the similar area as the 

starting materials. This observation was unsurprising because germanium and hydrogen have a 

close electronegativity. Still, integration of this singlet in 1H NMR undoubtedly proved the 

formation of a -CH2- spacer. In addition, a secondary carbon was observed for the spacer and 

confirmed the formation of 1g and 1h.  
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The properties of these two news ligands were particularly different to the previous 

germylene-sulfoxide ligands and each other. Indeed, 1g was obtained as a very sensitive oil at 

room temperature which appears to degrade faster than all the sulfoxides, and with a slowly 

degradation at -24 °C where 1a-1f were stable at this temperature. In contrary, 1h was isolated 

as a stable solid at room temperature and was characterized by X-ray crystallography. Crystals 

have been obtained from a saturated solution of pentane (Figure 6). 

 

 
Figure 6: Molecular structure of 1h (hydrogens are omitted for clarity) 

 

The X-ray structure of 1h exhibits a similar distance between nitrogen and germanium 

atoms (1.981(3) and 1.993(3) Å) compared to the starting material AmGeCl (1.98 Å). 

Moreover, even if sulfones are known as poor ligands in coordination chemistry,27 some 

examples have already been published by our group for the stabilization of metallylenes with 

sulfones.28,29 However, the oxygen-germanium distance (3.48 Å) is too far in solid state to 

demonstrate any stabilization interaction, the formation of a four-members ring being too 

strained to observe an interaction between an oxygen atom of the sulfone and the germanium. 

Finally, the distance germanium-carbon (2.066(3) Å) is considered as long for a Ge–C bond 

(1.90-2.10 Å) but not unusual.30 

 

II.4. Investigation with heavier analogue 

 
Heavier analogue, i-e stannylene, was next studied to determine if the mixed sulfoxide-

stannylene could be synthetized in the same synthetic pathway as 1a-1h. However, the 

corresponding AmSnCl, heavier analogue of AmGeCl, has not been reported yet in the 

literature. 
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AmSnCl was obtained through a similar procedure as AmGeCl (Scheme 12). The 

nucleophile, formed by addition of t-BuLi on DIC, was added on two equivalents of SnCl2 to 

obtain 2b with a reasonable yield (78 %). The excess of SnCl2 was found necessary to obtain 

clean heteroleptic stannylene, when less amount conducted to form a product identified as the 

homoleptic stannylene.  

 

 
Scheme 12: Synthesis of AmSnCl 

 

2b was characterized by multinuclear NMR spectroscopy and mass spectroscopy. The 
1H and 13C NMR did not exhibit unusual signal or chemical shift and shown a derivative with 

a C2 symmetry similar to AmGeCl. 119Sn NMR exhibited only one signal (55 ppm) which was 

in accordance with previous analogues of AmSnCl (30-69 ppm).31,32 However, crystallization 

in a saturated solution of pentane gave the product of oxidation 2d (Figure 7). The formation 

of 2d could be seen as the reaction of four molecules of 2b with a molecule of oxygen. Two tin 

(II) atoms were oxidized to tin (IV) and the amidinates group of the two-remaining tin (II) have 

migrated to tin (IV) with the formation of the central 1,3-Sn2O2 ring. 

 

 
Figure 7: Molecular structure of oxidation product 2d (hydrogens are omitted for clarity) 
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The product of oxidation was determined as the reaction of 2b with serendipitous 

oxygen, similar reaction being reported by Ruzicka in 2012.32 The structure exhibits two 

different tin atoms with two different oxidation states (+II and +IV). Moreover, the crystals 

were insoluble in usual solvents as reported by Ruzicka, which characterized a similar structure 

by solid state NMR. 

 

The condensation reaction of the sulfinyl carbanion with AmSnCl was tested (Scheme 

13).  

 

 
Scheme 13: Synthetic pathway of 2c 

 
1H NMR analysis showed the formation of a complex mixture with total consumption 

of the starting AmSnCl and recovering of starting sulfoxide.  

 

II.5. Coordination chemistry of amidinatogermylene (II) -a- sulfur 

(II, IV, VI) ligands 

 
The first target in coordination chemistry was formation of a carbonyl complex to get 

information concerning the donation properties of the germylene and the sulfoxide to a 

transition metal. In the literature, several bi-dentate germylene carbonyl complexes have 

already been explored with tungsten, ruthenium and cobalt.33,34  

 

Castel et al., in 2012, reported in our laboratory the formation of phosphaalkenyl 

germylene that reacts with W(cod)(CO)4 to give the corresponding bi-dentate complex. Starting 

with an equimolar amount of tungsten precursor, a solution of 1b in THF was added at room 

temperature and stirred overnight (Scheme 14). 
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Scheme 14: Bis-germylene tungsten complex 

 

Surprisingly, the reaction led to the formation of a bis-germylene tungsten complex, 

3b. Castel et al. reported, in 2010, the formation of a bis-germylene tungsten complex starting 

with the same tungsten precursor and amidinatochlorogermylene.35 Structure of bis-germylene 

tungsten complex 3b was determined through multiple analysis. First in 1H NMR, half an 

equivalent of tungsten precursor was remaining in solution with total consumption of 1b 

(coordinated cod, HC=CH at 3.8 ppm in C6D6). Besides, 13C NMR and IR spectroscopy 

confirmed a free sulfoxide function. In 13C NMR, carbon monoxide ligands of 3b have one 

unique signal at 208 ppm, which show their electronic and magnetic equivalence. In IR 

spectroscopy, peak at 1021 cm-1 was characteristic of a non-coordinated sulfoxide close to 1b 

at 1015 cm-1. Finally, X-ray structure of 3b was obtained from crystals grown in a THF solution 

at 6 °C (Figure 8).  

 

 
Figure 8: Molecular structure of 3b (hydrogens are omitted for clarity) 

+ W(cod)(CO)4

THF
N

N
Ge

S

O

Overnight / R.T.
W

CO

OC CO

OC

N

N Ge

S
N

NGe

S
O

O

3b1b



Chapter II: Germylene -a- Sulfoxide Ligands: Synthesis, Characterization and Coordination of a 

Novel Hemilabile Metallylene Ligand 

 - 120 - 

 

The structure of 3b shows a usual distance between the germylene and the tungsten of 

2.5195(2) Å (2.50-2.65 Å).5,33,35,36 Unsurprisingly, Ge1–N1 and Ge1–N2 bond lengths of 

1.9506(18) and 1.9609(17) Å are equal and shorter than in the free AmGeCl (1.98 Å), which 

can explain by the coordination of the germylene lone pair to the transition metal. Ge1–C4 bond 

distance was also in the range of carbon-germanium single bonds with a length of 2.002(2) Å. 

S1–O1 shows also usual bond length of 1.481(6) Å. The other bonds length and angles were 

also in the normal range of a germylene-tungsten complex.  

 

1b was used as a racemic ligand, and the formation of one or two diastereomers was 

investigated. Even if 3bR,S was formed and determined by X-ray analysis, the other 

diastereomer could have not crystallized due to differences of physical properties. 1H NMR of 

3b was studied at low temperature (-80 °C) in order to obtain different signals of both 

diastereomer without any success. Enantiopure 3bR,R was synthetized from enantiopure 1bR 

and 1H and 13C NMR analysis shown the exact same chemical shifts in that those obtained from 

crystals of 3bR,S. We suppose that any diastereomeric differentiation can be observed by 1H and 
13C NMR spectroscopy, probably due to the wide distance separating the two sulfinyl 

stereogenic centers. 

 

In order to modulate the coordination properties of the ligand and to synthesize a bi-

dentate complex, the conditions of reaction were changed. Three parameters: (i) temperature, 

(ii) dilution and (iii) equivalent of W(cod)(CO)4, were tested to study their influence on the 

reaction. Temperature (i) was cooled at -80 °C and dilution (ii) was increased by a factor 10. 

However, the results showed in both case any influence on the formation of the product. The 

third reaction (iii) was carried out with 10 equivalents of W(cod)(CO)4 and led to formation of 

a new product. 13C NMR exhibited four news signals for the carbon monoxide and let hope the 

formation of a bi-dentate complex (Figure 9). Nevertheless, the product could not be isolated 

because of the excess of W(cod)(CO)4 but this observation showed that coordination with 

sulfoxide, strained 4-member ring with sulfur and /or weak coordination with oxygen, was 

unfavorable compare to the coordination of a second germylene. 
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Figure 9: 13C NMR (190-220 ppm) of 3b and reaction with 10 equivalents of tungsten in C6D6 

 

The coordination was also tested with 1g and 1h with the same metallic precursor, and, 

unsurprisingly, these ligands gave analog results with the formation of the corresponding bis-

germylene tungsten complexes (Scheme 15). 

 

 
Scheme 15: Formation of 3g and 3h 

 

3g and 3h were crystalized in a THF solution at 6 °C (Figure 10). The X-ray structure 

shows a usual distance between the germylene and the tungsten of 2.5163(6) and 2.5206(2) Å 

(2.50-2.65 Å). The other bonds length and angles are also in usual range with Ge1–N1 and 

Ge1–N2 being shorter than AmGeCl or 1h due to a better donation of nitrogen atom to the 

germylene center. 
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Figure 10: Molecular structure of 3g and 3h (hydrogens are omitted for clarity) 

 

Coordination chemistry has been extended to determine if the same reactivity would 

be observed with Mo(nbd)(CO)4, lighter analogue precursor of W(cod)(CO)4. Starting with the 

same precursor 1b and half an equivalent of molybdenum precursor, 4b was obtained after 

stirring overnight the mixture at room temperature in THF (Scheme 16). 

 

 
Scheme 16: Bis-germylene molybdenum complex 

 

X-ray structure of 4b was obtained from crystals grown in a saturated THF solution at 

6 °C (Figure 11). The structure shows an usual distance between the germylene and the 

molybdenum of 2.561(4) Å (2.50 Å).35,37–39 As seen before, 1b was used as a racemic ligand 

and the formation of one or two diastereomers was investigated in NMR without any success. 
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Figure 11: Molecular structure of 4b (hydrogens are omitted for clarity) 

 

The formation of bis-germylene group VI transition metal complexes was a milestone 

to choose another metal precursor. Indeed, tungsten (0) and molybdenum (0) were certainly a 

good choice for a coordination with sulfur, nevertheless, this coordination seems to be 

unfavourable with oxygen due to the size of the 4-member ring. That is why ruthenium was 

preferred in the continuity of the study for its ability to be coordinated either by sulfur or 

oxygen.40 Equimolar amount of Ru(PPh3)3Cl2 and 1b was stirred overnight in a solution of THF 

at room temperature (Scheme 17). 

 

 
Scheme 17: Germylene ruthenium phosphine complex 
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with a signal corresponding to free PPh3 at -5 ppm. However, purification of 5b to remove free 

PPh3 was not possible with usual solvent like pentane, which was unusual since PPh3 is soluble 

in pentane contrary to 5b. Presence of free PPh3 in a ruthenium complex was reported in the 

literature by the group of Grushin in 2014 with an X-Ray structure of (Ru(PPh3)3Cl2.PPh3) 
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where one PPh3 was found in the lattice without hydrogen bond, p-stacking or coordination to 

the metal center.41 Nevertheless, bi-dentate germylene sulfoxide ruthenium complex was 

formed unambiguously with an oxygen coordination of the sulfoxide, which was characterized 

in IR analysis with a strong band at 945 cm-1. 5a, phenyl derivative of 5b and less soluble in 

usual solvent, was obtained in a moderate yield of 56 % after washing with diethyl ether to 

remove free PPh3. 31P NMR showed a same chemical shift and broaden signals at 55 and 24 

ppm as 5b. Suitable crystals of 5b were obtained from a saturated solution of THF at -24 °C 

(Figure 12).  

 

 
Figure 12: Molecular structure of 5a (hydrogens are omitted for clarity) 

 

X-ray structure shows a distorted octahedral complex. The interatomic Ru–Ge distance 

(2.4429(6) Å) is in the range of the values obtained for previously cited germylene-ruthenium 

complexes (2.28-2.50 Å).10,42–45 Surprisingly, Ge1–N1 and Ge1–N2 have a bond length of 

1.951(4) and 1.979(4) Å, close to free AmGeCl, which can be explained by a less donating 

germylene due to the strong donation of phosphine in trans position. It is important to note that 

S1-01 bond length of 1.530(3) Å respects the usual increase due to a coordination through 

oxygen.46 Phosphines also have a usual distance of P1–Ru1 of 2.2661(12) Å and P1–Ru2 of 

2.3832(12) Å. The two chlorine atoms occupying the axial positions but also the two PPh3 

ligands in cis position present a large deviation to the ideal octahedral angle [Cl1–Ru1–Cl2, 

165.53(4)°, P1–Ru1–P2, 99.56(4)° and P1–Ru1–Ge1, 102.77(3)°] which is probably due to the 

steric hindrance generated of the bulky phosphine ligands. Unsurprisingly, oxygen was 

coordinated to ruthenium over sulfur, due to a favorable and more stable 5-member ring, also 

confirmed by IR analysis with a strong band at 934 cm-1. The structure was especially close to 

(Ru(PPh3)3Cl2). PPh3 described by Grushin with similar angles [P1–Ru1–P2 of 99.6°, P1–Ru1–
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P3 of 103.5° and Cl1–Ru1–Cl2 of 159.9°], and similar phosphine distances [P1–Ru1 of 2.23 

Å, P2–Ru1 of 2.37 Å, P3–Ru1 of 2.44 Å]. The ruthenium-oxygen distance, 2.185(3) Å, is in 

the range of literature complexes bearing a phosphine in trans position (2.15-2.24 Å).47–49 

 

Finally, exchange of ligand of 5b was envisaged. One equivalent of Dppp 

(diphenylphosphinopropane) was added at room temperature and the reaction was stirred one 

hour at room temperature in THF (Scheme 18). 

 

 
Scheme 18: germylene ruthenium diphosphine complex 5c  

 
31P NMR showed a clean formation of 5c with two doublet signals at 47 and 26 ppm 

with a notable coupling constant of 47.1 Hz shoving two different phosphorus coupling with 

each other. However, the reaction needed 1.2 equivalent of DPPP to consume all the starting 

material due to the formation of a side product identified as RuCl2Dppp2 which could not be 

eliminated at the end of the reaction.  

 

Suitable crystals were obtained from a saturated solution of THF at -24 °C (Figure 13). 

X-ray structure shows a distorted octahedral complex with an interatomic Ru–Ge distance 

comparable to 5a of 2.4413(3) Å (2.28-2.50 Å).10,42–45 Phosphine and ruthenium also have an 

usual distance of P1–Ru1 of 2.2440(6) Å and P1–Ru2 of 2.3119(6) Å.41 
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Figure 13: Molecular structure of 5c (hydrogens are omitted for clarity) 

 

The formation of a mono-dentate complex was also investigated with numerous 

transition metals. In the first exploration, (RuCl2(p-cymene))2 was selected. Indeed, Alvarez et 

al. published a ruthenium amidinatogermylene complex starting with the same precursor in 

2016.10 1b in a solution of THF was added to half an equivalent of (RuCl2(p-cymene))2 at room 

temperature and the reaction was stirred overnight (Scheme 19). 

 

 
Scheme 19: mono-dentate germylene ruthenium 6b complex 

 

6b was obtained with a good 80% yield after washing with diethyl ether. Suitable 

crystals for X-ray crystallography were obtained from a saturated solution of THF at -24 °C 

(Figure 14). The X-ray structure shows usual interatomic Ru–Ge distance of 2.4056(5) Å (2.28-

2.49 Å).10,42–44 It is important to note that Ge1–N1 and Ge1-N2 had bond lengths of 1.942(3) 

and 1.956(2) Å which are slightly shorter than AmGeCl (1.98 Å) or 5b (1.95 and 1.98 Å), which 

can be explained by a stronger donating germylene due to a poor donating ligand in trans 

position compare to phosphine in 5b. The loss of symmetry due to the presence of the 

stereogenic sulfoxide was exhibited in 1H NMR and 13C NMR analysis for the p-cymene group, 

where 4 doublets with 6 different carbons (2 quaternary and 4 tertiary) were assigned to each 
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aromatic hydrogen and carbon atoms respectively. The –CH2- linker between germylene and 

sulfoxide was the only one to show a specific shift in NMR. Indeed, in 1H NMR an A-B system 

appeared clearly in C6D6 at 3.56 and 3.72 ppm compared to a singlet at 2.93 ppm for the starting 

material in the solvent. In 13C NMR, the signal was upfield at 50.6 ppm compared to 61.7 ppm. 

 

 
Figure 14: Molecular structure of 6b (hydrogens are omitted for clarity) 

 

Formation of a bi-dentate complex by chlorine abstraction was also investigated from 

6b in usual conditions described in the literature (Scheme 20).50  

 

 
Scheme 20: reaction of 6b with chlorine abstractor 
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with a 77/23 ratio calculated in 1H NMR. Moreover 6b’ exhibits different chemical shifts for 
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instability, its degradation leading to the formation of amidinatohexafluorophosphate salt 

characterized by X-Ray diffraction as by-product. 

 

 
Figure 15: 1H NMR of 6b and 6b’ after 1 hour in CD2Cl2 

 

Finally, the reaction was tested with several chlorine abstractors such as AgBF4, SbPF6 

and ThPF6. The nature of the chlorine abstractor and the counter anion had no effect on the 

stability of 6b’. Every crystals obtained were colorless and corresponded always to the 

degradation products. 

 

Coordination with [RuCl2(p-cymene)]2 was extended to 1a-1c-1d-1f-1g and 1h. In 

each case, ruthenium complex was obtained in good yield and suitable crystals for X-ray 

diffraction crystallography were obtained from saturated solutions of THF at -24 °C (Figure 

16). Similar observations, as seen for 6b, were realized by 1H and 13C NMR analysis with all 

the germylene ruthenium complexes. As expected for 6g and 6h, corresponding to the thioether 

and sulfone analogues, two doublets by 1H NMR and four different aromatic carbons by 13C 

NMR (2 quaternary and 2 tertiary) were observed for the p-cymene group due to the loss of the 

asymmetric center. 

 

6b 

 
 

 

 

6b’ 
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Figure 16: Molecular structures of 6a-6c-6d-6f-6g and 6h (hydrogens are omitted for clarity) 

 

The second transition metal used to form a mono-dentate complex was Fe2(CO)9. 

Coordination chemistry with this precursor was already known in our group and was carried 

out with 1b in THF at room temperature (Scheme 21).18  

 

 
Scheme 21: reaction of 1b with Fe2(CO)9 

 

The reaction was complete after 16h and an orange-brown solid was obtained, 1H and 
13C NMR analysis exhibit the formation of a clean new product assimilated to 7b (Figure 17). 

Formation of 7b was also confirmed by mass-spectroscopy (m/z = 578.046). However, suitable 

crystals for X-ray diffraction were not obtained. 
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Finally, the study of Cabeza group, in 2015, pointing the importance to substitute an 

amidinatochlorogermylene to have access to coordination of group 11 transition metal led us to 

test CuCl and AuCl.SMe2 with 1b in THF (Scheme 22).19 

 

 
Scheme 22: reaction of 1b with CuCl and [AuCl.SMe2] in THF-d8 

 

The reaction was monitored by 1H NMR and showed a total consumption of 1b after 

30 min in both cases. The new clean products were assimilated to 8b and 9b (Figure 17). 

However, these new complexes appeared very unstable, 8b being totally degraded in a mixture 

of green products after 2 hours at room temperature or at -24 °C, 9b leading to the formation of 

a gold mirror and a complex mixture of products in solution. 

 

 
Figure 17: 1H NMR of 1b, 7b, 8b and 9b in THF-d8 
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III. Conclusion 

 
In conclusion, amidinatosulfoxide germylenes 1a-b were synthetized and 

characterized undoubtedly by 1H and 13C NMR analysis. The study of the modification of steric 

hindrance on both moieties by the preparation of 1c-f shows any effect on the thermal stability 

of these new mixed ligands. However, the synthetic appears as a simple method for the 

modification of the skeleton to obtain a large variety of ligands and to obtain different oxidation 

states on the sulfur atom by the preparation of thioether and sulfone analogues 1g and 1h. 

 

Tungsten (0) derivatives 2b, 2g, 2h were prepared and surprisingly showed the 

formation of bis-germylene complexes 3b, 3g, 3h. Coordination of tungsten with sulfur atom 

would formed an unfavorable strained 4-member ring for 3b and 3g, or a week coordination 

with oxygen for 3b and 3h, which can explain the coordination of the tungsten by a second 

germylene.  

 

Ruthenium complex 5a was obtained as a bidentate hemilabile complex with 

germanium and oxygen atoms coordinated to the ruthenium center through a 5-member ring. 

X-ray structure showed a highly distorted octahedral structure with the coordination of oxygen 

that seems to be a result of an important steric hindrance around the metallic center, generated 

by PPh3 and germanium ligand, and shows the hemilability of the ligand. 

 

Mono-dentate coordination with (RuCl2(p-cymene))2 for the preparation of 5a-d, f-h 

was studied. The versatility of the synthetic pathway demonstrates that the skeleton can be 

easily modified to obtain a large variety of steric hindrance and sulfur (II, IV, VI) derivatives 

with a good yield of 72-84 %. 
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IV. Experimental section 
 

Amidinate(dicyclohexyl t-butyl) chloro germylene : t-BuLi (2 mL, 3.4 

mmol, 1.7 M in pentane, 1 eq) was added to a solution of CyN=C=NCy (701 

mg, 3.4 mmol, 1 eq) in diethyl ether (10 mL) at -78 °C. The solution was 

raised to room temperature and stirred for 4 h. Then, GeCl2•dioxane (0.788 

g, 3.4 mmol, 1 eq) was added to the solution at 0 °C, the mixture was stirred 

for 15 h at room temperature. Finally, the solvent was removed under 

reduced pressure and extracted with pentane (3x5 mL), to give, after removing all solvents, a 

white solid (1.111 g) in 88 % yield. M.p. : 74 °C; 1H NMR (300.18 MHz, THF-d8, 25 °C): δ 

0.85-1.95 (m, 20H, CH(CH3)2); 1.39 (s, 9H, C(CH3)3); 3.83 (m, 2H, N-CH(CH2)2). 13C{1H} 

NMR (75.48 MHz, THF-d8, 25 °C): δ 26.0 (CH2); 26.1 (CH2); 26.2 (CH2); 29.0 (C(CH3)3); 35.7 

(CH2); 37.9 (CH2); 40.8 (C(CH3)3); 56.1 (N-CH(CH2)2); 177.9 (N−C−N). MS (EI : 70 eV) m/z 

(%): 373.1 ([M + 1, 20 %]+). 

Formula C17 H31 Ge N2 Cl dcalc (g/cm3) 1.300 

Mol wt 371.50 µ (mm-1) 1.751 

Temp. (K) 193(2) F(000) 784 

Cryst syst Monoclinic cryst size (mm) 0.10 x 0.10 x 0.02 

Space group P21/c θ range (deg.) 2.07 to 26.44° 

a (Å) 9.9516(6) index range h k l 
-12<=h<=12,  
-13<=k<=21,  
-14<=l<=14 

b (Å) 16.9688(9) no of reflns collected / 9937 

c (Å) 11.3866(6) unique 3884 [R(int) = 0.0464] 

a (deg.) 90 Completeness to θmax(%) 99.2 % 

b (deg.) 99.127(3) data/restraints/params 3884 / 27 / 213 

g (deg.) 90 goodness-of-fit 1.115 

V (Å3) 1898.47(18) R1, wR2 (I > 2σ(I)) 0.0569, 0.1705 

Z 4 R1, wR2 (all data) 0.1104, 0.2340 
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Amidinate (di-iso-propyl-t-butyl) methylphenylsulfoxide 

germylene (1a): LDA (53.4 mg, 0.5 mmol, 1.04 eq) in diethyl 

ether (2 mL) was added dropwise to a solution of 

methylphenylsulfoxide (70 mg, 0.5 mmol, 1.04 eq) in diethyl ether 

(2 mL) at -78 °C. The solution was stirred during 1 hour at the 

same temperature (-78 °C). Then, the solution was allowed to warm up at room temperature 

and stirred an additional period of 45 min. Finally, the solvent was removed under reduced 

pressure in order to obtain a white solid. The resulting solid was dissolved in diethyl ether (2 

mL) and added dropwise to a solution of chlorogermylene (138.7 mg, 0.48 mmol, 1 eq) in 

diethyl ether (2.5 mL) at -78 °C. The mixture was stirred during 2.5 hours at -78 °C. Then, the 

solution was filtered at the same temperature (-78 °C). Finally, the solvent was removed under 

reduced pressure to afford an oil (102 mg) in 72% yield. 1H NMR (300.18 MHz, THF-d8, 25 

°C): δ 1.11 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.14 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.16 (d, 
3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.18 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.38 (s, 9H, C(CH3)3); 

2.69 (d, 1H, 2JHH = 13.8 Hz, GeCH2SO); 2.76 (d, 1H, 2JHH = 13.8 Hz, GeCH2SO); 4.31 (sept., 
3JHH = 6.3 Hz, 2H, CH(CH3)2); 7.36-7.47 (m, 3H, CHAr); 7.65-7.70 (m, 2H, CHAr). 13C{1H} 

NMR (75.48 MHz, THF-d8, 25 °C): δ 24.3 (CH(CH3)2); 24.5 (CH(CH3)2); 26.9 (CH(CH3)2); 

29.3 (C(CH3)3); 40.7 (C(CH3)3); 47.6 (CH(CH3)2); 47.7 (CH(CH3)2); 61.5 (GeCH2SO); 124.4 

(CAr); 129.2 (CAr); 129.9 (CAr); 151.5 (CAr/q); 171.9 (N−C−N). 

 

 

Amidinate (di-iso-propyl-t-butyl) methyl-p-tolylsulfoxide 

germylene (1b): LDA (77 mg, 0.72 mmol, 1.1 eq) in diethyl 

ether (2.5 mL) was added dropwise to a solution of methyl-p-

tolylsulfoxide (110 mg, 0.72 mmol, 1.1 eq) in diethyl ether (2.5 

mL) at -78 °C. The solution was stirred during 1 hour at the 

same temperature (-78 °C). Then, the solution was allowed to warm up at room temperature 

and stirred an additional period of 45 min. Finally, the solvent was removed under reduced 

pressure in order to obtain a white solid. The resulting solid was dissolved in diethyl ether (5 

mL) and added dropwise to a solution of chlorogermylene (189 mg, 0.65 mmol, 1 eq) in diethyl 

ether (5 mL) at -78 °C. The mixture was stirred during 2.5 hours at -78 °C. Then, the solution 

was filtered at the same temperature (-78 °C) and concentrated until it remains 1 mL of solution. 

