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CHAPITRE 1

Une introduction succinte

Les lois fondamentales de la physique ne sont jamais exactes. Elles gagnent cependant en
précision quand on parvient à les étendre à un cadre plus général. Ainsi, au début du XXe

siècle, la mécanique newtonienne a été doublement bouleversée.
D’une part, dans le domaine des petites distances, la mécanique quantique décrit des

systèmes au comportement aléatoire, qui ne semblent déterministes qu’à notre échelle.
D’autre part, dans le domaine des hautes énergies, la relativité générale remplace l’idée
classique d’un espace et d’un temps immuables par un espace-temps qui se déforme au gré
de ses interactions avec la matière qui le peuple, selon les règles de la gravitation d’Einstein.
Ces deux révolutions ont non seulement profondément modifié les intuitions qu’on pouvait
se faire du monde physique, mais ont aussi été accompagnées par le développement de
nouveaux outils et objets mathématiques, et motivent encore aujourd’hui des recherches
tant mathématiques que physiques.

Une question reste notamment ouverte : comment unifier ces deux théories, les décrire
comme différentes approximations de lois plus générales ?

Comment définir un espace-temps à la fois relativiste donc géométrique, et quantique
donc aléatoire ?

Avec les moyens techniques actuels, et pour encore bien longtemps sans doute, on ne
peut espérer que des expériences ou des observations nous guident vers la réponse.

Un peu comme les philosophes de l’antiquité grecque qui souhaitaient décrire les com-
posants élementaires de la matière, nous ne pouvons donc nous fier qu’à des critères presque
esthétiques : une théorie est-elle cohérente mathématiquement ? La mécanique quantique et
la relativité générale en découlent-elles clairement, facilement ? Est-elle simple, astucieuse,
belle ?

Plutôt que d’obtenir la bonne réponse, le but est d’explorer des pistes, de contribuer
à la tâche collective d’étoffer la culture mathématique afin qu’il y existe, le jour où l’on
saura sonder les trous noirs, l’équivalent de l’atome pour la gravité quantique.

Cette thèse aborde ainsi des aspects mathématiques d’une approche récente à la gravité
quantique, les modèles de tenseurs colorés. Nous résumons ici brièvement le contenu
de ce manuscrit.
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1.1 Graphes (D + 1)-colorés

Pour D ∈ N, les graphes (D + 1)-colorés sont des graphes (D + 1)-réguliers, munis
d’une coloration propre de leurs arêtes avec D + 1 couleurs, usuellement {0, 1, . . . , D}.
Pezzana [Pez74 ; Pez75] a montré dans les années 1970 que les graphes (D + 1)-colorés
encodent des structures topologiques linéaires par morceaux (PL dans la suite), qu’on
appellera dans la suite de cette introduction des complexes colorés, et qu’on peut voir
comme des ensembles de simplexes de dimension D collés les uns aux autres. Les variétés
PL sont de telles structures, et peuvent donc être décrites avec un vocabulaire venant
de la combinatoire et de la théorie des graphes. Cette description a été plus amplement
développée par Gagliardi et son groupe (cf. [FGG86]), menant notamment à des résultats
de classification pour les variétés PL de dimensions 3 et 4 de faible complexité [CM15 ;
CC15]. Outre ces succès en topologie PL, les graphes (D + 1)-colorés ont suscité l’intérêt
de physiciens théoriciens, à commencer par Gurau à partir de 2010. En effet, ces graphes
sont au cœur d’une nouvelle approche de la gravité quantique, les modèles de tenseurs
colorés [GR12], qui généralisent des modèles de matrices en dimensions supérieures.
Notamment, les modèles de tenseurs colorés, comme les modèles de matrices, présentent
un « développement en 1/N » des fonctions de corrélation en amplitudes de graphes, où
la puissance de N dans l’amplitude d’un graphe G dépend d’une quantité, le degré de G,
ω(G), qui généralise le genre en dimensions supérieures. Plus précisément, le degré d’un
graphe G est la somme des genres de ses plongements réguliers :

Définition 1.1.1. Soit G un graphe (D+1)-coloré. Un plongement régulier de G dans
une surface S est une fonction injective et continue G → S telle que :

• les composantes connexes de S\G, appelées faces, soient homéomorphes à des disques

• il existe un (D + 1)-cycle τ tel que toute face soit bordée par un cycle d’arêtes
bicolores, de couleurs {i, τ(i)} pour un i ∈ {0, 1, . . . , D}.

On se restreint aux graphes bipartis ; en effet, c’est une condition équivalente à l’orien-
tabilité du complexe coloré associé. On définit alors :

Définition 1.1.2. Le degré d’un graphe biparti (D+1)-coloré G est : ω(G) = 1/2
∑

τ gτ
où gτ est le genre du plongement régulier associé au cycle τ.

Au cours de ma thèse, j’ai étudié des distributions de probabilité sur les graphes bipartis
(D + 1)-colorés et les quantités associées telles que le degré, dans le but de définir des
espaces PL aléatoires, et aussi de permettre une meilleure compréhension de l’espace-
temps quantifié décrit par les modèles de tenseurs colorés. Ceci a donné lieu à deux projets
distincts : la construction de modèles aléatoires en dimension quelconque (Section 1.2), et
l’étude d’un cas particulier en dimension 2 (Section 1.3).

1.2 Modèles aléatoires uniformes de graphes colorés

Une des motivations de cette thèse était de trouver des modèles aléatoires de graphes
(D+ 1)-colorés présentant une limite intéressante quand on fait tendre la taille du graphe
vers l’infini : notamment, on cherche à obtenir un espace-temps continu comme limite
d’échelle de complexes colorés aléatoires, vus comme des espaces métriques (en ne retenant
d’un complexe coloré que ses sommets et la distance de graphe entre ceux-ci). Un tel résultat
serait une généralisation en dimension D > 2 de la construction de la carte brownienne
comme limite d’échelle de nombreuses familles de cartes planaires (cf. [LG13 ; Mie13] par
exemple). Notons toutefois qu’en dimensions supérieures, la topologie de l’espace aléatoire
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n’est pas fixée. Comme première étape dans cette direction, j’ai étudié plusieurs modèles
sur les graphes (D+1)-colorés, bipartis, étiquetés de taille p : un modèle uniforme sur ces
graphes, UD

p , et une classe de modèles décolorés-uniformes Gp où la structure des arêtes
de couleur 1, 2, . . . , D est fixée par un graphe D-coloré G, tandis que les arêtes de couleur 0
sont formées par des appariements uniformes. Parmi les modèles décolorés-uniformes, j’ai
étudié plus finement le modèle quartique QD

p , où le graphe G est quartique, D-coloré.
Les techniques utilisées reposent sur des encadrements de caractères du groupe symétrique
[LS08] notamment utilisés pour des modèles aléatoires de recollement de polygones [PS06 ;
CP16], ainsi que sur des résultats concernant le modèle de configuration [CF04 ; FH17]. Ce
travail a donné lieu à un article ([Car19]), reproduit dans le chapitre 6, et dont voici les
principaux résultats :

J’ai tout d’abord montré que UD
p et Gp sont asymptotiquement presque sûrement

(a.p.s.) connexes :

Théorème 1.2.1. Pour tout D ≥ 2, UD
p est connexe a.p.s., et

E
[
#composantes connexes de UD

p

]
= 1 + O

(
1

pD−1

)
.

De même, pour tout D ≥ 2, pour tout graphe biparti D-coloré G, Gp est connexe a.p.s., et

E[#composantes connexes de Gp] = 1 + O
(

1

pt−1

)
,

où t = 1/2 ·#sommets(G).

J’ai aussi étudié le comportement du degré des graphes, pour les modèles uniforme et
quartique. J’ai obtenu les premiers et seconds moments de ces lois, ainsi qu’un théorème
central limite pour le genre d’un plongement régulier. Les techniques utilisées m’ont permis
d’établir également un théorème central limite pour le genre d’une carte étiquetée uniforme.

L’étude des sous-parties d’un graphe (D+1)-coloré G contenant des arêtes de couleurs
appartenant à un sous-ensemble de {0, 1, . . . , D} permet d’obtenir des informations sur la
structure du complexe coloré associé Δ(G). J’ai ainsi démontré les théorèmes suivants sur
les sommets des complexes colorés associés à mes modèles :

Théorème 1.2.2. Pour D ≥ 3,

E
[
#sommets de Δ(UD

p )
]
= D + 1 + O

(
1

pD−2

)
.

Théorème 1.2.3. Pour tout D ≥ 3, pour tout graphe biparti D-coloré G, on a

E[#sommets de Δ(Gp)] = p+ αG + o(1),

où αG est une constante qui dépend de G.
De plus, si u, v sont deux sommets de Δ(Gp) choisis indépendamment et uniformément,

alors d(u, v) = 2 a.p.s.

Dans les deux cas, ces résultats impliquent que ces modèles ne peuvent pas avoir une
limite d’échelle comme les cartes planaires uniformes. Pour se rapprocher du but, il faut
donc construire de nouveaux modèles aléatoires de graphes colorés, en donnant sans doute
un rôle plus important au degré, qui est une quantité centrale dans les modèles de tenseurs
colorés développés en physique théorique.
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1.3 Triangulations eulériennes

Parmi les modèles de tenseurs colorés, le modèle dit i.i.d. est particulièrement fondamental,
et les graphes dominants de ce modèle sont ceux de degré nul. Pour D ≥ 3, un graphe de
degré nul converge vers l’arbre Brownien ([GR14]).

Dans le cas de la dimension 2, les graphes (2+1)-colorés bipartis de degré nul sont les
graphes duaux des triangulations planaires eulériennes (c’est-à-dire dont les sommets
sont tous de valence paire). Un autre projet de cette thèse, présenté en partie III, a donc
été de prouver qu’une triangulation planaire eulérienne de taille n uniforme converge vers
la carte brownienne quand n → ∞ :

Théorème 1.3.1. Soit Tn une triangulation eulérienne planaire enracinée à n faces noires,
choisie uniformément au hasard, munie de sa distance de graphe usuelle dn. Soit (m∞, D∗)
la carte brownienne. Il existe une constante c0 ∈ [2/3, 1], telle qu’on ait la convergence
suivante

n−1/4 · (V (Tn), dn)
(d)−−−→

n→∞
c0 · (m∞, D∗),

pour la distance de Gromov-Hausdorff sur l’espace des classes d’isométrie des espaces mé-
triques compacts.

Habituellement, pour montrer qu’une famille de cartes planaires converge vers la carte
brownienne, on utilise l’existence d’une bijection entre ces cartes et des arbres aux som-
mets étiquetés par des entiers, qui conservent des informations sur les distances entre les
sommets de la carte correspondante. De telles bijections ont été établies pour de nom-
breuses familles de cartes, notamment par Cori-Vauquelin [CV81], Schaeffer [Sch98] et
Bouttier-Di Francesco-Guitter [BDFG04]. Du côté des arbres étiquetés, on peut facilement
passer à la limite continue qui est un arbre Brownien muni d’un serpent Brownien
(qui correspond à la limite des étiquettes). Pour conclure pour la convergence des cartes,
il faut ensuite définir la distance continue correspondant au serpent Brownien.

Pour les triangulations eulériennes, cette procédure est beaucoup plus compliquée car
la bijection naturelle est liée à une distance orientée [BDFG03], ce qui empêche une
définition directe de la distance continue. J’ai donc contourné cette difficulté en prouvant
que cette distance orientée est asymptotiquement proportionnelle à la distance de graphe :

Théorème 1.3.2. Soit Tn une triangulation eulérienne planaire enracinée à n faces noires,
choisie uniformément au hasard, et soit V (Tn) l’ensemble de ses sommets. On note �dn la
distance orientée de Tn. Pour tout ε > 0, on a

P

(
sup

x,y ∈V (Tn)
|dn(x, y)− c0�dn(x, y)| > εn1/4

)
−−−→
n→∞

0.

Pour montrer ce résultat, j’ai procédé de manière similaire à ce que Curien-Le Gall
ont fait pour étudier des modifications de distance dans les triangulations quelconques
[CLG19] : construire des modèles de triangulations (eulériennes dans mon cas) infinies
du demi-plan, reliés aux cartes finies grâce à une décomposition en couches de ces
dernières, puis utiliser le théorème de sous-additivité ergodique de Liggett [Lig85] pour en
déduire que les distances orientée et non-orientée sont asymptotiquement proportionnelles.
Ce travail est l’objet du chapitre 7. Cette décomposition en couches a nécessité des résultats
inédits d’énumération, ce qui a donné lieu à une collaboration encore en cours avec Jérémie
Bouttier. Une version préliminaire des résultats de cette collaboration est donnée dans le
chapitre 9. Il contient aussi des résultats d’énumération utilisés dans le chapitre 8 pour
étudier plus en détail la structure d’un modèle de triangulation eulérienne infinie du demi-
plan.
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CHAPITRE 2

The problem of quantum gravity

This chapter does not have the pretention of being a complete introduction to neither
quantum mechanics nor general relativity, nor even to models of random geometry related
to quantum gravity. It is also not necessary to read it to understand the other parts of
this thesis, nor most of the rest of the introduction. Moreover, it mostly states formal
facts without giving proofs or references to more substantiated sources. Before you decide
that such trash is unworthy of being in a PhD thesis in mathematics, and tear its pages to
shreds, let me explain why it might have a legitimate place here.

During my PhD, there were numerous instances where I felt lost regarding some notions
or objects that are fundamental to my topic (I dare believe that it is not uncommon for a
PhD student). As my research area stands at an interface between several disciplines, this
problem touched questions in mathematics and theoretical physics alike. For mathemat-
ical questions, it always seemed that spending enough time reading a relevant article or
textbook would most probably replace my ignorance with basic understanding, or at least
give me some clear-cut definitions and results to go back to if needed. However, for physi-
cal questions, which dealt with quantum field theory (hereafter QFT) and its interactions
with the problem of quantum gravity, it seemed that there was always a gap between my
incomplete, pre-existing knowledge, and what was explained in whichever source I found.
I felt that there was some sort of circular law, that stipulated that one had to already
belong to the Arcane Society of People who Understand Quantum Field Theory, to be able
to understand even the introduction of an article about a specific model or framework.
The only way to be allowed into that Society seemed to be doing a PhD in QFT, that
is, get one’s hand dirty and try and solve complicated QFT questions oneself. This was a
perhaps too ambitious plan on top of the mathematical facet of my PhD, which entailed
learning, practically from scratch, about the combinatorial and probabilistic aspects of
random graphs and higher-dimensional objects. So I made do with what I could, and read
a good number of more or less mathematically-oriented papers, listened stubbornly to talks
that I only half-understood, and, most importantly, asked a lot of questions to my advisor
Fabien, who very graciously and patiently answered them as best as he could.

I still do not feel that I have as good a grasp on physical questions related to quantum
gravity and random geometry, as do members of this Society. However, I think I am now
able to somewhat understand the physical motivations of studying models of random maps
or complexes, beyond the cookie-cutter assertion that some very intelligent physicists found
this to be a good way to deal with the problem of unifying quantum mechanics and general
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relativity. I thus wanted to record what I had gathered, in a way that is hopefully less
impenetrable and imbued with mystery to a (mathematically-inclined) neophyte, than the
usual productions of the Society. The introduction of my PhD thesis seemed like a good
place to take on this task. Indeed, trying to understand these motivations was, to me, an
important part of my PhD. Furthermore, people often turn to PhD theses to get palatable
overviews of a research topic. As I hope the next chapters belong to that category, it only
made sense to add this one as a preamble, putting them into a slightly broader perspective.

A few last remarks and disclaimers before you can dive into the heart of the matter.
First, what follows assumes that the reader has a basic understanding of core notions of
Newtonian mechanics, such as a trajectory or equations of motion, and is not averse to
building up on it with quite mathematical and abstract concepts. Moreover, it is in no
way a historical review of quantum field theory or general relativity, and as such does not
cite a lot of names, and even fewer references, as most of it became part of the basis of
modern physics, after being refined during several decades in the alembics of a lot of very
prominent physicists.

2.1 A primer on quantum mechanics

An informal way to describe how the quantum world differs from the classical (Newtonian)
one, is to say: “Deterministic behavior becomes random”. To make this statement more
precise, let us start from the Lagrangian description of classical physics. The behavior of
a given physical system is described by a trajectory ϕ in the configuration space E. For
instance, if we are considering a point particle moving in R

3 under the action of some force,
ϕ is going to be a (smooth) function R → E = R

3. In the Lagrangian formulation, the laws
for the evolution of the system are encoded into, as one could expect, the Lagrangian,
which is a function

L : R× E2 → R

(t, x, v) �→ L(t, x, v).

Related to the Lagrangian is the action functional

S[ϕ] =

∫
L(t, ϕ(t), ◦ϕ(t))dt

that associates a value to each possible trajectory ϕ. Here, ◦
ϕ denotes the time derivative

d
dtϕ.

We then get the equations of motion as the Euler-Lagrange equation:

0 =
δS

δϕ
:= Lϕ − d

dt
L◦
ϕ
,

where
Lϕ = �∇ϕL, and L◦

ϕ
= �∇◦

ϕ
L,

so that
d

dt
L◦
ϕ
=

∂

∂t
L◦
ϕ
+

◦
ϕ�∇ϕL◦

ϕ
+

◦◦
ϕ�∇◦

ϕ
L◦
ϕ
.

Therefore, a classical system will follow a trajectory that is a critical point of the
functional S, which, in reasonable cases, will also be an extremal point.

Now, for the same Lagrangian (and thus the same underlying interactions), the trajec-
tory ψ of a quantum system will not be as clearly determined, but will rather be a random
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variable, following a probability distribution that should give to a possible trajectory ϕ a
weight proportional to exp(−λS[ϕ]), for a fixed real parameter λ 1. Thus, informally, ψ
follows a probability distribution that may be written as, up to a multiplicative constant,

μ̂S(Dϕ) := e
i
�
S[ϕ]Dϕ,

where � is the Planck constant, and Dϕ is a “canonical” measure on the functions
taking value in the phase space E. This is the path integral formulation of quantum
mechanics, whose conceptualization is due to Feynman.

The meticulous reader might rightfully object that a putative “Lebesgue measure” on
a space of functions defined on R makes no sense, so that the above measure is ill-defined.
Furthermore, assiging a complex weight to each function ϕ cannot possibly yield a positive
measure!

We ask you to hold back these objections for a moment, to let us sketch how this
formulation relates to more familiar or large-spread pictures of quantum mechanics.

Indeed, in this new framework, one can for instance define the wavefunction of a
quantum particle e, a complex-valued function Ψ, defined on space and time, that will
quantify the probability of observing the particle in an elementary region of space dx
around position x at time t, with the equation

P(e in dx at time t) = |Ψ(x, t)|2dx.

(In more formal words, we can say that |Ψ(x, t)|2 is the density with respect to the Lebesgue
measure, for the random variable describing the location of the particle.)

To define Ψ, we first set the initial input {Ψ(x, 0)}, then use the action functional to
describe the time evolution of Ψ:

Ψ(y, t) ≡
∫ (∫

1{x(0)=x, x(t)=y}e
i
�
S[ϕ]Dϕ

)
Ψ(x, 0)dx,

where the integral in the action S is taken from 0 to t.
It can then be proven, under reasonable assumptions on the action S, that Ψ satisfies

the famous Schrödinger equation:

i�
∂

∂t
Ψ(t, x) = HΨ(t, x),

where the Hamiltonian H is the Legendre transform of the Lagrangian.
Let us now go back to the question of the precise definition of the measure μ̂S .
As we have just explained, the measure μ̂S contains the information of the quantum

system driven by the Lagragian L. However, what can actually be seen as a probability
measure, and what we will focus on in the sequel, is a slightly different measure:

μS(Dϕ) := e−S[ϕ]Dϕ,

which you can already envision to be positive, provided it is properly defined.
Obviously, a positive measure is still not always a probability measure, so that one

quantity to consider is the partition function of the theory, which is the total weight of
the measure:

Z =

∫
μS(Dϕ).

1In the sequel, we will write ψ for the quantity describing a quantum trajectory, and ϕ for the variable
that we integrate to define ψ, to distinguish between the two.
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In the rest of this chapter, we will not use this notion, but it will appear again in other
chapters of the introduction.

For reasons that will hopefully be clearer later, μS is called the Euclidean QFT as-
sociated to S, and μ̂S , the Lorentzian one. For now, we can say that, if the formulation
of μS can recall concepts of statistical mechanics, it really is μ̂S that describes a quantum
system. For relatively well-behaved actions S, one can prove (though, as for many other
statements, we will not attempt to do so here) that if we can make sense of an Euclidean
QFT, then there exists a corresponding Lorentzian one.

Let us make a distinction that has little consequence on the mathematical formulation
we are describing, but is very important conceptually. Up until now, we have considered
the example of one particle characterized by a Lagrangian, so that, with the path integral
formulation, we have described quantum mechanics. If we now consider fields ψ that
contains information on a undetermined number of particles (this information can be, for
instance, the density of photons in elementary regions of space), we enter the realm of
Quantum Field Theory.

Let us now give a more precise meaning to the measure μS . In most cases arising in
quantum field theory, the Lagrangian L has a very specific form: it is a polynomial in the
second variable, together with a quadratic term in the third variable:

L(t, ϕ, ◦ϕ) = 1

2

◦
ϕ
2
+
∑
k

akϕ
k.

This quadratic term is the kinetic term, and the rest corresponds to an interaction
potential. (To simplify notation, we assume in the remainder of this subsection that ϕ has
real values.)

In this special case, the corresponding action functional can be defined for functions ϕ

defined on any non-empty space X, up to replacing ◦
ϕ
2

by a discrete equivalent if X is ...
discrete:

Skin[ϕ] =

∫
X

1

2

◦
ϕ
2
(t)dt → Skin[ϕ] =

1

2

∑
i,j∈X

hi,jϕ(i)ϕ(j),

for some set of coefficients {hi,j}.
In particular, X can be a finite set, as will be the case for the explicit examples that

will be treated in detail in the sequel. Finite X’s can appear when studying instrinsically
discrete structures such as lattices. We can also have a discrete space X when the actual
underlying space X ′ is continuous and compact, but we take a cutoff of the Fourier trans-
form to obtain functions ϕ on a finite set.

Let us consider for a moment the case where we only have a quadratic term, so that
the measure μS is

μs(Dϕ) = e−Skin[ϕ]Dϕ.

In the case where X is finite, we simply have:

μs(Dϕ) = e−
∑
i,j∈X

1
2
hi,jϕ(i)ϕ(j)

∏
i∈X

dϕi,

which is (up to a multiplicative constant) a Gaussian measure on R
X with covariance

matrix h−1.
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In the case where X = R
n, we can circumvent the thorny question of defining a hypo-

thetical canonical measure Dϕ, and define directly ψ as the Gaussian Free Field on X.
This is a random variable on distributions living in the Sobolev space H1(Rn), character-
ized by its covariance, which is the Green function of the Laplace operator in R

n. Indeed,
assuming that our path integral is on paths ϕ with zero boundary conditions, we have:

S[ϕ] =

∫
X

1

2

◦
ϕ
2
(t)dt =

∫
X

1

2
ϕΔϕ(t)dt,

where Δ is the Laplace operator on X.
Thus, by analogy with the finite case, here ψ should be a Gaussian process on X, with

covariance
K(x, y) = Δ−1(x, y).

This is precisely the Green function associated to the Laplace operator on X, and we can
perfectly make sense of this Gaussian process, being careful that it is not a random func-
tion, but a random distribution.

We can thus properly define the random field ψ when the Lagrangian is purely ki-
netic, and note the corresponding Gaussian measure μG(Dϕ). Let us now explain how to
make sense, in a pertubative (non-rigorous) way, of a field governed by a more compli-
cated action functional S. To simplify notation, we will focus on the case of the simplest
pertubation of a Gaussian field theory, the so-called ϕ4 theory, for which the action is,
unsurprisingly:

S[ϕ] = Skin[ϕ] +

∫
X
ϕ(x)4dx.

First note that what is actually meaningful in physics, is what can be measured or
observed experimentally. In the case of a quantum field theory, this is essentially the
correlation functions:

E[ψ(z1) · · ·ψ(zp)]S =

∫
ϕ(z1) · · ·ϕ(zp)μS(Dϕ).

For our theory of interest, this can also be written as∫
ϕ(z1) · · ·ϕ(zp)e−λ

∫
X ϕ(x)4dxμG(Dϕ).

We first take the major liberty of swapping the integral on ϕ and the infinite series of
the exponential in the previous equation. This yields the formal series:

∑
n≥0

(−λ)n

n!

∫
ϕ(z1) · · ·ϕ(zp)

(∫
x
ϕ(x)4dx

)n
μG(Dϕ).

We can already see why the calculations we have undertaken are said to be perturbative.
Indeed, we have brought out a Taylor expansion around zero in the parameter λ: we thus
want to think of the non-kinetic part of the action as a small perturbation from a Gaus-
sian free field, with its smallness being controlled by λ. As we will mention again further
below, this picture is unfortunately incorrect, as this formal series in λ has quite often a
zero radius of convergence. (This entails that we cannot write an equality between the two
previous quantities, but we will get back to this later.)
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Switching the Gaussian expectation and the integral, we recognize correlation functions
for our Gaussian measure μG:

∑
n≥0

(−λ)n

n!

∫ (∫
ϕ(z1) · · ·ϕ(zp)ϕ(x1)4 · · ·ϕ(xn)4μG(Dϕ)

)
dx1 · · · dxn.

For the quantity between parentheses to be non-zero, p must be even. Moreover, by
Wick’s theorem, we then have:∫

ϕ(z1) · · ·ϕ(zp)ϕ(x1)4 · · ·ϕ(xn)4μG(Dϕ) =
∑

pairing σ

∏
{i,j}∈σ

E[ϕ(yi)ϕ(yj)]G,

where y1, y2, . . . is some arbitrary ordering of the zi and the xi, and by pairing we mean a
fixed-point-free involution σ on {1, 2, . . . , 4n+ p}.

Thus, for a given pairing σ, if we represent each factor ϕ(xi)4 by a 4-valent vertex, and
each pair {yi, yj} by an edge, we get a graph with n 4-valent vertices and p external legs,
or external lines, that is, edges that have one end which is unattached to any vertex. Each
of these external lines carries one of the external positions zi. (We postpone to Chapter 3
a more precise definition of graphs and related objects.)

This gives the representation of our correlation function by (open) Feynman dia-
grams:

E[ψ(z1) · · ·ψ(zp)]S =
∑
n≥0

(−λ)n

n!

∑
Γ with n vertices

1

Aut(Γ)
A(Γ),

where the second sum is on graphs of the aforementioned type, and, for such a graph Γ,
A(Γ) is its amplitude:

A(Γ) =

∫ ∏
{i,j}∈σ

E[ϕ(yi)ϕ(yj)]Gdx1 · · · dxn,

and Aut(Γ) is its symmetry factor, that is, the number of different pairings that pro-
duce Γ.

We will call closed Feynman diagrams, the graphs obtained from open diagrams by
pairing together external lines to get a genuine graph as defined in Chapter 3.

Note that this perturbative expansion works for any polynomial potentials, and yields
of course different classes of graphs according to the potential.

For finite underlying spaces X, the integral in the amplitude is actually a finite sum,
and, up to our perturbative approximation, we have obtained a purely combinatorial hand-
book to compute the correlation functions of our theory.

For infinite spaces, it remains to handle the integrals in the xi’s. This is in no way
straightforward, as this brings out divergence problems already at each order n. To treat
these divergences, renormalization techniques are needed. We will not go into the detail
of those techniques, which are very involved, and will not appear in the other sections of
this introduction.

Even with the caveat of renormalization, the perturbative expansion is both very con-
venient, since it makes it possible to use combinatorial tools to study QFT, and quite
intuitive, as its vertices can be interpreted as particles of sorts, interacting through the
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edges or propagators. Moreover, as we will mention again later, it has proven to be very
efficient to give precise predictions in domains such as particle physics.

This is why several approaches, grouped together under the umbrella term of construc-
tive QFT, try to give it a more rigorous meaning. A common factor in these approaches
is the use of analytical tools such as the BKAR forest formula. Let us cite two impor-
tant such approaches: the cluster expansion [MM41], that focuses on local theories, and
the multi-loop vertex expansion [GR15], that focuses on matrix- and tensor-valued field
theories (that we will come upon later in this introduction).

Let us also mention that other formulations of QFT do not even involve a functional
integral, such as the axiomatic approach (see for instance [Rib]), or recent algebraic ap-
proaches (see [Rej16]).

2.2 A primer on general relativity

As we have touched on in the previous subsection, going from Newtonian mechanics to
quantum mechanics entails a paradigm shift, from the fundamental notion of a deter-
ministic trajectory, to one of a diffuse density of states. Going from classical mechanics to
general relativity causes a paradigm shift of similar magnitude, that can be seen as twofold.

The first part of this shift can already be seen in special relativity, which is, techni-
cally as well as conceptually, an intermediate step between Newtonian physics and general
relativity.

Before explaining this step, let us first briefly recall how the physical world is described
in Newtonian mechanics. We are considering matter, living in the Euclidean space R

3.
The quintessential object in that formulation is a point-particle, for which one will want
to establish equations of motion, that express the rules governing the time evolution of the
position of the particle. If one successfully solves these equations, one gets the trajectory
of the particle, that is, a function of time (represented by R or an interval of it) with values
in R

3.
One can take a sidestep from this canonical picture, and consider space and time

together in the Euclidean space R
4. Then, instead of trajectories in R

3, one looks at
events on R

4, which would for instance be: “both particles A and B are at position
(x, y, z) at time t”. Note that, even if we have grouped time and space together, time is
still a special coordinate that is naturally separated from the others.

We also recall a fundamental principle in Newtonian mechanics: Newton’s first law
of motion states that, in inertial reference frames, an object on which no force acts
moves at constant velocity. This implies that all equations of motion have the same form
in all inertial reference frames.

This principle also implies that these inertial reference frames are themselves moving
at constant velocity from one another. More precisely, the transformations of R4 that send
an inertial frame to another are generated by the time and space translations, the space
rotations, and the shear mappings, which are of the form

(�x, t) �→ (�x− �vt, t),

where �v is a fixed vector of R3.
This is indeed how the coordinates of a system change, when adding constant velocity

�v to the reference frame.
The set of transformations sending an inertial frame to another is called the Galilean

group, and it is the subset of isometries of the Euclidean space R
4 that preserve the

direction of time.
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Note that those transformations allow any constant velocity between inertial frames,
and thus any velocity for an observed particle. The resulting lack of upper bound on the
speed of particles, and therefore on the exchange of information of some type, can be quite
disconcerting from a physical point of view.

Moreover, for some very important areas of physics, such as electromagnetic fields, the
equations inferred from experimental observations are not invariant under Galilean changes
of coordinates.

This is why Einstein postulated that, in addition to the fact that equations of motion
are the same in all inertial reference frames (which will still be frames moving at constant
velocity from one another), there should be a maximal value c for the speed of any object,
which should be the same in all inertial frames. To resolve the problem of the equations
of the electromagnetic fields, c should be the speed of light.

The only possibility to have this speed to be constant in all inertial frames, is to accept
that time is no longer absolute, but rather relative to the chosen reference frame.

To grasp more precisely the consequences of Einstein’s second postulate, let us look
at what is the new fundamental example in the context of relativity: the emission and
reception of a light signal. In a given inertial frame, let us denote by (t1, x1, y1, z1) the
spacetime coordinates of the emission of the signal, and (t2, x2, y2, z2), the coordinates of
its reception. The distance d travelled by the signal from the emitter to the receiver can
be written in two ways:

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

and
d = c(t1 − t2).

Thus, in every inertial frame, we must have the equality:

c2(t1 − t2)
2 −

(
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2
)
= 0.

We want to show that the quantity

s2 = Δ(ct)2 − (Δx2 +Δy2 +Δz2)

between two events is always invariant in all inertial frames, even if the events are not
separated by the travel of some light signal. We derive this slightly heuristically. Consider
two infinitesimally separated events, for which the putative invariant may be written, in
some inertial frame O:

ds2 = c2dt2 − (dx2 + dy2 + dz2).

Denote by ds′2 the equivalent quantity for another inertial frame O′. Then, ds2 = 0
if and only if ds′2 = 0, as explained just above, and they are of the same infinitesimal
order. (Here we assume the (still undetermined) change of coordinates from O to O′

is linear, which can be seen as a consequence of the more fundamental assumption that
spacetime must be homogeneous in all inertial frames.) Therefore, there exists some scalar
a depending only on the relative velocity between O and O′, such that

ds′2 = ads2.

Now, as we want spacetime to be homogeneous and space to be isotropic in all inertial
frames, this a can only depend on the relative speed between O and O′, so that a = a−1 = 1.
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We have thus obtained that ds2 is invariant in all inertial frames. This implies that
the associated pseudo-metric2 s is also invariant. The vector space R

4, endowed with s, is
called the Minkowski space.

Hence, in special relativity, the coordinates between two inertial frames are related by
an isometry of the Minkowski space, that preserves the direction of time. Theses isometries
are generated by spacetime translations, space rotations, and Lorentz boosts, which are
the relativistic equivalents of shear mappings, as they express the change of coordinates
induced by adding a constant velocity �v to a reference frame. The Lorentz boost for a
velocity of speed v along the x axis corresponds to the following change of coordinates:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t �→ γ
(
t− vx

c2

)
x �→ γ(x− vt)

y �→ y

z �→ z,

where γ is the Lorentz factor

γ =
1√

1− v2

c2

.

Note that one recovers the shear mapping associated to �v by taking the limit v/c → 0.
As the above expressions show, in special relativity time and space are deeply inter-

twined, so that one really has to describe physical systems in terms of events in R
4, rather

that trajectories in R
3.

This can be first combined with the Lagrangian formulation of (non-quantum) me-
chanics. We now denote by (xμ)0≤μ≤3 the coordinates of spacetime, with x0 = ct, and
write ∂μ for ∂

∂xμ
. The relativistic version of the Euler-Lagrange equation, for a Lagrangian

L({xμ}, ϕ, {∂μϕ}), may be written as:

0 =
∂L
∂ϕ

−
∑
μ

∂μ

(
∂L
∂μϕ

)
.

This can then be further refined into relativistic QFT, with the formalism of path
integrals. Relativistic QFT is in particular the framework of the Standard Model, which
is to this day the most precise description of matter at subatomic scale.

While this shift from separated time and space to an entangled spacetime might seem
puzzling, it gives to causality the central role that it was lacking in Newtonian mechanics.
Indeed, in Minkowski space, pairs of events {A,B} can be classified into three types:

• timelike separated events, for which the spacetime interval

s2 = (tA − tB)
2 −

(
(xA − xB)

2 + (yA − yB)
2 + (zA − zB)

2
)

is positive: this means that a physical system that is slower than light can go from
A to B

• lightlike separated events, whose spacetime interval s2 is null: this means that only
light can go from A to B

2In other chapters of this thesis, we use the term pseudo-metric for functions f : X2 → R+ that
are symmetric and satisfy the triangle inequality, but are not positive-definite. Here, we use it for non-
degenerate quadratic forms that do not have signature (1, . . . , 1). However, this should not cause confusion,
as we will not talk about the latter in any other chapter.
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• spacelike separated events, whose spacetime interval s2 is negative: this means no
physical system can go from A to B.

Thus, the events that can be causally related to an event A are either timelike or
lightlike separated from it. The set of those events is called the lightcone from A, as its
boundary, consisting of the lightlike separated events, forms a cone in R

4.

Note that Minkowski space and R
4 endowed with its usual Euclidean metric can be

formally related by the operation t �→ it. This is called a Wick rotation, as it corresponds
to a rotation in the complex t-plane (that has only a formal meaning). We can see that
this rotation is also what relates a Lorentzian QFT with the corresponding Euclidean one,
which explains this choice of terminology.

Let us now describe the second step, from special to general relativity. Special relativity
gives an adequate formalism to describe both mechnics and electromagnetism, and has the
additional perk of having a more intrinsic notion of causality. However, it still relies on
making a (seemingly artificial) distinction between inertial frames and all other possible
reference frames. This can be conceptually very problematic: if for instance Earth does
not happen to be an inertial frame, then we cannot relate any experimental observation
with theoretical predictions obtained from equations of motion.

This is why Einstein, adding on to his previous and already revolutionary refinement of
the description of spacetime, set out to determine how should the coordinates of a physical
system should change, when one adds a non-zero acceleration to the reference frame.

Consider two physical systems, one having constant acceleration �a, and another being
at rest but subjected to a constant gravitational field −�a. The fundamental observation
of Einstein was that these two systems should have the same equations of motion. This
lead him to assume that more generally, a gravitational field is physically equivalent to an
acceleration of the reference frame.

Thus, one assumes that in general, the differential 2-form of R4 that is invariant under
change of frame is not necessarily

c2dt2 − (dx2 + dy2 + dz2),

but

ds2 =
∑

0≤μ,ν≤3

gμνdxμdxν ,

where the coefficients gμν , which are smooth functions on R
4, characterize the gravitational

field in the considered reference frame, or equivalently its acceleration3.
In modern mathematical terms, each reference frame equips the spacetime R

4 with the
structure of a Lorentzian manifold, with metric tensor {gμν}. This tensor quantifies how
spacetime deforms under the gravitational field. Thus, for the inertial frames of special
relativity, where the gravitational field is considered null, the metric is the flat one of

3Note that, for general changes of reference frames, the speed of light c is actually no longer constant:
however, the form of the induced change of coordinates ensure that laws such as the Maxwell equations
for the electromagnetic field (which were what guided Einstein to postulate the invariance of the speed of
light under change of inertial frames), are still invariant.
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Minkowski space, given by the diagonal tensor⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ .

When considering some physical system in spacetime, the evolution of the tensor gμν
must be part of the description of the system. Using only formal considerations on the
behavior of quantities related to the metric tensor, Einstein derived the law of its evolution,
called the Einstein field equation. In a modern language, it may be written as

Rμν − 1

2
gμνR+ Λgμν =

8πG

c4
Tμν

where Rμν is the Riemann curvature associated to the (pseudo-)metric, R is the Ricci
scalar, Λ is the cosmological constant (accounting for dark matter), and Tμν is the
stress-energy tensor (which describes the density and flux of energy and momentum
in spacetime). We take the liberty not to define these quantities precisely, as we will not
discuss this equation in detail in the sequel.

It can be expressed as the Euler-Lagrange equation for the Einstein-Hilbert action

SEH(Λ, G) =

∫
M

dξ
√

−g(ξ)(
1

16πG
(R(ξ)− 2Λ) + Lmat),

where M is spacetime with its Lorentzian structure, g is the determinant of the Lorentzian
pseudo-metric on M (so that dξ

√
−g(ξ) is the canonical volume form), and Lmat is the

part of the Langrangian accounting for matter.

As the QFT formalism of the Standard Model seems to describe very accurately all
the fundamental interactions of matter except for gravity, it is natural to want to also
refine Einstein’s theory of gravity, by applying to it the procedure we saw in the previous
subsection, to go from classical to quantum mechanics. However, this procedure fails in
the case of the gravitational field. Indeed, the perturbative expansion yields terms that
diverge order by order, and cannot be transformed into convergent ones by renormalization
techniques (see eg. [Des00]).

In fact, this technical failure can be predicted by a conceptual objection: in classical
physics, as well as special relativity, spacetime is a background on which physical matter
lives. This combines well with the path integral formalism, where physical systems are
described by measures on functions (or distributions) on spacetime. In general relativity,
however, spacetime is itself an actor of the physical world, that dynamically interacts with
the rest of it. Trying to express the geometry of spacetime as a function of itself is bound
to create an unescapable loop.

One must therefore find some other way(s) to combine general relativity and quantum
mechanics, to create a theory of quantum gravity.

2.3 The random geometry approach

As we have seen in Section 2.1, a quantum theory can be related to a genuine random
measure, by a Wick rotation. This motivates the idea of approaching the problem of
quantum gravity by studying relevantly chosen random geometric spaces.

We use the expression “geometric spaces” in a purposefully loose way, as the precise type
of spaces will heavily depend on the specific approach. The only common denominator is
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that the chosen structure should yield, in the classical (non-quantum) limit, the Lorentzian
manifolds of general relativity.

And some approaches do not even have this goal, but the alternative one of having
Riemannian manifolds as classical limits. This is motivated by what can be seen as an
additional Wick rotation: if one can recover a Riemannian spacetime as the classical limit
of a quantum theory, then performing a “Wick rotation” on the quantum spacetime should
yield an actual Lorentzian spacetime as the limit. While Wick rotations between QFTs are
relatively well understood, the notion of Wick rotation in the context of general relativity
is very hazy, so that this motivation is quite heuristic. This is, however, the framework of
the colored tensor models that are central to this thesis, and that we will define later.

Suppose now that one wants to keep the formalism of QFT to obtain some sort of
Euclidean quantum spacetime. To circumvent the failure of the canonical quantization of
Einstein’s theory, a possible strategy is to get rid of the background spacetime by having
a purely combinatorial theory, with a discrete underlying space. This implies that the
structure of the spacetime built on top of it will necessarily be discretized. A continuum
spacetime can then only recovered by taking a scaling limit, with the number of points in
the underlying space going to infinity, and the size of the cells of the discretized structure
going to zero.

In this context, one thus wants to have an action on discrete structures that somehow
yields the Einstein-Hilbert action in a continuum limit. Regge [Reg61] derived such an
action for simplicial spaces, that is, made of gluings of D-dimensional simplices along
their (D − 1)-dimensional faces. Note that even though the ultimate goal is to define a
4-dimensional spacetime, this formalism can be used in any dimension.

Let us start with the Einstein-Hilbert action without any matter field:

SEH(Λ, G) =
1

16πG

∫
M

dξ
√

−g(ξ)(R(ξ)− 2Λ).

This has two terms, one proportional to the total volume, and the other equal to the
integral of the Ricci scalar. We replace the volume term by the sum of the volumes of
the D-simplices, and the curvature one by the sum of the deficit angles ε around the
(D − 2)-simplices :

ε(σ) = 2π −
∑
σD,
σ∈σD

θ(σ, σD) (2.3.1)

where θ(σ, τ) is the dihedral angle of the (D− 2)-simplex σ in the D-simplex τ . If we only
consider regular simplices, this angle is:

ε(σ) = 2π −
∑
σD,
σ∈σD

arcos
1

D
. (2.3.2)

We thus get the Regge action:

SR(Λ, G) =
1

16πG

(
2Λ
∑
σD

v(σD)−
∑
σD−2

v(σD−2)ε(σD−2)
)

(2.3.3)

where v(σ) is the volume of the simplex σ, and where the sum
∑
σk

is over the k-simplices

of the considered simplicial space.

Later in this introduction, we will present the theory of colored tensor models, where
we will see this action appear again in a slightly different form. For now, let us mention a
few other approaches to quantum gravity.
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There are two very prominent approaches to quantum gravity. The first one is string
theory, which builds up on the Standard Model by replacing point-particles by extended,
one-dimensional objects called strings (see [BBS07]). This makes it possible to add to
the Standar Model a new particle, the graviton, that carries the gravitational force, like
the photon carries the electromagnetic force. While this approach is conceptually very
different from the random geometrical theories, it describes trajectories as 2-dimensional
objects, on which one may want to define a “natural” probability measure: this goal meets
the one of the random geometry approach for 2-dimensional spacetime. We will get into
more details on this in the next section.

The other very prominent approach to quantum gravity is Loop Quantum Gravity.
It is, rather than a random geometrical approach, an intrinsically quantum geometrical
approach, as it describes spacetime as a set of quanta of spacetime with volume and
boundary area given by the quantum numbers of a spin system (see for instance [Rov11]).

Closer to colored tensor models, the models of dynamical triangulations are also
random models of simplicial spaces using the Regge action, but that were investigated
with numerical tools rather than pertubative QFT (for D = 3 or 4). Euclidean Dynam-
ical Triangulations are models of Euclidean simplicial spaces: they were found to yield
singular scaling limits [Tho99], including a crumpled phase similar to the one I have es-
tablished with mathematical techniques for colored tensors (see Chapters 4 and 6). Causal
Dynamical Triangulations have a Lorentzian structure, which yields more encouraging
numerical results (see for instance [AGJL14]). For D = 2, dynamical triangulations, like
colored tensor models, are closely related to random maps, which will be discussed in
detail in Chapter 3.

2.4 Matrix models

We finish this “physical” part of the introduction, by presenting an approach to quantum
gravity that is motivated by string theory, but can be seen as a 2D version of the random
geometry approach. As we will see, it is related to random models of maps that will be
presented in Chapter 3.

Liouville Quantum Gravity

As was briefly mentioned in the previous subsection, string theory replaces point-particles
with one-dimensional objects, so that trajectories are replaced by two-dimensional objects,
still embedded in spacetime.

Thus, one would like to make sense of the “string of a free particle”, if possible in the
formalism of QFT dear to physicists. Suppose a string Σ is parametrized as x(z), z ∈ C,
in spacetime X. In a seminal article [Pol81], Polyakov made the conceptual inversion of
considering Σ as a background two-dimensional spacetime equipped with “matter fields”
x(z), describing the physical spacetime. This makes it possible to endow Σ with any kind
of field, starting with the 0-dimensional toy model with a trivial field.

The idea is that we want to have a global action on strings Σ that may be written as

Stot[Σ] = Sself [Σ] + Sint[Σ]

where Sint encodes the interaction of the string and the physical spacetime X, and
Sself corresponds to its “self-interaction”. The latter depends on the volume and curvature
of the string, like the Einstein-Hilbert action: thus, we can also interpret this theory as
genuinely describing a two-dimensional quantum spacetime, although this point of view is
less directly thrilling for the purpose of describing our actual, four-dimensional Universe.
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For a parametrization of the string x(z) ∈ X, this self-interaction term would write, as
argued by Polyakov:

Sself =

∫ √
g

⎛⎜⎜⎝ ∑
1≤a,b≤2
1≤μ,ν≤D

gab∂ax
μ∂bx

νGμν(x)

⎞⎟⎟⎠ dz,

where gab is the metric of the string, D is the dimension of the spacetime X, and Gμν

is its metric.
Such an action is difficult to tackle, so that Polyakov took the route of considering

string metrics g in one fixed conformal class. This leads to the theory of Liouville Quan-
tum Gravity. We will not explain Polyakov’s original derivation, but rather sketch the
content of this theory, in a modern mathematical formulation that greatly borrows from
[DKRV] and [GRV].

Let g be the metric of a smooth Riemann surface M . The uniformization theorem
states that in the class of metrics that are conformally equivalent to g:

[g] = {eϕg|ϕ ∈ C∞(M)},

there exists a unique metric g0 = eϕ0 of constant scalar curvature -2. This metric is found
by minimizing the functional

F [ϕ] =

∫
M

(
1

2
|∇ϕg|2 +Rgϕ+ 2eϕ

)
dvg.

Making the change of variables ϕ → ϕ/γ, we get a new functional, called the classical
Liouville functional:

SL,c[ϕ] =
1

4π

∫
M

(
|∇ϕg|2 +QcRgϕ+ 4πμeγϕ

)
dvg,

where the parameters Qc, μ, γ satisfy Qc = 2/γ and πμγ2 = 1. Indeed, we have

SL,c[ϕ] = F [γϕ]/(2γ2π).

Note that minimizing SL,c[ϕ] is equivalent to satisfying the Liouville equation

Δgϕ−Rg = 2eϕ,

hence its name.
The classical Liouville functional is conformally invariant, in the sense that, if we

apply a conformal transformation f to M , and change the field by ϕ → ϕ◦f +2/γ log |f ′|,
this leaves the action unchanged.

We now want to quantize this theory, which should give quantum fluctuations of the
string metric around the representative g0.

It turns out [DKRV; GRV] that, due to renormalization, to have conformal invariance
for the associated QFT, one must use the slightly different action:

SL[ϕ] =
1

4π

∫
M

(
|∇ϕg|2 +QRgϕ+ 4πμeγϕ

)
dvg,

with Q = 2/γ + γ/2. This conformal invariance is quite important, as it puts Liouville
Quantum Gravity in the class of Conformal Field Theories, for which a lot of specific
techniques have been developed.
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Note that the value of γ, which tunes the correction that we must apply on the field
when doing a conformal transformation, can be interpreted as tuning the coupling of
“matter field” with the 2D string “spacetime”. Physical arguments imply that the dimension
of the matter field (that is, the physical spacetime) is

D = 25− 6Q2 = 25− 6

(
2

γ
+

γ

2

)2

.

Mathematically rigorous approaches of this QFT, using the framework of Gaussian mul-
tiplicative chaos, were first achieved for the range γ ∈ (0, 2] [DS; DKRV]. These values
of γ correspond to D ∈ (−∞, 1], a quite frustrating range for the dimension of a physical
spacetime. However, there has been recent progress for complex values of γ [GHPR], which
corresponds to D ∈ (1, 25).

Recall that in the 2D-spacetime interpretation, the underlying spacetime is seen as a
“matter field” on the string. For particular values of γ, corresponding to

D = 1− 6/(m(m+ 1))

for some integer m ≥ 2, this matter field corresponds to well-known models of statistical
physics. We will touch on this again in Chapter 3.

We will not get into more details on the techniques of Liouville Quantum Gravity,
as we will now present a different strategy for tackling these quantum/random surfaces:
discretizing them into maps.

Matrix models and maps

Let us focus on the case of D = 0, that is, a pure theory of strings, without a physical
spacetime. We want to make sense of a theory of surfaces Σ, with an action of the form

S(Σ) = αA(Σ)− βR(Σ), (2.4.1)

where α, β are some parameters, A is the area of the surface, and R a measure of its
curvature.

If we consider, instead of smooth surfaces, triangulations, i.e. PL surfaces made of
equilateral triangles glued along their edges, we found ourselves in the 2D case of the Regge
action of (2.3.3). Thus, for a triangulation T with V vertices, E edges and F faces, its
area is just its number of faces F , and its curvature is its Euler characteristic

χ(T ) := V − E + F.

Note that this can be done with more general polygons, which yields general maps
instead of triangulations. We postpone to Chapter 3 a more thorough definition of maps
and related objects.

We have thus replaced a functional integral over smooth surfaces, with a sum over
maps, with a weight that depends on their number of faces and their Euler characteristic:∑

m

aF (m)bχ(m). (2.4.2)

We will now briefly explain how we can recover a QFT formalism for this discretized
model.
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As we have explained in Chapter 2, the correlation functions of a scalar QFT can be
perturbatively encoded into Feynmann graphs. Let us consider now a QFT on complex
hermitian N ×N matrices:

μS(dM) = e−S[M ]dM,

with an action S such as

S[M ] = N
tr(M2)

2
−
∑
p∈ I

λN
tr(Mp)

p
,

and as the canonical measure dM , the Haar measure on HN , normalized so that∫
HN

e−N
tr(M2)

2 dM = 1.

If we perturbatively expand the correlation functions or the partition function of the
theory, we get coefficients of the form:

(−1)n

n!

∫
HN

⎛⎝ ∏
1≤k≤n

λN
tr(Mpk)

pk

⎞⎠ e−N
tr(M2)

2 dM.

As before, the measure e−N
tr(M2)

2 dM is Gaussian, with covariances between matrix
coefficients:

E[MijMkl] =
δilδjk
N

,

so that, under this measure, we have the following form of Wick’s theorem:

E

⎡⎣ ∏
1≤k≤n

N
tr(Mpk)

pk

⎤⎦ = (λN)n
∏

1≤k≤n

∑
1≤i(pk)1 ,...,i

(pk)
pk

≤N

∑
pairing σ

∏
(i

(p)
j ,i

(p′)
l )∈σ

δ
i
(p)
j i

(p′)
l+1

δ
i
(p′)
l i

(p)
j+1

N
,

(2.4.3)
where the pairing σ is over all the indices belonging to the tuples i

(p)
1 , . . . , i

(p)
p , and, by

convention, i(p)p+1 = i
(p)
1 .

To get, as before, a graphical representation of this expression, we associate to each p-
tuple i1, . . . , ip a p-valent vertex, whose incident edges are indexed by the pairs (i(p)j , i

(p)
j+1):

we can imagine these edges as being strands with two boundaries, each one bearing an
index, rather than just a line. Then, σ describes the pairing of these half-strands into
edges, with the condition that the upper index of a half-strand is equal to the lower one
of the other, and vice versa.

There are several ways to see that this construction yields maps rather than abstract
graphs. One is to observe that the indices around a vertex give a cyclic ordering of the
incident edges, which does yield the structure of a map, as will be explained in Chapter 3.
Another would be to recognize that the fattening of the edges into strands induces a ribbon
graph, which is also equivalent to a map. In any case, we do get maps for the Feynmann
graphs of our theory, and (2.4.3) can be rewritten as

E

⎡⎣ ∏
1≤k≤n

λN
tr(Mpk)

pk

⎤⎦ =
∑
m

λnNχ(m)

#Aut(m)
, (2.4.4)

where the sum is over maps m with n vertices, of respective valences p1, . . . , pn, and
#Aut(m) is their number of automorphisms.
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Thus, we have obtained a weighting of maps of the form of (2.4.2), as the perturbative
expansion of a QFT on hermitian matrices. We will not go into much more detail for this
family of QFTs, but we will refer to it in Chapter 4 when we get to the setting of ten-
sor -valued QFTs. For a detailed account on matrix models in the context of 2D quantum
gravity, see for instance [FGZJ95].

While we got to matrix models by trying to emulate a Regge-like action on families
of maps, another way to get to them from continuum theories is to see the matrix-valued
field as the cutoff of the Fourier transform of a field parametrizing a smooth surface (see
for instance [Ori09], for an explanation in the framework of Group Field Theory).

With that point of view, it is natural to consider the size N of the matrices as a
parameter that is meant to be sent to infinity in the continuum limit. In particular, (2.4.4)
is called a 1/N expansion, since maps of increasing genus are increasingly suppressed
when N is large.

The “naive” way of taking a large-N limit is to just keep the dominant maps, which
are the planar ones, and then search for a scaling limit for these (by taking their number
of vertices to infinity, and rescaling appropriately their mesh size). This is a route that we
will explore in Chapter 3, and also for the higher-dimensional tensor models of Chapter 4.

A less naive method would be to fine-tune the limit N → ∞ and the scaling limit: this
is called a double scaling limit. This has the advantage of mixing different topologies,
but it is trickier to get non-trivial limit objects this way, as we will see in the case of tensors
in Chapter 4.

Note that this 1/N expansion, that depends on the genus of the considered maps,
induces a recursion on the genus for calculating quantities related to these maps. This
recursion can be seen as a particular case of topological recursion, which is a general
framework for enumerating various topological structures with respect to their natural
notion of topological complexity [Eyn16].
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CHAPITRE 3

Geometry of random maps

We will now do a quick tour of the thriving domain of random maps, with a particular
attention to their geometric properties.

We start by recalling in Section 3.1 basic definitions that we will need in the sequel, as
well as presenting a few fundamental techniques and results.

We will then present complementary points of view for investigating geometric proper-
ties of random maps: the bijective approach in Section 3.2, peeling processes, in Section 3.3
and layer decompositions, in Section 3.4.

Finally, in Section 3.5, we will focus on the family of maps that we are more specifically
interested in, Eulerian triangulations.

3.1 Basic definitions and results

We begin by giving precise definitions of a few graph-theoretic and combinatorial notions
that will be used in the sequel.

Graphs

Definition 3.1.1. A (finite) graph is a pair G = (V,E), where V is a finite set, and E is
a set of unordered pairs of elements of V .

The elements of V are called the vertices of G, and the elements of E, its edges. For
an edge e = {u, v}, u and v are called the extremities of e, and e is said to be incident
to u and to v, and reciprocally. If two edges are incident to the same vertex, we say they
are adjacent.

In the sequel, we will sometimes consider the set �E of oriented edges of G, which
are edges of G together with one of their extremities, called their initial vertex. We
usually indicate that an edge is oriented by drawing an arrow from its initial vertex to its
other extremity (see for instance Figure 3.1.2). To simplify notation, we will denote both
oriented and non-oriented edges by e, e′ and so on, precising when we are dealing with
oriented edges to avoid confusion. For an oriented edge e, we will denote by e− its initial
vertex.

A priori, we allow our graphs to have loops, i.e. edges whose both extremities are the
same vertex, and multiple edges, i.e. different edges with the same extremities.
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By convention, we consider that a loop still has two choices of orientation (this will be
more natural when we get to maps), so that we always have # �E = 2#E.

In the sequel, we will come upon more specific classes of graphs:

Definition 3.1.2. A graph G = (V,E) is bipartite if V can be partitioned into black
and white vertices, in such a way that a black vertex only shares edges with white vertices,
and vice versa.

The valence of a vertex is the number of edges incident to it (a loop counting for 2).
A graph G is d-regular, if all its vertices have valence d.

Cell complexes and maps

To define maps, and include them in the more general notion of cell complexes that we
will use in the next chapter, we now recall a bit of combinatorial topology.

Definition 3.1.3. An open n-cell is a topological space homeomorphic to the open unit
ball of Rn, denoted by B

n. Likewise, a closed n-cell is a topological space homeomorphic
to the closed unit ball of Rn, denoted by B

n.

