
HAL Id: tel-02341197
https://theses.hal.science/tel-02341197v1

Submitted on 31 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The lunar crust : a study of the lunar crust composition
and organisation with spectroscopic data from the Moon

Mineralogy Mapper
Mélissa Martinot

To cite this version:
Mélissa Martinot. The lunar crust : a study of the lunar crust composition and organisation with
spectroscopic data from the Moon Mineralogy Mapper. Earth Sciences. Université de Lyon; Vrije
universiteit (Amsterdam), 2019. English. �NNT : 2019LYSE1206�. �tel-02341197�

https://theses.hal.science/tel-02341197v1
https://hal.archives-ouvertes.fr


 
 
 
 
 
 
 

N° d’ordre NNT : 2019LYSE1206
 
 

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON 
opérée au sein de

l’Université Claude Bernard Lyon 1
 

École Doctorale N° 52
Physique et Astrophysique de Lyon

Discipline : Sciences de la Terre et de l’Univers
 

Soutenue publiquement le 07 octobre 2019, par :
Mélissa MARTINOT

 
 
 
 
 

La croûte lunaire 
Étude de la composition et de l’organisation de 

la croûte lunaire avec les données
spectroscopiques de l’instrument Moon

Mineralogy Mapper
 
 
 
 
 

Devant le jury composé de :

Sautter, Violaine Directrice de Recherche CNRS, Université Paris 6 Rapporteure 

Michaut, Chloé Professeure, École Normale Supérieure de Lyon Rapporteure 

Donaldson-Hanna, Kerri Associate Professor, University of Central Florida Examinatrice

Klima, Rachel Researcher, Johns Hopkins University Examinatrice

Allemand, Pascal Professeur, Université de Lyon (UCBL) Examinateur

Davies, Gareth Professor, Vrije Universiteit Amsterdam Examinateur
 
 

Encadrants de thèse :  

van Westrenen, Wim 

Quantin-Nataf, Cathy

Flahaut, Jessica

Besse, Sébastien

Professor, Vrije Universiteit Amsterdam 

Professeure, Université de Lyon (UCBL) 

Chargée de Recherche, CRPG de Nancy 

Science coordinator for ESA’s PSA, ESAC

Directeur de thèse
 

Directrice de thèse
 

Co-directrice de thèse
 

Co-directeur de thèse

 



VRIJE UNIVERSITEIT 

THE LUNAR CRUST 

A study of the lunar crust composition and organisation with spectroscopic data from 

the Moon Mineralogy Mapper

ACADEMISCH PROEFSCHRIFT 

ter verkrijging van de graad Doctor of Philosophy aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. V. Subramaniam,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen
op maandag 7 oktober 2019 om 13.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Mélissa Martinot

geboren te Die, Frankrijk



promotoren: prof.dr. W. van Westrenen
prof.dr. C. Quantin-Nataf

copromotoren: dr. J.D. Flahaut
dr. S. Besse



Reading committee:
Prof. Dr. Gareth Davies (chairman)
prof.dr. Pascal Allemand
prof.dr. Violaine Sautter
dr. Kerri Donaldson-Hanna
dr. Rachel Klima
prof.dr. Chloé Michaut

This research was carried out at:

Vrije Universiteit Amsterdam
Faculty of Science
Amsterdam, the Netherlands

University of Lyon
Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement
Lyon, France



THE LUNAR CRUST - A study of the lunar crust composition and organisation with
spectroscopic data from the Moon Mineralogy Mapper

Authored by Mélissa Martinot

Credits for the front cover picture: Mélissa Martinot
Credits for the back cover picture: Clément Brustel





Contents

Acknowldegments vii

Summary ix

0 Introduction 1

1 Mineralogical diversity and geology of Humboldt crater derived using
Moon Mineralogy Mapper data 9
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Humboldt Crater . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Datasets and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Remote Sensing Data . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Extraction of Spectral Parameters . . . . . . . . . . . . . . . . 13

1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Mineralogical Detections . . . . . . . . . . . . . . . . . . . . 15

1.4.2 Scatter Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.3 Crater Morphology. . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.4 Crater Counts . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Compositional variations in the vicinity of the lunar crust-mantle inter-
face from Moon Mineralogy Mapper data 41
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Material and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.2 Lunar Minerals in the Crater Selection . . . . . . . . . . . . . . 47

2.2.3 Calculation of the Proximity Value to the Crust-Mantle Interface 48

2.2.4 Craters Selection . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Mineralogical Detections . . . . . . . . . . . . . . . . . . . . 51

2.3.2 Lateral Distribution . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.3 Vertical Distribution . . . . . . . . . . . . . . . . . . . . . . . 52

iii



iv Contents

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.1 Methods Limitations . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.2 Previous Studies’ Craters Pcmi Calculation and Comparison to

the Present Survey Crater Selection . . . . . . . . . . . . . . . 57
2.4.3 Spinel and Olivine Detections . . . . . . . . . . . . . . . . . . 57
2.4.4 Plagioclase Detections . . . . . . . . . . . . . . . . . . . . . . 59
2.4.5 Pyroxene Detections . . . . . . . . . . . . . . . . . . . . . . . 60
2.4.6 Comparison Between Pyroxene Detections and Mare / Crypto-

mare Locations . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Mineralogical survey of the Anorthositic Feldspathic Highlands Terrane
crust using Moon Mineralogy Mapper data 71
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 Material and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 Reflectance Data and Crater Selection . . . . . . . . . . . . . . 75
3.2.2 Data Processing and Pyroxene Composition Analysis . . . . . . 77
3.2.3 SPA Ejecta Thickness Calculation . . . . . . . . . . . . . . . . 78
3.2.4 Proximity Value to an Interface. . . . . . . . . . . . . . . . . . 78

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.1 Mineralogical Detections . . . . . . . . . . . . . . . . . . . . 79
3.3.2 Pyroxene Compositional Variations . . . . . . . . . . . . . . . 85
3.3.3 Evolution of the Pyroxene Composition With Depth . . . . . . . 87

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.4.1 Mineralogy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.4.2 Central Peak Pyroxene Compositional Variation . . . . . . . . . 89
3.4.3 Link Between Pyroxene Composition and Crustal Depth. . . . . 91

3.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.6 Supporting Information. . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Application of the developed tools to future science exploration
Science-rich sites for future lunar exploration (Chang’E-4 mission) 105
4.1 Geological Characteristics of the Chang’E-4 Landing Site Region: Von

Kármán Crater, Northwestern South Pole-Aitken Basin . . . . . . . . . 106
4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



Contents v

5 Application of the developed tools to future science exploration
Science-rich sites for future lunar exploration (Chang’E-5 mission) 135
5.1 Geology and Scientific Significance of the Rümker Region in Northern

Oceanus Procellarum: China’s Chang’E-5 Landing Region . . . . . . . 135
5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.1.2 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . 139
5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6 Conclusions and Recommendations 177

A Remote sensing and in situ mineralogic survey of the Chilean salars: An
analog to Mars evaporate deposits? 183
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.2 Regional context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.3.1 GIS setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.3.2 Field sampling and field VNIR spectroscopy . . . . . . . . . . . 189
A.3.3 Raman spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 190
A.3.4 X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
A.4.1 Remote sensing observations . . . . . . . . . . . . . . . . . . 192
A.4.2 Field observations . . . . . . . . . . . . . . . . . . . . . . . . 193
A.4.3 VNIR spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . 196
A.4.4 Raman spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 198
A.4.5 Quantitative analysis from XRD . . . . . . . . . . . . . . . . . 198

A.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
A.5.1 Correlation between field (VNIR) and lab (Raman, XRD) analyses 199
A.5.2 Correlation between spaceborne and ground data . . . . . . . . 204
A.5.3 Mineralogy of Chilean salars . . . . . . . . . . . . . . . . . . . 205
A.5.4 Relevance to Mars . . . . . . . . . . . . . . . . . . . . . . . . 207

A.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210





Acknowledgements

This section will not be very long, because I prefer to express my thanks in per-
son rather than write them (it would be too long to list all persons involved in this
experience being a success anyway!).

I would like to thank my supervisors and co-supervisors, who guided me through
the PhD haze with their many good tips and words! I am seeing the light at the end of
the tunnel now (finally!), thank you for your patience.

I would like to thank the reading committee and the members of the jury to take
the energy and time to read this manuscript and assist to the defence, as well as their
patience for the administrative hiccups during reviewing time.

I would also like to thank my colleagues from everywhere, it was nice to be able to
talk to people going through the same haze, or to see that one can survive it!

Finally, I would like to thank my family and friends, who supported me, welcomed
me in all kinds of happiness homes. I could find a place to relax and calm down at
your places, which helped me tremendously.

vii





Summary

Over the past 50 years, our knowledge of the Moon has grown immensely. Progress
in lunar science occurred through several phases. The first phase happened in the
1960s and 70s, during the Apollo and Luna missions, with the study of samples re-
turned from the lunar surface. Petrological characterisation of lunar samples sparked
the Lunar Magma Ocean concept, from which ensued the traditional view of the lunar
crust and mantle organisation: the crust is plagioclase-rich, and its mafic content
increases with increasing depth. The lunar mantle is commonly thought to be olivine-
rich, like that of the Earth. The second lunar exploration phase happened in the 1990s,
when satellites were launched into lunar orbit, collecting the first global remote sens-
ing datasets. Owing to their wide to global coverage, remote sensing brought new
insight into lunar science that is complementary to that provided by lunar samples.
During the third, current phase of lunar exploration, new datasets were collected by
spacecrafts orbiting the Moon between the 2000s and today. The remote sensing
datasets acquired during the second and third phases of lunar exploration progres-
sively complicated the initially simple picture that scientists drew from earlier studies.
Indeed, high resolution remote sensing images and radar data led to the identification
of volcanic features (domes, irregular mare patches), and the unambiguous discov-
ery of volatiles in permanently shadowed regions and in lunar samples originating at
depth in the Moon, demonstrating the Moon’s complex geological history.

During this PhD, impact craters were used as natural drill holes through the lu-
nar crust to sample material located underneath the surface. During impact, rocks
from depth are emplaced in crater central peaks through elastic rebound, making
it possible to investigate the composition of the crust at depth. Spectroscopic data
from Chandrayaan-1’s Moon Mineralogy Mapper instrument were exploited to gather
information on the composition of the crust in those central peaks.

In chapter 1, we present an algorithm for processing Moon Mineralogy Mapper
spectroscopic data. The algorithm is tested on the mineralogical diversity Humboldt
crater in order to validate it. Multiple pure crystalline plagioclase occurrences were
detected in Humboldt crater’s central peak, whereas olivine and spinel occurrences
possibly linked to a plutonic event were detected in the walls of Humboldt crater.

In chapter 2, we investigate the central peaks and peak rings of 36 craters allegedly
sampling material originating between +10 and −20 km around the crust-mantle inter-
face. Our analysis points to the existence of lateral heterogeneities at the crust-mantle
interface depth. The vertical transition from crust to mantle material is not sharp, but
rather seems gradual. Indeed, although the composition of pyroxene changes with
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depth from high-calcium to lower calcium contents, plagioclase was widely detected
in craters allegedly sampling mantle material.

Chapter 3 shows that the anorthositic Feldspathic Highlands Terrane (FHT-a) crust
does not become drastically more mafic with depth. However, data hint at a pyroxene
compositional change with depth in the FHT-a crust, from high calcium to lower cal-
cium contents. Our findings are in agreement with the recently proposed hypothesis
that the lunar upper mantle is rich in low calcium pyroxene, rather than olivine.

Chapters 4 and 5 display how the algorithm developed during this thesis can be
applied to provide key input for the mineral characterisation of landing sites for future
lunar landings.

This work illustrates the use of remote sensing data on crater central peaks in order
to constrain the shallow interior of the Moon. Remote sensing data can also be used
to help locate which type of samples would need to be returned in the future from
the lunar surface, in order to contribute to further elucidating the organisation of the
lunar crust and upper mantle.