The product was extracted with pentane (2x5 mL) and the solvents were removed in order to 

afford an oil (220 mg) in 82% yield. The compound is stable and storable at -24 °C in an inert 
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atmosphere of argon. 1H NMR (300.18 MHz, THF-d8, 25 °C): δ 1.11 (d, 3JHH = 6.3 Hz, 3H, 

CH(CH3)2); 1.15 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.16 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 

1.38 (s, 9H, C(CH3)3); 2.36 (s, 3H, p-CH3); 2.69 (d, 1H, 2JHH = 13.8 Hz, GeCH2SO); 2.76 (d, 

1H, 2JHH = 13.8 Hz, GeCH2SO); 4.31 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 7.26 (d, 2H, 3JHH = 

8.2 Hz, CHAr); 7.54 (m, 2H, 3JHH = 8.2 Hz, CHAr). 13C{1H} NMR (75.48 MHz, THF-d8, 25 °C): 

δ 21.1 (p-CH3); 24.3 (CH(CH3)2); 24.5 (CH(CH3)2); 26.9 (CH(CH3)2); 27.0 (CH(CH3)2); 29.4 

(C(CH3)3); 40.7 (C(CH3)3); 47.6 (CH(CH3)2); 47.7 (CH(CH3)2); 61.9 (GeCH2SO); 124.3 (CAr); 

129.8 (CAr); 139.8 (CAr/q); 148.6 (CAr/q); 171.8 (N−C−N). IR (Nujol, cm-1) : 1493 (med) 

(C=Carene), 1017 (med) (SO). 

 

Amidinate (dicyclohexyl-t-butyl) germylene 

methylphenylsulfoxide (1c): LDA (49 mg, 0.46 mmol, 1.1 eq) in 

diethyl ether (2 mL) was added dropwise to a solution of 

methylphenylsulfoxide (65 mg, 0.46 mmol, 1.1 eq) in diethyl ether 

(2 mL) at -78 °C. The solution was stirred during 1 hour at the 

same temperature (-78 °C). Then, the solution was allowed to 

warm up at room temperature and stirred an additional period of 45 min. Finally, the solvent 

was removed under reduced pressure in order to obtain a white solid. The resulting solid was 

dissolved in diethyl ether (2 mL) and added dropwise to a solution of chlorogermylene (156 

mg, 0.42 mmol, 1 eq) in diethyl ether (2.5 mL) at -78 °C. The mixture was stirred during 2.5 

hours at -78 °C. Then, the solution was filtered at the same temperature (-78 °C). Finally, the 

solvent was removed under reduced pressure to afford an oil (132 mg) in 66% yield. 1H NMR 

(300.18 MHz, THF-d8, 25 °C): δ 1.07-1.33 (m, 10H, CH(CH3)2); 1.36 (s, 9H, C(CH3)3); 1.53-

1.93 (m, 10H, CH(CH3)2); 2.73 (s, 2H, Ge-CH2-SO); 3.80 (m, 2H, N-CH(CH2)2); 7.34-7.52 (m, 

3H, C-Har); 7.66-7.70 (m, 2H, C-Har). 13C{1H} NMR (75.48 MHz, THF-d8, 25 °C): δ 25.3 

(CH2); 25.5 (CH2); 25.7 (CH2); 28.7 (C(CH3)3); 34.5 (CH2); 34.7 (CH2); 40.7 (C(CH3)3); 55.2 

(CH(CH2)2); 60.8 (GeCH2SO); 123.7 (CAr); 128.5 (CAr); 129.2 (CAr); 150.7 (CAr/q); 171.1 

(N−C−N). 

 

N

N
Ge

S

O



Chapter II: Germylene -a- Sulfoxide Ligands: Synthesis, Characterization and Coordination of a 

Novel Hemilabile Metallylene Ligand 

 - 135 - 

Amidinate (dicyclohexyl-t-butyl) germylene methyl-p-

tolylsulfoxide (1d): LDA (49 mg, 0.46 mmol, 1.1 eq) in diethyl 

ether (2 mL) was added dropwise to a solution of methyl-p-

tolylsulfoxide (65 mg, 0.46 mmol, 1.1 eq) in diethyl ether (2 

mL) at -78 °C. The solution was stirred during 1 hour at the 

same temperature (-78 °C). Then, the solution was allowed to 

warm up at room temperature and stirred an additional period of 45 min. Finally, the solvent 

was removed under reduced pressure in order to obtain a white solid. The resulting solid was 

dissolved in diethyl ether (2 mL) and added dropwise to a solution of chlorogermylene (156 

mg, 0.42 mmol, 1 eq) in diethyl ether (2.5 mL) at -78 °C. The mixture was stirred during 2.5 

hours at -78 °C. Then, the solution was filtered at the same temperature (-78 °C). Finally, the 

solvent was removed under reduced pressure to afford an oil (132 mg) in 66% yield. 1H NMR 

(300.18 MHz, THF-D8, 25 °C): δ 1.20-1.82 (m, 20H, CH(CH3)2); 1.37 (s, 9H, C(CH3)3); 2.36 

(s, 3H, p-CH3); 2.70 (s, 2H, Ge-CH2-SO); 3.80 (m, 2H, N-CH(CH2)2); 7.26 (d, 2H, 3JHH = 8.2 

Hz, CHAr); 7.55 (m, 2H, 3JHH = 8.2 Hz, CHAr). 13C{1H} NMR (75.48 MHz, THF-D8, 25 °C): δ 

20.5 (p-CH3); 25.2 (CH2); 25.3 (CH2); 25.5 (CH2); 25.5 (CH2); 25.6 (CH2); 25.7 (CH2); 28.7 

(C(CH3)3); 34.7 (CH2); 34.5 (CH2); 37.6 (CH2); 37.7 (CH2); 40.1 (C(CH3)3); 55.2 (CH(CH2)2); 

55.3 (CH(CH2)2); 61.0 (GeCH2SO); 123.7 (CAr); 129.1 (CAr); 139.1 (CAr/q); 147.7 (CAr/q); 170.9 

(N−C−N). IR (Nujol, cm-1) : 1464 (med) (C=Carene), 1027 (med) (SO). 

 

Amidinate (di-iso-propyle-t-butyl) germylene methyl-t-

butylsulfoxide (1f): LDA (77 mg, 0.72 mmol, 1.1 eq) in diethyl ether 

(2.5 mL) was added dropwise to a solution of methyl-t-

butylsulfoxide (110 mg, 0.72 mmol, 1.1 eq) in diethyl ether (2.5 mL) 

at -78 °C. The solution was stirred during 1 hour at the same temperature (-78 °C). Then, the 

solution was allowed to warm up at room temperature and stirred an additional period of 45 

min. Finally, the solvent was removed under reduced pressure in order to obtain a white solid. 

The resulting solid was dissolved in diethyl ether (5 mL) and added dropwise to a solution of 

chlorogermylene (189 mg, 0.65 mmol, 1 eq) in diethyl ether (5 mL) at -78 °C. The mixture was 

stirred during 2.5 hours at -78 °C. Then, the solution was filtered at the same temperature (-78 

°C) and concentrated until it remains 1 mL of solution. Pentane (5 mL) was then added to the 

solution and the solution was finally filtered.  The solvents were removed under reduced 

pressure to afford an oil (220 mg) in 82% yield. 1f is stable and storable at -24 °C in an inert 

atmosphere of argon. 1H NMR (300.18 MHz, THF-d8, 25 °C): δ 1.14 (s, 9H, C(CH3)3); 1.11 (d, 
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3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.15 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.16 (d, 3JHH = 6.3 Hz, 

3H, CH(CH3)2); 1.39 (s, 9H, C(CH3)3); 2.09 (d, 2H, 2JHH = 11.8 Hz, GeCH2SO); 2.45 (d, 2H, 
2JHH = 11.8 Hz, GeCH2SO); 4.32 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2). 

 

Amidinate (di-iso-propyle-t-butyl) germylene 

methylphenylthioether (1g): n-BuLi (540 µL, 0.87 mmol, 1.3 eq, C = 

1.6 M in hexane) was added dropwise to a solution of thioanisole (108 

mg, 0.87 mmol, 1.3 eq) in THF (2 mL) at 0 °C. The solution was stirred 

during 2 hour at the same temperature (0 °C). Then, the solution was cooled at -78 °C and added 

dropwise to a solution of chlorogermylene (194 mg, 0.67 mmol, 1 eq) in THF (2.5 mL) at -78 

°C. The mixture was stirred during 1.5 hours at -78 °C. Then, the solution was evaporated by 

vacuum and the mixture was extracted with pentane (8 mL). Finally, the filtrate was evaporated 

under reduced pressure to afford an oil (180 mg) in 71% yield. 1H NMR (300.18 MHz, THF-

d8, 25 °C): δ 1.13 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.20 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 

1.42 (s, 9H, C(CH3)3); 2.35 (s, 2H, GeCH2SPh); 4.32 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 

7.10-7.25 (m, 5H, CHAr). 13C{1H} NMR (75.48 MHz, THF-d8, 25 °C): δ 23.8 (CH(CH3)2); 27.4 

(CH(CH3)2); 29.4 (C(CH3)3); 31.9 (GeCH2SPh); 40.8 (C(CH3)3); 47.5 (CH(CH3)2); 123.9 (CAr); 

126.2 (CAr); 128.7 (CAr); 144.4 (CAr/q); 171.7 (N−C−N). 

 

Amidinate (di-iso-propyle-t-butyl) germylene 

methylphenylsulfone (1h): n-BuLi (510 µL, 0.82 mmol, 1.1 eq, C = 

1.6 M in hexane) was added dropwise to a solution of 

methylphenylsulfone (129 mg, 0.82 mmol, 1.1 eq) in THF (5 mL) at -

40 °C. The solution was stirred during 1 hour at the same temperature (-40 °C). The resulting 

mixture was added dropwise to a solution of chlorogermylene (218 mg, 0.75 mmol, 1 eq) in 

THF (2 mL) at -78 °C. The mixture was stirred during 1 hours at -78 °C. The solvent was 

evaporated under reduced pressure and the resulting solid was extracted with toluene (2x3 mL) 

at room temperature. Finally, the solvent was removed under reduced pressure to afford a pale 

white solid (268 mg) in 87% yield. Suitable crystals for X-ray cristallography were obtained 

from a saturated solution of pentane. M.p. : 112 °C. 1H NMR (300.18 MHz, C6D6, 25 °C): δ 

0.99 (s, 9H, C(CH3)3); 1.05 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.10 (d, 3JHH = 6.3 Hz, 6H, 

CH(CH3)2); 3.18 (s, 2H, GeCH2SO2); 3.94 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 7.01-7.07 (m, 

3H, CHAr); 8.04-8.09 (m, 2H, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 24.1 
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(CH(CH3)2); 26.8 (CH(CH3)2); 29.0 (C(CH3)3); 40.0 (C(CH3)3); 47.4 (CH(CH3)2); 61.4 

(GeCH2SO); 127.1 (CAr); 129.0 (CAr); 131.8 (CAr); 146.1 (CAr/q); 172.7 (N−C−N). MS (EI: 70 

eV) m/z (%): 413.2 ([M + 1, 8 %]+). IR (Nujol, cm-1): 1493 (med) (C=Carene), 1305 (med) (SO), 

1140 (med) (SO). 

Formula C18 H30 Ge N2 O2 S dcalc (g/cm3) 1.338 

Mol wt 411.09 µ (mm-1) 1.616 

Temp. (K) 193(2) F(000) 864 

Cryst syst Triclinic cryst size (mm) 0.080 x 0.050 x 0.040 

Space group P-1 θ range (deg.) 5.123 to 26.372° 

a (Å) 11.4843(9) index range h k l -14<=h<=14, -
14<=k<=14, 0<=l<=19 

b (Å) 11.9768(10) no of reflns collected / 12373 

c (Å) 15.7912(14) unique 8243 [R(int) = 0.0828] 

a (deg.) 78.646(4) Completeness to θmax(%) 99.0 % 

b (deg.) 85.022(4) data/restraints/params 8243 / 0 / 448 

g (deg.) 73.454(3) goodness-of-fit 1.029 

V (Å3) 2040.2(3) R1, wR2 (I > 2σ(I)) 0.0458, 0.0870 

Z 4 R1, wR2 (all data) 0.0899, 0.1011 

 

Amidinate (di-iso-propyle-t-butyl) chloro stannylene (2a): t-BuLi (0.8 

mL, 1.28 mmol, 1.6 M in diethyl ether, 1 eq) was added to a solution of i-

PrN=C=N-i-Pr (0.2 mL, 1.28 mmol, 1 eq) in diethyl ether (5 mL) at -78 °C. 

The solution was raised to room temperature and stirred for 4 h. Then, the 

solution was added dropwise to SnCl2 (349 mg, 2.56 mmol, 2 eq) in diethyl 

ether (5 mL) at -78 °C, the mixture was stirred for 2 h at the same temperature (-78 °C) and 2 

h at room temperature. Finally, the solvent was removed under reduced pressure and extracted 

with pentane (2x3 mL). The filtrate was concentrated under reduced pressure to give a white 

solid (342 mg) in 79 % yield. M.p. : 67 °C; 1H NMR (300.18 MHz, C6D6, 25 °C): δ 0.87 (d, 
3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.01 (s, 9H, C(CH3)3); 1.18 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 

4.16 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 26.4 

(CH(CH3)2); 29.4 (C(CH3)3); 42.4 (C(CH3)3); 46.9 (CH(CH3)2); 179.7 (N−C−N). 119Sn NMR 

(167.88 Hz, C6D6, 25 °C): δ = 55.5 ppm. 
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Crystals data of 2d obtained during crystallization of 2b with 

serendipitous addition of O2. 

Formula C44H92Cl4N8O2Sn4 dcalc (g/cm3) 1.607 

Mol wt 1381.90 µ (mm-1) 1.956 

Temp. (K) 193(2) F(000)  1392 

Cryst syst Monoclinic cryst size (mm)  0.28 x 0.16 x 0.08 

Space group P21/n θ range (deg.)  1.71 to 33.14 

a (Å) 9.9149(4) index range h k l 
-15<=h<=15, -
25<=k<=28, -
24<=l<=24 

b (Å) 18.13126(8) no of reflns collected /  49041 

c (Å) 16.2508(7) unique 10869 [R(int) = 0.0298] 

a (deg.) 90 Completeness to θmax(%)  99.9 

b (deg.) 104.495 (2) data/restraints/params 10869 / 198 / 373 

g (deg.) 90 goodness-of-fit  1.202 

V (Å3)  2856.7(2) R1, wR2 (I > 2σ(I))  0.0380, 0.1098 

Z 2 R1, wR2 (all data)  0.0594, 0.1522 

 

Amidinate(di-iso-propyle-t-butyl) germylene methyl-p-

tolylsulfoxide tungsten tetracarbonyl complex (3b): 

Amidinate (di-iso-propyle-t-butyl) germylene methyl-p-

tolylsulfoxyde 1b (135 mg, 0.330 mmol, 1 eq) was 

dissolved in tetrahydrofran (5 mL). The solution was then 

added to tetracarbonyl(1,5-cyclooctadiene)tungsten(0)  

(101 mg, 0.165 mmol, 0.5 eq) in THF (2 mL). The mixture 

was stirred during 15 hours at room temperature, then filtered and the solvent removed under 

reduced pressure. Finally, the solid was washed with pentane (2x3 mL) to obtain a pale yellow 

solid (143 mg) in 78% yield. Crystallization from THF at 6 °C gave pale yellow crystals suitable 

for X-ray study. M.p. : 117 °C (decomposition); 1H NMR (300.18 MHz, C6D6, 25 °C): δ 1.29 

(s, 18H, C(CH3)3); 1.45 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.48 (d, 3JHH = 6.3 Hz, 6H, 

CH(CH3)2); 1.57 (d, 3JHH = 6.3 Hz, 12H, CH(CH3)2); 1.99 (s, 6H, p-CH3); 2.94 (d, 2H, 2JHH = 

13.8 Hz, GeCH2SO); 3.35 (d, 2H, 2JHH = 13.8 Hz, GeCH2SO); 4.34 (sept., 3JHH = 6.3 Hz, 2H, 
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CH(CH3)2); 4.43 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 6.88 (d, 4H, 3JHH = 8.2 Hz, CHAr); 7.51 

(d, 4H, 3JHH = 8.2 Hz, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 21.1 (p-CH3); 23.2 

(CH(CH3)2); 23.3 (CH(CH3)2); 26.0 (CH(CH3)2); 26.2 (CH(CH3)2); 29.3 (C(CH3)3); 39.8 

(C(CH3)3); 47.8 (CH(CH3)2); 47.9 (CH(CH3)2); 59.6 (GeCH2SO); 123.7 (CAr); 129.9 (CAr); 

139.7 (CAr/q); 148.2 (CAr/q); 175.2 (N−C−N); 208.0 (CO). MS (Maldi-TOF) m/z (%): 1002 ([M 

– (CO)4]+). IR (Nujol, cm-1): 2035 (s) (CO), 1996 (s) (CO), 1938 (s) (CO), 1021 (med) (SO). 

Formula 
C42H64Ge2N4O6S2W, 

2(C4H8O) 
dcalc (g/cm3) 1.475 

Mol wt 1258.36 µ (mm-1) 3.203 

Temp. (K) 193(2) F(000)  642 

Cryst syst Triclinic cryst size (mm)  0.16 x 0.12 x 0.04 

Space group P-1 θ range (deg.)  3.25 to 31.91 

a (Å) 9.9512(4) index range h k l 
-14<=h<=14, -
17<=k<=17, -
19<=l<=19 

b (Å) 11.6654(5) no of reflns collected /  36625 

c (Å) 13.3526(6) unique 9692 [R(int) = 0.0346] 

a (deg.) 79.8470 (10) Completeness to θmax(%)  99.5 

b (deg.) 77.244(2) data/restraints/params 9692 / 37 / 332 

g (deg.) 70.587(2) goodness-of-fit  1.114 

V (Å3)  1416.88(11) R1, wR2 (I > 2σ(I))  0.0301, 0.0544 

Z 1 R1, wR2 (all data)  0.0396, 0.0576 

 

Amidinate (di-iso-propyle-t-butyl) germylene 

methylphenylthioether tungsten tetracarbonyl complex 

(3g): Amidinate (di-iso-propyle-t-butyl) germylene 

methylphenylthioether 1g (100 mg, 0.26 mmol, 1 eq) was 

dissolved in tetrahydrofran (5 mL) and tetracarbonyl(1,5-

cyclooctadiene)tungsten(0)  (53 mg, 0.13 mmol, 0.5 eq) was 

added to the solution. The mixture was stirred during 15 

hours at room temperature, then filtered and the solvent removed under reduced pressure. 

Finally, the solid was washed with pentane (2x3 mL) to obtain a pale yellow solid (85 mg) in 

64 % yield. Crystallization from toluene at 6 °C gave pale yellow crystals suitable for X-ray 

study. M.p. : 106 °C (decomposition); 1H NMR (300.18 MHz, C6D6, 25 °C): δ 1.20 (s, 18H, 
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C(CH3)3); 1.33 (d, 3JHH = 6.3 Hz, 12H, CH(CH3)2); 1.49 (d, 3JHH = 6.3 Hz, 12H, CH(CH3)2); 

3.23 (s, 4H, GeCH2SPh); 4.19 (sept., 3JHH = 6.3 Hz, 4H, CH(CH3)2); 6.90 (m, 2H, CHAr); 7.04 

(m, 4H, CHAr); 7.35 (m, 4H, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 22.3 

(CH(CH3)2); 25.9 (CH(CH3)2); 29.5 (C(CH3)3); 32.6 (GeCH2SPh); 39.7 (C(CH3)3); 47.7 

(CH(CH3)2); 124.6 (CAr); 126.9 (CAr); 129.0 (CAr); 142.0 (CAr/q); 173.6 (N−C−N); 208.3 (CO). 

MS (Maldi-TOF) m/z (%): 1026 ([M - CO]+). IR (Nujol, cm-1): 2036 (s) (CO), 1947 (s) (CO), 

1899 (br) (CO). 

Formula C40H60Ge2N4O4S2W dcalc (g/cm3) 1.497 

Mol wt 1054.10 µ (mm-1) 3.861 

Temp. (K) 193(2) F(000)  1060 

Cryst syst Monoclinic cryst size (mm)  0.120 x 0.120 x 0.020 

Space group P21/c θ range (deg.)  3.787 to 25.025 

a (Å) 13.4478(7) index range h k l 
-16<=h<=16, -
12<=k<=12, -
21<=l<=21 

b (Å) 10.3462(6) no of reflns collected /  31137 

c (Å) 17.9379(6) unique 4019 [R(int) = 0.0570] 

a (deg.) 90 Completeness to θmax(%)  97.4 

b (deg.) 110.487(3) data/restraints/params 4019 / 0 /248 

g (deg.) 90 goodness-of-fit  1.137 

V (Å3)  2337.9(2) R1, wR2 (I > 2σ(I))  0.0375, 0.0927 

Z 2 R1, wR2 (all data)  0.0544, 0.1006 

 

Amidinate (di-iso-propyle-t-butyl) germylene 

methylphenylsulfone tungsten tetracarbonyl complex 

(3h): Amidinate (di-iso-propyle-t-butyl) germylene 

methylphenylsulfone 1h (100 mg, 0.24 mmol, 1 eq) was 

dissolved in tetrahydrofran (5 mL). The solution was then 

added to tetracarbonyl(1,5-cyclooctadiene)tungsten(0)  (98 

mg, 0.12 mmol, 0.5 eq) in THF (2 mL). The mixture was 

stirred during 15 hours at room temperature, then filtered and the solvent removed under 

reduced pressure. Finally, the solid was washed with pentane (2x3 mL) to obtain a pale yellow 

solid (115 mg) in 86% yield. Crystallization from THF at 6 °C gave pale yellow crystals suitable 
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for X-ray study. M.p. : 124 °C (decomposition); 1H NMR (300.18 MHz, C6D6, 25 °C): δ 1.29 

(s, 18H, C(CH3)3); 1.49 (d, 3JHH = 6.3 Hz, 12H, CH(CH3)2); 1.64 (d, 3JHH = 6.3 Hz, 12H, 

CH(CH3)2); 3.55 (s, 4H, GeCH2SO); 4.44 (sept., 3JHH = 6.3 Hz, 4H, CH(CH3)2); 6.91 (m, 6H, 

CHAr); 7.80 (m, 4H, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 21.9 (CH(CH3)2); 26.4 

(CH(CH3)2); 29.3 (C(CH3)3); 39.7 (C(CH3)3); 48.1 (CH(CH3)2); 58.3 (GeCH2SO); 126.8 (CAr); 

129.1 (CAr); 131.8 (CAr); 146.3 (CAr/q); 176.7 (N−C−N); 207.3 (CO). IR (Nujol, cm-1): 2035 (s) 

(CO), 1999 (s) (CO), 1877 (br) (CO), 1376 (med) (SO2), 1107 (med) (SO2). MS (Maldi-TOF) 

m/z (%): 1090 ([M - CO]+). 

Formula 
C40H60Ge2N4O8S2W, 

2(C4H8O) 
dcalc (g/cm3) 1.492 

Mol wt 1262.31 µ (mm-1) 3.233 

Temp. (K) 193(2) F(000)  1284 

Cryst syst Monoclinic cryst size (mm)  0.18 x 0.06 x 0.04 

Space group P21/c θ range (deg.)  3.17 to 29.13 

a (Å) 14.4295(4) index range h k l 
-17<=h<=19, -
13<=k<=13,  -
27<=l<=27 

b (Å) 9.8795(3) no of reflns collected /  103290 

c (Å) 19.7788(6) unique 7550 [R(int) = 0.0388 

a (deg.) 90 Completeness to θmax(%)  99.9 

b (deg.) 94.6630(10) data/restraints/params 7550 / 65 / 340 

g (deg.) 90 goodness-of-fit  1.113 

V (Å3)  2810.26(15) R1, wR2 (I > 2σ(I))  0.0229, 0.0443 

Z 2 R1, wR2 (all data)  0.0315, 0.0475 

 

Amidinate (di-iso-propyle-t-butyl) germylene methyl-p-

tolylsulfoxide molybdenum tetracarbonyl complex (4b): 

Amidinate (di-iso-propyle-t-butyl) germylene methyl-p-

tolylsulfoxyde 1b (150 mg, 0.367 mmol, 1 eq) was dissolved 

in tetrahydrofran (5 mL). The solution was then added to 

(bicyclo[2.2.1]hepta-2,5-

diene)tetracarbonylmolybdenum(0)  (55 mg, 0.184 mmol, 

0.5 eq) in THF (2 mL) at room temperature. The mixture was stirred during 15 hours at room 

temperature, then filtered and the solvent removed under reduced pressure. Finally, the solid 
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was washed with pentane (2x3 mL) to obtain a pale yellow solid (159 mg) in 84% yield. 

Crystallization from THF at 6 °C gave yellow crystals suitable for X-ray study. M.p. : 103 °C; 
1H NMR (300.18 MHz, C6D6, 25 °C): δ 1.28 (s, 18H, C(CH3)3); 1.46 (d, 3JHH = 6.3 Hz, 12H, 

CH(CH3)2); 1.56 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.58 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 

1.99 (s, 6H, p-CH3); 2.90 (d, 2H, 2JHH = 13.8 Hz, GeCH2SO); 3.35 (d, 2H, 2JHH = 13.8 Hz, 

GeCH2SO); 4.27 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 4.37 (sept., 3JHH = 6.3 Hz, 2H, 

CH(CH3)2); 6.88 (d, 4H, 3JHH = 8.2 Hz, CHAr); 7.53 (d, 4H, 3JHH = 8.2 Hz, CHAr). 13C{1H} 

NMR (75.48 MHz, C6D6, 25 °C): δ 21.1 (p-CH3); 23.2 (CH(CH3)2); 23.4 (CH(CH3)2); 26.2 

(CH(CH3)2); 26.4 (CH(CH3)2); 29.3 (C(CH3)3); 39.8 (C(CH3)3); 47.9 (CH(CH3)2); 50.0 

(CH(CH3)2); 59.8 (GeCH2SO); 123.7 (CAr); 129.9 (CAr); 139.7 (CAr/q); 148.4 (CAr/q); 174.8 

(N−C−N); 216.5 (CO). IR (Nujol, cm-1): 2021 (s) (CO), 1999 (s) (CO), 1905 (s) (CO), 1015 

(med) (SO).	MS (Maldi-TOF) m/z (%): 1026 ([M+). 

