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ABSTRACT 

Acute myeloid leukemias (AML) are heterogeneous hematological malignancies 

characterized by a clonal proliferation of myeloid blasts which infiltrate the bone 

marrow, blood and other organs. Identified as the most common type of acute 

leukemia in adults with 80% of cases, AML is associated with high relapse and 

poor prognosis where 70% of patients face mortality within one year after 

diagnosis. Leukemic stem cell (LSCs) presence has been related to resistance 

to chemotherapeutic agents and relapse in AML. The tumor microenvironment 

has been described for its key role regulating LSCs through the crosstalk of 

signaling pathways. Bone Morphogenetic Proteins (BMP) pathway is highly 

involved in hematopoietic stem cell (HSC) regulation, but has also been 

recognized to regulate LSCs. Here, we have identified high concentrations of 

BMP2 and BMP4 in bone marrow (BM) AML samples at diagnosis. Furthermore, 

we have identified for the first time a new signaling cascade, involving the binding 

of BMP4 to BMPR1A receptor, which induces the expression of ΔNp73 and 

NANOG. Activation of this signaling promotes a stem-like phenotype in leukemic 

cells. Therefore, we hypothesized that this signaling is responsible for the 

resistant capacity of leukemic cells to chemotherapy. In addition, we have 

reported BMPR1A/ΔNp73/NANOG as potential AML prognosis markers, due to 

their overexpression at diagnosis associated to an increased rate of relapse of 

AML patients within three years. When we analyzed AML samples at relapse, 

higher levels of ΔNp73 isoform were found compared to patients at diagnosis. 

Moreover, we have identified high expression of the BMPR1A receptor, ΔNp73, 

NANOG, SOX2 and ID1 in short-term resistant primary leukemic cells. These 

results correlate with what we observed in AML resistant cells, where BMPR1A, 

ΔNp73, NANOG and ID1 seem to be implicated in driving the resistant capacity 

of AML cells to drug therapy. Therefore, modulation and targeting of the BMP 

pathway elements and related genes identified with our study, represent a 

promising approach towards the development of new and more effective 

therapeutic strategies against AML. 

 

Key words: AML, tumor microenvironment, leukemic stem cell, BMP pathway, 

resistance. 
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RÉSUMÉ 

Les leucémies aiguës myéloïdes (LAM) sont des maladies hématologiques 

hétérogènes caractérisées par une prolifération clonale des blastes myéloïdes 

qui s’infiltrent dans la moelle osseuse (MO), le sang et d’autres organes. 

Identifiée comme le type le plus courant de leucémie aiguë chez l’adulte avec 

80% des cas, la LAM est synonyme de rechute et de mauvais pronostic, avec 

70% des patients étant confrontés à une mortalité dans l’année suivant le 

diagnostic. La présence des cellules souches leucémiques (CSL) a été associée 

à une résistance à la chimiothérapie et à une rechute dans la LAM. Le 

microenvironnement tumoral a été décrit pour son rôle clé dans la régulation des 

CSL par l’interaction des voies de signalisation. La voie des Bone Morphogenetic 

Proteins (BMP) est fortement impliquée dans la régulation des cellules souches 

hématopoïétiques (CSH), mais elle a également été reconnue pour réguler les 

CSL. Ici, nous avons identifié des concentrations élevées de BMP2 et BMP4 

dans la MO des patients atteints de LAM au moment du diagnostic. De plus, nous 

avons identifié pour la première fois une nouvelle cascade de signalisation 

impliquant la liaison de BMP4 au récepteur BMPR1A, qui induit l’expression de 

ΔNp73 et NANOG. L’activation de cette signalisation favorise un phénotype 

proche des cellules souches dans les cellules leucémiques. Par conséquent, 

nous avons émis l’hypothèse que cette voie est responsable de la capacité de 

résistance des cellules leucémiques à la chimiothérapie. En outre, nous avons 

identifié BMPR1A/ΔNp73/NANOG comme marqueurs potentiels du pronostic 

dans la LAM, en raison de leurs surexpressions au moment du diagnostic associé 

à une rechute dans les trois ans. Lorsque nous avons analysé des échantillons 

de LAM lors d’une rechute, nous avons constaté des taux plus élevés de 

l’isoforme ΔNp73 par rapport à ceux de patients au moment du diagnostic. 

D’autre part, nous avons identifié une forte expression du récepteur BMPR1A, 

ΔNp73, NANOG, SOX2 et ID1 dans les cellules leucémiques primaires 

résistantes à court terme. Ces résultats sont en corrélation avec ce que nous 

avons observé dans les cellules résistantes de LAM, où BMPR1A, ΔNp73, 

NANOG et ID1 semblent être impliqués dans la capacité de résistance des 

cellules de LAM face à la chimiothérapie. La modulation et le ciblage des 

éléments de la voie BMP et des gènes associés identifiés au travers de notre 
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étude représentent donc une approche prometteuse pour le développement de 

stratégies thérapeutiques innovantes et plus efficaces contre les LAM.  

 

Mots clé : LAM, microenvironnement tumoral, cellule souche leucémique, voie 

BMP, résistance       
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1  Hematopoiesis and Hematopoietic Stem Cell (HSC)  

 Generalities of the hematopoietic system  

Blood is a tissue in constant regeneration with approximately one trillion cells 

produced every day in a normal human adult bone marrow (BM). The 

hematopoietic system is formed by the blood in which it is possible to identify 

several types of cell lineages holding specific functions in the organism (Figure 

1). Many of the different blood cells present a short lifespan, this is the reason 

why a constant regeneration is carried out daily in the medullary cavity of certain 

bones in adult mammals. The permanent blood cell regeneration rest on a key 

player. This is the hematopoietic stem cell (HSC); described in 1909 by Alexander 

Maximow, as the head of a hierarchy and main common precursor of all different 

multilineages progenitors giving rise to more differentiated blood cells. The HSC 

is capable to produce two main progenitor populations (Figure 1). The myeloid 

progenitor cells can differentiate into red blood cells on charge of oxygen 

transportation along the tissues, platelets able to stop the bleedings through clot 

formation or granulocytes and macrophages with the task of fighting infections. 

On the other hand, the HSC can give rise to the lymphoid progenitor cells holding 

the ability to differentiate into B-lymphocytes that can produce antibodies, T-

lymphocytes able to kill directly agents recognized as strangers for the body. And 

also, natural killer (NK) cells are a product from the lymphoid progeny (Figure 
1)1,2,3. 
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Figure 1. Hematopoietic and stromal differentiation1. The hematopoietic stem cell 

(HSC) and all the different blood lineages produced from the HSC. 

 

 

 Hematopoiesis in humans 

Hematopoiesis is the dynamic process of blood cell components formation, in 

which the multipotent hematopoietic stem cells are capable to differentiate and 

give rise to all different blood lineages. It is a procedure that takes place for the 

first time during embryonic development and continues during adulthood in order 

to restore the blood cell populations. Hematopoiesis has been described in 

vertebrates as a two-wave event, the primitive and the definitive events. The 

differences between these two waves are the type of cells produced and the 

anatomic region where it occurs. The so-called “primitive wave” happens 

temporarily and generates the erythroid progenitors able to differentiate into 

erythrocytes and macrophages. This wave takes place during the early 

embryonic development and its aim is essentially the production of red blood cells 

in order to transport the oxygen along the tissues in the embryo. This erythroid 

population can be seen in mammals for the first time in the extra-embryonic yolk 

sac. As mentioned before, this “primitive” stage gives rise only to a non-

pluripotent lineage with no self-renewal capacity. The “definitive” hematopoiesis 

wave appears later during development and can be different depending of the 
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specie4,5. In the majority of species, a first “definitive” hematopoiesis wave is 

observed in the blood islands by erythroid-myeloid progenitors (EMPs) 

production. Following this first wave, the “definitive” hematopoiesis implicates the 

presence of hematopoietic stem cells holding the multipotent capacity and 

provides all blood lineages of a normal organism4. 

 

The process of hematopoiesis in humans as the rest of the vertebrates initiates 

in the yolk sac (YS) during the embryo stage and evolves its location to the liver, 

to finally establish permanently in the thymus and bone marrow (Figure 2). This 

first stage of the hematopoiesis in the YS is the primitive wave seen after 18.5 

days of development, where it is possible to identify the presence of erythroblasts 

and CD34+ hematopoietic cells. At day 22 the heart will start beating allowing the 

circulation of erythroid cells within the embryo. Once the embryo arrives to day 

24 the YS mesoderm stops differentiation and the intravascular blood islands are 

no longer present. Following the YS, the next hematopoiesis wave occurs in the 

Aorta-Gonad-Mesonephros (AGM) region. Between days 24 and 34, it has been 

identified in the Para-aortic Splanchnopleura (P-Sp) the existence of 

hematopoietic cells with myeloid and lymphoid potentials. Moreover, CD34+ 

hematopoietic cells can be found in the mesenchyme surrounding the dorsal 

aorta at day 26, while these cells will also be observed between days 26-36 within 

the endothelium of the dorsal aorta and the ventral cell clusters4,5.  

 

As embryo development advances, the liver appears as the next important 

hematopoiesis site. During day 23, liver growth starts and the hematopoietic cells 

begin the establishment and expansion in this region. On day 30 the first 

hematopoietic progenitors CD45+ CD34+ can be found and by day 42 the CD34+ 

population reaches a considerable number, turning the liver into the principal 

hematopoietic organ at this point. Mainly erythroid cell population is seen in the 

embryonic liver at that point, extravasculary located. The hematopoietic capacity 

of the liver concludes at birth. Nonetheless, some erythroid precursors can be 

found in newly born. Finally, as mentioned before, the bone marrow represents 

the last and main hematopoiesis source. Between weeks 8.5 and 9 an invasion 

of osteoblasts, osteoclasts and perichondral precursors takes place within the 

marrow cavity. In addition, it is possible to identify from week 10.5 the beginning 
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of hematopoiesis in the bone marrow through the recognition of CD45+ 

hematopoietic cells, CD15+ and CD68+ cells and in a lower amount CD34+ 

hematopoietic cells. The bone formation is accomplished by week 16 and the 

dynamic process of hematopoiesis carries on during the adulthood4,5.  
  

 

 
Figure 2. General representation of the chronological appearance of 
hematopoiesis in humans4. 

 

 

 Hematopoietic Stem Cell (HSC) 

1.3.1 Defining the concept of HSC 

First evidence proposing the existence of the Hematopoietic Stem Cell (HSC) 

came right after the nuclear bombings in 1945. Individuals who did not die during 

the main bomb explosions were exposed to different radiation levels, depending 

of their location during and after the bombings. For example, people exposed to 

the radiation for a long period developed failures in their hematopoietic system, 

facing the lack of regeneration of all different blood cell types and in consequence 

leading to death due to an abnormal organism function. Treatment for these 

patients was based on transplantation of bone marrow cells from donors who 

were not exposed to radiation. Interestingly the patients achieved a total blood 

system regeneration after this procedure, demonstrating that cells present in the 

BM and more specifically, the HSC population was able to repopulate the BM 

host with the different blood lineages essential for a normal body function1.  
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The functional capacity of the HSC was assessed in 1961 by Till and McCulloch 

who actually proposed for the first time the “stem cell” concept in hematopoietic 

cells. Their original studies describing the HSC capacity were based on the 

regeneration of the blood system in vivo. Irradiated mice received transplantation 

of genetically identical and immunologically compatible bone marrow cells. Ten 

days after the transplant, cellular colonies corresponding to myeloid and erythroid 

lineages were found in the spleen of the mice. Colonies were recovered and after 

analyzing them, a small sub-fraction owned two major characteristics making 

them different from the rest of the cells found. The first characteristic was the 

ability of this population to give rise to myeloerythroid lineages. While the second 

one, was the self-replication capacity shown by these cells. Based on these two 

parameters it was possible to identify that the HSCs are the only cells within the 

bone marrow presenting the multi-potency and in parallel self-renewal to give rise 

to an identical HSC without suffering differentiation6,3,1.  

 

1.3.2 Major characteristics  

Hematopoietic stem cells are a population holding unique and specific properties 

that render them different from other progenitor or more mature cells. HSCs 

possess a special trademark and this hallmark combines different abilities. For 

instance, self-renewal capacity where the HSC can maintain the stemness status 

after cell division or follow the path of differentiation towards a mature 

hematopoietic cell. Division of HSCs can follow either a symmetrical division in 

which a generation of two daughter HSCs takes place or asymmetrical division 

where an HSC is generated along with a daughter cell that holds the task of 

differentiation to give rise to other more mature blood cell types (Figure 3). 
Moreover, migration is another important characteristic of HSCs not only during 

the stages of development but also in adulthood. Finally, apoptosis is another 

important element able to regulate the number of HSCs to maintain 

hemostasis7,1.  
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Figure 3. HSC symmetric and asymmetric division. HSCs are able to follow a 

symmetric division generating two identical HSCs carrying identical cell fate. Otherwise 

undergo into asymmetric division where two cell daughters are generated: one HSC and 

a more differentiated cell HPC (Hematopoietic progenitor cell) holding different cell fate.  

 

 

Self-renewal is the capability of cells to generate a copy of themselves which 

presents either exactly the same or highly similar potential. This is a main 

characteristic of the HSCs, since other populations as hematopoietic progenitor 

cells can give rise to other mature blood cells during a long but limited period of 

time. Therefore, the presence of HSCs is crucial to sustain the long-term 

generation of the hematopoietic lineages. At the present time, it is not possible 

yet to confirm that HSCs can go through endless self-renewal and several 

research studies are trying to understand the mechanism driving this major 

characteristic. A first hint linked to self-renewal is telomerase. This enzyme also 

known as “terminal transferase” is a ribonucleoprotein on charge of maintaining 

the telomeres; regions that protect the end of the chromosomes from DNA 

(Deoxyribonucleic acid) damages or fusion with close chromosomes due to DNA 

replication8. Although telomerase has been identified as an essential factor for 

self-renewal, it seems to be only one of other elements driving this potential. 

Studies using HSCs from mice showed that lack of telomerase was related to a 

decreased self-renewal ability. Nonetheless, forced expression of telomerase in 

cells was not sufficient for HSCs to reach undefined capacity of transplantation9. 

Even though self-renewal is a main characteristic in HSCs, it is highly difficult to 
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achieve expansion of these cells in culture, while other types such as neural or 

embryonic stem cells are relatively easy to maintain and expand in culture 

conditions. In order to find elements that can help to elucidate self-renewal but 

also HSC culture expansion, Reya, Willert and colleagues analyzed 

transcriptional gene expression in purified mice LT-HSCs (Long-Term 

Hematopoietic Stem Cells) finding elements related to Wnt/fzd/beta-catenin 

signaling pathways linked to the capacity of the cells to perform self-renewal 

divisions10,11. Additional studies exhibit proteins such as HoxB4 and HoxA9 in 

HSC self-renewal. Notch and Sonic Hedgehog (SHH) signaling pathways have 

been studied to elucidate their potential and role in this aspect12. Moreover, genes 

such as Bmi-1, c-Myc or JunB have been identified as fundamental in stemness 

maintenance13,14.  

 

Another property of HSCs is the ability of differentiation into progenitor lineages 

and different mature hematopoietic cell types. Growth factors, cytokines and 

signaling pathways are presumed to be involved in driving the direction of 

differentiation. Once HSCs are committed towards differentiation, this state will 

be maintained and self-renewal cannot be reached anymore. Here relies the 

importance of the bone marrow microenvironment and all the factors found in the 

niche in HSCs proliferation, suggesting that any deregulation could lead to 

malignant diseases which will be described in the following chapter1.  

 

During early stages of embryonic development and adulthood the HSCs will be 

able to migrate in response to a natural or induced stimulation. For example, 

cytokine-induced mobilization is an important procedure used in the clinical field, 

in order to produce HSC migration and proliferation in patients with hematological 

disorders that require the use of drugs such as cytoxan. Because of the low 

percentage of LT-HSCs (around 8%) that undergo into cell cycle activity daily, 

this population is not affected by the use of cytoxan, which targets fast dividing 

cells. Nevertheless, myeloid and lymphoid progenitor populations are directly 

killed by the use of this type of drugs, due to their role in high division activity. 

This generates a blood system which needs the presence of more HSCs able to 

compensate and replace the lost populations. The use of certain factors as 

granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF), will 
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induce migration of HSCs from the bone marrow into the blood system and these 

cells will be able to engraft into other hematopoietic sites different from the bone 

marrow, such as the liver or the spleen. This procedure allows self-renewal and 

differentiation of HSCs, in order to achieve a normal reconstitution of all blood 

lineages that were affected during the use of chemotherapeutic drugs15,16.  

 

Despite the fact that HSCs, as described previously, represent a key element in 

repopulation of all different blood lineages from progenitor to mature cells, they 

are not exempted of the well-known mechanism of programmed cell death 

“apoptosis”. The necessity to regulate the number of HSCs will trigger precise 

signaling leading the cells to the self-destructing mechanism1. 

 

1.3.3 Identification of the HSC phenotype 

Although in 1961 the HSC was better described and its potential identified, it was 

not until 1981 when for the first time the hematopoietic stem cells from mouse 

bone marrow were isolated and purified. Using new technology based on multi-

color fluorescence-activated cell sorting and monoclonal antibodies, a small 

fraction of approximately 0.05% BM mouse cells presenting the surface marker 

phenotype of Thy-1low(CD90)/Lin(Lineage-markers)-/Sca-1+ were identified17. 

The small cell population identified was responsible for the blood system 

reestablishment in the lethally irradiated mice. Later on, in 1994 a research work 

conducted by Spangrude and colleagues showed the presence not only of a 

single type of multi-potency population, but three different; identified as Long-

Term (LT)-HSC, Short-Term (ST)-HSC and Multi-Potent Progenitor (MPP). This 

last population lacking the self-renewal ability presented by the other two 

types17,6.  

 

In human hematopoietic stem cells, the first cell surface marker employed to 

identify this minor population, was the cluster of differentiation CD34. The CD34 

marker is a transmembrane phosphoglycoprotein and a ligand for L-selectin 

expressed only by 0.5 to 5% of the blood cells found in human fetal liver, cord 

blood, adult bone marrow or mobilized peripheral blood (mPB). Multi- and Oligo-

potency can be observed in cells expressing this membrane marker. 
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Nevertheless, the cells presenting CD34 at the membrane are a heterogeneous 

population not completely specific to HSCs. Antibody Anti-CD34 was produced 

for the first time in 1984 as a monoclonal antibody, able to identify surface antigen 

on KG1a myeloid leukemia cell line18. Afterwards, a wider variety of cell surface 

protein markers were discovered for a more specific HSC targeting. Among these 

markers it is possible to identify CD34+ CD90+ Lin-. The Lin (Lineage) markers 

are basically surface proteins allowing to identify all the different blood lineages 

more differentiated as myeloerythroid population and other markers specific for 

lymphocytes B, T and NK cells. In contrast to this phenotype identified, cells not 

expressing CD90 at the membrane showed no potential to generate clones from 

the myeloid and lymphoid lineages.  Addition of the cluster of differentiation CD38 

contributed to obtain a more specific HSC phenotype. Despite the fact that 

between 90-99% of cells expressing CD34+ also presents the CD38 expression, 

it was observed that the few cell population CD38- and CD90+ were the cells with 

the multi-potent ability to give rise to multi-lineage colonies. Furthermore, the 

CD34 positive and CD38 negative populations have been described as the cell 

fraction with the highest number of colonies in the functional assay for Long-Term 

Culture-Initiating Cells (LTC-IC)19. 

 

Despite the fact that CD34 expression is often related by default to human 

hematopoietic stem and progenitor cells (HSPCs), it was in 1997 when Goodell 

and colleagues described with their studies based in humans and rhesus 

monkeys, the existence of a population identified as primitive hematopoietic cells 

with a lack of CD34 expression20.  Later on, in 1998 the research work conducted 

by Bhatia and colleagues demonstrated a human cell population with CD34 

negative expression and severe combined-immunodeficiency (SCID)-

repopulating cell (SRC) activity holding a phenotype Lin- CD34- CD38-21. 

Moreover, studies conducted by Anjos-Afonso and collaborators described a rare 

population presenting not only self-renewal capacity but more importantly, settled 

at a higher position in the hematopoietic hierarchy than the HSC CD34+; this 

subset displayed a phenotype Lin- CD34- CD38- CD93hi. Notch signaling 

activation can be seen within this population with Delta4 allowing the 

maintenance of a primitive state, whereas quiescence is controlled through TGF-

 and Jagged1 signals22. 
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The existence of a CD34 negative HSC population has not only been described 

in humans but also in several studies performed in mice, where it has been 

observed for example, that knock-out CD34 mice still hold the capacity to 

generate hematopoiesis with multilineage progeny and self-renewal capacity as 

shown for CD34 positive HSCs23. Among other human HSC markers identified, 

it is possible to list CD12324, CD13325, c-Kit26  or Flt-3(flk-2)27. Figure 4 

summarizes some of the different markers in human and mouse, employed to 

identify HSCs from more mature hematopoietic lineages. 

 

 

 
Figure 4. Principal markers of HSCs and mature hematopoietic lineages identified 
in humans and mice (adapted from28). Principal markers specific or shared in humans 

and mice to identify HSCs and more differentiated hematopoietic lineages.  
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1.3.4 HSC heterogeneity 

The hematopoietic stem cell population could be seen as a homogeneous and 

single group of cell type owning a flexible behavior providing the ability for self-

renewal, proliferation or differentiation. Nevertheless, the HSC population is a 

heterogeneous group of different subpopulations, or subset of cells, holding 

different self-renewal capacity and differently programmed when speaking about 

differentiation. The distinct HSC subpopulations present different characteristics 

such as: variations of their cell cycle status, presence of cell surface markers or 

the way they react to extrinsic signaling. The idea of sorting HSCs in order to 

obtain an homogeneous population with an identical behavior is now 

questioned29,30. 

 

One of the pioneer groups to illustrate the heterogeneity of the HSCs was Muller-

Sieburg and colleagues, through the study of the kinetic of repopulation using 

single HSCs transplanted into either irradiated or c-Kit receptor tyrosine mutant 

mice. After statistical analysis, it was possible to observe 16 different kinetic 

repopulation arrangements, registered along 8 months in the recipient which 

received a clonal stem cell from whole BM. The clonal transplantation of HSCs 

sorted for the phenotype Lin- Rho- exhibited a selective enrichment for certain 

subsets from all the HSC types in BM. In addition, it was observed that HSCs 

daughters coming from the primary host, followed the same repopulation kinetics 

from the original transplanted HSC, when transplanted into a secondary host31. 

 

Self-renewal capacity has been used to analyze the heterogeneity of HSCs, via 

the performance of transplantation experiments based on measurements of the 

lifetime of HSC clones obtained from whole BM within a period of 4 months to 2 

years after transplantation. HSC clones were isolated from BM by culturing them 

on a stromal cell line S17, which produced small colonies of granulocytic cells. 

And using statistical approaches, verified experimentally, it was determined that 

90% of the colonies derived from a single initiating HSC. The results derived from 

this study revealed that HSC clones as expected, are able to reconstitute myeloid 

and lymphoid lineages but the level of reconstitution for each of this lineage was 

different31. Therefore, HSCs seem to present an intrinsic pre-defined fate 
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responsible of driving the reconstitution towards a specific lineage. A second 

element considered as a presumed factor contributing to heterogeneity is the 

intrinsic cell cycle activity. For instance, Wilson and colleagues conducted a study 

using a two labeled-retention model in mice, with either BrdU 

(Bromodeoxyuridine) or histone marking with H2B-GFP which is synthesized 

during the active cell cycle. Interestingly, the results showed that most of the 

label-retaining cells were dormant HSCs32. It is known that this dormant 

population can be “activated” or switched into an active state by stimulation with 

G-CSF or in response to a bone marrow injury. Normally, active HSC population 

are on charge of daily hematopoiesis while the dormant HSCs not often undergo 

division unless there is an injury which stimulates its activation. Further analysis 

concluded that dormant HSCs enter cell cycle once every 149 to 193 days. On 

the other hand, the active population does it every 28 to 36 days33,34.   

