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INTRODUCTION

The world of the infinitely small generally remains unknown for the large majority of the soci-

ety. For instance, a web search with the words "nanoparticles" or "nanomaterials" leads to article

titles such as "What are nanoparticles ?" or "Why are nanomaterials important?". Everyone can

define a particle or a material, however, the combination with the prefix nano- makes these words

mysterious. The General Conference on Weights and Measures officially adopted the prefix nano

as a standard in 1960. From the greek word nânos meaning dwarf, the modern definition refers to

the nano-scale where particles are considered nanometric when at least one dimension is less than

100 nm. Even if the nano-world was popularized with the nanosciences and nanotechnologies in

the XXth century, such particles have always existed in nature1–3. Inorganic nanoparticles are found

mainly in the air since weather conditions and volcano eruptions produce metallic, silicate and hy-

droxyde nanostructures. Organic bodies secrete by microbial processes nano-elements as proteins

and viruses.

Nanoparticles exist in the human production since a long time4. The most famous example is the

Lycurgus cup fabricated by Romans in the IVth century. Its green color is attributed to the light

scattering of silver nanoparticles while the red color in transmission is due to the light absorption

by the gold nanoparticles5. IXth century Mesopotamian ceramics were found to be composed of

two silver nanoparticles size slices where the bright color is due to the interference of the scattered

light6. Awareness of the existence of such particles appears with the scientific and industrial expan-

sion from the XVIIIth century. The conjecture of elementary species as well as the quantum physics

principles allowed to lay the foundations of the nano-world in the first half of the XXth century.

However, synthesis and manipulations of such nanomaterials were achieved in the second half of

this century7 following the development of novel experimental system such as the Transmission

Electronic Microscope (TEM) by Knoll and Ruska in 19328.

Nowadays, nanomaterials are extensively used in any industrial sectors: information, energy, envi-

ronmental science, medicine, biology, food and agriculture, transportation, cosmetics, optical and

electronic devices, among many others3,9. A rapid expansion of the use of nanomaterials in indus-
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Introduction

try was recorded in the last decades, although research is still ongoing on their potential effects to

the environment and human health. Vance et al. reported 54 products containing nanostructures in

2005, two years after the launch of the Nanotechnology Consumer Products Inventory10. 9 years

later, 1814 products were listed.

The strong interest in nanomaterials is explained by their original physico-chemical properties

due to their size. Indeed, interesting and original physico-chemical properties arise with the increase

of the surface-to-volume ratio with the decreasing particle size. In addition to the size reduction,

optical and mechanical properties as well as electrical conductivity and chemical reactivity perfor-

mances are tuned, and enhanced properties can be obtained with respect to those of the bulk11,12.

As a consequence of this research motivation, numerous ways to produce nanoparticles have been

developed from the 50s. From nature ways, new biological methods have been very recently de-

fined as green chemistry methods. Metal nanoparticles have been already produced using bacteria,

fungi and yeast, algae and plants13. From artificially production, top-down techniques refer to the

size reduction of a bulk material to smaller particles. Among others, grinding, milling, sputtering

as well as ultra-sonication, microwave irradiation and electrochemical methods are classified in this

category. The wet-chemical synthesis, such as co-precipitation, sol-gel, micro-emulsion, hydro- or

solvo-thermal routes, are bottom-up methods where the molecular precursors nucleate and grow

in nanoparticles14,15. In bottom-up methods, we can include physical techniques such as the ther-

mal/laser ablation.

Since the first functional ruby laser made by Maiman in 196016 and the development of laser

systems, laser ablation in gas atmosphere or in vacuum was the core of interest in several processes.

Thin film preparation, surface cleaning, microelectronic device fabrication, analytical chemistry,

and nanocrystal or cluster sources growth revolutionized the industrial processes for plenty of ap-

plications. Semiconductors as CdSe were produced for optics where their photoluminescence play

an important role for new LED devices17,18. First nanotubes19 and fullerenes20 systems were gen-

erated by laser ablation and their very broad range of electronic, thermal and structural properties

make them industrial key products.

As the first laser ablation experiments were performed in vacuum or in vapor phase, it was only

a matter of time before first tries in a liquid phase were attempted. Since 1987, iron and tungsten

metastable phase structures were synthesized using a ruby laser by a so-called Pulsed-Laser-Induced

Reactive Quenching (PLIRQ) method at solid-liquid interfaces by Ogale et al.21,22. Shortly after, Lida

et al. developed Laser Ablation in a Liquid Medium (LALM)23 as a way to prepare colloid samples

for an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) experiment. This novel

technique was found simple and convenient to produce suspension of Cu/Zn sub-micrometer parti-

cles and to overcome some general issues encountered in the gas-phase laser ablation for ICP-AES

2



measurements. So far, the synthesized products were not defined as nanoparticles. Only carbon-

based microparticles were reported in several studies, ablating a graphite target immersed in ben-

zene or toluene24,25. In 1993, nanoparticle colloidal solutions of numerous metals were synthesized

by Neddersen et al. in different solvents for Surface-Enhanced Raman Spectroscopy (SERS) exper-

iments26. They reported the production of Ag nanoparticles of 20 nm. These pioneers predicted

the potential of this novel synthesis route: "A new and highly promising method for preparing metal

colloids is described that eliminates some of the problems associated with the chemical procedures. Ad-

vantages of this method include the simplicity of the procedure, its versatility with respect to metals

or solvents, and the absence of chemical reagents or ions in the final preparation." A few years latter,

in 1997, Prochazka et al. adressed the size-controlled of Ag nanoparticles by fragmentation and

addition of anions in the solution27. These first studies laid the foundations of the Laser Ablation

in Liquid (LAL).

As for gas-phase laser ablation, LAL was used for machining and manufacturing at the micro-

and nano-scale as well as the generation and the processing of nanomaterial colloids. By immers-

ing a workpiece into a liquid, the machining processes, as cutting, drilling or microstructuring, are

largely improved by confining the reaction spot and its products, lowering the heat on the target and

reducing the produced debris28. When the interesting products are the removal material, the Laser

Synthesis and Processing Colloids method combines several processes29. All the techniques, which

refer to LAL, belong to the Laser Ablation (Synthesis) in Liquid (Solution) (LAL/LASIS) category.

This includes the Pulsed Ablation in Liquid (PLAL) as well as the Reactive Laser Ablation in Liquid

where the aim is to induce reactions between the ablated matter and the liquid. In parallel, Laser

Fragmentation in Liquid (LFL) and Laser Melting in Liquid (LML) are designed as Laser Processing

of Colloids (LPC) methods. These processes allow the size reduction or increase of particles, already

generated by LAL or another synthesis route. In the scientific community, the Pulsed Laser Ablation

in Liquid (PLAL) is the most common method and is under the scope of this thesis. Therefore, I will

refer only to PLAL afterward.

The PLAL reaction is a physico-chemical process where several mechanisms occur successively to

finally produce nanomaterials. Laser ablation is defined as the ejection of matter from a solid target

induced by a light-matter interaction. A laser beam is thus absorbed by the target immersed in a

liquid media and after complex relaxation processes, the matter is removed from the target surface.

A dense and hot plasma is created and is composed of the ablated matter. When the plasma cools

by being quenched by the liquid, its energy transfers into the liquid, which evaporates by producing

a gas bubble mainly composed of the liquid. This bubble expands and collapses sometimes several

times. The release of the materials, i.e. of the produced nanoparticles, in the liquid mainly occurs

during the first collapse. Colloids thus formed may age and be subject of some transformations.

Large overview about PLAL can be found in available reviews29–32.
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PLAL remains an active research topic since this method appears promising at the industrial

scale, both for the production process and the products. Moreover, it proposes an alternative for the

production of nanoparticles colloids compared to traditional synthesis methods. This method is ver-

satile due to the wide range of accessible materials, as well as numerous solvents. The nanoparticles

are directly produced in the solvent, thus referring this synthesis method as an one-step process,

advantageous for industrial production. Colloids can be produced in standard organic or aqueous

solvents or more original matrix such as viscous oils or polymers. However, various processes can

occur during the synthesis and accordingly PLAL involves complicated mechanisms.

At last but not least, the nanoparticles are generally stabilized in the liquid without using com-

plexing agents and they are therefore described as ligand-free. While its main advantage is the

production of bare surface nanoparticles, this is also the origin of the lack of control of the nanopar-

ticles morphology and their crystal structure. Numerous improvements have been proposed since

these last decades to a better control of the nanoparticles production. The use of adsorbates, such

as ions and organic ligands, leads to a better colloidal stability, a production of mono-dispersed

nanoparticles in size and in shape and may induce metastable crystal structure. Even if these meth-

ods are quite common, some fundamental mechanisms remain questioned.

This thesis work aims to give new insights about the mechanisms leading to a better control of

the PLAL reaction and the laser-induced nanoparticles in colloidal solutions. I used methods from

different domains of expertise to probe the physical and the chemical mechanisms involved in the

nanoparticles production. My thesis work ties in with the team’s objectives to investigate the funda-

mental aspects of the PLAL mechanisms and its ability to produce nanomaterials, and more specially

with the PhD of Julien Lam (2012-2015)32. In previous works, plasma spectroscopy was used to

track the kinetics of the reactive species at the early stage of the plasma. Shadowgraphy technique

set-up using an ultra-fast camera and an iCCD camera has been developed since several years to

observe the bubbles and plasma dynamics as well as the shockwaves. In addition, the ability of

our group to produce large amount of nanoparticles was used in various collaborative projects. For

instance, the surface chemistry of ligand-free gold nanoparticles was probed in a first run of XPS

experiments, or CeO2 nanoparticles have been produced to assess their activity in the degradation

of organophosphorus compounds (decontamination of warfare agents). Finally, such experimental

studies are usually reinforced with theoretical calculations, thanks to collaborations with the "Mod-

eling of Condensed Matter and Interfaces" team and the "Theoretical Physical Chemistry" team of

the institute, i.e. computational quantum chemistry, empirical potentials, statistical physics, numer-

ical methods. My own work benefits from this background.

The general outlines, which define the PLAL synthesis, will be developed in the chapter 1. The

free parameters, which are susceptible to influence the mechanisms, will be listed and briefly re-

lated to their effect on final products. Then I will describe each successive mechanism occurring

during the ablation process as well as the nanoparticle formation phenomena. Improvements of
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this technique will be presented in the context of the interests of PLAL nanoparticles in future ap-

plications. The features of the PLAL method will be thus viewed in the actual state of art. This

first chapter will bring into light the intrinsic and extrinsic factors that impact the reaction and the

produced nanoparticles.

In the chapter 2, I will describe the dynamics of the laser-generated bubbles for which their original-

ity are relevant for the field of fluid mechanics. Especially, the motivation to produce in an one-step

process nanoparticles in engine oils leads to study the dynamics of bubbles induced in high viscos-

ity solvents thus resulting in high capillary numbers. The shadowgraphy technique developed by

our team was used in order to track the bubbles. An automatic treatment was also developed to

evaluate the hydrodynamics regimes of the bubbles thanks to their driving forces identification.

In the two last chapters, I will focus on the influence of stabilizing agents added in the solution

before the ablation. The studied adsorbates are from two categories.

In chapter 3, the addition of complexing ions for the synthesis of gold colloids will be discussed

in light of both salt and solutions concentrations. X-Rays Photoelectron Spectroscopy (XPS) exper-

iments have been performed to probe the surface chemistry of the laser-generated gold nanopar-

ticles, as well as the origin of charge carriers leading to the electrostatic repulsion forces between

gold nanoparticles.

In chapter 4, I will emphasize the use of organic ligands as adsorbates stabilizing ruby nanoparticles.

The ruby corresponds to chromium doped alumina in the corundum crystal structure. An experi-

mental approach will present how we investigated the influence of the ligands on the nanoparticles

size, crystal structure and their luminescence properties. Then, a complete theoretical study will

demonstrate the stabilization effect of such organic molecules on the structure of alumina nanopar-

ticles, after having delimited regions of alumina polymorphs stability. This work was performed

using Density Functional Theory (DFT) based calculations and empirical potentials approach.
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CHAPTER 1 : General features of Pulsed Laser Ablation in Liquids

Ablation in liquids puts into play complex physico-chemical mechanisms, which generate nanopar-

ticles. The spatial and temporal scales make difficult the direct control of the reactions. Though,

numerous parameters influence the synthesis and need to be taken into account. Indeed, elements

specific to the PLAL process technique or to the materials used can perturb the system and either

lead to a better control of the final products or to destabilize the solutions.

This chapter aims to describe the actual knowledge of the physico-chemical mechanisms that define

the PLAL synthesis and how the synthesis parameters might influence the nanoparticles formation.

The successive steps occurring before and after ablation will be integrated in the current state of

art. The interests about this merging technique for industry will be related for both fundamental

research and industrial applications.

1.1 Free parameters

1.1.1 Experimental set-ups

On the pioneering work of Neddersen et al.26, an experimental set-up was designed to prepare

metal nanoparticles colloids for SERS measurements. Ablation in water and organic solvents was

performed on vertical bulk metal targets, immersed in the liquid. A Nd:YAG laser beam was brought

horizontally and focused with a convergent lens. This simple picture of this pioneer set-up underlies

the general PLAL experiments.

Nowadays, a simple and convenient configuration is widely used by the scientific community. Com-

parable to Neddersen’s set-up, a container is partially filled with a solvent, stirred by a magnetic

stirrer. The container type depends on the final solution volume desired and can be a small beaker

or a large crystallizer. In a different manner, the target stands horizontally on the bottom of the

container in the focal plan of a convergent lens. Figure 1.1(a) schemes the characteristics of the

set-up used in this work.

The development of LAL synthesis to generate continuously colloidal solutions brings into light

the capacity of this new method to produce nanoparticles at large scale with a high productivity

yield33,34. Experimental installations have been built to produce high scale and to perform continu-

ous nanoparticles synthesis, based on a liquid flow system. A similar set-up has been adopted in our

group where a flow cell was made by 3D printing (see figure 1.1(b)). A peristatic pump brings the

liquid from the source tank to the bottom of the cell. The bulk target, which was inserted vertically

in the cell, is ablated by the horizontal laser beam. As the liquid travels from the bottom to the top

of the cell, the produced objects as well as the persistent bubbles are removed from the target and

evacuated outside the cell. Finally, the final colloidal solution can be stored in a large container.

For the two configurations, a large rectangle of the target needs to be ablated for a better yield effi-

ciency. Two options can be considered: either the target support may be moved by a 2D-directions

translation stage, or the laser beam is directly controlled with steering mirrors. The second option

has been preferred by performing a zigzag scanning because of the more rapid time of execution
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1.1 Free parameters

(≈ 1 ms) and the easier triggering of the laser and the experimental tools. In the liquid flow circuit,

the laser is turned off at the end of each scan in order to let the flow removed the produced matter.

Finally, two ablation laser systems were used. The first one is a UV beam (λ = 355 nm), using

the third harmonic of a 5-ns Nd:YAG laser (f = 9 Hz) and reaching a maximum laser energy of

36.7 mJ/pulse. The second laser system is more dedicated for the nanoparticle synthesis thanks

to its high repetition rate of 1 kHz. The laser system was elaborated by the Fibercryst company

and was designed to operate in the near-IR range (λ = 1064 nm). Basically, the laser beam from

a passively Q-switched kilohertz Nd:YAG laser is amplified using a Taranis laser gain module. The

Taranis module consists of a diode-pumped Nd:YAG single crystal fiber. The final maximum energy

per pulse is 2 mJ/pulse with a pulse duration of 500 ps.

Figure 1.1 – PLAL experiment systems and characteristics used in this thesis work: (a) in a beaker or
crystallizer and (b) in a liquid flow cell set-up. Nanoparticles are synthesized through a multi-step
process including plasma and bubble formation, optimized by adjusting material or laser parameters
listed in (c).

Like any new process, parameters optimization of the synthesis according to the desired final

products is primordial. Parameters involved in the laser ablation in liquid are numerous and can

be arranged in two large categories, as summarized in figure 1.1(c). These parameters will be

discussed in the following in the light of their effects in the different stages of the ablation process.

— Light parameters: the first important parameters to take into account are the intrinsic char-

acteristics of the laser used. Lasers are defined by their pulse duration τL, their wavelength

λL, their energy, their repetition rate f and their beam or spot size. Nowadays, a large panel of

lasers is commercially available for PLAL29,30. These lasers can be found from the femtosec-

ond to the millisecond pulse duration (10−15−10−6 s), with wavelength from ultraviolet (UV)

to infrared (IR), energy per surface area or fluence between 0.1 - 100 J/cm2 and with a large

frequency range between the Hz to the MHz. The laser energy per pulse controls essentially

the productivity yield as shown in figure 1.2 (a).
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CHAPTER 1 : General features of Pulsed Laser Ablation in Liquids

Others parameters relative to the ablation process should be taken into account such as the ab-

lation time35, the interpulse distance36,37 (respectively figures 1.2 (b) to (c)) and the number

of pulse per spot38. The number of pulse per spot is related to scanning and laser frequencies

and may have important consequences on the bubble phase dynamics during the reaction36.

— Matter parameters: this category groups together the material parameters and the environ-

ment conditions. First, the solution is composed of the solvent and solutes, i.e. all the objects

added in the solvent as ions or ligands. The solvent and the solute concentrations are thus

essential and can modify physico-chemical properties of the liquid and change the ablation

conditions. Factors as the density, viscosity, refractive index or surface tension are important

parameters regarding the laser interaction with the liquid and the dynamics of the mecha-

nisms involved in the reaction29,30. In figure 1.2(d), the ablation rate has been measured for

iron ablation in different solvents38. Moreover, there are also extrinsic factors linked to the

process. A stationary liquid media will rapidly saturate while a liquid movement, only stirred

circularly or due to a flow, will evacuate the produced objects from the ablation spot39,40. The

thickness layer between air and the target is controlled by the absorption of the light by the

liquid37(Fig. 1.2(e)).

Similarly, the physico-chemical properties of the target material play also a role on the reac-

tion and on the final produced particles. In addition of the intrinsic chemical composition of

the material, which is the main parameter to take into account, the physical properties as the

shape or the thickness of the target could be significant41. Figure 1.2(f) displays an example

of the mass removal as a function of the thickness of a gold target. In a lesser extent, the

pressure and temperature thermodynamic conditions of the system are far from the extreme

conditions during the PLAL reaction, reducing their role in the process.

1.1.2 Before laser ablation

On its way, the light needs to pass through the liquid layer and its content before reaching the

target, such as the solutes and the previous ablated particles.

First, the beam travels through the solvent and solute molecules where absorption and scattering

phenomena reduce the energy beam. The solvent and the additives should be chosen and con-

centrated according to the wavelength-dependent absorption coefficient. Yan et al. measured the

transmittance of solution with different adsorbates species and concentration using a 248-nm ex-

cimer laser42. Results showed that beam energy can be transmitted from 87 % at low surfactant

concentration to 30 % for the highest. In the same way, the thickness of the liquid layer is thus

important as the optical penetration depth decays with the absorption coefficient37.

Liquid depends also on the fluence. Heating, photodissociation until optical breakdown phenomena

can occur with increasing fluence43–48 and reduce the energy beam drastically. At high intensities,

non-linear effects can alter the the spatial energy distribution by causing self-focusing, filamenta-
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1.1 Free parameters

Figure 1.2 – Some parameters influencing the ablation synthesis: (a) the production productivity is
controlled essentially by the laser pulse energy (Reprinted from37). The mass removal can depend
on (b) the process time and (c) the distance between two pulses (Reprinted respectively from35

and36). (d) The specific ablation takes into account the mass removed as a function of the energy
and number of shot for different solvents (Reprinted from38). The thickness of (e) the liquid layer
or (f) the target can impact the ablation process (Reprinted respectively from37 and41).

tion, white continuum or multi-photons absorption49,50.

Along the optical path, the laser pulse is subject of a medium transition between the ambient air

and the liquid, which is characterized by a refractive index modification. This issue can be solved

by displacing the focusing lens to correct the focal point45,51.

In a multipulse laser ablation processing, the early ablated material composes already the col-

loidal solution content. Particles in suspension, located in the optical path, absorb or scatter the

beam. According to the distance from the focal point, the energy deposited on the particles leads

to different processes. At low fluence, objects can be simply heated before the melting point and

thermal nanobubbles are generated in their surrounding52. Surface or complete melting can be

achieved through LML53–58. At higher fluence, large nanoparticles are fragmented in smaller ones

through LFL27,49,54–56,59. In addition of the fluence, smaller laser wavelengths (i.e. 532 and 355

nm), meaning higher photon energy, are more efficient for these processes since a better absorption

can be usually achieved60. Therefore, to avoid surexposition of the as-produced colloids to the

beam, a short process time (few minutes to tens of minutes) is appreciated in a small volume of

stirred liquid. Otherwise, a fluid flow is necessary to evacuate the particles39.

When the beam finally meets the solid target, some mechanisms can reduce the energy beam avail-

able for absorption and modify the reaction dynamics. A well polished surface can reflect more
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CHAPTER 1 : General features of Pulsed Laser Ablation in Liquids

efficiently the incident beam, while a rough surface allows an absorption leading to an inhomoge-

neous material removal61.

1.2 Successive physico-chemical mechanisms

The PLAL reaction is a physico-chemical process where several mechanisms occur successively to

finally create nanomaterials. This section aims to describe temporally these steps and to give some

insights about the impact of the synthesis parameters on the reaction and on the final products as

well as the experimental analysis techniques used to probe the different mechanisms. Figure 1.3

tends to summarize and schemes these stages along a timeline.

Figure 1.3 – Timeline representing the successive stages that occur during PLAL synthesis from the
laser pulse interaction with the target to the release of the as-produced nanoparticles in the solution.
At the top of the time scale, the analysis techniques are displayed according to their time resolution.
At the bottom, from left to right: electron-phonon scattering scheme62, plasma plume simulation
snapshot63, plasma and shockwave images64, bubble images65 and nano-gold colloidal solution.
Red arrows indicate the pulse duration of the two laser systems I used during this thesis work.

1.2.1 Ablation process

1.2.1.1 Photon absorption and relaxation processes

By reaching the solid target, the laser energy is absorbed and severeal mechanisms of excitation

and relaxation arise depending on the pulse duration. Based on comparison between the pulse

duration τL and the electron and lattice characteristic times to reach a thermodynamic equilibrium,

respectively τe and τi, two regimes exist62,66 (Fig. 3.2).

(i) Non-thermal regime: the laser energy is first absorbed by the electrons, which are brought

to the conduction band. This excitation is more or less long depending on the material, but is

generally of tens of femtoseconds (τabs). Free electrons of metals will more easily absorb the

laser light, while semiconductors or dielectrics need to cross the bandgap in order to produce

free electrons. The excitation of the electrons leads to an out-equilibrium state and is followed

by a rapid thermalization established in a time τe by the electron-electron scattering. The gas
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1.2 Successive physico-chemical mechanisms

of electrons reaches an electronic temperature Te through a Fermi-Dirac distribution. τe is

generally on the order of tens of femtoseconds67, while the ions from the lattice remain cold

compared to Te.

Then, the electrons transfer their energy to the ions within a time τi of several picosec-

onds68,69. The lattice thermalization is thus carried out by electron-phonon coupling fol-

lowing a Boltzmann distribution to reach a temperature Ti in equilibrium with Te of thousands

of Kelvin. Consequently, the non-thermal regime is defined for ultrashort pulse where the

different thermalizations occur successively without reheating before the first structural mod-

ifications: τL << τe << τi or τe << τL << τi. Hence, the femtosecond and picosecond pulses

are included in this regime.

(ii) Thermal regime: this regime is characterized by pulse duration such as nanosecond pulse

longer than the electron-phonon coupling and the structural modifications: τe << τi << τL.

From absorption to thermal phenomena such as heating and evaporation, the reheating of the

target leads to consider these mechanisms to occur simultaneously. Therefore, the tempera-

ture of the system is assumed to be at the thermodynamic equilibrium between the species:

Te = Ti = T .

Figure 1.4 – Characteristic times of excitation and thermalizations mechanisms of electrons τe and
lattice τi after the absorption of the laser beam within τabs by the target and before the ablation
processes start (Figure inspired from69). Schemes on the top panel show these mechanisms in the
cases of non-thermal and thermal regimes according to the laser pulse duration (Reprinted from62).
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CHAPTER 1 : General features of Pulsed Laser Ablation in Liquids

1.2.1.2 Ablation mechanisms and plasma expansion

After the phenomena of absorption and excitation of the system, which ends to the thermaliza-

tion of the electrons and the lattice, the structural modifications start. This stage corresponds to

the ablation process where the matter is removed and leads to the plasma expansion. At such short

scales, we got information essentially from theoretical calculations. Different calculations methods

have been considered for the description of the ablation process since the first experiments in the

sixties. Numerical modeling including thermal and hydrodynamic models has been developed to

study all the pulse duration and fluence ranges70–81. Monte Carlo82–84 and Molecular Dynamics

(MD)63,85–98 simulations have also been used to investigate such ablation processes. Important

reviews on the history of theoretical approaches of laser ablation simulation are available in the

literature99–101.

In our work, we are using ns pulses (500 ps and 5 ns sources). For such pulses, MD approach is

hardly usable because (i) such a time scale is too long regarding the computational cost, and (ii)

the laser/matter interaction is generally not considered. The energy deposition can no more be

considered as a separate initial event. The interaction between the laser pulse and the early formed

plasma has to be taken into account, which leads to a screening and plasma warming.

Several ablation mechanisms have been identified according to the pulse duration and the fluence

applied in the system. These different ablation mechanisms will be described through thermody-

namic paths displayed on ρ −T diagram (Fig. 1.5(a)). For visual considerations, molecular dynam-

ics snapshots will also help (Fig. 1.5(b-d)). Such diagram is often used in theoretical studies, but it

is important to mention that these diagrams are assumed to be locally at the thermodynamic equi-

librium and depend on the studied materials. Calculated fluence (energy/area ratio) are compared

with respect to the ablation fluence threshold Fth, characterized by a transition between an evapo-

ration process and ejection mechanisms implying larger material amounts. These fluence regimes

depend on the laser pulse and the material.

(i) Vaporization: the vaporization describes the phase transition from a condensed phase (solid

or liquid) to the vapor phase. With enough time and at high temperature, the outer surface of

the target follows sublimate and evaporate in order to form mainly atoms and small clusters

(Region IV in figure 1.5(b)). As the thermal equilibrium is reached, the thermodynamic path

follows the binodal line until the vapor region (green arrow in figure 1.5(a)).

(ii) Normal boiling: this phenomenon describes the heating of the system and the heterogeneous

nucleation of vapor bubbles from a liquid. This implies an equilibrium liquid-gas where inho-

mogeneities of gas, solid defects or solid surface impurities lead to gas bubble formation. Even

if the main bubbles form at the outer surface, they may be created in the liquid volume or at

the solid-liquid interface and diffuse to the surface. This regime is seen when the temperature

overrides the boiling temperature Tb. Normal boiling are the normal heating processes fol-
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1.2 Successive physico-chemical mechanisms

lowing the equilibrium liquid-vapor binodal line (I-Y path) in the ρ −T diagram (green curve

in figure 1.5(a)) directly from the triple point TP or after crossing the binodal line (I-J-Y red

curve in figure 1.5(a)).

(iii) Explosive boiling: as referred also as phase explosion or homogeneous nucleation, this is the

only thermal process able to explain the ejection of the matter in short lapse time. Depending

on the laser pulse regime, the heating of the target may be isochoric (A-B-Y path in figure

1.5(a)) or non-isochoric (A-I-J-Y path) and the temperature of the system may override the

critical temperature point CP. This heating is characterized by an important and rapid tran-

sition to the metastable region crossing the spinodal line (Y-E-F path in figure 1.5(a)). The

superheated liquid state thus formed has an high temperature, which allows to pass the gas

nucleation barrier. Therefore, an high nucleation rate enables to gas bubbles to nucleate and

grow (Region II in figure 1.5(b)). This homogeneous nucleation remains slow and the gas

phase becomes the dominant phase while liquid droplets persist and are ejected with the gas.

(iv) (Trivial) Fragmentation: fragmentation processes may explain some non-thermal ablation

mechanisms at the ultrashort laser pulse. First, the heating from solid state occurs at con-

stant volume. The stress induced by this isochoric heating is converted into an immediate

strain, characterized by a rapid expansion (A-C path in figure 1.5(a)). The relaxation takes

place in the supercritical liquid state (C-D path) where decomposition of the matter is carried

out by creating gas voids (Region III in figure 1.5(b)). The system ends in the superheated

metastable region, already decomposed. The main effect in this ablation mechanism is thus

due to a mechanical fragmentation of the matter, and not to a thermal process.

A different mechanism can also exist according to pulse duration and fluence. The heating

becomes non-isochoric and the expansion starts already in the supercritical liquid state (A-I-K

path in figure 1.5(a)). The relaxation is, however, similar to the fragmentation regime. This

small difference leads the authors to consider a quasi-similar process, named trivial fragmen-

tation, by opposition with the direct fragmentation or nontrivial fragmentation.

(v) Spallation: at low fluence, this regime is essentially due to mechanical effect. Indeed, an

internal break propagates along the solid surface and results in entire layers detachment.

Such mechanism occurs when the stress applied in the system overtakes its tensile strength

and creates defects and small breaks. By propagation, large pieces of matter and atomic size

particles are ejected. Its relaxation ends in the solid-vapor metastable region, with a passage

in the solid-liquid state (not shown here).

It is important to mention that whether these different mechanisms can be explained inde-

pendtly from each other, simultaneous regimes can occur during an ablation process. For instance,

snapshots displayed in figure 1.5(b) show the different mechanisms which are present according
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CHAPTER 1 : General features of Pulsed Laser Ablation in Liquids

to the regions along the target depth. Indeed, the energy, which is absorbed locally from the outer

surface to the target volume, will result in different ablation mechanisms, as well as from the center

to the edges of the ablated spot. According to the target material type, metals are the most stud-

ied70,73–77,79–81,96–98 with respect to other materials such as oxides74,78 and graphite73,74.

Figure 1.5 – (a) ρ − T phase diagrams calculated to follow the temporal thermodynamical paths
of the different ablation mechanims (Reprinted from95). The blue dotted curves refer to the direct
fragmentation (A-B-C-D path) and the phase explosion (A-B-Y-E-F path) mechanisms. The trivial
fragmentation (A-I-K) and the normal boiling (A-I-J-Y) processes are indicated by the red dashed
curves. The normal boiling and vaporization occur depending on the fluence, higher the fluence and
further the heating follows the binodal line (A-Y) displayed by the green solid curve. (b) Temporal
snapshots of molecular dynamics simulations using a pulse duration of τL ≈ 400 f s and with a fluence
of F = 2.8Fth (Reprinted from91). The plasma expansion is separated in four regions: (I) the non
ablated matter close to the target, (II) the phase explosion state, (III) the direct fragmentation
process, and (IV) the vaporization regime. Simulation snapshots of ablation of a silver bulk target
(τL = 100 fs and F = 400 J/m2) (c) in vaccum and (d) in water (Reprinted from97).

Until now, the ablation processes were described in vaccum or in a gas media. Several stud-

ies performed also simulations of ablation in a liquid63,80,81,96–98. General conclusions highlight

that the physics behind the gas-phase ablation mechanisms are found to be similar in water envi-

ronment, except that, the plasma plume suffers from the strong confinement effect applied by the
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1.2 Successive physico-chemical mechanisms

liquid environment. At the same fluence, these mechanisms are slowed down in expansion at the

interface of the ejected layer and the target, but the cooling rate is faster.

Recently, the group of Zhigilei observed how the removed matter is mixed with the water in an

explosive boiling regime. They simulated the silver target ablation with τL = 100 fs and F = 400

J/m2 in vaccum and in water97. Phase explosion in vaccum is driven by the release of vapor at

the surface region being in a superheated state (red Ag atoms in figure 1.5(c)). The plasma plume

freely and rapidly expands thus displaying an internal region close to the target, which decomposes

into vapor and small liquid droplets (green and red mix Ag atoms). When confining by a liquid,

the surface is in a superheated molten state (blue molten Ag atoms in figure 1.5(d)), which slowly

expands. The explosive decomposition forms a superheated vapor composed of small clusters and

atoms, which is contained in a dense hot layer (green and red mix Ag atoms). At the outmost layer

of this hot layer, a mixing region forms between the Ag atoms and the water molecules brought in

the supercritical state. In the subsurface, a foamy structure is constituted of vapor and melt matter

(blue and green Ag atoms generating voids) while the expansion slows down. The molten layer was

confirmed experimentally by pump-probe microscopy, which was pointed out as the main difference

with gas-phase ablation102.

Experimentally, these phenomena are difficult to probe at this time scale by in situ characteri-

zation. Pump-probe microscopy succeeded to get information at the early stage of the laser-matter

interaction and during the ablation process102. Domke et al.103 captured the reflectivity and the

Newton rings from 1 ps to few μs that give insights about the ablation process of a Mo film in

liquid. They observed excitation process with the increase of electrons temperature, and validated

that no difference exists in the first ps between PLAL and gas-phase ablation. They confirmed the

confinement effect of the liquid on the plasma plume and they identified the ablation regime as

phase explosion.

1.2.2 Plasma and bubble phases

1.2.2.1 Plasma phase and its related phenomena

During the expansion of the material, a hot and dense plasma contains highly charged and

neutral species as atoms, ions, molecules and electrons, and can be mixed with melted droplets

and small clusters. This plasma plume is considered at the non-equilibrium state as it is char-

acterized by high temperature (Telectrons > 1000 K), pressure (1-10 GPa) and density (1022−23

atoms/cm3)64,104–106. From this plasma plume, several phenomena have been reported:

Plasma light emission.

Excitation and photo-ionization occur in the plasma phase due to the high energy involved. Electron

density was measured on the order of 1018−19 electrons/cm3 107,108. Relaxation of the highly ionized
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species leads to a light emission from the plasma. The optically active plasma spectrum can be

decomposed into two elements: (i) a continous background exists due to electron-ion radiative re-

combinations as well as bremsstrahlung phenomenon and (ii) discrete lines are emitted from the de-

excitation of atomic species first and from molecular content, as well as black body104,105,107,109–113.

These light emissions reveal important informations about the plasma composition and formation

dynamics of the particles inside the plasma phase. Optical plasma spectroscopy (developed as

Laser-Induced Breakdown Spectroscopy (LIBS) for metrology) is extensively used as an experimen-

tal technique to capture the emission lines of atoms and molecules, and to access to the electron

density as well as the temperature of the system. An example of spectrum coming from the ablation

of an alumina target is displayed in figure 1.6(a).

The group of Sakka extensively studied the molecules formed in the plasma during the first μs of the

ablation. In particular, they tracked the emission lines evolution from the ablation of a graphite and

boron nitride target immersed in different aqueous and organic liquids. Molecule and ion emission

lines as C2, CN, BO and B+ were captured at ≈ 100 ns after the pulse shot when the strong continous

background is reduced to reveal the discrete lines104,109. Oxidation of aluminum ions during the

plasma was also observed by plasma spectroscopy107,111. All these studies reveal that first chemical

reactions with the solvent occur during the plasma phase and more especially during its quenching

by the liquid media.

Maintenance of the plasma.

Time-resolved plasma images can also be tracked by fast plasma imaging to observe the dynamics of

the plasma plume and to obtain thermodynamical parameters112–116. Similarly, shadowgraphy can

also distinguish the plasma106,117–120. Plasma images captured with an iCCD camera are presented

in figures 1.3 and 1.6(b)(left) as well as shadowgraphy picture in figure 1.6(b)(right).

From these techniques, plasma lifetime has been estimated from a tens of ns to a few μs, depending

on the laser parameters and the liquid environment105,114. For ns laser pulse duration, the plasma

coexists with the laser pulse. Therefore, the plasma is still maintained by absorption of the pulse

energy, which leads to an increase of its temperature and its lifetime115,120,121. Lifetimes of a few

μs have been already measured for laser pulses longer than 100 ns, which allow a better and longer

emission lines measurements. In return, the so-called plasma shielding effect reduces the energy

deposited on the target118,122,123 and at the same time, the ablation yield120.

Shockwaves generation.

From the ablated material detachment, energy released by the system is partially used in the plasma

formation and expansion of the matter. The excess energy causes a so-called recoil pressure, which

results in the generation of a shockwave. This shockwave travels in all directions, both in the tar-

get and in the liquid (Fig. 1.3). It can be defined as a pressure wave propagating in a medium,

which involves a gradient flow of physical quantities such as matter density or temperature. Prac-
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tically, shockwaves have been observed during the first hundreds of nanoseconds by following the

refractive index fluctuations of the liquid captured by fast-imaging implemented in shadowgra-

phy43,118,120,124, Schlieren112,113 and laser scattering106,119 set-ups, complementary with acoustic

signal measurements118,125,126. In liquids, the shockwave propagates at a velocity higher than 1000

m/s and dissipates its energy by heat and producing cavitation bubbles in the multipulse disturbed

solution. The energy evacuated by the shockwave was estimated between 10 and 50 % according

to the experimental conditions43,127,128, though the experiments were performed in the case of liq-

uid optical breakdown studies. With such high energy and speed, matter hit by the pressure wave

may be deformed, fractured and even ejected from the target. Phase transition was observed from

graphite to diamond structure achieved by compression wave129.

Figure 1.6 – (a) Emission lines of Al atoms and AlO molecules recorded by plasma spectroscopy
(Reprinted from107). (b) Plasma imaging and shadowgraphy techniques used to capture plasma
coupled with a nascent bubble during the ablation of a copper target using a laser pulse of 30 ns
(Reprinted from120).

Nascent bubble phase.

In addition to the shockwaves, the energy dissipation occurs through the strong interaction of the

plasma with the liquid, which leads to the vaporization of the liquid molecules. In the works of

Shih et al., the mixing region between the molten layer and the supercritical water was assumed to

serve as a precursor for the formation of the cavitation bubble. Recent experimental studies tend

to demonstrate that the expansion of the plasma is coupled with the growth of a nascent vapor

bubble120,121. At short pulse of 30 ns, Tamura et al.120 recorded plasma images and shadowgraphs

showing that the optical plasma plume was larger than the boundary of a cavitation bubble (Fig.

1.6(b)). They thus supposed that the plasma and the nascent bubble are related during their expan-

sion while species of the plasma are injected in the bubble. Then, the plasma is rapidly quenched

in contact with the water from its edges to its center. A contrario, a longer laser pulse of 100 ns

presents a larger bubble volume compared to that of the plasma thus leaving the two phases expand

independently from each other. Authors explained that this relation is induced by the time and the

speed at which the bubble grows relative to the plasma maintained by the laser pulse duration130.

The balance between the energy used to create the phase and to warm the plasma favors the heat-
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ing and then the following water vaporization.