Formula 
C42H64Ge2MoN4O6S2, 

2(C4H8O) 
dcalc (g/cm3) 1.362 

Mol wt 1170.42 µ (mm-1) 1.387 

Temp. (K) 193(2) F(000)  610 

Cryst syst Triclinic cryst size (mm)  0.220 x 0.180 x 0.080 

Space group P-1 θ range (deg.)  3.144 to 25.684 

a (Å) 9.9669(5) index range h k l 
-11<=h<=12, -
14<=k<=14, -
16<=l<=16 

b (Å) 11.7085(8) no of reflns collected /  21442 

c (Å) 13.3702(10) unique 5306 [R(int) = 0.0717] 

a (deg.) 79.929(3) 
Completeness to 

θmax(%)  
98.6 

b (deg.) 77.221(2) data/restraints/params 5306 / 37 / 332 

g (deg.) 70.656(2) goodness-of-fit  1.123 

V (Å3)  3136.1(2) R1, wR2 (I > 2σ(I))  0.0658, 0.0867 

Z 1 R1, wR2 (all data)  0.0947, 0.0939  
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Amidinate (di-iso-propyle-t-butyl) germylene 

methylphenylsulfoxide Ruthenium complex (5a): A solution of 

amidinate (di-iso-propyle-t-butyl) germylene 

methylphenylsulfoxyde 1a (151 mg, 0.38 mmol, 1eq) with 

tris(triphenylphosphine)ruthenium(II) dichloride (364mg, 0.38 

mmol, 1eq) in tetrahydrofran (5 mL) was stirred during 15 hour at 

room temperature. Then, the mixture was filtered and the solvent was removed under reduced 

pressure in order to obtain a red solid. Finally, the resulting solid was washed with diethyl ether 

(3x5 mL) to afford a red solid (240 mg) in 58% yield. M.p. : 145 °C (decomposition); 1H NMR 

(300.18 MHz, C6D6): δ 0.78 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 0.88 (d, 3JHH = 6.3 Hz, 3H, 

CH(CH3)2); 0.94 (s, 9H, C(CH3)3); 1.09 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.35 (d, 3JHH = 6.3 

Hz, 3H, CH(CH3)2); 2.86 (d, 1H, 2JHH = 13.8 Hz, GeCH2SO); 3.61 (d, 1H, 2JHH = 13.8 Hz, 

GeCH2SO); 3.69 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 6.90 (m, 3H, CHAr(sulfoxide)); 7.09 (m, 

19H, CHAr(phosphine)); 7.45 (m, 2H, CHAr(sulfoxide)); 7.93 (m, 11H, CHAr(phosphine)). 13C{1H} NMR 

(75.48 MHz, C6D6): δ 24.0 (CH(CH3)2); 24.8 (CH(CH3)2); 25.0 (CH(CH3)2); 25.5 (CH(CH3)2); 

29.2 (C(CH3)3); 38.9 (C(CH3)3); 47.5 (CH(CH3)2); 47.9 (CH(CH3)2); 49.2 (GeCH2SO); 

125.8 (CAr(sulfoxide)); 127.0 (3JPC = 9.0 Hz, CAr(phosphine)); 128.7 (CAr(phosphine)); 128.9 (CAr(sulfoxide)); 

125.8 (CAr(sulfoxide)); 134.2 (2JPC = 19.6 Hz, CAr(phosphine)); 138.0 (1JPC = 12.2 Hz, CAr/q(phosphine)); 

144.2 (CAr/q(sulfoxide)); 175.5 (N−C−N). 31P NMR (121.49 MHz, C6D6): δ 24.5 (br, Ru-

PPh3); 55.5 (br, Ru-PPh3). MS (Maldi-TOF) m/z (%): 830 (M – PPh3), 795 (M – (PPh3 + Cl)), 

760 (M – (PPh3 + Cl + Cl)). IR (Nujol, cm-1): 934 (med) (SO). 

Formula C54H60Cl2GeN2OP2RuS dcalc (g/cm3) 1.417 

Mol wt 1091.62 µ (mm-1) 1.130 

Temp. (K) 193(2) F(000)  2248 

Cryst syst Monoclinic cryst size (mm)  0.04 x 0.04 x 0.02 

Space group P21/c θ range (deg.)  3.45 to 25.35 

a (Å) 12.5612(6) index range h k l 
-15<=h<=14, -
29<=k<=29,  -
20<=l<=19 

b (Å) 24.1634(10) no of reflns collected /  58061 

c (Å) 16.9752(9) unique 9335 [R(int) = 0.1056] 

a (deg.) 90 
Completeness to 

θmax(%)  
99.6 
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b (deg.) 96.627(2) data/restraints/params 9335 / 0 / 584 

g (deg.) 90 goodness-of-fit  1.032 

V (Å3)  5117.9(4) R1, wR2 (I > 2σ(I))  0.0446, 0.0996 

Z 4 R1, wR2 (all data)  0.0866, 0.1195 

  

Amidinate (di-iso-propyle-t-butyl) germylene methyl-p-

tolylsulfoxide Ruthenium complex (5c): A solution of amidinate 

(di-iso-propyle-t-butyl) germylene methyl-p-tolylsulfoxyde 1b 

(151 mg, 0.38 mmol, 1eq) with 

tris(triphenylphosphine)ruthenium(II) dichloride (364mg, 0.38 

mmol, 1eq) in tetrahydrofran (5 mL) was stirred during 15 hour at 

room temperature. Then, DPPP (158 mg, O.45 mmol, 1.2 eq) was added to the mixture and 

stirred 4 hour and the solvent was evaporated under vacuum. Finally, the red solid was washed 

with pentane (3x5 mL) in order to obtain a pale red solid. 31P{1H} NMR (121.49 MHz, C6D6): 

δ 26.1 (d, 3JPP = 47.3 Hz, Ru-PPh2); 47.5 (d, 3JPP = 47.3 Hz, Ru-PPh2). 

Formula 
C46H58Cl2GeN2OP2

RuS, 1.5(C4H10O) 
dcalc (g/cm3) 1.375 

Mol wt 1104.68 µ (mm-1) 1.086 

Temp. (K) 193(2) F(000)  1150 

Cryst syst Triclinic cryst size (mm)  0.180 x 0.080 x 0.080 

Space group P-1 θ range (deg.)  5.100 to 30.508 

a (Å) 9.6109(7) index range h k l 
-13<=h<=13, -
19<=k<=19,  -
30<=l<=30 

b (Å) 13.8981(11) no of reflns collected /  100922 

c (Å) 21.5911(16) unique 16207 [R(int) = 0.0637] 

a (deg.) 101.572(3) Completeness to θmax(%)  99.1 

b (deg.) 95.184(3) data/restraints/params 16207 / 87 / 632 

g (deg.) 106.959(3) goodness-of-fit  1.024 

V (Å3)  2668.2(4) R1, wR2 (I > 2σ(I))  0.0355, 0.0762 

Z 2 R1, wR2 (all data)  0.0555, 0.0845 
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Amidinate (di-iso-propyle-t-butyl) germylene 

methylphenylsulfoxide Ruthenium complex (6a): Amidinate 

(di-iso-propyle-t-butyl) germylene methylphenylsulfoxide 1a 

(170 mg, 0.43 mmol, 1 eq) was dissolved in tetrahydrofran (5 mL) 

and dichloro(p-cymene)ruthenium dimer (132 mg, 0.215 mmol, 

0.5 eq) was added to the solution. The mixture was stirred during 15 hours at room temperature, 

then, filtered and the solvent removed under reduced pressure. Finally, the red solid was washed 

with Et2O (2x3 mL) in order to obtain a pale red solid (247 mg) in 82% yield. M.p. : 164 °C 

(decomposition); 1H NMR (300.18 MHz, CD2Cl2, 25 °C): δ 1.29-1.37 (m, 9H, CH(CH3)2); 

1.38-1.44 (d, 3JHH = 6.3 Hz, 9H, CH(CH3)2); 1.59 (s, 9H, C(CH3)3); 2.21 (s, 3H, p-CH3); 2.86 

(sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 2.85 (d, 1H, 2JHH = 13.8 Hz, GeCH2SO); 3.12 (d, 1H, 
2JHH = 13.8 Hz, GeCH2SO); 4.42 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 5.08 (m, 2H, CHAr); 

5.41 (dd, 1H, 3JHH = 5.8 Hz, 4JHH = 1.3 Hz, CHAr); 5.53 (dd, 1H, 3JHH = 5.8 Hz, 4JHH = 1.3 Hz, 

CHAr); 7.39-7.45 (m, 3H, CHAr); 7.51-7.55 (m, 2H, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 

25 °C): δ 18.6 (p-CH3); 22.9 (CH(CH3)2); 23.2 (CH(CH3)2); 25.9 (CH(CH3)2); 26.0 

(CH(CH3)2); 26.1 (CH(CH3)2); 26.2 (CH(CH3)2); 29.1 (C(CH3)3); 31.2 (CH(CH3)2); 39.5 

(C(CH3)3); 50.6 (GeCH2SO); 56.2 (CH(CH3)2); 56.5 (CH(CH3)2);  81.7 (CAr); 82.7 (CAr); 86.1 

(CAr); 87.9 (CAr); 93.8 (CAr/q); 106.7 (CAr/q); 123.7 (CAr); 129.2 (CAr); 129.6 (CAr); 150.3 (CAr/q); 

176.8 (N−C−N).  

Formula C28H44Cl2GeN2ORuS dcalc (g/cm3) 1.493 

Mol wt 701.29 µ (mm-1) 1.708 

Temp. (K) 193(2) F(000)  1440 

Cryst syst Monoclinic cryst size (mm)  0.48 x 0.34 x 0.28 

Space group P21/n θ range (deg.)  2.99 to 31.00 

a (Å) 9.1389(14) index range h k l 
-13<=h<=13, -
29<=k<=29, -
24<=l<=24 

b (Å) 20.527(3) no of reflns collected /  117282 

c (Å) 16.685(3) unique 9912 [R(int) = 0.0353] 

a (deg.) 90 
Completeness to 

θmax(%)  
99.6 

b (deg.) 94.363(7) data/restraints/params 99.12 / 511 / 501 

g (deg.) 90 goodness-of-fit  1.145 
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V (Å3)  3120.9(8) R1, wR2 (I > 2σ(I))  0.0465, 0.0963 

Z 4 R1, wR2 (all data)  0.0524, 0.1004 

 

Amidinate(di-iso-propyle-t-butyl) germylene methyl-p-

tolylsulfoxide Ruthenium complex (6b): Amidinate (di-iso-

propyle-t-butyl) germylene methyl-p-tolylsulfoxide 1b (135 

mg, 0.330 mmol, 1 eq) was dissolved in tetrahydrofran (5 mL) 

and dichloro(p-cymene)ruthenium dimer (101 mg, 0.165 

mmol, 0.5 eq) was added to the solution. The mixture was stirred during 15 hours at room 

temperature, then filtered and the solvent removed under reduced pressure. Finally, the red solid 

was washed with Et2O (2x3 mL) in order to obtain a pale red solid (189 mg) in 80% yield. 

Suitable crystals for x-ray crystallography were obtained from a saturated solution of THF at -

24 °C. M.p. : 169 °C (decomposition); 1H NMR (300.18 MHz, C6D6, 25 °C): δ 1.23 (d, 3JHH = 

6.8 Hz, 3H, CH(CH3)2); 1.24 (d, 3JHH = 6.8 Hz, 3H, CH(CH3)2);  1.27 (d, 3JHH = 6.8 Hz, 3H, 

CH(CH3)2); 1.33 (s, 9H, C(CH3)3); 1.35 (d, 3JHH = 6.8 Hz, 3H, CH(CH3)2); 1.55 (d, 3JHH = 6.3 

Hz, 3H, CH(CH3)2); 1.57 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.93 (s, 3H, p-CH3); 1.95 (s, 3H, 

p-CH3); 2.96 (sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 3.54 (d, 1H, 2JHH = 13.8 Hz, GeCH2SO); 

3.72 (d, 1H, 2JHH = 13.8 Hz, GeCH2SO); 4.14 (sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 4.28 (sept., 
3JHH = 6.3 Hz, 1H, CH(CH3)2); 4.78 (dd, 1H, 3JHH = 5.8 Hz, 4JHH = 1.3 Hz, CHAr); 4.82 (dd, 1H, 

3JHH = 5.8 Hz, 4JHH = 1.3 Hz, CHAr); 5.25 (dd, 1H, 3JHH = 5.8 Hz, 4JHH = 1.3 Hz, CHAr); 5.33 

(dd, 1H, 3JHH = 5.8 Hz, 4JHH = 1.3 Hz, CHAr); 6.77 (d, 2H, 3JHH = 8.2 Hz, CHAr); 7.45 (d, 2H, 

3JHH = 8.2 Hz, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 18.8 (p-CH3); 21.1 (p-CH3); 

22.8 (CH(CH3)2); 23.2 (CH(CH3)2); 24.4 (CH(CH3)2); 25.0 (CH(CH3)2); 25.9 (CH(CH3)2); 26.7 

(CH(CH3)2); 29.0 (C(CH3)3); 31.2 (CH(CH3)2); 39.4(C(CH3)3); 48.0 (CH(CH3)2); 48.1 

(CH(CH3)2); 50.6 (GeCH2SO); 80.8 (CAr); 81.5 (CAr); 86.8 (CAr); 88.1 (CAr); 94.0 (CAr/q); 108.2 

(CAr/q); 123.6 (CAr); 129.9 (CAr); 139.6 (CAr/q); 147.4 (CAr/q); 176.9 (N−C−N). MS m/z 

(anthracene matrix) : 681 ([M - Cl]+), 547 ([M – Cl – p-Cymene]+).	HRMS (ESI) m/z (%): 

717.1054 ([M + 1]+) calcd for C29H46GeCl2N2ORuS ([M + 1]+) 717.1046. IR (Nujol, cm-1): 

1462 (med) (C=Carene), 1017 (med) (SO). 

Formula C29H46Cl2GeN2ORuS dcalc (g/cm3) 1.515 

Mol wt 715.30 µ (mm-1) 1.702 

Temp. (K) 193(2) F(000)  1472 
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Cryst syst Monoclinic cryst size (mm)  0.040 x 0.040 x 0.020 

Space group P21/n θ range (deg.)  5.104 to 28.282 

a (Å) 15.0511(6) index range h k l 
-20<=h<=20, -
18<=k<=18, -
19<=l<=20 

b (Å) 14.1158(6) no of reflns collected /  75426 

c (Å) 15.4835(6) unique 7729 [R(int) = 0.0799] 

a (deg.) 90 Completeness to θmax(%)  99.1 

b (deg.) 107.5740(16) data/restraints/params 7729 / 542 / 500 

g (deg.) 90 goodness-of-fit  1.017 

V (Å3)  3136.1(2) R1, wR2 (I > 2σ(I))  0.0364, 0.0624 

Z 4 R1, wR2 (all data)  0.0748, 0.0728 

 

Amidinate (dicyclohexyl-t-butyl) germylene 

methylphenylsulfoxide Ruthenium dichloro p-cymene 

complex (6c): Amidinate(dicyclohexyl-t-butyl) germylene 

methylphenylsulfoxide 1c (65 mg, 0.139 mmol, 1 eq) was 

dissolved in tetrahydrofran (5 mL) and dichloro(p-

cymene)ruthenium dimer (42 mg, 0.139 mmol, 0.5 eq) was added to the solution. The mixture 

was stirred during 15 hours at room temperature, then filtered and the solvent removed under 

reduced pressure. Finally, the red solid was washed with Et2O (2x2 mL) in order to obtain a 

pale red solid (84 mg) in 78% yield. M.p. : 173 °C (decomposition); 1H NMR (300.18 MHz, 

C6D6, 25 °C): δ 1.08-1.21 (m, 4H, 4H, (CH2)cy); 1.24 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.27 

(d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.40 (s, 9H, C(CH3)3); 1.43-1.94 (m, 12H, (CH2)cy); 1.97 (s, 

3H, p-CH3); 2.01-2.22 (m, 2H, (CH2)cy); 2.36 (m, 1H, (CH2) cy); 2.67 (m, 1H, (CH2)cy); 2.94 

(sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 3.60 (d, 1H, 2JHH = 13.8 Hz, GeCH2SO); 3.76 (d, 1H, 
2JHH = 13.8 Hz, GeCH2SO); 3.87 (m, 1H, CH(CH2)2); 3.97 (m, 1H, CH(CH2)2); 4.87 (dd, 1H, 

3JHH = 5.8 Hz, 4JHH = 1.3 Hz, CHAr); 4.94 (dd, 1H, 3JHH = 5.8 Hz, 4JHH = 1.3 Hz, CHAr); 5.31 

(dd, 1H, 3JHH = 5.8 Hz, 4JHH = 1.3 Hz, CHAr); 5.38 (dd, 1H, 3JHH = 5.8 Hz, 4JHH = 1.3 Hz, CHAr); 

6.86-6.96 (m, 2H, CHAr); 7.52-7.55 (m, 2H, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): 

δ 18.6 (p-CH3); 22.9 (CH(CH3)2); 23.2 (CH(CH3)2); 25.3 (CH2); 25.7 (CH2); 25.9 (CH2); 26.0 

(CH2); 26.2 (CH2); 26.3 (CH2); 29.1 (C(CH3)3); 31.2 (CH(CH3)2); 34.3 (CH2); 34.8 (CH2); 36.2 

(CH2); 37.4 (CH2); 39.5 (C(CH3)3); 50.7 (GeCH2SO); 56.2 (CH(CH2)2); 56.5 (CH(CH2)2); 81.7 
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(CAr/q); 82.7 (CAr/q); 86.1 (CAr/q); 87.9 (CAr); 93.8 (CAr/q); 106.7 (CAr/q); 123.7 (CAr); 129.2 (CAr); 

129.6 (CAr); 150.3 (CAr/q); 176.8 (N−C−N). 

Formula C34H52Cl2GeN2ORuS dcalc (g/cm3) 1.471 

Mol wt 781.39 µ (mm-1) 1.519 

Temp. (K) 193(2) F(000)  1616 

Cryst syst Orthorhombic cryst size (mm)  0.500 x 0.160 x 0.050 

Space group Pca21 θ range (deg.)  2.925 to 30.559 

a (Å) 18.0845(6) index range h k l 
-25<=h<=23, -
13<=k<=13, -
29<=l<=29 

b (Å) 9.3573(3) no of reflns collected /  10.5479 

c (Å) 20.8554(7) unique 10806 [R(int) = 0.0560] 

a (deg.) 90 Completeness to θmax(%)  99.8 

b (deg.) 90 data/restraints/params 10806 / 1 / 386 

g (deg.) 90 goodness-of-fit  1.074 

V (Å3)  3529.3(2) R1, wR2 (I > 2σ(I))  0.0325, 0.0597 

Z 4 R1, wR2 (all data)  0.0446, 0.0652 

 

Amidinate (dicyclohexyl-t-butyl) germylene methyl-p-

tolylsulfoxide Ruthenium dichloro p-cymene complex (6d): 

Amidinate(dicyclohexyl-t-butyl) germylene methyl-p-

tolylsulfoxyde 1d (110 mg, 0.22 mmol, 1 eq) was dissolved in 

tetrahydrofran (5 mL) and dichloro(p-cymene)ruthenium 

dimer (69 mg, 0.11 mmol, 0.5 eq) was added to the solution. The mixture was stirred during 15 

hours at room temperature, then, filtered and the solvent removed under reduced pressure. 

Finally, the red solid was washed with Et2O (2x2 mL) in order to obtain a pale red solid (138 

mg) in 79% yield. M.p.: 175°C (decomposition); 1H NMR (300.18 MHz, C6D6, 25 °C): δ 1.08-

1.21 (m, 4H, 4H, (CH2)cy); 1.24 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.27 (d, 3JHH = 6.3 Hz, 6H, 

CH(CH3)2); 1.40 (s, 9H, C(CH3)3); 1.43-1.94 (m, 12H, (CH2)cy); 1.97 (s, 3H, p-CH3); 2.01-2.22 

(m, 2H, (CH2)cy); 2.36 (m, 1H, (CH2) cy); 2.67 (m, 1H, (CH2)cy); 2.94 (sept., 3JHH = 6.3 Hz, 1H, 

CH(CH3)2); 3.60 (d, 1H, 2JHH = 13.8 Hz, GeCH2SO); 3.76 (d, 1H, 2JHH = 13.8 Hz, GeCH2SO); 

3.87 (m, 1H, CH(CH2)2); 3.97 (m, 1H, CH(CH2)2); 4.87 (dd, 1H, 3JHH = 5.8 Hz, 4JHH = 1.3 Hz, 

CHAr); 4.94 (dd, 1H, 3JHH = 5.8 Hz, 4JHH = 1.3 Hz, CHAr); 5.31 (dd, 1H, 3JHH = 5.8 Hz, 4JHH = 
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1.3 Hz, CHAr); 5.38 (dd, 1H, 3JHH = 5.8 Hz, 4JHH = 1.3 Hz, CHAr); 6.86-6.96 (m, 2H, CHAr); 

7.52-7.55 (m, 2H, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 18.6 (p-CH3); 22.9 

(CH(CH3)2); 23.2 (CH(CH3)2); 25.3 (CH2); 25.7 (CH2); 25.9 (CH2); 26.0 (CH2); 26.2 

(CH2); 26.3 (CH2); 29.1 (C(CH3)3); 31.2 (CH(CH3)2); 34.3 (CH2); 34.8 (CH2); 36.2 (CH2); 37.4 

(CH2); 39.5 (C(CH3)3); 50.7 (GeCH2SO); 56.2 (CH(CH2)2); 56.5 (CH(CH2)2); 81.7 (CAr/q); 82.7 

(CAr/q); 86.1 (CAr/q); 87.9 (CAr); 93.8 (CAr/q); 106.7 (CAr/q); 123.7 (CAr); 129.2 (CAr); 129.6 (CAr); 

150.3 (CAr/q); 176.8 (N−C−N). HRMS (ESI) m/z (%): 797.1659 ([M + 1]+) calcd for 

C35H54GeCl2N2ORuS ([M + 1]+) 797.1674. 

Formula C35H54Cl2GeN2ORuS dcalc (g/cm3) 1.460 

Mol wt 795.44 µ (mm-1) 1.483 

Temp. (K) 193(2) F(000)  1648 

Cryst syst Monoclinic cryst size (mm)  0.08 x 0.08 x 0.02 

Space group P21/n θ range (deg.)  3.49 to 27.48 

a (Å) 9.5361(14) index range h k l 
-12<=h<=12, -
20<=k<=20, -
32<=l<=32 

b (Å) 15.417(2) no of reflns collected /  58979 

c (Å) 24.820(5) unique 8267 [R(int) = 0.0507] 

a (deg.) 90 Completeness to θmax(%)  99.8 

b (deg.) 97.325(7) data/restraints/params 8267 / 72 / 422 

g (deg.) 90 goodness-of-fit  1.145 

V (Å3)  3619.2(10) R1, wR2 (I > 2σ(I))  0.0326, 0.0887 

Z 4 R1, wR2 (all data)  0.0470, 0.0965 

 

Amidinate (di-iso-propyle-t-butyl) germylene methyl-t-

butylsulfoxide Ruthenium dichloro p-cymene complex (6f): 

Amidinate (di-iso-propyl-t-butyl) germylene methyl-t-

butylsulfoxide 1f (110 mg, 0.29 mmol, 1 eq) was dissolved in 

tetrahydrofran (5 mL) and dichloro(p-cymene)ruthenium dimer (89 

mg, 0.145 mmol, 0.5 eq) was added to the solution. The mixture was stirred during 15 hours at 

room temperature, then filtered and the solvent removed under reduced pressure. Finally, the 

red solid was washed with Et2O (2x3 mL) in order to obtain a pale red solid (132 mg) in 67% 

yield. Crystallization from THF at – 25 °C gave red crystals suitable for X-ray diffraction. M.p. 

N N

Ge
SRuCl

Cl

O



Chapter II: Germylene -a- Sulfoxide Ligands: Synthesis, Characterization and Coordination of a 

Novel Hemilabile Metallylene Ligand 

 - 150 - 

: 84 °C (decomposition); 1H NMR (300.18 MHz, C6D6, 25 °C): δ 0.95 (s, 9H, SO-C(CH3)3); 

1.23 – 1.31 (m, 12H, CH(CH3)2); 1.28 (s, 9H, C(CH3)3); 1.49 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 

1.56 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.94 (s, 3H, p-CH3); 2.98 (sept., 3JHH = 6.3 Hz, 1H, 

CH(CH3)2); 3.24 (d, 1H, 2JHH = 13.8 Hz, GeCH2SO); 3.32 (d, 1H, 2JHH = 13.8 Hz, GeCH2SO); 

4.09 (sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 4.20 (sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 4.73 (d, 

1H, 3JHH = 5.8 Hz, CHAr); 4.75 (d, 1H, 3JHH = 5.8 Hz, CHAr); 5.25 (d, 1H, 3JHH = 5.8 Hz, CHAr); 

5.31 (d, 1H, 3JHH = 5.8 Hz, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 18.8 (p-CH3); 

22.6 (SOC(CH3)3); 22.8 (CH(CH3)2); 23.1 (CH(CH3)2); 24.3 (CH(CH3)2); 24.9 (CH(CH3)2); 

26.0 (CH(CH3)2); 26.6 (CH(CH3)2); 28.9 (C(CH3)3); 31.2 (CH(CH3)2); 36.8 (SO-C(CH3)3); 

39.3 (C(CH3)3); 47.9 (CH(CH3)2); 48.0 (CH(CH3)2); 54.3 (GeCH2SO); 80.6 (CAr/q); 81.4 

(CAr/q); 87.2 (CAr/q); 88.2 (CAr); 93.9 (CAr/q); 108.3 (CAr/q); 176.7 (N−C−N). IR (Nujol, cm-1): 

1017 (med). HRMS (ESI) m/z (%): 683.1205 ([M + 1]+) calcd for C26H48GeCl2N2ORuS ([M + 

1]+) 683.1201. 