Samenvatting

In de afgelopen 50 jaar is onze kennis van de maan immens gegroeid. Vooruitgang
in de maanwetenschap vond plaats in verschillende fasen. De eerste fase vond plaats
in de jaren zestig en zeventig, tijdens de Apollo- en Luna-missies, met de studie van
gesteentemonsters teruggebracht van het maanoppervlak. De petrologische karak-
terisering van maanmonsters leidde tot het ”Lunar Magma Ocean” concept, waaruit
de traditionele kijk op de organisatie van de maankorst en -mantel voortkwam: een
plagioklaas-rijke korst waarvan de mafische inhoud toeneemt met toenemende diepte.
De maanmantel wordt algemeen beschouwd als rijk aan olivijn, zoals die van de aarde.
De tweede fase van maanverkenning vond plaats in de jaren negentig, toen satellieten
in de baan van de maan werden gebracht en de eerste wereldwijde remote sensing-
gegevens verzamelden. Door hun brede tot wereldwijde dekking heeft remote sensing
nieuw inzicht in de maanwetenschap verschaft die complementair is aan dat van
maanmonsters. Tijdens de derde, huidige fase van maanverkenning werden nieuwe
gegevenssets verzameld door ruimtevaartuigen die sinds de jaren 2000 tot heden rond
de maan draaien. De remote sensing-gegevens die tijdens de tweede en derde fase
van de maanverkenning zijn verkregen, hebben het aanvankelijk eenvoudige beeld
dat wetenschappers uit eerdere studies hebben getrokken, geleidelijk gecompliceerd.
Hoge resolutie remote sensing-beelden en radargegevens hebben inderdaad geleid
tot de identificatie van vulkanische kenmerken (koepels, onregelmatige mare vlakten)
evenals de eenduidige ontdekking van vluchtige stoffen in permanent beschaduwde
gebieden en in diepgevormde maanmonsters, duidend op de complexe geologische
geschiedenis van de maan.

Tijdens dit doctoraat zijn inslagkraters gebruikt als natuurlijke boorgaten in de
maanbodem om materiaal van onder het oppervlak te bemonsteren. Tijdens inslagen
wordt gesteente uit de diepte verplaatst in de centrale pieken van kraters door middel
van elastische terugslag, waardoor het mogelijk is om de samenstelling van de korst
op diepte te onderzoeken. Spectroscopische gegevens van Chandrayaan-1’s ”Moon
Mineralogy Mapper” instrument zijn gebruikt om informatie te verzamelen over de
samenstelling van de korst in deze centrale pieken.

In hoofdstuk 1 presenteren we een algoritme voor de verwerking van spectro-
scopische gegevens afkomstig van de Moon Mineralogy Mapper. Het algoritme wordt
getest op de mineralogische diversiteit van de Humboldt krater, teneinde het te valid-
eren. De meervoudige aanwezigheid van zuiver kristallijn plagioklaas werd gede-
tecteerd in de centrale piek van de Humboldt krater, terwijl olivijn en spinel, mogelijk
verband houdend met een plutonische gebeurtenis, werden gedetecteerd in de wan-
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den van de Humboldt krater.
In hoofdstuk 2 onderzoeken we de centrale pieken en piekringen van 36 kraters

waarvan wordt beweerd dat ze materiaal bemonsteren afkomstig van +10 tot −20 km
rond de korst-mantelgrens. Onze analyse wijst op het bestaan van laterale hetero-
geniteiten ter diepte van de korst-mantelgrens. De verticale overgang van korst- naar
mantelmateriaal is niet abrupt, maar lijkt geleidelijk. Hoewel de samenstelling van
pyroxeen verandert met diepte, van hoog naar lager calciumgehalte, werd plagiok-
laas inderdaad op grote schaal gedetecteerd in kraters waarvan wordt beweerd dat ze
mantelmateriaal bemonsteren.

Hoofdstuk 3 toont aan dat de anorthositische ”Feldspathic Highlands Terrane
(FHT-a)” korst niet drastisch meer mafisch wordt met toenemende diepte. Gegevens
wijzen op een verandering in de samenstelling van pyroxeen met diepte in de FHT-a
korst, van hoog naar lager calciumgehalte. Onze bevindingen komen overeen met
de recent voorgestelde hypothese die stelt dat de bovenste maanmantel rijk is aan
pyroxeen met een laag calciumgehalte, in plaats van olivijn.

Hoofdstukken 4 en 5 laten zien hoe het algoritme dat tijdens dit proefschrift is
ontwikkeld, kan worden toegepast om belangrijke invoer te leveren voor de mineralo-
gische karakterisering van landingsplaatsen voor toekomstige maanlandingen.

Dit proefschrift illustreert het gebruik van remote sensing-gegevens van krater-
pieken om het ondiepe interieur van de maan te onthullen. Remote sensing-gegevens
kunnen ook worden gebruikt ten behoeve van het bepalen welk type gesteentemon-
sters in de toekomst moeten worden teruggebracht vanaf het maanoppervlak, om
bij te dragen aan de verdere opheldering van de organisatie van de maankorst en
–bovenmantel.



Résumé

Au cours des cinquante dernières années, notre niveau de connaissance sur la
Lune a fortement évolué. Les progrès en science lunaire sont survenus selon plusieurs
phases. La première phase eut lieu pendant les missions Apollo et Luna dans les
années 1960 et 1970, avec l’étude des échantillons de roches lunaires rapportées pen-
dant les missions du même nom. La caractérisation pétrologique des échantillons
lunaires a fait naître le concept d’Océan de Magma Lunaire, qui est à l’origine de la
vue traditionnelle de la croûte et du manteau lunaires. Ce modèle prédit que la croûte
lunaire est riche en plagioclase et que sa composition devient plus mafique en pro-
fondeur. Il est communément admis que le manteau lunaire est riche en olivine et
qu’il contient du pyroxène, conformément au manteau terrestre. La seconde phase
de l’exploration lunaire eut lieu dans les années 1990, lorsque des satellites lancés en
orbite lunaire collectèrent les premiers jeux de données globaux de télédétection. En
raison de leur couverture spatiale globale, les données de télédétection apportèrent
une vision complémentaire à celle conférée par l’étude des échantillons lunaires. Pen-
dant la troisième phase de l’exploration lunaire, qui a commencé dans les années
2000 et a toujours cours aujourd’hui, de nouveaux jeux de données ont été collectés
par des satellites en orbite autour de la Lune. Les données de télédétection acquises
durant ces deux dernières phases ont permis de prendre connaissance de processus
complexes encore inconnus et de nuancer l’image initialement simple que les scien-
tifiques se faisaient de la Lune. En effet, l’étude des jeux de données de haute résolu-
tion et des données radar a conduit à l’identification d’édifices volcaniques (dômes
; zones de mare irrégulières, dites irregular mare patches ou IMP), et à la découverte
sans équivoque de volatils dans les régions ombragées en permanence. Des volatils
ont également été découverts dans des échantillons lunaires issus de l’intérieur de
la Lune, démontrant ainsi la complexité de l’histoire géologique de la Lune. Durant
cette thèse, des cratères d’impact ont été utilisés comme forages naturels de la croûte
lunaire. En effet, lors de l’impact, des roches profondes sont excavées et mises à
l’affleurement dans le pic central du cratère par rebond élastique. Il est alors possible
d’étudier la composition des roches crustales profondes en examinant le pic central
d’un cratère à la surface d’une planète. Ici, le pic central de cratères échantillonnant la
croûte lunaire a été étudié avec les données spectroscopiques de l’instrument Moon
Mineralogy Mapper (Cartographe de la Minéralogie de la Lune, aussi noté M3) à bord
de la mission Chandrayaan-1.

Dans le premier chapitre, nous présentons un algorithme traitant les données
spectroscopiques M3. L’algorithme est validé en étudiant la diversité minéralogique
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du pic central du cratère Humboldt. De multiples détections de plagioclase cristallin
pur sont remarquées sur le pic central, alors que de l’olivine et du spinelle potentielle-
ment mis en place suite à un événement plutonique sont détectés dans les murs du
cratère Humboldt.

Dans le deuxième chapitre, nous sélectionnons 36 cratères dont le pic central
(ou anneau central, dans le cas de plus grands cratères) échantillonne potentielle-
ment du matériel originaire d’une profondeur comprise entre +10 et −20 km autour
de l’interface croûte-manteau. Notre analyse montre la présence d’hétérogénéités
latérales au niveau de l’interface croûte-manteau. La transition verticale de croûte
à manteau n’est pas abrupte, mais semble au contraire graduelle. En effet, du pla-
gioclase est détecté dans le pic central de cratères échantillonnant potentiellement
du matériel mantellique. Cependant, la composition du pyroxène change avec la
profondeur, depuis des compositions riches en calcium en surface, jusqu’à des com-
positions pauvres en calcium en profondeur.

Dans le troisième chapitre, nous montrons que la croûte anorthositique des hauts
plateaux lunaires feldspathiques ne devient pas drastiquement plus mafique en pro-
fondeur. Les résultats suggèrent en revanche que le pyroxène change de composition
avec la profondeur dans la croûte, encore une fois depuis des compositions riches en
calcium en surface, jusqu’à des compositions pauvres en calcium en profondeur. Nos
découvertes sont en accord avec l’hypothèse récemment émise par des confrères qui
propose que le manteau lunaire supérieur est riche en pyroxène de composition pau-
vre en calcium, plutôt qu’en olivine. Les quatrième et cinquième chapitres montrent
que l’algorithme développé pendant cette thèse peut être appliqué pour caractériser
la minéralogie des sites d’atterrissage des prochaines missions lunaires.

Ce travail illustre l’utilisation de données de télédétection sur le pic central de
cratères, dans l’optique de caractériser l’intérieur peu profond de la Lune. Les don-
nées de télédétection peuvent également être utilisées pour aider à cibler des régions
à la surface de la Lune dont le retour d’échantillons pourrait donner des indices im-
portants sur l’organisation de la croûte et du manteau supérieur lunaires.
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Introduction

The Moon has been an object of wonder and study for millennia. During the fifth
century BCE, the Greek philosopher Anaxagoras — who is thought to have been the
first to discover the cause of eclipses — theorized that the Moon is an earthy lump
(Curd [2015]). Due to its proximity to the Earth, the Moon was the nearest challenge
for planetary exploration. To this day, it is the only other planetary surface upon which
humankind has walked.

Short Summary of Lunar Exploration
In a span of 15 years in the 20th century, our knowledge of the Moon increased

drastically — from the first observation of its farside, to the collection of samples
brought back by the Apollo astronauts and the Luna landers. In 1959, the first picture
of the lunar farside was brought back by USSR’s Luna 3 satellite. This picture revealed
for the first time the stark difference between farside and nearside. Five years later, the
first series of high resolution images of the lunar surface were returned by USA’s Ranger
7 satellite. These pictures were used in order to study lunar surface properties, and
helped to select the landing sites of future manned Apollo missions. Only five years
later, the first man set foot on the lunar surface. The lunar farside surface remained
untouched until the Chang’E-4 mission, 60 years after the first picture of the lunar
farside was captured.

USA’s Apollo program focused on manned missions. Apollo missions 11 through
17 brought back an ever increasing mass of samples (with the exception of the Apollo
13 mission), reaching a total of more than 381 kg. On the other hand, USSR’s Luna
program developed a fully automated sample mission concept, returning a total of
301.1 grams retrieved from the lunar surface.

1
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The era of the Luna and Apollo programs enabled scientists from all countries to
study a diversity of rocks brought back from the lunar surface. Most of these rocks are
now stored in facilities that aim at preserving the pristine condition of the samples.
Preserving material for the future allowed several generations of scientists to use an
array of methods in order to study the samples with new techniques.

