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Cartographier les médias avec des
réseaux multiplexes interactifs

Les flux d’information suivent aujourd’hui des chemins complexes: la propagation des
informations, impliquant éditeurs on-line, chaînes d’information en continu et réseaux
sociaux, emprunte alors des chemins croisés, susceptibles d’agir sur le contenu et sa
perception. Ce projet de thèse étudie l’adaptation des mesures de graphes classiques
aux graphes multiplexes en relation avec le domaine étudié, propose de construire
des visualisations à partir de plusieurs représentations graphiques des réseaux, et de
les combiner (visualisations multi-vues synchronisées, représentations hybrides, etc.).
L’accent est mis sur les modes d’interaction permettant de prendre en compte l’aspect
multiplexe (multicouche) des réseaux. Ces représentations et manipulations interactives
s’appuient aussi sur le calcul d’indicateurs propres aux réseaux multiplexes.

Ce travail est basé sur deux jeux de données principaux: l’un est une archive de 12
ans de l’émission japonaise publique quotidienne NHK News 7, de 2001 à 2013. L’autre
recense les participants aux émissions de télévision/radio françaises entre 2010 et 2015.
Deux systèmes de visualisation s’appuiyant sur une interface Web ont été développés
pour analyser des réseaux multiplexes, que nous appelons «Visual Cloud» et «Laputa».

Dans le Visual Cloud, nous définissons formellement une notion de similitude entre
les concepts et les groupes de concepts que nous nommons possibilité de co-occurrence
(CP ). Conformément à cette définition, nous proposons un algorithme de classification
hiérarchique. Nous regroupons les couches dans le réseau multiplexe de documents,
et intégrons cette hiérarchie dans un nuage de mots interactif. Nous améliorons les
algorithmes traditionnels de disposition de mise en forme de nuages de mots de sorte à
préserver les contraintes sur la hiérarchie de concepts.

Le système Laputa est destiné à l’analyse complexe de réseaux temporels denses
et multidimensionnels. Pour ce faire, il associe un graphe à une segmentation. La
segmentation par communauté, par attribut, ou encore par tranche temporelle, forme
des vues de ce graphe. Afin d’associer ces vues avec le tout global, nous utilisons des
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diagrammes de Sankey pour révéler l’évolution des communautés (diagrammes que
nous avons augmentés avec un zoom sémantique).

Cette thèse nous permet ainsi de parcourir trois aspects (3V) des plus intéressants
de la donnée et du BigData appliqués aux archives multimédia: Le Volume de nos
données dans l’immensité des archives, nous atteignons des ordres de grandeurs qui ne
sont pas praticables pour la visualisation et l’exploitation des liens. La Vélocité à cause
de la nature temporelle de nos données (par définition). La Variété qui est un corollaire
de la richesse des données multimédia et de tout ce que l’on peut souhaiter vouloir
y investiguer. Ce que l’on peut retenir de cette thèse c’est que la traduction de ces
trois défis a pris dans tous les cas une réponse sous la forme d’une analyse de réseaux
multiplexes. Nous retrouvons toujours ces structures au cœur de notre travail, que ce
soit de manière plus discrète dans les critères pour filtrer les arêtes par l’algorithme
Simmelian backbone, que ce soit par la superposition de tranches temporelles, ou bien
que ce soit beaucoup plus directement dans la combinaison d’indices sémantiques visuels
et textuels pour laquelle nous extrayons les hiérarchies permettant notre visualisation.

Mots Clés: Réseau Multiplexe, Graphe Dynamique, Graphe Temporel, Détection
de Communauté, Visualisation, Big Data, Analyse Visuelle

Laboratoire:
Laboratoire Bordelais de Recherche en Informatique (UMR 5800)
351, cours de la Libération, 33405 Talence cedex, France



Visualizing media with interactive
multiplex networks

Nowadays, information follows complex paths: information propagation involving
on-line editors, 24-hour news providers and social medias following entangled paths
acting on information content and perception. This thesis studies the adaptation
of classical graph measurements to multiplex graphs, to build visualizations from
several graphical representations of the networks, and to combine them (synchronized
multi-view visualizations, hybrid representations, etc.). Emphasis is placed on the
modes of interaction allowing to take in hand the multiplex nature (multilayer) of the
networks. These representations and interactive manipulations are also based on the
calculation of indicators specific to multiplex networks.

The work is based on two main datasets: one is a 12-year archive of the Japanese
public daily broadcast NHK News 7, from 2001 to 2013. Another lists the participants
in the French TV/radio shows between 2010 and 2015.

Two visualization systems based on a Web interface have been developed for
multiplex network analysis, which we call "Visual Cloud" and "Laputa". In the Visual
Cloud, we formally define a notion of similarity between concepts and groups of concepts
that we call co-occurrence possibility (CP). According to this definition, we propose a
hierarchical classification algorithm. We aggregate the layers in a multiplex network
of documents, and integrate that hierarchy into an interactive word cloud. Here we
improve the traditional word cloud layout algorithms so as to preserve the constraints
on the concept hierarchy. The Laputa system is intended for the complex analysis of
dense and multidimensional temporal networks. To do this, it associates a graph with
a segmentation. The segmentation by communities, by attributes, or by time slices,
forms views of this graph. In order to associate these views with the global whole, we
use Sankey diagrams to reveal the evolution of the communities (diagrams that we
have increased with a semantic zoom).
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This thesis allows us to browse three aspects of the most interesting aspects of
the data miming and BigData applied to multimedia archives: The Volume since our
archives are immense and reach orders of magnitude that are usually not practicable for
the visualization; Velocity, because of the temporal nature of our data (by definition).
The Variety that is a corollary of the richness of multimedia data and of all that one
may wish to want to investigate. What we can retain from this thesis is that we met
each of these three challenges by taking an answer in the form of a multiplex network
analysis. These structures are always at the heart of our work, whether in the criteria
for filtering edges using the Simmelian backbone algorithm, or in the superposition
of time slices in the complex networks, or much more directly in the combinations
of visual and textual semantic indices for which we extract hierarchies allowing our
visualization.

Keywords: Multiplex Network, Dynamic Graph, Temporal Graph, Community
Detection, Visualization, Big Data, Interaction, Visual Analytics

Laboratory:
Laboratoire Bordelais de Recherche en Informatique (UMR 5800)
351, cours de la Libération, 33405 Talence cedex, France
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Chapter 1

Introduction

This thesis was funded by ANRT through a collaboration involving INA (Institut
National Audiovisuel, Paris, FR) and LaBRI (Laboratoire Bordelais de Recherche

en Informatique, UMR CNRS 5800, Talence, FR).
INA is a public institution archiving audiovisual productions, producing and pub-

lishing audiovisual and multimedia content for all audiences. INA is also a training
and research center that aims to develop and transmit knowledge in the audiovisual,
media and digital fields. The thesis took place as part of activities of INA Recherche
& Innovation Recherche & Innovation is a research team led by Marie-Luce Viaud
focusing on information retrieval and visualization interfaces.

This work was also accomplished in co-supervision by Benjamin Renoust from
Osaka University (formerly at NII in Tokyo), in particular the part focusing on video
document visualization.

This section briefly summarizes the work and results of the main research during
the doctoral period. The manuscript is organized into two main parts, one focusing
on the visualization of video documents content, the other looking at how dynamic
network analysis can support the understanding of media as a social ecosystem.

1.1 Video documents content
The size of digital news archives makes it necessary for media studies to rely on
automatic processing for quantitative analysis, not limited to their textual content.
Visual analytics of multimedia data proposes then to extract high-level representations
and support high-end analysis of multimedia concepts (not limited to text). Advances
in computer vision now allows the extraction of visual semantic concepts, which
can be used in turn to index video documents in an archive [32]. Querying and
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retrieving relevant information still remains a difficult task, one with a relatively high
cognitive cost for users, especially considering semantic ambiguity. This has stimulated
information visualization to support the strategies adopted by users to find their way in
the information space formed by results. In particular, tag clouds can give an overview
of this semantic space and support exploratory tasks [66].

With news videos, the heterogeneous combination of both textual and visual con-
cepts presents an interesting challenge. Modeling query results as multiplex document
networks – each semantic concept being associated to a layer [54] – can turn this
heterogeneity as an advantage. [53] had shown how a Layer Interaction Network
(hereafter LIN ) derived from the original multilayer network enables the design of
advanced interaction and coordination, and thus eases exploration.

1.2 French medias as a social ecosystem
The social and political life of a community is partly shaped by the voice of different
actors and groups of actors is echoed in the media. In the context of INA’s OTMedia
project1, different measures and visualizations supporting the analysis of medias
visibility were developed (newspapers, radio, TV and even social medias).

We have investigated radio and TV programs broadcasted between 2011 and 2015,
and have more particularly looked at co-invitation patterns hoping to locate different
communities of actors. By doing so, we hoped to answer simple questions such as “Are
there groups of person being co-invited often with one another?” “Can we provide
an overview of all co-invitations, groups and how they evolve in time?”, etc. Because
co-invitations spread over a five year period, the notion of a community had to be
tackled in a manner consistent with the fact that people come and go between groups.

The data we use naturally comes as a network of people being connected as they
are co-invited on TV or radio shows. The avenue we borrow to provide answers to the
previous questions is to “visualize” the data and provide insight on its “structure” and
display graphical patterns that the human eye is extremely well trained to detect [75]
[76]. The structure of data is intimately linked to the notion of a “group”: a set of
elements showing relative homogeneity [68, 62]. Now, the data we use is modeled as
a graph where nodes correspond to people and links correspond to co-invitation to a
same TV or radio show. For graphs, homogeneity is generally referred to as modularity
and most often measured in terms of internal connectivity versus external connectivity.
A popular modularity measure was introduced by Newman [46].

1See www.otmedia.fr

www.otmedia.fr
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Dynamic graphs – those where nodes and edges vary in time – raise quite a number
of issues. Properly defining the notion of a group or community in a dynamic graph
is difficult as shows the lack of consensus in the literature [57]. Their visualization is
another difficult and interesting problem [11]. The challenge indeed is to be able to
display changes through a graphical representations capable of supporting the user’s
mental map [4].

As if the challenge was not hard enough, our aim is to help users track changes in
the community structure of a network – which often are termed dynamic communities
[57]. This notion however hides an implicit assumption, that communities remains
relatively stable over time. This “stability” assumption simply does not hold in the
context of our work, as we shall see.

We study the French medias, and look more particularly at how people (politicians,
actors, sportsmen, commentators, etc.) get co-invited on the same radio or TV shows
over the 2010 – 2016 period. Being able to track and understand patterns potentially
sheds light on editorial policies and potential biases induced from repeated co-invitations
on given topics.

Our contribution is a fully equipped exploratory dashboard allowing users to select
and track groups of people over time in the “co-invitation network”. Communities,
either suggested using standard algorithms or deliberately selected by users, can then
be examined from different angles, and through different signals reflecting the level of
“activity”, “stability” or “renewal” rate of a group.

1.3 Overview of main contributions
In this thesis we focus on data modeling, visualization and analysis approaches toward
a better understanding of complex network and time evolving network. Information
visualization is the primary focus of our investigations. The four main contributions
are as follows:

Temporarily and heterogeneity in graph communities from media archives

• Heterogeneity within the document context. Documents have many properties
such as channels, broadcasts, type of broadcast etc.

• Heterogeneity within the document itself: mining the keywords, computer vision
cues, face detection.

Ways to model the heterogeneity
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• heterogeneity through multiplex networks

• heterogeneity through bipartism

The first contribution of our design study is a formal description using Brehmer et
al.’s approach [14] of the tasks we need to support. Each task corresponds to a domain
question and a set of operations conducted on the relevant data. Based on these task
descriptions, our second contribution is the design of a visual analytics dashboard
shown in Fig. 4.5, consisting in:

• A dual community detection approach based on two complementary perspectives:
first on the overall link structure with time-independent groups confronted to
time-interval induced groups;

• A set of statistics turned into indicators of time-dependent community cohesion;

• A system combining and synchronizing several representations of communities,
together with dedicated interactions.

Our dashboard uses Bobo Nick’s [48] Simmelian backbone filtering approach to
downsize the data and provide a fluid navigation of our data. The curves of time-
dependent statistics can be used to filter data according to time. The iterative design
of the dashboard was guided by close consultation with two expert users. Our last
contribution is two use cases that showcase how the dashboard supports the analysis
work-flow.

1.3.1 Visually exploration of network over time

We design and produce a visual framework to represent temporal graphs, to detect
communities and to show their evolution over time.

This work is done in the French audiovisual institute and the constraints are strong
because the framework produced should handle real data, is tested and used by real
expert users, to produce real studies at real scale. Then, the framework should contain
several modules to ensure it use in real environment:

- a module to build a temporal graphs from tabular data or given graph models

- a module to observe and evaluate the temporal distribution of the data

- a visual framework to visualize the graph and its evolutions over time and allows
users to manipulate the data.
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1.3.2 A framework to interactively analyze the labeled Videos

We build a multi-layered visual cloud for semantic concepts visualization. This visual
cloud has four features:

- Hierarchical placement. After modifying the traditional tag cloud location
calculation algorithm, our visual cloud implements a mix of tags and snippets,
and the placement of each concept is hierarchically distributed.

- Network behind. Concepts of visual cloud are from interaction network, so the
connection between concepts is preserved and users can interact to understand
the connections between concepts.

- Multiple interaction. A time line is designed to filter the time varying visual
cloud. Click, mouse hover, double click etc. several interactive mode is designed
in our application for user explore the data.

- Heat-map highlight. A heap-map is creatively designed in our visual cloud for
highlight the interest region of concepts, helps user quickly have an overview of
all concepts.

1.3.3 Research and propose some algorithms

In this thesis, we studied the cluster algorithm and proposed our own methods for
better understand the graph.

- A hierarchical cluster for complex graph.

- Several indexes for analyzing the communities’ evolution over time.

- In-depth study of the Simmelian backbone algorithm and dynamic graph cluster-
ing algorithm.





Chapter 2

State of Art

2.1 About clustering
There are two different clustering method: Clustering via inter-document similarity.
The best-known and earliest research on document clustering for search user interface
is the Scatter/Gather project [50], documents are clustered into topically-coherent
groups, and presenting descriptive textual summaries to the user. The usability study
showed that the use of Scatter/Gather on a large text collection successfully conveyed
some of the content and structure of the corpus. Usability study results suggest that
user dislike organizations that show inconsistent levels of description [21].

Clustering according to the shared common term. Monothetic clustering algorithms
[13] build clusters around dominant phrases, which give rise to more understandable
labels. An analysis of the queries for which clusters were selected suggested that they
are helpful primarily for moving documents that are low in the standard search rankings
up higher. This happened on those occasions in which the query was ambiguous and
the primary sense was not shown near the top of the search results, or when the query
was specified very generally [31].

A primary problem with clusters is that their contents can be difficult to understand.
The study by Kleiboemer et al. [35] found that for non-expert users the results of
clustering were difficult to use, and that graphical depictions were much harder to
use than textual representations, because documents’ contents are difficult to discern
without actually reading some text. The human perceptual system is highly attuned to
images, and visual representations can communicate some kinds of information more
rapidly and effectively than text [65].
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A notable successful use of visual cues in search interfaces is color highlighting
of query terms in documents, and bolding of query terms in document summaries in
retrieval results [41].