Formula C26H48Cl2GeN2ORuS dcalc (g/cm3) 1.478 

Mol wt 681.30 µ (mm-1) 1.739 

Temp. (K) 193(2) F(000)  704 

Cryst syst Monoclinic cryst size (mm)  0.200 x 0.180 x 0.140 

Space group P21 θ range (deg.)  4.104 to 34.337 

a (Å) 10.3057(5) index range h k l 
-16<=h<=16, -
18<=k<=18, -
18<=l<=20 

b (Å) 11.3503(6) no of reflns collected /  44633 

c (Å) 13.1474(6) unique 12768 [R(int) = 0.0234] 

a (deg.) 90 Completeness to θmax(%)  99.5 

b (deg.) 95.520(2) data/restraints/params 12768 / 81 / 350 

g (deg.) 90 goodness-of-fit  1.037 

V (Å3)  1530.76(13) R1, wR2 (I > 2σ(I))  0.0186, 0.0470 

Z 2 R1, wR2 (all data)  0.0207, 0.0480 

 

Amidinate (di-iso-propyle-t-butyl) germylene 

methylphenylthioether Ruthenium dichloro p-cymene complex 

(6g): Amidinate (di-iso-propyl-t-butyl) germylene 

methylphenylthioether 1g (85 mg, 0.22 mmol, 1 eq) was dissolved in 
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tetrahydrofran (5 mL) and dichloro(p-cymene)ruthenium dimer (68 mg, 0.11 mmol, 0.5 eq) was 

added to the solution. The mixture was stirred during 15 hours at room temperature, then filtered 

and the solvent removed under reduced pressure. Finally, the red solid was washed with Et2O 

(2x3 mL) to obtain a red solid (104 mg) in 69% yield. Suitable crystals for x-ray crystallography 

were obtained from a saturated solution of THF at -24 °C. M.p.: 158 °C (decomposition); 1H 

NMR (300.18 MHz, C6D6, 25 °C): δ 1.20 (s, 9H, C(CH3)3); 1.21 (d, 3JHH = 6.3 Hz, 6H, 

CH(CH3)2); 1.28 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.33 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 

1.93 (s, 3H, p-CH3); 3.02 (sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 3.65 (s, 2H, GeCH2SPh); 3.96 

(sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 4.68 (d, 3JHH = 5.7 Hz, 2H, CHAr); 5.27 (d, 3JHH = 5.7 Hz, 

2H, CHAr); 6.80-6.85 (m, 1H, CHAr); 6.92-6.97 (m, 2H, CHAr); 7.24-7.27 (m, 2H, CHAr). 
13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 18.9 (p-CH3); 22.8 (GeCH2SPh); 23.0 (CH(CH3)2); 

23.8 (CH(CH3)2); 25.9 (CH(CH3)2); 29.3 (C(CH3)3); 31.2 (CH(CH3)2); 39.2 (C(CH3)3); 48.0 

(CH(CH3)2); 80.4 (CAr); 87.9 (CAr); 94.2 (CAr/q); 108.7 (CAr/q); 124.5 (CAr); 126.8 (CAr); 

129.0 (CAr); 141.2 (CAr/q); 175.2 (N−C−N). MS (Maldi-TOF) m/z (anthracene matrix) : 651 ([M 

- Cl]+), 515 ([M – Cl – p-Cymene]+). 

Formula C28H44Cl2GeN2RuS dcalc (g/cm3) 1.514 

Mol wt 685.29 µ (mm-1) 1.769 

Temp. (K) 193(2) F(000)  1408 

Cryst syst Monoclinic cryst size (mm)  0.140 x 0.060 x 0.010 

Space group P21/n θ range (deg.)  4.200 to 34.750 

a (Å) 11.3474(6) index range h k l 
-17<=h<=18, -
23<=k<=22, -
29<=l<=29 

b (Å) 14.4680(7) no of reflns collected /  43298 

c (Å) 18.5286(10) unique 12937 [R(int) = 0.0456] 

a (deg.) 90 Completeness to θmax(%)  99.5 

b (deg.) 98.650(3) data/restraints/params 12937 / 78 / 353 

g (deg.) 90 goodness-of-fit  1.014 

V (Å3)  3007.3(3) R1, wR2 (I > 2σ(I))  0.0360, 0.0714 

Z 4 R1, wR2 (all data)  0.0675, 0.0812 
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Amidinate (di-iso-propyle-t-butyl) germylene 

methylphenylsulfone Ruthenium dichloro p-cymene complex 

(6h): Amidinate (di-iso-propyl-t-butyl) germylene 

methylphenylsulfone 1h (200 mg, 0.486 mmol, 1 eq) was dissolved 

in tetrahydrofran (5 mL) and dichloro(p-cymene)ruthenium dimer 

(149 mg, 0.243 mmol, 0.5 eq) was added to the solution. The mixture was stirred during 15 

hours at room temperature, then filtered and the solvent removed under reduced pressure. 

Finally, the red solid was washed with Et2O (2x3 mL) in order to obtain a pale red solid (293 

mg) in 84% yield. Suitable crystals for X-ray crystallography were obtained from a saturated 

solution of THF at -24 °C. M.p.: 178 °C (decomposition); 1H NMR (300.18 MHz, C6D6, 25 

°C): δ 1.23 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.29 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.32 (s, 

9H, C(CH3)3); 1.67 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.91 (s, 3H, p-CH3); 2.95 (sept., 3JHH = 

6.3 Hz, 1H, CH(CH3)2); 4.15 (s, 2H, GeCH2SO2); 4.22 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 

4.75 (d, 2H, 3JHH = 5.8 Hz, CHAr); 5.24 (d, 2H, 3JHH = 5.8 Hz, CHAr); 6.73-6.84 (m, 3H, CHAr); 

7.68-7.77 (m, 2H, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 18.6 (p-CH3); 22.9 

(CH(CH3)2); 23.6 (CH(CH3)2); 26.5 (CH(CH3)2); 28.9 (C(CH3)3); 31.1 (CH(CH3)2); 

39.3(C(CH3)3); 48.3 (CH(CH3)2); 48.7 (GeCH2SO); 81.7 (CAr); 87.2 (CAr); 94.0 (CAr/q); 108.4 

(CAr/q); 126.5 (CAr); 129.0 (CAr); 131.9 (CAr); 145.7 (CAr/q); 177.9 (N−C−N). MS m/z 

(anthracene matrix) : 683 ([M - Cl]+), 549 ([M – Cl – p-Cymene]+). HRMS (ESI) m/z (%): 

719.0850 ([M + 1]+) calcd for C28H44Cl2GeN2O2RuS ([M – Cl]+) 719.0838. IR (Nujol, cm-1): 

1305 (med) (SO), 1140 (med) (SO). 

Formula C28H44Cl2GeN2O2RuS dcalc (g/cm3) 1.472 

Mol wt 717.29 µ (mm-1) 1.652 

Temp. (K) 193(2) F(000)  2944 

Cryst syst Monoclinic cryst size (mm)  0.16 x 0.15 x 0.07 

Space group P21/n θ range (deg.)  2.94 to 25.68 

a (Å) 18.7846(10) index range h k l 
-22<=h<=22, -
21<=k<=21, -
25<=l<=25 

b (Å) 17.6499(8) no of reflns collected /  249295 

c (Å) 20.9404(11) unique 12278 [R(int) = 0.0753] 

a (deg.) 90 
Completeness to 

θmax(%)  
99.8 
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b (deg.) 111.232(2) data/restraints/params 12278 / 452 / 825 

g (deg.) 90 goodness-of-fit  1.060 

V (Å3)  6471.4(6) R1, wR2 (I > 2σ(I))  0.0314, 0.0654 

Z 8 R1, wR2 (all data)  0.0475, 0.0738 
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Hemilabile Germylene -b- Sulfoxide Ligand: Synthesis, Characterization and Coordination 

Properties toward Group VI, VIII and X Transition Metals 

 

 

Abstract 

 

 

A hemilabile amidinate germylene -b- sulfoxide ligand has been synthesized in two 

steps in good yield from the readily available GeCl2•dioxane and aryl-tert-butylsulfoxide. 

 

The germylene -b- sulfoxide ligand was easily converted into tungsten, molybdenum, 

ruthenium phosphine and nickel complexes. NMR spectroscopy, X-ray diffraction and IR 

studies revealed that different types of coordination are possible with the amidinate germylene 

-b- sulfoxide, thus confirming the hemilabile character of this ligand. The new architecture 

especially shows different coordination properties, compared to germylene -a- sulfoxide, 

toward group VI transition metals and ruthenium. 
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I. Introduction  

 
The previous chapter showed that germylene -a- sulfoxide can act as a hemilabile 

ligand of ruthenium (II) complex via coordination by oxygen and germylene atoms (Scheme 

1). On the other hand, bis-germylene complexes were obtained with group VI transition metals 

(molybdenum and tungsten). The formation of bis-monodentate complexes instead of a 

bidentate one can be explained by favorable interaction of group VI transition metals at the (0) 

oxidation state with soft center like sulfur. However, coordination with sulfur of germylene -a- 

sulfoxide would imply the formation of an unfavorable strained 4-member ring that would be 

a transient intermediate to react further with another equivalent of ligand to form a more stable 

bis-germylene complex. 

 

 
Scheme 1: Carbene and heavier analogues in ground state 

 

The design of a 2nd generation of germylene-sulfoxide ligand was considered by 

increasing the distance between both moieties.  

 

The modification of the distance between the two entities could provide a variety of 

coordination to transition metals with germylene and sulfur or oxygen atoms of the sulfoxide 

group (Figure 1).1  
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Figure 1: Different possibilities of coordination of hemilabile germylene sulfoxide ligand to a 

transition metal 

 

The importance of the linker between two different moieties was observed over the 

years with the increasing amount of publications on sulfoxide ligands. Relevant examples can 

be mentioned with the reports of Alcock et al. and Liao et al. in 1988 and 2011 respectively 

(Scheme 2).2,3 In the first case, oxygen and phosphorus were coordinated to rhodium through a 

5-member ring. The coordination by sulfur atom appears unfavorable due to the formation of a 

strained 4-member ring. Nevertheless, it was confirmed latter, by Liao et al., that increasing the 

distance between phosphorus and sulfoxide allowed to form a more favorable 5-member ring 

with sulfur in comparison of a 6-member ring with oxygen. 

 

 
Scheme 2: Phosphinosulfoxide-rhodium complexes 

 

Thereby, synthesis of a 2nd generation of hemilabile bi-dentate ligands will be 

described in this chapter. Several complexes of transition metals with different properties of 

coordination will be characterized and compared to the 1st generation of ligands.  
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II. Results and discussion 

 

II.1. Synthesis of amidinatogermylene -b- sulfoxide  

 
Synthetic pathway to obtain the 2nd generation of ligands remains the same as 

previously described, exploiting the nucleophilic substitution of the chlorine atom of AmGeCl 

precursor. The choice of the sulfoxide moiety for this second generation was focused on the 

aryl-tert-butylsulfoxide. Indeed ortho-deprotonation of the aromatic ring will take place since 

sulfoxide acts as an ortho-directing group when a-position is saturated (Scheme 3).4,5 

 

 
Scheme 3: ortho- versus a-deprotonation of alkyl-arylsulfoxides 

 

tert-Butyl-p-tolyl-sulfoxide has been obtained in two steps from the corresponding 

thiocresol. The first reaction consists of the formation of the corresponding thioether in acidic 

conditions followed by an oxidation of thioether into sulfoxide according to the report of Grela 

in 2009 (Scheme 4).6,7  

 

 
Scheme 4: Synthesis of tert-butyl-p-tolyl-sulfoxide 

 

Finally, the first b-sulfoxide amidinatogermylene has been synthetized according to 

the method used for the 1st generation. tert-butyl-p-tolyl-sulfoxide was deprotonated with nBuLi 

at -80 °C for 1h and then was added to AmGeCl at the same temperature. After 2h, the solvent 

was removed under reduced pressure at room temperature and extraction afforded 7a in a good 

82%yield (Scheme 5).  
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Scheme 5: Synthesis of 2nd generation ligand 7a 

 

7a was unambiguously characterized by NMR spectroscopy. 1H NMR spectrum 

exhibits a characteristic singlet in the aromatic part at 7.65 ppm corresponding to the hydrogen 

in ortho-position of germylene. Moreover, the chiral center of the sulfoxide has also a 

noticeable impact on the amidinato iso-propyl groups, both -N-CH-(CH3)2 showing different 

chemical shifts at 3.97 and 4.10 ppm due to the loss of symmetry. However, the major 

difference observed concerns the -N-CH-(CH3)2 substituents. Indeed, the starting material 

shows two doublets, due to planar symmetry, contrary to four doublets in the product at 0.66, 

0.92, 1.09 and 1.23 ppm. The four doublets of the methyl groups are again a consequence of 

the loss of symmetry in the molecule brought by the stereogenic sulfoxide moiety, as already 

observed in the 1st generation (Figure 2). 

 

 
Figure 2: 1H NMR spectrum of 7a 
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13C NMR spectrum has also evidenced a solid proof on the formation of 7a. Aromatic 

carbon bonded to germanium appears as a quaternary carbon at 138.8 ppm. The chiral center 

has again a noticeable influence on the amidinate iso-propyl groups, each carbon being non-

equivalent. The tertiary carbons (-N-CH-(CH3)2) appear as two peaks with close chemical shifts 

(47.3 and 47.4 ppm) and the primary carbons (-N-CH-(CH3)2) appear as four different signals 

(24.2, 24.4, 27.5 and 27.7 ppm). 

 

It was not possible to obtain crystals of 7a, due to its degradation at room temperature 

in solid state or in solution. The mechanism of degradation has not been studied as well as the 

resulting by-products. However, it has been determined 7a was stable at -24 °C and no 

degradation was observed at this temperature after a week. This observation led to try 

crystallization at low temperature without any success.  

 

Mass spectroscopy analysis have been performed to validate the formation of 7a with 

another analytical method. However, amidinatogermylene and tert-butyl-p-tolyl-sulfoxide 

fragment were the only peaks to appear in electronic impact and MALDI-TOF analysis. 

 

Finally, the synthesis was extended to the corresponding sulfone, exploiting the ortho-

directing effect of the sulfone group. tert-Butyl-p-tolyl-sulfone was obtained in two steps from 

the corresponding thiocresol as previously described, via the oxidation of thioether into sulfone 

according to the report of Paolini in 1995 and Grela in 2009 (Scheme 6).8,9 

 

 
Scheme 6: Formation of tert-butyl-p-tolyl-sulfone 

 

tert-Butyl-p-tolyl-sulfone was deprotonated with nBuLi at -80 °C for 1h and then was 

added to AmGeCl at the same temperature. After 2h, the solvent was removed under reduced 

pressure at room temperature and extraction afforded 7b in a good 82% yield (Scheme 7).  
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Scheme 7: Synthesis of 2nd generation germylene -b- sulfone ligand 7b 

 
1H NMR of 7b showed the same characteristic signal as 7a with a singlet for aromatic 

hydrogen in ortho-position of germylene at 8.08 ppm. 13C NMR spectrum has also evidenced 

a solid proof on the formation of 7b. Indeed, all the aromatic carbons had different chemical 

shifts, which demonstrated the loss of symmetry induced by the germylene group in ortho-

position compared to the starting material that showed only four signals for the aromatic 

carbons due to the planar symmetry. 

 

II.2. Coordination properties of amidinatogermylene -b- sulfoxide 

ligand 

 
First, coordination chemistry was studied with tungsten (0), tested in the previous 

chapter and 7a. Indeed, 1st generation ligand gave a bis-germylene complex in place of a 

bidentate one. The hypothesis was a weak or impossible coordination of sulfur through the 

strained 4-member ring led to the coordination of a second germylene to the tungsten. Starting 

with an equimolar amount of [W(cod)(CO)4] precursor, a solution of 7a in THF was added at 

room temperature and stirred overnight (Scheme 8). 
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Scheme 8: Synthesis of tungsten complex 8 

 

Complex 8 was obtained with a good 89% yield. Interestingly, formation of a bidentate 

complex was observed with sulfur and germanium atoms coordinated to tungsten center. 

Coordination was determined by IR spectroscopy with a band at 1067 cm-1 characteristic of a 

sulfur bonded to the transition metal.10,11 Another indication was observed in 13C NMR 

spectrum with four signals at 202.1, 206.7, 208.3 and 210.2 ppm corresponding to the carbonyls 

ligands of the tungsten having different chemical shifts due to the loss of symmetry brought by 

the bidentate coordination and the asymmetric sulfoxide center. 1H and 13C NMR spectra 

exhibit no others special chemical shifts. Finally, X-ray structure of 2 was obtained from 

crystals from a THF solution at 6 °C (Figure 3).  

 

 
Figure 3: Molecular structure of 8 (hydrogens are omitted for clarity) 

 

The structure of 8 shows an octahedral geometry with an usual bond distance between 

the germylene and the tungsten of 2.5661(5) Å (2.50-2.65 Å), which is slightly longer than the 

distance observed for the 1st generation bis-germylene complex (2.52 Å).12–15 Unsurprisingly, 

Ge1–N1 and Ge1–N2 bond lengths of 1.951(3) and 1.952(3) Å are equal and shorter than the 
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free AmGeCl (1.98 Å) due to the coordination of the germylene lone pair to the transition metal. 

The other bond lengths and angles are in the normal range of a germylene-tungsten complex. It 

is important to note, to the best of our knowledge, that complex 8 is the first crystallized 

example of a tungsten complex coordinated by a sulfur atom of a sulfoxide function. 

 

Then, coordination has been extended to determine if the same reactivity would be 

observed with molybdenum (0), lighter analogue of tungsten (0).  Starting with the same ligand 

7a and an equimolar amount of Mo(nbd)(CO)4, 9 was obtained after stirring overnight the 

mixture at room temperature in THF (Scheme 9). 

 

 
Scheme 9: Synthesis of molybdenum complex 9 

 

Again, a bidentate complex was obtained with sulfur and germanium atoms 

coordinated to molybdenum center. Coordination was confirmed by IR spectroscopy (1089 cm-

1) and 13C NMR analysis (209.3, 214.0, 216.9 and 220.8 ppm). X-ray structure of 9 was obtained 

from crystals grown in a saturated solution of THF at 6 °C (Figure 4). The structure shows an 

octahedral geometry with a germylene-molybdenum distance slightly longer of 2.5758(6) Å, 

but still in the range of complexes previously reported (2.50-2.54 Å).13,16–18 Ge1–N1 and Ge1–

N2 bond lengths of 1.955(2) and 1.969(2) Å are equal and shorter than in the free AmGeCl 

(1.98 Å) due to coordination of the germylene lone pair to the transition metal. Again, to the 

best of our knowledge, this structure is the first crystallized example of a molybdenum complex 

coordinated by a sulfur atom of a sulfoxide function. 
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Figure 4: Molecular structure of 9 (hydrogens are omitted for clarity) 

 

The formation of bidentate germylene group VI complexes confirmed that modulation 

of the design of the ligand by increasing the distance between each moiety allowed coordination 

of the metal by the sulfur of the sulfoxide. 

 

Then ruthenium(II) was investigated in the continuity of our study for its ability to be 

coordinated either by sulfur or oxygen atom, as previously observed in the previous chapter 

with bidentate coordination by oxygen and germanium.19 An equimolar amount of 

Ru(PPh3)3Cl2 and 7a were stirred overnight in a solution of THF at room temperature (Scheme 

10). 

 

 
Scheme 10: synthesis of germylene -b- sulfoxide ruthenium complex 10a 

 
31P NMR of the crude product showed a clean formation of 10a as a 16-electron 

complex with one singlet signal at 38 ppm and a singlet for two equivalents of free PPh3 at -5 

ppm. Moreover, coordination with sulfur was determined by IR spectroscopy with a 

characteristic band at 1095 cm-1. However, even if 10a was unambiguously characterized by 
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mass spectroscopy (809.1114 ([M – Cl – i-Pr]+)), crystallization afforded systematically bis-

ruthenium complex 10b (Scheme 11). µ–SO bridged binuclear transition metal complexes were 

already observed in the literature with ruthenium and rhodium.20–24 Nevertheless, it is important 

to note that all the complexes characterized were obtained with DMSO and 10b is therefore the 

first example of µ–SO bridged ruthenium complex with an asymmetric sulfoxide. It is also the 

first example characterized with two additional chlorine atoms participating at the bridge.  

 

 
Scheme 11: germylene bis-ruthenium phosphine complex 10b 

 

X-ray structure exhibits two distorted octahedral ruthenium atoms with chlorine and 

sulfoxide bridges (Figure 5). Germanium-ruthenium bond distance of 2.3669(5) Å is in the 

range of already reported complexes (2.28-2.50 Å).25–29 Phosphine and ruthenium have usual 

distance of 2.2737(11), 2.3072(12) and 2.3673(11) Å. The chlorine atoms in axial position have 

very particular angles, Cl1–Ru1-Cl2 of 170.43(4)° and Cl4–Ru1–Cl2 of 159.53(4)° explained 

by the bridge between the two ruthenium atoms. Ge1–Ru1–S1 and Ge1–Ru1–P1 angles of the 

5-member ring are 84.33(3)° and 96.51(3)° respectively. The ruthenium-oxygen distance, 

2.197(3) Å, is in the range of reported complexes bearing a phosphine in trans position (2.15-

2.24 Å),30–32 but the distance is  slightly longer than in the µ–SO bridge of complexes already 

reported (2.06-2.16 Å).20–23  Finally, ruthenium-sulfur bond length of 2.3374(10) Å is in the top 

range of bridge µ–SO complexes already described (2.19-2.34 Å).20–23 This result can be 

explained by a high donation of the phosphine located in trans-position that can weaken the 

bond and increase the length between ruthenium and sulfur. Nevertheless, it is to the best of our 

knowledge the first example of a trans-phosphine-sulfoxide complex fully characterized. 
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Figure 5: Molecular structure of 10b (hydrogens are omitted for clarity) 

 

Interestingly, when crystals of 10b were analyzed by 31P NMR in CD2Cl2, we observed 

the presence of three isomers in a 68 / 18 / 14 ratio. Chemical shifts for the three isomers were 

observed at 28.7, 39.9 and 29.5 respectively for singlet phosphorus in trans position of sulfur 

atom. The two-other phosphorus located on the second ruthenium appeared as six doublets for 

the three isomers. Analysis at variable temperature was carried out to determine if temperature 

could have an influence on the ratio of the three isomers. However, any change of the ration 

was observed by varying the temperature on the range of +35 to -70 °C (Figure 6).  
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Figure 6: 31P NMR analysis of 10b at variable temperature  

 

Two hypothesis could explain the formation of three molecules. The first hypothesis 

was positions isomers resulting of the interconversion of phosphine with non-bridging chlorine 

(Figure 7). The second hypothesis was decoordination of a bridging atom and coordination of 

a solvent molecule or formation of an empty site (Figure 7). 

 

 
Figure 7: Possible formation of three molecules in solution 
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The second hypothesis, relying on decoordination, should depend on the solvent. 

Indeed, the ratio between the three isomers should change with a coordinating solvent compare 

to a non-coordinating solvent. However, 31P NMR of 10b in CD2Cl2 and fluorobenzene shows 

the exact same ratio between the three isomers which prove that the solvent is not coordinating 

(Figure 8). Still, an empty site formed by decoordination is possible. 

 

      
Figure 8: 31P of 10b in CD2Cl2 and fluorobenzene 

 

Finally, calculations were performed to obtain informations on the structure of the 

three isomers observed in solutions (The B3LYP/6-31g(d,p) basis set and SDD for Ru was 

used). 10b was optimized by replacing the aryl linker with an alkene and by replacing the 

substituents on the amidinate by methyl groups (Figure 9). 

 

 
Figure 9: Optimized molecule of 10b used for calculations 
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The result on the potential-energy surface (PES) showed that decoordination, with 

formation of an empty site, of the sulfoxide or a bridging chloride is not occurring. This result 

may indicate that the three molecules are position isomers. However, the size of the molecule 

did not allow to obtain results to conclude yet on the structure of the three isomers with 

calculations.  

 

Finally, coordination chemistry was studied with group 10 transition metal. Ni(cod)2 

was used as precursor in presence of an equimolar amount of 7a in toluene at room temperature 

(Scheme 12). 

 

 
Scheme 12: synthesis of germylene nickel(cod) complex 11a 

 

Nickel complex 11a was obtained after 20 min as a very unstable yellow solid. 1H 

NMR spectrum showed a fast and complete formation of 11a after 5 min and characteristic 

signal of coordinated cod was observed with four alkene protons observed at 5.41, 5.09, 4.85, 

4.54 ppm. 11a degraded quickly at room temperature and the product(s) formed during 

degradation has not been characterized but we suppose the formation of Ni(II) species because 

of the rapid apparition of broaden signals. It is also important to note the concomitant formation 

of free cod during the degradation process (Figure 10). This instability should be explained by 

oxidative insertion of nickel into sulfur carbon bond to form a novel Ni(II) complex as reported 

by Radius et al. in 2007.33 
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Figure 10: 11a 1H NMR spectrum in cod area of some crystals in young tube and monitored 

after 1 hour in solution at room temperature 

 

Nevertheless, crystals of 11a were obtained and characterized by X-ray 

crystallography (Figure 11).  

 

 
Figure 11: Molecular structure of 11a (hydrogens are omitted for clarity) 

 

X-ray structure of 11a exhibits a distorted tetrahedral geometry with an usual Ge1–

Ni1 bond length of 2.2625(3) Å in the range of already reported for germylene-nickel 

complexes (2.09 – 2.30 Å).18,34–38 The Ni1–S1 bond distance, 2.1591(4) Å, is slightly longer in 

comparison of  the results already published by Peters in 2012 (2.10-2.13 Å).39 Ge1–Ni1–

S1angle is 90.025(14)° which lie in 5-member ring angles. It is important to note that Ge1–N1 

and Ge1–N2 bond lengths of 1.9893(14) and 1.9913(13) Å are in the same range than the free 

AmGeCl (1.98 Å). Indeed, Ge-N bond length usually decreases due to the higher donation of 

nitrogen to germanium when the latest is coordinated to a transition metal. In our case, this 
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result can be explained by the electron rich nickel (0) center that should perform p–back 

donation to the germylene center. 

 

Finally, we have evaluated the reactivity of 11a in a pressure of carbon monoxide to 

give 11b as a stable nickel complex at room temperature in toluene (Scheme 13). 

 

 
Scheme 13: synthesis of germylene nickel tricarbonyl complex 11b 

 

The very fast ligand exchange at room temperature led to the formation of the 

tricarbonyl nickel complex, demonstrating the hemilabile character of the ligand by replacing 

the weak s–donor by another ligand. The structure of 11b has been determined by 13C NMR 

analysis, with only one signal for the carbonyl ligands at 199 ppm, and by IR spectroscopy with 

a band at 1027 cm-1, confirming no coordination of sulfoxide to the nickel and finally by X-ray 

diffraction analysis of crystals obtained from a saturated solution of toluene at -24 °C (Figure 

12). 