Emergence of the Lunar Magma Ocean Concept
Petrologic examination of the two rock types brought back from the Apollo 11

mission (basalts and anorthosites, Wood [1970]) sparked the idea that the Moon crys-
tallized from a global Lunar Magma Ocean (LMO). Olivine and pyroxene crystallized
first, while plagioclase started to crystallize after approximately half of the magma
ocean was already solidified by cooling. Plagioclase was buoyantly separated from
the magma, forming an anorthosite crust by flotation (e.g., Smith et al. [1970], Warren
[1985], Wood [1970], Fig. 1). The analysis of lunar samples also showed that the Moon
is depleted in volatile and siderophile elements with respect to the average compo-
sition of the solar system (Taylor and Jakes [1975], Wetherill [1971]). The depletion
in volatile elements of the bulk Moon was taken into account in later experimental
petrology studies, in order to establish the crystallization sequence of the LMO ("dry"
magma ocean in Fig. 2).

The magma ocean concept rapidly spread in the lunar community. However, the
depth of the magma ocean, and the thickness and composition of the crust resulting
from magma ocean processes were debated.

Upon examination of the topography difference between the maria and the high-
lands, O’Keefe [1968] postulated that the material constituting the highlands must
be lighter than that of the maria. Later on, Wood et al. [1970] proposed that a 25 km
thick anorthosite crust floats on a gabbro layer, and acknowledged that a substantial
part of the Moon had to be molten in order to allow the formation of a 25 km thick
anorthosite layer. Several studies tried to give an estimate of the initial depth of the
magma ocean. Assessments span a wide range, from 200 to 400 km (Shirley [1983],
Solomon and Chaiken [1976]), to 1000 km (Elkins-Tanton et al. [2011]), to whole-Moon
melting (> 1200 km, Steenstra et al. [2016]).

The nearside-farside topography difference is not the only sign of nearside-farside
asymmetry. Crustal thickness models and compositional datasets also bear a nearside-
farside asymmetry, which hints at a different nearside-farside crystallisation and evo-
lution story. The question of how the nearside-farside asymmetry influences the crust-
mantle interface remains open.

Remote Sensing Surveys
In the 1990s, the first orbital gravimetric and geochemical signature of the lunar

surface were retrieved from satellites sent to the Moon. More remote sensing missions
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were sent to the Moon at the end of the 2000s, acquiring new datasets, among which
new gravimetric data, high resolution images, and multispectral and hyperspectral
data.

The Clementine and Lunar Prospector missions retrieved the first global gravi-
metric and geochemical data from the lunar surface, allowing the definition of three
major lunar terranes Jolliff et al. [2000]: the Procellarum KREEP Terrane (PKT), the
Feldspathic Highlands Terrane (FHT), and the South-Pole Aitken Terrane (SPAT). Data
from the Clementine mission were used in order to derive the first crustal thickness
maps, ranging from an average of 68 km on the farside, and 60 km on the nearside
(Zuber et al. [1994]).

Insight into the surface mineralogy was provided by the Clementine UltraViolet-
Visible camera multispectral data. These data allowed Tompkins and Pieters [1999] to
study the diversity of the lunar crust laterally and vertically with impact craters, and
suggest an evolution of the mineralogical composition with depth.

The Gravity Recovery and Interior Laboratory (GRAIL) mission was sent into lu-
nar orbit in 2011, and acquired new gravimetric data from the Moon. Four crustal
thickness models were derived from these data, with a crustal thickness average com-
prised between 34 and 43 km (Wieczorek et al. [2013]), significantly thinner than the
estimates obtained from the Clementine data.

Figure 1: Illustration of the Lunar Magma Ocean concept. At first, the Moon is partially or totally molten.
Olivine and pyroxene start to crystallize from the magma ocean. Due to their high density, they sink to the
bottom of the magma ocean. The anorthositic crust is formed when plagioclase starts crystallizing from the
magma ocean. Lighter, plagioclase floats to the surface of the magma ocean, creating a crust by flotation.
Credits: Planetary Science Research Discoveries web page, available at �������������	
��������
�.
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Figure 2: Difference of the crystallisa-
tion sequence in a magma ocean 700 km
deep: a "dry" magma ocean, and a "wet"
magma ocean (containing 3150 ppm wa-
ter). Modified from Lin et al. [2017]. The
vertical axis represents the percentage of
solidification by volume.

Visible near-infrared spectroscopy can provide constraints on the chemical make-
up of the minerals constituting a planetary surface, and its composition. Indeed,
Adams [1975] discussed the uniqueness of rock-forming mineral absorption bands
in the visible near-infrared domain (350 nm to 2500 nm), and showed that most of
the rock-forming minerals can be distinguished from each other based on their re-
flectance spectra.

Several visible near-infrared imaging spectrometers were sent to the Moon in the
2000s, with better spatial and/or spectral resolution than earlier mission instruments:
Kaguya’s Spectral Profiler and Multiband Imager from 2007 to 2009; Chandrayaan-
1’s Moon Mineralogy Mapper (M3) from 2008 to 2009. During this PhD project, re-
flectance data from M3 were used.

Discovery of Water in the Moon
The view of a volatile-depleted Moon persisted through time and was incorporated

in the crystallisation models of LMO ("dry" system in Fig. 2). However, Saal et al.
[2008] recently re-analysed the composition and volatile content of pyroclastic glass
beads sampled during the Apollo missions. They measured significant amounts of
water in these beads, overthrowing the view of a dry Moon. The presence of water
on the lunar surface was later confirmed by remote sensing surveys using M3 data
(Klima et al. [2013], Li et al. [2018]). The presence of volatiles in the Moon has to be
accounted for in magma ocean crystallisation models, as well as thermal evolution
models. Experimental petrology studies have been conducted in order to understand
the effect of water on the LMO crystallisation sequence. Lin et al. [2017] showed that
the two major differences between a volatile-rich and a volatile-poor magma ocean
are the production of a thin crust in the presence of water (40 km with water versus
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67.5 km without water, see Fig. 2), and the crystallisation of spinel in the later stage of
the wet magma ocean solidification. Based on this work, the presence of water in the
magma ocean produces a crustal thickness compatible with crustal thickness models
from the GRAIL mission data.

Mineralogy of the lunar crust
Owing to their global coverage, remote sensing datasets are complementary to

the lunar samples retrieved from nine locations of the lunar nearside, combining the
Apollo and Luna missions sampling sites. Spectroscopic datasets can also be used in
order to investigate the crustal column, using complex impact craters. Indeed, com-
plex impact craters act as natural drill holes through the lunar crust, bringing material
from depth to the surface (Melosh [1996]). This makes impact craters important for
studying the lunar crust architecture using remote sensing data, and to test the LMO
crystallisation sequence.

Several surveys investigated the global mineralogy of the lunar crust. The results
of Tompkins and Pieters [1999] point at a compositionally diverse lunar crust: pure
anorthositic, gabbroic, noritic, troctolitic rocks, as well as mixtures of these rocks were
detected throughout the lunar crust. Cahill et al. [2009] showed that the mineralogy
of the lunar crust varies with crustal thickness: portions of the lunar surface where
the crust is thick are generally more plagioclase-rich than portions of the lunar sur-
face where the crust is thin. What is more, the results from Cahill et al. [2009] are
consistent with an increase of the proportion of mafic minerals (olivine, pyroxene)
with increasing crustal depth. This result was also pointed at by several other surveys
(Ryder and Wood [1977], Spudis and Davis [1986], Tompkins and Pieters [1999]), while
observations from other studies debate it (Lemelin et al. [2015], Martinot et al. [2018],
Song et al. [2013]). A thick, global anorthosite layer buried at depth in the crust was
identified with data from three multi-spectral and hyper-spectral instruments (Don-
aldson Hanna et al. [2014], Hawke et al. [2003], Ohtake et al. [2009], Yamamoto et al.
[2012]).

Outline of the thesis
During this PhD project, many of the themes linked to the lunar crust mentioned

above were tackled. During the first part of the PhD, an algorithm for removing the
continuum on M3 spectroscopic data was developed and applied to the M3 mosaic of
Humboldt crater in order to verify if the M3 data processing was valid. The second part
of the PhD focused on the investigation of the lateral evolution of the crust-mantle
interface, and the characterization of the compositional change at the crust-mantle
interface (is the transition from crust to mantle material sharp, gradual?). In the third
part of the PhD, I used a similar approach as that used in the second part of the PhD,
focusing on the architecture of the crust with craters located in the lunar highlands.
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The chapters that follow are a reproduction of the scientific articles published in,
or to be submitted to, peer-reviewed journals in the course of this project (chapters 1–
3). I also had the opportunity to apply the techniques developed during this thesis
to characterize the mineralogy of the landing sites for two Chinese Moon missions,
enabling me to contribute directly to today’s lunar exploration. Two scientific articles
I co-authored (chapters 4 and 5) were published as part of this collaboration.
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Keypoints:

• Multiple pure crystalline plagioclase are detected in the Humboldt crater central
uplift, hinting at its crustal origin.
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• Olivine, spinel and glass occurrences are detected in the Humboldt crater walls
and rim, suggesting a shallow origin of these minerals, potentially linked to a
plutonic intrusion.

• Crater counts performed on the Humboldt crater volcanic deposits suggest that
volcanic activity in Humboldt crater spanned over a billion years.

Abstract
Moon Mineralogy Mapper (M3) spectroscopic data and high resolution imagery

datasets were used to study the mineralogy and geology of the 207 km diameter Hum-
boldt crater. Analyzes of M3 data, using an improved method for M3 spectra contin-
uum removal and spectral parameters calculation, reveal multiple pure crystalline
plagioclase detections within the Humboldt crater central uplift, hinting at its crustal
origin. However, olivine, spinel and glass are observed in the crater walls and rims,
suggesting these minerals derive from shallower levels than the plagioclase of the cen-
tral uplift. High-Calcium pyroxenes are detected in association with volcanic deposits
emplaced on the crater’s floor. Geologic mapping was performed, and the age of Hum-
boldt crater’s units was estimated from crater counts. Results suggest that volcanic
activity within this floor-fractured crater spanned over a billion years. The felsic min-
eralogy of the central uplift region, which presumably excavated deeper material, and
the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and
rim are not in accordance with the general view of the organization of the lunar crust.
Our observations can be explained by the presence of a mafic pluton emplaced in the
anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the ex-
cavation of Australe basin ejecta could explain the observed mineralogical detections.
This highlights the importance of detailed combined mineralogical and geological
remote sensing studies to assess the heterogeneity of the lunar crust.

1.1. Introduction
Studies of the organization of the lunar crust are important to constrain the mag-

matic and thermal evolution of the Moon [e.g., Shearer et al., 2006]. The Lunar Magma
Ocean (LMO) concept predicts that the upper part of the lunar crust was formed
by floatation of plagioclase on a magma ocean, forming a > 90 % plagioclase-rich,
anorthositic upper crust [e.g., Kaula, 1979, Warren, 1985]. Denser minerals formed
during the earlier stages of magma ocean crystallization (such as olivine and pyrox-
ene) sank to the bottom the magma ocean, forming the lower crust and mantle [e.g.,
Lin et al., 2017, Snyder et al., 1992].
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A diversity of studies using different remote sensing data have been conducted
in order to establish a lunar crustal stratigraphy. Many of these focus on the miner-
alogical composition of the central uplift of impact craters, where material originating
from greater depths is exposed [Cintala & Grieve, 1998]. Scaling laws exist to estimate
the depth of origin of central uplift material, which is a function of the crater’s diam-
eter [e.g., Cintala & Grieve, 1998, Melosh, 1989]. Tompkins & Pieters [1999] studied
the mineralogy of lunar crater’s central peaks with Clementine data, and Wieczorek
& Zuber [2001] linked the results with Clementine crustal thickness models. The au-
thors observed an increase of the mafic mineral content with depth. More recently,
[Song et al., 2013] used Lunar Reconnaissance Orbiter (LRO) Diviner data to calcu-
late the Christiansen Feature (CF) value of lunar crater’s central peaks. The CF value
is an infrared emission maximum, the position of which is indicative of bulk miner-
alogy [Logan et al., 1973]. Lemelin et al. [2015] worked with the SElenological and
ENgineering Explorer (SELENE) Kaguya Multiband Imager (MI) data, which provides
visible near-infrared multispectral images with 5 spectral channels. Both the Song
et al. [2013] and Lemelin et al. [2015] studies highlight variations in crustal composi-
tion that deviate from the global understanding of the lunar stratigraphy, pointing at
the existence of significant heterogeneities within the crust. Head & Wilson [1992] pro-
posed that buoyant diapirs of mantle might have intruded the base of the anorthositic
crust during magma ocean crystallization, forming such heterogeneities.