Definition 3.1.4. Let X be a topological space. A cellular decomposition of X is a
partition E of X into open cells of different dimensions, satisfying the following conditions:
for every cell e ∈ E of dimension n ≥ 1, there exists a continuous function Φ of some closed
n-cell D into X (called characteristic function of e), that induces a homeomorphism
from D̊ into e, and that sends ∂D into the union of cells of E of dimension less than n.
A cell complex is a Hausdorff space X, together with some cellular decomposition E . We
then denote the complex by (X, E), or only X if there is no ambiguity.

In the sequel, we will mostly consider finite cell complexes, i.e. complexes (X, E) where
E is finite. We then call dimension of the complex the maximal dimension of the cells
of E . Let us note that any finite cell complex is necessarily compact.

A cell complex comes naturally with the notion of subcomplexes:

Definition 3.1.5. Let (X, E) be a cell complex. A subcomplex of X is a subspace
Y ⊆ X, that is a union of cells, such that, if Y contains a cell, then it also contains its
closure.
For any n ∈ N, we define the n-skeleton Xn of X as the union of cells of X of dimension
smaller than or equal to n. It is clear it is a subcomplex of X.
The 0-skeleton of X is also called the set of vertices of X.

A graph G can thus be naturally seen as a cell complex of dimension 1, whose 0-cells
are the vertices of G, and whose 1-cells are the edges of G. In particular, we can consider
the embeddings of the induced topological space into other topological spaces.

Definition 3.1.6. An embedding f of a connected graph G into a surface S is called
2-cellular, if all the connected components of S \ f(G), called its regions, are all home-
omorphic to the open disk.

Such an embedding defines a 2-cell complex whose 1-skeleton is f(G): we call it a map
with underlying graph G. The 2-cells of a map m are naturally called its faces, and we
denote the set of faces of m by F (m).

A rooted map is a map together with a distinguished oriented edge. We call root
vertex the initial vertex of the root edge, and root face, the face incident to the left of
the root edge.
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In the sequel, we only consider maps on orientable surfaces. In particular, a map that
is embedded into the sphere is called a planar map. When representing a planar map, we
often draw it in the plane, by blowing up one of its faces into an unbounded face (see for
instance Figure 3.1.2).

= �=

Figure 3.1.1 – Maps are defined up to orientation-preserving homeomorphisms of the sur-
face they are embedded into.

We usually consider maps up to isomorphisms, that is, up to orientation-preserving
homeomorphisms of the surface S (see Figure 3.1.1), as this yields a finite number of maps
with, say a given number of edges and faces. We naturally define map automorphisms
as isomorphisms from a map onto itself. It is quite convenient to consider rooted maps,
because they have no non-trivial automorphisms:

Proposition 3.1.7. An automorphism of a map that fixes one oriented edge fixes all the
edges of the map.

We will denote by M the set of rooted maps considered up to isomorphisms.
Considering topological objects up to isomorphism can be a bit awkward. It turns out

that maps considered up to isomorphisms admit a more direct and combinatorial definition,
that we give now.

Consider a map m, on a surface S. If we cut S along the edges of m, we obtain a finite
number of polygons, so that, rather than seeing m as the 2-cellular embedding of graph,
we can see it as a gluing of polygons (see Figure 3.1.2).

Let us orient the boundaries of these polygons counterclockwise, so that each polygon
lies to the left of its oriented edges, and each oriented edge in �E(m) appears on the bound-
ary of exactly one polygon. Thus, we can define a permutation ϕ on �E, that sends an
oriented edge belonging to the boundary of some polygon, to the next oriented edge on
this boundary: the cycles of ϕ are naturally identified with the faces of m.

Since, for an edge e of m, the two oriented versions of e (seen as oriented edges on the
boundary of some polygon) are glued together in m, we can also define a fixed-point free
involution α on �E(m), whose cycles are naturally identified with the edges of m.

Finally, it is straightforward to check that the permutation σ = αϕ−1 sends the oriented
edge e to the oriented edge e′, where e′ is the next edge clockwise around e− in m. Thus,
the cycles of σ are naturally identified with the vertices of m.

Moreover, as we consider connected maps, for any two oriented edges e, e′ in �E(m),
there exists a word on the alphabet {σ, α, ϕ}, that sends e to e′, so that the group of
permutations 〈α, σ, ϕ〉 generated by σ, α, ϕ acts transitively on �E(m).

This motivates the following definition:

Definition 3.1.8. Let X be a finite set of even cardinality. A fatgraph structure on
X is a triple (σ, α, ϕ) of permutations of X, such that ϕασ = 1, α is a fixed-point free
involution, and the group 〈α, σ, ϕ〉 acts transitively on X.
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=

e

α(e)

ϕ(e) σ(e)

Figure 3.1.2 – Maps can be defined as gluings of polygons (top), which can be described
by a triplet of permutations (bottom).

Two fatgraph structures (σ, α, ϕ) on X and (σ′, α′, ϕ′) on X ′ are isomorphic if they
are the same up to relabeling, i.e. if there exists a bijection π : X → X ′ such that

πσπ−1 = σ′, παπ−1 = α′, πϕπ−1 = ϕ′.

Theorem 3.1.9. [MT01] The set of maps considered up to isomorphisms is naturally
identified with the set of fatgraph structures considered up to isomorphisms.

Note that a fatgraph structure is also equivalent to an abstract graph, together with a
cyclic ordering of the edges around each of its vertices (as given by σ): this description of
a map is sometimes called a rotation system.

Viewing a map as a gluing of oriented polygons, not only yields this convenient com-
binatorial characterization, but makes it also more straightforward to define some basic
notions that we have not mentioned yet.

Thus, the degree of a face f of a map is the perimeter of the corresponding polygon:
it might not be the number of distinct edges incident to f , as some may be visited twice
along the boundary of f . We call such an edge, an isthmus in the face f .

Let p be an integer greater than 2. A map m is called a p-angulation, if all faces of
m have degree p. For the p = 3, we use the term triangulation instead of 3-angulation,
and for p = 4, quadrangulation.

The orientation of edges around the faces of a map also allows us to define the notion
of corners:

Definition 3.1.10. Let m be a map, and let f be a face in m, and e1, . . . , ed the oriented
edges around f ordered counterclockwise. To every i ∈ {1, . . . , d}, we associate a corner,
namely, an angular sector included in f and bounded by the edges ei−1 and ei , where by
convention e0 = ed.

We can associate to each corner the vertex that is incident to it: if a vertex v is incident
to several corners of a given face f , we say v is a separating vertex of f . A face with no
separating vertex is said to be simple.
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A map with boundaries is a map with a certain number of distinguished faces, that
are called its external faces. The other faces of the map are naturally called its internal
faces. We allow two external faces to share vertices, but not edges. If all the internal faces
of a map m with boundaries have degree p, we call m a p-angulation with boundaries.
We call map of the p-gon, a planar map with one external face of degree p. We will
usually denote by ∂m the boundary cycle of a map with one boundary.

A very important object associated to a map is its dual map:

Definition 3.1.11. Let m be a map given as the fatgraph structure (α, σ, ϕ). We define
the dual of m as the map induced by (ϕ, α, ασα), and denote it by m∗.

Graphically, m∗ can be constructed by putting a dual vertex vf at the center of each
face f of m, and, for two faces f, f ′ of m sharing an edge e, drawing a dual edge e∗ between
vf and vf ′ , that crosses e and does not intersect any other edge of m (see Figure 3.1.3).
This construction does yield a graph embedded into the same surface as m, and it is
straightforward to check that its structure is the one given in the above definition.

Figure 3.1.3 – A map (black vertices and edges) and its dual (white vertices and red edges).

Theorem 3.1.12 (Euler’s formula). Let m be a map on an orientable surface S of genus
g. Then

#V (m)−#E(m) + #F (m) = 2− 2g.

The number χ = 2− 2g is called the Euler characteristic of S.

Note that Euler’s formula the dual of a map may be written exactly the same way,
since the number of vertices and faces are exchanged, while the number of edges remains
the same.

Abstract and plane trees

Definition 3.1.13. An abstract tree is a connected graph with no cycle. Equivalently,
it is a connected graph G = (V,E) such that #V = #E + 1.

A forest is a set of abstract trees.
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A plane tree is a map t which, as a graph, is a tree. Since t has no cycle, any embed-
ding of t is necessarily on the sphere. Moreover, the absence of cycles is equivalent to the
fact that, as a map, t has a unique face.

Let t be a tree with n edges. Let e0, e1, · · · , e2n−1 be the sequence of oriented edges
bounding the unique face of t, starting with the root edge, and ordered counterclockwise
around this face. Then let ui = e−i be the i-th visited vertex in this contour exploration,
and set the contour process of t at time i to be:

Ct(i) := dt(u0, ui), 0 ≤ i ≤ 2n− 1,

where dt is the graph distance on t, and with the convention that u2n = u0 and Ct(2n) = 0.
We also extend Ct by linear interpolation between integer times: for 0 ≤ s ≤ 2n

Ct(s) = (1− {s})Ct(�s�) + {s}Ct(�s�+ 1),

where {s} = s − �s� is the fractional part of s. Thus, the contour process Ct is a non-
negative path of length 2n, starting and ending at 0, with increments of 1 between integer
times. We call such paths, discrete excursions of length 2n, and denote their set by En.
It is straightforward to show that the mapping that associates with every tree its contour
process is a bijection.

Generating functions and analytic combinatorics

Now that we have defined maps as combinatorial objects, we may want to enumerate
certain types of maps. For instance, we might want to count the number of rooted plane
trees with n edges, denoted by tn. For this purpose, a very important object is the
associated generating function:

T (x) :=
∑
n≥0

tnx
n,

which is a formal series in x, with integer coefficients.
A way to obtain an explicit expression for this series is to use Tutte’s recursion, which

decomposes the tree into smaller ones by removing the root edge (see Figure 3.1.4). This
yields

T (x) = 1 + xT (x) + x2T (x)2 + · · · = 1

1− xT (x)
.

= + + + . . .

Figure 3.1.4 – Tutte’s recursion for rooted plane trees.

Considering that the coefficients of T must be non-negative, we deduce that

T (x) =
1−

√
1− 4x

2x
,

which gives

tn =
1

n+ 1

(
2n
n

)
≡ Cn,
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which are the well-known Catalan numbers.
We might be interested in enumerating a broader class of maps, such as the set M of

rooted planar maps. The natural variable with respect to which we want to enumerate
the maps of M is their number of edges. However, it is more convenient to use a bivariate
generating function:

M(x, y) =
∑
m∈M

x#E(m)ydeg(fe∗ ),

where e∗ is the root of the considered map. The additional variable y will allow us to
determine the function M(x, 1) ≡ M(x) that we are actually insterested in. Hence, y is
called a catalytic variable.

Applying the same decomposition as before (see Figure 3.1.5), we obtain for M the
follwoing equation

M(x, y) = 1 + xy2M(x, y)2 + xy
M(x)− yM(x, y)

1− y
.

M = + +

Figure 3.1.5 – Tutte’s recursion for general rooted planar maps.

Tutte [Tut63] devised a method called the quadratic method to determine M(x)
from the previous equation. As this equation is quadratic in M(x, y), we can write it in
the form

(a1M + a2)
2 = a3,

where the ai are formal power series in x, y. The idea of the quadratic method is to
introduce a parametrization of the catalytic variable y in terms of x, y = α(x) where α is
a formal power series, along which a3(x, α(x)) = 0. In that case, since a3 may be written
as a square, we will have not only a3 = 0, but also

∂a3
∂x

= 0,

which gives two equations for the two unknowns α(x) and M(x). After calculations that
we do not detail, this yields

M(x) =
1− 4θ(x)

(1− 3θ(x))2
,

where θ(x) is the formal power series such that

θ(x) =
x

1− 3θ(x)
.

We can then use the Lagrange inversion formula to express the coefficients of M(x)
in terms of x, namely

mn = [xn]M(x) =
2 · 3n
n+ 2

Cn. (3.1.1)
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The fact that this expression is very simple, and incorporates the number of trees with n
edges, begs for an explanation of this formula that relates general maps and trees. We will
get to such an explanation in Section 3.2.

Some generating functions, such as the ones we will come upon in Chapter 9, are more
unwieldy, and we cannot extract explicit expressions for their coefficients. However, what
mostly interests us is the asymptotic behavior of these coefficients. For that purpose, one
very important result is the transfer theorem. For a formal power series f that is regular
enough when considered as a function on C, it relates the asymptotic behavior of f near
its dominant singularity, and the asymptotic behavior of its coefficients. The fundamental
statement of the transfer theorem is the following [FS09]:

Theorem 3.1.14. Let f be a function that is Δ-analytic, i.e. analytic in a domain of the
form

Δ(φ,R) = {z ∈ C | |z| < R, z �= 1, |arg(z − 1)| > φ}

for some R > 1 and 0 < φ < π/2 (see Figure 3.1.6 for an illustration). Assume that, for
some α, β ∈ R, f satisfies, in the intersection of a neighbourhood of 1 with its Δ-domain
Δ(φ,R),

f(z) = o

(
(1− z)−α

(
log

1

1− z

)β)
.

Then,
[zn]f(z) = o

(
nα−1 log nβ

)
.

Thus, if a function g can be written near its dominant singularity as the sum of another
function h and a correction f of the above type, and if we have explicit expressions for the
coefficients of h, we will know the asymptotic behavior of the coefficients of f .

R

φ

Figure 3.1.6 – A Δ-domain.

Note that, while the above theorem ony treats singularities at z0 = 1, if f(z) = g(γz)
for some γ ∈ C, then

[zn]f(z) = γn[zn]g(z),
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so that the theorem actually applies to any functions that are Δ-analytic around their
singularity z0, no matter what the value of z0 is.

Limits of graphs and maps

So far, we have only presented tools to describe the asymptotic enumerative properties of
families of (rooted) maps. We now define two notions of limit, or topology, that will help
us describe their asymptotic geometric properties. As we will see in the next sections and
in Part III, these two notions are complementary.

The first one is the notion of local topology.

Definition 3.1.15. Let m be a finite rooted map. The ball of radius r Br(m) of m
is obtained from m by keeping only the edges and faces incident to at least a vertex at
distance at most r− 1 from the root, and cutting along the boundary edges (i.e., the ones
incident in m to a face containing a vertex at distance at most r − 1 from the origin, but
that do not contain themselves a vertex at distance at most r − 1).

By gluing open disks to the boundaries created by this cutting, we can consider Br(m)
as a map itself (see Figure 3.1.7).

Note that, with this gluing operation, Br(m) is a 2-cell complex, but that it is not a
subcomplex of m, as some edges and vertices of m are duplicated in Br(m) (see Figure 3.1.7).
However, it is a particular case of the notion of submaps:

Definition 3.1.16. Let m be a rooted map, and let e be a rooted map with simple
boundaries. We say that e is a submap of m, and write e ⊂ m, if m can be obtained from
e, by gluing to each boundary fi of e some finite map ui.

Figure 3.1.7 – A map (left) and its ball of radius 1 (right).

For m,m′ ∈ M, we define the local distance between m and m′ as

dloc(m,m′) =
1

1 + sup{R ≥ 1|BR(m) = BR(m′)} .

It is clearly a distance on M, and the completion (M, dloc) of the space (M, dloc) is a Pol-
ish space. The notion of convergence in this space will be called local limit. The elements
of M\M are thus infinite maps that can be defined as the local limit of finite rooted maps.

The second notion of topology that we will use, is the Gromov-Hausdorff topology.
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As this is a topology that makes it possible to compare compact metric spaces, we first
have to explain how to get a metric space out of a map m (or even a graph). It is really
straightforward: we just consider the space whose elements are the vertices of m, with
the distance given by the graph distance on m: in other words, if u, v ∈ V (m), then the
distance between them is the number of edges in a shortest path from u to v in m.

We start by defining a notion of distance between two subsets of the same metric space:

Definition 3.1.17. If (Z, δ) is a metric space and A,B ⊂ Z, the Hausdorff distance
between A and B is given by

δH(A,B) = max{δ(x,B) |x ∈ A} ∨max{δ(y,A)|y ∈ B},

where by definition δ(x,C) = inf{δ(x, y)|y ∈ C} for C ⊂ Z. The function δH defines a
distance function on the set of non-empty, closed subsets of Z.

We can then compare two metric spaces by embedding them into a third one:

Definition 3.1.18. Let (X, d) and (X ′, d′) be two compact metric spaces. The Gromov-
Hausdorff distance between these spaces is defined by

dGH((X, d), (X ′, d′)) = inf δH(ϕ(X), ψ(X ′)),

where the infimum is taken over all metric spaces (Z, δ) and all isometric embeddings ϕ, ψ
from X,X ′ respectively into Z.

Clearly, if (X, d) and (X ′, d′) are isometric metric spaces, then their Gromov-Hausdorff
distance is 0, so dGH defines at best a pseudo-metric1 between metric spaces. This is
actually a good thing, because the class of all compact metric spaces is too big to be a set
in the set-theoretic sense, while the family of compact metric spaces seen up to isometries
is indeed a set, in the sense that there exists a set M such that any compact metric space
is isometric to exactly one element of M.

Theorem 3.1.19. The function dGH induces a distance function on the set M of isometry
classes of compact metric spaces. Furthermore, the space (M, dGH) is Polish.

The definition of dGH through a huge infimum makes it quite daunting. However, there
is a very useful alternative description via correspondences :

Definition 3.1.20. If X and X ′ are two sets, a correspondence between X and X ′ is a
subset R ⊂ X ×X ′ such that, for every x ∈ X, there exists x′ ∈ X ′ such that (x, x′) ∈ R,
and for every x′ ∈ X ′, there exists x ∈ X such that (x, x′) ∈ R. We let Cor(X,X ′) be the
set of all correspondences between X and X ′ .

If now (X, d) and (X ′, d′) are metric spaces, and R ∈ Cor(X,X ′), the distortion of R
with respect to d, d′ is defined by

dis(R) = sup{|d(x, y)− d′(x′, y′)| ; (x, x′), (y, y′) ∈ R}.

Proposition 3.1.21. Let (X, d) and (X ′, d′) be compact metric spaces. Then

dGH((X, d), (X ′, d′)) = inf
R∈Cor(X,X′)

dis(R).

1In the sequel, we will use the term pseudo-distance for functions f : X2 → R+ that satisfy the triangle
inequality and are positive-definite, but are not necessarily symmetric. To avoid confusion, we therefore
only use the term pseudo-metric, when refering to functions f : X2 → R+ that are symmetric and satisfy
the triangle inequality, but are not definite-positive.
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3.2 Bijective techniques

Scaling limit of trees

We start by considering Tn, a uniform random element in the set Tn of rooted plane
trees with n edges. We denote by en0 , e

n
1 , . . . , e

n
2n−1 the corners encountered in the contour

exploration of Tn, starting with the root corner, and by Cn the associated contour process.
As the mapping that associates to a tree its contour process is a bijection, Cn is itself a
uniform random element of En.

Note that, if (Sk, k ≥ 0) is the simple random walk in Z, Cn has the same distribution
as (St, 0 ≤ t ≤ 2n), conditioned on An = {Sk ≥ 0, 0 ≤ k ≤ 2n} ∩ {S2n = 0}. Thus, having
in mind the convergence of the rescaled random walk (Snt/

√
n)0≤t≤1 to the standard

Brownian motion Bt, we want to state that a rescaled version of Cn converges to a sort of
continuum excursion. The correct notion is that of the normalized Brownian excursion
�. One way to define it is the following: let B be a standard Brownian motion, and let

g = sup{t ≤ 1 |Bt = 0}, d = inf{t ≥ 1 |Bt = 0}.

Since B1 �= 0 a.s., we have that g < 1 < d with probability 1, and that the portion of the
path B on [g, d] is the excursion of B away from 0 that straddles 1. We normalize it by
setting

�t =
|Bg+t(d−g)|√

d− g
, 0 ≤ t ≤ 1.

Let us denote by C(n) the normalized contour process of Tn, defined by

C(n)(t) =
Cn(2nt)√

2n
, 0 ≤ t ≤ 1.

Theorem 3.2.1. The following convergence in distribution holds in C([0, 1],R):

C(n)
(d)−−−→

n→∞
�.

We might want to translate this convergence into one for the uniform tree Tn, and the
induced metric space. For that purpose, we must use a framework in which the Brownian
excursion can encode a metric space, similarly to how Cn encodes Tn.

Let f : [0, 1] → R+ be a non-negative, continuous function, with f(0) = f(1) = 0.
We call such a function an excursion function, and denote by E the set of excursion
functions, that we endow with the uniform norm. For every s, t ∈ [0, 1], let

f̌(s, t) = inf{f(u) |, s ∧ t ≤ u ≤ s ∨ t},

and set
df (s, t) = f(s) + f(t)− 2f̌(s, t).

Proposition 3.2.2. The function df on [0, 1]2 is a pseudo-metric: it is non-negative,
symmetric, and satisfies the triangle inequality.

Definition 3.2.3. Let (X, d) be a metric space. We say that X is a geodesic metric
space if, for every x, y ∈ X, there exists an isometric embedding φ : [0, d(x, y)] → X such
that φ(0) = x and φ(d(x, y)) = y. This isometric embedding is called a geodesic path,
and its image a geodesic segment, between x and y.

We say that (X, d) is an R-tree if it is a geodesic metric space, and if there is no
embedding (continuous injective mapping) of S1 into X. In other words, the geodesic
segments are the unique injective continuous paths between their endpoints.
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Let f be an excursion function. Since df is a pseudo-metric on [0, 1], the set {df =
0} = {s, t ∈ [0, 1] | df (s, t) = 0} is an equivalence relation on [0, 1].

Let Tf = [0, 1]/{df = 0} be the quotient set, and pf : [0, 1] → Tf the canonical
projection. The function df naturally induces a (true) distance function on the set Tf , and
we still denote this distance by df .

Proposition 3.2.4. The space (Tf , df ) is a compact R-tree. It is naturally “rooted” at
ρf = pf (0) = pf (1).

We let [[a, b]] be the unique geodesic segment from a to b in the tree Tf . Note that Tf
carries a genealogical structure, namely, for every a, b ∈ Tf , there is a unique point a ∧ b
(the most recent common ancestor) such that [[ρf , a]] ∩ [[ρf , b]] = [[ρf , a ∧ b]]. The geodesic
segment [[a, b]] is then the concatenation of [[a, a∧ b]] with [[b, a∧ b]]. We can thus see Tf as
a continuum equivalent of a rooted plane tree, and so we call f its contour function.

Definition 3.2.5. The Continuum Random Tree (hereafter CRT) is the R-tree (T�, d�)
encoded by the normalized Brownian excursion �.

Figure 3.2.1 – A simulation of the CRT, courtesy of Jérémie Bettinelli.

A consequence of Theorem 3.2.1 is thus:

Theorem 3.2.6. We have the following convergence in distribution

(V (Tn),
1√
2n

dTn)
(d)−−−→

n→∞
(T�, d�)

for the Gromov-Hausdorff topology.

As we have seen in Section 3.1, the explicit enumeration of general planar maps hints
at a link between them and plane trees. With the previous result, we can expect that,
using such a link, we may able to obtain a scaling limit for general planar maps as well.
Let us thus explain the link between general planar maps and trees, in terms of an explicit
and very useful bijection.

The CVS bijection

We will actually first present a bijection between general maps and quandrangulations,
called Tutte’s bijection, then describe a bijection between planar quadrangulations and
some specific family of trees.

The first bijection is very simple: consider a map m with n edges. We start by adding
to m its dual vertices. For each face f of m, join its dual vertex vf to each of the corners
of f , by non-intersecting edges staying inside f . Erase then the original edges of m. The
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resulting map q is a quadrangulation with n faces (see Figure 3.2.2). If m is rooted at
(e, v), we root q at the first edge of q coming after e counterclockwise around v.

Let us describe the inverse transformation. Start from a rooted, planar quadrangulation
q, and color in white the vertices at odd distance from the root, and in black the vertices
at even distance from the root. In each face, draw the diagonal between the two black
vertices, and erase the original edges of q as well as its white vertices. If q is rooted at
(e, v), the resulting map m can be rooted at the first outgoing edge of m coming after e
clockwise around v.

Figure 3.2.2 – A rooted planar map (vertices and edges in black), and the corresponding
quadrangulation (black and white vertices and red edges).

Let us now get to the bijection between rooted planar quadrangulations with n faces,
and a family of decorated trees with n edges. Let t be a rooted plane tree, with root edge
e0 and root vertex u0. An admissible label function on t is a function l : V (t) → Z

such that l(u0) = 0, and, for every adjacent u, v ∈ V (t)

|l(u)− l(v)| ≤ 1.

We denote by Tn the set of all pairs (t, l), where t is a rooted plane tree with n edges,
and l is an admissible label function on t. We also denote by Tn the set rooted plane trees
with n edges.

Consider a labeled tree t ∈ Tn. Let e0, e1, · · · , e2n be, as before, the contour exploration
of the oriented edges of t, and let ui be the initial vertex of ei. We extend the sequences
(ei) and (ui) to N by periodicity. We will often identify the oriented edge ei with the
associated corner, and thus use the notation l(ei) for l(ui) when it is more convenient.

For every i ≥ 0, we define the successor of i by

s(i) = inf{j > i | l(ej) = l(ei)− 1},

with the convention that inf ∅ = ∞. Note that s(i) = ∞ if and only if l(ei) = min l, as
the values of l decreases only by unit steps.

Consider a point v∗ in S
2 that does not belong to the support of t, and denote by e∞

a corner around v∗. We set
l(v∗) = l(e∞) = min l − 1.

We can then define, for every i ≥ 0, the successor of the corner ei as s(ei) = es(i).
The CVS construction consists in drawing, for every i ∈ {0, 1, . . . , 2n − 1}, an edge,

that we will call an arc, from the corner ei to the corner s(ei), without crossing t, v∗, or
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another arc (see Figure 3.2.3). Let us denote by q the embedded graph with vertex set
V (t)∪{v∗}, and edge set formed by the arcs. We can then prove that, as its name suggests,
q is a quadrangulation with n faces.

0

1 0

-1 -1 1

-2

-3
v∗

Figure 3.2.3 – A rooted labeled plane tree (edges in black, excluding the vertex v∗), and the
corresponding quadrangulation (edges in red), making the choice ε = −1 for the rooting
convention.

Note that the quadrangulation q has a distinguished vertex v∗ , but for now it is not a
rooted quadrangulation. To fix this root, we will need an extra parameter ε ∈ {−1, 1}. If
ε = 1 we let the root edge of q be the arc linking e0 with s(e0), and oriented from s(e0) to
e0. If ε = −1, the root edge is this same arc, but oriented from e0 to s(e0).

We have thus defined a mapping Φ from Tn × {−1, 1} to the set Q•
n of pointed planar

quadrangulations (q, v∗).

Theorem 3.2.7 ([CS04]). For every n ≥ 1, Φ is a bijection from Tn × {−1, 1} onto Q•
n.

Note that we do recover from this theorem the expression of (3.1.1) for the number of
rooted planar quadrangulations with n faces, as, by Euler’s formula, such maps all have
n+ 2 vertices.

A very convenient aspect of the CVS bijection is that the labels of the tree keep track,
in some way, of the distances in the quadrangulation. A first evidence of this fact is that,
if (q, v∗) = Φ((t, l), ε), then, for every v ∈ V (q),

dq(v, v∗) = l(v)−min l + 1,

where by convention l(v∗) = min l − 1.
Let u, v be two vertices in V (q) \ {v∗}, and let e, e′ be two corners of t such that u is

adjacent to e, and v to e′. We denote by [e, e′] the set of all corners of t encountered when
going counterclockwise around t, starting from e and ending at e′. Another very important
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relation between distances in q and the labeling function l, that we do not prove here, is
the following:

dq(u, v) ≤ l(u) + l(v)− 2 min
e′′∈[e,e′]

l(e′′) + 2. (3.2.1)

Another useful aspect of the CVS bijection is that it can be formulated in terms of
uniform random variables: indeed, if (q, v∗) is a uniform random element of Q•

n, and (t, l)
is a uniform random element of Tn, then (q, v∗) has the same law as Φ((t, l), ε), where ε is
chosen uniformly at random in {−1, 1}.

The Brownian map

We now extend the convergence of Theorem 3.2.1, to labeled trees. Let (tn, ln) be a uniform
random element in Tn. Let ε be uniform in {−1, 1} and independent of (tn, ln), and let qn
be the random uniform quandrangulation with n faces and a uniformly chosen vertex v∗,
obtained from ((tn, ln), ε) via the CVS bijection.

Then, the tree tn is uniform in Tn, and, given tn, ln is uniform on the 3n possible
admissible labelings. Let us give another description of ln. Assign independently to every
edge e of tn a random variable Ye, uniform on {−1, 0, 1}. Then, for each vertex u ∈ V (tn),
let Su =

∑
e Ye, where the sum is over the edges of the unique path from the root to u (if

u is the root vertex, we have the convention that this empty sum gives 0). Then, given tn,
(Su)u∈V (tn) has the same law as ln. Thus, the label function ln can be seen as a random
walk along the paths in tn, so we might expect that it has a scaling limit as well.

Consider the rescaled label function defined for t ∈ [0, 1] by

L(n)(t) =

(
9

8n

)1/4

Ln(2nt),

where, similarly as for the contour function C(n), we define Ln(i) as the label of u(n)i for
i ∈ {0, 1, . . . , 2n− 1}, then interpolate between integer times.

We have the following result:

Theorem 3.2.8 ([JM05]). It holds that(
C(n), L(n)

) (d)−−−→
n→∞

(�, Z), (3.2.2)

in distribution in C([0, 1],R)2, where � is a standard Brownian excursion, and, conditionally
on �, Z is a continuous, centered Gaussian process with covariance

Cov(Zs, Zt) = �̌s,t, s, t ∈ [0, 1].

The process Z is called the head of the Brownian snake, but in the sequel we will
sometimes abuse notation and refer to it as the Brownian snake, as the actual snake will
not appear in these pages.

Let us denote by dn the graph distance on qn. We also define a rescaled distance D(n)

on [0, 1]2, by first setting, for i, j ∈ {0, 1, . . . , 2n}:

D(n)

(
i

n
,
j

n

)
=

(
9

8n

)1/4

dn(u
(n)
i , u

(n)
j ),

then linearly interpolating to extend D(n) to [0, 1]2.
The convergence of Theorem 3.2.8, together with (3.2.1), implies that the family (Dn)n

is relatively compact for the weak topology on probability measures on C([0, 1]2,R), so that,
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along some subsequence nk, Dn converges to some random function D. It is straightforward
to prove that D must satisfy the triangle inequality, so that, the quotient space S =
[0, 1]/{D = 0} is a metric space, when equipped with the projection of D, still denoted by
D. We then have the following convergence, along the subsequence nk

(V (qn),

(
9

8n

)1/4

dn)
(d)−−−→

n→∞
(S,D),

for the Gromov-Hausdorff topology.
What remains to prove is that D is necessarily equal to a pseudo-metric D∗ that is

naturally defined in terms of Z, so that the previous convergence holds without taking a
subsequential limit, and involves a universal object that we will call the Brownian map.
Let us first define this object.

Like the Brownian excursion � encoded a continuum equivalent of a tree, we want to
see Z as encoding a continuum equivalent of a map. For this, let us construct from Z a
pseudo-metric on [0, 1], that will induce a quotient metric space, much like � induces the
CRT T�.

We want to have a function that relates to Z, similarly to the way the distances in the
quadrangulation relate to the label function. Taking inspiration from the bound (3.2.1),
let us first define, for s ≤ t ∈ [0, 1],

D◦(s, t) = D◦(t, s) := Zs + Zt − 2max( min
r∈[s,t]

Zr, min
r∈[t,1]∪[0,s]

Zr).

This function does not satisfy the triangle inequality, which brings us to

D∗(s, t) := inf

{
k∑
i=1

D◦(si, ti)

∣∣∣∣∣ k ≥ 1, s1 = s, tk = t, d�(ti, si+1) = 0 ∀ i ∈ {1, 2, . . . , k}
}
.

We can now define the Brownian map m∞, by setting m∞ = [0, 1]/{D∗ = 0}, and
equipping this space with the distance induced by D∗, which is still denoted by D∗. We
will not say much about the fascinating properties of this metric space, but note at least
that we can prove (see [LGP08]) that the Brownian map is homeomorphic to the sphere
a.s., which is welcome for a putative scaling limit of planar maps.

As advertized, we do have that the Brownian map is the scaling limit of planar quad-
rangulations:

Theorem 3.2.9. The following convergence holds

(V (qn),

(
9

8n

)1/4

dn)
(d)−−−→

n→∞
(m∞, D∗),

for the Gromov-Hausdorff topology.

This result was proven independently by Le Gall [LG13] and Miermont [Mie13] In
[LG13], the proof of Le Gall also applies to 2p-angulations for any p ≥ 3, and to triangula-
tions: this relies on bijections similar to the CVS bijection, that were derived by Bouttier,
Di Francesco and Guitter [BDFG03].

Other families of planar maps, such as general maps [BJM14], bipartite maps [Abr16],
and recently p-angulations for odd p ≥ 5 [ABA], were proven to converge to the Brownian
map with the same method. Notably, in a paper [ABA17] where this method is adapted
to simple triangulations and quadrangulations, Addario-Berry and Albenque also establish
a “black box”, that systemizes its application to families of planar maps in bijection with
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Figure 3.2.4 – A simulation of the Brownian map, courtesy of Jérémie Bettinelli.

various types of decorated trees. It is also this method that we adapt to the case of Eulerian
triangulations in Chapter 7, as we will explain in more detail in Section 3.5.

Let us note that all these families have similar singularities in their generating func-
tions, or equivalently by the transfer theorem, their enumeration has the same asymptotic
behavior, of the form

mn ∼ Cρnn−5/2. (3.2.3)

While this is not enough to deduce that they have similar scaling limits, it is a strong
hint that they have the same asymptotic behavior for many other quantities, or, in other
words, that they are in the same universality class2.

Let us also mention that there has been a lot of recent work to relate the Brownian
map to Liouville Quantum Gravity (defined in Section 2.4) with the parameter γ =

√
8/3

(see for instance [MS]).

It is undoubtedly interesting to further investigate an already known universality class,
but it is also stimulating to look for new scaling limits. Thus, other scaling limits of
planar maps have been derived: the Brownian plane [CLG14], that can be constructed by
“zooming in” on the Brownian map, the related hyperbolic Brownian plane [Bud18], the
Brownian disk [BM17], that is the scaling limit of maps with a boundary whose perimeter
is fine-tuned with their size.

Another thriving topic is the one of decorated random maps, in which we consider ran-
dom planar maps biased by a statistical physics model, such as the Ising model, Bernoulli
percolation, or spanning trees. In particular, there has been recent work on bijective ap-
proaches for some of these models, see for instance [GKMW18; BHS; GHS]. However,
we are still far from the twofold goal of constructing scaling limits for these objects, and

2It is very tricky to properly define the multi-faceted notion of universality class, and we will not attempt
to do so here.
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showing that these scaling limits can be identified with Liouville Quantum Gravity for
particular values of γ.

Bijections for maps with boundaries

While we saw that bijections between families of planar maps and classes of decorated trees
were very useful to derive scaling limits, they can also help in deriving local limits. Indeed,
these bijections yield explicit enumerations of the maps in question, that, as we will see in
the next sections, are central in the construction of some particular infinite random maps
as local limits of finite random maps.

3.3 Peeling processes

In this section, we will briefly explain how random models of infinite maps can be defined
via a Markovian exploration process, called the peeling process. While this method will
not be used in Part III, it is of great importance for the investigation of random models of
maps, and in particular random maps decorated with statistical physics models.

A notion that is central to the peeling method, as well as to the layer decomposition
that we will see in the next section, is that of Boltzmann maps.

Definition 3.3.1. Let q = (qk)k≥1 be a non-zero sequence of non-negative real numbers,
that we call the weight sequence. We then define a measure on the set of all finite
bipartite planar maps, by setting

wq(m) =
∏

f∈F (m)\{f∗}
qdeg(f)/2,

where f∗ is the root face of m. For any l ≥ 1, we denote by W(l)(q) the Boltzmann
partition function on bipartite maps of the 2l-gon:

W(l)(q) =
∑

m∈M,deg(f∗)=2l

wq(m).

We say a weight sequence is admissible, if, for any l ≥ 1, W(l)(q) is finite. We can then
define the q-Boltzmann map of the 2l-gon, as the random bipartite map with measure

P
(l)
q (m) =

wq(m)

W(l)(q)
.

An admissible weight sequence q is critical if the variance of the volume of a q-Boltzmann
map is infinite.

Thus, Boltzmann maps are random planar maps with a fixed perimeter, but not a fixed
size. A particular case is to take qk = 0 for any k �= 2 and q2 = 1/ρ (for ρ like in (3.2.3)),
which yields (critical) Boltzmann quadrangulations, whose measure may be written, for
any quadrangulation of the 2l-gon with n+ 1 faces q:

P
(l)(q) =

ρ−n∑
mQm,lρ−m

,

where Qm,l is the number of quadrangulation of the 2l-gon with m+ 1 faces.
We can also extend the definition of Boltzmann maps to include Boltzmann trian-

gulations, which are defined similarly to Boltzmann quadrangulations (without a parity
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condition on the length of the boundary).

A peeling exploration is a way to explore a map m edge by edge3. If e ⊂ m is a
planar map with simple boundaries, we denote by Active(e) the set of edges adjacent to
the boundaries of e. We suppose we have some peeling algorithm A, which is a function
that associates to any planar map with boundaries e an element of Active(e) ∪ {†}, where
† is a cemetery point that we interpret as the end of the exploration.

Thus, given the algorithm A, we will iteratively explore m, by “peeling the edge” de-
termined by A. Let e ⊂ m be a planar map with boundaries, and e ∈ Active(e) ∪ {†}.
If e �= †, and f is the corresponding boundary face of e, let fe be the face of m that is
incident to e on the same side as f . The next step of the exploration, that we denote by
Peel(e, e,m), is given by one of the three following possibilities:

• if e = †, then Peel(e, e,m) = e

• if fe is not a face of e, then Peel(e, e,m) is obtained by gluing fe on e (and not
performing any other identifications of its edges)

• if fe is a face of e, e is identified in m with another edge e′ that is incident to the
same boundary of e, and Peel(e, e,m) is obtained by performing this identifiction in
e. Note that this splits the boundary face incident to e into two smaller boundary
faces, except if e and e′ are adjacent.

Definition 3.3.2. Let m be an element of M . The peeling exploration of m with
algorithm A is the sequence of planar maps with simple boundaries

e0 ⊂ e1 ⊂ · · · ⊂ en ⊂ · · · · · ·m,

where e0 is the root face f∗ seen as a map with a boundary, and, for every i ≥ 0,

ei+1 = Peel(ei,A(ei),m).

With the same notation as above, we denote by Li the degree of the boundary face of
ei on which ei sits. The crucial result that makes peeling processes so powerful is that, for
any peeling algorithm, the peeling exploration of a q-Boltzmann map is a Markov chain
whose transition probabilities are explicit functions of the partition functions associated
to the weight sequence q and Li. This an example of spatial Markov property: the
parallel with the usual Markov property is that what is left to explore in the map only
depends on the information of the perimeter of the boundary obtained by the previous
step. We stay purposefully vague in the statement of this very important result, but we
refer the reader to [Wat95; Ang03; AB16; Bud16; CLG17] for more detailed accounts on
peeling processes.

This property makes it possible to define the infinite q-Boltzmann map of the 2l-gon
(or the l-gon if we consider Boltzmann triangulations), by “conditioning the exploration to
never stop”. In particular, this is a way to define the Uniform Infinite Planar Quadrangu-
lation, by canonically closing up the hole of the infinite Boltzmann quadrangulation of the
2-gon, and similarly for the Uniform Infinite Planar Triangulation, by canonically closing
up the hole of the infinite Boltzmann triangulation of the 1-gon.

Considering the infinite Boltzmann quadrangulation of the 2l-gon, and then letting
l → ∞, also gives a construction of the Uniform Half-Planar Quadrangulation. The same

3Note that this idea is already present in the seminal papers of Tutte.
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Figure 3.3.1 – The possible non-trivial steps in a peeling exploration: we start from a map
with simple boundaries (in gray), with a distinguished boundary edge (in red). Either we
discover a new face (top right), or we identify the distinguished edge with another bound-
arye edge (bottom right). In either case, the peeling algorithm selects a new boundary
edge for the next step.
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can be done for triangulations4. We will see in the next section that these infinite models
can also be constructed with a layer decomposition.

A very useful application of peeling processes is the study of random models of maps
endowed with statistical physics models, such as Bernoulli percolation or the Ising model.
Indeed, peeling infinite maps endowed with a statistical physics model makes it possible to
find their critical exponents, which is of great interest to compare these discrete models,
to the special cases of continuum Liouville Quantum Gravity that are conjectured to be
their scaling limit.

Let us note that, as the transition probabilities of the peeling process on q-Boltzmann
maps depend on the associated partition functions, it is crucial to have explicit expressions
for these partition functions, or at least precise information on their asymptotic behavior:
this is where bijective enumeration can come into play for the construction of local limits.
As we will see in the sequel, it is also possible to use more analytical methods to obtain
these asymptotics, that are also central in the layer decomposition method that we present
in the next section.

3.4 Layer decompositions

Like peeling explorations, the layer decomposition of a planar map builds it iteratively,
which makes it possible to extract infinite maps as local limits of finite random maps.
However, it is a very different process, that (for the moment) only applies to very specific
families of maps, namely triangulations [Kri05; CLG19], quadrangulations (and the general
maps they are in correspondence with) [LGL; Leh], and Eulerian triangulations, that we
will present in the next section, and are the subject of study in the chapters of Part III.
As we will go into great details about it in Chapter 7, here we just sketch the general idea
of this method.

To simplify notation, let us focus in this section on (usual) triangulations. The layer
decomposition of planar triangulations with a boundary relies on the notion of vertical
balls.

Definition 3.4.1. Let A be a (finite) triangulation of the p-gon, and let r be a positive
integer. The vertical ball Br(A) of radius r in A is the submap of A obtained by keeping
only the edges and faces of A that are incident to at least a vertex of distance at most
r − 1 from ∂A: it is defined, similarly to the usual ball of radius r, by cutting along the
edges of A both of whose extremities are at distance r from ∂A, then filling in each hole
with one simple face. Suppose A is equipped with a distinguished vertex v, then the hull
B•
r (A) of the ball Br(A), is the map obtained from Br(A) by gluing to it all the connected

components of its complement in A that do not contain v. (If v is at distance less than
r + 1 from the boundary of A, we can fix the convention that B•

r (A) = A.)

Consider a pointed triangulation of the p-gon (A, v), and its successive hulls {B•
r (A)}.

These hulls have two boundaries: one is ∂A, that is called the bottom boundary, and the
other one, the top boundary, is incident to triangles that all have two vertices at distance r
from ∂A, and one at distance r−1 from ∂A. We call these triangles, downward triangles
at level r. Then, by associating to each downward triangle f at level r, a downward triangle
at level r + 1 (say, the first one encountered after f , going clockwise in B•

r (A) around its
top boundary). This gives a genealogical structure on the downward triangles of the

4The same construction also works for any critical weight sequence, but we will not consider more
general half-planar Boltzmann maps in the sequel.
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successive hulls. To describe completely A, it remains to fill in the “slots” that are between
these downard triangles (see Figure 3.4.1). We call the submap of A given by the downward
triangles at level r, and the slots that lie between them and the downward triangles at level
r − 1, the r-th layer of (A, v).

Figure 3.4.1 – A portion of a layer in a usual triangulation: the downward triangles are in
white, the slots that compose the rest of the triangulation are in gray, and the genealogical
structure of the downward triangles is in red.

It turns out that, if we take as our triangulation T (p)
n , a uniform random element in the

set T
(p)
n of triangulations of the p-gon with n faces (together with a distinguished vertex

uniform on V (A)), the configuration of downward triangles is given by a branching process
of critical offspring distribution θ, that lies in the domain of attraction of a 3/2-stable law.
Moreover, conditionally to this configuration, the slots are independent Boltzmann trian-
gulations, whose perimeters are given by the branching process. Thus, the r-th layer of A
is given by the r-th step of the branching process, together with a sequence of independent
Boltzmann triangulations.

As was the case for peeling processes, this structure straigthforwardly induces random
infinite maps as local limits of the random finite triangulation T (p)

n . The first step is to have
an infinite number of layers (or, equivalently, an infinite number of total triangles), which
gives the infinite triangulation of the p-gon, T (p)

∞ (as mentioned in the previous section, we
can once again obtain the UIPT from T (1)

∞ , by “zipping up” its boundary). Then, letting
p → ∞, we recover the UHPT. We can also “look down” at T (p)

∞ from a very high layer:
this yields the Lower Half-Planar Triangulation, which is closely related to the UHPQ.

Note that the Boltzmann triangulations filling in the slots have exactly the same law
in all these models: what changes is the branching process. In the LHPT it is simply a
doubly infinite sequence of independent Galton-Watson trees, while in the UHPT, it is an
infinite tree consisting of an infinite spine and independent Galton-Watson trees connected
to it: in these two cases, the layers extend infinitely horizontally. However, in T (p)

∞ and in
finite triangulations, the branching process consists in a finite sequence of trees that are
not independent, due to “edge effects”, as each layer is finite. However, a comparison
principle makes it possible to compare events for the branching structure associated T (p)

n ,
and the independent Galton-Watson trees we find in the LHPT.

Thus, it proves quite straightforward to obtain results on the LHPT and the UHPT,
as they are described by quite simple branching processes. Then, their being local limits
of finite triangulations, together with the comparison principle, allows us to transfer these
results to these finite triangulations.

Before the work detailed in Part III, this decomposition has mostly been used to show
that uniform planar triangulations (or quadrangulations), equipped with some distance d′

that is a local modification of their usual graph distance d, also converge to the Brownian
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map. A central argument is that, as the layers of the LHPT are completely i.i.d., one can
use an ergodic subadditivity theorem, to prove that, in the LHPT, the distance d′ is propor-
tional to d. The comparison principle then makes it possible to carry this proportionality
to large finite triangulations: this necessitates a few additional technical arguments, some
of them related to the enumeration of triangulations with a boundary, others relying on
the already known convergence of triangulations, equipped with the usual graph distance,
to the Brownian map.

As we will briefly explain in Chapter 5, and see in thorough detail in Part III, the
case of Eulerian triangulations is quite different, since we prove the convergence to the
Brownian map for the two distances simultaneously.

It is also worth noting that, in all these uses of the layer decomposition, results on the
scaling limit of a family of random maps are proven using local limits of these maps, which
is not a common occurence.

Before getting to Eulerian triangulations, let us mention the model of causal maps
defined by Curien, Hutchcroft and Nachmias [CHN], that are naturally constructed by their
layer decomposition: starting from a plane tree t, we construct a planar map Causal(t),
by adding the “horizontal” edges linking successive vertices in the cyclical ordering of each
level of the tree. By putting additional “vertical” edges in Causal(t), we obtain a planar
triangulation, CauTri(t).

To obtain information on geometric properties of these causal maps, Curien, Hutchcroft
and Nachmias use a block decomposition. A block of height r in the causal map
Causal(t) or CauTri(t), is the submap delimited by two successive subtrees of t of height
at least r. Using a renormalization scheme for these blocks makes it possible to estimate
the global width of the causal map: we use similar arguments in Chapter 7, to estimate
distances along the layers of the Eulerian equivalent of the LHPT.

Note that causal maps are a mathematical formulation of the 2D case of causal dynam-
ical triangulations, that were mentioned in Chapter 2, and are thus the first non-numerical
investigation of the properties of these models.

3.5 Eulerian triangulations

We will now focus on Eulerian triangulations, to explain their different characterizations,
and give an outline of the works presented Part III.

Definition 3.5.1. An Eulerian triangulation is a triangulation in which all vertices
have even degree. Equivalently, it is a triangulation A, such that the faces of A can be
partitioned into black and white faces, each black face being only adjacent to white faces,
and vice versa (see Figure 3.5.1).

Another characterization of Eulerian triangulations uses their canonical orientation.
Given an Eulerian triangulation A, consider a proper bicoloration of its faces, as above.
Then, we can orient the edges of A so that they go clockwise around black faces, and
anticlockwise around white faces5. In the sequel, when we consider rooted Eulerian trian-
gulations, their root edge will be oriented according to their canonical orientation. Fur-
thermore, for a rooted Eulerian triangulation, any mention of orientation in the sequel
refers to the canonical orientation that matches the orientation of the root edge.

5Note that, for a given Eulerian triangulation, we have two choices for the bicoloration of its faces,
as well as for a canonical orientation. Obviously, with our convention for orienting the faces, making the
choice for the colors is equivalent to making the choice for the orientation.
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Yet another characterization, is that Eulerian triangulations are triangulations whose
vertices can be properly tricolored. Indeed, considering a canonical orientation of an Eu-
lerian triangulation A: we can assign the colors, say, red, blue, green, to the vertices of
some black face of A, and then propagate these colors to all vertices of A, by respecting
the condition that the cyclic order of the colors must be the same in all black faces (see
Figure 3.5.1).

This last characterization will allow us to identify Eulerian triangulations with 3-colored
graphs in Chapter 4, and we can use it now to construct bijections between Eulerian
triangulations and other combinatorial objects.

Consider first a bipartite map m, with a proper bicoloration of its vertices in black and
white. For each face f of m, add a vertex vf inside f , that we will call a ∗-vertex, then
draw an edge between vf and each vertex incident to f in m, so that the edges stay inside
f and do not cross. This yields a triangulation A, where each triangle contains one black
vertex, one white vertex, and one ∗-vertex, and where, if f , f ′ are two adjacent triangles,
the cyclic ordering of the vertex types around f and f ′ are opposite (see Figure 3.5.2):
thus, A is an Eulerian triangulation. Conversely, starting from an Eulerian triangulation
A, consider one of its three possible proper vertex-colorings: by removing the red vertices
and the incident edges, we do obtain a bipartite map. Now, if we start from a rooted
bipartite map, taking is root edge as the root of the induced Eulerian triangulation fixes
the choice of the vertex-coloring. Thus, rooted bipartite maps with n edges are in bijection
with rooted Eulerian triangulations with n black faces.

Bipartite maps with n edges are naturally in correspondence with 3-constellations of
size n, that can be defined as triples of permutations (α1, α2, α3) ∈ S3

n, such that

• 〈α1, α2, α3〉 acts transitively on {1, 2, . . . , n}

• α1α2α3 = id.

The observant reader might notice that this is a generalization of the notion of maps
defined as fatgraphs, in which we have lifted the condition that one permutation msut be
a fixed-point free involution. Thus, 3-constellations are also called hypermaps. Note also
that, to have a proper bijection, we must once again consider the triple of permutations
up to isomorphisms.

Let us also mention that 3-constellations can also be understood as Belyi surfaces,
that is, coverings of the Riemann sphere that are unramified outside {0, 1,∞}. We refer
to [LZ04] for a detailed account on this topic.
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Figure 3.5.1 – The different characterizations of Eulerian triangulations: with the bicoloring
of their faces, with the orientation of their edges, with the tricoloring of their vertices.
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∗

Figure 3.5.2 – The operation that maps a bipartite map (black and white vertices, black
edges) to an Eulerian triangulation (with the additional ∗ vertices and red edges).
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CHAPITRE 4

Colored tensor models

In what follows, D will be a positive integer, that corresponds to the dimension of some
topological spaces.

4.1 Elements of combinatorial topology

In the sequel, we will present piecewise linear (hereafter PL) spaces of dimension D with
a very specific combinatorial structure. To properly define these structures, we will use
the slightly more general framework of triangulated spaces or trisps, following the
conventions of Kozlov [Koz08].

Definition 4.1.1. A geometric n-simplex σ is the convex hull of a set A of n+1 linearly
independent points of RN , for some N > n. The convex hulls of subsets of A are called
the subsimplices or faces of σ, and the points defining σ are called its vertices. We will
write σ ⊆ τ to say that σ is a face of τ .

We denote by < x1, . . . , xn > the simplex whose vertices are x1, . . . xn.
The standard n-simplex is the simplex < (1, 0, . . . , 0), (0, 1, 0, . . . , 0), (0, . . . , 0, 1) >,

where the points form the canonical basis of Rn+1.

Let us start with a set of geometric simplices (Si)i∈N, where Si contains i-simplices,
seen as copies of the standard i-simplex. Then, for m ≤ n, for every order-preserving
injection f : {1, . . . ,m+ 1} → {1, . . . , n+ 1}, let us have a map Bf : Sn → Sm such that:

(i) if f, g are two such maps that can be composed: {1, . . . , l + 1} g−→ {1, . . . ,m+ 1} f−→
{1, . . . , n+ 1}, then: Bf◦g = Bg ◦Bf

(ii) Bid{1,...,n+1} = idSn

This abstract structure allows us to construct a topological space. Indeed, an order-
preserving injection f : {1, . . . ,m+1} → {1, . . . , n+1} induces a linear map Mf : R

m+1 →
R
n+1, that sends the k-th vector of the canonical basis of Rm+1 to the f(k)-th vector of

the canonical basis of Rn+1. This map can be restricted to a homeomorphism from the
standard m-simplex to some m-subsimplex of the standard n-simplex. For σ ∈ Sn, this
homeomorphism thus glues a m-subsimplex of σ to the m-simplex of Bf (σ) ∈ Sm. The
condition Bf◦g = Bg ◦Bf ensures that this gluing is consistent.
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Definition 4.1.2. A complex K =
(
{Si(K)}i, {Bf}f

)
constructed in the way described

above is called a triangulated space, or trisp.

In a general trisp, two faces of the same simplex could be identified. In the sequel, we
will focus on trisps without such identifications.

Definition 4.1.3. Let K =
(
{Si(K)}i, {Bf}f

)
be a trisp. We say that K is a regular

trisp if, for any σ ∈ Sk(K), all its vertices are distinct, i.e., the values Bfi(σ) are distinct
for i = 1, . . . , k + 1. (The function fi : {1} → {1, . . . , k + 1} begin defined by: fi(1) = i.)

We present now a specific type of trisps, whose additional properties allow us to consider
finer geometrical notions.

Definition 4.1.4. A simplicial pseudo-manifold of dimension D [Sti93] is a trisp K
with the following properties:

(i) K is pure, i.e. every simplex is the face of a D-simplex

(ii) K is strongly connected, i.e. two D-simplices can be linked by a chain of D-
simplices in which each pair of neighboring D-simplices shares a (D − 1)-face

(iii) K is unramified, i.e. every (D − 1)-simplex belongs to at most 2 D-simplices

We then call boundary of K the subcomplex ∂K generated by the (D − 1)-simplices
belonging to only one D-simplex.

Note that any topological manifold is a simplicial pseudomanifold:

Theorem 4.1.5. [Pez74] Let M be a topological manifold of dimension D. Then there
exists a trisp K of dimension D such that the space induced by K is homeomorphic to M .

Like genuine manifolds, simplicial pseudo-manifolds admit a notion of orientability:

Definition 4.1.6. Let K be a simplicial pseudo-manifold of dimension D. An orientation
on K consists in orientations on its D-simplices (as parts of RD), such that, if σ and π are
two D-simplices sharing a (D− 1)-face ϕ, then their respective orientation are opposite on
ϕ. K is orientable if it admits an orientation.

4.2 Colored graphs and colored trisps

Colored graphs

Definition 4.2.1. A (proper, edge-) coloring of a n-regular graph G is a function c : EG →
C, where C is a set with n elements, such that, for every pair of adjacent edges e, f ,
c(e) �= c(f). We then call the pair (G, c) an n-colored graph, and we will simply denote
it by G if there is no ambiguity. Unless specified, the set C will be {0, 1, . . . , n− 1}.

Remark. An n-colored graph cannot have any loops.

Remark. A very special example of a (D + 1)-colored graph is the one with only two
vertices, and all edges joining the two vertices (see Figure 4.2.1). We call this graph the
(D + 1)-colored supermelon, and denote it by MD.

In the sequel, we will consider connected colored graphs.
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0

1

D

Figure 4.2.1 – Supermelons are the simplest example of colored graphs.

Br̂
(1)

Bv̂
(1)

Bv̂
(2)

Figure 4.2.2 – A 3-colored graph (left) and some of its 2-bubbles (center and right): the
unique one without the color red is denoted with a superscript r̂, and the ones without the
color green are denoted with a superscript v̂.

Definition 4.2.2. Let 0 ≤ d ≤ n be integers. The d-bubbles of an n-colored graph
(G, c) are its maximal connected subgraphs containing edges of exactly d different colors
(see Figure 4.2.2). We denote them by Bi1,...,id

(ρ) , where i1 < · · · < id are the colors of the
bubble, and ρ is some index running over the different bubbles with fixed colors.

A colored graph G is equipped with the structure of a cell complex of dimension 2: the
0-bubbles of G, that are its vertices, are the 0-cells, the 1-bubbles, that are its edges, are
the 1-cells, and the 2-bubbles are the 2-cells. We thus call the 2-bubbles of G its faces,
and we denote their set by F (G). We will now explain how we can construct another cell
complex, this time of dimension D, with the bubbles of G.