1.2.2.2 Macroscopic bubble expansion and collapse

From the energy transfer between the plasma and the liquid media, the vapor bubble expands

rapidly. In almost 1 μs, a sub-millimeter bubble becomes visible130–134 (Fig. 1.7(a)). Its shape is

hemi-spherical and totally smooth compared to some bumped-like shapes seen at the early stage

of the plasma corresponding to droplets ejection120. The temperature and the pressure conditions

within the vapor bubble begin at several hundreds of Kelvin and bar133. These quantities decrease

while the gas bubble expands rapidly (Fig. 1.7(a)). Then, its front slows down and the bubble

reaches a maximum radius in the millimeter range in most of the cases, which corresponds to a

minimum in temperature and pressure. The liquid pressure compresses then the bubble, which

starts to collapse by accelerating. This bubble shrinking increases suddenly the temperature and

the pressure. This first bubble lasts hundreds of μs, depending on the laser and the liquid pa-

rameters119,131,132,135–137. Its hemi-spherical shape depends also on the wettability with the target,

marked by the contact angles, and the liquid temperature.

From the violent collapse, a shockwave can be emitted and be visible due to a gradient density

wave in the liquid106,112. Other so-called rebound bubbles follow the first large one by decreasing in

amplitude and each rebound collapse may be accompanied by a lower shockwave. These numerous

collapses and shockwaves may be the new source of the removal of macroscopic fragments, or may

fragilize the target in the case of multipulse ablation processes106,112,113. Rebound number depends

essentially on the liquid viscosity and the solutes in the solvent. Moreover, some persistent bubbles

may remain close to the ablation spot, which can shield the next energy pulse in a multipulse ab-

lation process138. At the end, the bubble content is released in the liquid phase, producing thus a

colloidal solution of nanoparticles.

Gas bubble phase was extensively studied since its lifetime scale is large enough to enable nu-

merous experimental techniques to follow its dynamics (Fig. 1.3). The fast imaging is widely used

in shadowgraphy108,118,124,130,132,135,139,140 or Schlieren112,113 set-ups. The former technique en-

ables to capture bubble dynamics by following the bubble shadow in front of a bright background

(examples of images are displayed in figures 1.3 and 1.7(b)), while the refractive index deforma-

tions are tracked with the latter method, without possibility to see inside the vapor phase.

Laser scattering methods such as Rayleigh106,119,141,142 and Raman143 scattering allow to probe

matter inside the bubble by lighting the bubble content, which scatters the light. With this tech-

nique, formation and growth of particles can be followed. More recently, X-rays (XR) experiments

were performed by the group of Plech137,144–146. XR Radiography is sensitive to the phase modi-

fication and to the light transmission fluctuation, similar to the Schlieren technique. It allows to

capture images of the bubble by phase contrast. Small Angles X-Rays Scattering (SAXS) was also
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used to probe the particles inside the bubble. Indeed, this technique has the advantages to be sen-

sitive to the nanoscale sizes and the obtained signal intensity is proportional to the particle volume

and mass. Temporal and spatial information on the particle size distribution can be obtained from

these complementary techniques along the bubble evolution. Finally, in the continuity of LIBS mea-

surements, luminescence of the species inside the bubble can be tracked by re-exciting them with

a delayed laser. This so-called Light Induced Fluorescence (LIF) has, however, not been reported for

PLAL investigation.

From these experimental measurements, the bubble dynamics have already been analyzed and

modeled thanks to some hydrodynamic models: the Keller-Miksis model119,135, the Gilmore model43

and the Rayleigh-Plesset equation132 (Fig. 1.7(a)). Thermodynamic parameters as temperature and

pressure are deduced from the evolution of the bubble radius, volume and speed as well as an es-

timation of the molecular density. The Rayleigh-Plesset model was used by Lam et al. to estimate

the number of molecules inside the bubble132. They showed that molecules from the solution are

mostly present inside the bubble, which may react during the gas phase. This last model will be

described in details in the chapter 2.

Figure 1.7 – (a) Calculated temperature and radius of laser-induced cavitation bubbles for two
water heights above a gold target (Reprinted from136). (b) Typical shadowgraphy image of a bubble
produced in water.

1.2.3 Nanoparticle formation

1.2.3.1 Nanoparticle growth mechanisms

As a result of these successive steps during the PLAL reaction, the nanoparticles formation is

achieved at the end of the synthesis. As the matter removal leads to the plasma phase, first inves-

tigations focused on the plasma expansion and quenching as well as its coupling with the initial

vapor phase. As seen above, plasma spectroscopy and shadowgraphy reveal that particles are al-

ready present in the early stage of the vapor bubble120,121, and chemical reactions occur during the
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plasma phase104,105,111. However, a lack of evidence of the nanoparticles nucleation needs to be

overcome.

Different studies observed nanoparticles inside the bubble131,142 but no evidence were brought

about their size and their growth dynamics. Recently, the group of Plech was able to probe inside the

gas bubble using SAXS and XR radioagraphy137,144–147. Two particle size categories were found to

already coexist within the bubble. The bimodal size distribution is well-known since the early PLAL

experiments51,148–150 (typical size distribution is displayed in figure 1.8(a)). At the maximum bub-

ble height, small primary nanoparticles between 8-10 nm fill the whole bubble volume while larger

secondary nanoparticles from 40 to 60 nm are located in the center and in the upper parts of the

bubble (Fig. 1.8(b)). However, the apparatus resolution limits the nanoparticle detection to about

few nm. Then, the primary particles seem to be pushed during the bubble collapse and agglomerate

to the surface with the secondary particles. The mass analysis reveals that the large nanoparticles

are weakly present in the first bubble, but in the rebound after the first collapse. This indicates that

the primary particles may agglomerate during the bubble collapse (Fig. 1.8(b)). However, in all the

measurements, no significant size modifications were reported. In addition, a small fraction of the

primary particles was detected outside the bubble during its expansion, whereas the agglomerates

are confined inside the bubble and are released during the collapses. That means that the bubble

walls are not impermeable to the small nanoparticles. These results are in agreement with Rayleigh

laser scattering made by Soliman et al.142, which concluded that some particles were ejected in the

liquid during the bubble expansion even if the main portion remains in the gas phase. They also

showed that the growth speed of the nanoparticles in PLAL is higher than in gas-phase ablation.

With Raman scattering, Takeuchi et al. saw that Ti metallic nanoparticles oxidize and crystallize

slowly during bubble phase143.

Even if the capture of the two size populations within the bubble is a major step, the funda-

mental mechanism of formation is still unclear. Some explanations were proposed. Multiple factors

must play a role in the formation of the nanoparticles. The thermal heating of the plasma and

the mechanical erosion produced by bubble collapse have been suggested as the dominant mech-

anisms51,151. The former phenomenon would favor evaporation to produce the primary particles.

Agglomeration of the small particles combined with target fragmentation during the bubble collapse

and shockwave propagation may form the secondary nanoparticles. From a thermodynamic point

of view, differences in ablation mechanisms may lead to this bimodality61. Thermal vaporization

favors the primary particles while the explosive boiling with the ejection of melted droplets pro-

duces the larger ones, though some people suggested that the large liquid droplets could evaporate

during the plasma quenching120. By studying the ablation crater morphology, different areas were

observed according to the fluence, the pulse duration and the number of pulses152,153. Center of

the spot is attributed to the ablation area where the primary particles could be ejected (Red dashed
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circle in figure 1.8(c)) while edges of the crater, which receive less energy, are considered as a mod-

ification area (Ring between the blue and green dashed circles). An intermediary ring between the

center and edges is named as the annealing area (Ring between the red and green dashed circles),

where the energy received can only melt the region and produce large liquid droplets. These re-

gions imply that the ablation regimes are different according to the received energy from the laser

focal point.

Figure 1.8 – (a) Relative weight distribution of a gold nanoparticles solution produced in an aque-
ous solvent composed of 100 μM of NaCl salt. It shows the two size populations encountered
frequently in PLAL products. (b) Scheme of the primary and secondary particles formation during
the bubble phase and its multiple collapses (Reprinted from137). (c) SEM picture of a crater made
by a fs laser on a silicon target. Its morphology reveals three regions: the ablation center leads to
primary particles (internal red dashed circle), the annealing ring ejects secondary particles due to
melting (between green and red dashed circles) and the edges of the crater suffer from structural
modifications (between blue and green dashed circles)(Reprinted from152). (d) Simulation snap-
shot of an ablation process on a Ag target in water (100 fs, 400 J/m2) leading to the (e) formation
of clusters and nanoparticles size (Reprinted from97).

Theoretically, insights about the nanoparticle formation were reported by molecular dynamics

simulations. As described above, Shih et al.96–98 simulated the ablation of a Ag target immersed in

water for fluence leading to explosive boiling regime under femtosecond laser pulse (100 fs, 400

J/m2)(Fig. 1.8(d)). They observed the formation of a superheated layer at the interface with the

target and a mixing region where the water, in a supercritical state, hosts atomic vapor and small
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clusters. A time-resolved analysis of these formed particles showed that they grow from Ag vapor

and clusters of few atoms until size of few nm (Fig. 1.8(e)). The small blue dots present in the

simulation snapshot displayed in figure 1.8(d) shows these predicted primary particles. A second

mechanism reveals the production of larger particles. Indeed, the superheated layer at the interface

with the solid becomes unstable and decomposes into large nanoparticles: (i) due to the density

difference and water confinement, Rayleigh-Taylor instabilities induce roughness at the interface

between the molten layer and the mixing region. The liquid layer is thus decelerated and rebounds

on the solid target surface. (ii) The impulsion given to the molten layer at the rebound creates

ejection of large nanojets due to Ritchmyer-Meshkov instabilities (green droplets in figure 1.8(d)).

(iii) Spherical spheres finally detach from the liquid layer by Plateau-Rayleigh capillary instabilities.

In contact with the water in the mixing region, the nanoparticles cool and solidify with a cooling

rate calculated at 1012 K/s96 (blue particles in figure 1.8(d)). The rapid quenching may explain

some metastable crystal structures22,154 as well as amorphous phase obtained during some abla-

tion experiments155. At the final time of the simulation, the largest nanoparticles were measured

above 10 nm and the frozen structures reveal polycrystallinity of the particles, with crystal domains

separated by stacking faults and twin boundaries. Finally, such calculations should be considered

carefully because of the short simulation time and cannot allow the generalization for all the abla-

tion processes, which depend on the laser and material parameters.

Based on theories developed for wet-chemical synthesis, different mechanisms have been found

to explain the nucleation as well as the growth of nanostructures. Firstly, the nucleation step con-

sists to create nuclei that remain stable and irreversible if the size is larger than a critical size.

Applied to PLAL synthesis, the LaMer mechanism seems the most convenient model to describe nu-

cleation. This mechanism was developed originally by LaMer in the 50s to explain the nucleation on

various oil aerosols and sulfur sols156. The basic idea is to consider the nucleation and the growth

separately. The nucleation evolution is predicted as a function of material concentration, followed

by a growth step with no additional nucleation, as shown in the inset of figure 1.9. The first stage

(I) shows an important and rapid increase of the atom or monomer concentration until a critical

concentration Ccrit where the self-nucleation or burst nucleation occurs (II). The atoms thus nucleate

homogeneously and their concentration reduces while the seeds grow (III) and remain stable to a

finite concentration value Cinf.

Then, these seeds grow into nanocrystals. These steps can be described by several mechanisms,

which are both complementary and competitive.

(i) Coalescence: due to the dominant Brownian motion (the gravitationnal and thermocapillary

motions are neglected), a high collision rate between the atoms, nuclei and clusters leads to

larger particles. This process is often preceded by coagulation, agglomeration or aggregation
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mechanisms (see figure 1.9(a)). When particles of the relatively same size get close to each

other, they agglomerate or aggregate. When they are from different size, they start to fuse (i.e.

coagulate) and create anisotropic spheres before totally coalescing. This mechanism occurs

naturally during the PLAL reaction or caused by a LML second laser processing. The particles

are irradiated during the ablation process far from the focusing point in the liquid or can

deliberately be melted to produce larger and more monodispersed particles157,158. By playing

with energy surfaces between two solids and the heating of the particles due to the deposited

laser energy, segregated, biphase and core-shell alloy structures can be synthesized159–162.

(ii) Ostwald ripening: due to their higher surface energy, the small particles are less stable than

the bigger ones. Consequently, the small particles dissolve and their atoms redeposite on

the large particle surface through a heterogeneous nucleation mechanism. Ostwald ripening,

also called coarsening, thus favors the large particles at the expense of the small ones163.

Jendrzej et al. showed that the Pt nanoparticles formation is due to the competition between

coalescence and Ostwald ripening164, as schemed in figure 1.9(a).

(iii) Particle attachment: Alignement of crystalline particles along their crystallographic planes

due to Van der Waals, Coulombic and dipolar interactions is referred as Particle Oriented At-

tachment (OA). Alignement may not be oriented or partially oriented, without a certain crys-

tallographic organisation. In the case of amorphous nanoparticles or poorly crystal structures,

they attach to finally crystallize in bulk symmetry165. OA of Ti166 and Te167 was observed in

organic solvents and in water. High temperature favors thermodynamically the attachment

of the particles, complementary with a low charge and uncoordinated surface. Therefore, a

long-period ablation, which can enhance the nanoparticle charge surface, will heat the liquid

around the laser path and allow a better attachment.

These nucleation and growth mechanims are considered intrinsic to the ablation process. Ex-

ternal factors can be used to control the final products. Adsorbates are the most used to have a

positive effect on the desired particle shape and size. Indeed, by adding ligands at the particle

surface, we may control their stability168, size169,170, shape171 as well as the crystal structure172

and the surface state173 during the ablation process. Even during the aging, ligands stabilize more

efficiently the particles compared to ligand-free particles168. Adsorbates facilitate the formation of

complex structures as nanospindle after several days174, and nanotube, nanorod or nanoplatelet af-

ter few hours175,176. Amans et al. synthesized Y2O3 with organic ligands169 and found that the size

distribution peak was reduced and narrowed more than 4 times. The size of nanoparticles can also

be tuned according to the surfactant concentration added in the solution170,173,177. In our group,

we synthesized Al2O3:Cr3+ nanoparticles using ligands to tailor the size and the crystal structure of

the nano-rubies178, as it will be presented in the chapter 4, section 1. Moreover, additive ions have

been extensively used to control the particles size, shape and stability due to the increase of elecro-

static repulsion of enhanced surface charge179–181. Such ions can also serve to dope directly oxide

nanoparticles using the solvent as our work done with Gd2O3 nanoparticles doped with europium
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ions182. In chapter 3, the interaction and effects of the added ions in the liquid during the synthesis

will be described in details.

Finally, reaction-induced growth can occur through in situ chemical reactions during the PLAL

synthesis. When a multipulse process is performed, each pulse supplies new atomic species that

interact between them, with solvent and adsorbates, and with previous formed particles. Oxidation

is the most common reaction in aqueous environment modifying the surface state of particles61,151.

Marzun et al. showed that oxidation reactions during the synthesis are mainly driven by the reactive

oxygen molecules originating from the water molecules decomposition183 and, to a lesser extent,

by the dissolved oxygen from the ambient air. Oxydo-reduction reactions might be purposefully

induced by introducing metal salts in the liquid media. Metallic composites and alloys are thus

produced. According to the ablation rate and the solute concentration, alloy with tuned species

ratio can be achieved. Jiménez et al. were able to synthesis Au and Ag nanoparticles capped with

a SiO2 shell in one step184. CoPt185 and PdCu186 nano-alloys were produced in K2PtCl4 and CuCl2
solutions, respectively. In organic solvent, the main effect is the graphitization where a carbon shell

forms around the particles183,187,188. Novel structures may also be achieved by in situ chemical

reaction between different atomic species ablated from an alloy target. AgGe graphen-like micro-

spheres were successfully synthesized from an Ag-doped Ge wafer189. The germanium atoms serve

as nuclei for silver atoms thanks to galvanic reactions. A supply in new ions after each pulse leads

to the nanoparticles growth in large microspheres.

1.2.3.2 Colloids aging

At the end of the bubble phase, its content is released in the liquid. Nanoparticles remain in

suspension in the liquid and form thus a colloidal solution. Agglomeration may occur and lead

to precipitation, except when stabilization is controlled by the use of ions or ligands. Moreover,

classical chemical and colloidal mechanisms might modify the particle characteristic evolution in

the solution. Indeed, by applying external factors or aging the solution, particle morphology and

stability can be tuned.

Intrinsically to the obtained solution, growth may still continue by the mechanisms described

above. These growth processes can lead to the instability of the solution, which is characterized by

an important increase of the particle size. The solution can intentionally be aged to obtain particular

size or morphology due to the liquid temperature, pH or via phase transition. Liu et al. followed the

evolution of Te particles ablated in several solvents where different stages of growth occur in a large

scale of time167. In the first seconds after the PLAL process, spherical nanoparticles smaller than

10 nm were produced. Within the next minutes, they crystallized and attached to form nanochains

that self-assemble to obtain nanocubes in some cases or aggregate into large structures by a slow

growth stage process, i.e. lasting few hours to days. At the end, spheres of few micrometers are
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Figure 1.9 – Complementary and competitive growth mechanisms leading to nanoparticles forma-
tion during PLAL synthesis. Inset refers to the classical (blue curve) and PLAL-adapted (red curves)
LaMer mechanisms (Reprinted from190).

obtained by an extremely slow recrystallization of these assemblies in few days or weeks. Aging

allows also to observe phase transition from as-produced metastable crystal structure or amorphous

phase particles154,155. In addition, shape can be tailored according to the aging time. Zhang et al.

observed the formation of leaf-like nanoplatelets of WO3 after two days of aging191 and Huang et

al. obtained GaOOH nano-spindles one week after the synthesis of amorphous nanoparticles155.

Even if the plasma and the bubble phases host the main chemical reactions between the produced

objects and the surrounding molecules, some reactions may continue after the synthesis. Surface

oxidation generates oxide nanoparticles or passivated shell formation at the surface183.

In parallel to the aging processes, some external factors can bring structural modifications. With

adsorbates on the surface, the nanoparticles remain usually stable in a longer time than without lig-

ands. Sobhan et al. showed that gold colloids synthesized with cetyl trimethylammonium bromide

(CTAB) molecules remain stable for several months while the colloids in pure water show a decline

after the first month168. Adding salts in the liquid allows also the stabilization of the particles once

synthesized. Since the highly charge surface state enhances the repulsion between the particles,

aggregation is thus avoided and the colloidal solution remains stable over a long time. In addition,

Kwon et al. demonstrated that, in the case of gold nanoparticle colloids, addition of salt before and

after the synthesis leads to the same stability because of the already strong stable colloidal solution

of nano-gold in pure water180. Stable solutions are achieved as long as the right salts and concen-

tration are chosen180,192.
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Electric or magnetic field have been used to assist the PLAL synthesis. Electrochemistry-assisted

PLAL was developed by Liu et al. to produce nanorods of Cu3(OH)2(MoO4)2
193 and GeO2 nano-

spindles or nano-cubes by varying the electrical field194. The principle is the ablation of a target in

an electrolytic cell where electrochemical reactions occur at the vicinity of two copper electrodes,

due to the highly charged surface of the produced nanoparticles. This mechanism is also used for

Electrophoretic Deposition (EPD) in order to perform thin film coatings195. By applying a magnetic

field coupled with the PLAL synthesis of magnetic particles, they are oriented in the direction of the

field and nanochains are formed in an one-step process196.

In addition, second laser processing may, on purpose or not, interact with the particles in sus-

pension, located in the optical path. The energy deposited on the particles leads to post-irradiation

treatment, which leads to shape and size tailoring54–56. LML was extensively studied and used for

either reshaping or sintering particles to produce versatile large structures. Nanospheres were ob-

tained after melting and reshaphing of nanorods53,197, sintering of smaller nanospheres57,58,157,158,198

or more complex structures199. By increasing the fluence, vaporization may start to remove atoms

or small fragments from the particles, yielding to a reduced particle size57,158. At high fluence,

Coulombic explosion causes the fragmentation of the particles and the reduction of their size27,49,54,55,59.

Temperature and pressure are external parameters that influence intrinsical characteristics of the

liquid state as the viscosity, density or compressibility. Applied high pressure has been seen to mainly

reduce the bubble size and lifetime that may alter the nanoparticle formation139. Supercritical fluid

is reached by increasing the temperature and the pressure and one thus produce nanoclusters via a

dry process200. Finally, modification of the temperature can perturb the spherical shape of particles.

For instance, ZnO nanoparticles transform into nanorods above 60◦C176.

It should be mentioned that the content released at the end of the vapor phase is already formed.

Hence, the initial nucleation and growth of the nanoparticles during the plasma and vapor phases

remain the most important steps to fully understand in order to produce controlled objects.

1.3 PLAL interests in synthesis methods

1.3.1 Advantages

PLAL synthesis method appears in the nineties 201 and joined the numerous synthesis techniques

designed to produce nanomaterials. PLAL has its own advantages compared to chemical or other

physical processes. PLAL enables to produce ligand-free surface nanoparticles. Here are classified

in different categories the interesting features of PLAL.

Convenience. As described above, the different available set-ups are simple to mount and to

use. A fixed laser with its optics are necessary to bring the energetic light beam into a container, as
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simple as a beaker, where a bulk target is immersed in a liquid. Even for more complex system such

as a liquid flow, the set-up can be designed and mounted once. The exchange of the consumable

items is also easy and fast to achieve since only the target and the liquid need to be removed manu-

ally. Consequently, this ease-of-use system allows to handle simply and safely the final solution and

the nanoparticles compared, for instance, to pulsed laser deposition (PLD) where the particles are

generated on a substrate.

One of the great pro of PLAL is to offer the possibility to form and integrate nanoparticles in an

one-step process. Functionalization with molecules, proteins, DNA or polymers to produce instan-

taneously bioconjugate particles has been experimented202–204, as well as embedding directly in

an appropriated matrix as polymers to form composites205 or in engine oils for lubricating206,207.

PLAL final products have already been used to introduce them directly in a second set-up experi-

ments such as catalysis208,209 and electrochemical reactions proceesses193,194, ICP-AES23 or SERS27.

Versatile. Thanks to the numerous adjustable parameters, a large range of bare particles can

be synthesized according to their size, their shape, their composition and their structure. A wide

range of particles size from few nm to several μm has been already achieved. Various solvents were

explored from classical aqueous or ogranic liquids, such as acetone, alcohols, alkene, alkane, to

supercritical fluid. Some studies compared the effect of different solvents on the formation of the

nanoparticles26,38,152,167,183.

A plenty of material has been explored over the three last decades and covers almost all the periodic

table of elements, such as metals26,51,181,192,210,211, alloys including core-shell structures159–162,184–186,

magnetic nanoparticles212,213, doped oxides169,178,182,214, semiconductors194,215–217, carbon-based

particles25,64,218,219, chalcogenides220–222, complex stoichiometries223,224, and composites196,225–227.

In addition, according to the experimental conditions and parameters, shape can be tuned ac-

cording to the confinement dimensions of the nanostructures. Some examples are presented in

the table 1.1. In 0D particles, spheres are the most synthesized since it is energetically favor-

able160,161,185,186. Nanocubes42,167,179,194,228 and hollow particles37,42,199 can be also produced.

Nano-rods175,176,179,229, -tubes228,230, -spindles176,231 and -chains167,196 were generated by use of

adsorbates or by oriented attachment process. 2D nanomaterial formation yields to sheets179,232,

disks233, layers175,234, platelets42 and leafs191,235,236. Finally, more complex and exotic structures

can be obtained as flower193,199,236,237, tetrapod237 and tree-like236 shapes. Of course, the growth

and assembly of the lower dimension structures to larger ones are the general mechanism of forma-

tion167,236. In addition, crystal phases are tailored using adsorbates178 and amorphous phase154,155

as well as metastable crystal structures22,154 of specific size have already been fabricated.

One of the advantages of PLAL remains the high purity of as-produced colloidal solution. Indeed,

by avoiding the use of molecular precursors and additive species in the solution, only suspended

and naked nanoparticles are obtained without other pollutant. This feature is important for various

applications, which will be described in the next section.
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Ecology and Health. It is well-known that the nanoparticles have a bad effect on health and

environment due to their size where almost no living organic barriers can stop them. Inhalation of

nano-size aerosols is the main cause of important damages in a living body238–240. Therefore, the

production of aerosols is extremely dangerous. Thanks to the confinement with the liquid media,

PLAL is thus an one-step process that allows a safer generation of nanostructures directly embedded

in a liquid or even solid matrix.

The actual environmental problems lead to revise the synthesis production of products, especially in

the chemistry. Green Chemistry emerged at the beginning of the 1990s and is defined as "the design

of chemical products and processes to reduce or eliminate the use and generation of hazardous sub-

stances"241. 12 based-principles have been set to determine if a synthesis method can be considered

as a green process. The PLAL technique appears to validate all these principles and is considered

conform as green synthesis. The main advantages of ablation in liquid is the ability to perform

synthesis with no precursors that may be toxic and generate waste. Bulk target is lesser dangerous

and toxic than molecular precursors and the possible unablated material during the PLAL process

can be retreated by second laser processing afterwards to reduce residues.

Economically. The convenient set-up as well as the simple consumable items make ablation in

liquid affordable. Bulk target cost is usually lower than molecular active agents, used for instance

in wet-chemical synthesis. Without using precursors in the synthesis, only the liquid and the bulk

target are used and less consumable items are necessary, reducing thus the cost of a synthesis. PLAL

is a long-term viable method, where the high investment on the laser and optical systems is com-

pensated in a long time run, depending on the productivity yield29. According to Jendrzej et al.242,

PLAL becomes economically interesting for a productivity yield higher than 500 mg/h in the case of

gold nanoparticles (Fig. 1.10(d)).

1.3.2 Improvements

Unfortunately, the fabrication of surfactant-free nanostructures makes difficult the control of

the size and morphology of the particles. As seen above, PLAL final products show a broad poly-

dispersity, which is an important issue in order to compete with monodispersed and size controlled

nanoparticles synthesized by the chemical techniques. Kabashin et al. studied the size distribution

of gold colloids produced with a femtosecond laser as a function of the fluence51. They showed

that narrow and almost monodispersed particle size can be obtained at low fluence while at high

fluence, a broad distribution was measured. Between the two fluences, a bimodal distribution re-

veals the transition between two ablation regimes. Moreover, the crystal structure as well as the

composition of the final objects are difficult to tailor since the extreme thermodynamic conditions

of the ablation cause complex chemical reactions and structural modification. As a result, the com-

position and crystal phase of the nanoparticles are not necessarily those of the target. Undesired
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Dimension Morphology Material Images

0D
Spheres
Hollow
Cube

Ag/Cu160,Fe/Au161,PdCu186,CoPt185

MgO42,Al2O3
37,Fe19Ni81

199,Mn3O4
179

GeO2
194,AgCl42,Te167, [PbS,NiO,MgO,Ag2O]228

1D

Rods
Tubes

Spindles
Chains

ZnO176,Mg(OH)2
175,CN229,Mn3O4

243

PbS228,BN230

ZnO176,GeO2
194,CuO244

Fe3C196,Te167

2D

Sheets
Disk

Layers
Plates
Leaf

Ag232,Mn3O4
243

Au/Ag233

Zn(OH)2
175,AgBr234

Ag2O42

ZnO229,CN236

3D
Flower

Tetrapods
Tree

CN236,Cd(OH)2
237,Zn(OH)2

199,CuVO7
193

Cd(OH)2
237

Zn/ZnO236

Table 1.1 – Examples of nanoparticle shapes. Pictures refer to the materials and references indicated
in bold.

crystal structure, metastable or amorphous phases can be obtained as well as heterogeneous par-

ticle assemblies of different phases, compositions and morphologies. In addition, defects, failures

or extraneous elements usually perturb the particles surface. Hence, the stability of the colloidal

solution might not be guarantee.

Solutions have been experimented to overcome these drawbacks. The use of adsorbates, as ligands

or complexing ions, is one of the most improving method to stabilize and control the nanoparticle

solution, as described previously. Quenching induced by ligands or ions at the early stage in the

plasma and bubble phases allows to reduce drastically the size. An example of size quenching of

Y2O3 nanoparticles by organic ligands is shown in figure 1.10(a). Colloidal stability is also reached

thanks to steric or electrostatic repulsion. Surface chemistry state is thus tailored by the choice of

the adsorbates. They can modify the charge state as well as the active sites of the surface. Second

laser processes have been also extensively studied as an effective method to control the particle

characteristics: reshaped and resized are achieved by LFL and LML. According to the experimental

set-up, the ablation and residence times179 as well as the flow of the liquid245 play a role on the

solution.
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Productivity yield is certainly the second important drawback. While the spray pyrolysis method

has a productivity rate of hundreds of gram per hour246, PLAL productivity rate needs to be im-

proved in order to be competitive. While ablation in liquid was a young and in-development

method in nineties, an important breakthrough improved PLAL to industrial scale. Barcikoswki’s

group developed a research branch dedicated to the upgrading of the productivity yield. Recently,

gram-scale synthesis was performed continuously, using a high power and a high repetition rate

ultrafast laser. From 2010 to 2016, production rate was enhanced from 1.3 to 4 g/h and thus reach-

ing the multigram-scale synthesis36,37. Streubel et al. published two articles where they achieved

4 g/h productivity yield for platinium40 and a production yield above 1 g/L for Au, Ag, Al, Cu and

Ti36(shown in figure 1.10(b)). They performed synthesis of these different elements for one hour,

using a 500 W high power, 10.1 MHz high repetition rate and 3 ps laser. The main issue to reach

such high production rate is that the usual slow laser motion compared to the repetition rate in-

duces a screening of the previous bubble with the next pulse. The energy beam is absorbed by the

remaining bubble on the target and the amount of removed matter is thus reduced. To overcome

this difficulty, a high-speed scanner composed of a galvanic mirror and a polygon mirror scanning

system was developed to reach a speed of almost 500 m/s in order to move the laser beam faster

than the repetition rate. However, this system is still limited by the slower horizontal galvanometric

mirror. Scheme of the set-up is displayed in figure 1.10(c). A liquid flow with a rate of 330 mL/min

was chosen in order to avoid screening with the blocked bubbles in the chamber and a plausible re-

irradiation process39,247. The colloidal solution contained Pt nanoparticles with a size distribution

narrowed at around 7 nm. Such progress in nanoparticle production is promising for the future of

PLAL in the industry.

The expensive cost of the laser system is also important to take into account. The investment

on such equipment can be an obstacle to the PLAL perspective, but as discussed in the pros section,

this cost can be absorbed in a long-period run (Fig. 1.10(d)).

Despite all these advanced works, a general disadvantage is the unclear understanding of sev-

eral aspects during the ablation process. As mentioned above, the main research work should be

addressed to clarify the nucleation and growth processes of the nanoparticles during the succes-

sive stages. In addition, all the different parameters, optical in one side and material in the other,

prevent to the numerous research groups to follow an universal procedure as well as to obtain re-

producible and repeatable results.

1.3.3 Applications

Development of novel synthesis routes as PLAL, which bring new advantages, opens up new

and exciting possibilities to tailor the chemical and physical properties of nanomaterials in order to

improve or design applications.
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Figure 1.10 – (a) Quenching effect of organic ligands on Y2O3 nanoparticles size distribution
(Reprinted from169). (b) Metal nanoparticles poduced with a gram-per-hour rate using (c) a multi-
gram continuous set-up developed by Streubel et al. using a high-speed scanner and high power
laser (Reprinted from36). (d) Absolute manufacturing and labor costs per ablated mass relative to
the productivity yield of gold nanoparticles synthesized by PLAL in water and chemical reduction
(Reprinted from242).

The main advantage of PLAL is the possibility to obtain ligand-free nanoparticles. Their reactive

surface, combined with a high purity of the final product, allows to enhance the performance of

numerous applications. Catalyzis is, of course, the first application where free surfaces are needed

for a maximum of efficiency and where the ligand-free products show a better catalytic perfor-

mance than the chemical capped particles208,248. Zhang et al. compared the catalytic efficiency

of an alcohol and the CO molecule by coupling gold nanoparticles made by PLAL or by standard

chemical process on CeO2 nanorods248. Kinetics of reaction were 5 to 10 times higher for the PLAL

nanoparticles than for the chemical counterparts. In addition, the carbonization of organic solvent,

which creates a carbon shell around inorganic nanoparticles, contributes also to the enhancement

of the catalytic reaction187. In analytical chemistry methods, the ratio signal-to-noise is increased

by naked nanoparticles in the case of SERS249. In biomedicine, the free surface of the nanoparti-

cles enables to enhance the MRI imaging combined with a low toxicity250. The PLAL nanoparticles

were also incorporated in solar cells to promote photo-conversion since ligands quench excitons

according to Kymakis et al.251. In the same study, they showed that capped nanoparticles in solar
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cell matrix allows the same photo-conversion yield than without ligands. Similarly, efficient in situ

or ex situ functionalization with any bio-molecules can be performed to obtain selective sensors ac-

cording to the surface-chemistry sensitive environments252 and to be used in biological or medical

applications.

For some PLAL nanostructures, the surface charge is naturally high and their colloidal stability is

maintained through electrostatic forces. Due to electrostatic attraction, high adsorption efficiency

is reached and particles are used, for instance, for pollution decontamination253. Coupled with an

electric field in electro-phoretic deposition process, electrodes or thin films may be coated and used

in various applications, such as electrochemical detection254 or long-term neural activity record255.

As-produced PLAL-generated nanoparticles can contain a large amount of defects, which facilitate

photoluminescence emission, useful in optical devices256 and in photocatalyze process for pollutant

degradation257.

Finally, numerous applications have been explored for the integration of PLAL nanoparticles. The

main ones are related to the fields of magnetism, optics and plasmonics, biology and medicine,

catalysis and energy as well as environment protection29. With this scalable and multivalent pro-

cess, the as-produced nanomaterials will be integrated in any industrial applications in order to

improve the desired chemical or physical properties. Consequently, industry has shown interest in

PLAL and its derivatives with the creation of three start-ups, Particular GmbH (Germany), i-Colloid

in-house branch of IMRA (USA) and Hamamatsu Nanotechnology (Japan). The distributor Strem

Chemicals, Inc. (USA) sells PLAL-generated colloidal solutions. For instance, colloidal solution of

metals such as Au, Ag, Pt and Ti are prepared by Particular GmbH at different concentrations in

several solvents and with particles sizes either below 20 nm or between 50 and 70 nm.

1.4 Conclusion

Pulsed Laser Ablation in Liquid is a physical way to synthesize a plenty of different nanoparticles

according to their composition, shape, crystal phase and size. This convenient, simple and scalable

process hides complex physico-chemical mechanisms, which are related to numerous experimen-

tal parameters. Several advantages are reported to overcome issues coming from other synthesis

routes and hit the interest of industry. Ligand-free nanoparticles are the most attractive feature in

this method, however, a high productivity yield combined with a monodispersed and adjustable size

has, for now, not been achieved.

To improve the synthesis of nanomaterials, the understanding of the nanoparticles formation and

reaction with their environment have been challenging in the last previous years. We saw that the

gas phase is the longest stage of the ablation process where nanoparticles are already introduced

from the plasma. Important progress was made to analyze the plasma and bubble dynamics and to

probe their content.

In parallel, studies have reported that the addition of adsorbates in the solution before the ablation
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process leads to a better control of the colloidal stability and the particles crystal structure. Yet, the

effects of such ligands during the reaction are not fully understood yet. These different features will

be investigated in the following by using ions and ligands as examples of stabilizing agents for gold

colloids and nano-rubies synthesis, respectively.
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CHAPTER 2 : Dynamics of gas bubbles

As described in the chapter 1, after an initial stage of nucleation and growth of a few microsec-

onds, the laser-generated nanoparticles are trapped in a cavitation bubble during a few hundreds

of μs. Primary nanoparticles spend a long time with respect to the characteristic time of their gen-

eration in the bubble, which can be considered as a "reactor". The dynamics of the bubble can

influence the aggregation and the maturation of the particles. Tomko et al. observed a relation be-

tween nanoparticles size and the maximum radius and lifetime of bubbles136. Hence, the dynamics

of the bubble shape can give information about thermodynamic conditions, influencing nanoparti-

cles formation. However, SAXS experiments have shown that most of the bubble content is ejected

in the solution after the first collapse137. They have also shown that the nanoparticles are formed

at the early stage of the bubble. Therefore, we have focused our work on the first oscillation of the

laser-generated bubble. Effects related to the fluid compressibility can be ignored and simple model

used as we will show.

Historically, our group has developed a shadowgraphy technique set-up to record the bubble dy-

namics and deduced the thermodynamic conditions during the lifetime of the bubbles. In particular,

they deduced that the bubble is essentially composed of the molecules of the solvent compared to

the ablated matter132. The team has also aimed at characterizing the thermodynamic path experi-

enced by matter inside the bubble (temperature/pressure/density) as well as the extreme conditions

reached during the collapse. Thanks to these former studies, we became aware that the conditions,

and more specifically the very short time scale of the processes, are intrinsically relevant for the

field of fluid mechanics. Even if the issue remains tightly linked to laser generation of nanoparticles

in liquids, we will mainly reported in this chapter experiments devoted to original condition for the

field of fluid mechanics, i.e. highly viscous liquids leading to huge capillary numbers.

This study has been conducted in the framework of a collaborative project with the Barcikowski’s

group of the Essen-Duisburg University. Barcikowski’s group aims to produce well controled col-

loids to reach the fine chemicals market and the industrial applications. The one-step synthesis

of nanoparticles in engine oils, including highly viscous polyolefins, would be a breakthrough.

Nanoparticles as additives in engine oil are relevant for engineering industry. For example, nanopar-

ticles are often used to enhance the tribological properties of the lubricant in the automotive indus-

try258,259. However, it is still mostly unknown how viscosity and surface tension influence shape,

lifetime and size of the laser-generated bubbles.

In this chapter, laser-induced cavitation bubbles are captured using shadowgraphy technique

and an ultra-fast camera. After a description of the experimental set-up and the theoretical tools,

bubbles are studied according to the injected laser energy as well as the solvent viscosity. In the case

of low viscosity, the thermodynamic conditions are investigated by solving a simplified Rayleigh-

Plesset equation. Then, hydrodynamic regimes are evaluated in order to clarify the forces that drive

the bubbles motion according to the experimental conditions. While at low viscosity, the inertial
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forces drive the vapor system, an increase of the viscosity leads to a drastic increase of the capillary

number Ca, which indicates a change of regime to a domination of viscous forces. Interestingly, our

systems at high capillary numbers cannot be interpreted with models from fluid mechanics.