2.2 Detecting communities in dynamic networks
A common definition to describe dynamic networks is to consider a finite sequence of
graphs G0, G1, . . . , Gk where the node and edge sets of graphs Gt = (Vt, Et) vary in
time, and where each graph Gt is associated with a timestamp (or time interval). It is
usual to refer to each of the graphs Gt as begin static, where Gt represents the state of
the network at timestamp t.

There roughly are three approaches to address community detection in dynamic
networks. They are:

• A first approach is to aggregate all graphs Gt into a single graph and apply
community detection methods for static graphs. Typically, edges if the resulting
graphs can be weighted according to how frequently nodes get connected through
time [6] [69].

• Another set of approaches is to compute communities for each of the graph Gt.

– Communities can then be reconciled [20] [39], simultaneously optimizing
the quality of the community structure at t + 1 and the maximization of
the likeliness with communities at t.

– Alternatively, communities for Gt+1 can be computed using communities
for Gt as a starting point [67] [19], focusing on changes that occurred from
Gt to Gt+1. Changes are dealt with in different manners depending on their
types (community growth or contraction, community merge, split, birth,
death and even resurgence; see [18]). A foreseen advantage of this approach
is to compute communities for Gt+1 in less time, assuming snapshots Gt

and Gt+1 are topologically close to each other.

As for the latter optimization approaches one has to be cautious and take into
consideration the number of snapshots Gt, and the complexity of the networks at hand
– that is, the implicit assumption on link persistence may not be at work. This is an
important aspect in our work as our data is highly dynamic and links are far from
being persistent. Also, these methods most of the time being non-deterministic they
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tend to produce unstable results [58]. Hence it appears that providing users with
means to inspect community structures in a sense is mandatory.

2.3 Visualizing evolving communities
Animating graphical representations is a traditional approach to indeed represent
dynamic network [24] [11]. The complexity of the network, and consequently the
readability of the representation may however call for alternative approaches [56].
Small multiples [25] consists in juxtaposing similar representations of varying but
comparable datasets and effectively support the detection of changes in dynamic
networks. This approach applies to dynamic networks but is subject to an obvious
scalability issue [4]. Scalability can be improved by grouping timestamps into hierarchy
that can be developed on demand as in [7].

Of particular importance here is the visualization of group structure in dynamic
graphs [71].

Interactive Sankey diagrams [55] have proved to be quite useful in visually displaying
evolving community structures [70]. As we shall see, Sankey diagrams can be enriched
with interactions, and usefully synchronized with node-link views to support the visual
inspection of evolving communities.





Chapter 3

Capturing data heterogeneity
through Visual Clouds

3.1 Introduction

Recent advances in Computer Science have brought quantitative capabilities for
news analysis on a large scale, to the benefit of media studies and sociology.

Beyond topic detection and tracking from the text data, the analysis of video content
itself matters, due to the impact images to the viewers [9].

Visual analytics of multimedia data proposes then to extract high-level representa-
tions and support high-end analysis of multimedia concepts (not limited to text). The
analysis part of multimedia analytics often requires semantic annotations describing a
multimedia document or at least a part of it. Semantic concepts required for analysis
are often extracted from textual annotations, when available [38]. Advance in computer
vision now allows the extraction of visual semantic concepts, which can be used in
turn to index video documents in an archive [32]. Querying and retrieving relevant
information still remains a difficult task, one with a relatively high cognitive cost for
users, especially considering semantic ambiguity. While relevance ranking (such as page
ranking [16, 8]) is a powerful approach to extract a set of interesting pages, studies
have shown that users usually focus on the first few pages of results.

Semantic ambiguity remains challenging the information retrieval workflow, from
extraction down to restitution to users [45, 37]. This has stimulated information
visualization to support the strategies adopted by users to find their way in the
information space formed by results. This has stimulated the study of strategies
adopted by users to find their way into the information space [42] and information
visualization soon responded to tackle this task [2, 78]. In particular, tag clouds can
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give an overview of this semantic space and support exploratory tasks [66]. The visual
inspection of results and even snippets for the first few most relevant results cannot
allow users to build a proper mental map of this space. We want to address this
problem by giving access to the semantic coverage of results of a user query through
proper visual representation and interaction, in a form of a multimedia analytics system
delivering a visual map of the query results.

Multiplex networks are heterogeneous and complex data structures: they present
interacting entities across multiple layers of interactions. One successful strategy to
visualize these complex structures is to exploit an additional network: This layer
interaction network describes how layers overlap and may be used to investigate the
original network. When the layers correspond to semantic units in documents, the new
network shows some sense of semantic hierarchy reflecting the semantic context formed
by the documents. We first propose an algorithm to extract hierarchical clusters of
layers in a multiplex network of documents, and then to embed this hierarchy in an
interactive word cloud.

3.2 Data preprocessing
With news videos, we also challenged by another issue is raised by the heterogeneity of
multimedia information, in which we must visually represent. The challenge is then to
visually represent both textual and visual semantic concepts combined. Modeling query
results as multiplex document networks – each semantic concept being associated to a
layer [54] – can turn this heterogeneity as an advantage and derive a Layer Interaction
Network (hereafter LIN ), which offers advance interaction and coordination [53].

To this end, we propose to model query results in a multiplex network [34] since it
aims at capturing multiple types of relationships [17]. as one could observe in the real
world phenomenon (e.g. friend, colleague, family or sports club for social relationships ).
Each layer can be associated to a semantic concept shared between different documents
when modeling a document network [54]. These multiplex networks of documents
often show a high number of layers (as opposed to traditional multilayer networks
that often consider largely below a dozen). The number of layers can been turned
into an advantage by using them to form a second network, the Layer Interaction
Network (hereafter LIN ), which offers interesting opportunity in terms of interaction
and coordination [53].

Detangler [53] used it to coordinate exploration in association with a flattened
multiplex network (corresponding to the more traditional document network). Users
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have then evaluated the LIN to be similar to a tag cloud, while additionally giving a
sense of the semantic contextual hierarchy [53].

Our data consists in a 12-year archive of daily Japanese public broadcast NHK
News 7 [52], from 2001 until 2013. Each program is 30mn long with synchronized
closed captions, about 6 months of 24/7 viewing in total. A program is composed
of different news segments. As provided by Ide [33], we obtain the segments using
a sliding window of topic distribution (Fig. 3.1, top). The extracted topics being
very noisy, we further extract textual semantic information, for each segment, with a
keyword extractor trained for news documents (including named entities) [26]. The
Japanese keywords are translated to English with Bing Translator1.

We use the face detection and tracking proposed in [52] (Fig. 3.1). Faces instances
are detected in each frame [73], then regrouped with point tracking [63] creating
face-tracks, sampled with k-faces [47], and represented using the average of its 128-dim
OpenFace embedding vectors [3]. Face-tracks are clustered using GreedyRSC [40].
About 3,000 clusters are manually annotated, resulting in over 15,000 face-tracks of 139
public figures. We index each video segment with date-time of broadcast, keywords,
and face-tracks. A query can be placed upon these criteria, returning a subset of news
segments, including their associated semantic concepts, i.e. keywords and detected
faces.

3.3 Multiplex abstraction
This section introduce our hierarchical clustering method. Subsection 3.3.1 introduce
how we applied previous work, subsection 3.3.2 discuss a notion of similarity between
concepts and groups of concepts, subsection 3.3.3 details our algorithm steps.

3.3.1 Layer interaction network and edge entanglement

Our input are the search results, which news segments associated with their bag of
features (i.e. semantic concepts). “Graph of topics” [60] (or LIN [54]) are used to
group results of a web search query. As pointed out, “a graph of topics provides a
contextualization of snippets” [60], and enables us to measure group cohesion through
multiplex entanglement [54].

Let S be the set of results returned by a query (see Fig. 3.1 (a)). Each segment
in the results s ∈ S is indexed by a set of concepts t ∈ T . We first consider a graph

1microsoft.com/translator

microsoft.com/translator
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Fig. 3.1 (Top) Indexing each video segment: closed captions-based segmentation, face
tracking, and keyword extraction. (Bottom) Abstraction of the search results; (a)
indexed video segments; (b) the multiplex network of results; (c) the associated LIN.

.

G = (V, E) connecting segments to concepts. Two segments s, s′ may share concepts
t, t′, . . . We build a graph where nodes correspond to segments s, s′ ∈ V and edges
e = (s, s′) ∈ E are created if s and s′ share at least one concept, e is labeled by the
concepts (t, t′, . . .) shared by s and s′ (see Fig. 3.1(b)). This graph corresponds to a
multiplex graph [54] G′ = (V, E ′) in which E ′ = ⋃

t∈T Et , i.e. each concept t forms a
layer.

This formalism allows us to derive the LIN [54] GT (T, F ), together with entangle-
ment measures. The nodes of GT are thus concepts t ∈ T , connected by an edge
f ∈ F if they overlap in G′ (hence index at least two distinct segments). An edge f

is weighted by ntt′ the size of |Et ∩ Et′ | which is the number of edges in G labeled by
both t and t′. Following the same definition, ntt = |Et| is the number of edges of G

labeled by a concept t. Fig. 3.1(c) is a toy example of a LIN.
From there, Renoust et al. [54] compute an entanglement index γt for each concept:

γt.λ = ∑
t′∈T

ntt′
nt

γ′
t . It measures how much concept t is entangled with other concepts

in the network G′. In other words, it measures the share of concept t in mixing with
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Fig. 3.2 Seraching results are built into interaction network

other concepts that brings results close one another. The more the concepts interact
together, the more the group of results will be cohesive, and the more γt∀t ∈ T values
will be similar. This is captured by the entanglement homogeneity[54] H which is then
defined as the cosine similarity H = <1T ,γ>

|1T ||γ| ∈ [0, 1] .

3.3.2 Concept and group similarity

We now extend the work of Renoust et al. [54] by introducing a notion of similarity
between concepts and groups of concepts: the Co-occurrence Possibility (CP). In GT ,
concepts are connected when they co-occur through at least two distinct segments.
The CP quantifies this association such as the higher the CP, the closer two concepts
can be considered.

CP of two connected concepts t and t′ in GT is defined as follows:

CP (t, t′) = ntt′

nt′t′
· ntt′

ntt

∈ [0, 1] (3.1)

With ntt and ntt′ the number of (co)occurrences of the concept layers t,t′ in the
multiplex network. The higher the value of CP, the closer the two corresponding
concepts will be. CP is maximized ( CP (t, t′) = 1 ) if and only if two concepts always
appear together within results.

When t and t′ are disconnected in GT , we define a dissimilarity as follows:

CP (t, t′) = −ntt + nt′t′

|E|
∈ [−1, 0] (3.2)
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With |E| the number of connected pairs of nodes in the multiplex network. The CP
value is then negative, with minimal value CP (t, t′) = −1 when the two concepts t and
t′ cover all the links between segments but never co-occur together, hence representing
two separated topics.

Following the same idea, the CP between a concept t and a group of concepts S is
formulated as:

∑
t∈S

CP (t, S) =
∑
t′∈S

CP (t, t′) , t ̸= t′ (3.3)

Finally, the CP between two groups of concepts S and S ′ ( S ̸= S ′) of concepts is
then defined as:

CP (S, S ′) =
∑
t∈S

CP (t, S ′) (3.4)

We may verify that CP (S, S ′) = CP (S ′, S). This formulation of similarity could
be seen as analogous to forces of a force directed layout algorithm[49]. Similar concepts
should tend to “attract” each other, while dissimilar concepts will “repulse” one another,
placing them far apart: high negative avoid unconnected concepts to be assigned to
the same group.

3.3.3 Layer hierarchization

In Detangler [53], the LIN captures the semantic context with “a sense of hierarchy”.
However, the network drawn “as is” tends to quickly become a furball as the number
of concepts increases. Hierarchical relationships can provide a meaningful navigational
mechanism by organizing information into a small number of hierarchical clusters [80].
To extract this hierarchy, our strategy is to identify concept and segment subsets with
optimal cohesion (entanglement). Since it is an NP-hard combinatorial optimization
problem, Renoust et al. [54] did not offer any solution. Keeping in mind that we have
a subgraph of segments corresponding to each (group of) concept(s), we propose a
heuristic solution to maximize cohesion in groups of segments.

This algorithm aims at building trees of concepts from the LIN GT . Each concept
starts labeled with its own group lt and we aggregate concepts from the topology of GT

such as two concepts will be connected if they are linked by an edge in GT . Orientation
of links are decided from max(γt, γt′) (rooting on the most entangled concepts). The
algorithm runs in three steps (Fig. 3.3). The first step aims at initializing parent-
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children links. The second step associates all children nodes to their closest concepts
(or group of concepts). The last step iteratively assembles groups of concepts.

Fig. 3.3 Step 1: constructing the first trees by pair association.

Step 1: Generate “parent-children” pairs for all concepts. In this step
(Fig. 3.3(a)), each concept t1 , that is not a parent already, will be associated to a
concept t2 in its neighborhood t2 ∈ NGT

(t1) such as CP (t1, t2) is maximal. All the
pairs form now C groups, each node will then be labeled with its parent’s group lp.

Algorithm 1 Generate “parent-children” pairs for all concepts
procedure Initialization

for t in T do
assign to t a unique label lt

procedure Step 1
for t in T do

if t is not parent then
t2 ← n \ maxn∈N (t)(CP (t, n))
if t2 is not parent then

x← parent \ maxx∈{t,t2}(γx)
ly ← lx \ x is parent of y, x, y ∈ {t, t2}
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Fig. 3.4 Step 2: moving nodes to optimize group assignation (highlighted in red).

Step 2: Link children to their closest concept or group of concepts. We
need now to associate concepts to the group in which they can maximize entanglement.
We now compare the group c ∈ C in which a concept t maximize CP (t, c) to the
neighboring child concepts t2 that also maximizes CP (t, t2) . A pair of nodes may
maximize together entanglement in comparison of those of a group, so we create in
this case a new parent node. In other words, this avoids too coarse aggregations often
induced by very occurring concepts, such as queried criteria. We continue updating
associations until no change occur anymore. Results are illustrated by in Fig. 3.3(b).

Step 3: Regroup all groups in a forest. After the second step, all concepts
are now part of a parent-children association that took into account group CP (with
positive and negative weights). We now compute the hierarchy between group, by
simply comparing CP of groups together. Similarly, we will associate neighboring
groups depending on their CP, starting with the pair of neighboring group displaying
the highest CP in the graph (Fig. 3.3(c)) (and if there is a connection between them).
We may obtain multiple hierarchical trees and the most obvious case is when the LIN
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Algorithm 2 Link children to their closest concept or group
procedure Step 2

C = {C1, C2, · · · , Ck} (groups formed from step 1)
repeat

changed← False
for t in nodes \ t is not parent do

c \maxc∈C(CP (a, c))
t2 \maxt2∈N (t)(CP (t, t2)), t2 is not parent
if CP (t, c) > CP (t, t2) then

if lt ̸= lc then
lt ← lc
changed← True

else
x←parent, x ∈ {a, b} \maxa,b(λa, λb)
l′
x, new label

ly ← lx ← l′
x

changed← True

until ¬changed

Algorithm 3 Regroup all groups in a forest
procedure Step 3

repeat
cx, cy \maxci,cj∈C(CP (ci, cj))
u← maxk∈{x,y}(γP arent(ck))
v ← mink∈{x,y}(γP arent(ck))
lcv ← lcu

Parent(cv)← Parent(cu)
until |C| = 1 or maxCi,Cj∈C(CP (Ci, Cj)) <= 0

is not always only one connected component. We stop when there are only negative
distances (i.e. ∀i, j CP (ci, cj) ≤ 0 ) or only q groups ( q = 1 or user specified).