 

 
Figure 12: Molecular structure of 11b (hydrogens are omitted for clarity) 
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X-ray structure of 11b exhibits a nickel center with a tetrahedral geometry with a 

slightly longer Ge–-Ni1 bond length of 2.3202(4) Å, but still in the range of already reported 

germylene-nickel complexes (2.09 – 2.30 Å).18,34–38 Ge1-N1 and Ge1–N2 bond lengths of 

1.9598(18) and 1.971(2) Å are equal and shorter than in the free AmGeCl (1.98 Å), which can 

be explained by a better donation of the germanium to the nickel and a smaller p–back donation 

than for 5a. 

 

The specific structure of 11b as LNi(CO)3 allows a TEP (Tolman Electronic 

Parameter) comparison with other well-known ligands as phosphines or NHCs. The goal of 

TEP comparison consists in the correlation of the value of IR band stretching frequency of the 

carbon monoxyde ligands with the electron density of the transition metal (Figure 13).40 In the 

case of an electron rich ligand , the metal–carbon bond is shorter and strengthen due to p-

backbonding of the metal to the ligands that will decrease carbonyl band shift due to weaken 

carbon–oxygen triple bond. In the other case of an electron poor ligand, the p-backbonding is 

lower and will increase carbonyl band shift due to stronger carbon–oxygen triple bond. 

 

 
Figure 13: Carbonyl complex to determine TEP 

 

IR spectroscopy of 11b  shows in dichloromethane a carbonyl band at 2058 cm-1, 

which prove a better s-donor strength than most of the phosphines like P(OMe)3 (2080 cm-1), 

PMe3 (2066 cm-1) or PCy3 (2060 cm-1),41 but the result showed poorest s-donor strength than 

NHCs like IMes (2052 cm-1), i-Pr (2051 cm-1) or Me (2058 cm-1), or silylene (2046 cm-1) 

(Figure 14).42,43 TEP comparison of tricarbonyl nickel complexes shows that 11b stand between 

the s-donation strength of trialkylphosphines and common NHCs. However, the complex can 

be assigned as a better s-donor than the germylene nickel complex published by Hoge et al. in 

2016 with a band at 2067 cm-1,44 and also better that the germylene with alkoxy bridge reported 

by Du Mont et al. in 1984 (2070 cm-1) or the one reported by Denk et al. in 2011 (2071 cm-

1).38,45 
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Figure 14: TEP comparison of several Ni(CO)3 complexes 

 

  

TEP (cm-1)

Less	donating
ligands

More	donating
ligands

2050 2060 2070

PMe3PCy3
N

N

N

N

Ge
C2F5

C2F5

PMe3

PR2

B
SiN

Ar

O
Ge

O
Ge

OtBu

OtBu

OtBu

tBuO

N Ge

O

O

tBu
S

O

N

N Ge

11b



Chapter III: Hemilabile Germylene -b- Sulfoxide Ligand: Synthesis, Characterization and 

Coordination Properties toward Group 6, 8 and 10 Transition Metals 

 -183- 

III. Conclusion 

 
A 2nd generation of germylene-sulfoxide ligand has been obtained by metal metathesis 

of AmGeCl chlorine atom with ortho-lithiated aromatic sulfoxide in a good 82% yield. This 

novel b-sulfoxide germylene ligand presents a stability comparable to that of the 1st generation. 

Its design presents a larger distance between sulfoxide and germylene moieties, allowing to 

modulate its coordination properties. 

 

Thereby, germylene -b- sulfoxide ligand reacts with W(cod)(CO)4 or Mo(nbd)(CO)4 

precursors to form the corresponding complexes in a good yield of 89 %. Bidentate coordination 

has been observed with germanium and sulfur atoms coordinated to the metal center. The 

characterization of bidentate germylene complexes confirmed that the formation of bis-

germylene complexes obtained during the use of 1st generation a-sulfoxide germylene ligands 

is due to a less stable coordination of sulfur through a strained 4-member ring. 

 

Coordination was also investigated with Ru(PPh3)3Cl2 to give a novel 16 electron 

complex. Surprisingly, an unprecedented bis-ruthenium complex with sulfoxide and chlorine 

bridges has been obtained by crystallization. 31P NMR analysis show the formation of three 

isomers in solution whereas only one is observed in X-ray diffraction analysis. 

 

Group 10 transition metal was also investigated with Ni(cod)2 precursor. The 

corresponding complex is highly unstable. Nevertheless, its structure has been determined by 

X-ray diffraction analysis to show a bidentate complex with germanium and sulfur atoms 

coordinated to nickel (0). Reaction with carbon monoxide affords a stable tricarbonyl nickel (0) 

complex, confirming the hemilabile character of this ligand by exchange of the sulfoxide for a 

stronger s-donating ligand. Finally, TEP comparison of carbonyl bands by IR spectroscopy 

shows that the s-donor strength of germylene ligand is between the s-donor strength of 

phosphines and NHCs. 
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IV. Experimental section 

 
Amidinate (diisopropyle-t-butyl) t-butyl-p-tolylsulfoxide 

germylene (7a): n-BuLi (0.72 mmol, 0.48 mL, C = 1.6 mol/L in 

hexane, 1.1 eq) was added dropwise to a solution of t-butyl-p-

tolylsulfoxide (141.1 mg, 0.72 mmol, 1.1 eq) in toluene (3 mL) at -78 

°C. The solution was stirred during 1 hour at the same temperature (-

78 °C). Then the mixture was added dropwise to a solution of AmGeCl 

(189 mg, 0.65 mmol, 1 eq) in toluene (3 mL) at -78 °C. The mixture 

was stirred during 2 hours at -78 °C and then warmed up to room temperature slowly. The 

solvent was evaporated under reduced pressure, the crude was then extracted with toluene (2x 

2mL) and concentrated in order to afford a yellow oil (241 mg) in 82% yield. The compound 

is stable and storable at -24 °C in an inert atmosphere of argon. 1H NMR (300.18 MHz, C6D6, 

25 °C): δ 0.66 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 0.92 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.09 

(d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.14 (s, 9H, C(CH3)3); 1.23 (d, 3JHH = 6.3 Hz, 3H, 

CH(CH3)2); 1.29 (s, 9H, C(CH3)3); 2.20 (s, 3H, p-CH3); 3,97 (sept., 3JHH = 6.3 Hz, 1H, 

CH(CH3)2); 4.10 (sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 7.04 (d, 1H, 3JHH = 8.2 Hz, CHAr); 7.64 

(s, 1H, CHAr); 7.97 (d, 1H, 3JHH = 8.2 Hz, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 

21.5 (p-CH3); 23.8 (O=SC(CH3)3); 24.2 (CH(CH3)2); 24.4 (CH(CH3)2); 27.5 (CH(CH3)2); 27.7 

(CH(CH3)2); 29.3 (C(CH3)3); 40.2 (C(CH3)3); 47.3 (CH(CH3)2); 47.4 (CH(CH3)2); 56.5 (O=S-

C(CH3)3); 125.9 (CAr); 128.8 (CAr); 132.6 (CAr); 138.8 (CAr/q); 145.8 (CAr/q); 159.5 (CAr/q); 171.9 

(N−C−N).  

 

Amidinate (diisopropyle-t-butyl) t-butyl-p-tolylsulfone 

germylene (7b): n-BuLi (0.60 mmol, 0.38 mL, C = 1.6 mol/L in 

hexane, 1.1 eq) was added dropwise to a solution of t-butyl-p-

tolylsulfone (127 mg, 0.60 mmol, 1.1 eq) in toluene (3 mL) at -78 

°C. The solution was stirred during 1 hour at the same temperature 

(-78 °C). Then the solution was added dropwise to a solution of AmGeCl (189 mg, 0.55 mmol, 

1 eq) in toluene (2 mL) at -78 °C. The mixture was stirred during 1 hour at -78 °C and 1 hour 

at room temperature. The solvent was evaporated under reduced pressure, the crude was then 

extracted with toluene (2x 2mL) and concentrated in order to afford a light yellow solid (211 

mg) in 82% yield. 1H NMR (300.18 MHz, C6D6, 25 °C): δ 0.93 (d, 3JHH = 6.3 Hz, 6H, 
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CH(CH3)2); 1.11 (s, 9H, C(CH3)3); 1.34 (d, 3JHH = 6.3 Hz, 6H, CH(CH3)2); 1.36 (s, 9H, 

C(CH3)3); 2.18 (s, 3H, p-CH3); 4.10 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 6.93 (d, 1H, 3JHH = 

8.0 Hz, CHAr); 7.93 (d, 1H, 3JHH = 8.0 Hz, CHAr); 8.08 (s, 1H, CHAr). 13C{1H} NMR (75.48 

MHz, C6D6, 25 °C): δ 21.6 (p-CH3); 23.6 (CH(CH3)2); 24.0 (CH(CH3)2); 27.4 (CH(CH3)2); 27.6 

(CH(CH3)2); 29.3 (C(CH3)3); 29.4 (S(O)2C(CH3)3); 40.1 (C(CH3)3); 47.8 (CH(CH3)2); 58.9 (S-

C(CH3)3); 127.9 (CAr); 131.4 (CAr); 134.8 (CAr); 139.0 (CAr/q); 141.9 (CAr/q); 164.7 (CAr/q); 172.2 

(N−C−N). 

 

Amidinate (diisopropyle-t-butyl) germylene t-butyl-p-

tolylsulfoxide tungsten tetracarbonyl complex (8): Amidinate 

(diisopropyle t-butyl) t-butyl-p-tolylsulfoxide germylene (7a) (140 

mg, 0.31 mmol, 1 eq) was dissolved in THF (3 mL) and added to 

tetracarbonyl(1,5-cyclooctadiene) tungsten (0) (125 mg, 0.31 mmol, 

1 eq) in THF (1 mL). The mixture was stirred during 15 hours at 

room temperature, then filtered and the solvent removed under 

reduced pressure. Finally, the solid was washed with pentane (2 x 3 mL) to obtain a pale yellow 

solid (206 mg) in 89% yield. Crystallization from a solution of THF at 6 °C gave pale yellow 

crystals suitable for X-ray diffraction analysis. M.p. : 117 °C (decomposition); 1H NMR 

(300.18 MHz, C6D6, 25 °C): δ 0.54 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 0.81 (d, 3JHH = 6.3 Hz, 

3H, CH(CH3)2); 1.06 (s, 9H, C(CH3)3); 1.20 (s, 9H, C(CH3)3); 1.23 (d, 3JHH = 6.3 Hz, 3H, 

CH(CH3)2); 1.29 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 2.13 (s, 3H, p-CH3); 3.98 (sept., 3JHH = 6.3 

Hz, 1H, CH(CH3)2); 4.08 (sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 6.87 (d, 1H, 3JHH = 8.2 Hz, 

CHAr); 7.34 (s, 1H, CHAr); 8.17 (d, 1H, 3JHH = 8.2 Hz, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 

25 °C): δ 20.9 (p-CH3); 22.9 (CH(CH3)2); 24.0 (O=SC(CH3)3); 24.8 (CH(CH3)2); 25.6 

(CH(CH3)2); 25.7 (CH(CH3)2); 29.2 (C(CH3)3); 39.9 (C(CH3)3); 47.3 (CH(CH3)2); 48.1 

(CH(CH3)2); 65.8 (O=S-C(CH3)3); 125.7 (CAr); 130.0 (CAr); 130.1 (CAr); 140.9 (CAr/q); 

149.4 (CAr/q); 153.4 (CAr/q); 177.9 (N−C−N); 202.1 (CO); 206.7 (CO); 208.3 (CO); 210.2 (CO). 

IR (Nujol, cm-1) : 2012 (s) (CO), 1901 (br) (CO), 1067 (s) (SO). MS m/z (%): 704.1 ([M – 

(CO+CH3)]+). HRMS m/z (%): 747.1320 ([M + 1]+) calcd for C26H38GeN2O5WS ([M + 1]+) 

747.1311.   

Formula C28H44Cl2GeN2O2RuS dcalc (g/cm3) 1.472 

Mol wt 717.29 µ (mm-1) 1.652 

Temp. (K) 193(2) F(000)  2944 
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Cryst syst Monoclinic cryst size (mm)  0.16 x 0.15 x 0.07 

Space group P21/n θ range (deg.)  2.94 to 25.68 

a (Å) 18.7846(10) index range h k l 
-22<=h<=22, -
21<=k<=21, -
25<=l<=25 

b (Å) 17.6499(8) no of reflns collected /  249295 

c (Å) 20.9404(11) unique 12278 [R(int) = 0.0753] 

a (deg.) 90 
Completeness to 

θmax(%)  
99.8 

b (deg.) 111.232(2) data/restraints/params 12278 / 452 / 825 

g (deg.) 90 goodness-of-fit  1.060 

V (Å3)  6471.4(6) R1, wR2 (I > 2σ(I))  0.0314, 0.0654 

Z 8 R1, wR2 (all data)  0.0475, 0.0738 

 

Amidinate (diisopropyle-t-butyl) germylene t-butyl-p-tolyl 

sulfoxide molybdenum tetracarbonyl complex (9): Amidinate 

(diisopropyle t-butyl) t-butyl-p-tolylsulfoxide germylene (7a) (100 

mg, 0.22 mmol, 1 eq) was dissolved in THF (3 mL) and added to 

tetracarbonyl(bicyclo[2.2.1]hepta-2,5-diene) molybdenum (0) (66 

mg, 0.22 mmol, 1 eq) in THF (1 mL). The mixture was stirred during 

15 hours at room temperature, then filtered and the solvent removed 

under reduced pressure. Finally, the solid was washed with pentane (2 x 3 mL) to obtain a pale 

yellow solid (113 mg) in 78% yield. Crystallization from a solution of THF at 6 °C gave pale 

yellow crystals suitable for X-ray diffraction analysis. M.p. : 98 °C (decomposition); 1H NMR 

(300.18 MHz, C6D6, 25 °C): δ 0.54 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 0.80 (d, 3JHH = 6.3 Hz, 

3H, CH(CH3)2); 1.05 (s, 9H, C(CH3)3); 1.20 (s, 9H, C(CH3)3); 1.22 (d, 3JHH = 6.3 Hz, 3H, 

CH(CH3)2); 1.29 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 2.11 (s, 3H, p-CH3); 3.91 (sept., 3JHH = 6.3 

Hz, 1H, CH(CH3)2); 4.03 (sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 6.90 (d, 1H, 3JHH = 8.2 Hz, 

CHAr); 7.32 (s, 1H, CHAr); 8.14 (d, 1H, 3JHH = 8.2 Hz, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 

25 °C): δ 21.0 (p-CH3); 23.0 (CH(CH3)2); 23.9 (O=SC(CH3)3); 24.8 (CH(CH3)2); 25.8 

(CH(CH3)2); 25.9 (CH(CH3)2); 29.2 (C(CH3)3); 39.8 (C(CH3)3); 47.4 (CH(CH3)2); 48.2 

(CH(CH3)2); 64.1 (O=S-C(CH3)3); 126.1 (CAr); 129.8 (CAr); 130.2 (CAr); 140.4 (CAr/q); 

148.6 (CAr/q); 152.2 (CAr/q); 177.3 (N−C−N); 209.3 (CO); 213.9 (CO); 216.9 (CO); 220.8 (CO). 

IR (CH2Cl2, cm-1) : 2005 (s) (CO), 1882 (br) (CO), 1089 (s) (SO). MS m/z (%): 659.24 ([M+).  
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Formula C28H44Cl2GeN2O2RuS dcalc (g/cm3) 1.472 

Mol wt 717.29 µ (mm-1) 1.652 

Temp. (K) 193(2) F(000)  2944 

Cryst syst Monoclinic cryst size (mm)  0.16 x 0.15 x 0.07 

Space group P21/n θ range (deg.)  2.94 to 25.68 

a (Å) 18.7846(10) index range h k l 
-22<=h<=22, -
21<=k<=21, -
25<=l<=25 

b (Å) 17.6499(8) no of reflns collected /  249295 

c (Å) 20.9404(11) unique 12278 [R(int) = 0.0753] 

a (deg.) 90 
Completeness to 

θmax(%)  
99.8 

b (deg.) 111.232(2) data/restraints/params 12278 / 452 / 825 

g (deg.) 90 goodness-of-fit  1.060 

V (Å3)  6471.4(6) R1, wR2 (I > 2σ(I))  0.0314, 0.0654 

Z 8 R1, wR2 (all data)  0.0475, 0.0738 

 

Amidinate (diisopropyle-t-butyl) germylene t-butyl-p-tolyl 

sulfoxide ruthenium phosphine complex (10a): Amidinate 

(diisopropyle t-butyl) t-butyl-p-tolylsulfoxide germylene (7a) (100 

mg, 0.22 mmol, 1 eq) was dissolved in THF (3 mL) and added to 

tris(triphenylphosphine) ruthenium dichloride (211 mg, 0.22 mmol, 

1 eq). The mixture was stirred during 15 hours at room temperature, 

then filtered and the solvent removed under reduced pressure. 

Finally, the crude was dissolved in THF (2 mL) and pentane (8 mL) was added slowly to 

precipite 10a. After filtration and evaporation, a red solid (135 mg) in 69% yield was obtained 

with 15% of the starting PPh3 remaining. 31P{1H} NMR (121.49 MHz, C6D6): δ 38.0 (s, Ru-

PPh3). HRMS m/z (%): 850.1379 ([M + ACN – Cl – i-Pr]+) calcd for C39H49ClGeN3OPRuS ([M + ACN 

– Cl – i-Pr]+) 850.1368, 809.1114 ([M – Cl – i-Pr]+), 809.1114 ([M – Cl – i-Pr]+) calcd for 

C37H47ClGeN2OPRuS ([M + ACN – Cl – i-Pr]+) 809.1102. 
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Amidinate (diisopropyle-t-butyl) germylene t-butyl-p-

tolylsulfoxide bis-Ruthenium phosphine complex 

(10b): 10a (135 mg, 0.15 mmol, 1 eq) was dissolved in 

THF (3 mL) in a vial and pentane was added in another 

vial. After two days of slow diffusion of pentane into THF, 

the crystals were filtered and washed with THF (2x 1mL) 

to obtain a pink solid (42 mg). M.p. : 144 °C 

(decomposition); Isomer A : 1H NMR (500 MHz, CDCl3, 25 °C): δ 0.24 (d, 3JHH = 6.6 Hz, 3H, 

CH(CH3)2); 0.45 (d, 3JHH = 6.6 Hz, 3H, CH(CH3)2); 0.51 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 0.81 (d, 3JHH 
= 6.3 Hz, 3H, CH(CH3)2); 1.52 (s, 9H, C(CH3)3); 1.59 (s, 9H, C(CH3)3); 2.42 (s, 3H, p-CH3); 3.91 (sept., 
3JHH = 6.3 Hz, 1H, CH(CH3)2); 4.07 (sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 6.18 (d, 1H, 3JHH = 8.2 Hz, 

CHAr); 6.72-7.43 (m, 45H, CHAr); 7.91-7.94 (m, 2H, CHAr). 13C{1H} NMR (125 MHz, CDCl3, 25 °C): 

δ 21.5 (p-CH3); 24.4 (CH(CH3)2); 24.8 (CH(CH3)2); 25.6 (CH(CH3)2); 26.1 (O=SC(CH3)3); 27.6 

(CH(CH3)2); 30.4 (C(CH3)3); 40.0 (C(CH3)3); 46.3 (CH(CH3)2); 48.1 (CH(CH3)2); 71.8 (O=S-C(CH3)3); 

178.3 (N−C−N). 31P{1H} NMR (200 MHz, C6D6): δ 28.7 (s, Ru-PPh3), 44.8 (d, 2JPP = 42.0 Hz, 

Ru-PPh3), 53.6 (d, 2JPP = 42.0 Hz, Ru-PPh3). Isomer B : 1H NMR (500 MHz, CDCl3, 25 °C): δ -0.24 

(d, 3JHH = 6.6 Hz, 3H, CH(CH3)2); 0.06 (d, 3JHH = 6.6 Hz, 3H, CH(CH3)2); 0.23 (d, 3JHH = 6.3 Hz, 3H, 

CH(CH3)2); 0.69 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.56 (s, 9H, C(CH3)3); 1.63 (s, 9H, C(CH3)3); 2.45 

(s, 3H, p-CH3); 3.77 (sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 3.96 (sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 

6.72-7.43 (m, 50H, CHAr). 13C{1H} NMR (125 MHz, CDCl3, 25 °C): δ 21.5 (p-CH3); 23.5 (CH(CH3)2); 

23.8 (CH(CH3)2); 25.0 (CH(CH3)2); 26.1 (O=SC(CH3)3); 26.7 (CH(CH3)2); 30.3 (C(CH3)3); 39.9 

(C(CH3)3); 47.0 (CH(CH3)2); 48.6 (CH(CH3)2); 71.9 (O=S-C(CH3)3); 178.0 (N−C−N). 31P{1H} NMR 

(200 MHz, C6D6): δ 39.9 (s, Ru-PPh3), 41.6 (d, 2JPP = 37.3 Hz, Ru-PPh3), 44.1 (d, 2JPP = 37.3 Hz, 

Ru-PPh3). Isomer C : 1H NMR (500 MHz, CDCl3, 25 °C): δ 0.00 (d, 3JHH = 6.6 Hz, 3H, CH(CH3)2); 0.16 

(d, 3JHH = 6.6 Hz, 3H, CH(CH3)2); 0.39 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 0.98 (d, 3JHH = 6.3 Hz, 3H, 

CH(CH3)2); 1.52 (s, 9H, C(CH3)3); 1.59 (s, 9H, C(CH3)3); 2.46 (s, 3H, p-CH3); 3.79 (sept., 3JHH = 6.3 

Hz, 1H, CH(CH3)2); 4.04 (sept., 3JHH = 6.3 Hz, 1H, CH(CH3)2); 6.72-7.43 (m, 49H, CHAr); 8.44 (d, 1H, 

3JHH = 8.2 Hz, CHAr). 13C{1H} NMR (125 MHz, CDCl3, 25 °C): δ 21.7 (p-CH3); 23.2 (CH(CH3)2); 24.3 

(CH(CH3)2); 24.5 (CH(CH3)2; 26.1 (O=SC(CH3)3); 27.7 (CH(CH3)2); 30.2 (C(CH3)3); 40.1 (C(CH3)3); 

46.5 (CH(CH3)2); 48.6 (CH(CH3)2); 69.7 (O=S-C(CH3)3); 178.4 (N−C−N). 31P{1H} NMR (200 MHz, 

C6D6): δ 29.5 (s, Ru-PPh3), 47.6 (d, 2JPP = 40.9 Hz, Ru-PPh3), 48.3 (d, 2JPP = 40.9 Hz, Ru-PPh3). 

IR (Nujol, cm-1): 1162 (s) (SO). HRMS m/z (%): 1547.1821 ([M – Cl]+) calcd for 

C76H84Cl3GeN2OP3Ru2S ([M – Cl]+) 1547.1829. 

Formula C28H44Cl2GeN2O2RuS dcalc (g/cm3) 1.472 
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Mol wt 717.29 µ (mm-1) 1.652 

Temp. (K) 193(2) F(000)  2944 

Cryst syst Monoclinic cryst size (mm)  0.16 x 0.15 x 0.07 

Space group P21/n θ range (deg.)  2.94 to 25.68 

a (Å) 18.7846(10) index range h k l 
-22<=h<=22, -
21<=k<=21, -
25<=l<=25 

b (Å) 17.6499(8) no of reflns collected /  249295 

c (Å) 20.9404(11) unique 12278 [R(int) = 0.0753] 

a (deg.) 90 
Completeness to 

θmax(%)  
99.8 

b (deg.) 111.232(2) data/restraints/params 12278 / 452 / 825 

g (deg.) 90 goodness-of-fit  1.060 

V (Å3)  6471.4(6) R1, wR2 (I > 2σ(I))  0.0314, 0.0654 

Z 8 R1, wR2 (all data)  0.0475, 0.0738 

 

Amidinate (diisopropyle-t-butyl) t-butyl-p-tolylsulfoxide 

germylene nickel cyclooctadiene complex (11a): Amidinate 

(diisopropyle t-butyl) t-butyl-p-tolylsulfoxide germylene (7a) (140 

mg, 0.31 mmol, 1 eq) and bis(1,5-cyclooctadiene) nickel (0) (125 

mg, 0.31 mmol, 0.5 eq) were dissolved in toluene (3 mL). The 

mixture was stirred during 15 minutes at room temperature, the 

solvent was then removed under reduced pressure. Finally, the solid 

was washed with pentane (2x3 mL) to obtain a yellow solid (206 mg) in 89% yield. 

Crystallization from a solution of toluene at -24 °C gave pale yellow crystals suitable for X-ray 

diffraction analysis. 1H NMR (300.18 MHz, C6D6, 25 °C): δ 0.51 (d, 3JHH = 6.3 Hz, 3H, 

CH(CH3)2); 0.85 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.10 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 

1.15 (s, 9H, C(CH3)3); 1.28 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.41 (s, 9H, C(CH3)3); 1.98 (m, 

1H, CH2-HC=CH); 2.18 (s, 3H, p-CH3); 2.34 (m, 2H, CH2-HC=CH); 2.65 (m, 4H, CH2-

HC=CH); 3.22 (m, 1H, CH2-HC=CH); 3.98 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 4.54 (m, 1H, 

CH2-HC=CH); 4.85 (m, 1H, CH2-HC=CH); 5.09 (m, 1H, CH2-HC=CH); 5.41 (m, 1H, CH2-

HC=CH); 6.99 (d, 1H, 3JHH = 8.2 Hz, CHAr); 7.35 (s, 1H, CHAr); 8.30 (d, 1H, 3JHH = 8.2 Hz, 

CHAr). 
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Formula C28H44Cl2GeN2O2RuS dcalc (g/cm3) 1.472 

Mol wt 717.29 µ (mm-1) 1.652 

Temp. (K) 193(2) F(000)  2944 

Cryst syst Monoclinic cryst size (mm)  0.16 x 0.15 x 0.07 

Space group P21/n θ range (deg.)  2.94 to 25.68 

a (Å) 18.7846(10) index range h k l 
-22<=h<=22, -
21<=k<=21, -
25<=l<=25 

b (Å) 17.6499(8) no of reflns collected /  249295 

c (Å) 20.9404(11) unique 12278 [R(int) = 0.0753] 

a (deg.) 90 
Completeness to 

θmax(%)  
99.8 

b (deg.) 111.232(2) data/restraints/params 12278 / 452 / 825 

g (deg.) 90 goodness-of-fit  1.060 

V (Å3)  6471.4(6) R1, wR2 (I > 2σ(I))  0.0314, 0.0654 

Z 8 R1, wR2 (all data)  0.0475, 0.0738 

 

Amidinate (diisopropyle-t-butyl) t-butyl-p-tolylsulfoxide 

germylene nickel tricarbonyl complex (11b): Amidinate 

(diisopropyle t-butyl) t-butyl-p-tolylsulfoxide germylene nickel (1,5-

cyclooctadiene) (11a) (80 mg, 0.13 mmol, 1 eq) in pressure tube was 

dissolved in C6D6 (0.5 mL) and CO(gas) atmosphere was added at room 

temperature (1.5 bar). The orange solution turn quickly bright yellow. 