2.1 Bubble dynamics monitoring by shadowgraphy

2.1.1 Shadowgraphy technique

The shadowgraphy system was designed to capture the shadow of the bubble induced by a ver-

tical ablation laser beam on a horizontal target (Fig. 2.1). A small vessel is filled with 6 mL of a

static liquid. The vessel is moved using a XY translation stage. The immersed target is fixed in the

bottom of the vessel in order to get around 1 cm of liquid thickness above the solid surface. The

laser beam is initially expanded by a lenses system and passes through a selective optical density

filter to control the injected laser power. Finally, the beam is focused on the target surface thanks

to a 15-cm convergent lens moved by a vertical translation stage.

The light source was first carried out by a continuum HeNe laser (632.8 nm, P=13 mW) coupled

with lenses and a diffuser in order to obtain a large and homogeneous bright background. However,

the homogeneity of the background was not completely achieved since the diffuser is pixelised, as

can be seen in bubble images in figure 2.1. For this purpose, we replaced the continuum laser by a

pattern of ultra-bright white LEDs. A perfect light and homogeneous source was thus obtained (see

bubbles images in figure 2.5).

To record the bubble shadow, an ultra-fast camera (Phantom v711 from Vision Research) coupled

with a zoom lens system (Zoom 6000 from Navitar) collects images at high frame rate. This rate

depends on the resolution of the image view and the exposure time. In the following results, differ-

ent image resolutions were recorded between 128 x 128 px2 and 256 x 128 px2, leading to different

time intervals and frame rates comprised between 4.6 and 6.7 μs, and 215 800 and 150 000 frames

per second (fps), respectively. Such speed of recording enables to track bubble dynamics since its

lifetime is a few of hundreds of μs. The magnification of the optical system of the Zoom 6000 is

0.65. According to its performance specification, the resolution limit of the optical assembly is then

31 μm, which also corresponds to the image of a single pixel (20 μm in size divided by the magni-

fication). It leads to an overall resolution of 44 μm (
√

2 x 31 μm). The camera and the laser are

both triggered externally. The temporal resolution of the trigger is 5 ns, which has no consequences

on the overall time resolution regarding the frame rate.

Finally, two ablation laser systems were used as mentioned in figure 1.1. The first one is a UV beam

(λ = 355 nm), using the third harmonic of a 5-ns Nd:YAG laser. The laser energy reaches a maxi-

mum of 36.7 mJ/pulse. The second laser system is dedicated to the nanoparticle synthesis thanks

to its high repetition rate of 1 kHz. In the near-IR range (λ = 1064 nm), its energy per pulse is 2

mJ/pulse with a pulse duration of 500 ps.
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For a selected material and laser system, statistics are performed on series of several individual

laser-generated bubbles. An example of bubble snapshots is shown in figure 2.1 in the case of Gd2O3

ablation, using the UV system. Recording characteristics are described in the figure legend. In a

multipulse process, secondary cavitation bubbles may be produced in the surrounding of particles

located in the laser path, in addition to the absorption and scattering of the incident beam. They

usually perturb the geometry and the dynamic of the primary bubble at the target surface, and make

difficult the image treatment. Moreover, matter deposition on the target has also an impact on the

bubble dynamics. Hence, the liquid was replaced by fresh one and the target cleaned between each

series, and only the first bubble was recorded.

Depending on the material and the laser power, the size of bubbles varies and for a better image

treatment, the magnification of the optical system is tuned accordingly. Images are thus calibrated

with a scale for every series. As shown in figure 2.1, the first image bounded by a red square serves

as a calibration in the treatment process before the first laser impact. The second image is marked

by the presence of the confined plasma between the liquid and the target, and corresponds to the

starting time, t = 0 μs. The third image shows the first bubble image. The following images show

the bubble dynamics from the growth to the collapse with the corresponding time on the top of

each picture. Even if the successive collapses and rebounds could be interesting for what concern

the material removal and the nanoparticles productivity, as described in the last chapter, I will only

focus on the first bubble.

2.1.2 Dimensionless numbers

The collected images were analyzed automatically by a Python code I developed. The automatic

data processing is able to extract and to fit the contour of the bubble shape and to compute geo-

metrical parameters image per image. Figure 2.2 displays results of the bubble contour processing

and lists the calculated parameters used for bubble analysis. During growth and shrinking stages,

the bubble shape may change. As we will see below, the bubble can have either a hemispherical

geometry or a two-part shape composed of a spherical cap at the top of the bubble and a conical

interface layer close to the target foot, leading to an apparent rim (Fig. 2.2(a)). The cap is char-

acterized by its height, which remains equal to the radius of curvature and will be referred as the

bubble radius R in the following. Regarding the interface layer, its footprint radius x is used to

quantified the bubble progression and recession on the target and will be called the bubble foot.

The interlayer has also a variable thickness e, which corresponds to the rim height. We also focused

on the three-phase contact line looking at its angle and velocity. The contact angle is defined in

figure 2.2(a) (The convention is consistent with the one used for droplet, i.e. θ = 0◦ corresponds

to perfect wetting). In the case of bubbles presenting a clear interface layer, the horizontal radius

of the rim L can also be determined. In order to easily calculate these geometrical parameters, the

contour is fitted as illustrating in the inset of figure 2.2(b). An equation of a hemisphere combined

with two straight lines allows to fit any shapes.

40



2.1 Bubble dynamics monitoring by shadowgraphy

Figure 2.1 – (Top) Scheme of the shadowgraphy set-up mounted with the UV ablation laser system
to capture (bottom) images of the bubble dynamics in the frameworks of Gd2O3 ablation. Resolu-
tion of each picture is 128 x 128 px2 and the exposure time is 4.63 μs, corresponding to a frame
rate of 215 800 fps. The time delay from the laser pulse is displayed on each snapshot.

From these different geometrical parameters, dimensionless numbers used in fluid mechanics

can be calculated. Indeed, by following the bubble dynamics at the top of the bubble, the rim

edge and the interlayer foot, local velocities are obtained and referred as Vt , Ve and Vcl, respectively

(displayed in figure 2.2(a)). Weber (We), Reynolds (Re) and Capillary (Ca) numbers are quantities

used to compare forces that compete and then identify which ones are driving the dynamics. Their

expressions are given in equation 2.1. We corresponds to the ratio between the surface tension

forces and the inertial forces. γ corresponds to the surface tension, ρ to the solvent density. V refers

to the velocity of the bubble, namely Vt , Ve and Vcl, calculated from the length X , which corresponds

to their respective radius, R, L and x. Re compares inertial and viscous forces characterized by the

dynamic viscosity η . Finally, Ca evaluates the balance between the surface tension and the viscous

forces.

We =
ρXV 2

γ
Re =

ρXV
η

Ca =
ηV
γ

(2.1)

As an example, figure 2.3 presents the evolution of these different parameters calculated during

gadolinia ablation. 33 bubbles were analyzed and one of these bubbles is shown in figure 2.1. For
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Figure 2.2 – The automatic data processing provides (a) geometrical parameters for each bubble by
(b) fitting its contour.

each bubble, the radius R is plotted with respect to the time in figure 2.3(a). Radii vary between

about 0.2 and 0.6 mm while the lifetime of the bubbles evolves from about 100 to 150 μs. By

normalizing the time for each bubble by its lifetime, we can see that the velocity of the bubbles and

the three numbers are quite similar for all the studied bubbles, emphasizing the reproducibility of

the dynamics even if there is a large uncertainty on the bubble lifetime.

2.1.3 Thermodynamic parameters

Several models have been used in the past years to predict the laser-induced bubble dynamics

in PLAL. The Gilmore model is one of the most comprehensive model since it takes into account the

compressibility of the liquid necessary to describe the rebounds after the first bubble oscillation260.

However, we are only interested in the first oscillation because: (i) the nanoparticles are mainly

released after the first collapse, and (ii) information about the ratio between the ablated matter

and the vaporized solvent (i.e. bubble composition) can be obtained from the dynamics of the

first bubble132. Therefore, we chose the Rayleigh-Plesset (RP) equation that appears more relevant

and easier to solve, and describes perfectly the first bubble dynamics. The RP model described the

movement of a liquid-gas interface for a given pressure difference between the gas pressure and the

liquid pressure. Solving RP equation can then give insight on the inner pressure in the bubble. This

was our main goal.

Initially, the RP model has been developed to consider the liquid point of view in the sense that the

composition of the vapor bubble is not taken into account. The bubble dynamics are thus driven by

the liquid characteristics. Some assumptions are provided concerning the liquid and the bubble. The

liquid is considered infinite with a pressure PL = Pinf, and incompressible. The bubble is assumed

spherical and homogeneous with a pressure PB. Between the two phases, no mass transfer is also
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Figure 2.3 – (a) Radius of 33 Gd2O3 laser-generated PLAL bubbles in water as a function of time.
(b) Velocity of the cap , (c) We, (d) Re and (e) Ca quantities were calculated as a function of time.
For each bubble, the time is normalized with respect to its lifetime.

assumed. The evolution of the bubble is similar to that made in PLAL since the growth and collapse

reveal a volume change through oscillations. However, the two systems differ in several points.

The main difference is the presence of the solid target. The nascent bubble expands and leads

to a hemispherical shape. Since the ablation processes eject solid particles and vaporize solvent

molecules, the homogeneity of the system is not guaranteed. Soliman et al. proposed first to

introduce the Rayleigh-Plesset equation in the case of PLAL bubble261. By taking into account

the limitations of the model in the case of PLAL, they successfully described the size dynamics

of the bubble, as well as pressure and temperature thermodynamic parameters. In the case of low

viscous solvents such as water, our group suggested a simplified RP equation thanks to appropriated

assumptions32,132. The development of the simplified RP equation begins with the complete RP

model, which is demonstrated elsewhere32:

RR̈+
3

2
Ṙ2 =

1

ρ

(
PB −PL − 2γ

R
− 4ηṘ

R

)
(2.2)

The inertial term at the left of the equation competes with the last terms, including Laplace

pressure and the viscous forces. As seen in figures 2.3(c) and (d), in water, We and Re numbers

are in the range of 102 and 103, respectively. With such high values, inertial forces are thus favored

compared to the considered forces, i.e. the surface tension for the former and the viscosity for

the latter. The system is driven by inertia and the Laplace pressure and the viscous forces can be

neglected. RP equation is then simplified:

43



CHAPTER 2 : Dynamics of gas bubbles

RR̈+
3

2
Ṙ2 =

PB −PL

ρ
(2.3)

Moreover, the system is assumed isentropic, i.e. without energy and mass exchange with the

liquid. The mass transfer was already neglected in the initial RP model. In addition, as shown in

figure 2.3(a), the bubble evolves symmetrically with respect to time, as expected for an isentropic

process. The energy conservation can be estimated by comparing the possible dissipated energy

with the injected energy. The heat transfer from the bubble to the liquid media is mostly driven

by convection. The transferred power is calculated from Φ = hSBΔT , with h = 100 W.m−2.K−1,

SB = πR2+2πR2 and ΔT = TB−To ≈ 103 K. With a radius in the range of a millimeter, the transferred

power is estimated at around 0.9 W. For a bubble lifetime of 102 μs, the energy dissipated is about

0.09 mJ for one pulse. This is far below the 36.7 mJ/pulse of the laser source. Consequently, the

system is considered adiabatic and the bubble process isentropic. By taking the bubble as an ideal

gas, the thermodynamic Laplace’s law is given by:

PB =
C

R3γh
(2.4)

where C is a constant and γh =
Cp
Cv

is the heat capacity ratio between the isobaric heat capacity Cp

and the isochoric heat capacity Cv. The isentropic system assumption is validated by the linearity of

the logarithm form of the relation 2.4, lnPB = lnC− γhlnR3, leading to values of γh consistent with

theoretical values132.

In order to integrate equation 2.3, the left inertial part is modified in order to suppress the

second derivative, and PB is replaced by expression 2.4:

1

2R2Ṙ
d
(
R3Ṙ2

)
dt

=
1

ρ

(
C

R3γh
−PL

)
d
(
R3Ṙ2

)
dt

=
2

ρ
(
CR2−3γh Ṙ−PLR2Ṙ

) (2.5)

This last relation is integrated with respect to time and leads to calculate the bubble pressure

PB:

R3Ṙ2 =
2

ρ

(
C

3−3γh
R3−3γh − PLR3

3

)
+K

Ṙ2 =
2

3ρ

(
PB

1− γh
−PL

)
+

K
R3

PB = (1− γh)

(
PL +

3ρ
2

(
Ṙ2 − K

R3

)) (2.6)

The integration constant K is thus determined at Ṙ = 0, i.e. at the bubble maximum radius Rmax,

which reduces equation 2.3 as PB = ρRmaxR̈max+PL. Finally, by using the second relation of equation
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2.6, K is found to be equal to:

K =
−2R3

max

3ρ

(
PB

1− γh
−PL

)

K =
2R3

max

3(γh −1)

(
RmaxR̈max +

γhPL

ρ

) (2.7)

The bubble pressure is thus calculated through the last relation in equations 2.6 where only the

first derivative is necessary to compute PB. This is an advantage if few points are recorded due to

the camera frame rate. For this purpose, direct fits of R2 and R3 are carried out with polynomial

regressions. From mathematical differentiation, Ṙ is computed, as well as R̈max. Since we considered

the system as an ideal gas, the temperature TB and the number of molecules in the vapor NB can

also be estimated thanks to the isentropic relation and the ideal gas relation, respectively:

TB

To
=

(
PB

Po

) γh−1

γh
PBV = NBkBTB (2.8)

with To and Po, the initial temperature and pressure à t = 4.75 μs, V the bubble volume and the

Boltzmann constant kB = 1.38.10−23 J.K−1.

The pressure and temperature for laser-generated bubbles in water were calculated and are plot-

ted in figures 2.4(a) and (b), respectively. The target is gadolinia. Their profiles appear symmetric,

similar to the bubble radius dynamics displayed in the inset of figure 2.4. Extreme conditions are

present at the at the early stage of the bubble growth. These hundreds of bar and thousands of

kelvin decrease until reaching ambient conditions at the maximum size of the bubble. The sudden

collapse is then characterized by a recovering of the initial extreme values of pressure and temper-

ature. The temporal profiles and the values of these thermodynamic quantities are in agreement

with previous studies, performed with various experimental conditions and material119,132,135,136.

2.2 Fluence dependency

As described in the first chapter, the laser power is one of the main parameters that influences

the ablation dynamics, especially the vapor bubble. Indeed, by injecting an increasing energy in the

system, more energy is transferred into the liquid during its interaction with the plasma. Several

studies have deduced from bubble analysis that the size and the lifetime are increased with the

laser fluence136,262–264. Reich et al.263 investigated bubble dynamics from 1 to about 200 J/cm2

and noticed a linear increase of the bubble volume after crossing a threshold at 40 J/cm2. However,

all these works focused on the geometrical and thermodynamic quantities evolution and do not ad-

dress the hydrodynamic of the bubble during ablation. In the following work, both thermodynamic

and hydrodynamic parameters have been determined according to the deposited fluence on target
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CHAPTER 2 : Dynamics of gas bubbles

Figure 2.4 – (a) Pressure and (b) temperature profiles of 33 laser-generated bubbles in water calcu-
lated from the modified RP equation 2.6 as a function of normalized time. The target is gadolinia.
Inset shows the bubble height dynamics.

immersed in water.

The UV laser was used due to its higher power, allowing to tune more easily the fluence. Gold

target was ablated at 26.0, 7.6 and 2.4 mJ/pulse, which correspond to fluences of 49.0, 14.3 and

4.5 J/cm2 with a spot size measured at 260 μm. Each ablation will be referred as Au_50, Au_15

and Au_5, respectively. A target of yttrium-iron-garnet (YIG), Y3Fe5O12, was ablated with the same

fluence than Au_15 in order to compare the two target materials and will be noted YIG_15. For

each ablation, three bubbles have been recorded with a resolution of 128 x 128 px2, a frame rate of

210 000 fps and a time interval of 4.76 μs.

Figure 2.5 shows the bubble sequences for each sample, ordered as a function of the laser en-

ergy. The yellow squared images show the collapse of the first bubble. The enhancement of the

bubble size and lifetime due the increasing energy can be clearly seen from these snapshot se-

quences. The bubbles shape remains hemispherical in water for the whole dynamics until the last

step of the shrinking stage. Size of the highest bubbles, indicated by green squares, decreases from

top to bottom sequences with the lowering ablation energy, as well as the time of these maximum

bubbles. This trend is quantified in figure 2.7(a) by plotting the bubble radius and in figure 2.6 by

showing bubbles lifetimes as a function of their respective maximum radius. Their lifetimes can also

be easily compared with the bar graph, placed in the left-top inset of figure 2.6. Ablations of gold

at different energies show an increase of the bubble radius from 1 mm for Au_5 to about 2.5 mm

for Au_50, corresponding to a longer lifetime from almost 200 μs to 400 μs. The bubble generated

during the YIG ablation is found to be larger (+ 0.3 mm) and longer (+ 50 μs) than the Au_15

bubble, for a same energy. Size increase is also visible when volumes are calculated (right-bottom

inset in figure 2.6). From low to high energies, volumes increase by two orders of magnitude from

around 0.2 mm3 to 12 mm3.
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2.2 Fluence dependency

Figure 2.5 – Snapshot sequences of one bubble of each ablation condition, ordered by increasing
laser energy. The red squared pictures is the last picture before ablation, green squares show the
maximum radius of each bubble and yellow squares show the first collapse of the bubble.

Theoretically, the Rayleigh Collapse Time (RCT) is derived from the complete Rayleigh-Plesset

equation, which describes the collapse of a cavitation bubble in an incompressible liquid. It corre-

sponds to the collapse time duration from a maximum size Rmax. As PLAL bubble follows a two-stage

process, i.e. growth and collapse, the RCT needs to be doubled in order to compare RCT prediction

with the measured bubble lifetime: tRCT = 2×0.915 Rmax

√
ρ
PL

with the liquid density ρ = 103 kg.m−3

and the external pressure PL = 101 kbar. The linear curve in figure 2.6 shows the evolution of the

RCT as a function of the bubble maximum size. Experimental values agree with their calculated

counterparts, at least for the low fluence. At the highest fluence for Au_50, the bubbles are shorter

by almost 50 μs. Therefore, the agreement with the RCT, despite the fact that the experimental

system differs from the theoretical one, confirms that the Rayleigh-Plesset equation enables the de-

scription of the first cavitation bubble produced by PLAL when the isentropic case is assumed. In

the case of the full dynamics of the bubbles, including multiple rebounds, the description needs to

be extended using the Gilmore model260.

Figures 2.7(b) and (c) show the pressure and temperature parameters with respect to the nor-

malized time for all the samples. Hydrodynamic quantities are also displayed in figures 2.7(d)-(f)

showing the evolution of We, Re and Ca, respectively. In a general manner, bubbles dynamics are

similar for all energies, and present the same range of values. As described previously, the system

experiences extreme conditions at the early stage of the growth and at the final collapse with hun-

dreds of bar and kelvin, while near-ambient conditions (2 atm and around 300 K) are reached most

of the time of the bubble phase. Close to the maximum height, the temperature observed in the

different conditions only differs from each other by about 150 K, largely smaller than the highest

temperatures reached. Concerning the different forces in competition, inertia dominates the bubble

motion since high values of We and Re allow to neglect the surface tension and the viscous forces.

The capillary numbers, calculated below unity, indicate that the surface tension is slightly higher

than the viscous forces. The fast velocity of the boundaries indicates that the expansion process is

inertially driven.
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Figure 2.6 – Bubble lifetime with respect to the maximum radius of each analyzed bubble. The
solid straight line represents the Rayleigh Collapse Time (RCT). Bar charts display bubble lifetimes
(top-left inset) and volumes (bottom-right inset) according to the ablated material and applied laser
power.

In conclusion, an evident increase of bubbles size and lifetime is related to the augmentation of

laser power used for PLAL experiments. By increasing the energy available in the system, a larger

proportion of solvent can be vaporized, leading to a longer vapor phase. Interestingly, the dynamics

of the bubbles presented with the evolution of the dimensionless numbers and the thermodynamic

parameters are the same for every laser energy since the velocity remains roughly unchanged.

Moreover, we can supposed that the pressure and temperature are found similar since the energy

differences from low to high fluences lead to vaporize the solvent molecules instead of increasing

the thermodynamic conditions in bubbles.

Consequently, the nanoparticles formation could be affected by the duration of their stay in the

cavitation bubble, where the bubble lifetime can be controlled thanks to the laser energy. How-

ever, most of the time the ambient conditions inside the bubble may have a small impact on the

nanoparticles formation. The more likely moments where nanoparticles can be subject to modifica-

tion remain during the extreme condition periods at the collapses, in agreement with the works of

Plech’s group137,144,145,147,263. The collapse of the bubble is characterized by a drastic increase of

the pressure, the density and the temperature, which would lead to a maturation of the produced

particles, at least aggregation and certainly some effects on the crystal structure. Finally, these re-

sults prove as well that bubble dynamics are not affected by the target matter for nanosecond pulse
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2.3 Viscosity influence

Figure 2.7 – (a) Radius evolution of energy dependent bubbles enables to calculate thermodynamic
quantities as the internal (b) pressure and (c) temperature, as well as (d) Weber, (e) Reynolds and
(f) Capillary numbers.

duration. Indeed, the long pulse duration favor the plasma warming and then the vaporization of

the solvent, with a limited effect of the target material. However, further investigations should be

addressed in order to clarify the impact of the ablated material on the bubble size and lifetime,

such as the differences observed between Au_15 and YIG_15, the two target materials ablated at

the same energy.

2.3 Viscosity influence

First chapter gives an overview of different PLAL conditions where laser as well as material pa-

rameters were largely explored. The vapor phase has been extensively studied since the time and

size scales of the bubbles are large enough to be able to easily observe them. However, no systematic

observation of laser-induced bubbles is performed, because the interest remains final nanoparticles.

Consequently, there is a lack of literature investigating cavitation bubbles in versatile targets and

solvents, and especially, in highly viscous liquids. PLAL offers the possibility to produce colloidal

solution in a one-step process, including in oils258,265 or monomers266 at high viscosity. Such sol-

vent is suspected to have a strong effect on bubble dynamics but it is still unknown how viscosity

and surface tension influence shape, lifetime and size of the laser-generated bubble, and how they

influence the nanoparticle growth and distribution inside the bubble. A deeper understanding could

offer new ways to ultimately improve the overall PLAL process, i.e. repeatability and productivity.

In this section, the bubble morphology and its dynamics will be investigated at the light of the

influence of the viscosity. For this purpose, two highly viscous polyalphaolefin (PAO) oils were used

and water served as reference. Experiments were carried out in commercially available Spectrasync
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PAO6 and PAO40 oils supplied by Exxon Mobile. Characteristics of each solvent are summarized

in table 2.1. Note that oil densities ρ are approximately the same than water whereas the surface

tension γ of water is the double of those of PAOs. More importantly, the dynamic viscosities η of

PAO6 and PAO40 are, respectively, 1 and 2 orders of magnitude higher than the water viscosity.

Ablations were performed on gold and YIG targets by the UV laser system with an energy of 7.6

mJ/pulse. Recording parameters and numbers of bubbles images are similar than the Au_OD3 and

YIG_OD3 bubbles presented in the last section.

The bubbles dynamics have been studied by considering geometrical changes of the bubbles shape

and the dynamics revealing different hydrodynamics regimes.

Parameters Water PAO6 PAO40
ρ (kg.m3) 997 830 850
η (Pa.s) 0.001 0.067 0.649
γ (N.m−1) 0.0720 0.0297 0.0315

Table 2.1 – Density, dynamic viscosity (at 293 K) and surface tension parameters of the three sol-
vents.

2.3.1 Geometrical shape

The influence of viscosity on cavitation bubble is clearly visible thanks to the snapshot sequences

collected during the ablation of gold in the three solvents, displayed in figure 2.8(a). The shape is

strongly modified by the two PAOs: the bubble does not present a hemispherical shape anymore,

but it composes of two parts. At the top of the bubble, the cap remains hemispherical. In the solid

target vicinity, the bubble foot forms an interface layer of thickness e. Its shape was considered

conical as a first approximation, even though in the case of PAO40, a curved shape could be more

appropriated. The definition of the geometrical parameters is displayed in section 2.1.2 and in

figure 2.2(a).

By comparing the bubble radius R and the foot size x in figure 2.8(b), two dynamics emerge. In

water, the contact line and radius grow equally, leading to an overlap of the two curves and to the

hemispherical shape of the cap. By increasing the viscosity, the foot is quickly slowed down during

its growth and reaches a maximum length while the cap continues to grow. Hence, the vertical

increase of the bubble drives the interlayer thickness e. At the end of bubble lifetime, its foot and its

height curves intersect before the collapse. The foot is described by an abrupt decrease compared to

the bubble radius. This indicates a sudden flip of the contact angle from low to high angles where

the intersection corresponds to θ = 90◦.
In addition of the shape change, the viscosity tends to decrease the lifetimes and the volumes of

the bubbles. Between water and PAO40, a reduction of about 1.5 of the bubbles lifetimes can

be observed in figure 2.8(c), independently of the ablated material. Similarly, the volumes of the
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bubbles in PAO40 are reduced by about 2.5 and 3.3 times compared to bubbles volumes in water

when Au and YIG are ablated, respectively (Fig. 2.8(d)).

Figure 2.8 – (a) Snapshot sequences of one bubble produced by gold ablation in three solvents. (b)
Bubble (vertical) and foot (horizontal) radii, R and x, are compared for the three solvents as well
as (c) the bubble lifetimes and (d) the maximum volumes for Au and YIG targets ablation.

2.3.2 We, Re and Ca numbers

By increasing the viscosity, the Weber, Reynolds and Capillary numbers drastically change, as

can be seen in figure 2.9. These numbers were calculated at the top of the bubble and at the bubble

foot. As the viscosity is not taken into account in We formula, the same evolution of We occurs for

the three solvents, with high values from 104 at the early stage of the bubble to a minimum of 102

(Fig. 2.9(a)). Only the bubble foot in PAO40 begins to move with We of about 103, since the initial

velocity of the bubble in this oil is slightly lower than for the other liquids. In any case, inertia still

dominates the motion compared to surface tension for the cap and the foot.

On the contrary of We, Re and Ca scale with the viscosity where three regimes are clearly distin-

guishable in figures 2.9(b) and (c), respectively. By comparing viscous forces with inertial forces,

Re shows decreasing values with viscosity. From water to PAO6 and PAO40, Re is reduced by 2 and

3 orders of magnitude, respectively, and reaches the unity for the highest viscous oil. Therefore,

viscosity cannot be neglected anymore when compared with inertia.

This trend is confirmed by the Ca evolution where the values increase with the viscosity. In water,

51



CHAPTER 2 : Dynamics of gas bubbles

Ca is less than unity in the first μs before reaching 10−2 at the maximum bubble size. In PAO6 and

PAO40, the same trend is shifted by 2 and 3 orders of magnitude towards high Ca, respectively. On

the opposite of the water regime, the viscous forces are now the dominant forces over the surface

tension. In addition, figure 2.9(d) displays Ca curves calculated at the top of Au and YIG bubbles

in the three solvents and shows that dynamics are once again independent of the target material.

Therefore, viscosity and inertia are the only forces in competition in order to drive the bubble mo-

tion.

Figure 2.9 – Gold bubble dynamics are evaluated at the top and at the foot by (a) Weber, (b)
Reynolds and (c) Capillary numbers as a function of normalized bubbles lifetime for the three
solvents. (d) Capillary numbers are also compared for bubbles induced in the three solvents on Au
and YIG targets.

2.3.3 Bubble spreading power laws

A way to define the successive regimes is to determine the power law that describes the spread-

ing of a bubble or a drop. Indeed, in the hydrodynamic community, advancing and receding sessile

droplets267,268 or spreading bubbles269,270 follow a power law under the form x(t) = Atn with A a

constant and n the power exponent, which characterizes the spreading regime268,270–272.

For a bubble characterized by a constant volume, inertio-capillary regimes lead to theoretical time

evolution between t1/2 and t1/3 depending on the driving force, i.e. the gravity or the capillary

strength, respectively, which counterbalances the inertia, and if the bubble footprint radius is larger
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or smaller than the capillary length, leading to a flattened or a spherical shape respectively. The

capillary length is defined as a length scaling factor when the gravity and the surface tension force

are in equilibrium: a =
√

γ
ρg . For a droplet characterized by a constant volume, when inertia is

marginal, the balance between the surface tension and the viscous dissipation leading to friction at

small scale is described by the Tanner’s law with t1/10.

In the case of laser-generated bubbles, the bubbles behavior is substantially different during its

early expansion in addition to have a variable volume. The driving force is identified as the bubble

inner pressure PB. In water, we saw that simplified Rayleigh–Plesset equation applies and reflects

the balance between inertia and inner pressure:

ρv2 = ρ
R2

t2
= PB (2.9)

with v the bubble velocity at the boundaries.

According to the isentropic relation 2.4, it leads to the balance:

R =
A
ρ

t
2

3α+2 (2.10)

with A a constant. As the heat capacity ratio α is 1.33 for water and tends to 1 for larger molecules,

we expect a power law coefficient n = 1/3 for water and n = 2/5 for the oils.

By plotting the radius and the foot of the different bubbles with respect to time in logarithm

scale, the growth part are fitted by one or two linear curves where the n exponents are displayed

directly on the graphs (Fig. 2.10). From figure 2.10(a), it appears that the spherical cap is driven

by inertio-capillary regime for every solvent since every calculated n is comprised between 0.3 and

0.4, which is consistent with theoretical exponent n = 1/3.

At the bottom of the bubble, more interesting features appear, as shown in figure 2.10(b). As for

the cap, bubble foot growth in water is described by one linear slope equals to 0.37, corresponding

to the inertio-capillary regime. For the viscous oils, two trends emerge. The first part describes the

inertio-capillary regime where the bubbles grow with n around 0.3-0.4. Then, a second reduced

slope is achieved with n comprised between 0.1 and 0.2. This indicates a change of regime with the

contribution of the viscous forces, as described by Tanner’s law. Close to the surface, friction has to

be included in the resistance forces along with inertia. In the case of PAO6, this transition coincides

with the dynamic separation between the top radius and the foot at around 30 μs, indicated by the

dash line in the inset of figure 2.10(b).

These results are consistent with theoretical predictions but some deviations remain. They can

be explained because these power laws have been developed for systems different in comparison

with ours. For instance, in Tanner’s theory, a droplet wets almost completely its target, leading to
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a spherical cap shape. In addition, power laws have been derived for low capillary numbers Ca �
1, which is only the case for water. To our best knowledge, there is no study available in the lit-

erature describing a droplet or bubble spreading in such high capillary number regime. Moreover,

a constant bubble volume during spreading is typically assumed for the theoretical derivation of n

in literature. For laser-generated bubbles, the volume is not constant and this leads to a deviation

from the theory developed for droplets. However, the measured values are close to the literature

and, in the case of high viscosity, reflect qualitatively the expected trend.

Figure 2.10 – (a) Radius and (b) foot evolutions according to time, plotted in logarithm scale and
(insets) in linear scale. Fitted linear curves display the n exponents, which relate to forces regimes,
summarized in insets.

2.3.4 High capillary numbers dynamics

In viscous oils, two-step regimes observed at the foot differ with the inertio-capillary regime

occurring at the top. This difference cannot be only explained by the liquid viscosity resistance that

bubbles encounter. Combined with the fact that the foot is slowed down compared to the bubble

radius, the solid target has thus an obvious role in bubble dynamics. Blake et al. have proposed a

molecular-kinetic theory (MKT) model273,274 in the case of a droplet spreading on a solid, in air.

The velocity at the contact line Vcl depends essentially on the dynamic θ and equilibrium θ 0 contact

angles, respectively:

Vcl = 2κλ sinh

[
γ

nkBT

(
cosθ − cosθ 0

)]
(2.11)

κ is the exchange rate of molecules at an absorption site on the target surface, λ is the average

distance between absorption sites, n is the number of affected absorption sites per unit area at the

solid-liquid interface and γ represents the surface tension.

They considered that the contact line is driven by the statistical motion of the liquid molecules at
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the triple point and introduced activation energies of molecules adsorption and desorption at the

surface of the solid. This concept deals with the idea that the contact line motion is determined by

local perturbations induced by the triple point flow. With this three-phase zone movement, adsorp-

tion or desorption sites are disturbed from equilibrium and hence, local surface tensions balance is

modified. The out-of-balance surface tension force thus drives the driving force and the dynamic

contact angle θ as a consequence. Therefore, this theory describes the solid/liquid interactions or in

other words, the contact line friction. At the end, the dynamic contact angle depends on the contact

line velocity and on a friction term, and is proportional to the liquid viscosity and the equilibrium

work of adhesion, W 0
a = γ(1+ cosθ 0) with θ 0 the equilibrium contact angle.

Simplest hydrodynamic theories have been developped to describe wetting dynamics. Cox-

Voinov model275,276 gives the dynamic contact angle θ relative to the capillary number Ca at the

contact line, i.e. its velocity:

g(θ) = g(θm)+Caln
(

L
Lm

)
(2.12)

with g(θ) =
1

2

∫ θ

0

( x
sinx

− cosx
)

dx

L and Lm are appropriately chosen macroscopic and microscopic length scales, respectively. The

model assumes that the dynamic contact angle is controlled by the viscous bending applied on the

vapor/liquid interface. The contact line deformation is supposed to form at a mesoscopic scale due

to viscous flow. This intermediate scale deals with a microscopic angle θm, assumed to be equal to

θ 0, in contact with the solid, which differs with the macroscopic dynamic contact angle.

Some theoreticians have combined the hydrodynamic theory with MKT model to take into ac-

count the viscosity η and the contact line friction ζ . The resulting relation leads to the contact line

velocity inversely proportional to the viscosity and to the friction term277:

Vcl =
γ
(
cosθ − cosθ 0

)
ζ + 3η

θ ln
(

L
Lm

) (2.13)

with ζ =
ηνL

λ 3
exp

(
Wa0

nkBT

)

with νL is the molecular flow volume of the liquid. Such a relation implies that the bubble motion

near the target surface is controlled by the viscosity both with the viscous vapor/liquid interaction

and with the solid/liquid friction. At the top of the bubble, only the liquid viscosity resistance may

act on the bubble interface due to the absence of the target. This is what we observe in our experi-

ments since the cap and the foot dynamics of the bubble are not similar in the case of viscous oils.

Friction combined with viscous forces cause the triple point motion quenching, which propagates
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along the contact line until creating an interface layer, while only the liquid viscous resistance limits

the inertial cap growth in a hemispherical shape smaller than in lower viscous liquid. By increasing

the viscosity and consequently friction and viscous resistances, such limitations occur sooner than

in low viscous liquids.

However, all these theoretical models assumed small capillary numbers (Ca � 1), unsuitable to

interpret our results. High viscosities have already been studied, but at low velocities, correspond-

ing to low Ca. A combination of high viscosity and high velocity is necessary to obtain high Ca.

To our knowledge, such high Ca (> 100) have never been reported, highlighting the originality of

these bubble dynamics, which combined extreme speeds in high viscous liquids. However, large Ca

numbers are achieved in the context of high-speed coating, up to 1000 for the coating of optical

fibers278,279.

Despite this lack of unified model, some phenomena, which belong to experiments in normal

conditions, are observed in our systems.

Contact angle hysteresis. Figure 2.11(a) shows absolute velocity of the contact line Vcl as a

function of dynamic contact angles θ of bubbles generated in PAO6 and PAO40. Growth and col-

lapse directions are indicated by black arrows. The rapid growth is characterized by angles below

90◦, except at the early stage of the PAO6 bubble, before reaching a critical angle θ ≈ 50◦ at Vcl = 0.

When bubbles attain their maximum size, velocity remains null while angles start to increase. When

bubbles velocity increases again, angles are already far from their smallest values, to about 65◦, and

increase until values superior to 130◦ at the collapse. This hysteresis reveals that the surface is not

homogeneous and delays the receding movement of bubbles. Interestingly, both liquids have the

same hysteresis of around 15◦. During growth process, bubble transfers its inertial energy into a

liquid pressure until they equal and the contact line freezes. Then, the liquid pushes back the bub-

ble inward in two steps. As the applied pressure is not enough compared to the work of adhesion

of the liquid molecules on the solid, only the part of the contact line far from the solid is first re-

pelled, causing an increase of the contact angle. When the driving force is superior to the adhesion

work, the whole contact line is moved inward, which induces the bubble foot movement and the

enhancement of its velocity. Similar hysteresis behavior was observed for a moving liquid droplet

or a dynamic sessile drop at small Ca numbers268,273,280.

Interlayer thickness. Another similarity with small Ca system exists for the thickness e of the

interface layer, which grows with the whole bubble (see inset of figure 2.11(b)). Here we con-

sider only PAO6 bubble since the round shape of the bubble for PAO40 would lead to an arbitrary

definition of the interface layer parameters, L and e. For low capillary numbers, Ouwerkerk et

al. predicted hemispherical bubbles lying on a microlayer281,282, similar to the interlayer seen in
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PAO6, in the case of bubbles generated on a hot surface in boiling liquids. Dynamics of the mi-

crolayer thickness was modeled by a boundary layer relation, assuming a constant shape of the

bubble: e = Zb
√

νL/Ve. Ve is the velocity of the liquid/vapor interface at the edge of the bubble,

ν is the kinematic viscosity and L is the radius of the rim. By plotting e as a function of quantities

inside the square root (Fig. 2.11(b)), the slope of the regression lines is represented by the dimen-

sionless constant Zb. For ablation on Au and YIG targets, Zb exhibit close values, Zb,Au = 0.9 and

Zb,Y IG = 1.1, indicating a low dependency in the target material, and consistent with the theoretical

value Zb,th = 0.9 calculated by Ouwerkerk et al.

Figure 2.11 – (a) Relation between the absolute contact line velocity and the dynamic contact angle
plotted for PAO6 and PAO40 bubbles. (b) Interface layer thickness of bubbles in PAO6 for Au and
YIG targets as a function of (inset) time and the kinematic viscosity ν , the rim radius L and the front
velocity of the rim Ve included in the square root of the boundary layer equation.

Finally, thermodynamic parameters should be calculated in order to estimate viscosity effect. On

the contrary of ablation in water, the conditions, assumed to establish the simplified RP equation,

are not respected in the case of viscous liquids. Indeed, viscous forces cannot be neglected anymore

and the full RP equation should be thus used. However, bubbles shapes are no more hemispherical

and liquid compressibility and solid friction should be included in a new model. Gilmore equation

considers the compressibility. The Gilmore model is known to describe more accurately than RP

equation the bubbles oscillation and shockwaves prediction283. However, the equation resolution is

more complex and friction is not included. Therefore, a more general model should be developed

in order to predict the thermodynamic parameters of bubbles in any experimental conditions.
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2.4 Conclusion

We reported in this chapter the original dynamics of the laser-generated bubbles recorded ex-

perimentally with an ultrafast camera used in a shadowgraphy set-up. The influence of the laser

energy was first investigated for Au and YIG targets in water. A simplified model of the Rayleigh-

Plesset equation developed previously by our team was used to compute the temperature and the

pressure all along the bubbles lifetime. These thermodynamic paths are found similar to previous

works and appear independent of the laser fluence. In particular, extreme conditions are reached

at the early stage and at the collapse of the bubbles. At low viscosity, the system is also found to be

driven by inertia forces.