To simplify notation, we will write ı̂1 . . . ı̂d for {0, . . . , D}\{i1, . . . , id}, and (̂ı1 . . . ı̂d)-
bubbles, for the bubbles containing exactly the colors ı̂1 . . . ı̂d.

Let (G, c) be a (D+1)-colored graph. To each (D+1− k)-bubble Bı̂1...̂ık(ρ) , we associate
a (k− 1)-simplex whose vertices are indexed by the missing colors i1, . . . , ik. This gives us
a set of simplices Sk, with an order on the vertices of each simplex. The gluing functions
can be constructed in the following way: if f : {1, . . . ,m+1} → {1, . . . , n+1} is an order-
preserving injection, and if σ ∈ Sn corresponds to the bubble Bı̂1...̂ın+1

(ρ) , Bf sends it on the

m-simplex corresponding to the (D−m)-bubble obtained by adding to Bı̂1...̂ın+1

(ρ) the colors
if(1), . . . if(m+1) (see Figure 4.2.3 for a simple example). By construction, the maps Bf do
satisfy the conditions (i) and (ii) given before Definition 4.1.2.

We can check that the resulting complex Δ(G) is regular, and that it is a simplicial
pseudo-manifold without boundary [Gur10]. Moreover, it comes with a coloring of its ver-
tices, so that we call it a colored trisp.

Note that there is a sort of duality between G and Δ(G), as ((D + 1) − k)-bubbles
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Figure 4.2.3 – The colored trisp associated to the supermelon M2.

of G correspond to k-simplices of Δ(G). In particular, the vertices of G correspond to
D-simplices, and the edges incident to a vertex of G correspond to the (D − 1)-simplices
of the corresponding D-simplex.

Some geometric properties of Δ(G) may be read directly on the associated graph, like
its orientability:

Theorem 4.2.3. [CGP80] Δ is orientable if and only if G is bipartite.

As we will be interested in orientable spaces, in the sequel we will restrict ourselves to
bipartite graphs.

Let us note that a regular and bipartite graph G necessarily has the same number of
black and of white vertices. Moreover, the faces of a bipartite colored graph are necessarily
bicolored cycles.

Let us also note that the set of bipartite (D+1)-colored graphs with 2p labeled vertices
(the positive and negative vertices being labelled independently from 1 to p each), is in
bijection with the (D + 1)-tuples of permutations (α0, . . . , αD) ∈ (Sp)

D+1.
Indeed, given such a labeled graph, for each i ∈ C, define a permutation αi by: αi(k) = l

if there is an i-colored edge linking the k-th black vertex and the l-th white one. Recip-
rocally, given such a tuple (α0, . . . , αD), we can consider p numbered black vertices and p
numbered white ones, and link them according to the permutations.

In Chapter 6, we will use the permutation formulation to define random bipartite
vertex-labeled (D + 1)-colored graphs.

Note that, if we left-multiply all the permutations of a tuple (α0, . . . , αD) by the same
permutation α, this will not change the underlying (unlabeled) colored graph, as it only
changes the labeling of the white vertices. In particular, we can multiply them by α−1

0 ,
and get the tuple (id, α1, . . . , αD). Thus, a (D + 1)-colored graph can be encoded by a
D-tuple of permutations, up to global conjugacy (as this changes in a coordinated way the
labelings of the black and white vertices), which is equivalent to a (D + 1)-constellation
(defined like 3-constellations were in Chapter 3).

For D = 2, we can already deduce that 3-colored graphs are in correspondence with
Eulerian triangulations: we will get into more detail about this later in this section.
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Jackets and degree of a colored graph

We present now the notion of jackets of a bipartite colored graph, that makes it possible
to formalize the underlying geometric structures of the graph.

Definition 4.2.4. Let G be a (D+ 1)-colored graph. A 2-cellular embedding of G is said
to be regular if there exists a (D + 1)-cycle τ , such that each region is bounded by a
bicolored cycle, of colors {i, τ(i)}, for some i ∈ {0, 1, . . . , D}.

Definition 4.2.5. Let G be a bipartite (D+1)-colored graph, a jacket of G is a subcom-
plex J of G (in the sense of cell complexes) of dimension 2, characterized by a (D+1)-cycle
τ , defined in the following way:

• J has the same vertex set as G: V (J ) = V (G)

• J has the same edge set as G: E(J ) = E(G)

• the faces of J are: F (J ) =
{
f ∈ F (G)

∣∣∣ f = (i, τ(i)), i ∈ {0, ..., D}
}

.

If a jacket corresponds to a cycle τ , then it also corresponds to τ−1. A (D+1)-colored
graph therefore has D!

2 distinct jackets, and a given face belongs to (D − 1)! jackets.

A jacket J can be seen as a regular embedding G into some Riemann surface, since J ,
like G, is bipartite. In particular, J has an Euler characteristic:

χ(J ) = |F (J )| − |E(J )|+ |V (J )| = 2− 2g(J ),

where g(J ) is the genus of J .

Remark. As a bubble B of a bipartite colored graph G is also a bipartite colored graph, it
also has jackets, that can be directly obtained from the jackets of G by selecting the edges
of B.

Jackets will be useful in Section 4.3 to describe colored tensor models, but we can
already note that they give us information about the space |Δ(G)|, in particular when it
is a topological manifold.

Definition 4.2.6. Let G be a colored graph. We define the regular genus of G as the
minimum of the genera of its jackets, and we denote it by ρ(G).

Definition 4.2.7. Let M be an orientable, closed manifold. We denote by Γ(M) the set
of colored graphs G such that |Δ(G)| = M . We define the regular genus of M as:

G(M) = min{ρ(G) |G ∈ Γ(M)}.

Definition 4.2.8. Let M be a closed manifold of dimension 3. A Heegard decom-
position of genus g of M consists of two handle-bodies A,A′ of genus g, such that
A ∩ A′ = ∂A = ∂A′, and A ∪ A′ = M . The surface ∂A = ∂A′ is called the Heegard
surface of the decomposition.

We call Heegard genus of M , and we denote by H(M), the smallest integer h such
that M admits a Heegard decomposition of genus h.

The regular genus of a manifold corresponds to its genus in dimension 2, and to its
Heegard genus in dimension 3:

Theorem 4.2.9. [Gag79] Let M be a closed, orientable manifold.
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(i) If M is of dimension 2, then: G(M) = g(M) where g(M) is the genus of M .

(ii) If M is of dimension 3, then: G(M) = H(M).

In higher dimensions, the regular genus generalizes the genus, in the sense that it
characterizes spheres among closed, orientable manifolds:

Theorem 4.2.10. [FG82] Let M be a closed, orientable manifold of dimension n ≥ 2.
Then: G(M) = 0 if and only if M is homeomorphic to Sn.

We now define the degree of a bipartite colored graph, that will be a central quantity
in colored tensor models.

Definition 4.2.11. Let G be a bipartite (D + 1)-colored graph. The degree of G is

ω(G) =
∑
J

g(J ),

where the sum runs over the set of jackets of G.

Lemma 4.2.12. [GR11] The degree of a bipartite (D+1)-colored graph G is related to its
number of faces, as well as the degrees of its D-bubbles Bı̂(ρ):

(i) |F (G)| = D(D−1)
2 p+D − 2

(D−1)!ω(G)

(ii) ω(G) = (D−1)!
2 (p+D − B[D]) +

∑
i,(ρ)

ω(Bı̂(ρ)),

where B[D] is the number of D-bubbles of G.

The two-dimensional case

Let us now focus for a moment on colored graphs in the case D = 2.

In that case, we are dealing with bipartite trivalent graphs, corresponding to colored
trisps made of gluings of black and white triangles. It is thus straightforward to see that
such trisps are not only maps, but more specifically Eulerian triangulations.

Note that we can also recover the colors of the vertices of a colored trisp just from the
structure of an Eulerian triangulation A. Indeed, we saw in Section 3.5 that this structure
induces a cyclic ordering of the vertices of each triangle of A, in a way that is consistent on
the whole triangulation. This is equivalent to assigning colors in {0, 1, 2} to the vertices of
A, in a way that defines a trisp structure on A.

Moreover, as there is a unique (up to inversion) cyclic ordering of {0, 1, 2}, a bipartite
3-colored graph G has a unique regular embedding. From the definition of Δ(G), it is
clear that this regular embedding embeds G into the same surface as Δ(G), and makes
it its dual, in the sense of maps. In particular, the degree of G is equal to the genus of Δ(G).

Thus, considering bipartite 3-colored graphs, together with their degree, is equivalent
to considering Eulerian triangulations, together with their genus.
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4.3 The models

We will now define some specific QFTs that involve colored graphs, and explain how these
theories can be understood as models of quantum gravity.

Definition 4.3.1. A (D + 1)-colored (tensor) model is an Euclidean quantum field
theory with a measure of the form:

dν =
D∏
i=0

dμCi(φ
i, φ̄i)e−S S = λ

∑
ni∈Xi

Kn1...nD

D∏
i=0

φini + λ̄
∑
n̄i∈Xi

K̄n̄1...n̄D

D∏
i=0

φ̄in̄i

where:

• like for matrix models, we consider discrete underlying spaces Xi, each having a finite
number N of points, that can be thought of as the indices of the tensor fields

• the φi : Xi → C are D + 1 complex fields: we call the index i, a color index

• the Ci ∈ M|Xi|(C) are D + 1 covariance matrices

• K, K̄ : X0 × · · · × XD → C are some sets of coefficients, hereafter called vertex
kernels.

As the fields carry a color index, the closed Feynman diagrams of these models are
(D + 1)-colored graphs. Moreover, as the fields are complex, these graphs are bipartite.

The i.i.d. model

In the particular model that interests us, the weight of a Feynman graph only depends
on its number of faces. The fields will actually be rank D tensors, that we denote by
φi�ni , where �ni = (nii−1, ..., ni0, niD..., nii+1). We choose as covariance matrices and vertex
kernels:

Ci
�ni,�̄ni

=
∏
j �=i

δnij ,n̄ij , K�n0,...,�nD = K̄�n0,...,�nD =
1

ND(D−1)/4

∏
i<j

δnij ,nji (4.3.1)

We thus have the measure:

dν =
∏
i,�ni,�̄ni

dφi�nidφ̄
i
�̄ni

2π
e−S (4.3.2)

with

S(φ, φ̄) =
D∑
i=0

∑
�ni,�̄ni

φ̄i�̄niδ�ni,�̄niφ
i
�ni

+
λ

ND(D−1)/4

∑
{�n}

D∏
i=0

φi�ni +
λ̄

ND(D−1)/4

∑
{�̄n}

D∏
i=0

φ̄i�̄ni . (4.3.3)

We call this model, the independently and identically distributed (i.i.d.) colored
tensor model.

Proposition 4.3.2. For this model, the amplitude of a bipartite (D+ 1)-colored graph G,
with 2p vertices, is

A(G) = (λλ̄)pN |F (G)|−pD(D−1)
2 = (λλ̄)pN

D− 2
(D−1)!ω(G)

. (4.3.4)
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The i.i.d. colored tensor model can therefore be seen as a random geometry approach
to quantum gravity. Indeed, the amplitude (4.3.4) for a bipartite (D + 1)-colored graph
G is equal to the Regge action (2.3.3) for its associated trisp Δ(G), when setting (see
[GR12]):{

ln(N) =
v(σD−2)

8G

ln(λλ̄) = D
16πGv(σD−2)

(
π(D − 1)− (D + 1)arcos 1

D

)
− 1

4πGΛv(σD).
(4.3.5)

Note that, in the 2D case, the amplitude (4.3.4) just weights 3-colored graphs, or the
dual Eulerian triangulations, according to their genus. Thus, it is a particular case of the
1/N expansion we have seen for the matrix models of Section 2.4.

This means that the i.i.d. colored tensor model can really be considered as a general-
ization to higher dimensions of the model of 2D quantum gravity described by such matrix
models.

Note that it was expected that some sort of tensor models properly generalized the
matrix models of 2D quantum gravity. However, physicists did not find tensor models
inducing the desired 1/N expansion over D-dimensional discretized spaces, until the intro-
duction of colored tensors, spearheaded by Gurău [Gur11a; Gur11b; Gur12].

Indeed, the colors give to colored trisps a very straightforward combinatorial structure,
which is not the case of more general simplicial spaces.

Uncolored models

Even though coloring tensors was the successful trick to generalize matrix models to higher
dimension, we can still use the formalism of colored graphs and trisps, to define QFTs with
a single tensor field φ, instead of D + 1 tensors φ0, . . . , φD carrying a color index: such
QFTs are naturally called uncolored models.

The motivations for studying uncolored models are twofold: on the purely QFT side,
they retain 1/N expansions while being related to pre-existing models of D-dimensional
quantum gravity that are more amenable to renormalization techniques; on the more geo-
metrical side, as we will see in the sequel, uncolored models allow to reach other dominant
graphs, and therefore other geometries, than the i.i.d. model.

To build an uncolored model, the idea is to have a theory whose Feynman graphs are
still bipartite (D + 1)-colored graphs, but to fix a finite set of possible configurations for,
say, the 0̂-bubbles of our graphs, so that the only actual field corresponds to the 0-colored
edges, while all the others belong to the actual vertices of the theory.

We will not write the corresponding action functionals, that can be found for instance
in [BGR12]. For our purposes, it suffices to state that, on the level of graphs, this gives
amplitudes similar to (4.3.4), but restricted to (D + 1)-colored graphs with only specific
0̂-bubbles.

Let us consider the colored trisp Δ(G) corresponding to a Feynman graph G of an
uncolored model. The absence of constraints on the 0-colored edges of G means that the
(D − 1)-simplices of Δ(G) that do not contain vertices of color 0 can be glued together in
any way that respects the coloring of the vertices; on the contrary, the constraints on the
0̂-bubbles of G fix the possible ways the (D − 1)-simplices missing another color i can be
glued together.

Thus, instead of gluing colored D-simplices along their (D − 1)-faces with the only
constraint of matching the colors of vertices, we are actually gluing together some new
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elementary building blocks, that are themselves made of colored D-simplices, and whose
boundary (D − 1)-faces are all of type 0̂.

4.4 Notable results for random geometry

Melonic graphs

From the preceding results, the dominant graphs in the i.i.d. colored model are those of
degree zero, i.e. those that only have planar jackets.

Similarly to matrix models, this gives a model for a discretized D-dimensional quantum
spacetime, by taking a colored trisp uniform on those that are dual to graphs of degree
zero (and with a given number of D-simplices). Therefore, with the motivation of quantum
gravity, it is important to understand the structure of colored graphs of degree zero.

Note that, for D = 2, the dominant graphs are dual to planar Eulerian triangulations:
thus, the main result of Chapter 7 shows that the two-dimensional case of the i.i.d. col-
ored tensor model does behave like other well-known matrix models, with dominant maps
converging to the Brownian map.

Let us now focus on dimensions D ≥ 3. Let us first note that the supermelon MD has
degree zero. As we will see in the sequel, it plays a very important role in the structure of
graphs of degree zero, that are also called melonic graphs.

One of the properties of melonic graphs is that their dual trisp is spherical. However,
this is not enough to characterize them.

Proposition 4.4.1. [GR11] The dual complex of a (D+1)-colored graph of degree zero is
homeomorphic to the D-sphere.

Remark. The converse is not true: there exist colored graphs dual to a spherical complex,
but that have non-planar jackets.

Melonic graphs were characterized in [BGRR11]: for D ≥ 3, they exhibit a recursive
structure, that yields a bijection between these graphs and a class of colored trees.

We begin with the following observation:

Proposition 4.4.2. [BGRR11] For D ≥ 3, any melonic graph has a D-bubble with exactly
two vertices.

For a melonic graph G, this D-bubble of G with 2 vertices can be seen as a 2-point
version of the supermelon. We therefore call this bubble a melon. It is crucial to note that,
if a melonic graph has a melon Bı̂(ρ) (and at least four vertices), if we eliminate this bubble
by merging the two incident edges of color i (like in Figure 4.4.1), we obtain a colored
graph that is also of degree zero from Lemma 4.2.12, since we deleted one D-bubble and
two vertices.

The supermelon is thus central in the structure of melonic graphs. Indeed, consider a
meloinc graph G. If G is not the supermelon, it has a D-bubble with two vertices, and
has at least four vertices, so that, by eliminating this bubble, we obtain a melonic graph
with two less vertices. By repeating this process, every melonic graph can thus be reduced
to the supermelon, by eliminating melons. Going in the reverse order, we can recursively
build melonic graphs from the supermelon, by successive insertions of melons.
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Figure 4.4.1 – Eliminating a melon.

To get a bijection with a family of trees from this recursive structure, let us rather
consider melonic 2-point graphs, which are equivalent to rooted closed melonic graphs.
Without loss of generality, we can fix D as the color for the external lines.

Like for closed graphs, the only possible melonic 2-point graph with two vertices is
the melon with two external lines of color D. We represent it by a tree consisting of one
D+2-valent vertex and all its univalent neighboring vertices. One of the D+2 edges will
be chosen as the root, and the other ones will be called leaves, as one of their extremities
is a leaf. We give the color D to the root and to one leaf, and we distribute the remaining
colors i = 0, . . . , D − 1 among the D other leaves. On G, we call active the lines of color
i �= D, and the external line of color D incident to the black vertex (see Figure 4.4.2).
These lines correspond to the active leaves of the tree, of colors 0, 1, . . . , D, the root being
inactive. This will allow us to avoid redundancies when we get to larger graphs.

We have D + 1 graphs with four vertices: they correspond to the insertion of a melon
on either of the D+1 active lines of the graph with two vertices. We consider the internal
lines of the inserted melon, as well as the external line that touches its black vertex, as
active. If the melon is inserted on the active line of color i, we associate to the graph the
tree obtained from the preceding tree by connecting a new (D + 2)-valent vertex to the
leaf of color i (see Figure 4.4.3). The leaves of this new vertex are also colored from 0 to
D. It is clear that we do obtain D + 1 trees in this manner.

Figure 4.4.2 – A melonic graph with two vertices and two external lines of color D, and the
corresponding tree. The active lines are depicted in black, and the inactive ones in gray.
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Figure 4.4.3 – A melonic graph with four vertices, and the corresponding tree.

To obtain the graphs with 2(p + 1) vertices, we similarly insert a melon on the active
line of a graph with 2p vertices. The internal lines of the inserted melon, as well as the
external line that touches its black vertex, are active. Once again, we represent this oper-
ation on the side of trees by the connection of a (D+2)-valent vertex on one of the active
leaves of a tree with p inner (i.e, (D + 2)-valent) vertices.

Thus, 2-point (D + 1)-colored melonic graphs with 2p vertices are in correspondance
with rooted, edge-colored trees with p (D + 2)-valent vertices, and Dp + 2 leaves. Such
trees are called colored (D + 1)-ary trees. This allows us to count the number MD

p of
2-point melonic graphs with 2p vertices:

MD
p =

(
(D + 1)!

)p
p!(Dp+ 1)!

Tp = C(D+1)
p , (4.4.1)

where

C(D+1)
p =

1

(D + 1)p+ 1

(
(D + 1)p+ 1

p

)
.

From Proposition 4.4.1, we have that 2-point (D + 1)-colored melonic graphs corre-
spond to particular colored trisps of the D-ball. Let us thus call these particular trisps
melonic D-balls. Considering the recursive structure of melonic graphs, we might expect
that melonic D-balls with a large number of maximal simplices have a tree-like scaling
limit: this was proved by Gurău and Ryan in [GR14].

Note that, like we did for maps in Chapter 3, to consider a colored trisp Δ as a metric
space, we use the structure given by its 1-skeleton: the elements of this metric space are
the vertices of Δ, i.e. its 0-simplices, and the distance between two points is their graph
distance on the 1-skeleton of Δ, or in other words, the number of edges of the smallest
path from one to the other in the 1-skeleton.

Before stating the convergence result for the metric spaces induced by melonic D-balls,
let us thus give a bit of additional notation. Let Δn be picked uniformly at random in the
set of melonic D-balls with n D-simplices. We denote by Vn the set of inner vertices of
Δn, and dn(·, ·) the graph distance in the 1-skeleton of Δn, defined on Vn. Recall that � is
the standard Brownian excursion, and that (T�, d�) is the Continuum Random Tree.
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Theorem 4.4.3. [GR14] There exists some constant cD > 0, such that the following
convergence in distribution (

Vn,
dn

cD
√
n

)
(d)−−−→

n→∞
(T�, d�)

holds for the Gromov-Hausdorff distance on compact metric spaces.

This result is drastically different from the 2D case, and, while mathematically inter-
esting, is quite underwhelming from the point of view of quantum gravity, as our putative
D-dimensional quantum spacetime turns out to be the CRT.

Beyond melons

To get more promising scaling limits of random colored trisps, we must get away from
melonic graphs. There are several ways to do this, and we present here notable results
that have been obtained in these different approaches.

A first strategy is to investigate the enumeration of general bipartite (D + 1)-colored
graphs, with respect to their size and degree.

This task was undertaken by Gurău and Schaeffer in [GS16], where they achieved a
classification of colored graphs of positive degree in terms of reduced graphs called schemes.
This gave in particular asymptotic results for the number of large colored graphs of a given
degree:

Theorem 4.4.4. [GS16] For any fixed D ≥ 3 and δ ≥ 1, the generating function of bipartite
(D+1)-colored graphs of degree δ has a dominant singularity at z0 = DD/(D+1)D+1, and
a singular expansion in a slit domain around z0 of the form:

H0
δ (z) = Kδ(1− z/z0)

−Bmax

[
1 +O

(√
1− z

z0

)]
,

where
Bmax = max (2c+ 3q − 1 | (D − 2)c+Dq ≤ δ, c, q ∈ N) .

As these asymptotics lie in the same universality class as trees, this hinted that large
colored trisps of fixed, positive degree also converge to a continuum “tree-like” limit.

This intuition is refined in an upcoming work by Lionni [Lio], where he proves that the
enumeration results of [GS16] imply that the only possible scaling limits for large colored
trisps of fixed, positive degree, are continuum random maps of fixed excess, as defined in
[ABACFG].

Thus, this route, while mathematically interesting, is not very satisfactory for the pur-
pose of quantum gravity.

Another possibility is to turn to uncolored models and their more complex building
blocks, as they might lead to other geometries.

For instance, one can choose only non-melonic building blocks, to enhance non-melonic
Feynman graphs, as was done in [BDR15].

Once again, the information that is relevant to the search for continuum scaling limits
lies in the singularity behavior of the generating functions of the dominant graphs. In this
work, the singularity can be of three different types: one corresponds to the universality
class of trees, another corresponds to the universality class of maps. In-between, there
is an intermediate regime, which is described in the physical literature as a “proliferation
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of baby universes”, as we expect it to correspond to a continuum object with a tree-like
structure, but decorated by macroscopic maps.

Note that no actual scaling limit has been derived for these models, but that the sin-
gularities indicate which type of scaling limit is possible.

Uncolored models can also yield new geometries at the discrete level if one chooses
simple, spherical building blocks, so that the associated colored trisps can be seen as
higher-dimensional equivalents to specific classes of maps, such as p-angulations. This has
been investigated for D = 3, see [BL17; Bon]. All the different choices of building blocks
in these works yield generating functions for the dominant graphs that are still in the
universality class of trees.

All these approaches stay relatively close to melons, by still selecting the dominant
colored graphs in a 1/N expansion that depends on the degree, or in other words, by
selecting the colored graphs with minimal degree in some specific class. Another possible
approach is to start “from the other side”, by taking a uniform measure on some class of
colored graphs, without selecting the ones with minimal degree.

The first step in that strategy was made in the paper [Car19], reproduced in Chapter 6,
in which I studied random models of colored graphs, uniformly distributed on all the
possible Feynman graphs (of fixed size), of both the i.i.d. model, and uncolored models.

For the i.i.d. model, this yields a random graph chosen uniformly among all (vertex-
labeled) bipartite (D + 1)-colored graphs with 2p vertices, denoted UD

p . For an uncolored
model given by a D-colored graph G as an interaction vertex, this yields a random bipartite
colored graph Gp containing p copies of G, with colors symmetrized on {1, . . . , D}, and
0-colored edges given by uniform pairings of the black and white vertices.

The main results that I obtained, concerning the search for continuum scaling limits,
are the following:

Theorem 4.4.5. For D ≥ 3,

E
[
#vertices of Δ(UD

p )
]
= D + 1 + O

(
1

pD−2

)
.

Theorem 4.4.6. For any D ≥ 3, for any bipartite D-colored graph G,

E[#vertices of Δ(Gp)] = p+ αG + o(1),

where αG is a constant that depends only on G. Moreover, if u, v are two vertices of Δ(Gp)
chosen uniformly at random, then d(u, v) = 2 asymptotically almost surely.

In either case, as the distances in the random trisp stay typically bounded, there is no
hope of obtaining a continuum space as a scaling limit. This is a particular instance of a
more general phenomenon observed in other models of quantum gravity in higher dimen-
sions, called the crumpled phase. For instance, in Euclidean Dynamical Triangulations,
Monte Carlo simulations show evidence of a singularity behavior for the putative scaling
limit in dimension 3 and 4, as long as the sampling of the triangulation does not depend
too strongly on its curvature (see for instance [Tho99]).

The outline of the proof of these results, as well as the other results I derived on these
models, are given in Chapter 5. The paper [Car19] is reproduced in Chapter 6.

While they are interesting in themselves, the enumerative or geometric results presented
above are obviously not directly promising for the search for a D-dimensional continuum
scaling limit of colored trisps. However, they are reassuring, in the sense that, between
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the close-to-melonic models that behave like trees or maps, with large exponents for the
scaling of the distances, and the uniform models, which have a singular limit, with bounded
distances, one should be able to find intermediate regimes, that hopefully contain random
continuum D-dimensional structures.

4.5 Other aspects

Let us finish by briefly mentioning two other current topics of research on colored tensor
models, that are also of interest for the broad motivation of quantum gravity.

The SYK model

In 2016, Witten [Wit] observed that colored tensors could be used to define a QFT model
whose correlation functions behave similarly to the ones of the SYK model, which is a
QFT model with disorder notably related, via the famous AdS/CFT correspondence, to the
thermodynamics of a quantum black hole in 2D spacetime, as described in the Bekenstein-
Hawking theory. It is obviously interesting, when motivated by quantum gravity, to further
the knowledge about a prominent theory describing such a central object in quantum
gravity.

Since this first paper, there has been a lot of further work on SYK-like tensor models:
see for instance [GKT17; DR; BGH].

Advances in constructive techniques

As mentioned in Chapter 2, some constructive techniques such as the loop vertex expansion
apply to tensor-valued QFTs. This is of general interest for any application of colored tensor
models, as it gives a better understanding of these models.

On that front, the most advanced achievements concern models with quartic interaction
terms for tensors of rank 3 and 4 [DR16; RVT19]. A great difficulty, compared to matrix
models, for which constructive techniques have been successfully applied to large N limits
[KRS], is that there is no notion of “tensor analysis”, contrary to the very developed field
of matrix analysis, involving, among other tools, spectral analysis, orthogonal polynomial
techniques, functional calculus.
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CHAPITRE 5

Outline and perspectives

We now sketch the main ideas and arguments of the works that are presented in this
manuscript. We proceed chronologically, starting with a first project on random models
of colored trisps (defined in Chapter 4) for any dimension D ≥ 3, before presenting a
multi-faceted project on Eulerian triangulations, that are, as explained in Chapter 4, dual
to the two-dimensional colored trisps.

5.1 Work in D ≥ 3

As explained in Chapter 4, the gol of [Car19] was to start the study of random models
of colored trisps, away from the melonic regime. I thus studied asymptotic properties of
colored trisps chosen uniformly at random in some classes of colored trisps (or, equivalently,
colored graphs) without degree constraints. To describe these random models, I used the
formalism of (D+1)-tuples of permutations (α0, . . . , αD), where, as explained in Chapter 4,
the permutation αi gives the edges of color i in the colored graph.

The first model I studied is the uniform model, denoted by UD
p . In this model, the

permutations (αi)0≤i≤D are chosen uniformly at random and independently in Sp.
The second model is the uniform-uncolored model Gp. Starting from a D-colored

graph G (of colors {1, . . . , D}, we take p copies of G in which the colors are permuted by
i.i.d. uniform permutations (γk)1≤k≤p ∈ (SD)

p, and we add α0 uniform and independent
from the rest, for the 0-edges (see Figure 5.1.1). A special case that I investigated more
precisely is the quartic model, denoted by QD

p , in which the base D-colored graph
G = QD is quartice (see Figure 5.1.2).

The first step was to study the connectivity and geometry of these models. Let us
denote by k(H) the number of connected components of the graph H. Starting with the
uniform model, we have:

Theorem 5.1.1. For D ≥ 2, one has:

E
[
k(UD

p )
]
= 1 + O

(
1

pD−1

)
.

For a colored graph H, let us denote by Hi the subgraph of H where we have removed
the edges of color i. For a given color i ∈ �0, D�, the graph (UD

p )ı̂, has the same law as UD−1
p

(up to a color renaming). This means that Theorem 5.1.1 can also be used for the number
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Figure 5.1.1 – Starting from a D-colored graph G (here D = 3), we construct a (D +
1)-colored graph Gp, whose p 0̂-bubbles are copies of G in which the colors have been
permuted.
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Figure 5.1.2 – The special case of the quartic model.
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bD(U
D
p ) of D-bubbles of UD+1

p , simply by summing over all colors. It is straightforward to
derive the following result:

Corollary 5.1.2. For D ≥ 3, one has:

E
[
bD(U

D
p )
]
= D + 1 + O

(
1

pD−2

)
.

This means that for D ≥ 3, there is typically only one point of each color in the dual
complex, so that the associated metric space is asymptotically very singular.

Similarly to Theorem 5.1.1, we obtain for the uncolored models:

Theorem 5.1.3. Let G be a bipartite D-colored graph with 2t ≥ 4 vertices, and let Gp be
the associated uniform-uncolored model. One has:

P(Gp connected) = 1− p(
tp
t

) + O
(

1

p2(t−1)

)
,

E[k(Gp)] = 1 + O
(

1

pt−1

)
.

It is less straightforward to obtain geometric properties for the uniform-uncolored
model. However, we can first observe that the number of points of color 0 in the trisp,
which is the same as the number of 0̂-bubbles in the graph Gp, is always p. For any color
i other than 0, we can relate the connectivity of the graph (Gp)̂i, to the one of an oriented
configuration model. This yields:

Theorem 5.1.4. For D ≥ 3, for any bipartite D-colored graph G with 2t ≥ 4 vertices,
and for any i ∈ {1, 2, . . . , D}, Gp has a giant ı̂-bubble containing 2tp−O

(√
p ln p

)
vertices.

Moreover, the expectation value of the number of ı̂-bubbles of Gp is:

E[k((Gp)ı̂)] = cG + 1 + o(1)

where cG is a constant that depends only on G.

Hence, for the total number of D-bubbles of Gp:

Corollary 5.1.5. For D ≥ 3, E[bD(Gp)] = p+D (cG + 1) + o(1).

This study of the D-bubbles of Gp gives us insight on the typical geometry of the
associated complex Δ(Gp). Indeed, there are p 0-points in Δ(Gp), while for any i ∈
{1, 2, . . . , D} there are at most O

(√
p ln p

)
i-points, one of which is the “hub” i-point, that

corresponds to the giant ı̂-bubble, and therefore has most 0-points as neighbors. Thus:

Theorem 5.1.6. Let u, v be two vertices of Δ(Gp) chosen uniformly at random and inde-
pendently. Then, if D ≥ 3, d(u, v) = 2 a.a.s..

This means that although the metric space associated to Δ(Gp) does have a number
of points that goes to infinity as p → ∞, it is very singular. The singular asymptotic
behavior of the spaces associated to the uniform and uniform-uncolored models can be
seen, as stated before, as instances of the crumpled phase that has also been observed in
Euclidean Dynamical Triangulations.

There are several possible ways to construct new random models of trisps, in the search
for a D-dimensional continuum scaling limit. One possibility is to try and fine-tune a ran-
dom distribution parametrized by the degree or a related quantity, although at the moment
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it seems ambitious to obtain rigorous results for this type of models. Another possibility
is to look for one “miraculous” model with a nice behavior: some specific subclasses of the
trisps related to the quartic model could be promising. The hope would be to generalize
the findings for the first miraculous model to a broader class of models, as was done for
random maps.

Another interesting perspective would be to prove that slight perturbations of the uni-
form models still belong to the crumpled phase. This would require new techniques, as our
results deeply rely on the uniformity and the independence of the different permutations
describing the trisps.

While these two models do not yield any continuum sclaing limit, they still give us
insight on the typical behavior of large colored graphs. In particular, I investigated some
properties related to their degree.

Starting with the uniform model, I obtained estimates for the first and second moments
of its degree, using classical results on uniform random permutations:

Proposition 5.1.7.

E
[
b2(U

D
p )
]
=

D(D + 1)

2
(ln p+ γ) + o(1) (5.1.1)

Var
(
b2(U

D
p )
)
=

D(D + 1)

2
ln p+ o(ln p). (5.1.2)

In terms of the Gurau degree, this means that:

E
[
ω(UD

p )
]
=

(D − 1)!

2

(D(D − 1)

2
p+D − D(D + 1)

2
(ln p+ γ)

)
+ o(1)

Var
(
ω(UD

p )
)
=

(D − 1)!

2

D(D + 1)

2
ln p+ o(ln p).

To obtain more precise information, I focused on the number of faces of a single regular
embedding of UD

p , rather than the total number of faces. For this, I generalized arguments
that had already been used for random Belyi surfaces [Gam06] and random gluings of poly-
gons [PS06; CP16], and that rely on techniques of representation theory. These arguments
yield a Central Limit Theorem for the genus of a regular embedding of UD

p :

Theorem 5.1.8. Let Jp be a regular embedding of UD
p , and FJp be the number of faces

( i.e. regions) of Jp. Then the quantity
FJp−E[FJp ]√

Var(FJp)
converges weakly to the standard normal

distribution.

As for the uniform-uncolored models, it is difficult to obtain any result in the general
case. This is why I focused on the quartic model, which is a very important type of un-
colored model in the physics literature on colored tensor models (see for instance [DGR13;
OSVT13; DGR14; RVT19]). With techniques similar to the ones of the uniform case, we
obtain:

Theorem 5.1.9.

E
[
[b2(Q

D
p )
]
= (D − 1)2p+D(ln (2p) + γ) + o(1) (5.1.3)

Var
(
b2(Q

D
p )
)
= O

(
(ln p)3

)
. (5.1.4)

We also get a normal limit for the number of faces of one jacket:
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Theorem 5.1.10. Let Jp be a regular embedding of QD
p , and FJp be the number of faces

of Jp. Then the quantity
FJp−E[FJp ]√

Var(FJp)
converges weakly to the standard normal distribution.

Note that the proof of Theorem 5.1.10 also yields a Central Limit Theorem for the
genus of the map Mp chosen uniformly at random in all (half-edge-labeled-)maps with p
edges:

Theorem 5.1.11. Let gp be the genus of Mp. Then the quantity gp−E[gp]√
Var(gp)

converges weakly

to the standard normal distribution. Moreover, we have the following estimations:

E[gp] =
p

2
− (ln 2p+ γ) + 1 + o(1),

Var(gp) = O
(
(ln p)3

)
.

This result was proven independently by Budzinski, Curien and Petri [BCP], using
peeling techniques. They also considered a broad class of maps described as uniform
gluings of polygons, that encompasses the cases considered in the works of Pippenger and
Schleich [PS06] and Chmutov and Pittel [CP16]. Let us introduce a bit of notation to state
their results and a possible extension.

Consider a set of polygons P = (p(1), p(2), . . . ), where p(i) is the number of polygons of
perimeter i. Let us denote by MP the map obtained by a uniform random gluing of the
polygons in P , and by GP the underlying graph. For a sequence Pn, it is straightforward
to show that MPn is connected asymptotically almost surely if and only if

p
(1)
n√
n

−−−→
n→∞

0 and
p
(2)
n

n
−−−→
n→∞

0.

We call a sequence of sets of polygons good if it satisfies the above condition.
For a graph G, consider its vertices ordered by decreasing degree u1, u2, . . . . We denote

by [i : j]G the mutual degree of ui and uj , that is, the number of edges shared by ui and
uj (where loops count for 2 in [i : i]G).

Budzinski, Curien and Petri obtain a universality result for the limit of the joint dis-
tribution ([i : j]GPn )i,j≥1, for any good sequence Pn. The next step would be to show that
GPn itself admits a universal limit for good sequences Pn.

It would be interesting to try to obtain this using representation-theoretic techniques.
Another possible application of these techniques would be non-orientable gluings of poly-
gons, in which we allow twistings of the edges of the polygons before gluing them.

5.2 Work in D = 2

Let us now give the outline of Part III. As we saw in Section 3.2, the canonical way to
prove the convergence of a family of rooted planar maps to the Brownian map, is to use a
bijection between these maps, and some class of trees labeled by integers that keep track
of the distances in the map.

For Eulerian triangulations, such a bijection exists and was derived by Bouttier, Di
Francesco and Guitter in [BDFG04]. However, it involves, rather than the usual graph
distance d, the oriented pseudo-distance �d, where �d(u, v) is the length of a shortest
oriented path from u to v (see Figure 5.2.1). As the function �d is not symmetric, it is much
more difficult to go from the convergence of the labeled trees, to the convergence of the
metric spaces induced by the maps. In particular, we cannot prove a bound equivalent to
(3.2.1).
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Figure 5.2.1 – A rooted planar Eulerian triangulation A equipped with its oriented pseudo-
distance (left), and the corresponding rooted labeled tree T (right). The construction of T
from A consists in keeping only the edge of type n+1 → n+2 in each black face adjacent
to vertices with oriented pseudo-distance from the root, respectively n, n+ 1, and n+ 2.

To circumvent this, a solution is to prove that the oriented pseudo-distance �d, and the
usual graph distance d, are asymptotically proportional in large Eulerian triangulations, so
that �d is asymptotically symmetric. One thing to note is that �d is a local modification of
d, as the difference between the two is that a geodesic for �d sometimes has to take a detour
of two edges where a geodesic for d will only take one. Hence, we can try and adapt the
layer decomposition method to Eulerian triangulations equipped with the two distances �d,
d.

This is the object of Chapter 7, where we define the relevant notion of hulls with respect
to �d, and then derive a layer decomposition for finite planar Eulerian triangulations. Using
the procedure described in the previous section, we use this layer decomposition to define
the Uniform Infinite Eulerian Triangulation, the Upper Half-Plane Eulerian Triangulation,
and the Lower Half-Plane Eulerian Triangulation, that had not been constructed before.

Then, using, as explained before, an ergodic subadditivity argument, we obtain:

Theorem 5.2.1. Let Tn be a uniform random rooted Eulerian planar triangulation with n
black faces, and let V (Tn) be its vertex set. There exists a constant c0 ∈ [2/3, 1] such that,
for every ε > 0, we have

P

(
sup

x,y ∈V (Tn)
|d(x, y)− c0�d(x, y)| > εn1/4

)
−−−→
n→∞

0.

Let c0 be the constant in Theorem 5.2.1, and let
←→
d be the symmetrization of �d, defined

for any two vertices u, v of some Eulerian triangulation:

←→
d (u, v) =

�d(u, v) + �d(v, u)

2
.

Then, the asymptotic proportionality derived in Theorem 5.2.1 allows us to treat �d (asymp-
totically) similarly to a genuine, symmetric distance, which yields:
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Figure 5.2.2 – A sketch of the UHPET (top) and LHPET (bottom), with their layer
decompositions. The different elements of the drawings are explained in detail in Chapters 7
and 8.
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Theorem 5.2.2. Let Tn be a uniform random rooted Eulerian planar triangulation with
n black faces, equipped with its usual graph distance dn, and the symmetrization of its
oriented pseudo-distance,

←→
d n. The following convergences hold jointly

n−1/4 · (V (Tn),
←→
dn)

(d)−−−→
n→∞

(m∞, D∗)

n−1/4 · (V (Tn), dn)
(d)−−−→

n→∞
c0 · (m∞, D∗),

for the Gromov-Hausdorff distance on the space of isometry classes of compact metric
spaces.

Note that, contrary to the case of usual triangulations and quadrangulations, our proof
does not rely on any known convergence of Eulerian triangulations to the Brownian map:
we only use the convergence of the associated labeled trees. Thus, this is the first case of
a genuinely “hybrid” method, where we use both a bijection with labeled trees, and the
layer decomposition, to prove the convergence of a family of maps to the Brownian map.

A technical ingredient of the proof of Theorem 5.2.2, like for the equivalent result for
usual triangulations or quadrangulations, are estimates for the distances along a layer of
the lower half-plane model, denoted L in either case. In the case of usual triangulations and
quadrangulations, this was done by studying the (spherical) balls in the upper half-plane
model U . In Chapter 7, we use an alternative argument, that uses a block decomposition
similar to the one of causal maps. This argument is much shorter than the one using U ,
and should be more easily adaptable to other models admitting a layer decomposition.

However, studying the balls of U is of interest in itself, and this is the object of Chap-
ter 8, in which we obtain the estimates on the distances along the layers of L, similarly to
what has been done in the case of usual triangulations or quadrangulations.

The layer decomposition, as well as the study of the balls of U , deeply involve results
on the asymptotic behavior of the enumeration of Eulerian triangulations with specific
boundary conditions. This enumeration work had not been done before, and was the
starting point of a joint work with Jérémie Bouttier, which is still in progress. A preliminary
version of this work, that details all the results that are necessary to Chapters 7 and 8, is
presented in Chapter 9. What is still in progress is to establish similar results for more
general boundary conditions.

Note that, due to their bicoloring, Eulerian triangulations have a richness in boundary
conditions that does not exist for usual triangulations or quadrangulations, so that even
determining the relevant boundary conditions is an important part of Chapters 7 and 8.

Moreover, for the moment, there exists no bijection between these families of Eulerian
triangulations with boundaries, and classes of decorated trees: in Chapter 9, we use ana-
lytic combinatorial techniques, such as Tutte’s recursion and the kernel method, that sadly
do not yield explicit expressions, but do give an explicit rational parametrization of the
generating functions in question.

Note that one could want to prove the convergence of planar Eulerian triangulations
to the Brownian map using their bijection with bipartite maps, as the convergence for
these has already been proven. However, this would necessitate to treat the distances on
an Eulerian triangulation as a local modification of the distances on the corresponding
bipartite map, and thus use a layer decomposition of bipartite maps. As this has not been
achieved yet, this route is a priori not easier than the one undertaken in Chapter 7, which
has the advantage of uncovering a lot of properties of Eulerian triangulations. However,
achieving a layer decomposition of bipartite maps would be interesting in itself.
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It would also be interesting to apply our new “hybrid” technique, to other families of
planar maps that are not amenable to the classic bijective approach. One such family is
the one of Eulerian quadrangulations, which would present an additional level of difficulty
on the enumerative side, as the boundary conditions for the putative Boltzmann Eulerian
quadrangulations are even more complex and varied than the boundary conditions for
their triangulation counterpart. The extension of the results of Chapter 9 to more general
boundary conditions, that we are still working on with Jérémie Bouttier, could also serve
as a “warm-up” for this new enumerative challenge.
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Deuxième partie

Triangulations colorées en dimension
quelconque
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CHAPITRE 6

Modèles aléatoires uniformes de complexes colorés

Ce chapitre est la reproduction de l’article [Car19] :
A. Carrance, Uniform Random Colored complexes,

Random Structures and Algorithms 55.3 (2019), pp 615-648. doi: 10.1002/rsa.20845.
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6.1 Introduction

For D ≥ 1, we call (D + 1)-colored graphs, (D + 1)-regular graphs, equipped with a
proper (D + 1)-coloring of their edges. (D + 1)-colored graphs have been known from the
1970’s, and the work of Pezzana [Pez74; Pez75], to be an encoding of piecewise-linear (PL)
topological structures, that we will call complexes in a sense precised below. Among those
structures are PL manifolds, which thus admit a combinatorial and graph-theoretical for-
mulation. This formulation was further developed by Gagliardi and others (see [FGG86]),
leading notably to classification results for 3- and 4-dimensional PL (hence smooth) man-
ifolds with a small number of cells [CM15; CC15]. Additionally to these achievements
in PL-topology, (D + 1)-colored graphs have recently garnered interest from theoretical
physicists, as they are at the heart of a new approach to quantum gravity, colored tensor
models (see [GR12; Gur16] for detailed reviews). As the quantized space-time described
by colored tensor models is a PL-structure corresponding to a random distribution on
(D + 1)-colored graphs, this is an incentive to study such distributions.

Our work can be related to other random models: first, we can compare it to Euclidean
Dynamical Triangulations, that also have the purpose to define a quantum spacetime as
the continuum limit of random triangulations in any dimension (see [Tho99] for a detailed
review). In this approach, the topology is fixed to be spherical, and the random distribu-
tion depends on a parameter that tunes a curvature constraint, while we do not put any
constraint on the topology nor the curvature. Note also that we do not work with any
triangulations, but with a specific type of complexes that we will define below. Moreover,
these models have mostly been studied numerically, while we make a probabilistic and
combinatorial investigation of ours.

Likewise, we can relate this paper to works in random maps, as in dimension 2 our
models can be seen as particular models of random maps. Furthermore, to look for a
tentative continuum spacetime as the scaling limit of the discrete spacetime given by our
model, we will consider the obtained complexes as metric spaces, just like the Brownian
map is the scaling limit of several families of planar maps seen as metric spaces (see [LG13;
Mie13] for instance). While the most studied models of random maps have conditions on
the face degrees, with for instance random triangulations and quadrangulations, the graphs
we consider for D = 2 have 3-valent vertices, so we are more naturally dealing with objects
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dual to the ones typically studied in the random maps literature. Moreover, most works on
random maps deal with maps of a fixed genus (most often planar maps), or whose genus
is assumed to grow linearly with their size (like in [ACCR13]), whereas we do not fix the
topology.

There is no fixed topology either in random simplicial complexes constructed as higher
dimensional analogues of Erdös-Rényi graphs, such as [CF16; Kah14]. Such models also
share with the present work the fact that they are defined in any dimension. However, they
are constructed quite differently, as their realizations are subcomplexes of a standard sim-
plex (see the definitions below), whereas we build a complex by randomly gluing simplexes
together.

This gluing construction is very close to the various models of random gluings of poly-
gons (see [PS06; CP16]), and we will indeed use similar techniques throughout this paper.
Just like these random gluing models, our models can be seen as generalizations of the
configuration model, which starts from a set of vertices with prescribed valences to
form a random graph, by taking a uniform matching of the half-edges attached to these
vertices. Some results on the configuration model will be of crucial use to prove some of
our results.

Since the distributions arising the most naturally in colored tensor models are very
involved from a mathematical point of view (notably, they are stongly non-uniform), we
present here two simpler models on bipartite, vertex-labelled, (D + 1)-colored graphs of
fixed order 2p. We focus on the limit p → ∞, which is the first step towards the continuum
limit for our tentative space-time. Our first model, which we analyze in Section 6.2, is the
obvious, uniform one: as we will see, the associated topological structure has a very singular
behavior as p → ∞. Our second model, which we call the quartic model, is described in
Section 6.3. It has more physical foundation, and is richer topologically, but is still ill-fitted
for the purpose of quantum gravity. Over the course of the study of this model, we also
obtain a Central Limit Theorem for the genus of a uniform map of order p, as p → ∞ (see
Section 6.3.3). We then study in Section 6.4 a generalization of the quartic model, that
we call the class of uniform-uncolored models, which possess a similar asymptotical
behavior.

Before going into technical details, let us fix some very general notations. We will say
that an event A occurs asymptotically almost surely (a.a.s.), if P(A) −−−→

p→∞
1. We will note

V (G) the vertex set of a graph G, E(G) its edge set, and k(G) its number of connected
components (c.c.).

Colored graphs, bubbles and Gurau degree

We now give a few necessary definitions about colored graphs.

Definition 6.1.1 (Colored graphs). Let G be a (D + 1)-regular graph, and ζ a function
E(G) → C, where C is some set with cardinality D + 1. The couple (G, ζ) is a (D + 1)-
colored graph, if, for all v ∈ V (G), for all c ∈ C, there is one and only one edge e incident
to v, such that ζ(e) = c.
If there is no ambiguity, we will simply note G for the colored graph. In that case, if not
specified, C will be the set of integers {0, 1, . . . , D}.

Remark. A very special class of (D+ 1)-colored graphs are those with only two vertices,
and all edges joining the two vertices (see Figure 6.1.1). We call those graphs, melons.
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1

D

Figure 6.1.1 – Melons are the simplest example of (D + 1)-colored graphs.

Definition 6.1.2 (Bubbles). Let G be a (D + 1)-colored graph, and let {i1, . . . , ik} be
a subset of the color set C. Consider the graph Gı̂1,...,̂ık obtained from G by erasing all
the il-colored edges, for l = 1, . . . , k. The connected components of Gı̂1,...,̂ık are called
(D + 1 − k)-bubbles of G (of colors {0, 1, . . . , D}\{i1, . . . , id}). We will write Bı̂1,...,̂ık

(ρ)

for a bubble of G of colors {0, 1, . . . , D}\{i1, . . . , id}, with ρ indexing the different bubbles
of the same color. We will note bk(G) the number of k-bubbles of G.
The vertices of G are its 0-bubbles, its edges are the 1-bubbles, and its 2-bubbles (which
are bicolored cycles) are called its faces.

When dealing with bubbles, we will often write ı̂1 . . . ı̂d for {0, 1, . . . , D}\{i1, . . . , id},
to simplify notations.

Definition 6.1.3 (Embedding). Let G be a graph, and S a Riemann surface. An em-
bedding of G into S is a continuous and one-to-one function i : G → S. We can then
consider that G, as a topological space related to a 1-cellular complex, is included in S.
The connected components of S \ G are called the regions of the embedding. If all the
regions are homeomorphic to an open disk, the embedding is said to be 2-cellular.

Definition 6.1.4 (Regular embedding). Let G be a (D + 1)-colored graph. A 2-cellular
embedding of G is said to be regular if there exists a (D + 1)-cycle τ ∈ SD+1, such that
any region is bounded by a bicolored cycle, of colors {i, τ(i)}, for some i ∈ C. Any cycle
τ gives rise to a regular embedding.

Remark. There is a two-to-two correspondence between regular embeddings of G and
(D + 1)-cycles, as a cycle and its reverse are associated to the same two embeddings.

If G is (D + 1)-colored and bipartite, all its regular embeddings are necessarily into
orientable surfaces (see for instance [Gag81]). This makes the following definition possible:

Definition 6.1.5 (Degree). The Gurau degree ω(G) of a (D+1)-colored graph G is the
sum of the genera of its regular embeddings:

ω(G) =
1

2

∑
τ

gτ

where the sum runs over the (D + 1)-cycles of SD+1. The factor 1/2 is a matter of
convention, here we follow [GR12].

The Gurau degree of G can also be written in terms of its number of vertices, edges
and faces:

Lemma 6.1.6. [GR11] For a connected bipartite (D+1)-colored graph G with 2p vertices,
one has:

ω(G) =
(D − 1)!

2

(
D(D − 1)

2
p+D − b2(G)

)
.

Proof. G has D!
2 distinct regular embeddings, and each face of G corresponds to a region

in (D − 1)! different regular embeddings.
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Trisps

With the bubbles of a (D+1)-colored graph G, we can build a D-dimensional triangulated
space (trisp), which is a particular type of cellular complex with simplicial cells. For the
sake of precision, let us fix some definitions and notations related to simplices that are
needed for the definition of a trisp, for which we follow the conventions of [Koz08].

Definition 6.1.7 (Simplices). A geometrical n-simplex σ is the convex enveloppe of a
set A of n+1 affinely independent points in R

N , for some N ≥ n. The dimension of σ is
|A| − 1 = n. The convex enveloppes of the subsets of A are called sub-simplices of σ, or
its faces, and the points defining σ are called its vertices. We will note σ ⊆ τ to signify
that σ is a face of τ . A d-face of σ is a face of dimension d, and the d-skeleton of σ is the
set of its faces of dimension lower or equal to d.
We note 〈x1, . . . , xn〉 the simplex with vertices x1, . . . xn.
The standard n-simplex is 〈(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)〉, where the point
coordinates are taken in the canonical basis of Rn+1.

Let us start from some sets (Si)i∈N of geometrical simplices, where Si contains i-
simplices, seen as copies of the standard i-simplex. Then, for m ≤ n, for each order-
preserving injection f : {1, . . . ,m + 1} → {1, . . . , n + 1}, take a map Bf : Sn → Sm, so
that:

(i) if f, g are two such injections and are composable : {1, . . . , l+1} g−→ {1, . . . ,m+1} f−→
{1, . . . , n+ 1}, then: Bf◦g = Bg ◦Bf

(ii) Bid{1,...,n+1} = idSn .

This abstract structure implicitly contains a topological space. Indeed, an order-preserving
injection f : {1, . . . ,m + 1} → {1, . . . , n + 1} induces a linear map Mf : R

m+1 → R
n+1,

which sends the k-th vector of the canonical basis of Rm+1 to the f(k)-th vector of the
canonical basis of Rn+1. This map can be restricted to a homeomorphism from the standard
m-simplex to a certain m-sub-simplex of the standard n-simplex. For σ ∈ Sn, this homeo-
morphism therefore glues an m-sub-simplex of σ to the standard m-simplex Bf (σ) ∈ Sm.
The condition Bf◦g = Bg ◦Bf ensures that these gluings are coherent.

Definition 6.1.8 (Trisp). A complex defined in the above way is called a triangulated
space, or trisp.

Let G be a (D + 1)-colored graph. We now quickly map out the construction of a
trisp Δ(G) with the bubbles of G. To each (D + 1 − k)-bubble Bı̂1...̂ık(ρ) , we associate a
(k − 1)-simplex whose vertices are indexed by the missing colors i1, . . . , ik. This yields
some set Sk, with an order on the vertices of each simplex. The gluing maps are defined
in the following way: if f : {1, . . . ,m + 1} → {1, . . . , n + 1} is an order-preserving injec-
tion, and if σ ∈ Sn corresponds to the bubble Bı̂1...̂ın+1

(ρ) , Bf sends it to the m-simplex

corresponding to the (D − m)-bubble obtained from Bı̂1...̂ın+1

(ρ) by adding the colors in
{i1, . . . , in+1} \ {if(1), . . . , if(m+1)}. By construction, the maps Bf satisfy conditions (i)
and (ii) of Definition 6.1.8.

The trisp Δ(G) induced by a (D+1)-colored graph G has severable notable properties:

Theorem 6.1.9. [Gur10]
If G is connected, the induced trisp Δ(G) is a simplicial pseudo-manifold of dimension D,
i.e.:

81



(i) Si = ∅ for i > D, and SD �= ∅

(ii) Δ(G) is pure, i.e. any simplex is the face of a D-simplex

(iii) it is strongly connected, i.e. any two D-simplices can be joined by a chain of
D-simplices in which each pair of neighboring D-simplices has a common (D − 1)-
simplex

(iv) it is non-branching, i.e. any (D− 1)-simplex is a face of at most two D-simplices.

Moreover, Δ(G) is a simplicial pseudo-manifold without boundary, i.e. each of its (D−
1)-simplices is actually a face of exactly two D-simplices.

Remarks. • As the (D + 1 − k)-bubbles of G correspond to the (k − 1)-simplices of
Δ(G), we sometimes say that Δ(G) is the dual complex of G.

• If we cut open some edges of a bipartite (D + 1)-colored graph G, the previous
construction will yield a pseudomanifold with a boundary consisting of the (D − 1)-
simplices corresponding to the open half-edges.

• As said before, the physical motivations of our work lead us to consider the complex
Δ(G) as a metric space, with the structure given by its graph distance: the elements
of this metric space are the vertices of Δ(G), i.e. its 0-simplexes, and the distance
between two points is the number of edges of the smallest path from one to the other
in the 1-skeleton of Δ(G). The two first criteria to get a scaling limit will therefore
be:

(i) that the number of points of Δ(G) goes to infinity as p → ∞
(ii) that the typical distance between two points of Δ(G) goes to infinity as p → ∞.

Permutations

Let us now note that the set of bipartite (D + 1)-colored graphs with 2p labelled vertices
(the positive and negative vertices being labelled independently from 1 to p each), is in
bijection with the (D + 1)-tuples of permutations (α0, . . . , αD) ∈ (Sp)

D+1.

Indeed, given such a labelled graph, for each i ∈ C, define a permutation αi by:
αi(k) = l if there is an i-colored edge linking the k-th negative vertex and the l-th positive
one. Reciprocally, given such a tuple (α0, . . . , αD), we can consider p numbered negative
vertices and p numbered positive ones, and link them according to the permutations.

In the sequel, we will use the permutation formulation to define random bipartite
vertex-labelled (D + 1)-colored graphs.