Finally, the solvent was removed under reduced pressure and the solid 

was washed with pentane (3x4 mL) to obtain a yellow solid (75 mg) in 93% yield. 

Crystallization from toluene at -24 °C gave pale yellow crystals suitable for X-ray diffraction 

analysis. M.p. : 132 °C (decomposition); 1H NMR (300.18 MHz, C6D6, 25 °C): δ 0.62 (d, 3JHH = 

6.3 Hz, 3H, CH(CH3)2); 0.94 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.06 (s, 9H, C(CH3)3); 1.16 

(d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.26 (s, 9H, C(CH3)3); 1.33 (d, 3JHH = 6.3 Hz, 3H, 

CH(CH3)2); 2.12 (s, 3H, p-CH3); 3.88 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 4.03 (m, 1H, CH2-

HC=CH); 6.98 (d, 1H, 3JHH = 8.2 Hz, CHAr); 7.63 (s, 1H, CHAr); 7.92 (d, 1H, 3JHH = 8.2 Hz, 

CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 21.4 (p-CH3); 23.5 (O=SC(CH3)3); 23.8 

(CH(CH3)2); 24.4 (CH(CH3)2); 26.3 (CH(CH3)2); 26.5 (CH(CH3)2); 29.1 (C(CH3)3); 39.6 
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(C(CH3)3); 48.0 (CH(CH3)2); 48.2 (CH(CH3)2); 56.8 (O=S-C(CH3)3); 126.6 (CAr); 130.0 (CAr); 

133.0 (CAr); 139.6 (CAr/q); 145.7 (CAr/q); 151.2 (CAr/q); 173.6 (N−C−N); 199.0 (CO). IR (cm-1): 

2059 (CO), 1982 (CO), 1027 (SO). HRMS m/z (%): 567.1246 ([M + 1 - CO]+) calcd for 

C24H38GeN2O4NiS ([M + 1]+) 567.1241.   

Formula C28H44Cl2GeN2O2RuS dcalc (g/cm3) 1.472 

Mol wt 717.29 µ (mm-1) 1.652 

Temp. (K) 193(2) F(000)  2944 

Cryst syst Monoclinic cryst size (mm)  0.16 x 0.15 x 0.07 

Space group P21/n θ range (deg.)  2.94 to 25.68 

a (Å) 18.7846(10) index range h k l 
-22<=h<=22, -
21<=k<=21, -
25<=l<=25 

b (Å) 17.6499(8) no of reflns collected /  249295 

c (Å) 20.9404(11) unique 12278 [R(int) = 0.0753] 

a (deg.) 90 
Completeness to 

θmax(%)  
99.8 

b (deg.) 111.232(2) data/restraints/params 12278 / 452 / 825 

g (deg.) 90 goodness-of-fit  1.060 

V (Å3)  6471.4(6) R1, wR2 (I > 2σ(I))  0.0314, 0.0654 

Z 8 R1, wR2 (all data)  0.0475, 0.0738 
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Abstract 

 

 

Sulfonimidamide were synthesized with different substituents. This new design 

allowed to obtain similar or different groups on the nitrogen atom, with the formation of 

symmetric and asymmetric center on the sulfur atom. The design also allowed to incorporate a 

weak Lewis base in vision to form a hemilabile ligand. 

 

Then, formation of homoleptic germylenes were obtained by protonolysis reaction. 

The reaction was finally extended to the formation of stannylenes. All the metallylenes were 

fully characterized by NMR spectroscopy and X-ray diffraction analysis.  

 

Electronic properties of these new metallylenes were investigated by DFT 

calculations. 
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I. Introduction  

 
The synthesis of new metallylenes was extensively studied the past decades and 

allowed to develop a large panel of electronic and steric properties1–3 in order to obtain novel 

properties.4,5 Nevertheless, insertion of chirality in the design of the stabilizing substituents was 

only studied over few publications compared to the overall study of carbene analogues (Figure 

1). Hahn et al. have reported in 2010 the first germylene with chiral N,N’-substituents,6 

followed the next year by the publication of Mochida et al. with a bis(oxazoline) ligand and 

finally Baceiredo et al. with a P,N-stabilized germylene in 2011.7–9  

 

 
Figure 1: Examples of germylenes with chiral substituents 

 

On the other hand, stannylenes presents the same feature as germylene and were 

published in the same report as germylene with one exception (Figure 2).6,10 Glorius et al. 

published in 2012 a [2.2]-paracyclophane derived N-heterocyclic stannylene demonstrating an 

interesting example of planar chirality.11 

 

 
Figure 2: Example of stannylene with chiral substituent 

 

Nevertheless, no applications of asymmetric germylenes and stannylenes were 

reported yet. This observation led us to consider the synthesis of a new tetrylene family with a 

chiral center directly included into the design of the stabilizing substituent. On this path, 

sulfonimidamide group was selected as a valuable alternative of amidinate group (Figure 3).12 
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Sulfonimidamides have a S(VI) atom in central position with two double bonds with oxygen 

and nitrogen, and two single bonds with carbon and nitrogen. Delocalization of electrons was 

determined with identical substituents on the nitrogen atoms by Johnson et al. in 1979.13 The 

report showed that tautomerism undergoes through a fast proton transfer between the imine and 

amine atoms. It is also mentioned that the proton transfer rate depends on the substituents of 

both nitrogen (aryl, alkyl, dissymmetric...). It is important to note that the tetrahedral sulfur 

atom can exhibit a configurationally stable chiral center when substituents on the nitrogen 

atoms were different,14,15 which lead Reek et al. to report in 2012 the synthesis of a 

sulfonimidamide based ligand employed successfully in iridium asymmetric catalysis.16 

 

 
Figure 3: Sulfonimidamide properties 

 

The utilization of sulfonimidamide was also interestingly employed with 

bis[bis(trimethylsilyl)amido]zinc to obtained a novel homoleptic tetracoordinated zinc 

published in 2006 by Guzyr et al.17 The four nitrogen atoms are located at a distance from 2.00 

to 2.03 Å of the zinc center, which indicates a 4p delocalized system between both nitrogen 

comparable to the amidinate substituent (Scheme 1). 

 

 
Scheme 1: Stabilization of Zn(II) with sulfonimidamide 

 

In 2015, Stalke et al. have published a novel triimido sulfur (VI) phosphanyl ligand 

for the stabilization of germylenes and stannylenes (Scheme 2).18 The heteroleptic group 14 

compounds were obtained by nucleophilic substitution of the corresponding 

dihalogenometallylene and characterized by X-ray crystallography. Nitrogen were located, in 
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both case, at the same distance of the metallylene, which indicates a 4p delocalized system 

comparable and in accordance with the results reported by Guzyr et al. The authors have 

designed the ligand to introduce a free phosphine arm that could be used for a potential bidentate 

coordination with the metallylene lone pair. However, no report about coordination nor 

application has been published yet to the best of our knowledge even if the perspectives implied 

an active interest.  

 

  
Scheme 2: Triimidosulfur (VI) phosphanyl metallylenes 

 

In this chapter, synthesis of sulfonimidamides will be discussed first with the challenge 

of the design and the choice of the substituents. In the second part, application of 

sulfonimidamides for stabilization of heavier analogues of carbenes will be discussed as well 

as the specific properties observed.  
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II. Results and discussion 

 

II.1. Synthesis and characterization of sulfonimidamides  

 
Since the first description of sulfonimidamides by Levchenko in 1960, numerous 

methods were developed to synthesize these S(VI) derivatives and the most common synthetic 

pathways use a nucleophilic substitution of a sulfonimidoyl chloride prepared by oxidative 

imidation of sulfinyl chlorides, oxidative chlorination of sulfonamides or deoxychlorination of 

secondary sulfonamides.19–23 However, most of the synthesis are difficult to perform, with the 

use of highly reactive and toxic reagents. That is the reason we relied on the method reported 

by Chen in 2015 to obtain symmetric and racemic asymmetric sulfonimidamides in two steps 

from sulfonyl chloride derivatives (Scheme 3).24 The first step consists in a simple nucleophilic 

substitution of chlorine atom with a primary amine in presence of triethylamine. Then, the 

sulfamide reacts with a chlorinating agent to form a sulfonimidoyl chloride, which is substituted 

by the addition of a second amine. 

 

 
Scheme 3: Synthetic pathway to obtain Sulfonimidamide 

 

The efficiency of the strategy allowed us to obtain sulfonimidamides 12a-c, in 

moderate yield of 38% up to 53% (Scheme 4). 12a was synthetized as an equivalent of 

AmGeCl, used previously, with a symmetric sulfur and i-Pr substituent on each nitrogen. 

Asymmetric S(VI) was introduced with 12b that exhibits two different substituents on nitrogen, 

i-Pr and Mes. Finally, 12c is obtained as an ammonium chloride salt certainly formed by intra 

or intermolecular deprotonation. The aim of 12c is to include a weak s-donor ligand arm in 

order to use it for hemilabile coordination after formation of the corresponding metallylene. 

Unfortunately, the lack of time did not allow us to use 12c to form the corresponding 

metallylene nor to study its application in coordination chemistry. 
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Scheme 4: Synthesis of 12a-c 

 

12a-c were fully characterized by NMR, mass spectroscopy and X-ray diffraction. 
1NMR spectra of 12a and 12b were similar with slight differences. N-H proton was found with 

a chemical shift of 5.10 ppm and aromatic protons were assigned as two multiplets at 8.08 and 

7.03 ppm respectively. Slight differences were found in the chemical shift of the i-Pr group, C-

H has a chemical shift of 3.62 ppm in 12a when it was found shielded in 12b with a chemical 

shift of 3.41 ppm. The same observation was observed for CH3 with a chemical shift of 1.12 

and 1.07 in 12a and an upfield of 0.84 and 0.59 ppm in 12b. On the other hand, 12c was not 

compared due to the use of another deuterated solvent, essentially for solubility reason. Again, 
1H NMR spectrum of 12c exhibits a very particular signal for the -N-CH2-CH2-N- group that 

appear as particularly complex multiplets. The multiplicity observed can be explained by the 

loss of symmetry due to the chiral S(VI) atom that makes each hydrogen different. 

 

Crystals of 12a were obtained by slow evaporation of ethyl acetate and X-ray structure 

exhibits an unsurprising sulfur-nitrogen bond distance different for each nitrogen (Figure 4). 

The difference in the distance can be easily explained by the multiplicity of sulfur-nitrogen 

bond, one is a single bond of 1.628(2) Å and the other one is a double bond of 1.501(2) Å. 12b 

shows the same behavior with sulfur nitrogen bond length of 1.5343(10) and 1.6032(10) Å. It 

is important to note that the nitrogen bearing a mesityl group forms a double bond rather than 

the nitrogen with an alkyl substituent. The observation can be rationalized by the presence of 

an aromatic group that promotes a sp2 configuration and a better delocalization of the nitrogen 

free doublet. In both case, the structure was obtained in a dimeric form with H-bond between 

tertiary and secondary amine function of two molecules. Finally, 12c was obtained by slow 

evaporation of dichloromethane and exhibits also H-bond between chloride and hydrogen 

bound to the nitrogen. The structure also follows the same rule with sulfur-nitrogen bond 
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distance of 1.6188(9) and 1.5154(9) Å, the single bond being located on the nitrogen with an 

alkyl substituent.  

 

 
Figure 4: Molecular structures of 12a (left) and 12b (right) (hydrogens are omitted for clarity) 

 
II.2. Synthesis and characterization of germylenes and stannylenes 

stabilized by sulfonimidamides 

 
The next step was to study the stabilization of metallylenes by sulfonimidamides. First, 

nucleophilic substitution was investigated by deprotonation of sulfonimidamide 12a with nBuLi 

(Scheme 5). However, only protonated sulfonimidamide was recovered at the end of the 

reaction even by using a 2:1 ratio to form the homoleptic metallylene. In order to investigate 

the formation of the lithiated sulfonimidamide and if the base had an influence, 12a was 

subsequently deprotonated with nBuLi and quenched with TMSCl in the exact same 

experimental conditions. The product was obtained in quantitative yield, which means that 

lithiated sulfonimidamide was not a strong enough nucleophile to perform the nucleophilic 

substitution. 

 

 
Scheme 5: Formation of lithiated sulfonimidamide and reactivity with dichlorometallylenes 
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Nevertheless, protonolysis was considered as a valuable alternative to obtain the 

product due to the large variety of examples published to date and the simplicity of the 

method.11,25–28 12a was added to half an equivalent of M(HMDS)2 where M stand for Ge and 

Sn (Scheme 6).  

 

 
Scheme 6: Reactivity of 12a with M(HMDS)2 (M = Ge or Sn) to obtain 13a and 14a 

 

Homoleptic metallylenes 13a and 14a were obtained cleanly after a night at room 

temperature. 13a and 14a were unambiguously characterized by X-ray crystallography of 

crystals obtained from a saturated solution of pentane at -25 °C (Figure 5). 13a shows a 

nitrogen-germanium bond distance of 2.008(12) and 2.3241(12) Å, which demonstrates that 

two nitrogen are s-bonded and the two-remaining nitrogen are acting as a Lewis base. It is 

important to note that the s-bond is in the usual range for a Ge-N bond length reported to date 

for a 4p delocalized system (1.95 -2.07 Å).18,29–34 S-N bond lengths are also in agreement with 

one single bond and one double bond with a distance of 1.5757(12) and 1.5445(13) Å 

corresponding to a S-N bond with a better p character than the second one. Comparison with 

12a shows than the double bond is longer (D = +0.05 Å) and the single bond is shorter 

(D = -0.05 Å), it can be explained by the delocalization of electrons between both nitrogen. 14a 

shows the same observations with a nitrogen-tin s-bond of 2.180(4) and 2.233(4) Å and a dative 

bond of 2.392(5) and 2.427(5) Å. S-N bond lengths are also in the same range as 13a with single 

bonds of 1.580(5) and 1.573(5) Å and double bonds of 1.529(5) and 1.568(5) Å. 
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Figure 5: Molecular structures of 13a (left) and 14a (right) (hydrogens are omitted for clarity) 

 

Fast exchange between dative and single bond was confirmed between each nitrogen 

in 1H NMR spectrum of 13a and 14a with i-Pr group. Only one set of signals were characterized 

with one septet and two doublets as a result of high symmetry and equivalence of the four i-Pr 

groups at the NMR time scale. 

 

Formation of the heteroleptic sulfonimidamide metallylene was also investigated with 

an equimolar amount of both reactant (Scheme 7). After 1h, reaction between 12a and 

Ge(HMDS)2 was monitored by 1H NMR. Interestingly, a transient species was observed with 

a new peak corresponding to a HMDS group and sulfonimidamide i-Pr exhibiting a chemical 

shift totally different than 12a or 13a. Nevertheless, the reaction continued and formation of 

13a with Ge(HMDS)2 was finally obtained after several hours at room temperature. 

 

 
Scheme 7: Reactivity of 12a with an equimolar amount of M(HMDS)2 (M = Ge or Sn) 

 

Same reaction was carried out with Sn(HMDS)2 and 12a. Surprisingly, no transient 

species was observed in these conditions and selective and fast formation of 14a was observed. 
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Then, protonolysis reaction was extended from 12b to form the corresponding 

germylene and stannylene (Scheme 8). Unsurprisingly, the same reactivity was observed with 

the formation of homoleptic metallylenes 13b and 14b. 

 

 
Scheme 8: Reactivity of 12b with M(HMDS)2 (M = Ge or Sn) to obtain 13b and 14b 

 
1H NMR of 13b shows the formation of two diastereomers in a 82:18 ratio resulting 

from the combination of two sulfonimidamides with an asymmetric sulfur. Other important 

characteristic signals are observed in 1H NMR for both methyl in ortho-position and both 

hydrogen in meta-position of the mesityl substituent which appear as broad signals. Variable 

temperature shows that increasing temperature to +70 °C could provide better defined signals 

(Figure 6). We suppose a steric interaction between mesityl and the close i-Pr group of the 

second sulfonimidamide. 

 

 
Figure 6: 1H NMR variable temperature of 13b from 25 °C to 70 °C 
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Surprisingly, 1H NMR of 14b shows the formation of only one set of signals. However, 

the diastereoselectivity of the reaction was not investigated. It is also important to note that 

methyl in ortho-position and hydrogen in meta-position appear as sharp signals, which can be 

explained by the heavier atom that increased the distance between both sulfonimidamides. 

 

13b and 14b were also characterized by X-ray crystallography (Figure 7). 13b shows 

a nitrogen-germanium bond distance of 2.0269(13) - 2.0318(13) Å and 2.2257(15) - 2.2633(14) 

Å, which demonstrates that two nitrogen are s-bonded and the two-remaining nitrogen were 

acting as a Lewis base. It is important to note that the s-bond is in the usual range for a Ge-N 

bond length reported to date for a 4p delocalized system (1.95 -2.07 Å).18,29–34 S-N bond lengths 

are also in agreement with one single bond and one dative bond with a distance of 1.5506(15) 

- 1.5523(15) Å and 1.5851(13) - 1.5844(13) Å in allowance with 13a. Comparison with 12b 

shows than the double bond is exchanged between the nitrogen. Indeed, S=N double bond is 

located on the nitrogen with a mesityl group in 12b when S=N double bond is located on the 

nitrogen with a i-Pr group in 13b. The same observations are observed on the structure of 14b. 

Nitrogen-tin bond distances are in the usual range of 2.229(2) and 2.342(2) Å, also S-N bond 

lengths of 1.5554(2) and 1.576(2) Å are in agreement with 13b. Finally, the same double bond 

exchange is observed between both nitrogen as previously observed with 13b.  

 

 
Figure 7: Molecular structures of 13b (left) and 14b (right) (hydrogens are omitted for clarity) 

 

Calculations were performed on the potential-energy surface of 13b and 14b to support 

the experimental results starting with the X-ray structures (The B3LYP/6-31g(d,p) basis set and 
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SDD for tin was used). Mesityl group was rotated, for 13b and 14b, on CAr-N to calculate the 

potential-energy surface (Figure 8). As a first approximation (full rotation with a step by step 

of 20° and optimized structures), the rotation that requires more energy is with the germylene 

with a value of 26 kcal/mol while stannylene shows a value of 23 kcal/mol. The difference does 

not appear important but the result give a trend in the way of the observations observed in 1H 

NMR. It is important now to refine the calculations with the consideration of the solvent and 

with a smaller step of 1° for the rotation. 

 

 
Figure 8: Optimized structures of 13b and 14b for PES calculations 

 

Finally, DFT calculations were performed to explore the electronic properties and the 

stabilization effect of the substituents on the metallylenes (Figure 9). The HOMO is located on 

each on the metallylene with the first unoccupied orbital located on the LUMO+4. The 

comparison of 13a and 14a indicates that tin is much more electronically stabilized than 

germanium. Comparison of 13a and 13b that exhibit different substituents on the nitrogen 

atoms shows a small effect on the molecular orbitals of the germylene when the stannylene with 

14a and 14b remains in the same range. In each case, strong stabilizing interactions are found 

with nNàs*SO of 8 to 20 kcal/mol and nNàs*CC of mesityl or i-Pr of ~7 to 8 kcal/mol. 
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Figure 9: HOMO and LUMO+4 of 13a (left), 14a (middle left), 13b (middle right), 14b 

(right)  
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III. Conclusion 
 

Sulfonimidamides have been synthesized in moderate 38-53% yields. The synthetic 

pathway allows to integrate various subsituents on the nitrogen atoms with a combination of i-

Pr and mesityl groups. This design also allows the formation of symmetric and asymmetric 

center on the central sulfur atom.  

 

Homoleptic germylenes and stannylenes have been obtained by protonolysis reaction 

with Ge(HMDS)2 or Sn(HMDS)2. These new metallylenes have been characterized by NMR 

spectroscopy and X-ray diffraction analysis. X-ray structures show different bond lengths for 

germanium-nitrogen or tin-nitrogen interatomic distances. However, fast exchange is observed 

by 1H NMR spectroscopy at room temperature. These results lead to classify these new 

metallylenes as 4p delocalized stabilized systems. 

 

Finally, DFT calculations have been performed to understand the electronic properties 

brought by the sulfonimidamide on the metallylene and how the design can influence its 

stabilization. Calculations indicate that tin is much more electronically stabilized than 

germanium. Comparison of the structures with mesityl substituent show a small effect on the 

molecular orbitals of the germylene when the stannylene remains in the same range. 

Surprisingly, strong stabilizing interactions were found with nNàs*SO and nNàs*CC. 
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IV. Experimental section 

 
N,N'-di-iso-propylbenzenesulfonimidamide (12a): Hexachloroethane (264 

mg, 1.11 mmol, 1.1 eq) was added to a solution of triphenylphosphine (293 

mg, 1.11 mmol, 1.1 eq) in CHCl3 (10 mL) at room temperature. The solution 

was heated at reflux for 6 h. Then, the mixture was allowed to return at room 

temperature and trimethylamine (210 µL, 1.52 mmol, 1.5 eq) was added, the mixture was stirred 

for 30 min at room temperature. N-iso-propylbenzenesulfonamide (200 mg, 1.01 mmol, 1 eq) 

was dissolved in CHCl3 and added on the mixture. Finally, after stirring the mixture for 30 min 

at room temperature iso-propylamine (260 uL, 3.03 mmol, 3 eq) was added and the solution 

stirred overnight at room temperature. The solvent was removed under reduced pressure and 

the crude product was purified by flash column chromatography (Eluent: Petroleum Ether / 

Ethyl Acetate : 4 / 6, Rf = 0.78) to give a white solid (129 mg) in 53 % yield. Crystals were 

obtained by slow evaporation in ethyl acetate. M.p. : 66 °C; 1H NMR (300.18 MHz, C6D6, 25 

°C): δ 1.07 (d, 3JHH = 6.5 Hz, 6H, CH(CH3)2); 1.12 (d, 3JHH = 6.5 Hz, 6H, CH(CH3)2); 3.62 

(sept., 3JHH = 6.5 Hz, 2H, N-CH(CH2)2), 5.09 (s, 1H, NH), 6.98-7.08 (m, 3H, CHAr), 8.09-8.13 

(m, 2H, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 25.4 (CH(CH3)2); 25.5 (CH(CH3)2); 

45.5 (CH(CH3)2); 128.0 (CAr); 128.6 (CAr); 131.3 (CAr); 143.3 (CAr/q). HRMS m/z (%): 241.1380 

([M + 1]+) calcd for C12H20N2OS ([M + 1]+) 241.1375. 

Formula C12H20N2OS dcalc (g/cm3) 1.174 

Mol wt 240.36 µ (mm-1) 0.222 

Temp. (K) 193(2) F(000)  520 

Cryst syst Triclinic cryst size (mm)  0.140 x 0.100 x 0.040 

Space group P-1 θ range (deg.)  3.017 to 24.763 

a (Å) 10.5404(7) index range h k l 
-12<=h<=12, -
12<=k<=12, -
14<=l<=14 

b (Å) 10.5595(7) no of reflns collected /  34528 

c (Å) 12.5470(9) unique 4527 [R(int) = 0.0616] 

a (deg.) 76.985(2) 
Completeness to 

θmax(%)  
96.8 

b (deg.) 88.549(2) data/restraints/params 4527 / 164 / 361 

g (deg.) 89.718(2) goodness-of-fit  1.028 

S
NH

NO

n

1) nBuLi
-80 °C, 1h, THF

2) M
-80 °C, 2h, THF

S
NH

NO

n = 1 or 2

M = GeCl2.dioxane or SnCl2
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V (Å3)  1360.18(16) R1, wR2 (I > 2σ(I))  0.0433, 0.0961 

Z 4 R1, wR2 (all data)  0.0714, 0.1095 

 

N-iso-propyl-N'-mesitylbenzenesulfonimidamide (12b): Hexachloroethane 

(264 mg, 1.11 mmol, 1.1 eq) was added to a solution of triphenylphosphine 

(293 mg, 1.11 mmol, 1.1 eq) in CHCl3 (10 mL) at room temperature. The 

solution was heated at reflux for 6 h. Then, the mixture was allowed to return 

at room temperature and trimethylamine (210 µL, 1.52 mmol, 1.5 eq) was added, the mixture 

was stirred for 30 min at room temperature. N-iso-propylbenzenesulfonamide (200 mg, 1.01 

mmol, 1 eq) was dissolved in CHCl3 and added on the mixture. Finally, after stirring the mixture 

for 30 min at room temperature 2,4,6-Trimethylaniline (426 µL, 410 mg, 3.03 mmol, 3 eq) was 

added and the solution stirred overnight at room temperature. The solvent was removed under 

reduced pressure and the crude product was purified by flash column chromatography (Eluent: 

Petroleum Ether / Ethyl Acetate : 4 / 6, Rf = 0.80) to give a white solid (157 mg) in 49 % yield. 

Crystals were obtained by slow evaporation in ethyl acetate. M.p. : 93 °C; 1H NMR (300.18 

MHz, C6D6, 25 °C): δ 0.61 (d, 3JHH = 6.5 Hz, 3H, CH(CH3)2); 0.84 (d, 3JHH = 6.5 Hz, 3H, 

CH(CH3)2); 2.15 (s, 3H, CH3); 2.53 (s, 6H, CH3); 3.41 (sept., 3JHH = 6.5 Hz, 1H, N-CH(CH2)2), 

5.11 (s, 1H, NH), 6.84 (s, 2H, CHAr), 6.98-7.02 (m, 3H, CHAr), 8.04-8.07 (m, 2H, CHAr). 
13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 20.6 (CH3); 20.9 (CH3); 23.0 (CH(CH3)2); 24.1 

(CH(CH3)2); 46.0 (CH(CH3)2); 128.0 (CAr); 128.6 (CAr); 131.3 (CAr); 143.3 (CAr/q). HRMS m/z 

(%): 317.1697 ([M + 1]+) calcd for C18H25N2OS ([M + 1]+) 317.1688. 