Afterwards, an increase of the viscosity leads to a drastic increase of the capillary number. It

appears that there is no model available yet to explain the dynamics of laser-induced cavitation

bubbles during when an extremely high capillary number is achieved (Ca > 100). Increasing the

viscous forces, and hereby Ca up to 100, has a significant impact on the bubble shape and results

in a very pronounced rim. The bubble is separated in a spherical cap driven by inertia and an

interface layer close to the target where the shape differs from a sphere when the contribution of

the viscous forces to the friction drastically increases. Interestingly, our data cannot be interpreted

with simplified hydrodynamic (Cox-Voinov) or molecular-kinetic theory models thus highlighting

the originality of the dynamics reported when extremely high capillary numbers are achieved.

To go further, we would continue to observe the bubbles dynamics by exploring a broader range

of viscosity values. The interest is to relate such dynamics and the bubbles shape induced by the

viscous forces with the nanoparticles morphology. As the nanoparticles suffer from the extreme con-

ditions in the first oscillation, their maturation may be influenced by damped collapses as seen from

bubbles dynamics in the highest viscous solvent. At the end, a control of the nanoparticles could be

considered through the bubbles and the solvent, in addition to the one-step process interest.
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CHAPTER 3 : Stabilized gold colloidal solutions by ionic strength

As seen in the chapter 1, laser or materials parameters can be chosen in order to contribute

to a better control of the final products. However, because of the inherent transient nature of the

ablation processes, a satisfactory control of the final product properties is not always achieved only

using laser parameters as adjustable parameters. A more straight way is the use of adsorbates,

such as molecular ligands or ions, which adsorb to nanoparticles atoms thus allowing to tune the

stability and the morphology of nanoparticles in solution. Usually the effect of these adsorbates is

observed on the final products via the characterization of the nanoparticles, but their mechanisms

of stabilization during the PLAL synthesis are still unclear.

In gold colloids synthesized by PLAL, electrostatic interactions have been found to be the origin

of the stability of such solutions. Gold nanoparticles have been measured with a large negative zeta

potential implying negative charged particles in solution. The colloidal stabilization is classically

explained by the DLVO theory where the affinity of anions for gold nanoparticles surfaces leads to

the formation of an electrostatic double layer. While most of studies consider that the negative

charges are carried by the anions adsorbed at the nanoparticles surface151,192,284, a new assump-

tion appears recently, far to favor the role of ions. Palazzo et al. suppose that an excess of electrons

embedded in the nanoparticles during the plasma stage of the PLAL process is the origin of the

negative charges285.

For this purpose, we aimed to understand the stabilization of gold colloids when ions from salts

are added in the solvent before PLAL synthesis. The two assumptions should lead to different sur-

face chemistry of gold nanoparticles where the charge carrier should be different. We participated

to a collaborative project that aimed to probe the surface chemistry of gold nanoparticles produced

in saline solutions by performing X-rays Photoelectron Spectroscopy (XPS) experiments on a free-

standing beam of PLAL-synthesized nanoparticles. For the needs of the XPS measurements, we

were in charge to provide highly concentrated (> 1 g/L) and stable colloids synthesized by PLAL.

We then mainly focus on the way to produce such highly concentrated colloids.

In this chapter, I will first present the preliminary results we conducted to study the stability of

gold colloids synthesized with different salts. On the one hand, the influence of the salt concentra-

tion on the as-produced solutions stability was investigated. Then, the solutions were concentrated

by evaporating the solvent and their stability was controlled according to the gold concentration.

Finally, the first results of the XPS measurements will be presented showing that the approach con-

sidering that the charge is carried out by the anions is called into questions.
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3.1 Theory and experimental analysis

The stability of gold colloids is supported by electrostatic interactions implying repulsion forces

to avoid aggregation. In the DVLO theory, repulsive forces are described in term of the double layer

formed by ions. I will first present in the following the theoretical features of the basic background

that describes the colloidal stability. Then, the methods used to characterized systematically our

gold colloids synthesized by PLAL will be described.

3.1.1 DLVO theory

The DVLO theory286 (named after Derjaguin, Landau, Verwey and Overbeek) describes the

stability of colloidal solutions. Interactions of nanoparticles in suspension in a liquid media are

modeled by a potential VT composed of the attractive potential Va due to the van der Waals forces

and the repulsive potential Vr due to the double layer formed by ions. For spherical colloids of

radius r, the attractive potential can be approximated by285:

Va ≈−H
6

(
2r2

h2 −4r2
+

2r2

h2
− ln

(
h2

h2 −4r2

))
(3.1)

H refers to the Hamaker constant that relates the interactive van der Waals energy to the distance

of separation between two particles h. In the case of gold colloids in water285, H ≈ 100kBT .

To avoid aggregation, the attractive interactions need to be balanced by repulsive forces, de-

scribed by the double layer (DL) theory (Fig. 3.1). This theory has been developed with the first

work of Hermann von Helmholtz in the XIXth century, until the XXth century with the Gouy-Chapman

model and the works of Otto Stern.

First, the DL theory supports the fact that the nanoparticles surfaces show an affinity for anions in

the solution151. Thus a first monolayer of anions surrounds the gold nanoparticles, called the Stern

layer (region 1 in figure 3.1). By electrostatic attraction, the counter-ions are attracted. The system

forms a capacitor with high concentrated charges. The anions and the cations from the bulk liquid

are then attracted in the vinicity of the nanoparticle, leading to a concentration gradient. Hence,

the ions concentration follows an exponential decay from the surface, csur f , until recovering the

averaged concentration of the solution csol. A Coulomb potential Ψ is induced by the charges, but

the potential is exponentially screened by the medium, over a distance of the Debye length λD thus

forming the diffuse layer (region 2 in figure 3.1).

The combination of the Stern and diffuse layers gave the name of the DL theory. In electrochem-
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istry, λD is related to the ions concentration ci (in ions.m−3) by:

λD =

√
ε0εrkBT
∑i ciq2

i
=

0.3nm√
csol(mol/L)

(3.2)

with the vacuum permittivity ε0 = 8.85.10−12 F.m−1, the relative permittivity of the solvent (water

here) εr = 78.5 , the Boltzmann constant kB = 1.38.10−23 J.K−1, T the room temperature and qi the

ion charge of specie i. For simple electrolyte, the equation simplifies in the right expression in

equation 3.2.

Then, the repulsive potential Vr can be approximated in the case of r/λD � 1 and written as follows:

Vr ≈ εrε0rΨ2
0

h
r +2

exp

(
− h

λD

)
(3.3)

Ψ0 corresponds to the surface potential.

Finally, the total potential VT =Va +Vr relative to thermal energy kBT as a function of the inter-

particle distance h results in an energy barrier represented by the curves calculated by Palazzo et

al.285 and displayed in figure 3.1(b).

Therefore, the nanoparticles stability is directly linked to the Debye length and so the ionic strength,

i.e. the salt concentration for monocharge electrolyte. At the lowest concentration, i.e. ionic

strength of 10−7 M (or mol.L−1) of deionized water due to self-ionization, λD is large and the

Coulomb repulsion between the particles is not screened by the medium. The high repulsive barrier

enables to repel efficiently the particles. By increasing the ionic strength, the Debye length becomes

thinner thus reducing the energy barrier. Then, crossing the barrier leads to aggregation of the

particles and the colloidal stability is no more ensure. For gold nanoparticles of 5 nm with a surface

potential Ψ0 =−60 mV , an ionic strength of around 1 mM has been calculated to equal the thermal

energy285 (Fig. 3.1(b)).

Finally, as the nanoparticles are in solution, they diffuse in all the volume by dragging a certain

layer of liquid with them. The limit of the layer is referred as the slipping plane at which the applied

potential is called the zeta potential. This potential is easily measured but its interpretation in terms

of surface charge of the particle remains tricky since both surface charge and ions inside the slipping

layer contribute to its value.

3.1.2 Methods of characterization

Synthesis were performed using the IR laser system (1 kHz, 500 ps, 1064 nm, 2 mJ/pulse) cou-

pled with the flow cell system. This laser source is preferred for with respect to the UV laser system
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Figure 3.1 – Stabilization of gold nanoparticles in saline solution may be explained by the van der
Waals attractive forces and (a) the repulsive double layer characterized by the combination of the
Stern and diffuse layers. (b) Total interaction potential VT relative to the thermal energy kBT as
a function of interparticles distance calculated in the work of Palazzo et al. (Reprinted from285).
At fixed nanoparticles size and surface potential, the energy barrier depends on the ionic strength
related to the Debye length λD. Calculations have been performed by considering gold and latex
nanoparticles of 5 nm with Ψ0 =−60 mV . Critical concentration of 1 mM reaches the thermal energy
leading to aggregation of particles.

(9 Hz) due to its high repetition rate (1 kHz) ensuring a drastic increase of the production rate. The

ablation has been performed on a gold target (10 × 20 × 5 mm) since the gold colloids can be easily

characterized (large atomic number for HRTEM, large plasmon resonance for absorption). We used

an ultra-pure water (18.2 MΩ) in order to be able to screen ions concentrations from μM to mM.

More details will be brought below, according to experiments. A scanning of the laser beam using

steering mirrors ablates a rectangle of 7 x 17 mm on the target. The ablation scanning was fixed to

allow 5 pulses/point with a distance between two points of 10 μm × 30 μm. The time between two

pulses (1 ms) is shorter than the bubble lifetime. Thus, the successive bubbles do not screen the

laser pulses. The produced particles are removed from the laser spot thanks to the combination of

the liquid flow and the movement of the laser spot. The liquid flow is set at 5.85 mL/min. The final

gold concentration was estimated at 0.14 ± 0.02 g/L for every solution synthesized in this work,

thus revealing that additive ions do not affect significantly the production rate in the range of the

screened concentrations.

Each colloidal solution was then systematically characterized by at least three methods of char-

acterization that inform about different physical quantities: the concentration of the smallest nanopar-

ticles, the size distribution and the zeta potential. These measurements were done within the hour
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following the synthesis except for the zeta potential, which was measured at the end of the day.

Absorption spectroscopy. Absorbance is an easy way to characterize routinely the stability

and the concentration of gold nanoparticles colloidal solutions. The absorption spectrum of gold

nanoparticles below 20 nm presents a plasmonic resonance peak at about 525 nm (Fig. 3.2(a)),

which shifts toward the higher wavelengths with the increasing nanoparticles size. Moreover, the

peak intensity is related to the small gold nanoparticles concentration by the Beer-Lambert law.

It can be shown that the absorbance at the resonance wavelength is proportional to the smallest

nanoparticles concentration since the extinction coefficient remains proportional to the particles

diameter below 20 nm (see Appendix A.1). The concentration c for the small nanoparticles will be

thus calculated following the relation: c[g.L−1] = 0.0442 A(525) with A(525) the absorbance at 525

nm.

Moreover, the absorption spectrum allows also to quantify the colloidal stability thanks to an em-

pirical parameter introduced by the Barcikowski’s group192,284. The Primary Particle Index (PPI) is

defined as the ratio between the absorbances at 380 nm and 800 nm, as displayed in figure 3.2(a).

The numerator refers to the interband from all particles, i.e. whatever their sizes, and then gives an

information about the total amount of matter. The denominator (absorption at 800 nm) increases

with the increase of the individual particles sizes as well as with the amount of aggregates particles

(plasmon coupling). As a result, the higher the PPI is, the more stable is the colloidal solution.

Figure 3.2 – Our synthesis were systematically characterized by measuring the (a) absorption spec-
trum (in optical density (OD)) to deduce the small nanoparticles concentration and the Primary
Particles Index (PPI), and the (b) relative weight distribution measured with the disc centrifuge
system. The gold colloidal solution synthesized using 400 μM of NaBr in water is presented as an
example.

Size distribution. The nanoparticles size distribution can be determined by two methods.

Transmission Electron Microscopy (TEM) allows to record direct images of nanoparticles. For this
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purpose, a droplet of the as-produced colloidal solution is poured onto a 400-mesh copper grid cov-

ered with ultrathin carbon on carbon holey support film (from Ted Pella, inc.). TEM analysis were

carried out on a JEOL 2100HT microscope operating at 200 kV. Images are acquired using a Gatan

Orius 200 camera at different magnifications. The resulting pictures are treated either manually

using the ImageJ software, or automatically with the Particle Sizer plugin of ImageJ software (Fig.

3.3(a)).

The centrifugal sedimentation particle size analyzer, developed by CPS Instruments, is a routine

method with respect to TEM. The principle is based on the differential sedimentation of the par-

ticles in a sucrose density gradient using a disc centrifuge system DC24000 (see Appendix A.2).

A calibration is performed before each measurement using a calibration standard of 263 nm PVC

spheres dispersed in water (from CPS instruments). 100 μL of the colloidal solution is injected in

the disc centrifuge system for each measurement. Sizes down to 5 nm can be detected.

As shown in figure 3.3(d), CPS and TEM methods are consistent with median sizes and standard

deviations equal to 6.8 ± 3.5 nm and 6.9 ± 4.2 nm, respectively. In the following, the CPS analyzer

was used systematically to deduce the size distribution, while the TEM was used occasionally since

this method is time consuming. In our study, the relative weight distribution is plotted as a function

of the diameters in a logarithm scale for a better legibility over a wide size range (Fig. 3.2(b)).

However, for diameters displayed in log scale, the contribution of a size range to the total weight

corresponds to the area under the curve (visually relevant) only if the y-axis displays the weight

distribution times the diameter of the particles (see Appendix A.2). The median size and standard

deviation of the relative weight distribution are calculated and only the predominant peak was con-

sidered in the case of bimodal distribution (Fig. 3.2(b)).

Figure 3.3 – (a) Representative TEM images used to (b) automatically detect the gold nanoparticles
using the ImageJ software and (c) to deduce the frequency of the particle diameters (1847 particles,
median size 6.9 nm, standard deviation 4.2 nm). The distribution is fitted assuming a log-normal
distribution (black curve, adjusted R2=0.99, median size 6.8 nm, standard deviation 3.5 nm). This
fit is used to calculate (d) the relative volume distribution times the particle diameter (green curve),
which is consistent with that deduced using the CPS system (red curve).
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Zeta potential. As described above, the zeta (ζ ) potential informs about the global ionic charge

surrounding the nanoparticles, i.e. inside the slipping plane. The measurements are carried out

using a Zetasizer apparatus from Malvern. An electrophoresis cell of volume of 750 μL is filled with

the colloidal solution and an electric field is applied thanks to two electrodes. Consequently, the

charged nanoparticles move toward the cathode or the anode according to their charge. Finally, the

zeta potential is measured by varying the field strength and by measuring the particles velocity (see

Appendix A.3). Indeed, the ions velocity depends on the field strength, which is regulated exper-

imentally, the known values of the dielectric constant and the viscosity of the liquid, and the zeta

potential. The Hückel model is more appropriate for PLAL-synthesized nanoparticles. It favors the

small nanoparticles by considering that their radius is small compared to the Debye length287(see

Appendix A.3). A distribution of zeta potentials (in mV) is thus obtained and the median value

combined with the standard deviation are determined. The sign of the zeta potential indicates the

global charge sign of the nanoparticles. Therefore, lower is the zeta potential absolute value, the

worst is the colloidal stability. In practice, values below |30| mV refer to unstable solution for

which particles aggregate.

3.2 Colloidal stability using ionic salts

The stability of the PLAL-synthesized gold colloids has been extensively studied as a function

of the salts concentration60,177,180,192,284,288, but not so much as a function of the nanoparticles

concentration. We report in the following the results obtained from synthesis of gold nanoparticles

solutions by (i) varying the concentration of different salts, (ii) by investigating the aging of these

solutions, and (iii) by increasing the gold concentration.

3.2.1 Salt concentration effect

The aim of this first part is to investigate the colloidal stability of gold solutions prepared with

four different salts at several concentrations. Such work has been performed previously by Merk

et al.192 also on laser-generated gold nanoparticles in water with seven different salts, but no sys-

tematic evaluation of the size distribution was reported. They showed that the efficient ions have a

chaotropic nature, defined as weakly solvated ions, on the opposite of the kosmotropic ions, which

are strongly hydrated by solvent molecules. Consequently, we have selected three chaotropic salts,

NaBr, NaCl and NaI, as well as the NaOH base in order to tune the pH. Concentrations from 50 to

500 μM were tested separetly for each salt. The salt powder was dissolved in the deionized water

before each ablation synthesis.

Figures 3.4(a-c) show the effect of the salinity on the relative weight distributions of the col-

loidal solutions. The synthesis in pure deionized water leads to the formation of aggregates or

larger particles, which is reflected by the broad band of the 0 μM curve defined by a median value

of 34.7 nm and a standard deviation of 44 nm. In general, the addition of salt results in a shift
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and a sharpening of the relative weight distribution toward the smaller sizes when increasing the

concentration. A second size population also exists above 100 nm. A bimodal size distribution is

currently reported for laser-generated nanoparticles in liquids51,148–150. The salt concentration does

not appear to drastically modify the secondary particles population, which can let us to consider

only the primary particles peak.

Figure 3.4 – Relative weight distribution as a function of the gold nanoparticles diameters measured
for solution synthesized in pure deionized water (0 μM) and with four salts at different concentra-
tions.

The median sizes of the primary particles mass peak are thus reported in figure 3.5(a) as a

function of the concentration of the added NaBr, NaCl and NaI salts. The addition of salts seems

to have the same effect, where the increase of the concentration stabilizes the nanoparticles size

about 12 nm and reduces their dispersion. By increasing the pH, a concentration range of NaOH

is widely explored resulting in a size stabilization of the particles until a threshold observed at pH

12 beyond which the sedimentation of the solution starts, as can be seen in the inset of figure 3.4(a).

The same trend is observed when we calculate the PPI, displayed in figure 3.5(c). The PPI slowly

increases with the salts concentration, up by 2 for the chaotropic anions. The NaCl solution seems

to be slightly less stable than its counterparts, which reflects the formation of secondary nanoparti-

cles more abundant than in the other synthesis. Indeed, while the largest particles are around 200
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nm in size in the case of NaBr and NaI solutions (Fig. 3.4(a) and (c)), the NaCl solution is charac-

terized by a larger polydispersity with the presence of two mixed bands centered around 45 nm and

100 nm (Fig. 3.4(b)). In addition, these populations seem to increase with the salt concentration

indicating a less stable solution than the other synthesis.

The zeta potentials measurements of these solutions support also this tendency, showing higher

negative values with the increasing concentration (Fig. 3.5(b)). It confirms that the enhancement

of negative charges around the particles enables to repel them from each other more efficiently.

However, such as the weak PPI evolution, the zeta potentials vary slowly from -45 mV until values

around -50 and -55 mV.

In the case of the NaOH solution, the PPI shows a trend different from that of the relative weight

distribution (inset of figure 3.5(c)). From 10 μM to 1000 μM, the solution stability is consistent

with the other saline solutions with a PPI of about 6 at 100 μM. A maximum of 7.5 is reached at

pH 11, before it drastically drops to almost 2 at pH 12. The zeta potential is characterized by a

drastic change at pH 12, concomitantly with a drastic increase of the size distribution observed in

CPS measurements. The zeta potential displays a minimum of -80 mV before the charge collapses

below -40 mV at pH 13 (purple dots in inset of figure 3.5(c)).

When we look at the whole relative weight distribution of the pH 12 (Fig. 3.4(d)), the two bands

of the primary and secondary populations are sharper than the lower concentrations curves. It can

indicate that nanoparticles may agglomerate or aggregate, or grow by Oswald ripening. Our mea-

surements by CPS are not able to distinguish the two cases. The smallest sizes peak is then sharper

due to the increase of particles size ranging between 20 and 50 nm. The secondary nanoparticles

ranging between 50 and 300 nm also grow or aggregate until sub-microscopic sizes larger than 300

nm. At pH 13, the total aggregation results in the increase of the smallest sizes to largest diameters

around 100 nm. This suggests that the secondary particles population peak was also shifted toward

highest values. Unfortunately, at the time the work has been conducted, we did not have the proper

equipment to probe the larger size scale.

This work shows that the salt has an effect on the stability of the gold colloidal solutions. In the

studied concentration range, the higher is the concentration, the more stable is the solution, until

a critical value is reached such as in the case of pH solutions. Therefore, more synthesis should be

performed in the mM range to evaluate the critical concentration. For instance, the sedimentation of

solutions synthesized with NaCl and KCl salts occurs above 10 mM in the work of Sylvestre et al.151.

Until now, the gold colloidal solutions were characterized directly after being synthesized. How-

ever, we were also interested to evaluate their stability over time. Such requirement is necessary to

be able to produce large volumes, which can be reused within a long period of time, or even for a

commercial purpose.
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Figure 3.5 – The effect of the four salts on the gold colloidal solutions is evaluated according to their
concentrations with the use of: (a) the median size and their standard deviation from the primary
particles population peaks measured by CPS, (b) the zeta potential and (c) the PPI deduced from
the absorption measurement. Insets refer to the NaOH solutions evaluation where the pH is linked
to the concentration values.

Hence, some synthesized solutions were monitored over time. NaBr, NaCl and NaI solutions pre-

pared with salt concentration of 50, 200 and 500 μM have been investigated, as well as the NaOH

solutions at pH 9, 11 and 12. Figures 3.6(a)-(c) give insights about the stability of these solutions

over a period of a few weeks.

From a general point of view, the solutions remain stable for at least one month, being composed

of abundant primary particles of sizes comprised between 10 and 15 nm (Fig. 3.6(a)). Only the

NaI solutions and the NaOH solution at pH 12 are destabilized immediately after the synthesis, con-

firmed by the PPI drops (Fig. 3.6(c)). For instance, the NaI solutions see their PPI values, starting

from about 6, decreased below 3, or 2 for the highest concentrated solution. Visually, the red color

of the colloidal solutions turned to darkest colors within a few hours after the synthesis. After one

month, the smallest nanoparticles population seems to stabilize around 60 nm. Moreover, the zeta

potential decreases slowly between -48 and -31 mV after two weeks (Fig. 3.6(b)). Finally, the NaBr

salt allows a better stabilization of the gold colloidal solutions in the same period range. Even if we

did not perform systematic characterization after one month, the color of the synthesized solutions

is still currently (produced in mars 2018) red with a very small material sedimentation.

Recently, several studies deal with the stabilization of gold colloids using anions151,192,284. But

they only explored the impact of different salts and their concentration while, to our best knowl-

edge, no work has been done on the increase of both gold and salt concentrations. Therefore, we
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Figure 3.6 – Gold solutions synthesized in the four salts are evaluated for three initial concentrations
over time. (a) Median sizes of the primary particles peak, (b) the zeta potentials and (c) the PPI are
thus considered.

achieved such experiments by evaporating the solvent of several gold colloidal synthesis prepared

in different saline solutions.

3.2.2 Solution concentration effect

For this series of experiments, a larger volume of gold solution is necessary in order to easily

concentrate it and to perform the characterization analysis. Therefore, the synthesis were done in

the same conditions than previously, except that the ablation lasted approximately 1h30 to obtain a

volume of around 500 mL. Solutions have been tested for two concentrations, namely 50 and 300

μM for NaBr and NaCl salts, and at pH 9 (10 μM) and 11 (1000 μM) for the NaOH salt. Synthesis

with NaI was not attempted since its stability over time was not guarantee.

Then the evaporation step was achieved by partly removing the solvent with a rotary evaporator.

The whole solution is placed in a round-bottom flask, which is rotated in a bath heated at 60◦C. A

partial vacuum of 120 mbar is applied, leading to the slow evaporation of water. The vapor con-

densates outside the flask in a column cooled at 10◦C and is collected in an external container. The

extracted solvent conductivity was measured in order to check that no salt was removed. To fol-

low the evolution of the solution stability, the same characterization measurements than presented

above were carried out every time the volume of the solution was approximately divided by two.

Finally, each solution was concentrated beyond 1 g/L, unless the solution was visually destabilized,
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passing from the characteristic red color to purple. Only the NaOH solutions did not reach concen-

tration superior to 1 g/L.

Just after the synthesis, the solution was composed of the solvent, a known concentration of salt

and the ablated gold nanoparticles. The concentration of gold was measured thanks to the mass

loss of the target and the final volume. Consequently, by removing the solvent, both the salt and

the particles were concentrated in a restrained volume. Figure 3.7 summarizes the evolution of the

zeta potentials and the PPI with the increasing concentration of gold nanoparticles and salts. Please

note that the initial concentration of all the solutions was around 0.14 g/L, as seen above.

First, the general trend, which stands out, is the lowering of the zeta potential (Fig. 3.7(a) and

(b)) when the solvent is removed. All the NaCl and NaBr solutions have reduced zeta potential

values below -40 mV for concentrations above 1 g/L. The zeta potential of the NaOH solution also

decreases as the volume decreases. These trends are consistent with those of the PPI (Fig. 3.7(c)),

except in the case of NaOH and NaBr solutions initially concentrated at 10 and 300 μM, respec-

tively. Indeed, their PPI remain constant all along the evaporation steps while their zeta potentials

slowly decrease. However, the NaOH solution at pH 9 shows already a weak stability with a PPI of

around 4.

The PPI displayed in figure 3.7(c) reveals that the solutions stability can be improved according to

its concentration, since some maxima are visible. This is more clear in figure 3.7(d) where PPI are

plotted as a function of the salt concentration. PPI maxima at around 200, 300 and 800 μM are

respectively observed for the NaBr solution at 50 μM and NaCl solutions at 50 and 300 μM, before

they drastically decrease. Finally, the stability of the NaOH solution at pH 9 can be understood since

the salt concentration is kept low, even though its zeta potential values drop from -50 to below -30

mV (Fig. 3.7(b)). Moreover, the most surprising result remains the stability of the NaBr solution at

300 μM over a large range of concentration, reaching almost 10 mM, while its counterpart at 50

μM becomes unstable since 300 μM. It means that the salt concentration is not the only parameter

defining the colloidal stability, i.e. one has to consider the particle concentration and then the aver-

age distance between the particles. At the end, almost all the solutions saw their salt concentrations

increased to an order of magnitude, except for the NaOH solutions.

Except for the NaOH solution at pH 9, relative weight distributions displayed in figures 3.8(a)-

(c) and their respective insets present the same evolution between each saline solution when in-

creasing their concentration. A scheme of this trend is proposed in figure 3.8(d) where rectangles

colors and heights represent the three nanoparticles populations defined in section 3.2.1:

1. Below 0.40 g/L, the same bimodal distribution profile with two large peaks describes the pri-

mary (red rectangle) and the secondary (purple rectangle) nanoparticles populations. Only

the NaCl solutions show a peak at smallest sizes, which tends to separate in two sizes cate-

gories around 6.5 and above 10 nm (Fig. 3.8(b)).
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Figure 3.7 – Gold colloids synthesized in NaBr, NaCl and NaOH at two starting concentrations are
characterized by the zeta potential and the PPI measurements as a function of the gold concentra-
tion, respectively (a) and (c), and the salt concentration, respectively (b) and (d).

2. Between 0.40 and 0.70 g/L, nanoparticles from 20 nm start to aggregate or grow thus shifting

all the diameters toward larger sizes. As the peak of the secondary particles population above

100 nm appears reduced despite the aggregation of medium size nanoparticles, we could

suspect that they grow or aggregate beyond the CPS measurements window by forming sub-

microspheres or large aggregates (yellow rectangle). Consequently, as the smallest particles

remain stable, the peaks of their relative weight distribution undergo a sharpening that causes

the shift of the median size below 10 nm.

3. Beyond a critical concentration depending on the salt, all the smallest nanoparticles grow or

aggregate at the same time, resulting on the shift of the sharp peak toward the largest sizes. At

the same time, the large nanoparticles continue to grow and create more sub-microparticles.

Moreover, the results observed in the relative weight distributions seem consistent with the PPI

and zeta potentials measurements. Indeed, the decrease in PPI coincides with the third step of

destabilization mechanism when the primary particles peak shifts toward largest sizes. The NaBr

solution at 50 μM becomes unstable between 0.63 and 0.83 g/L, and between 0.48 and 0.69 g/L in

the case of NaOH at pH 11. The aggregation appears to start above 1 g/L in NaCl solutions. Only

the PPI of the NaBr solution starting at 300 μM do not seem consistent in comparison to the relative

weight distributions.

Finally, the decrease of the zeta potentials supports the decrease of the Coulomb repulsion and then

a decrease of the stability (step 2 in figure 3.8(d)).

Relative weight distributions should be considered cautiously, since we have no information on

the particles/aggregates larger than 300 nm. A larger window of observation should be necessary in
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Figure 3.8 – Relative weight distributions of solutions for which their concentrations increase. We
started from low salt concentrations for (a) NaBr, (b) NaCl, and (c) NaOH solutions, and higher
starting salt concentrations, displayed in the respective insets. (d) Scheme of the three-step mech-
anism of colloidal solution destabilization.

order to confirm these assumptions. However, even if the PPI parameter is a qualitative parameter,

the micronic particles contribute to its drop. Therefore, when the PPI value drop drastically as in

the case of the NaBr solution starting at 50 μM, passing from 8 to almost 2, the amount of large

nanoparticles can be considered to be important compared to the total material quantity.

In this study, the interesting observation is that the destabilization behavior seems to be similar

starting either at low or at higher salt concentration. For instance, no significant differences are

observable for NaBr and NaCl solutions, as can be seen between figures 3.8(a) and (b) and their

respective insets. Hence, the destabilization appears to be independent of the initial salt concen-

tration. When the solution volume is reduced, the mean distance between each nanoparticle is

thus decreased, as well as the Debye length due to the salt concentration enhancement. Therefore,

when particles are pushed to close from each other, whatever the Debye length and the charges of

the particles, they have no choice than aggregate.

However, we aimed to study the mechanisms of stabilization of gold colloids from anions adsorbed
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at the nanoparticles surface. In our analysis experiments, only the overall charge felt at the slip-

ping plane are measured through the zeta potential, which differs from the charge state at the gold

nanoparticles surface. A possible way to get information about the surface chemistry is then to

perform X-rays Photoelectron Spectroscopy (XPS) measurements.

3.3 Surface chemistry of gold nanoparticles

3.3.1 PLEIADES beamline

Few groups carried out XPS experiments on PLAL gold nanoparticles to deduce the surface

charge state, but numerous contradictions in the results make unclear their net charge. The differ-

ent assumptions found in the literature are summarized in figure 3.9.

1. Sylvestre et al. have observed XPS signals of oxidized gold atoms located at the surface of

laser-induced nanoparticles in deionized water151. Au(+1) and Au(+3) oxide states were es-

timated to correspond to a total percentage of around 11 %, in agreement with coverage

rates found by Merk et al. for particles generated in saline solutions192. The presence of oxi-

dized Au on the surface of the laser-generated Au nanoparticles in deionized water is usually

interpreted in terms of surface oxide. But such a large amount of surface oxide for gold is sur-

prising. Mechanisms of surface charge generation were proposed when increasing the pH or

adding ions151,284. In the first case, surface charge is tuned by the protonation/deprotonation

of hydroxide groups, already formed during PLAL synthesis.

2. The adsorption mechanism of the anions, which would lead to an increase of the surface

charge, is usually assumed to be involved by surface oxides Au2O. The charge is then local-

ized on the oxygen atoms. A second mechanism considers the adsorption of anions on the

gold surface. The anions either lose their charge by transferring to the nanoparticle or they

keep their charge. In order to assess the relevancy of such mechanisms, one would precisely

quantify the amount of surface oxides or anions available on the particles. XPS measurements

performed on free and dry nanoparticles, without subtract or solvent effect, is then highly

relevant

3. On the opposite, some studies did not observe XPS signals of oxidized Au atoms177. In this

sense, a third and totally different hypothesis has been considered by Palazzo et al.. They

assume that the negative charge is already carried by an excess of electrons trapped in the

gold nanoparticles285. Indeed, the electron density generated during the plasma phase at the

early stage of the ablation process could remain embedded in the gold matrix thus limiting

the ions effect to a minor role.
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Figure 3.9 – Mechanisms of charge generation where the nanoparticle charge can be carried by
oxygens due to (1) a pH tuning or because of (2) halogens adsorption. (3) Trapped electrons at
high density in the nanoparticle are also envisaged.

Consequently, it becomes necessary to clarify the origin of the gold nanoparticles charge by

determining surface chemistry and the origin of the "net" surface charge. For this purpose, we con-

tributed to an international collaboration, led by Dr. Anna Levy from the NanoSciences Institute

of Paris, which aimed to investigate the surface chemistry of gold nanoparticles. XPS studies on

gold nanoparticles were usually performed on particles dropped on a substrate, which is known to

have an influence on the surface properties. We thus aimed to probe gold nanoparticles surface in

free standing conditions at the PLEIADES beamline of the SOLEIL synchrotron facility. Experiments

were performed during one week, in December 2017.

This synchrotron line was designed to study by photoelectron spectroscopy isolated species from

molecules to nanoparticles289 (Fig. 3.10(a)). In order to produce a free-standing beam of gold

nanoparticles, the colloidal solution is first placed in an atomizer. Nanoparticles are thus extracted

from the solution and the residual solvent is removed from the formed aerosol thanks to a silica gel

dryer. The nanoparticles beam passes through an aerodynamic lens system in a carrier gas of He or

Ar. Through successive apertures of decreasing diameters, the aerodynamic lens allows to produce

a rather collimated beam of particles ranging from 20 to 150 nm. Then, the central part of the beam

is selected with a 3-mm diameter skimmer when entering in the vacuum chamber (< 10−5 mbar)

and before being hit by the X-UV synchrotron radiation beam. Photon energies hν at 210, 525 and

650 eV were successively selected using a monochromator and enable to eject core level electrons

from atoms located at different distances from the surface (see below for details) and at 100 eV for

the valence electrons. The removed electrons are captured in a hemispherical photoelectron energy

analyzer. The measured quantity is thus the kinetic energy KE of the arriving electrons, which

varies as a function of the atoms nature, the type of the electronic levels (valence or core electrons),

their environment (chemistry), and the spin-orbit splitting. Finally, the interesting quantity remains

the binding energy relative to the vacuum level BEv, deduced by subtracting the kinetic energy KE

to the X-rays photon energy hν: BEv = hν −KE. BEv is also related to the binding energy relative to
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the Fermi level BEF by the work function φ : BEv = BEF +φ .

In our experiments, a photon energy of 210, 525 and 650 eV was successively used to probe vari-

able surface thickness. Indeed, an ejected electron from an atom located in the nanoparticles may

interact with the crystal before reaching the vacuum level. The Inelastic Mean Free Path (IMFP) λ
reflects the distance for which the electron can travel before starting to scatter inelastically, namely

losing its energy. A quasi-universal curve gives the general trend of the IMFP as a function of the

kinetic energy of the electrons (Fig. 3.10(b))290. This curve is marked by a minimum ranging from

50 to 100 eV where the kinetic energy of the electrons in the 4f level of the Au atoms lies when a

X-ray energy of 210 eV is selected. The corresponding IMFP is 0.44 nm for an x-ray photon energy

of 210 eV. By increasing the photon energy, a longer IMFP can thus be reached, i.e. 0.75 and 0.89

nm at 525 and 650 eV, respectively. The maximum thickness for which electrons contribute to 95

% of the XPS signal is then considered as being 3 × IMFP. Consequently, a surface thickness from

1.3 to 2.67 nm was probed by tuning the photon energy.

Figure 3.10 – Surface charge state of gold nanoparticles is probed in free-standing conditions using
the (a) PLEIADES beamline set-up. (b) The IMFP, which allow to know the probed surface thickness,
were determined thanks to the quasi-universal curve according to the kinetic energy. Data come
from reference290.

In this collaboration, we were in charge to provide colloidal solutions of gold nanoparticles sta-

bilized by salts and synthesized by PLAL since bare particles are necessary for such surface-sensitive

diagnostic. We had to produced colloidal solution with a minimum concentration of 1 g/L. The

solution has to remain stable without ligands since a thick layer of carbon would quench the XPS

signal. These major constrains led to the work introduced in the previous sections.

Ablations were thus performed in saline solution in the same conditions than previously, but on a

longer time (from a few hours to a few days). Then, the solvent was evaporated using a rotary

evaporator to reach the desired solution concentrations. Finally, three volumes of 136 and 148 mL
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with gold concentration superior to 1 g/L have been obtained using NaBr and NaOH salts, respec-

tively. The salt concentrations before ablation were fixed at 50 μM for the former synthesis and at

pH 10 for the latter. The gold concentrations were determined from mass loss of the target, taking

thus into account all sizes particles. Samples information are summarized in table 3.1. Absorption

and size distribution analysis were also performed to control the solution quality.

NaOH NaBr
Synthesized Concentrated Synthesized Concentrated

csalt (μM) 100 700 50 2420
cAu (g/L) 0.17 1.18 0.14 6.77

Volume (L) 1.034 0.148 6.55 0.136
Diameter (nm) 17.0 ± 6.1 - 12.7 ± 9.5 14.3 ± 9.5

Table 3.1 – Characteristics of solutions synthesized by PLAL, concentrated by solvent evaporation
and analyzed in XPS measurements.

The two solutions were used during the week of XPS measurements and the stability of the

samples was punctually checked by absorption. The colloidal stability was also controlled after the

last run and a few months later. The nanoparticles concentration was found from resonance peak

of the absorption spectra, differing from the total gold concentration measured by the target mass

loss. Figure 3.11 displays the smallest nanoparticles concentration and the PPI evolution of the

three samples analyzed after the PLAL synthesis, after the evaporation step, after the last XPS run

and five months later.

Before the synchrotron experiments, the stability of the as-produced solutions was preserved dur-

ing the concentration process, regarding the small modification of their PPI. It should be noted that

the NaOH solution was less stable here with a PPI between 2.5 and 3.5 than in our previous study

described in section 3.2.1. The large particles portion could have come from the small nanoparti-

cles instability during the synthesis. Regarding the NaBr solution, the nanoparticles concentration

reached around 2 g/L with a high stability corresponding to a PPI of around 7. As the absorption

spectra give the concentration of small nanoparticles and that the PLEIADES set-up uses nanopar-

ticles up to 100 nm, the total concentration of gold prevails. From a synthesis point of view, these

samples fulfilled the conditions required for the XPS measurements.