Remark. The labellings of the vertices, combined with the coloring of the edges, yield a
labelling of the half-edges, and with this formulation we count the possible pairings of the
half-edges, i.e. Wick contractions, in the language of quantum field theory.

6.2 Uniform model

We consider a (D + 1)-tuple of random permutations (α0, . . . , αD), all independent and
uniform on Sp, for D ≥ 1. These permutations induce a (D+1)-colored, bipartite random
graph UD

p , with 2p labelled vertices. It is clear that UD
p follows the uniform measure on

this set of graphs.
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Remark. We can note that this model is a “colored version” of the well-known configura-
tion model [Wor99], that will appear more explicitly in Sections 6.3 and 6.4.

6.2.1 Connectedness

We show, similarly to Pippenger and Schleich [PS06], that a.a.s. UD
p is connected, and

more precisely:

Theorem 6.2.1. Let UD
p be the random graph defined above, with D ≥ 2. Then

P
(
UD
p connected

)
= 1− 1

pD−1
+ O

(
1

p2(D−1)

)
.

Proof. We first prove an upper bound on P
(
UD
p not connected

)
. For UD

p to be not con-
nected (n.c.), it must be decomposable into at least two closed subgraph, and, considering
the smallest of these subgraphs, it must have a closed subgraph with at most 2�p/2�
vertices. Thus

P
(
UD
p n.c.

)
≤

∑
1≤k≤� p

2


P(∃ closed subgraph with 2k vertices)

≤
∑

1≤k≤� p
2


Fk , where Fk =

(
p
k

)1−D
.

Since
Fk+1

Fk
=

k + 1

p− k
≤ 1 ∀k = 1, . . . ,

⌊p
2

⌋
− 1,

we get

P
(
UD
p n.c.

)
≤ F1 + F2 +

(p
2
− 2
)
F3 =

1

pD−1
+

(
2

p(p− 1)

)D−1

+ O
(
p−3D+4

)
,

and in particular
P
(
UD
p connected

)
−−−→
p→∞

1.

Now, to get a lower bound on P
(
UD
p n.c.

)
, consider the probability of having exactly

one closed melon:

P
(
UD
p n.c.

)
≥ P(∃! closed melon)

= P(∃ at least 1 closed melon)− P(∃ at least 2 closed melons)

≥ 1

pD−1
− 1

2

1

(p(p− 1))D−1
.

Thus P
(
UD
p connected

)
= 1− 1

pD−1 + O
(

1
p2(D−1)

)
.

Knowing that UD
p is connected a.a.s., the next step is to investigate its average number

of connected components. We have the following result:

Theorem 6.2.2. For D ≥ 2, one has:

E
[
k(UD

p )
]
= 1 + O

(
1

pD−1

)
.
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Proof. We derive upper bounds on P
(
k(UD

p ) = k
)
, for k ≥ 2. We already know that

P
(
k(UD

p ) = 2
)
≤ 1

pD−1 +O
(

1
p2(D−1)

)
from Theorem 6.2.1. We then get an upper bound for

k = 3, decomposing the event that UD
p has 3 closed subgraphs:

P
(
k(UD

p ) = 3
)
≤ P

(
k(UD

p ) ≥ 3
)
= P

(
UD
p has 3 closed proper subgraphs

)
≤

∑
1≤k≤�p/2


P
(
UD
p has a closed subgraph U ′ with 2k vertices

)
· (P
(
U ′ n.c.

)
+ P
(
(U ′)c n.c.)

)
≤

∑
1≤k≤�p/2


(
k!(p− k)!

p!

)D−1

·

⎛⎝ ∑
1≤l≤�k/2


(
l!(k − l)!

k!

)D−1

+
∑

1≤l≤�(p−k)/2


(
l!(p− k − l)!

p− k!

)D−1
⎞⎠

≤ 2

p2(D−1)
+ O

(
1

p3(D−1)

)
.

And, similarly, for k ≥ 4:

P
(
k(UD

p ) ≥ 4
)
≤

∑
1≤k≤�p/2


P
(
UD
p has a closed subgraph U ′ with 2k vertices

)
·
[
P
(
U ′ has ≥ 3 c.c.

)
+ P
(
(U ′)c has ≥ 3 c.c.

)
+ P
(
U ′ n.c. and (U ′)c n.c.

)]
≤O

(
1

p3(D−1)

)
.

Thus

E
[
k(UD

p )
]
≤ 1− 1

pD−1
+

2

pD−1
+ O

(
1

p2(D−1)

)
+

(
p(p+ 1)

2
− 6

)
O
(

1

p3(D−1)

)
≤ 1 + O

(
1

pD−1

)
for D ≥ 2.

Remark. For D = 1, we have two uniform permutations α0 and α1. The number of
connected components of U1

p is the number of cycles of α0α
−1
1 , which is uniform too. Thus,

one has: P
(
U1
p connected

)
= 1

p , and, from well-known results on uniform permutations
[ABT03]: E

[
k(U1

p )
]
= ln p+ O(1).

For a given color i ∈ �0, D�, the graph (UD
p )ı̂, see definition 6.1.2, has the same law

as UD−1
p (up to a color renaming). This means that Theorem 6.2.2 can also be used for

the number bD(U
D
p ) of D-bubbles of UD+1

p , simply by summing over all colors. This is of
particular interest, as these D-bubbles correspond to the vertices of the complex dual to
our colored graph. It is straightforward to derive the following result:

Corollary 6.2.3. For D ≥ 3, one has:

E
[
bD(U

D
p )
]
= D + 1 + O

(
1

pD−2

)
.
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Remark. This means that for D ≥ 3, there is typically only one point of each color in
the dual complex. This thwarts the hope of defining a continuous D-dimensional random
space from this simple model by going through the same steps that yield the Brownian
Sphere from uniform planar maps. Note that, as stated in the introduction, this uniform
model differs from that of uniform planar maps, in that it does not fix the topology.

However, the essential difference might lie in the dimension: indeed, in Euclidean Dy-
namical Triangulations, Monte Carlo simulations show evidence of a so-called crumpled
phase in dimension 3 and 4 even for spherical models, as long as the sampling of the trian-
gulation does not depend too strongly on its curvature (see [Tho99]), while for dimension
2 such a phase occurs only when there is no constraint on the topology.

6.2.2 Degree

We now investigate the Gurau degree of UD
p , for D ≥ 2. According to Lemma 6.1.6, this is

equivalent to studying the number of faces of UD
p , i.e. the number of its bicolored cycles.

This quantity can be expressed in terms of the permutations (α0, . . . , αD):

b2(U
D
p ) =

∑
0≤i<j≤D

O
(
αiα

−1
j

)
,

where O(α) is the number of orbits (cycles) of α. The use of well-known results about
uniform permutations gives us the following estimations for the average and variance of
the number of faces:

Proposition 6.2.4.

E
[
b2(U

D
p )
]
=

D(D + 1)

2
(ln p+ γ) + o(1) (6.2.1)

Var
(
b2(U

D
p )
)
=

D(D + 1)

2
ln p+ o(ln p). (6.2.2)

In terms of the Gurau degree, this means that:

E
[
ω(UD

p )
]
=

(D − 1)!

2

(D(D − 1)

2
p+D − D(D + 1)

2
(ln p+ γ)

)
+ o(1)

Var
(
ω(UD

p )
)
=

(D − 1)!

2

D(D + 1)

2
ln p+ o(ln p).

Proof. If α is a uniform permutation of size p, then one has (see for instance [ABT03]):

E[O(α)] =

p∑
j=1

1

j
= ln p+ γ + o(1), where γ is the Euler constant

Var(O(α)) =

p∑
j=1

j − 1

j2
= ln p+ γ − π2

6
+ o(1).

Equation (6.2.1) is obtained immediately from this. Equation (6.2.2) is obtained after sim-
ple calculations, once one notices that two permutations αiα−1

j and αkα
−1
l are independent,

as long as either i �= k, or j �= l.

To get more precise information, we will now focus on the number of faces of a single
regular embedding of UD

p , instead of the total number of faces. We state our main result
concerning this in Theorem 6.2.5 : the number of faces of any regular embedding Jp of
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UD
p has a normal limit when p → ∞.

We can assume, without loss of generality, that Jp corresponds to the usual cyclic
ordering of the colors (0 1 · · · D). Thus, we are interested in the law of:

F =
∑

0≤i≤D
O
(
αiα

−1
i+1

)
=:

∑
0≤i≤D

Oi,i+1

where, by convention, αD+1 = α0.
To prove its normal asymptotical behaviour, we consider the distribution of the last per-
mutation, αDα−1

0 =: αD,0, conditionally to a given realization {Ci,i+1} of the respective
conjugacy classes π(αi,i+1) of the D first permutations αiα

−1
i+1 =: αi,i+1. We note this

distribution P
{Ci,i+1}
D .

As αD,0 =
(∏

0≤i≤D−1 αi,i+1

)−1
, for some given {Ci,i+1}, the parity of αD,0 is fixed. We

will note H := Ap or Ac
p, according to this parity condition (where Ap is the alternat-

ing group of degree p), and UH the uniform distribution on H. Let us assume that, for
i = 0, . . . , D−1, Ci,i+1 has less than ln p fixed points and 2-cycles. We note this hypothesis
(∗). As stated in Proposition 6.2.7, under this assumption, P {Ci,i+1}

D converges to UH in
total variation distance. We prove this using group representation techniques, similarly to
Chmutov and Pittel in [CP16].
Well-known results on the number of cycles of fixed length in a uniform permutation then
allow us to deduce Theorem 6.2.6, i.e. that, up to a parity condition, the law PF of F
converges to a convolution product of the laws Pi,i+1 of the Oi,i+1. Finally, we prove the
asymptotic normality of PF , using a well-known expression of the number of cycles of a
uniform permutation as a sum of Bernoulli variables.

Let us now state these results more precisely:

Theorem 6.2.5. Let Jp be a regular embedding of UD
p , and FJp be the number of faces

( i.e. regions) of Jp. Then the quantity
FJp−E[FJp ]√

Var(FJp)
converges weakly to the standard normal

distribution.

Theorem 6.2.6. With the notations given above, one has:

‖PF − 2 · 1{(D+1)p−F even}P0,1 ∗ P1,2 ∗ · · · ∗ PD,0‖ = O
(
(ln p)D

pD−1

)
where ‖ · ‖ is the total variation distance.

Proposition 6.2.7. Let us assume (∗). Then:

‖P {Ci,i+1}
D − UH‖ = O

(
(ln p)D

pD−1

)
.

Before starting the proof of Proposition 6.2.7, it should be noted that, while its steps
closely follow those of the proof of Theorem 2.2 in [CP16], it employs a few stronger
arguments, as we are here dealing with conjugacy classes with a logarithmic number of
small cycles, whereas the permutations in [CP16] have no small cycles. We will detail
those differences after the proof.
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Proof. As proved in [CP16], we get from the Cauchy-Schwartz inequality and the Plancherel
theorem:

‖P {Ci,i+1}
D − UH‖2 ≤ 1

4

∑
λ�p, λ �=<p>,<1p>

fλtr
[
P̂

{Ci,i+1}
D (ρλ)P̂

{Ci,i+1}
D (ρλ)∗

]
where the sum is over the partitions λ = (λ1 ≥ λ2 ≥ . . . ) of p, ρλ is the irreducible
representation of Sp associated to λ, fλ is the dimension of this representation, and, for a
probability measure P on Sp, P̂ is the Fourier transform of P :

P̂ (ρ) =
∑
σ∈Sp

ρ(σ)P (σ)

for a representation ρ.
As the permutations αi,i+1, i = 0, . . . , D−1, are all independent, the law of αD,0 writes

as a convolution product (even conditionally to the realization of {Ci,i+1}0≤i≤D−1):

P
{Ci,i+1}
D = PαD,D−1 ∗ PαD−1,D−2 ∗ · · · ∗ Pα1,0 = UCD−1,D

∗ UCD−2,D−1
∗ · · · ∗ UC0,D1

.

Indeed, for i = 0, . . . , D − 1, αi,i+1 is uniform on Ci,i+1, and so is its inverse αi+1,i. So, by
applying the Fourier transform:

P̂
{Ci,i+1}
D = ÛCD−1,D

· ÛCD−2,D−1
· · · · · ÛC0,1 .

Furthermore, as the UCi,i+1 are invariant under conjugacy, they are necessarily homothecies,
by Schur’s Lemma. We can therefore write:

ÛCi,i+1(ρ
λ) =

χλ(Ci,i+1)

fλ
Ifλ

where χλ is the character of ρλ. We derive from this:

‖P {Ci,i+1}
D − UH‖2 ≤ 1

4

∑
λ�p, λ �=<p>,<1p>

(∏
0≤i≤D−1 χ

λ(Ci,i+1)

(fλ)D−1

)2

.

We now decompose this sum into two parts:

‖P {Ci,i+1}
D − UH‖2

≤ 1

4

∑
λ �=<p>,<1p>
λ1,λ′1≤p−4

(∏
0≤i≤D−1 χ

λ(Ci,i+1)

(fλ)D−1

)2

︸ ︷︷ ︸
Σ1

+
∑

λ �=<p>,<1p>
λ1≥p−3 or λ′1≥p−3

(∏
0≤i≤D−1 χ

λ(Ci,i+1)

(fλ)D−1

)2

︸ ︷︷ ︸
Σ2

where λ′ is the dual partition of λ. We will bound Σ1 and Σ2 with different inequalities
from Gamburd [Gam06] and Larsen-Shalev [LS08]. We start with Σ1. Since we have
assumed that Ci,i+1 has at most po(1) cycles of size 1 or 2, from [LS08]:

|χλ (Ci,i+1)| ≤
(
fλ
) 1

3
+o(1)

when p → ∞. (6.2.3)

Therefore:

∀λ � p

(∏
0≤i≤D−1 χ

λ(Ci,i+1)

(fλ)D−1

)2

≤
(
fλ
)−4D/3+2+o(1)

when p → ∞.
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And, from [Gam06]:

∀t > 0
∑
λ�p

λ1,λ′1≤p−m

(
fλ
)−t

= O
(
p−mt

)
.

Thus Σ1 = O
(
p−4D+6

)
.

For Σ2, we use another inequality from [Gam06]:

fλ ≥
(
p− a
a

)
if λ1 = p− a >

p

2

which also gives a bound on fλ when λ′
1 ≥ p−3, since fλ = fλ

′ . Now, similarly to [CP16],
we show that if λ1 = p− a, with a = 1, 2 or 3:

|χλ(Ci)| = O((ln p)a).

Figure 6.2.1 – Example of a rim hook.

Indeed, consider λ with λ1 ≥ p− 3. Let ζ = (ζ1, ζ2, . . . ) be an ordered sequence of the
cycle lengths in Ci,i+1 (with multiplicity). The Murnaghan-Nakayama rule implies:

|χλ(Ci)| ≤ gλ(ζ) (6.2.4)

where gλ(ζ) is the number of ways of emptying the Young diagram Y (λ) associated to λ
by deleting rim hooks of successive sizes (ζ1, ζ2, . . . ). Here, by rim hooks of Y we mean the
contiguous border strips R of Y that can be removed from Y leaving a proper subdiagram
Y \R (see Figure 6.2.1).

As λ1 = p−a ≥ p−3, Y (λ) is made of a first line of p−a cells, and a small inferior sub-
diagram Z, with a cells. An ordered sequence of hook deletions emptying Y (λ) according
to ζ can be decomposed into two parts (see Figure 6.2.2):
- first, a sub-sequence of deletions that do no touch the a first cells of the first line;
- then, a sub-sequence of deletions starting with one that touches the cell (1, a).
The first sub-sequence is composed of horizontal deletions in the first line, and possibly
some deletions in Z too. Since at each step, the size of the deleted hook is fixed, the
only freedom in this sub-sequence stems from the position of the deletions in Z. As Ci,i+1

satisfies (∗), if a = 1 there are at most O(ln p) possible choices for the step at which the
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only possible deletion in Z occurs, if a = 2 there are at most O
(
(ln p)2

)
possible choices

(in the case where the two cells in Z are deleted one by one), and likewise for a = 3.
The second sub-sequence is composed of deletions in a sub-diagram containing at most

a2 cells, so the number of possibilities for this sub-sequence is a O(1). Therefore |χλ(Ci)| ≤
gλ(ζ) = O((ln p)a).

We get the same result when λ′
1 ≥ p−3, by considering the first column of Y (λ). Hence

Σ2 = O
(
(ln p)2D

p2D−2

)
,

which finally gives us ‖P (C1,C2)
α1α

−1
2

− UH‖ = O
(
(ln p)D

pD−1

)
.

As mentioned above, some steps of this proof use stronger arguments than in [CP16].
Indeed, to estimate Σ1, we are in the strongest case of application of the bound (6.2.3),
when there is a number po(1) of cycles under a given size, while the permutations in [CP16]
have no cycles under a given size. Moreover, when we bound Σ2 with a number of sequences
of rim-hook deletions, we have to take into account the contribution to this number of rim-
hooks of length 1 or 2, which do not appear in [CP16], for the same reason.

We can now prove Theorem 6.2.6.

Proof of Theorem 6.2.6. For 0 ≤ l ≤ (D + 1)p, we want to estimate the probability

P(F = l) =
∑

c0,1+c1,2+···+cD,0=l
P(O0,1 = c0,1,O1,2 = c1,2, . . . ,OD,0 = cD,0).

We decompose the event of having some given {ci,i+1, 0 ≤ i ≤ D} depending on the
conjugacy classes π(αi,i+1) of the αi,i+1, for 0 ≤ i ≤ D − 1:

P(F = l) =
∑

c0,1+c1,2+···+cD,0=l

∑
Ci,i+1

O(Ci,i+1)=ci,i+1

for i=0,...,D−1

P
(
OD,0 = cD,0

∣∣{Ci,i+1}
) ∏
0≤i≤D−1

P(π(αi,i+1) = Ci,i+1).

Now, we separate the conjugacy classes into those that satisfy (∗) and those that do not:

P(F = l) =
∑

c0,1+c1,2+···+cD,0=l

∑
O(Ci,i+1)=ci,i+1

Ci,i+1 satisfies (∗) ∀i

P
(
OD,0 = cD,0

∣∣{Ci,i+1}
) ∏
0≤i≤D−1

P(π(αi,i+1) = Ci,i+1)

+
∑

c0,1+c1,2+···+cD,0=l

∑
O(Ci,i+1)=ci,i+1

∃i Ci,i+1 violating (∗)

P
(
OD,0 = cD,0

∣∣{Ci,i+1}
) ∏
0≤i≤D−1

P(π(αi,i+1) = Ci,i+1)

= : P1 + P2.

From Proposition 6.2.7, if all the Ci,i+1 satisfy (∗), then:

P

(
O (αD,0) = cD,0

∣∣∣ C(αi,i+1) = Ci,i+1, 0 ≤ i ≤ D − 1
)

= P

(
O (αD,0) = cD,0

∣∣∣ ε(p− cD,0) = ε(C0,1) · · · ε(CD−1,D)
)
+ O

(
(ln p)D

pD−1

)
= 2 · 1{ε(p−cD,0)=ε(C0,1)···ε(CD−1,D)} · P(O (αD,0) = cD,0) + O

(
(ln p)D

pD−1

)
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Z

a p− 2a

(a)

(b)

(c)

(d)

Figure 6.2.2 – The Young diagram Y (λ) associated to λ (a), the 2 possible types of deletions
of the first subsequence (b) and (c), and the first deletion of the second subsequence (d).
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where ε(n) is the parity of n. Thus, for P1, we know that the only dependency left in cD,0
is a parity condition:∑
c0,1+c1,2+···+cD,0=l

∑
O(Ci,i+1)=ci,i+1

Ci,i+1 satisfies (∗) ∀i

P
(
OD,0 = cD,0

∣∣{Ci,i+1}
) ∏
0≤i≤D−1

P(π(αi,i+1) = Ci,i+1)

=
∑

c0,1+c1,2+···+cD,0=l
2 · 1{p−cD,0≡Dp−

∑
ci,i+1 [2]}

·
∑

O(Ci,i+1)=ci,i+1

Ci,i+1 satisfies (∗) ∀i

(
P(OD,0 = cD,0) + O

(
(ln p)D

pD−1

)) ∏
0≤i≤D−1

P(π(αi,i+1) = Ci,i+1)

=
∑

c0,1+c1,2+···+cD,0=l
2 · 1{p−cD,0≡Dp−

∑
ci,i+1 [2]}

·

⎛⎜⎜⎜⎝ ∑
O(Ci,i+1)=ci,i+1

Ci,i+1 satisfies (∗) ∀i

P(OD,0 = cD,0)
∏

0≤i≤D−1

P(π(αi,i+1) = Ci,i+1)

⎞⎟⎟⎟⎠
+ O

(
(ln p)D

pD−1

)
.

To control P2, we use the fact that for a fixed l, the number of cycles of length l in a
uniform permutation α ∈ Sp asymptotically follows a Poisson law of parameter 1/l (see
[ABT03]).
This implies that: P(α has more than ln p cycles of size 1 and 2) = O(1/(ln p)!). There-
fore:

P2 = P(F = l and ∃i ∈ {0, 1, . . . , D − 1} αi,i+1 violates (∗))

≤ P(∃i ∈ {0, 1, . . . , D − 1} αi,i+1 violates (∗)) = O
(

1

(ln p)!

)
and, similarly,

∑
c0,1+c1,2+···+cD,0=l

∑
O(Ci,i+1)=ci,i+1

∃i Ci,i+1 violating (∗)

2 · 1{p−cD,0≡Dp−
∑
ci,i+1 [2]}P(OD,0 = cD,0)·

∏
0≤i≤D−1

P(π(αi,i+1) = Ci,i+1) = O
(

1

(ln p)!

)
.

Hence

P(F = l) =
∑

c0,1+c1,2+···+cD,0=l
2 · 1{p−cD,0≡Dp−

∑
ci,i+1 [2]} P(OD,0 = cD,0)·

∏
0≤i≤D−1

P(Oi,i+1 = ci,i+1) + O
(
ln pD

pD−1

)
.

Finally, notice that the parity condition on the ci,i+1 is: “(D + 1)p−∑0≤i≤D ci,i+1 is
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even”, that is: “(D + 1)p− l is even”. So

P(F = l) = 2 · 1{(D+1)p−l even}
∑

∑
0≤i≤D ci,i+1=l

P(OD,0 = cD,0)·

∏
0≤i≤D−1

P(Oi,i+1 = ci,i+1) + O
(
ln pD

pD−1

)
.

We now prove Theorem 6.2.5:

Proof of Theorem 6.2.5. We have obtained that:

‖PF − PF‖ = O
(
(ln p)D

pD−1

)
,

where PF = 2 ·1{(D+1)p−F even}P0,1 ∗P1,2 ∗· · ·∗PD,0, i.e. F is, up to a parity condition, the
sum of D+1 i.i.d. variables of law P0,1. Therefore, F converges (uniformly) in distribution
to F :

|ΦF − ΦF | = O
(
(ln p)D

pD−1

)
where ΦX(a) = P(X ≤ a), i.e. ΦX is the cumulative distribution function of X.

We thus want to show that F−E[F ]√
Var(F)

converges weakly to the normal distribution. Now,

for a uniform permutation σ ∈ Sp, O(σ) has the same distribution as a certain sum of
independent Bernoulli variables:

P(O(σ) = l) = P

⎛⎝ ∑
1≤j≤p

Bj = l

⎞⎠
where the Bj are independent Bernoulli variables, with Bj of parameter 1/j. Therefore,
F has the same distribution as S · 1{(D+1)p−S even}, with:

S =
∑

1≤j≤p
Cj

where the Cj are independent binomial variables, with Cj of parameters (D + 1, 1/j).

Applying the Lindeberg Central Limit Theorem to S, we show that S−E[S]√
Var(S)

converges

in distribution to the standard normal law. Then, by applying the Local Limit Theorem
(see [McD05, Theorem 3.1]), we show that:

P(S = l) =
(1 + o(1)) exp

(
−(l−E[S])2
2Var(S)

)
√
2πVar(S)

uniformly in l. Therefore, as

P(F = l) = 2 · 1{(D+1)p−l even} · P(S = l),

this local limit theorem holds for F as well.
This implies that F−E[S]√

Var(S)
converges in distribution to the standard normal law, so this

is also the case for F , and, as E[F ] = E[S] and Var(F ) = Var(S), we get the final result.
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6.3 Quartic model

The uniform model presented in the previous section is easy to manipulate, but, as we have
seen, it yields a relatively unsatisfying geometrical structure. Moreover, it is very far from
the distributions arising in colored tensor models, as all of these yield an average number
of faces linear with p (see for instance [BDR15]), to be compared with the logarithmic
behavior of the uniform case, which thus has little physical relevance. These two sources
of dissatisfaction are incentives to consider a slightly more complicated model, that we call
the quartic model, and whose structure is quite familiar to physicists working on colored
tensor models [DGR13; DGR14; OSVT13; RVT19]. Note however that the quartic model
from the physics literature has degree-dependent weights, whereas ours is uniform on the
possible realizations.

More precisely, our quartic model can be defined as follows: we consider a bipartite
(D + 1)-colored graph, where the D-bubbles without color 0 are all quartic, i.e. contain
4 vertices, put into two pairs linked by D − 1 edges, with the two edges of the remaining
color c connecting the pairs (see Figure 6.3.1). The D-bubbles without color 0, that we call
0̂-bubbles, are the “interaction vertices” of the model from the point of view of quantum
field theory, while the 0-edges are its “propagators”. In each 0̂-bubble, we want every color
c ∈ {1, 2, . . . , D} to be drawn equiprobably as the distinguished color, the bubbles being all
independent. We also want the edges of color 0 to be sampled uniformly and independently
of the rest.

c c

2k 2k

2k − 1 2k − 1

Figure 6.3.1 – The structure of each 0̂-bubble of QD
p .

Thus, our random graph QD
p ((D + 1)-colored, with p 0̂-bubbles, hence 4p vertices)

can be described by a permutation α0 uniform on S2p, independent from a set of D
permutations {α1, α2, . . . , αD} ⊆ S2p, each being a product of transpositions of the form
(2k − 1 2k), with the constraints:

∀k ∈ {1, 2, . . . , p} ∃!i ∈ {1, 2, . . . , D}, αi(2k − 1) = 2k

∀k ∈ {1, 2, . . . , p}, ∀i ∈ {1, 2, . . . , D}, P(αi(2k − 1) = 2k) =
1

D
.

Following the structure of the previous section, we now present results on the connect-
edness and the degree of QD

p , as p → ∞.

6.3.1 Connectedness

We show that QD
p is connected a.a.s., very similarly to the uniform case:

93



Theorem 6.3.1. For all D ≥ 2, one has:

P
(
QD
p connected

)
= 1− 1

2p− 1
+ O

(
1

p

)
.

Proof. We use the same arguments as for Theorem 6.2.1, with the slight difference that
we consider the number of 0̂-bubbles contained in a subgraph, instead of the number of
vertices. Thus, for the upper bound on P

(
QD
p n.c.

)
P
(
QD
p n.c.

)
≤

∑
1≤k≤� p

2


P
(
∃ closed subgraph with k 0̂-bubbles

)
≤

∑
1≤k≤� p

2



(
p
k

)
(2k)!(2(p− k))!

(2p)!
=

1

2p− 1
+ O

(
1

p2

)
,

and, for the lower bound

P
(
QD
p n.c.

)
≥ P

(
∃! isolated 0̂-bubble

)
= P(∃ at least 1 isolated bubble)− P(∃ at least 2 isolated bubbles)

≥ 1

2p− 1
− 1

2(2p− 1)(2p− 3)
.

As was the case for the uniform model, the probability of QD
p having k connected

components decreases fast enough with k to get an asympotic expectation value of 1 for
its number of connected components:

Theorem 6.3.2. For all D ≥ 2, one has:

E
[
k(QD

p )
]
= 1 + O

(
1

p

)
.

Proof. Calculations similar to those of Section 6.2.1 give:

P
(
k(QD

p ) ≥ 3
)
= O

(
1

p2

)
, P

(
k(QD

p ) ≥ 4
)
= O

(
1

p3

)
.

Hence

E
[
k(QD

p )
]
= 1 + O

(
1

p

)
+ O

(
1

p2

)
+

(
p(p+ 1)

2
− 6

)
O
(

1

p3

)
= 1 + O

(
1

p

)
.

If we now move on to the number of D-bubbles of QD
p , we get a picture which is very

different from the uniform case. Indeed, since removing from QD
p the edges of one given

color does not yield QD−1
p , one cannot rely on Theorem 6.3.2 to infer a result for bD(QD

p ),
and one must therefore tackle this problem with new tools.
Let us first deal with the case D = 2, which is much simpler than the higher dimensions.
As a matter of fact, for D = 2 removing one color other than 0 (that is, either 1 or 2)
yields 2p edges linked by a uniform permutation (see Figure 6.3.2), hence:

E
[
bD(Q

2
p)
]
= p+ 2(ln p+ γ) + o(1),
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i

i

0 0

0 0

0 0

0 0

Figure 6.3.2 – Removing a color other than 0 in Q2
p.

using once again our knowledge of the number of cycles of uniform permutations.

To answer our question for the general case D ≥ 3, let us start with a quick analysis
of the structure of

(
QD
p

)
ı̂
, for i ∈ {0, 1, . . . , D}:

• if i = 0, then we just have p disconnected quartic bubbles;

• if i �= 0, then
(
QD
p

)
ı̂
is composed of (D− 1)-melons (coming from the splitting of the

0̂-bubbles in which i is distinguished) and quartic (D− 1)-bubbles (coming from the
0̂-bubbles in which i is not distinguished), completed with edges of color 0.

i i

0 0

0 0

i

i

0 0

0 0

0 0

0 0

0 0

0 0

Figure 6.3.3 – Going from QD
p to

(
QD
p

)
ı̂
, and from

(
QD
p

)
ı̂
to SD,ip .

For i �= 0, as we are here only interested in the connected components of
(
QD
p

)
ı̂
, we can

study a simpler (directed) graph SD,ip , which possesses vertices in lieu of quartic bubbles
and melons, and whose edges correspond to the 0-edges of

(
QD
p

)
ı̂
.

More precisely, the quartic bubbles of
(
QD
p

)
ı̂

are represented in SD,ip by vertices with in-
degree and out-degree of 2, and its melons, by vertices with in-degree and out-degree of 1.
We can decide for instance that each white (resp. black) vertex gives rise to an in- (resp.
out-)half edge, and thus the half edges of SD,ip unambiguously inherit a labelling. The
uniformity of α0 is then translated into a uniform matching of the in- and out-half edges.
This construction, illustrated in Figure 6.3.3, clearly preserves the connected components
of
(
QD
p

)
ı̂
.

Crucially, SD,ip is a very special case of the (directed) configuration model, and general
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results by Cooper and Frieze [CF04], combined with the recent ones of Federico and van
der Hofstad [FH17], allow us to obtain the following asymptotic results for the connected
components of

(
QD
p

)
ı̂
:

Theorem 6.3.3. For D ≥ 3, for any i ∈ {1, 2, . . . , D}, QD
p has a giant ı̂-bubble containing

4p−O
(√

p ln p
)

vertices. Moreover, the expectation value of the number of ı̂-bubbles of QD
p

is:

E
[
k(SD,ip )

]
= ln

(
D

D − 1

)
+ 1 + o(1).

We therefore get, for the total number of D-bubbles of QD
p :

Corollary 6.3.4. For D ≥ 3:

E
[
bD(Q

D
p )
]
= p+D

(
ln

(
D

D − 1

)
+ 1

)
+ o(1).

As stated above, to prove Theorem 6.3.3, we will make use of results on the directed
configuration model, that we define now. The directed configuration model describes a
random digraph Dn with n vertices, among which, for i, j ≥ 0, li,j have in-degree i and
out-degree j. Dn is obtained from these vertices by taking each matching of the in- and
out-half-edges equiprobably. For Dn to be well-defined,there must be an equal number of
in- and out-half edges, i.e.:

∑
i,j ili,j =

∑
i,j jli,j =: θ · n. The average directed degree in

Dn is then d :=
∑

i,j ij
li,j
θn .

SD,ip is an example of a directed configuration model, with q = 2q1 + q2 vertices, where
q1 is the number 0̂-bubbles that were split by removing i-edges, and q2 = p − q1 is the
number of bubbles that were not split. Now, by construction, q1 is the sum of p independent
Bernoulli variables of parameter 1/D, so, from the Hoeffding inequality:

P

(∣∣∣q1
p

− 1

D

∣∣∣ ≥
√

ln p

p

)
≤ 2

p2
.

Thus, a.a.s. q1 ∼ p/D, and in that case l1,1 = 2p
D (1 + o(1)), l2,2 = (D−1)p

D (1 + o(1)),
θ = 2p

q = 2D
D+1(1 + o(1)), and d = 2q1+4q2

2p =
(
2D−1
D

)
(1 + o(1)).

To prove Theorem 6.3.3, we use a result proved in [CF04], which implies that SD,ip

a.a.s. contains one giant connected component of size of order q, as well as smaller cycles.
Then, we will adapt a result from [FH17] to know the number of those cycles.

Theorem 6.3.5. [CF04]
Let Dn be a configuration model digraph defined by a sequence (li,j), satisfying:

(i) the degrees in Dn are bounded, i.e. ∃ im, jm such that i > im or j > jm ⇒ li,j = 0

(ii) ∃ constants θ0, d0 such that: θ = θ0(1 + o(1)) and d = d0(1 + o(1)), with d0 > 1

(iii) ∀ i li,0 = 0 and ∀ j l0,j = 0.

Then a.a.s. the structure of Dn is as follows:

(i) There is a unique giant strongly connected component S in Dn, of size n−O
(√

n lnn
)
.
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(ii) There is a collection C of vertex-disjoint directed cycles. The vertices of a cycle in C
are all of in-degree 1 or all of out-degree 1. Moreover, each cycle in C is connected
to S by zero or more directed paths, all such paths having the same direction with
respect to the given cycle.

To understand Theorem 6.3.5, it is important to note that it deals with strongly con-
nected components of Dn, i.e. subgraphs of Dn in which any two vertices can be joined by
directed paths in both directions. Thus, the cycles in C can be connected to S by paths,
but not strongly connected.

From our analysis of SD,ip , Theorem 6.3.5 applies to our case, as only l1,1 and l2,2 are
non-zero, θ → 2D

D+1 , and d → 2 − 1
D . Moreover, as all the vertices of SD,ip have same

in-degree and out-degree, its strongly connected components are the same as its merely
connected ones. Therefore, SD,ip is comprised of one giant connected component, together
with a collection of small cycles. To obtain the number of connected components of SD,ip ,
we thus have to determine its number of cycles. To do so, we adapt a result from [FH17]
on the undirected configuration model, to the directed case:

Proposition 6.3.6. Let Dn be a configuration model digraph defined by a sequence (li,j),
satisfying the hypothesis (ii) from Theorem 6.3.5, and such that: l1,1

n −−−→
p→∞

p1,1 ∈ [0, 1].

Let Ck(n) be the number of cycles (composed of vertices of in- and out-degree 1) of length
k in Dn. Then:

(Ck(n))k≥1

(d)−−→ (Ck)k≥1

where the Ck are independent Poisson variables, of respective parameter
pk1,1
kθk0

.

To prove Proposition 6.3.6, we use the following Lemma, similarly to the proof of
Theorem 3.3 in [FH17]:

Lemma 6.3.7. [Hof16] A sequence of vectors of non-negative integer-valued random vari-
ables (X

(n)
1 , X

(n)
2 , . . . , X

(n)
k )n≥1 converges in distribution to a vector of independent Pois-

son random variables with parameters (λ1, λ2, . . . , λk) when, for all possible choices of
(r1, r2, . . . , rk) ∈ N

k:

lim
n→∞

E

[
(X

(n)
1 )r1(X

(n)
2 )r2 · · · (X

(n)
k )rk

]
=

k∏
i=1

λrii

where (X)r = X(X − 1) · · · (X − r + 1).

Proof of Proposition 6.3.6. From Lemma 6.3.7, it suffices to show that, for all k ≥ 1 and
all possible choices of (r1, r2, . . . , rk) ∈ N

k:

lim
n→∞

E[(C1(n))r1(C2(n))r2 · · · (Ck(n))rk ] =
(
p1,1
θ0

)r1+2r2+···+krk 1

2r2 · · · krk .

We will proceed by induction on k. We first define Ck the set of candidates for cycles of
length k in Dn, i.e. Ck = {{v1, v2, . . . , vk}|vi has in- and out-degree 1}, so that:

Ck(n) =
∑
c∈Ck

1{c is in Dn}.
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This formulation highlights the fact that we are dealing with the factorial moments of
sums of indicators, which implies that (see [Hof16, Section 2.1]):

E[(C1(n))r1(C2(n))r2 · · · (Ck(n))rk ] =∑
c1(1),...,c1(r1)∈C1

distinct

· · ·
∑

ck(1),...,ck(rk)∈Ck
distinct

P(ci(s) is in Dn, ∀ i = 1, . . . , k, ∀s = 1, . . . , rk). (6.3.1)

We note Wk(
−→r ) the set of candidates for a collection of cycles like in Equation (6.3.1):

Wk(
−→r ) := {{c1(1), . . . , c1(r1), . . . , ck(1), . . . , ck(rk)} | ci(j) ∈ Ci, 1 ≤ i ≤ k, 1 ≤ j ≤

ri, the ci(s) are distinct}, and for w ∈ Wk(
−→r ) we note E (w) the event that all the cy-

cles of w are in Dn. Then

E[(C1(n))r1(C2(n))r2 · · · (Ck(n))rk ]
=

∑
wk∈Wk(

−→r )
P(E (wk))

=
∑

wk−1∈Wk−1(
−→r )

P(E (wk−1))
∑

c1,...,crk∈Ck
distinct

E

[
1{c1 in Dn} · · ·1{crk in Dn}|E (wk−1)

]
︸ ︷︷ ︸

Sk

.

We now calculate Sk. It can be decomposed into the possible choices of cycles, that is,
choices of collections of vertices of in- and out-degree of 1, multiplied by the probability
of having those cycles in Dn. The choice of vertices is only constrained by the vertices
already appearing in cycles of wk, as those cannot be chosen. As for the probability of the
cycles, they correspond to successive restrictions on the uniform permutation representing
the matchings of the half-edges. Thus:

Sk =
(l1,1 − a1,1)!

(l1,1 − a1,1 − krk)!(k!)rk
· ((k − 1)!)rk(θn− a1,1 − k)!

(θn− a1,1)!

where a1,1 is the number of vertices appearing in wk−1. Therefore, for fixed k,

Sk =
lkrk1,1

krk(θn)krk
(1 + o(1)) =

(
pk1,1

kθk0

)rk
(1 + o(1)),

i.e.

E[(C1(n))r1(C2(n))r2 · · · (Ck(n))rk ] =

E
[
(C1(n))r1(C2(n))r2 · · · (Ck−1(n))rk−1

]
·
(
pk1,1

kθk0

)rk
(1 + o(1)).

From Theorem 6.3.5 and Proposition 6.3.6, we deduce that the number of connected
components of SD,ip has an expectation value of:

E
[
k(SD,ip )

]
= 1 +

∑
k≥1

E[Ck(q)]
∣∣∣|q−D+1

D
p|=O(

√
p ln p)

+ O
(
p · 1

p2

)
= 1 +

∑
k≥1

1

kDk
+ o(1),

i.e.
E
[
k(SD,ip )

]
= 1 + ln

(
D

D − 1

)
+ o(1)

which gives Theorem 6.3.3, and therefore Corollary 6.3.4.
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6.3.2 Geometry of the complex

With a view towards scaling limits, it is encouraging that the number of points in the
complex Δ(QD

p ) grows linearly with p, as stated in Corollary 6.3.4. However, to make it
possible to hope for a continuum scaling limit, the typical distances in Δ(QD

p ) must grow
to infinity with p. This is why we investigate the behavior of distances in this complex.

We show that, unfortunately, the average distance between two points of the complex
is bounded, and more precisely, as stated in Theorem 6.3.8, equal to 2. This can be
predicted by considering the “typical landscape” of the complex. Indeed, there always
are p 0-points, while the number of i-points, for i �= 0, grows sublinearly with p, as a
consequence of Theorem 6.3.5. Thus, a uniform point is a.a.s. of color 0. Moreover,
Theorem 6.3.5 also implies that, for i �= 0, there is a “hub” i-point corresponding to the
giant component of SD,ip , which is linked to most of the 0-points, and much more isolated
i-points, corresponding to the small cycles of SD,ip . Hence, typically two independent and
uniform points of Δ(QD

p ) will be of color 0, and will have the “hub” i-points, for i �= 0, as
common neighbors. We formalize this heuristic in the proof of the following theorem:

Theorem 6.3.8. Let u, v be two vertices of Δ(QD
p ) chosen uniformly at random and in-

dependently. Then, a.a.s.:

d(u, v) = 2.

Proof. To prove this result, we show that a.a.s. u and v are points of color 0, and have
a common neighbor of color i �= 0. The fact that they are 0-colored a.a.s. is a simple
consequence of Theorem 6.3.5, and more precisely the fact that a.a.s. the giant component
of SD,ip has size q − O

(√
q ln q

)
(where q is the number of vertices of SD,ip ), so that a.a.s.

there are less than O
(√

p ln p
)
ı̂-bubbles for i �= 0, while there are p 0̂-bubbles.

It now remains to show that u and v have a common neighbor. To do so, let us
consider the D-bubbles Bu,Bv of QD

p they respectively correspond to. For any color i �= 0,
Bu corresponds to either 1 or 2 vertices in SD,ip , depending on whether i is the distinguished
color in Bu or not. If Bu corresponds to a single vertex u ∈ SD,ip , then conditionally to
the existence of a giant component like in Theorem 6.3.5, u is necessarily in that giant
component, as it is a quartic vertex. Now, conditionally to the fact that Bu corresponds
to 2 vertices w, x ∈ SD,ip , both w and x are uniform on the quadratic vertices of SD,ip , and
are thus a.a.s. in the giant component of SD,ip , from Theorem 6.3.5. Therefore, a.a.s. Bu
and the ı̂-bubble Bg,i corresponding to the giant component of SD,ip have an (̂ı, 0̂)-bubble
in common. In terms of simplices of Δ(QD

p ), this means that a.a.s., a 1-simplex of the
complex links u to the vertex tg,i corresponding to Bg,i, i.e. that these two vertices are
nearest neighbors. Following the same reasoning for v, a.a.s. it is also a direct neighbor of
tg,i, so that u and v are at distance 2 in Δ(QD

p ).

6.3.3 Degree

We now look into the number of faces of QD
p . Like for the uniform model, we present

results on the expectation value and the variance of the total number of faces, as well
as one on the asymptotic behavior of the number of faces of a given jacket. As we will
see, upon proving these results we also obtain the asymptotic behavior of the genus of a
uniform map of size p, as p → ∞ (see Theorem 6.3.14).
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Theorem 6.3.9 (Number of faces of QD
p ).

E
[
[b2(Q

D
p )
]
= (D − 1)2p+D(ln (2p) + γ) + o(1) (6.3.2)

Var
(
b2(Q

D
p )
)
= O

(
(ln p)3

)
. (6.3.3)

We also get a normal limit for the number of faces of one jacket:

Theorem 6.3.10. Let Jp be a regular embedding of QD
p , and FJp be the number of faces

of Jp. Then the quantity
FJp−E[FJp ]√

Var(FJp)
converges weakly to the standard normal distribution.

To prove both (6.3.9) and (6.3.10), we will need to determine the asymptotical behavior
of the joint law of O(α0α

−1
i ),O(αjα

−1
i ),O(αjα

−1
0 ), for 1 ≤ i < j ≤ D. By conjugating all

permutations by a uniform permutation β ∈ S2p, independent from the rest, this amounts
to answering the same question for O(ϕ),O(α),O(αϕ−1), for α, ϕ two independent per-
mutations in S2p, with ϕ uniform, and α an involution with n = 2b fixed points, where b
is the sum of p independent Bernoulli variables of parameter D−2

D . This slight change of
setting leads to considering the following result:

Proposition 6.3.11. Let p be a positive integer, and 0 ≤ b ≤ p fixed. Let α be uniform
on the conjugacy class of involutions on {1, . . . , 2p} with 2b fixed points, and let ϕ be a
uniform permutation on {1, . . . , 2p}, independent from α. Then (O(ϕ)+O(αϕ−1)) has the
same law as (O(ψ) + O(δψ−1)), where δ is uniform on the fixed-point-free involutions on
{1, . . . , 2(p− b)}, and ψ is uniform on S2(p−b), and independent from δ.

Proof. The key idea of the proof is that α, ϕ, αϕ−1 respectively describe the (half-)edges,
faces and vertices, of an (half-edge) labelled ribbon graph G with (p − b) edges and 2b
unmatched half-edges. By erasing the unmatched half-edges of G, we obtain a ribbon
graph H with (p− b) edges.

As α and ϕ are independent and uniform on their respective sets of possible realizations,
G is uniform on the set of labelled ribbon graphs with (p − b) edges and 2b unmatched
half-edges. Therefore, if we relabel the half-edges of H, by keeping their order, so that the
labels are in {1, 2, . . . , 2(p− b)}, we get a ribbon graph H ′, uniform on the labelled ribbon
graphs with (p− b) edges. H ′ can thus be identified to a triple (δ, ψ, δψ−1) satisfying the
hypotheses mentioned above. As the transformation from G to H ′ preserves the Euler
characteristic, we have

χ(G) = O(ϕ)− (O(α)− 2b) +O(αϕ−1)

= χ(H ′) = O(ψ)− O(δ) +O(δψ−1),

that is
O(ϕ) +O(αϕ−1) = O(ψ) +O(δψ−1).

Let us go back to the permutations that define QD
p . We deduce from Proposition 6.3.11

an intermediate result that will be necessary to prove Theorem 6.3.9:

Proposition 6.3.12. Let Oi,j be the number of cycles of αiα−1
j . Then:

E[O0,1OD,0] = O
(
(ln p)3

)
.
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Proof. We first write:

E[O0,1OD,0] =
1

2

(
E

[
(O0,1 +OD,0)

2
]
− E

[
O2

0,1

]
+ E

[
O2
D,0

])
.

Then, from Proposition 6.3.11, when the number 2b of fixed points of αDα−1
1 is fixed, we

have:

E

[
(O0,1 +OD,0)

2 |αD,1 has 2b fixed points
]
= E

[(
O(ψ) +O(δψ−1)

)2]
with the notations of Proposition 6.3.11. Now, with the same techniques as in Section 6.2.2,
we prove that, conditionally to the conjugacy class Cψ of ψ, δψ−1 is asymptotically uniform
on H = A2(p−b) (resp. H = (A2(p−b))

c) if ψ and δ are of the same parity (resp. of opposite
parities). More precisely,

‖Pδψ−1 − UH‖ = O
(
(ln (p− b))2

p− b

)
.

Thus

E
[
O(ψ)O(δψ−1)

]
=

∑
1≤c1,c2≤2(p−b)

c1c2 P
(
O(ψ) = c1,O(δψ−1) = c2

)
=

∑
1≤c1≤2(p−b)

c1 P(O(ψ) = c1)
[
O
(
(ln (p− b))2

)
+

∑
1≤c2≤2(p−b)

2 · 1{(−1)c1+c2=(−1)p−b} · c2 P
(
O(δψ−1) = c2

)]
=

∑
1≤c1≤2(p−b)

c1 P(O(ψ) = c1)
[
O
(
(ln (p− b))2

)
+ O(ln (p− b))

]
= O

(
(ln (p− b))2

) ∑
1≤c1≤2(p−b)

c1 P(O(ψ) = c1)

= O
(
(ln (p− b))3

)
.

This implies that
E

[(
O(ψ) +O(δψ−1)

)2]
= O

(
(ln (p− b))3

)
,

and so E[O0,1OD,0] = O
(
(ln (p− b))3

)
as well.

We can now prove Theorem 6.3.9.

Proof of Theorem 6.3.9. To prove Equation (6.3.2), we first make a clear list of the different
types of faces:

• the faces without color 0 are, by definition, subsets of the 0̂-bubbles. They either
contain the distinguished color of their 0̂-bubble, in which case they have 4 vertices,
or they do not, in which case they have 2 vertices. There are, in each 0̂-bubble, D−1
faces of the first type, and (D − 1)(D − 2) of the second.

• For each i �= 0, one can see the bicolored graph (QD
p )i,0 as 2p vertices with one

in- and one out-half-edge, with a uniform matching of the half-edges, similarly to
the construction of SD,jp . The faces of color {0, i} are thus given by the cycles of a
uniform permutation of size 2p.
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Therefore:

E
[
b2(Q

D
p )
]
= ((D − 1)(D − 2) + (D − 1)) p+D

⎛⎝ 2p∑
j=1

1

j

⎞⎠
= (D − 1)2p+D(ln (2p) + γ) + o(1).

To obtain the variance, we now have to calculate E

[(
b2(Q

D
p )
)2]. We decompose it into

different parts as follows:

E

[(
b2(Q

D
p )
)2]

= E

⎡⎣⎛⎝ ∑
0≤i<j≤D

O
(
αiα

−1
j

)⎞⎠2⎤⎦

= E

⎡⎣⎛⎝ ∑
1≤i<j≤D

O
(
αiα

−1
j

)⎞⎠2⎤⎦
︸ ︷︷ ︸

E1

+ 2 E

⎡⎢⎢⎣ ∑
1≤i≤D

1≤k<l≤D

O
(
α0α

−1
i

)
O
(
αkα

−1
l

)⎤⎥⎥⎦
︸ ︷︷ ︸

E2

+
∑

1≤i≤D
E

[
O
(
α0α

−1
i

)2]
︸ ︷︷ ︸

E3

+ 2
∑

1≤i<j≤D
E

[
O
(
α0α

−1
i

)
O(α0α

−1
j )
]

︸ ︷︷ ︸
E4

.

In the first term, E1, there are all the faces without color 0. By definition, the number of
those is fixed: ∑

1≤i<j≤D
O
(
αiα

−1
j

)
= p((D − 1)(D − 2) + (D − 1)) = p(D − 1)2,

so that E1 = p2(D−1)4. Moving on to E2, for any i, k, l ∈ {1, 2, . . . , D}, the permutations
α0α

−1
i and αkα

−1
l are independent, so:

E2 = 2 E

⎡⎣ ∑
1≤i≤D

O
(
α0α

−1
i

)⎤⎦ · E

⎡⎣ ∑
1≤k<l≤D

O
(
αkα

−1
l

)⎤⎦
= 2D

⎛⎝ 2p∑
j=1

1

j

⎞⎠ · (D − 1)2p,

using, for the first part, the fact that all i ∈ {1, 2, . . . , D}, α0α
−1
i is uniform, and, for the

second part, the same argument as for E1. Thus

E2 = 2D(D − 1)2p

⎛⎝ 2p∑
j=1

1

j

⎞⎠ .

For E3, we are dealing with uniform permutations, so:

E3 = D((ln 2p)2 + (2γ − 1) ln (2p) + o(ln p))

= D(ln p)2 + O(ln p).

We are now left with E4, which we estimate thanks to Proposition 6.3.11: E4 = O
(
(ln p)3

)
.
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Therefore

Var
(
b2(Q

D
p )
)
=

⎛⎝p2(D − 1)4 + 2D(D − 1)2p

⎛⎝ 2p∑
j=1

1

j

⎞⎠+ O
(
(ln p)3

)⎞⎠
−

⎛⎝(D − 1)2p+D

⎛⎝ 2p∑
j=1

1

j

⎞⎠⎞⎠2

= O
(
(ln p)3

)
.

Proof of Theorem 6.3.10. Like in Section 6.2.2, by symmetry, we assume without loss of
generality that Jp corresponds to the usual cyclic ordering (0 1 . . . D), and in that case we
are interested in the quantity:

F =
∑

0≤i≤D
Oi,i+1

where, by convention, OD,D+1 = OD,0. From the structure of the αi, for 1 ≤ i ≤ D, we
deduce ∑

1≤i≤D−1

Oi,i+1 +OD,1 = 2p(D − 1),

hence:
F = O0,1 +OD,0 + 2p(D − 1)− OD,1.

Thus, up to a constant, F follows the same law as f := O0,1 + OD,0 − OD,1. Now,
conditionally to the number 2b of fixed points of αDα−1

1 , Proposition 6.3.11 gives us the
behavior of f . Indeed, it has the same law as O(ψ)+O(δψ−1)− (p+b), with the notations
of Proposition 6.3.11.

As explained above in the proof of Proposition 6.3.12, conditionally to the conjugacy
class Cψ of ψ, the law of δψ−1 converges for the total variation distance to the uniform
measure either on A2(p−b) (if Cψ has the same parity as δ), or on (A2(p−b))

c (if they are of
opposite parities). Thus:

P(f = l) =
∑

1≤b≤p
P(OD,1 = p+ b)P

(
O(ψ) +O(δψ−1) = l + p+ b

)
=
∑

1≤b≤p
P(OD,1 = p+ b)

[
2 · 1{l even}

(
Pψ ∗ Pδψ−1

)
(l + p+ b)+

O
(
(ln (p− b))2

p− b

)]
(6.3.4)

where Pσ is the law of the number of cycles of σ.

Now, let us recall that for a uniform permutation σ ∈ Sn, O(σ) has the same distribu-
tion as

∑n
j=1Bj , where the Bj are independent Bernoulli variables, with Bj of parameter

1/j. We use this fact to bound the dependence on b of Pψ and Pδψ−1 . Indeed, as we will
later use Hoeffding’s inequality for b, we consider the case |b− p

(
D−2
D

)
| ≤ √

p ln p. We can

couple O(ψ) with a variable of the form
∑� 4p

D



j=1 Bj ,by taking or adding some Bj to the sum
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to get O(ψ), and in that case:

P

⎛⎝∣∣∣O(ψ)−
� 4p
D


∑
j=1

Bj

∣∣∣ ≥ 1

⎞⎠ = O

(√
ln p

p

)
. (6.3.5)

Indeed: ∣∣∣O(ψ)−
� 4p
D


∑
j=1

Bj

∣∣∣ ≤ B

(
O
(√

p ln p
)
,
⌊4p
D

⌋)
where B(O

(√
p ln p

)
, �4pD �) follows a binomial distribution of parameters (O

(√
p ln p

)
, (�4pD �)−1).

Then, applying Markov’s inequality to B(O
(√

p ln p
)
, �4pD �):

P

(
B

(
O
(√

p ln p
)
,
⌊4p
D

⌋)
≥ 1

)
= o
(

1√
ln p

)
.

Let us note gDp the law of
∑� 4p

D



j=1 Bj . Similarly to what we did in the proof of The-
orem 6.2.5, we show that gDp converges uniformly to a discrete gaussian distribution, of
mean Ep = ln p+ γ + ln( 4

D ) + o(1), and of variance Vp = ln p+ γ + ln( 4
D )− π2/6 + o(1):

gDp (c) =
(1 + o(1)) exp

(
−(c−Ep)2

2Vp

)
√

2πVp
. (6.3.6)

As Equation (6.3.6) implies in particular that gDp (c) is slowly varying, we deduce from
Equation (6.3.5):

Pψ(c) = gDp (c) + o
(

1√
ln p

)
. (6.3.7)

Now, applying Hoeffding’s inequality to b, we get:

P

(∣∣∣b− p

(
D − 2

D

) ∣∣∣ ≥√p ln p

)
= O

(
1

p2

)
. (6.3.8)

Combining Equations (6.3.4), (6.3.7) and (6.3.8), we can write:

P(f = l) = 2 · 1{l even}(P̃D,1 ∗ gDp ∗ gDp )(l) + o
(

1√
ln p

)
where P̃D,1 is the law of −OD,1.

Thus: ∥∥∥Pf − 2Ph · 1{h even}
∥∥∥ = o

(
1√
ln p

)
,

where h =
∑

1≤j≤� 4p
D


Xj + Y + p, with the Xj and Y being independent binomial vari-
ables, with Xj of parameters (2, 1/j) and Y of parameters (p, (D− 2)/D). The Lindeberg
Central Limit Theorem and the Local Limit Theorem apply once again, and the resulting
convergence of Ph to a discrete gaussian implies that of Pf .
Finally, as E[f ] = 2p(D − 1)/D + 2 ln p + O(1) = E[h] + O(1), and Var(f) = 2p(D −
2)/D2 + O

(
(ln p)3

)
= Var(h) + O

(
(ln p)3

)
, we have a weak convergence result for (f −

E[f ])/
√

Var(f).
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As anounced before, the arguments we have used here to get results on the degree of
QD
p also imply a Central Limit Theorem for the genus of a uniform random map, in a sense

that we make more precise now. Consider, for a given p ≥ 1, a uniform fixed-point-free
involution of {1, . . . , 2p}, δ, and a uniform permutation ψ ∈ S2p, independent from δ.
Then δ, ψ, δψ−1 respectively describe the edges, faces and vertices of a (half-edge-labelled)
ribbon graph Mp with p edges, which is clearly uniform on the set of such graphs.