 

Hematopoietic stem cell heterogeneity can be observed for instance, when 

irradiated mice are transplanted with HSCs. This cell population holds the primary 

function of producing mature hematopoietic cells from the lymphoid and myeloid 

progeny once transplanted into the irradiated or myelodefective mouse. 

Considering these studies based on HSCs transplants, a classification can be 

established dividing HSCs into “myeloid-biased” (lymphoid-deficient), lymphoid-

biased (myeloid-deficient) and myeloid-lymphoid balanced population, having as 

main parameter for this categorization the tendency to favor the generation of a 

predominant lineage34. For example, according to Dykstra and colleagues, HSC 

myeloid-lymphoid balanced cells are more common in a classic animal model 

used as young BM from C57BL/6 mice. While in older mice (>38 weeks) the 

number of myeloid-biased population is increased35. Chen and colleagues 

identified high expression of histidine decarboxylase (Hdc) in certain HSCs and 

this population displaying this high expression exhibited a myeloid-biased 

differentiation capacity in vivo37. More recently, additional HSC subtypes have 

been defined as “platelet-biased” and “platelet-myeloid-biased”, both expressing 

the von Willebrand factor (vWF); a blood glycoprotein involved in hemostasis36. 

In addition, cell surface markers have been employed to separate the different 

lineage-biased HSC populations. An example of this are the signaling lymphocyte 

activation molecules (SLAMs), such as CD150 and CD229. High CD150 
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expression has been linked to myeloid-biased HSCs while low expression of this 

marker is related to the lymphoid-biased populations. In contrast, CD229- is a 

characteristic of myeloid-biased HSCs and the lymphoid-biased differentiation 

ability can be observed in CD229+ HSCs38,39. The existence of lineage-biased 

HSC populations strongly highlights heterogeneity of the HSCs. 

 

Another classification of HSCs exists, relaying on the kinetics of reconstitution in 

a period of 24 weeks after clonal HSC transplantation into the primary recipient 

and 20 weeks in secondary recipients. In other words, this classification 

considers the in vivo engraftment abilities of the HSCs and the capacity to sustain 

the multilineage hematopoiesis for a long period and after serial transplantation. 

Three different repopulating HSCs are defined as; long-term (LT-HSC), 

intermediate-term (IT-HSC) and short-term (ST-HSC). Multilineage repopulation 

can be observed in the 3 types of HSCs, nonetheless, Yamamoto and 

collaborators demonstrated that LT-HSC displayed high donor chimerism in the 

five lineages they tested (neutrophil/monocyte, erythrocyte, platelet and 

lymphocytes T and B) and after 4 weeks of transplantation they reached a 

threshold and maintained it at 24 weeks in the primary and secondary recipient. 

In the case of IT-HSCs, this population showed lower level of chimerism and start 

of loss of myeloid and erythroid lineages in the secondary recipient. On the other 

hand, ST-HSCs are not able to provide a constant level of chimerism for any of 

the five lineages studied, while an increase of lymphoid population was observed 

in the secondary recipient40.  

 

Studies conducted by Cho, Dykstra, Yamamoto and colleagues to establish the 

two different classifications of HSC subtypes, were useful to try to define a link 

between both classifications. In 2014, Ema and collaborators compared data 

related to these classifications and this allowed them to confirm that the majority 

of LT-HSCs in the BM correspond to myeloid-biased, the IT-HSC population 

correspond to a mix between balanced and lineage-biased populations and that 

most of the ST-HSCs are lymphoid-biased. Another important aspect, is the 

ability to sort these different subtypes to assess their capacities by using a pure 

homogeneous population. So far, only a few specific markers have been 
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identified such as CD150 for LT-HSCs, CD49b in IT-HSCs (integrin 2) and 

platelet integrin CD41 (Itga2b) in myeloid-biased HSCs41,35,40,42. 

 

At the functional level, the different HSC populations vary in their self-renewal 

capacity and lineage differentiation production43,44. Whereas, at the molecular 

level they share a common signature gene expression and a dissimilar chromatin 

architecture in the lineage-specific gene loci and present a lineage-specific 

priming, responsible of their cell fate45. 

 

1.3.5 Aging of HSCs 

Self-renewal capacity and regenerative potential are two primary hallmarks of 

hematopoietic stem cells allowing an equitable blood cell regeneration during life. 

As HSCs age, both abilities are gradually decreased. Moreover, aging is also 

presumed to be a process in which the hematopoietic stem cell pool is gently 

decreased. However, aging represents a more complicated and contradictory 

process as it is thought. Actually, it has been observed that aging in individuals 

increases the number of HSCs in the BM. On the other hand, as mentioned 

before, the capacity for self-renewal and repopulation is lower than those 

observed in younger individuals. For example, old LT-HSC population presents 

a similar myeloid-biased differentiation potential to that exhibited by young HSCs, 

whereas the lymphoid potential is reduced46,47. 

 

Another important tool to describe aging of HSCs is linked to gene expression. 

Some genes have been observed to be increased in aged HSCs. These genes 

are related to stress response, inflammation, cell cycle, proliferation, myeloid 

lineage differentiation and nitric-oxide (NO)-mediated signal transduction. 

Contrarily, downregulation is present in those genes linked to DNA repair, 

chromatin remodeling or DNA replication47. 

 

The molecular mechanisms involved in aging are essential to better understand 

this subject. Nonetheless, a major problem faced studying the HSC aging is the 

heterogeneity of the populations used along the different studies performed. The 

purity of a homogeneous HSC population reached in several studies is no higher 
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than 50%. The complication related to using not pure populations is that, it has 

been shown through significant data that aging increases the functional 

heterogeneity of HSCs. Therefore, identification of a specific phenotype for aged 

HSCs, such as surface markers, can be a key player for a proper functional 

characterization of this population that can decipher the molecular mechanism of 

aging46. 

 

An important parameter which can help to conduct more efficient research 

studies focused on aging is to identify the specific role of cell-intrinsic and 

extrinsic parameters and understand if one of the two has a main role. As 

observed by several studies performed using mice, most of cell-intrinsic changes 

seem to be at least moderately influenced or initiated by extrinsic elements as 

the bone microenvironment. Transplantation of aged HSCs into a young recipient 

that holds a “young” BM microenvironment resulted in no modifications or 

changes of the HSCs functionality48. Nonetheless, it has been observed that 

young cells from bone marrow have a better capacity of engraftment when they 

are placed into a young environment than in an aged one.  As described during 

this chapter, HSCs are tightly regulated by the different elements that surrounds 

them and for instance, hematological malignancies are an evident consequence 

of BM microenvironment irregularity46. 

 

Among the different cell-intrinsic alterations in HSCs, the most common and 

irreversible is DNA damage accumulation. Genomic integrity is crucial to maintain 

HSC homeostasis. This integrity helps to diminish the chances of BM failure or 

transformations driving malignancies. Main causes of DNA damage are attributed 

to DNA replication errors, spontaneous chemical reactions and external or 

metabolism agents. Studies performed in mice and humans described premature 

aging process, by identifying mutated genes involved in encoding proteins 

necessary for DNA repair. This leads to decreased HSC functioning as low 

repopulating potential and reduction of HSC reservoir. Aside from random DNA 

damage, erosion of telomeres is another common disturbance observed in 

healthy individuals as part of the aging process. This is a particular DNA damage, 

where shortening of telomeres takes place producing reduction of HSC 

functioning49,50,51,52. 
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Other intrinsic factor in the list is senescence, which can be observed through a 

normal accumulation of cell cycle arrested cells along aging. In addition, an 

outstanding feature of old HSCs is the so called “increased polarity”, which is the 

asymmetric distribution of specific proteins and according to some studies, it can 

have an influence in HSC functioning. Within this category of intrinsic factors, 

impaired autophagy is highly present in a wide number of aged HSCs, which 

produces mitochondrial accumulation driving metabolic stress induction. The 

HCS malfunctioning derives from the presence of high levels of reactive oxygen 

species produced by the mitochondria. Finally, the accumulation of aberrant 

epigenetic marks can easily and progressively lead HSCs into loss of stem cell 

potential53,46. 

 

 

 HSC and hematopoietic hierarchy  

As previously described, the HSC has been recognized as the head of a hierarchy 

in which relies the production of all the different hematopoietic lineages that are 

essential part of the blood system54. The classical road map suggested the HSC 

at the head of a hierarchical tree with branches representing the multistep 

differentiation, showing the multi-, oligo- and uni-potent progenitor populations 

leading to mature blood cells55 (Figure 5). This classical road map describes the 

presence of the rare LT-HSCs at the head of the tree, this population is known 

for its quiescent state but able to enter the cell cycle when facing different 

stimuli56. Located one step down the hierarchy, the ST-HSCs are the next 

population holding the short-term capacity to rebuilt the hematopoietic 

system57,58. This population is able to differentiate into multipotent progenitors 

(MPPs) which although they do not exhibit self-renewal capacity, are able to give 

rise to the common myeloid progenitors (CMPs) and common lymphoid 

progenitors (CLPs). CLPs are identified as progenitors with a lymphoid-limited 

differentiation capacity, while the CMPs can differentiate into 

megakaryocyte/erythrocyte progenitors (MEPs) and granulocyte/macrophage 

progenitors (GMPs)55. 
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Later on, an update of the classical tree-branch hierarchy has been made, in 

which the IT-HSCs were placed between the LT- and ST- populations due to their 

self-renewal capacity59 (Figure 5). Moreover, within this revised hierarchy the 

MPPs are divided into four different populations. MPP1 are similar to ST-HSCs 

and can be placed at the same level, while MPP2, MPP3 and MPP4 are one step 

down in the hierarchy, giving rise to CMPs and CLPs60. In addition, an HSC 

subpopulation was identified with a high expression of the hematopoietic gene 

FLT3, which can be related to lymphoid lineages. This population identified as 

lymphoid-primed multipotent progenitors (LMPPs) presents similarities to MPP4 

and can be found at the same level in the hirarchy60. 

 

 

 
Figure 5. Classical and revised hematopoietic hierarchy model61. (A) Classical 

model including LT-HSCs and ST-HSCs as the two main populations. (B) Update version 

of the classical model including the IT-HSC population and the MPP1-MPP4 populations. 

 

 

The recent advances studying hematopoiesis and HSC differentiation have 

clearly improved our knowledge regarding the classical hierarchical model, which 

established a multistep differentiation, proposing evident boundaries between the 

different cell populations involved in hematopoiesis. The use of techniques such 

as functional assays, non-invasive lineage tracing and single-cell analysis 
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confirmed that hematopoiesis is a continuous process where a lack of boundaries 

among the several cell populations can be observed62.      

 

New technologies have allowed to perform individual continuous analysis of 

single hematopoietic cells from HSC to more differentiated lineages. For 

instance, the use of single-cell RNA sequencing allowed to perform single-cell 

transcriptome analysis leading to identify the hematopoiesis as a continuous 

procedure63,64. Based on this technique, Velten and colleagues described 

hematopoiesis as a process performed by a continuum low-primed HSPCs 

differentiating progressively into lineage-restricted populations, this at the cellular 

level64. At the molecular level, the single-cell analysis allowed to identify 

activation of lineage-specific genes or the suppression of cell-division related 

genes during the continuous differentiation process65. 

 

Physiological conditions can also have an impact in the way hematopoiesis takes 

place and the populations playing the main role repopulating the blood system. 

Two different types of hematopoiesis occur depending on the situation. Native 

hematopoiesis represents the hematopoiesis produced in normal and 

unperturbed physiological condition (steady-state)66. While stress hematopoiesis 

describes the hematopoiesis occurring under stress conditions such as 

transplantation, cell culture and injury67.  

 

Currently, the use of lineage-tracing techniques has been used in order to 

understand and better describe the hallmarks of native hematopoiesis. For 

instance, transposon tagging for clonal labeling in HCs has shown that 

hematopoietic progenitors are responsible for maintenance of differentiated 

progenies in this type of hematopoiesis68. Busch and collaborators used labeling 

of hematopoietic lineages by the fluorescence reporter system driven by the Tie2 

locus, identifying that adult hematopoiesis was maintained by ST-HSCs69. In 

contrast, the use of another fluorescent reporter driven by Pdzk1ip1 which is able 

to label a more purified LT-HSCs, confirmed this population as a major source of 

the different blood lineages in native hematopoiesis70. 
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LT-HSCs are considered the main element involved in hematopoiesis 

maintenance at the head of the hierarchy. This idea has been confirmed by 

functional transplantation assays which may not represent a hematopoiesis 

under normal physical conditions. Studies suggest that transplanted HSCs are 

able to reconstitute the blood system. Nevertheless, they exhibited a 

differentiation trend to particular lineages at steady-state71. Transplantation-

derived stress, injury-induced infection or inflammation are elements that can 

produce alterations in HSC differentiation in native hematopoiesis61. It has been 

reported that M-CSF and IFN-γ, proinflammatory factors, are able to stimulate 

HSC towards myeloid cells for injury protection72. These current findings describe 

the native hematopoiesis as a process mainly maintained by multipotent 

progenitors and in lesser extent by HSCs, while in stress hematopoiesis the 

HSCs play the main role re-establishing the blood system61.  

 

 

 Bone marrow microenvironment 

1.5.1 Generalities 

The bone marrow (BM) microenvironment represents an essential niche able to 

provide the necessary support for hematopoietic stem cells. In 1978, the concept 

“niche” was used for the first time by Schofield, by describing with his studies that 

HSCs interaction with bone and also cell-cell contact, were both responsible for 

the capacity of the HSCs to proliferate in an unlimited manner and being able to 

inhibit the maturation of this population. Nowadays, it is well known that HSCs 

behavior is guided by interactions with all the components contained in this niche. 

The bone microenvironment consists of heterogeneous cell populations as 

stromal cells and several molecular components, controlling the signaling on 

charge of regulating three main features of HSCs; self-renewal, quiescence and 

differentiation. Moreover, within the BM two different niches have been described 

to host the HSC, endosteal and vascular niches (Figure 6). Both are complex 

structures housing not only HSCs but also an extensive range of other cell types 

as bone lineages (osteoblasts and osteoclasts), mesenchymal stromal cells 

(MSCs), endothelial and vascular cells, immune cells, among others, described 
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during this chapter. In addition, several molecules are present in the niches which 

are better described in the following subtopics of the chapter73,74,75.  

 

 

 
Figure 6. Bone marrow microenvironment76. Heterogeneous cell populations and 

several molecular components build the BM microenvironment, regulating HSCs 

functions and maintaining a quiescent or activated state of this key player of 

hematopoiesis.  

 

 

1.5.2 Cellular components of the niche 

Different cellular elements constitute the bone marrow microenvironment and 

each of these elements carries out roles linked to the hosting and regulation of 

HSCs. In first place, osteolineage population is crucial in supporting and 

regulating HSCs. Osteoblasts (OBs) are cells involved in bone formation and 

mineralization of the bone structure. Conversely, osteoclasts (OCL) have the 

function of removing bone tissue by the process called “bone resorption”. HSCs 

have a direct and close contact with osteoblasts in the niche. Shown by in vivo 

experiments, the alteration of osteoblasts (OBs) had an impact in hematopoietic 

stem and progenitor population numbers77,75. Mice genetically manipulated with 
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Runx2 deletion, gene essential in osteoblastic differentiation, suffered an 

abnormal BM hematopoiesis caused by the aberrant osteoblast differentiation78. 

 

Another important factor in the BM microenvironment is the perivascular area, 

which seems to have an impact on HSC regulation and preservation. This idea 

stands on the hypothesis that HSCs can often be found surrounding the blood 

vessels. Mesenchymal stromal cells (MSCs) are localized next to the blood 

vessels and have the capacity to differentiate into osteolineage cells. They can 

also MSCs can express factors with the capacity to uphold HSCs maintenance76. 

 

Endothelial cells are a further common element observed in the bone marrow 

niche, with the task of cytokine and paracrine growth factor production. In 

addition, endothelial cells can generate several adhesion molecules as vascular 

cell adhesion molecule 1 (VCAM-1), E-selectin, P-selectin or intercellular 

adhesion molecule 179,80. Altogether these molecules regulate HSCs 

homeostasis. As an example of this, bone marrow sinusoidal endothelial cells 

showed the ability to enhance HSC expansion in culture by the expression of 

ligands from the Notch pathway81.  

 

Within the list of cellular components, adipocytes can be found. As humans age, 

the different functions held by the HCSs are decreased, whereas the amount of 

adipocyte cells present in the bone marrow increases. This observation 

generated the hypothesis that adipocytes may play a role in hematopoiesis. Two 

different mice models were used to confirm this idea. One model, known as 

lipoatrophy which is unable to generate adipocytes. On the other hand, the 

second model was treated with peroxisome proliferator-activated receptor 

gamma (PPAR ) to inhibit adipogenesis. After HSC engraftment, it was possible 

to observe how engraftment took place faster in the fatless mice, confirming the 

negative regulation of adipocytes in hematopoiesis82.  

 

Monocytes and macrophages represent other types of cells identified in the BM 

niche playing a specific role in HSCs mobilization into the blood stream. 

Macrophages specifically, are capable of retaining HSCs within the marrow niche 

through signaling of stromal cells such as mesenchymal stromal cells. This 
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mechanism of HSC retention in the niche is guided particularly by CD169+ 

macrophages. Secretion of oncostatin M (OSM) by macrophages induces Nestin+ 

cells and MSCs among others to express CXCL12. Commitment between 

CXCL12 and CXCR4 receptors present on the surface of HSCs allows the 

retention of this population within the bone microenvironment76,75.  

 

1.5.3 Molecular components of the niche 

Different types of molecules can be found within the bone marrow 

microenvironment. Each single molecule holds a specific function in signaling and 

all together can help to drive homeostasis in the niche by regulating HSCs. The 

cellular components of the BM microenvironment, are responsible for the soluble 

factors secreted in the niche as growth factors or cytokines. Examples of these 

molecules are: stem cell factor (SCF), transforming growth factors (TGF- ), bone 

morphogenetic proteins (BMPs), C-X-C- motif chemokine ligand 12 (CXCL12), 

angiopoietin-1 (Ang1), granulocyte-colony stimulating factor (G-CSF), Wnt 

ligands, thrombopoietin (TPO), vascular endothelial growth factor (VEGF), 

prostaglandin E2 (PGE2), Notch ligands and fibroblasts growth factors (FGF)83.  

 

As mentioned before, the importance of all these molecular elements relies on 

their capacity to regulate hematopoiesis but also immune responses or 

inflammation in the niche. For instance, in vitro but also in vivo studies, have 

helped to better describe the real function of cytokines in the niche that interact 

with surface receptors present in HSCs driving characteristics such as 

quiescence, self-renewal, differentiation, apoptosis and mobility84.   

 

SCF also called as “steel factor”, is a cytokine that binds to the tyrosine kinase 

receptor c-Kit expressed on all HSCs. It plays an essential role in preventing HSC 

apoptosis. In addition, SCF combined with other factors showed potentiation of 

symmetric self-renewal of fetal liver HSCs in culture85. TPO is another crucial 

cytokine in the niche on charge of regulation of megakaryocytes and platelets 

development. During definitive hematopoiesis TPO supports generation and 

expansion of HSCs84.  
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Notch ligands carry out a primary role in lymphopoiesis. Nonetheless, the ligands 

Delta and Jagged participate in generation, antidifferentiation and expansion of 

HSCs86. In the same way, Wnt signaling is strongly related to generation and 

expansion of HSCs. Through the noncanonical Wnt5a protein, HSCs 

repopulation and maintenance of quiescence is possible87.  

 

The effect of TGF-  in vitro has been described as a strong inhibitor of HSC 

activity. On the other hand, in vivo studies demonstrate that deficiency in TGF-  

signaling has no proliferative effect in HSCs. Important members of this 

superfamily of proteins, are the Bone Morphogenetic Proteins (BMPs), which 

participate in specification of HSCs during development. For example, BMP4 

protein upholds HSC expansion in culture and moderately has an impact on the 

effect of Sonic Hedgehog on cultured human HSCs88.  

 

Other elements found in the BM microenvironment are FGF-1 and FGF-2 that 

hold expansion of HSCs but also hematopoietic stem cells express fibroblast 

growth factor receptor. Angiopoietin (Ang) growth factors can be found in the 

bone marrow niche as mentioned before, Tie-2/Ang1 signaling pathway plays a 

decisive role maintaining HSCs in a quiescent state inside the bone marrow 

niche84. 

 

1.5.4 Endosteal niche 

HSCs have been localized in special microenvironment areas called “bone 

marrow niches”. Two sites have been described as potential residencies for 

HSCs: endothelial and vascular niches. In the internal bone shell surface, it is 

possible to identify the endosteal niche (Figure 7). The endosteum is a vascular 

layer of connective tissue between the bone and the bone marrow. This space is 

coated with different cell types as endosteal (bone-lining) cells and osteoblastic 

populations, at different stages of maturation as osteoblasts and osteoclasts. 

Also, endothelial cells, macrophages, fibroblasts and adipocytes can be found 

close to the endosteum89. Different ideas suggest how the endosteal cells 

specifically regulate the HSC functioning: direct contact between the endosteal 

cells with HSCs, release of molecules involved in HSC regulation or by controlling 
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intermediate actors as other cells which can have an impact in HSC functions 

(Figure 8)90.  

 

 

 
Figure 8. Hypotheses of endosteal cells mechanism involved in HSC regulation90. 
Suggestions describe three different mechanisms employed by the endosteal cells in 

HSC regulation. a) Direct cell-cell contact. HSCs are in direct contact with cell 

components of the endosteal niche as endosteal cells and osteoblasts. b) Release of 
soluble factors. Production of molecules able to control HSC activity. c) Regulate 
function of intermediate cell. Controlling of other cells within the endosteal niche could 

lead to regulation of HSCs. 

 

 

Key players in the endosteal niche are the osteoblastic cells capable of 

synthesizing cytokines tightly involved in maintenance and regulation of HSCs. 

Within the endosteal microenvironment a large number of cytokines have an 

impact on HSC behavior. Some of these cytokines have been described already 

in the previous section, such as; angiopoietin (Ang-1) and thrombopoietin (THPO) 

showing an impact in HSC numbers and specifically THPO wield quiescence in 

LT-HSCs89. In addition, osteoblastic cells are responsible for retaining the HSCs 

inside the endosteal niche, this through the expression of membrane-bound 

ligands and adhesion receptors in the osteoblastic population91.  
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The oxygen gradient in the endosteal niche plays an important role also in HSC 

localization within the niche. Endosteal region is the area where HSCs are mainly 

located, while myeloid and lymphoid lineages together with more mature 

populations can be found distributed along the central marrow region, indicating 

that hematopoiesis takes place towards the longitudinal axis of the marrow. The 

reason of this specific distribution of hematopoietic stem, progenitor or more 

mature lineages within the endosteal niche seems to be linked to oxygen gradient 

found within the BM cavity. Stem cell function is highly regulated in the niche by 

hypoxia, reason why HSCs are localized at the lowest side of the oxygen 

gradient92.  

 

Quiescence and activation of HSCs are two main functions controlled in the 

endosteal niche. Both actions are driven by regulatory signals produced by 

neighboring cells and released in the niche as soluble molecules or ligands. 

Moreover, physical signals are also involved such as oxygen tension. HSCs 

present in this niche exhibit a higher self-renewal capacity, granted by the 

cytokines, adhesion molecules and hypoxia91,93. 

 
1.5.5 Vascular niche  

Enough data and studies describe another type of bone marrow 

microenvironment involved in maintenance and regulation of HSCs as the 

endosteal niche. The vascular niche is able not only to support but also to 

regulate the self-renewal and differentiation abilities of HSCs (Figure 7). The 

importance of the vascular niche can be explained from the fact that, during fetal 

development, functional HSCs originate from the endothelium of the vasculature. 

Later on, these fetal HSCs will occupy the liver and spleen, areas where early 

hematopoiesis can be observed with the absence of osteoblastic cells or the 

endosteal niche91. 