During the runs on the PLEIADES beamline, the whole solution was injected in the atomizer and

drier system and the solvent was removed. Consequently, the gold particles concentrations in-

creased during the XPS measurements (not shown here). In the case of the NaBr solution, the PPI

and small nanoparticles concentration dropped drastically at the end of the analysis, which means

that the solution was no more stable. In the case of NaOH solution, the small particles concentration

increased during the whole experiment, even if its stability started to decrease. Few months later,

its PPI and its small particles concentration felt to almost 1 and 0.25 g/L, respectively.
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Figure 3.11 – The two synthesized solutions have been analyzed by absorption before and after
the XPS experiments. The nanoparticles concentration from the absorption resonance peak (black
curves) and the PPI (red curves) were thus deduced.

3.3.2 XPS results

For each solution, the 4f and 3d electrons core levels of Au and Br atoms and valence bands

of the systems were respectively probed by accumulating data from several sweeps. Typically dou-

blet peaks are found in electrons core levels spectra corresponding to the spin-orbit splitting of the

electron orbital observed. Then, the experimental data have been treated by a Bayesian statistics

process, described elsewhere291, where the peaks are fitted by Voigt functions. Two models were

thus compared in order to deduce the presence of oxidized Au atoms at the nanoparticles surface.

In one hand, only the contribution from neutral atoms Au(0) was taken into account in each doublet

peak. On the other hand, the contributions from oxidized surface Au(+1) and Au(+3) atoms were

added in the second model. At the end, the calculated Bayesian evidence gives the relative proba-

bility that supports one model over the other.

The common element in the three solutions is the gold atoms for which the Au4f electrons have

been probed (Fig. 3.12(a)). One doublet of binding energy peaks relative to the vacuum level

has been reported, corresponding to the non-oxidized Au4f7/2 and Au4f5/2 spin-orbit splitting. No

peaks of oxidized Au atoms have been evidenced in any solutions. This confirms results from previ-

ous XPS measurements performed on gold nanoparticles solutions made by the same collaboration

two years before in the PLEIADES beamline181 for PLAL-synthesized gold nanoparticles in acetone.

The Bayesian evidence concludes that the gold oxide presence can neither be confirmed nor ex-

clude. So even if some oxide groups were effectively present, a coverage of less than 2 % could

exist, which is insufficient to attribute the negative charge to oxidation.

A relative shift of 0.16 eV is also visible between the Au4f doublet of the NaOH and the NaBr solu-

tions, measured respectively at (88.64 eV, 92.29 eV) for the NaOH solution and at (88.80 eV, 92.46
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eV) for the NaBr solution. This small shift could be attributed to adsorbate/substrate interactions,

i.e. halogen/gold, investigated in electrochemistry studies292. The binding energy of the substrate

(gold here) is expected to be slightly shifted due to the halogen adsorption because of two compet-

ing phenomena. The polarization of the substrate opposes to the adsorbate electric field and the

charge transfer to the substrate, and consequently, these effects partially cancel each other.

Figure 3.12 – (a) Au4f core level peaks relative to the vacuum level for both samples recorded
with a 210 eV photon energy. The peaks have been fitted with Voight functions within a Bayesian
treatment. (b) The total signal of Br3d core level peaks relative to vacuum level is composed of two
Br signals coming from adsorbed Br at the surface of gold nanoparticles and two other peaks from
crystallized NaBr salt. The salt crystallized during the drying procedure on the PLEIADES beamline.
The signal was collected independently by using NaBr solution free of gold nanoparticles.

The inner electrons of the Br3d orbitals were also tracked both in gold colloidal solutions and

in saline solutions without nanoparticles. The salt concentration was adjusted in the second case

to reproduced that of the first one. When passing in the dryer, the solvent evaporates leaving the

dissolved ions aggregated and crystallized in salt nanoparticles.

In figure 3.12(b), the Br signal originating from the gold solution is the highest and the most

broaden peak, which dissimulates two close peaks attributed to the Br3d5/2 and Br3d3/2 spin-orbit

splitting. The pure nanocrystals of salt correspond to two smaller peaks shifted but included in the

total signal. After a fitting treatment and a signal differentiation, we deduced that the total peak

is composed of the summation of the Br contributions from the salt nanoparticles and from the Br

ions attached to the gold nanoparticles, called "AuBr". This is the first evidence of the bonding of Br

adsorbates on gold nanoparticles surface.

Moreover, the halogen signal seems to depend strongly on their environment. This is shown in

figure 3.12(b) by a shift of 0.63 eV between the two signals. Similarly to the slight substrate shift,

adsorbate binding energy suffers also from the influence of its environment. Previously, the two

physical phenomena compete. This time, it was shown that the two effects become additive292,

meaning that the adsorbate binding energies are highly modified depending on the atoms where Br

anions adsorb.
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The partial coverage of Br ions was also calculated according to the following relation:

Br/Au =
Anorm

Br
Anorm

Au
=

ABr

σBr
× σAu

AAu
(3.4)

Ai corresponds to the XPS peak area of the atom of specie i, already normalized by the respective

accumulation time and σi is the surface cross-section of the electrons core level of the probed atoms.

Typically, cross-sections at 210 eV are equal to 2.76 and 5.31 Mbarn for Au4f and Br3d core levels,

respectively. Finally, the coverage rate for Br/Au was comprised between 42 and 51 % by increasing

the photon energy. That means that halogen anions are still present when probing deeper into the

nanoparticles surface.

Finally, the signal of the valence electrons of gold atoms was measured for every solution to

deduce the work functions φ (Fig. 3.13). The work function is defined as the energy difference

between the vacuum level and the last occupied electron level. Therefore, by removing the valence

electrons with the X-rays beam, the apparition of the signal indicates the beginning of the electron

density of states. As noted on the graph, the work functions determined from these measurements

show the following order: φ(NaOH) = 4.2 eV > φ(NaBr) = 2.9 eV .

However, information are difficult to extract from work functions without reference values. Indeed,

these physical quantities depend on many parameters, such as the dipole moment induced by the

Br/Au interactions, the charge transfer from the Br to the gold atoms and the coverage rate of ad-

sorbate.

Figure 3.13 – Valence band of the nanoparticles probed at 210 eV showing the work function. The
work function appears to depend on the salt.
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3.4 Conclusion

In conclusion, we saw that the stability of gold nanoparticles colloidal solutions can be achieved

thanks to dissolved ions. Destabilization of the synthesis seems to originate from the increase of the

gold particles concentration rather than the salt concentration. However, nanoparticles aggregate

beyond a critical salt concentration. Such electrostatic stabilization is addressed to the double layer

generated by ions around particles. However, we aimed to understand the stability mechanisms of

the anions adsorbed in the Stern layer.

Therefore, we performed XPS measurements to probe the surface chemistry of gold nanoparticles

synthesized with salts. The adsorption of the half of the surface of gold nanoparticles by halogen

ions has been evidenced in a free-standing nanoparticles beam. On the opposite, no oxidation proof

has been reported in Au4f binding energy spectra. Thus, the adsorption mechanism of halogen

anions usually assumed, which involves an oxygen atom, appears unlikely. As work functions are

sensitive to the surface charge state, we may obtain interesting information about the surface chem-

istry, but at the current state, no explanation allows to properly conclude.

In addition, more questions remain after these first results. Firstly, even though the Br ions ad-

sorb on gold surface nanoparticles, the type of bonds is not elucidated yet, namely Au-Br or Au-Br−

bonds, which could bring insights about the charge carrier. Secondly, even if non-oxidized gold

atoms have been observed, it does not indicate that oxygens were not present in solution at the

nanoparticles surface. Oxygen may desorb during the atomizer/dryer steps. Thirdly, if we consider

that the halogen ions fix to the gold atoms through Au-Br bonds, and the oxygens disappear during

the free-standing beam process generation, how can we deduce where the charge carrier is? The

charges could have gone with the oxygens, or they have been transferred in the nanoparticles to

contribute to the excess of electrons assumed by Palazzo et al.285.

Theoretical calculations have been initiated in order to answer these questions. Indeed, we

expect that the VASP calculations could assign the binding energy peaks of the bromium atoms to

either the Au-Br or Au-Br− configurations. More generally, different scenarios with different ions

need to be calculated to estimate which ion is susceptible to adsorb and to evaluate the most likely

adsorption mode. The influence of adsorbate and substrate on binding energy and work functions

leading to the observed shifts could be evaluated also by electronic calculation methods.
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Inorganic materials may exist in various polymorphs according to the temperature and pressure

conditions as well as the particles size. Bulk polymorph corresponds to the crystal structure with

the lowest volume free energy. Structures minimize their total energy in order to gain in stability.

At nanoscale, the surface energy of crystals becomes predominant over the bulk free energy due

to a large surface-to-volume ratio. Polymorphs with low surface energy may thus be stabilized at

the nanoscale, even though they are metastable in the bulk. Therefore, several crystal structure

transitions may occur during the nanoparticles growth until reaching the bulk equilibrium. Among

numerous materials presenting phase transitions at nanoscale, alumina nanoparticles are a prime

example of material experiencing crossovers in polymorph stability, with two polymorphs crossover

identified. Using calorimetry experiments, previous studies have shown that alumina crossovers

occur from amorphous solid to cubic crystal (γ) at about 4 nm, in one hand, and from cubic to the

hexagonal phase (α, i.e. corundum) at almost 12 nm, in another hand.

Moreover, the surface energy of crystals is also governed by the surface chemistry depending on

the nanoparticles environment. Adsorption of ligands could lead to the stabilization of metastable

polymorph in addition to particles size and colloidal stability control. For alumina, organic ligands

could stabilize alumina nanoparticles in the α-Al2O3 crystal phase for sizes below 10 nm, which is

unexpected according to the calorimetry measurements. The use of PLAL is particularly suitable to

investigate ligands effect since we can synthesis bare or capped nanoparticles.

In this chapter, we will first investigate the influence of ligands on PLAL-synthesized nanoparti-

cles from a ruby (α-Al2O3:Cr3+) target. Then, we studied theoretically the influence of ligands on

alumina mechanical structures. In a first project, we were interested to investigate the alumina crys-

tal structures by reproducing the polymorphs stability regions deduced by calorimetry experiments.

From the numerical point of view, addressing such transition requires a numerical method sustain-

able (computational time) and reliable (reliability of the computed energy) from a few atoms to a

few hundred thousand of atoms, i.e. from small cluster to nanoparticles. In this context, we chose

to use empirical potentials for which their reliability and accuracy need to hold from the molecular

level to almost bulk-like systems. Surprisingly, we found that while complex potentials have been

usually employed to model alumina, the most reliable potential was the simplest in its form, which

fulfilled the description of alumina polymorphs stability over a large range of sizes.

In a second project, we aimed to study the mechanical structure of the α phase of uncapped alumina

nanoparticles using a charge variable empirical potential. Finally, we performed electronic calcula-

tions on ligand-free and capped α alumina surfaces, since empirical potentials are not able to take

into account ligands in nanoparticles calculations. The calculations based on empirical potentials

are described as well as the DFT-based calculations specifically performed for the treatment of the

surfaces. We then observed a strong stabilization effect of the ligands on the mechanical structure

of alumina.
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We investigated the Cr3+ luminescence R-lines that surprisingly do not appear significantly

shifted with respect to the bulk in our experimental measurements. Indeed, the chromium emission

in corundum alumina is an efficient structural probe. Series of atomistic simulations using both

classical molecular dynamics and Density Functional Theory (DFT) techniques were conducted to

support the interpretation of the experiments. We found that surface relaxations induce a nega-

tive pressure inside the free α-Al2O3 nanoparticles where the chromium atoms tend to localize.

However, the presence of ligands almost annihilates the surface relaxations and restores a bulk-like

structure consistently with the measured luminescence lines.

4.1 Nano-rubies synthesis driven by ligands

Crossover in polymorph stability was reported for several materials including TiO2
293–296, ZrO2

297–299,

Fe2O3
300, Gd2O3

301, GeTe302, Y2O3
303 or Al2O3. The latter material is under the scope of this work

where α-Al2O3:Cr3+ nanoparticles below 10 nm are deemed thermodynamically unfavorable. In

the following, the effect of ligands on nanoparticles will be investigated by synthesizing alumina

colloids with and without ligands. The experimental protocol will be presented as well as the char-

acterization analysis.

4.1.1 Synthesis by PLAL

4.1.1.1 Challenges with aluminum oxide

Aluminum oxide is of a great interest to its optical properties. By doping a matrix of Al2O3 with

different ions, the resulting luminescent properties are useful in several applications. Doped with

titanium, alumina crystal has been used to develop Ti-sapphir laser. Al2O3:C shows photostimulable

properties, and is used as an optically stimulated luminescence (OSL) dosimeter in radiation pro-

tection applications or in environmental dosimetry304. α-Al2O3:Cr3+ or ruby is widely employed

as a pressure gauge in diamond anvil cell305. Indeed, the chromium luminescence in corundum is

characterized by two sharp peaks that shift to higher wavelength (red-shift) as the external pressure

is increased. As can be seen in the inset of figure 4.1(b), these R-lines are defined at R1 = 694.2

nm (14405 cm−1) and R2 = 692.76 nm (14435 cm−1)306. With the current trend in reducing size

of the studied systems, designing nanoscale pressure sensors based on nano-rubies should be of a

great interest.

However, various alumina polymorphs exist according to pressure and temperature conditions

as well as the size307. The hexagonal phase (α−Al2O3), commonly called corundum, is the thermo-

dynamic stable phase of crystalline aluminum oxide in the bulk until high temperature and pressure.

Regarding size effects, McHale et al.308,309 measured experimentally that the corundum phase re-

mains the most stable polymorph for particles as large as 12 nm. A first transition occurs between
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the hexagonal phase and the cubic phase (γ-Al2O3) below this critical size. In figure 4.1(a), this

crossover is represented by the evolution of the enthalpy of the considered polymorph relative to

that of corundum as a function of the surface area (or the diameter of particles). A second transition

was measured by Tavakoli et al.310 at smaller size and they have shown that the alumina particles

become amorphous (a-Al2O3) below 4 nm.

In addition, the sharped luminescence lines of ruby exist only from chromium inserted in α-Al2O3,

while a weak broad band is observed in the case of ions incorporated in γ-Al2O3
306 (Fig. 4.1(b)).

Therefore, the synthesis of ruby at small sizes remains challenging.

Alumina was extensively synthesized by PLAL where different polymorphs have been produced

such as γ-Al2O3
107,311–315, θ -Al2O3

313 and hydroxydes315–317. This synthesis is convenient to carry

out by ablating a target of alumina or aluminum solid in water.

PLAL has already demonstrated its versatility to overcome the thermodynamic related issue. Sajti et

al. succeeded to synthesize alumina nanoparticles with an average size larger than 30 nm37. Kumar

et al. also reported PLAL synthesis of spherical Al2O3 nanoparticles with an average size of 23 nm,

without mentioning any crystallographic phase. To our best knowledge, no evidence of α-Al2O3

nanoparticles with sizes smaller than 10 nm have been reported in PLAL at all, even including pre-

vious PLAL-synthesized alumina in bulk water.

Figure 4.1 – (a) Polymorphs stability ranges of alumina according to their enthalpy relative to
corundum as a function of the particle surface area and diameter (Reproduced from308 and310). (b)
Luminescence spectra of chromium ion incorporated in α-Al2O3 and γ-Al2O3 matrix. Sharp peak
of Cr-doped alumina reveals (inset) the two characteristics R-lines at high resolution (Reprinted
from306).
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4.1 Nano-rubies synthesis driven by ligands

4.1.1.2 Nano-rubies synthesis

In this study, a α-Al2O3:Cr3+ target has been ablated with and without organic ligands in deion-

ized water. In order to favor the Al2O3 stoichiometry, the ablation was performed on a 2 mm thick

Cr-doped sapphire crystal grown by the Czochralski technique, elaborated by Kheirreddine Lebbou’s

team in our institute318,319. The final Cr concentration in the grown crystals is about 1.5%. The

PLAL synthesis was done during 60 min using the IR laser system and by passing 500 mL of a so-

lution of deionized water containing 10−2 mol.L−1 of 2-[2-(2-methoxyethoxy) ethoxy] acetic acid

(MEEAA) (from Sigma-Aldrich, CAS Number 16024-58-1) in the flow cell circuit. The ligands struc-

ture is shown in inset of figure 4.3. For comparison, the same experiment was performed without

ligands. Final solutions were estimated to be produced with an ablation rate of around 0.13 g/h,

deduced from the weighting of the target. But we know that such a value largely overestimated the

amount of nanosized materials. Nanoparticles powder is then obtained following a washing pro-

cess. The whole colloidal solution is first frozen in a freezer before being dried using a freeze-drier.

Then, the dried powder mixed with the remaining unreacted MEEAA is diluted in 5 ml of deion-

ized water. A smooth centrifugation is performed to remove the biggest particles at 966 RCF (3000

RPM) during 10 min. The limpid supernatant is then subjected to a wash cycle to remove most of

the free ligands. The limpid supernatant is diluted in 50 mL of acetone, leading to the precipitation

of the nanoparticles. A second centrifugation is performed at 21036 RCF (14000 RPM) during 10

min. The precipitate is then withdrawn and dried.

In order to check the reproducibility, a second synthesis was performed independently one

year apart by a PhD student, Arsène Chemin, in our group (synthesis called "ILM2" in figure 4.2).

Moreover, a last synthesis was also reproduced by Dr. Julien Lam in the Barcikowski’s group from

Duisburg-Essen university (synthesis called "Essen" in figure 4.2). This latter ablation was carried

out with MEEAA at the same concentration in deionized water with a diode pumped Nd:YAG laser

from Ekspla operated at 1064 nm. The laser has a pulse duration of 10 ps, a repetition rate of 500

kHz, and an average power of 10 W.

4.1.2 Characterization measurements

4.1.2.1 Structural characterization

Transmission Electron Microscopy. As not enough material was produced to characterize the

nanoparticles by X-Rays Diffraction (XRD), the particles crystal structure and the size distribution

were deduced from images captured by Transmission Electron Microscopy (TEM). The experimen-

tal methods and conditions are similar to those described in section 3.1.2.

Low resolution TEM pictures show that addition of MEEAA results in homogeneous and monodis-

persed nanoparticles, separated uniformly in a large area. Figures 4.2(a) and (c),(d) display the

low resolution TEM pictures for the ILM2 synthesis and the synthesis I reproduced. Without sta-
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bilizing agents, particles are particularly polydispersed with sizes from a few nanometers and sub-

micrometer objects, and also aggregated (inset in figure 4.2(f)). This is a first proof that ligands

attached to the nanoparticles surface enable to avoid aggregation, as was already demonstrated for

other doped oxides169 including Y2O3:Eu3+, Gd2O3:Eu3+, and Y3Al5O12:Ce3+.

In the ILM2 synthesis, crystal phases of nanoparticles were deduced by analyzing electronic diffrac-

tion patterns from the fast Fourier transforms (FFT) of high resolution images using the Digital

Micrograph software from Gatan (Fig. 4.2(b)). Thanks to international diffraction databases such

as the International Centre for Diffraction Data (ICDD) or the Inorganic Crystal Structure Database

(ICSD), crystallographic planes (using the miller indices (hkl)) and zone axis (noted [uvw])were

measured. (113) planes were found to correspond to the inter-reticular distance d(113) = 0.2085

nm of the α phase (ICDD file 00-046-1212) for the solutions synthesized with the ligands (Inset

of figure 4.2(a) for the ILM2 synthesis and figure 4.2(d)). Without ligands, the particles were in

majority characterized by the γ phase (ICDD file 04-005-4662) (Fig. 4.2(f)).

Nanoparticles diameters were measured manually from different large field TEM images using Im-

ageJ software and the deduced size distributions were fitted by log-normal distribution curves (Fig.

4.2(e)). In this work, nanoparticles diameters of 3.2 ± 1.3 nm were measured for capped nanopar-

ticles, which are consistent with the reproducibility assay where size distributions are centered

around 4 nm with standard deviation around 1 nm. Size distributions for the uncapped nanopar-

ticles were difficult to carry out since the small particles aggregate as we can see in figure 4.2(d).

Measuring the distinct particles would lead to biased distribution toward the large sizes.

Infrared spectroscopy. As revealed by the TEM pictures, ligands functionalized to the nanopar-

ticles surface, leading to their stabilization. A more direct evidence of the ligands bonding is re-

vealed by Fourier Transform Infrared (FTIR) spectroscopy. FTIR spectra correspond to absorption in

the infrared range due to bond vibrations, and can then reveal the nature of the coordination of the

ligands to the surface (i.e. of the carboxylic group to the metal ions). Spectra were recorded with

a spectrum 65 FT-IR spectrometer from Perkin-Elmer, with an universal attenuated total reflectance

(ATR) sampling accessory. Dry matter was deposited on a silicon substrate and placed in the focal

plan of a microscope objective. The surface observed was 100 μm x 100 μm and the spectral reso-

lution is 2 cm−1.

Each peak highligthed in the spectra, shown in figure 4.3, corresponds to bending or stretching

vibrations of the acid polar head of MEEAA molecules, protonated or not according to its environ-

ment. In the case of free ligands in water (grey curve), peaks located at 1740 cm−1 and 1200 cm−1

correspond to the streching of C=O and C-OH bonds, respectively. The interaction of ligands at

the oxide surface (black curve) results in the deprotonation of the carboxylic group and then to the

coordination of the COO- group to the surface. Types of coordination are known between oxygens

of the carboxylic head and metal ions320 and are schemed on the top of the figure 4.3.
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Figure 4.2 – (a) Low resolution TEM picture of the ILM2 synthesis showing a large area covered by
monodispersed nanoparticles. The α phase is deduced by a (b) diffraction pattern from the large
area shown in the inset. The dashed circle corresponds to the inter-reticular distance d(113) at 0.2085
nm of the α phase (ICDD file 00-046-1212). It is differentiated from the inter-reticular distance
d(400) at 0.1978 nm of the γ phase (ICDD file 04-007-2479). (c),(d) Reproducible synthesis was
performed in this work, which leads to the production of the same α monodispersed nanoparticles
as showed by the low resolution TEM pictures and by measuring the inter-reticular distances. (e)
Log-normal size distribution curves of the nanoparticles from all the synthesis. Only the histogram
of this work is displayed. (f) High resolution TEM picture of alumina particles synthesized in
deionized water. A low resolution TEM picture is displayed in the inset.
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Hence, the coordination of the carboxylic head affects the FTIR spectrum of MEEAA ligands in the

case of capped nano-rubies. When coordinated to a surface, the signals coming from the protonated

carboxylic head tend to disapear, and the signatures of the coordination appear, as shown by grey

arrows in figure 4.3. Among them, two main peaks located at 1584 and 1422 cm−1 are assigned to

antisymmetric νas and symmetric νs stretching vibrations of COO− group, respectively. Nara et al.

have demonstrated that the gap between these two peaks Δν is related to the interaction modes

for a given metal ion321. νas and νs frequencies have been tabulated for numerous metal acetate

combinations322,323 and the four interaction modes have been found to be ordered according to the

frequency difference Δν 320,321:

Δν(chelating) = 40−80 cm−1 <Δν(bridging) = 140−170 cm−1 (4.1)

≈Δν(ionic)<Δν(unidentate) = 200−300 cm−1

In our case, Δν is estimated to be 162 cm−1, indicating a bridging bidentate or ionic bonding with

the aluminum ions. The former mode is favored since the obtained value is in agreement with

results of previous studies, which used MEEAA as ligands for several materials169,324.

Figure 4.3 – Comparison of FTIR spectrum of ligands-capped nano-rubies (black curve) with that
of the MEEAA ligands alone (grey curve). MEEAA ligand molecule is represented by the scheme
in inset. It reveals that ligands attach to the nanoparticles in a bridging bidentate mode, different
from the three other coordination types (top panel).
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4.1.2.2 Optical characterization

Luminescence spectroscopy. High resolution luminescence spectroscopy of the final dried

nanoparticles is a rapid way to confirm that α particles were obtained since it is the only structure

exhibiting the R luminescence lines. Laser-generated nanoparticles were characterized by using a

monochromator Ramanor U1000, from Jobin Yvon, with 1 m focal and a 1800 lines/mm grating.

It had been coupled with an iStar intensified CCD (iCCD) from Andor technology. The instrumental

spectral resolution is 0.05 nm. Calibration of the wavelengths was performed with two spectral

calibration lamps. The optical response of the entire collection system was measured through a cal-

ibrated blackbody source and the spectra were thus corrected by the apparatus spectral sensitivity.

The sample excitation is performed at 455 nm, using a collimated LED M455L2-C2 from Thorlabs.

Therefore, we recorded R-lines from our nanoparticles powder capped by ligands and with sizes

below 10 nm. However in the case of the synthesis without ligands, the polydispersed distribu-

tion includes particles substantially larger than 10 nm, and larger particles are in the α phase.

Nano-rubies spectrum is plotted by the dark blue curve in figure 4.4(a). For comparison, the bulk

target (red curve) and microparticles powder (dark green curve) were also measured. Inhomoge-

neous broadening is observed only for nano-rubies spectrum, which is characteristic of the lumi-

nescence emission from doped nanoparticles when an annealing of the as-produced particles is not

performed169. R-lines positions were determined by fitting peaks with two Lorentzian functions,

accurate at R2 = 0.991 with a confidence interval of 95 %. Peaks positions are indicated on the top

of figure 4.4(a), where the rectangle width represents the instrumental spectral resolution. Particles

powders peaks appear slightly shifted by around 0.1 nm towards the high wavelengths, while bulk

target R-lines remain close to the tabulated values, within the instrumental resolution. This small

shift does not come from the experimental measurement errors since it is larger than the resolution

of the spectrometer. But it can be explained by a self-absorption artifact, as this difference is only ob-

served for particles powders. Indeed, as the refractive indexes of air and ruby are different, i.e. they

differ by 0.76, a sample composed of powders (nano or micro) strongly diffuses the emitted light,

enhancing self-absorption with respect to a bulk sample. As a very small mismatch exists between

the emitted and absorbed signals, namely a Stokes shift325,326, such self-absorption is asymmetric

with respect to the wavelength, and leads to measure a lowered intensity and a shifted peak po-

sition, as schemed in figure 4.4(b). To ensure this assumption, luminescence measurements were

performed by homogenizing the powder environment with a liquid of refractive index lowering the

diffusion. We use 1-chloronaphthalene liquid with a refractive index of 1.63 at 20◦C. The new lu-

minescence peaks are this time closer to the bulk peaks positions, as shown in figure 4.4(a) by the

lighter colors curves of micro- and nanoparticles wet powders.

Consequently, no shifts are observed from macroscopic size to nanoscale. This is surprising since

such luminescence experiments allow for probing the environment of the emitter. Indeed, in the
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Figure 4.4 – (a) Ruby R-lines were measured by high resolution luminescence spectroscopy for dry
(dark) and wet (light) powders of micro- (green) and nano-size (blue) particles as well as bulk
target (red). A liquid of refractive index of 1.63 was used for the wet powders. The curves are
normalized to 1. Ordinates 0 and 1 for each curve are displayed on the right vertical axis. Top
panel displays their R1 and R2 lines positions where the width of the squares correspond to the
instrumental spectral resolution. (b) Self-absorption combined with a weak Stokes shift results in a
lowered intensity and a signal slightly shifted.

case of bulk ruby, aluminum atoms are substituted by chromium ions thus standing in trigonal site.

Chromium are very sensitive to their site symmetry where the minor fluctuation due to an applied

strain induced by an external pressure or the creation of an interface leads to the modification of

the crystal field. Hence, the energy levels of the embedded chromium evolve, especially the ener-

gies corresponding to the luminescent R-lines. Finally, this is why the chromium emission lines are

pressure sensitive in bulk. Yet, the lack of pressure shift measured in the synthesized nanoparticles

seems to indicate that chromium ions remain in the symmetry of their bulk sites and there is no

huge stress inside the nanoparticles.

However, recent studies have considerred that an internal pressure exists inside the nanopar-

ticles235,327. Such intrinsic quantity, or also called the Laplace pressure Pint , was initially defined

for a spherical fluid as the combination of the pressure of the surrounding media Pext , plus another

pressure term that relates the surface tension γ of the sphere with its curvature radius R:

Pint = Pext +
2γ
R

(4.2)

However, this law was used for micro-size particles of gas, liquid or isotrope metals (such as copper
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agregates), on the contrary of the case of solid nanoparticles composed of iono-covalent materials

(with bonds strongly oriented). If we apply Laplace relation for spherical nanoparticles, the inter-

nal pressure increases inversely proportional to the particle radius. For sizes from 3 to 4 nm as

observed in TEM, our nano-rubies should sustain theoretical pressures between 2.25 and 1.70 GPa,

by considering the ambient pressure and a surface tension equals to 1.69 J/m2 308. By considering

a linear relation between the R1-line shift and the applied pressure328,329, such pressures should be

observed in our luminescence measurements and would correspond to shifts ranging between 0.8

and 0.6 nm, which are clearly not visible in our luminescence results.

To summarize, we found that the solutions synthesized with ligands lead to more controlled

nanoparticles in size, and to a better colloidal stability of the alumina nanoparticles. Although all

the nanoparticles cannot be systematically analyzed, most of the analyzed particles below 10 nm

seem to form in α phase. On the opposite, the solution without ligands showed particles more poly-

dispersed for which the γ phase appears predominant. Moreover, the synthesis of size controlled

colloids using ligands seems reproductible, even with different ablation equipment.

The ligands influence also the luminescence properties of nano-rubies. The expected shift of lu-

minescence R-lines of chromium in α alumina nanoparticles is not visible in our measurements.

Therefore, we performed a comprehensive theoretical study in order to investigate the polymorphs

of alumina at nanoparticles size, and the influence of ligands on the mechanical structure of alu-

mina in α phase.

4.2 Stability of alumina polymorphs

In a first project, we aimed to evaluate the crystal structures of alumina at nanoparticles size

through a theoretical approach, which can give insights about the atomistic understanding of nu-

cleation and growth of bare nanoparticles.

Calculations methods at various length scales have been developed along the XXth century since the

revolution of quantum mechanics. Numerous simulation approaches allow for modeling different

kinds of systems from the atomic scale using electronic approaches to the mesoscopic scales using

empirical potentials. I will first briefly review the computational methods available for different

ranges of size.

Then, we chose to use empirical potentials to investigate the crystal structures of alumina parti-

cles by reproducing the polymorphs stability regions from a few atoms to a few tens of thousands

of atoms. We confronted four different empirical potentials that have been already employed in

previous alumina studies. I will describe the empirical potentials as well as the analysis tools im-

plemented to assess the calculation results. Finally, I will present the results obtained from this

benchmarking where the polymorph stability regions predicted by each potential are compared

with calorimetry measurements.
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4.2.1 Theoretical methods

Numerous simulation methods exist to calculate systems from atoms to nanoparticles. We can

categorize them in two groups. On the one hand, computational chemistry methods are based on

the resolution of the Schrödinger equation using a wavefunction/Hamiltionian formalism. The size

of systems treated by electronic calculations is limited due to the large computational cost. On

the other hand, other methods have been developed to simplify the calculations by using empirical

potentials.

4.2.1.1 Quantum chemistry methods

Computational chemistry is used to simulate systems at the electronic and atomic scales based

on quantum mechanics. These methods are based on the wavefunction/Hamiltonian formalism

derived from the Schrödinger equation in the stationary case, defined as:

ĤΨ(�r) = E(�r)Ψ(�r) (4.3)

with Ĥ = Te +Vee +Ven

where Ĥ is the Hamiltonian operator expressed under the Born-Oppenheimer approximation330. A

quantum system composed of atoms is thus described by contributions attributed to electrostatic

charges distributed between nuclei and electrons. Kinetic energy of electrons Te is taken into ac-

count by the first term, while the nuclei are considered fixed compared to electrons. Coulomb

interactions are described by the electronic repulsion Vee, as well as the nuclei/electrons attractive

term Ven. The state of this system is described by the wavefunction Ψ and its energy E is obtained

after the resolution of the Schrödinger equation. From these quantities, it is thus possible to de-

termine the physico-chemical properties of the system. A more detailed description is reported in

Appendix B.1.

From this Hamiltonian consideration, the analytic resolution of the Schrödinger equation is pre-

vented by the electronic interaction term Vee for polyelectronic systems. From this observation,

numerous calculations methods based on this wavefunction-Hamiltonian formalism have been de-

veloped according to the way to handle this problem. They include ab initio (or first-principles)

approaches and Density Functional Theory (DFT) based calculations. However, the size of the sys-

tem treated by electronic calculations is limited due to the large computational cost. Other methods

have been developed to simplify the calculations by doing several approximations in the wavefunc-

tion/Hamiltionian formalism such as semi-empirical methods or describing the systems by empirical

potentials.

Ab initio methods. One of the earlier ab initio methods is the Hartree-Fock (HF) approach331
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for which the electronic interactions are averaged in a mean field. The wavefunction of the total

system is then decoupled as the product of monoelectronic wavefunctions in the formalism of a

Slater determinant332, and the Hamiltonian is written as a sum of monoelectronic hamiltonians. In

HF calculations, correlations between electrons located at short (dynamic or instantaneous correla-

tion) and long (static or permanent correlation) distances are thus not included, leading to energy

over-estimation as in the case of H2 molecule dissociation.

In post Hartree-Fock methods, the electronic correlation is taken into account by developing the

system wavefunction as a linear combinaison of several Slater determinants, which characterize

excited electronic states. This means that some electrons of the systems are excited in unoccupied

highest levels. Generally, only few orders of determinants are taken into account to avoid too ex-

hausting calculations. Among others, the Moller and Plesset model (MPn) combines the post HF

approach using a total wavefunction written according to excited Slater determinants with the per-

turbation theory. The total Hamiltonian H is expressed as the perturbation W n of order n developed

around an equilibrium Hamiltonian H0: H = H0 +λW n. For instance, the MP2 model uses a pertur-

bation of second order.

Consequently, such computational chemistry methods present a high accuracy that goes with a

long calculation time. These approaches are expensive in computational cost as they are based on

wavefunction with 4N variables, i.e. 3 spatial and 1 spin variables for each electron. The post HF

calculations are also heavier since several Slater determinants need to be evaluated.

Density Functional Theory (DFT). This approach and its derivatives consist to substitute the

wavefunction of 4N variables by the electronic density ρ of the system, which is composed only

of 3 spatial coordinates and 1 spin variable (see Appendix B.2.1). The theorems of Hohenberg

and Kohn (HK)333 put then the basis of the theory by demonstrating that the energy of the system

is a functional of the electron density E[ρ], while so far, the Hamiltonian was a functional of the

wavefunction. This statement implies that the DFT formalism is equivalent to that of the wavefunc-

tion/Hamiltonian of the first-principles methods. Then, they showed that the ground state energy

E0 of the system corresponds to the global energy minimized by ρ (full description is presented in

Appendix B.2.1).

However, the resolution of the Schrödinger equation is still prevented because of the electronic

interaction. Kohn and Sham solved this problem334 by substituting the real system of interacting

electrons immersed in an external potential Vext by a fictive system of non-interacting electrons mov-

ing in an effective external potential Vs. The two systems are thus related by their energies and their

electron densities, which are considered equivalent. The fictive system is then defined by:

E[ρ] = Ts[ρ]+
∫

Vs(�r)ρ(�r)d�r (4.4)

with Vs(�r) =Vext(�r)+
∫ ρ(�r′)

|�r−�r′|d�r
′+Vxc(�r) (4.5)
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Finally, the energy of the system depends on the known expression of the total kinetic energy Ts[ρ]
and Vs(�r), which includes three terms. The first one is a known external potential of the real sys-

tem and the second term derives from the full classical Coulombian interaction term (see Appendix

B.2.1). Vxc(�r) corresponds to the exchange-correlation term. As the expression of this functional

is not mentioned in the Kohn-Sham theory, numerous functionals have been developed to approx-

imate the exchange-correlation contribution. Among others, we can mention the PBE335 and the

B3LYP functionals336 defined as a Generalized Gradient Approximation (GGA) functional and a

hybrid functional, respectively (see Appendix B.2.2). As all functionals contain free parameters ad-

justed on theoretical results or experimental data, the DFT-based approaches cannot be considered

as ab initio methods.

In DFT, the density simplification leads to a computational time reduced by one to several orders of

magnitude compared to that of the post HF methods. It also succeeds to have a computational cost

similar to the Hartree-Fock approach by integrating in addition the electronic correlation, absent in

the HF model. The main problem of these quantum chemistry methods lies in the size limitation

of systems. Indeed, only tens of atoms can be supported by DFT calculations, which results in new

approaches considering more approximations.

In the context of solid state calculations, the computational cost can be drastically decreased by the

use of plane waves basis state by the Bloch theorem337 and limited to the first Brillouin zone in

crystal structures. This approach is the concept of DFT-based methods, such as the Vienna Ab initio

Software Package (VASP) code338–340. In this method, the contribution of the core electrons are

approximated by a softer potential, called pseudopotentials, which must reproduce the exact DFT

wavefunction at the valence electrons region (see Appendix B.3).

Semi-empirical approach. Other models use the accuracy of the wavefunction/Hamiltonian

formalism combined with several approximations to simplify greatly the calculations. These semi-

empirical methods often neglect some integrals or parametrized others with free parameters ad-

justed on experimental data or electronic calculations. This latter consideration implies that semi-

empirical methods can be differentiated between the ab initio or DFT-based methods. Notably we

can mention the Density Functional based Tight-Binding (DFTB)341,342, which sets a parametrized

Hamiltonian based on DFT.

The semi-empirical calculations allow for an effective compromise between accuracy and compu-

tational cost thus computing systems of a few hundreds of atoms but with a lower precision in

comparison to DFT calculations.

4.2.1.2 Empirical potentials

Finally, by avoiding, the wavefunction/Hamiltonian formalism, analytical expression may be

formulated to describe a global potential where the atoms of the system interact. Generally, the

construction of such potentials is based on the summations of bonded forces between atoms, con-
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sidering an attractive part at long distance combined with a repulsive contribution at short distance.

For instance, the Coulomb electrostatic expression balances these two interactions according to the

atoms charges. Van Der Waals forces can also be taken into account as well as charge-dipole in-

teractions. As each contribution includes free parameters adjusted on experimental data, these

approaches are referred as empirical potentials.

Two main type of models exist: (i) the pair-wise potentials where interactions between pairs of

atoms are summed as implemented in the Lennard-Jones potential343 or the (Coulomb–)Buckingham

expression344. (ii) Otherwise the many-body potentials define those that includes interactions be-

tween three or more particles. Among others, we find in particular the embedded-atom method

(EAM)345.