We first prove that Mp is a.a.s. connected:

Proposition 6.3.13. One has:

P(Mp connected) = 1− 1

2p− 1
+ O

(
1

p

)
. (6.3.9)

Proof. Notice that the probability of Mp being connected is exactly the same as the prob-
ability of QD

p being connected (for any D ≥ 2). Indeed, in both cases we consider the set
of indices {1, . . . , 2p} grouped into pairs (by δ for Mp and by the structure of the 0̂-bubbles
for QD

p ), and then add connections according to a uniform permutation independent from
the pairing (ψ for Mp and α0 for QD

p ). We therefore deduce Equation (6.3.9) directly from
Theorem 6.3.1.

Now that we know that Mp is connected a.a.s., we can consider its genus, for which we
prove the following theorem:

Theorem 6.3.14. Let gp be the genus of Mp. Then the quantity gp−E[gp]√
Var(gp)

converges weakly

to the standard normal distribution. Moreover, we have the following estimations:

E[gp] =
p

2
− (ln 2p+ γ) + 1 + o(1),

Var(gp) = O
(
(ln p)3

)
.

Proof. Let us start with the first statement of the theorem. As explained in the proof of
Proposition 6.3.12, conditionally to the conjugacy class Cψ of ψ, δψ−1 is asymptotically
uniform on H = A2p (resp. H = (A2p)

c) if ψ and δ are of the same parity (resp. of
opposite parities), indeed:

‖Pδψ−1 − UH‖ = O
(
(ln p)2

p

)
.

Therefore, just like we derived Theorem 6.2.6 from Proposition 6.2.7, we get:

‖Pδ,ψ − 2 · 1{Cδ,ψ+p even}Pψ ∗ Pδψ−1‖ = O
(
(ln p)2

p

)
where Pδ,ψ is the law of Cδ,ψ := O(ψ) +O(δψ−1).

Now, following the same arguments as in the proof of Theorem 6.2.5, we obtain that

the quantity Cδ,ψ−E[Cδ,ψ]√
Cδ,ψ

converges weakly to the standard normal law. Finally, as gp =

1
2 (p− Cδ,ψ)+1, we have a weak convergence result for gp as well. As for the estimations of
E[gp] and Var(gp), the first is a direct consequence of the fact that ψ and δψ−1 are uniform
permutations, and the second was proved in the proof of Proposition 6.3.12.
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6.4 Uniform-uncolored models

Random D-complexes studied by physicists are mainly of the type of the quartic model: the
0̂-bubbles of the corresponding colored graphs all belong to a fixed finite set of D-colored
graphs. In the quartic model studied in section 6.3, this set is reduced to a singleton,
namely the quartic melonic graph of Figure 6.3.1. Melonic D + 1-colored graphs are dual
to special colored triangulations of the D-sphere [GR12]. A natural question is the follow-
ing: do the results obtained for the quartic model also hold in the case of more generic
0̂-bubbles set and particularly if this set contains non melonic graphs? To answer this
question, we now consider a type of model similar to the quartic one, where the 0̂-bubbles
are all identical, up to color permutations.

More precisely, we start from a fixed, connected bipartite D-colored graph G with
2t ≥ 4 vertices, and we consider a random (D + 1)-colored graph Gp, with p 0̂-bubbles
B0̂
1, . . . ,B0̂

p, which are all copies of G up to a color permutation: if an edge e of G has color
c(e) ∈ {1, . . . , D}, then the corresponding edge e′ of B0̂

k will have color ck(e
′) = γk(c(e)),

where γ1, . . . , γp are i.i.d. uniform permutations in SD (see Figure 6.4.1 for an illustra-
tion).
Similarly to the quartic case, the 0-colored edges of Gp are given by a permutation α0

uniform on Sp·t, and independent from the rest (we can choose an arbitrary labelling
vB1 , . . . , v

B
t , v

W
1 , . . . , vWt of the vertices of G to obtain a canonical labelling of the vertices

of Gp).

The connectivity properties of this model are very similar to the specific case of the
quartic model seen in Section 6.3.1, as detailed in Section 6.4.1. In particular, the complex
of the general uniform-uncolored model Δ(Gp) exhibits the same asymptotic structure
as for the quartic model, i.e. a majority of 0-points, most of which having the “colored
hubs” as common neighbors, as explained in Section 6.4.2. As for the behaviors of the
degree and of the genera of the jackets, they are difficult to obtain in the general case,
as we do not have an explicit description of Gp in terms of D + 1 random permutations
(α0, α1, . . . , αD) ∈ SD+1

p . Even if we use such a description for a particular case, the
laws of the αi will typically be much more complicated than for QD

p , and might not yield
explicit results or estimations as easily. Moreover, because of the unsatisfying connectivity
properties of this model, it does not seem very worthwhile to undertake such a laborious
task.

6.4.1 Connectedness

Just like in the quartic case, we show that Gp is connected a.a.s., and moreover that the
expectation value of its number of components converges to 1:

Theorem 6.4.1. One has:

P(Gp connected) = 1− p(
tp
t

) + O
(

1

p2(t−1)

)
,

E[k(Gp)] = 1 + O
(

1

pt−1

)
.

Proof. We proceed in the same way as for (6.3.1) and (6.3.2), using the fact that, for
1 ≤ k ≤ �p2�, P(Gp has a closed subgraph containing k copies of G) =

(
p
k

)
/
(
tp
tk

)
.
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Figure 6.4.1 – Starting from a D-colored graph G (here D = 3), we construct a (D +
1)-colored graph Gp, whose p 0̂-bubbles are copies of G in which the colors have been
permuted.
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Figure 6.4.2 – For the purpose of studying the ı̂-bubbles of Gp, we replace each of its
0̂-bubbles by vertices, whose number, in- and out-degrees are prescribed by the positions
of the i-edges in the 0̂-bubble. In this example we have taken the same base graph G as
in Figure 6.4.1.
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Now, to obtain results about the asymptotic number of ı̂-bubbles of Gp, for a fixed
i ∈ {1, 2, . . . , D}, we will consider the simplified graph Sip, defined like in the quartic case:
the deletion of the edges of color i decomposes any 0̂-bubble Bk into a certain number ri of
connected components B(1)

k , . . . ,B(ri)
k , having respectively, say, 2n1, . . . , 2nri vertices (with∑

k nk = t). We associate to each component B(s)
k a vertex vk,s with ns out- (resp. in-

)going half-edges, corresponding to its black (resp. white) vertices, so that each half-edge
inherits the labelling of its corresponding vertex (see Figure 6.4.2 for an example). We then
consider the graph Sip on the vertices (vk,s) (corresponding to all the components of all the
0̂-bubbles of (Gp)ı̂), obtained by taking a uniform matching of the in- and out-half-edges:
as explained in Section 6.3.1 for the quartic case, this translates the uniformity of α0, and
thus the connected components of (Gp)ı̂ correspond to those of Sip.

Now, just like in the quartic case, we want to apply Theorem 6.3.5 to prove that Sip
has a giant component. First, let us translate the characteristics of Sip in the notation
of the directed configuration model. If deleting the color j in G gives rise to rj ver-
tices of respective degrees (δj1, δ

j
1), . . . , (δ

j
r , δ

j
r) in our simplified formulation, then Sip will

have q =
∑

1≤j≤D qjrj vertices, where qj = #{k ∈ {1, 2, . . . , p}
∣∣γk(j) = i}. And for

each possible degree 1 ≤ δ ≤ t, the number of vertices of degree (δ, δ) in Sip will be:
lδ,δ =

∑
1≤j≤D qjNδ,j , with Nδ,j = #{v ∈ {1, . . . , rj}

∣∣δjv = δ}.

Now, note that, as the γk are uniform, a given i ∈ {1, 2, . . . , D} has an equal prob-
ability to replace any color j ∈ {1, 2, . . . , D} in a given 0̂-bubble. Moreover, the γk are
independent, so that, for given i, j ∈ {1, 2, . . . , D}, the number of 0̂-bubbles in which i
replaces j is a binomial variable of parameters ( 1

D , p):

#{k ∈ {1, 2, . . . , p}
∣∣γk(j) = i} ∼ Bin

(
1

D
, p

)
.

Thus, applying Hoeffding’s inequality, we have once again:

P

(∣∣∣qj
p

− 1

D

∣∣∣ ≥
√

ln p

p

)
≤ 2

p2
,

and for qj ∼ p/D, we can write lδ,δ = p·cδ(1+o(1)), q = p·cq(1+o(1)), θ = θ0(1+o(1)), d =
d0(1 + o(1)), where:

cδ =
1

D

∑
1≤j≤D

Nδ,j , cq =
∑

1≤δ≤t
cδ

θ0 =

∑
δ δcδ∑
δ cδ

, d0 =

∑
δ δ

2cδ∑
δ δcδ

.

Thus, Sip satisfies the hypotheses of Theorem 6.3.5 as long as d0 > 1, i.e. as long as
c1 <

∑
δ cδ. In other words, we can apply Theorem 6.3.5 if there is at least one color

j ∈ {1, 2, . . . , D} such that Gĵ is not made of melons only, which is always the case when
D ≥ 2. Indeed, if there is one color j such that Gĵ is only made of melons, then G
is necessarily a “pearl necklace” (see Figure 6.4.3), and in that case, for any other color
k ∈ {1, 2, . . . , D} \ {j}, Gk̂ is connected, and in particular not made of melons only.

Proposition 6.3.6 also applies, as we have, in the notation of the proposition: l1,1
n =

c1
cq

+ o(1). This yields the following theorem, analogous to Theorem 6.3.3:
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Figure 6.4.3 – A pearl necklace of color j.

Theorem 6.4.2. For D ≥ 3, for any i ∈ {1, 2, . . . , D}, Gp has a giant ı̂-bubble containing
2tp−O

(√
p ln p

)
vertices. Moreover, the expectation value of the number of ı̂-bubbles of Gp

is:
E
[
k(Sip)

]
= cG + 1 + o(1)

where cG =
∑

k≥2
ck1

k(cqθ0)
k < ∞ as c1 < cqθ0.

Hence, for the total number of D-bubbles of Gp:

Corollary 6.4.3. For D ≥ 3, E[bD(Gp)] = p+D (cG + 1) + o(1).

6.4.2 Geometry of the complex

Just like in the particular case of the quartic model, the previous study of the D-bubbles
of Gp gives us insight on the typical geometry of the associated complex Δ(Gp). Indeed,
once again there are p 0-points in Δ(Gp), while for any i ∈ {1, 2, . . . , D} there are at most
O
(√

p ln p
)
i-points, one of which is the “hub” i-point having most 0-points as neighbors.

The result of Theorem 6.3.8 thus also holds for any uniform-uncolored model, as long as
D ≥ 3:

Theorem 6.4.4. Let u, v be two vertices of Δ(Gp) chosen uniformly at random and inde-
pendently. Then, if D ≥ 3, d(u, v) = 2 a.a.s..

Remark. Let us note that what we have done for one fixed, connected base graph G
can be generalized further to models where this base graph G is not necessarily connected
(in which case, the copies of G are not 0̂-bubbles but sets of 0̂-bubbles), or where each 0̂-
bubble is uniformly drawn from a finite set of (finite) D-colored graphs (with, once again, a
randomization of the different colors): similar results will still apply, as long as the criterion
d0 > 1 is verified for the corresponding oriented configuration model. This is typically the
case for all “interaction vertices” appearing in colored tensor models generalizing the quartic
one.

This brings an end to the pursuit of continuum scaling limits in the spirit of the
Brownian sphere in uniform-uncolored models. As noted in Section 6.2.1, the results of
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numerical simulations for Euclidean Dynamical Triangulations had already hinted that in
higher dimensions, models of random triangulations with no or low constraints on curvature
yield quite degenerate limit spaces. We can thus see both our uniform and uniform-
uncolored models as instances of a crumpled phase, which would be the first ones to be
investigated mathematically and not by simulations.

To find promising scaling limits, we must turn to more complicated models, and works
in theoretical physics suggest that the Gurau degree (which is a way to quantify the
curvature of trisps) must play a central role in our tentative distributions.

6.5 Conclusion

We have studied in this work two random models on bipartite (D+1)-colored graphs and
the associated complexes. The first one, UD

p , is uniform on the bipartite (D + 1)-colored
graphs with 2p labelled vertices. We have proved that, a.a.s., UD

p is connected and the
associated complex Δ(UD

p ) has exactly one point of each color, which is a quite singular
behavior, and is not satisfactory for the purpose of finding scaling limits. We have also
obtained a Central Limit Theorem for the genus of one jacket of UD

p . In the second one,
Gp, we have fixed the 0̂-bubbles to be copies of a given D-colored graph G, and kept
the matching of the 0-half-edges uniform. Gp is also connected a.a.s., but the number of
points of Δ(Gp) grows linearly with p. However, the average distance between two points
of Δ(Gp) is a.a.s. 2, which also halts our quest for a continuum limit. We have more
extensively studied the special case of QD

p , in which G is quartic. In that particular case,
we have also obtained a Central Limit Theorem for the genus of one jacket, and the argu-
ments we employed also yielded a Central Limit Theorem for the genus of a uniform map
of size p, as p → ∞.

In the context of quantum gravity, we wish to find random models on colored complexes
exhibiting a scaling limit, that can be interpreted as a continuum space-time. We have seen
that these models do not fit this purpose. However, their study involved the adaptation of
several combinatorial and probabilistic tools to the subject of edge-colored graphs, which
will surely prove to be valuable when tackling more complicated models, as we plan to do.
Those new models will undoubtely have to involve the Gurau degree more deeply, as it is
a crucial quantity in the theory of colored tensor models.
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Troisième partie

Triangulations eulériennes
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CHAPITRE 7

Convergence des triangulations eulériennes planaires
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7.1 Introduction

7.1.1 Context

Eulerian triangulations are maps whose faces are all of degree 3, and whose vertices are
all of even degree. They can be encountered in several contexts. As their definition is
quite straightforward, they are already an object of interest in themselves in enumerative
combinatorics (see [Tut62; BDFG04; BMS00; AB12]). Moreover, they are in bijection
with combinatorial objects such as constellations and bipartite maps, and geometrical
objects such as Belyi surfaces. They also correspond to the two-dimensional case of
colored tensor models, an approach to quantum gravity that generalizes matrix models
to any dimension, detailed in Chapter 4.

The main aim of this chapter is to show that large planar rooted Eulerian triangulations
converge to the Brownian map (see Theorem 7.3.1 for a more precise statement). Along
the way, we explore uncharted properties of planar Eulerian triangulations. This allows us
to construct, in the case of Eulerian triangulations, many random objects and structures
whose equivalents already exist for other families of planar maps.

Let us now briefly sketch how this exploration ties in together with proving Theo-
rem 7.3.1.

If one wants to prove that a family of planar maps converges to the Brownian map,
the classical method is to use a bijection between this family, and a family of labeled
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trees, whose labels keep track of the distances in the map. Obtaining a joint scaling limit
for the trees and their label functions is a classical procedure, however, it then remains
to deduce from this limit, a scaling limit for the metric space induced by the maps. This
was first done independently by Le Gall for triangulations and 2p-angulations [LG13], and
Miermont for quadrangulations [Mie13], using different technical tools. The list of families
amenable to this method has been expanded since then to general maps, general bipartite
maps, simple triangulations and odd p-angulations [BJM14; Abr16; ABA17; ABA]1.

A more recent method applies to local modifications of distances, in families that are
already known to converge to the Brownian map. This method, established by Curien and
Le Gall in [CLG19] for usual triangulations, uses a layer decomposition of the maps,
rather than a bijection with trees. This makes it possible to use an ergodic subbaditivity
argument, to obtain that the modified and original distances are asymptotically propor-
tional.

In the case of Eulerian triangulations, there exists a bijection with a family of labeled
trees, but, as we will explain in the sequel, these labels do not correspond to the usual
graph distance from the root, but to an oriented pseudo-distance. This implies that we
cannot a priori recover the distances from the labels, so that, while it is still easy to get
a scaling limit at the level of labeled trees, we are stuck there without any additional
ingredient. This ingredient turns out to be the layer decomposition. Indeed, the oriented
pseudo-distance can be seen as a local modification of the usual graph distance, so that
the layer decomposition method applies to Eulerian triangulations equipped with these two
distances, and this yields that the oriented pseudo-distance is asymptotically proportional
to the usual graph distance, so that the labels do keep track of it up to a small error. This
proves to be enough to obtain convergence to the Brownian map.

This is the first time that a combination of these two methods is needed to show such
a convergence. It would be interesting to apply this to other families of maps, such as
Eulerian quadrangulations.

Note that one could want to prove the convergence of planar Eulerian triangulations to
the Brownian map using their bijection with bipartite maps, as the convergence for these
has already been proven in [Abr16]. However, this would necessitate to treat the distances
on an Eulerian triangulation as a local modification of the distances on the corresponding
bipartite map, and thus use a layer decomposition of bipartite maps. As this has not been
achieved yet, this route is a priori not easier than the one undertaken here, which has the
advantage of uncovering a lot of properties of Eulerian triangulations. However, achieving
a layer decomposition of bipartite maps would be interesting in itself.

7.1.2 Outline

In the whole chapter, c0 refers to the constant c0 ∈ [2/3, 1] of Proposition 7.8.1. The main
result of this chapter is Theorem 7.3.1. As the full statement of this theorem necessitates
a bit of notation, we postpone it to Section 7.3. We can however now give a weak version
of it:

Theorem 7.1.1. Let Tn be a uniform random rooted Eulerian planar triangulation with n
black faces, equipped with its usual graph distance dn. Let (m∞, D∗) be the Brownian map.
The following convergence holds

n−1/4 · (V (Tn), dn)
(d)−−−→

n→∞
c0 · (m∞, D∗),

1Note that we stay purposefully vague here, and that some of these results rely on bijections with other
types of decorated trees

117



for the Gromov-Hausdorff distance on the space of isometry classes of compact metric
spaces.

We will see how this can be obtained from the following result:

Theorem 7.1.2. Let Tn be a uniform random rooted Eulerian planar triangulation with n
black faces, and let V (Tn) be its vertex set. For every ε > 0, we have

P

(
sup

x,y ∈V (Tn)
|dn(x, y)− c0�dn(x, y)| > εn1/4

)
−−−→
n→∞

0.

After giving a precise description of the structure of Eulerian triangulations endowed
their oriented pseudo-distance in Section 7.2, in Section 7.3 we will give the complete
statement of Theorem 7.3.1, and explain how to prove it using Theorem 7.1.2. The rest of
the chapter is then devoted to proving Theorem 7.1.2.

Let us sketch the different steps of this proof. After some technical statements in
Section 7.4, we detail in Section 7.5 the decomposition of finite rooted planar Eulerian
triangulations (possibly with a boundary) into layers, determined by the oriented distance
from the root. This decomposition makes it possible to describe the random triangulation
Tn, uniform over planar Eulerian triangulations with n black faces, in terms of a branching
process whose generations are associated to the layers of Tn. This nice description of Tn
allows us to take the limit n → ∞, to define the Uniform Infinite Planar Eulerian trian-
gulation, T∞, that is naturally endowed with a decomposition into an infinite number of
layers. Now, in Section 7.6, we take a local limit of T∞ where we view these layers “from
infinity”, which yields the Lower Half-Planar Eulerian Triangulation L. In Section 7.8, we
explain how the construction of this half-plane model makes it possible to obtain Theo-
rem 7.1.2. First, the layers of L are i.i.d., which makes it straightforward to apply an
ergodic subbadditivity argument to the graph distance d between the root of L and the
n-th layer of L. Then, we detail how this result can carry over to finite Eulerian triangu-
lations, first for the graph distance between the root and a random uniform vertex, then
between any two vertices, as stated in Theorem 7.1.2. The transfer of the results from
L to finite triangulations necessitates estimates on the distances in L that are derived in
Section 7.7.

As our use of the layer decomposition to get the asymptotic “proportionality” of the
oriented and usual distances follows closely the chain of arguments of [CLG19] (albeit with
additional difficulties), we purposefully use similar notation, and will omit some details of
proofs when they are very similar and do not present any additional subtleties in our case.
This is especially the case in Section 7.7.2 and Section 7.8.

7.2 Structure of Eulerian triangulations and bijection with
trees

For basic definitions related to graphs and maps, we refer to Section 3.1 in the introduction.
We consider here rooted planar Eulerian triangulations, that is, maps whose faces have all
degree 3, and whose vertices have all even degree. Bouttier, Di Francesco and Guitter
[BDFG04] have established a bijection between this family of maps and a particular class
of labeled trees, whose construction we now briefly recall.
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7.2.1 Bijection with trees

Let A be such a rooted planar Eulerian triangulation. The orientation of the root edge of
A fixes a canonical orientation of all its edges, by requiring that orientations alternate
around each vertex. By construction, edges around a given face are necessarily oriented
either all clockwise, or all anti-clockwise. This induces a natural bicoloration of the faces
of A, by setting for instance that clockwise faces are black, and anti-clockwise faces, white.

From now on, any mention of orientation refers to this canonical orientation.

0

1

2

3
2

4 3

3

1

2
4

Figure 7.2.1 – An Eulerian triangulation with its canonical orientation, bicoloration and
oriented geodesic distances.

We define the oriented geodesic distance �d of any vertex of A from the origin (that
is, the root vertex ρ), as the minimal length of an oriented path from the origin to that
vertex. This gives a labeling of the vertices of A, such that the sequence of labels around
any triangle, starting from the minimal label, is of the form n → n+ 1 → n+ 2.

Let us state a useful fact. Denoting by d the usual graph distance, in any Eulerian
triangulation, we always have:

d ≤ �d ≤ 2d, (7.2.1)

as, in the worst case, the oriented distance forces a path to go through two edges of a
triangle instead of just taking the third one.

Let us now introduce a bit of notation that will be of use in the sequel.

Definition 7.2.1. In a rooted Eulerian triangulation A, a vertex of type n is a vertex
whose canonical labeling by the oriented geodesic distance is n. An edge of type n → m
is an oriented edge that starts at a vertex of type n and ends at a vertex of type m. A
triangle of type n is a triangle adjacent to a vertex of type n− 1, one of type n and one
of type n+ 1.

By keeping only the edge of type n + 1 → n + 2 in each black face of type n + 1, we
construct a graph T whose vertices are labeled by integers, and which is well-labeled in
the sense that the labels of adjacent vertices differ by exactly 1. Moreover, by construction
those labels are positive.

Lemma 7.2.2 ( [BDFG04]). For any planar rooted Eulerian triangulations A, the corre-
sponding labeled graph T is a plane tree.
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This tree is naturally rooted at the corner of a 1-vertex, that corresponds to the root
edge of A (see Figure 7.2.2).
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Figure 7.2.2 – The construction of the well-labeled tree associated to the triangulation of
Figure 7.2.1.

The inverse construction consists in building iteratively the black triangles of A. Start-
ing from a well-labeled rooted plane tree with positive integers, the first step consists in
adding an origin (labeled 0). We then create a black triangle of type 1 to the right of each
edge of type 1 → 2, by adding edges between the origin and the two vertices of the edge.
The creation of these black triangles splits the original external face into a number of white
faces. By construction, the clockwise sequence of labels around any of these white faces is
of the form 0 → 2 → · · · → 2 → 1, where all the labels between the first and last “2” are
greater or equal to 2, and all increments but the first are ±1. For each white face F that
is not already a triangle, and for each type-(2 → 3) edge whose right side is adjacent to
F , we create a black triangle of type 2 to the right of this edge, by adding edges between
its vertices and the unique vertex labeled 1 around F . This induces a splitting of F into
smaller white faces, and we repeat the procedure again, until all labels are exhausted. This
yields an Eulerian triangulation A rooted at the 0 → 1 edge linking the origin to the root
of T (see Figure 7.2.3).

As the second construction only consists of adding edges of type n → n+1 and n+2 → n
to the edges of the tree (that are of type n + 1 → n + 2), it is clear that starting from
a tree T , applying this construction to obtain a triangulation A, then applying the first
construction to A, gives back T . A counting argument suffices to conclude that we do
have a bijection. Indeed, from [Tut62], the number of Eulerian triangulations with n black
triangles is

#Tn = 3 · 2n−1 · (2n)!

n!(n+ 2)!
,

and, as derived in [BDFG04], the number of well-labeled trees with n edges and positive
labels agrees with this formula.

In the sequel, it will be more convenient to deal with trees whose labels are not neces-
sarily positive. For that purpose, we choose some vertex v in A, and shift all the distance
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Figure 7.2.3 – The inverse construction of the triangulation of Figure 7.2.1 from the labeled
tree.
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labels by �d(ρ, v), that is, define a new labeling l on the vertices of T by:

l(u) := �d(ρ, u)− �d(ρ, v).

With this shifting, we obtain a bijection between rooted, pointed planar Eulerian tri-
angulations with n black faces, and well-labeled trees with n edges.

Note that, for every vertex u of T , the distance from the root of A to u is given by:

�d(ρ, u) = l(u)− min
v∈V (T )

l(v) + 1. (7.2.2)

To get more general information on the oriented distances in A from the labels of T ,
we need a bit of additional notation.

First observe that, with the construction of A from T , a corner c of T is always incident
in A to an edge oriented from the first corner c′ encountered when going anticlockwise
around T , starting at c, and that has label l(c)− 1. Indeed, either this corner was already
adjacent to c in T , or we create an edge between them when adding a black triangle to the
right of the edge of type l(c) → l(c) + 1 that starts at c.

We call c′, the predecessor of c, and denote it by p(c). (The predecessor of a corner
of minimal label is naturally the corner of the origin to which it is linked in the first step
of the construction.) We also call pk(c) the k-th predecessor of c, whenever it is defined.

For a corner c of T , the edge p(c) → c in A is obviously of type �d(c) − 1 → �d(c).
This implies that the path from the origin to c going through all its predecessors: ρ →
p
�d(c)−1(c) → · · · → p(c) → c is a geodesic for �d in A.

For any pair of corners c, c′ in T , we denote by [c, c′] the set of corners of T encountered
when starting from c, going anticlockwise around T , and stopping at c′. The property
(7.2.2) yields the following bound on oriented distances in A:

Proposition 7.2.3. Let c, c′ be two corners of T , with corresponding vertices u, v. Then

�d(u, v) ≤ 2

(
l(u) + l(v)− 2 min

c′′∈[c,c′]
l(c′′) + 2

)
.

Proof. Let m = minc′′∈[c,c′] l(c
′′), and let c′′ be the first corner in [c, c′] such that l(c′′) = m.

Then c′′ is the (l(c)−m)-th predecessor of c. Moreover, by definition, p(c′′) does not belong
to [c, c′], so that it is also the (l(c′)−m)-th predecessor of c′. Thus, the predecessor geodesic
p(c′′) → c′′ → · · · → c, concatenated with the similar geodesic p(c′′) → · · · → c′, is a simple
path in A made of l(c) + l(c′) − 2m + 2 edges. However, part of it is not oriented from c
to c′, so that we lose a multiplicative factor of 2 when deducing a bound on the distance
from u to v.

As will be clearer in the proof of Theorem 7.3.1, this factor of 2 is really the stumbling
block that prevents us from reaching the convergence to the Brownian map using only the
bijective approach.

7.2.2 Convergence of the labeled trees

From what precedes, starting from a uniform random rooted, pointed planar Eulerian
triangulation with n black faces, we get a uniform random well-labeled tree Tn with n
edges. Let us now explain how we can make sense of taking a continuum scaling limit
of the latter. We first define the contour process of Tn: let e0, e1, · · · , e2n−1 be the
sequence of oriented edges bounding the unique face of Tn, starting with the root edge,
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and ordered counterclockwise around this face. Then let ui = e−i be the i-th visited vertex
in this contour exploration, and set the contour process of Tn at time i:

Cn(i) := dTn(u0, ui), 0 ≤ i ≤ 2n− 1,

with the convention that u2n = u0 and Cn(2n) = 0. We also extend Cn by linear interpo-
lation between integer times: for 0 ≤ s ≤ 2n

Cn(s) = (1− {s})Cn(�s�) + {s}Cn(�s�+ 1),

where {s} = s − �s� is the fractional part of s. Thus, the contour process Cn is a non-
negative path of length 2n, starting and ending at 0, with increments of 1 between integer
times. We will use the rescaled contour process of Tn:

C(n)(t) =
Cn(2nt)√

2n
, 0 ≤ t ≤ 1.

We define similarly the rescaled label function of Tn:

L(n)(t) =
Ln(2nt)

n1/4
, 0 ≤ t ≤ 1,

where, similarly, we start by defining Ln(i) as the label of ui for i ∈ {0, 1, . . . , 2n}, then
interpolate between integer times.

Finally, for a continuous, non-negative function f : [0, 1] → R+ such that f(0) = f(1) =
0, for any s, t ∈ [0, 1], we set

f̌(s, t) = inf{f(u)|s ∧ t ≤ u ≤ s ∨ t}.

Then we have the following result:

Theorem 7.2.4. [JM05] It holds that(
C(n), L(n)

) (d)−−−→
n→∞

(�, Z), (7.2.3)

in distribution in C([0, 1],R)2, where � is a standard Brownian excursion, and, conditionally
on �, Z is a continuous, centered Gaussian process with covariance

Cov(Zs, Zt) = �̌s,t, s, t ∈ [0, 1].

As this convergence will be crucial to ultimately prove the convergence of Eulerian
triangulations to the Brownian map, to describe and analyse these triangulations, we will
need to use their oriented distances, instead of the usual graph distance.

7.2.3 Structure for oriented distance

Let us consider a rooted Eulerian triangulation A, equipped with its canonical orientation
and oriented geodesic distance �d. For each type-n black face f of A, there is exactly
one white face f ′ that shares its n + 1 → n − 1 edge. We call the union of f and f ′ a
type-n module. Now, imagine that for each type-n module of A, we trace the “diagonal”
linking its two type-n vertices, and orient it from the black triangle to the white one (see
Figure 7.2.4). We will call this, orienting the module left-to-right.

We now explain how to describe the union of the diagonals of type-n modules as a
set of simple closed curves. First note that, by construction, this union of diagonals only
goes through vertices of type n. Moreover, around each vertex u of type n, these oriented
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Figure 7.2.4 – The union of type-n module diagonals can be decomposed into a set of
simple closed curves by pairing, at each vertex of type n, each ingoing diagonal with the
next one clockwise, which is necessarily outgoing.

diagonals alternate between ingoing and outgoing. Indeed, around u, after each black
type-n triangle, there is necessarily a white type-n triangle before the next black type-n
triangle. This stems from the fact that the triangles around u can only be of type n− 1, n
or n+1, and that along each edge, the oriented geodesic distance can only change by 1 or
2 (see Figure 7.2.4). Now, to resolve the intersections at type-n vertices, we can take the
convention that if a curve arrives at a vertex u by an ingoing diagonal δ, it will immediately
leave u by the first outgoing diagonal that we encounter going clockwise around u, starting
at δ (see Figure 7.2.4).

This yields a set of closed curves that we denote by Cn(A). By construction, the curves
in Cn(A) separate vertices at oriented distance n + 1 or higher from the origin, and they
go counter-clokwise around these vertices.

Lemma 7.2.5. Let A be a planar rooted Eulerian triangulation. For a given vertex v
at (oriented) distance at least n + 1 from the root, there is a unique curve in Cn(A) that
separates v from the root.

Moreover, all curves in Cn(A) are simple.

Proof. First consider two disjoint curves in Cn(A) that separate the same vertex v from
the origin. Necessarily, a geodesic path from the root to a vertex belonging to one of them
should go through the other, and thus have length at least n+ 1 (see Figure 7.2.5).

Now, if two curves of Cn(A) intersect at a vertex of type n, then by our resolution rule,
they cannot go counterclockwise around the same region of A (see Figure 7.2.6), and, as
explained before, these are precisely the regions they separate from the origin.

This rule also implies that a curve C in Cn(A) cannot go twice through the same type-n
vertex. Indeed, if that were the case, then C would separate from the origin vertices of
oriented distance n − 1 and less, so that any oriented geodesic from the origin to these
vertices should be of length at least n+ 1 (see Figure 7.2.6).
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Figure 7.2.5 – Two disjoint curves in Cn(A) cannot encircle one other.

We define the ball Bn(A) as the submap of A obtained by keeping only the faces and
edges of A incident to at least a vertex at distance n − 1 or less from the origin, cutting
along the edges of type n → n + 1, and filling in the produced holes by simple faces (see
Figure 7.2.7 for a local depiction of this procedure). Thus, in Bn(A), for each closed curve
C ∈ Cn(A), we have replaced all faces that C separates from the root, by a single, simple
face. In particular, if two faces of A of type n share a type-(n → n+1) edge, in Bn(A) their
respective type-(n → n + 1) edges are not identified, so that their common type-(n + 1)
vertex gives rise to two vertices in Bn(A) (see Figure 7.2.8). Two type-n faces f, f ′ may
also share a type-(n+1) vertex v but no edge: in that case, it means that v is also shared
by faces of types n+ 1, so that we would need to add these faces and the type n → n+ 1
edges they share with f and/or f ′, in order to identify the type-(n+ 1) vertices of f and
f ′ into v. Note that as Bn(A) contains all the type-(n−1 → n) edges of A, type-n vertices
of A are never duplicated in Bn(A).

Thus, Bn(A) is an Eulerian triangulation with simple boundaries2 (as many as curves in
Cn(A)), and the faces adjacent of Bn(A) to these boundaries compose the type-n modules
of A, so that each part of ∂Bn(A) is alternating, that is, the adjacent faces alternate
between black and white.

Let us also formalize the definition of the complement of Bn(A). It is naturally ob-
tained from A by removing the faces and edges of A that are incident to at least a vertex
at distance n − 1 or less from the origin. Note that it is made of as many connected
components as there are curves in Cn(A), as it is also the number of boundaries of Bn(A).
Consider some C ∈ Cn(A), and write M(A,C ) for the corresponding connected compo-
nent of A \ Bn(A). M(A,C ) is a planar Eulerian triangulation with a boundary, which
has the same length as the corresponding one of Bn(A), and is also alternating. However,
the boundary of M(A,C ) is not necessarily simple. More precisely, a type-(n+ 1) vertex
v of A that sits on the boundary of M(A,C ) is attached to the type-(n → n + 1) edges
and type-(n+ 1) faces that are adjacent to v in A, as they were excluded from Bn(A), so
that v may be a separating vertex in the external face of M(A,C ). This is not the case

2Note that these boundaries may share a vertex, but not an edge.
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Figure 7.2.6 – From the rule we have chosen to resolve intersections, two curves in Cn(A)
going through the same vertex cannot encircle one other (left), and one curve cannot go
through the same vertex twice (right).

for type-n vertices, as Bn(A) contains all the type-(n − 1 → n) edges and type-n faces of
A. Thus, the boundary of M(A,C ) can have separating vertices, but only on boundary
vertices that have a white triangle before them and a black one after (as it corresponds to
the type-(n+ 1) vertices of A). We call such boundary conditions semi-simple.

Let v be a distinguished vertex of A at oriented distance at least n+ 2 from the root.
We can now define the hull B•

n(A) of Bn(A), as the union of Bn(A) and all the con-
nected components of its complement that do not contain v. More precisely, for each curve
C ∈ Cn(A) that does not separate v from the origin, we glue the boundary of M(A,C ) to
the corresponding boundary of Bn(A). This operation is well-defined, as the latter is sim-
ple, and they both have the same length. The resulting map B•

n(A) has only one boundary,
that corresponds to C ∗, the unique curve of Cn(A) that separates v from the origin.

In the sequel, we will use the notion of local distance between rooted maps. Let M
be the set of finite rooted maps, for m,m′ ∈ M, we define the local distance between m
and m′ as

dloc(m,m′) =
1

1 + sup{R ≥ 1|BdR(m) = BdR(m′)} ,

where BdR(m) is defined similarly as before, replacing �d by the usual graph distance. It is
clearly a distance on M, and the completion (M, dloc) of the space (M, dloc) is a Polish
space. The notion of convergence in this space will be called local limit. The elements of
M\M are thus infinite maps that can be defined as the local limit of finite rooted maps.

Note that, from (7.2.1), if An is a sequence of rooted Eulerian triangulations (possibly
with a boundary), and A a rooted planar map, the property that all oriented balls of An
converge to those of A, as n tends to infinity, is equivalent to the same property for non-
oriented balls, which is precisely the definition of the convergence of An to A in the sense
of local limits of rooted planar maps.

As the topology induced by the local distance is what will really matter in the sequel,
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Figure 7.2.7 – In an Eulerian triangulation (top), we cut along the edges of type n → n+1
to separate the ball of radius n from the components of its complement (bottom). This
possibly induces the duplication of edges and vertices in the ball.
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Figure 7.2.8 – A rooted, pointed Eulerian triangulation (bottom right) and its balls (left)
and corresponding hulls (right). The module “diagonals” are in dashed purple, and the
boundaries of the balls and hulls in solid gray. We can see an example of duplication of
vertices in the ball of radius 2, marked in red.
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rather than the actual value of the local distance between two maps, we can forget the
general definition of the local distance, and just compare the oriented balls of Eulerian
triangulations.

7.3 Convergence to the Brownian map

We will now state and give the proof of the main result of this chapter.

Before doing so, let us recall the construction of the Brownian map, and introduce
some notation. As in Section 7.2.2, we write � for a standard Brownian excursion, and Z
for the “head” of the Brownian snake driven by �, i.e., conditionally on �, Z a continuous,
centered Gaussian process on [0, 1] with covariance

Cov(Zs, Zt) = �̌s,t, s, t ∈ [0, 1].

The Brownian excursion � encodes the Continuum Random Tree (T�, d�), defined
by:

d�(s, t) = �(s) + �(t)− 2�̌s,t

T� = [0, 1]/{d� = 0}.

The function d�, which is a pseudo-distance on [0, 1], induces a true distance on T� via the
canonical projection p� : [0, 1] → T�, to T�.

Almost surely, there is a unique s ∈ [0, 1] such that Zs = inf Z [LGW06]. We then
denote this point by s∗, and x∗ = p�(s∗) its projection on T�.

We define, for s ≤ t ∈ [0, 1],

D◦(s, t) = D◦(t, s) := Zs + Zt − 2max( min
r∈[s,t]

Zr, min
r∈[t,1]∩[0,s]

Zr).

This function does not satisfy the triangle inequality, which leads us to introduce

D∗(s, t) := inf

{
k∑
i=1

D◦(si, ti)

∣∣∣∣∣ k ≥ 1, s1 = s, tk = t, d�(ti, si+1) = 0 ∀ i ∈ {1, 2, . . . , k}
}
.

We can now define the Brownian map, by setting m∞ = [0, 1]/{D∗ = 0}, and equipping
this space with the distance induced by D∗, which is still noted D∗.

Let Tn be a uniform random rooted Eulerian planar triangulation with n black faces,
equipped with its usual graph distance dn, and its oriented pseudo-distance �dn. Let T n be
the triangulation Tn together with a distinguished vertex on picked uniformly at random.
Recall from Section 7.2.1 that T n is the image, by the BDG bijection, of a random labeled
tree Tn, uniformly distributed over the set of well-labeled rooted plane trees with n edges.
We denote by ln the labels of the vertices of Tn, and enumerate as in Section 7.2.1 the
vertices (or rather, the corners) of Tn, by setting u

(n)
i to be the i-th vertex visited by the

contour process of Tn, for 0 ≤ i ≤ 2n. As before, we denote by L(n) the rescaled labels of
the vertices of Tn.

We define the symmetrization
←→
dn of �dn, by

←→
dn(u, v) =

�dn(u, v) + �dn(v, u)

2
.
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We also define a rescaled oriented distance �D(n) on [0, 1]2, by first setting, for i, j ∈
{0, 1, . . . , 2n}:

�D(n)

(
i

n
,
j

n

)
=

�dn(u
(n)
i , u

(n)
j )

n1/4
,

then linearly interpolating to extend �D(n) to [0, 1]2.
We define similarly D(n) from dn.

Theorem 7.3.1. Let (m∞, D∗) be the Brownian map. There exists some constant c0 ∈
[2/3, 1], such that the following convergence in distribution holds:(

C(n), L(n), �D(n), D(n)

)
(d)−−−→

n→∞
(�, Z,D∗, c0D

∗) .

Consequently, we have the following joint convergences

n−1/4 · (V (Tn),
←→
dn)

(d)−−−→
n→∞

(m∞, D∗)

n−1/4 · (V (Tn), dn)
(d)−−−→

n→∞
c0 · (m∞, D∗),

for the Gromov-Hausdorff distance on the space of isometry classes of compact metric
spaces.

Note that we would like to have a statement similar to the one on
←→
dn for �dn. However,

as �dn is not a proper distance, it does not induce a metric space structure on V (Tn). Thus,
we would need to generalize the Gromov-Hausdorff topology to spaces equipped with a
non-symmetric pseudo-distance, to be able to write such a statement.

Proof. We admit here Theorem 7.1.2, that will be proven later in the paper: for every
ε > 0, we have

P

(
sup

x,y ∈V (Tn)
|dn(x, y)− c0�dn(x, y)| > εn1/4

)
−−−→
n→∞

0. (7.3.1)

We proceed similarly to the case of usual triangulations in [LG13].
For this whole proof, we work with the pointed triangulation T n, but, as all Eulerian

triangulations with n black faces have the same number of vertices, this does not introduce
any bias for the underlying, non-pointed triangulation, so that the final statement also
holds for Tn.

We have, from Proposition 7.2.3, for any 0 ≤ i < j ≤ 2n:

�D(n)

(
i

n
,
j

n

)
≤ 2

n1/4

(
ln(u

(n)
i ) + ln(u

(n)
j )− 2max( min

k∈{i,...,j}
ln(u

(n)
k ), min

k∈{j,...,2n}∪{0,...,i}
ln(u

(n)
k )) + 2

)
.

(7.3.2)
As noted before, if we did not have the global multiplicative factor of 2 in (7.3.2), we could
then proceed as for usual triangulations and other well-known families of planar maps.
Thus, the rest of this proof will consist in proving that Theorem 7.1.2 makes it possible to
“get rid” of this cumbersome factor.

We claim that the sequence of the rescaled distances ( �D(n)(s, t))s,t∈[0,1] is tight. Indeed,
for any s, s′, t, t′ ∈ [0, 1], we have

| �D(n)(s, t)− �D(n)(s
′, t′)| ≤ �D(n)(s, s

′) + �D(n)(t
′, t), (7.3.3)
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as �Dn, like �dn, satisfies the triangle inequality. Then, using (7.3.2) and Theorem 7.2.4, we
get that, if |s− s′| ∨ |t− t′| ≤ η, then, for n large enough, the right-hand side of (7.3.3) is
smaller than 2ω(Z, η)+ ε, where we denote by ω(Z, η) the supremum sup|I|≤η ω(Z, I), and
ω(f, I) is the modulus of continuity of f on the interval I.

Thus, along a subsequence, we have the joint convergence:(
C(n), L(n), �D(n)

)
(d)−−−→

n→∞
(�, Z,D), (7.3.4)

for some random continuous process D on [0, 1]2. In the rest of this proof, we fix a
subsequence so that (7.3.4) holds, and work along this subsequence.

Note that, from Theorem 7.1.2, we also have the joint convergence of D(n) to c0D.
This already implies that D is symmetric, and thus is a pseudo-metric. We now want to
show that D = D∗ a.s., which will conclude the proof, since this will imply the uniqueness
of the limit D.

First, it is straightforward to get from (7.2.2) and (7.3.4) that, for any s ∈ [0, 1]:

D(s∗, s) = Zs − inf Z. (7.3.5)

We will now show that a.s., for every s, t ∈ [0, 1],

D(s, t) ≤ D◦(s, t). (7.3.6)

To prove this claim, let us get back to T n and Tn. From (7.3.1), for any ε > 0 and any
δ ∈ (0, 1), for any n large enough, the event∣∣∣dn (u, v)− c0�dn (v, u)

∣∣∣ ≤ εn1/4 ∀u, v ∈ V (T n)

holds with probability at least 1− δ.
On that event, we have, for any u, v, w ∈ V (T n),

�dn(u, v) ≤ �dn(u,w) + �dn(w, v) ≤ c0dn(u,w) + �dn(w, v) + εn1/4

≤ �dn(w, u) + �dn(w, v) + 2εn1/4. (7.3.7)

Thus, going back to the proof of Proposition 7.2.3, when estimating oriented distances
from the length of the concatenation of two predecessor geodesics, rather than having to
multiply this length by 2, we just need to add 2εn1/4.

Therefore, for any 0 ≤ i < j ≤ 2n,

�D(n)

(
i

n
,
j

n

)
≤L(n)

(
i

n

)
+ L(n)

(
j

n

)
− 2max

(
min

k∈{i,...,j}
L(n)

(
k

n

)
, min
k∈{j,...,2n}∪{0,...,i}

L(n)

(
k

n

))
+

2

n1/4
+ 2ε.

Thus, letting n → ∞ (along our subsequence), for any ε > 0, we have D ≤ D◦ + ε a.s.,
so that we get the desired inequality (7.3.6).

Moreover, as D satisfies the triangle inequality, we have

D(s, t) ≤ D∗(s, t) ∀s, t ∈ [0, 1] a.s. (7.3.8)

To replace this inequality by an equality, it now suffices to show that, for U, V cho-
sen uniformly and independently at random in [0, 1], and independently from the rest,

D(U, V )
(d)
= D∗(U, V ). Indeed, this would imply D = D∗ a.e., and thus D = D∗ since both

are continuous. To prove this, from (7.3.5), it is enough to show that D(U, V )
(d)
= D(s∗, U).
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To prove this, let us get back to the discrete level for a moment. Let un, vn be two
vertices of Tn chosen indepently and uniformly at random. As Tn re-rooted at un has the
same law as Tn, we have

�dn(un, vn)
(d)
= �dn(ρn, vn), (7.3.9)

where ρn is the root of Tn.
Similarly to the case of usual triangulations in [LG13], this implies the desired equality

in distribution D(U, V )
(d)
= D(s∗, U). Indeed, set Un = �(2n− 1)U and Vn = �(2n− 1)V  ,

which are both uniformly distributed over {1, 2, . . . , 2n− 1}, so that

Un
n

(P )−−−→
n→∞

U,
Vn
n

(P )−−−→
n→∞

V.

Then, from (7.3.4), we have

�D(n)

(
Un
n

,
Vn
n

)
(P )−−−→
n→∞

�D(U, V ).

Now, from (7.3.9), we have that the distribution of �D(U, V ) is also the limiting distribution
of

L(n)(
Un
n

)−minL(n) + 1,

so that �D(U, V ) has the same distribution as ZU − inf Z, which is also the distribution of
D(s∗, U), from (7.3.5). This concludes the proof.

7.4 Technical preliminaries

7.4.1 Consequences of the convergence of the rescaled labels

We now prove a few technical properties of �d that stem from the convergence given in
Theorem 7.2.4.

For any integer n ≥ 1, let ρn be the root vertex of the random triangulation Tn, uniform
over the rooted planar Eulerian triangulations with n black faces. We denote by T n, the
triangulation Tn together with a distinguished vertex on, picked uniformly at random in
Tn. We then have the following result:

Proposition 7.4.1. The following convergence holds:

n−1/4�d(ρn, on)
(d)−−−→

n→∞
supZ.

Consequently, the sequence (n−1/4�d(ρn, on))n≥1 is bounded in probability and bounded
away from zero in probability.

Proof. Recall that T n is in correspondence with a random tree Tn, uniform over the well-
labeled plane trees with n edges, whose labelling we denote by ln. We have, from (7.2.2),
that

�d(ρn, on) = ln(on)− min
v∈V (Tn)

l(v) + 1,

including the case on = ρn by setting ln(ρn) = minv∈V (Tn) l(v)− 1.
Then, using the convergence of Theorem 7.2.4, we get that the quantity

n−1/4

(
ln(on)− min

v∈V (Tn)
l(v) + 1

)
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converges in distribution to ZU − inf Z, where U is uniform on [0, 1] and independent

from Z. We then use the fact that ZU − inf Z
(d)
= supZ, which is proven for instance in

[LGW06].

For a rooted Eulerian triangulation (possibly with a boundary) Δ, let N(Δ) be the
number of black triangles of Δ. Then:

Proposition 7.4.2. Let α > 0. For any ε ∈ (0, 1), there exists some b ∈ (0, 1) such that

lim inf
n→∞

P
(
N(Bαn1/4(T n)) > bn

)
≥ 1− ε.

Proof. Let us roughly sketch the idea of the proof. Recall that T n is in correspondence
with a random tree Tn, uniform over the well-labeled plane trees with n edges. We will
use a slight variant of the contour process Cn of Tn to bound from below the number of
vertices of T n at distance less than αn1/4 from the root, by an integral depending on the
label function L(n). We can then use the convergence of Theorem 7.2.4 to relate this to
equivalent integral for the Brownian snake Z.

Let us now get into the details of the proof. For s ∈ [0, 2n), we define < s >= �s if Cn

has slope +1 right after s, and < s >= �s� otherwise. Then, for any u ∈ V (Tn) \ {u(n)0 },
we have

Leb{s ∈ [0, 2n)
∣∣∣u(n)<s> = u} = 2.

Thus, using (7.2.2), we have

1

n
·N(Bαn1/4(T n)) ≥

∫ 1

0
1{ln(<2ns>)−min ln≤αn1/4−1}ds.

Note that we have, for any s ∈ [0, 1):

|ln(< 2ns >)− n1/4L(n)(s)| ≤ 1,

so that: ∫ 1

0
1{ln(<2ns>)−min ln≤αn1/4−1}ds ≥

∫ 1

0
1{L(n)(s)−minL(n)≤α−2/n1/4}ds.

Therefore:

P
(
N(Bαn1/4(T n)) > bn

)
≥ P

(∫ 1

0
1{L(n)(s)−minL(n)≤α−2/n1/4}ds > b

)
.

Now, the liminf of the probability on the right-handside of the previous equation can
be bounded below by

P

(∫ 1

0
1{Zs−inf Z≤α

2
}ds > b

)
,

which tends to 1 as b tends to 0, as Z is continuous.
This concludes the proof.

Proposition 7.4.3. For any ε > 0 and any δ ∈ (0, 1) there exists an integer k ≥ 1 such
that, for any sufficiently large n, if o1n, . . . , okn are chosen uniformly and independently in
V (Tn), we have

P

(
sup

x∈V (Tn)

(
inf

1≤j≤k
�d(x, ojn)

)
> εn1/4

)
≤ δ.
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Proof. Let us fix an integer K ≥ 1. Recall that we write (u
(n)
i )0≤i≤2n−1 for the vertices of

Tn along its contour exploration. Then, for k large enough, for any sufficiently large n,

P

(
∀i ∈ {0, . . . , 2K − 1} ∃j ∈ {1, . . . , k} ∃m ∈ {� in

k
�, . . . , �(i+ 1)n

k
�}, ojn = v(n)m

)
≥ 1− δ

2
.

(7.4.1)
We will now argue on the event in (7.4.1).
Using (7.2.2), we have, for any i, j ∈ {0, 1, . . . , 2n},

�dn(u
(n)
i , u

(n)
j ) ≤ 2(ln(u

(n)
i ) + ln(u

(n)
j )− 2ľn(i, j) + 2),

so that, for any n sufficiently large:

sup
x∈V (Tn)

(
inf

1≤j≤k
�d(x, ojn)

)
≤ 4 max

0≤i≤2K−1
ω

(
ln,

[
� in
K

�, �(i+ 1)n

K
�
])

+ 4

where ω(f, I) is the modulus of continuity of the function f on the interval I.
Therefore, we have

lim inf
n

P

(
sup

x∈V (Tn)

(
inf

1≤j≤k
�d(x, ojn)

)
< εn1/4

)
≥ P

(
ω(Z,

1

K
) <

ε

5

)
,

by using once again the convergence of Theorem 7.2.4. (We denote by ω(Z, η) the supre-
mum sup|I|≤η ω(Z, I).)

Now, as Z is a.s. continuous on [0, 1], it is uniformly continuous, so that, for any ε > 0,
for K large enough,

P

(
ω(Z,

1

K
) <

ε

5

)
≥ 1− δ

2
,

which concludes the proof.

7.4.2 Enumeration results

We will need some asymptotic results on the generating series B(t, z) of Eulerian triangu-
lations with a semi-simple alternating boundary, as defined in Section 7.2.3:

B(t, z) =
∑
n,p≥0

Bn,pt
nzp,

where Bn,p is the number of Eulerian triangulations with semi-simple alternating boundary
of length 2p and with n black triangles. With techniques “à la Tutte”, Jérémie Bouttier
and the author obtain a rational parametrization of B(t, z), which yields the following
asymptotic result (see Chapter 9 for a preliminary version of this work):

Theorem 7.4.4.

[tn]B(t, z) =
∑
p≥0

Bn,pz
p ∼
n→∞

3

2

z√
π(z − 1)(4z − 1)3

8nn−5/2 ∀ z ∈ [0,
1

4
). (7.4.2)

This implies that:⎧⎨⎩Bn,p ∼
n→∞

C(p)8nn−5/2 ∀ p
C(p) ∼

p→∞

√
3

2π 4
p√p and

∑
p≥1C(p)zp = 3

2
z√

π(z−1)(4z−1)3
∀ z ∈ [0, 14)

(7.4.3)
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Note that (7.4.2) is much stronger than (7.4.3). Indeed, it states that, for any ε > 0,
for any n large enough, we have, for all z ∈ [0, 1/4),

(1− ε)8nn−5/2f(z) ≤ gn(z) ≤ (1 + ε)8nn−5/2f(z), (7.4.4)

where
f(z) =

3

2

z√
π(z − 1)(4z − 1)3

and
gn(z) =

∑
p≥0

Bn,pz
p.

Thus, as both f and gn are analytic functions on [0, 1/4), by taking the successive deriva-
tives of the terms in (7.4.4), we obtain equivalent bounds for the successive coefficients of
f and gn seen as power series:

(1− ε)8nn−5/2([zp]f(z)) ≤ Bn,p ≤ (1 + ε)8nn−5/2([zp]f(z)),

for any n large enough and for any p.
This yields that, for all n, p ≥ 1,

cC(p)8nn−5/2 ≤ Bn,p ≤ c′C(p)8nn−5/2, (7.4.5)

for some constants 0 < c < c′ independent of n and p.

We also deduce from (7.4.2) that⎧⎨⎩
∑

p≥0 Z(p)zp ≡∑p≥0, n≥0

(
1
8

)n
Bn,pz

p =
1+7z−8z2+

√
(z−1)(4z−1)3

2(1−z) ∀ z ∈ [0, 14)

Z(p) ∼
p→∞

1
4

√
3
π4

pp−5/2 and Z(0) = 1.

(7.4.6)
In particular, for any p ≥ 1, the sum Z(p) =

∑
nBn,p8

−n is finite, which makes it
possible to define the Boltzmann distribution on Eulerian triangulations of the p-gon
(with a semi-simple alternating boundary), that assigns a weight 8−n/Z(p) to each such
triangulation having n black triangles. A random triangulation sampled according to this
measure will be called a Boltzmann Eulerian triangulation of perimeter p.

Note that there is a natural bijection between Eulerian triangulations of the 2-gon (with
an alternating boundary), and rooted planar Eulerian triangulations, which simply consists
in “zipping” or “unzipping” the root edge (see Figure 7.4.1). This simple observation will
be useful in the sequel.

7.5 Skeleton decomposition

We previously considered the balls of planar rooted Eulerian triangulations, and the as-
sociated hulls, defined with the oriented distance from the root. To obtain the layer
decomposition of finite planar Eulerian triangulations that will be crucial to the rest of
this chapter, we will now focus on similar notions, but for some Eulerian triangulation A
with one boundary: we will be interested in the union of faces of A incident to vertices
at (oriented) distance less than n from the boundary, instead of the root. We will denote
this union Bn+1(A). As was the case for usual balls, the faces of Bn+1(A) adjacent to
its boundary parts, other than the original boundary ∂A, will correspond to modules of
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Figure 7.4.1 – The bijection between Eulerian triangulations of the 2-gon with an alter-
nating boundary, and rooted planar Eulerian triangulations.

type n + 1, for the oriented distance from ∂A. Once again, we will have the convention
that these boundary parts are simple, and we will glue them to semi-simple boundaries. If
A is pointed at a vertex v at oriented distance at least n + 2 from the boundary, we can
also define a notion of hull for Bn+1(A), which will be an Eulerian triangulation with two
boundaries of specific types. In this section, we will first develop the description of such
triangulations, before dealing with random Eulerian triangulations with one boundary, and
their hulls.

7.5.1 Cylinder triangulations

Definition 7.5.1. We call Eulerian cylinder triangulation of height r ≥ 1, an Eule-
rian triangulation with two boundaries, one (the bottom of the cylinder) being alternating
and semi-simple, the other one (the top) being a succession of modules (see Figure 7.5.1),
and such that any module adjacent to the top boundary is of distance type (r−1, r, r+1)
with respect to the bottom.

We denote by ∂Δ its bottom boundary, and by ∂∗Δ its top boundary. The root is an
edge on ∂Δ oriented such that the bottom face sits on its right.