 

The bone marrow is densely composed of blood vessels which play a role not 

only as a barrier between the hematopoietic compartment and peripheral blood 

circulation, but also contribute to the hematopoietic process and also to stem cell 

mobilization and homing of this population. Blood flow and nourishment within 
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the bone marrow takes place through the medullary artery that provides the “fuel” 

to arterioles, capillaries and sinusoids. Sinusoids are important structures when 

speaking about the vascular niche. These blood vessels are specialized 

structures with thin walls containing the endothelial cells distributed in a very 

special way called “fenestrated arrangement”. In other words, the endothelial 

cells form a porous or window structures providing a passage for hematopoietic 

cells. The BM contains a large-scale system of sinusoids, and together these 

specialized vessels and the endothelial cells that constitutes them, are vital for 

HSCs in the bone marrow niche90. 

 

The importance of endothelial cells in the vascular niche is based on several 

studies performed in vitro and in vivo. For instance, co-culture of HSCs together 

with mice endothelial cells, enhanced in vitro expansion of HSCs thanks to the 

endothelial population. In vivo research works conducted by Yao and colleagues 

demonstrated the importance of endothelial cells in hematopoiesis. By using a 

mice model with a conditional deletion of glycoprotein 130 (gp130) in both HSCs 

and endothelial cells, they described the importance of endothelial gp130 

signaling in hematopoiesis maintenance94,95.  

 

A large number of HSCs seem to be localized within the bone marrow just near 

the sinusoids. This idea has been proposed due to the fast migration of HSCs, 

which can take only a few minutes once the glycoprotein G-CSF is administrated. 

The fast mobilization of the cells suggested that a significant portion of HSCs 

must be located really close next to the blood vessels. Moreover, in 2005 the 

surface markers signaling lymphocyte activation molecule (SLAM) were 

identified. These markers are able to discriminate between HSC and progenitor 

populations in mice and include CD150, CD244 and CD48. The different marker’s 

expression allowed to identify the HSC location within the bone marrow. The most 

immature HSCs presented a profile CD150Postitive, CD244Negative, CD48Negative and 

around 60% of this population were in direct contact with sinusoidal endothelial 

cells. Meanwhile, the other 40% were identified at the endosteal surface96.   

 

Another crucial cell component within the vascular niche is the reticular cells. 

These cells are found surrounding the sinusoid endothelium and are essential in 
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homing and localization of HSCs in the bone marrow. Reticular cells present a 

high secretion of the C-X-C motif chemokine 12 (CXCL12). For this reason, these 

cells are identified as CXCL12-abundant reticular (CAR) cells. Sugiyama and 

collaborators performed immunofluorescence staining assays in tissue from BM 

CXCL12-GFP knock in mice, finding interestingly that around 97% of HSCs in the 

bone marrow were localized next to CAR cells. In addition, all HSCs localized at 

the endosteum were likewise located to CAR cells. These findings confirmed how 

important CAR cells are in HCS homing in both endosteal and vascular niches97. 

 

 

 
Figure 7. Bone marrow microenvironment: endosteal and vascular niches98. The 

BM microenvironment is responsible for regulation of the main characteristics of HSCs 

and HSPC: self-renewal, quiescence and differentiation. Two different niches possess 

cellular and molecular components maintaining HSC functioning. Vascular niche seems 

to promote self-renewal and expansion of HSCs, whereas the endosteal niche controls 

the number of HSCs through quiescence and storage of this population. 

 
 

 Clonal hematopoiesis and malignancies 

Normal hematopoiesis is the mechanism by which all the elements of the blood 

system are regenerated, including all the different lineages from hematopoietic 

progenitor to more differentiated populations, as described along this chapter. 

Self-renewal, differentiation and proliferation are processes that need to be 

strictly regulated by the different elements, whether cell or molecular 
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components, within the bone marrow niche. Throughout the life of HSCs, aging 

is a normal stage reached by this population and allows the replacement of these 

cells. Somatic mutations can be found in aged HSCs caused by time and 

environmental exposure to mutagens. Mutations can be acquired not only by fast 

dividing cells but also by low rate dividing HSCs which are able to pass these 

mutations to the next generation of cells that they give rise to. The effect of these 

mutations will impact the hallmarks of stem cells as increased the self-renewal 

capacity, high proliferation or reduce cell death99. 

 

Clonal hematopoiesis (CH) also known as clonal hematopoiesis of indeterminate 

potential (CHIP), is described as a phenomenon where mainly hematopoietic 

stem cells but also hematopoietic progenitors can expand to give rise to a clonal 

population of cells holding one or several DNA somatic mutations. Diseases 

related to CH are not only those linked to bone marrow malignancies but also 

cardiovascular diseases99. In addition, hypotheses suggest that diabetes, 

inflammatory syndromes and cancer also seem to be caused by CH99.  

 

According to numerous research studies, individuals presenting CH mutations 

showed a raised predisposition to develop hematological malignancies. The 

explanation for this predisposition may be based on two different facts. In the first 

place, as described before, this clonal population holds mutations that allow 

increased self-renewal and fast proliferation. In the second place, gene mutations 

can have a synergic effect with secondary or tertiary gene mutations (see 

review99). 

 

For instance, in adults DNMT3A gene is the most common mutated gene present 

in CH in individuals with hematological but also non-hematological malignancies. 

In acute myeloid leukemia (AML) (described in more detail in the next chapter) 

and acute lymphoid leukemia (ALL), DNMT3 is present in about 22 to 35% of 

patients with these diseases. This mutation seems to be able, as mentioned 

before, to establish a synergic link with other mutations observed in AML patients 

such as; receptor tyrosine kinase FLT3, RAS signaling members NRAS, KRAS 

and PTPN1 and mutations of the nuclear protein NPM1. For instance, NRAS 

mutant expression synergizes with DNMT3 and is linked to a fast leukemia 
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development. Another clear example shown is the combined mutations of 

DNMT3 and FLT3 being able to trigger myeloid and lymphoid leukemias. 

Likewise, TET2 mutation combined with DNMT3 are a synergic combination 

involved in AML development. Although, when speaking about CH, TET2 

mutations are always found, regarding leukemias, TET2 mutations are not always 

seen as the first or dominant clonal mutation99.  

 

 

 Overview of hematologic malignancies 

The hematological malignancies are a type of blood cancer, arising from the 

blood forming tissue as the bone marrow or the cells belonging to the immune 

system. These malignancies comprise the different forms of leukemia, lymphoma 

and myeloma. The first hematological disease was described by Thomas 

Hodgkin in 1832, but it was more than thirty years later when Samuel Wilks 

baptized this specific type of lymphoma as Hodgkin’s disease. Following these 

research works on lymphoma, new studies revealing accumulation of leukocytes 

in the blood introduced the major principle of leukemias. These works focused on 

leukemia for the first time, were conducted by John Hughes Bennett and Rudolph 

Virchow in 1845. Finally, myeloma was described in 1844 by William Macintyre, 

Thomas Watson and John Dalrymple, while the term “multiple myeloma” was 

coined by Von Rustizky in 1873 after the analysis of multiple tumors in marrow 

and bone100,101. The years between 1830 and 1950 were essential to start to 

better describe and classify the countless hematological malignancies 

discovered100.  

 

In order to study the different hematological malignancies in a more effective and 

organized way, a classification is essential. Also, to classify these malignancies 

is crucial to adapt treatments in patients. Thus, together the European 

Association of Hematopathologists and the Society of Hematopathology carried 

out the task of establishing a classification of hematologic neoplasms for the 

World Health Organization (WHO). The base of this classification is mainly 

dividing the malignancies depending of the lineage involved into; myeloid 

neoplasms, lymphoid neoplasms, mast cell disorders and histiocytic neoplasms. 
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And inside of each of these five major categories it is possible to identify all the 

different diseases depending on a mixture of parameters such as morphology, 

immunophenotype, genetic features and clinical syndromes102.  

 

Hematological malignancies embrace a large number of different diseases as 

mentioned before. Each malignancy can be related to several factors from 

oncogene formation generated by spontaneous mutations or DNA mutations 

produced by a deficient repair mechanism. In addition, external factors will also 

play a role in hematologic malignancies as exposure to certain chemical 

substances or pathogens. Genetic predisposition is another element to consider 

as it is also important the normal aging process. During the next chapter, a deep 

description of several aspects surrounding acute myeloid leukemias (AML) will 

be developed in order to understand this thesis work100,102. 
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2 Acute myeloid leukemia (AML) and leukemic stem cell (LSC) 

 Overview of leukemia 

The concept “Leukemia” was established from the Greek words “leukos” and 

“hemia” that indicates the high amount of white blood cells in the body. Leukemia 

is a general term to define cancers of the blood forming tissue. These malignant 

disorders affect the normal production of healthy and functional blood cells 

involved in hemostasis. The abnormal blood cell population is called “leukemic 

cells”, once they accumulate within the bone marrow, they will be able to lead 

into a BM failure and alterations in the immune system. This because leukemic 

cells present a more immature state compared to a normal blood cell, holding a 

lack of proper functional activity. Depending of the lineage affected and the 

maturation state of the cell, a long list of leukemias have been described101.  

 

In 1845, John Hughes Bennet was the first to diagnose a leukemia case and 

published his results in the Edinburgh Medical and Surgical Journal. Combined 

to this, Alfred Donné contributed by identifying blood diseases under the 

microscope. Later in 1877, Paul Ehrlich developed a method that helped to stain 

and identify blood cells which derived in the classification of leukemias based on 

the morphology of the leukemic cells. By the end of the 19th century, the most 

used classification when speaking about leukemias emerged by categorizing this 

disease into: acute or chronic myeloid leukemia and acute or chronic lymphocytic 

leukemia.  And later on, in 1960 Peter Nowell and David Hungerford identified 

the importance of chromosomal abnormalities, and specifically missing 

chromosomes in a chronic myeloid leukemia patient101.  

 

In the United States of America in 2011 around 44,600 individuals were 

diagnosed with leukemia, from which 21,780 included men and women faced 

death. Moreover, for 2019 the estimated number will increase to 61,780 new 

cases with an estimation of 22,840 deaths. Considering men and women, 

caucasian or white individuals represents the population with the highest 

incidence of leukemia, whereas Asian inhabitants as Chinese, Japanese and 

Koreans hold the lowest incidence. Furthermore, incidence in men has been 

observed to be almost 50% higher than in women considering all the different 
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races or ethnic groups except in Vietnamese, with 18.1 men compared to 10.9 

women from 100,000 new cases. Within the young adult population with an age 

between 30-54 years old, ethnicity seems not to have a big impact in incidence 

but it becomes more evident when speaking about older age individuals. 

Leukemia is most commonly diagnosed in the group of 65-74 years old patients 

with a 23.9% of all new cases. The second group are patients between 75-84 

years old represents 20.5% of cases just followed after by adults between 55-64 

years old with 18.1%. Moreover, leukemias in children show a higher rate within 

white Hispanics and non-Hispanics, Filipinos and black people103,101. 

 

 

 Acute myeloid leukemia (AML) 

2.2.1 Generalities  

Acute myeloid leukemia (AML) is characterized by an abnormal clonal expansion 

of hematopoietic myeloid progenitor cells (blasts) within the bone marrow (BM) 

and peripheral blood (PB), due to a myeloid blocking of differentiation giving rise 

to the uncontrolled proliferation104,105. Due to the heterogenicity of these 

hematological disorders, this malignancy has been also recognized as acute 

myeloid leukemias. AML is the most common type of acute leukemia in adults 

with around 80% cases of this form. These disorders seem to reach a peak of 

incidence during later adulthood but also the second population affected are 

individuals in early childhood. Nowadays, survival rates in the young group of 

patients have improved while unfortunately prognosis in 65-year and older 

patients remains low with 70% mortality within one year after diagnosis104,106. 

Therefore, development of more effective therapies in elderly AML patients 

represents a key challenge which can be achieved by a better understanding of 

these diseases and the mechanisms which can lead to a better patient 

outcome107. 
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2.2.2 Epidemiology 

The worldwide highest incidence of AML can be observed in the United States, 

Australia and Western Europe. In the United States, the number of cases arises 

to a total between three to five for every 100,000 inhabitants. In 2015, 20,830 

new AML cases were diagnosed in which only 50% of the patients reached 

remission while the other 50% died. The incidence of AML is highly linked to age. 

For instance, around 1.3 cases of AML under 65-years old were reported out of 

100,000 individuals. Number of cases increases as individuals get older, finding 

around 12.2 cases in patients above 65 years old from 100,000 individuals104. 

The median age for AML is about 68 years-old and the prevalence is higher in 

men than women with 3 male cases for every 2 female cases107. According to the 

Surveillance, Epidemiology, and End Result (SEER) program from the United 

States of America, incidence of AML is additionally related to ethnicity. The SEER 

documented in their data base that children between 1-4 years old have shown 

an incidence of 0.8 per 100,000 people in both boys and girls. Moreover, during 

the first year of life the caucasian race presents a 3-times higher incidence 

compared to black race population. In adult patients since 2003 the prevalence 

of AML is slightly increased for caucasian population with 3.8 cases compared to 

3.2 cases in the black inhabitants per 100,000 individuals106. Reports generated 

by the SEER program in a range between 2009-2015 showed that only 28.3% of 

AML patients faced a surviving of 5 years after diagnosis103.  

 

For 2019 the estimated new cases of AML within the United States seem to 

maintain a steady number with around 21,450, which does not reflect a big 

change compared to those observed in 2015. Within these new cases, the 

number of estimated fatalities surrounds the 50% of cases with around 10,920. 

The median age of diagnosis of this malignancy reported by the SEER program 

for 2019 remains in 68-year old. In addition, the group with higher incidence 

contains individuals between 65 to 75 years old representing 25.1% of all the 

cases. While the lowest population affected are under 20-years old with only 

4.5% of cases reported103. Statistics are clear and reflect the lack of more 

effective methods of diagnosis and treatments for AML patients, in order to be 

able to increase in the first place the percentage of survival cases and in the 



 53 

second and more important place, decrease the mortality observed specially in 

the old population. 

 
2.2.3 Classification 

The idea of classifying AML or any other disease is based on the importance to 

organize the different diseases into a group sharing similar biological 

characteristics. In addition, it is essential to classify these malignancies to have 

a better understanding of the pathogenesis. Defining different subgroups into a 

classification is a tool which can lead to identify prognosis and the best 

therapeutic approach depending on the type of AML108. 

 

In 1976, for the first time an international classification system was defined in 

order to be able to establish and organize the different subtypes of AML. This 

new system recognized as the “French-American-British (FAB)” classification, 

categorized AML into six different subtypes from M1 to M6, using as a reference 

the morphological characteristics and the cytochemistry of the leukemic cells. 

Discrimination between monoblasts and myeloblasts was achieved considering 

morphology and using -naphthyl acetate esterase (ANAE) to establish the M1-

M6 AML subtypes. Later on, in 1985 the FAB group composed by Bennett and 

colleagues, determined a lack in the classification due to the fact that the 

morphological characteristics were not sufficient to discriminate between 

myeloblasts and lymphoblasts. Therefore, the FAB group employed 

myeloperoxidase (MPO) or Sudan B Black reaction to identify the positive or 

negative blasts in AML and ALL. Moreover, during this re-revised FAB 

classification, immunological markers were used to identify two new AML 

subtypes; acute myeloid leukemia with minimal myeloid differentiation (AML-M0) 

and the megakaryoblastic leukemia (AML-M7) both exhibiting a negative Sudan 

B Black reaction, completing the FAB classification known until these days (Table 
1) (Table 2)109,108.  
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Table 1. French-American-British (FAB) classification of Acute Myeloid 
Leukemia109. 

 

 

 
Table 2. French-American-British (FAB) classification of Acute Myeloid Leukemia 
based on morphology and cytochemistry108. 
 

 
 

  

Subtype Name 

M0 AML with no Romanowsky or cytochemical evidence of differentiation 

M1 Myeloblastic leukemia without maturation 

M2 Myeloblastic leukemia with maturation 

M3 Acute promyelocytic leukemia (APL) 

M4 Acute myelomonocytic leukemia (AMML) 

M5 Acute monoblastic leukemia (AMoL) 

M6 Erythroleukemia 

M7 Acute megakaryoblastic leukemia (AMkL) 
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Improvement achieved in the diagnosis and care of AML patients during the years 

after the establishment of the FAB classification, made necessary to integrate all 

this new data generated into a new system of classification proposed by the 

World Health Organization (WHO). In 2001 the WHO generated this new system 

to categorize the different types of AML and in 2008 this classification had its first 

update. Finally, in 2016 the new version was issued and published. Several 

aspects including genetic information as cellular and molecular genetics, 

immunophenotype, morphology and clinical data were used to determine into this 

classification six main categories of AML malignancies: with recurrent genetic 

abnormalities, with myelodysplasia-related features, therapy related AML, not 

otherwise specified, myeloid sarcoma and myeloid proliferation linked to Down 

syndrome (Table 3). In the category of genetic abnormalities, improvement can 

be observed compared to the 2008 version. Chromosomal translocations are 

used to describe 11 different subtypes of AML. For instance, two new types of 

AML with mutated NPM1 and CEBPA are also included in this revised 

version104,110. 

 
Table 3. WHO classification of AML and related neoplasms104,110. 

Types Genetic abnormalities 

AML with recurrent genetic 
abnormalities 

AML with t(8:21)(q22;q22); RUNX1-RUNX1T1 
AML with inv(16)(p13.1q22) or 
t(16;16)(p13.1;q22); CBFB-MYH11 
APL with PML-RARA 
AML with t(9;11)(p21.3;q23.3); MLLT3-
KMT2A 
AML with t(6;9)(p23;q34.1); DEK-NUP214 
AML with inv(3)(q21.3q26.2) or 
t(3;3)(q21.3;q26.2); GATA2, MECOM 
AML (megakaryoblastic) with 
t(1;22)(p13.3;q13.3); RBM15-MKL1 
AML with BCR-ABL1 (provisional entity) 
AML with mutated NPM1 
AML with biallelic mutations of CEBPA 
AML with mutated RUNX1 (provisional entity) 

AML with myelodysplasia-related 
changes 

--- 

Therapy-related myeloid neoplasms --- 
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AML otherwise not specified (NOS) AML with minimal differentiation 
AML without maturation  
AML with maturation 
Acute myelomonocytic leukemia 
Acute monoblastic/monocytic leukemia 
Acute erythroid leukemia 
Pure erythroid leukemia  
Acute megakaryoblastic leukemia 
Acute basophilic leukemia 
Acute panmyelosis with myelofibrosis   

Myeloid sarcoma --- 
Myeloid proliferations related to 

Down Syndrome 
Transient abnormal myelopoiesis (TAM) 
Myeloid leukemia associated with Down 
Syndrome 

 

 

2.2.4 Etiology 

AML development has been associated with several risk factors that include 

genetic abnormalities, age, previous hematological diseases, exposure to 

chemicals, radiation or viruses, chemotherapy and hazardous employments 

(Table 4). These different risk agents seem to be responsible for some AML 

cases, in which the HSCs must be vulnerable to any of these factors that trigger 

the leukemogenesis. Nonetheless, the biggest part of AML cases emerges as de 

novo diseases without a specific and clear leukemogenic exposure111,112.  

 

Genetics plays an important role in AML. For instance, in children the genetic 

defects are an essential factor in AML development, examples of this is the 

increased rate of acquiring AML in patients with Down syndrome, Klinefelter or Li 

Fraumeni syndrome113,114. Risk of AML development can also increase by 

exposure to several environmental and chemical agents. Ionizing radiation is 

related to AML as observed in individuals exposed to radiation from the atomic 

bombs dropped over Hiroshima and Nagasaki1. But also, therapeutic radiation is 

considered as a risk factor that can promote a secondary AML. In this context, 

secondary AML can also be triggered by exposure to chemotherapeutic agents 

as alkylating or topoisomerase II inhibitors106. 
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Few studies have studied the relationship between exposure to pesticides or 

solvents and AML development115. In addition, tobacco smoke has been linked 

to AML but it can be considered so far as a weaker factor compared to others, 

until more studies can show a stronger link to AML. Moreover, benzene is a 

chemical that has been on the spotlight due to data suggesting that exposure to 

high concentrations can drive AML development116. For instance, a follow-up 

study of 2-17 years was conducted in 44 pancytopenic patients exposed between 

4 months and 15 years to high concentrations of benzene (150-650 ppm). These 

patients had worked in the shoe industry or as laborers involved in pliofilm 

production. AML development occurred in 6 patients out of the 44 and was linked 

to chronic exposure to benzene116. Smith and colleagues performed experiments 

based on in vitro exposure of CD34+ cells or lymphocytes to benzene which 

induced aneuploid cytogenetic abnormalities. Otherwise, there are not reliable 

studies that relate individuals exposed to benzene as automobile users, 

employees from gas stations or vehicle mechanics with increased risk of AML 

development117. 

 

Although viruses and specially RNA retroviruses exhibited the capacity to cause 

different neoplasms including leukemia in studies using experimental animals, it 

has not been identified or reported so far, any virus as a main cause for AML 

development. Recently new research works started to study the link between 

Parvovirus B19 and its role in AML but specially in children118. 

 

Another important cause of AML development has been described as “secondary 

AML”, which basically arises often in patients with a clinical history of 

myelodysplastic syndromes (MDS), myeloproliferative malignancies or as 

mentioned before, individuals under chemotherapeutic agents. It has been 

observed that AML emerged in between 10 to 20% of patients who were treated 

with chemotherapy for other malignancies. Furthermore, the incidence of 

acquiring AML increases 100 times in patients under a high and intensive dose 

of chemotherapy106.  
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Finally, within the life style factors, diet is another element that has been 

considered in AML development. Nonetheless, conducted studies have not been 

able to demonstrated the daily diet as a risk factor in AML106 

 
Table 4. Selected risk factors associated with Acute Myeloid Leukemia106. 

Genetic disorders 

Down syndrome 
Klinefelter syndrome 

Patau syndrome 
Ataxia telangiectasia 

Schwachman syndrome 
Kostman syndrome 
Neurofibromatosis 
Fanconi anemia 

Li-Fraumeni syndrome 

Physical and chemical exposures 

Benzene 
Pesticides 

Cigarette smoking 
Embalming fluids 

Herbicides 

Radiation exposure Nontherapeutic, therapeutic radiation 

Chemotherapy 

Alkylating agents 

Topoisomerase-II inhibitors 
Anthracyclines 

Taxanes 
Drugs such as Vercyte (pipobroman) 

 
 

2.2.5 Pathogenesis  

Previously described, the causes leading to AML development are several and 

the risk factors among them differ. Some of them have been described in several 

research studies while others remain as hypothesis needing a more exhaustive 

research. Nevertheless, most of the AML cases are considered as de novo 

malignancies that arise in individuals seemingly healthy. Independently of the 

causes leading to AML, this malignancy is based on the concept of abnormal 

differentiation and proliferation of a specific clonal population; the myeloid stem 

cells104.  

 

Specific chromosomal translocations have been identified in several AML 

subtypes, example of this is the translocation t(8:21) in core-binding factor AML 
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(CBF-AML) which leads to the formation of chimeric protein RUNX1-RUNX1T1. 

Also in acute promyelocytic leukemia (APL) is possible to identify t(15:17) with 

PML-RARA protein formation. Not only chromosomal rearrangements have been 

described in AML development, but involvement of molecular changes is also an 

important factor in AML and genetic mutations are found in around 97% of AML 

cases. Despite the fact of the common presence of genetic mutations in AML, 

this malignancy presents the lowest number of mutations per case compared to 

other adult types of cancer119,120.  