As the interactions between atoms are calibrated, systems monoatomic or biatomic are favored by

these potentials while the type of interactions remains unchanged. Inorganic materials such as ox-

ides or metals involve ionic or covalent bonds, which can be easily configured. In more complex

systems mixing different interactions types, these approaches are difficult to set. Moreover, such

potentials can be used in molecular dynamics to simulate large systems of thousands of atoms be-

cause they are usually really simple to compute. On the contrary of quantum chemistry methods,

the gain in computation cost is thus lost in the accuracy. However, it can noted that larger a system,

more it behaves classically. However, we can wonder whether these potentials might be efficient in

smaller size range.

4.2.2 Potentials benchmarking

Alumina polymorphs have been extensively studied theoretically346–348 including corundum348–351,

cubic phase352–355, amorphous phase356–361 and liquid-like structure359,362,363. Such studies inves-

tigated alumina stuctures of bulk and surfaces348,364,365, or clusters size111,366–369 by first-principle

calculations as well as by molecular dynamics352,356,370 and surface energies relaxations371,372.

However, no calculations were performed over a large range of particle size. Numerically, calculat-

ing particles from a few atoms to hundreds of thousands of atoms requires large scale simulations,

which are only accessible with reliable empirical potentials. With oxide materials, the task exhibits

additional complexities because of the oxygen bonding and the complex structural and stoichiomet-

ric landscape.

Recently, Erlebach et al. combined ab-initio and MD calculations to study the structure evolution

of the hematite α − Fe2O3 particles373, close to the alumina structure. An interatomic potential

was used to performed conformational research on (Fe2O3)n clusters with n=1-10 validated by DFT

optimization and MD calculations on particles as large as 5 nm. To our best knowledge, such work

on a large range of size for alumina structures has not been reported yet.

Therefore, we performed a benchmarking using empirical potentials dedicated to the description of

alumina in order to study the phase transitions from alumina clusters to nanoparticles as large as

12 nm.
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4.2.2.1 Description of the potentials

The selected four potential models were developed and used over the past decades to study

alumina nanoparticles and bulk, essentially by molecular dynamics calculations. Here are presented

the potentials used for this benchmarking, where ri j and qi correspond to the inter-ionic distance

and the effective charge, respectively. All the following expressions are written in atomic units.

1. Alvarez. Alvarez and coworkers have introduced a two-terms potential353,354 (equation 4.6),

composed of a classical Coulomb term and a repulsive steric term with σi as the ionic radius

and p an adjusted exponent parameter. This model was developed for molecular dynamics

(MD) calculations done on γ-Al2O3 nanoparticles of 1 440 atoms353 and 11 520 atoms354,

built in a cubic geometry.

VAlvarez = ∑
i< j

[
qiq j

ri j
+

1

p(σi +σ j)

(
σi +σ j

ri j

)p]
(4.6)

2. Streitz. Streitz and Mintmire374 have developed a potential by including a variable charge

electrostatic potential (ES) with the known empirical potential embedded-atom method (EAM),

presented in equation 4.7. They named this new approach the ES+ potential. The main ad-

vantage of this approach is to take into account the modification of the local atomic charges

due to the environment of each atom.

The first contribution of equation 4.7 contains the atomic energies and the electrostatic inter-

actions. E0 includes the neutral atomic energy and nuclear terms independent of the atomic

charges. The single charge interactions are described by the χi term, which is composed of the

atomic electronegativity χ0
i and the nuclear-attraction integral [ j| fi] corrected by the Coulomb

electronic interaction [ fi| f j]. The atomic density distribution was modeled as a simple expo-

nential of the form: fi(ri) =
ζ 3

i
π exp(−2ζiri), with ζi a free atomic parameter. The nuclear and

electronic integrals were defined by Roothaan375. The last term corresponds to the double

charge interactions where Vi j contains the atomic hardness J0
i and the electronic interaction

integral [ fi| f j].

The second term shows the two-terms embedded-atom method potential. Fi[ρi] is the energy

needed to embed an atom in the the local electron density ρi, which is build as a linear super-

position of atomic density functions. φi j(ri j) is the pair potential necessary for the short-range

repulsive description of the pair interactions. Ai,Bi j,Ci j, αi j, βi j, ξi and r∗i j are free parameters

adjusted by optimizing the experimental structural values (cohesive energy, lattice parame-

ters, elastic constants) of the fcc aluminum bulk as well as of the bulk and numerous surfaces
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of α-alumina.

VStreitz = Ees +EEAM (4.7)

Ees = E0 +∑
i

qiχi +
1

2
∑
i, j

qiq jVi j EEAM = ∑
i

Fi[ρi]+∑
i< j

φi j(ri j)

with, χi = χ0
i +∑

j
Z j([ j| fi]− [ fi| f j]) with, Fi =−Ai

√
ρi

ξi

Vi j = J0
i δi j +[ fi| f j] ρi = ∑

i�= j
ξ j exp

[−βi j
(
ri j − r∗i j

)]
φi j = 2Bi jexp

[−βi j
(
ri j − r∗i j

)]
−Ci j

[
1+αi j

(
ri j − r∗i j

)]
exp

[−αi j
(
ri j − r∗i j

)]

3. Vashishta. Equations 4.8 describe the two- and three-body terms developed by Vashishta et

al.359,376. The two-body term V (2)
i j is an electrostatic potential composed of different terms

using fixed charges. The first one is the steric repulsion with Hi j and ηi j as the steric strength

and exponent parameters, respectively. The Coulomb interactions are modeled by the second

term where an exponential element was included with the Coulomb screening length λ . The

two last terms are the charge-dipole and the Van der Waals interactions with Di j and Wi j as

the strengths of these attractive terms, respectively, and ξ the charge-dipole screening length.

The three-body term V (3)
jik includes two compounds that correct the stretching and bending

of the bonds according to the phase configuration desired. Summations over i, j and k are

limited to the local environment of each atom, using a cutoff rcut and step functions Θ on the

distances in the radial term R(3)(ri j,rik). Another cutoff θcut on the angles contributes to favor

the α crystal structure. As for the Streitz potential, the strengths and characteristic length

parameters as well as the free parameters (B jik,Cjik, γ, rcut , θcut) were fitted on experimental

data, satisfying structural properties values (lattice constant, cohesive energy, bulk modulus,

and some elastic constants).

The development of this potential aimed to describe α, liquid and amorphous phases of bulk

alumina, based on MD calculations using periodic boundary conditions. A cell of 8 640 atoms
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was generated and relaxed using the Verlet algorithm377.

VVashishta = ∑
i< j

V (2)
i j (ri j)+ ∑

i< j<k
V (3)

jik (ri j,rik) (4.8)

V (2)
i j =

Hi j

rηi j
i j

+
qiq j

ri j
e

−ri j
λ − Di j

r4
i j

e
−ri j

ξ − Wi j

r6
i j

V (3)
jik (ri j,rik) = R(3)(ri j,rik)P(3)

(
θ jik

)
with, R(3)(ri j,rik) = B jikexp

(
γ

ri j − rcut
+

γ
rik − rcut

)
×Θ(rcut − ri j)Θ(rcut − rik)

P(3)
(
θ jik

)
=

(
cosθ jik − cosθcut

)2

1+Cjik
(
cosθ jik − cosθcut

)2

4. Woodley. The Woodley potential is based on the Matsui’s potential378 that was used by

Gutiérrez et al. for important work on liquid379 and amorphous357,358 phases of bulk alumina

using MD simulations with periodic boundary conditions. As shown in equation 4.9, it consists

on the Coulombic contribution, and the Buckingham potential terms with the interaction pa-

rameters Ai j,Bi j, and ρi j. However, some divergence issues at short distances led Woodley380

to add the Lennard-Jones repulsive term in r−12
i j with its strength Ci j. Free parameters are

adjusted on structural data, dielectric and elastic constants of alumina. Interestingly, Wood-

ley optimized clusters structures by DFT from initial candidate structures found by using this

interatomic potential as a pre-step calculation.

VWoodley = ∑
i< j

[
qiq j

ri j
−Ai jexp

(−ri j

ρi j

)
− Bi j

r6
i j
+

Ci j

r12
i j

]
(4.9)

These potentials selected from the literature have been introduced in a home-made computa-

tional code integrating geometrical optimization and molecular dynamics processes. In order to con-

verge structures, energy or force gradient minimization is achieved by Quasi-Newton or Conjugate-

Gradient methods381.

4.2.2.2 Statistical analysis tools

We decided to characterize our large nanoparticles by calculating the Structure Factor (S) and

the Coordination number (nc). These two elements are related through the Radial Distribution

Function (RDF) g(r)357,359,379.

Radial Distribution Function g(r).

This function consists to calculate the evolution of the atomic density of each atom as a function of

the radial distance. The RDF gives insights about the long distance order, which can be found in

crystalline structure. g(r) is calculated from the partial pair-distribution function gab(r) (equation
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4.10), which considers that an atom of species a is surrounded by an average number of atoms of

species b (a,b = Al or O) contained in a shell of thickness (r + Δr).

gab(r) =
< na,b(r,r+Δr)>

4πr2Δrρcb
(4.10)

where ρ is the material density and cb is defined as the ratio of partial atoms number over the total

atoms number: cb = Nb/N. Calculations were done with Δr = 5.10−4 Å for interatomic distance

ranging from 0 to almost 25 Å.

The total radial g(r) and neutron gn(r) distribution functions are calculated as follow:

g(r) = ∑
a,b

cacbgab(r) (4.11)

gn(r) =
∑
a,b

cabacbbbgab(r)(
∑
a

caba

)2

with ba and bb the coherent neutron scattering cross sections of atom species a and b, respectively.

Coordination number nc.

The number of first-neighbors b surrounding an atom a corresponds to the coordination number

nc for this atom. It can be calculated from the integration of the total RDF first peak, from 0 to

Rmax
357,379.

nc = 4πρcb

∫ Rmax

0
r2gab(r)dr (4.12)

The cutoff radius Rmax was chosen to be fixed for each type of bonds in order to compare the poten-

tials: Rmax(Al-Al) = 3.10 Å > Rmax(Al-O) = 2.43 Å > Rmax(O-O) = 1.76 Å.

On the contrary of the RDF, this quantity is important for the short distance characterization of the

structure. It allows to determine the nature of the crystallographic sites by their symmetry and so

the crystallographic phase.

Structure Factor S(q).

The static structure factor allows to characterize the long distance ordering of an object. This

function is the main component of the intensity peaks of x-rays or neutron diffractograms and allows

for comparison between theoretical calculations and experimental measurements. By applying the

Fourier transform of the partial RDF gab(r) plus a window function357, the partial static structure

factor Sab(q) is obtained:

Sab(q) = δab +4πρ(cacb)
1/2

∫ R

0
[gab(r)−1]

r2sin(qr)
qr

sin(πr/R)
πr/R

dr (4.13)

with R, the cutoff distance chosen here as the half of the box simulation length. From Sab(q), we
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can calculate the x-rays SX(q) and neutron Sn(q) structure factors:

SX(q) =
∑
a,b
(cacb)

1/2 fa fbSab(q)

∑
a

ca f 2
a

(4.14)

Sn(q) =
∑
a,b
(cacb)

1/2babbSab(q)

∑
a

cab2
a

with fa and fb the x-rays form factors of atom species a and b, respectively.

4.2.3 Polymorphs stability from clusters to nanoparticles

4.2.3.1 Particles generation

The benchmarking of the empirical potentials previously described was used to study two size

populations of nanoparticles. First a research of conformations of most stable small clusters (Al2O3)n

(n=1-3) was performed with the empirical potentials by following three steps:

(1) n × 10 000 random isomers were built and were calculated by geometry optimization. At the

end, the similar clusters are eliminated if their energies and distances are lower than 0.002 eV and

0.7 Å. The remaining structures are then ordered by energy.

(2) For comparison, 2000 random geometries were optimized by DFT, using the Gaussian09 soft-

ware. Two successive calculations using B3LYP/6-31G* and B3LYP/6-311+G* basis sets were per-

formed and similar geometries were removed between each step.

(3) Even if the empirical potentials are less accurate, the main advantage is to be able to perform a

conformation research on a wide range of geometries on the contrary of time-consuming DFT cal-

culations. From this observation, the last step consists to optimize by DFT the first ten most stable

conformers calculated with the potentials in order to search additional geometries that were not

found in step (2). This step was performed using the same previous basis sets.

Larger clusters (Al2O3)n with n=4,6,8 were also calculated following the step (1), except n=8

where only 60 000 geometries were computed. While the n=4 clusters were optimized with all the

potentials, only the Alvarez’s and Streitz’s potentials were used for n=6 and 8. Moreover, for the

sake of computational cost, the step (2) was skipped and only the step (3) was carried out thus com-

puting the thirty most stable structures obtained with the potentials using a tight B3LYP/6-311+G*

basis set.

Secondly, larger (Al2O3)n nanoparticles from n = 50 to n = 20 000 were optimized with all

the potentials for the different crystal structures. To build particles of any size, we duplicated the

primitive lattice cell to generate large supercells of alpha and gamma phases. α-Al2O3 supercell was

built from the hexagonal primitive cell of corundum (52648 ICSD file382), characterized by lattice
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parameters a = b = 4.76 Å and c = 12.99 Å, the symmetry space group R3c and composed of 30

atoms arranged in six (0001) Al2O3 layers. γ-Al2O3 is described by a cubic pimitive cell (04-005-

4662 ICDD file383) with a lattice parameter a = 7.948 Å and the space group Fd3m.

But the gamma phase presents a defect spinel structure where a random lack of aluminum leads to

the right stoichiometry of alumina from the ideal spinel structure Al3O4. However, the position of

these Al vacancies from octahedral or tetrahedral sites is not clarified yet and is still under debate in

the scientific community. Pinto et al. studied all possible configurations for the vacancies locations

in the primitive cell and concluded that the octahedral sites led to the most stable primitive cell355.

Therefore, we prepared two configurations. One configuration presents only octahedral aluminum

vacancies whereas the other was made by removing randomly aluminum ions.

Finally, supercells of hundreds of thousands of atoms were built, where particles of desired size can

be cut directly from them. The three crystal structures are referred as α − (Al2O3), γOh − (Al2O3)

and γT dOh − (Al2O3), respectively. It is important to mention that these notations correspond to the

starting bulk crystal structures of the calculated nanoparticles. The optimized nanoparticles are

summarized in figure C.6 in Appendix C.2, displaying the particles diameters calculated by each

potential as a function of the atoms number and the units number n from (Al2O3)n.

In order to confirm the reliability of our supercell structures and the implementation of the

analysis tools, the static structure factor S was calculated for each crystal phase supercell and cross-

checked with different references. Maslen et al.384 and Lewis et al.382 characterized the alpha phase

by XRD, while the groups of Zhou385 and Guse383 performed XRD on gamma phase. Samain386

studied the gamma phase on nano-size particles. As shown in the figure 4.5, green curves of our

structures fit perfectly with the literature data. Red curves from the amorphous phase measured by

the group of Lamparter387 are added for comparison.

4.2.3.2 Clusters size

Isomers of small clusters obtained with the potentials can be now compared with isomers calcu-

lated by DFT. Figure 4.6 displays the five first geometries of (Al2O3)2 ordered as a function of their

energy relative to the more stable isomer. (Al2O3)2 was chosen since it reflects well the tendency

obtained for the other sizes. (Al2O3)n clusters for n=1,3,4,6 and 8 are shown in figures C.1-C.5 in

Appendix C.1. In addition, the symmetry of each structure was determined. Geometries denoted

with stars correspond to clusters found in step (3) and missed in step (2).

The obtained DFT geometries have been compared with previous studies111,366 and found to be

consistent with their results, especially with the work of the group of Li367 where isomers and their

relative energies are perfectly coherent. For the most complex structure (n = 8), some differences

appear due to the fewer calculations reported in the literature368.

Except for (Al2O3)1 where geometries are favored from the linear 1D molecule D_1A to the 3D
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Figure 4.5 – Stucture factors S of the as-build supercells (green curves) compared with experimental
reference data for α 382,384 (left) and γ 383,385,386 (right) phases, as well as the amorphous phase387.

structure D_1E (Fig. C.1 in Appendix C.1), DFT calculations show that alumina structures prefer to

stabilize in the highest dimensions. Indeed, the tetrahedral symmetry Td of the first isomer D_2A is

more stable than the higher energy particles, which tend to flatten.

The conformation research using the potentials results in diverse structures, more or less coher-

ent with the DFT geometries. While being the most complex potentials, the Vashishta’s, Streitz’s

and Woodley’s potentials lead to structures that are qualitatively different from what is obtained in

DFT. In particular, Vashishta’s potential favors compact 3D-structures with regular bond lengths and

angles constrained by the stretching R3(ri j,rik) and bending P3(θ jik) terms in the three-body part of

the potential. In the Woodley’s potential, the very compact structures betray the overestimate of

electrostatic charges.

On the opposite, the Streitz’s potential favors planar structures but still fails to find the right ge-

ometries, except for Al2O3. Zhou et al.388 demonstrated that the Streitz’s potential gives unrealistic

structures when bulk ionic configurations are highly compressed, i.e. the bond lengths are reduced

compared to equilibrium. They showed that for sufficiently small distances between cations and

anions, the Coulomb interaction predominates and Ees reduces by increasing the local charges,

without reaching a minimum. Repulsive terms are present in the potential to avoid too close ions,

but instabilities remain. They highlighted that same results could occur on non-bulk systems, such

as free surfaces and interfaces, or in clusters calculations. Therefore, this explains why the Streitz’s

potential tends to form flat clusters in order to avoid too close bond lengths.

Surprisingly, the Alvarez’s potential, which is the most simple potential, is the most efficient at pre-

dicting the correct geometries. In the case of (Al2O3)2, almost all the DFT geometries have been

found by this potential. This agreement holds even until n = 6 while for n = 8 the complexity of the
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DFT structures is not retrieved.

Interestingly, the star shape D_2C was found in DFT after the step (3). This geometry was only

predicted by the Alvarez’s and Streitz’s models. On the opposite, it is the D_4C isomer that was

detected by the Vashishta’s and Woodley’s potentials (Fig. C.3 in Appendix C.1).

Hence, such calculation methods reveal that the empirical potentials can be successfully employed

as a starting optimization tool thus limiting the use of computationally expensive DFT calculations.

Such processes have been already used for clusters conformation researches373,380, or to produce a

starting configuration for ab-initio methods for nanoparticles larger than 50 atoms358.

Figure 4.6 – Final isomer geometries of the (Al2O3)2 cluster calculated in DFT and with the four
empirical potentials by the conformational research method. The symmetry point groups and the
energy relative to the most stable structure are added. Aluminum and oxygen ions are in grey and
red, respectively. � represents the structures found by the conformation research with the potentials.

4.2.3.3 Nanoparticles range

The large nanoparticles were optimized with all the potentials for each starting crystal structure.

The obtained particles were analyzed by calculating the static structure factor S, the coordination

number nc, and the energy per atom according to particles size.

Structure factor S.

Figure 4.7 displays the structure factor curves of particles calculated starting from the α phase for

each potential (see figure C.7 in Appendix C.2 for the two γ phase configurations). Curves from the
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bottom to the top follow the increasing size, referred by the units number n. Experimental data of

the α bulk phase382 and the amorphous phase387 (red curve) are chosen as reference on the top of

each graph.

Figure 4.7 – Structure factors S computed from the relaxed α − (Al2O3)n nanoparticles using all the
potentials. For each curve, the repeat unit n is displayed on the right. Experimental data of α −
(Al2O3) bulk382(black curve) and a− (Al2O3) bulk387 (red curve) are displayed on top of the panel.
The orange curves represent the homothety corrections applied on the (Al2O3)1500 nanoparticle
and designed for each potential. Similar plots for structures starting from the three crystal phases
calculated with each empirical model are displayed in figure C.7 in Appendix.

Regardless of the potential, the static structure factor shows a transition from flat bands at small

sizes to sharp peaks at the larger ones. The smallest particles present a large band centered around

4.5 Å−1 similar to the experimental curve of the amorphous phase387. By increasing the size, one

can observe the emergence of predominant peaks that become sharper thus characterizing the crys-

tal organization within the system. After correcting the small shift caused by homothety in the bond

lengths (orange curve in figure 4.7), a very good agreement is observed between the peaks posi-

tions and the experimental results of the α bulk phase382. Furthermore, the phase transition from

an amorphous phase to a crystal phase was measured at 40 Å in calorimetry experiments310. This

crossover can be estimated starting from the (Al2O3)100 and the (Al2O3)200 particles, i.e. around

20 Å and 24 Å, using respectively the Vashishta’s and the Woodley’s potentials. Using the Alvarez’s

and the Streitz’s potentials, the transition occurs at larger size with the (Al2O3)324 particle, i.e.

around 35 Å and 32 Å, respectively, close to the experimental value measured at 40 Å310. Similarly

to the smaller clusters, the three-body term of the Vashishta’s potential favors crystal structure by
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constraining bond lengths and angles in the crystal structure configuration.

Figure C.7 shows that the crystal structure evolution of nanoparticles follows the same scheme

starting from both α and γ phases. Amorphous phase characterizes the small nanoparticles and a

polymorph crossover at approximately the same size for each potential marks the phase transition

towards the starting crystal structure.

Coordination number nc.

For a more quantitative picture, the phase transition may be identified using local ordering mea-

sured by the coordination numbers nc of the Al atoms. Figure 4.8(a) shows the evolution of the

coordination number characterizing the octahedral sites (nc,6) probed in the core of each particle

calculated starting from α − (Al2O3), i.e. at r = 5 Å. The crossover thus corresponds to the slope of

increasing nc,6 percentage before 100 % of aluminum ions lie in octahedral sites symmetry, which

characterizes the bulk corundum phase. Hence, the phase transition toward the α phase appears

very early in the case of the Woodley’s calculation. Indeed, its slope is close to that of the non-

relaxed structures, except that Woodley’s structures recover a bulk symmetry at larger size, namely

27 Å. The Vashishta’s crossover is more abrupt, estimated between 16 and 23 Å, favoring rapidly

a crystal structure. Finally, the crystallization predicted with the Alvarez’s and Streitz’s potentials

seems to range from around 20 Å to 35 Å and 38 Å, respectively.

To go further, the coordination distribution along the nanoparticle structure informs also about the

spatial ordering. Inset of figure 4.8(a) shows the distribution profile of nc,6 as a function of the

particle distance to its center r in the case of the (Al2O3)800 particle calculated with the Streitz’s

potential. Only at the core of the particle, all aluminum ions have the bulk coordination number

thus showing that the particle surface is made of an amorphous shell. Its thickness, denoted h, is

defined as the value for which we no longer have a 100 % of aluminum ions in the bulk symmetry.

From Fig.4.8(b), the surface thickness h seems independent of the particles size but varies slightly

from around 7.5 Å to 13.8 Å according to the potential used. The Vashishta’s and the Woodley’s

potentials, which favor crystal structures at smaller sizes, present thus a thinner shell than the two

other models, which predict a better reconstruction of the structure close to the surface. Please note

that the non-relaxed structures display already a thin amorphous crown of 2.5 Å, which comes from

the structures of dangling atoms left after cutting in the bulk.

Therefore, this observation reveals that structures with radius rM smaller than this surface thickness

h are deformed as a whole and appear in the amorphous phase, as can be seen with the snapshots

of three particles displayed in figure 4.8(c). A crystallized core region is clearly distinguishable

circled by a disordered shell for the two largest (Al2O3)2000 and (Al2O3)20000 particles, in contrast

with the first (Al2O3)100 particle, which is entirely amorphized. Ultimately, the amorphous to crystal

transition occurs when the shell thickness exceeds the particle radius.

Consequently, we can deduce that amorphization of the nanoparticles is due to the reorganisa-
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Figure 4.8 – (a) Evolution of the six coordination number (nc,6) with the increasing particles radius
rM calculated at 5 Å in the particles core. (Inset) Particles are subject to a surface reconstruction
calculated from the nc,6 distribution profile considering the distance r from the center of the particle.
(b) The thickness of the surface shell h appears to be independent of the particle’s size. (c) Final
α-Al2O3 nanoparticles optimized by the Alvarez’s potential, revealing the growing crystal structure
core surrounded by a constant amorphous shell.

tion of the atoms when a surface is created. The undercoordinated ions at the surface are desta-

bilized compared to their stable symmetry in the bulk and seek to rearrange in order to lower

their energy. Such process is known to induce a surface stress, different from the surface energy

in the case of solid interface. Indeed, the Shuttleworth’s equation389 relates the surface stress to

the surface energy plus an excess quantity term characterizing the energy induced by the matter

deformation: σ sur f = γsur f + ∂γsur f

∂ε
with σ sur f and γsur f the surface stress and the surface energy, re-

spectively, and ε the surface deformation. In liquids, self-diffusion of atoms justifies the suppression

of the second term, which leads to: σ sur f = γsur f . Due to this equality, the Laplace-Young relation

(Eqn 4.2) is valid for liquids, on the contrary of solids due to the excess surface energy. Detailed

reviews clarify the difference that should be made between these quantities390–392.

Energy per atom.

For now, we observed a phase transition from an amorphous phase at small sizes to a crystal struc-
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ture by increasing the size. However, the final crystal structure corresponds to the starting phase.

Energies of nanoparticles can then discriminate the crystal phase between α or γ, which should be

the most stable phase at this particles size. Energies per atom as a function of particles diameters are

reported for each polymorph in figure 4.9. Red, blue and green curves correspond to the calculated

particles relaxed from the α−, γOh− and γT dOh − (Al2O3) crystal structures, respectively. The phase

transition ranges estimated in figure 4.8(a) are reported within the grey areas. Intersections from

these energy curves refine the size of these crossover regions, marked by the dashed black lines.

First, we can observe that the amorphous region is characterized by energy curves randomly dis-

tributed. Then, the crossover coincides with a separation of the energy curves between the alpha

phase and the gamma phase configurations. The γ phase appears to be the stable polymorph in

the case of the Alvarez’s and Streitz’s calculations. This trend is in agreement with the calorimetry

measurements obtained by Tavakoli et al.310. On the opposite, the alpha phase is favored for the

nanoparticles calculated with the Vashishta’s and Woodley’s potentials.

In addition, a second transition is observed at larger sizes when using the Alvarez’s potential. The α
energy curve crosses those of the γ phases at around 77 Å thus indicating that the former phase be-

comes energetically favored. This crossover differs from the experimental value of 117 Å measured

by McHale et al.309. Nevertheless, this simple potential is the only one predicting both transitions.

Although the largest nanoparticles sizes were not investigated due to computational limitations, the

divergence of energy curves of the two phases proves the incapacity of the Streitz’s to predict the

second crossover.

Interestingly, both Alvarez’s and Streitz’s potentials lower the γOh configuration with respect to its

γT dOh counterpart, which is the expected structure according to Pinto et al.355.

To summarize, the four potentials results are reported in figure 4.10 over the wide size scale.

The computed particles sizes are displayed along the scale bar, also graduated by their units num-

bers n. Starting from defined crystal structures, some potential optimizations result in structures

consistent with experiments309,310, as represented by the green regions.

First of all, we saw that the Vashishta’s and Woodley’s potentials are not able to predict the stable

structures for the whole range of sizes. The Vashishta’s potential was calibrated to calculate the

bulk alpha structure, especially with its three-body term, while the Woodley’s potential deviation is

due to implemented over-charges.

Then, the Streitz’s potential does not allow to predict the smallest clusters, an issue already reported

and for which a corrected potential has been proposed388. However, with the increasing size, the

γ phase is stabilized after a first crossover, close to the expected value. Even though largest sizes

calculations were not performed due to computational limitation, the α phase does not seem to be

expected by this potential.

Surprisingly, the simplest model of Alvarez et al. allows us to simulate the stable structures from

small clusters to crystal structures at larger sizes. An optimization of the free parameters of this po-
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Figure 4.9 – Energies evolution over the range of nanoparticles size calculated by each potential
and starting from each polymorph. Phase transition ranges estimated in figure 4.8(a) are indicated
by grey areas and are confronted to the energy curves intersection (dashed black lines).

tential could correct the small shifts in size observed for the phase transitions. Generally, parameters

optimization should be performed in order to fit closely each potential results to the experimental

expectation.

4.3 Mechanical structure of ligand-free and capped alumina nanopar-

ticles

In a different project, we aimed to investigate further the mechanical structure of the α phase

for ligand-free and capped surfaces. For this purpose, we chose an accurate potential that enables

to bring a realistic description of the mechanical structure of alumina.

To better discuss the experimental system of interest, we chose first to perform molecular dynamics

(MD) calculations on α-Al2O3 facetted particles using the SMTBQ potential. This variable charge

potential was developed for atomic interactions in oxides with an accuracy close to quantum chem-

istry methods while enabling the calculations of systems containing thousands of atoms.

Then, we performed calculations on ligand-free alumina surfaces using the VASP code and the
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Figure 4.10 – Overview of regions corresponding to the successive stable polymorphs calculated
by each potential over the large range of particles sizes. Results are compared to the crossovers
deduced from calorimetry measurements309,310. The computed particles sizes are displayed along
the scale bar, also graduated by their units numbers n. Please note that due to computational
time limitation, the larger n values (12000, 16000, 20000) have converged only for the Alvarez’s
potential. Green areas show the size range where each potential describes accurately the particles
according to their structures and their relative phase stability.

SMTBQ potential. We found that both approaches lead to a similar qualitative description of the

mechanical structure of alumina surfaces, allowing to do a comparison with the nanoparticles struc-

tures calculated with the SMTBQ potential. Finally, we studied the influence of ligands on mechan-

ical structure of alumina surface.

This study was the subject of a collaborative project with Dr. Tristan Albaret from the Institute

Lumière Matière of the University Lyon 1.

4.3.1 SMTBQ calculations

The SMTBQ potential (for Second-Moment Tight-Binding-QEq) is a variable charge potential

based on the charge equilibration (QEq) method and developed by Tétot and co-workers349 and

available in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code393. It

was developed for describing the iono-covalent atomic interactions in oxides like alumina. A dis-

tinct advantage of this potential is that it takes a detailed account of the charge transfer between

atoms and therefore grasps the essential features of the Al-O bonding, leading to a description of

surface properties with an accuracy comparable to the Density Functional approaches349. From this

potential, a physical quantity comparable to a local pressure can be calculated. This will allow us

to compare the inside pressure with the mechanical deformation of the calculated structures, as

reported above for nanoparticles.

As explained in section 4.1.2.2, mechanical deformations of aluminum sites translate into an

induced pressure and a shift of the luminescence lines when doped with chromium. We can demon-

strate that these physical quantities are intrinsically related:
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(i) Firstly, local pressures calculated following the technique described in Appendix D.1 are related

to the mechanical deformations occurring inside nanoparticles. The deformations of the Al sites

are evaluated considering the Al-O bond length deformation relative to the bulk: Δa/a0 = a−a0

a0

with a and a0 the mean bond length of Al sites of the considered system and the bulk, respectively.

The deformations of the lattice under pressure were observed by different groups394,395 and were

compared to the bond length deformations evaluated in our calculations. Finally, a linear law was

found: Δa/a0 = 0.00126×P−0.00011 with P the pressure in GPa (see Appendix D.2).

(ii) Secondly, a theoretical shift of the luminescence lines relative to those from the bulk can also

be linearly found from the applied pressure. From luminescence measurements under controlled

pressure conditions, we obtained the following relation: Δλ [nm] = 0.357×P[GPa] (see Appendix

D.2).

The pressures calculated here reflect the applied forces on the atoms. Hence, a positive pressure

indicates forces that tend to extend the atomic bonds, while a negative pressure means a compres-

sion. Experimentally, the measured pressure (strictly positive) corresponds to the application of an

external pressure.

Three Al2O3 nanoparticles were generated with different sizes and shapes containing respec-

tively (A) 2880, (B) 1620 and (C) 2160 atoms using the same crystallographic parameters than

previously and employing a Wulff construction (Fig. 4.11(a)-(d)). Starting from α alumina bulk

structure, these systems were designed from cuts along (0001), (11̄00), (011̄0) and (101̄0) planes

for the particles (A) and (B) and cuts along (0001), (101̄0) and (011̄0) planes for particle (C).

These directions refer to typical planes of ruby, which were observed experimentally396 and theo-

retically371,372. Calculations were assured by molecular dynamics at 300 K for all the nanoparticles

and at 0 K only for the nanoparticle (A).

By partitioning the nanoparticles into shells from the surface to the center of mass (see Ap-

pendix D.1 and D.3), the examination of the pressure profiles linked to Δa/a0 and Δλ is shown in

figure 4.11(e) and displays a qualitative behavior split in two regions. Figures 4.11(a)-(d) illustrate

this effect by showing the high and low pressure regions in the studied clusters (P > 0.3 GPa or P

< -0.3 GPa).

The outer shells of the clusters experience a positive pressure less than 1 GPa. The positive sign

of these outer pressures indicates a tendency towards a surface extension, which is contrary to the

Laplace expectation where the surface energy cost drives the system towards a reduction of its sur-

face dimensions. Indeed, the bond lengths are elongated by maximum 0.1 % after 10 Å compared

to bulk values. Interestingly, we note the high pressure regions on the surface of cluster (A) at

0 K, while the surface regions experience local pressure closer to zero for all the clusters at T =

300 K. This could be explained by noting that at finite temperature, the surface atoms will often

explore regions slightly further out of the surface plane thus reducing the in-plane positive stress in
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4.3 Mechanical structure of ligand-free and capped alumina nanoparticles

Figure 4.11 – (a)-(d) Pressure regions of three α-Al2O3 nanoparticle structures arranged in three
pressure range, clarified by the color box. Nanoparticle (A) is composed of 2880 atoms and calcu-
lated at (a) 0 K and (b) 300 K. (c) Nanoparticle (B) is containing 1620 atoms and calculated at 300K
as well as (d) the nanoparticle (C) built with 2160 atoms. Nanoparticles (A) and (B) with (11̄00),
(011̄0) and (101̄0) plane surfaces are generated by Wulff construction and the nanoparticle (C) has
(101̄0) and (011̄0) planes. (b) Pressure profile along the inside distance from the center of mass
and arranged in shells for each nanoparticle. Pressure is related to the bond lengths deformation
Δa/a0 and the luminescence shift Δλ axis.

the surface region. Therefore, this positive stress is reduced at the first surface layers, but it is fed

through to the sub-surface layers.

Then, since the total pressure of the isolated clusters should balance to zero, i.e. reaching

an equilibrium with the vacuum pressure, the negative components inside the particles thus com-

pensate the positive pressure exerted at the surface. Mechanically, the atoms in the core try to

counter-balance the surface expansion by reducing their bond lengths, quantified by compression

of almost 0.2 %. At ambient conditions, the local pressures do not exceed higher values than -1.5

GPa while they are larger than -2 GPa at 0 K since the core needs to compensate higher surface

pressures.

Interestingly, this trend is similar between all the nanoparticles, but amplitudes of the variations

appear attenuated or enhanced as a function of the nanoparticles size and shape. The cluster (B),

which has almost twice less atoms than the (A) nanoparticle, seems to suffer from larger pressure

variations since its radius curvature is more important and that the core atoms are closer to the sur-

face. The smaller pressures noted for the particle (C) may come from the larger and flatter surface

planes where the atoms can spread more easily and reduce the surface stress.

From our SMBTQ molecular dynamics calculations, the pressure inside the free standing α-
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Al2O3 nanoparticles with radii between 1 and 2 nanometers appears negative and of the order of -1

GPa, while in the surface region the pressure should be positive in the 0-1 GPa range. Such pressure

variations are largely within the resolution of luminescence experiments, since they correspond to

shifts around 0.5 nm. However, Cr ions should be distributed in the whole alumina matrix thus

canceling the pressure effect on the luminescence lines. Though, an asymmetry is still present be-

tween the amplitude of the positive and the negative pressures, which could be interpreted as the

broadening of the luminescence peaks. In addition, our experimental conditions imply the use of

ligands in water, which were not taken into account so far in our theoretical approach.

4.3.2 VASP calculations

4.3.2.1 Free alumina surface

Currently, empirical potentials do not allow to consider systems combining inorganic objects

with organic molecules for the reasons discussed in section 4.2.1. Consequently, quantum chem-

istry calculations are more suited to describe ligand-capped alumina. DFT-based calculations were

first performed on free (0001) α-Al2O3 surface systems by using the VASP code. It provides a good

parallelization and allows us to calculate systems of a few hundreds of atoms with a reasonable

computational time, while preserving the DFT accuracy. For more details, the parameters used in

the calculations presented below are described in Appendix B.3.3.

Aluminum oxide was investigated in the corundum phase. α-Al2O3 supercell was built from

the hexagonal geometry of corundum (52648 ICSD file from ref382) along the (0001) direction

(labelled as z-axis) (parameters of corundum phase is recalled in section 4.2.3.1). This alumina

cell was duplicated by 2× 2× 1 along the real x, y and z cell axis directions (x = 9.6151 Å ; y =

9.6151 Å ; z = 13.1148 Å) (Fig. 4.12(a)). This bulk reference structure cell contains thus 120

atoms, arranged in 18 z-axis layers. 2/3 of the aluminum ions occupy an octahedral site slightly

deformed in the trigonal symmetry, where the ions bond closer to one oxygen plane than the other.

As a result, the atomic layers are periodically ordered in O-Al-Al planes, where the double Al layers

correspond to inverted sites with long bond lengths (1.97 Å) and short bond lengths (1.85 Å) (Fig.

4.12(b)).

Then, the simulation of the (0001) Al2O3 surface was achieved by placing the bulk cell on the mid-

dle of an empty 39.3446-Å height box (keeping the same x and y dimensions). Thus, a vacuum

thickness of 26.3 Å was fixed between the periodic images along the (0001) direction. The Al sur-

face termination was chosen as it is known as the most stable face365,371,372. All the generated slabs

with their characteristics and their energy can be found in figure D.4.

Upon geometry optimization, atomic displacements occur along the z axis and lead to the re-

laxed structure at 0 K. At the end, the z positions of the successive Al and O layers of the final
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4.3 Mechanical structure of ligand-free and capped alumina nanoparticles

Figure 4.12 – (a) Bulk alumina slab calculated with VASP. Oxygens and aluminum are respectively
red and grey. (b) Scheme of the periodic structure of corundum where the ABAB oxygen planes
ordering creates successive alternated aluminum sites with long (blue) and short (red) bond lengths
(Reprinted from348).

α-Al2O3 (0001) surface are compared to the bulk reference in figure 4.13. The corresponding in-

terlayer distances and their deviation magnitudes from the bulk are summarized in table 4.1.

In the bulk cell, the planes are regularly spaced by 0.845 Å and 0.496 Å between two Al-O plans

and two Al-Al plans, respectively (Fig. 4.12(b)). The first interlayer distance experiences a large

relaxation (-84.6 %) where the topmost Al layer almost merges with the O underlayer. While pro-

gressing towards the center of the slab, the relaxations oscillate (between -45.6 % and +20.5 %)

and stabilize after the seventh plan.