Let Δ be an Eulerian cylinder triangulation of height r. Let 2p be the bottom boundary
length, and 2q the top boundary length. For 1 ≤ j ≤ r, the ball Bj(Δ) is defined as the
union of all edges and faces of Δ incident to at least a vertex at distance < j from the
bottom boundary, and the hull B•

j (Δ) is obtained from Bj(Δ) by adding all the connected
components of its complement except the one containing the top boundary. Therefore
B•
j (Δ) is a cylinder triangulation of height j, and we denote by ∂jΔ the set of modules

adjacent to its top boundary. Let M(Δ) be the set of modules of Δ belonging to some
∂j(Δ), for 0 ≤ j ≤ r. (For convenience, we will associate a “ghost” module to each pair
of successive edges of the bottom boundary respectively adjacent to a white and a black
triangle, and the set ∂0(Δ) of these p ghost modules will be included in M(Δ).)

We define a genealogical order on M(Δ): a module m of ∂j(Δ) is the parent of a
module m′ of ∂j−1(Δ) if m is the first module of ∂j(Δ) that we encounter when going
left-to-right along the modules of ∂j−1(Δ), starting by the top vertex of m′. This order
yields a forest F of q plane trees, whose vertices correspond to the modules belonging to
M(Δ). The maximal height of this forest is r, and a vertex of height r − j corresponds
to a module of ∂j(Δ). We denote by τ1, τ2, . . . , τq the trees of the forest listed clockwise
around ∂r(Δ), with τ1 the tree containing the vertex corresponding to the root. Therefore,
the tree τ1 has height r, with a distinguished vertex (the one corresponding to the root)
at height r.
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τ1
τ6

τ5τ4

τ3 τ2

Figure 7.5.1 – Left, a cylinder Eulerian triangulation of height 3, top length 12 and bottom
length 10: the foreground parts of the slots are in medium grey while the background
ones are left white for legibility, and the ghost modules are in pale grey at the bottom.
Right, the construction of the associated forest (with its distinguished vertex at height 3,
in white).
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Apart from the modules of M(Δ), Δ is composed of triangulations with a semi-simple
alternating boundary that fill in the “slots” bounded by the modules of M(Δ). To a mod-
ule m in ∂j(Δ), we associate the slot bounded by m, its children if any, and the module to
the left of m in ∂j(Δ). This slot Mm is thus filled in by a triangulation with a semi-simple
alternating boundary, of perimeter 2(cm + 1), where cm is the number of children of m.
We denote by T (Mm) the number of black triangles of this triangulation with a boundary.

We will say a forest F with a distinguished vertex is a (p, q, r)-admissible forest if
it consists of an ordered sequence (τ1, τ2, . . . , τq) of q rooted plane trees of maximal height
r, with p vertices at height r, with the distinguished vertex at height r in τ1.

If F is a (p, q, r)-admissible forest, we write F∗ for the set of all vertices of F at height
strictly smaller than r.

From the preceding decomposition, we obtain the following result:

Proposition 7.5.2. The Eulerian triangulations of the cylinder Δ of height r with a bottom
boundary length 2p and a top boundary length 2q, are in bijection with pairs consisting of
a (p, q, r)-admissible forest F and a collection (Mv)v∈F∗ such that, for every v ∈ F∗, Mv

is an Eulerian triangulation of the 2(cv + 1)-gon with a semi-simple alternating boundary,
with cv being the number of children of v in F .

Following the existing literature on other families of maps, we call this bijection the
skeleton decomposition, and say that F is the skeleton of the triangulation Δ. We
will also call skeleton modules the modules of M(Δ).

7.5.2 Skeleton decomposition of random triangulations

We will now use the bijection derived in Section 7.5.1 to obtain the asymptotic behavior
of the laws of the hulls of random uniform Eulerian triangulations with a boundary.

We first need a bit of additional notation.
Consider an Eulerian triangulation with a boundary Δ pointed in v. We can define the

hull B•
r (Δ) of Δ like for cylinder triangulations, if �d(∂Δ, v) > r + 1. If �d(∂Δ, v) ≤ r + 1,

we can set B•
r (Δ) = Δ.

Let T (p)
n be a uniform random triangulation over the set of Eulerian triangulations with

a semi-simple alternating boundary of length 2p and with n black triangles. We denote
by T (p)

n the pointed triangulation obtained by choosing a uniform random inner vertex of
T (p)
n . Let Δ be a cylinder triangulation of height r, of respective bottom and top boundary

lengths 2p and 2q, with N black triangles, with n ≥ N . Using the skeleton decomposition,
we associate to Δ a (p, q, r)-admissible forest F , together with triangulations (Mv)v∈F
filling in the “slots” between the modules of M(Δ). We write T (Mv) for the number of
black triangles of Mv, for every v ∈ F∗.

Lemma 7.5.3. We have

lim
n→∞

P

(
B•
r (T

(p)
n ) = Δ

)
=

4−qC(q)

4−pC(p)

∏
v∈F∗

θ(cv)
8−T (Mv)

Z(cv + 1)
, (7.5.1)

where
θ(k) =

1

8
4−k+1Z(k + 1), (7.5.2)

with Z(k) defined as in (7.4.6).
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Proof. To simplify notation, let us note in this proof ρ = 8 and α = 4.
The property B•

r (T
(p)
n ) = Δ holds if and only if T (p)

n is obtained from Δ by gluing to the
top boundary an arbitrary triangulation with a semi-simple alternating boundary of length
2q, and with n − N black triangles, and if the distinguished vertex is chosen among the
inner vertices of the glued triangulation. Thus:

P

(
B•
r (T

(p)
n ) = Δ

)
=

Bn−N,q
Bn,p

· #inner vertices in glued triangulation
#inner vertices in total triangulation

. (7.5.3)

Therefore:

lim
n→∞

P

(
B•
r (T

(p)
n ) = Δ

)
=

C(q)

C(p)
ρ−N . (7.5.4)

As we have

N = #M(Δ)− p+
∑
v∈F∗

T (Mv) =
∑

1≤i≤q
#τi− p+

∑
v∈F∗

T (Mv) = q+
∑
v∈F∗

(cv+T (Mv))− p,

we get

lim
n→∞

P

(
B•
r (T

(p)
n ) = Δ

)
=

ρ−qC(q)

ρ−pC(p)

∏
v∈F∗

ρ−cvρ−T (Mv).

Now, since
∑

v∈F∗(cv−1) = p−q, we can multiply the right-hand side by (αρ)p−q−
∑
v∈F∗ (cv−1),

which yields

lim
n→∞

P

(
B•
r (T

(p)
n ) = Δ

)
=

α−qC(q)

α−pC(p)

∏
v∈F∗

ρ−1α−cv+1ρ−T (Mv),

that is

lim
n→∞

P

(
B•
r (T

(p)
n ) = Δ

)
=

α−qC(q)

α−pC(p)

∏
v∈F∗

θ(cv)
ρ−T (Mv)

Z(cv + 1)
,

for θ(k) = ρ−1α−k+1Z(k + 1).

Let us give a few properties of θ that will be useful in the sequel.
First, the asymptotics of Z give:

θ(k) ∼
k→∞

1

2

√
3

π
k−5/2. (7.5.5)

Moreover, θ has the following generating function gθ:

gθ(x) =
∞∑
k=0

θ(k)xk = 1− 3(√
4−x
1−x + 1

)2
− 1

∀x ∈ [0, 1). (7.5.6)
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Indeed, the generating function of θ may be written, for 0 ≤ x < 1:∑
k≥0

θ(k)xk =
∑
k≥0

ρ−1α−k+1Z(k + 1)xk =
α

ρ

∑
k≥0

(x
α

)k
Z(k + 1)

=
α2

xρ

∑
k≥1

(x
α

)k
Z(k) =

α2

xρ

⎛⎝∑
k≥0

(x
α

)k
Z(k)− Z(0)

⎞⎠
=

2

x

(
1

2

(
1 + 7

4x− x2

2 +
√
(x4 − 1)(x− 1)3

1− x
4

)
− 1

)

=
−4 + 9x− 2x2 + 2

√
(x− 4)(x− 1)3

x(4− x)

= 1− 3(√
4−x
1−x + 1

)2
− 1

= gθ(x).

It is straightforward to obtain from this that θ is a probability distribution with mean
1, so that, considered as the offspring distribution of a branching process, it is critical.

Let Y = (Yr)r≥0 be a Galton-Watson process with offspring distribution θ, and let us
write Pk(·) for the law of Y given Y0 = k, and Ek[ · ] for the corresponding expectation.
Then, for every r ≥ 1, the generating function of Yr under P1 is the r-th iterate g

(r)
θ of gθ.

It is easy to show that this iterate has a very nice expression for any positive integer r:

E1
[
xYr
]
= g

(r)
θ (x) = 1− 3(√

4−x
1−x + r

)2
− 1

∀x ∈ [0, 1). (7.5.7)

Note that a similarly nice expression for the r-th iterate of the generating function also
exists for the offspring distributions associated to the skeleton decompositions of usual
triangulations and of quadrangulations [CLG19; LGL].

Using the transfer theorem (see Theorem VI.3 in [FS09]), we deduce from (7.5.7) that

P1 (Yr = k) ∼
k→∞

√
3

π

r

2
k−5/2. (7.5.8)

Let us denote by Fp,q,r the set of (p, q, r)-admissible forests. We also define the set
F
′
p,q,r of pointed forests satisfying the same conditions as (p, q, r)-admissible forests, except

that the tree with a distinguished vertex is not necessarily τ1, and the set F
′′
p,q,r of forests

which satisfy the same conditions but do not have a distinguished vertex.
We now prove that the “skeleton part” of (7.5.1) defines a probability measure on

Fp,r = ∪q≥1Fp,q,r:

Lemma 7.5.4. For every p ≥ 1 and r ≥ 1,

∞∑
q=1

∑
F∈Fp,q,r

4−qC(q)

4−pC(p)

∏
v∈F∗

θ(cv) = 1. (7.5.9)

Proof. Notice that, for a forest F ∈ Fp,q,r, there are exactly q forests F ′ in F
′
p,q,r that are

obtained from F by a cyclic permutations of the trees. Thus

∞∑
q=1

∑
F∈Fp,q,r

4−qC(q)

4−pC(p)

∏
v∈F∗

θ(cv) =
∞∑
q=1

∑
F ′∈F′

p,q,r

1

q

4−qC(q)

4−pC(p)

∏
v∈F∗

θ(cv).
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Now, each forest F ′′ ∈ F
′′
p,q,r can be obtained from p different forests F ′ of F′

p,q,r by
forgetting the distinguished vertex. Hence,

∞∑
q=1

∑
F ′∈F′

p,q,r

1

q

4−qC(q)

4−pC(p)

∏
v∈F∗

θ(cv) =

∞∑
q=1

∑
F ′′∈F′′

p,q,r

p

q

4−qC(q)

4−pC(p)

∏
v∈F∗

θ(cv) =

∞∑
q=1

∑
F ′′∈F′′

p,q,r

h(q)

h(p)

∏
v∈F∗

θ(cv)

(7.5.10)
with

h(k) = 2
√
π
4−kC(k)

k
. (7.5.11)

Thus, showing (7.5.9) amounts to show that

∞∑
q=1

h(q)

h(p)
Pq (Yr = p) = 1,

that is ∞∑
q=1

h(q)Pq (Yr = p) = h(p), (7.5.12)

or in other words that h is an infinite stationary measure for Y .
Let Π be the generating function of the sequence (h(k))k≥1:

Π(x) :=
∞∑
k=1

h(k)xk =
∞∑
k=1

1

k
C(k)

(x
4

)k
.

By integrating (7.4.3), we obtain for every 0 < x < 1

Π(x) =

√
4− x

1− x
− 2.

To prove that h is an infinite stationary measure for Y , it is enough to check that Π(gθ(x))−
Π(gθ(0)) = Π(x) for every x ∈ [0, 1), which follows from the explicit formulas for gθ and
Π.

With Lemma 7.5.4, we can define a probability measure Pp,r on Fp,r by setting, for
any F ∈ Fp,q,r,

Pp,r(F) :=
4−qC(q)

4−pC(p)

∏
v∈F∗

θ(cv). (7.5.13)

Let us note Cp,r the set of Eulerian triangulations of the cylinder of height r and bottom
boundary length 2p. We can define a probability measure Pp,r on Cp,r, by first setting the
skeleton to be distributed according to Pp,r, then, conditionally on the skeleton, filling the
slots by independent Boltzmann triangulations (whose boundary lengths are prescribed by
the skeleton). Thus, Lemma 7.5.3 amounts to stating that, if Δ ∈ Cp,r,

lim
n→∞

P

(
B•
r (T

(p)
n ) = Δ

)
= Pp,r(Δ). (7.5.14)

In other words, the law of B•
r (T

(p)
n ) converges weakly to Pp,r as n → ∞.

Note that the expression (7.5.13) implies that, if a random cylinder triangulation A is
distributed as Pp,r, then, for all 1 ≤ s ≤ r, its hull B•

s (A) will be distributed as Pp,s, or, in
other words, the laws (Pp,r)r≥1 are consistent. This implies that the sequence of random
maps (T (p)

n )n has a local distributional limit. To express this result more precisely, we
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need to generalize the notion of hulls to some infinite maps. First, for any infinite planar
Eulerian triangulation A with a boundary, we can define its ball Br(A) like in the finite
case. Then, if A has a unique end, only one connected component of A \Br(A) is infinite,
so that we can fill all the finite holes, to get the hull B•

r (A).
We then have the following result:

Proposition 7.5.5. For any integer p ≥ 1, the sequence of random maps (T (p)
n )n converges

in distribution, in the sense of local limits of rooted maps, to an infinite map that we call
the uniform infinite Eulerian triangulation of the 2p-gon, and that we denote by
T (p)
∞ . It is a random infinite Eulerian triangulation of the plane, with an alternating, semi-

simple boundary of length 2p, that has a unique end almost surely, and such that B•
r (T

(p)
∞ )

has law Pp,r, for every integer r ≥ 1.

For p = 1, we can perform the transformation described in Figure 7.4.1, which yields
a random infinite planar Eulerian triangulation, which we denote by T∞. This random
infinite map is the local limit of uniform rooted planar Eulerian triangulations with n
black faces when n → ∞, therefore we call it the Uniform Infinite Planar Eulerian
Triangulation (UIPET).

The UIPET is the equivalent of well-known models of random infinite planar maps
such as the UIPT or the UIPQ (see [Ang03; Kri]), in the case of Eulerian triangulations.
Note that this present work gives the first construction of the UIPET.

Let L
(p)
r be the length of the top cycle of B•

r (T
(p)
∞ ). When p = 1, we write Lr for L

(1)
r

for simplicity.
Let us first note that T (p)

∞ exhibits a spatial Markov property. Let r, s be integers with
1 ≤ r < s, and Δ ∈ Cp,s. Let 2q be the length of the boundary ∂rΔ. We can obtain
Δ by gluing a triangulation Δ′′ ∈ Cq,s−r on top of a triangulation Δ′ ∈ Cp,r, whose top
boundary has length q. From the explicit formula of (7.5.13), we get

Pp,s(Δ) = Pp,r(Δ
′) · Pq,s−r(Δ′′). (7.5.15)

Therefore, conditionally on {L(p)
r = q}, B•

s (T
(p)
∞ )\B•

r (T
(p)
∞ ) follows Pq,s−r, and is indepen-

dent of B•
r (T

(p)
∞ ). By letting s → ∞, we obtain that, conditionally on {L(p)

r = q}, the
triangulation T (p)

∞ \B•
r (T

(p)
∞ ) is distributed as T (q)

∞ and is independent of T (p)
∞ .

We now give a technical but useful result on the law of Lr.

Lemma 7.5.6. There exists a constant C0 > 0 such that for any α ≥ 0, and for any
integers r, p ≥ 1,

P (Lr = p) ≤ C0

r2
(7.5.16)

and
P
(
Lr ≥ αr2

)
≤ C0e

−α/4. (7.5.17)

Let us fix some notation before getting to the proof of Lemma 7.5.6. For 1 ≤ r < s, let
F (1)
r,s be the skeleton of B•

s (T
(1)
∞ )\B•

r (T
(1)
∞ ). We let F̃ (1)

r,s by the non-pointed forest obtained
by a uniform cyclic permutation of F (1)

r,s , and by forgetting the distinguished vertex. Thus,
on the event {Lr = p} ∩ {Ls = q}, F̃ (1)

r,s is a random element of F′′
p,q,s−r.

Proof. Observe that

P(Lr = p) =
∑

F∈F′′
1,p,r

P

(
F̃ (1)
0,r = F

)
=

∑
F∈F′′

1,p,r

h(p)

h(1)

∏
v∈F∗

θ(cv).
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Thus
P(Lr = p) =

h(p)

h(1)
Pp (Yr = 1) .

From the definition of h and the asymptotics of C(p), there exists a constant C1 such that,
for every p ≥ 1,

h(p) ≤ C1√
p
.

Moreover, from (7.5.7), we have

P1 (Yr = 0) = 1− 3

(r + 2)2 − 1
, (7.5.18)

hence

Pp (Yr = 1) = lim
x↓0

x−1
(
Ep

[
xYr
]
− Pp (Yr = 0)

)
= lim

x↓0
x−1

⎛⎜⎝
⎛⎜⎝1− 3(√

4−x
1−x + r

)2
− 1

⎞⎟⎠
p

−
(
1− 3

(r + 2)2 − 1

)p⎞⎟⎠
=

9p(r + 2)

2((r + 2)2 − 1)2

(
1− 3

(r + 2)2 − 1

)p
.

Therefore, for some constant C3 > 0,

P(Lr = p) ≤ C2

h(1)

√
p

9(r + 2)

((r + 2)2 − 1)2

(
1− 3

(r + 2)2 − 1

)p−1

≤ C3

r2

√
p

r2
e−3p/r2 .

The bound (7.5.16) immediately follows. As for (7.5.17), since the function x �→ √
xe−x/3

is decreasing for x ≥ 3/2, we have, for α ≥ 3/2, for some constant C4 > 0,

P
(
Lr > αr2

)
≤

∞∑
p=αr2+1

C3

r2

√
p

r2
e−3p/r2 ≤ C3

r2

∫ ∞

αr2

√
x

r2
e−3x/r2dx ≤ C4e

−α/4.

We now fix a positive constant a ∈ (0, 1). For every integer r ≥ 1, let N
(a)
r be uniform

random in {�ar2�+1, . . . , �a−1r2�}. We also consider a sequence τ1, τ2, . . . of independent
Galton-Watson trees with offspring distribution θ, independent of N (a)

r . For every integer
j ≥ 0, we write [τi]j for the tree τi truncated at generation j.

Proposition 7.5.7. There exists a constant C1, which only depends on a, such that, for
every sufficiently large integer r, for every choice of s ∈ {r+1, r+2, . . .}, for every choice
of the integers p and q with ar2 < p, q ≤ a−1r2, for every forest F ∈ F

′′
p,q,s−r,

P

(
F̃ (1)
r,s = F

)
≤ C1 P

(
([τ1]s−r, . . . , [τN(a)

r
]s−r) = F

)
. (7.5.19)

Proof. We have

P

(
([τ1]s−r, . . . , [τN(a)

r
]s−r) = F

)
= P

(
N (a)
r = p

)
P(([τ1]s−r, . . . , [τp]s−r) = F) (7.5.20)

=
1

�a−1r2� − �ar2� ·
∏
v∈F∗

θ(cv). (7.5.21)
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On the other hand, let F◦ be any pointed forest in Fp,q,s−r that coincides with F up to a
cyclic permutation of the trees. We know that, conditionally on Lr = p, B•

s (T
(1)
∞ )\B•

r (T
(1)
∞ )

follows Pp,s−r, thus

P

(
F (1)
r,s = F◦|Lr = p

)
= Pp,s−r (F◦) =

4−qC(q)

4−pC(p)

∏
v∈F∗

θ(cv).

Therefore, by arguments similar to those of the proof of Lemma 7.5.4, we have

P

(
F̃ (1)
r,s = F|Lr = p

)
=

p

q
P

(
F (1)
r,s = F◦|Lr = p

)
=

h(q)

h(p)

∏
v∈F∗

θ(cv).

By our conditions on p and q, the ratio h(q)/h(p) is bounded above by some constant C5

(which depends on a). Applying the bound of (7.5.16), we obtain

P

(
F̃ (1)
r,s = F

)
≤ C0

r2
C5

∏
v∈F∗

θ(cv).

Comparing this with (7.5.20), we obtain the desired bound.

7.5.3 Leftmost mirror geodesics

We now define a type of paths in Eulerian cylinder triangulations that will be useful in the
sequel.

Let Δ be an Eulerian cylinder triangulation of heighr r ≥ 1. Let x be a vertex of ∂jΔ,
with 1 ≤ j ≤ r. We define the leftmost mirror geodesic from x to the bottom cycle in
the following way. Enumerate in clockwise order around x all the half-edges incident to it,
starting from the half-edge of ∂jΔ that is to the right of x. The first edge on the leftmost
mirror geodesic starting from x is the last edge connecting x to ∂j−1Δ arising in this order.
The path is then continued by induction. Note that, taken in the reverse order, this path
is an oriented geodesic, hence the name mirror geodesic.

The coalescence of leftmost geodesics from distinct vertices can be characterized by the
skeleton of Δ. Indeed, let u, v be two distinct vertices of ∂∗Δ. Let F be the skeleton of Δ,
F ′ the subforest of F consisting of the trees rooted between u and v left-to-right in ∂∗Δ,
and F ′′ be the rest of the trees in F . Then, for any k ∈ {1, 2, . . . , r}, the leftmost mirror
geodesics from u and v merge before step k (possibly exactly at step k) if and only if at
least one of the two forests F ′ and F ′′ have height strictly smaller than k.

7.6 The Lower Half-Plane Eulerian Triangulation

We now construct a triangulation of the lower half-plane R × R− that will be crucial to
prove Theorem 7.1.2, and that also is an object of interest in itself.

We start with a doubly infinite sequence (Ti)i∈Z of independent Galton-Watson trees
with offspring distribution θ. They are embedded in the lower half-plane so that, for every
i ∈ Z, the root of Ti is (12 + i, 0), and such that the collection of all vertices of all the Ti is
(12 +Z)×Z≤0, with vertices at height k being of the form (12 + i,−k). We also assume that
the embedding is such that the collection of vertices of the Ti, for i ≥ 0, is (12 +Z≥0)×Z≤0

(see Figure 7.6.1).
We can now build the triangulation itself. We start with the “distinguished” modules,

which will play the role of skeleton modules for our infinite triangulation. They are natu-
rally associated with the vertices of the infinite collection of trees in the following way. To
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each vertex (12 + i, j) in one of the trees, we associate a module whose type n+ 1 vertices
are (i, j) and (i+1, j). The type n vertex is (k, j− 1), where k is the minimal integer such
that (12 + k, j − 1) is the child of (12 + i′, j), for some i′ > i. The last vertex, of type n+2,
is set to be (12 + i, j + ε), for an arbitrary 0 < ε < 1. As for the (outer) edges of these
skeleton modules, we draw them such that they are all distinct, and do not cross. Having
completely determined the configuration of the skeleton edges from the infinite collection
of trees, we fill in the slots bounded by these modules, with independent Boltzmann Eule-
rian triangulation of appropriate perimeters. (Note that each point of the form (i, j), with
j ≥ 1, is at the top of a slot of perimeter 2(ci,j + 1), where ci,j is the number of children
of (12 + i, j) in the infinite collection of trees.)

We obtain an Eulerian triangulation of the lower-half plane, which we will note L and
call the Lower Half-Plane Eulerian Triangulation (LHPET). It is rooted at the edge
from (0, 0) to (12 , ε).

We will denote by L[0,r] the infinite rooted planar map obtained by keeping only the
first r layers of L (having the skeleton modules at level r as ghost modules), and denote
by Lr the lower boundary of L[0,r].

T−4 T−3 T−2 T−1 T0 T1 T2 T3

0

−1

−2

p

Figure 7.6.1 – Construction of the LHPET.

While we will not use this result in the sequel, note that L is the local limit of T (p)
∞

“seen from infinity”. This statement is made more precise in the following proposition:

Proposition 7.6.1. Set p ≥ 1, and for every r ≥ 1, define B̃•
s

(
T (p)
∞
)

as the hull B•
s

(
T (p)
∞
)

re-rooted at an edge uniform on those of ∂s
(
T (p)
∞
)

that are oriented so that the top face is
lying on their left. Then

B̃•
s

(
T (p)
∞
)

(d)−−−→
s→∞

L

in the sense of local limits of rooted planar maps.

An equivalent result was stated for usual triangulations in [CLG19], but its proof was
not detailed, since it is similar to the proof of the equivalent convergence to the Upper
Half-Plane Triangulation. We give a proof of our result both for the sake of completeness,
and because it involves nonetheless a few arguments that are different from the ones for
the upper half-plane models.
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Proof. Recall that, for an Eulerian triangulation A (possibly with a boundary) and an
integer r ≥ 1, we denote by Br(A) the ball of radius r of A, that is, the union of all edges
and faces of A incident to a vertex at (oriented) distance strictly less than r from the root.
Proving the proposition amounts to showing that, for every r ≥ 1, for every rooted planar
map A,

P

(
Br
(
B̃•
s

(
T (p)
∞
))

= A
)
−−−→
s→∞

P(Br(L) = A). (7.6.1)

To obtain this convergence, we will need a bit of additional notation. We fix r ≥ 1,
and note [T ]r for the tree T truncated at height r, and similarly for a forest. For any
s ≥ 1, we write F (p)

0,s =
(
T

(p)
0 ,T

(p)
1 , . . . ,T

(p)

L
(p)
s

)
for the skeleton of B•

s

(
T (p)
∞
)
. Let us fix

k ≥ 1. For any q ≥ 1, for any forest F = (σ0, . . . , σl−1) ∈ Fq,l,r with l ≥ 2k + 1, we write
Φk(F) = (σi−k, . . . , σi−1, σi, . . . , σi+k), where i is a uniform index on 0, . . . , l − 1, and the
indices for the σj are extended to Z by periodicity.

We will prove that, for every collection Fk = (τ−k, . . . , τ0, . . . , τk) of 2k + 1 plane trees
of maximal height r,

P

(
{Φk ([F0,s]r) = Fk} ∩ {L(p)

s ≥ 2k + 1}
)
−−−→
s→∞

P(([T−k]r, . . . , [T0]r, . . . , [Tk]r) = Fk).
(7.6.2)

If k is large enough, we can find a set Fk of forests such that the probability of the
event

([T−k]r, . . . , [T0]r, . . . , [Tk]r) ∈ Fk

is close to 1, and such that, on that event, the ball Br(L) is a deterministic function of
the truncated trees [T−k]r, . . . , [T0]r, . . . , [Tk]r and of the triangulations with a boundary
filling in the slots associated with the vertices of these trees. (Note that we need k to be
large, so that the (2k + 1) central trees of the skeleton of L and the associated slots are
enough to cover the ball Br(L), not only vertically, which is a given, but also horizontally.)
Likewise, on the event {Φk ([F0,s]r) ∈ Fk} ∩ {L(p)

s ≥ 2k + 1}, the ball Br
(
B̃•
s

(
T (p)
∞
))

is
given by the same deterministic function of the trees in Φk ([F0,s]r) and of the associated
triangulations with a boundary.

Moreover, we claim that, for every fixed p ≥ 1 and j ≥ 1,

P

(
L(p)
s = j

)
−−−→
s→∞

0. (7.6.3)

Indeed, we can write

P

(
L(p)
s = j

)
=

h(j)

h(p)
Pj (Ys = p) ,

and, from Ej [x
Ys ] = (g

(s)
θ (x))j , we get that Pj (Ys = p) −−−→

s→∞
0.

Thus, the desired convergence of (7.6.1) will follow from (7.6.2) and (7.6.3).
It remains to prove (7.6.2). Let us fix Fk as above. From the definition of the Ti, we

have

P(([T−k]r, . . . , [T0]r, . . . , [Tk]r) = Fk) =
∏

v∈(τ−k,...,τk)∗
θ(cv), (7.6.4)

where, as before, for a forest F , F∗ denotes the set of vertices in F that are not at the
maximal height, and, for such a vertex v, cv is its number of children.
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Now, using the definition of the law Pp,s of B•
s

(
T (p)
∞
)
, the left-hand side of (7.6.2) is

equal to

∞∑
l=2k+1

∑
F∈Fp,l,s,Φk(F)=Fk

4−lC(l)

4−pC(p)

∏
v∈F∗

θ(cv)

=

⎛⎝ ∏
v∈(τ−k,...,τk)∗

θ(cv)

⎞⎠ ·

⎛⎜⎜⎜⎝
∞∑

l=2k+1

4−lC(l)

4−pC(p)

∏
v∈(σ0,...,σl−2k−1)

∗ ⋃(σ̃1,...,σ̃mk )
∗

#σ0(s)+···+#σl−2k−1(s)+#σ̃1(s−r)+···+#σ̃mk (s−r)=p

θ(cv)

⎞⎟⎟⎟⎠ ,

where mk is the number of vertices at generation r in Fk, while σ0, . . . , σl−2k−1 stand for
the trees (of maximal height s) not selected in Fk, and σ̃1, . . . , σ̃mk stand for the trees (of
maximal height s− r) obtained after truncation of the selected trees.

Let us denote by As the second term of the second line of the previous equation. To
conclude the proof, it suffices to show that

lim inf
s

As ≥ 1. (7.6.5)

Indeed, in that case the liminf of the quantities in the left-hand side of (7.6.2) are greater
than or equal to the right-hand side, for any choice of the forest Fk. As the sum of the
quantities on the right-hand side of (7.6.2) over these choices is equal to 1, necessarily the
desired convergence holds.

Let us thus show (7.6.5). Set ϕ(l) := 4−lC(l). We have

As =

∞∑
l=2k+1

ϕ(l)

ϕ(p)

p∑
q=0

Pl−(2k+1) (Ys = q)Pmk (Ys−r = p− q) .

First, as θ is a critical offspring distribution, we get from [Pap68] that, for any q ≥ 0,

Pmk (Ys−r = p− q)

Pmk (Ys = p− q)
−−−→
s→∞

1.

Thus, for any l ≥ 2k + 1, for every ε > 0, for any sufficiently large s,

p∑
q=0

Pl−(2k+1) (Ys = q)Pmk (Ys−r = p− q) ≥ (1− ε)Pl−(2k+1) (Ys = q)Pmk (Ys = p− q)

≥ (1− ε)Pl−(2k+1)+mk (Ys = p) .

This implies that:

As ≥ (1− ε)

∞∑
l=2k+1

ϕ(l)

ϕ(p)
Pl−(2k+1)+mk (Ys = p) .

Now, from the asymptotics of C(l), we have that, for some l0 ≥ 0, for any l ≥ l0, we
have

ϕ(l) ≥ (1− ε)ϕ(l − (2k + 1) +mk),

so that,

As ≥ (1− ε)2
∞∑

l=mk∨l0

ϕ(l)

ϕ(p)
Pl (Ys = p) .
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Recall that ϕ(l) = lh(l), which yields:

As ≥ (1− ε)2
∞∑

l=mk∨l0∨p

h(l)

h(p)
Pl (Ys = p)

= (1− ε)2

(
1−

mk∨l0∨p−1∑
l=0

h(l)

h(p)
Pl (Ys = p)

)
,

the last equality stemming from (7.5.12).
Finally, we use once again the fact that, for any fixed l,

Pl (Ys = p) −−−→
s→∞

0,

to get that, for any ε > 0,
lim inf

s
As ≥ (1− ε)2.

As ε was completely arbitrary in the above chain of arguments, we get that

lim inf
s

As ≥ 1.

This completes the proof of the proposition.

7.7 Distances along the half-plane boundary

To fulfill our goal of showing the asymptotic equivalence between the oriented and non-
oriented distances in uniform Eulerian triangulations, we need as a technical ingredient
some estimates on the (oriented) distances along the boundary of L.

Note that the vertices on ∂L are of two types, those of coordinates (i, 0) for some i ∈ Z,
and those of coordinates (i + 1/2, ε), for some i ∈ Z. To simplify notation, the results in
this section only deal with the distances between vertices of the first type, since we are
interested in asymptotic estimates, and including the vertices of the second type only adds
1 or 2 to the considered distances. We will lay the stress on this generalization whenever
it arises later in the paper.

In the sequel, we will use leftmost mirror geodesics, that were defined in Section 7.5 for
finite cylinder triangulations, and that we generalize now to L. For any i ∈ Z, the leftmost
mirror geodesic from (i, 0) in L is an infinite path ω in L, whose reverse is an oriented
geodesic, and that visits a vertex ω(n) in Ln at every step n ≥ 0. It starts at (i, 0), and is
obtained by choosing at step n + 1 the lefmost edge between ω(n) and Ln+1. As before,
for i < j, the leftmost mirror geodesics from (i, 0) and (j, 0) will coalesce before hitting
Lr, if and only if all the trees Ti,Ti+1, . . . ,Tj−1 all have height strictly smaller than r.

7.7.1 Block decomposition and lower bounds

We first want to obtain upper bounds on the distances along the boundary of L. For that
purpose, we adapt the block decomposition of causal triangulations [CHN], to L.

For r ≥ 1, we define the random map Gr to be the planar map obtained from L[0,r] by
keeping only the faces and edges that are between T0 and Tir , where ir is the smallest
integer i > 0 such that Ti �= ∅. More precisely, we only keep the skeleton modules that
are at height smaller than or equal to r, belonging to trees Ti, with 0 ≤ i ≤ ir, and the
slots that are to the left of all these skeleton modules (see Figure 7.7.1 for an example).
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Figure 7.7.1 – The block of height 3 between T0 and T1 in the triangulation of Figure 7.6.1.
As before, ghost modules are shown in pale grey.

Thus, Gr has one boundary that is naturally divided into four parts: the upper and lower
parts that it shares with L[0,r], and the left and right parts.

Note that L contains a lot of submaps that have the same law as Gr: if Ti, Tj are two
consecutive trees reaching height r − 1 in the skeleton of L (with i < j), we can define
the submap of L[0,r] encased between Ti (strictly) and Tj (included), which is obtained
by keeping only the skeleton modules belonging to trees Tk, with i < k ≤ j, and the slots
that are to the left of all these skeleton modules. Such a map has the same law as Gr.

We call any map with the same law as Gr, a block of height r.

We define the diameter of Gr, denoted Diam(Gr) to be the minimal oriented distance
from a vertex on its left boundary, to a vertex on its right boundary. Note that this diameter
is not uniformly large when r is large. However, we will now show that a long block is also
typically wide. To do so, we consider the median diameter of a block.

Definition 7.7.1. For any r ≥ 1, let f(r) be the median diameter of Gr, that is, the
largest number such that

P(Diam(Gr) ≥ f(r)) ≥ 1

2
.

We show the following upper bound on the median diameter:

Theorem 7.7.2. There exists c > 0 such that

f(r) ≥ cr,

for all r sufficently large.

To prove this, we will use, like in [CHN], a renormalization scheme, splitting Gr into
smaller blocks.

Proposition 7.7.3. There exists c > 0 such that, for any integer m with 1 ≤ m ≤ cr, we
have

f(r) ≥ c ·min{m,
( r

m

)2
f(m)}.

Let us introduce a bit of notation before delving into the proof of this proposition.
For any m ≥ 1 and h ≥ 0, consider the layer L[h,h+m]. It is composed of a sequence of
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blocks of height m, denoted by Gm(i, h), for integers i ≥ 1. For fixed h,m, these blocks
are independent and distributed as Gm. We denote by Nr(m,h) the maximal index i such
that the block Gm(i, h) is a sub-block of Gr.

Proof of Proposition 7.7.3. Fix r > m ≥ 1, and suppose for simplicity that m divides r.
We get a lower bound for the diameter of Gr using the diameters of the blocks G2m(i, h),
for h of the form l · m, with 0 ≤ l ≤ (r/m) − 2. More precisely, we pick a vertex x on
the left boundary of Gr, at a height 0 ≤ j ≤ r. Then, we can find an integer l such that
x is located in the layer L[lm,(l+2)m], with 0 ≤ l ≤ (r/m) − 2 and so that |lm − j| ≥ m/3
and |(l + 2)m− j| ≥ m/3. Consider then the shortest (oriented) path from x to the right
boundary of Gr. Either it stays in that layer, or it leaves it at some point. In the second
case, we know that the length of the path is at least m/3, using our assumptions on j and
h, and the fact that the distance between two vertices is at least their height difference. In
the first case, the length of the path is bounded below by

Nr(2m,lm)∑
i=1

Diam(G2m(i, lm)).

Indeed, the path must cross, from left to right, every sub-block of height 2m of that layer,
that also belongs to Gr.

As noted before, for fixed h,m, the blocks G2m(i, h) are independent and distributed
as G2m. Thus, by the definition of the function f ,

P

(
k∑
i=1

Diam(G2m(i, h)) ≤
k · f(2m)

4

)
≤ P(Bin(k, 1/2) ≤ k/4) ≤ e−ηk,

for some η > 0 independent of k, h and m. Summing over the possibilities for h = l ·m,
we obtain that, with probability at least 1− (r/m)e−ηk, we have

∀ 0 ≤ l ≤ (r/m)− 2

k∑
i=1

Diam(G2m(i, lm)) ≥ k · f(2m)

4
. (7.7.1)

We now estimate Nr(2m, lm):

Lemma 7.7.4. There exists c > 0 such that, for every 1 ≤ m ≤ cr, we have

P

(
inf

0≤l≤(r/m)−2
Nr(2m, lm) ≥ c

( r

m

)2)
≥ 7

8
.

Proof. Consider the case m = 1: in that case, Nr(1, h) is just the horizontal width of the
block Gr at height h. Like in [CHN], since θ is in the domain of attraction of a 3/2-stable
law, we can find c > 0 sufficiently small that

P

(
inf

0≤h≤r−1
Nr(1, h) ≥ cr2

)
≥ 15

16
(7.7.2)

for every r ≥ 1. For other values of m, let us consider the intersection the event considered
in (7.7.2). The variable Nr(2m,h) counts the number of (sub-)trees in the skeleton of L,
starting at height h at an index between 0 and Nr(1, h)−1, and that reach (relative) height
2m. Since Nr(1, h) ≥ cr2, using (7.5.18), we obtain that there are more than c′(r/m)2

such trees on average, for some c′ > 0. It then follows that

P
(
Nr(2m,h) ≤ c′′(r/m)2

)
≤ e−δ(r/m)2
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for some c′′ > 0 and δ > 0, independent of r and m. Then, for sufficiently large values
of r/m, we have (r/m)e−δ(r/m)2 < 1/16, so that, when considering the different values for
h = lm, we get

P

(
∃ 0 ≤ l ≤ (r/m)− 2 Nr(2m, lm) ≤ c′′

( r

m

)2)
≤P

(
inf

0≤h≤r−1
Nr(1, h) < cr2

)
+
( r

m
− 1
)
P
(
Nr(2m,h) ≤ c′′(r/m)2, Nr(1, h) ≥ cr2

)
≤ 1

8
,

which proves the lemma.

Let us now return to the proof of Proposition 7.7.3. Take k = c(r/m)2, and assume
that r/m is large enough to ensure that (r/m)e−ηk ≤ 1/8. Then, using Lemma 7.7.4 and
intersecting with the event in (7.7.1) yields

P

(
Diam(Gr) ≤

m

3
∧ k · f(2m)

4

)
≤ P

(
inf

0≤l≤(r/m)−2
Nr(2m, lm) ≥ c

( r

m

)2)
+

r

m
e−ηk ≤ 1

4
.

By definition of the function f , we have thus obtained that

f(r) ≥ m

3
∧ c

4

( r

m

)2
f(2m),

which directly gives the wanted inequality when 2m divides r, and the case where 2m
does not divide r is a straightforward generalization.

We can now prove Theorem 7.7.2.

Proof of Theorem 7.7.2. Let k be an integer that is larger than c−1. Let an = f(kn)/kn.
Then

lim inf
n→∞

an > 0.

Indeed, applying Proposition 7.7.3 to r = kn+1 and m = kn, we obtain

an+1 ≥ min{ ckn

kn+1
, ck−1

(
kn+1

kn

)2

an} ≥ min{ c
k
, an}.

Note that f(r) > 0 for some r ≥ 1, so that an > 0 for some n ≥ 1, which yields
that lim infn→∞ an > 0 as claimed. This gives the desired inequality for values of r of
the form kn. The inequality for general values of r follows by taking m = k�logk r−1
 in
Proposition 7.7.3.

From Theorem 7.7.2, we obtain the following lower bounds for the distances along the
boundary of L:

Proposition 7.7.5. For every ε > 0, there exists an integer K > 0 such that, for every
r ≥ 1,

P

(
min

|j|≥Kr2
�dL((0, 0), (j, 0)) ≥ r

)
≥ 1− ε.

Consequently, for K ′ = 9K, we also have, for every r ≥ 1,

P

(
min

|j|≥2K′r2
min

−K′r2≤i≤K′r2
�dL((i, 0), (j, 0)) ≥ r

)
≥ 1− 2ε.
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Proof. Let us start with the first assertion. Let ε > 0. Fix r ≥ 1, and K ≥ 1. Then,
from (7.5.18), the number N(K,r) of trees that reach height r between (0, 0) and (j, 0) is
bounded below by a binomial variable of parameters (Kr2, 3/((r+2)2−1)), so that, using
Chebyshev’s inequality, for any a > 0,

P

(
N(K,r) ≤

3

8
K − a

)
≤ 3K

a2
.

(Note that the binomial variable in question has expectation greater than or equal to 3K/8,
with equality when r = 1, and a variance smaller than 3K.)

Taking a =
√

(6K/ε), for K large enough that a ≤ (1/8)K + 1, we get

P

(
N(K,r) ≤

1

4
K + 1

)
≤ ε

2
. (7.7.3)

Now, on the event that N(K,r) > K/4, for any j ≥ Kr2, we have

�dL((0, 0), (j, 0)) ≥
�K

4

+1∑

i=1

Diam(Gr(i)) ∧ r,

so that, using Theorem 7.7.2,

P

(
�dL((0, 0), (j, 0)) < cr

K

4
∧ r

)
≤ 1

2K/4
.

Now, taking K even larger if necessary, we can also have cK/4 ≥ 1, and 1/2K/4 ≤ ε/2,
which does give that, with probability at least 1− ε, for all j ≥ Kr2, �dL((0, 0), (j, 0)) ≥ r.
The case of negative j can be treated in the same way.

Let us now turn to the second assertion. Assume that there exist j ≥ 2K ′r2 and
i ∈ {−K ′r2, . . . ,K ′r2}, such that �dL((i, 0), (j, 0)) < r. Then, any geodesic from (i, 0) to
(j, 0) must stay in the layer L[0,r], and therefore must intersect the leftmost mirror geodesic
from (K ′r2, 0) to the line Lr, so that

�dL((K
′r2, 0), (j, 0)) < 3r.

But then, by the first assertion of the proposition, the probability of such an event is
bounded above by ε. Considering also the case j < −K ′r2, we obtain the desired result.

An alternative proof of this result, adapting to Eulerian triangulations the method used
in [CLG19] for usual triangulations, can be found in Chapter 8.

7.7.2 Upper bounds

After having proved in the previous subsection lower bounds for the distances along the
boundary of L, we now prove upper bounds for these quantities, that will carry to the
UIPT of the digon T (1)

∞ thanks to Proposition 7.5.7.

Proposition 7.7.6. Let δ > 0 and γ > 0. We can choose an integer A ≥ 1 such that, for
every sufficiently large n, with probability at least 1− δ:

∀ i ∈ {−n+1,−n+2, . . . , n}, the leftmost mirror geodesic starting from (i, 0) coalesces
with the one starting from (−n+ �2ln/A�, 0), for some 0 ≤ l ≤ A, before hitting L�γ√n
.
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Proof. Let U
(n)
1 < U

(n)
2 < · · · < U

(n)
mn be all the indices in {1, 2, . . . , 2n − 1} such that the

height of T−n+i is greater than or equal to �γ√n�. Defining, for t ∈ {0, 1, . . . , 2n}, N (n)
t :=

#{i ∈ {1, 2, . . . ,mn}|U (n)
i ≤ t}, it follows from (7.5.18) that (N

(n)
�nt
)0≤t≤2 converges in

distribution in the Skorokhod sense to a Poisson process of parameter 3γ−2 (see [Bil99],
Theorem 13.2). This implies that we can choose η small enough that, for every sufficiently
large n, the property

U
(n)
i+1 − U

(n)
i > ηn ∀ i ∈ {0, 1, . . . ,mn} (7.7.4)

holds with probability at least 1 − δ. (Here we have set for convenience U
(n)
0 = 0 and

U
(n)
mn+1 = 2n.)

By the characterization of the coalescence of the lefmost mirror geodesics, if U (n)
j < i ≤

i′ ≤ U
(n)
j+1, the leftmost geodesic from (−n + i, 0) coalesces with the one from (−n + i′, 0)

before hitting the line L�γ√n
. Set A = �2/η� + 1, so that 2/A < η. On the event where

(7.7.4) holds, each interval (U (n)
j , U

(n)
j+1], 0 ≤ j ≤ mn, contains at least one of the points

�2ln/A�, 1 ≤ l ≤ A, which gives the desired result.

We now derive a similar result for T (1)
∞ . Recall the notation Lr for the number of

skeleton modules on ∂∗B•
r (T

(1)
∞ ).

For any integer n ≥ 1, we write u0(n) for a vertex chosen uniformly at random in the
vertices of type n of ∂∗B•

n(T
(1)
∞ ), and u1(n), . . . , uLn−1(n) for the other type-n vertices of

∂∗B•
n(T

(1)
∞ ), enumerated clockwise, starting from u0(n). We extend the definition of ui(n)

to i ∈ Z by periodicity.

Proposition 7.7.7. Let γ ∈ (0, 1/2) and δ > 0. For every integer A ≥ 1, let Hn,A be
the event where any leftmost mirror geodesic to the root starting from a type-n vertex of
∂∗B•

n(T
(1)
∞ ) coalesces before time �γn� with the leftmost mirror geodesic to the root starting

from u�kn2/A
(n), for some 0 ≤ k ≤ �n−2LnA�. Then, we can choose A large enough that,
for every sufficiently large n,

P(Hn,A) ≤ 1− δ.

Proof. The idea of the proof is to carry the result of Proposition 7.7.6 over to the case
of T (1)

∞ , using the comparison principle of Proposition 7.5.7. To apply it, one needs to
consider the intersection of Hn,A with an event of the form

{�an2� < Ln ≤ �a−1n2�} ∩ {�an2� < Ln−�γn
 ≤ �a−1n2�}. (7.7.5)

Lemma 7.5.6 ensures that we can choose an a > 0 such that this latter event holds with
probability at least 1− δ/2.

The details of the proof can be adapted verbatim from the proof of Proposition 17 in
[CLG19].

7.8 Asymptotic equivalence between oriented and non-oriented
distances

Recall that, on any Eulerian triangulation with a boundary A, we write �dA for the oriented
distance on A, and dA for the usual graph distance. We will show that these two distances
are asymptotically proportional, first on the layers of the LHPET L, then on the ones of
the UIPET T (1)

∞ , and finally in large finite Eulerian triangulations.
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7.8.1 Subbadditivity in the LHPET and the UIPET

Recall that we write ρ for the root vertex (0, 0) of the LPHET L, and that Lr is the lower
boundary of the layer L[0,r]. We have the following result:

Proposition 7.8.1. There exists a constant c0 ∈ [2/3, 1] such that

r−1dL(ρ,Lr) a.s.−−−→
r→∞

c0.

Proof. For integers 0 ≤ m < n, we define L[m,n] similarly to the layers L[0,r]. The non-
oriented distance dL[m,n]

on this strip is defined by considering the shortest non-oriented
paths that stay in L[m,n]. Thus, for two vertices v, v′ ∈ L[m,n], we have dL[m,n]

(v, v′) ≥
dL(v, v′).

Let then m,n ≥ 1, and let xm be the leftmost vertex x of Lm such that dL(ρ,Lm) =
dL(ρ, x). We have

dL(ρ,Lm+n) ≤ dL(ρ,Lm) + dL[m,m+n]
(xm,Lm+n).

As xm is a function of L[0,m] only, and the layers in L are independent, the random variable
dL[m,m+n]

(xm,Lm+n) is independent of L[0,m], and has the same distribution as dL(ρ,Ln).
We can then apply Liggett’s version of Kingman’s subbadditive theorem [Lig85], to get

the desired convergence: the fact that the limit is a constant follows from Kolmogorov’s
zero-one law. As for the bounds for c0, it is clear from (7.2.1) that c0 ∈ [1/2, 1]. Our
proof that c0 must be at least 2/3 relies on a result of asymptotic proportionality in finite
Eulerian triangulations, that will be stated further in Theorem 7.1.2. We thus postpone
this argument to after Theorem 7.1.2.

It would be interesting to also refine the upper bound on c0. However, this seems to
necessitate deeper arguments than our refinement of the lower bound.

To carry this asymptotic proportionality over to large finite Eulerian triangulations, we
will make a stop at the UIPET of the digon T (1)

∞ . In the remainder of this subsection, we
write d for the non-oriented distance on T (1)

∞ , B•
n for B•

n(T
(1)
∞ ) and ∂∗B•

n for ∂∗B•
n(T

(1)
∞ ),

to simplify notation.

Proposition 7.8.2. Let ε, δ ∈ (0, 1). We can find η ∈ (0, 1/2) such that, for every
sufficiently large n, the property

(1− ε)c0ηn ≤ d(v, ∂∗B•
n−�ηn
) ≤ (1 + ε)c0ηn ∀ v ∈ ∂∗B•

n

holds with probability at least 1− δ.

Proof. Let us give a sketch of the proof, as it is very similar to the proof of Proposition
20 in [CLG19]. Recall the notation u

(n)
j for the type-n vertices of ∂∗B•

n. The first key

step is to use Proposition 7.7.5 to get that a non-oriented shortest path from some u
(n)
j to

∂∗B•
n−�ηn
 that stays in B•

n cannot meander too much in the layer B•
n \B•

n−�ηn
, and, more
precisely, that it must stay in the region bounded by the leftmost mirror geodesics starting
at u

(n)
j−�cn2
 and u

(n)
j+�cn2
 respectively, for some c > 0. Then, to bound probabilities of

events on that sector of B•
n \B•

n−�ηn
, Proposition 7.5.7 together with Lemma 7.5.6 allows
us to replace the skeleton of B•

n \ B•
n−�ηn
 by independent Galton-Watson trees. We can

therefore transfer the property of Proposition 7.8.1 from L to B•
n \ B•

n−�ηn
. Finally, to
consider all vertices of ∂∗B•

n, we use the coalescence property obtained in Proposition 7.7.7,
which amounts to saying that it suffices to consider for the values of j a fixed number C,
large but independent of n.
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The details of the proof can be adapted verbatim from the proof of Proposition 20 in
[CLG19] (replacing dgr by �d, and dfpp by d), with a small caveat.

Indeed, when using the coalescence property of Proposition 7.7.7 (which corresponds
to (57) in [CLG19]), one must pay attention to two things.

First, Proposition 7.7.7 only gives an upper bound on the distances between vertices
of ∂∗B•

n of type n, and the C chosen u
(n)
j . To also include the vertices of type n + 1, one

must add an additional margin of 1 to the bounds, which, for any fixed ε, can be smaller
than εc0ηn/2, for n large enough.

A second restriction of the application of Proposition 7.7.7 is that it ensures that
oriented geodesics from the root to a type-n vertex v of ∂∗B•

n and to one of the chosen
u
(n)
j , are merged up to a level γn. Thus, the upper bound on the oriented distance between

v and u
(n)
j is not 2γn but 3γn.

Thus, rather than γ = εc0η/2, we take γ = εc0η/6, to obtain the equivalent of (57) in
[CLG19] for all vertices of ∂∗B•

n.

We now derive a more global result from the one of Proposition 7.8.2:

Proposition 7.8.3. For every ε ∈ (0, 1),

P((c0 − ε)n ≤ d(ρ, v) ≤ (c0 + ε)n for every vertex v ∈ ∂∗B•
n) −−−→n→∞

1.

Proof. Let v be a vertex in ∂∗B•
n. The idea of the proof is to use Proposition 7.8.2 to

estimate the distance d(ρ, v) by going through the successive layers L[ni−�ηni
], where ni is
defined inductively by n0 = n and ni+1 = ni − �ηni�.

The details of the proof can be adapted from Proposition 20 of [CLG19], replacing dgr

by �d, and dfpp by d.

7.8.2 Asymptotic proportionality of distances in finite triangulations

We now turn to finite triangulations. More precisely, we consider T (1)
n , uniform on the

Eulerian triangulations of the digon with n black triangles. Recall that such triangulations
are in bijection with (rooted) Eulerian triangulations with n black faces, from Figure 7.4.1.
We write ρn for the root of T (1)

n , and d for the non-oriented distance on T (1)
n .

Proposition 7.8.4. Let on be uniform over the inner vertices of T (1)
n . Then, for every

ε > 0,
P

(
|d(ρn, on)− c0�d(ρ, on)| > εn1/4

)
−−−→
n→∞

0.

To derive this from the previous results on T (1)
∞ , we will first establish an absolute

continuity relation between finite triangulations and this infinite model.
Recall that C1,r is the set of Eulerian triangulations of the cylinder of height r and

bottom boundary length 2. For Δ ∈ C1,r, we denote by N(Δ) the number of black triangles
in Δ. Finally, we write T (1)

n for the triangulation T (1)
n together with a distinguished vertex

on. The hull B•
r (T

(1)
n ) is well-defined when �d(ρn, on) > r + 1, otherwise we set it to be

T (1)
n .

Lemma 7.8.5. There exists a constant c̄ > 0 such that, for every n, r, p ≥ 1 and every
Δ ∈ C1,r with top boundary half-length p, such that n > N(Δ) + p,

P

(
B•
r (T

(1)
n ) = Δ

)
≤ c̄

(
n

n−N(Δ) + 1

)3/2

· P
(
B•
r (T (1)

∞ ) = Δ
)
. (7.8.1)
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Proof. Fix r ≥ 1 and Δ ∈ C1,r with top boundary half-length p. We will write N for N(Δ)

to simplify notation. Using (7.5.4) and the fact that T (1)
∞ is the local limit of T (1)

n , we have

P

(
B•
r (T (1)

∞ ) = Δ
)
=

C(p)

C(1)
8−N(Δ). (7.8.2)

On the other hand, (7.5.3) gives the formula

P

(
B•
r (T

(1)
n ) = Δ

)
=

Bn−N,p
Bn,1

· #inner vertices in T (1)
n \Δ

#inner vertices in T (1)
n

≤ Bn−N,p
Bn,1

· n−N

n
,

where the last inequality is given by Euler’s formula and the fact that at most p vertices
of ∂∗Δ are identified together in T (1)

n . (We still need n > N + p since T (1)
n \ Δ will have

n−N − p inner vertices if none of these identifications occur.)
Then, using the bounds of (7.4.5) and the asymptotics of (7.4.3), we get that

P

(
B•
r (T

(1)
n ) = Δ

)
≤ c∗C(p)

(
n

n−N

)3/2

8−N

for some constant c∗. Comparing the last bound with (7.8.2) gives the desired result.

Proof of Proposition 7.8.4. We will only sketch the main arguments of the proof, as it
follows closely the proof of Proposition 21 in [CLG19].

Fix ε > 0 and ν > 0. Its suffices to prove that, for all n sufficiently large, we have

P

(∣∣∣∣∣d(ρn, on)�d(ρn, on)
− c0

∣∣∣∣∣ > 2ε

)
< ν. (7.8.3)

Indeed, as stated in Theorem 7.2.4, the rescaled oriented distances from the origin
converge to a Brownian snake. This implies, as detailed in Proposition 7.4.1, that the
sequence n−1/4�d(ρn, on) is bounded in probability, so that the statement of the proposition
will follow from (7.8.3).

Let us give an idea of how to obtain (7.8.3). We first want to use Lemma 7.8.5 to
bound the probability of the event

En,r,ε :=

{
sup
x∈∂∗Δ

∣∣∣∣∣d(ρn, x)�d(ρn, x)
− c0

∣∣∣∣∣ ≥ ε

}
,

using Proposition 7.8.3.
However, Lemma 7.8.5 can only give us that, for any b ∈ (0, 1),

lim
r→∞

(
sup
n≥1

P(En,r,ε ∩ Fn,r,b)

)
= 0, (7.8.4)

where
Fn,r,b :=

{
N(B•

r (T
(1)
n )) ≤ (1− b)n

}
.

We now want to replace Fn,r,b by events that are more manageable, to get to (7.8.3).
Fix some constants 0 < α < β < γ. We write Br(T (1)

n , on) for the ball of radius r

centered at on in T (1)
n (for the oriented distance). For every n ≥ 1, we define the event

Dβ,γ,n :=
{
βn1/4 < �d(ρn, on) ≤ γn1/4

}
.
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We have that(
Dβ,γ,n ∩ {N(B�(β−α)n1/4
(T (1)

n , on)) > bn}
)
⊂ Fn,�αn1/4
,b,

since, on Dβ,γ,n, B�(β−α)n1/4
(T
(1)
n , on) is entirely contained in the complement of B•

�αn1/4
(T
(1)
n ).