 

Abnormal progenitor blasts in AML are generated from normal blasts affected by 

two-type class genetic alterations. These transformations described by Gilliland 

and Griffin are called the “two-hit model”, in which both lesions are necessary to 

trigger AML, since each lesion by its own is not able to cause the disease. This 

model proposes a class I mutation involving the activation of cell-surface 

receptors such as FLT3 (Fms-like tyrosine kinase 3)-ITD (internal tandem 

duplication), N-RAS and c-KIT; activation of different downstream signaling 

pathways allow the capacity of proliferation and survival of the involved 

hematopoietic progenitor population by diminishing apoptosis, with no influence 

in differentiation. While class II mutations, are able to block the hematological 

differentiation and by consequence the apoptosis, orchestrated by fusion genes 

(PML/RARα and MLL). Type class II mutations seem to be the initiating lesions 

in AML while class I mutations are posterior events105. Moreover, a type class III 

mutations has been identified recently, involving a modification in genes linked to 

epigenetic regulation. Interestingly, these class III mutations have a downstream 

effect in cellular differentiation and also proliferation. Among these mutations it is 

possible to include DNA-methylation related genes as DNMT3A, TET2, IDH-1 

(isocitrate dehydrogenase-1) and IDH-2 (isocitrate dehydrogenase-2), identified 

in 40% of AML events104. During the last years new mutations have been 

identified (Figure 9), some seem to not fit precisely in any of the class type 

mutations described, though the synergic effect they produce can be compared 

to the one defined by the two-hit model. The most relevant are mutations affecting 

the tumor suppression genes as TP53, WT1 and PHF6121,105,104. 
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Figure 9. Frequent mutation groups identified in de novo AML cases105. Genes 

regularly mutated in AML and classified in different groups and pathways. Data obtained 

from The Cancer Genome Atlas (TCGA) Research Network, 2013. 

 

 

Tumor protein p53 (TP53 or p53) is an essential tumor suppressor involved in 

prevention of cancer formation. p53 has been reported to be inactivated in more 

than 50% of solid tumors through a mutation in the TP53 gene122. Poor survival, 

refractory disease and chemoresistance have been linked to inactivation of p53 

in cancer. Despite the fact that TP53 mutations have been reported only in 5% of 

AML patients holding 17p monosomy, this mutation has been identified as a 

negative factor to chemotherapy response and poor prognosis123,124. 

 

During the end of the 20th century, the p73 (TP73) proteins were identified and 

classified as members of the p53 family125. p73 contains three different functional 

domains: the amino-terminal transactivation domain (TA), the DNA-binding 

domain (DBD) and the carboxy-terminal oligomerization domain (OD)126. Genes 

regulated by p73 transcription factors are involved in cell-cycle arrest induction 

and apoptosis127. p73 presents several isoforms carrying out different roles in 

cancer development. A classification of two main groups has been established to 

categorize the different p73 isoforms, the first is the group of transcriptionally 



 61 

active p73 isoforms (TAp73) that possess the capacity to induce apoptosis and 

activate transcription of cell cycle regulators. The second group is the N-

terminally truncated or Dominant Negative variants (DNp73 or ΔNp73), these 

isoforms present a lack of the N-terminal p73 (Figure 10)127. 

 

 

 
Figure 10. p73 isoforms127. a. Regulation of the two different promoters P1 (extrinsic) 

and P2 (intrinsic) generates both isoforms TAp73 and ΔNp73 respectively. First 3 exons 

encode for the TA (transactivation) domain and codifies TAp73. Alternative promoter P2 

is located in the intron 3 and transcription of ΔNp73 proceeds from exon 3’, leading to a 

N-terminal end since AA are translated from the included exon 3’. b. Generation of 

amino-terminal isoforms occurs by alternative splicing or alternative promoter use. 

Alternative splicing of the exons 11, 12 and 13 encoding for the SAM (Sterile Alpha 

Domain) domain, produces the seven different carboxy-terminal isoforms. 

 

 

TAp73 isoform is able to activate genes regulated by p53. Example of these 

genes are CDNK1A, p53R2, PUMA, NOXA, PERP and BAX which are 

responsible for growth arrest and apoptosis125,128. ΔNp73 lacks the TA domain; 

in consequence this isoform is not capable of inducing gene expression directly 

and does not present the capacity for growth arrest and apoptosis as observed 

in TAp73.  



 62 

The specific role of p73 in cancer has been widely discussed. Mutations of this 

protein are unusual in cancer with around 0.5% in tumors. This is a very low 

percentage when compared to its family homologue p53, which mutations are 

present in over 50% of cancers. An important parameter to understand the role 

of p73 is the fact that TP73 locus encodes the two p73 isoforms. TAp73 is 

identified by its role as a tumor suppressor, whereas ΔNp73 is described as an 

anti-apoptotic agent and a presumed oncogene129. 

 

Both p73 isoforms, TAp73 and ΔNp73, have started to be described in the cancer 

context. For instance, the first studies about this subject reported the oncogenic 

potential of ΔNp73 by in vitro and in vivo transformation assays. p53 and TAp73 

functions are inhibited in cancer cell lines overexpressing the anti-apoptotic 

isoform. In lung cancer the anti-apoptotic isoform was identified in the cytoplasm 

of 77 patients out of a 132 cohort. Patients with a positive expression of ΔNp73 

were linked to poor prognosis130. The role of ΔNp73 in AML has been described 

in certain studies. For example, Rizzo and colleagues identified high levels of the 

isoform at the transcript and protein levels in 96.4% of a cohort of 71 AML patient 

samples at diagnosis, which included the subtypes M0, M1, M2, M4, M5 and M6. 

In contrast, only 31.7% of the 41 AML-M3 patient samples analyzed at diagnosis 

presented high levels of ΔNp73131. Nevertheless, Lucena-Araujo and 

collaborators identified later on that a high ΔNp73 / TAp73 mRNA expression 

ratio in AML-M3 patient samples at diagnosis, was linked to low survival and 

higher risk of relapse, suggesting the use of these isoforms as potential prognosis 

markers132. 

 

Among the different types of AML, it is possible to identify several numbers of 

mutations driving to the development of the disease. According to data from the 

The Cancer Genome Atlas (TCGA) Research Network, the study conducted in 

the entire genome/exome of 200 AML showed a range between 0 and 51 

mutations with a mean of 13 belonging to the tier 1 group mutations133. 

 

New discoveries in the genomic field using high-throughput technologies allowed 

to reach a better comprehension of the molecular pathogenesis in AML. 

Cytogenetic aberrations identified in myeloid neoplasms had brought advances 
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in diagnostic and prognosis during the last decades for AML patients. Cytogenetic 

abnormalities are considered important prognosis predictors for short and long-

term patient outcome106. 

 

2.2.5.1 Type class I mutations 

Previously described, leukemogenesis in AML is defined by the clonal 

proliferation and escape from apoptosis of an immature progenitor population 

named blasts, in which blocking of differentiation can be observed. The activation 

of growth factor receptor signaling pathways seems to contribute to this process. 

Analysis of AML bone marrow samples displayed that around 50% of these 

primary specimens presented aberrant and constitutive activation of signal 

transduction molecules. Within the most common surface receptor tyrosine 

kinase (RTK) linked to AML it is possible to identify FLT3, N-RAS / K-RAS and 

Kit134.  

 

Since 1996, the role of the protein FLT3 has been on the spotlight as an important 

factor in AML development, progression and also considered as a potential 

therapeutic target. This protein is a member of the RTK class III and can be 

identified also as Flk-2 or STK-1. Mainly expressed in hematopoietic tissue, 

activation of this protein in a normal hematopoietic context drives increased 

proliferation and survival. Within a malignant context, FLT3 is highly expressed 

in around 60 to 92% of AML cases135. Studies conducted by Müller-Tidow and 

collaborators showed higher FLT3 expression in AML blasts compared to normal 

hematopoietic progenitors. Frequency of FLT3-ITD in AML is more often seen in 

APL, whereas AML-M2 and AML-M6 subtypes present a lower frequency of this 

mutation136.  

 

RAS mutations represent another essential element to analyze in AML 

pathogenesis. Mainly N-RAS and K-RAS mutations can be identified in around 

10-27% and 5-10% of AML cases. Prognosis of patients presenting RAS 

mutations is inconsistent, while two studies related the presence of N-RAS to low 

blast count in patient BM and a favorable outcome. Other studies associated RAS 

mutations to a worse patient outcome. This type of mutation seems not to be an 
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initiating leukemia event but more a progression factor. As observed in several 

studies, RAS mutations depend a lot of other mutations present in the 

microenvironment to lead into AML135. 

 

Another member of the receptor tyrosine kinase (RTK) of class III involved in AML 

development is the transmembrane protein Kit. Studies focused on this protein 

demonstrated the presence of two regions in the receptor, which is susceptible 

to acquire function mutations. This area is the juxtamembrane region that acts as 

a negative regulatory region and activation loop. Although in some subtypes of 

AML this mutation seems to be present in isolated cases, in CBF-AML 6 out of 

17 cases presented the activation loop137.  

 

2.2.5.2 Type class II mutations 

Hematopoiesis is based on the principle that only a proper balance between 

general and specific lineage transcription factors can drive the appropriate gene 

expression profile, which will be responsible for differentiation of hematopoietic 

progenitor populations into a more specific and differentiated lineage. AML is a 

perfect example in which this balanced is disrupted and the transcription factors 

are targeted by the chromosomal translocations and mutations. In AML, balanced 

translocations are observed giving as a result the fusion of two genes. Around 

50% of this kind of abnormalities is reported in new diagnosed AML events138.  

 

Translocations such as t(8;21), t(15;17) or inv(16) are the cause for fusion 

proteins identified commonly in AML139. For instance, in CBF-leukemias the core 

binding factor (CBF) complex is affected by the translocations t(8;21), inv(16) and 

t(16;16). In this case, the function of the transcription factor CBF is affected, which 

is formed by the subunits; RUNX1 (AML1), CBP 2 and PEBP2 B. Both subunits 

will function as a heterodimeric transcriptional activator where AML1 (RUNX1) 

holds the DNA binding ability140,141. The translocation t(8;21) is present in 10-15% 

of adult AML cases. And it generates the fusion protein AML1-ETO (CBFA2-

CBFA2T1), through a replacement of the C-terminus of the transcriptional 

activator AML1 with the ETO repressor.  Blocking of differentiation is thought to 

be induced by this fusion protein(see review142).  
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Acute promyelocytic leukemia (APL) is another example where fusion proteins 

play an essential role. Classified as an AML-M3 subtype by the FAB, it represents 

10% of AML cases. The affected gene in this malignancy is RAR . The 

translocation t(15;17) is responsible in 99% of the cases for the fusion of the PML 

coding sequence to RAR . Normal feedback of RAR  to retinoic acid is disrupted 

by the PML- RAR  fusion protein responsible for blocking of differentiation143.  

 

Among the different factors described in the type class II mutations, the mixed-

lineage leukemia (MLL) protein is another frequent factor in AML pathogenesis. 

A histone methyltransferase activity can be identified in MLL. Although the 

function of MLL in normal hematopoiesis has not been properly identified, this 

gene can be found in aggressive forms of AML and also ALL malignancies135.  

 

2.2.6 Treatments  

General treatment of AML patients has remained nearly the same during the last 

30 years. The strategy followed related to the use of chemotherapeutic agents 

continues to be almost the same144. Initially, patients need to be evaluated in 

order to determine the best option for treatment. Prognostic factors are used to 

determine the best treatment option. Among the different factors employed to 

evaluate the AML patient, the Zubrod scale is a scoring given to the patient from 

0 to 5, where 0 represents perfect health and autonomy and 5 death. Age of the 

patient is one of the main parameters and together with the physical shape, it is 

possible to establish the best strategy by clinicians. Parameters from clinical 

analysis also used as prognosis factors are levels of serum albumin, bilirubin and 

creatinine among others. Moreover, it is crucial to consider resistance to 

treatment of AML patients. The best way to identify the tendency to resistance in 

patients, is by analyzing at diagnosis the cytogenetic and molecular genetic 

profile of AML blasts. Using this profile, AML patients can be classified into 

favourable, intermediate and adverse cases, which can help to better adapt the 

therapeutic approach107.  
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2.2.6.1 Standard chemotherapy  

Combination of chemotherapeutic agents as anthracycline (daunorubicin or 

idarubicin) and cytarabine (ARA-C (Cytosine-Arabinoside)), is the standard 

therapeutic approach for AML patients. Treatment is composed of two phases; 

the first has the aim to achieve a complete remission with a bone marrow 

containing less than 5% blasts, neutrophil counting above 1000 and platelet 

number higher than 100,000145. In the second phase, once the complete 

remission has been reached it is necessary to prolong this status. AML patients 

are usually treated with medium or high doses of ARA-C and additionally to this, 

depending of the favourable/intermediate/adverse classification of the patient, 

allogenic or autologous transplants are employed. Normally, AML cases under a 

remission of 3 years, have a 10% of chances or less to relapse146. 

 

Cytarabine also recognized as cytosine arabinoside is a molecule (Figure 11) 
which was synthesized for the first time in 1958 and has been used in AML 

treatment since 1969 after the approval of the Food and Drug Administration 

(FDA). Oral administration of ARA-C is ineffective due to the fast metabolism of 

the drug by the liver and intestines. Thus, ARA-C is applied by intravenous 

injection. ARA-C presents cell phase specificity by killing the cells undergoing 

DNA synthesis (S-Phase) and also by blocking the transition of cells from phase 

G1 to S-phase. This compound presents a high inhibition of DNA synthesis by 

inhibiting DNA polymerase. The drug can also cause marked chromosomal 

aberrations as chromatid breaks and extensive fragmentation. A limited amount 

of the drug can incorporate into DNA and RNA147. 
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Figure 11. Chemical structure of cytarabine (ARA-C)148. 

 

 

Anthracyclines (Figure 12) are the other main therapeutic agent together with 

cytarabine. These chemotherapeutic drugs were isolated in the 1960’s from 

Streptomyces peucetius. The first two molecules obtained were daunorubicin 

(DNR) and doxorubicin (DOX). Later on, epirubicin (EPI) and idarubicin (IDA) 

were developed and approved for AML treatment. The most described cytotoxic 

mechanism of action of these compounds are the following: they act as DNA 

intercalators; by insertion into the double helix of DNA they achieve to block 

DNA/RNA/protein synthesis, cause fragmentation of DNA and inhibit its repair. In 

addition, anthracyclines have the ability to bind to cell membrane and cause 

functional alterations. Finally, reactive oxygen species (ROS) are produced by 

anthracyclines through its reduction to a semiquinone free radical. Excessive 

ROS will produce oxidative stress, DNA damage and lipid peroxidation leading to 

apoptosis149. 
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Figure 12. Chemical structure of anthracycline molecules150. Doxorubicin (DOX), 

Daunorubicin (DNR), Epirubicin (EPI) and Idarubicin (IDA). Main anthracyclines 

employed in treatment of acute myeloid leukemias. 

 

 

2.2.6.1.1 Induction phase 

As mentioned before, the first phase of AML treatment consists in the “Induction 

phase”. The aim is to eliminate as fast as possible the highest number of leukemic 

cells in the newly diagnosed patient. Usually young adults under 60 years old are 

candidates for this treatment and the level of intensity might variate depending of 

the health of the patient. The so called “3+7 combination” is the most common 

therapy strategy used in AML patients, in which they receive intravenously during 

3 days 45 mg/m2 or 60 mg/m2 of an anthracycline as daunorubicin. Daunorubicin 

dose can be increased in patients with mutations considered of poor prognosis 

as DNMT3 and KMT2A104. These patients also receive 100 mg/m2 of cytarabine 

intravenously during 7 days. This combination has shown a complete remission 

in 65-70% of patients between 18 and 60 years old. In addition, reports generated 

by the Australian Leukemia Study Group demonstrated a complete remission in 

80% AML cases with high dose therapy of cytarabine combined with idarubicin 

and etoposide107. In older patients above 60-years old, the remission rate is lower 
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(between 40-60%). These patients often present unfavorable cytogenetics 

abnormalities and conventional chemotherapy results in a low benefit. Therefore, 

some of these AML cases are eligible for investigational novel therapies151.  

 

2.2.6.1.2 Consolidation phase 

Consolidation phase, also called post-remission therapy, is focused on 

eliminating any remaining leukemic cell and prevent relapse. The strategies used 

involves chemotherapy and allogenic or autologous hematopoietic stem cell 

transplantation. Chemotherapy is usually the first option specially in favourable 

patients. In young adults (18-60 years old), chemotherapy is applied in 2 to 4 

cycles of cytarabine in either one of the following concentrations; high-dose (3 

g/m2), intermediate-dose (400 mg/m2) or standard-dose (100 mg/m2)152,107,104. 

 

Patients from the intermediate or high-risk groups, normally are the candidates 

for a treatment combining high chemotherapy doses with either allogenic (donor) 

or autologous (patient) hematopoietic stem cell transplantation. Allogenic 

transplantations present a higher benefit with a better relapse-free survival than 

the autologous transplant. The reason for this advantage in the allogenic 

procedure, relies on the graft-versus-leukemia effect which is not observed in the 

autologous engraftment107. Nonetheless, allogenic transplantations do not have 

the same effect in every patient. For instance, AML patients presenting NPM1 

mutations and a lack of FLT3 alteration and with a survival around 60% through 

standard chemotherapy consolidation, probably an allogenic transplant will not 

upgrade their outcome. Unfortunately, high-risk AML cases face a poor outcome 

often lower than 10% relapse-free survival after high-dose cytarabine treatment 

combined with autologous transplantation153,107.  

 

2.2.6.2 Novel therapeutic agents 

During the last years, development of new therapeutic agents against AML 

malignancy is on the center of attention. The poor prognosis and high relapse 

rates make essential to establish novel therapeutic strategies.  
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Inhibitors of the tyrosine kinase receptor (TKR) have been widely used in several 

solid and hematological cancers. In AML, FLT3 mutation plays an important role 

and for this reason, the inhibition of this TKR has been identified as a new 

potential therapeutic target. Within the first generation of this type of inhibitors, 

Sorafenib showed high complete remission (CR) in phase I and II trials, but 50% 

of patients faced relapse within 9 months154. Midostaurin, another first-generation 

inhibitor, has been tested. Patients presented resistance to this inhibitor as for 

sorafenib. Nonetheless, midostaurin combined with other chemotherapy drugs 

as azacitidine exhibited a better response in patients104.   

 

Second-generation inhibitors of TKR targeting specifically FLT3 have been 

developed. Quizatinab is an example of these inhibitors, in which off-target 

affects are diminished thanks to its selectivity. In phase I, oral administration of 

Quizatinab to 76 AML relapsed/refractory patients reported 30% of response and 

13% patients achieved CR155. Crenolanib is another agent being tested, which 

targets FLT3-ITD and FLT3-TKD mutants. A cohort of 38 AML patients from a 

phase II study carrying the FLT3 mutation, received 200 mg/m2 of Crenolanib, 

achieving event-free survival (EFS) for 8 weeks and overall survival (OS) of 19 

weeks156. 

 

Another new important target in therapeutic development is the STAT signaling 

pathway. Around 50% of AML cases present STAT3 tyrosine phosphorylation 

which is linked to poor prognosis157. Different STAT3 inhibitors are being tested 

such as molecules C188-9 or MM-206 with good apoptosis induction in AML cell 

lines. In addition, the molecule OPB-31121, a STAT3 and STAT5 inhibitor 

showed good results in solid tumors and growth inhibition in AML cell lines158.   

 

The use of monoclonal antibodies represents another important new therapy not 

only in AML but in a high number of types of cancer. The mechanism of these 

antibodies relies on their capacity for a direct antibody-dependent toxicity or 

through the combination with cytotoxic agents leading to a direct impact of the 

drug against the neoplastic cells. For instance, gemtuzumab ozogamicin (GO) is 

a human recombinant antibody that targets a protein present on myeloid cells 

which is the cluster of differentiation CD33. GO is an antibody conjugated with 



 71 

the DNA-cleaving cytotoxic drug calicheamicin159. The fatal toxicity presented by 

this antibody stopped its use in 2009 but, in 2014 new studies showed a survival 

benefit in patients from intermediate and high-risk groups160. Another molecule 

tested is the AGS67E which is a human antibody against CD37. This cluster of 

differentiation is a transmembrane protein highly expressed in non-Hodgkin 

lymphoma and CLL. AGS67E is conjugated to monomethyl auristatin E (MMAE), 

known as a microtubule-disrupting compound. Apoptosis of malignant cells is 

driven through the delivery of the drug by the antibody targeting CD37+ cells. In 

vivo tests using a murine AML model exhibited a decreased capacity for tumor 

engraftment104. 

 

Development of novel inhibitors against the mutant enzymes IDH1 and IDH2 

represents a promising therapy showing encouraging results161. For instance, 

153 AML patients newly diagnosed presenting IDH1 and IDH2 mutations were 

treated with standard chemotherapy combined with the new oral IDH inhibitors 

ivosidenib and enasidenib. Response rate of ivosidenib/chemotherapy treatment 

was 71% and 56% in patients treated with enasidenib/chemotherapy. While 

remission and better overall survival within the first year were achieved in 75% 

patients from the high-risk population (>65-years old)162. Moreover, a study based 

on treatment with only ivosidenib, reported an overall response of 57.6% patients 

achieved in 2.8 months previous to therapy. This study in phase I included 34 

patients, where seven patients presented de novo AML and 27 had secondary 

AML. Corresponding to intermediate and poor-risk cytogenetic features163. 

 

 

 Leukemic stem cell (LSC) 

2.3.1 Overview of the cancer stem cell (CSC) 

Understanding the molecular mechanisms and the signaling pathways involved 

in tumorigenesis as well as the malignant transformations, have been a result 

achieved thanks to the identification of genetic abnormalities driving cancer 

development.  A lot of the research made during the last decades was focused 

on the molecular biology of cancer, whereas the cellular biology was in some way 

not a main priority. Although new discoveries have contributed to understand at 
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least partially the effect of mutations on proliferation or survival, there is a lack of 

understanding the direct effect of such mutations on the actual cells involved in 

cancer54.  

 

Normal stem cells (SCs) are involved in development of tissues in the body. They 

present as described before in the HSCs, the abilities of self-renewal, proliferation 

and differentiation. When speaking about cancer, any type of tumor can be seen 

as an altered organ in the body which has been produced by a tumorigenic cancer 

cell. Therefore, by using the principle of normal SCs biology, it is possible to 

present a tumor as an “aberrant organ” that arises from a modified stem cell which 

has been identified as a cancer stem cell (CSC). These CSCs must present as 

their normal counterparts, self-renewal capacity, potential of proliferation and 

differentiation. Heterogeneity is observed in normal SCs and in CSCs. This 

heterogeneity can be produced either by the continuous mutations in the 

tumorigenic cancer cell or from the aberrant differentiations in cancer cells164,54.  

 

An important aspect of the CSCs is to understand if only this population holds the 

capacity to proliferate and give rise to other cancer cells, or if also other cancer 

cell populations possess this ability. As showed in leukemia and multiple 

myeloma, a small bulk of cancer cells were identified to present an extensive 

proliferation capacity. By using myeloma cells from mice, only 1 in 10,000 to 1 in 

100 cancer cells, were able to produce colonies in an in vitro colony-forming 

assay165. From these results, two different hypotheses (Figure 13) are 

considered; either only a defined small population of “special leukemic cells” have 

the capacity for extensive proliferation or all leukemic cells present this ability54. 
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Figure 13. The two different scenarios of heterogeneity in cancer54. a. All cancer 

cells present the ability of extensive proliferation but when placed in vitro, they present a 

low capacity in clonogenicity or tumorigenicity assays. b. Only a defined small subset of 

cancer cells has unlimited proliferative potential observed in clonogenic assays.  

 

 

Both hypotheses remain in discussion for solid tumor cancers, while in AML the 

research work conducted by John Dick and colleagues, confirmed the presence 

of a small portion of leukemic cells holding the abilities of a normal SC. In addition, 

only these specific leukemic cells had the capacity to transfer AML into mice and 

proliferate extensively54.  

 

2.3.2 The concept of LSC in AML 

The evidence showing the existence of CSCs was described for the first time in 

AML. During the decade of the 90’s, John Dick and colleagues published their 

research investigation focused in the identification of a small and rare bulk of 

leukemic cells. This population presented a phenotype of cell surface markers 

CD34+CD38- and was able to initiate AML when transferred into non-obese 

diabetic mice with severe combined immunodeficiency disease (NOD/SCID). 