The overall structure of our cluster algorithm is very similar to the method intro-
duced by Blondel et al. [13]. Their work proposes a simple method to extract the
community structure of large networks. The complexity of our grouping algorithm is
in O(E) where E is number of edges.

This bottom up hierarchical cluster method has three features:
Dendrogram. In the first and the second step, the node with a relatively large

weight is always used as the parent. In the third step, when two different groups are
merged, the parent with the larger weight is also selected as the root of the new group.
Each root(parent) node is the node with the highest weight in the group. The existence
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Fig. 3.5 Step 3:aggregating groups to construct the final hierarchy.

of the parent(root) node can clearly show the hierarchical relationship between the
concepts, which allows the user to understand the search results more systematically.
As 3.6 shows, the hierarchical cluster results from query "ABE".
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Fig. 3.6 Concepts are clustered into dendrogram.

Get the best number of groups. Repeat the third step until the CP value
between all the different groups is less than zero, and the number of groups is the
optimal number. As 3.7 shows the adjcency matrix is supported in our framework, it
can also be used to test the quality of group results.

Get the required groups number. When get a lot of parent-child like groups
through the first and second steps. In the third step, the two groups that are most
closely connected are merged. In the process of merging, if the number of groups set
by the user is q, when the number of groups reaches q, the merging process ends, and
the number of groups that the user wants is obtained. If the number q set by the user
is less than the optimal number of groups obtained by the algorithm, in the third step,
if the CP value between any two groups is less than zero, but the number of groups is
still greater than the number required by the user, the merging process will continue.
Perform the merge of the two groups with the largest CP value, even if the CP value
between the two groups is less than zero. Through this forced merger, the amount
required by the user is finally obtained. As 3.8 shows, different colors represent different
communities, and users can divide the same graph into any number of required groups.
Of course, the number of groups is less than or equal to the number of nodes.

3.4 Visualization of heterogeneous clouds
Many attempts to display overview or grouping information have focused on automati-
cally extracting the most common general themes that occur within the collection. In
document clustering, similarity is typically computed using associations and common-
alities among features, where features are usually words and phrases [8]. The greatest
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Fig. 3.7 The adjcency matrix display the grouping results

advantage of clustering is that it is fully automatable and can be applied to any text
collection without manual [9].

Queries on our news search engine return a set of video segments, but since the
activities of public figures can span over long periods of time and diverse topics, we
need to provide contextualization on-the-fly.

3.4.1 Visual cloud generation

To best support users, the visual cloud should be compact, aesthetic and expressly map
the thematic grouping resulting from the hierarchical structure extracted. Inspired by
usual tag cloud, it should also integrate images seamlessly. We start by embedding the
hierarchical relationships.

Pack Layout initialization: The Pack Layout algorithm [74] uses enclosed
diagrams to represent containment (nesting) as the hierarchy (similarly to treemap
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Fig. 3.8 User could group the tags into specific numbers, The different colored tags in
each figure represent different groups.

algorithms). The size of each leaf node reveals a quantitative dimension associated to
data points and the enclosing circles show the approximate cumulative size of each
subset. Circle packing does not use space efficiently, however it can indicate relative
positions of nodes following their hierarchical relationship. Each concept is assigned
to the center of the enclosing circle it is represented by (Fig. 3.9(b,c)). Pack Layout
creates a leaf-node per node in the tree, instead, we assign parent nodes to the center
position of the higher order circles. This results in a more even distribution of position
in the plan, giving a relative position for each concept guided by the hierarchy (Fig. 3.9,
left).

Visual cloud layout: Wordle algorithm [72] is arguably the fastest tag cloud
algorithm. Words initial position can not be strictly specified, and size depends on
words relative frequency. Words are introduced one by one to some random position
close to the center of the canvas and iteratively placed in the order of frequency. A word
is then displaced if it intersects with any previously positioned words. This displacement
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Fig. 3.9 Visual cloud layout: (a) LIN (b) extracted hierarchy (c) Pack Layout embedding
(with spirals) (d) visual cloud (e) with heatmap.

Fig. 3.10 Dendrogram is used to build pack layout, the location of the tag in the tag
cloud depends on the location of the tags in the pack layout.

is made following an increasing Archimedean spiral until no more intersection is found.
We use this to our advantage by constraining the spirals with the Pack Layout’s circles
(center and separation distance), see Fig. 3.10. We extended the algorithm to take
into account any rectangle shape. As a result, concepts are placed in the proximity of
their previously calculated position, relatively reflecting their hierarchical structure
(Fig. 3.11).

Regions of Interest: To highlight regions of interest, we offer multiple visual
encoding. Textual concepts and image borders are colored upon the group to which
they belong.

The number of groups can be interactively set, since it corresponds to a different
cut of the hierarchy, it simply updates colors, while keeping the layout stable. The
size of a concept encodes its frequency on the edges of the multiplex network. Because
frequency is only one aspect of the significance of a concept in its group, we introduce a
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Fig. 3.11 Since the position occupied by the tags is a rectangle and the character image
is also a rectangle, we use the character image instead of the tags in the process of
calculating the layout, so that the tags and the image can appear at the same time,
and the hierarchical placement is kept. (a) displays the normal tagcloud, we use the
person’s name instand of their profile photo, (b) displays the profile photo and the
name at the same time, (c) displays only profile photo

Fig. 3.12 A canvas made heat-map is used to show the importance of concepts.

new highlighting that displays how concepts mix with others: an optional background
heatmap displays the entanglement index of concepts (Fig. 3.12) and contrasts enough
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with the categorical scale. Higher entanglement indices assigned to warm color attract
user attention. A max blending function as the heat value diffuses from the outer box
of concepts maintains text readability.

Fig. 3.13 There are two layers behind the tags cloud: a network and a heat-map.

Users can place advanced queries on the three criteria of time-frame, face and
keywords (Fig. 3.14 (a)). Above the list of results and the visual cloud (Fig. 3.14 (d,
c)), the system shows a brushable time bar chart that positions the query results in
time (the timeline background is tuned to our usage scenario to show periods of interest
in color). Similar to traditional search engines, a list of results is presented (Fig. 3.14
(d)). It is ordered by time, titled by date/time/segment. A snippet composed of the
first lines of captions can be expanded. Clicking on a result launches a video player at
the segment position.
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Fig. 3.14 Left. Interface overview, search query over Abe during Koizumi terms (a) - very
active during the end of Koizumi3 (b), mention of ‘North Korea’ stands out (c). Hovering
over ‘North Korea’ shows that it strongly relates to ‘abduction’ (e). Right. Comparison
of the queries on North Korea (f), and Nuclear (g): two periods coincide (in black)
Koizumi1 and Abe1 but we can notice two major differences (in red). Koizumi3 period
did not associate much North Korea and Nuclear, and Kan period associate Nuclear
with Accident. Demonstration video available at https://youtu.be/VfGwa6T94t8.

Fig. 3.15 An optional list of concepts view could be displayed. Concepts are ordered by
its entanglement index, the bar after each concept represent their degree in the graph,
their color is the color of their heat in heat-map which is based on their entanglement
index.

3.4.2 Interactions

Filter the concepts Filtering results is achieved by clicking a concept or brushing
the timeline. As shown in the figure, user can select a period of time through brushing
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timeline. The curve of the number of snippets on the timeline help user to make chocie.
After selecting a certain period of time, the interaction network will be re-computed,
showing the tag clouds in that time period, and the size of the tags will be dynamically
adjusted, so that users can understand the changes of concepts more deeply. however,
leapfrog interaction [53] by double-clicking a concept or the timeline brush will result
in a new query corresponding to this filter, recomputing a new visual cloud for a finer
grain analysis. This corresponds to Search tasks often formulated by Shneiderman’s
mantra “Overview first, zoom and filter, then details-on-demand” [64].

Fig. 3.16 Select different time interval from timeline, the concepts only appear in that
period will be displayed, the concepts’ size would be changed.

Mouse over interaction Extracting a hierarchy from the LIN implies that we
loose its topology but the neighborhood of a concept is key to exploration. It is restored
through hovering interaction: all concepts are dimmed except for those neighboring
the concept in the LIN with timeline highlighting (Fig. 3.14(c,e)). When the heatmap
is active, new heat values are computed on-the-fly which map the local entanglement
indices of concepts in the multiplex subgraph induced by the concept hovered (similar
to [53], Fig. 3.14(e)).

3.4.3 Query system and implementation

The three important elements for labeled TV news videos are: "when", "who", "what".
In our interface, user could search TV news by time (when), person’s name (who) and
keywords (what). Also the boolean query is supported for advanced search. User could
use multiple query operators and quotation marks for boolean search. As figure 3.18
shows the example of boolean query a ∨ (b ∧ c).
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Fig. 3.17 Mouseover interaction. (a) Mouse move over the tag ’dandidacy’, only
connected tags displayed, the other tags become pale. (b)When heatmap is displayed,
the new heatmap will be redrawn based on the entanglement index of the subgraph of
the mouseover tag.

Fig. 3.18 User could search by inputing time period and person’s name and keywords,
figure shows a boolean query example.

User could select time period by simply drag the brush of time-line, also, user could
modify the boolean query by simply clicking the options. Those feature make easier
for user to select the desired time clip and results.

Implementation and complexity: The system is implemented in HTML5 with
the popular semanticUI [61] and D3 [23] libraries. Database indexing and access
is implemented in python. The hierarchy algorithm complexity is bounded by the
computation of entanglement which requires an Eigen decomposition of a matrix of
dimension the number of concepts.The construction of the LIN and nt,t′ are made
while constructing the multiplex network of results. Both depend on the number of
results |V | and number of concepts |T |, O(1

2(|V | ∗ (|V | − 1) + |T | ∗ (|T | − 1)). The
computation of the hierarchy is a greedy optimization similar to Louvain [13] estimated
in O(|T |log|T |). No complexity is discussed for the Pack-Layout algorithm [74] but runs
in milliseconds for a thousand circles. The number of circles depends on |T |, which is at
best a few hundreds. The word cloud generation is based on Davies’ heavily optimized
implementation (see www.jasondavies.com/wordcloud/about/, which is bounded by
computation of bounding boxes and collisions (not impacted by our modifications).
Including the Pack-Layout initialization, the word cloud generation can be considered
instantaneous. The heat-map generation is done in one pass through each concept,

www.jasondavies.com/wordcloud/about/
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with a static Canvas implementation faster and more memory efficient than DOM
population of SVG elements.

3.5 Evaluation and use cases
We have made use studies to evaluate our cluster algorithm and the visual cloud.
We invited students to use our framework, and made a comparision to other cluster
methods and tags clouds.

3.5.1 Usage scenario, Abe and the North Korea:

In a previous study, the authors investigated appearances of Japanese Prime Ministers
on NHK[52]. One interesting conclusion was the growth in screen appearances of Abe
during Prime Minister Koizumi’s ruling, before becoming himself Prime Minister in
the following elections. Our system allows to refine this study by placing a complex
query to search all news segments during Koizumi mentioning Abe by name or face
(Fig.3.14). A demonstration video is available at https://youtu.be/VfGwa6T94t8.

The timeline (which is augmented with Prime Minister’s rulings on the background)
confirms the growing mention of Abe. This is no surprise knowing that Abe was chief
cabinet secretary during Koizumi’s third term. The visual cloud proposes 5 groups:
about elections, about Yasukuni Shrine, about the newspaper Asahi Shimbun, about
Japan/Korea/China, and about North Korea. But turning on the heatmap, the most
prominent word becomes North Korea by far. Indeed, Abe was chief negotiator on
issues related to abductions of Japanese citizens by North Korea, managing to free 5 of
them. Leapfrogging on the keyword “North Korea” (Fig.3.14(e)) makes a new search
of Abe associated with North Korea during Koizumi terms. Browsing the timeline
among the three terms highlights different subtopics at each terms. We may mention a
meeting during Koizumi’s first term, associated with the three faces of Koizumi, Kim
Jong Il, and Abe; mentions of sanctions, missile launch and draft resolutions during
Koizumi’s third term.

Now a new search on the keyword North Korea highlights that it is most active
during first Koizumi ruling and especially during first Abe ruling (Fig.3.14, left).
North Korea related abductions was excessively reported on the media and Abe’s
administration has put pressure on NHK to “pay attention” [43]. A last search on
the keyword nuclear gives 3 spikes in the timeline (Fig.3.14, right). Two of the spikes
coincide with North Korea previously described (Fig. 3.14). One big difference comes

https://youtu.be/VfGwa6T94t8
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with Koizumi’s third term, when no mention of nuclear issue is made. The last in 2011
after the Great East Japan Earthquake about the nuclear powerplant accident.

Validation of the hierarchical algorithm: We offer a heuristic that optimizes
entanglement homogeneity H in networks formed by association of results and concepts
that captures cohesion of a group of documents[54]. To the best of our knowledge
no other work attempt create a hierarchy of concepts to maximize cohesion between
documents related to concepts on one hand, while preserving the relationships in the
LIN on the other hand. However, we can still compare H with that of groups of
documents corresponding from concept clusters induced by a Louvain segmentation
[13] on the LIN, and with random segmentation to serve us as a baseline. The random
segmentation only agglomerates nodes randomly from the network’s topology until
reaching a given number of clusters. Based on 8 queries of 50/100/150/200 concepts,
we randomized 10 generations of k clusters (k reused from the Louvain segmentation
[13] to equally compare between the three types of segmentation). We then average H
for each group, across queries and segmentation. Results in Table 3.1 confirms that
our segmentation results in more cohesive subgroups.

Table 3.1 Comparing H among groups of results of varying sizes

Group Size Random Louvain Multiplex
All sizes 0.43874 0.53359 0.59600

50 concepts 0.58213 0.66137 0.68647
100 concepts 0.38544 0.46707 0.55022
150 concepts 0.38665 0.52803 0.60585
200 concepts 0.40075 0.47792 0.54149

3.5.2 Evaluation of the hierarchical word cloud

To evaluate the output of visual cloud, we conducted a user study. We compared the
output of our algorithm with three other word cloud algorithms that focus on the
preservation of semantic relationships. The first, “Inflate-and-Push” (IP), is a semantic
preserving word cloud based on multi-dimensional scaling [10]. The second is the
“context preserving word cloud” (CP) [22]. The last, “Star-forest” (SF) is the closest
to our spirit [10, 12]. We used for the three of them a 4:3 image ratio with cosine
similarity for relationship between words and term frequency for word ranking. The
implementation used is proposed by the university of Arizona2. Incidentally, Louvain
segmentation [13] is also the way the groups of words are chosen in this implementation.