Because the material emplaced in a crater’s central uplift originates from deeper
than the material observed in the crater’s walls, floor and ejecta, detailed mineralog-
ical and geological studies of impact craters can provide constraints on local crustal
organization. Here, we assess the mineralogy, geology, and morphology of the Hum-
boldt crater uplift, floor, walls and rim using Moon Mineralogy Mapper (M3) spectro-
scopic data, combined with high resolution imagery datasets. We present an improved
method to remove the continuum of M3 spectra and to calculate spectral parameters.
Our observations are aimed at shedding new light on the geology, mineralogy, and
local crustal organization of the Humboldt area.

1.2. Humboldt Crater
Humboldt crater (27◦S, 80.9◦W) is a complex crater, 207 km in diameter, located

on the eastern limb of the Moon. It was mapped as Upper Imbrian in age by Wilhelms
& El-Baz [1977]. It is surrounded by Hecataeus crater (167 km in diameter) to the
North, Phillips crater (122 km in diameter) to the West, and Barnard crater (105 km
in diameter) to the South-East (Fig. 1.1.a). Four volcanic deposits are emplaced on
the Humboldt crater floor, identified as pyroclastic in nature by Gaddis et al. [2003],
(arrows in Fig. 1.1.a). The Humboldt crater floor displays numerous radial and con-
centric fractures [Baldwin, 1968] leading to its classification as a floor-fractured crater,
interpreted to be formed by a magmatic intrusion beneath the crater floor [Schultz,
1976]. The observation of vents associated with fractures on the floor of Humboldt



12
1. Mineralogical diversity and geology of Humboldt crater derived using Moon

Mineralogy Mapper data

crater by Jozwiak et al. [2016a] supports the presence of a magmatic intrusion beneath
the crater floor. The northern part of the crater floor is slightly higher in elevation
and more rugged than the southern part [Wilhelms et al., 1987]. A central alignment
oriented South-West/North-East and extending from the center of the crater to the
rim of the North-East pyroclastic deposit is observed (Fig. 1.1.a and b). The northern
part of the central uplift is connected with this peak alignment, which complicates the
distinction between central uplift material and peak alignment material. This peak
alignment has been described as a Centralkette (central chain) by Beer & Madler [1837]
and a line of peaks by Wilhelms et al. [1987]. The central uplift of Humboldt crater is
made of several elements arranged circularly (Fig. 1.1.a). Based on this observation,
Baker et al. [2011] proposed that Humboldt crater is at the transition between a central
peak crater and a peak ring basin.

During their global crystalline plagioclase assessment of the lunar crust, Donald-
son Hanna et al. [2014] described multiple occurrences of pure crystalline plagioclase
(< 1 % olivine and pyroxene in the rock) in the Humboldt crater central uplift. Song
et al. [2013] calculated the CF value of the Humboldt crater central uplift and also
found that it is consistent with an anorthositic composition. Yamamoto et al. [2010]
detected olivine located on the floor of Humboldt crater using Kaguya Spectral Pro-
filer (SP) data. In their study, Gaddis et al. [2003] used Clementine data to analyze the
composition of lunar pyroclastic deposits. They plotted Clementine color ratios data
at 415/750 nm versus 950/750 nm and found that the Humboldt volcanic deposits plot
in the uncontaminated, mature mare soils field from Staid [2000].

1.3. Datasets and Methods
1.3.1. Remote Sensing Data
Moon Mineralogy Mapper

The mineralogy of Humboldt crater was derived from spectroscopic data from
the Moon Mineralogy Mapper (M3) instrument. M3 is a hyperspectral imager that
acquired visible to near-infrared data from the lunar surface between 2008 and 2009,
with a spectral range spanning from 430 to 3000 nm over 85 spectral channels [Pieters
et al., 2009]. The M3 data used in this study are the calibrated data archived in the
Planetary Data System (PDS, version 1 of Level 2, Besse et al. [2013], Boardman et al.
[2011], Clark et al. [2011], Green et al. [2011], Pieters et al. [2009]) from the OP2C1
period of observations, and have a spatial resolution of 280 m/pixel.

High Resolution Images – Lunar Reconnaissance Orbiter and Kaguya Cameras
The geologic context of Humboldt crater and its surroundings was studied with

the Lunar Reconnaissance Orbiter Wide Angle Camera (LRO WAC) global map at a
resolution of 100 meters per pixel (Robinson et al. [2010], downloaded from the PDS).
Kaguya’s Terrain Camera (TC) mosaics (with a resolution of 10 meters per pixel) were
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used to obtain higher resolution data of the Humboldt crater floor (Haruyama et al.
[2008], downloaded from the SELENE data archive: ����������	
�����
�����

����
����
�������
����
�). Crater counts were performed on both TC images
and WAC mosaics, and used for age determination with the craterstats tool (Neukum
[1983] ����������
���
���	����
��������������������������������������
����
����).

Elevation Data
The Lunar Orbiter Laser Altimeter (LOLA) global Digital Elevation Model (DEM)

and LOLA/SELENE TC merged stereo-derived DEMs provide elevation data with 118
and 59 meters per pixel resolution at the equator, respectively [Barker et al., 2016,
Smith et al., 2010]. The elevation data was downloaded from the PDS. It enabled
us to discriminate the crater central uplift from the crater floor and study the crater
topography and geometry.

1.3.2. Extraction of Spectral Parameters
We developed an IDL (Interactive Data Language) algorithm that performs a spec-

trum analysis on the M3 reflectance spectra. With the routine, a continuum is auto-
matically removed and band center locations are defined. This approach is similar
to the automatic detection of band centers from Horgan et al. [2014]. Horgan et al.
[2014] used an upper convex hull to find the spectrum continuum, whereas in this
study, linear segments connect the modeled continuum to the original spectrum in
points called tie points. The algorithm maximizes the area of lunar mafic minerals
and plagioclase absorption bands at 1000 and 2000 nm. The tie points are searched
for in fixed intervals (620–1100 nm; 1100–1660 nm) on a spectrum smoothed with
a boxcar algorithm with a width of 3 spectral channels in order to limit noise influ-
ence on the tie point positions. The highest wavelength tie point position is fixed at
2700 nm. Continuum removal is performed by dividing the initial spectrum by the
continuum interpolated spectrum. The two band center locations are extracted from
the minimum reflectance of a 4th order polynomial fit around the absolute minimum
(400 nm interval) of the original spectrum in the corresponding band. An example of
the steps followed in our routine is shown in Fig. 1.2.

The intervals in which a search for the tie points and band centers is performed are
optimized for pure mineral occurrences (pyroxenes, olivine, plagioclase and spinel).
Spectra displaying complex absorption bands as a result of a mixture between several
mineralogical phases might therefore not be processed correctly. Reflectance data
at wavelengths lower than 620 nm were not considered because of the low signal-to-
noise ratio recovered in this part of the spectrum [Green et al., 2011]. Reflectance
data at wavelengths beyond 2700 nm were not considered: the thermal calibration is
not optimal in this spectral domain [Clark et al., 2011]. Moreover, Pieters et al. [2009]
discovered hydroxyl and water signatures in lunar spectra at these high wavelengths
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Table 1.1: List of the Spectral Parameters Calculated by our IDL Routine.
n equals 1 for the 1 μm absorption band, or 2 for the 2 μm absorption band.

Parameter Notation Definition
Tie point 1 TP1 Position of the first tie point
Tie point 2 TP2 Position of the second tie point

Band minimum Bn MIN Position of the lowest value of the spectrum
between 2 tie points

Band center Bn CEN Position of the minimum of a fitted 4th de-
gree polynomial, ± 200 nm from the band
minimum

Band depth BDn 1 − the reflectance value of the band center
Band area Bn AREA The sum of the band depth of each spectral

channel in the absorption band multiplied by
the spectral resolution

Band asymmetry Bn ASYM Percentage of difference between the area at
the left and at the right of the band center,
divided by the band area

Interband distance INTERD Difference between the position of the band
center of the 1000 and the 2000 nm absorp-
tion band

that can significantly affect the location of the tie points.

After removing the continuum from the spectra, a number of spectral parameters
were derived or calculated for each spectrum (Table 1.1). This spectrum study is
repeated on each pixel of the M3 mosaic, and several data products are extracted:
a continuum-removed mosaic is generated, as well as spectral parameter mosaics,
where all the spectral parameters calculated are stored as maps.

The parameter maps are then refined using filters to remove noise: all the pixels
with a band depth inferior to 2 % are not displayed. Filtered parameter maps are used
to make color composites, and stretched using ENVI to highlight pixels displaying
spectral characteristics inherent to lunar mineralogy. The spectra corresponding to
the displayed pixels are then manually checked and confronted to relevant laboratory
spectra (e.g., absorption band center, band asymmetry, shoulders position) in order
to confirm or reject a mineralogical detection. The color composites are then im-
ported in a GIS software and compared with other existing datasets. These include the
global mosaic of the LRO WAC to visualize the geological context, the LOLA/SELENE
TC merged stereo-derived DEM to provide elevation informations, and Kaguya TC
mosaics to yield high resolution images.
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1.4. Results
1.4.1. Mineralogical Detections

Burns [1970b] showed that minor amounts of FeO (< 1.0 wt%) can be incorporated
in lunar calcic plagioclase. Iron-bearing plagioclase is characterized by a diagnostic
absorption band centered at 1250 nm [Adams & Goullaud, 1978]. However, as Cheek.
et al. [2009] pointed out, olivine and pyroxene absorption bands dominate the near-
infrared spectra. In a plagioclase-dominated mixture, as little as 2 vol% of olivine
or pyroxene has a strong effect on the bulk spectrum [Cheek & Pieters, 2014], to the
extent that plagioclase would not be identifiable in the spectra. Therefore, detecting
plagioclase with near-infrared spectra provides a constraint on the plagioclase content
of the rock to be superior or equal to 98 % [Donaldson Hanna et al., 2014, Ohtake
et al., 2009]. In the selected color composite shown in Fig. 1.3.a and b, plagioclase
detections are highlighted in colors from blue to pink, with increasing absorption band
strength. Plagioclase is widely detected across the central uplift of Humboldt crater
(Fig. 1.3.b), therefore suggesting the presence of nearly pure anorthosites. Fig. 1.3.c
gives an example of a typical plagioclase spectrum detected in the central uplift of
Humboldt crater. No pure crystalline plagioclase is detected on the linear mountain
range.
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Figure 1.1: Geological context of Humboldt crater. a. General view of Humboldt crater and nearby craters
with a Lunar Orbiter Laser Altimeter (LOLA) and Kaguya Terrain Camera (TC) merged digital elevation
model, overlain in transparency on a LRO WAC mosaic basemap. The Humboldt central uplift region
appears in yellow shades at the center of the crater. The linear mountain range extends until the rim of
the volcanic deposit located in the North-East portion of the crater. Volcanic deposits are located in lower
elevated areas in the periphery of the crater and denoted as P. Portions of the terraced walls are marked
as T. The AA’ line shows the topographic transect presented in b. A fault of same orientation as the linear
alignment is observed to the North-West of Humboldt crater. b. LOLA/Kaguya merged DEM topographic
transect AA’ of Humboldt crater. The northern rim is slightly lower in elevation than the southern rim. The
crater walls are terraced. The volcanic deposits are emplaced in the topographic lows in the periphery of
the crater floor.
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Figure 1.2: M3 spectrum study with our IDL routine. (a) The original spectrum (thick black line) is smoothed
(red line) to allow for the tie points search. After the tie points are found (gray vertical segments), the con-
tinuum is modeled as linear segments between the tie points (green lines). (b) Spectrum after continuum
removal (thick black line). After the band minima are found (dotted blue lines), a polynomial fit (orange
curve) ± 200 nm around the band minimum is performed. The minimum of this polynomial fit is the band
center (dashed orange line).
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(Caption next page.)
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Figure 1.3 (previous page): (Previous page.) Humboldt crater mineralogical diversity. a. General view of
Humboldt crater with mineralogical detections. The M3 color composite are overlain on LRO WAC mosaic.
R = B1AREA; G = B2AREA; B = B1CEN, see Table 1.1 for parameter details. Plagioclase is highlighted in blue to
pink shades, as its absorption band depth increases. Olivine is displayed in red, and pyroxene in bright green.
Blue stars denote pure plagioclase detections from Donaldson Hanna et al. [2014]; the red star denotes the
olivine detection by [Yamamoto et al., 2010]. The mineralogical detections from this study are reported
as pentagons. The spectra associated with the white pentagons are interpreted as pyroxene-plagioclase
mixture spectra, as discussed in 1.4.1. b. Close-up of the Humboldt crater central uplift and mountain range.
The position of the spectra presented in c are indicated as colored squares, and the frames are the locations
of the areas shown in higher resolution in Fig. 1.6. c. Typical M3 spectra of key mineralogical detections
in Humboldt crater as indicated by colored squares in b. c-1: original M3 Level 2 spectra; c-2: continuum
removed spectra, output from the IDL routine; c-3: corresponding RELAB database spectra processed by
the IDL routine (respective RELAB-ID: LS-CMP-004; LR-CMP-014; PS-TXH-082; LR-CMP-051; DL-CMP-008
and LS-CMP-009 for plagioclase; olivine; spinel; orange glass; pigeonite and High-Calcium Pyroxene).