Identified at that time as SCID leukemia-initiating cell (SL-IC), this population 

owned self-renewal capacity together with extensive proliferation and 

differentiation abilities. Once isolated, these SL-ICs showed in vivo to be able to 

differentiate into leukemic blasts, providing the evidence of hierarchy organization 
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of the leukemic clones 166,167. Also Identified later on as leukemia-initiating cells 

or leukemic stem cells (LSCs), this population became a major target to better 

understand not only AML but all the different hematological malignancies and 

other types of solid cancers. As seen in hematopoietic stem cells, based on 

different studies the LSCs are found at the top of a hierarchy and are responsible 

for the generation of poorly differentiated blasts which are able to maintain 

AML168. 

 

Analysis of the LSCs have showed how similar they are to their normal stem cell 

counterpart. Both HSCs and LSCs share several functional characteristics such 

as: quiescence cell cycle status, capacity to outflow drugs and the other aspects 

described before as self-renewal properties and the fact of being rare in 

number169.   

 

2.3.3 LSC phenotype 

Identification of a specific LSC phenotype is a fundamental key to understand the 

role and mechanisms played by these cells in cancer. In addition, recognition of 

the LSC bulk with specific surface markers is the tool needed to target in a more 

efficient way these cells responsible for AML maintenance.  

 

The first step was given by Dick and collaborators by identifying the leukemic 

stem cells (LSCs) as a rare population presenting the cell surface markers 

CD34+CD38-. Nonetheless, the HSCs share the same immunophenotype than 

the LSCs167. This is the reason why cancer treatments cannot be based only 

considering this immunophenotype. Cell surface markers in LSCs seem to be 

more complex than thought decades ago. For instance, the analysis of AML 

patient samples with NPM (nucleophosmin) mutation demonstrated the presence 

of LCSs displaying the immunophenotype CD34- / CD38- / Lin- and not the typical 

CD34+/CD38-/Lin- profile observed in LSCs170. In addition, other studies have 

confirmed the fact that LSCs are a truly rare population holding different potential 

of self-renewal. Other surface markers of LCSs also present in HSCs are CD71-

/HLA-DR-. Moreover, normal committed progenitor cells likewise share with LSCs 

the profile Lin+CD38+CD45RA+. These findings give strength to the theories 
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describing the origin of LSCs, originated not only from HSCs but also from a more 

differentiated population as committed progenitor lineage171.  

 

More recently, the presence or lack of new surface markers have been identified, 

in order to establish a more precise and specific immunophenotype of the LSCs. 

For example, Blair and Sutherland identified the deficiencies of CD90 and CD117 

(c-kit) expression in AML LSCs172. Contrarily, several studies reported high 

expression of CD123 (IL-3 receptor  chain), TIM3 (T-cell Ig mucin3), CD47, 

CD96, CLL-1 and the IL-1 receptor (IL1RAP) by this population171. Moreover, 

additional surface markers such as were CD32 and CD25 have been reported to 

be highly expressed in LSCs as compared to normal HSCs173.   

 

2.3.4 Role of the LSC in AML resistance 

As previously described in the section “Treatments”, the standard therapy for 

AML patients is based on the use of cytotoxic agents, which usually leads to a 

complete remission (CR) of around 70% in young adults (18-60 years old) and 

between 40-60% in patients above 60-years old. Nonetheless, around 70% of 

AML patients face relapse and poor prognosis despite the different treatments 

employed. Resistance of AML patients in AML can be explained by different 

hypotheses. Drug efflux capacity of the leukemic cells, the presence of enzymes 

on charge of detoxification of therapy agents or the low availability of the drug 

within the tumor microenvironment are some of the factors considered that lead 

to resistance174.  However, the most common and studied theory of resistance in 

AML, relies on the idea that the presence of a population of malignant cells is 

responsible for this: the LSCs. These LSCs seem to resist to the chemotherapy 

treatments and are able to re-establish AML in the patient. This event is known 

as “minimal residual disease” (MRD) which eventually drives to resistance175.  

 

Two different studies have shown that LSCs presenting the immunophenotype 

profile CD34+ CD38low/- CD123+, where highly found in AML patients at diagnosis. 

More interestingly, these patients faced poor response to treatment and poor 

survival. Therefore, these results suggest that MRD is related to the presence of 
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quiescent LSCs which are able to drive resistance in AML and in consequence 

patient relapse176,177.  

 

2.3.5 Targeting the LSC in AML treatment  

Current therapies are focused on eradication of the leukemic blast population in 

AML patients. The chemotherapy drugs target the fast dividing cells with the aim 

of eliminate the high presence of blasts in the patient. Unfortunately, as 

previously described, LSCs are able to remain within the tumor microenvironment 

either as an active or quiescent population with the capacity to re-establish AML 

even after a remission of the patient. Nowadays, the obvious need for a therapy 

targeting the LSC has became a primary urgency178. 

 

Identifying the specific phenotype of LSCs is crucial to develop new therapeutic 

approaches in AML. For instance, the high CD123 expression in CD34+ CD38- 

LSCs compared to HSCs has been used to generate a monoclonal antibody anti-

CD123 named “7G3”. A significant decreased engraftment was observed in a 

xenograft model by using this antibody179. Investigation based on other specific 

surface markers of LSCs are being tested, as antibodies targeting CD47, CD96, 

TIM3 and CLL-1, which are being tested for elimination of primary AML LSCs171. 

Another type of therapies that has been studied recently and developed apart 

from the monoclonal antibodies, is the design of bi-specific and tri-specific 

antibody fragments. Immunotoxins, CAR (chimeric antigen receptor) modified T-

cells and nanoparticles carrying surface markers-targeted medication are being 

developed. For instance, DT388IL3 (SL-401) is in phase I/II trials. This novel 

agent is a recombinant immunotoxin developed through the fusion of diphtheria 

toxin and the ligand targeting IL-3 receptor180,171. 

 

Activity and function of LSCs are affected by transcriptions factors. Therefore, as 

surface cell markers, transcription factors have been identified as possible key 

elements in development of novel therapies. For instance, p-53 inactivation 

seems to be involved in survival and evolution of LSCs. Moreover, the activity of 

p53 appears to be regulated by histone deacetylases (HDACs). This is the reason 

why protein modulators of HDACs could be used to boost p53 activity and render 



 77 

LSCs sensitive to therapy. Another target might be a low oxygen regulator 

identified in AML; hypoxia-inducible factor-1  (HIF-1 ), which plays a key role in 

self-renewal capacity of LSCs 173. In 2015 Bonnet and Colleagues described HIF-

1  and HIF-2  fundamental in LSC survival181. 

 

Moreover, the nuclear factor kappa-light-chain enhancer of activated B-cells (NF-

B) is crucial in survival, proliferation and differentiation. NF- B has been 

reported as highly expressed in LSCs, whereas low in HSCs182. The idea 

suggested for therapy, is the employment of dimethylaminoparthenolide 

(DMAPT), which is an inhibitor of NF- B. Clinical trials testing this inhibitor have 

started to treat AML but also acute lymphocytic leukemia (ALL) and chronic 

myeloid leukemia (CML)183.   

 

Lastly, another promising therapy is the use of inhibitors of the -catenin 

molecule. The role of -catenin is basic in Wnt/ -catenin signaling for self-

renewal, development, recurrence and drug resistance of LSCs. This is thee 

reason why, inhibition of this molecule could drive LSC eradication173. 

 

Development of specific and effective therapeutic agents against LSCs could 

finally lead to a total eradication of AML in patients through a complete remission 

without any relapse and increase the overall survival. 

 

 

 Signaling pathway alterations in AML 

Hematopoiesis is the key player involved in maintaining homeostasis in every 

tissue in the body. A normal control of self-renewal, proliferation, differentiation 

or survival of HSCs is essential to maintain this normal hematopoiesis. In 

addition, quiescence and mobility are also regulated in HSCs by different 

elements within the BM microenvironment. Several signaling pathways are 

involved in driving the necessary stimuli that control HSCs. Nonetheless, 

aberrations in the signaling transductions are able to modify the hallmarks of 

HCSs, as survival or proliferation which can easily lead to the different 

hematological malignancies. A complex network of cell-extrinsic and intrinsic 
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signaling pathways are involved in HSC regulation. In consequence, alterations 

of these signals are able to transform and generate the initiating leukemic stem 

cells184. In this subtheme of the present chapter, some of these pathways 

involved in AML will be briefly described.  

 

PI3K/AKT/mTOR pathway  
Activation of this pathway has been found in the entire AML leukemic populations. 

Works developed by Park and colleagues identified activation of PI3K 

(phosphatidylinositol 3-kinse) in 50% of AML samples analyzed, while mTORC1 

was reported to be activated in all of them. In addition, they found the activation 

of PI3K in leukemic cells to be linked to expression of the isoform p110  of class 

IA PI3K. There are three different classes of PI3K/AKT/mTOR pathways. Being 

class IA PI3K the most described pathway in cancer. Studies developed in AML 

patients, reported around 50-80% of cases where protein kinase B (AKT) 

phosphorylation can be seen on serine 473 (Ser473). Blast cell proliferation and 

the clonogenicity of the leukemic progenitor population seem to be controlled by 

this pathway185. 

 

NOTCH signaling pathway  
The NOTCH signaling pathway is an essential element when speaking about cell 

fate decisions in development, self-renewal capacity in stem cells or in 

differentiation in hematopoiesis. Dysregulation of the pathway has been related 

according to several research studies, to solid cancers but also to hematological 

malignancies. Interestingly, the specific role of the pathway either as an 

oncogenic factor or as a tumor suppressor is not completely clear and 

understood. For instance, Tohda and Nara performed studies in eight AML cell 

lines and 15 AML samples, were they identified the high expression of two 

NOTCH ligands; NOTCH1 and JAGGED1. But later on, they observed that 

NOTCH1 and NOCTCH2 expression is not necessarily linked to AML growth. 

This was confirmed through a knockdown of both ligands with no growth effect in 

AML cell lines186. In contrast, the tumor-suppressor role of the NOTCH pathway 

has been reported in research works using patient samples, where the pathway 

was identified to be silenced. Once the pathway was re-activated, cycle arrest 

and apoptosis were observed. Therefore, at the present time the specific role of 
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the pathway is not completely elucidated and more studies are necessary to 

better understand its real duty in AML187,186. 

 

Wnt/ -catenin signaling pathway 
As the previous pathways, the Wnt signaling belongs to the regulators of normal 

hematopoiesis. Nevertheless, alterations of the pathway have been described in 

several studies, not only in AML but also in other malignancies. Moreover, the 

pathway represents an important signaling in leukemic stem cell maintenance. 

Abnormal expression of β-catenin was reported in AML188,189 and Ysabaert and 

colleagues identified the overexpression of β-catenin as a poor prognosis factor 

in patients190. In addition, it has been observed the relation between the 

hypermethylation of Wnt inhibitors and the genetic aberrations of class II 

mutations in AML as AML1/RUNX1, MLL/PTD and PML/RARα191. 

 
Hedgehog signaling pathway 
Hedgehog (HH) signaling has been related to several types of cancer. During the 

recent years, the pathway has been on the spotlight due to its role in leukemic 

stem cell regulation and AML drug resistance leading to poor prognosis of 

patients192. For this reason, targeting the pathway for new therapeutic 

approaches represents an interesting subject in research. Within the canonical 

pathway, three types of Hh ligands are identified; sonic hedgehog (SHH), Indian 

hedgehog (IHH) and desert hedgehog (DHH). And two receptors, a positive 

regulator Smoothened (SMO) and a negative Patched (PTCH). Kobune and 

colleagues, showed expression of the ligand IHH and the receptor SMO in CD34+ 

cells from AML patients. Once the IHH ligand was counterbalanced the CD34+ 

cells underwent apoptosis and exhibited higher sensitivity to cytarabine193,194. In 

addition, the transcription factor zinc-finger glioma (GLI1) has been reported to 

be overexpressed in AML cell lines and in patients in relapse. Suggesting a 

crucial role of GLI1 in drug resistance. Moreover, inhibition of the positive 

regulator SMO receptor resulted in decreased resistance effect in AML 

patients194. 
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Transforming Growth Factor-β (TGF- β) signaling pathway  
In normal hematopoiesis, the TGF-β pathway plays a crucial role in negative 

regulation of proliferation and triggers in parallel differentiation and apoptosis. 

The role of this pathway has been described in several hematological 

malignancies. The mechanisms leading to dysregulation of the pathway involve 

mutations or deletions of members of the signaling or the presence of 

oncoproteins with an impact in pathway alteration. Decreased expression of TGF-

β receptors or repression of the pathway are two of the main alterations identified 

in hematological malignancies. For instance, blocking of the pathway has been 

reported in AML subtype M2; the fusion protein AML1/ETO binds to Smad3 in the 

cytoplasm and blocks the signaling. In addition, AML patients exhibited 

expression of the receptor TβRI presenting a higher frequency of polymorphism 

in the sequence TβRI(6A) compared to healthy individuals. This alteration 

affected the antiproliferative capacity of the pathway195. 

 

BMP signaling pathway 
The BMP (bone morphogenetic proteins) pathway is a major signaling that plays 

an essential role in normal hematopoiesis. As the previous pathways described, 

the BMP signaling and its elements are not only involved in normal 

hematopoiesis, but also its dysregulation has been reported in several types of 

solid cancers and hematological malignancies196. The specific role of BMP 

signaling in AML will be further described during the following chapter, 

representing the central axis of the present doctoral dissertation. 
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3 BMP signaling pathway in acute myeloid leukemia (AML) 

 Overview of the BMP pathway 

It was in 1965, when Urist described for the first time the capacity of the bone 

morphogenetic proteins (BMPs), to induce ectopic bone formation and cartilage 

generation197. And later on, at the end of the 1980’s Wozney and collaborators 

conducted research works that allowed the characterization, purification and 

cloning of the first BMPs, leading to the study of the biochemical aspects of these 

protein198. After identifying their role in bone and cartilage formation, the BMPs 

are nowadays known to be cytokines present in both vertebrates and 

invertebrates199. 

 

The bone morphogenetic proteins (BMPs) belong to the super family of 

Transforming Growth Factor-β (TGF-β) proteins. Inside this category of proteins, 

it is possible to identify TGF-βs, activins, inhibins, Growth Differentiation Factors 

(GDFs), Glial Derived Neurotrophic Factors (GDNFs), Nodal, Lefty and the anti-

Müllerian hormone200. BMPs have been identified by their key role not only in 

bone formation, but also in embryogenesis development and adult tissue 

homeostasis. Among the several tasks that BMPs perform and regulate, it is 

possible to identify their importance in cellular lineage commitment, 

morphogenesis, cell growth, differentiation and apoptosis in a wide range of cells 

all over the body201. When speaking about adult tissue, joint integrity, fracture 

repair or vascular remodeling are just some of the roles played by the BMPs. Due 

to their capacity to regulate several processes in all organ systems, the BMPs 

hold another “unofficial name”: the Body Morphogenetic Proteins. Alterations of 

the functioning or deficiency of these essential proteins have been related to an 

enormous number of pathologies200. 

 

During the present chapter, the BMP signaling pathway will be described, 

including its ligands and receptors involved in both canonical and non-canonical 

pathways. In addition, the dysregulation of the pathway will be defined in 

hematological malignancies and more specifically in AML, which remains as the 

central topic of this dissertation.  
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 BMP signaling pathway 

BMP precursors are generated within the cytoplasm as dimeric pro-protein 

complexes of 400-500 amino acids, presenting association with pro-protein 

convertases allowing the production of the N- and C-terminal fragments. 

Therefore, during their synthesis (Figure 14), the BMPs are seen as precursor 

proteins containing a prodomain (folding and secretion) and the mature domain 

(C-terminal). This C-terminal mature fragment drives the capacity to bind to its 

receptor200. The BMP active form possesses between 50 to 100 amino acids and 

is composed by seven cysteines.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. BMPs synthesis and secretion202. A. Synthesis of BMP in the cell and 

secretion into the extracellular microenvironment. 1. Within the nucleus, BMP 

transcription starts. 2. Translation takes place in the endoplasmic reticulum (ER). 3. Post-

translational modifications are carried in the Golgi. 4. Proteolytic cleavage of prodomain 

and dimerization of monomers. 5. BMPs are secreted from the cell either as a dimeric 

form carrying or not the prodomain or packed in vesicles.  

 

 

According to phylogenic trees, BMPs can be clustered into groups: BMP2/4, 

BMP5/6/7/8, BMP9/10 and GDF 5/6/7 (Table 5). For instance, BMP2 and BMP4, 

which present structural homologies (Figure 15), are secreted as precursor 

molecules and then cleaved by extracellular proteins such as Furin to obtain a 

mature protein (Figure 14). These active proteins form homo- or hetero-
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complexes which bind to receptors complexes and induce cell transduction 

(Table 5)203.  

 
Table 5. BMP family ligands and receptors203. 

 
 

 

 

 
 
Figure 15. Structure and protein domains of soluble BMP2 and BMP4203. The full-

length BMP structure is formed by a signal peptide (N-terminal: hydrophobic region), a 

prodomain (Propeptide: folding, dimerization and regulation) and a mature domain (C-

terminal: monomer). Mature BMP protein is secreted as a homodimer linked by disulfide 

bonds204.   

 

 

3.2.1 BMP receptors 

Ligands members of the TGF-β family are able to interact with two types of 

receptors in order to trigger the signaling transduction of the pathway. Although 

type I and II receptors are necessary for signal transduction, BMPs can bind to 
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the type I receptors if lack of type II. Nonetheless, presence of both receptors 

boost the binding affinity205. 

 

Type I and type II receptors are composed of three different parts: a short 

extracellular domain (ligand’s binding site), a single transmembrane domain and 

a domain localized in the intracellular region which presents the serine / threonine 

kinase activity. The BMP type I receptors, also known as activin receptor-like 

kinase I, are composed of seven different subtypes (ALK-1 to ALK-7)205. These 

receptors can be divided in three different groups considering as a main 

parameter their analogies of function and structure (Table 6).  
 

 
Table 6. Classification of type I receptors. 

BMPR-I ALK-I TβR-I 

BMPR-1A (ALK-3) 

BMPR-1B (ALK-6) 
ALK-1 

ALK-2 

ALK-4 (ActR-IB) 

ALK-5 (TβR-I) 

ALK-7 

 

 

The specificity of the ligand-receptor binding depends directly on the BMP ligand 

and type of receptor involved. Certain ligands present higher affinity for specific 

receptors. For instance, BMP-2 and BMP-4 tend to bind to BMPR-1A and BMPR-

1B receptors (Figure 16). While it has been reported that BMP-6 and BMP-7 are 

able to bind to ALK-2 more than to BMPR-1B206. 
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Figure 16. Structure and protein domain of the BMPR-I type receptors: BMPR1A 
and BMPR1B203. BMPR1A (ALK3) and BMPR1B (ALK6) receptors formed by the activin 

receptor domain, GS domain and the catalytic domain. 
 

 

BMP Type II receptors are divided in BMPR-II, ActR-II and ActR-IIB. The first two 

receptors are specific for BMP ligands. ActR-IIB is a receptor not only for BMPs, 

but also activins and myostatin are able to interact with this receptor205. 

 

As described before, activation of the intracellular BMP signaling is achieved 

through the binding of the ligand and its receptor. In addition, it has been identified 

the presence of co-receptors, which can enhance the BMP signaling by 

regulating the ligand-receptor binding process. For instance, 

glycosylphosphatidylinositol (GPI)-anchored proteins of the repulsive guidance 

molecule (RGM) family, are co-receptors described by Babitt and colleagues for 

BMP2 and BMP4 (in particular RGMa which can enhance the signaling)207. Also, 

RGMb (DRAGON) and RGMc (hemojuvelin) are co-receptors described in the 

literature. They interact with both type I and type II receptors and are able to bind 

to BMP2 / BMP4, whereas no interaction has been observed with BMP7 or TGF-

β1208,209.  

 

3.2.2 Regulation of the BMP pathway 

BMP signaling is directly controlled at extracellular, membrane and intracellular 

levels. Extracellular soluble antagonists are able to control the bioavailability of 

the BMPs within the cell microenvironment. Chordin, Follistatin, FLRG, Noggin, 

Gremlin, Cerberus and Tolloid are antagonists that bind BMPs and prevent their 
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binding to the receptor, thus modifying the local concentration of the available 

ligand210,211,212,213,214,215. 

. 

Other BMP regulators act at the membrane level to either activate (Endoglin, 

Endofin and RGM-Repulsive guidance family members) or inhibit (BAMBI: BMP 

and Activin membrane-bound inhibitor) the BMP pathway, according to the 

context, through direct binding with BMP (RGM) or both BMP and BMP receptor 

(Endoglin, BAMBI)216. BAMBI binds with type II receptors to prevent the formation 

of the molecular complex that transduces the signal. Finally, cytoplasmic 

SMAD6/7 molecules inhibit SMAD1/5/8 phosphorylation and therefore, preclude 

complex formation with the SMAD4 co-factor; they also recruit SMAD ubiquitin 

ligases (SMURF1/2) to mediate their degradation217. 

 

3.2.3 BMP activation: canonical / non-canonical pathway   

BMPs are able to signal through two different ways, the canonical and non-

canonical pathways (Figure 17). In the canonical pathway, the BMP signaling 

cascade is triggered by the binding of the ligands to cell surface receptors, in 

order to form the heterotetrameric complex constituted by two dimers of type I 

and type II serine / threonine kinase receptors. Once the heterotetrameric 

complex has been formed, the type II receptor transphosphorylates the type I 

receptor at the GS (glycine-serine) rich domain. Activation of type I receptor 

drives phosphorylation of the substrate proteins recognized as receptor-

regulated Smads (R-Smads), producing intracellular activation of the canonical 

pathway started by the SMAD1/5/8 signaling. The following step, after the Smads 

activation consist in the binding of the co-factor SMAD4 with the complex 

SMAD1/5/8. The formed complex, translocates into the nucleus of the cell and 

plays a crucial role as a transcription factor together with co-activators and co-

repressors being capable to regulate expression of the target genes of the BMP 

pathway. The complex SMAD1/5/8-SMAD4 can be inhibited through inhibitory 

SMADS (I-SMADS); specifically, SMAD6 and SMAD7 identified as inhibitors of 

the signaling pathway200. 
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Activation of the BMP signaling can be driven also through the SMAD-

independent pathways, also named non-canonical pathways (Figure 16). In this 

case the signaling is initiated by the activation of the BMP type I receptors which 

are able to start downstream pathways independent from the SMAD1/5/8. 

Examples of these pathways are the extracellular signal-regulated kinase (ERK), 

map kinase p38 (MAPK), C-jun N-terminal kinase (JNK) and nuclear factor kappa 

beta (NFkB). The way that the non-canonical pathways are activated has been 

described in several articles, that suggest interaction between the molecules 

BRAM1 (Bone morphogenetic protein Receptor Associated Molecule 1) or XIAP 

(X-linked inhibitor of apoptosis protein), and downstream molecules TAK1 (TGF- 

β activated kinase I) and TAB1 (TAK1 binding protein) with the receptor type IA. 

For instance, JNK, p38 or NFkB pathways are activated by the downstream once 

TAK1 is active. Activation of TAK1 occurs through the interaction of XIAB and 

TAB1. Nevertheless, the mechanism of activation of other non-canonical 

pathways remains unclear and more studies are needed to understand their 

signal transduction202. 
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Figure 17. Schematic representation of the BMP signaling pathway203. BMPs are 

able to activate the canonical or non-canonical pathway through the binding of BMP 

ligand to cell surface receptors. In the canonical signaling, BMP type II receptor 

transphosphorylates the type I receptor, leading to phosphorylation and activation of the 

R-SMADS (SMAD1/5/8). SMAD4 (Co-SMAD) associates with R-SMADS and this 

complex translocates into the nucleus to trigger transcription of target genes of the 

pathway. In the non-canonical pathway, BMPs cytokines bind to type I receptors and this 

association starts downstream pathways independent from the SMAD1/5/8 signaling. 

Examples of these pathways are MAPKinases JNK, p38 or ERK200.  