Hence, we get from (7.8.4) that

lim
r→∞

P

(
En,�αn1/4
,ε ∩Dβ,γ,n ∩ {N(B�(β−α)n1/4
(T (1)

n , on)) > bn}
)
= 0 (7.8.5)

as well.
The idea is then to get rid of the condition on N(B�(β−α)n1/4
(T

(1)
n , on)) by taking b

small enough. Then, we choose a family of events (Dβj ,γj ,n)j such that their union occurs
with high probability, to get that the event⋃

j

((
En,�αn1/4
,ε

)c
∩Dβj ,γj ,n

)
(7.8.6)

occurs with high probability as well.
Then, to conclude the proof, we show that when the event (7.8.6) occurs, the event in

(7.8.3) does not hold.

For the first step, note that, given any y < 1, we can choose b ∈ (0, 1) such that

lim inf
n→∞

P

(
N(B�(β−α)n1/4
(T (1)

n , on)) > bn
)
≥ y. (7.8.7)

This is a consequence of the convergence of the rescaled oriented distances from the origin
to a Brownian snake, as shown in Proposition 7.4.2.

As (7.8.7) holds for y arbitrarily close to 1, (7.8.5) implies that we also have, as an-
nounced,

lim
n→∞

P

(
En,�αn1/4
,ε ∩Dβ,γ,n

)
= 0. (7.8.8)

To choose our family of events (Dβj ,γj ,n)j , note that Proposition 7.4.1 implies that
there exist constants 0 < δ < η such that

P

(
δn1/4 < �d(ρn, on) ≤ ηn1/4

)
≥ 1− ν

2
.

Thus, we just have to choose a range of βj , γj such that the union ∪jDβj ,γj ,n contains the
event of the previous display.

It then remains to show that we have∣∣∣∣∣d(ρn, on)�d(ρn, on)
− c0

∣∣∣∣∣ > 2ε

on the event (7.8.6).
This last step can be adapted verbatim from the proof of Proposition 21 in [CLG19],

replacing once again dgr by �d, and dfpp by d.

We will now derive our final result of asymptotic proportionality between the oriented
and non-oriented distances, Theorem 7.1.2. This one is in the context of Tn, the uniform
rooted plane Eulerian triangulation with n black faces, that is in correspondence with
T (1)
n as shown in Figure 7.4.1. As previously, we use d to denote the non-oriented graph

distance.
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Proof of Theorem 7.1.2. Let us give an idea of the proof of this theorem, which follows
once again the arguments of the proof of Theorem 1 in [CLG19].

From Proposition 7.8.4 and the correspondence between T (1)
n and Tn, we get that, if

o′n is a uniform vertex of Tn, we have

P

(
|d(ρn, o′n)− c0�d(ρn, o

′
n)| > εn1/4

)
−−−→
n→∞

0. (7.8.9)

Observe now that T n, re-rooted at a random uniform edge en (remember that all edges
of Tn have a canonical orientation), still pointed at o′n, has the same distribution as T n.
This allows us to deduce from (7.8.9) a similar statement on distances between two random
uniform vertices o′n, o

′′
n of Tn:

P

(
|d(o′n, o′′n)− c0�d(o

′
n, o

′′
n)| > εn1/4

)
−−−→
n→∞

0. (7.8.10)

We now want to make this statement into a global one on all the vertices of Tn.
Let us fix δ ∈ (0, 1/2). We can choose an integer k ≥ 1 such that, for every n sufficiently

large, we can pick k random vertices (o1n, . . . , o
k
n) uniformly in Tn and independently from

one another, satisfying

P

(
sup

x∈V (Tn)

(
inf

1≤j≤k
�d(x, ojn)

)
< εn1/4

)
> 1− δ. (7.8.11)

This follows from the convergence of the rescaled oriented distances from the origin to a
Brownian snake, see Proposition 7.4.3.

Then, (7.8.10) implies that we also have, for all sufficiently large n,

P

⎛⎝ ⋂
1≤i≤j≤k

{|d(oin, ojn)− c0�d(o
i
n, o

j
n)| ≤ εn1/4}

⎞⎠ > 1− δ.

Observe now that

sup
x,y ∈V (Tn)

|d(x, y)−c0�d(x, y)| ≤ sup
1≤i,j≤N

|d(oin, ojn)−c0�d(o
i
n, o

j
n)|+5 sup

x∈V (Tn)

(
inf

1≤j≤N
�d(x, ojn)

)
.

Using the previous two bounds, the right-hand side of this inequality can be bounded by
6ε outside a set of probability at least 2δ for all sufficiently large n, which concludes the
proof.

Let us finally give a short proof of why c0 ≥ 2/3. Consider Tn, the uniform rooted
plane Eulerian triangulation with n black faces. From Theorem 7.1.2, for any ε, δ ∈ (0, 1),
for n large enough,

|dn(x, y)− c0�dn(x, y)| ≤ εn1/4, ∀x, y ∈ (Tn), (7.8.12)

outside an event of probability less than δ.
Suppose c0 < 2/3. Then, on the event of (7.8.12), for any x, y ∈ (Tn) such that

dn(x, y) ≥ cn1/4, (7.8.13)

for some c > 0, we have:
�dn(x, y) ≥

(
1

c0
− ε

c

)
dn(x, y).
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This means that, for any geodesic γ for the distance dn from x to y in Tn, a proportion
larger than or equal to (1/c0 − 1 − ε/c) of the edges of γ are oriented from y to x. But,
as the above bound also applies when we exchange x and y, the same proportion of edges
of γ must be oriented from x to y, which is not possible if (1/c0 − 1− ε/c) > 1/2, that is,
ε/c < 1/c0 − 3/2.

Since, for any c ∈ (0, 1), for n large enough, a positive proportion of pairs of vertices
of Tn satisfy (7.8.13), we deduce that (7.8.12) cannot have a high probability, if c0 < 2/3.
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CHAPITRE 8

Études des boules de la triangulation eulérienne infinie du demi-plan
supérieur
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8.1 Setting

This chapter is closely related to the previous one, and as such we will use the same notation
without introducing it again. In particular, recall that we have defined in Chapter 7
the Lower Half-Plane Eulerian Triangulation L, whose skeleton is defined by a bi-infinite
sequence of independent Galton-Watson trees (Ti)i∈Z, with critical offspring distribution
θ.

In this chapter, we define a new random Eulerian triangulation of the half-plane, the
Upper Half-Plane Eulerian Triangulation U . As its name indicates, it is the equiva-
lent of well-known models such as the UHPT or UHPQ, in the case of Eulerian triangula-
tions.

In Section 8.5 and Section 8.6, we proceed similarly to Section 4 of [CLG19], to obtain
estimates on the (oriented) distances along the boundary of U , that will be carried to L
by an “absolute continuity” property: we derived these estimates in L in Chapter 7, using
an independent proof involving the block decomposition of L.

Using U to obtain these estimates necessitates a precise understanding of its structure.
In Section 8.2, after defining U , we show that it is the local limit of the infinite Eulerian
triangulation of the 2p-gon, T p

∞, as p → ∞. Then, in Section 8.3, we will investigate the
structure of the balls and hulls of U , and see that they involve Eulerian triangulations with
new types of boundary conditions. In Section 8.4, we recall the asymptotic enumeration
results derived for these new boundary conditions in Chapter 9, and prove some addi-
tional bounds relating the generating functions for these new boundary conditions, to the
generating function for the semi-simple alternating boundary condition.

Notably, the alternative proof carried out in this chapter allows us to gain insight
on the structure of U , by decomposing it into spherical layers described by a branching
process, together with Boltzmann Eulerian triangulations with several types of boundary
conditions. This is expressed more precisely in Theorem 8.5.1, whose statement requires
the introduction of a good bit of notation.

8.2 The Upper Half-Plane Eulerian Triangulation

We thus construct a triangulation of the upper half-plane R × R+. A key step in this
construction is an infinite tree embedded in the half-plane, whose vertex set is {(12+i, j), i ∈
Z, j ∈ Z≥0}. We start with the construction of this tree.

The tree has an infinite “spine” that consists of all the vertices of the (discrete) half-
line {(12 , j), j ∈ Z≥0}. We can view the tree as growing downwards, and thus for every
j ≥ 1 the vertex (12 , j) is the parent of (12 , j − 1). Let θ̄ be the size-biased distribution
associated with θ, that is: θ̄(k) = k · θ(k) for all k ≥ 1. Each vertex (12 , j) of the spine has,
independently of all the others, a random number mj of children distributed according to
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θ̄, and these children are the vertices (12 + k, j − 1), for lj − mj ≤ k ≤ lj − 1, where lj is
uniform in {1, 2, . . . ,mj}. The pairs (mj , lj), j ∈ Z≥0 are assumed to be independent.

Then, to each vertex (12 + k, j) with k �= 0 which is a child of a vertex of the spine, we
attach (independently and independently of the pairs (mi, li), i ∈ Z≥0) a Galton-Watson
tree with offspring distribution θ truncated at height j, such that the vertices at height r
(for 0 ≤ r ≤ j) in this tree will be points of the form (12 + i, j − r). Without going into
the details, it is possible to draw these trees in the half-plane so that no two edges cross,
and so that vertices are exactly all the points of the form (12 + i, j), i ∈ Z, j ∈ Z≥0 (see
Figure 8.2.1).

We now construct the triangulation itself, similarly to L. We start with the “distin-
guished” modules, which will play the role of skeleton modules for our infinite triangulation.
For each (i, j) ∈ Z× Z>0, we construct a module for which the points (i− 1, j) and (i, j)
will be the vertices of type n + 1. The vertex of type n of the module will be the point
(k, j − 1), where k is the minimal integer such that the tree vertex (12 + k, j) is a child of
(12 + i′, j), for some i′ > i. The last vertex of this module, the type n + 2 one, is set as
the point (12 + i, j + ε), for some arbitrary 0 < ε < 1. We draw the edges of these modules
in a such a way that they are all distinct, and do not cross. Note that, keeping the same
convention as for finite triangulations, the vertices of the form (12 + i, 0) in the infinite
tree are associated in the same way with “ghost” skeleton modules which are below the
boundary. We finish the construction of the triangulation by filling in the slots bounded by
the skeleton modules, with independent Boltzmann Eulerian triangulations of appropriate
perimeters1.

The resulting triangulation of the upper half-plane, which we will denote by U , is called
the Upper Half-Plane Eulerian Triangulation (UHPET). It is rooted at the edge from
(0, 0) to (12 , ε).

Proposition 8.2.1. We have

T (p)
∞

(d)−−−→
p→∞

U

in the sense of local limits of rooted planar maps.

Proof. Let us just give an idea of the proof, as it is very similar to the one of Proposition
6 in [CLG19]. It is also similar to the proof of the convergence to L in Chapter 7: proving
the desired convergence amounts to show that, for any Eulerian triangulation A with
boundaries,

P

(
Br(T (p)

∞ ) = A
)
−−−→
p→∞

P(Br(U) = A). (8.2.1)

To do so, like for the convergence to L, we actually show that the liminf of the left-hand
side is larger than or equal to the right-hand side.

Despite this similarity in principle, this proof involves calculations that are disjoint from

the ones concerning L, as we take here the limit p → ∞ (recall that B̃•
s

(
T (p)
∞
)

(d)−−−→
s→∞

L).
Let us introduce a bit of notation, similar to the notation we used in the proof of Propo-

sition 7.6.1 in Chapter 7. Consider r ≥ 1 fixed and denote by F (p)
0,r =

(
T

(p)
0 ,T

(p)
1 , . . . ,T

(p)

L
(p)
r −1

)
the skeleton of B•

r

(
T (p)
∞
)
. In U , we denote by Γ(i,j) the subtree of descendants of (12 + i, j)

in the infinite tree, and it is understood that Γ(0,j) has a distinguished vertex corresponding
to (12 , 0). In the sequel, we will just consider the Γ(i,j) as abstract plane trees, without
their specific embedding in R× R+.

1Note that, as the boundary of Boltzmann Eulerian triangulations is semi-simple, this can have the
effect of identifying vertices with coordinates of the form ( 1

2
+ i, j + ε), ( 1

2
+ i′, j′ + ε), so that vertices of

this type may be associated to several sets of coordinates
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Figure 8.2.1 – Construction of the UHPET

Let us fix k ≥ 1. For any forest F = (σ0, . . . , σl−1) ∈ Fp,l,r with l ≥ 2k + 1, we write
Φk(F) = (σl−k, . . . , σl−1, σ0, . . . , σk) where it is understood that, in Φk(F) like in F , σ0
comes with a distinguished vertex at height r.

We claim that it is enough to prove that, for every finite set Fk = (τ−k, . . . , τ0, . . . , τk)
of 2k + 1 plane trees of maximal height r, with a distinguished vertex at height r in τ0,

P

(
{Φk

(
F (p)
0,r

)
= Fk} ∩ {L(p)

r ≥ 2k + 1}
)
−−−→
p→∞

P
((
Γ(−k,r), . . . ,Γ(0,r), . . . ,Γ(k,r)

)
= Fk

)
.

(8.2.2)
(Note that the equalities between these collections of trees entail that they have the same
distinguished vertex in their central tree.)

Indeed, if k is large enough, we can find a collection Fk of forests Fk such that the
probability of the event {

(
Γ(−k,r), . . . ,Γ(0,r), . . . ,Γ(k,r)

)
∈ Fk} is close to 1, and, on that

event, the ball Br(U) is a deterministic function of the trees Γ(−k,r), . . . ,Γ(k,r) and of the
triangulations with a boundary filling in the slots associated with the vertices of these
trees. (Note that we need k to be large, so that the (2k + 1) subtrees of the skeleton of U
and the associated slots are enough to cover the ball Br(U), not only vertically, which is a
given, but also horizontally.) Likewise, on the event {Φk

(
F (p)
0,r

)
∈ Fk} ∩ {L(p)

r ≥ 2k + 1},
the ball Br

(
T (p)
∞
)

is given by the same deterministic function of the trees in Φk

(
F (p)
0,r

)
and

of the associated triangulation with a boundary. Thus, the desired convergence of (8.2.1)
will follow from (8.2.2), together with the fact that, for every fixed r ≥ 1 and j ≥ 1,

P

(
L(p)
r = j

)
p→∞−−−→ 0,

where, as in Chapter 7, L(p)
r is the length of the top cycle of B•

r (T
(p)
∞ ). This last convergence

easily follows, like in [CLG19], from the asymptotic behavior of θ.
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To prove (8.2.2), we expand its left-hand and right-hand sides. The right-hand side
can be written very straightforwarly:

P
((
Γ(−k,r), . . . ,Γ(0,r), . . . ,Γ(k,r)

)
= Fk

)
=

∏
v∈(τ−k,...,τk)∗

θ(cv), (8.2.3)

where, as before, for a collection F of trees, F∗ stands for the set of vertices in F that are
not at the maximal height, and, for such a vertex v, cv is the number of children of v.

Now, using the definition of the law Pp,r of B•
r

(
T (p)
∞
)
, the left-hand side of (8.2.2) is

equal to

∞∑
l=2k+1

∑
F∈Fp,l,r,Φk

(
F(p)

0,r

)
=Fk

4−lC(l)

4−pC(p)

∏
v∈F∗

θ(cv)

=

⎛⎝ ∏
v∈(τ−k,...,τk)∗

θ(cv)

⎞⎠ ·

⎛⎝ ∞∑
l=2k+1

4−lC(l)

4−pC(p)

∑
σk+1,σk+2,...,σl−k−1

∏
v∈(σk+1,...,σl−k−1)∗

θ(cv)

⎞⎠
(8.2.4)

where the second sum in the last line runs over all possible choices for the set of plane
trees {σk+1, σk+2, . . . , σl−k−1} of maximal height at most r, with p−mk vertices at height
r, mk being the number of vertices at generation r in Fk.

Let us denote by Ap the second term of the second line in (8.2.4): to conclude the
proof, as advertised, it suffices to prove that lim infpAp ≥ 1.

Setting ϕ(l) := 4−lC(l) as in Chapter 7, we have

Ap =
∞∑

l=2k+1

ϕ(l)

ϕ(p)
Pl−(2k+1) (Yr = p−mk) =

∞∑
l=0

ϕ(l + 2k + 1)

ϕ(p)
Pl−(2k+1) (Yr = p−mk)

≥
∞∑
l=0

ϕ(l)

ϕ(p)
Pl (Yr = p−mk) ,

the last inequality relying on the fact that ϕ is monotone increasing. Indeed, as, for all
0 ≤ z < 1, ∑

l≥0

ϕ(l)zl =
3

8

z√
π(1− z

4)(1− z)3
,

we have∑
l≥0

(ϕ(l + 1)− ϕ(l))zl =
3

8

1√
π(1− z

4)(1− z)3
(1− z) =

3

8

1√
π(1− z

4)(1− z)
.

This last generating function has nonnegative coefficients, since it is the case for z �→ 1√
1−z ,

which means that ϕ is indeed monotone increasing. Note that this argument is slightly
more involved than the equivalent one in [CLG19], as we do not have a simple expression
for ϕ(l).

We then use the asymptotic behavior of θ to conclude that lim infpAp ≥ 1: the details
of this last part of the proof can be adapted verbatim from the proof of Proposition 6 in
[CLG19].
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8.3 Structure of the balls of the UHPET

For any integer r ≥ 1, we define the ball of radius r of U , Br(U), as the submap of U
obtained by keeping only the faces and edges of U incident to at least a vertex at oriented
distance less than r− 1 from the root. We also define its hull B•

r(U) as the union of Br(U)
and all the finite connected components of its complement. Note that this is the notion
we detailed in Chapter 7 for Eulerian triangulations without boundary, and not the notion
of “vertical” balls and hulls Br, B

•
r that would simply yield the layers of U .

As U has a boundary, we can expect that its “spherical” balls and hulls will have a
slightly different structure than what we described for planar Eulerian triangulations with-
out boundary in Chapter 7. We now investigate this possibly new structure.

We can straightforwardly use again the notion of type-r modules, module diagonals,
and orient them “left-to-right”. Then, we still want to see the union of these oriented
diagonals as a set of oriented curves Cr(U). The idea is that, instead of being closed, some
of these curves start and end on the half-plane boundary. Let us explain how this occurs.

We must first examine what happens at vertices of U of type r. For inner vertices, the
arguments of Chapter 7 still stand, and we have an alternation of ingoing and outgoing
diagonals. However, for boundary vertices, we must be more careful.

Consider a boundary vertex v of type r. If the leftmost type-r triangle incident to v
is black (and so corresponds to a module diagonal that goes out of v), it will be unpaired
by our resolution rule, and thus it will be the starting point of a curve. Similarly, if the
rightmost type-r triangle incident to v is white, it will be unpaired, and be the end point
of a curve (see Figure 8.3.1).

r

r − 1

r − 1

r − 1

r − 1

r + 2

r − 1

r + 1

r

Figure 8.3.1 – In U , the curves in Cr(U) can end on ∂U , either on a type-r vertex (left), or
on an unpaired type-r triangle (right).

(As ∂U is semi-simple, if v has coordinates of the type (i, 0), it might be the end of
an isthmus of the infinite face of U : in that case the only edge incident to v is oriented
away from it, so that the oriented distance from the origin to v is a priori ill-defined... we
can resolve this by setting �d(ρ,v) = �d(ρ, u) + 2, where u is the only neighbor of v, and

166



has “coordinates” (i ± 1/2, ε). In any case, v is not adjacent to an infinite component of
U \Br(U), so that this pathological case will not appear on the boundary of the hull B•

r(U),
which is what really interests us.)

Another new feature to take into account is that not all triangles of U are paired into
modules. Indeed, if a triangle f of type r shares its edge of type r − 1 → r + 1 with ∂U ,
then f does not belong to a type-r module, so that the “half-diagonal” crossing f starts
(resp. ends) at ∂U if f is white (resp. black) (see Figure 8.3.1).

As the union of module diagonals is even (and with alternating orientation) on inner
vertices of type r, the curves in Cr(U) are either closed (but may “rebound” on ∂U on
boundary vertices of type r), or they start and end at ∂U , either at vertices of type r, or at
the edge of type r−1 → r+1 of an unpaired triangle of type r. For the same reasons as in
Chapter 7, it is still the case that the closed curves in Cr(U) cannot encircle one another,
and that each closed curve must be simple.

Let note that, by our choice of orientation of the module diagonals, a semi-circular
curve C ∈ Cr(U) either goes right to left between two points on the boundary that are
on the same side of the origin, or it goes from a point that is on the left of the origin,
to one that is on the right. With this observation, together with a slight variation of the
arguments for closed curves, we can show that a “semi-circular” curve in Cr(U) must also
be simple, and cannot rebound on ∂U (see Figures 8.3.2 and 8.3.3), and that neither two
semi-circular curves, nor a semi-circular one and closed one, can separate the same vertex
from the origin (see Figure 8.3.4).

Figure 8.3.2 – Half of the possible self-intersections for a semi-circular curve, as well as
rebounding on ∂U after a right-to-left semi-circle, are forbidden because they do not follow
our resolution rule.
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r

0

r − 1

r

0

r − 1

r

0

r − 1

Figure 8.3.3 – The other half of the possible self-intersections for a semi-circular curve, as
well as rebounding on ∂U after a left-to-right semi-circle, are forbidden because they would
prevent the existence of oriented geodesics from the origin to some vertex of type r − 1.
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r

0

r

r

0

r

r

0

r

r

0

r

r

0

r

Figure 8.3.4 – In each of the five possible configurations where a semi-circular curve and
anothe curve in Cr(U) would separate the same vertex from the origin, is forbidden because
it would prevent the existence of oriented geodesics from the origin to some vertex of type
r.
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Our previous remarks imply that there is a unique semi-circular curve C ∗ that encircles
the origin, and it is the unique curve in Cr(U) that separates an infinite submap of U from
the root (it is clear that every closed curve separates a finite submap from the root).

Thus, we can state without any ambiguity that, like in the boundary-less case, we can
obtain Br(U) from U by doing one of the following operations, for each curve C ∈ Cr(U):

• replace all the faces that C separates from the origin by a single, simple face if C is
closed

• replace all the faces that C separates from the origin by a single, simple face and
merge it with the infinite face of U if C is semi-circular

This yields a (finite) planar Eulerian triangulation with boundaries: the ones corre-
sponding to closed curves are simple and alternating, while the one obtained from all the
operations related to the semi-circular curves may have defects in the alternation of col-
ors, corresponding to the points where the curves meet ∂U (see Figure 8.3.5), and also has
semi-simple portions, corresponding to parts of ∂U .

Figure 8.3.5 – There are cases where the boundary of B•
r(U) (depicted in red) has defects

(depicted by red stars) in the alternation of colors, at the vertex where the two portions
of the boundary meet.

Now, the hull B•
r(U), which is obtained from Br(U) by gluing to it all the finite com-

ponents of its complement, has one boundary, which has two parts: one that is also a
part of ∂U , and is thus alternating and semi-simple, and another one which is delimited
by C ∗, and it thus alternating and simple. We will keep with B•

r(U) the information of
two distinguished boundary vertices, namely the ones that separate the two parts of its
boundary. As mentioned before, at these two distinguished points, the boundary of B•

r(U)
might have defects in the alternation of colors. We will now explain how the presence or
absence of defects, and the overall structure of B•

r(U), depends on the value of r.

170



Let us start by looking at B•
1(U). We know that the faces of U adjacent to the semi-

circular part of the boundary of B•
1(U) form a chain of modules of type 1, which thus all

share the origin as their “bottom” vertex. What remains to determine is therefore where
exactly this chain meets ∂U , left and right of the origin: is it at a vertex of coordinates
(i, 0), or of coordinates (i+ 1/2, ε), or at an unpaired triangle of type n?

To resolve this, let us focus on the slot M delimited by ∂U and the rightmost module
of ∂B•

1(U): it is, obviously, a planar Eulerian triangulation with a boundary. We denote
by E◦ the number of edges on this boundary that are adjacent to a white triangle, E• the
number of edges on this boundary that are adjacent to a black triangle, E the total number
of edges of M , T◦ its number of white triangles, and T• its number of black triangles. Then,
observe that the edges of M that are not adjacent to a white triangle, are precisely the
boundary edges adjacent to a black triangle, and vice versa. Thus:

E = 3T◦ + E•
= 3T• + E◦,

so that
E• ≡ E◦ (mod 3). (8.3.1)

As shown in Figure 8.3.6, this is only possible if the leftmost and rightmost modules of
∂B•

1(U) meet ∂U at vertices of coordinates of the form (i+ 1/2, ε). Note that this implies
that ∂B•

1(U) has defects in the alternation of colors at these two points, while all the slots
between the boundary modules, including the two extreme ones, have strictly alternating
boundaries.

Applying the same criterion for the leftmost and rightmost slots between the boundary
modules of B•

1(U) and B•
2(U), we see that this time, it is necessary that the intersection

of the chain of modules of ∂B•
2(U) and ∂U occurs on both sides at unpaired triangles. We

have still one defect of alternation at each of these intersections, and this time the two
extreme slots have defects too (also at the leftmost and rightmost points shared by their
boundary and ∂U).

Then, going to B•
3(U), we see that the only possible configuration is stll a different one,

with intersections at vertices with coordinates of the form (i, 0). This time, the boundary
of the hull is strictly alternating, while the two extreme slots present defects at the leftmost
and rightmost points shared by their boundary and ∂U .

For larger values of r, it is clear that we get back to the same situation for r = 4 as we
had for r = 1, and so on.

Note that, to proceed like in Section 7.5 of Chapter 7, the objects that we really want
to enumerate to derive asymptotic expressions for probabilities, are the complements of
the hulls of U , rather than the hulls themselves. Thus, let us note that the boundary of
U \B•

r(U) is also made of two parts: a “spherical” part that matches the one in ∂B•
r(U), and

a horizontal, infinite one which is ∂U \(∂U ∩∂B•
r(U)). These two parts are still alternating,

and their meeting points present defects in the alternation of colors if and only if, there
are defects at the same points in ∂B•

r(U).
For the boundary of these complements, we also keep the information about the two

distinguished boundary vertices that separate the two parts of the boundary.
We have talked so far of the color conditions for the boundaries of the complements of

the hulls of U and of the slots of these hulls, and have seen that some of them present two
defects in the alternation of colors, as in the general layout shown in Figure 8.3.7: we thus
call them Eulerian triangulations with an alternating boundary with defects of size
1.

We must also pay attention to the simplicity conditions of the boundaries of these
Eulerian triangulations.
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Figure 8.3.6 – Configurations for the first hulls of U : only the right part is shown, as the
left part has symmetric conditions. As before, slots are in medium grey and ghost modules
in pale grey.
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2p

2q

Figure 8.3.7 – General layout of a boundary with defects for an Eulerian triangulation,
where the black regions represent boundary edges that are adjacent to white faces of the
triangulation, and the white segments in-between them represent boundary edges that are
adjacent to black faces.

Let us start with the boundary of U \B•
r(U), for r ≡ 1 (mod 3). Thinking of its possible

pinch-points as identifications of boundary vertices starting from a simple boundary (like
the layout of Figure 8.3.7), we see that identifications between vertices of the spherical
part still follow the semi-simplicity conditions, for the same reasons that the boundary of
the complement of a hull of an Eulerian triangulation without boundary is semi-simple.
Moreover, by construction, the horizontal part of the boundary of U \B•

r(U) is semi-simple
as well. What remains to determine are the possible identifications/pinching between these
two parts of the boundary. We then see that such identifications are not possible, because
if that were the case, the curve running through the modules that are adjacent to the
boundary of B•

r(U) could not be the unique curve C ∗ ∈ Cr(U) that separates the origin
from infinity (see Figure 8.3.8).

Putting all these rules together, the simplicity conditions of the boundary of U \B•
r(U)

can be summed up in Figure 8.3.9. We call such simplicity conditions non-chaining, for
reasons that shoud be clear very soon.

Note that the leftmost and rightmost slots between the boundary modules of B•
r−1(U)

and B•
r(U) will naturally have the same boundary conditions, for r ≡ 2 (mod 3).

Now, let us consider the boundary of U \ B•
r(U) for r ≡ 2 (mod 3). The spherical and

horizontal parts of this boundary are once again semi-simple. As for the identifications
between these two parts, they are now allowed, since they are not in conflict with the
properties that helped us define B•

r(U) (see Figure 8.3.10).
This new set of simplicity conditions is summed up graphically in Figure 8.3.11. Note

that the possibility of identifying vertices of the two parts of the boundary means that we
can have configurations where the triangulation actually looks like a “chain” of Eulerian
triangulations with defects, so that we call this set of simplicity conditions chaining.

Once again, the leftmost and rightmost slots between the boundary modules of B•
r−1(U)

and B•
r(U) will naturally have the same boundary conditions, for r ≡ 0 (mod 3).

8.4 Enumeration results

Before delving into the calculations of probabilities for the hulls of U , we thus need asymp-
totic enumeration results for the new families of Eulerian triangulations with a boundary
that we have encountered.

We are interested in the generating series B(1)(t, y, z) of Eulerian triangulations with
either a “semi-simple non-chaining” or “semi-simple chaining” alternating boundary with
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Figure 8.3.8 – Top-bottom identifications on the boundary of U \B•
r(U) are forbidden when

r ≡ 1 (mod 3), since they contradict the fact that the curve running through the modules
that are adjacent to this boundary is the unique curve C ∗ ∈ Cr(U) that separates the origin
from infinity.
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+ OK

+ OK

+ NO

+ NO

+ NO

Figure 8.3.9 – The possible identifications of boundary vertices in U \ B•
r(U) for r ≡ 1

(mod 3) and the extreme slots for r ≡ 2 (mod 3). The prohibition of the “square-cross”
identifications means that we have no chaining configurations here.

defects of size 1 (see Figure 8.3.7), respectively

B(1)(t, y, z) =
∑

n,p,q≥0

B(1)
n,p,qt

nypzq

and
B(1,c)(t, y, z) =

∑
n,p,q≥0

B(1,c)
n,p,qt

nypzq

where t enumerates the number of black triangles, y the half-length of the upper boundary,
and z the half-length of the lower boundary.

We obtain in Chapter 9:⎧⎪⎪⎪⎨⎪⎪⎪⎩
B

(1)
n,p,q ∼

n→∞
D(p, q)8nn−5/2 ∀ p, q

D(p, q) ∼
q→∞

E(p)4q
√
q ∀ p

E(p) ∼
p→∞

27
√
6

32π 4p.

(8.4.1)

We are also interested in the behavior of the coefficients

Z̃(p, q) =
∑
n

1

8n
B(1)
n,p,q.

We obtain that, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
4p
∑

q Z̃(p, q)
(
1
4

)q ∼
p→∞

9
√
3

8
√
πp3/2

1
4q
∑

p Z̃(p, q)
(
1
4

)p ∼
q→∞

9
√
3

8
√
πq3/2∑

p,q Z̃(p, q)
(
1
4

)p (1
4

)q
= 27

8 .

(8.4.2)

As for B(1,c), we get asymptotic results similar to the ones for B(1):⎧⎪⎪⎪⎨⎪⎪⎪⎩
B

(1,c)
n,p,q ∼

n→∞
Dc(p, q)8

nn−5/2 ∀ p, q
Dc(p, q) ∼

q→∞
Ec(p)4

q√q ∀ p

Ec(p) ∼
p→∞

144
√
6

49π 4p,

(8.4.3)
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Figure 8.3.10 – Top-bottom identifications on the boundary of U \B•
r(U) are allowed when

r ≡ 2 (mod 3), since in that case there is no contradiction.
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+ OK

+ OK

+ NO

+ NO

+ OK

Figure 8.3.11 – The possible identifications of boundary vertices in U \ B•
r(U) for r ≡ 2

(mod 3) and the extreme slots for r ≡ 0 (mod 3), and an example of a chaining configura-
tion, corresponding to a “circle-triangle” identification. Note that the colors in this picture
are reversed compared to Figure 8.3.6, so that the boundary conditions can be more easily
compared to the non-chaining case.
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and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
4p
∑

q Z̃c(p, q)
(
1
4

)q ∼
p→∞

9
√
3

8
√
πp3/2

1
4q
∑

p Z̃c(p, q)
(
1
4

)p ∼
q→∞

9
√
3

8
√
πq3/2∑

p,q Z̃c(p, q)
(
1
4

)p (1
4

)q
= 27

8 ,

(8.4.4)

where Z̃c is defined similarly to the non-chaining case.

We will need to compare Z̃ and Z̃c with Z. We have the following bounds:

Proposition 8.4.1. For every p, q ≥ 1,

Z(p+ q + 1) ≤Z̃(p, q) ≤ Z(p+ q − 1) (8.4.5)
1

8
Z(p+ q + 1) ≤Z̃c(p, q) ≤ 84 Z(p+ q − 1). (8.4.6)

Proof. Let us start with the upper bounds. We will transform injectively any triangulation
A with defects, either chaining or non-chaining, of boundary parameters (p, q), into a
triangulation an with alternating semi-simple boundary of length 2(p + q − 1). To do so,
consider the leftmost simple oriented path from the bottom left corner to the vertex just
left of the bottom right corner of A in Figure 8.4.1. Such a path may have edges on the
top boundary of A, and vertices on its bottom boundary boundary, but never edges on
the bottom: indeed, due to the semi-simplicity conditions, there cannot be any bridge in
the external face (see Figure 8.4.1). Note that this is always true in the non-chaining case,
but in the chaining one, due to the simplicity conditions, the starting and ending corners
of the path might be isthmuses in the external face. To circumvent this, in the chaining
we systematically add some additional triangles to A (see Figure 8.4.3), so that if A has
n black triangles, we will obtain an alternating triangulation with n + 4 triangles, which
reflects on the obtained bound.

Having constructed a directed path as above in either case, we know that all its edges
have a black triangle on the right, and the path itself cuts A into a (possibly disconnected)
top part, and a bottom part (also possibly disconnected, but containing all the triangles
adjacent to the bottom boundary). If we cut A along the path, all the bottom components
have both black triangles along the top, and a black triangle in their bottom left corner.
Thus, we can rotate them by one edge anticlockwise, and reglue them to the rest of A. As
depicted in Figure 8.4.3, this yields a triangulation that has two additional defects adjacent
to the already present ones. Note that if an edge on the top boundary belonged to the
path, it was adjacent to a black triangle, which is still the case after the transformation,
so that the top boundary colors are left unchanged. Then, we can glue together the two
adjacent black and white edges belonging to defects on the left on the one hand, and those
on the right on the other, to get an alternating boundary.

To get the lower bounds, we proceed similarly to transform injectively a triangulation
A with an alternating boundary of length 2(p+q+1) into a triangulation with defects, with
boundary parameters (p, q), and satisfying either the non-chaining or chaining boundary
conditions.

We also start from a simple oriented leftmost path, this time from, say, the end of the
root edge to the boundary vertex that sits 2p edges further, anticlockwise. Then, like before,
we cut along this path and rotate the right part(s) by one edge clockwise, which will create
the desired defects (see Figure 8.4.2). More precisely, the obtained Eulerian triangulations
has an alternating boundary with defects non-chaining boundary conditions, with upper
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e f

g

g′

h

h′

e f

g

g′

h

h′

e f

g′′ h′′

Figure 8.4.1 – We transform a triangulation wih defects into a completely alternating one,
by rotating parts of it (top), then gluing together boundary edges (middle), to become
inner edges (bottom).
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Figure 8.4.2 – We transform a triangulation with an alternating boundary (top) into one
with defects (bottom), by rotating parts of it.
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Figure 8.4.3 – Additional triangles needed, respectively before the transformation from
chaining to alternating (top), and after the transformation from alternating to chaining
(bottom).

boundary length 2p (on the left in the second drawing of Figure 8.4.2), and lower boundary
length 2q.

To transform an Eulerian triangulation with an alternating boundary into one with
chaining boundary conditions, we want to proceed similarly. However, the triangulation
with defects created by the above operation may have the vertex at the center of its “white-
white” defect as a pinch point, which is not allowed in chaining boundary conditions.
Therefore, to be sure to get the appropriate simplicity conditions, we add systematically a
pair of triangles to A on the top two edges (see Figure 8.4.3), hence the additional constant
in the bound.

8.5 Ball events

Let us introduce a bit of notation, before stating the main result of this chapter. We
want to study the spherical layer B•

r+1(U) \ B•
r(U), conditionally on B•

r(U). If A is an
Eulerian triangulation with a boundary, such that P

(
B•
r+1(U) \ B•

r(U) = A
)
> 0, then,

from Section 8.3, A either has alternating semi-simple, alternating with defects and non-
chaining, or alternating with defects and chaining, boundary conditions. If A is purely
alternating, we suppose it comes with two distinguished vertices on its boundary other
than the root; if A has defects, it comes naturally with two distinguished vertices, the ones
where the defects are located.

We write ∂̃A for the part of the boundary of A that goes from a distinguished vertex
to another, and contains the root. Now, for two triangulations A,A′ that are both of one
of the above types, we write A � A′ if A can be obtained as a subtriangulation of A′ with
roots coinciding, such that ∂̃A is part of ∂̃A′, and no other edge of A is on ∂A′. Let Q be
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the number of modules adjacent to ∂B•
r+1(U) \ ∂̃B•

r+1(U) (not counting the two extreme
half-modules in the case r ≡ 1 (mod 3)): we consider them to be ordered clockwise. Let R′

(resp. L′) be the largest non-negative integer j such that the vertex (j, 0) (resp. (−j+1, 0))
belongs to ∂B•

r(U)∩ ∂U . We define similarly R′′ and L′′, replacing B•
r(U) by B•

r+1(U) (see
Figure 8.5.1). Note that R′ is thus the index of rightmost ghost module to have at least
a vertex at distance at most r from the origin, and so on for the other integers L′, R′′, L′′.
We also denote by Pr the number of modules on the “upper boundary” ∂B•

r(U) \ ∂̃B•
r(U).

V0

V1 = V2 . . .

VQ+1

−L′′ −L′ R′ = R′′

Figure 8.5.1 – Conventions for the parameters describing the spherical layer between B•
r(U)

and B•
r+1(U), depicted here in a case where r ≡ 0 (mod 3).

For 1 ≤ i ≤ Q, we write Vi for the type-r vertex of the i-th module adjacent to
∂B•

r+1(U) \ ∂̃B•
r+1(U), and, for 1 ≤ j ≤ Q + 1, we write Sj for the number of modules

on ∂B•
r(U) between Vj−1 and Vj . Here, by convention, V0 is set to be the vertex (−L′, 0),

and VQ+1, the vertex (R′, 0), and, if r ≡ 2 (mod 3), we don’t count the two extreme
half-modules.

Let us note that a particular phenomenon can occur, due to the non-simplicity of ∂U :
the hull B•

r(U) can be “swallowed” by this boundary (see Figure 8.5.2). In that case, the
“half-circumference” Q is zero, and we get slightly different expressions for the probabilities
of the different possible configurations for the spherical layer between B•

r−1(U) and B•
r(U).

We have the following result:

Theorem 8.5.1. For every r ≥ 0, for any q ≥ 1 and any s1, . . . , sq, k1, k2 ≥ 0, we have

P
(
Q = q, S1 = s1, . . . , Sq+1 = sq+1, L

′′ − L′ = k1, R
′′ −R′ = k2|B•

r(U)
)

= 1{s1+s2+···+sq+1=P′
r} · cm(r)Em(r)(q)Fm(r)(Pr)θm(r)(k1, s1)θm(r)(k2, s2)

∏
2≤i≤q

θ(si),

where m(r) ∈ {0, 1, 2} is the random variable, determined by U , such that m(0) = 0 and
m(r+1) ≡ m(r) + 1 (mod 3), except when B•

r+1(U) is swallowed up by ∂U and m(r) = 0,
in which case m(r + 1) = 0. The quantities depending on the value of m(r) are:

• P′
r = Pr if m(r) = 0, 1 and P′

r = Pr − 1 if m(r) = 2

• c0 =
ρ
α2 , E0(q) =

E(q)
cαq , F0 = 1, θ0(k, s) = θ(k + s),
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2Q′

V0

V1 = V2 . . .

VQ′+1

2Q′

V0

V1 = V2 . . .

VQ′+1

Figure 8.5.2 – Layout of the spherical layer between B•
r(U) and B•

r+1(U), when r ≡ 0
(mod 3) (top) or r ≡ 1 (mod 3) (bottom), and Q = 0, with the conventions of Figure 8.5.1.
The event Q = 0 is not possible when r ≡ 2 (mod 3).
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• c1 =
α2

c′2 , E1(q) =
Ec(q+1)
cαq+1 , F1(p) =

cαp

E(p) , θ1 = θ̃,

• c2 =
α2ρ
c′2 , E2 = 1, F2(p) =

cαp

Ec(p)
, F2 = 1, θ2 = θ̃c.

Similarly, for Q = 0, we have

P
(
Q = 0, Q′ = q′S1 = s1, . . . , Sq′+1 = sq′+1, L

′′ − L′ = k1, R
′′ −R′ = k2|B•

r(U)
)

= 1{s1+s2+···+sq′+1=P′
r} · c′m(r)Fm(r)(Pr)θm(r)(k1, s1)θm(r)(k2, s2)θ(q

′)
∏

2≤i≤q
θ(si),

with m(r) having now only 0 or 1 as possible values, and c′0 =
ρ2

α3 , c′1 =
ρ2

α .

Note that this gives an interpretation for the structure of the spherical hulls B•
r(U) in

terms of a branching process with immigration and emigration, the offspring distribution
being θ, and the immigration/emigration distribution θ, θ̃ or θ̃c, depending on the value
of r modulo 3. This gives the layout of the skeleton modules of the hull, which is then
completed as usual with Boltzmann Eulerian triangulations with the appropriate boundary
conditions.

This theorem also implies the following bounds:

Corollary 8.5.2. There exists constants 0 < C1 ≤ C2 such that, for every r ≥ 1 and for
every k ≥ 1,

C1k
−3/2 ≤ P

(
R′′ −R′ = k|B•

r(U)
)
≤ C2k

−3/2. (8.5.1)

Proof of Theorem 8.5.1 and its corollary. To simplify notation, we will first work condi-
tionally to the “good” event Gr, that none of the hulls up to B•

r(U) have been swallowed
up by ∂U , then see how incorporating the events in Gc

r yield the global statement of
Theorem 8.5.1.

To prove Theorem 8.5.1, let us thus first start to work conditionally on Gr. We first
derive expressions for the probability laws of B•

r(U), depending on the value of m(r). We
proceed with the same steps for each case: they will yield the different expressions that
make up the cases of Theorem 8.5.1.

Suppose that P(B•
r(U) = A|Gr) > 0. If r ≡ 0 (mod 3), let m be the number of ghost

modules adjacent to ∂̃A , q the number of modules on ∂A\ ∂̃A, and N the number of black
triangles in A. Then, for p > m, the property A � T (p)

n will hold if and only if T (p)
n can

be obtained by gluing an Eulerian triangulation with an alternating semi-simple boundary
of length 2(q + p − m) to A, so that a part of length 2q of this boundary is identified to
∂A \ ∂̃A. Thus, for n large enough,

P

(
A � T (p)

n |Gr

)
=

Bn−N,p+q−m
Bn,p

.

The asymptotics of Bn,p (see (7.4.3) in Chapter 7) yield:

P

(
A � T (p)

∞ |Gr

)
=

C(p+ q −m)

C(p)
ρ−N ,

and then

P(B•
r(U) = A|Gr) = α(q−m)ρ−N . (8.5.2)

If r ≡ 1 (mod 3), let m be the number of ghost modules adjacent to ∂̃A (including
the two extremes ones that are only half adjacent to ∂̃A), q the number of modules on
∂A \ ∂̃A, and N the number of black triangles in A.
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Then, similarly, for p and n large enough,

P

(
A � T (p)

n |Gr

)
=

B
(1)
n−N,q,p−m
Bn,p

,

so that

P(B•
r(U) = A|Gr) =

2π√
3
E(q)α−mρ−N . (8.5.3)

If r ≡ 2 (mod 3), let m be the number of ghost modules adjacent to ∂̃A (including
the two extremes ones that are adjacent to the additional “half-modules” ending the chain
delimiting A), q the number of modules on ∂A \ ∂̃A (counting a total of 1 for the two
extreme half-modules), and N the number of black triangles in A.

Then, for p and n large enough,

P

(
A � T (p)

n |Gr

)
=

B
(1,c)
n−N,q,p−m
Bn,p

,

which yields similarly:

P(B•
r(U) = A|Gr) =

2π√
3
Ec(q)α

−mρ−N . (8.5.4)

Having established expressions for the probabilities concerning the balls of U , we first
want to obtain an expression (depending on the value of r mod 3) for

P
(
Q = q, S1 = s1, . . . , Sq+1 = sq+1, L

′′ − L′ = k1, R
′′ −R′ = k2|B•

r(U), Gr

)
.

To do so, let us compute, for A such that P(B•
r(U) = A|Gr) > 0,

P
(
Q = q, S1 = s1, . . . , Sq+1 = sq+1, L

′′ − L′ = k1, R
′′ −R′ = k2|B•

r(U) = A,Gr

)
.

This is equal to ∑
A′

P
(
B•
r+1(U) = A′|B•

r(U) = A,Gr

)
with the sum running over triangulations A′ such that A � A′, and the configuration of
A′ is consistent with the parameters q, s1, etc. Then, for such a triangulation A′,

P
(
B•
r+1(U) = A′|B•

r(U) = A,Gr

)
=

P
(
B•
r+1(U) = A′|Gr

)
P(B•

r(U) = A|Gr)
,

which gives a different expression depending on the value of r mod 3, that we study
now.

If r ≡ 0 (mod 3),

P
(
B•
r+1(U) = A′|Gr

)
P(B•

r(U) = A|Gr)
=

2π√
3
E(q)α−(k1+k2+1+p)ρ−N

where N is the number of black triangles of A′ that are not in A, and p is the number of
modules adjacent to ∂A \ ∂̃A. This yields, when summing over A′:

P
(
Q = q, S1 = s1, . . . , Sq+1 = sq+1, L

′′ − L′ = k1, R
′′ −R′ = k2|B•

r(U) = A,Gr

)
=

E(q)

cαq
ρ

α2
· θ(s1 + k1)θ(s2)θ(s3) · · · θ(sq)θ(sq+1 + k2)
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where c =
√
3/2π, and θ is defined as in Chapter 7. Now, summing over A (after multi-

plying by 1{B•
r (U)=A}), this gives

P
(
Q = q, S1 = s1, . . . , Sq+1 = sq+1, L

′′ − L′ = k1 + 1, R′′ −R′ = k2 + 1|B•
r(U), Gr

)
=

E(q)

cαq
ρ

α2
· 1{s1+s2+···+sq+1=Pr} · θ(s1 + k1)θ(s2)θ(s3) · · · θ(sq)θ(sq+1 + k2) (8.5.5)

where Pr is the number of modules on the “upper boundary” ∂B•
r(U) \ ∂̃B•

r(U).

Similarly, if r ≡ 1 (mod 3),

P
(
B•
r+1(U) = A′|Gr

)
P(B•

r(U) = A|Gr)
=

Ec(q + 1)

E(p)
α−(k1+k2)+1ρ−N

which yields

P
(
Q = q, S1 = s1, . . . , Sq+1 = sq+1, L

′′ − L′ = k1, R
′′ −R′ = k2|B•

r(U) = A,Gr

)
=

Ec(q + 1)

αq+1

αp

E(p)

α2

c′2
θ̃(k1, s1)θ̃(k2, sq+1)

∏
2≤i≤q

θ(si),

where
θ̃(k, s) = c′

1

ρ
α−(s+k)+1Z̃(k, s),

with c′ = 16
27 (from our results on Z̃, this implies that θ̃ is a probability distribution on

Z+ × Z+). This gives:

P
(
Q = q, S1 = s1, . . . , Sq+1 = sq+1, L

′′ − L′ = k1, R
′′ −R′ = k2|B•

r(U), Gr

)
=

Ec(q + 1)

αq+1

αPr

E(Pr)

α2

c′2
· 1{s1+s2+···+sq+1=Pr} · θ̃(k1, s1)θ(s2)θ(s3) · · · θ(sq)θ̃(k2, sq+1).

(8.5.6)

If r ≡ 2 (mod 3), taking into account the two extreme half-modules for p, we have

P
(
B•
r+1(U) = A′|Gr

)
P(B•

r(U) = A|Gr)
=

√
3

2π

αq

Ec(p)
α−(k1+k2)ρ−N ,

which yields

P
(
Q = q, S1 = s1, . . . , Sq+1 = sq+1, L

′′ − L′ = k1, R
′′ −R′ = k2|B•

r(U) = A,Gr

)
= c

αp

Ec(p)

α2ρ

c′2
θ̃c(k1, s1)θ̃c(k2, sq+1)

∏
2≤i≤q

θ(si),

where θ̃c, defined similarly to θ̃, is also a probability distribution on Z+ × Z+. Thus

P
(
Q = q, S1 = s1, . . . , Sq+1 = sq+1, L

′′ − L′ = k1, R
′′ −R′ = k2|B•

r(U), Gr

)
= c

αPr

Ec(Pr)

α2ρ

c′2
· 1{s1+s2+···+sq+1=Pr−1} · θ̃c(k1, s1)θ(s2)θ(s3) · · · θ(sq)θ̃c(k2, sq+1). (8.5.7)

Note that, with similar arguments, we also obtain for the first hull B•
1(U):

P(Q = q, L = k1 + 1, R = k2 + 1) =
E(q)

cαq
ρ

α3
θ(0)q−1θ(k1)θ(k2). (8.5.8)
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We now want to obtain, from the preceding results, lower and upper bounds on

P
(
SQ+1 = s,R′′ −R′ = k + 1|B•

r(U), Gr

)
,

once again separating the different cases for the value of r mod 3.
If r ≡ 0 (mod 3), we have

P
(
SQ+1 = s,R′′ −R′ = k + 1|B•

r(U), Gr

)
= 1{s≤Pr}

+∞∑
q=1

∑
k1,s1+···+sq=Pr−s

P
(
Q = q, S1 = s1, . . . , Sq = sq, Sq+1 = s, L′′ − L′ = k1 + 1, R′′ −R′ = k + 1|B•

r(U), Gr

)
= 1{s≤Pr}

∞∑
q=1

E(q)

cαq
ρ

α3

⎛⎝ ∑
s1+···+sq=Pr−s

θ([s1,∞))θ(s2)θ(s3) · · · θ(sq)

⎞⎠ θ(s+ k).

Now, as E(q) ∼
q→∞

27
√
6

32π 4q, there exists some constants 0 < C3 < C4 such that C3 ≤
E(q)
cαq

ρ
α3 ≤ C4 for all q ≥ 1, thus

C31{s≤Pr}

∞∑
q=1

⎛⎝ ∑
s1+···+sq=Pr−s

(θ(s1) + θ((s1,∞))) θ(s2)θ(s3) · · · θ(sq)

⎞⎠ θ(s+ k)

≤P
(
SQ+1 = s,R′′ −R′ = k + 1|B•

r(U), Gr

)
≤C41{s≤Pr}

∞∑
q=1

⎛⎝ ∑
s1+···+sq=Pr−s

(θ(s1) + θ((s1,∞))) θ(s2)θ(s3) · · · θ(sq)

⎞⎠ θ(s+ k).

Note that, for any integer p ≥ 0,

∞∑
q=1

⎛⎝ ∑
s1+···+sq=p

θ((s1,∞))θ(s2)θ(s3) · · · θ(sq)

⎞⎠ = 1.

Indeed, if X1, X2, . . . is a sequence of i.i.d. random variables with distribution θ, and if
Hp = min{q ≥ 1|X1 + · · · +Xq > p}, then the above expression is just

∑
q≥1 P(Hp = q),

which is 1. We are thus left with bounding

∞∑
q=1

⎛⎝ ∑
s1+···+sq=Pr−s

θ(s1)θ(s2)θ(s3) · · · θ(sq)

⎞⎠ ,

and, by the renewal theorem, as θ has a positive mean (equal to 1), this can be bounded
by constants that depend neither on s nor on Pr.

Therefore,

C31{s≤Pr}θ(s+ k) ≤ P
(
SQ+1 = s,R′′ −R′ = k + 1|B•

r(U), Gr

)
≤ C41{s≤Pr}θ(s+ k),

(8.5.9)
for some new constants 0 < C3 < C4, independent of s, k and Pr.
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If r ≡ 1 (mod 3), then we obtain similarly

P
(
SQ+1 = s,R′′ −R′ = k|B•

r(U), Gr

)
= 1{s≤Pr}

+∞∑
q=1

∑
k1,s1+···+sq=Pr−s

P
(
Q = q, S1 = s1, . . . , Sq = sq, Sq+1 = s, L′′ − L′ = k1, R

′′ −R′ = k|B•
r(U), Gr

)
= 1{s≤Pr}

∞∑
q=1

E(q)

cαq
α2

c′2

⎛⎝ ∑
s1+···+sq=Pr−s

θ̂(s1)θ(s2)θ(s3) · · · θ(sq)

⎞⎠ θ̃(k, s)

where θ̂(s) =
∑∞

k=0 θ̃(k, s). Using a variant of the renewal theorem for delayed renewal
processes (see [Bla53]), we obtain that, for some constants 0 < C3 < C4 that are once
again independent of k, s and Pr,

C31{s≤Pr}θ̃(k, s) ≤ P
(
SQ+1 = s,R′′ −R′ = k|B•

r(U), Gr

)
≤ C41{s≤Pr}θ̃(k, s). (8.5.10)

Finally, for r ≡ 2 (mod 3), we have

P
(
SQ+1 = s,R′′ −R′ = k|B•

r(U), Gr

)
= 1{s≤Pr−1}

+∞∑
q=1

∑
k1,s1+···+sq=Pr−s

P
(
Q = q, S1 = s1, . . . , Sq = sq, Sq+1 = s, L′′ − L′ = k1, R

′′ −R′ = k|B•
r(U), Gr

)
= 1{s≤Pr−1}

∞∑
q=1

c
αPr

Ec(Pr)

α2ρ

c′2

⎛⎝ ∑
s1+···+sq=Pr−s−1

θ̂c(s1)θ(s2)θ(s3) · · · θ(sq)

⎞⎠ θ̃c(k, s)

(where θ̂c is defined like θ̂), which yields a similar result.

Thus, using the bounds from Proposition 8.4.1, there exist some constants 0 < C3 < C4,
independent of k, s and Pr such that, for every r ≥ 1, if r ≡ 0, 1 (mod 3),

C31{s≤Pr}θ(k+ s) ≤ P
(
SQ+1 = s,R′′ −R′ = k|B•

r(U), Gr

)
≤ C41{s≤Pr}θ(k+ s), (8.5.11)

and, if r ≡ 2 (mod 3),

C31{s≤Pr−1}θ(k + s) ≤ P
(
SQ+1 = s,R′′ −R′ = k|B•

r(U), Gr

)
≤ C41{s≤Pr−1}θ(k + s).

(8.5.12)
From the asymptotics of θ, this implies that there exist constants 0 < C1 < C2 such

that, for any r,
C1k

−3/2 ≤ P
(
R′′ −R′ = k|B•

r(U), Gr

)
≤ C4k

−3/2. (8.5.13)

As announced before, we will now treat the possible “swallowing up” of B•
r(U) by the

boundary of U , that was excluded in Gr. First, it cannot occur for all values of r: indeed,
while it is possible for r ≡ 1 or 2 (mod 3) (see Figure 8.5.2), it cannot happen for r ≡ 0
(mod 3), as in that case the leftmost and rightmost vertices of ∂U ∩ ∂B•

r(U) cannot be
separating vertices of ∂U .
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Before getting into the calculations, we need a bit of additional notation. Suppose the
hull B•

r+1(U) (with r ≡ 0 or 1 (mod 3)) is swallowed by ∂U . As, by our conventions, the
half-circumference Q of B•

r+1(U) is zero, we need to introduce a new quantity Q′, which
counts the number of modules of type (r, r+1, r+2) that form a loop touching the unique
vertex of ∂B•

r+1(U) that is at distance r + 1 from the root (see Figure 8.5.2). Similarly as
before, we then denote by V ′

i , for 1 ≤ i ≤ Q′, the type-r vertex of the i-th module of this
looping chain, and, for 1 ≤ j ≤ Q′ + 1, we write S′

j for the number of modules on ∂B•
r(U)

between V ′
j−1 and V ′

j . R′, R′′, L′ and L′′ can be defined as before.
We are thus interested in determining the probability of a similar event as before, for

the first r for which B•
r+1 is swallowed by ∂U :

P
(
Q = 0, R′′ −R′ = k + 1, S′

Q′+1 = s|B•
r(U), Gr

)
.

Having treated this first occurence, we will see that the probabilities concerning the fol-
lowing hulls just fall back to case that we have already treated before, and see how we can
work, in general, from the last “swallowing up” event.