2See https://github.com/spupyrev/swcv



32 Capturing data heterogeneity through Visual Clouds

Table 3.2 Comparison of cluster results

word cloud visual cloud IP CP SF
all sizes
grouping 2.0625 2.5938 2.5938 2.7813
location 1.7188 2.9375 2.1875 3.2813

preference 2.0625 2.6875 2.2188 3.1563
50 words
grouping 1.75 2.5 3.125 2.75
location 1.25 3.5 2.125 3.125

preference 2.125 2.5 2.375 3
100 words

grouping 2.25 2.125 2.5 3.125
location 2.25 2.375 2.125 3.5

preference 2 2 2.375 3
150 words

grouping 2 2.875 2.25 2.75
location 1.875 3 2.25 3.125

preference 2.125 3.125 1.875 3
200 words

grouping 2.25 2.875 2.5 2.5
location 1.5 2.875 2.25 3.725

preference 2 3 2.25 3.25

In total we evaluated 32 queries among 8 different users, each query with 4 different
representations. We generated 8 different search queries that may contain ambiguous
results: swift, apple, jaguar, serendipity, ring, network, orange and uncertainty and
gathered about 250 snippets for each query. The evaluation was conducted with the
help of college students, each student had 4 queries (each of varying size from 50 to
200 words) with the four different word cloud representation to evaluate on a query.
The presentation of the word clouds have been shuffled to avoid ordering effect, and
the overall interview took about one hour each (including informal interview after).

We ask them to rank the 4 word clouds by three criteria:

• meaningfulness of the color grouping (do words in a group really belong to a
group?);

• meaningfulness of the positioning (do close words well relate to each other?);

• preferred word-cloud (including aesthetics).

We average the ranking among all queries on each criteria and results are shown in
Table 3.2. The meaningfulness of our grouping and the meaningfulness of our words
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positioning have received the best results. Although overall users were preferring our
word cloud over others, two users clearly did not so. The grouping appeared to be
quite disturbing and too aggressive for them, as they would like to see appearing
more ontological grouping rather than topical. A user also noticed too many non-
meaningful words such as “likes” or “related”. This suggests that we need to improve
our pre-processing as part of our future work.

We also broke the results according to group size in Table 3.2 (8 experiments per
group of 50). It is interesting to note that our algorithm performs particularly well
for location meaningfulness of the words, especially for the large groups. This is a
comment confirmed while we interviewed users, as our grouping technique was helpful
in breaking down large numbers of words. Note that we were slightly outperformed
by CP for location and IP for grouping meaningfulness for 100-word queries, and by
CP as well for 150 words as users’ preferred word cloud. CP tends to better separate
its clusters for the queries at 100 words than it did with other queries (often mixing
words of different clusters). As for the users preference, CP produced the less compact
layout of words by allowing blank spaces, which especially pleased some of our users.

3.5.3 Usefulness of the representation

We conducted an informal study to get feedback on the usefulness of our system. After
each experiment described previously, we interviewed preference on with/without heat
map on word tags in relation to size. Users almost always preferred the our word cloud
generated with heat-map.

Interviewing our users on their experience, they tend to emphasize on the usefulness
of the hierarchical layout, and their usage meant often turning on and off the heat-map
representation. The heat-map appears as an optional feature to them. It was also
noted that it sometimes disturbs the reading of text. However, users also reported that
they were able to understand the thematic from the word cloud faster by using the
heat-map feature. When a large number of words was presented, they reported to also
better spot important words.

We further let users do 10 search queries each and collected feedback of their user
experience in comparison with a regular search engine results:

• Most users have used our topic map to help search for results when not the result
they were hoping for was not clearly found within the first two pages of search
results.
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• When users are not familiar with the area they are searching in, they prefer using
our interface. For example some users preferred using our interface to search
about celebrities, places, news.

• All users are interested in the interactive re-ranking of results and would like it
implemented in search engines.

• Word cloud with highlight is obviously more readable than their own experience
of common tag cloud. However, with complex query like with statement, they
would prefer sentences rather than terms to understand the search result.

The feedback is very important. It highlights that users have many different
behaviors and intentions when searching the web. This is well captured by Brehmer et
al.’s typology [15] (in their Fig. 1), in the searching task: search location and search
target can be known or unknown. This corresponds to four different behaviors: lookup,
locate, browse and explore. Although we designed this system for exploration tasks, we
have not thought of differentiating those cases before conducting our experiment, it
clearly impacts the usefulness of ours system.

A one-cent guess from this informal feedback we collected is that search engines
are often used for lookup tasks (with location and target both known). In this case
the word cloud representation is certainly less useful. While fully making sense for
exploration tasks, usefulness of our representation then rises when browsing, but less
for locating tasks. Indeed, in locating tasks, users expect the target to fall under the
first few search results. However, in real cases, there is a delicate balance between both
location and browsing cases: users do not always have full certainty of the target to
find, or its location.

3.6 Conclusion and perspectives
Although tag clouds do not offer much room for visual encoding except for layout,
size, and color, users have positively welcomed the heatmap. It helps to correct the
information overload when too many concepts are displayed, by bringing initial focus
on the highlighted concepts. However, it reduces the perception of group differences.
Future work will explore the design space offered by joining heatmaps and visual clouds,
especially for interaction (used here to reintroduce the LIN topology). We also improve
traditional tag clouds with thumbnails as a supplementary information, bringing new
information in form of visual cues. We only use faces this time but we plan to use other
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cues, such as objects or logos. We compared here word occurrence and tracking time
in terms of a rougher segment occurrence, but the comparison of these heterogenous
measurements remains open.

The design of our multimedia system completely falls into the search task as
described by Brehmer et al.’s typology [15] (in their Fig. 1) consisting of two parameters:
search location and search target, either being known or unknown. Each situation maps
to a subtasks: lookup, locate, browse and explore. Usual search engines are often used
for lookup tasks (with location and target both known). Video broadcasters such as
Youtube link videos together to support browsing tasks (when the location is known
but not the target). Locating tasks consists in knowing the target but not the location,
made successful by keyword search. The visual cloud supports exploration and browsing
tasks, our keyword search is too strict to provide proper lookup task support. It should
be improved, together with video linking, to better support lookup and locate (beyond
time location with the timeline).

One last important future work concerns comparison tasks. We currently refine in-
formation through visual cloud hovering, timeline browsing, and leapfrogging. However,
beyond side-by-side comparison of two queries tabs, we do not have explored other
means of comparison. This need quickly rises as we would like to compare periods of
time.

Finally, we have presented a system designed for exploration of the NHK News 7
archive with a visual cloud, that improves from tag clouds in several ways. It takes
roots in a multiplex network formulation, and uses group entanglement of search result
to build a hierarchy with stable grouping, that results in a very fast and interactive
drawing. The cloud is coordinated with search query, results, and timeline to allow
further browsing, exploration, and query refinement. We illustrated our system with
the case of Abe Shinzo and North Korea, studied the ability of our hierarchy to optimize
group entanglement, and presented implementation and complexity.





Chapter 4

Visually tracking dynamic
communities using Laputa’s
multiple coordinated views

This chapter reports on our work developed in close link with media researchers
and media experts at INA and Sciences Po (Paris). It is driven by a high-level

question: are potential bias induced from patterns in the way people get invited on TV
and radio news events (when, on what occasion(s), in what context(s), with whom)?
This question then induces more specific interrogations related to media exposure: are
there co-invitation patterns? Do communities form in the media and how does the
community structure relate to media visibility?

In order to detect and visualize community structure in the context of the French
audiovisual news media landscape, we investigated data covering the French media over
the 2011 - 2017 period. Assuming there are communities in this evolving ecosystem,
how can they be characterized? How do they behave over time? Do known phenomena
(related to social/political events or persons) act as underlying drivers of communities?

The analysis and visualization of communities in dynamic networks has received
much attention these recent years [44] [11] [57]. Being able to find groups in data
indeed is a central task in most taxonomies [1] [59], as it fundamentally relates to
understanding structure and capturing insight in data.

Timestamped and even streamed data is now abundantly produced. While theory
might be uncomfortable when defining what a community is in a time varying network,
users usually have a quite clear idea about what types of groups they expect to discover
and “see”, or on the contrary what groups they expect not to see.
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It is this situation we address in this chapter. We present an approach supporting the
discovery and visual inspection of communities in evolving networks. The networks we
consider however have several specificities challenging the actually available approaches
for detecting and visualizing communities in dynamic networks. The persistence of
links in time is a major assumption made in many studies [28] [5] [79]. They make
sense in social networks (a new friendship relation usually remains for a significant
time), but fail in other situations such as the one we consider here.

Our data is formed by looking at persons invited on TV and radio shows over
several years, on a daily basis. Some programs are recurrent (daily, weekly or monthly),
while others happen in the context of special events (sports, political elections, etc.).
Persistence typically does not hold for co-invitation links. Indeed, although people get
invited relatively often with the same people, they do not get invited with the exact
same people, in a very stable manner, over a given period of time.

Among several motivating questions, our users wish to establish whether invitation
patterns induce the same people to be repeatedly invited in the media, and whether
this takes different forms depending on the themes being discussed (politics, sports,
arts), whether one can see these patterns form in time, etc.

4.1 Domain questions and tasks specifications
This section lists tasks that were identified as key to answer experts’ questions. Expert at
INA somehow form the hypothesis that actors of the medias organise into communities:
some actors only get invited in some TV or radio shows, only a few radio stations or
TV channels have a voluntarily open policy and invite actors from all political sides;
not all TV channel cover sports, etc. This latent hypothesis is crucial in our work and
motivates the community-centered tasks we detail below.

Conversely, the behaviour of these communities over time is much less well known.
The first set of tasks is more “canonical” and focuses on finding structural and

attribute features in the data. The second, user-centered, group of tasks was elaborated
in close collaboration with field experts.

Each task is presented by giving the high-level domain question that underlies it;
the question and tasks are then refined into lower level tasks following a methodology
from [14] breaking down tasks into complementary why/what/how dimensions.
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4.1.1 Task 1 - Communities, are you there?

Task group 1 gathers data-centered tasks and first looks at the very existence of
communities (subtask 1.1): are there any? Can we detect them in the co-invitation
network? Once we have an answer (positive, as suspected) to this question, we may
form strategies to investigate them, how they can be characterized (subtask 1.2), and
how they evolve in time (subtask 1.3).

Subtask 1.1 - (WHY) Confirm the relevance of the co-
invitation network

(HOW)

This question is investigated by building and laying out
a network of actors linked to one another whenever they
have co-participated to some TV or radio program.

(WHAT/IN)
The network is built using data covering all TV or radio
programs ranging from 2010 to 2016, listing all guests.

(WHAT/OUT)

Coordinated views including a node-link diagram and
communities (convex hulls) together with a Sankey dia-
gram showing how communities behave along time.

(PROCESS)
Node/edge filtering, clustering, graph layout, clustering
on iterative overlapping sliding windows.

Assuming communities indeed can be mined, the next step is to investigate whether
communities show specificities captured by attributes.

Subtask 1.2 - (WHY) Inspect/Identify community pro-
files

(HOW)

Starting from available metadata, compute statistics,
look at value distribution, mean value, min/max values
over time, histograms, etc.

(WHAT/IN)

Map TV/radio programs onto edges linking actors actors
(media channels, media owners, presenters, . . . ); use
individual attributes (gender, job types).

(WHAT/OUT)
Contextual information on community members inducing
characteristics on the community itself.

(PROCESS) Computing statistics, trends analysis on communities.

Media communities are, by essence, volatile. That is, with the exception of the
news magazine presenters, the presence of guests mainly depends on what happened



40Visually tracking dynamic communities using Laputa’s multiple coordinated views

in the last 24h before the show. Some news events are expected and planned, such
as elections or festivals; others are unexpected, like earthquakes or crimes. These
differences induce contrast between how communities evolve in time.

Subtask 1.3 - (WHY) Examine communities temporal
behavior

(HOW)

Show how measures evolve in time such as community
cohesion and the density of activity (intra-community
connections) along time.

(WHAT/IN) Any user selected community or group of actors.
(WHAT/OUT) Timelines describing the selected community behavior.

(PROCESS)
Community activity index (custom statistics, see section
2.5), community cohesion measure inspired from [29].

4.1.2 Task 2 - Communities versus media events

By contrast, this task group is user-centered and focuses more on “facts”, that is fact
based explanation for the existence of communities, or of their evolution through time.

Subtask 2.1 - (WHY) Experts suspect communities
emerge from known media events (e.g., Has the creation
of the BeIN Sport channel in 2012 impacted the media
communities around football?)

(HOW)
Drive the search from factual data (dates, topics, actors,
. . . )

(WHAT/IN)
Text query or selection of a visual entity (or both) to
capture context.

(WHAT/OUT)
Display filtered node-link and/or Sankey diagram(s) cor-
responding to query/context; optionally run animation.

(PROCESS) Filter network elements, filter timeline, trigger anima-
tion.

Similarly, an exploratory scenario may rely on a selection of a group of people that
are suspected to belong to a same community.
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Subtask 2.2 - (WHY) Expert suspect a set of people
to influence the community structure (e.g. Can this be
observed around the rise of media interest for Macron?)

(HOW) Input people’s names in textual query search engine.
(WHAT/IN) Textual query (or boolean checkboxes).

(WHAT/OUT)

Display the induced ego-centered network(s) of se-
lected people, together with contextual information (at-
tributes).

(PROCESS)
Input/filter network elements, filter timeline, trigger lay-
out and/or animation.

Fig. 4.1 The figures shows the chapter corresponding to each task

4.2 Data model
Our data consists of information on 471,915 TV/radio programs from France’s 120
television/radio channels from 2010 to 2015, it involved 210,598 guests. Figure 4.2
display the composition of our data.

Although the notion of a community refers to a clear concept in sociology [77] [51],
we shall refer to a community in a graph in a computational sense. We thus need to
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Fig. 4.2 Two nodes are connected,

define what graph we are considering. In our context the graph G = (V, E) we consider
is formed of persons (nodes) that link whenever they are co-invited to a TV or radio
program.

Let us denote by P = {p1, p2, ....} the set of media programs that took place over a
time period. As figure 4.4 shows, since a person gets invited to numerous programs,
each edge e ∈ E can be mapped to a subset of programs ω(e) through a mapping
ω : E → 2P . Similarly, given two persons u, v ∈ V , we write ω(u, v) to denote the set
of programs they co-paticipated to (if any). We also will need a map σ : P → 2V ,
mapping program p to its subset of participants σ(p) = {vi, vj...} ⊂ V . Now, each
program is broadcasted at a given date and time t. We write τ(p) to denote the (start)
date/time of program p.
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Fig. 4.3 The co-participants network construction steps, (a) is the initial storage form
of the data, (b) establishes the relationship between the program and the participants,
(c) is the network composed of all the participants, they are connected when they are
participate in a same program.

Fig. 4.4 each edgee can be mappedto a subset of programs, each program is broadcasted
at a given date and time.

4.3 Statistics, visual encodings, and interaction
Following Munzner’s nested model to design visualizations, we present here the rationale
behind the Laputa framework that was designed to support the tasks listed in the
previous section.