Olivine spectra are characterized by a single, broad and complex absorption band
centered at 1050 nm [Sunshine & Pieters, 1998]. The position of the absorption center
shifts towards longer wavelength with increasing iron content [Burns, 1970a], and the
absorption band of fayalite is broader and more flat-bottomed than that of forsterite
[Sunshine & Pieters, 1998]. Olivine is displayed in red in the color composite shown
in Fig. 1.3.a. Olivine is mostly detected in the southern and eastern rims and ejecta of
Humboldt crater, and in the walls of a 7 km diameter crater in the East of Humboldt
crater’s central uplift. One olivine occurrence is observed on the western margin of
the central uplift of Humboldt crater, associated with a glass detection. All the olivine
spectra observed in Humboldt crater have a narrow absorption band, and the right
shoulder of the absorption band is compatible with a forsteritic composition. No
major compositional difference is observed between the walls and the central uplift
olivine spectra.

Pyroxenes have diagnostic absorption bands located around 1000 and 2000 nm,
shifting towards longer wavelength with increasing Iron or Calcium content [Klima
et al., 2007]. Low-Calcium Pyroxene (LCP) such as pigeonite or enstatite has an absorp-
tion band centered around 900 nm and an absorption band centered around 2000 nm.
In contrast, both absorption bands of High-Calcium Pyroxene (HCP) such as augite
or diopside are shifted towards longer wavelength. The color composite presented in
Fig. 1.3 displays pyroxenes in green to yellow depending on the strength of the absorp-
tion bands. The spectra observed in the volcanic deposits and ejecta have spectral
characteristics consistent with a HCP composition. The pyroxene detections associ-
ated with the walls of Humboldt crater, part of the central peak alignment, and small
craters on its South-West and South-East rim, have spectral characteristics consistent
with a LCP composition.

Small spinel patches (≤ 1 km in diameter), can be detected in Humboldt crater,
mainly concentrated in the eastern part of its walls, rim and ejecta (see Fig. 1.3.a).
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Spinel does not display any absorption feature around 1000 nm, but shows a broad
absorption band centered at 2000 nm [Cloutis et al., 2004].

Orange glass occurrences are highlighted in red to dark red patches in the color
composite (Fig. 1.3.a). Orange glass is defined by broad 1000 nm and 2000 nm absorp-
tion features, with centers located near 1150 nm and 1900 nm [Adams et al., 1974]
(Fig. 1.3.c). The first detection of lunar glasses from orbit was from Besse et al. [2014].
Several detections of orange glass are observed spatially close to olivine on the rim
and ejecta of Humboldt crater, in and near its central uplift, and in the walls of smaller
craters on its floor (see Fig. 1.3.c). Horgan et al. [2014] cautioned about the effect of
Fe-bearing glass on resulting reflectance spectra when mixed with pyroxene. They
showed that when glass is less abundant than 80 wt.% in a glass-pyroxene mixture, the
resulting spectrum mimics the spectral characteristics of olivine.

In addition, some spectra with a composite 1000 nm absorption feature were
observed on the crater floor and walls (white polygons in Fig. 1.3.a). These spectra
have three absorption band centers: one at 970 nm, one at 2020 nm and a third at
1230 nm (red spectrum in Fig. 1.4). Plagioclase-diopside mixture spectra from the
RELAB database (�������������	
��	������
��������	��) are shown Fig. 1.4.
The plagioclase-diopside mixture spectra containing 7 and 10 % of diospide both have
an absorption feature centered at 1250 nm additional to the 1000 and 2000 nm absorp-
tion features.
There is a shift in the 1 and 2 μm absorption band centers of the laboratory spectra
and the spectra from the M3 data presented here. This shift can be caused by a com-
position difference: for instance, HCP have absorption bands shifted towards longer
wavelength than LCP Klima et al. [2011]. Fig. 1.4 highlights the composite shape of
the absorption band at 1 μm of the mixed laboratory spectra. Taken together, these
elements suggest that the locations of spectra denoted by white polygons in Fig. 1.1.a
may be characterized by a mixture of plagioclase and pyroxene.

1.4.2. Scatter Plots
The calculation of spectral parameters for each pixel of the M3 mosaic enables the

use of scatter plots, similarly to Horgan et al. [2014]. Fig. 1.5.c presents a scatter plot of
the values of the 1 μm band center as a function of the values of the 2 μm band center.
The boxes represent fields of band center combinations compatible with the spectral
parameters of a mineral. If a spectrum displays a pair of 1 and 2 μm band centers
with values consistent with one of the boxes, its pixel is highlighted in Fig. 1.5.a and
b. The values bounding the fields are those used by Horgan et al. [2014]. Fig. 1.5.a
shows the results of the scatter plot on the map, and Fig. 1.5.b presents a zoomed-
in view of the Humboldt crater central uplift. Several vertical bands of pixels are
highlighted, which can be explained by the residual noise left after the M3 radiometric
calibration. However, we find some correlations between Fig. 1.5.a and the detections
presented in Fig. 1.3.a and b. The pixels highlighted in green in Fig. 1.5.a are the
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Figure 1.4: RELAB diospide and plagioclase mix-
ture spectra and a M3 spectrum. From top to
bottom: M3 spectrum collected on Humboldt
crater; pure diopside spectrum (PD-CMP-008);
laboratory mixture of 50 % plagioclase and 50 %
diopside (MX-CMP-104-C); laboratory mixture
of 85 % plagioclase and 15 % diopside (MX-
CMP-102-C); laboratory mixture of 90 % pla-
gioclase and 10 % diopside (MX-CMP-101-C);
laboratory mixture of 93 % plagioclase and 7 %
diopside (MX-CMP-100-C); laboratory mixture
of 98 % plagioclase and 2 % diopside (MX-CMP-
98-C); pure plagioclase spectrum (LS-CMP-004).
The spectra RELAB-ID are given in the parenthe-
ses. The grey rectangles represent the spectra
absorption band centers.
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ones with spectra having clinopyroxene-compatible band 1 and 2 μm centers (e.g.,
pigeonite, augite). This clinopyroxene-compatible signature is in good agreement
with the pyroxene signature highlighted in green in the color composite (Fig. 1.3.a and
b). Orange pixels represent pixels with spectral band 1 and 2 μm centers compatible
with a glass signature. Although the results presented in Fig. 1.5.a and b are noisy, some
locations of highlighted pixels are the same as the glass detections indicated as orange
polygons in Fig. 1.3. The spectra with band 1 and 2 μm center combinations that are
compatible with orthopyroxene (e.g., enstatite) are not correlated to a detection in
Fig. 1.3. There was no mineral field for plagioclase in Fig. 1.5.c, but the fact that the
central uplift pixels are not highlighted is consistent with their plagioclase signature,
shown Fig. 1.3.a and b.

Figure 1.5: a Scatter plot presenting the values of the 1 μm band center as a function of the values of the
2 μm band center for the pixels of the M3 mosaic of Humboldt crater. The drawn boxes represent the field of
band centers possibilities for describing a given mineral (green for clinopyroxene, cyan for orthopyroxene,
orange for glass and red for olivine with spinel). The pixels falling within the field have spectra exhibiting
the combination of band centers and are colored in c. The values used for the absorption band centers are
those used by Horgan et al. [2014]. b Close-up of the Humboldt crater central uplift. c M3 2900 nm band
image of the Humboldt crater. The colored pixels are the pixels which 1 μm band center and 2 μm band
center values fall in the boxes drawn in a.
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1.4.3. Crater Morphology
Different geomorphological units can be observed on the Humboldt crater floor, as

described in section 1.2. The northern crater rim is lower in elevation than the south-
ern rim. The transect shown in Fig. 1.1.c cuts through one of the volcanic deposits.
Several slumps can be observed around the crater, forming wall terraces (marked as
T in Fig. 1.1.a). The Humboldt crater’s central uplift is made of several blocks orga-
nized irregularly around the center of the crater. A linear mountain range (purple in
Fig. 1.8.b) is extending from the north-western portion of the central uplift to the rim
of the volcanic deposit in the North-East of Humboldt crater.

Floor fractures cut through the least elevated parts of the central uplift (Fig. 1.6.a)
and linear mountain range (Fig. 1.6.b), which suggests that these fractures are younger
than the central uplift and linear mountain range. In the periphery of the crater, the
fractures are covered by volcanic deposits (Fig. 1.6.c), stratiphically constraining the
age of the volcanic deposits to be younger than the fractures.

1.4.4. Crater Counts
Absolute ages estimated from crater counts were obtained for various units of

Humboldt crater. Crater counts were performed on the northern rugged floor unit,
the southern smooth floor unit, all four of the volcanic deposits, as well as a melt pool
located on Humboldt proximal ejecta, to the East of the crater (see Fig. 1.7 for locations
and age results). The crater counts of volcanic deposits were performed at different
spatial resolution, but the crater distributions of the volcanic deposits labeled P2, P3
and P4 are consistent within error with an age of 1 Ga. The crater counts performed
on the volcanic deposit labeled P1 yields an older age of 2.5 Ga. The crater counts
performed on the melt pool deposited on the rim of Humboldt crater results in an age
of 3.5 Ga.
The crater counts performed on the North floor unit and South floor units are more
complex. Their respective crater distributions are irregular and exhibit plateaus that
indicate resurfacing events. The fitted age of the North unit is probably a resurfacing
event dated at 3.2 Ga. The same model age is fitted in the crater distribution of the
South unit.

1.5. Discussion
Humboldt Crater’s Geological Map

An updated geological map, based on high resolution imagery and our mineralogi-
cal detections, is provided in Fig. 1.8.a. For comparison, the initial geological map of
the crater by Wilhelms & El-Baz [1977], that combined crater floor, walls and ejecta
in one unit, is shown in Fig. 1.8.b. The volcanic deposits were mapped at higher reso-
lution and expanded. The division between crater material and terra material (Floor
texture 1 and 2, respectively in the new map) is different as well. In this study, floor tex-
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Figure 1.6: Zoomed Kaguya TC views of the Fig. 1.3.b. The fractures are pointed at with arrows. A Central
uplift cross-cut by a fracture. B Linear mountain range cut through by a fracture. C Volcanic deposit
covering a fracture.

tures and albedo changes were used to distinguish between the two floor units on high
resolution imagery, which might explain the differences between the two geological
maps.