 

 

 Transcriptional factors and target genes of the pathway  

Transcriptional regulation of certain target genes of the BMP canonical pathway 

occurs through the binding of SMADS with DNA sequences, but also by 

interaction with several DNA-binding proteins and recruiting transcriptional co-

activators or co-expressors218.  
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For instance, RUNX1 is a member of a family of transcription factors identified to 

interact directly with BMP-specific R-SMADS (BR-SMADS). These factors have 

been described in regulation of hematopoiesis, bone formation, and homeostasis 

of gastric mucosa. So far RUNX1, RUNX2 and RUNX3 forms have been 

identified in mammals, showing interaction with R-SMADS218,219. Interestingly, 

RUNX1-3 are also target genes of the BMP pathway which indicates that there is 

a regulation loop220,219. RUNX2 expression has been reported in different studies 

due to its importance in osteoblasts maturation and osteogenesis. The autosomal 

dominant bone disease “cleidocranial dysplasia” has been linked to the 

haploinsufficiency of RUNX2. Moreover, the role of RUNX3 as a main tumor 

suppressor in gastric cancer was described by Li and colleagues221. In addition, 

the importance of RUNX1 expression is crucial in hematopoiesis and its lack of 

function is related to alteration of HSCs generation140. Due to the role of RUNX1 

in myeloid precursors differentiation, loss-of-function mutations of this form can 

be found in around 30% of all human leukemias. And it is a common target for 

chromosome translocations in acute leukemias. These results are able to define 

RUNX1 as a tumor-suppressor gene219. 

 

Another transcription factor recognized for its interaction with BR-SMADS and 

RUNX2 is MENIN. Generated from MEN1 (multiple endocrine neoplasia 1) gene, 

MENIN seems to be necessary for mesenchymal stem cell differentiation towards 

osteoblasts lineage. A double role of MENIN is described, by the interaction of 

this factor with SMAD3, acting as a negative regulator of BR-SMAD/RUNX2 in 

the maturation phase of osteoblast differentiation222. Moreover, the YY1 (Ying 

Yang 1) transcription factor has been studied considering its importance in 

positive and negative gene regulation. Genes involved in TGF-β- and BMP-early 

response (regulated within few hours after activation of the pathway) such as PAI-

1 and ID1, were observed to be repressed by YY1. Inhibition of the transcriptional 

activities of SMADS have been found, in which YY1 can interact with SMAD4, 

SMAD1 AND SMAD2/3, and restricts their binding to DNA-binding elements223. 

 

One of the main target genes of the BMP signaling is ID (inhibitor of differentiation 

or inhibitor of DNA binding) protein. Four ID proteins have been identified (ID1-

ID4) and hold two main capacities; one is the duty as a negative regulator in cell 
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differentiation and the second is their ability to act as a positive regulator in cell 

proliferation199,205. ID genes represent early elements regulated in the BMP 

signaling. An increase in the expression of ID proteins can be also stimulated by 

the effect of other growth factors but BMPs represent a major element in 

synthesis of ID1, ID2 and ID3224. Furthermore, studies focused on the analysis of 

the ID1 promoter confirmed that its activity in cells was higher after BMP 

treatment, whereas no response to TGF-β was observed. And interestingly, the 

activation of the ID1 promoter was linked to the presence of SMAD1 or SMAD5 

and SMAD4225,226,227. Interaction of ID proteins with bHLH (basic helix-loop-helix) 

transcription factors have been reported. ID proteins are not able to bind DNA. In 

consequence, they drive antagonism of the transcription induced by basic HLH 

(helix-loop-helix) transcription factors such as MyoD and myogenin in muscle and 

NeuroD, Mash1 and neurogenin in neurons. BMP signaling is able to control 

differentiation in different lineages through ID gene expression. Ying and 

colleagues confirmed this idea, when they identified that BMP pathway induced 

ID1 expression, which was able to block embryonic stem (ES) cell differentiation 

and promote self-renewal218,228.  

 

New technologies as DNA microarray have allowed the identification of other 

BMP target genes. Using the osteoprogenitor cell line C2C12, it was possible to 

identify target genes of the pathway related to osteoprogenitor differentiation. 

Around 184 BMP-early response genes were found. The group of “immediate 

early genes” includes: ID1-ID3, SMAD6, SMAD7, OASIS, Prx2, TIEG and 

Snail229. 

 

 

 Role of BMP in hematopoiesis  

BMP molecules have been described in hematopoiesis regulation, for being 

involved in various levels of SC differentiation88,230,231,232,233. BMPs exhibit a 

highly important role in the formation of hematopoietic and endothelial precursors 

emerging from the ventral mesoderm234. Indeed, BMP2 and BMP4, alone or in 

combination with Activin A, have been shown to be involved in the regulation of 

erythropoiesis in various models. In particular, in Xenopus laevis embryos, 



 91 

ectopic expression of BMP4 results in the induction of several specific 

hematopoietic genes, such as transcription factors and the erythroid-specific 

globin234,235,236,237,238,239. Moreover, in human CD34+ progenitor population, BMP4 

exhibited the capacity to induce differentiation towards megakaryocytes through 

all stages240.  

 

BMP2, BMP4, BMP7, BMPR1A, and BMPR1B knock-out mice therefore have a 

lethal phenotype due to a lack of formation of hematopoietic tissues or a defect 

in the development of mesoderm or endoderm200. In vitro, BMP4 plays an 

important role in the induction of hematopoietic differentiation in human and 

murine embryonic stem cell models235,241. In mice, BMP co-receptor expressions 

have been detected during hematopoietic system development in early immature 

cells that display hematopoietic and endothelial potential242. Indeed, the induction 

of endothelin-dependent hematopoiesis requires response to BMP2 and BMP4 

modulation in the yolk sac. Moreover, a mouse knock-out model of SMAD5 

invalidation leads to a delayed lethal phenotype during development due to a yolk 

sac circulatory defect associated with an inhibition of progenitor expansion243,244. 

Homozygous BMP4-deleted mice display a lethal phenotype characterized by 

reduced extraembryonic mesoderm including blood islands245. More recently, it 

has been demonstrated that BMP pathway activation occurs in all hematopoietic 

cells during the hematopoiesis-emerging phase in aorta gonad mesonephros246. 

Interestingly, in the following steps of the hematopoietic process, these HSCs 

could distinguish themselves as being BMP-positive or BMP-negative and 

generate a majority of cells no longer activated by this pathway. These findings 

suggest a role for the BMP signaling axis in the regulation of HSC heterogeneity 

and lineage output. The role of BMPR-1A in regulating adult HSC development 

has been studied in vivo by analyzing mutant mice with conditional inactivation. 

These mice have an increased number of spindle-shaped N-cadherin CD45.2 

osteoblastic (SNO) cells, associated with an increased HSC number. This study 

showed that the BMPR-1A signaling pathway allows long-term HSC adhesion to 

SNO cells by the molecules N-cadherin and β-catenin and regulates the niche 

size247. 
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In human adult cells, phenotypic analysis revealed the expression of BMP 

receptors such as BMPR-1A and BMPR-1B and the expression of the effector 

elements of the canonical pathway, SMAD1/5/8, in CD34+CD38−Lin− cells248. 

Treatment of CD34+CD38− human cells with high concentrations of BMP2 and 

BMP7 blocks their proliferation while maintaining their immature phenotype. 

Conversely, treatment of the same subpopulation of cells with high 

concentrations of BMP4 maintains their ability to reconstitute immunodeficient 

mice. Conversely, low doses of BMP4 enhance cell proliferation rather than 

differentiation. In the same manner, CD34+ cells are expanded when treated with 

low doses of BMP7 without affecting their engraftment capacity in 

immunodeficient mice249. In addition, BMP4 regulates homing of murine and 

human hematopoietic stem/progenitor cells through the direct regulation of 

Integrin-alpha4 expression in SMAD-independent p38 MAPK-mediated 

signaling250. BMP2 or Activin A treatment alone decreases the expression of 

GATA-2 and increases the expression of EPO-R on CD34+ cells. SMAD6 

overexpression blocks erythropoiesis in vitro by transcriptional regulation of KLF1 

and GATA-2 and in- directly participates in HSC maintenance by blocking the 

differentiation process251. Conversely, only simultaneous treatment of BMP4 with 

Activin A is able to modulate erythropoiesis in a Follistatin- and FLRG-mediated 

way212. In addition, both Follistatin family members were described in human 

hematopoiesis regulation. Adhesiveness of human hematopoietic cells to 

fibronectin was controlled by Follistatin and FLRG252. Fibronectin plays an 

essential role in adhesion of human hematopoietic progenitors to the bone 

marrow. In consequence, this adhesion represents a crucial element mediating 

migration, retention, self-renewal, proliferation and differentiation of this 

population.  

 

In the murine system, BMP4 is able to induce erythrocyte differentiation of CD34+ 

cells in the presence of stem cell factor (SCF) and erythropoietin (EPO)253. 

Comparatively, in human cells, BMP4 in combination with various hematopoietic 

cytokines, including EPO, is able to induce several blood lineages from other 

human tissues. This unexpected cell fate has been demonstrated using human 

muscle and neural gestational tissue suspension cultured in a serum-free 
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medium with interleukin (IL) 3, IL6, SCF, and FLT-3 ligand with addition of EPO 

and BMP4231. Conversely, BMP4 alone is able to induce human 

megakaryopoiesis from CD34+ cells through the JAK/ STAT and mammalian 

target of rapamycin pathways. These data clearly showed that, unlike the murine 

system and despite their very high protein sequence homology and similar use 

of BMPR signaling, BMP2- and BMP4-soluble molecules exhibit very distinct 

effects on human HSCs. Interestingly similar observations were made for BMP2 

and BMP4 on the control of other human adult tissue stem cells such as 

mammary epithelial SCs254. 

 

 

 Cancer stem cells and the BMP pathway 

BMPs represent an important element in stem cell (SC) regulation, holding a wide 

range of essential tasks in embryonic development and tissue regeneration255. In 

hematopoiesis, BMP signaling maintains regulation of the HSCs controlling their 

maintenance and differentiation at distinct levels. In contrast, the pathway has 

been reported to be essential not only in normal SC but also in maintenance and 

differentiation of cancer stem cells (CSCs). CSCs are a malignant population 

holding the hallmarks of SCs, able to trigger cancer initiation and growth, and 

relapse according to several studies256.  

 

Signaling involved in stem cell regulation is a complex network of pathways with 

cross-talk signals. Although the precise role played by the BMPs in CSC 

regulation is still not completely understood, several studies have reported the 

involvement of elements of the pathway in this context. A study demonstrated the 

effect of BMP4 in epithelial to mesenchymal transition (EMT) but more 

importantly in the induction of a stem-like phenotype in oral squamous cell 

carcinoma257. Also, BMP2 cytokine was reported to increase motility and 

invasiveness capacity of colon cancer cells258. 

 

Crosstalk of the ligand BMP4 and HH signaling was reported in ovarian cancer.  

Where a population of human carcinoma-associated mesenchymal stem cells 

had the capacity to increase the number of CSCs and enhance resistance to 
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chemotherapy by activation of the crosstalk259. Another crosstalk interaction 

identified was described in an aggressive phenotype of colorectal cancer. Notch-

1 expression was observed together with other elements such as EMT/stemness-

associated molecules CD44, Slug and SMAD3260. 

 

Involvement of the BMP signaling in a specific CSC population, identified in 

hematological malignancies has been studied. The leukemic stem cells (LSCs) 

described for the first time in AML, present a narrow relationship with the BMPs. 

In CML, BMP alterations were reported in TKI-resistant patients. High expression 

of the receptor BMPR-1B and BMP4 were identified in LSCs from resistant 

patients261. 

 

Conversely, the BMP pathway has been already described for its role reducing 

the number of CSCs in certain cancers. For instance, BMP4 enhances 

differentiation, apoptosis and self-renewal capacity of CSCs, but also the cytokine 

renders CSCs more sensitive to chemotherapy262. BMPR-1B was described in 

glioblastoma, where its forced expression in CSCs enhances the differentiation 

of this population and loss of tumorigenicity263. In addition, Piccirillo and 

colleagues reported that BMP4 treatment of neural CSCs reduced their 

proliferation capacity and cells were pushed towards differentiation into neural 

precursors and their capacity for tumor formation was also diminished264. BMP2 

cytokine was able to repress the expansion and migration of renal cancer cells 

presenting ALDH+ activity. And also, the cytokine had an impact in 

downregulation of embryonic stem cell markers in these ALDH+ CSCs265. 

Moreover, in breast cancer, the heterodimer BMP2 / BMP7 presented a reducing 

effect of the number of CSCs exhibiting the phenotype ALDHhi/CD44hi/CD24low. 

Furthermore, this heterodimer diminished tumor invasion by inhibiting activation 

of TGF-β driven SMAD signaling266. 

 

 

 BMP signaling in solid cancer 

As mentioned during this chapter, the BMP signaling plays a major role from 

embryogenesis to adult tissue homeostasis in an enormous number of tissues all 
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over the body. Nevertheless, the BMP pathway also has been studied due to its 

importance in carcinogenesis, where it is able to control regulation of cancer cells 

and the tumor microenvironment267. Molecules from the TGF-β pathway are well-

known by their double function in cancer, at early stages acting as a tumor 

suppressor and as a tumor promoter during late stages of the disease268. Several 

research studies describe the BMP signaling as a contradictory pathway, which 

can play a double role either as a suppressor or as a promoter in cancer. And 

this double function of the BMPs seems to be linked to the type of cancer199.  

 

Genetic mutations of the different BMP pathway elements have been described 

in several studies. For instance, mutations of the genes encoding the receptor 

BMPR-1A and co-factor SMAD4, were identified in polyposis syndrome which 

presents a high risk factor in cancer development269,270. Dysregulation of the BMP 

signaling is also present in colorectal cancer (CRC), where mutations of BMPR-

1A and SMAD4, combined to lack of phosphorylated SMAD1/5/8 have been 

identified271,272. In the context of CRC, the BMP pathway is also able to regulate 

the initiation and evolution of this cancer depending of the SMAD4 and p53 

status, by regulating the Wnt pathway. Initiation, metastasis and chemosensitivity 

in CRC are linked to the activation of the Wnt signaling. Voorneveld and 

colleagues described inhibition of the Wnt pathway through activation of the BMP 

signaling. This was only achieved when SMAD4 was present and p53 exhibited 

no mutations273. 

 

Prostate cancer (PC) progression has been reported to be related to an increased 

BMP expression. This type of cancer is commonly characterized by 

osteosclerotic bone metastasis. Significant preclinical data corelates the 

osteoblastic promotion in prostate cancer to be driven by BMP6256. In addition, 

invasion of the bone microenvironment by the prostate cancer cells is enhanced 

thanks to the BMPs. Overexpression of BMP7 has been described in PC as a 

marker for clinical progression but also in vivo and in vitro studies linked its 

upregulation with hepatocyte growth factor (HGF) and scatter factor (SF)274. On 

the other hand, BMP10 presented an effect of suppression in growth and 

aggressiveness of PC cells inducing their apoptosis through activation of the 

SMAD-independent pathway274. 
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Moreover, breast cancer is another malignancy in which the BMP signaling has 

been largely described. BMP2 and BMP4 have been defined as proteins involved 

in regulation of fate and differentiation of human mammary epithelial stem cells. 

BMP2 promotes luminal progenitor commitment and expansion while BMP4 

avoid lineage differentiation.  Interestingly, external factors such as pollutants can 

impact the BMP signaling. For example, bisphenol A (BPA) modified localization 

of type 1 receptors and pre-activated the BMP signaling in a mammary cell line 

(MCF10A). In this study, BMP4 drove cell differentiation to a myoepithelial 

phenotype due to the effect of BPA. Also, BPA avoided the BMP2 effect in the 

luminal commitment and expansion, which produces the maintenance of stem-

like properties275. In addition, interaction of BMP2 ligand and BMPR-1B has been 

reported as an initiator of epithelial stem cell transformation into a luminal tumor-

like phenotype276. 

 

Studies based on pancreatic cancer demonstrated that BMP2 highly contributes 

to tumor growth, confirmed in both a tumor cell line and a xenograft mice model. 

In this case, activation of the SMAD-signaling was observed through 

immunohistochemistry, where phosphorylated SMAD1/5/8 was found. The use 

of the molecule Spp24 (secreted phosphoprotein 24 kD) produced blocking of 

BMP2 and tumor reduction277. Also, BMP2 and BMP4 are greatly cited due to 

their role in lung cancer. BMP2 overexpression has been found in non-small cell 

lung carcinoma (NSCLC) and also enhanced tumor growth in mice after injection 

of the lung cancer cell line A549278. 

 

Cancer progression is characterized by modification of the cancer cells in 

different aspects such as morphology, adhesive capacity to other cells or to the 

extracellular matrix (ECM). Invasion and distant metastasis are a result of those 

changes in cancer cells; these cells employ normal mechanisms as wound 

healing, epithelial to mesenchymal transition (EMT), tissue specific 

morphogenesis and cellular motility to achieve cancer sustainment and 

metastasis. The BMP pathway seems to be one of the elements that grants 

migratory and invasive properties to cancer cells268. Activation of the pathway has 

been identified as an element inducing EMT279. For instance, in prostate cancer 

cell lines, BMP2 and BMP4 increased their motility and invasiveness capacity280. 
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BMP2 was also reported to promote invasion and tumor growth in breast 

cancer281. Increased adhesion, motility and invasion of cancer cells were also 

reported in colon cancer and gastric cancer. In colon cancer, the BMP4 

overexpressing cells displayed these features, while gastric cancer cells 

exhibited these characteristics due to activation of the PI3K pathway stimulated 

by BMP2282, 283. 

 

 

 BMP signaling in leukemias 

BMP pathway is a major actor in hematopoiesis as described previously during 

this chapter. In contrast, BMPs have been identified for playing an important role 

not only in solid cancers as presented during this chapter, but also diverse studies 

have shown dysregulation of elements of the pathway in hematological 

malignancies. BMP signaling presents the double role showed in solid cancers, 

acting either as a tumor suppressor or as tumor promoter199. 

 

3.7.1 Lymphoid leukemias 

Various research groups have started to investigate the role of the BMP pathway 

in lymphoid leukemias. Using different patient cohorts, BMP2 overexpression has 

been identified in pre-B acute lymphoblastic leukemia (ALL) compared with 

CD34+ healthy cells, but not in T-cell ALL. This BMP2 overexpression was 

associated with alteration of other genes involved in the dialogue of immature 

leukemic cells with their bone marrow microenvironment284. In addition, 

overexpression of BMPR1A/BMPR1B and BMPR2 receptors was detected at the 

cell membrane of B-cell chronic lymphoid leukemia (CLL) leukemic cells. 

Moreover, disease progression seemed to be accompanied by a more 

pronounced overexpression of BMPR1A and BMPR1B, as measured in samples 

from patients in more advanced stages285. These findings suggest that 

overexpression of the receptor could favor the proliferative process. Finally, 

analysis of gene expression of the BMP signaling pathway in a cohort of 160 CLL 

patient samples showed alterations of SMAD1/8 that appeared overexpressed 

and correlated with a decrease in SMAD4 expression compared with control 

samples. High levels of SMAD1/8 transcripts expression were associated with 
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poor prognosis286. Interestingly, gene expression analysis of two independent 

datasets showed that the levels of inhibitory Smads varied across different B-cell 

lymphomas287. In this context, the BMP pathway acts as a negative factor with 

exogenous BMPs, especially BMP7, that inhibit DNA synthesis of lymphoma 

cells. SMAD7 overexpression in cancer cells is sufficient to escape the negative 

effects of BMPs by inhibiting SMAD 1/5/8 signaling203.  

 

3.7.2 Myeloid leukemias 

3.7.2.1 Acute myeloid leukemia  

BMP pathway alterations have started to be studied in AML. Nevertheless, few 

evidences have been found and described regarding the role and mechanism of 

dysregulation of the pathway in these heterogeneous hematological 

malignancies. In this sense, BMP4 has been associated with AML in adults by 

the direct induction of MIXL1 (Mesoderm Inducer in Xenopus Like 1) gene 

through the binding of the cytokine and the BMP type I receptor, involving the 

activation of Smad signaling (SMAD5). MIXL1 factor grants the AML cells an anti-

apoptotic function which can explain the drug resistance of AML cells288. In 

addition, activation of the BMP signaling has been demonstrated in pediatric 

acute megakaryoblastic leukemia (AMKL), where the fusion protein CBFA2T3-

GLIS2 is responsible of BMP2 / BMP4 and ID1 overexpression linked to an 

increased self-renewal capacity in hematopoietic progenitors289. 
 

Acute promyelocytic leukemia (APL) has also been part of several studies. 

Though APL represents a type of AML with a high rate of complete remission in 

patients treated by all-trans retinoic acid (ATRA), resistance to treatment can be 

seen in some patients. The mechanism of resistance seems to involve BMP4 / 

BMP6 gene expression driving in consequence the expression of genes involved 

in blocking of differentiation as ID1 and ID2. This has been correlated to 

PML/RARα fusion oncogene which is able to block differentiation of abnormal 

promyelocytes and induce resistance290. 

  



 99 

3.7.2.2 Chronic myeloid leukemia  

Studies performed by our team revealed both intrinsic and extrinsic deregulation 

of the BMP pathway in CML as early as at the time of diagnosis in chronic 

phase291. We demonstrated higher expression levels of the BMPR-IB receptor 

ALK6 in CD34+ cells, together with the existence of several molecular and 

functional alterations of the BMP pathway in chronic-phase CML. We also 

detected high concentrations of the soluble cytokines BMP2 and BMP4 produced 

exclusively by the tumor microenvironment. These alterations participate in the 

leukemic phenotype through their involvement in the survival of LSCs and in the 

expansion of leukemic myeloid progenitors. These data were further confirmed 

by other groups showing that BMP2/BMP4 and BMP7, together with their 

receptors and SMAD proteins, contribute to myeloid cell alteration, giving rise to 

CML LSCs292,293. Our study demonstrated for the first time that very early 

transforming events initiate intrinsic deregulation of the BMP signaling pathway 

in stem cells. Indeed, introduction of the BCR-ABL oncogene results in an 

increase in BMPR1b cell membrane expression291. This deregulation is then 

specifically amplified in transformed cells by exposure to exogenous ligands such 

as BMP2/BMP4 provided by the SC microenvironment254.  

 

Later during disease progression, the CML leukemic bone marrow niche that 

produces high levels of BMPs can be suspected to be at the origin of secondary 

myelofibrosis. Indeed, this alteration, often reported upon CML evolution, 

represents an overproduction of extracellular matrix that has been previously 

attributed to excessive BMP cytokines within the BM niche294. 
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II. AIM OF THE STUDY 
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1 Research problem 

Acute myeloid leukemias are heterogeneous malignancies, defined by abnormal 

differentiation and clonal proliferation of the myeloid progenitor population 

(blasts) in bone marrow and peripheral blood105. This hematological disorder 

represents 80% of acute leukemias in adults. A high rate of relapse combined to 

a poor prognosis specially for patients above 65 years old is a common outlook, 

where 70% of these patients face mortality within one year subsequent to 

diagnosis104. The presence of leukemic stem cells (LSCs), described for the first 

time in this type of leukemia167, has been recognized to be at least partially 

responsible for relapse, resistance and poor prognosis in AML patients. Standard 

chemotherapy, allogenic and autologous transplants have failed to eradicate 

LSCs. Development of more specific and effective therapies targeting the LSCs 

represents a promising approach in AML treatment.  

 

In order to generate new therapies, it is imperative to understand the mechanisms 

that govern the regulation of LSCs. Several research studies have shown the 

importance of signaling pathways in AML development and LSC maintenance. 

External signals within the tumor microenvironment are transduced into the 

leukemic cells which activate the intracellular signaling295,296. The bone 

morphogenetic proteins (BMP) pathway represents a key player in hematopoiesis 

and HSC regulation. Conversely, in a malignant context, BMPs have been 

studied for their role in LSC regulation203.  

 

In chronic myeloid leukemia (CML), our research team has identified alterations 

of the pathway in the tumor niche. High concentrations of BMP2 and BMP4 within 

the tumor microenvironment were observed291. Moreover, LSCs from TKI 

resistant patients displayed high expressions of BMP4 and BMPR1B receptor261. 