At the center of the slab, the local environment around Al atoms is close to the bulk one with a

minimal deviation of the Al-O bond-length of 0.0085 Å (< 2 %). These large relaxations go along

with a substantial decrease of the surface energy from 3.62 J/m2 to 1.53 J/m2, respectively, for the

as-cleaved and optimized configurations. These results are in perfect agreement with the calcula-

tions of Ruberto et al.348 and in fair agreement with experimental results309,397.

Interestingly, we note that fixing the in-plane dimensions using the bulk lattice parameters induces a

net positive pressure in the system. With our calculation, the VASP code gives us access to the stress

tensor σi j, which applies on the atoms according to the (x,y,z) directions. As the stress relaxation

occurs in the z direction, the contribution to the pressure coming from the in-plane components of

the surface stress tensor is given by: P =
σxx+σyy

3
. This global pressure needs to be differentiated

to the local pressures seen previously in the SMTBQ calculations. Finally the pressure amounts to

+1.424 GPa. Although this quantity depends on the exact cell geometry, its positive sign confirms

again a tendency towards a surface extension in the in-plane dimensions, contrary to the Laplace

theory.
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This surface relaxation over the first layers of the alumina structure is similar to our earlier

observations on the nanoparticles calculated using empirical potentials. The same bulk-like core

is recovered after crossing a destabilized shell of several atomic layers. In the VASP calculations,

the thickness shell is estimated to be around 5 Å, smaller than the previous thickness. It should

be recalled that this calculation is limited to 2D systems where the in-plane lattice parameters are

imposed at all depths along the z direction. By taking into account the nanoparticle curvature or

facets shapes, these restrictions are withdrawn and more degrees of freedom allow the atoms to ex-

plore regions slightly further out of the surface in-plane. Moreover, addition of a finite temperature

thermostat as in the SMTBQ calculation increases these relaxations and thus the surface shell.

Interplan Bulk (VASP) Surface (VASP) Ligands (VASP)
(Å) (Å) (%) (%) (%) (Å) (%)

This work DFT348 Expt397 This work
1-2 0.845 0.128 -84.8 -85 -51 0.539 -36.2
2-3 0.845 0.880 +4.1 3.2 16 0.941 11.4
3-4 0.496 0.269 -45.6 -45 -29 0.343 -30.7
4-5 0.845 1.019 +20.5 20 20 0.942 11.5
5-6 0.845 0.892 +5.5 4.8 - 0.851 0.7
6-7 0.496 0.457 -7.6 -7.1 - 0.504 1.7
7-8 0.845 0.860 +1.7 1.3 - 0.839 -0.7
8-9 0.845 0.831 -1.7 -0.8 - 0.840 -0.6

Table 4.1 – Interlayer distances (Å) and deformation magnitudes (%) along the depth of the calcu-
lated cells.

Figure 4.13 – (a) Mean z-positions of atomic layers aligned from the center of the corresponding re-
laxed α-Al2O3 cells calculated with VASP: (b) bulk, (c) free- and (d) capped-surface slabs. Ligands,
sketched in blue in (d), are visible in the (e) whole 4bi/0uni cell. Al, O, C and H ions are in grey, red,
blue and white, respectively.

Transferability between the SMTBQ and VASP methods in order to compare results was checked
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4.3 Mechanical structure of ligand-free and capped alumina nanoparticles

by computing similar α-Al2O3 (0001) surface systems with the two codes (SMTBQ results are pre-

sented in Appendix D.3). On the one hand, local pressures of relaxed and unrelaxed cells served

to relate the nanoparticles results with those of surfaces done only with the SMTBQ potential. In

another hand, the structural results obtained on the free alumina surfaces confirm the good agree-

ment between SMTBQ and VASP. The pressure evolution showed a similar trend than nanoparticles

where a pressure discontinuity appears at the free (0001) Al2O3 surface. Its origin is related to the

surface stress generated by the cut from the bulk and relaxations. Under the (0001) orientation

the surface plane tends to extend and induced a positive stress with its in-plane components as the

main pressure components. Then, the mechanical equilibrium requires a negative pressure in the

bulk as a counterbalance contribution. We thus deduced that the nanoparticles computed with the

SMTBQ code present the same qualitative behavior than the VASP surface. Ligands can now be

added on the free surfaces to investigate their impact on the surface relaxation.

4.3.2.2 Capped alumina structure

The ligands effect is then investigated by adding molecules on the surface cells. The ligand-free

(0001)α-Al2O3 surface is modeled as previously with a periodic 18 layers slab terminated with an

Al layer on both surfaces and a vacuum thickness of 26.3 Å. The in-plane dimensions, i.e. the (x,y)

plane, correspond to a (2 × 2) surface cell using the hexagonal bulk lattice parameters. Coated

cells were made by bonding two depronated acetic acid molecules per surface on aluminium ions

through the oxygens of the carboxylic head, as shown in figure 4.13(e). Ethanoic acid molecules

(CH3COOH) have been chosen to keep the same polar head than the MEEAA ligands but with a

smaller unpolar chain thus keeping an affordable computational cost. As seen in section 4.1.2.1, the

bidentate bridging mode appears to be preferred as bonding approach for the surfactant molecules

on the aluminum atoms. However, four configurations were explored with different ratio of biden-

tate Xbi and unidentate Xuni bonding modes, with X the ligands number: (i) 4bi/0uni, (ii) 3bi/1uni,

(iii) 2bi/2uni and (iv) 0bi/4uni (Fig. D.4). The final density coverage is then 0.025 molecules per Å2.

Angles and bond lengths of the ligand molecules as well as between the ligands and the surface

metallic ions were initially estimated from the calculations of Nara et al.321. Hydrogens coming

from the deprotonation of ligands during the bonding were added on alumina oxygen to compen-

sate the charge difference.

The average positions of the atomic layers in presence of ligands on the surfaces are included in

figure 4.13 and relaxations are reported in table 4.1. The displayed results correspond to those of

the 4bi/0uni slab being the most stable configuration. Interestingly, the energy order between all the

studied slabs, which can be found in the table of the figure D.4, favors the bidentate bonding mode

that confirms the experimental interpretation. Please note that the difference between covalent and

ionic attach could be determined through a charge analysis using the Bader code398.

The relaxation of the first Al-O interlayer distance is now -36.2 %, much less in comparison to the
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-84.8 % of the ligand-free surface. Similarly, the bulk interlayer distances are reproduced earlier

within ± 2% after the fifth plane. Damped oscillations (from -30.7 to 11.4 %) are still visible to

compensate the residual surface stress, even though the variations are less violent than previously.

With ligands on the surface, the in-plane contribution to the pressure becomes +0.235 GPa with

the same cell geometry as for the clean surface. This stress reduction by a factor 6.06 as well as

the small variations of the interlayer distances and consequently the Al-O bond lengths show that

the effect of the ligands strongly damp the relaxations of the free surface leading to a slab that

almost recovers a bulk-like structure. Considering this stress reduction factor, the local pressures

previously calculated for nanoparticles and reported in figure 4.11(e) should thus dip below 250

MPa and induce luminescence shift lower than 0.15 nm.

In addition, a more realistic view of the system should take into account the solvent medium as

well as the hydroxylation of the surface. Numerous studies show that it is hard to obtain hydroxyl-

free alumina (0001) surfaces and that the OH surfaces are obtained even for low conditions (1 Torr

at 300K)399–401. By covering the whole surface of the particle, the OH molecules are able to strongly

bond to the Al and O layers on the first layers of the surface and could thus reduce the surface stress.

4.4 Conclusion

To summarize, we found that ligands have a clear effect on the nanoparticles size when they

are used in PLAL synthesis of a α-Al2O3:Cr3+ target in water. Nano-rubies smaller than 10 nm have

been found in synthesis with ligands. γ nanoparticles appear predominant in ligand-free synthesis,

although the polydispersity of uncapped nanoparticles leads to the formation of nano-rubies with

size larger than 10 nm. In addition, ligands seem to stabilize the nano-rubies leading to a lack of

shift induced by Laplace pressure in the luminescence measurements.

This stabilization was investigated by different theoretical calculations:

(i) a benchmarking of empirical potentials shows that the stability of bare alumina nanoparticles

at the nanoscale is mainly driven by a surface reconstruction, independent of the nanoparticles

size and leading to a crystal structure core surrounded by an amorphous shell. The resulting γ
polymorph is thus favored at small sizes, where, in the case of ruby, the luminescent lines are not

visible.

(ii) The ability of atoms to re-arrange themselves at the nanoparticles surface in order to lower the

surface energy, i.e. the surface stress, have been evidenced on nanoparticles using a charge variable

potential (SMTBQ) as well as on free surfaces with DFT-based calculations (VASP). The system ex-

hibits an important relaxation of the outer layers thus inducing an expansion of the atoms and a

positive pressure. This thus needs to be differentiated from the Laplace’s pressure. Then, the atomic

perturbation caused by this stress at the surface is progressively attenuated and compensated by the

atoms from the core, which tend to compress thus characterized by a negative pressure. In the case
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of surface systems, the bulk configuration is recovered after a few layers from the surface.

(iii) Finally, the ligands tend to reduce the surface stress in a general manner by reducing the relax-

ation at the early surface, by homogenizing the damped oscillations and by stabilizing earlier the

structure in the bulk configuration. The reduction of this surface stress was estimated to around 6,

which decreases drastically the pressures observed in nanoparticles far below 1 GPa. The mode of

bonding of the ligands on the nanoparticles surface has also been evidenced both experimentally

and theoretically, preferring to adsorb in a bridging bidentate approach. Therefore, chromium ions

in α alumina should experience pressures that are greatly reduced by ligands and thus emit non-

shifted light, as observed experimentally.

Further theoretical investigations should be however performed. In the first study, the poly-

morphs stability regions were reproduced at equilibrium with geometrical optimization calculations.

To simulate nucleation and growth process, molecular dynamics calculations should be carried out

with the same implemented empirical potentials or with the SMTBQ potential in order to follow the

out-equilibrium dynamics.

The mechanical structures of corundum have been evaluated with and without ligands. For a better

comparison, the γ phase should be investigated similarly using both SMTBQ and VASP methods.
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This thesis work has been conducted in order to bring new insights about the understanding

of the factors influencing laser-generated nanoparticles growth and stabilization in solution. This

physical method innovates by its ability to easily produce free surface nanoparticles, but the whole

ablation process is composed of complex physical and chemical mechanisms thus resulting in a

polydispersed and polymorphous assembly of particles. The number of adjustable parameters en-

ables to carry out versatile experiments to synthesize nanomaterials with a plenty of material and

solvent combinations. Since the first PLAL trials in the nineties, the effects of numerous factors on

the formation of the nanoparticles and the final results of colloidal solutions have been explored.

However, there is still a lot of work to do in order to allow a better control of the stability of the

colloidal solutions, as well as on the selectivity of the nanoparticles morphology.

In the chapter 2, our efforts focused on the dynamics of the first bubble even if this stage appears

less relevant for nanoparticles formation than phenomena related to the plasma. The PLAL method

opens the way to explore new fundamental mechanisms induced by the extreme conditions and the

very short time scale of the processes. The laser-generated bubbles have dynamics that seem similar

to classical systems of bubbles or droplets spreading. Yet, the high velocities combined with high

viscosities of solvents lead to consider unusual extreme conditions, relevant for fluid mechanics.

Bubbles were tracked using an ultra-fast camera included in a shadowgraphy set-up. I developed

a computing code to analyze automatically the bubbles pictures and to deduce the geometrical pa-

rameters as well as the dimensionless Reynolds, Weber and Capillary numbers with respect to the

bubbles lifetime. For ablation in water, the analytical approach developed by our team and based on

the Rayleigh-Plesset equation was used to calculate thermodynamic quantities (mostly temperature

and pressure) of bubbles generated in water. Combined with the dimensionless numbers values,

we confirmed that these systems are driven by inertia and remain unchanged relative to the laser

fluence. The increase of laser energy leads only to a longer bubble lifetime and a larger bubble size.

Afterwards, the dynamics of the bubbles were investigated with the increase of the viscosity of the
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solvent. In the framework of a collaborative project, which aims to produce Au and YIG nanopar-

ticles in engine oils, high viscous oils have been used. It appears that the viscous force cannot be

neglected anymore with respect to inertia when increasing viscosity. We find that the competition

between the viscous forces and the surface tension (capillary number Ca), on the one hand, and the

competition between the viscous forces and inertia (Reynolds number Re), on the other hand, are

both key factors. This leads to bubbles geometry different from the hemispherical shape of bubbles

produced in water. The bubble shape is composed of a spherical cap driven by inertial forces and an

interface layer separated by a rim. Close to the target, the friction enhanced by the viscous forces

has to be included in the resistance forces along with inertia thus resulting in the interface layer.

Despite some similarities between systems at low capillary numbers, i.e. the interlayer thickness

dynamics and the contact angle hysteresis, the behavior of the contact line of our bubbles cannot

be interpreted with models coming from fluid mechanics, such as the Cox-Voinov model or the

molecular-kinetic theory. Our systems differentiate from classical cases by the high capillary num-

bers and could be relevant for field of fluid mechanics.

A straight way to control nanoparticles involves the addition of stabilizing agents on the solu-

tion before the synthesis. The first approach we saw in chapter 3 was the use of ions to stabilize

gold nanoparticles in water solution. The colloidal stability is generally ascribed to the electrostatic

repulsion forces generated by the ionic double layer around charged nanoparticles. However, the

origin of the charge carrier is still unclear. Two distinct assumptions have been proposed. On the

one hand, an excess of electrons formed during the plasma phase during the nanoparticles forma-

tion is assumed to charge the nanoparticles. On the other hand, the negative charges are supposed

to be carried either by oxygen due to the depronotation of oxide groups by tuning the pH or by the

direct adsorption of anions on the surface of the particles.

In the work presented in chapter 3, we deduced from XPS measurements on a free-standing beam of

gold nanoparticles produced in NaBr solution that half of their surface is covered by Br ions. How-

ever, no evidence of oxidation was found thus supporting the hypothesis of nanoparticles charged

by an excess of electrons. Theoretical calculations are still in progress to explore the surface chem-

istry of gold nanoparticles in contact with chaotropic anions and with oxide groups.

In any case, the ions have been proved to have a real effect on the stability of gold solutions, and

hence the nanoparticles size distribution. We investigated the ions concentration using salts. In

general, the selected ions stabilize the solutions in a large range of concentration. A bimodal distri-

bution of nanoparticles was measured with a dominant population from 5 to 20 nm and a second

minor one around 100 nm. Unfortunately, we did not explore high concentrations where the critical

amount of salt leading to destabilization can be reached. The nanoparticles aggregated for concen-

tration higher than 10 mM only for solutions where the pH increased.

However, it appears that the gold concentration has a key role on the solution stabilization. We

observed that by increasing the solution concentration from different initial salt concentrations, the
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solution starts to destabilize at almost the same solution concentration. Intuitively, we can assumed

that the free space between the particles are reduced with the increase of gold concentration, and

independently to salt concentration, ions are then overcome when the particles have no choice than

to be close.

Organic ligands are known to stabilize inorganic nanoparticles. In our case example, ligands suc-

ceed to tune the size of PLAL-synthesized nanoparticles of ruby (α-Al2O3:Cr3+) around 4 nm and

homogenize the size distribution leading a better colloidal stability. In solutions without ligands,

nanoparticles display a large polydispersity. More importantly, we found that capped nano-rubies

have been produced for sizes below 10 nm whereas another polymorph (γ phase) is expected to

be favored according to calorimetry experiments. Most of the ligand-free nanoparticles appear to

form in the γ phase. In addition, the nanoparticles stabilized with ligands show no shift for the

chromium ions lines in luminescence measurements. Indeed, the chromium emission in corundum

is a sensitive structural probe. To go further, a theoretical approach has been planned to understand

the influence of ligands on the structure of α alumina nanoparticles.

We pointed out that the ligands reduce drastically the stress that applies on the nanoparticles sur-

face. Indeed, the surface stress defined as an excess energy of the surface energy is due to the atoms

reconstruction when a surface is created. A surface is energetically disfavored with undercoordi-

nated atoms and they thus seek to coordinate with those in subsurface. As a result, the surface

reorganizes and the mechanical deformations lead to a positive pressure. Such deformation is pro-

gressively damped along the nanoparticle radius. A certain thickness of amorphous-like phase is

then visible and appears independent of the particles size. The core of the nanoparticle counter-

balances this atoms reorganization to maintain the bulk-like configuration by trying to reduce the

atoms bond lengths indicated by negative pressure.

Hence, ligands have a strong impact on the surface reconstruction since they bond to undercoordi-

nated atoms and partially prevent the collapse of this first layer. Such stabilization thus justifies the

lack of luminescence shift expected for the emission lines of the chromium ions in nano-rubies.

Perspectives.

Finally, synthesis of bare nanoparticles by PLAL is of a great interest to industrial applications and

promising economically in a long time run according to the productivity. However, numerous im-

provements need to be done to pursue toward a better control of the nanoparticles morphology

and the colloidal stability. Even if the use of adsorbates allows a better control of the nanoparticles,

the main advantage of PLAL compared to the other synthesis methods remains the production of

colloidal solutions of ligand-free nanoparticles in an one-step process.

In this sense, chapter 3 reveals that trapped electrons can not be excluded to explain the negative

charges of gold nanoparticles. Indeed, the poor amount of oxide observed raises the question of the

adsorption mechanism of the anions, which are usually assumed to mainly contribute to the surface

125



Conclusion

charge of the Au nanoparticles. To confirm this assumption, we are pursuing the theoretical work

launched recently. We seek to find the most likely adsorption modes of different ions on a gold

surface with DFT-based calculations using the VASP software. In addition, new XPS experiments

could bring final conclusion on this study. The perspective of this work would be a breakthrough in

the understanding of the stabilization of metal colloids.

By using organic ligands, the stabilization seems even better. Other experiments using different

molecules, laser equipment such as fs laser, and even various target materials should be interesting.

Theoretically, our calculations made on corundum alumina is quite convincing on the stabilization

by the ligands, but a similar study should be performed on the γ phase of alumina to confront the

results obtained on the two polymorphs.

Finally, the chapter 2 remains a first exciting study whose one the final goal is to investigate how

the nanoparticles growth and maturation may be influenced by high viscous oils. This study allows

to observe the dynamics of the bubbles in two high viscous liquid where the conditions could be

different from system such as ablation in water. To go further, we consider to explore a broader

range of viscosity values and to relate the bubbles dynamics, described by hydrodynamic and ther-

modynamic parameters, with the nanoparticles morphology characteristics. At the end, a control

of the nanoparticles could be considered through the bubbles and the solvent, in addition to the

one-step process interest.
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APPENDIX A

CHARACTERIZATION METHODS

A.1 Concentration from absorption spectrum

Absorption spectrum expresses the absorbance in optical density (OD) as a function of the ab-

sorbed laser wavelength. By crossing a sample of thickness h, the intensity of the incident laser

beam I0 is attenuated due to absorption and scattering related to the encountered particles. The

transmitted beam has a remaining intensity I, which is recorded by a detector. Absorbance A defines

the extinction variation between the two light beams:

A[OD] =−log10

(
I
I0

)
(A.1)

A follows the Beer-Lambert law relating the attenuation of the light with the material features:

A = h∑
{i}

ε(i)c(i) =
h

ln(10) ∑
{i}

σ(i)n(i) (A.2)

where the concentration of a particles set {i} ci (mol.m−3) and the molar extinction coefficient ε(i)
(m2/mol) are related to the extinction cross-section σ(i) (m2) and the density number n(i) (m−3).

The absorption spectrum of gold nanoparticles is known to present a resonance peak, which shifts

with particles size. However, this peak was found to be static at around 525 nm for sizes below

about 20 nm. For small particles, the cross section is a simple function of the size, absorbance just

depends on the concentration of these nanoparticles.

Density n(i). To evaluate the gold nanoparticles concentration, we want to express the density

n(i) by the total gold particles concentration csol in mass per volume unit (g/L). For this purpose,

we consider a weight distribution Pm(i) of a set {i} of particles centered on a diameter d. The total
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mass mT is equal to the sum of each mass fraction m(i) given by:

mT = ∑
{i}

mT Pm(i) = ∑
{i}

m(i) (A.3)

with ∑
{i}

Pm(i) = 1

m(i) is thus the mass of particles {i} of the corresponding diameter d, which can be related to the

particles number N(i) and the density ρ:

m(i) = ρV (i) = ρN(i)
4

3
π(

d
2
)3 = ρN(i)

2

3
dS(d) (A.4)

with S(d) and V (i) the surface area and the volume of the particles set {i} associated to the diameter

d, respectively.

As the concentration of the solution csol is equal to the total mass mT divided by the total volume V ,

equations A.3 and A.4 become:

Pm(i)
mT

V
= Pm(i)csol = ρ

N(i)
V

2

3
dS(d)

n(i) =
N(i)
V

=
3

2

Pm(i)csol

ρdS(d)
(A.5)

Cross-section σ(i). From the literature, the extinction efficiency coefficient Qext can be calcu-

lated from optical constants and Mie theory, and is related to σ(i) by:

σ(i) = QextS(d) (A.6)

For gold, Qext/d remains constant for size below 20 nm and is estimated at 0.067 nm−1 from two

cross-checked references402,403.

By injecting equations A.5 and A.6 in A.2, we obtain a proportionality relation between csol and

A:

A =
h

ln(10)

3csol

2ρ ∑
{i}

Pm(i)
Qext

d
S(d)
S(d)︸ ︷︷ ︸

〈Qext
d 〉

csol[g/L] =
2

3

ln(10)ρ
h

1〈
Qext

d

〉A[OD] = 0.0442×A[OD] (A.7)

In our case, the absorption cell is 1-cm size (h) and the gold density is ρ = 19.3 g.cm−3.
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A.2 Differential sedimentation centrifuge

In our experiments, we use a CPS system to determine the size distributions of the synthesized

gold solutions. The principle is to inject a small of volume (100 μL) of solution containing nanopar-

ticles and to time the arrival of particles being detected when they pass in front of a diode laser

beam and induce transmittance fluctuations. Then, the setup allows to find the diameter of each

particle according to their arrival time.

Particles velocity.

The principle of calculation is based on the centrifugal sedimentation of particles in a liquid of

density ρL and dynamic viscosity ηL. Forces balance takes into account the centrifugal forces

along the considered z-axis, and the friction force with the Stokes-Einstein law and considering

the Archimedes’ principle:

m
d�v
dt

= m�gc −6πηLr�v−ρLVp�gc (A.8)

=−α�v− (ρS −ρL)Vp�gc

=−α�v−ΔρVp�gc

The particles of radius r have a mass m, which is related to the volume Vp and the density ρS. They

move with a velocity �v. �gc is the centrifugal acceleration defined as: gc = ω2R = RCF × g with ω
the rotational speed and R the radius of rotation. RCF is the Relative Centrifuge Force and g is the

gravity acceleration. This gives a differential equation of the first order to solve along the vertical

axis, and the solution is given by:

�v = vlim

(
1− e−

t
τ

)
�ez (A.9)

with vlim =−τgc
Δρ
ρS

=−τgc

(
1− ρL

ρS

)
and τ =

m
α

Therefore, τ refers to the time for which a particle of mass m reaches the limit velocity vlim. As the

α term depends on the particles radius, we can rearrange τ as follows:

τ =
m
α

=
ρSVp

6πηLr
=

4
3
πr3ρS

6πηLr
=

2

9

ρS

ηL
r2 (A.10)

vlim =
2

9

Δρ
ηL

r2gc

If we take gold nanoparticles of 1 μm and 10 nm rotating in water, the time to reach vlim is respec-

tively 4.3 μs and 0.43 ns. Therefore, we can consider that the particles reach instantaneously the

limit speed, i.e. at constant speed, of 0.8 m/s and 80 μm/s, respectively, with RCF = 20 000.

131



Appendix A: Characterization methods

Size measurement.

When particles are at their constant velocity, the acceleration becomes null and the forces are bal-

anced. Then, the settling velocity vlim can be restated as the first derivative of the distance from the

center of rotation to the detector with respect to time:

dR
dt

=
2

9

Δρ
ηL

r2ω2R (A.11)

(A.12)

Finally, we integrate from the center of the centrifuge disc Ro to the detector position at the edge of

the disc R f , which allow us to relate the particles radius to the arrival time t:

ln

(
R f

Ro

)
=

2

9

Δρ
ηL

r2ω2t

r =
(

9

2

ηL

Δρω2
ln

(
R f

Ro

)) 1
2

t−
1
2 (A.13)

r = Kt−
1
2

Consequently, it is easy to calculate the particles size from the arrival time by knowing the parame-

ters of the measured material and the driven liquid media, as well as the setup parameters for each

measurement.

Data display.

At the end, a weight distribution ρm(D) is obtained. When we plot it as a function of a linearly

scale of diameters D, the small sizes are crushed with respect to the whole diameter range from

nm to μm. A logarithm scale is more appropriated but it necessitates a variable change in order to

preserve the weight distribution area, which represents the relative contribution to the total weight

of a given size range:

mT =
∫ Dmax

Dmin

ρm(D)dD −→
∫ D′

max

D′
min

ρ ′
m(X)dX (A.14)

with D → X = log(D)

dD → dX =
d(ln(D))

ln(10)
=

dD
Dln(10)

Finally, we find that the relative weight distribution ρ ′
m(X) by multiplying the linear weight dis-

tribution ρm(D) by its diameters D within a constant taking into account during the CPS software
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process.:

ρm(D)dD = ρ ′
m(X)dX

ρ ′
m(X) = ρm(D)

dD
dX

= ρm(D)Dln(10) (A.15)

ρ ′
m(X)≈ Dρm(D) (A.16)

A.3 Zeta potential measurement

The zeta potential is used to know the charge of the solvated nanoparticles at the slipping

plane. The principle of the ZetaSizer apparatus is to use an electrophoresis cell in order to migrate

the charged particles toward the anode or the cathode as a function of the charge sign by applying

an electric field. The zeta potential ζ can then be calculated from the Henry’s equation:

μe =
ve

Fe
=

2εζ f (κa)
3η

(A.17)

where the electrophoresis mobility μe (m2/V.s) is the particles velocity ve over the applied electric

field Fe, ε the permittivity of the solvent and η the dynamic viscosity.

f (κa) is the Henry’s function that balances between the Hückel and Smoluchowski limits: 1 ≤
f (κa) ≤ 1.5 with κ = 1/λD. The complete expression of f (κa) can be found elsewhere287. It de-

pends essentially to the ratio κa = a/λD between the particles radius a and the Debye length λD.

On the one hand, the Hückel limit ( f (κa) = 1.0) favors the small particles with a large double layer

(a/λD � 1), while systems of large particles in high salt solutions (a/λD > 1) are better described

by the Smoluchowski model with f (κa) = 1.5.

Therefore, the zeta potential is proportional to the electrophoresis mobility μe. As the electric

field is a controlled parameter, only the particles velocity needs to be measured. For this purpose,

the laser Doppler electrophoresis technique is used. The principle is to light the solution with an

incident laser beam characterized with a frequency fre f and a wavelength λ . The light will be then

scattered by the particles and will be captured by a detector, which forms with the incident laser

beam an angle θ . As the particles move, a difference appears between the frequency of the incident

beam and that of the scattered beam, noted fsca. This shift in frequency is related with the particles

velocity as follows:

Δ f = fre f − fsca =
2vesin

(θ
2

)
λ

(A.18)

The incident and scattered signals are forced to interfere with an appropriate angle thus creating a
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modulated beam with a rapid and slow oscillations frequency. The smallest "beat" frequency is then

recorded by the detector that can deduce the speed of each particle. The sign of the frequency shift

(Δ f > 0 or < 0) indicates the sign of the zeta potential (+ or -, respectively).
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APPENDIX B

QUANTUM CHEMISTRY METHODS

B.1 Theoretical basis

Calculations methods at atomic level have been developed along the XXth century with the

revolution of Quantum Mechanics. A quantum system is composed of atoms that interact thanks to

electrostatic charges distributed between nuclei and electrons. The state of this system is described

by the wavefunction Ψ and its energy E, which are related by the Schrödinger equation, established

in 1926. From these quantities, it is thus possible to determine the physico-chemical properties. In

the stationary case, the time-independent Schrödinger equation is given by:

ĤΨ(�r) = E(�r)Ψ(�r) (B.1)

where Ĥ is the Hamiltonian operator and is expressed as follow:

Ĥ =−
N

∑
i=1

1

2me
∇2

i −
M

∑
A=1

1

2mA
∇2

A +
N

∑
i=1

N

∑
j>i

e2

4πε0|ri − r j| −
M

∑
A=1

N

∑
i=1

ZAe
4πε0|RA − ri| +

M

∑
A=1

M

∑
B>A

ZAZBe2

4πε0|RA −RB|
(B.2)

Ĥ = Te +Tn +Vee +Ven +Vnn

In the following, expressions will be written in atomic units, i.e. e = me = 4πε0 = 1.

The two first terms T̂e and T̂n are the electronic and nuclear kinetic energies, respectively. Lapla-

cian operators ∇2 act on the electron i of mass me and the nucleus A of mass mA. Coulomb inter-

actions are described by the electronic V̂ee and nuclear V̂nn repulsive contributions, as well as the

attractive term V̂en. Each term takes into account the interaction induced between two charged

particles, for instance, one electron i of charge e and one nucleus A of charge ZAe, spaced with a

distance rAi = |RA − ri|. Summations are done on all the particles, namely N electrons and M nuclei.
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The analytic resolution of this equation is limited to mono-electronic cases, such as the hydro-

gen atom or the H2
+ molecule. Larger polyelectronic systems cannot be solved analytically, while

numerical calculations are extremely difficult due to the computational cost. To simplify the reso-

lution, the famous Born-Oppenheimer approximation is applied for any quantum systems330. This

approach considers that the mass difference between electrons and nuclei induces a difference of

time between the particles movements. The nuclei are thus considered fixed compared to the elec-

trons movement. The electronic and nuclear wavefunctions and hamiltonians are thus decoupled:

Ĥ = Ĥe + Ĥn ĤeΨe = EeΨe with Ĥe = Te +Vee +Ven (B.3)

Ψ= Ψe(�r,�R).Ψn(�R) ĤnΨn = EΨn with Ĥn = Tn +Ee +Vnn

Therefore, in order to calculate the total energy of the system, the electronic part needs to be

solved at first in a fixed nuclear configuration before determining the nuclear part. You can notice

that the electronic energy Ee is included in the nuclear hamiltonian Ĥn, as well as the electronic

wavefunction Ψe, which depends on the constant positions of the nuclei �R. The resolution of the

Schrödinger equation of the electronic system is however prevented by the electronic interaction

potential V̂ee.

From this observation, numerous calculations methods based on this wavefunction-Hamiltonian

formalism have been developed within the second half of the last century, including ab initio or

first-principles approaches, Density Functional Theory (DFT) based calculations or semi-empirical

methods.

One of the earlier ab initio methods is the Hartree-Fock (HF) approach331 for which the electronic

interactions are averaged and included in a mean field. The electrons are not correlated since the

wavefunction of the total system is decoupled as the product of monoelectronic wavefunctions in

the formalism of a Slater determinant332. Consequently, the Hamiltonian will be written as a sum

of monoelectronic hamiltonians. In HF calculations, correlations between electrons located at short

(dynamic or instantaneous correlation) and long (static or permanent correlation) distances are

thus not included, leading to energy over-estimation in some cases, such as closed electronic shells

systems.

In post Hartree-Fock methods, the electronic correlation is taken into account by developing the

system wavefunction as a linear combinaison of several Slater determinants, which characterize

excited electronic states. This means that some electrons of the systems are excited in unoccupied

highest levels. However, these approaches are still expensive in computational cost as they are

based on wavefunction with 4N variables, i.e. 3 spatial and 1 spin variables for each electron.

The Density Functional Theory (DFT) approach consists to substitute the 4N variables wavefunction

by the electronic density of the system, which is composed of only 3 spatial coordinates and 1 spin

variable. Such calculation may decrease by one to three orders of magnitude the computational
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time, according to the basis set used.

B.2 Density Functional Theory

B.2.1 DFT outlines

The principle of this method is based on the substitution of the wavefunction by the electronic

density ρ. The density is taken as the density matrix restricted to its diagonal, which is the product

of the wavefunction of the system with its conjugate:

ρ(�r1, . . . ,�rN) = Ψ(�r1, . . . ,�rN)×Ψ∗(�r1, . . . ,�rN) = |Ψ(�r1, . . . ,�rN)|2 (B.4)

By considering the electronic Hamiltonian Ĥe as defined in equation B.3, the equation cannot be

solved. From 1964, Hohenberg and Kohn (HK) put the basis of the DFT by stating two theorems333:

(i) For any system of interacting particles in an external potential Vext , the electronic density ρ0

associated to the ground state of the system determines unequivocally this external potential,

within a constant. In other words, the physical quantities, which describe the ground state of

the system, are functionals of ρ0 and are equivalent to the wavefunction/Hamiltonian formal-

ism. Consequently, the electronic Hamiltonian Ĥe can be rearranged for any electronic density

ρ, as follow:

E[ρ] = T [ρ]+Eee[ρ]+
∫

Vext(�r)ρ(�r)d�r = FHK [ρ ]+
∫

Vext(�r)ρ(�r)d�r (B.5)

where T [ρ] is the total kinetic energy, the electronic interaction term Eee and an external

potential Vext , which includes the nuclei attraction potential Ven. The two first terms are re-

grouped within the Hohenberg and Kohn functional FHK [ρ], which is universal since it depends

neither on the system, nor on the external potential.

(ii) For a particular external potential, the total energy of the system in the ground state E0 corre-

sponds to the global minimum of the functional E[ρ] with respect to rho. The density, which

minimizes this functional, is the ground state density ρ0:

E0[ρ0] = min
ρ
{E[ρ ]} (B.6)

The important point here is to know the HK functional FHK [ρ], which is unfortunately unknown,

mostly due to the electron-electron contribution. In 1965, Kohn and Sham prevented this problem

with the Kohn-Sham (KS) theory334. Its main point is to substitute the real system of interacting

electrons immersed in an external potential Vext by a fictive system of non-interacting electrons

moving in an effective external potential Vs. The two systems are related by their energies and
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their electronic densities, which are considered equivalent. Finally, the fictive system is defined by

the new KS Hamiltonian FKS = ts +Vs and the total energy is found thanks to the new Schrödinger

equation of the KS system:

FKSφi =

[
−1

2
�∇2 +Vs(�r)

]
φi = εiφi (B.7)

E[ρ] = ∑
i

εi = Ts[ρ ]+
∫

Vs(�r)ρ(�r)d�r

Hence, the KS equation can be solved by establishing the form of the effective potential Vs, thanks

to known quantities coming from the known real system.

As the total energy is conserved between the two systems, we can write from the equations B.5

and B.7:

Ts[ρ]+
∫

Vs(�r)ρ(�r)d�r = T [ρ]+Eee[ρ]+
∫

Vext(�r)ρ(�r)d�r (B.8)

The trick to remove the unknown FHK [ρ ] functional is to inject the fictive kinetic energy Ts[ρ]
in the right part of the equation, i.e. in the real system expression. The electronic correlation is

also taken into account by inserting the full classical Coulombian interaction term J[ρ], which is

the difference between the electronic interaction Eee[ρ] and a non-classical or quantum term Encl[ρ]
describing the exchange and the correlation terms:

Ts[ρ]+
∫

Vs(�r)ρ(�r)d�r = T [ρ]+Eee[ρ]+
∫

Vext(�r)ρ(�r)d�r+Ts[ρ]−Ts[ρ]+ J[ρ]− J[ρ ] (B.9)

with J[ρ] = Eee[ρ]−Encl[ρ] =
1

2

∫∫ ρ(�r)ρ(�r′)
|�r−�r′| d�rd�r′

After reorganizing the equation, the four last terms are regrouped in the exchange-correlation

functional Exc[ρ], while the other terms are analytically known:

Ts[ρ]+
∫

Vs(�r)ρ(�r)d�r = Ts[ρ]+ J[ρ]+
∫

Vext(�r)ρ(�r)d�r︸ ︷︷ ︸
known expression

+T [ρ ]−Ts[ρ ]+Eee[ρ ]− J[ρ]︸ ︷︷ ︸
unknown Exc[ρ]

(B.10)

By eliminating terms in excess and differentiating the remaining expression with respect to the

electron density, the fictive potential is expressed as a function of the terms of the real system:

Vs(�r) = Vext(�r)+
∫ ρ(�r′)

|�r−�r′|d�r
′+Vxc(�r) (B.11)

with Vxc(�r) the functional derivative of Exc[ρ].
Thus, by establishing Vs, the KS equation can be solved. From the new calculated eigenfunctions φi,
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the new electron density ρout is found and characterized by a novel energy Eout corresponding to the

summations of the solved eigenvalues εi. As postulate by the second HK theorem, the ground state

system is found when the total energy E[ρ] is minimized with respect to ρ. In practice, the scheme

process of a DFT calculation is based on a Self-Consistent Field (SCF) method where iterative steps

seek to minimize the total energy until a convergence criterion is respected (Fig. XX). Between two

iterations when the convergence is not achieved, a mixing step is performed in order to modify the

input electron density for the next iteration: ρ i+1
in = αρ i

in +(1−α)ρ i
out .

However, some parameters are still missing, such as the exchange-correlation functional and the

type of atomic orbitals.

Figure B.1 – SCF iterative process applied on the electronic density in order to minimize the energy
of the system by resolving the Kohn-Sham equations.

B.2.2 Exchange-correlation functionals

In order to calculate Vs, only the exchange-correlation term needs to be determined. As the

expression of this functional is not mentioned in the Kohn-Sham theory, numerous functionals have

been developed to approximate the exchange-correlation contribution. Such functional needs to

be carefully chosen in order to ensure an efficient compromise between calculation precision and

computational time. As a first approximation, Exc can be separated as a sum of an exchange and a

correlation terms: Exc = Ex +Ec. The most important functionals are presented here.

LDA: Local Density Approximation. This first functional estimates that the electron density of

an inhomogeneous system is locally uniform, as a homogeneous electron gas. The expression of

139



Appendix B: Quantum chemistry methods

the correlation term is quite complex to formulate, even if quantum Monte-Carlo-based calculations

resulted to an analytic form of ELDA
c

404,405. From the Dirac functional406, the exchange is given by:

ELDA
x [ρ] =

∫
εx[ρ]ρ(�r)d�r =−C

∫
ρ(�r)

4
3 d�r (B.12)

GGA: Generalized Gradient Approximation. While the LDA functional considers that the

global electron density varies very slowly spatially, the GGA functional407 corrects the LDA po-

tential with a more rapid contribution depending on the density gradient ∇ρ. In 1988, Becke408

built a GGA functional that corrects the LDA exchange contribution εLDA
x by adding an additional

term ΔεB88
x , dependent of the density gradient. Lee, Yang and Parr (LYP)409 developed a similar

functional for the correlation part, and the BLYP functional is the exchange-correlation combination

of both. A more complex exchange-correlation potential is the PBE functional, created by Perdew,

Burke and Ernzerhof335:

εPBE
x = εLDA

x

[
1+a− a

1+bx2

]
(B.13)

εPBE
c = εLDA

c +H(x)

with x =
|∇ρ|
ρ

4
3

with a and b free parameters, and H(x) the corrective term dependent of two free parameters c and

d.