4.3.1 Overviewing the data, communities at large

The framework classically supports the first step of Shneiderman’s mantra "Overview
first, zoom and filter, then details-on-demand" [64]. An overview of the data expanding
over the whole period is given using a force-directed layout algorithm FM3[30].

This opening overview supports Task 1.1, at least partially, since it allows the user
to examine the type of network co-invitations induce.

Indeed, in most cases force-directed algorithms naturally group nodes into commu-
nities that are visually separated (except in cases where the data becomes too dense
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Fig. 4.5 The overview of our framework. The left part is the search function panel that
can be toggled, the middle is the display area of the whole data, the right side is the
operation panel that can be toggled, and the below is the data distribution histogram
of the overview data.

[27]). Incidentally, a community detection algorithm [13] is run and nodes are colored
according to the community they belong to, thus reinforcing how node positions can
be interpreted.

This node-link view is complemented with bar charts indicating how node attributes
distribute (see lower part of Figure 4.5). The leftmost chart provides information on
how many programs a person has participated to; the middle bar chart provides the
same statistics on edges, that is, how many programs two persons (incident nodes)
have co-participated to; while the rightmost chart sketches the degree distribution on
nodes, that is the number of persons a given person u ∈ V has co-participated with.

4.3.2 Conditionally showing elements

For complex networks and multi-layer networks, one of the challenges encountered in
the process of visualization is that the amount of data is large and the visualization
results are complex. In order to allow users to understand the data more deeply,
an interactive function-complete visualization tool should satisfy the user filtering
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operation. In our visualization system, users can add a variety of different conditions
to filter data.

Interactive timeline, filter graph by selecting time

This subsection describe how to solve the subtask 1.1 (Confirm the relevance of the
co-invitation network). A time line provides an overview of the number of programs
distribution over time, as Figure 4.6 shows. The blue line represents the number of
programs chronologically. This representation already gives an overview of trends at
a coarse level. For example, from the timeline below in Figure 4.6 we can clearly see
that each year, during August and in the end of December, the number of programs is
significantly less than other time periods, this is the change caused by the holiday.

Since we investigate large archives (over the course of years) but programs happen
on a very fine grain level (every hour), we design our timeline to be extensible. As
illustrated in Figure 4.6, users can zoom in to the smallest time interval. The timeline
is also brushable and users may brush to select a period of time. This will filter the
network view to only display the subgraph during that period. This brush may be
used to define an aggregation time frame, so the dynamic graph may be played over
time (given a tunable time-delta), bringing users another perspective of the dynamics
of the network.
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Fig. 4.6 This figure shows that users can filter graphs from the timeline. The y-axis
represents the number of programs. Because the overall time period is long, we added
a zoom function to the timeline, and the user can zoom out to a smaller time period to
observe and select as needed. When the user selects a time period from the timeline,
the graph displays the subgraph within the selected time period, and the edges within
the time period are displayed in red.

Interactive histograms, filter graph by selecting properties

Overviewing several statistics of the graph is often necessary for a better understanding
of the data. We offer histogram/bar chart views to display these statistics. These
statistics are traditionally properties of nodes such as the degree, weight, of edges such
as, weight, or computed statistics such as number of programs node involved.

In order to understand inner characteristics of the graph or relationships between
different attributes, users may select interesting intervals from the bar charts by clicking
bins or brushing. The corresponding subgraph will be filtered out in the global view,
as shown 4.6.

As shown in Figure 4.7, users can select the different weight (the number of
programs guest participating in) intervals to observe these correspond to different parts
in the original graph. When the user selects the nodes with higher weight value, the
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corresponding subgraph has a closer internal connection. On the opposite, the lower
the weight value, the more dispersed the nodes are distributed.

Fig. 4.7 The histogram shows the distribution of nodes’ weight (the number of programs
guest participating in). The user can also select a section from the hitogram and then
filter out the subgraph.

As shown in the figure 4.8, users can similarly browse through different weight of
links (number of programs they involved together) intervals and visually observe which
nodes are closely connected. In the co-participant data, link weights are obviously
not evenly distributed. Similar to a power law, most of the weight of links values are
relatively small.

Fig. 4.8 Different histograms of graph properties allow the user to choose. The histogram
in this figure is the distribution of weight of the edges (number of programs two guest
participants together).

Categorial information also bear its importance. As a significant feature of co-
participation, participants’ occupation may explain the relationships in densities.
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Interesting sub-graphs may be composed of different properties and investigated by
selecting different occupation values in the bar chart. For example, as shown in Figure
4.9, Journalists are often connected with Male politicians. There is also a lot of
connections between Football players and Rugby players. In addition, the relationship
between Male politicians and sports practitioners is more frequent than that of Female
politicians and sports practitioners.

Fig. 4.9 The histogram of nodes’ occupation distribution, user could select subgraphs
consists by sertain occupations.

By selecting the properties, user could choose to filter out a certain type of sub-
graph that meets the feature requirements, but it can hardly be specific to one person
and/or the nodes connected to it. To this end, we have added an advanced search
function to the framework. Users may search for one certain type of nodes/links or
more, and also get the nodes connected to the search results.

For example, as figure 4.10, shows search for a subgraph composed of all journalists
who have participated in programs with French politicians Emmanuel Macron and
Marie Le Pen. The search function returns accurately the sub-graph as queried by the
user, which may better fit further research needs eliminating unnecessary noise.
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Fig. 4.10 An example of subgraph by searching from certain nodes.

Selection of different intervals over different feature distributions may be combined
and selected at the same time. For example, we may select a sub-graph composed of
co-participant that co-participated more than 100 times over the whole archive, and
of which one of the participant must be a Male politician. Manipulation of attribute
profiles makes it very convenient to filter and handle only subgraphs of interest.

4.3.3 Detecting communities from complex graph

On the complexity of the data

Our co-participants network is a graph built from six years of TV/radio programs,
which is obviously a dynamic graph with many timestamps. However, due to the
particularity of graph, the traditional dynamic communities detection algorithm cannot
be effectively used in this graph. This specificity is reflected in:

- The complexity in time, because the start time of each program is accurate to
the second, so the time-stamp of the network is extremely large throughout the
all time period.

- The complexity in degree. The co-participant network is composed of cliques
which makes the average degree of the graph high.

- The particularity of our data. Time stamp can be unified to the annual or
monthly to reduce the complexity. However, the guests in the TV/radio program
do not have the continuity of time. A large number of people only appear several
times in certain time. They appear in a short time interval, but throughout the
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time period, there are very few occurrences. Some participants participate in the
program with a long interval and there is no continuity.

For the above reasons, we have used our own methods to detect communities from
our data.

Using Simmelian backbone to delete redundant information and show a
different arrangement

Fig. 4.11 (a) co-participation network built from ‘Magazine’ programs; (b) filtered
network from (a) using Simmelian backbone.

Right after building the network from participation data, its structure remains very
complicated and hard to read due to the density of nodes and links. As shown in the
figure 4.12 (a), it is difficult to intuitively observe the characteristics of the network.
Extracting groups directly from such a complex network often returns unpractical
results.

We study the distribution of attributes in the original network, and these attributes
make a good support for analyzing network characteristics. Indeed, not only the
network shows structure, but also each different node and link bear its own set of
attributes or value. Our intuition is that attributes also play an important role in
shaping the communities in the network. Each different community has its own proper
distribution of corresponding attributes. In order to reduce the complexity of our
network, we need to remove redundant information hence we propose the use of the
Simmelian backbone extraction method [48].
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Fig. 4.12 (a) co-participation network built from ‘Magazine’ programs without using
simmelian backbone; (b) using louvain modularity method directly to (a), nodes under
same hull are from same group.

The Simmelian backbone method is based on the concept of triadic cohesion that
is motivated by Simmel’s concept. This method is used to identify the sentential
relationships in network representing social interactions [48], described as follows: two
people are “Simmelian tied” one to one another when they are reciprocally and strongly
tied to each other, and if they are each reciprocally and strongly tied to at least on
third party in common [36]. We modified the parameters of the Simmelian backbone
method to apply it to our data, the methods are described in detail in the next chapter.

Since our network is a social interaction network, we applied the Simmelian method
to our co-participation network. The resulting filtering looks promising. As illustrated
in Figure 4.12, we can see the network before deleting the redundant information
is deleted and the network obtained after using the Simmelian filtering with the
parameters m = 3 and n = 11. As shown in Figure 4.12 (b) (the node color here
illustrates the occupation of the guest), various communities of the network can
be observed. Simmelian filtering is helpful to users so they may get closer to the
communities. For further details, we prove in Chapter 4.5.1, from the network attribute
distribution, that the Simmelian method removes unnecessary redundant data.
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Fig. 4.13 The figures show the hidden edges, (a) is the graph user observerd, (b) shows
the actual graph data, the blue edge is edge filtered by Simmelian method, we add it to
the graph again, it do not participant in the display, but only in the actual calculation.

In the original author’s method, the number of traid is used as the basis for arranging
links. At the same time, the author also pointed out that other weights can also be
used as the basis for arranging links. In our data, program is the most important
information, so we use the number of programs participating in the two participants
connected as the weight of the link.

Supplement the deleted information

Using simmelian backbone makes communities more intuitive, but some connections
between different communities are also removed, which affects the study of relationships
between different communities. In order to specifically study the relationship between
different communities, we re-add the links deleted in the simmelian backbone process
to the graph. These links are hidden, do not participate in the layout calculation
process, and will not make the visualization result appear complicated. As shown
in the figure 4.13, (a) is the graph obtained after using the simmelian backbone, the
graph has 34658 edges, and 4.13 (b) shows the all the links with hidden links of 4.13
(a). These blue links are information that is deleted, there about 10000 hidden links.
These hidden links are recorded in subsequent calculations to supply more information.
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Using traditional modularity methods to get communities from the filtered
graph

We combine the various timestamps and divide the network with the traditional
community detection algorithm to reduce the uncertainty caused by the difference in
the time interval between different people participating in the program. After using the
simmelian backbone to remove redundant information, we use the Louvin modularity
algorithm for community partitioning, in addition while using Louvain modularity the
weight of link is the number of programs. The latter is more efficient than the original,
because it has been demonstrated that redundant data is deleted, so the quality of the
community is guaranteed.

Optimizing communities visualization results

Although the use of simmelian backbone makes the graphics visually clearer, in the
actual graph layout, there is still coverage between different communities, in order
to visually make it easier to visually view the different communities in the graph, we
modify the layout calculation steps:

1. Use communities detection algorithm to group the graph.

2. Reduce the edges between different communities to a certain amount.

3. Use the FM3 force layout to calculate the layout of the graphs of the edges after
filtering.

4. Add the edges that were filtered in the previous step to the graph.

Because the force layout is distributed according to the connection between the
nodes, when the connection between different communities is reduced, the greater
the repulsive force between them, the farther they are in space. In this way, without
changing the graphics, the calculated layout can better disperse the nodes that are not
belonging to different communities, and reduce the mutual coverage of the nodes, so that
the user can better observe the internal and mutual relationship of the communities. As
shown in figure 4.15 (a) shows the position directly calculated using the FM3 algorithm,
and the figure 4.15 (b) optimizes the position using the above method. It can be
clearly observed that the structure of the (b) is clearer and there is less coverage. As
figure 4.14 shows, through our steps, the complex central part of the figure 4.14 (a)
is well distinguished in 4.14 (b).The hulls wrap the nodes in the same group, and
we use different colors of hull to distinguish the different communities obtained by
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Fig. 4.14 The comparison between (a) and (b) shows the difference between before and
after the layout algorithm is modified. (a) is the force layout not be modified, The
middle part is very dense. It can be clearly seen in the (b) that the dense portion of
the pattern is dispersed.

the algorithm. It can be seen that there are very few overlapping of the nodes from
different communities. The different colors of hull not only prove the effectiveness
of our modification of the force layout algorithm, but also help the user’s intuitive
understanding and selection of different communities.

4.3.4 Studying a community/an individual

Understand the composition of the community

The right panel has the accordion panel allows user to toggle the display of section
of content of the features of the nodes. By clicking or draging the lasso to select
community from the main graph, user can see the details of the internal members
of the community in the accordion panel. We use the table to display information
about the selected nodes, such as the name of each selected node in the co-participant
network, the number of times the program is attended, the number of times the
program participated with the internal members of the community, and the number of
times the program was joined with other community members. For the co-participant
network, we use labels to show the occupational distribution of the selected community,
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Fig. 4.15 The different colors of the right side of the (a) represent different communities
detected by louvain modularity algorithm. See that there is a lot of overlap between
communities. The overlap can be clearly be seen to be much reduced in (b). The
layout modification makes it easier to observe each community.

allowing the user to quickly understand each member of the selected community and
its characteristics. And we used tag cloud as the information visualization to show the
type of program, radio, and keywords that the members of the selected community
participated in. And we have made statistics on the channels and types of programs
that users participate in. Those figures allow the user to understand and explore the
event that the community participates in.

Identifying key events associated with a community

As shown in the figure 4.17 (a), when user select a community or several nodes, the
connected hidden edges represented in blue are displayed, the blue lines let users know
the connection between the selected community and other external communities.

In order to let users know the event of the community, we designed a time-line to
list the channel/collection that community members participated in. We use the month
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Fig. 4.16 After the user selects a community from the node-link diagram, we provide
a variety of views to let the user know the composition and activities of the selected
community.

as the time period, each point in the plot represents the programs that participants
participate in each time period, the blue dots represent the programs that the internal
members of the community participate in, the red dots represent the programs that
are participated by external community members. The size of the dot represents
the number of programs. in the y-axis of the plot, the different channels/collection
are ordered according to the total number of programs, and the more channels the
community participates, the higher the position in the y-axis.

As figure 4.17 shows, when the user selects a community consists of people engaged
in football, the main channel they participated in were Canal+ and France 3 and RMC,
but during the European Cup in 2012 and world cup in 2014, their activities did not
appear in Canal+, but in TF1 and Europe 1. This is because in the 2012 European
Cup and the 2014 World Cup, Canal+ did not have the copyright, while TF1 and
Europe 1 had the copyright, and the guests went to these channels to participate in
the program.

Those figures allows the user to understand and explore the event which the
community participant.

4.3.5 Identifying saliencies in the data to show more detail

Statistics usually are computed in order to get a sense on common trends, and to
locate outlier individuals with respect with these trends. This section presents the
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Fig. 4.17 After the user selects a community from the node-link diagram, we provide
a variety of views to let the user know the composition and activities of the selected
community.

various statistics we used, some of which that were specifically designed, in order to
accomplish this in order to support the aforementioned tasks.

After we get the global communities, we define multiple indexes to study the activity
of community and relationship between different communities. It is worth mentioning,
all the index is calculated in the static filtered graph G′

l, for a community Ci the index
is changing over time.

Formally, we define P = {p1, p2, ....} as the set of TV/radio programs, we define
our co-invited network G = (V, E, ω), ω : E → P. where V represents the set
of participants (vertices), with |V | = n, n is the sum number of all participants.
The edges {u, v} exist when u and v are invited in at least one same program p.
ω(u, v) = {pi, pj, ...} are the programs u and v co-invited together.

Because for each program we know its start time. For convenience, we define
τ(p) as the start time of program p, define σ : P → V, σ(p) = {vi, vj...} as the set of
participants in the program p.