Formula C18H24N2OS dcalc (g/cm3) 1.202 

Mol wt 316.45 µ (mm-1) 0.189 

Temp. (K) 193(2) F(000)  680 

Cryst syst Triclinic cryst size (mm)  0.480 x 0.460 x 0.120 

Space group P-1 θ range (deg.)  3.072 to 30.511 

a (Å) 11.989(3) index range h k l 
-17<=h<=17, -
17<=k<=17, -
19<=l<=19 

b (Å) 12.149(3) no of reflns collected /  81609 

c (Å) 13.386(3) unique 10619 [R(int) = 0.0259] 

a (deg.) 64.437(9) 
Completeness to 

θmax(%)  
99.6 

S
NH

NO 1) Toluene
-80 °C, 1h

2) R.T. 15h
+ M(HMDS)2 S

N

N

Mes

O
M S

N

N

Mes
O

M = Ge or Sn
+ 2 H-HMDS

Mes

1b 2b, M = Ge
3b, M = Sn

2
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b (deg.) 88.604(8) data/restraints/params 10619 / 0 / 415 

g (deg.) 83.874(13) goodness-of-fit  1.042 

V (Å3)  1748.5(8) R1, wR2 (I > 2σ(I))  0.0375, 0.0989 

Z 4 R1, wR2 (all data)  0.0370, 0.1061 

 

Dimethylammonium ethyl iso-propyl sulfonimidamide chloride 

salt (12c): Hexachloroethane (264 mg, 1.11 mmol, 1.1 eq) was added 

to a solution of triphenylphosphine (293 mg, 1.11 mmol, 1.1 eq) in 

CHCl3 (10 mL) room temperature. The solution was heated at reflux 

for 6 h. Then, the mixture was allowed to return at room temperature and trimethylamine (210 

µL, 1.52 mmol, 1.5 eq) was added, the mixture was stirred for 30 min at room temperature. N-

iso-propylbenzenesulfonamide (200 mg, 1.01 mmol, 1 eq) was dissolved in CHCl3 and added 

to the mixture. Finally, after stirring the mixture for 30 min at room temperature N,N-

dimethylethylenediamine (330 uL, 3.03 mmol, 3 eq) was added and the solution stirred 

overnight at room temperature. The solvent was removed under reduced pressure and the crude 

was purified by flash column chromatography (Eluent: DCM / MeOH : 9 / 1, Rf = 0.57) to give 

a white solid (129 mg) in 38 % yield. Crystals were obtained by slow evaporation in ethyl 

acetate. 1H NMR (300.18 MHz, CDCl3, 25 °C): δ 0.90 (d, 3JHH = 6.5 Hz, 3H, CH(CH3)2); 1.20 

(d, 3JHH = 6.5 Hz, 3H, CH(CH3)2); 2.84 (s, 6H, N-(CH3)2), 3.01-3.29 (m, 3H, N-CH2CH2-N), 

3.36 (sept., 3JHH = 6.5 Hz, 1H, N-CH(CH2)2); 3.70-3.79 (m, 1H, N-CH2CH2-N), 7.45-7.49 (m, 

3H, CHAr), 8.14-8.17 (m, 2H, CHAr). 13C{1H} NMR (75.48 MHz, CDCl3, 25 °C): δ 22.9 

(CH(CH3)2); 24.6 (CH(CH3)2); 38.3 (CH(CH3)2); 44.4 (N-(CH3)2); 46.6 (N-(CH3)2); 60.3 (N-

CH2); 127.5 (CAr); 128.8 (CAr); 132.0 (CAr); 141.6 (CAr/q). HRMS m/z (%): 270.1646 ([M - Cl]+) 

calcd for C13H24N3OS ([M - Cl]+) 270.1640. 

Formula C13H24ClN3OS dcalc (g/cm3) 1.241 

Mol wt 305.86 µ (mm-1) 0.358 

Temp. (K) 193(2) F(000)  328 

Cryst syst Triclinic cryst size (mm)  0.540 x 0.340 x 0.060 

Space group P-1 θ range (deg.)  2.986 to 33.198 

a (Å) 7.5259(3) index range h k l 
-11<=h<=10, -
13<=k<=13, -
19<=l<=17 

b (Å) 8.8203(4) no of reflns collected /  22190 

S
NH

NO
N

H

Cl
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c (Å) 12.6561(5) unique 5730 [R(int) = 0.0195] 

a (deg.) 94.4110(10) 
Completeness to 

θmax(%)  
99.2 

b (deg.) 93.5030(10) data/restraints/params 5730 / 78 / 211 

g (deg.) 101.3740(10) goodness-of-fit  1.046 

V (Å3)  818.68(6) R1, wR2 (I > 2σ(I))  0.0332, 0.0806 

Z 2 R1, wR2 (all data)  0.0414, 0.0853 

 

Bis (N,N'-di-iso-propylbenzenesulfonimidamide) 

germylene (13a): KHMDS (85.8 mg, 0.43 mmol, 2 eq) was 

added to GeCl2•dioxane (49.7 mg, 0.215 mmol, 1 eq) in Et2O 

at room temperature. The mixture was stirred for 2 hours and 

N,N'-di-iso-propylbenzenesulfonimidamide (12a) (154 mg, 0.43 mmol, 2 eq) in Et2O was 

added at the same temperature. After 16h, the solvent was removed under reduced pressure and 

the resulting solid was extract with pentane. The solvent was removed under reduced pressure 

to give a white solid in 90 % yield (107 mg). Crystallization from pentane at – 25 °C gave 

colourless crystals suitable for X-ray study. M.p. : 105 °C (decomposition); 1H NMR (300.18 

MHz, C6D6, 25 °C): δ 1.33 (d, 3JHH = 6.6 Hz, 12H, CH(CH3)2); 1.40 (d, 3JHH = 6.6 Hz, 12H, 

CH(CH3)2); 3.64 (sept., 3JHH = 6.6 Hz, 4H, N-CH(CH2)2), 6.96-7.08 (m, 6H, CHAr), 7.89-7.91 

(m, 4H, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 24.6 (CH(CH3)2); 25.4 (CH(CH3)2); 

47.4 (CH(CH3)2); 128.9 (CAr); 129.1 (CAr); 131.4 (CAr); 141.9 (CAr/q). MS m/z (%): 552 (M+). 

Formula C24H38GeN4O2S2 dcalc (g/cm3) 1.137 

Mol wt 551.31 µ (mm-1) 1.104 

Temp. (K) 193(2) F(000)  1160 

Cryst syst Tetragonal cryst size (mm)  0.300 x 0.200 x 0.160 

Space group I41 θ range (deg.)  2.936 to 31.886 

a (Å) 21.9417(7) index range h k l 
-21<=h<=32,  
-32<=k<=32,  
-9<=l<=9 

b (Å) 21.9417(7) no of reflns collected /  38402 

c (Å) 6.6868(2) unique 5530 [R(int) = 0.0265] 

a (deg.) 90 
Completeness to 

θmax(%)  
99.2 

S
N

NO
Ge S

N

N O
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b (deg.) 90 data/restraints/params 5530 / 1 / 154 

g (deg.) 90 goodness-of-fit  1.023 

V (Å3)  3219.3(2) R1, wR2 (I > 2σ(I))  0.0198, 0.0483 

Z 4 R1, wR2 (all data)  0.0236, 0.0503 

 

Bis (N-iso-propyl-N'-mesitylbenzenesulfonimidamide) 

germylene (13b): KHMDS (43 mg, 0.215 mmol, 2 eq) was 

added to GeCl2•dioxane (25 mg, 0.108 mmol, 1 eq) in Et2O at 

room temperature. The mixture was stirred for 2 hours and N-

iso-propyl-N’-mesitylbenzenesulfonimidamide (12b) (68 mg, 0.215 mmol, 2 eq) in Et2O was 

added at the same temperature. After 16h, the solvent was removed under reduced pressure and 

the resulting solid was extract with pentane. The solvent was removed under reduced pressure 

to give a white solid in 92 % yield (70 mg). Crystallization from benzene at room temperature 

gave colourless crystals suitable for X-ray study. M.p. : 108 °C (decomposition); Isomer A: 1H 

NMR (300.18 MHz, C6D6, 25 °C): δ 0.72 (d, 3JHH = 6.5 Hz, 6H, CH(CH3)2); 0.91 (d, 3JHH = 6.5 

Hz, 6H, CH(CH3)2); 2.06 (s, 6H, CH3); 3.23 (sept., 3JHH = 6.5 Hz, 4H, N-CH(CH2)2), 6.87-6.95 

(m, 6H, CHAr), 7.70-7.73 (m, 4H, CHAr). 1H NMR (300.18 MHz, C6D6, 70 °C): δ 0.73 (d, 3JHH 
= 6.5 Hz, 6H, CH(CH3)2); 0.93 (d, 3JHH = 6.5 Hz, 6H, CH(CH3)2); 2.06 (s, 6H, CH3); 2.56 (s, 

12H, CH3); 3.25 (sept., 3JHH = 6.5 Hz, 4H, N-CH(CH2)2), 6.77 (s, 4H, CHAr), 6.93-7.01 (m, 6H, 

CHAr), 7.70-7.73 (m, 4H, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 20.9 (CH3); 23.9 

(CH(CH3)2); 25.2 (CH(CH3)2); 46.9 (CH(CH3)2); 128.9 (CAr); 131.6 (CAr); 134.0 (CAr); 135.9 

(CAr/q); 140.1 (CAr/q). Isomer B: 1H NMR (300.18 MHz, C6D6, 25 °C): δ 1.16 (d, 3JHH = 6.5 Hz, 

6H, CH(CH3)2); 1.35 (d, 3JHH = 6.5 Hz, 6H, CH(CH3)2); 2.02 (s, 6H, CH3); 3.59 (sept., 3JHH = 

6.5 Hz, 4H, N-CH(CH2)2), 6.87-6.95 (m, 6H, CHAr), 7.70-7.73 (m, 4H, CHAr). 1H NMR (300.18 

MHz, C6D6, 70 °C): δ 1.18 (d, 3JHH = 6.5 Hz, 6H, CH(CH3)2); 1.32 (d, 3JHH = 6.5 Hz, 6H, 

CH(CH3)2); 2.03 (s, 6H, CH3); 2.34 (s, 12H, CH3); 3.62 (sept., 3JHH = 6.5 Hz, 4H, N-CH(CH2)2), 

6.67 (s, 4H, CHAr), 6.93-7.01 (m, 6H, CHAr), 7.70-7.73 (m, 4H, CHAr). MS m/z (%): 704 (M+). 

Formula C36H46GeN4O2S2,C6H6 dcalc (g/cm3) 1.257 

Mol wt 781.61 µ (mm-1) 0.882 

Temp. (K) 193(2) F(000)  1648 

Cryst syst Monoclinic cryst size (mm)  0.160 x 0.140 x 0.080 

Space group P21/C θ range (deg.)  3.526 to 29.574 

S
N

N

Mes

O
Ge S

N

N

Mes
O
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a (Å) 15.4414(5) index range h k l 
-21<=h<=21, 
-10<=k<=11,  
-46<=l<=39 

b (Å) 7.9913(3) no of reflns collected /  75752 

c (Å) 33.5748(10) unique 11552 [R(int) = 0.0337] 

a (deg.) 90 
Completeness to 

θmax(%)  
99.8 

b (deg.) 94.717(2) data/restraints/params 11552 / 0 / 470 

g (deg.) 90 goodness-of-fit  1.121 

V (Å3)  4119.0(2) R1, wR2 (I > 2σ(I))  0.0368, 0.1002 

Z 4 R1, wR2 (all data)  0.0463, 0.1054 

 

Bis (N,N'-di-iso-propylbenzenesulfonimidamide) stannylene 

(14a): N,N'-di-iso-propylbenzenesulfonimidamide (12a) (60 

mg, 0.25 mmol, 2 eq) was dissolved in C6D6 (0.4 mL) and added 

to Sn(HMDS)2 (55 mg, 0.125 mmol, 1 eq) at room temperature. 

The mixture was stirred 20 min at room temperature and the solvent was removed under 

reduced pressure. The solid was extracted with pentane (3x3 mL) to give a white solid in 96 % 

yield (72 mg). Crystallization from benzene at room temperature gave colourless crystals 

suitable for X-ray study. M.p. : 117 °C (decomposition); 1H NMR (300.18 MHz, C6D6, 25 °C): 

δ 1.26 (d, 3JHH = 6.6 Hz, 12H, CH(CH3)2); 1.46 (d, 3JHH = 6.6 Hz, 12H, CH(CH3)2); 3.61 (sept., 

3JHH = 6.6 Hz, 4H, N-CH(CH2)2), 6.96-7.10 (m, 6H, CHAr), 7.90-7.93 (m, 4H, CHAr). 13C{1H} 

NMR (75.48 MHz, C6D6, 25 °C): δ 25.1 (CH(CH3)2); 25.9 (CH(CH3)2); 47.0 (CH(CH3)2); 129.0 

(CAr); 129.1 (CAr); 131.2 (CAr); 142.4 (CAr/q). MS m/z (%): 598 (M+). 

Formula C24H38SnN4O2S2 dcalc (g/cm3) 1.386 

Mol wt 597.41 µ (mm-1) 1.065 

Temp. (K) 193(2) F(000)  1232 

Cryst syst Monoclinic cryst size (mm)  0.380 x 0.200 x 0.040 

Space group P21/c θ range (deg.)  2.817 to 27.102 

a (Å) 8.2616(17) index range h k l 
-10<=h<=10,  
-55<=k<=55,  
-10<=l<=10 

b (Å) 43.384(9) no of reflns collected /  57645 

c (Å) 8.3588(18) unique 6312 [R(int) = 0.0305] 

S
N

NO
Sn S

N

N O
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a (deg.) 90 
Completeness to 

θmax(%)  
99.5 

b (deg.) 107.188(6) data/restraints/params 6312 / 0 / 8306 

g (deg.) 90 goodness-of-fit  1.457 

V (Å3)  2862.2(10) R1, wR2 (I > 2σ(I))  0.0619, 0.1329 

Z 4 R1, wR2 (all data)  0.0627, 0.1332 

 

Bis (N-iso-propyl-N'-mesitylbenzenesulfonimidamide) 

stannylene (14b): N-iso-propyl-N’-

mesitylbenzenesulfonimidamide (12b) (60 mg, 0.19 mmol, 2 

eq) was dissolved in C6D6 (0.4 mL) and added to Sn(HMDS)2 

(42 mg, 0.09 mmol, 1 eq) at room temperature. The mixture was stirred 20 min at room 

temperature and the solvent was removed under reduced pressure to give a white solid in 97 % 

yield (69 mg). Crystallization from benzene at room temperature gave colourless crystals 

suitable for X-ray study. M.p. : 118 °C (decomposition); 1H NMR (300.18 MHz, C6D6, 25 °C): 

δ 0.80 (d, 3JHH = 6.5 Hz, 6H, CH(CH3)2); 0.85 (d, 3JHH = 6.5 Hz, 6H, CH(CH3)2); 1.80 (s, 6H, 

CH3); 2.08 (s, 6H, CH3); 3.26 (sept., 3JHH = 6.5 Hz, 4H, N-CH(CH2)2), 3.40 (s, 6H, CH3); 6.62 

(s, 2H, CHAr), 6.95 (s, 2H, CHAr), 6.92-6.98 (m, 6H, CHAr), 7.67-7.71 (m, 4H, CHAr). 13C{1H} 

NMR (75.48 MHz, C6D6, 25 °C): δ 19.3 (CH(CH3)2); 20.5 (CH3); 22.1 (CH(CH3)2); 24.1 (CH3); 

24.9 (CH3); 46.4 (CH(CH3)2); 128.5 (CAr); 128.7 (CAr); 130.3 (CAr); 130.9 (CAr); 134.0 (CAr/q); 

135.0 (CAr/q); 136.7 (CAr/q); 141.0 (CAr/q); 141.5 (CAr/q). MS m/z (%): 750 (M+). 

Formula C36H46GeN4O2S2, C6H6 dcalc (g/cm3) 1.312 

Mol wt 827.71 µ (mm-1) 0.747 

Temp. (K) 193(2) F(000)  1720 

Cryst syst Monoclinic cryst size (mm)  0.200 x 0.080 x 0.060 

Space group P21/c θ range (deg.)  3.511 to 26.196 

a (Å) 15.5421(8) index range h k l 
-19<=h<=19,  
-9<=k<=9,  
-42<=l<=42 

b (Å) 8.0005(4) no of reflns collected /  93362 

c (Å) 33.9053(16) unique 8352 [R(int) = 0.0739] 

a (deg.) 90 
Completeness to 

θmax(%)  
99.6 
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b (deg.) 96.144(2) data/restraints/params 8352 / 0 / 470 

g (deg.) 90 goodness-of-fit  1.042 

V (Å3)  4191.7(4) R1, wR2 (I > 2σ(I))  0.0348, 0.0746 

Z 4 R1, wR2 (all data)  0.0559, 0.0835 
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Applications in Hydrogen Transfer and Polymerization Catalysis 

 

 

Abstract 

 

 

 

Ruthenium complexes synthesized in previous chapter II were used in hydrogen 

transfer reaction for the reduction of acetophenone into the corresponding alcohol in i-PrOH as 

a solvent and a reactant. Comparison of the different ligands was investigated to determine the 

influence of various parameters, such as the steric hindrance on sulfoxide or on the amidinate 

group, or the oxidation state of the sulfur atom. 

 

Finally, hydrogen transfer reaction was investigated with asymmetric ruthenium 

complexes. The best conditions of catalysis were also applied to reduce various ketones and 

aldehyde at room temperature.  

 

A second catalysis will be considered by using sulfonimidamide metallylenes 

described in chapter IV. These new metallylenes were applied in polymerization of e-

caprolactone. 
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I. Introduction  

 
The transition metal chemistry of germylenes has experienced an important interest 

the last decade that led to the application of germylenes in different catalytic processes. 

Nevertheless, these applications remain sporadic compared to the use of lighter analogues such 

as silylenes or carbenes. However, the proof of the catalytic activity of germylene-complexes 

was an important milestone to their development and their activity, which allowed them to leave 

the field of theoretical tools.1,2 

 

Applications of germylenes-complexes can be overviewed in four different 

publications reported during the past decade.3–6 The different complexes were applied in C-H 

borylation of benzene, Sonogashira-Hagihara cross-coupling, hydrogen transfer reaction and 

cyanosilylation of aldehydes and ketones. Our interest on hydrogen transfer reaction was 

immediate due the large application of ruthenium complexes in this field and the possibility to 

generate chiral alcohol during the reaction. An excellent review on hydrogen transfer reaction 

was published by Wang and Astruc in 2015.7 

 

Thus, Cabeza et al. have reported the coordination of iridium and ruthenium 

complexes by amidinato-tert-butyl germylenes in 2015 (Scheme 1).5  

 

 
Scheme 1: Germylene-iridium I and –ruthenium II complexes applied in hydrogen transfer 

reaction 

 

Iridium (I) and ruthenium (II) complexes were applied in hydrogen transfer reaction 

of cyclohexanone with iso-propyl alcohol. Both complexes were active and reduced 

cyclohexanone with 55% of conversion after 24h at 50 °C for ruthenium complex, whereas 

iridium complex fully converted the ketone into the alcohol after 1.5h at the same temperature. 

Surprisingly, the catalysis does not require any base as additive to form the active catalyst. 
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Typically, active catalysts without any addition of an external base present a free Lewis base 

substituent on the ligand which acts as the external base.8 Moreover, only one substrate, the 

cyclohexanone, was used for the catalysis. The reaction was unfortunately not extended to other 

carbonyl substrates to determine the scope and the activity of the catalyst. Addition of chloride 

abstractor by using AgOTf resulted in a total deactivation of the iridium (I) and ruthenium (II) 

catalysts (Table 1). 

 

Entry Catalyst (2 mol%) AgOTf (X eq) Reaction time Conversion (%) 

1 II / 90 min 19 

2 II / 24 h 55 

3 I / 90 min >99 

4 II 3 eq 90 min 0 

5 I 3 eq 90 min 0 

Table 1: Hydrogen transfer reaction and effect of chloride abstraction 

 

On the other hand, application of sulfoxides in asymmetric hydrogen transfer reaction 

was limited to the best of our knowledge to two publications (Scheme 2). The first one was 

published by van Leeuwen et al. in 2000 by using an iridium complex.9 The ee from 4-

methylacetophenone was up to 80%. The second publication was reported by Deng et al. in 

2012 with, again, an iridium catalysis and ee up to 65%.10 

 

 
Scheme 2: Sulfoxide used in iridium-catalyzed hydrogen transfer of acetophenone 

 

Finally, metallylenes can also be applied as organocatalysts. On this path, 

biodegradable polymers such as polylactide (PLA), poly(e-caprolactone) (PCL), and 

poly(trimethylenecarbonate) (PTMC) are of great interest due to their applications as 

biodegradable and biocompatible polymers. Their formations can be catalyzed with tin (II) 

which is a well-known catalyst to start living polymerization of several monomers like e-

caprolactone or lactide. The early work of Kricheldorf et al. in 1995 studied the influence and 
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the mechanism of Sn(oct)2 in polymerization of L-lactide.11 Then, several stannylenes were 

developed and used successfully in polymerization (Scheme 3).12–14 

 

 
Scheme 3: Stannylenes applied in polymerization (e-caprolactone and lactide) 

 

The germylene-a-sulfoxide ruthenium complexes described in chapter II will be 

investigated as catalyst in hydrogen transfer catalysis of acetophenone. Then, the influence of 

the design of the catalyst and the catalysis parameters will be studied. Finally, the new 

metallylenes described in chapter IV will be investigated as catalysts of polymerization of e-

caprolactone and the influence of the sulfonimidamide design on the catalysis will also be 

studied. 
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II. Results and discussion 

 
II.1. Application of ruthenium complexes in hydrogen transfer 

reaction 

 
Hydrogen transfer reaction was first investigated starting from acetophenone in i-

PrOH by using p-cymene ruthenium complex 6b as catalyst in presence of an external base 

(Scheme 4). It is important to note that 6b appears perfectly stable in dry and degassed i-PrOH 

for a week at room temperature. 

 

  
Scheme 4: Germylene-complexes tested in hydrogen transfer reaction 

 

The conversion, determined by 1H NMR analysis by using tetramethylbenzene as 

internal standard, was up to 76% after 2h at 80 °C. The effect of the base on the catalytic 

reaction was next investigated (Table 2). 
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Entrya Catalyst (2 mol%) base (20 mol%) T (°C) 
Reaction 

time (h) 
Conversion (%)b 

1 6b KOH 80 2 76 

2 “ NaOH “ “ 70 

3 “ K2CO3 “ “ 51 

4 “ Cs2CO3 “ “ 27 

5 “ t-BuOK “ “ 32 
a The reactions were carried out in dry and degassed isopropyl alcohol (2 mL) under argon in presence of 
acetophenone (0.9 mmol) 
b Determined by 1H NMR analysis by using tetramethylbenzene (0.45 mmol) as internal standard. 

Table 2: Influence of the base in hydrogen transfer reaction with complex 6b 

 

A slight effect of the counter-cation can be observed by using sodium hydroxide (70%) 

in place of potassium hydroxide (76 %) (Table 2, entry 1 and 2). Replacement of KOH or NaOH 

by potassium or cesium carbonate lead to decrease the conversion (Table 2, entries 3 and 4).  A 

similar result has been observed during the use of t-BuOK (Table 2, entry 5). The nature of the 

base can influence the stability of the complex or the formation of the ruthenium-hydride active 

species. 

 

We next studied the influence of the quantity of base (Table 3). Surprisingly, the 

catalyst was still active in hydrogen transfer reaction without any addition of base with the full 

reduction of acetophenone after a long reaction time of 18 hours (Table 3, entries 1 and 2). This 

result was already observed by the group of Cabeza in 2016.5 Moreover, modification of the 

quantity of base showed that 20 mol% was the ideal amount of KOH for a reaction time of 2h, 

the addition of a larger or a lower quantity resulting in a negative impact on the catalysis (Table 

3, entries 3-5).  
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Entrya Catalyst (2 mol%) KOH (X mol%) T (°C) 
Reaction 

time (h) 
Conversion (%)b 

1 6b - 80 2 24 

2 “ - “ 18 >97 

3 “ 10 “ 2 65 

4 “ 20 “ 2 76 

5 “ 40 “ 2 64 
a The reactions were carried out in dry and degassed isopropyl alcohol (2 mL) under argon in presence of 
acetophenone (0.9 mmol) 
b Determined by 1H NMR analysis by using tetramethylbenzene (0.45 mmol) as internal standard. 
Table 3: Influence of the quantity of base in hydrogen transfer reaction with complex 6b 

 

The next parameter studied was the quantity of i-PrOH, i-e the concentration of the 

reaction (Table 4). Increasing the volume of i-PrOH to 3 mL induces a slight decrease of the 

catalytic activity (59 %), that can be explained by a dilution of the catalytic system (Table 4, 

entries 1 and 2). On the opposite, decreasing the volume of i-PrOH to 1 mL gives rise to a slight 

enhance of activity (88 %) after 2h, leading to a full conversion (>97 %) after 2.5 hours (Table 

4, entries 3 and 4). Finally, the use of 0.5 mL of i-PrOH induces a slight drop of activity (73 %) 

that can be explained by the poor solubility of the base in these conditions, or the decrease of i-

PrOH as reactant. 

 

Entrya Catalyst (2 mol%) 
Volume i-PrOH 

(mL) 
T (°C) 

Reaction 

time (h) 
Conversion (%)b 

1 6b 2 80 2 76 

2 “ 3 “ 2 59 

3 “ 1 “ 2 88 

4 “ 1 “ 2.5 >97 

5 “ 0.5 “ 2 73 
a The reactions were carried out in dry and degassed isopropyl alcohol (X mL) under argon in presence of 
acetophenone (0.9 mmol) 
b Determined by 1H NMR analysis by using tetramethylbenzene (0.45 mmol) as internal standard. 

Table 4: Influence of the concentration in hydrogen transfer reaction with complex 6b 

 

Then, catalyst 6b was compared to all the other p-cymene ruthenium-based complexes 

in order to study the influence (i) of the steric hindrance of the amidinate group, (ii) of the 
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substituent of the sulfoxide, (iii) of the oxidation state of the sulfur atom, (iv) of the substituent 

of the germylene (Scheme 5). 