Hybrids Functionals. These functionals are linear combinations of exchange and correlation

terms of LDA and GGA functionals, and a contribution from the exact exchange term EHF
x from

the Hartree-Fock theory. The most known is the B3LYP functional336, where the contribution is

distributed between the exchange-correlation terms of LDA functional, the HF and B88 exchange

functionals and the LYP correlation potential:

EB3LY P
xc = (1−a0)ELDA

x +a0EHF
x +axΔEB88

x +(1−ac)ELDA
c +acELY P

c (B.14)

with a0, ax and ac the contributions weights. Like the free parameters seen in the PBE and B3LYP

expressions, all the GGA functionals mentioned above contain adjustable parameters. While the

free parameters of the B88, LYP and BLYP functionals are fitted with data of rare gas atoms, those

of the PBE and the B3LYP functionals are refined according to theoretical considerations and exper-

imental data, respectively. In any case, the DFT cannot be considered as ab initio method since free

parameters of the Exc functional need to be adjusted.

B.2.3 Atomic orbitals basis set

In general for small systems with few atoms and electrons, calculations can be performed using

molecular orbitals. However, they become impossible for larger systems. The common approxima-
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tion for all the quantum calculations is the development of the molecular orbitals on atomic orbitals

basis set. For this purpose, spatial part of the molecular orbitals ϕi are built as a linear combination

of atomic orbitals (LCAO) χμ :

ϕi = ∑
μ

cμiχμ (B.15)

where cμi are the contributions weights of the atomic orbitals χμ to the molecular orbital ϕi. Several

atomic orbital basis sets have been developed, but only the basic basis, which are behind the recent

ones, will be presented now.

— STO: Slater Type Orbital. The simplest basis set was elaborated by Slater410: χSTO
μ =Nrle−ζ r,

with N the normalization constant, l the orbital quantum number and ζ the exponential

exponent, which characterizes the diffusivity of the function. However, we rapidly need an

important number of STO functions in order to calculate properly small systems.

— GTO: Gaussian Type Orbital. A small difference appears in these functions where the expo-

nential is squared: χGTO
μ = Nrle−αr2

. This allows to reduce the number of GTO functions as

the product of two functions results in a condensed GTO orbital.

— Extended basis. To describe accurately quantum system, more theoretical considerations

need to be taken into account. Differentiation is thus made between core electrons and

valence electrons. The formers strongly interact with the quasi-spherical nuclear potential,

which necessitates an important number of functions to calculate finely the core energy. Far

from the nuclei, several types of orbitals serve to describe the valence electrons orbitals. Typ-

ically, each valence orbital is replaced by multiple atomic orbitals of different sizes. Polariza-

tion is also considered by adding functions with higher l than the valence functions, and a

diffuse shell can be described by orbitals with a small diffuse exponent, characterized by a

slow decrease with distance.

Nowadays, DFT calculations used complex basis set based on the extended basis. Among oth-

ers, the basis set designed by John Pople is one of the most used411,412, and is written as follow:

n− n1n2n3 . . .++G∗∗. n corresponds to the number of GTO functions used for the core electrons,

while the number of functions to describe the valence shell is referred by the number of ni. The

value of each ni indicates the number of GTO orbitals combined to represent the valence function.

Diffuse and polarized orbitals are taken into account with the numbers of + and * symbols, respec-

tively. For instance, a DFT basis set noted 6− 311+G∗∗ corresponds to a system described by 6

GTO functions in the internal shell, 3 combined GTO orbitals for the first valence function and one

orbital for the two others valence functions. This basis includes also one diffuse orbitals group and

two polarized orbitals.
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B.3 The Vienna Ab initio Simulation Package

By using the DFT method, an efficient setting between time and precision limits to study systems

of tens of atoms. In the context of solid state calculations, the computational cost can be drastically

decreased by the use of plane waves basis to study crystal structures. This approach is the concept

of DFT-based methods, such as the VASP code.

B.3.1 The plane waves basis

In crystal structures, atoms are indefinitely arranged periodically in all the directions. The

description of such periodic structure can be limited to the first Brillouin zone, where the Bloch

theorem337 states that any monoelectronic wavefunction φn�k of a lattice system can be expressed as

the product of a plane wave with a function un�k owing the periodicity of the potential:

φn�k(�r+
−→
R ) = φn�k(�r) = un�k(�r)e

i�k�r (B.16)

with
−→
R any vector from the lattice system leaving the Hamiltonian invariant, and

−→
k the wave vector

from the first Brillouin zone. n is associated to one monoelectronic band. un�k can be decomposed

into a sum of plane waves using a Fourier series:

un�k(�r) = ∑
�G

Cn�k(�r)e
i�G�r (B.17)

φn�k(�r) = ∑
�G

Cn�k(�r)e
i(�G+�k)�r

with Cn�k(�r) the Fourier coefficients and
−→
G the wave vector contained in the reciprocal space. The-

oretically, the numbers of
−→
k and

−→
G to describe exactly a monoeletronic orbital remain infinite. In

practice, these vectors are limited by a cutoff energy Ecut , as defined by:

h̄2

2me
|−→k +

−→
G |2 < Ecut (B.18)

Therefore, higher the cutoff energy, more extended the plane waves basis and more costly the cal-

culation. Plane waves must to be chosen in order to satisfy the calculation precision in a respectable

computational time. The k-points mesh is thus essential since the reduction of the lattice system

should be compensated by an increase of k-points numbers. Among others, the Monkhorst and Pack

sampling method413 allows to generate an efficient uniform k-points grid.

Such plane waves basis are practical due to the advantage to cover uniformly the probed space.

However, they are rapidly limited when the number of plane waves becomes unrealistic for the

description of strongly spatially localized states or the rapid oscillations of wavefunctions, as in the
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case of core electrons located near the nuclei. One of the common methods to overcome this issue

is the use of pseudopotentials.

B.3.2 Pseudopotentials

This approach assumes that the physical and chemical properties of a system are governed by the

valence electrons, leaving the core electrons ineffective and slightly perturbed by the KS potential.

From this assumption, the inner electrons and the nucleus are modeled by an effective potential in-

teracting with the valence electrons. This denominated potential defines the so-called pseudopoten-

tial414, which seeks to abrogate the description of the core electrons. Indeed, the strong attractive

interaction with nucleus, represented by the V potential in figure B.2, induces rapid oscillations on

the core electrons wavefunction Ψ, leading to exhausting and long calculations. Pseudopotential Ṽ

defined from pseudo-wavefunctions Ψ̃ are thus developed in order to describe a softer variation in

the inner localized region, characterized from the nucleus to a cutoff distance rc (Fig. B.2). Beyond

this critical radius, the valence electron pseudo-wavefunction must be equivalent to the exact atomic

wavefunction Ψ. Such approximation simplifies greatly the calculations, since less plane waves are

necessary to generate the pseudo-wavefunction. Several pseudopotentials have been developed,

with each a different theoretical consideration based on the difference between the "all-electrons"

calculations for a reference atom using the exact wavefunction Ψ and the pseudopotential calcu-

lation using the pseudo-wavefunction Ψ̃. Norm-conserving415, Ultra-soft (USPP)416 and Projected

Augmented Wave (PAW)417 pseudopotentials are the most used in DFT-based methods, and the two

lasts ones are included for each reference atom in the VASP code library418.

Figure B.2 – Potential V and wavefunction Ψ of the inner localized region near the nucleus are
replaced by a pseudopotential Ṽ and a pseudo-wavefunction Ψ̃.
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B.3.3 VASP parameters

All the calculations presented in the following were performed within the Generalized Gradient

Approximation (GGA) with the PBE functional using plane waves basis set included in PAW-type

pseudopotentials418(see Appendix B.3). The 2×2×1 k-grid mesh is defined automatically with the

Monkhorst and Pack method413 and is centered on the middle of the Brillouin zone, i.e. the Γ point.

A cutoff energy Ecut of 500 eV is fixed and the final results are obtained with an accurate precision,

i.e. a finer second k-point grid is taken with twice larger �G vectors. Typically the energy resolution

per atom is less than 1 meV/atom. A self-consistent field process controlled the convergence of the

calculation, ending when the energy difference of two consecutive steps becomes below the energy

convergence criterion, fixed at 10−6 eV. At the end of the electronic optimization cycle, each atomic

force is calculated thanks to the Hellmann-Feynman theorem419. The ionic structure is directly

minimized and finally optimized when the residual forces of each atom are lowered below 0.005

eV/atom.
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APPENDIX C

EMPIRICAL POTENTIALS BENCHMARKING

C.1 Isomers

Figure C.1 – Final isomer geometries of the (Al2O3)1 cluster calculated in DFT and with the four
empirical potentials by the conformational research method. The symmetry point groups and the
energy relative to the most stable structure are added. Aluminum and oxygen ions are in grey and
red, respectively. � represents the structures found by the conformation research with the potentials.
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Figure C.2 – Final isomer geometries of the (Al2O3)3 cluster calculated in DFT and with the four
empirical potentials by the conformational research method. The symmetry point groups and the
energy relative to the most stable structure are added. Aluminum and oxygen ions are in grey and
red, respectively. � represents the structures found by the conformation research with the potentials.
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C.1 Isomers

Figure C.3 – Final isomer geometries of the (Al2O3)4 cluster calculated with the four empirical
potentials by the conformational research method. The symmetry point groups and the energy
relative to the most stable structure are added. Aluminum and oxygen ions are in grey and red,
respectively. � represents the structures found by the conformation research with the potentials.

Figure C.4 – Final isomer geometries of the (Al2O3)6 cluster calculated with the Alvarez and Streitz
potentials by the conformational research method. The symmetry point groups and the energy
relative to the most stable structure are added. Aluminum and oxygen ions are in grey and red,
respectively. � represents the structures found by the conformation research with the potentials.
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Figure C.5 – Final isomer geometries of the (Al2O3)8 cluster calculated with the Alvarez and Streitz
potentials by the conformational research method. The symmetry point groups and the energy
relative to the most stable structure are added. Aluminum and oxygen ions are in grey and red,
respectively. � represents the structures found by the conformation research with the potentials.

C.2 Nanoparticles

Figure C.6 – Diameters of the nanoparticles optimized by each potential from the initial starting
crystal structures (orange curve) as a function of the units number n and the atoms number.
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C.2 Nanoparticles

Figure C.7 – Structure factors S of the nanoparticles relaxed starting from the three crytal phases
using all the potentials. For each curve, the repeat unit n is displayed on the right. Experimental
data from α 382 or γ 383 bulk alumina (black curve) and a−(Al2O3) bulk387 (red curve) are displayed
on top of the panel according to the starting phase.
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APPENDIX D

SMTBQ AND VASP CALCULATIONS

D.1 Theoretical analysis of local pressure

The technique we used to extract relevant local pressures in the Al2O3 systems slightly differs

from classical methods, such as the Irving-Kirkwood procedure420. First, the Al and O atoms expe-

rience different energy interaction terms, which are responsible for local variations of the atomic

pressure. To get rid of these atomic scale variations that preclude any detailed local analysis, we

build Ploc a locally averaged pressure over small stoichiometric regions centered on Al atoms :

Ploc = PAl + ∑
i=1,nc,Al

POi

nc,Oi

(D.1)

where PAl and POi are the usual atomic pressures calculated on an Al atom and its oxygen first

neighbors Oi with an average volume per atom V
N (a cut-off of 2.3 Å has been used to define the

first neighbor shell). V and N are the total volume and atom numbers, respectively. nc,Al and nc,Oi

are the coordination number of Al and Oi.

Second, the system is subdivided in shells according to its geometry thus taking into account

successive regions from the surface to the center of mass. To obtain a local pressure evaluation

in meaningful regions such as the inner region and the surface region, we first find the underco-

ordinated Al atoms from which we define the surface region. Starting from this outer shell, we

define the next inner shell from the Al first neighbors of the atoms in the previous outer shell. This

procedure is repeated until a shell has been attributed to all the Al atoms. This partitioning of the

(0001) Al2O3 surface into shells is depicted in figure D.3(a).
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D.2 Δa/a0-P-Δλ relation

Pressure to structural deformation. The groups of d’Amour395 and Finger394 studied inde-

pendently in 1978 the evolution of the hexagonal lattice parameters of the bulk of α-Al2O3 under

pressure. They measured the structural deformation by performing X-ray diffraction measurements

through a Diamond-Anvil Cell (DAC) apparatus. The first group worked until 9 GPa whereas the

second reached 8 GPa but they sustained a non-hydrostatic pressure above 5 GPa for the same liquid

medium.

Hence, we calculated the lattice deformation rates defined as:

ΔX/X0 =
Xi −X0

X0
(D.2)

with Xi and X0 the lattice parameters of the pressurized and zero pressure samples, respectively. X

refers to the a and c lattice parameters along the hexagonal x and z axis. The figure D.1 shows the

evolution of the lattice deformation rates according to the pressure. Linear fits were adjusted with

R2 between 0.98 and 1. The averaged equation was found to be ΔX/X0 =−0.00126×P−0.00011.

Figure D.1 – Lattice deformation rates calculated for a and c hexagonal lattice parameters over
applied pressure (Data from works of d’Amour et al.395 and Finger et al.394). Data are fitted with
linear curves (adjusted R2, slope and intercepts are indicated for each curve).

Pressure to luminescence shift. Ruby is known to present pressure dependent luminescence

lines. Therefore, emission lines were recorded under controlled pressure using a Diamond Anvil

Cell (DAC) apparatus. These experiments were carried out on micro- and nano- size particles be-

fore my work thesis in collaboration with Ing. Sylvie Le Floch from the Institute Lumière Matière of

the University Lyon 1.

The measurements were performed using the following equipment and protocol:
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— DAC. High hydrostatic pressures were applied on samples using a Chervin-type diamond

anvil cell (DAC). The pressure transmitting fluid is a 16:3:1 methanol-ethanol-water mix-

ture. Both remain hydrostatic up to 10.5 ±0.5 GPa421. Above 10.5 GPa, the standard

deviation χ of the pressure distribution in the anvil increases linearly with the pressure P,

χ[GPa]= 0.2× (P−10.5). The errorbars in figure D.2 take into account this error.

— Raman spectroscopy. Luminescence spectra under high pressure has been recorded using a

Renishaw RM 1000 micro-Raman-spectrometer equipped with a 10× objective in backscat-

tering configuration422. The excitation line was provided by a Nd:YAG laser, operating at

532.0 nm wavelength. The 10× objective leads to a spot laser radius smaller than 50 μm.

Signal detection has been carried out by a cooled CCD camera. The silicon Raman peak is

used as a reference for wavelength calibration. The shift has been measured at 520.3 cm−1

for each set of measurement.

— Calibration. Sm:YAG displays a luminescence doublet at 16185 cm−1 (Y1) and 16231 cm−1

(Y2), whose position has a small temperature dependence, but a pressure dependence as

large as that of ruby fluorescence line. Small beads of ruby of diameter < 10μm and burst of

YAG:Sm3+ of characteristic length < 20μm were disposed at the center of the lower diamond

of the anvil cell. The DAC was filled the transmitting fluid.

Pressure was increased up to 16 GPa by steps of < 0.5 GPa, then identically decreased to the

atmospheric pressure. Pressure was estimated using the Mao calibration423 of the shift of the

R1 line of ruby. Raman spectra of Yag:Sm3+ and ruby were recorded after a wait of 30 minutes

for stabilization. As Y1 and Y2 bands merge under pressure, we calibrated the Y1 line when

the bands were decoupled, and the maximum after. The curve obtained from the pressure

decrease shows no deviation with respect to those obtained when increasing pressure. The

last spectra were acquired after the cell was open, and show perfect recovery of the position

of the Y1, Y2 and Y3 lines before compression.

— Ruby measurements under pressure. Dried micro and nanoparticles and a micron-sized

Samarium doped yttrium aluminum garnets crystal (Sm:YAG) were placed in a metallic gasket

hole (145 μm diameter) filled with a pressure transmitting fluid. Pressures were measured

from the luminescence of the Sm:YAG crystal424. Luminescence spectra from Sm:YAG and

nano-ruby were sequentially measured from two spatially separate sample area, thanks to

in-situ surface visualization. The linear behavior of the final luminescence shift Δλ as a

function of the pressure P is finally fitted below 11 GPa (Fig. D.2) and leads to: Δλ [nm] =

0.357×P[GPa].
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Figure D.2 – Shift of the ruby R1 line as a function of the pressure. The measured wavenumbers
correspond to the shift between the R1 line and the laser exciting line (532 nm). The red curves
correspond to micro-sized ruby. The green squares correspond to the nanoparticles.

D.3 SMTBQ free alumina surface

A supercell of 1800 atoms was generated (x = 24.05537 Å; y = 24.99907 Å; z = 26.12054 Å)

by duplicating the hexagonal unit cell, introduced in section 4.2.3.1. A (0001) α-Al2O3 surface was

build by creating a vacuum space above the bulk supercell (z = 56.1205 Å) by keping the same in-

plane (x,y) dimensions. The local pressures are then computed for unrelaxed and relaxed surfaces.

The curves in figure D.3(a) give the local pressures at 0 K found in the different shells for two

different (0001) Al2O3 surfaces : (1) A relaxed (0001) surface with in plane lattice parameters

fixed to the bulk values. (2) An unrelaxed (0001) surface with in plane lattice parameters fixed to

the bulk values. The zero pressure line corresponds to the bulk. The local pressures can be thus

correlated to the structural modifications sustained by the surface. Figure D.3(b) shows the final

bulk and surface supercells with the mean z-positions of their atomic layers.

After the cut from the bulk, mainly the surface and subsurface planes are affected and both experi-

ence negative pressure contributions that can be interpreted as a tendency to relax towards the bulk

and to reduce the surface area. After relaxation with the same lattice parameters, the pressure in

the surface region becomes positive, which can be explained by the outer surface Al atoms that are

almost incorporated in the subsurface plane. The first interlayer thus highly relaxes (-72.7 %). This

leads to a shortening of the first neighbor bonds in the in-plane directions together with an increase

of the repulsive terms in this plane. This interpretation is supported by the fact that the in-plane

components of the pressure represent more than 85 % of the average pressure in the surface and

subsurface shells. Then, the mechanical equilibrium is easily understood as the surface tends to ex-

tend its area while the bulk contribution counter balances this effect by developing a corresponding

negative pressure at around 8.5 Å. The transition from positive to negative pressures are seen struc-

turally by damped oscillations of the interlayers between -49.3 and 22.3 %. Finally, the pressure

in the central region of the slabs recovers that of the bulk indicated by interlayers variations lower
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than 2 %. The results agree with those obtained by Tétot and co-workers349 and confirm those of

the VASP surface (section B.3).

Figure D.3 – (a) Pressure profile of (0001) α-Al2O3 surface calculated with the SMTBQ method.
The surface is subdivided in shell (left snapshot) to determine separately the local pressures (right
snapshot).

D.4 VASP slabs
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Figure D.4 – (a) Pressure profile of (0001) α-Al2O3 surface calculated with the SMTBQ method.
The surface is subdivided in shell (left snapshot) to determine separately the local pressures (right
snapshot).
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GÉNÉRATION DE NANOPARTICULES PAR ABLATION LASER EN

LIQUIDE : VERS UN MEILLEUR CONTRÔLE DE LA PHASE CRISTALLINE

ET DE LA STABILITÉ COLLOÏDALE

L’intérêt des Hommes pour ce qu’ils ne pouvaient voir a toujours été source de curiosité. De l’in-

finiment grand à l’infiniment petit, la découverte de ces deux mondes a permis le développement

technologique des sociétés. La particularité du monde nanométrique (10−9 m) réside dans l’appa-

rition d’une dépendance en taille des propriétés physico-chimiques. Les propriétés originales qui

en découlent, comparées à celles observées à l’échelle macroscopique, sont engendrées par l’effet

de taille des nanomatériaux possédant au moins une de leurs dimensions sous le micromètre. Par

exemple, l’utilisation de nanoparticules comme catalyseur pour la dégradation de monoxydes dans

les gaz d’échappements automobiles, ou d’agents d’absorption localisés dans les régions tumorales

en médecine, prend son importance grâce à leurs propriétés de surfaces. L’engouement industriel

pour ces matériaux dans la deuxième partie du XXme siècle a vu le développement de nombreuses

techniques de fabrication. Parmi elles, l’ablation laser en liquide (PLAL) est une méthode récente

de synthèse dites physique dont l’originalité est marquée par la production de nanoparticules en

solution ayant des surfaces libres de tout contaminant. Le PLAL fait alors face à des méthodes plus

répandues comme les synthèses chimiques pour lesquelles la taille et la morphologie des particules

peut être finement maîtrisée, mais en utilisant des ligands.

Historiquement, l’ablation laser en liquide suit celle sous atmosphère contrôlée, après que les

premiers lasers aient été construits dans les années 1960. Les premiers essais expérimentaux ont été

menés au début des années 1990 afin de produire des solutions colloïdales de particules destinées à

être utilisées comme échantillons dans des expériences de métrologie (méthode d’échantillonnage

pour l’ICP-AES). La mise en œuvre expérimentale de l’époque, qui reste encore valide aujourd’hui,

consistait à ablater une cible immergée dans un liquide. Une source laser pulsée et de haute inten-

sité est généralement utilisée pour produire directement des solutions colloïdales de nanoparticules.
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Malgré la simplicité du système expérimental et de la génération du produit final, il n’en demeure

pas moins une complexité dans les mécanismes physico-chimiques se succédant sur des gammes de

temps s’étalant de la femtoseconde à la centaine de microseconde.

Après l’absorption d’une impulsion laser par la cible, des phénomènes de relaxation suivent et en-

trainent un échauffement de la cible en quelques picosecondes. Selon la puissance laser injectée,

différents régimes d’ablation peuvent être engendrés aboutissant à l’éjection de matière sous la

forme d’un plasma chaud et dense. Celui-ci est composé d’espèces excitées, ions, électrons, atomes

et molécules, qui lorsqu’elles se désexcitent émettent une lumière caractéristique d’un plasma. En

moins d’une microseconde, l’interaction entre cette phase plasma et le solvant provoque la vapo-

risation de celui-ci et crée une bulle de gaz contenant majoritairement les molécules du solvant

mais aussi de la matière ablatée. Cette bulle est caractérisée par une étape de croissance suivi d’une

décroissance avant de s’effondrer sur la cible au bout de quelques centaines de microsecondes. Des

rebonds sont souvent observés, mais la matière contenue dans la bulle (les nanoparticules) est ma-

joritairement injectée dans le liquide lors du premier effondrement de la bulle, après seulement

une centaine de microsecondes. Les particules peuvent alors interagir avec leur environnement et

la solution colloïdale être amenée à "vieillir".

Cependant, la méthode reposant sur une succession de mécanismes hors équilibre, un contrôle

des produits finaux est complexe par rapport à des synthèses purement chimiques. Des objets com-

pris entre quelques nanomètres et quelques centaines de nanomètres sont finalement obtenus, sou-

vent sous la forme d’une distribution en taille bimodale. Depuis les débuts de cette méthode, les

recherches ont vocation à obtenir une meilleure maîtrise de la morphologie des particules produites

ainsi qu’une stabilité des solutions colloïdales. Pour cela, de nombreux paramètres qui pilotent la

synthèse peuvent être ajustés. L’enjeu de ce travail de thèse a été d’étudier et de comprendre les

effets de quelques facteurs influençant la stabilité colloïdale et une sélectivité de la phase cristalline

des nanoparticules synthétisées.

Le chapitre 1 décrit l’ensemble des mécanismes physico-chimiques qui se déroulent pendant l’abla-

tion et qui amènent à la formation de particules colloïdales, en identifiant les paramètres influençant

les caractéristiques du produit final. L’intérêt de cette technique pour des applications industrielles

y est aussi développé, ainsi que les axes d’améliorations à explorer.

Dans le chapitre 2, nous nous sommes concentrés sur la première bulle générée par laser pour

laquelle la cinétique diffère de celle de systèmes classiques de mécanique des fluides, comme l’étale-

ment de goutte ou de bulle. Un projet en collaboration avec le groupe de Barcikowksi nous a amené

à étudier la cinétique de bulles induites dans des huiles à hautes viscosités. En plus de leurs grandes

vitesses, ces bulles présentent des valeurs de nombres capillaires bien plus grandes que ceux de cas

généraux, ce qui engendrent des cinétiques particulières.

Tout d’abord, nous avons suivi les bulles formées lors de l’ablation dans différents solvants d’une
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cible d’or et d’un grenat d’oxyde de fer et d’yttrium (YIG). Des vidéos ont été enregistrées en uti-

lisant une caméra ultra-rapide inclue dans un montage d’ombroscopie. Les images séparées d’en-

viron 5 μs ont été analysées automatiquement par un code informatique que j’ai développé. Les

caractéristiques géométriques de la bulle au cours du temps ont permis d’en déduire les nombres

adimensionnels de Reynolds, de Weber et capillaire qui expriment le rapport de différentes forces

s’exerçant sur la bulle. De plus, dans le cadre d’ablations réalisées dans des solvants à faibles vis-

cosités, les quantités thermodynamiques comme la température et la pression ont été calculées en

implémentant une version simplifiée de l’équation de Rayleigh-Plesset.

Tout d’abord, nous avons étudié l’effet de la puissance laser sur le comportement de la bulle produite

dans de l’eau. La bulle est observée hémisphérique et ne change pas au cours de son existence. Sans

surprise, en augmentant l’intensité du faisceau, plus d’énergie est déposée dans le système, plus la

taille des bulles et leur temps de vie augmentent, mais la cinétique reste identique indépendamment

de l’énergie déposée. Un régime inertiel domine la cinétique de la bulle au contact de l’eau.

Dans un second temps, l’eau a été remplacé par des solvants plus visqueux. Nous avons utilisé deux

huiles polyoléfines à 100 et 1000 plus visqueuses que l’eau (en Pa.s). Les bulles produites sont vi-

suellement différentes avec une partie haute hémisphérique au contact du solvant, similaire au cas

dans l’eau, alors que la partie inférieure évolue avec l’augmentation des frottements visqueux. Nous

montrons qu’un régime inertiel régit les cinétiques pour la partie supérieure de la bulle. Dans la

partie inférieure, en plus de la résistance du solvant, la bulle expérimente une friction sur le solide

qui limite plus largement le déplacement de la ligne de contact. Au final, en augmentant la viscosité,

des régimes à hauts nombres capillaires (Ca > 100) sont atteints ce qui est impossible à décrire avec

le modèle de Rayleigh-Plesset.

Dans un prochain travail, nous souhaitons développer un modèle unique thermodynamique. Les

caractéristiques du solvant comme la viscosité devront être prises en compte afin de pouvoir décrire

les cinétiques des bulles sur une large gamme de nombre capillaires.

Alors que le contrôle de la bulle peut favoriser indirectement la morphologie des nanoparticules,

l’utilisation de ligands tels que des ions ou des molécules est une manière plus directe d’y parvenir.

Un second projet, décrit dans le chapitre 3, a visé à étudier la stabilité colloïdale de nanoparti-

cules d’or synthétisées dans des solutions aqueuses contenant des sels. Bien que plusieurs visions

s’opposent sur l’origine des charges, la stabilité colloïdale est assurée par formation d’une double

couche d’ions autour de chaque nanoparticule. En effet, les nanoparticules sont chargées en sortie

de synthèses soit par un excès d’électrons emprisonnés dans les particules lors de la phase plasma,

soit par l’oxydation de leur surface. Dans un milieu salin, les ions forment alors une couche globa-

lement négative qui aboutit à une répulsion électrostatique entre les particules et permet d’éviter

une agrégation.

L’effet des ions a été incontestablement prouvé ces dernières années pour des nanoparticules pro-

duites par ablation laser en liquide et encore démontré lors de ce travail. Nous avons testé plusieurs
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sels à différentes concentrations. La stabilité colloïdale des solutions synthétisées a été globalement

assurée pour toutes les concentrations. Celle-ci augmente légèrement avec la concentration en sel

correspondant à des distributions de taille centrées autour de 10 nm pour les plus petites particules,

même si une seconde population existe à plus de 100 nm. De plus, cette stabilité est maintenue

dans le temps. Des mesures de contrôle pendant plus d’un mois révèlent l’efficacité de la plupart

des ions à préserver l’équilibre des solutions.

Ce qui a été moins étudié dans la littérature est l’évolution de ces solutions lorsqu’elles sont concen-

trées en évaporant le solvant. Cette fois-ci, l’effet est plus flagrant sachant que les solutions sont en

général déstabilisées lorsque la concentration en or dépasse une certaine valeur critique. Le plus

surprenant vient du fait que cette instabilité survient pour n’importe quelle concentration initiale

en sel. Ceci laisse présager que l’espace entre les particules qui est réduit par évaporation du sol-

vant devient trop petite à cette concentration critique pour que la couche ionique puisse repousser

efficacement les nanoparticules.

Ces études ont ainsi permis de préparer des échantillons destinés à être analysés par spectrométrie

photoélectronique par rayons X (XPS) lors d’une semaine de mesures sur la ligne PLEIADES du

synchrotron SOLEIL à Paris dans le cadre d’une collaboration internationale. Nous avons pu fournir

des solutions de nanoparticules d’or stabilisées par des sels de NaOH et de NaBr et concentrées à

plus de 1 g/L. Ces mesures effectuées sur un faisceau de nanoparticules d’or ont révélé qu’il n’y

avait pas de traces d’oxydation, mettant en difficulté les mécanismes généralement décrits pour

expliquer la stabilisation d’anions à la surface de l’or. Mais étonnement, la moitié de la surface des

nanoparticules produites avec des sels de NaBr est recouverte par ces anions. Des calculs théoriques

sont en cours de réalisations afin de mieux comprendre la chimie de surface des nanoparticules, en

particulier les scénarios de complexion des anions à leur surface.

Nous nous sommes ensuite intéressés à la stabilisation des oxides par des ligands. Dans le cha-

pitre 4, l’oxide d’aluminium a été notre cas d’étude pour lequel des nanoparticules plus petites que

10 nm ont été synthétisées avec l’aide de ligands. Dans ce cas, en plus d’obtenir une solution col-

loïdale stable et homogène avec des particules d’une taille contrôlée à environ 4 nm de diamètre,

la phase cristallographique de ces nanoparticules d’alumine a ainsi été contrainte à la phase α qui

est la plus stable à l’échelle macroscopique, mais métastable pour des tailles inférieures à 10 nm.

Habituellement, la phase γ est favorisée thermodynamiquement à ces tailles. En produisant des

nano-rubis, nous avons ouvert la voie vers la production de capteur de pression à l’échelle nanomé-

trique. En effet, les raies de luminescence du chrome dans l’alumine en phase α sont connues pour

se déplacer vers les hautes longueurs d’onde avec la pression.

Sans ligands, les nanoparticules présentent une phase amorphe pour des tailles plus petites que 4

nm. Une première transition de phase a alors lieu. La phase γ est alors favorisée pour des tailles de

particules allant jusqu’à environ 12 nm, avant qu’elles soient finalement stabilisées dans la phase α
de l’alumine massif. L’ajout de ligands avant la synthèse est connu pour venir stabiliser les nano-
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particules en solution. Cependant, leur effet sur la structure mécanique des nanoparticules ne sont

pas encore bien comprises. Pour cela, nous avons réalisé des calculs visant tout d’abord à étudier les

structures cristallines de l’alumine. Un benchmark de plusieurs potentiels empiriques a été mené sur

une gamme de taille de particules allant de quelques dixièmes de nanomètres jusqu’à 12 nm. Puis

la structure de surface d’alumine en phase α a été étudiée avec et sans ligands à l’aide de calculs

électroniques.

Tout d’abord, nous avons testé quatre potentiels empiriques développés pour l’étude de l’alumine

et implémentés depuis la littérature. Les potentiels ont été appliqués à la recherche des géométries

stables des clusters, ainsi qu’à l’étude des énergies de formation de nanoparticules jusqu’à 12 nm

de diamètre. Finalement, le plus simple des potentiels a pu reproduire les régions de stabilité des

différentes phases de l’alumine prévues par l’expérience.

Puis, la structure de ces particules sans ligands a pu être étudiée. Nous avons pu montrer que la

stabilité des phases cristallines se traduit par une reconstruction atomique de la surface. Après la

création d’une surface, les atomes sont sous-coordinés et cherchent à former des liaisons avec des

voisins qui se trouvent en sous-surface. En s’insérant dans la structure, les atomes poussent leurs voi-

sins et tendent ainsi à étendre la surface. Cette expansion se traduit par des pressions positives qui

ont pu être calculées avec le potentiel SMTBQ implémenté dans le code LAMMPS. Cette contrainte

de surface entraîne une déformation mécanique, due à la réorganisation des atomes, à partir de

la surface et qui s’atténue vers le centre de la nanoparticule. En effet, le volume de cette dernière

cherche à préserver la structure cristalline qui minimise son énergie en compensant l’extension de

surface par une réduction des liaisons atomiques. Cette compression est reflétée par une pression

négative au cœur de la nanoparticule. Ainsi, ces pressions superficielles et internes se compensent

en laissant apparaître une faible pression globale.

L’effet de cette contrainte de surface est visible via l’épaisseur atomique qui a été déformée. Les

nanoparticules apparaissent alors avec un cœur cristallin entouré d’une coquille d’amorphe. Nos

calculs ont montré que l’épaisseur de cette couche est indépendante de la taille des particules. La

contrainte de surface déforme de manière uniforme toute surface créant ainsi des structures totale-

ment amorphes lorsque l’épaisseur de déformation est supérieure à la taille des nanoparticules.

Enfin, l’impact des ligands sur la structure mécanique des nanoparticules d’alumine a été prouvé par

des calculs électroniques basés sur la théorie de la fonctionnelle de densité (DFT). Le code VASP a

été utilisé pour simuler des surfaces d’alumine couvertes de ligands organiques. Par rapport à une

surface nue, une réduction de la contrainte de surface a été estimée à un facteur d’environ 6. Nous

en avons alors déduit que les ligands permettent de stabiliser les nanoparticules mécaniquement en

coordinant les atomes de surface et en réduisant donc la reconstruction de surface. Les pressions

locales sont ainsi diminuées à un point où les ions de chromes dans une matrice d’alumine ne se-

raient pas sensibles à ces faibles déformations. Ceci expliquerait l’absence de décalage des raies de

luminescence dans nos mesures. En effet, les spectres de luminescence de nos nano-rubis n’ont pas

observées de décalage des pics, pourtant attendu si l’on considère l’existence d’une pression interne
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de quelques GPa (c’est-à-dire un décalage de presque 1 nm).

Pour conclure, ce travail de thèse a permis de décrire une technique de synthèse prometteuse

industriellement où le principal avantage réside dans le fait de produire des nanoparticules avec

des surfaces libres. Seulement cet atout (absence de ligand) est aussi un inconvénient, la méthode

d’ablation laser en liquide n’est pas contrôlée au point de pouvoir synthétiser des particules ho-

mogènes en taille, en forme et en phase cristalline. Nous avons pu montrer que certains facteurs

permettent ou pourront permettre un meilleur contrôle de la stabilité colloïdale des solutions pro-

duites ainsi que la structure cristalline des produits finaux.
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ABSTRACTS

Laser generation of nanoparticles in liquids : new insights on crystal structure control and

colloidal stability.

The great interest of nanoparticles to their original physical and an chemical properties has been

supported by the development of numerous methods of synthesis. In the nineties, laser generation

of nanoparticles in liquids appeared, including Pulsed Laser Ablation in Liquids (PLAL). The PLAL

technique enables to produce surface free particles for plenty of material and solvent combinations.

However, the apparent simplicity of its implementation hides complex physico-chemical mecha-

nisms resulting in a lack of control of the final products.

We firstly investigated the dynamics of the laser-generated bubbles for which the PLAL extreme

conditions present new studied cases of bubbles dynamics not encountered in the field of fluid me-

chanics. Then, we aim to bring new insights into better control of the nanoparticles morphology

and their colloidal stability. A straight way to tune sizes, crystal structures and the colloidal stability

consists in the addition of stabilizing agents. Hence, we investigated the mechanisms of stabilization

of colloidal gold using complexing ions. We also succeeded to synthesis nano-rubies, i.e. chromium

doped corundum alumina nanoparticles, unexpected at nanoscale. The stabilization of the metas-

table crystal structure using ligands is explained thanks to a comprehensive theoretical approach.

Keywords : Pulsed Laser Ablation in Liquids, nanoparticles, colloidal stability, bubble dynamics,

stabilizing agents, nano-rubies.

Génération de nanoparticules par ablation laser en liquide : vers un meilleur contrôle de

la phase cristalline et de la stabilité colloïdale.

L’engouement pour l’originalité des propriétés physiques des nanoparticules s’est accompagné d’un

développement de nombreuses méthodes de synthèse depuis un demi siècle. Parmi elles, l’ablation
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laser en liquide permet de produire des nanoparticules avec des surfaces libres de tout contaminant

et ce pour une multitude de combinaisons de matériaux et de solvants. Cependant, la simplicité

apparente de cette technique dissimule la complexité des mécanismes physico-chimiques, ce qui

entraîne actuellement un manque de contrôle des objets synthétisés.

Tout d’abord, nous nous sommes intéressés à la cinétique des bulles pour laquelle les conditions

extrêmes d’ablation laser en liquide présentent des cas originaux de cinétique dans le domaine de

la mécanique des fluides. Puis, ce travail de thèse vise à donner de plus amples perspectives quant à

une meilleure maîtrise de la structure cristalline des nanoparticules et de la stabilité colloïdale. Une

manière plus directe de contrôler la taille, la phase cristalline et la stabilité colloïdale des solutions

contenant des nanoparticules consiste en l’ajout de ligands. Nous avons donc étudié les mécanismes

de stabilisation de ces solutions en utilisant des ions qui se complexent aux nanoparticules d’or.

Nous avons aussi réussi à synthétiser des nanoparticules de rubis (alumine dopée chrome). La sta-

bilisation de ces nanoparticules dans une phase métastable en utilisant des ligands organiques a été

expliquée par une étude théorique.

Mots clés : Ablation laser en liquide, nanoparticules, stabilité colloïdale, hydrodynamique des

bulles, ligands, nano-rubis.
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