Central Uplift and Mountain Range
The central uplift and linear mountain range were mapped as distinct units when

possible, using a combination of morphological, topographic and mineralogical in-
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Figure 1.7: Humboldt crater count areas and locations displayed on a Kaguya TC mosaic. The northern
part of Humboldt crater is labeled N, its southern part is labeled S, the volcanic deposits are labeled Pn
and the melt deposited on the Humboldt crater rim is labeled R. The topography and morphology helped
delimiting the crater floor units. The northern crater floor unit exhibits a large crater proportional to the
unit surface. The ejecta of this large crater cover the crater floor surface, which biases the age of the surface.
In order to prevent this age bias, this large crater and ejectas were excluded from the crater counts. Some
age results are presented below, with the production and chronology functions from Neukum et al. [2001].
The melt deposited on the rim of Humboldt crater is consistent with the Humboldt crater age proposed by
Wilhelms & El-Baz [1977], while the age obtained on the volcanic deposit labeled P2 is younger than that
obtained on the volcanic deposit P1.
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Figure 1.8: (a) Humboldt crater geologic map (this study) overlain on the LRO WAC mosaic. The part that
is striped pink and purple is material likely pertaining both to the central uplift and the linear mountain
range. (b) Humboldt crater geologic map from Wilhelms & El-Baz [1977] overlain on the LRO WAC mosaic.
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formation. The altitude of the central uplift peaks is greater than the linear mountain
range peaks. The linear mountain range exhibits a pyroxene signature, featureless
spectra, and spectra displaying absorption features of both pyroxene and plagioclase
interpreted as plagioclase-pyroxene mixture spectra. The unit mapped as mixed ma-
terial (dashed unit in Fig. 1.8.a) is located between the central uplift and the linear
mountain range. It is difficult to distinguish it from the central uplift unit or the linear
mountain range unit, because it displays plagioclase spectra towards the central uplift
on the southern of the unit, and featureless spectra towards the crater floor, on the
northern part of the unit.

Donaldson Hanna et al. [2014] described numerous pure crystalline plagioclase
occurrences (< 1 % olivine and pyroxene in the rock) on the Humboldt crater cen-
tral uplift, which is in good agreement with our detections (Fig. 1.3.a). Featureless
spectra are also detected on the Humboldt crater central uplift. They exhibit no ab-
sorption feature at 1000 and 2000 nm, and have been interpreted to be the signature of
shocked plagioclase [Adams et al., 1979], or anorthosite affected by space weathering
Lucey [2002]. The multiple detections of pure crystalline plagioclase throughout the
Humboldt crater central uplift hint at the crustal origin of the material composing it.

According to their simple uplift model, Song et al. [2013] concluded that the Hum-
boldt crater central uplift material originates from the lower crust, about 2 km above
the crust-mantle interface. This result was corroborated by Martinot et al. [2017], who
calculated the Humboldt crater proximity value to the crust-mantle interface with
the GRAIL crustal thickness models [Wieczorek et al., 2013]. The proximity value to
the crust-mantle interface is obtained when subtracting the depth of origin of the
material emplaced in the central uplift to the pre-impact crustal thickness [Flahaut
et al., 2012]. Martinot et al. [2017] found that the Humboldt crater-forming event likely
tapped close to the crust-mantle interface (< 10 km). Song et al. [2013] calculated the
CF value of the Humboldt crater central uplift and found it more consistent with an
anorthositic composition than a mantle composition. This corroborates the crustal
origin of the material composing the Humboldt crater central uplift, and challenges
the LMO crystallization view that a more mafic lithology should be encountered closer
to the crust-mantle interface [e.g., Lin et al., 2017, Snyder et al., 1992]. Ohtake et al.
[2009] defined a purest anorthosite (PAN) rock composed of nearly 100 % anorthosite.
They proposed the existence of a PAN-rich global layer in the crust. This PAN-rich layer
might be sampled by Humboldt crater central uplift. Alternatively, the crust-mantle
interface might be found at greater depth than expected.

Despite its spectral and spatial predominance, plagioclase is not the only min-
eral detected on the Humboldt crater central uplift. Olivine, glass and plagioclase-
pyroxene mixture spectra are marginally observed on one of the mounds of the west-
ern part of the central uplift. Lemelin et al. [2015] suggested the presence of hetero-
geneities in the crust, which is consistent with Pieters et al. [2011] and Jozwiak et al.
[2016b] conclusions. The presence of these mafic lithologies could hint at the pres-
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ence of a crustal heterogeneity sampled by the Humboldt crater central uplift. Two
olivine occurrences and three glass detections are located close to a floor fracture.
These minerals may be secondary: they may have crystallized from a volcanic event,
or recrystallized from the impact melt. There are signs of volcanism on the Humboldt
crater floor (pyroclastic deposits and vents associated to floor fractures, Jozwiak et al.
[2016a]). However, no visible sign of a volcanic vent close to the central uplift has
been observed, and there is no obvious sign of impact melt on the Humboldt crater
central uplift. Alternatively, the glass could have an impact origin. Tompkins & Pieters
[2010] indicated that spectrally distinguishing a volcanic glass from an impact glass
is difficult. The olivine could be endogenic, being presumably abundant in the lunar
mantle and lower crust [e.g., Elardo et al., 2011, Lin et al., 2017, Snyder et al., 1992].
The fact that the olivine and glass occurrences are spatially limited to a small mound
peripheral to the central uplift lead us to prefer the hypothesis of a secondary origin
for these detections.

Crater Floor and Volcanic Deposits
Four HCP-rich, pyroclastic deposits are emplaced in topographic lows in the pe-

riphery of the Humboldt crater floor (Gaddis et al. [2003], Fig. 1.1.a). Jozwiak et al.
[2012] showed that floor fractured craters are formed by the intrusion of a magmatic
body beneath the crater. Subsequently, Jozwiak et al. [2016b] observed the band-
filtered Bouguer solution of Humboldt crater in order to be able to determine den-
sity anomalies in the crust. They found that the Humboldt crater volcanic deposits
are spatially correlated with positive crustal density anomalies. Thorey et al. [2015]
showed that positive signatures in a floor-fractured crater gravity field are consistent
with the presence of shallow magmatic intrusions beneath its surface. Such magmatic
intrusions could extrude volatile-rich pockets towards the crater floor. The wide age
range of the Humboldt crater volcanic deposits could be explained by volatile hetero-
geneities in the magmatic intrusions, generating different volatile-rich pockets that
reach the surface staggered in time.

Crater counts were performed on the volcanic deposits (P1 through 4, locations in-
dicated in Fig. 1.7). The crater distributions on the Humboldt crater volcanic deposits
are often irregular, which could lead to an incorrect age. However, the significant age
difference between P1 on the one hand, and P2, P3 and P4 on the other hand, leads
us to think that Humboldt crater had several episodes of volcanic activity, spanning
a period exceeding one billion years. Signs of long lasting volcanic activity (2.7 Ga)
were found by Hiesinger [2003] while performing crater counts on mare basalts on the
near side. They also found young mare basalts (1.2 Ga old), similar to the model age
of the Humboldt crater volcanic deposits P2 through P4. Humboldt crater volcanic
deposits have been described as pyroclastic deposits by Gaddis et al. [2003]. Caution
needs to be taken when counting craters on pyroclastics, since they can be deposited
in very thin layers [Gaddis et al., 2003]. A cratered surface covered by a thin layer of
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pyroclastics might retain its topography, challenging crater count dating.

The crater counts performed on the North and the South units have a common
model age at 3.2 Ga. In the northern crater floor unit, this model age fits the distri-
bution of the craters between 300 m and 1 km in diameter. In the southern crater
floor unit, it fits the distribution of the craters between 300 m and 750 m. The 3.2 Ga
isochron does not fit bigger craters, which suggests that the crater floor is older. No
isochron fits the South unit distribution of craters between 750 m and 8 km in diame-
ter. This suggests that the unit was regularly resurfaced. This resurfacing process may
have decreased in intensity from 3.2 Ga onwards, which might explain the model age
observed.

Yamamoto et al. [2010] detected olivine in the walls of a small crater on the Hum-
boldt crater floor using SP data. SP is a continuous line spectrometer with a swath of
500 m, and a spatial resolution of 500 m/pixel [Matsunaga et al., 2008]. Due to the
nature of operations and lifetime of the mission and instrument, SP did not cover the
whole lunar surface, contrary to M3. This explains the more numerous olivine occur-
rences detected here. The olivine occurrence in the walls of the small crater on the
Humboldt crater floor is associated with glass. These olivines probably crystallized
from the melt generated during the small impact crater-forming event.

Several occurrences of a pyroxene-plagioclase mixture were detected in the South-
West of the crater, in association with fresh impact craters. The floor of Humboldt
crater does not display a strong spectral signature, except near impact craters, which
redistribute underlying, fresher material. This means that the mineralogy beneath the
Humboldt crater floor is plagioclase and pyroxene-rich, at least in the South-West of
the crater.

Jozwiak et al. [2016b] recently showed that the Humboldt crater floor displays a
positive Bouguer anomaly slightly offset from the crater center. The floor fractures
observed in Humboldt crater were mapped by Jozwiak et al. [2016a] (Fig. 1.1.a), and
differentiated into several categories, two of which are represented in Fig. 1.6. The
fractures in Fig. 1.6.a and b were classified as “v" fractures, forming during the uplift
of the crater floor associated with the magmatic intrusion emplacement, and result-
ing in the brittle fracturing of the crater floor Jozwiak et al. [2016a]. The fracture in
Fig. 1.6.c was classified as a graben. The fractures are cross-cutting parts of the central
uplift (Fig. 1.6.a), as well as the linear mountain range (Fig. 1.6.b). This means that the
central uplift and linear mountain range pre-date the fractures. Volcanic deposits are
overlying the fractures (Fig. 1.6.c), which constrains the formation of the volcanic de-
posits to be younger than the fractures. This corroborates the crater counting results.
The South-facing sides of the linear mountain range are smooth (Fig. 1.3.B) and simi-
larly oriented, comparable to the morphology of a fault wall. No reference layer was
found, making it harder to determine the fault movement. However, the presence of
a fault could explain the altitude difference between the northern and southern floor
units, accommodating part of the stress caused by the intrusion of a magmatic body
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beneath the Humboldt crater floor.
The rugged morphology and altitude of the northern floor unit could be explained
by the destabilization of the crater walls leading to the emplacement of debris on the
crater floor. This resurfacing event could explain the observed crater distribution of
the northern floor unit at 3.2 Ga (Fig. 1.7). The presence of debris on the crater floor
could also explain why fewer floor fractures are observed on the northern floor unit
than on the southern floor unit. The existence of a discontinuity (e.g., fault) before
the formation of Humboldt crater could be reflected in its final morphology, and lead
to the formation of the multiple peaks forming the linear mountain range. The linear
mountain range could alternatively have been triggered by local or regional stresses
after Humboldt crater formation.

Crater Walls and Rim
The rim of Humboldt crater is asymmetric, with the altitude of its northern rim

being lower than that of its southern rim (Fig. 1.1.c). A lobe of ejecta from Humboldt
crater is deposited on top of the Hecataeus crater floor, to the North of Humboldt
crater (Fig. 1.1.a), constraining Humboldt crater to be younger than Hecataeus crater.
The formation of Humboldt crater on an irregular pre-impact surface can explain
the unevenness of its rim (Fig. 1.1.a). A melt sheet is observed to the North-East of
the Humboldt crater rim [Hawke & Head, 1977] (labeled R in Fig. 1.7). Crater counts
of this melt sheet constrain the minimum age of the Humboldt crater formation to
3.5 Ga, which is consistent with the upper Imbrian age of the Humboldt crater material
proposed by Wilhelms & El-Baz [1977].

Several glass detections are located in the Humboldt crater walls and rims (Fig. 1.3.a).
Impact melt distribution has been studied on terrestrial impact craters [Osinski, 2004],
showing that impact melt can be deposited on the walls of a crater. This could confirm
an impact origin of the glass detections of the walls of Humboldt crater, by recrystal-
lization of the melt produced during the Humboldt crater-forming event. The glass
detections observed in the walls and rims of Humboldt crater are associated with small
impact craters (< 1 km in diameter). This association of the glass detections with small
impact craters corroborates the impact origin of these glass detections. However, it
remains unclear which impact crater-forming event these glasses recrystallized from.