 

The role of the BMP pathway has not been widely studied in AML and few 

evidences have been reported. Nevertheless, BMP4 ligand and BMP type I 

receptor have been described as inducers of MIXL1 gene, which grants anti-

apoptotic functions to leukemic cells in AML. In addition, activation of the SMAD 

signaling (SMAD5) was also identified288. Furthermore, research work conducted 
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in acute megakaryoblastic leukemia (AMKL) reported overexpression of 

BMP2/BMP4 and of the target gene ID1 in hematopoietic progenitors related to 

an increased capacity of self-renewal289. 

  

Based on the context described above, for the present thesis research project, 

identification of alterations of the extrinsic and intrinsic elements of the BMP 

pathway in acute myeloid leukemia became an essential goal. Understanding the 

BMP signaling dysregulation represents the path to decipher the key role played 

by the pathway in LSC regulation and resistance in acute myeloid leukemias. 

 

 

2 Aim of the project 

The aim of the present thesis research project is to decipher the role played by 

the BMP signaling pathway in leukemic stem cell regulation and resistance in 

acute myeloid leukemia. 

 

 

 Objectives 

In order to achieve the aim of the present research project, the following 

objectives have been established: 

 

I. Obtain a large cohort of bone marrow (BM) and peripheral blood (PB) AML 

patient samples at diagnosis and healthy samples used as control.  

II. Analyze the tumor and healthy microenvironments, by measuring the 

concentration of soluble cytokines BMP2 and BMP4 in the plasma of AML 

and healthy samples. 

III. Isolate the mononuclear cells (MNCs) from AML and healthy samples, in 

order to analyze at the transcriptional and protein levels the expression of 

intrinsic and extrinsic elements of the BMP pathway (ligands-receptors-

target genes of the pathway). 

IV. Analyze membrane expression of BMP type I receptors, using MNCs 

obtained from BM and PB AML and healthy individuals. 
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V. Evaluate the impact of soluble BMP cytokine in the immaturity phenotype 

of MNCs from AML and healthy samples.  

VI. Perform functional (CFC/LTC-IC) assays and ALDH activity to identify 

modifications in the immature phenotype of the leukemic cells. 

VII. Verify and compare the results obtained in AML and healthy individual 

specimens, using in parallel an AML cell line model (KG1A). 

VIII. Analyze the correlation between BMP pathway elements and AML patient 

outcome.  

IX. Obtain AML samples from relapse patients to evaluate the transcript and 

protein levels of BMP signaling extrinsic and intrinsic elements. 

X. Employ AML resistant cell lines as models that reproduce the resistance 

mechanisms of AML primary cells, to evaluate the status of intrinsic and 

extrinsic elements of the BMP pathway.   
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III. RESULTS 
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1 Article 1: A new signaling cascade linking BMP4, BMPR1A, 
ΔNp73 and NANOG impacts on stem-like human cell 
properties and patient outcome 

Introduction 
Bone marrow (BM) microenvironment represents the niche where functional 

activities of hematopoietic stem cells (HSCs) are regulated297. In the context of 

cancer, studies have revealed the importance of the tumor niche in cancer stem 

cell (CSC) maintenance and protection298. Leukemic stem cells (LSCs), 

described for the first time in acute myeloid leukemia (AML)167, have been 

proposed as main actors in relapse, resistance and poor prognosis299. LSC 

regulation and protection seems to be granted by the tumor niche and crosstalk 

between signaling pathways and LSCs300.  

 

The BMP pathway is well-known for its key role in stem cell (SC) regulation. 

Several studies have highlighted the involvement of the pathway in solid cancer 

and leukemias. For instance, BMP2 and BMP4 have been identified as crucial 

elements in regulation of normal and cancer SC248. Our research team has 

described in chronic myeloid leukemia (CML), alterations of the pathway involving 

BMP2/BMP4 and the receptor BMPR1B. This dysregulation holds an impact in 

LSC resistance and poor prognosis291,261. Furthermore, some studies have 

started to elucidate the role of the pathway in AML. BMP4 and BMP type I 

receptors have been identified as inducers of MIXL1 expression, which is linked 

to AML initiation288. In addition, in acute megakaryoblastic leukemia (AMKL) the 

fusion protein CBFA2T3-GLIS2 was reported to be a factor leading to 

BMP2/BMP4 and ID1 overexpression in leukemic cells, which is linked to 

acquisition of immature properties289.   

 

The aim of this research work was to elucidate the extrinsic and intrinsic 

alterations of the BMP pathway in the tumor niche and the leukemic cells in AML, 

by identifying the crosstalk of this signaling with other related genes involved in 

promotion of a more immature phenotype in the leukemic cells.  
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Conclusions 
Within the present research study, we have identified high concentrations of 

soluble BMP2 and BMP4 in plasma from BM AML samples. This confirmed the 

extrinsic alteration of the pathway in the tumor niche. In addition, mononuclear 

cells (MNCs) isolated from AML patients at diagnosis, displayed overexpression 

of BMPR1A receptor and of the target gene of the pathway ID1 compared to 

healthy samples; whereas BMP2 and BMP4 transcript levels remained similar to 

those from healthy individuals, suggesting that BMPs overproduction comes from 

another element in the niche. Moreover, transcript levels of the anti-apoptotic 

isoform ΔNp73 were identified to be higher in MNCs from AML patients than in 

normal BM. After finding strong correlation between BMPR1A and ΔNp73, we 

have confirmed in MNCs from AML samples, that BMP4 binding to BMPR1A 

induced expression of ΔNp73, triggering a signaling cascade described for the 

first time, leading to NANOG induction by ΔNp73. This new signaling cascade 

seems to drive leukemic cells into a more immature phenotype, assessed by 

ALDH activity and their colony forming capacity in the LTC-IC functional assay. 

Finally, we have identified association of BMPR1A/ΔNp73/NANOG 

overexpression at diagnosis with an increased rate of relapse. Suggesting these 

elements as new potential prognosis markers. 

 

In conclusion, our research study has started to decipher the specific elements 

of the BMP pathway and related genes involved in the induction of a more 

immature phenotype or “stem-like” state of leukemic cells in AML.  
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2 Complementary data: BMP signaling in leukemic stem cell 
resistance in AML 

 

 INTRODUCTION 

The tumor microenvironment has been described as having a key role regulating 

and protecting cancer stem cells (CSCs)298. Cellular and molecular components 

in the tumor niche combined with signaling crosstalk represent the elements 

driving the regulation of CSCs301,302. The BMP pathway has been shown to be 

important in tumor initiation and progression, but also represents an essential 

signaling in CSC regulation and resistance203. 

 

As described in our former article, the BMP signaling pathway promotes an 

immature phenotype in leukemic cells from acute myeloid leukemias (AML). The 

presence of leukemic stem cells (LSCs) in AML seems to be at least partially 

responsible for relapse and poor prognosis299.  

 

BMPs have been described in leukemias due to their role in LSC regulation. In 

CML, our team identified high levels of BMP2 and BMP4 in the tumor niche291, 

while BMP4 and BMPR1B were overexpressed in LCSs from TKI resistant 

patients261. BMP4 ligand was also reported to be responsible to induce MIXL1, a 

gene involved in AML initiation288. Moreover, BMP2/BMP4 and ID1 

overexpression has been related to immature features of leukemic cells in acute 

megakaryoblastic leukemia (AMKL)289. 

 

Our previous results, identified BMP4 as a key actor inducing stem-like features 

via the binding to its overexpressed receptor BMPR1A and driving induction of 

ΔNp73 and NANOG expression in leukemic cells. Evaluation of the status of 

these elements in AML resistant and relapse models, might elucidate the 

mechanisms employed by the LSCs against chemotherapy.  

 

  



 120 

 MATERIAL AND METHODS 

Primary samples at diagnosis and relapse 
The cDNA employed to perform RT-qPCR was obtained from AML peripheral 

blood (PB) samples at diagnosis (n = 36) and relapse (n = 8).  

 
Primary cells at diagnosis and treatments 
Patient samples were obtained after informed consent in accordance with the 

Declaration of Helsinki in the hematology departments involved in this study 

(Hospices Civils de Lyon (HCL) and Centre Léon Bérard (CLB)). Mononuclear 

cells (MNCs) from AML 12 bone marrow (BM) samples ((M0 = 2), (M1 = 3), (M2 

= 1), (M4 = 4), (M5 = 2) were obtained from patients at diagnosis, excluding acute 

promyelocytic leukemia (M3). Primary cells were cultured with IMDM culture 

medium (ThermoFisher) containing 15% BIT 9500 (Serum substitute StemCell 

Technologies). Primary cells were treated during 72 hours with Cytarabine (ARA-

C) (Ebewe-Sandoz) at different concentrations (0.2μg/ml-0.5μg/ml). Surviving 

cells to ARA-C will be referred in the following study as short-term resistant MNCs 

and control as untreated MNCs. 

 

AML sensitive and resistant cell lines 
AML resistant cell lines to 0.2μg/ml ARA-C were generated by Margaux Deynoux, 

PhD student of Dr. Fréderic Mazurier in the team of Pr. Olivier Herault’s laboratory 

(Université de Tours: Team Niche leucémique et métabolisme oxydatif). The AML 

sensitive and resistant cell lines obtained correspond to different AML subtypes 

from the FAB classification listed below.  
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Resistant cell line generation 
KG1A myeloid leukemia cells were cultured in RPMI-1640 medium 

(ThermoFisher) containing 10% fetal calf serum (FCS). Chronic exposure of the 

cells to ARA-C gradually increasing was performed, until KG1A cell line resistant 

to 0.2μg/ml was obtained. 

 

RNA isolation and analysis 
Quantitative RT-PCR was performed using standard protocols240. MNCs were 

isolated by a Ficoll gradient and total RNA was purified using TRI REAGENTTM 

(Sigma) and the mini-RNA extraction kit (Qiagen, Valencia, CA). For RT-qPCR, 

cDNA was produced using Superscript II (Invitrogen) and amplified using Sybr-

green (Quantifast, Qiagen) and the Real-Time PCR system (Roche). TBP (TATA-

binding protein) and HPRT (hypoxanthine- guanine phosphoribosyl transferase) 

genes were used for normalization. Arbitrary unit (AU) corresponds to the ratio of 

expression between samples and a single normal sample used as a reference in 

each PCR. 

 

Flow cytometry analysis 
Cells were incubated with antibodies specifically recognizing CD34, CD38 

(Becton Dickinson) and/or BMPR1A (R&D System), or an irrelevant isotype-

matched control antibody. 
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 RESULTS 

2.3.1 ΔNp73 status in relapse AML patients 

In our previous study, we identified high transcript levels of the isoform ΔNp73 

and NANOG in MNCs obtained from AML BM samples at diagnosis. Due to their 

role reported in by other studies in resistance and relapse, we hypothesized that 

expression of these two genes might be higher in AML patients at relapse 

compared to patients at diagnosis. In order to determine this, we used cDNA from 

AML PB samples at diagnosis and relapse, to measure the transcript levels of 

these two elements. We identified significant (P = 0.0284) higher transcript levels 

of ΔNp73 at relapse compared to samples at diagnosis. While no significant 

difference was observed in NANOG expression between diagnosis and relapse 

patients (Figure 18).  
 

 

 
Figure 18. Higher ΔNp73 transcriptional expression is observed in AML samples 
at relapse compared to samples at diagnosis. mRNA expression of ΔNp73 and 

NANOG evaluated in PB AML samples at diagnosis (n = 33-36) and relapse (n = 7-8) by 

RT-qPCR. Arbitrary unit (AU): relative expression compared to a healthy sample used 

as a reference for each PCR experiment. Statistical analysis: P values were determined 

using the Mann-Whitney unpaired rank test. *P < 0.05. 
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2.3.2 Status of BMP elements and stemness genes in short-term 
resistant AML leukemic cells 

The high mRNA levels of ΔNp73 in relapse patients suggested that AML leukemic 

cells from these patients might possess a more immature phenotype leading to 

resistance. Although NANOG was not significantly overexpressed in AML relapse 

samples, the use of AML bone marrow samples could be more significant due to 

the idea of a higher presence of LSCs. Therefore, we obtained AML BM samples 

at diagnosis and isolated the mononuclear cells (MNCs). As described in the 

Material and Methods section, untreated and short-term resistant MNCs from 

AML samples were used to evaluate the transcript expression of a panel of 

genes, which we have identified overexpressed in AML patients at diagnosis as 

part of our previous study. When we analyzed the gene expression profile of 

untreated and resistant MNCs, we identified that short-term resistant MNCs to 

0.2μg/ml ARA-C displayed significant higher transcript levels of BMPR1A (P = 

0.0386), ΔNp73 (P = 0.0014), NANOG (P = 0.0294), SOX2 (P = 0.0072) and ID1 

(P = 0.0333) compared to untreated MNCs (Figure 19A). Moreover, short-term 

resistant MNCs to 0.5μg/ml ARA-C displayed significant higher transcript levels 

of BMPR1A (P = 0.0171), ΔNp73 (P = 0.0043), NANOG (P = 0.0283), SOX2 (P 

= 0.0052) and ID1 (P = 0.0012) compared to untreated MNCs. Only the 

expression of BMPR1B receptor remained unchanged between resistant and 

untreated MNCs (Figure 19A). As we identified overexpression of elements 

linked to stemness features, we analyzed the CD34/CD38 status in untreated and 

resistant MNCs from one AML sample by flow cytometry. We observed that 

MNCs resistant to 0.2μg/ml and 0.5μg/ml ARA-C contained a more enriched 

population of CD34+CD38- leukemic cells compared to untreated MNCs (Figure 
19B). In addition, using the previous AML sample where we evaluated the 

CD34/CD38 status, we identified a higher percentage of BMPR1A+ cells in the 

short-term resistant MNCs compared to the untreated leukemic cells by flow 

cytometry (Figure 19C). 
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Figure 19. Short-term resistant primary leukemic cells displayed stem-like features 
identified by its gene expression profile, CD34+CD38- phenotype and BMPR1A 
membrane expression. A. mRNA expression of BMP receptors: BMPR1A and 

BMPR1B, the isoform ΔNp73, stemness genes: NANOG and SOX2 and the BMP target 

gene: ID1. Evaluated in untreated and short-term resistant MNCs from AML BM samples 

at diagnosis (n = 12) by RT-qPCR. Arbitrary unit (AU): relative expression compared to 

a healthy sample used as a reference for each PCR experiment. Statistical analysis: P 

values were determined using the Mann-Whitney unpaired rank test. *P < 0.05; **P < 

0.01. B. Flow cytometry analysis identifying the percentage of CD34+CD38- population 

in untreated and short-term resistant MNCs from one AML BM sample at diagnosis. C. 
Percentage of MNCs untreated and short-term resistant to ARA-C, from one AML BM 

sample, expressing BMPR1A at the membrane determined by flow cytometry. 
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Identification of the gene expression profiles in untreated and short-term ARA-C 

resistant MNCs, allowed us to evaluate a potential correlation between the 

transcript level of these genes and the survival capacity of MNCs to ARA-C. We 

found that BMPR1A overexpression was significantly correlated with a better 

survival capacity of MNCs to 0.2μg/ml ARA-C treatment (P = 0.0155). While no 

significant correlation was observed between the other genes analyzed and cell 

survival capacity (Figure 20). 
 
 

 
Figure 20. Cell survival capacity of short-term resistant MNCs to 0.2μg/ml ARA-C 
is correlated with a high mRNA BMPR1A expression. Correlation between mRNA 

levels of BMPR1A, BMPR1B, ΔNp73, NANOG, SOX2, ID1 and cell survival capacity of 

short-term resistant MNCs to 0.2μg/ml ARA-C from AML BM samples (n = 12). Statistical 

analysis: Spearman’s nonparametric test. 
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2.3.3 Gene expression profile linked to stem-like features in AML 
resistant cell lines 

Short-term resistant MNCs presented overexpression of genes involved in the 

signaling cascade promoting immature features. Therefore, we decided to 

compare these results with AML sensitive and resistant cell lines. We analyzed 

the gene expression profile of BMPR1A, ΔNp73, NANOG and ID1 in AML cell 

lines resistant to ARA-C. The selection of these genes was due to the fact that 

they have been linked to print an immature phenotype in leukemic cells 

(BMPR1A-ΔNp73-NANOG), while ID1 is also known as an inhibitor of 

differentiation linked to resistance.  

 

The AML cell lines employed correspond to different AML subtypes from the FAB 

classification as described in the section Material and Methods. For most of the 

resistant cell lines, we have observed higher expression of BMPR1A compared 

to sensitive cells, except for HL60, MV4-11 and U937 cells. ΔNp73 transcript 

levels were also higher in resistant cells compared to sensitive cells excluding 

KG1, THP1 and U937 cell lines. The stemness gene NANOG appeared higher in 

resistant cells compared to sensitive cells apart from KG1A, KG1, HL60 and MV4-

11 cell lines. Finally, ID1 expression was reported higher in the resistant cell lines 

compared to their sensitive parental cell line, except for KG1A, KG1 and 

U937cells (Figure 21).  
 

Since KG1A is the best model for immature AML M0/M1 subtype, we decided to 

select sensitive and resistant KG1A cell lines to analyze in more detail the status 

of genes involved in the signaling cascade promoting immaturity, which we 

evaluated in short-term resistant MNCs. Nonetheless, before developing the first 

experiments we assessed the immature phenotype of KG1A and KG1A-R cell 

lines by flow cytometry. KG1A cell line displayed a CD34+CD38- phenotype, 

whereas KG1A-R cells displayed an unexpected CD34-CD38- phenotype (Figure 
22). The typical KG1A phenotype is described as positive marker CD34 and 

negative for CD38. For this reason, we decided to develop a new KG1A resistant 

cell line to ARA-C and identify if the CD34 marker is lost due to a normal process 
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caused by resistance or consequence of a drift of the cell line produced by long 

culture during development of resistance. 

 

 
 

 
Figure 21. Profile of expression of genes linked to stem-like features and blocking 
of differentiation in sensitive and resistant AML cell lines.  mRNA expression of 

BMPR1A receptor, anti-apoptotic isoform ΔNp73, stemness gene NANOG and inhibitor 

of differentiation ID1 in sensitive and resistant AML cell lines by RT-qPCR. Arbitrary unit 

(AU): relative expression compared to a healthy sample used as a reference for each 

PCR experiment. 
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Figure 22. CD34/CD38 phenotype of sensitive and resistant KG1A cell lines. The 

status of immaturity was evaluated by analyzing the markers CD34 and CD38 in KG1A 

and KG1A-R cell lines by flow cytometry.  

 

 

 
2.3.4 Development of the resistant KG1A cell line and 

characterization 

The KG1A resistant cell line developed by our team, was characterized by 

analyzing the expression of genes involved in promoting the immature phenotype 

of AML leukemic cells (BMPR1A, ΔNp73, NANOG) and the target gene of the 

BMP pathway ID1 involved in blocking of differentiation and resistance. 

Performance of RT-qPCR reported higher mRNA levels of BMPR1A, ΔNp73, 

NANOG and ID1 in KG1A resistant cells compared to sensitive cells (Figure 
23A). This profile corresponds to the gene expression reported in cells obtained 

from the Pr. Olivier Herault’s laboratory. 

 

Furthermore, we analyzed the CD34/CD38 status of both cell lines, identifying 

that 80.9% of sensitive KG1A cells exhibited a CD34+CD38- phenotype, whereas 

60.8% of resistant KG1A cells displayed the immature phenotype CD34+CD38- 

(Figure 23B). 
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Figure 23. Characterization of KG1A sensitive and resistant cell lines, based on 
their mRNA expression of genes promoting stem-like features/blocking of 
differentiation and immature phenotype. A. Transcriptional expression of BMPR1A 

receptor, ΔNp73, NANOG and ID1 in KG1A sensitive and resistant cell lines by RT-

qPCR. Arbitrary unit (AU): relative expression compared to a healthy sample used as a 

reference for each PCR experiment. B. Evaluation of the immaturity state CD34/CD38 

of KG1A sensitive and resistant cell lines by flow cytometry.  
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IV. DISCUSSION 
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1 Tumor microenvironment: BMP dysregulation in AML 

The tumor niche has been identified as an essential factor extensively studied in 

cancer. Composed of several cellular and molecular components, the niche 

represents a major element in CSC maintenance and survival303,302. Relapse and 

poor prognosis are key words in AML. Presence of LSCs in the tumor niche is 

often related to resistance, which is eventually is able to drive relapse and poor 

prognosis300. Understanding the mechanism by which the tumor niche regulates 

LSC survival represents one of the main steps in order to develop new 

therapeutic approaches.   

 

The BMP pathway has been described in several studies as being involved in 

HSC regulation248 and in a malignant context, the signaling has been described 

in LSC maintenance. In my research project, the identification of BMP alterations 

in the AML tumor niche was the first element that allowed the recognition of a 

signaling cascade regulating LSCs. 

 

Analysis of extrinsic elements of the BMP signaling in the tumor niche, led us to 

identify high concentrations of BMP2 and even higher BMP4 cytokine levels in 

plasma AML samples compared to healthy donors. These first results correlate 

with previous studies from our research team, where we identified high 

BMP2/BMP4 concentrations in the tumor niche of luminal breast cancer and 

CML254,291. In order to confirm if the overproduction of BMPs was generated by 

the leukemic cells, MNCs from AML and healthy samples were isolated and 

transcriptional gene analysis performed. Expression of both ligands was slightly 

decreased in leukemic cells compared to healthy specimens. This excludes an 

autologous BMP production by the malignant cells, suggesting that another cell 

component within the tumor niche is responsible for this BMP secretion. A similar 

profile of BMP4 overproduction was reported by our team in the CML tumor niche. 

In this case, high transcript BMP4 expression was observed in MSCs from CML 

patients compared to healthy donors. In addition, MSCs derived from CP-CML 

patients, showed high BMP4 production compared to healthy MSCs261. An 

interesting perspective is to identify if MSCs derived from AML patients possess 

the capacity to produce high levels of BMPs as reported in CML.   
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Another approach to identify the cellular component responsible for this BMP 

overproduction would be through the obtention of AML and healthy bone marrow 

tissue samples. Immunohistochemistry (IHC) would allow to identify the presence 

of cells with higher BMP2/BMP4 expression in the niche. As shown by our team, 

in breast cancer a similar overproduction of BMP2 was observed in the 

microenvironment. IHC performed in basal tumors identified stromal and 

endothelial cells as the positive population expressing BMP2 responsible for the 

high levels of the cytokine in the tumor niche254.   

 

MSCs have been described in AML due to their role building a leukemic tumor 

niche304. Huang and colleagues recently showed that MSCs derived from BM 

AML patients, exhibited different cytokine production compared to MSCs derived 

from healthy donors. Some of these cytokines were MCP-1 (Monocyte 

Chemoattractant Protein-1), G-CSF and IL-6. When MSCs were co-cultured with 

AML blasts, the cytokines produced by the MSCs enhanced growth and inhibited 

apoptosis305. Interestingly, these cytokines are linked to BMPs. For instance, 

enhanced expression of the inflammatory cytokines MCP-1 and IL-6 by BMP2 

has been reported through SMAD activation306. In breast cancer, BMP2 and IL-6 

have been identified for their role promoting malignant transformation of 

mammary epithelial cells254. While MCP-1 has been reported to be 

overexpressed in the aggressive type of triple-negative breast cancer. This data 

confirmed the importance of BMPs in the tumor niche and the interaction of these 

cytokines with other molecules involved in cancer development and progression.   