For each community C, we know all the programs they co-invited together, we
define P = ω(C) = {px, py...} are the programs which have at least one participant
from community C, Obviously ∀v, v ∈ σ(Pi) we can not say v ∈ Ci, σ(Pi) is the set of
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all the participants in the programs which have at least one participant from community
Ci, that means in the programs Pi which have invited the members from community
Ci may also have invited the participants from other communities, ω(Ci, Cj) is the
set of programs which have participants both from community Ci and Cj. Therefore
we could find three different types of interaction for the members in a community, as
figure 4.18 shows:

Fig. 4.18 Three different types of contacts between members.

• if ∀p, p ∈ Pi ∧ σ(p) ⊆ Ci, that means all the participants in the program p are
from the community Ci, we mark those programs as internal programs P in, such
as program p2 in figure 4.18.

• if ∃v, v ∈ σ(p) ∧ v /∈ Ci ∧ |σ(p) ∩ Ci| > 1, the participants in program p are not
all from community Ci, but at least two participants are from community Ci, we
mark those programs as mix programs P mix. Such as program p3 in figure 4.18.

• another type of interaction is ∃v, v ∈ σ(p) ∧ v /∈ Ci ∧ |σ(p) ∩ Ci| = 1, that
means only one participant from community Ci is invited with people from
other communities, there is no interaction in the community Ci, we mark those
programs as external programs P ex.
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Fig. 4.19 An example shows how indexes lines work. When user slects a community,
the index of the community will be displayed by time line charts, showing how the
community changes over time.

Figure 4.19 (d) shows the changes of the number of programs for a community over
time. The blue line is the change in the number of programs that only internal members
of the community participate in, that is |P in|. The yellow line is the distribution of
|P mix| over time. The red line is the change in |P ex| over time. Obviously, a good
community partition is to maximize the |P in| of each group, with |P ex| being smaller.

Activity index

Activity index is used to judge whether there are lots activity between the members from
same community over time. A good community division should be to group together
participants who often participate in the program together, the number of programs
co-invited members among different communities should be less. for a community Ci,
during a time interval [t0, t1], we define ιi as activity index of community Ci during
time interval [t0, t1], where

ιi = |P in
i | − |P ex

i |
|P in

i |+ |P mix
i |+ |P ex

i |
(4.1)

This value is between -1 and 1, if ιi is -1, that means there is no interaction within
the community Ci, all the members of Ci are invited alone with member from another
community. During a time period when the members from community Ci are invited
without members from any other communities, ιi is 1.
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Density index

TV/Radio shows are cyclical, with daily shows, weekly shows, and monthly shows. In
these periodical programs, the participation frequency of participants is relatively stable,
in order to compare and to study the percentage of participants in the community
participating in programs at different time intervals within the participation in programs
of all of the communitities at that time interval, we define the density index:

δi = |Pi|
|P |

(4.2)

Through the density index, we can observe the event that is different from the
overall trend and help users discover some special events.

Stability index

Stability index is used to analyze the relationship between different communities and
determine whether connection between communities is consistent overtime. An unstable
index means the selected community connect with different communities at different
times. We define γ as the index of stability for the community Ci during time interval
[t0, t1].

γi = 1−
∑
j∈C

|P(j,i)|
|Pi|

(4.3)

where Pi is the set of programs in which invited participants from community Ci, and
P(j,i) is the set of programs in which invited members are both from community Cj

and Ci.
If the stability index is 0, it means that the selected community Ci is only related

to one community (including itself). If the community is connected to a number of
different communities, it means that the members of the community Ci are not stable
and stability index could be high.

4.4 Visually tracking communities’ evolution
After efficient access to communities, we are more focused on the evolution of com-
munities and looking for reasons for their evolution. In our framework, three different
methods are provided to demonstrate the evolution of the dynamic graph. First, the
most intuitive way to track the evolution of the community over time is to show the
process of community change through the animation method. But animation only
gives the user an impression of the change process and cannot quantify the specific
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Fig. 4.20 Indexes used to help user observe the time period when the selected community
is not active.

Fig. 4.21 Indexes used to help user observe the time period when the selected community
is much active.

Fig. 4.22 Indexes used to help user observe the periodic activities of the selected
community.

change process. So we list the subgraphs of different time periods, the evolution of the
community is shown by comparing the position of each community in the subgraphs at
different times, but this method can not observe the changes of all communities at the
same time. So we introduce the sankey flow graph, and all the communities can be
visually observed during the evolution process.
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4.4.1 Animation

Inspired by the flight flow visualization ref, in this visualization, the running process
and running track of each aircraft flight are shown in an animated form. So we want to
show the change process and change track of nodes belonging to different communities
at different times in an animated form. In the global graph, communities C is divided
according to the total time T , and our modified force layout ensures that the nodes
belonging to the same community are closer together in the position of the graph.
For a certain time period (t0, t1), we group their corresponding sub-graph G(t0, t1) to
C(t0, t1), and then in the next time period (t1, t2), we filter sub-graph G(t1, t2), use
the same community modularity method to group the graphs, get C(t1, t2), for each
community c in C(t1, t2), we count in which community each node of c at the previous
time C(t0, t1), get the community in which the nodes in c are most mainly located
in the (t0, t1) time period, we use the minimum change criteria, select the position
of the nodes in the community c(t0, t1) as the end position, and the nodes of c(t1, t2)
do not belong to c(t0, t1) in c(t1, t2) move dynamically to a position where c(t0, t1)
community is. The initial layout of the graph is calculated based on the total time.
As time changes to (t0, t1), the nodes in the same community during the (t0, t1) time
period are gathered together in the layout, and through the above method, the number
of moving nodes is minimized.

In our framework, the user controls the operation of the animation by controlling
the timeline. In animation mode, when user can select any time window through
brushing on the timeline, the system selects the sub-graph in the corresponding time
period, groups the graph with Louvain modularity, and then nodes in the same group
move together in the graph. The time window selected by the user can be automatically
moved on the timeline, and the nodes will automatically move to show the continuous
evolution.

During the animation process of node movement, users can observe the evolution
process of each community, including: fusion, splitting, disappearing, gradually ex-
panding, and gradually shrinking. However, because there are many nodes in the
graph, when all the nodes are moved, the overall visual effect is rather messy, and the
user needs to pay more attention to observe. In order to be more visually convenient,
user can also select a specific community and then observe its changes in all time
periods, when user selects a certain community, only the nodes in the graph that are
associated with the selected community will dynamically move, and other nodes will
not change. We can observe how this community evolves with time, when a member
of selected community joins another community, they move to another community
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Fig. 4.23 Screenshot of the animation process. The nodes in the graph will move with
the change of the time window on the timeline. The (a) figure is the process of all
nodes cues. In order to make the moving process more obvious, the user can choose to
display the links at the same time as shown in the figure (b).

location. When other community members have more association with the selected
community during a certain period of time, those nodes will move to the community.
This smooth animation can visually demonstrate the process of community evolution,
giving users a comprehensive impression, but can not quantify the user to accurately
grasp the process of tracking evolution, for which we have segmented the graph in all
time periods, subgraphs of different time periods are displayed. Users can track specific
evolutionary processes.

4.4.2 Multiple views

Animation can visualize the evolution of communities, but it cannot simultaneously
show the evolution of different time periods. To do this, we want to display different
subgraphs simultaneously through multiple views, and provide methods for users to
effectively compare the changes in the community between different subgraphs. To
this end, users can select sub-graph from the global view, under which our framework
than generates a new view window. The global view window and the sub-graph view
windows are connected to each other.
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Fig. 4.24 Screenshot of the animation process. Users can also select a community to
observe the dynamic movement of all nodes associated with the community.

How to get sub-graphs from different time periods

In order to compare the evolution process of the community at different time periods,
it is necessary to display the graph of different time periods at the same time. In our
data, select one year as the time period and create a different subgraph G(ti, tj) from
the original network G. As the figure shows, however, the graph with the year as the
time period is still quite complicated. In the global graph G, we use the Simmelian
bakbone method to obtain the graph Gsb for deleting redundant information and get
a clear graphical construct. Similarly, we also use the SB method in each subgraph.
Obtain Gsb(ti, tj), and then group Gsb(ti, tj) using the Louvain modularity method.

The processing of each subgraph is the same as the processing of the initial total
graph. In the global view, graph G is processed by the SB method and the Louvain
modularity method.

G→ Gsb → Csb (4.4)
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Fig. 4.25 Screenshot of our framework, multiple views of graphs are shown at the same
time.

In the subgraphs of different time periods, we also start from the initial graph G,
and first obtain the subgraphs from different time periods. Then we deal with the
same steps as the global view. That is,

G→ G(ti, tj)→ Gsb(ti, tj)→ Csb(ti, tj) (4.5)

We could also use the following method to get subgraphs communities.

G→ Gsb → Gsb(ti, tj)→ Csb(ti, tj) (4.6)

The results obtained by different methods are different. In our research we use method
4.5 to get subgraph communities. Subsequent chapters will specifically discuss the
differences between the two.

Through the above steps, we divide the graph into subgraphs in different time
periods, and obtain the community allocation in different time periods. The subgraph
and the global graph are displayed together at the same time. The next step is how to
compare the community from different time period.
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Fig. 4.26 When user select a subgraph from gloabl view, the same nodes and links in
different layer views will also be filtered out for display.

Looking for the evolution of the community between different view

In our framework, each subgraph is coordinated with each other. When the user selects
a community c from the global graph, the nodes in the different subgraph view that
are the same as c can be displayed in bright red. The nodes different from c are grayed
out, so that it is convenient to observe the members of community c from different
time periods. Similarly, when user selects a community in the subgraphs, its members
are presented in other sub-graph views and global graph. This allows you to observe
the location of community C(ti, tj) members in a certain period of time in all time
periods and other time periods.

The advantage of showing subgraphs together at different time periods is that
evolutions such as splitting, aggregation, etc. can be found. However, the disadvantage
of this approach is that can only understand the convergence process of the community,
but cannot track which community the specific nodes are in.

Drag-drop interaction In order to specifically track how the nodes in the commu-
nity evolved over different time periods, we implement drag-drop interaction. The user
can select any community c(ti, tj) from subgrpah, and then drag it to other subgraph
G(tx, ty). The nodes and links in c(ti, tj) will gradually move to the same nodes and
links above G(tx, ty), and the nodes and links of c(ti, tj) that do not appear in G(tx, ty)
will disappear, nodes and links in G(tx, ty) that don’t match c(ti, tj) will be grayed out.
As figure 4.27 shows the process of drag-drop interaciton.

This interaction is implemented based on html’s drag-drop interaction. So when
we select from a sub-graph view, it creates a new layer on the original graph. When
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Fig. 4.27 The process of drag-drop interaction. User select a subgraph from left view,
then drag the selected subgraph to the right view, then drop the subgraph, the same
nodes and links will gradually move to the matching location and then be highlighted.

the user selected a community, the newly created layer demonstrates the selected
community,and as the user is dragging, the user is actually dragging the newly created
upper layer . In the actual process, only the svg element of html can be dragged, and
the canvas element does not have the dynamic effect of drag, so the newly created
layer and graph are both on the svg element, after the drop event is fired, we also
create a new layer on the dropped sub-graph view, copy the dropped community, then
keep the same nodes and corresponding links, then add animation of nodes and links
to move to the corresponding location. This interaction process and dynamic effect are
not difficult to implement with the help of html.

The drag-drop interaction feature makes it easy to observe the evolution process,
and can track which nodes are specifically changed to which community, and can map
the same elements in different graphs one by one.



68Visually tracking dynamic communities using Laputa’s multiple coordinated views

4.4.3 Sankey graph

Using the global graph view, the graphs of all time periods are merged together. The
user can group the graph of the whole time period and select the subgraph of a specific
time period through the time-line to study, but the connections between the subgraphs
in different time periods cant be reflected. For complex networks, we use the SB
method to remove redundant information, making the graphics more intuitive and easy
to analyze. Although the SB method deletes some unimportant nodes and links, it still
causes the lack of information. So we conceived to study the evolution of the community
without deleting the redundant information. When the redundant information is not
deleted, we need to consider other visualization methods due to the node-link visual
complexity.

G −→ G(ti, tj) −→ C(ti, tj)

To this end, we used a sankey graph to visualize the evolution of communities in
graph at different time periods.

Sankey graph is a type of flow diagram, in which the width of the links is shown
proportionally to the flow quantity. For our data, the sankey graph G = (V, E), V

is the communities detected from different times interval. Each band represents the
community, the height of the bands are directly proportional to number of members of
the community.

Fig. 4.28 An overview of sankey graph for 6 years.
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The Sankey graph is mainly to study the evolution of dynamic communities, because
the mergering, separating, gradual disappearing, gradual increasing of the communities
and so on an be observed at a glance through the sankey graph.

In our application, the sankey graph is made up of many rectangular and thick curves.
As shown in the figure, each column rectangle represents the different communities in
the sub-graph obtained in the same time period. The width of the rectangle is the same.
The height of the rectangle represents the number of members in the communities. A
thick curve joins communities with two adjacent time periods of the same member.

Unlike Equation 3.5, we did not use the sb method. In this case, there is no missing
information in each time period. Although some nodes only exist for a short time, they
are also displayed in sankey. As shown in the figure, sankey’s rectangle has a section
that grows up, representing the nodes that appear in that time period, and does not
appear in the two adjacent time periods.

Fig. 4.29 Zoomable sankey, The user can select a time period and then continue to
subdivide the graph during this time period.
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Zoomable

The sankey graph is meant to make the evolution process visually clearer, but if the
sankey graph has too many time intervals, it will become more visually complex. We
have 6 years of data. If we use the month as the time interval, as shown in the figure, the
smaller the interval division can better demonstrate the evolution of communities, but
the smaller the interval will make the visualization more complicated. The zoomable
feature is designed to make the visualization process easier, but users can get a deeper
understanding of the smaller time interval by clicking. The specific design process is
that the graphics first show the distribution of communities obtained at larger time
intervals. When the user needs to know more about the community grouping in each
time interval, just click on that time period, the sankey graph will be expanded and
developed. The time period is divided into smaller time segments, for example, for
the time period of one year, and then by the month as the time segment, for the time
period of one month, and by the week as the time period.

Fig. 4.30 When the user clicks on a band or a link, a subsankey consisting only of the
members that are clicked is displayed, and this step can be repeated to narrow the
scope.
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Tracking evolution

In addition to the global view, the user can click on the connection between the
rectangle or rectangle of the sankey graph to observe that in the entire sankey graph,
the user can observe the evolution of the community by simply mouse hover a rectangle
or a curve. Whenever the user clicks on a community, builds a sub sankey graph,
the original graph is semi-transparent, and the sub sankey graph retains the original
position, but the size has changed, which can be compared with the original sankey
graph. The same operation can be applied to the sub ankey graph, constantly tracking
more accurate member evolution.

Fig. 4.31 Mouseover interaction works

Coordinate

The sankey graph, combined with the node-link graph of the global view, helps user
understand the evolution of the community,the internal results of the community and
the connections to other communities. User selects some node or community in the
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Fig. 4.32 The mouseover interaction is also available on the sankey graph.

node-link graph (based on the community obtained in all time periods), sankey graph
will filter out the selected nodes in the global graph, rebuild the sub sankey, and
display the sub sankey graph in the original sankey graph. Sub sankey graph shows the
communities in which the selected nodes are located and their evolution over different
time periods. as the picture shows. When user selects any community in the sankey
graph, the user can see the location of these nodes in the global graph in the global
network, as well as undersatnd the internal structure of community and its connection
with other communities. This feature helps track the evolution of each node or some
node.