Some olivine occurrences are found in the terraced walls and rims of the Humboldt
crater (Fig. 1.3.a), and located near fresh impact craters. Small impact crater-forming
events rework the target material and lead to the exposure of fresh material. If the
olivine occurrences are distributed evenly through the crater’s walls and ejecta, then
they might originate from the target material (i.e., below the surface). However, if the
olivine exposures are only concentrated around the small crater, then they may be
secondary. Here, the olivines are located close to the small craters, and not spread out
in the small crater ejecta, hinting at a secondary origin. Alternatively, these olivines
could be exogenic: olivine is abundant in asteroids, meteorites and chondrules [e.g.,



1.5. Discussion 31

Brearley & Jones, 1998, Mittlefehldt et al., 1998].

The observation of spinel and olivine in the East walls, and olivine and glass in the
South walls of Humboldt crater is interesting because they are observed in the same
crater unit. This raises the question of the origin of these minerals, which cannot be
accounted for by existing petrogenetic models. The spinel occurrences are typically a
few hundred meters across. Spinel detections on the Moon were located within craters
and volcanic domes on the nearside [Dhingra et al., 2011] and the farside [Kaur et al.,
2013, Pieters et al., 2011]. Pieters et al. [2011] indicated that the detection of spinel
constrains the abundance of other mafic minerals (olivine, pyroxene) to less than 5 %,
and defined a rock composed of "pink" spinel (owing to the color of Mg-spinels found
in lunar samples) and anorthite (PSA).
Several explanations are possible for the spinel detections. It could have an endo-
genic or an exogenic origin. Pieters et al. [2011] proposed that the origin of olivine
and Mg-rich spinel could be linked with plutonic events, resulting in the intrusion of
magmatic bodies into the lower crust. The composition of the olivine occurrences
(forsteritic), is consistent with a deep origin. Prissel et al. [2014] listed two endogenic
petrogenetic models for PSA formations: magma-wallrock interactions in the lunar
crust [Gross et al., 2011], and crystallization of a melt mixture between the anorthositic
crust and mantle material [Vaughan et al., 2013]. Lin et al. [2017] performed crystal-
lization experiments to simulate lunar magma ocean solidification in water-bearing
conditions. The results of their experiments show that spinel is amongst the last min-
erals to be crystallized during solidification of a water-bearing magma ocean. They
calculated that a spinel-bearing layer could be found around 30 km underneath the
surface after magma ocean solidification. The walls of Humboldt crater are not likely
to cut through 30 km of crust. However, we note that the 880 km pre-Nectarian Aus-
trale basin is located 300 km to the South-South-East of Humboldt crater [Wilhelms
& El-Baz, 1977]. Australe basin likely ejected deep crustal to mantle material in its
ejecta blanket during its formation, which might have been sampled by the Hum-
boldt impact crater-forming event. Most of the spinel detections are concentrated on
the South-East walls of Humboldt crater, close to Barnard crater. The south-eastern
rims of Humboldt crater are intact, which hints that Humboldt crater was formed after
Barnard crater. This could imply that Barnard crater reworked the Australe basin ejecta
during its formation, later re-disturbed by the Humboldt crater-forming event, leading
to the observed dichotomy in the spinel exposures of the south-eastern walls of Hum-
boldt crater. The spectroscopic study was performed on a mosaic of M3 data acquired
within a single operation period, and over a restricted surface. These combined factors
provide a strong constraint on the existence of the observed mineralogical dichotomy.

Implications for the Lunar Crustal Organization
This study showed that understanding the geological setting of a crater is impor-

tant in order to interpret the crustal organization of its region. The mineralogical
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signature of the Humboldt crater central uplift, floor and walls hint that the Humboldt
crater-forming event took place in a complex setting. The anorthosite signature of
the Humboldt crater central uplift reflects a crustal signature. However, the olivine
and spinel detections observed in the Humboldt crater walls suggest the presence
of pre-impact heterogeneities in the crust. These heterogeneities could have been
generated by the emplacement of a pluton in the crust sampled by the Humboldt
crater-forming event. Alternatively, the presence of Australe basin ejecta in the crust
before the formation of the Humboldt crater might explain the observed mineralogy.

1.6. Conclusion
An improved continuum removal routine for M3 data allowed the mineralogical

characterization of the Humboldt crater central uplift, floor, linear mountain range,
walls and rim. The mineralogy of Humboldt crater reflects its complex geology. The
Humboldt crater central uplift is anorthosite-rich — hinting at a crustal origin —
whereas multiple mafic minerals (spinel, pyroxene and olivine) and glass occurrences
are detected in the walls and rim of the crater.

The Humboldt crater-forming event most likely took place on a disturbed sur-
face, marked by the presence of Hecataeus crater to the North, Phillips crater to the
West and Barnard crater to the South-East. The surface was probably covered by the
ejecta of Australe basin, reworked by Barnard crater, which can explain the presence of
olivine, glass and spinel in the walls of Humboldt crater. Alternatively, the Humboldt
crater-forming event might have sampled a mafic pluton in the crust.
The orientation of the linear mountain range observed in Humboldt crater is the same
as that of a fault located to the North-East of Humboldt crater. This, and the smooth
South-facing slopes of the linear mountain range, hints that it is a tectonic discontinu-
ity that existed before Humboldt crater was formed.
Crater counts were performed on different units of Humboldt crater. The age results
are consistent with the observed stratigraphical relationships between the units. The
age obtained from the crater counts performed on the crater volcanic deposits span a
period of over a billion years, suggesting a long duration of a volcanic activity within
the Humboldt crater. This could be explained by the presence of volatile distribution
heterogeneities in a magmatic intrusion underneath the crater, extruding volatile-rich
pockets staggered in time.

The study of the lunar organization through impact craters is possible, but caution
needs to be used in order to identify the origin of the mineralogical detections. The
minerals can have a secondary origin: they may have recrystallized from the impact
melt, or be part of a former impact structure ejecta. The minerals may otherwise have
a primary origin, and reflect the crystallization of the lunar magma ocean. Primary
minerals give important insight on the stratification of the crust, and on the presence
of crustal heterogeneities.
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Keypoints:

• Plagioclase is widely detected in the central peaks of craters allegedly sampling
lower crust to mantle material, except in central peaks where low-calcium py-
roxene is observed.
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• Lateral heterogeneities at the crust-mantle interface are observed, and a pyrox-
ene compositional evolution with depth is observed, from high to low-calcium
pyroxene.

• This study’s mineralogical observations support the GRAIL crustal thickness
model 1 better than the model 3.

Abstract
Moon Mineralogy Mapper (M3) spectroscopic data were used to investigate the

mineralogy of a selection of impact craters’ central peaks or peak rings, in order to
characterize the lunar crust-mantle interface, and assess its lateral and vertical hetero-
geneity. The depth of origin of the craters’ central peaks or peak rings was calculated
using empirical equations, and compared to Gravity Recovery and Interior Labora-
tory (GRAIL) crustal thickness models to select craters tapping within +10/−20 km
of the crust-mantle interface. Our results show that plagioclase is widely detected,
including in craters allegedly sampling lower crustal to mantle material, except in
central peaks where Low-Calcium Pyroxene (LCP) was detected. Olivine detections
are scarce, and identified in material assumed to be derived from both above and
below the crust-mantle interface. Mineralogical detections in central peaks show that
there is an evolution of the pyroxene composition with depth, that may correspond
to the transition from the crust to the mantle. The correlation between High-Calcium
Pyroxene (HCP) and some pyroxene-dominated mixture spectra with the location of
maria and cryptomaria hints at the existence of lateral heterogeneities as deep as the
crust-mantle interface.

2.1. Introduction
Lunar crust composition and stratigraphy provide important constraints on our un-

derstanding of its origin and evolution [e.g., Jaumann et al., 2012]. The Lunar Magma
Ocean (LMO) hypothesis predicts that minerals crystallized in the order of olivine,
LCP, then HCP, and sank to the bottom of the magma ocean, forming the mantle and
lower crust [e.g., Charlier et al., 2018, Elardo et al., 2011, Elkins-Tanton et al., 2011, Lin
et al., 2017a,b, Rapp and Draper, 2018, Snyder et al., 1992]. During later stages of the
magma ocean crystallization, lighter minerals like plagioclase formed an anorthositic
(> 90 % anorthite-rich plagioclase) upper crust by floatation [e.g., Kaula, 1979, Warren,
1985]. The last stage of the LMO predicts the crystallization of a deep crustal layer,
widespread and uniformly distributed, enriched in incompatible elements, and called
urKREEP (Potassium, Rare Earth Elements, Phosphorus) layer [Shearer et al., 2006].
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A number of remote sensing studies have informed our knowledge of the lunar
crust composition and stratigraphy [e.g., Donaldson Hanna et al., 2014, Lemelin et al.,
2015, Ohtake et al., 2009, Song et al., 2013, Tompkins and Pieters, 1999], pointing at
both vertical and lateral heterogeneities. Because they excavate material from depth,
impact craters are a key to probing the composition of the deeper layers of the lunar
crust, and its vertical stratification. Several remote sensing studies have been carried
out in order to characterize the lunar crust-mantle interface and possible occurrence
of mantle material. Tompkins and Pieters [1999] used Clementine ultraviolet-visible
camera multispectral data. Their results point at a compositionally diverse crust, with
a very anorthositic upper crust, and an increase of mafic content with depth. They
also found evidence for the presence of mafic plutons in the crust. On the contrary,
Lemelin et al. [2015] used Kaguya Multiband Imager data, and found no clear evidence
of increasing mafic content with depth within the crust. Pieters et al. [2011] used
spectroscopic data from M3 instrument to study the Moscoviense impact basin and
described so-called OOS rock types, defined by high abundances of Orthopyroxene,
Olivine and Mg-rich Spinel. They proposed several origins for the OOS lithologies:
they might represent components of the deep crust or even the crust-mantle interface,
or alternatively have an exogenic origin. The lack of mafic material observed in the
900 km Orientale basin peak rings led Head et al. [1993] and Pieters et al. [1993] to
propose that the material composing the peak rings originates from the crust. This
hypothesis was confirmed by a high spatial resolution spectroscopic study of Orientale
basin revealing the overwhelming presence of pure anorthosite (> 90 vol% plagioclase)
in Orientale basin peak rings [Cheek et al., 2013].

Melosh et al. [2017] 3D modeled the largest lunar impact basin (SPA, with a diame-
ter exceeding 2200 km [Howard et al., 1974, Spudis et al., 1994]), and showed that the
SPA impact event sampled the upper mantle. Melosh et al. [2017] combined the re-
sults of the simulation with spectroscopic observations of the SPA ejecta blanket, and
concluded that the lunar upper mantle has a large Low-Calcium Pyroxene (LCP) com-
ponent. An alternative hypothesis is that the melt sheet produced by the SPA-forming
event differentiated [e.g., Hurwitz and Kring, 2014, Morrison, 1998, Nakamura et al.,
2009], masking any potential mantle signature.

Remote sensing studies have also identified lateral heterogeneities in the lunar
crust. Jolliff et al. [2000] used global geochemical data derived from Clementine mul-
tispectral data and Lunar Prospector gamma-ray data, and showed that there are at
least three terranes: the Procellarum KREEP Terrane (PKT), the Feldspathic Highlands
Terrane (FHT), and the South-Pole Aitken Terrane (SPAT). Ohtake et al. [2009] used
spectroscopic data from the Kaguya Multiband Imager and identified a plagioclase-
rich layer between 3 and 30 km deep in the lunar crust. Donaldson Hanna et al. [2014]
used M3 spectroscopic data and confirmed the wide detection of rocks of high plagio-
clase abundance where the crust is between 30 and 63 km thick.