We will once again treat separately the cases r ≡ 0 (mod 3) and r ≡ 1 (mod 3).
If r ≡ 0 (mod 3), we obtain, similarly as before,

P
(
Q = 0, R′′ −R′ = k + 1, S′

Q′+1 = s|B•
r(U), Gr

)
=

ρ2

α3

⎛⎝∑
q′≥1

θ(q′)

⎛⎝ ∑
s1+···+sq′=Pr−s

θ([s1,∞)) · · · θ(sq′)

⎞⎠⎞⎠ θ(s+ k), (8.5.14)

the factor θ(q′) accounting for the fact that we have an additional slot bounded by the
looping chain of modules.

Roughly bounding this factor by 1 for any q′, we can apply the same arguments as
before, that ensure the existence of a constant C > 0, independent of s and Pr, such that

P
(
Q = 0, R′′ −R′ = k + 1, S′

Q′+1 = s|B•
r(U), Gr

)
≤ C1{s≤Pr}θ(s+ k).

As for the case r ≡ 1 (mod 3), we have

P
(
Q = 0, R′′ −R′ = k + 1, S′

Q′+1 = s|B•
r(U), Gr

)
=

cαPr

E(Pr)

ρ2

α

⎛⎝∑
q′≥1

θ(q′)

⎛⎝ ∑
s1+···+sq′=Pr−s

θ̂(s1) · · · θ(sq′)

⎞⎠⎞⎠ θ̃(k, s), (8.5.15)

so that, using a bigger constant C if necessary, we have

P
(
Q = 0, R′′ −R′ = k + 1, S′

Q′+1 = s|B•
r(U), Gr

)
≤ C1{s≤Pr}θ(s+ k)

in that case as well.
This proves that this special case does not modify the global asymptotics given in

(8.5.1) for the spherical layer B•
r+1(U) \ B•

r(U): indeed, the lower bound of (8.5.1) is still
valid, and, from what precedes, the upper bound is undisturbed, up to a change of the
constant C2.

Let us now consider the consequences for the next spherical layers. As can be seen in
Figure 8.5.2, if r ≡ 0 (mod 3) and the hull B•

r+1(U) is swallowed up by ∂U , this leads to
what can be interpreted as a reinitialization of the value of the radius (mod 3): indeed,
the whole boundary ∂B•

r+1(U) is contained in ∂U , so that we can see v, the only vertex
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on ∂Br+1(U) at distance r + 1 from the origin, as a new “starting point” for the next
spherical layer, which will have the same law as B•

1(U). As, from (8.5.1), we have the
same bounds for the asymptotics of P(R′′ −R′ = k|B•

t (U)) for all values of t (mod 3), this
reinitialization thankfully does not modify this asymptotic behavior.

When the hull B•
r+1(U) is swallowed up but r ≡ 1 (mod 3), we see from Figure 8.5.2

that the possible configurations for the layer between B•
r+1(U) and B•

r+2(U) are just a
special case of those already considered before.

Thus, when studying the spherical layer between B•
r(U) and B•

r+1(U), in the general
case, where possibly several “swallowing up” events have occured before, we get one of
the expressions (8.5.5), (8.5.6), (8.5.7), (8.5.8), (8.5.14), (8.5.15). The case to consider is
not determined by the value of r mod 3, but by some counter m(r,U) ∈ {0, 1, 2}, such
that m(r+1,U) ≡ m(r,U) + 1 (mod 3), except when B•

r+1(U) is swallowed up by ∂U and
m(r,U) = 0, in which case m(r + 1,U) = 0.

8.6 Distances along the boundary

Similarly to section 4 of [CLG19], we will now show lower bounds on the (oriented) dis-
tances along the boundary of U , that will carry over to L thanks to an absolute continuity
property of Corollary 8.6.4.

Let us start with U . We denote by (−LU
r , 0) (resp. (RU

r , 0)) the left-most (resp. right-
most) vertex in ∂B•

r(U) ∩ ∂U , and set by convention RU
0 = LU

0 = 0, and consider B•
0(U) to

be the trivial edge-triangulation.
We show the following proposition:

Proposition 8.6.1. The sequences ((r−2LU
r , 0))r≥1 and ((r−2RU

r , 0))r≥1 are bounded in
probability: for every ε > 0, there exists a constant K such that

sup
r≥1

P
(
LU
r ≥ Kr2

)
≤ ε and sup

r≥1
P
(
RU
r ≥ Kr2

)
≤ ε.

Consequently, for every r ≥ 1,

P

(
min

|j|≥Kr2
−→
d U ((0, 0), (j, 0)) > r

)
≥ 1− 2ε. (8.6.1)

Furthermore, if, for m ≥ 1, Tm = min{r ≥ 1
∣∣∣RU

r > m}, then there exists a constant K ′

such that, for every m ≥ 1 and every j ≥ 1,

P
(
RU
Tm −m > j

)
≤ K ′

√
m

m+ j
.

Proof. The first statement follows from (8.5.1). The second one is an immediate conse-
quence, considering that, if j > RU

r , then, by definition,
−→
d U ((0, 0), (j, 0)) > r.

The proof of the third statement is very similar to the proof of the equivalent statement
in Proposition 13 of [CLG19], but the calculations are slightly more involved, as we do not
have explicit expressions for the probabilities of the ball events, or for the distribution θ.
We therefore give the full detail of these calculations.

Like in [CLG19], it suffices to show the existence of a constant K ′, that does not depend
on m, such that, for every k ≥ 0, for every l ∈ {0, 1, . . . ,m}, and for every j ≥ 0,

P
(
RU
k+1 −RU

k > l + j|B•
k(U)

)
≤ K ′

√
m

m+ j
P
(
RU
k+1 −RU

k > l|B•
k(U)

)
. (8.6.2)
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Indeed, we have that, for every j ≥ 0,

P
(
RU
Tm −m > j

)
=

∞∑
k=0

P
(
RU
k ≤ m,RU

k+1 −RU
k > m+ j −RU

k

)
=

∞∑
k=0

E

[
1{RU

k≤m} P
(
RU
k+1 −RU

k > m+ j −RU
k |B•

k(U)
)]

which yields, with (8.6.2),

P
(
RU
Tm −m > j

)
≤ K ′

√
m

m+ j

∞∑
k=0

E

[
1{RU

k≤m} P
(
RU
k+1 −RU

k > m−RU
k |B•

k(U)
)]

= K ′
√

m

m+ j
.

Let us now prove (8.6.2). The case k = 0 follows from (8.5.8). For k ≥ 1, (8.5.11)
yields, for every j ≥ 0,

C1

∞∑
i=0

P′
k∑

s=0

θ(s+ l + j + i) ≤ P
(
RU
k+1 −RU

k > l + j|B•
k(U)

)
≤ C2

∞∑
i=0

P′
k∑

s=0

θ(s+ l + j + i),

where P′
k = Pk for m(k,U) = 0 or 1, and P′

k = Pk − 1 in the case m(k,U) = 2.
Thus, it suffices to show that there exists a constant K ′′ such that, for every p ≥ 1, for

every l ∈ {0, 1, . . . ,m} and every j ≥ 0,
∞∑
i=0

p∑
s=0

θ(s+ l + j + i) ≤ K ′′
√

m

m+ j

∞∑
i=0

p∑
s=0

θ(s+ l + i). (8.6.3)

Now, from the asymptotics of θ (and the fact that θ(n) is positive for any n), we have
the existence of two constants 0 < c < C such that, for every n, cn−5/2 ≤ θ(n) ≤ Cn−5/2.
This implies that, for any l ∈ {0, 1, . . . ,m}, for any i ≥ 0 and p ≥ 1,

p∑
s=0

θ(l + i+ s) ≥ c

p∑
s=0

(l + i+ s)−5/2 = c′
(
(l + i)−3/2 − (l + i+ p)−3/2

)
,

which gives, when summing over i,

∞∑
i=0

p∑
s=0

θ(l + i+ s) ≥ c′′
(
l−1/2 − (l + p)−1/2

)
= c′′l−1/2

(
1−

√
l

l + p

)
.

Similarly, we show that, for any l ∈ {0, 1, . . . ,m}, for any j ≥ 0 and p ≥ 1,

∞∑
i=0

p∑
s=0

θ(l+ j + i+ s) ≤ C ′(l+ j)−1/2

(
1−

√
l + j

l + j + p

)
≤ C ′(l+ j)−1/2

(
1−

√
l

l + p

)
,

the last inequality coming from the fact that x �→ x
x+p is increasing on R+.

Gathering the preceding bounds, we get, for any l ∈ {0, 1, . . . ,m}, for any j ≥ 0 and
p ≥ 1,

∞∑
i=0

p∑
s=0

θ(l + j + i+ s) ≤ K ′′

√
l

l + j

∞∑
i=0

p∑
s=0

θ(l + i+ s).

To obtain (8.6.3), note that, for any l ∈ {0, 1, . . . ,m}, for any j ≥ 0,
√
l/(l + j) ≤√

m/(m+ j).
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To carry these estimates over to L, we need an additional property, slightly stronger
than (8.6.1).

Proposition 8.6.2. Let ε > 0. For every integer A > 0, there exists K > 0 sufficiently
large such that, for every r ≥ 1,

P

(
min

0≤i≤Ar2, j≥Kr2
−→
d U ((i, 0), (j, 0)) ≤ r

)
≤ ε.

Proof. The proof of this result is very similar to the proof of Proposition 14 in [CLG19].
As it is very short, we give it here as well.

Fix A > 0. Then, using the last result of the previous proposition, we can choose an
integer A′ > A large enough so that, for every r ≥ 1,

P

(
RU
TAr2

≥ A′r2
)
<

ε

2
.

Fix r ≥ 1 and define, for every j ≥ 0,

R̃U
j := RU

TAr2+j
−RU

TAr2
.

Since TAr2 is a stopping time for the process (RU
j )j≥0, we get from the tail asymptotics

of (RU
j ) that the sequence (j−2R̃U

j )j≥0 is also bounded in probability, uniformly in r.
Therefore, we can choose an integer K > A′, that does not depend on the choice of r, such
that

P

(
R̃U
r ≥ (K −A′)r2

)
<

ε

2
.

Finally, note that any vertex (i, 0) with 0 ≤ i ≤ Ar2 belongs to the hull of radius TAr2 .
And, on the event{RU

TAr2
< A′r2} ∩ {R̃U

r < (K −A′)r2}, we have RU
TAr2+r

< Kr2, so that
vertices (j, 0) with j ≥ Kr2 do not belong to the hull of radius TAr2 + r. Thus, on this
event we have

−→
d U ((i, 0), (j, 0)) > r for any 0 ≤ i ≤ Ar2 and j ≥ Kr2.

We will now establish a link between the layers in L and in U . For this purpose we
will need a bit of additional notation. For every integer r ≥ 1, U[0,r] will stand for the
infinite rooted planar map comprised of the first r layers of U , that is, the strip between
the boundary of U and the skeleton modules at level r−1 (included). Similarly, let L[0,r] be
the rooted planar map obtained by keeping only the first r layers of L (having the skeleton
modules at level r as ghost modules).

Let us fix r ≥ 1, recall that Γ(i,r) stands for the subtree of descendants of (12 + i, r) in
the infinite tree associated to U . For every i ∈ Z, let Γ(i,r)(r) be the set of vertices of Γ(i,r)

at height r. Let also Kr ≥ 1 be the first integer i ≥ 1 such that Γ(i,r)(r) �= ∅.
We also define ir < 0 as the largest integer i < 0 such that Ti has height at least r,

and, as before, Tir(r) will be the set of vertices at height r in Tir .

Proposition 8.6.3. Let Ũ[0,r] be the infinite rooted planar map obtained by re-rooting U[0,r]

at the edge from (Jr, r) to (12+Jr, r+ε), where, given Kr, Jr is chosen uniformly at random
in {1, . . . ,Kr}. Then, for any nonnegative measurable function f ,

E

[
Kr · f

(
Ũ[0,r]

)]
= E

[
#Tir(r) · f

(
L[0,r]

)]
.

Proof. Let us sketch an idea of the proof, which can be adapted verbatim from the one of
Proposition 8 of [CLG19].
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It suffices to show that the distribution of the configuration of the skeleton modules
is the same for Ũ[0,r], under the measure having density Kr with respect to P, and for
L[0,r], under the measure having density #Tir(r) with respect to P. In both cases, this
configuration is encoded by a doubly infinite sequence of trees, therefore it is enough to
verify that these two sequences have the same distribution, which is quite straightforward.

Corollary 8.6.4. For every ε > 0, we can choose δ > 0 small enough, so that for every
r ≥ 1, for every measurable set A, the property P

(
Ũ[0,r] ∈ A

)
≤ δ implies P

(
L[0,r] ∈ A

)
≤ ε.

Proof. Let us give an idea of the proof, which is very similar to the proof of Corollary 9 in
[CLG19] (up to the differences in the explicit expressions).

Let δ ∈ (0, 1), and consider an event A such that P

(
Ũ[0,r] ∈ A

)
≤ 9δ2/2. By Proposi-

tion 8.6.3, for every r ≥ 1,

E

[
Kr · 1A

(
Ũ[0,r]

)]
= E

[
#Tir(r) · 1A

(
L[0,r]

)]
, (8.6.4)

and, from (7.5.18) in Chapter 7, the distribution of Kr is given by

P(Kr ≥ j) =

(
1− 3

(r + 2)2 − 1

)j−1

∀j ≥ 1,

which implies that E
[
(Kr)

2
]
≤ 2/9((r + 2)2 − 1)2.

Then, by the Cauchy-Schwarz inequality, the left-hand side of (8.6.4) is bounded above
by

E
[
K2
r

]1/2
P

(
Ũ[0,r] ∈ A

)1/2
≤ δ((r + 2)2 − 1).

Now, for any M > 0, the right-hand side of (8.6.4) is bounded below by

M((r + 2)2 − 1)P
(
{L[0,r] ∈ A} ∩ {#Tir(r) ≥ M((r + 2)2 − 1)}

)
.

By combining the two bounds, we get that

P
(
{L[0,r] ∈ A} ∩ {#Tir(r) ≥ M}

)
≤ δ

M
,

so that it suffices to obtain an upper bound on P
(
#Tir(r) < M((r + 2)2 − 1)

)
, to finally

have an upper bound on P
(
L[0,r] ∈ A

)
.

To bound P
(
#Tir(r) < M((r + 2)2 − 1)

)
, observe that Tir is a Galton-Watson tree

with offspring distribution θ conditioned on non-extinction at generation r, so that the
generating function of #Tir(r) is

E

[
x#Tir (r)

]
=

E1

[
xYr
]
− P1 (Yr = 0)

1− P1 (Yr = 0)
= 1− (r + 2)2 − 1(

r +
√

4−x
1−x

)2
− 1

∀x ∈ [0, 1),

using (7.5.7) and (7.5.18) in Chapter 7.
From this, it is straightforward to obtain that ((r + 2)2 − 1)−1#Tir(r) converges in

distribution to a random variable U with Laplace transform E
[
e−λU

]
= 1− (1+

√
3/λ)−2.

As U > 0 a.s., we can find M > 0 such that P
(
#Tir(r) < M((r + 2)2 − 1)

)
≤ ε/2 for every

r ≥ 1. If we choose δ small enough, we will also have M ≥ 2δ/ε, so that

P
(
L[0,r] ∈ A

)
≤ ε.
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We can now derive lower bounds for the distances along the boundary of L. Recall the
leftmost mirror geodesics defined in Chapter 7 for finite cylinder triangulations and for L.
We also define for U , in a similar way, the leftmost mirror geodesic from (i, r) to ∂U : at
each step n ≥ 0, it visits a vertex ω(n) in Ur−n, and chooses at step n + 1 the leftmost
edge between ω(n) and Ur−n−1. We also have that, for 1 ≤ i < j, the leftmost mirror
geodesics from (i, r) and (j, r) to ∂U coalesce before hitting ∂U , if and only if all the trees
Γ(i,r),Γ(i+1,r), . . . ,Γ(j−1,r) have height strictly smaller than r.

Proposition 8.6.5. For every ε > 0, there exists an integer K > 0 such that, for every
r ≥ 1,

P

(
min

|j|≥Kr2
−→
d L((0, 0), (j, 0)) ≥ r

)
≥ 1− ε.

Consequently, for K ′ = 4K, we also have, for every r ≥ 1,

P

(
min

|j|≥2K′r2
min

−K′r2≤i≤K′r2

−→
d L((i, 0), (j, 0)) ≥ r

)
≥ 1− 2ε.

Proof. Let us give an idea of the proof, which is very similar to the proof of Proposition
15 in [CLG19].

Let us start with the first assertion. By symmetry, we can focus on the event “there is
a path in L[0,r] of (oriented) length strictly smaller than r, going from (0, 0) to (j, 0), for
some j ≥ Kr2”, that we denote by Ar(K). Using the absolute continuity of Corollary 8.6.4,
it suffices to show that, for K large enough, for every r ≥ 1,

P

(
Ũ[0,r] ∈ Ar(K)

)
< ε.

Recalling the notation of Proposition 8.6.3, we have

{Ũ[0,r] ∈ Ar(K)} ⊂ { min
i≥Kr2

−→
d U ((Jr, r), (Jr + i, r))}.

Hence, we are left to bound the probability of the right-hand side event. Let (Ir, 0) be
the endpoint of the leftmost mirror geodesic from (1, r) to ∂U in U . As 1 ≤ Jr ≤ Kr, we
get that the leftmost mirror geodesic from (Jr, r) to ∂U coalesces with the one from (1, r)
before hitting ∂U (possibly only at ∂U). Therefore, we have

−→
d U ((Ir, 0), (Jr, r)) = r.

Let now (I ′r(K), 0) be the endpoint of the leftmost mirror geodesic from (Kr2, r) to
∂U in U . Suppose that both Jr < Kr2, and

−→
d U ((Jr, r), (Jr + i, r)) < r, for some i ≥ Kr2.

Then the endpoint of the leftmost mirror geodesic from (Jr + i, r) to ∂U is (j, 0), for some
j ≥ I ′r(K), as Jr+ i ≥ Kr2. Then, using the triangle inequality and the fact that reversing
an oriented distance at most doubles it, we get

−→
d U ((Ir, 0), (j, 0)) ≤

−→
d U ((Ir, 0), (Jr, r))+

−→
d U ((Jr, r), (Jr+i, r))+

−→
d U ((Jr+i, r), (j, 0)) < 4r.

We have thus obtained that

P

(
Ũ[0,r] ∈ Ar(K)

)
≤ P

(
Jr ≥ Kr2

)
+ P

(
min

j≥I′r(K)

−→
d U ((Ir, 0), (j, 0)) < 4r

)
. (8.6.5)

As noted in the proof of Proposition 8.6.3, we have E
[
J2
r

]
≤ 2/9((r + 2)2 − 1)2, so, by

Markov’s inequality, there exists K0 such that P
(
Jr ≥ Kr2

)
≤ ε/4 for K ≥ K0.
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We now tackle the second term in the right-hand side of (8.6.5): it suffices to have
bounds of the form

P
(
Ir ≥ Br2

)
≤ ε/4 (8.6.6)

P
(
I ′r(K) < B′r2

)
≤ ε/4, (8.6.7)

for some constants B′ > B > 0. Indeed, Proposition 8.6.2 will then give us a bound on

P

(
min

j≥I′r(K)

−→
d U ((Ir, 0), (j, 0)) < 4r

)
.

To prove the bound (8.6.6), note that Ir is bounded above by the size Nr of the
generation r of the tree Γ(0,r). From (7.5.7) in Chapter 7, we obtain that r−2Nr converges
in distribution, yielding (8.6.6).

It remains to show (8.6.7). From the construction of U , I ′r(K) is bounded below by

Mr(K) :=

Kr2−1∑
l=1

#Γ(l,r)(r),

and, using (7.5.7) once again, we obtain that r−2Mr(K) converges in distribution to a
random variable UK with Laplace transform E

[
e−λUK

]
= exp(−3K/(

√
3/λ+ 1)2). Thus,

UK/K converges in probability to 3 as K → ∞, so that, taking K large enough, for all r
sufficiently large, (8.6.7) holds, for B′ = K/3, which is larger than B for K large enough.
Then, for smaller values of r, we can take K even larger to get the same bound (using here
the law of large numbers). This completes the proof of the first assertion.

The details of the calculations involved to get (8.6.6) and (8.6.7) can be adapted verba-
tim from the proof of Proposition 15 in [CLG19] (up to differences in the explicit expressions
for generating functions).

The second assertion follows from the first one, as detailed in Chapter 7.
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CHAPITRE 9

Énumération de triangulations eulériennes à bord alternant

Ce chapitre est une version préliminaire d’un travail en cours avec Jérémie Bouttier.
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9.1 Introduction

9.1.1 Framework and motivation

Let A be a rooted planar Eulerian triangulation, that is, a triangulation whose vertices all
have even degree. The orientation of the root edge of A fixes a canonical orientation of
all its edges, by requiring that orientations alternate around each vertex. By construction,
edges around a given face are necessarily oriented either all clockwise, or all anti-clockwise.
This induces a natural bicoloration of the faces of A, by setting for instance that clockwise
faces are black, and anti-clockwise faces, white.

The oriented geodesic distance of any vertex of A from the origin (that is, the root
vertex ρ) is the minimal length of a path from the origin to that vertex, respecting the
orientation. Bouttier, Di Francesco and Guitter [BDFG04] have established a bijection
between rooted Eulerian triangulations and a particular class of labeled trees, using this
oriented pseudo-distance. As this result suggests, the oriented distance is central in the
structure of planar Eulerian triangulations.

In Chapter 7, building upon this bijective result, we prove that uniform planar Eule-
rian triangulations, equipped with either the usual graph distance or the oriented pseudo-
distance, converge to the ubiquitous Brownian map. To do so, a deep analysis of the
structure of planar Eulerian triangulations equipped with the oriented distance is needed,
including new enumeration results, that are derived in this present chapter.

For this chapter to be self-contained, we give a shortened version of the discussion of
Chapter 7 that justifies which types of maps we will focus on here.

Let us consider a rooted Eulerian triangulation A, equipped with its canonical orien-
tation and oriented geodesic distance �d.

Definition 9.1.1. In a rooted Eulerian triangulation A, a vertex of type n is a vertex
whose canonical labeling by the oriented geodesic distance is n. An edge of type n → m
is an oriented edge that starts at a vertex of type n and ends at a vertex of type m. A
triangle of type n is a triangle adjacent to one vertex of type n− 1, one of type n and
one of type n+ 1.
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For each type-n black face f of A, there is exactly one white face f ′ that shares its
n+ 1 → n− 1 edge. We call the union of f and f ′ a type-n module.

We define the ball Bn(A) as the submap of A obtained by keeping only the faces and
edges of A incident to at least a vertex at distance n−1 or less from the origin, and cutting
along the edges of type n → n+ 1 (see Figure 9.1.1).

n n+ 1
n+ 2

n

n

n+ 1
n+ 2

n

n− 1

n− 1

n− 1
n− 1

Figure 9.1.1 – In an Eulerian triangulation (top), we cut along the edges of type n → n+1
to separate the ball of radius n from the components of its complement (bottom). This
possibly induces the duplication of edges and vertices in the ball.

Let us be more precise: denote by A \ Bn(A), the subcomplex of A (seen as a 2-cell
complex), obtained by removing the faces and edges of A that are incident to at least a
vertex at distance n or less from the origin: the connected components of A \ Bn(A) are
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Eulerian triangulations with a boundary. In Bn(A), we replace each map in A\Bn(A) by a
single, simple face. In particular, if two faces of A of type n that share a type-(n → n+1)
edge, in Bn(A) their respective type-(n → n + 1) edges are not identified, so that their
common type-(n + 1) vertex gives rise to two vertices in Bn(A) (see Figure 9.1.2). Two
type-n faces f, f ′ may also share a type-(n+1) vertex v but no edge: in that case, it means
that v is also shared by faces of types n+1, so that we would need to add these faces and
the type n → n+1 edges they share with f and/or f ′, in order to identify the type-(n+1)
vertices of f and f ′ into v. Note that as Bn(A) contains all the type-(n− 1 → n) edges of
A, type-n vertices of A are never duplicated in Bn(A).

Thus, Bn(A) is an Eulerian triangulation with simple boundaries, and the faces adjacent
of Bn(A) to these boundaries compose the type-n modules of A, so that each part of
∂Bn(A) is alternating, that is, the adjacent edges alternating between edges incident to
black faces, and edges alternating between edges incident to white faces.

Let us now consider a connected component m of A \ Bn(A). It is a planar Eulerian
triangulation with a boundary, which has the same length as the corresponding one of
Bn(A), and is also alternating. However, the boundary of m is not necessarily simple.
More precisely, a type-(n + 1) vertex v of A that sits on the boundary of m is attached
to the type-(n → n+ 1) edges and type-(n+ 1) faces that are adjacent to v in A, as they
were excluded from Bn(A), so that v may be a separating vertex in the external face of
m. This is not the case for type-n vertices, as Bn(A) contains all the type-(n − 1 → n)
edges and type-n faces of A. Thus, the boundary of m can have separating vertices, but
only on boundary vertices that have a white triangle before them and a black one after
(as it corresponds to the type-(n + 1) vertices of A). We call such boundary conditions
semi-simple.

Let v be a distinguished vertex of A at oriented distance at least n+ 1 from the root.
We can now define the hull B•

n(A) of Bn(A), as the union of Bn(A) and all the connected
components of its complement that do not contain v. In a more picturial way, for each
component m of A \ Bn(A) that does not contain v, we glue the boundary of m to the
corresponding boundary of Bn(A). This is well-defined, because the latter is simple, and
they both have the same length. The resulting map B•

n(A) has only one boundary, which
is alternating and simple, and its complement in A has one boundary, which is alternating
and semi-simple.

As is to be expected, these families of Eulerian triangulations with a boundary play
an important role in the description of the structure of large uniform random planar Eu-
lerian triangulations. More precisely, this structure involves Boltzmann triangulations
sampled in those families, that is, random maps with a fixed boundary length, but not a
fixed volume. We thus derive asymptotic enumeration results for these families of maps in
Section 9.3.

Consider now a rooted infinite Eulerian triangulation of the half-plane A, with an
infinite alternating and semi-simple boundary, as is the case of the Upper-Half Plane
Eulerian Triangulation considered in Chapter 8. Then, the boundary of its balls and
hulls will no longer be strictly alternating.

Indeed, the faces adjacent to the boundary of B•
n(A) still form a chain of type-n mod-

ules, but we must pay attention to what happens at the intersection between this chain
and the half-plane boundary of A. For reasons that are detailed in Chapter 8, the different
possibilities at this intersection are those depicted in Figure 9.1.3. We see that, in the first
two cases, the alternation of black and white fails at this intersection: we say that the
boundary of the hull has defects. Here as well, the boundary of the complement of a hull
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Figure 9.1.2 – A rooted, pointed planar Eulerian triangulation (bottom left) and its balls
(left) and corresponding hulls (right) (the ball of radius 3 can be identified with its hull,
as it contains the marked vertex). The boundaries are lined in thick gray. We can see an
example of duplication of vertices in the ball of radius 2, marked in red.
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. . . . . .

. . . . . .

. . . . . .

Figure 9.1.3 – The possible configurations for the chain of boundary modules of the hulls
of a rooted half-planar Eulerian triangulation: only the right part is shown, as the left part
has symmetric conditions. The modules in pale grey represent the semi-simple, alternating
conditions on the half-plane boundary.
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will have the same color conditions, but specific simplicity conditions, that we do not want
to justify here. We will however give a precise definition of these boundary conditions in
Section 9.5, in which we similarly derive asymptotic enumeration results for this second
type of maps, which are crucial for Chapter 8.

Note that, in either case, the present work establishes parametrizations of the generat-
ing functions for these families of maps by explicit, rational functions, which contain much
more information than the necessary asymptotics. These rational parametrizations can be
seen as particular instances of the general framework of topological recursion, as we
will explain later.

All computations are available in the Maple companion file [Map].

9.1.2 Related works

The first enumeration results for planar Eulerian triangulations were established by Tutte,
using recursion [Tut62]. These results were later revisited in a bijective approach by Bout-
tier, Di Francesco and Guitter [BDFG04].

Eulerian triangulations with a monochromatic boundary, whose generating function will
be an essential tool in this present work, have been enumerated in several more general
works on constellations. The first one expressed in terms of maps was by Bousquet-
Mélou and Schaeffer, where they also use a bijection with a family of trees [BMS00].
Later, Albenque and Bouttier recovered the same results with techniques relating them to
continued fractions [AB12].

Eulerian triangulations with a boundary can also be seen as a particular case of bi-
colored triangulations with a boundary. On that front, there was recent progress for
triangulations endowed with Ising models [AMS; CT]. While Eulerian triangulations have
a much less complicated structure than the Ising model, they do share with it a richness
in possible boundary conditions that is not present in usual triangulations. It would be
interesting to explore this aspect more in further works, by studying boundary conditions
that are more general than the specific ones studied here.

Finally, as we will explain later, the recursions we establish can be seen as particular
instances of the very general framework of topological recursion, see [Eyn16].

9.2 Monochromatic boundary

We start by recalling known results about the generating function of Eulerian triangulations
with a (general) monochromatic boundary, as it is an essential ingredient to enumerate the
families we will focus on later.

Let us denote by Fp = Fp(t) this generating function, with p the boundary length and
t the weight per vertex. By convention, we set F0 = t to account for the vertex map.

As a particular case of the works of Bousquet-Mélou and Schaeffer [BMS00] or Albenque
and Bouttier [AB12] on planar constellations, we get the following explicit expression for
the coefficients of F3n (Fp vanishes when p is not a multiple of 3):

[tm]F3n =
3n

m− n− 1
2m−2n−1

(
2m− 2n− 2
m− 2n− 1

)(
3n− 1
n− 1

)
=

2m−2n−2

3n+ 1

(
2

(
2n+ 1

m

)(
3n+ 1
2n+ 1

)(
2m− 2n− 2
m− 2n− 1

)
−
(
2n+ 2

m

)(
3n+ 1
2n

)(
2m− 2n− 3
m− 2n− 2

))
.

(9.2.1)
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We define the Laurent series

Y (x) := x2 +
∑
p≥0

Fp
xp+1

. (9.2.2)

From (9.2.1), Y has the following Laurent expansion in x:

Y (x) = x2 +
∑
n≥0

1

3n+ 1

((
3n+ 1
2n+ 1

)
V 2n+1 −

(
3n+ 1
2n

)
V 2n+2

)
x−3n+1

= x2 +
V − 2V 2

x
+

V 3 − 3V 4

x4
+

3V 5 − 10V 6

x7
+ . . . (9.2.3)

where V = V (t) is the series determined by t = V − 2V 2.
The observant reader might notice that V is the generating function of trees endowed

with a weight 2 per edge and weight t per vertex. This is to be expected, as the proof of
Bousquet-Mélou and Schaeffer’s work relies on a bijection between planar constellations
and a specific type of decorated plane trees.

This implies the following proposition:

Proposition 9.2.1. Set

x(ζ) := V ζ + ζ−2, y(ζ) := V 2ζ2 + ζ−1. (9.2.4)

Then we have
Y (x(ζ)) = y(ζ). (9.2.5)

Note that this result is a particular case of Theorem 8.3.1 in [Eyn16]. We give here an
independent proof that relies on (9.2.1).

Proof. Locally around ζ = ∞, x(ζ) admits a unique inverse ζ(x), whose Laurent series
expansion can be determined by Lagrange inversion:

ζ(x) =
x

V
−
∑
n≥0

1

3n+ 2

(
3n+ 2
2n+ 1

)
V 2n+1x−3n+2

=
x

V
− V

x2
− 2

V 3

x5
− 7

V 5

x8
− . . .

By plugging this expansion into y(ζ), we recover the equation (9.2.3) on Y .

9.3 Alternating boundary

We are interested in enumerating Eulerian triangulations with an alternating and semi-
simple boundary. We thus want to determine the generating series

B(t, z) =
∑
n,p≥0

Bn,pt
nzp

where Bn,p is the number of Eulerian triangulations with a semi-simple alternating bound-
ary of length 2p and with n black triangles.

While the above convention is more natural and convenient for applications, the previ-
ous section shows that enumerating by vertices and having inverse weights for the perimeter
variable yields simpler expressions. We will thus use the latter conventions for most of the
calculations, then go back to the former to compute asymptotic results. For similar reasons,
we will stick to general boundaries (instead of semi-simple) until computing asymptotics.

We will give more details about the conversions between these different conventions
and families when they arise.
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9.3.1 Recursion

We want to compute the generating function for Eulerian triangulations with a (general)
alternating boundary. In order to write down a Tutte equation, we need to consider a more
general class of boundaries, namely of the form •p ◦q (•◦)r (in other words, a black part of
length p, a white part of length q, and an alternating part of length 2r starting with black.
We denote by Fp,q,r(t) the corresponding generating function (with a weight t per vertex).

Proposition 9.3.1. For q ≥ 0 we have

Fp,q+1,r = Fp+2,q,r +

p−1∑
p′=0

Fp′Fp−p′−1,q,r +

r−1∑
r′=0

Fp,1,r′F0,q,r−r′−1. (9.3.1)

This equation fully determines Fp,q,r when supplemented with the boundary conditions

Fp,0,0 = Fp, Fp,0,r = Fp+1,1,r−1 (r ≥ 1). (9.3.2)

Proof. We prove this equation with the usual method of “peeling” a boundary edge, here
the leftmost white one: it can either be adjacent to an inner black triangle (accounting
for the Fp+2,q,r term), or it can be identified with a black boundary edge of the black part
(accounting for the Fp′Fp−p′−1,q,r part), or it can be identified with a black boundary edge
of the alternating part (accounting for the third term).

Note that the boundary conditions simply express that the two generating functions
enumerate the same maps.

We introduce the generating functions

Wq(x,w) =
∑
p≥0

∑
q≥0

Fp,q,r
xp+1wr+1

, Aq(w) =
∑
r≥0

F0,q,r

wr+1
, Bq(w) =

∑
r≥0

F1,q,r

wr+1
. (9.3.3)

We are chiefly interested in the series A0, which corresponds to a purely alternating
boundary. Note that we have Aq = 0 (resp. Bq = 0) unless q (resp. q − 1) is a multiple of
3. The Tutte equation (9.3.1) amounts to

Wq+1(x,w) = Y (x)Wq(x,w)− xAq(w)−Bq(w) +W1(x,w)Aq(w), (9.3.4)

while the boundary conditions (9.3.2) imply

wW0(x,w)− Y (x) + x2 = xW1(x,w). (9.3.5)

The fact that one gets the coefficients of the generating function Wq+1 from coefficents
of Wq with lower indices, along with some boundary terms, and that this recursive process
is driven by Y (x), which corresponds to the “zero case” of the recursion, is an example of the
general framework of topological recursion. Indeed, in this framework, topological objects
(maps, manifolds, moduli spaces ...) in some family (triangulations with simple boundaries,
Riemann surfaces with marked points ...), with a specific topological complexity (a given
genus, number of boundaries or marked points ...) can be enumerated recursively from
objects in the same family with a lower topological complexity, this recursion being driven
by the spectral curve, a parametrized complex manifold than can be interpreted as the
case of zero complexity in the family. Here, the functions (x(ζ), y(ζ)) can thus be seen as
defining such a spectral curve.

In particular, observe that we have a closed system for the values q = 0, 1. Indeed, by
eliminating W0, we get the equation

K(x,w)W1(x,w) = R(x,w) (9.3.6)
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where

K(x,w) = w − wA0(w)− xY (x), R(x,w) = Y (x)2 − x2Y (x)− xwA0(w). (9.3.7)

We recognize a functional equation with one catalytic variable (x), which is amenable
to the kernel method.

Before proceeding, it is convenient to use the spectral curve presented in the previous
section, by performing a change of variables x → ζ. By a slight abuse of notation we write
W1(ζ, w) instead of W1(x(ζ), w), and similarly for K and R:

K(ζ, w) = w−wA0(w)− x(ζ)y(ζ), R(ζ, w) = y(ζ)2 − x(ζ)2y(ζ)− x(ζ)wA0(w). (9.3.8)

Let us assume that there exists a Laurent series ω(ζ) such that the substitution w →
ω(ζ) is well-defined in the series A0 and W1, and such that K(ζ, ω(ζ)) = 0. Then, it follows
from (9.3.6) that R(ζ, ω(ζ)) = 0. By (9.3.8), we deduce a system of equations for ω(ζ) and
A0(ω(ζ)), which is immediately solved with the result

ω(ζ) =
y(ζ)2

x(ζ)
=

V 2(ζ3 + 1)2

V ζ3 + 1
, A0(ω(ζ)) = 1− x(ζ)2

y(ζ)
= 1− (V ζ3 + 1)2

ζ3(V 2ζ3 + 1)
. (9.3.9)

Note that ω(ζ) = V ζ3 + o(1) for ζ → ∞, which shows that the substitution w → ω(ζ)
is indeed well-defined. We recognize a rational parametrization for the series A0. We also
see that we can simplify expressions by working with the parameter s = ζ3, which yields:

Theorem 9.3.2. The generating function A0(w) for Eulerian triangulations with an al-
ternating boundary admits the rational parametrization A0(w(s)) = a0(s), where

w(s) =
(V 2s+ 1)2

V s+ 1
, a0(s) =

(1− 2V )s− 1

s(V 2s+ 1)
. (9.3.10)

As was the case for x(ζ), w(s) admits locally around s = ∞ a unique inverse s(w),
which has the Laurent series expansion

s(w) =
w

V 3
+

V − 2

V 2
− (V − 1)2

V w
+ . . . (9.3.11)

This yields

A0(w) =
V − 2V 2

w
+

V 2(1− 3V + V 2)

w2
+

V 3(2− 8V + 7V 2 − 2V 3)

w3
+ . . . (9.3.12)

Note that the leading term is equal to t/w, as it should be. The next term yields
F0,0,1 = F1,1,0 = V 2(1− 3V + V 2) = F3 + t2, which is consistent.

Remark. Traditionally, in the kernel method, one attempts to solve the equation K(z, w) =
0 for the catalytic variable (here ζ) in terms of the other variable (w). Here, it works more
directly by solving in the other way since K and R are just affine functions of w and
wA0(w).

9.3.2 Conversions in the parametrization

Let A(u, z) be the generating function of planar Eulerian triangulations with a general
alternating boundary, with a weight u per vertex and a weight z per pair of edges on
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the boundary. From the preceding results, we get immediately the following rational
parametrization of A: ⎧⎪⎨⎪⎩

u = V − 2V 2

A = V (1+W )(1−2V−V 2W )
1+VW

z = W (1+VW )
V (1+W )2

.

(Here we have made the additional change of variables W = 1/sV 2.)

Let F (t, z) be the generating function for Eulerian triangulations with a general al-
ternating boundary, but with t counting the number of black triangles. We can get a
system of equations between the number of vertices v, the number of black triangles b and
the boundary length 2p, by combining Euler’s formula and a double counting of the total
number of edges e: {

v − e+ 2b+ 1 = 2

2e = 6b+ 2p,

which yields:
v = b+ p+ 1.

Therefore, if the function T (t, z) enumerates the same triangulations, but with now a
weight t per black triangle, we have

T (t, z) =
A(t, z/t)

t
,

so that T satisfies the new system:⎧⎪⎪⎨⎪⎪⎩
t = V − 2V 2

T = V (1+W )(1−2V−V 2W )
1+VW ·

(
V − 2V 2

)−1
= (1+W )(1−2V−V 2W )

(1+VW )(1−2V )

z = W (1+VW )
V (1+W )2

·
(
V − 2V 2

)−1
= W (1−2V−V 2W )2

(1+VW )(1−2V ) .

Let us finally get to B(t, z), the generating function of planar Eulerian triangulations
with a semi-simple boundary.

Considering that a triangulation with a general boundary can be decomposed into a
semi-simple “core” (which is the semi-simple component containing the root) and general
components attached to every other vertex on the boundary, we have the following relation
between T and B:

T (t, z) = B(t, zT (t, z)).

This implies that B admits the parametrization:⎧⎪⎪⎨⎪⎪⎩
t = V − 2V 2

B = (1+W )(1−2V−V 2W )
(1+VW )(1−2V )

z = W (1−2V−V 2W )
1+W .

(9.3.13)

9.3.3 Asymptotics

The parametrization obtained in the preceding subsection yields the following asymptotics:

Theorem 9.3.3. We have

[tn]B(t, z) =
∑
p≥0

Bn,pz
p ∼
n→∞

32
z√

π(z − 1)(4z − 1)3
8nn−5/2 ∀ z ∈ [0,

1

4
). (9.3.14)
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This implies the following results:

Bn,p ∼
n→∞

C(p)8nn−5/2 ∀ p, (9.3.15)

with

C(p) ∼
p→∞

√
3

2π
4p

√
p. (9.3.16)

Proof. From (9.3.13), we obtain that B must satisfy:

16t3(z − 1)2B4 − 32t2(z − 1)2(t+ z)B3

+ t(z − 1)(24t2z + 32tz2 + 16z3 − 16t2 − 52tz − 16z2 − z)B2

− z(z − 1)(8t2 − 20t− 1)(t+ z)B + z2(t+ 1)3 = 0.

This equation on B has 4 solutions, among which three have some negative coefficients,
so that we identify the last one as B. By definition, it is algebraic in t. Moreover, the
relation t = V − 2V 2 is easily inverted into V = (1−

√
1− 8t)/4, so that B has a unique

singularity in t, at t = 1/8.
We then use the transfer theorem (see Theorem VI.3 in [FS09]) to obtain (9.3.14),

which immediately yields (9.3.15).
Then, as the function of z appearing in (9.3.14) is algebraic and has a unique dominant

singularity at z = 1/4, we can apply the transfer theorem once again to get (9.3.16).
All these computations are available in the companion Maple file.

In particular, for any p ≥ 1, the sum Z(p) =
∑

nBn,p8
−n is finite, which makes it

possible to define the Boltzmann distribution on Eulerian triangulations of the p-gon
(with a semi-simple alternating boundary), that assigns a weight 8−n/Z(p) to each such
triangulation having n black triangles. For application purposes, we also derive exact and
asymptotic results on the Boltzmann partition function Z:

Proposition 9.3.4. The partition function Z of Boltzmann Eulerian triangulations with
a semi-simple alternating boundary has the following behavior:

∑
p≥0

Z(p)zp =
1

2

1 + 7z − 8z2 +
√
(z − 1)(4z − 1)3

1− z
, ∀ z ∈ [0,

1

4
) (9.3.17)

Z(p) ∼
p→∞

1

4

√
3

π
4pp−5/2 and Z(0) = 1. (9.3.18)

9.4 Monochromatic then alternating boundaries

The Tutte equation of the previous section also allows us to compute the bivariate generat-
ing function of Eulerian triangulations with a “monochromatic then alternating” boundary,
namely a boundary of the form •p(•◦)r for some p and r. If we take only positive values
of r, then it is given by W1(x,w), while, if we also include the “trivial” contribution from
the case r = 0, it is given by W0(x,w), from the convention of (9.3.2).

By (9.3.6) we readily find

W1(x,w) =
R(x,w)

K(x,w)
. (9.4.1)

Using the rational parametrizations x(ζ) and w(s), we get

W1(ζ, s) =
(V − 3V 2 + V 3)sζ3 − V (s+ ζ3)− 1

ζ2(V s+ 1)(V 3sζ3 − 1)
(9.4.2)
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and, by (9.3.5),

W0(ζ, s) =
(V 2 − 2V 2)sζ3 − V 2(s+ ζ3)− 1

ζ(V 2s+ 1)(V 3sζ3 − 1)
. (9.4.3)

For later use, we also compute the series W2 corresponding to boundaries of the form
•p ◦2 (•◦)r. We simply use (9.3.4) and the expression

B1(s) = lim
ζ→∞

W1(ζ, s)x(ζ)
2 =

(1− 3V + V 2)s− 1

s(V s+ 1)
(9.4.4)

(which is consistent with the relation A0 = (t+B1)/w) to get

W2(ζ, s) = y(ζ)W1(ζ, s)−B1(s) =
(1− 3V )sζ3 − s− ζ3

sζ4(V 3sζ3 − 1)
. (9.4.5)

9.5 Alternating boundary with defects

9.5.1 Recursion

We are now interested in enumerating planar Eulerian triangulations with an alternating
boundary with defects of size 1, that is, a boundary on which the colors alternate
save for two instances. As was the case for the strictly alternating case, in order to obtain
a recursion equation, we need to to consider a broader family of maps: namely, planar
Eulerian triangulations with a (general) boundary of the form •p+1(◦•)r1 ◦q+1 (•◦)r2 . We
claim that the corresponding generating function Gp,r1,q,r2 = Gp,r1,q,r2(t) (with a weight t
per vertex) is symmetric in p and q as well as in r1 and r2. Indeed, the counting problem
does not change if we perform a cyclic rotation, a reflection or a color switch on the
boundary type. Permuting r1 and r2 is simply done by a reflection, and permuting p and
q by a reflection and a color switch.

We then define the series

Pq(x,w1, w2) :=
∑

p,r1,r2≥0

Gp,r1,q,r2

xp+1wr1+1
1 wr2+1

2

and
Ep,q(w1, w2) :=

∑
r1,r2≥0

Gp,r1,q,r2

wr1+1
1 wr2+1

2

.

As explained above, these functions should be symmetric in w1 and w2, and furthermore
Ep,q = Eq,p vanishes unless p ≡ q (mod 3). Our purpose is to compute E1,1 (note that
E0,0 corresponds to pure alternating boundaries with two markings).

We have Gp,0,q,r2 = Fp+1,q+1,r2 , hence the coefficient of 1/w1 in Pq reads

lim
w1→∞

w1Pq(x,w1, w2) =
∑
r2≥0

⎛⎝∑
p≥0

(
Fp,q+1,r2

xpwr2+1
2

)
− F0,q+1,r2

x0wr2+1
2

⎞⎠
= xWq+1(x,w2)−Aq+1(w2).

For r1 ≥ 1 and q not a multiple of 3, if we perform a peeling on the leftmost white
edge, we get

Gp,r1,q,r2 = Gp+3,r1−1,q,r2 +

p∑
p′=0

Fp′Gp−p′,r1−1,q,r2 +

r1−1∑
r′=0

F0,0,r′Gp,r1−1−r′,q,r2 .
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Here, the first term corresponds to the case where we discover a new triangle, the sec-
ond term (the sum over p′) to the case where the white edge is matched with one of the
p + 1 black edges on its left, and the third term (the sum over r′) to the case where the
white edge is matched with one of the black edges on its right, which is necessarily in the
first alternating block (it cannot be in the second block by parity constraints - this would
be possible for q a multiple of 3).

We deduce that, if q′ = 1, 2 is the remainder of the Euclidean division of q by 3,

Pq(x,w1, w2)−
xWq+1(x,w2)−Aq+1(w2)

w1

=
xY (x)

w1
Pq(x,w1, w2)−

x2−q
′

w1
Eq′,q(w1, w2) +A0(w1)Pq(x,w1, w2).

Note that we once again have a recursion driven by the spectral curve Y .
We can rewrite this equation as

K(x,w1)Pq(x,w1, w2) = Rq(x,w1, w2) (9.5.1)

where K is the same kernel as in (9.3.8), and

Rq(x,w1, w2) = xWq+1(x,w2)−Aq+1(w2)− x2−q
′
Eq′,q(w1, w2).

We now go to the rational parametrizaton x = x(ζ), w1 = w(s1), w2 = w(s2), with
w(s) as in Theorem 9.3.2. As in Section 9.3, if we take s1 = ζ3, then K(ζ, s1) vanishes,
so we deduce from (9.5.1) that Rq(ζ, ζ

3, s2) vanishes as well. Noting that Aq+1 vanishes if
q′ = 1, we hence get

Eq′,q(ζ
3, s2) = Wq+1(ζ, s2) if q′ = 1.

For q = q′ = 1, we thus obtain the expression

E1,1(s1, s2) =
(1− 3V )s1s2 − s1 − s2

s1s2(V 3s1s2 − 1)
.

Note that this expression is symmetric in s1 and s2, as it should be.

9.5.2 Simplicity conditions

While having a very symmetric definition of the parameters describing an alternating
boundary with defects was convenient for deriving equations on generating functions, for
our applications in Chapter 8, it is more convenient to switch to a different convention,
with “upper” and “lower” parts in the boundary, that do not play exactly the same role, as
depicted in Figure 9.5.1.

For our applications, we consider two different types of simplicity conditions: either
semi-simple non-chaining, or semi-simple chaining. Each of these can be defined
by the allowed identifications of boundary vertices, starting from the layout given in Fig-
ure 9.5.1: those allowed identifications are given in Figure 9.5.2 and Figure 9.5.3 respec-
tively. They both have semi-simple conditions on their upper and lower boundary parts
separately (up to a switch between black and white), but identifications between top and
bottom boundary vertices are only allowed in the chaining case, so that an Eulerian trian-
gulation with chaining boundary conditions are a “chain” of Eulerian triangulations with
defects, hence the name.
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2p

2q

Figure 9.5.1 – General layout of a boundary with two defects of size 1, marked by red stars.

+ OK

+ OK

+ NO

+ NO

+ NO

Figure 9.5.2 – Semi-simple non-chaining boundary conditions. The prohibition of the
“square-cross” identifications means that we have no chaining configurations here.
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+ OK

+ OK

+ NO

+ NO

+ OK

Figure 9.5.3 – Semi-simple chaining boundary conditions, and an example of a chaining
configuration, corresponding to a “circle-triangle” identification.
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Let us introduce a bit of notation: the generating functions for these non-chaining and
chaining Eulerian triangulations are respectively

B(1)(t, y, z) =
∑

n,p,q≥0

B(1)
n,p,qt

nypzq

and
B(1,c)(t, y, z) =

∑
n,p,q≥0

B(1,c)
n,p,qt

nypzq

where t enumerates the number of black triangles, y the half-length of the upper boundary,
and z the half-length of the lower boundary.

9.5.3 Conversions in the parametrization

We have now obtained a rational parametrization of A(1)(u, y, z), the generating series of
planar Eulerian triangulations with a general alternating boundary with defects of size 1,
with u counting the number of vertices:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u = V − 2V 2

A(1) = (V 2s2+1)2

V s2+1

[
(1−3V )s1s2−s1−s2
s1s2(V 3s1s2−1)

+ (V 2s2+1)2

V s2+1 · (1−2V )s2−1
s2(V 2s2+1)

− (V − 2V 2)
]

y = V s1+1
(V 2s1+1)2

z = V s2+1
(V 2s2+1)2

.

Now, by replacing si with the variable Wi = 1/(siV
2), we obtain:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u = V − 2V 2

A(1) = (1+W2)2V 2(V 3W2W1+(W1+W2−1)V 2+3V−1)(1+W1)
(VW2+1)2(VW1W2−1)

y = W1(1+VW1)
V (1+W1)2

z = W (1+VW2)
V (1+W2)2

.

We will not write down the parametrizations for the other generating functions, as they
get quite cumbersome; they can be found in the companion Maple file. We will just detail
here the relations between the different generating functions, that yield their successive
parametrizations.

As before, if F (1)(t, y, z) counts the same maps as A(1), but with t accounting for the
black faces, then:

F (1)
n,p,q = A

(1)
n+p+q+2,p,q

or in other words:

F (1)(t, y, z) =
A(1)(t, y/t, z/t)

t2
.

Then, F (1) can be expressed in terms of B(1) by the following relation:

F (1)(t, y, z) = B(1)(t, yF (t, y), zF (t, z)).

As for B(1,c), note that a chaining Eulerian triangulation with defects is precisely made
of a chain of non-chaining triangulations with defects, so that:

B(1,c)(t, y, z) =
B(1)(t, y, z)/B(t, z)

1− zB(1)(t, y, z)/B(t, z)
.
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9.5.4 Asymptotics

We are interested in the asymptotic behavior of B(1)
n,p,q and B

(1,c)
n,p,q as n → ∞, then q → ∞.

As the systems that characterize them are more complicated than the one for B, we confine
ourselves to local results around the singularities in t, y and z:

Theorem 9.5.1. The coefficients of the generating function B(1) have the following asymp-
totic behavior:

B(1)
n,p,q ∼

n→∞
D(p, q)8nn−5/2 ∀ p, q, (9.5.2)

with
D(p, q) ∼

q→∞
E(p)4q

√
q ∀ p (9.5.3)

and

E(p) ∼
p→∞

9
√
6

4π
4p. (9.5.4)

Similarly, for B(1,c),

B(1,c)
n,p,q ∼

n→∞
Dc(p, q)8

nn−5/2 ∀ p, q (9.5.5)

with
Dc(p, q) ∼

q→∞
Ec(p)4

q√q ∀ p (9.5.6)

Ec(p) ∼
p→∞

144
√
6

49π
4p. (9.5.7)

Proof. To simplify notation, we only explain the steps of the calculations concerning B(1),
as those for B(1,c) are very similar. All these calculations can be found in the companion
Maple file.

As, once again, B(1) has a unique singularity in t, at t = tc = 1/8, we start by applying
the transfer theorem for the variable t (keeping y, z fixed, and not W1,W2), which yields
(9.5.2). We then check that, near tc, B(1) has a unique dominant singularity in z, which
corresponds to its unique dominant singularity in W2. We can then apply the transfer
theorem for z, which yields (9.5.3), and then proceed similarly for y.

Note that these asymptotics are very similar to the strictly alternating case, which
means that we can see the introduction of these defects as a “small perturbation” for enu-
merative properties, when both parts of the boundary are large.

Like in the strictly alternating case, the asymptotic in n implies that we can define
“Boltzmann” coefficients

Z̃(p, q) =
∑
n

1

8n
B(1)
n,p,q and Z̃c(p, q) =

∑
n

1

8n
B(1,c)
n,p,q.

Note that these coefficients are now bivariate.
We also investigate some asymptotic behavior of these new Boltzmann coefficients,

which are also useful in the study of large planar Eulerian triangulations:

Proposition 9.5.2. The coefficients Z̃ have the following properties:

1

4p

∑
q

Z̃(p, q)

(
1

4

)q
∼

p→∞
9
√
3

8
√
πp3/2

(9.5.8)
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1

4q

∑
p

Z̃(p, q)

(
1

4

)p
∼

q→∞
9
√
3

8
√
πq3/2

(9.5.9)

∑
p,q

Z̃(p, q)

(
1

4

)p(1

4

)q
=

27

8
. (9.5.10)

The same results (down to the multiplicative constants) hold for the coefficients Z̃c.
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Triangulations colorées aléatoires

Résumé. L’unification de la mécanique quantique et de la relativité générale est un
des grands problèmes ouverts en physique théorique. Une des approches possibles est de
définir des espaces géométriques aléatoires avec des bonnes propriétés, qui peuvent être
interprétés comme des espaces-temps quantiques. Cette thèse aborde des aspects mathé-
matiques des modèles de tenseurs colorés, un type de modèle de physique théorique qui
s’inscrit dans cette approche. Ces modèles décrivent des espaces linéaires par morceaux
appelés trisps colorés, en toute dimension.

Au cours de cette thèse, nous avons tout d’abord étudié des modèles aléatoires uni-
formes sur les trisps colorés, en toute dimension. Nous prouvons que ces modèles ont une
limite singulière, ce qui a aussi donné lieu à un théorème central limite sur le genre d’une
grande carte aléatoire uniforme.

Nous avons ensuite étudié le cas particulier de la dimension 2, où les trisps colorés
sont un type particulier de cartes, les triangulations eulériennes. Nous montrons que les
triangulations eulériennes planaires convergent vers la carte brownienne, qui est un objet
aléatoire continu universel en dimension 2. Ce résultat est particulièrement remarquable
étant donnée la complexité de la structure des triangulations eulériennes, en comparaison
avec les autres familles de cartes qui convergent vers la carte brownienne.

Mots-clés : cartes aléatoires, graphes aléatoires, permutations aléatoires, modèles de
tenseurs colorés, trisps colorés, triangulations eulériennes, gravité quantique, combina-
toire analytique.

Random colored triangulations
Abstract. The unification of quantum mechanics and general relativity is one of the
big open problems in theoretical physics. One of the possible approaches is to define
random geometric spaces with the right properties, that can be interpreted as quantum
spacetimes. This thesis touches on mathematical aspects of colored tensor models, a
type of theoretical-physical model that belongs to this approach. These models describe
piecewise-linear spaces called colored trisps, in any dimension.

Over the course of this thesis, we first studied uniform random models of colored
trisps, in any dimension. We prove that these models have a singular limit, which also
lead to a Central Limit Theorem for the genus of a large uniform random map.

We then studied the special case of dimension 2, in which colored trisps are a partic-
ular type of maps, Eulerian triangulations. We show that planar Eulerian triangulations
converge to the Brownian map, which is a universal continuum random object in dimen-
sion 2. This result is particularly remarkable, given the complexity of the structure of
Eulerian triangulations, compared to other families of maps that are known to converge
to the Brownian map.

Keywords: random maps, random graphs, random permutations, colored tensor mod-
els, colored trisps, Eulerian triangulations, quantum gravity, analytic combinatorics.

Image de couverture : Une triangulation eulérienne du cylindre, munie de sa décom-
position en couches.
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