 

 
Scheme 5: Germylene-ruthenium complexes 6b-d-f-g-h-i 

 

The different ruthenium complexes (2 mol%) were used in the same conditions with 

i-PrOH (2 mL) and KOH (20 mol%) at 80 °C. The conversion was monitored after 2 hours of 

reaction time (Table 5). Modification of the steric hindrance on the amidinate group shows an 

influence on the activity of the catalyst which decreases by replacing i-Pr (76 %) group on 

complex 6b by a bulkier cyclohexyl (57 %) group on complex 6d (Table 5, entries 1 and 2). 

The activity also decreases after replacing the aryl substituent on the sulfoxide (76 %) by an 

alkyl group (43 %) for the complex 6f (Table 5, entries 1 and 3). This result can be explained 

by the poor stability of complex 6f at 80°C. Indeed, a t-Bu group bonded to a sulfoxide function 

can undergo, by heating, the elimination of iso-butene and the concomitant formation of the 

corresponding sulfinic acid, which is known as an unstable group.15 The influence of the 

oxidation state of the sulfur atom can be observed comparing the corresponding thioether and 

sulfone complexes, 6g and 6h, that both induce an impressive drop of the catalytic activity with 

29% and 23% of conversion respectively after 2 hours (Table 5, entries 4 and 5). Complex 6i 

has been synthesized in order to study the influence of the alkyl aryl sulfur (II/IV/VI) groups 

on the germanium center during the catalysis. The result shows again a decrease of the catalytic 

activity (39 %) in comparison with complex 6b, but this result cannot be attributed formally to 

complex 6i (Table 5, entry 6). Indeed, the substitution of the chlorine atom by the base during 
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the catalytic process might undergo as well, that will influence the steric and electronic 

properties of the active catalyst. 

 

Entrya Catalyst (2 mol%) T (°C) Reaction time (h) Conversion (%)b 

1 6b 80 2 76 

2 6d “ “ 57 

3 6f “ “ 43 

4 6g “ “ 29 

5 6h “ “ 23 

6 6i “ “ 39 
a The reactions were carried out in dry and degassed isopropyl alcohol (2 mL) under argon in 
presence of acetophenone (0.9 mmol) 
b Determined by 1H NMR analysis by using tetramethylbenzene (0.45 mmol) as internal standard. 

Table 5: Catalytic activity of different ruthenium complexes 6b-d-f-g-h-i in hydrogen transfer 

reaction 

 

Finally, complex 5a was used in hydrogen transfer reaction in order to study the 

influence of the coordination of the ruthenium center by the sulfoxide group and by the 

triphenylphosphine (Scheme 6). 

 

  
Scheme 6: Germylene-ruthenium complexes 5a, 5a.PPh3 and 5b.PPh3 

 

5a was used in the same conditions in i-PrOH (2 mL) at 80 °C. The conversion was 

monitored after 2 hours of reaction time (Table 6). A full conversion is obtained after 2 hours 

with 20 mol% of KOH (Table 6, entry 4). Surprisingly, the catalyst is totally inactive in absence 

of external base (Table 6, entry 3). 
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Entrya Catalyst (2 mol%) KOH (X mol%) T (°C) 
Reaction 

time (h) 
Conversion (%)b 

1 6b - 80 2 24 

2 “ 20 “ “ 76 

3 5a - “ “ <3 

4 “ 20 “ “ >97 
a The reactions were carried out in dry and degassed isopropyl alcohol (2 mL) under argon in presence of 
acetophenone (0.9 mmol) 
b Determined by 1H NMR analysis by using tetramethylbenzene (0.45 mmol) as internal standard. 

Table 6: Catalytic activity of complex 5a in hydrogen transfer reaction 

 

The effect of the temperature was next investigated with complexes 6b, 5a, 5a.PPh3 

and 5b.PPh3 in presence of the same amount of base KOH (20 mol%) (Table 7). At 50 °C, 

during the use of complex 6b, a 61 % maximum conversion is obtained after 17 hours (Table 

7, entry 1) while a fully conversion is obtained after 4 hours with complexes 5a, 5a.PPh3 and 

5b.PPh3 (Table 7, entries 3, 5 and 6). The comparison of 5a and 5a.PPh3 allows to determine 

if the presence of residual PPh3 might have an influence on the catalytic activity for a potential 

application of  5b.PPh3 in asymmetric catalysis, 5b.PPh3 cannot be obtained pure without 

residual PPh3. After 2 hours, the conversion is similar, 68 % compared to 74 % (Table 7, entries 

2 and 4). However, the conversion is complete after 4 hours with the three different catalysts 

(Table 7, entries 3, 5 and 6). Finally, we observe that 5b.PPh3 is active at 25 °C with a 

conversion of 26 % after 2 hours and a full conversion after three days (Table 7, entries 7-10). 

Finally, the positive effect of the ligand can be validated by comparing the use of Ru(PPh3)3Cl2 

in the same conditions (Table 7, entry 11), a conversion of only 69% being obtained. 
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Entrya Catalyst (2 mol%) V (mL) T (°C) Reaction time (h) Conversion (%)b 

1 6b 1 50 17 61 

2 5a 2 “ 2 68 

3 5a “ “ 4 >97 

4 5a.PPh3 “ “ 2 74 

5 5a.PPh3 “ “ 4 >97 

6 5b.PPh3 “ “ 4 >97 

7 5b.PPh3 “ 25 2 26 

8 5b.PPh3 “ “ 6 50 

9 5b.PPh3 “ “ 28 87 

10 5b.PPh3 “ “ 72 >97 

11 Ru(PPh3)3Cl2 “ “ 72 69 
a The reactions were carried out in dry and degassed isopropyl alcohol (X mL) under argon in presence of 
acetophenone (0.9 mmol) 
b Determined by 1H NMR analysis by using tetramethylbenzene (0.45 mmol) as internal standard. 

Table 7: Catalytic activity of complexes 5a, 5a.PPh3 and 5b.PPh3 in hydrogen transfer 

reaction 

 

Enantiopure complexes 6b, 6d and 5b.PPh3, synthetized by using (R)-(+)-methyl-p-

tolyl sulfoxide as precursor, have been tested in asymmetric hydrogen transfer of acetophenone 

(Table 8).  The ee have been determined by HPLC analysis using a chiral OD column with an 

UV detector. At 50 °C, 7-8 % poor ee are obtained (Table 8, entries 1, 2 and 3). However, a 

moderate 21 % ee is obtained by decreasing the temperature at 25°C (Table 8, entry 4). 

 

Entrya Catalyst (2 mol%) V (mL) T (°C) t (h) Conversion (%)b eec 

1 6b 1 50 17 61 7 

2 6d 1 50 17 57 8 

3 5b.PPh3 2 50 4 >97 7 

4 5b.PPh3 2 25 72 >97 21 
a The reactions were carried out in dry and degassed isopropyl alcohol (X mL) under argon in presence of 
acetophenone (0.9 mmol) 
b Determined by 1H NMR analysis by using tetramethylbenzene (0.45 mmol) as internal standard. 
c ee were determined by HPLC with a chiracel OD column 

Table 8: Catalytic activity of complexes 6b, 6d and 5b.PPh3 in asymmetric hydrogen transfer 

reaction 
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Finally, 5b.PPh3 was used at room temperature in presence of 20 mol% of KOH to 

reduce several carbonyl compounds (Table 9). First, some para- substituted acetophenones 

have been used and reduced successfully after 3 days with different substituents such as bromo, 

methoxy or trifluoromethane groups (Table 9, entries 2-4). Interestingly, benzophenone was 

reduced in the same conditions and proved that steric hindrance can be increased on both sides 

of the ketone (Table 9, entry 5). However, steric hindrance on the substrate can also have a 

dramatic influence, adamantyl-methyl ketone being unchanged even after 4 days at room 

temperature (Table 9, entry 7). Finally, benzaldehyde has been also reduced successfully after 

4 hours (Table 9, entry 6).  
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Entrya Carbonyl Product t (H) Conversion (%)b 

1 

  

72 >97 

2 

  

72 >97 

3 

  

72 >97 

4 

  

72 >97 

5 

  

72 >97 

6 

  

4 >97 

7 

  

/ 96 n.r. 

a The reactions were carried out in dry and degassed isopropyl alcohol (2 mL) under argon in presence 
of carbonyl compound (0.9 mmol) 
b Determined by 1H NMR analysis by using tetramethylbenzene (0.45 mmol) as internal standard. 
Table 9: Applications of hydrogen transfer reaction to different carbonyl compounds 

 

5b.PPh3 was successfully employed in hydrogen transfer catalysis for the reduction of 

several ketones and aldehyde. The enantioselective catalysis showed a moderate ee of 21% that 

proved the influence of the enantioselective ligand on the active catalyst species. 
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II.2. Catalytic activity of sulfonimidamide metallylenes in 

polymerization catalysis 

 
Polycaprolactone is a polymer of great interest because of the numerous applications 

as biodegradable and biocompatible polymer. The polymer can be formed by catalysis with tin 

(II) which is a well-known catalyst to start living polymerization. Thereby, the sulfonimidamide 

metallylenes described in the chapter IV were envisaged in polymerization catalysis (Scheme 

7).  

 

 
Scheme 7: Sulfonimidamide metallylenes used in polymerization catalysis 

 

Polymerization of e-caprolactone was envisaged by using 14a as catalyst in toluene at 

100 °C (Scheme 8). The reaction was monitored by 1H NMR analysis. 

 

 
Scheme 8: Polymerization catalysis using 14a 

 

After 1 hour at 100 °C, the polymerization took place with a conversion of 29 % and 

an interesting PDI of 1.09 (Table 10, entry 1). The conversion can reach 77 % after 7 hours 

with a higher PDI of 1.40, showing thus a larger polydispersity of the polymer that can be 

explained by trans-esterification reactions. Moreover, a deactivation of the catalyst has been 

observed after 7h, not allowing a full conversion (Table 10, entry 2). The results are promising 

and show a better activity of 14a than other tin (II) derivatives in the absence of initiator such 

as primary alcohols or amines.12 
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Entrya Catalyst (0.5 mol%) t (H) Conversion (%)b PDI 

1 14a 1 29 1.09 

2 14a 7 77 1.40 
a The reactions were carried out in dry and degassed toluene (3 mL) under argon in 
presence of e-caprolactone (8.7 mmol) 
b Determined by 1H NMR analysis by comparing the integration of the signal of the 
polymer with the monomer. 

Table 10: Catalytic activity of complex 14a in polymerization of e-caprolactone 

 

Then, the investigations of the activity of 14b, was considered due to the steric and 

electronic differences of the tin (II) center (Table 11). In the same conditions as previously 

described, a conversion of 89% after 1 hour was obtained (Table 11, entry 1). However, 

moderate PDI of 1.66 showed again a larger polydispersity of the polymer due to the formation 

of a gel that blocked the stirring bar and increase the trans-esterification of the polymer. This 

problem was solved by lowering the temperature to 80 °C, which decreased significantly the 

activity of the catalyst without stopping the reaction. After 1h, the conversion of 11% was 

obtained with a better PDI of 1.18 (Table 11, entry 2). A longer reaction time afforded a 

conversion of 48% with a moderate PDI of 1.36 (Table 11, entry 3). 

 

Entrya Catalyst (0.5 mol%) t (H) T (° C) Conversion (%)b PDI 

1 14b 1 100 89 1.66 

2 14b 1 80  11 1.18 

3 14b 6 80 48 1.36 
a The reactions were carried out in dry and degassed toluene (3 mL) under argon in presence of 
e-caprolactone (8.7 mmol) 
b Determined by 1H NMR analysis by comparing the integration of the signal of the polymer with the 
monomer. 

Table 11: Catalytic activity of complex 14b in polymerization of e-caprolactone 

 

Finally, germylenes 13a and 13b were used in the same conditions (Table 12). 

However, these two catalysts appeared totally inactive in catalysis. The insertion and formation 

of a Ge(IV) species might be too stable to allow a catalysis with germanium.  
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Entrya Catalyst (0.5 mol%) t (H) Conversion (%)b PDI 

1 13a 10 >5 n.d. 

2 13b 10 >5 n.d. 
a The reactions were carried out in dry and degassed toluene (3 mL) under argon in 
presence of e-caprolactone (8.7 mmol) 
b Determined by 1H NMR analysis by comparing the integration of the signal of the 
polymer with the monomer. 

Table 12: Activity of complex 13a and 13b in polymerization of e-caprolactone 

 

The structure of the polymer was also investigated to determine if the mechanism 

was a ROP or a REP to give a linear or a cyclic polycaprolactones.16 Linear polycaprolactone 

and ROP mechanism was determined due to end group signal found in 1H NMR 

corresponding to a sulfonimidamide and a -CH2-OH end group (Figure 1). -CH2-OH end 

group was observed as a triplet at 3.63 ppm, moreover, aromatic signals of the 

sulfonimidamide group were also found in the pure polymer. 

 

 
Figure 1: Polymerization catalysis using 14a 
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III. Conclusion 
 

Ruthenium complexes 6b-i have been described as active catalysts in hydrogen 

transfer reaction of acetophenone in iso-propanol. Optimization of the reaction conditions 

during the use of 6b as catalyst has shown the importance of the base on the catalytic activity.  

 

Comparison of the different ligands has demonstrated the influence of the steric 

hindrance on the ligand. Finally, the corresponding thioether and sulfone derivatives induced a 

significant decrease of the activity compared to 6b. This latter result demonstrates clearly that 

the sulfoxide moiety has an important impact on the catalysis by a greater activity or by a better 

stability. Finally, 5a and 5b appeared much more active than all the other ruthenium complexes 

allowing to reduce acetophenone at room temperature. 

 

Hydrogen transfer reaction was finally investigated with enantiopure ruthenium 

complexes 6b, 6d and 5b. The enantiomeric excess of the reaction at 50 °C was low. However, 

a moderate 21% ee was obtained at room temperature with 5b. The same complex has also 

allowed the reduction of various ketones and aldehyde at room temperature.  

 

In a second part, sulfonimidamide stannylenes 14a and 14b were successfully applied 

in polymerization of e-caprolactone. 14a has shown a catalytic activity with moderate to good 

PDI (1.09 to 1.40) for a benchmark reaction, comparable to already reported and known tin (II) 

catalysts. Surprisingly, 14b appeared much more active, with high potential for polymerization 

catalysis. Moreover, 14b exhibits a stereogenic center to consider its use in stereoselective 

polymerization. 
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IV. Experimental section 

 
Amidinate (di-iso-propyle-t-butyl) chloro germylene ruthenium 

complex (6i): amidinatochlorogermylene (100 mg, 0.34 mmol, 1 eq) 

was dissolved in tetrahydrofuran (5 mL) and dichloro(p-

cymene)ruthenium dimer (104 mg, 0.17 mmol, 0.5 eq) was added to 

the solution. The mixture was stirred during 15 hours at room 

temperature, then filtered and the solvent removed under reduced 

pressure. Finally, the red solid was washed with Et2O (2x3 mL) in order to obtain a pale red 

solid (175 mg) in 86% yield. Crystallization from THF at 6 °C gave red crystals suitable for X-

ray study. M.p. : 173 °C (decomposition); 1H NMR (300.18 MHz, C6D6, 25 °C): δ 0.97 (s, 9H, 

C(CH3)3); 1.17 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.41 (d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.45 

(d, 3JHH = 6.3 Hz, 3H, CH(CH3)2); 1.95 (s, 3H, p-CH3); 3.02 (sept., 3JHH = 6.3 Hz, 1H, 

CH(CH3)2); 3.92 (sept., 3JHH = 6.3 Hz, 2H, CH(CH3)2); 5.06 (d, 2H, 3JHH = 8.2 Hz, CHAr); 5.31 

(d, 2H, 3JHH = 8.2 Hz, CHAr). 13C{1H} NMR (75.48 MHz, C6D6, 25 °C): δ 18.2 (p-CH3); 22.6 

(CH(CH3)2); 24.3 (CH(CH3)2); 25.1 (CH(CH3)2); 28.7 (C(CH3)3); 30.9 (CH(CH3)2); 38.9 

(C(CH3)3); 48.7 (CH(CH3)2); 85.3 (CAr); 85.7 (CAr); 98.3 (CAr/q); 105.1 (CAr/q); 179.5 (N−C−N). 

Formula C21H37GeN2Ru dcalc (g/cm3) 1.573 

Mol wt 597.56 µ (mm-1) 2.117 

Temp. (K) 193(2) F(000)  1216 

Cryst syst monoclinic cryst size (mm)  0.16 x 0.14 x 0.10 

Space group P21/n θ range (deg.)  3.21 to 31.50 

a (Å) 15.6231(6) index range h k l 
-22<=h<=22,  
-13<=k<=13,  
-25<=l<=25 

b (Å) 9.2709(4) no of reflns collected /  50694 

c (Å) 17.4244(7) unique 8387 [R(int) = 0.0334] 

a (deg.) 90 
Completeness to 

θmax(%)  
99.9 

b (deg.) 90.0200 data/restraints/params 8387 / 0 / 263 

g (deg.) 90 goodness-of-fit  1.082 

V (Å3)  2523.75(18) R1, wR2 (I > 2σ(I))  0.0306, 0.0609 

Z 4 R1, wR2 (all data)  0.0421, 0.0649 
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General procedure for catalytic transfer hydrogenation reaction of acetophenone with 

isopropyl alcohol: 

 

In a schlenk tube, catalyst (0.018 mmol) and tetramethylbenzene (0.45 mmol, 60.3 mg) was 

dissolved in i-PrOH (X mL, see desired volume in table) and stirred for 10 min. Then, 

acetophenone (0.9 mmol, 105 µL) was added and the mixture stirred at the indicated 

temperature for the desired time. Aliquots (0.2 mL) were dissolved in CDCl3 (0.4 mL) and 

conversions were determined by 1H NMR analysis. Determination of ee was performed on a 

HPLC with a chiralcel OD column at a flow rate of 1 mL/min with a mobile phase of heptane/i-

PrOH (96/4). The two enantiomers were detected with an UV detector at 210 nm with a 

retention time of 12.4 min and 14.7min. 

 

 

General procedure for catalytic polymerization of e-caprolactone: 

 

In a schlenk tube, catalyst (0.04 mmol) was dissolved in toluene (3 mL) and stirred for 10 min. 

Then, e-caprolactone (1 g, 8.73 mmol) was added and the mixture stirred at the indicated 

temperature for the desired time. Aliquots (0.2 mL) were dissolved in CDCl3 (0.4 mL) with a 

small amount of benzoic acid and conversions were determined by 1H NMR analysis. Polymer 

was treated at the end of reaction by addition of benzoic acid. The mixture was then evaporated 

and the solid was then dissolved in DCM. The solution was cooled with liquid nitrogen and 

methanol was added drop to drop to precipitate the polymer. 

The number-average and weight-average molar masses (Mn and Mw, respectively) and molar 

mass distributions (Đ) of the polymer samples were determined by size exclusion 

chromatography (SEC) at 35 °C with a Waters 712 WISP high-speed liquid chromatograph 

equipped with a R410 refractometer detector. Tetrahydrofuran was used as the eluent, and the 

flow rate was set up at 1.0 mL/min. A SHODEX precolumn (polystyrene AT806M/S Mw = 

50000000 g/mol) and two STYRAGEL columns (HR1, 100–5000 g/mol, and HR 4E, 50–

100000 g/mol) were used. Calibrations were performed using polystyrene standards (400–

100000 g/mol). 
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During this thesis, we have developed: (i) the synthesis of two-generations of 

hemilabile germylene-sulfoxide ligands and their corresponding transition metal complexes, 

(ii) the elaboration of new homoleptic metallylenes stabilized by sulfonimidamides and (iii) the 

application of the previous complexes and metallylenes in hydrogen transfer or polymerization 

catalysis.  

 

A novel germylene -a- sulfoxide ligand has been investigated in the first place and 

successfully obtained even if sulfoxides are well known oxidant. The versatility of the 

methodology has been extended to a wide range of (i) structural architectures, by modification 

of the amidinate or the sulfoxide group, and (ii) oxidation state of sulfur with the introduction 

of thioether or sulfone. These ligands have been used in coordination chemistry with group IV 

and two different ruthenium (II) precursors to obtain several monodentate, bis-monodentate 

and bidentate complexes. The formation of a bidentate ruthenium (II) complex with a 

coordination through germanium and oxygen atoms showed a potential hemilability of the 

sulfoxide ligand. The ruthenium complexes have been applied in hydrogen transfer reaction of 

acetophenone in iPrOH to form the corresponding alcohol. The optimal conditions at 25 °C 

allowed to fully reduce various carbonyl compounds such as arylmethylketones, 

bis(aryl)ketone and arylaldehyde in a reaction time of 4 to 72 hours. The asymmetric reduction 

of acetophenone has been also investigated starting with enantiopure ligands to obtain a 

moderate ee of 21 %.  

 

Then, the formation of germylene -b- sulfoxide ligand has been investigated with a 

larger spacer between the metallylene and the sulfoxide moieties. The influence of the spacer 

showed different properties on the coordination chemistry of the ligand. Indeed, the 

complexation behavior toward group IV and nickel (0) was surprisingly different and resulted 

in the formation of bidentate complexes with germanium and sulfur coordinated to the metal 

center. The formation of a nickel (0) complex allowed to obtain another nickel (0) tricarbonyl 

complex, by addition of carbon monoxide, which was used for a TEP comparison. The result 

showed that the s-donation strength of the germylene was between the s-donation strength of 

phosphines and NHCs. Surprisingly, the formation of a new bis-ruthenium complex has been 

observed with a µ–SO bridge. 

 



Conclusion 
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The synthesis of several symmetric and dissymmetric sulfonimidamides has been 

performed. They were used for the stabilization of germylenes and stannylenes. Homoleptic 

metallylenes were obtained after protonolysis reaction of the sulfonimidamides and the 

bis(HMDS) metallylene. Their electronic properties have been investigated by DFT 

calculations. Finally, stannylenes have been applied in the polymerization of e-caprolactone, 

showing an interesting activity, especially for the dissymmetric sulfonimidamide stannylene.  
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Résumé 
 

Ce travail présente la synthèse de ligands mixtes germylène-sulfoxyde qui ont été 

utilisés en chimie de coordination avec plusieurs métaux de transitions et finalement appliqués 

en catalyse de transfert d’hydrogène. Une seconde partie de ce travail est axée sur la synthèse 

de nouveaux métallylènes stabilisés par un sulfonimidamide qui ont été appliqués en catalyse 

de polymérisation. Le premier chapitre présente l’état de l’art des germylènes avec leurs 

synthèses, modes de stabilisations et finalement leur chimie de coordination et leurs 

applications en catalyse. Les sulfoxydes seront aussi décrits pour leur application en tant que 

ligands hémilabiles. 
 

Le second chapitre décrit la synthèse de ligands germylène-a-sulfoxide avec une 

diversité structurale (cyclohexyle, tBu, tolyle..) et avec différents degrés d’oxydation du souffre 

(thioéther, sulfoxyde et sulfone). La chimie de coordination a permis la synthèse de complexes 

bis-germylène du groupe IV, bidentes du ruthénium ainsi que monodentes du ruthénium. 
 

Le troisième chapitre présente l’extension de la méthodologie à la formation de ligands 

germylène-b-sulfoxide. L’influence du groupement espaçant les deux entités sur la chimie de 

coordination a été étudiée et montre la formation de complexes bidentates du groupe IV. La 

coordination du ruthénium a mené à la surprenante synthèse d’un complexe bis-ruthénium 

caractérisé par diffraction des rayons X. Finalement, la nouvelle architecture a permis d’obtenir 

des complexes de nickel (0) dont une structure avec des ligands carbonyles permettant une 

comparaison TEP. 
 

Le chapitre quatre présente la synthèse de nouveaux ligands, analogues des amidinates, 

pour la stabilisation des métallylènes avec un atome central soufré. L’effet apporté sur les 

métallylènes par ces nouveaux ligands sulfonimidamides a été étudié par calcul DFT. 
 

Le dernier chapitre est centré sur l’application de plusieurs complexes de ruthénium 

en catalyse de transfert d’hydrogène avec plusieurs substrats carbonylés. L’utilisation de 

stannylènes stabilisés par des ligands sulfonimidamides a été étudiée en catalyse de 

polymérisation de la e-caprolactone. 

 

Mots clés : Germylène, sulfoxyde, ligand hémilabile, réaction de transfert 

d’hydrogène, sulfonimidamide, polymérisation de la e-caprolactone.  



 

 

Abstract 

 

This work concerns the synthesis of mixed germylene-sulfoxide ligands that were 

involved in coordination chemistry with several transition metals and finally applied in 

hydrogen transfer catalysis. In a second part, the synthesis of new metallylenes stabilized by a 

sulfonimidamide group was develop, which were applied in polymerization catalysis. The first 

chapter is centered on the state of the art of germylenes with their synthesis, their stabilization 

and finally their coordination chemistry and applications in catalysis. Sulfoxides will also be 

described for their potential as hemilabile ligands. 

 

The second chapter describes the synthesis of germylene-a-sulfoxide ligands as 

structurally tunable structures (cyclohexyl, tBu, tolyl..) and with different oxidation states of 

the sulfur atom (thioether, sulfoxide and sulfone). The coordination chemistry led to the 

formation of bis-germylene group IV complexes, bidentate-ruthenium and monodentate 

ruthenium complexes.  

 

The third chapter shows the extension of the methodology to the formation of 

germylene-b-sulfoxide ligands. The influence of the spacer between the two entities on the 

coordination chemistry was studied and shows the formation of bidentate group IV complexes. 

Coordination to ruthenium led to obtain a surprising bis-ruthenium complex characterized by 

X-ray diffraction analysis. Finally, the novel architecture allowed to obtain two nickel (0) 

complexes, one of them including carbonyl ligands permitting a TEP comparison. 

 

The fourth chapter is centered on the synthesis of new ligands, analogue of amidinate 

substituents for metallylene stabilization with a central sulfur atom. The effect brought to the 

metallylene center by the sulfonimidamide was studied by DFT calculations. 

  

The last chapter concerns the application of several ruthenium complexes in hydrogen 

transfer reaction with various carbonyl compounds. The use of sulfonimidamide stannylenes 

was also investigated in polymerization catalysis of e-caprolactone. 

 

Keywords: Germylene, sulfoxide, hemilabile ligand, H-transfer reaction, 

sulfonimidamide, e-caprolactone polymerization. 