Multiple sankeys can also be coordinated. Users can load sankey graphics for
different time periods. As shown in the figure, we can use the sankey graph obtained
for one year interval and the sankey obtained with three months as the time period.
user can also observe the evolution of the community in another sankey by clicking on
the community on any of the sankeys. This allows user to compare the differences in
community between small time periods and slightly larger time periods.
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Fig. 4.33 Select a community from node-link graph, the sankey graph display how the
communiti’s evolution.

The sankey graph is a supplement to the original dynamic node-link graph. The
node-link is a spatial overlay of the dynamic graph time, and the sankey graph is a
spatial extension of the dynamic time. The combination of the two is more conducive
to studying the evolution of some members or groups over time.

4.5 Algorithmic considerations
This section dives into algorithmic details underlying different components of the
framework.

4.5.1 Comparing Simmelian backbone results

Each node in our network is a participant. For each participant, the most important
attribute is the number of programs. We used non-uniform division histogram to show
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Fig. 4.34 The user selects some nodes from the node-link graph, the sankey graph
displays the flow of these nodes.

the distribution of the number of programs participants participates in. As shown in
figure 4.36, the Y-axis is the number of participants, and the X-axis is the intervals
of programs number in which each participant participates. It should be added that
the number of programs represented by each ticker on the x-axis in the figure is not
equally divided. The reason for this is that the number of participating participants in
our data is not evenly distributed. The majority of participant participation in the
program is relatively small. If the number of intervals for each ticker is equal, the
smaller number of interval is concentrated in too many constituents. The log value is
used as the y-axis coordinate to narrow the gap between different lengths..

In addition the specific practices we use for non-equal partitions are:
When we want organize data into m intervals, the interval is organized from the

minimum value. Select the minimum value to the left of the interval and gradually
increase the interval size. When the total number of distributions in the interval
exceeds 1/m of all the totals, the previous value of the corresponding value at this
time is used as the right side of the interval, and then this value is used as the new one.
On the left side of the interval, continue with the above operation. This will result in
m unequal partitions, and the number distribution of each interval is symmetric.

The benefits and the main use of this visualization is to visually compare the changes
in the value of the network before and after the redundant data is deleted. The different
colors in the figure represent the changes in the values. It can be seen intuitively that
the participate frequently in the program are retained in the post-filtration graph, and
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Fig. 4.35 Several sankey from different times periods can be displayed at the same time,
and there is a connection between them. The user can observe the evolution of the
clicked elements in another sankey by clicking on the elements in one of the sankeys.

Fig. 4.36 The non-uniform division histogram shows the distribution of number of
participants in different programs number interval, (a) is the attributes distribution
of original graph, (b) is the distribution after using Simmelian method, the pink bars
are the value filtered by Simmelian method, light blue bars are the attributes that is
retained.

most of the deleted participants are participating in fewer programs. Because in our
research, we pay more attention to the high-visibility participants, so from the point of
view of the deleted nodes, the simmelian method is effective for our data.

Similarly, we also compare the distribution of the weights of the links in the
network. The weight of the link between the two nodes is represented by the number
of programs that the two nodes participate in together. The more relevant participants
will participate in the program, the more times they will be exposed together, the
weight of their links would also be higher. We also use non-uniform division histogram
to compare the changes in the weights of links before and after deletion.
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As shown in the figure 4.37 the higher the weight of the links, the more retained
they are in the network after deleting redundant data. From the perspective of the
weight of links, it also verifies that simmelian is valid for our data.

Fig. 4.37 The non-uniform division histogram shows the distribution of number of
edges in different number of programs number interval

Fig. 4.38 The non-uniform division histogram shows the distribution of number of
participants in different node degree interval

We also compared the changes in the distribution of nodes’ degree as figure 4.38
shows. The higher the degree of a node, the more retained it is.

We use non-uniform division histogram as a research method to compare the changes
of parameters before and after network change, and prove that the simmelian backbone
method can effectively delete the redundant data in our data. We then explore why
we choose the simmelian method and what it means to use it.
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4.5.2 Dynamic graph grouping algorithms

In our work, we study dynamic community in three ways. The first way is to get the
community over the entire time period, and use the line charts and scatter plots to
analyze the internal activities and external connections of the community at different
time periods over the entire time period. The second way is to divide the whole graph
into subgraphs of different time periods. Since the subgraphs are also complex, the sb
method is used to simplify the graphs. Users can observe the distribution and changes
of the global community in different time periods, and can also grasp the changes
and connections between communities in different time periods through drag-drop
interaction. The third way is to divide the entire graph into smaller time periods, then
get the community in that time period, and use sankey to visually track the change of
community on the different time period.

The communities obtained in these three ways can be displayed at the same time,
and in our system, they are coordinated with each other, and users can analyze and
study the dynamic community from different angles.

Comparing methods and how to get multiple subgraph
In the multiple views, our subgraphs of different years are displayed at one time.

The way to get the community from each submap is according to the formula x. You
can also get the community according to this method, as shown in the figure.

Obviously, the community obtained by the y method is smaller than the x method,
so the order of taking the method is very important. First, obtain the subgraphs in
time, use the SB method to delete the redundant information, and then group the
graph to get better results than using the SB method to delete redundant information,
getting sub-graphs in time and then grouping the different subgraphs. The latter
deletes the information on certain event segments in advance, or retains information
for different time periods than the required time period. So we use the x method.

In this way, the community of the whole time period and the community within
the sub-time period can also complement each other.

Comparing different method to get different sankey graphs
Because the sankey graph does not need to directly observe the node-link graph

itself, and we can choose a small time period, we do not need to use the sb method
to remove redundant information. The graph g(ti, tj) of each time segment is directly
grouped, and then the communities with the same members in the adjacent time
segments are connected together to form our sankey graph.

In other papers, sankey is also used to obtain the global community. But this
method does not apply to our sankey, because our co-participants network is too
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complicated, and members of different time periods vary greatly, as shown in the figure.
The sankey does not get the global community.

4.6 Use cases
We conclude this chapter by discussing several use cases showing how the framework
indeed supports the analysis of the OTMedia data.

4.6.1 General idea about French TV/Radio participant net-
work

Programs type programs Number
Magazine 169524

Journal televise 141017
Interview entretien 63504

Tranche horaire 30885
Debat 10340

There are many different types of programs for 6 years. So we have made different
graphs according to the program category. A comparison of several different graph
before and after the SB method is shown, such as magazine, debate(figure 4.39),
news(figure4.40), talkshow(figure 4.41) etc. Different graph have different character-
istics, and different results can be obtained by using the SB method. For example,
in the news program guests as figure 4.40 shows, it is difficult to find communities,
because the participation of the guests is relatively random.

Figure 4.42 shows the graph of the magazine programs. It can be seen from the
figure that the community composed of the guests has a clear correlation with the
profession. Politics, sports economy and culture are also the most important themes.
Journalists are interspersed between different communities.

Global graph can present an overview of complex data, and our system enables
users to drill down and explore data from different layer. The following use case shows
the usage of analysing sport communities.

4.6.2 Sport and football

From the magazine network, ing selecting the sport communities, we can see that the
guests participating in the sport accounted for a large proportion of the number of



4.6 Use cases 79

Fig. 4.39 Network built from debat programs, left is the original graph, right is the
filtered graph build from using Semmilian backbone method.

Fig. 4.40 Network built from news program, it is difficult to find communities from it.

people in the French magazine type program. As shown in the figure 4.43, in addition
to internal contacts, sport guests also have a lot of connection with journalists and
politicians. Among the sports guests, the largest proportion comes from football
followed by rugby, and then sports-related reporters. Figure 4.44 shows the layer of
sport which could be extracted by our framework.

It can also be seen from various indexes (figure 4.45) that the sports community is
quite active at all times and the activity in summer is higher than in other occupations.

The financial windfall of football If we look more closely at the figure relating
to the "Group Plot" (figure 4.45)for football:
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Fig. 4.41 Network built from talkshow.

Fig. 4.42 The overview graph built from ‘magazine’ TV programs

2 types of competitions with different distribution methods: football rights are
bought private broadcasting with very expensive rights, these are the competitions "by
clubs" (French league, French cup and League Cup, + European Cup of clubs) and by
countries worldwide, the euro cup and the world cup. There is a legal obligation to
broadcast on a non-paying channel as soon as there is the French team in play and we
can observe all this on the diagram, big events are not broadcasted by Canal+. TF1
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Fig. 4.43 The connection between sport communities and other communities

Fig. 4.44 The composition of sport communities

acquires rights to have audience, otherwise France 3 or 2 it depends on the budget of
the year!

Are footballers present elsewhere? Combine the node-link graph with the
sankey graph. If we select someone from node link graph, we can observe in the
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Fig. 4.45 Indexes of all sport community

sankey graph that the person’s community changes over time. As figure 4.46 shows,
the selected person ‘Fernand Duchaussoy’, we could observe that in the first three
years, he is in the community of sport, but the following three years he changes to the
community to politics. This is caused by changes in his profession.

The composition of the community will also be related to the radio and the program:
Contact of the program and station that the same community participates in. Select
a community to see all the TV stations and programs that it participates in. We
will observe that some communities are together because of a TV show, and some
communities are participating in different programs on multiple TV stations.

Structural changes in the same community member in different stations In order to
compare and observe the changes in the structure of the same community in different
TV stations and different layers, we can display the graphs of different layers through
our framework. Through the drag-drop function, it is possible to observe the specific
change process of the same community in different layers.
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Fig. 4.46 Example of someone in different community at different times.

4.6.3 Party members in TV programs during 2017 France
election

During the 2015 French elections, we formed a network of politicians participating in
the program. The initial graph is very complex, we use the SB method to simplify it.
As we can see from the histograms (figure 4.47 (c)), it keeps the important nodes and
links. The relationship between the community and nodes in the picture is immediately
clear. The color of the nodes is based on the party in which they are located.

The diagram helped ina researchers analyze the relationship of politicians par-
ticipating in programs on television and radio during the election and observe the
connections between parties in television programming.
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Fig. 4.47 During the 2015 French election, different political parties participated in the
network of programs.



Chapter 5

Reducing link complexity with the
Simmelian backbone

This chapter focuses on algorithmic aspects surrounding the use of the Simmelian
backbone [48] to simplify the graph structure. While the display of the backbone

aims at simplifying the graph representation offered to the user, its computation
requires the setup of sensitive parameters. In order to be confident that the Simmelian
backbone was a relevant choice for our framework, we embarked into a journey to better
understand the impact of these parameters on the output provided by the algorithm.
It is this algorithmic quest we report on.

The backbone is computed based on two metrics: edge strength and edge redundancy.
The strength of edges, (globally) denoted as m, can either be inferred from given
attributes on the data or computed from the graph structure. Edge redundancy,
denoted as n, depends on m. After edge strength and edge redundancy are computed,
a backbone is obtained by filtering out edges with low redundancy.

In their original article, the authors do not provide a thorough discussion on how
strength and redundancy behave or how they can be used to somehow steer the
backbone. The article makes a clear case about the backbone providing a meaningful
simplification of the graph structure. We thus aim at bringing light on how parameters
impact the obtained backbone, focusing on our dataset.
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Fig. 5.1 Process of Simmelian backbone

5.1 Edge strength and edge redundancy
Edge strength, as the name suggest, is intended to reflect the relative importance of
an edge in the network. In our case, edges support TV programs to which invitees
(incident nodes) have participated. Thus, the number of such programs comes handy
and naturally defines edge strength: an edge is as important as the number of programs
it supports.

Once edge strength has been defined, edges incident to a node can be sorted in
decreasing order (listing more important edges first). Edges of equal importance do not
need to be sorted among themselves as we shall see. As a consequence, neighbors of a
node u can be ordered just the same (neighbors are as important as the edge linking
them to u). We will refer to this order when talking about the strongest neighbors of a
node u.
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As figure 5.1 shows, given a node u ∈ V , denoted by E(u) = [e1, e2, . . . , ep] the
ordered list of incident edges to v. All edges e1 = {u, w1}, e2 = {u, w2}, . . . have u as
one of their incident node where nodes w1, w2, . . . are neighbors of u. Depending on
the context, E(u) will denote either the set of ordered edges [e1, e2, . . . , ep] or the set
of ordered neighbor nodes [w1, w2, . . .].

Let e = {u, v}. Given an integer m, denoted by Em(u) and Em(v) the m strongest
neighbors of u and v. Edge redundancy, denoted as ρm(e), is the number of common
neighbors among those, that is ρm(e) = |Em(u) ∩ Em(v)|. (Note that Em(u) may
contain more than m nodes when there are multiples nodes of equal strength.)

The second parameter, n, used to compute the Simmelian backbone is a threshold
to filter out edges of lower redundancy. The Simmelian backbone of a graph G, denoted
as Sm,n(G) is thus obtained by filtering our edges e ∈ E such that ρm(e) < n.

5.2 Studying the behavior induced by parameters
m and n

Clearly, both parameters only cover a finite range. Valid values for m and n all lie
within [1, maxv∈V degG(v) with a much lower maximum value for n.

We calculated all n, m in the range of 1 − 30 by enumeration as variables, and
compared the results of different parameters. According to the definition of Simmelian,
the value of n represents the top n neighbors to which each node is most closely
connected, the value of m represents the same number of top n neighbors of two
connected nodes. In our data, the basis for judging whether it is closely connected
is the weight of the link between the node and its neighbor, that is, the number of
programs that participate together.

We designed a two-dimensional plot to observe the results. For the original network,
in the Simmelian method, when we use different m, n to get the new different results
of the deleted redundant information network, we compare the new obtained graph
with the original graph to find its ratio of changing. The network to which each group
(m, n) arrives is unique, and the number of nodes and links of each network is also fixed.
We use the number of nodes and links in each network obtained after the Simmelian
backbone to take the percentage of the original nodes and links as the abscissa and
ordinate of the plot axis, each different (m, n) in the plot correspond to a point, for
example, the original network has 100 nodes, 200 links, while we use m=4, n=10, the
new network after deleting redundant data has 40 nodes, 100 links, then in our plot the
corresponding point has an abscissa of (0.4, 0.5). The reason we take the percentage
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is that it is not limited to the number of original graphics nodes and links. We only
look at the percentage after deleting redundant data to compare the effects of different
original graphics. We enumerate all possible m, n(m < 30, n < 30), and show the
points corresponding to the parameters in the plot for comparative analysis.