 

Therefore, confirmation that BMP2/BMP4 overproduction in AML is linked to 

MSCs would allow to understand how the tumor niche regulates LSCs, through 

secretion of different cytokines or growth factors. Based on this, co-culture 

experiments using MSCs with AML blasts or healthy BM MNCs represent an 

attractive perspective. Adding standard drug chemotherapy in this co-culture 

experiments would help to identify if MSCs are able to grant protection and 

resistance to AML blasts, through cytokine secretion as BMP2 or BMP4 

overproduction or a combination of other cytokines.  
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2 Intrinsic alterations of the BMP pathway in AML leukemic 
cells 

After identifying BMPs overproduction within the niche. MNCs were isolated from 

AML and healthy samples. BMP2 and BMP4 transcript levels remained 

decreased in BM leukemic cells compared to healthy MNCs. Conversely, we 

reported overexpression of BMPR1A receptor and target genes of the pathway 

as ID1 and RUNX1 in BM and PB MNCs from AML samples compared to healthy 

donors. Our results present similarities with recent publications. For instance, 

Raymond and colleagues identified the induction of MIXL1 gene in AML through 

the interaction of BMP type I receptors and BMP4 ligand288. Interestingly, in CML 

it was the BMPR1B receptor overexpressed at transcriptional level261, suggesting 

probably two different mechanisms of BMP dysregulation when comparing AML 

and CML malignancies. In addition, overexpression of the inhibitor of 

differentiation ID1 has also been reported in acute megakaryoblastic leukemia 

(AMKL)289. While RUNX1 has been reported in AML due to its role promoting 

leukemic cell growth307. 

 

BMP4 has been described in several aggressive types of cancer such as 

colorectal cancer (CRC)308, gastric adenocarcinoma309, hepatocellular 

carcinoma310 and squamous cell carcinoma of the head and neck311. And 

BMPR1A receptor has been described in breast cancer as a tumor promoter312 

and also high expression of this receptor has been reported in liposarcoma 

relapse313. Although BMP4 transcript levels are not altered in AML blasts, the 

high levels of BMP4 within the niche and the transcript overexpression of 

BMPR1A, started to suggest the importance of these two elements as key factors 

regulating the leukemic cell behavior in AML.  

 

 

3 BMPR1A correlation with the inhibitor of differentiation ID1 
and ΔNp73 isoform  

A significant correlation was identified between the high transcript levels of 

BMPR1A and ID1 in AML MNCs at diagnosis. We analyzed other survival factors 

in the literature and focused on the isoforms TAp73 and ΔNp73. We found 
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overexpression of ΔNp73 at transcript level in MNCs from AML patients 

compared to healthy samples, while no difference of TAp73 expression was 

observed. Our results are consistent with previous studies reporting high 

expression of the anti-apoptotic isoform in lung cancer130 and in APL samples131. 

In these studies, ΔNp73 expression was linked to poor prognosis and high risk of 

relapse respectively. 

 

As we reported for BMPR1A and Id1, we also identified a strong correlation 

between the overexpression of ΔNp73 and BMPR1A. In order to confirm this 

correlation, MNCs from AML samples were sorted according to the BMPR1A 

membrane expression. BMPR1A+ cells displayed higher transcript levels of ID1 

and ΔNp73 compared to the BMPR1A- population. The correlation between 

BMPR1A and ID1 can be partially explained as ID1 is known for being a 

downstream target gene of the pathway224. Other studies have described a link 

between this receptor and ID1. For example, disruption of BMPR1A receptor 

decreased the growth of colon cancer cell xenografts in nude mice, caused by 

the downregulation of ID1314. Interestingly, the correlation we have identified in 

our study between BMPR1A and ΔNp73 has not been previously described, it 

represents one of the first hints that helped us to define the new signaling 

cascade reported in our study.  

 

 

4 BMP4, BMPR1A and ΔNp73 promoting an immature 
phenotype in AML leukemic cells 

As described in the literature the BMP pathway is an essential element in normal 

and leukemic SC regulation203. In addition, ΔNp73 also represents an important 

factor that confers immature features to leukemic cells315. Due to these 

observations, we performed the functional assays CFC (Colony Forming Cell 

assay) and LTC-IC (Long-Term Culture-Initiating Cell assay) and ALDH assay 

(Aldehyde Dehydrogenase), to evaluate the immaturity of the leukemic cells 

based on the transcript levels of BMPR1A and ΔNp73. In addition, we evaluated 

the effect of soluble BMP4 in the immature phenotype of AML blasts. 
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In the CFC assays, which identifies the presence of progenitor populations, no 

significant differences were observed in MNCs with high or low expression of 

BMPR1A and ΔNp73. Nevertheless, in the LTC-IC assay a higher number of 

colonies were identified in MNCs displaying high expression of BMPR1A and 

ΔNp73. These results were confirmed with MNCs presenting high ALDH activity, 

which belonged to the group with high BMPR1A and ΔNp73 transcript 

expression. The effect of soluble BMP4 in MNCs also promoted the immature 

phenotype, as high number of colonies were identified in the LTC-IC assay. 

 

Therefore, these results confirmed that AML leukemic cells are able to acquire a 

more immature phenotype through BMP dysregulation. High soluble BMP4 

identified in the tumor niche, together with overexpression of BMPR1A receptor 

and ΔNp73 play a key role granting the immature phenotype to leukemic cells. 

Our results showing that BMP4 grants a stem-like phenotype have also been 

reported in oral squamous carcinoma cells (OSCC). Where BMP4 changed the 

morphology of Tca8113 cells (human tongue OSCC), induced nuclear OCT4 

expression and upregulated EMT markers (snail, slug and vimetin)257. In addition, 

ΔNp73 has been described due to its capacity to increase stem-like properties in 

melanoma and lung cancer cells315.  

 

An interesting perspective regarding our results, would be to modulate the 

expression of ΔNp73 through downregulation or knockout. And evaluate the 

effect of drug therapy in these leukemic cells. AML blasts from patients at 

diagnosis or an AML cell line would represent a good in vitro model. For instance, 

downregulation of ΔNp73 performed in human cervix carcinoma HeLa cells, 

played a crucial role promoting cycle arrest and apoptosis of these cells316. In 

addition, a study reported that cells from ΔNp73 KO mice have shown sensitivity 

to DNA-damaging agents317, suggesting that high levels of ΔNp73 might be linked 

to the resistant capacity of cancer cells to drug therapy. Thus, regulation of this 

isoform could lead to total eradication of LSCs in AML and malignancies where 

this isoform is involved.  

 

Although TAp73 was not altered in AML MNCs, modulation of TAp73 in primary 

leukemic cells or AML cell lines represents an interesting aspect, for subsequent 
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evaluation of the sensitivity of these cells against chemotherapeutic agents. In 

this context, a study has reported the use of different cancer cell lines such as 

human gastric epithelial adenocarcinoma cells (AGS), osteosarcoma cells (Saos-

2) and liver cancer cells (HepG2). Cells were infected with adenoviral TAp73, this 

upregulation increased the sensitivity of the cells to chemotherapy, through 

upregulation of death receptors (CD95, TNF-R1, TRAIL-R1 and TRAIL-R2)318.  

 

 

5 Np73 induction through the BMP4-BMPR1A binding 

BMP4, BMPR1A and ΔNp73 alterations were identified in our study for the first 

time in AML. The leukemic cells in the tumor niche are in contact with high 

concentrations of BMP2 and BMP4 cytokines according to our results. Thus, we 

established the hypothesis that leukemic cells were responsive to BMPs and this 

cytokine was responsible for the induction of BMPR1A and ΔNp73 expressions.  

 

First, we identified a higher percentage of MNCs from AML samples expressing 

BMPR1A at the membrane compared to healthy cells. This suggested that AML 

MNCs were more responsive to BMP4 due to the high number of cells expressing 

the receptor at the membrane. We have confirmed this, by treating MNCs from 

both AML and normal samples with soluble BMP4. Percentage of BMPR1A+ 

population in MNCs from AML samples increased significantly while no difference 

was observed in healthy samples. In addition, high expression of BMPR1A and 

ΔNp73 was identified at transcript level after treatment. Thus, we have reported 

for the first time the activation of a new signaling cascade, in which the binding 

of BMP4 to BMPR1A induces ΔNp73 expression. These three elements are 

responsible for driving stem-like features in AML leukemic cells as reported in our 

study. 

 

Confirmation of the binding between BMP4 and BMPR1A was performed using 

the AML cell line KG1A. We used an antibody to target the receptor and treated 

the cells with soluble BMP4. Induction of ΔNp73 was significantly reduced in cells 

where the receptor BMPR1A was blocked.  
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High expression of BMPR1A at the membrane of leukemic cells, opens the door 

for future research to develop therapies targeting this receptor overexpressed in 

AML blasts. Monoclonal antibodies in cancer treatment represent a promising 

field. For instance, anti-EGFR antibodies have been used in colorectal, breast, 

lung and head and neck cancer. The antibody binds to the EGFR receptor domain 

causing inhibition of the downstream targets, reporting an inhibitory effect in 

cancer cell cycle leading to apoptosis319. A similar mechanism could be used in 

AML, by blocking the BMPR1A receptor and disrupt the interaction of the receptor 

with the cytokine BMP4.  

 

Crosstalk between BMPs and ΔNp73 in AML are described for the first time with 

our study. And probably, this new crosstalk could be involved in other types of 

leukemia or solid cancers. Previously the homolog protein ΔNp63 was identified 

to be regulated by BMP4 in epidermal development320 and also the BMP 

signaling has been linked to a network involving p53, ΔNp63α and SMAD 

signaling in EMT and metastasis321.  

 

Deciphering all the elements involved in this new signaling cascade that we have 

described, is crucial in order to understand completely the mechanism by which 

leukemic cells acquire the immature phenotype that renders them more resistant 

to therapies. A future perspective is to determine whether the canonical or non-

canonical pathway is involved in ΔNp73 induction. For instance, ID1 induction 

has been reported through both pathways. In hepatocellular carcinoma (HCC), 

SMAD1/5/8 phosphorylation has been described  for its role activating ID1, 

causing proliferation of HCC cells and anti-apoptotic activity322. Besides, 

activation of the non-canonical MAPK pathway has been described in activation 

of ID1 in prostate cancer growth and tumorigenesis323.  

 

 

6 Stemness genes involved in AML 

Expression of p73 isoforms is associated with differentiation during 

embryogenesis324 and the p53 family has been related with regulation of 

stemness state and reprogramming of somatic cells325. ΔNp73 has been 
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described due to its role in generation of induced Pluripotent Stem Cells (iPSCs) 

and the capacity to induce the stem cell gene NANOG 326. Based on this, as we 

identified the overexpression of ΔNp73 in MNCs from AML patients, we analyzed 

the expression of genes involved in stemness maintenance in MNCs. Using 

MNCs from AML at diagnosis and healthy BM samples, we detected high 

transcript levels of NANOG and SOX2 in AML MNCs compared to healthy cells. 

While no difference was observed in OCT4 transcript expression.   

 

The overexpression of NANOG presented a high significant correlation with 

BMPR1A transcript high expression. mRNA levels of NANOG were higher in 

MNCs expressing BMPR1A at the membrane, as showed in the RT-qPCR 

performed in BMPR1A+ and BMPR1A- populations. In addition, AML MNCs 

treated with soluble BMP4 increased their NANOG expression at transcript and 

protein levels. And we hav confirmed that ectopic ΔNp73 expression is able to 

induce NANOG, while NANOG is not capable to induce the expression of ΔNp73.   

 

Therefore, these results demonstrate how BMP4 seems to act as an element 

reprogramming leukemic cells into a more immature phenotype, through the 

activation of the signaling cascade BMP4-BMPR1A-ΔNp73-NANOG (Figure 24). 
In our hypothesis, the stem-like features in leukemic cells would be responsible 

to render the cells more resistant to chemotherapy and able to cause relapse and 

poor prognosis in AML. As previously mentioned, the modulation of BMPR1A or 

ΔNp73 represents an attractive target that may drive immature leukemic cells 

more sensitive to chemotherapy.  

 

 
Figure 24. Signaling cascade driving the immature phenotype in AML leukemic 
cells327. Soluble BMP4 binds to the BMPR1A receptor inducing the expression of the 
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isoform ΔNp73, which is able to induce NANOG expression. This will print an immature 

phenotype in the leukemic cells and may be responsible for resistance to chemotherapy.  

 

 

7 Potential prognosis markers in AML 

We have identified overexpression of BMPR1A/ΔNp73/NANOG at diagnosis in 

AML MNCs. These three markers are part of the signaling cascade responsible 

for the immature phenotype of the leukemic cells. This suggests that these 

overexpressed elements represent key factors in leukemic stem cell resistance 

and may be related to prognosis. When we analyzed the clinical outcome of AML 

patients three years after diagnosis, we identified that patients with high transcript 

levels of BMPR1A, ΔNp73 or NANOG reported an increased rate of relapse 

within three years compared to patients with low expression. Moreover, AML 

patients presenting high expression of the three markers increased the clinical 

predictability, showing that 86% of these patients relapsed within three years.  

 

The three markers that we have identified in AML, have been described 

separately in certain types of cancer as prognosis factors. For instance, reduced 

expression of BMPR1A receptor has been linked to poor prognosis in pancreatic 

cancer328 contrary to what we observed in AML, whereas high expression of the 

receptor is observed in liposarcoma related to poor prognosis313. ΔNp73 has 

been described as a poor prognosis marker in lung cancer130 and APL132. And 

high NANOG expression has been reported as a poor prognosis marker in lung 
329, digestive system and head and neck cancers330. 

 

Identification of new prognosis markers in AML at diagnosis can help to improve 

the selection of more suitable therapeutic strategies, based on the relapse risk of 

the AML patients using these new markers. The combination of known molecular 

prognosis markers with BMPR1A/ΔNp73/NANOG that we have described in our 

study, represents promising parameters which can allow in the coming years, 

establishment of a new classification of risk of relapse and prognosis in AML 

patients.  
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8 ΔNp73 overexpression in AML relapse patients  

AML patients at relapse displayed higher transcript expression of ΔNp73 

compared to patient samples at diagnosis. In our previous study we already 

reported the role of ΔNp73 as part of the signaling cascade promoting an 

immature phenotype of the leukemic cells. In our hypothesis, the stem-like state 

caused in part by ΔNp73 overexpression, seems to be linked to persistence of 

leukemic stem cells able to escape chemotherapy leading to relapse in AML 

patients. As we also reported, the isoform represents a potential prognosis 

marker which overexpression is associated with an increased rate of relapse in 

AML. In concordance with our last results, high transcript levels of ΔNp73 have 

been identified in cervical cancer, observed in 70.8% of patients who faced 

recurrence of the disease331. While in ovarian cancer high levels of ΔNp73 were 

linked to patients with poor response to chemotherapy and high recurrence of the 

disease332. In addition, the overexpression of the isoform was reported in acute 

promyelocytic leukemia linked to high risk of relapse and poor survival132. 

 

For this part of our study we had access only to data generated from peripheral 

blood (PB) samples from AML patients at relapse. Thus, an interesting 

perspective is to analyze expression of ΔNp73 and other elements of the BMP 

signaling as receptors, target genes or related stemness genes, in AML samples 

at diagnosis and relapse obtained from bone marrow (BM). Due to the fact that 

Cheung and colleagues have identified that AML myeloid blasts holding a stem-

like state CD34+, possessed different gene expression between those obtained 

from PB and BM. Chemotaxis, stress response, proliferation and apoptosis are 

some of the functions regulated by these genes identified to have different 

transcript levels, probably modulated by the tumor niche333. 

 

Although NANOG expression was not significantly higher at relapse, a tendency 

of higher transcript levels at relapse compared to diagnosis was observed. 

Interestingly, in other types of cancer as renal cell carcinoma (RCC) NANOG 

expression was identified at the nucleus and the cytoplasm, linked to recurrence 

of the disease334. An interesting perspective is the use of a larger cohort of AML 

patient samples at relapse to analyze the expression of not only NANOG but 
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other elements involved in the BMP signaling. Since, BMPs have been linked to 

recurrence in certain types of cancer. For instance, overexpression of 

BMP4/6/7/9 have been related to recurrence and poor prognosis in hepatocellular 

carcinoma335. 

 

A follow up analysis represents another interesting and significant perspective. 

The evaluation of intrinsic, extrinsic and associated elements of the BMP pathway 

at different stages of the disease as diagnosis, post-treatment and relapse, might 

reveal significant data linked to alteration of these factors in relapse.  

 

Therefore, identifying the main elements involved in AML relapse might help us 

to decipher the mechanism of resistance employed by LSCs escaping to 

chemotherapy. Modulation of the factors involved in relapse, could allow us to 

target the LSC population and reach their complete eradication in patients.  

 

 
9 The new described signaling cascade promoting stem-like 

features is linked to short-term resistant AML leukemic cells 

Resistance to chemotherapy has been mainly related to the presence of LSCs 

capable to endure treatment and persist within the tumor niche336. With our last 

data, we have identified that AML leukemic cells that survived to a short exposure 

of cytarabine, displayed higher transcript levels of BMPR1A, ΔNp73, NANOG, 

SOX2 and ID1 compared to untreated samples. These genes were described in 

our previous study, as part of the activation of a signaling cascade promoting 

immature features in the leukemic cells. In this research study, we have reported 

that the expression of these genes is at least partially responsible, for granting a 

resistant capacity to AML blasts against ARA-C.  

 

In concordance to the gene profile we have identified in short-resistant AML 

leukemic cells. High transcript levels of these genes have been reported in 

chemoresistance by other authors. For instance, BMPR1A receptor is able to 

drive chemo-resistance in colon cancer. This was confirmed after deletion of the 

receptor, which increased the sensitivity of cells to drug therapy337. ΔNp73 has 
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been linked to radioresistance in cervical cancers338. In addition, high levels of 

ΔNp73 have been reported to impact the stemness expression of pluripotency 

factors as CD133, NANOG and OCT4. This seems to increase chemoresistance 

in melanoma and lung carcinoma cell lines315. Moreover, elevated NANOG 

expression has been related to tumor cell radioresistance in breast cancer339 and 

oral squamous carcinoma340. Interestingly, NANOG has been described due to 

its capacity to reprogram prostate cancer cells increasing their drug resistance 

capacity341. These findings are consistent with our results showing the 

importance of ΔNp73 and NANOG induction by BMP4 and BMPR1A, promoting 

the reprogramming of the leukemic cells into a stem-like phenotype and 

enhancing their resistant capacity to chemotherapy.  

 

Another element in our results that has been identified to be highly expressed in 

short-resistant AML leukemic cells is the target gene of the BMP pathway ID1. 

Involved in blocking of differentiation, this gene has been reported to be elevated 

in AML patients in almost all FAB AML subtypes (M0-M6)342. In concordance with 

our results, ID1 expression has been reported in AML resistant cell lines to 

cytarabine343. But also, this gene has been linked with resistance to 

cyclophosphamide in CML cell lines344. Zhang and colleagues have suggested 

with their study, that ID1 plays a crucial role as anti-apoptotic factor and increases 

resistance of cancer cells to therapy. In this study, down-regulation of ID1 in five 

cancer cell lines (nasopharyngeal carcinoma (CNE1), hepatocarcinoma (Huh7), 

cervical carcinoma (HeLa), breast cancer (MCF7) and prostate cancer (PC3)) 

sensitized the cells against six chemotherapy agents. Thus, these studies 

suggest the crucial role played by ID1 in resistance. Due to its anti-apoptotic role 

reported by Zhang and collaborators, another interesting perspective would be to 

study the correlation between ID1 and ΔNp73, and a possible mutual regulation 

or synergic effect of these two elements might be involved in resistance.  
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10 AML resistant cell lines present a similar gene profile 
expression as short-term resistant AML MNCs 

In order to better describe the mechanisms of resistance, we obtained AML 

resistant cell lines corresponding to different FAB subtypes. According to 

preliminary data that we have generated, higher transcript levels of BMPR1A, 

ΔNp73 and ID1 were identified in 7 out of 10 resistant cell lines compared to their 

sensitive counterpart. While NANOG was observed to be higher in 6 resistant cell 

lines out of 10 compared to the sensitive cell lines. These findings correlate with 

the results obtained in short-term resistant MNCs, where high expression of these 

genes has been observed.  

 

Considering the gene profile of each AML resistant cell line and the stemness 

phenotype of the parental sensitive cell lines, we selected KG1A cell line to start 

to characterize the elements involved in resistance. Interestingly, sensitive KG1A 

cells presented the normal CD34+CD38- phenotype, whereas resistant cells 

generated by Pr. Olivier Herault’s laboratory displayed an unusual CD34-CD38- 

phenotype. These results raised the hypothesis that lost of CD34 expression 

might be linked either to a normal mechanism present in resistance or due to the 

drift of KG1A resistant cells into a subline caused by the long culture during its 

generation.  

 

For this reason, we decided to develop a new KG1A resistant cell line, in order 

to evaluate if the lost of the CD34 marker was also present in this cell line and 

therefore, linked to a normal process in resistance. 

 

After a long and chronic exposure to ARA-C, we obtained KG1A cells resistant to 

0.2μg/ml ARA-C. Preliminary data generated showed that resistant KG1A cells 

displayed high transcript levels of BMPR1A, ΔNp73, NANOG and ID1 as 

observed in the cell line obtained from Pr. Olivier Herault’s laboratory. 

Conversely, our KG1A resistant cells presented CD34 expression at the 

membrane. Further studies are necessary to completely characterize the cell line 

that we have generated and understand the gene expression at transcript and 

protein level of the elements involved in resistance. In addition, evaluation of the 
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expression of BMP receptors at the membrane might generate crucial data to 

understand the resistance mechanism to ARA-C.  

 

Within the perspectives is the use of this cell line and the others obtained from 

Pr. Olivier Herault, is the modulation of the BMP pathway and target genes to 

evaluate significant changes in resistance. The key elements that might be 

identified in these cell lines will represent crucial factors that can be also 

modulated in primary samples, which can lead to overcome resistance in AML. 
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V. CONCLUSIONS 
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Conclusions 
In this research project, we have identified extrinsic alterations of the BMP 

pathway within the tumor niche of AML patients at diagnosis. High concentrations 

of the cytokines BMP2 and mainly BMP4 were measured in BM AML plasma 

samples at diagnosis. The leukemic cells (LC) are not responsible for this BMPs 

overproduction since their transcript levels are significantly lower as compared to 

healthy MNCs. This suggests the involvement of other cellular components of the 

niche, on charge of producing the excess of cytokines.  

 

Intrinsic alterations of the BMP signaling have also been reported in this project, 

by identifying high transcript expression of the BMPR1A receptor and of the target 

gene of the pathway ID1 in MNCs from AML samples at diagnosis. In addition, 

we have shown that leukemic cells have a higher BMPR1A membrane 

expression and in consequence they are more responsive to soluble BMP4. 

These findings allowed us to describe for the first time a signaling cascade 

triggered by BMP4-BMPR1A binding, which is able to induce ΔNp73 and NANOG 

expressions, promoting a stem-like phenotype in AML leukemic cells confirmed 

by the functional assay LTC-IC and ALDH activity. This suggests that the 

immature phenotype induced in LCs seems to be linked to their resistance 

capacity against chemotherapy. Moreover, we have identified that high BMPR1A, 

ΔNp73 and NANOG expressions in patients at diagnosis are associated with an 

increased rate of relapse within three years, suggesting these factors as new 

potential prognosis markers in AML. 

 

Finally, by analyzing PB samples from AML patients at relapse, we have detected 

higher ΔNp73 expression compared to patients at diagnosis. This data led us to 

evaluate the status of BMP signaling elements and related genes in resistance. 

Interestingly, we have identified in short-term resistant primary AML leukemic 

cells, higher transcript levels of the elements involved in the signaling cascade 

promoting immaturity (BMPR1A/ΔNp73/NANOG) and other factors such as 

SOX2 and ID1 compared to sensitive MNCs. The use of AML resistant cell lines 

allowed us to generate preliminary data, in which we have found higher 

expression of BMPR1A, ΔNp73, NANOG and ID1 in certain resistant cell lines 
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compared to sensitive cells. These results suggest the key role of the BMP 

signaling and its associated genes in the resistant capacity of AML leukemic cells, 

which might be related to relapse and poor prognosis in AML patients.  

 

The involvement of elements and target genes of the BMP signaling pathway in 

the regulation of LSCs in AML has been described in this research study. The 

immature phenotype promoted by these factors in leukemic cells seems to play 

a key role in resistance and relapse. Modulation and targeting of these elements 

represent a promising approach towards the development of new and more 

effective therapeutic strategies against AML. 
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