5.3 Different types of value to quantify Simmelian
relationship

We designed a two-dimensional plot to observe the results. For the original network,
in the Simmelian method, when we use different m, n to get the new different results
of the deleted redundant information network, we compare the new obtained graph
with the original graph to find its ratio of changing. The network to which each group
(m, n) arrives is unique, and the number of nodes and links of each network is also fixed.
We use the number of nodes and links in each network obtained after the Simmelian
backbone to take the percentage of the original nodes and links as the abscissa and
ordinate of the plot axis, each different (m, n) in the plot correspond to a point, for
example, the original network has 100 nodes, 200 links, while we use m=4, n=10,
the new network after deleting redundant data has 40 nodes, 100 links, then in our
plot The corresponding point has an abscissa of (0.4, 0.5). The reason we take the
percentage is that it is not limited to the number of original graphics nodes and links.
We only look at the percentage after deleting redundant data to compare the effects of
different original graphics. We enumerate all possible m, n(m < 30, n < 30), and show
the points corresponding to the parameters in the plot for comparative analysis.

In the original paper, number of triads are used to sort the neighbors of each node.
It is also mentioned in the text that other weights can be used for sorting. The sb
method determines whether the relationship between two nodes is tight, depending
on whether the two nodes satisfy a certain number of important common neighbors,
and the importance between each node and its neighbors can be obtained by different
methods. The method described in the original text is to rank the importance of the
node and its neighbors according to the number of triads (the number of identical
neighbors). In our data we use the weight (number of programs) between nodes to
determine the importance between nodes and neighbors.

For two nodes: x, y are connected by edge x, y, we use nb(x) to represent all nodes
connected to x, and nb(y) means all nodes connected to y. The sb method is: First,
nb(x) and nb(y) are sorted in reverse order according to a certain method to obtain
list (nb(x)) and list(nb(y)). Then the first n elements of list(nb(x)) and list(nb(y))
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are represented as topn(list(nb(x))topn(list(nb(y))). If there are at least m identical
elements in top1 and top2, then the relationship between nodes x and y is valid. If
m(top1, top2) is less than m then the relationship between nodes x and y is redundant.

The method of ordering nb(x) and nb(y) is open. If sorted by number of triad, it is
the order of the number of neighbors between each node connected to x. In our graph,
one of the important criteria for determining the relationship between two nodes is the
number of programs that two nodes participate in together. The weight of the graph
is also the number of programs. So we use weight to sort list(nb(x)) and list(nb(y)).

We compared the results of number of triad and weight sorting. The same (m, n)
is chosen and the results obtained using the sb method under two different conditions.

The comparison shows that the number of triad retains more links with lower weight
values, while the reserves of nodes do not change significantly. So we use weight as the
basis for sorting. Similarly, we also compare the use of other different characteristics
as a sorting basis: such as number of channel or number of collections, as shown, the
results are not as effective as programs. It may be more efficient to combine the same
features as a basis for sorting, but for our co-participant network it is already effective
to use weight as a sorting basis. If we need a more precise study, we can optimize it
more deeply in the future.

5.4 Different parameters of the same network

Fig. 5.2 The plot of different results from different Simmelian backbone parameters.
Each node correspond to different parameter pairs of m and n
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As shown figure 5.2, each point represents the distribution of the percentage of the
number of nodes and links for each different network (m, n) obtained from the same
network. Although the points in the figure have some rules, they are still messy. But
when we connect the points with the same m value (as shown in Figure 5.5) or the
same value of n (as shown in Figure 5.6), the pattern of the effects that changes in m

and n have on the filtered results becomes very obvious.

• Take the same M , observe with n as a variable. As shown in figure 5.3, we take
the points where M equals 5 to connect together. We will find that as N grows
larger, the less redundant data is deleted by the Simmelian backbone, that is,
the filtered network retains more nodes and links. Moreover, the retention ratio
of nodes and links is different. The ratio of nodes reserved at any point is higher
than that of links. This is because each node has multiple links connected, and
links are more redundant.

Fig. 5.3 Dots with same m = 5 are connected in turn

It is worth noting that as the value of N is larger, the proportion of links and
nodes that are filtered out is slower. Because as n increases, when n is greater than
the degree of nodes, the increase in n does not affect the decision of redundancy.
So the slower the rate at which links and nodes are filtered out, when n is greater
than the maximum of all nodes’ degrees, the change in n no longer affects the
ratio of nodes and links reserved. As shown in Fig 5.3, the point where M is
equal to 5, when N is greater than 20, the effect of the proportion of n changes
in nodes is gradually reduced. The reason why the percentage of nodes retained
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is less than 75% is that the degree of 25% of nodes is less than the judgment
condition M = 5, that is, 25% of deleted nodes are those whose degree is less
than 5, regardless of the influence of N .

Fig. 5.4 Dots with same n = 20 are connected in turn

• As shown in Figure 5.4, we connect all the points of N = 20 in turn to observe
the change law caused by M value. In the plot, the smaller the M value, the
more nodes and links are retained, and in terms of the rate of change, when the
value of M changes, the percentage of nodes retained is slightly higher than the
retention ratio of links, but the change in value of N causes the change ratio of
links to be much higher than the proportion of changes in nodes. The smaller
the M value, the higher the rate of change that links and nodes retain.

• Connect all points with the same value of N . It can be observed that each line
corresponds to a different M , and the variation law caused by N is basically
similar. The difference between two adjacent N value curves is small.

• Connect all points with the same M value. Each line corresponds to a different
M value, and the difference between the two adjacent M value curves is larger.

By comparing the effects of M and N on the network results, we can find out that:

• The change in the M value has a more significant effect on the result than the
N value.
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Fig. 5.5 All dots with same M value are connected in turn

Fig. 5.6 All dots with same N value are connected in turn

• When the M value is too small or the N value is too large, the algorithm has no
effect on the screening of redundant information. How to choose the right m, n

is the key to using the Simmelian algorithm. We tested the m and n variable
curves of different graphs. It can be seen that the different network, m, and n

variables have similar effects on the results, but the values of m and n are not
well based on the standard. Currently m, n choice is based on the results, to the
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artificial judgment and to choose the appropriate m, n values. The choice of m, n

values are also very different in different graphs.

5.5 Is the Simmelian method beneficial for the de-
tection of communities

An important condition for detection of communities is that the community internal
relations are closer than the external ones. In order to explore whether the Simmelian
method is beneficial to find communities, we have designed a method to apply the
Simmelian method to random graphs and study the influence of m and n parameters.
The random graph here is random to the original data. Taking the co-participant
network as an example, the reason for the existence of communities is that many
participants participate together many times, that is, they appear in the program
together more frequently than other participants, community internal members interact
more frequently, and they often appear in the same program. On the contrary, if there
is no community, the guests appearing in the program are random, and there is no
correlation between them.

Random participating in the program

Fig. 5.7 A random process of participating guests in the program.

In the original data, we randomly select two programs, and randomly select two
participants from those two programs to change their positions. Then we repeat this
random exchange process a certain number of times. As the number of exchanges
increases, the randomness of the guests in each program will be higher, and the larger
the difference between the network and the original network will be.

The specific approach: Two program e1, e2 are randomly selected from set of
programs E. Randomly select one participating guest P1 from program e1, Then
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randomly select a guest p2 from the participants of program e2, then exchange p1, p2

position, after exchange, p2 guests participated in program e1, p1 guests participated
in program e2. Repeat the above operation a certain number of times, so as to not
destroy the number of invited guests of each program, just assume that each program
is a random invited guest. We then establish this randomly generated social interaction
relationship as a network, and then use the Simmelian backbone method with different
parameters to judge the results obtained.

Fig. 5.8 Compare the results of the network in Simmelian after different random
processes

The figures show the network obtained after a random exchange of the original
data, we use different (m, n) parameters of the Simmelian method, the x-axis and
y-axis corresponds to percentage of the number of nodes and links in the new network
to that of the original network. The orange dots are the result of random exchanges of
10,000 times, the green dots are the result of random exchanges of 20,000 times, the
red dots are the result of random exchanges of 50,000 times, and the purple dots are
the result of random exchange of 100,000 times.

It is intuitive to observe that the random number increases and the result is shifted
to the right. As shown in the figure, we connect the points of the same M value
together. Figure 5 is to connect all the points with the same N value together. As the
number of random times increases, the curves move to the right, which means that the
retention ratio of links is decreasing, but the proportion of nodes is more complicated.

Similarly, we have studied the characteristics and differences of network by using
the M and N curves respectively.

When we use N=20, the points corresponding to different M are connected together,
and the network obtained by different random exchange times corresponds to different
curves. The curve is clearly shifted to the right, and the slope rate is gradually
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Fig. 5.9 Connect all the dots with same N value (n=20), different color of lines stands
for different random processes result

increased as M decreases. The right curve of the curve means that the retention ratio
of links is reduced, that is to say, the network after randomization becomes loose, and
the connection between communities is reduced, which means that the existence of
community is weakened, and when M is small (M<6) that is obvious. To see, the same
(m, n) although the retention ratio of links decreases with the increase of random times,
but the retention ratio of nodes increases with the number of random times, because
of the random social process, each probability that individuals will participate in the
program will increase, and the probability of each person’s contact with each other
will increase. Therefore, the probability of having a common understanding between
two people will increase, and the retention ratio of nodes will be high, but with the
increase of m ( m>=6), the retention ratio of links and nodes of the same (m, n) graph
decreases as the number of random times increases. This shows a random increase,
and the chances of having more important friends between the two (the data in the
figure are six) are reduced.

Fig. 5.10 Connect all the dots with same M value (m=5)
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Fig. 5.11 Connect all the dots with same N value

Fig. 5.12 Connect all the dots with same M value

When we use M=5, the points corresponding to different Ns are connected together.
As shown in the figure, the trend and the M-value corresponding curve are roughly the
same.

From the comparison with random graphs, we find that the network in which
communities exist has a higher ratio of links after using Simmelian than the network
with random relationship, because the connections within communities are more tight;
using the Simmelian method in the parameter M value, larger nodes have a higher
percentage of saves because there are more common stakeholders among each member
of the community. It can be seen from this that the network obtained by the Simmelian
method can well preserve the characteristics of the community and help to study the
communities in the complex network.

Tests on Simmelian results can be further studied. The size of points in the graph
can be used to show the number of communities obtained by different results. And this
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test method can be used to verify whether there are communal features in different
networks.





Chapter 6

Conclusion

In this thesis we focus on data modeling, visualization and analysis approaches toward
a better understanding of complex network and time evolving network. The main
challenges we addressed are how to effectively index and understand the information
in massive video documents by using visualization, and how to discover the existence
and evolution of communities in dynamic networks, and how to use visualizations
more interactively to analyse the evolution of a community. The paper emphasized the
importance and consequences of interactive visualization in analysing multiplex and
dynamic networks. Two visual frameworks were designed and built for solving those
challenges.

• For the video documents labeled by texts, we extract the concepts and model
them into an interactive network. We proposed our own hierarchical clustering
method to form groups, and create the visualization system called “Visual Cloud”
to interactively display and analyse the multiple concepts. The innovation of this
visualization system is to display the character image and text into a hybrid tag
cloud, augmented with a heatmap to highlight the key points.

• For dynamic graphs, the paper studies and improves the Simmelian backbone
method to remove redundant data to offer users a simplified network structure.
The analysis of dynamic graphs is tackled by combining different aspects and
interaction into a unified visualization framework. The system combines node-link
graph with Sankey diagrams to reveal the evolution of communities. The system
offers a variety of coordinated visual components, users have many possibilities to
use the tool, and to explore the data with some new effective interaction methods
such as drag-drop feature.
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The design of our multimedia system completely falls into the search task as
described by Brehmer et al.’s typology consisting of two parameters: search location
and search target, either being known or unknown. Each situation maps to a subtasks:
lookup, locate, browse and explore. Usual search engines are often used for lookup
tasks (with location and target both known). Video broadcasters such as Youtube
link videos together to support browsing tasks (when the location is known but not
the target). Locating tasks consists in knowing the target but not the location, made
successful by keyword search.

The visual cloud supports exploration and browsing tasks, our keyword search is
too strict to provide proper lookup task support. It should be improved, together with
video linking, to better support lookup and locate (beyond time location with the
timeline). One last important future work concerns comparison tasks. We currently
refine information through visual cloud hovering, timeline browsing, and leapfrogging.
However, beyond side-by-side comparison of two queries tabs, we do not have explored
other means of comparison. This need quickly rises as we would like to compare periods
of time.

Laputa focus on interactions that seem relevant to manipulate and navigate mul-
tiplex networks and dynamic communities. Currently it just works for our media
data, the future work direction will be to satisfy the application of the system to a
wider range of data. We have created an interface that converts the rational data
into a multiplex network through simple steps. For any relational data, we want the
system could convert it to a multiplex network. On one hand, the system displays the
distribution of all attributes in the network, allowing users to understand the data
characteristics, and on the other hand provides a rich filtering function, users can filter
from any attributes of the data to explore the links between attributes.

This thesis allows us to browse three aspects of the most interesting aspects of
the data miming and BigData applied to multimedia archives: The Volume Since our
archives are immense and reach orders of magnitude that are usually not practicable for
the visualization; Velocity: because of the temporal nature of our data (by definition).
The Variety that is a corollary of the richness of multimedia data and of all that one
may wish to want to investigate. What we can remember from this thesis is that we
met each of these three challenges has been taken in all cases as an answer in the form
of a multiplex network analysis. These structures are always at the heart of our work,
whether in the criteria for filtering edges using the Simmelian backbone algorithm, or
in the superposition of time slices in the complex networks, or that it is much more
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directly in the combinations of visual and textual semantic indices for which we extract
hierarchies allowing our visualization.





Publications:

The following list and timeline show the paper we have published during my three
years study.

• “Exploring Temporal Communities in Mass Media Archives”, Haolin Ren, Ben-
jamin Renoust, Marie-Luce Viaud, Guy Melançon and Shin’ichi Satoh, ACM
MultiMedia (ACMMM), Seoul, South Korea, Oct. 2018

• “Generating Visual Clouds from Multiplex Networks for TV News Archive Query
Visualization" Haolin Ren, Benjamin Renoust, Marie-Luce Viaud, Guy Melançon
and Shin’ichi Satoh, Content-Based Multimedia Indexing (CBMI), La Rochelle,
France, Sep. 2018

• “Mainmise sur les médias et suivi de communautés dans les graphes dynamiques."
Haolin Ren, Marie-Luce Viaud, and Guy Melançon, EGC 2018 (pp. 451-454),
Paris, France, Jan. 2018

• “FaceCloud: Heterogeneous Cloud Visualization of Multiplex Networks for Mul-
timedia Archive Exploration" Benjamin Renoust, Haolin Ren, Guy Melançon,
Marie-Luce Viaud, Shin’ichi Satoh.ACM MultiMedia 2017 Mountain View (CA),
USA, Oct 2017

• “Layer Hierarchization in Multiplex Networks for Word Cloud Visualization",
Benjamin Renoust, Haolin Ren, Guy Melançon, and Marie-Luce Viaud, IEEE
PacificVis 2017, Seoul, South Korea, Apr. 2017

• “‘Them again?’ Dynamic Communities in the Mass Media, Haolin Ren, Marie-
Luce Viaud and Guy Melançon, EuroVis 2017, Barcelona, Spain, Jun. 2017

• “Evolution temporelle de communautés représentatives: mesures et visualisation",
Haolin Ren, Marie-Luce Viaud and Guy Melançon, EGC 2017 (pp. 417-422),
Grenoble, France, Jan 2017
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Fig. 6.1 Academic events timeline during my PhD studying shows the paper we have
published.
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