Modeling work was performed by Head and Wilson [1992b] in order to evaluate
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the proportion of magmatic intrusions in the lunar crust. They estimated that a max-
imum of 37 to 50 % of the lower crust volume is intruded by plutons. The potential
presence of magmatic intrusions in the crust should be taken into account when in-
vestigating the presence of lateral heterogeneities in the lunar crust through impact
craters, because of the discontinuous sampling they provide.

Vertical and lateral variations of the lunar crust-mantle interface have been ob-
served in previous studies, but it is still unclear if the crust-mantle transition is sharp
or gradual, or if it occurs at the same depth locally, regionally, or globally. Four crustal
thickness models were derived from the recent GRAIL mission’s data, assuming differ-
ent crustal porosities, and adding a seismically determined constraint on the crustal
thickness at the Apollo 12 and 14 landing sites [Wieczorek et al., 2013]. The GRAIL
crustal thickness models provide different absolute crustal values in each point, and
predict an average crust thickness between 34 and 43 km [Wieczorek et al., 2013]. The
mineralogical results provided in the present survey could help to determine which
GRAIL model estimates best the crustal thickness at the local, regional or global scales.
This study aims at further characterizing the vertical and lateral variations of the lu-
nar crust-mantle interface, using the recent GRAIL crustal thickness models to select
craters sampling that depth, and the M3 spectroscopic data to assess the mineralogy
of selected impact craters’ central peaks or peak rings. This study focuses on a se-
lection of craters tapping the crust-mantle interface, which is deeper than previously
investigated [e.g., Lemelin et al., 2015, Tompkins and Pieters, 1999]. The potential
compositional changes of the crust-mantle interface are surveyed, with a selection of
craters sampling material between +10 and −20 km around this interface according
to the GRAIL crustal thickness models, and spread over a wide range of latitude and
longitude.

2.2. Material and Methods
2.2.1. Datasets

Spectroscopic data from the M3 instrument were used to derive the mineralogy
of selected craters’ central peaks or peak rings. M3 is a hyperspectral imager that ac-
quired visible to near-infrared data of the lunar surface between 2008 and 2009, with
85 spectral channels spanning from 430 to 3000 nm [Pieters et al., 2009]. The M3 data
used here are the calibrated data archived in the Planetary Data System (PDS, version
1 of Level 2), radiometrically corrected [Green et al., 2011], geometrically corrected
[Boardman et al., 2011], thermally corrected [Clark et al., 2011], and photometrically
corrected [Besse et al., 2013]. Data from the optical period covering the maximal por-
tion of each central peak were used, hence the wide variety of optical periods used
(OP1B, OP2A, OP2C1, OP2C2, OP2C3, with a spatial resolution of 140 m/pixel for OP1B
and OP2A; and 280 m/pixel for OP2C1, OP2C2, and OP2C3). This study is not compar-
ing absolute reflectance of the surface from one crater to the other, so using data from
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several optical periods is not problematic.

Reflectance data at wavelengths lower than 620 nm were not considered because
of the low signal-to-noise ratio recovered in this part of the spectrum [Green et al.,
2011]. Thermal effects start to appear at wavelengths beyond 2700 nm, due to the
contribution of the lunar surface [Clark et al., 2011]. That is why reflectance data at
wavelengths beyond 2700 nm were not considered in this analysis. The continuum-
removal algorithm developed by Martinot et al. [2018] was used. Their approach is
similar to that of Horgan et al. [2014]. The algorithm maximizes the area of lunar
mafic minerals and plagioclase absorption bands at 1000 and 2000 nm. The contin-
uum tie points are searched for in fixed intervals (620–1100 nm; 1100–1660 nm) on
a spectrum previously smoothed in order to limit noise influence on the tie point
positions. A third tie point is fixed at 2700 nm. Because of the presence of noise in
the M3 data, only band depths superior to 3% were considered in this study. Pixels
with absorption band depths lower than 3 % were masked out of the parameter maps.
A complete list of output parameter maps is provided in Martinot et al. [2018]. The
predominantly used color composite for the mineralogical investigation was the one
generated by Martinot et al. [2018] (R = area of the 1000 nm absorption band; G = area
of the 2000 nm absorption band; B = position of the center of the 1000 nm absorption
band). Fig. 2.1 shown a color composite of Petavius crater, classified as a floor frac-
tured crater by Jozwiak et al. [2012]. The color composite displays plagioclase in blue
shades going towards pink, as its absorption band increases; olivine is highlighted in
red; and pyroxene in bright green. The color composite was stretched using ENVI. The
highlighted pixels were then manually checked and compared to reference spectra
from the Reflectance Experiment LABoratory (RELAB) database in order to confirm
any mineralogical detection. The color composites were then imported in a GIS soft-
ware and compared with other existing data sets, specifically: the global mosaic of
the Lunar Reconnaissance Orbiter Wide Angle Camera (LRO WAC) at 100 m/pixel, to
visualize the geological context, and the Lunar Orbiter Laser Altimeter/SELENE Ter-
rain Camera (LOLA/SELENE TC) merged stereo-derived digital elevation model with
a horizontal resolution of about 60 m/pixel, and a vertical accuracy of 4 m, providing
information about the topography and elevation. Visible imagery was used to assess
the central peak or peak ring morphology in order to confirm that the mineral detec-
tions occurred in uplifted material, and not in subsequently emplaced material such
as later impact melts.

The GRAIL mission acquired gravimetric data from the Moon between 2011 and
2012. Four crustal thickness models were derived from the mission’s data, with differ-
ent assumptions on the crustal porosity and a constraint on the crustal thickness from
the Apollo 12 and 14 landing sites’ seismically determined crustal thickness [Wieczorek
et al., 2013]. GRAIL crustal thickness models 1 through 4 are reproduced in Fig. 2.2a–d.
In this study, we will show the results of the models 1 and 3, which consider a crustal
porosity of 12 %, and respectively 29.9 km and 38.1 km as crustal thickness constraint
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Figure 2.1: Color composite of M3 spectral parameters covering Petavius crater central peak, overlain on the
LRO WAC mosaic. The floor fractures described by Jozwiak et al. [2012] are merging in the central peak. R =
area of the 1000 nm absorption band; G = area of the 2000 nm absorption band; B = position of the center
of the 1000 nm absorption band. The color composite was stretched in order to highlight the mineralogical
diversity (R = 10.4–26.4; G = 30–52; B = 1230–1270 nm). The background image is the LRO WAC mosaic.
Olivine is displayed in red, pyroxene in green and plagioclase in blue to pink shades, as its absorption band
increases. Several vertical stripes of pixels are highlighted, which can be explained by the residual noise left
after the M3 radiometric calibration.
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from the Apollo 12 and 14 landing sites. Absolute crustal thickness values from the
models 1 and 2, and from the models 3 and 4 are close together (a few kilometers dif-
ference), which is why only models 1 and 3 were considered. The choice to compare
mineralogical detections to models 1 and 3 over 2 and 4 is arbitrary.

A selection of complex craters and impact basins listed in the Lunar Impact Crater
Database (LICD, Losiak et al. [2009], revised by Ohman at LPI) were examined in this
study.

2.2.2. Lunar Minerals in the Crater Selection

The number of absorption bands and their position in spectroscopic data allow
the identification of several minerals on the Moon. Plagioclase, olivine, pyroxene and
spinel were detected in the investigated craters.

Minor amounts of FeO (< 1.0 wt %) can be incorporated into lunar calcic pla-
gioclase [Burns, 1993], making it detectable with visible near-infrared spectroscopy.
Iron-bearing plagioclase spectra are characterized by a single absorption band cen-
tered around 1250 nm [Adams and Goullaud, 1978]. However, in a mixture with mafic
minerals such as olivine of pyroxene, plagioclase is easily masked: Cheek and Pieters
[2014] showed that as little as 2 vol. % of olivine or pyroxene completely masks the
plagioclase signal. Therefore, the detection of plagioclase in near-infrared spectra
provides a constraint on the plagioclase content of the rock to be at least 85 % [e.g.,
Cheek et al., 2013, Crown and Pieters, 1987].

Olivine spectra display a single, broad and asymmetric absorption band centered
at 1050 nm [Sunshine and Pieters, 1998], shifting towards longer wavelength with in-
creasing iron content [Burns, 1970]. [Sunshine and Pieters, 1998] showed that the
absorption band of fayalite is broader and more flat-bottomed than that of forsterite,
and that this flattening of the absorption band can also be observed for large (< 60 μm)
forsterite grains. It is worth noting that some lunar olivine spectra can have an ad-
ditional shallow absorption band near 2000 nm caused by the presence of chromite
[Isaacson et al., 2011].

Pyroxene spectra have two diagnostic absorption bands located around 1000 and
2000 nm (referred to as band 1 and band 2), shifting towards longer wavelengths
with increasing iron or calcium content [Klima et al., 2007]. LCP such as pigeonite
or enstatite have an absorption band 1 centered at 900 nm and an absorption band
2 centered at 2000 nm. HCP such as augite or diopside has absorption bands shifted
towards longer wavelengths: its absorption band 1 is centered at 1000 nm, and its
absorption band 2 is centered at 2200 or 2300 nm [Adams, 1974].

Spinel spectra are characterized by a single broad absorption band, centered at
2000 nm [Cloutis et al., 2004]. Mg-spinel has a band 2 centered around 2000 nm, and
a third absorption band centered around 3000 nm [Pieters et al., 2014].
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2.2.3. Calculation of the Proximity Value to the Crust-Mantle Inter-
face

GRAIL models were used together with LOLA topography to calculate the proximity
value to the mantle of all the complex craters listed in the LICD. The proximity to
the crust-mantle interface (or material now exposed in a crater’s central peak) was
defined by Cahill et al. [2009] as the difference between the crustal thickness and the
peak material depth of origin. In this study, it is referred to as the proximity value to
the crust-mantle interface, or Pcmi value. The maximum depth of melting (Dm) was
used to determine the minimum depth of origin of central peak material [Cintala and
Grieve, 1998]. The pre-impact crustal thickness was calculated following the method
in Flahaut et al. [2012], averaging the crustal thickness around the considered impact
crater (from the Wieczorek et al. [2013] crustal thickness models) at a distance of one
crater diameter, ± 10 % of the crater diameter.

If the Pcmi value is positive, only the crust should be chemically represented in
the crater’s central peak. If the Pcmi value is negative, material from below the crust-
mantle interface was potentially sampled by the impact-forming event and emplaced
in the resulting crater’s central peak. Therefore, the Pcmi values symbolize the distance
between the putative crust-mantle interface and the depth of origin of a crater’s central
peak material (see the Fig. 1 from Flahaut et al. [2012]).

2.2.4. Craters Selection
A subset of craters that presumably tap close to the crust-mantle interface was

selected from the LICD, based on the following criteria: (1) the presence of an obvi-
ous central uplift structure (central peak or peak ring); (2) full or partial coverage of
the central uplift structure by M3 data; (3) a Pcmi value calculated with GRAIL crustal
thickness models 1 or 3 between +10 km and −20 km. A preliminary study showed
that the mineralogical transition from crust to mantle does not seem sharp. Moreover,
the complexity of the lunar surface may result in uncertainties in the precision of the
craterisation equations, hence the wide Pcmi values interval investigated. Tracking
the depth of origin of a central peak emplaced on a pre-existing impact crater is not
easily feasible. As a result, craters having their central peak located on the rim of a pre-
existing crater, and craters located in the SPA basin were discarded from the selection.
Based on these criteria, the mineralogy of 27 crater central peaks and 9 crater peak
rings was studied. It is difficult to widen the pool of selected craters, because a large
number of craters tapping the crust-mantle interface were eroded or subsequently
filled by volcanic deposits. All the candidates that sample the crust-mantle interface,
with M3 coverage, were included in the present study. The selection of craters is listed
in Table 2.1, together with the crater diameters; the crustal thickness of GRAIL models
1 through 4; the Pcmi values calculated from each GRAIL model; the melting depth
(or central peak depth of origin, according to Cintala and Grieve [1998]); the excava-
tion depth (or ejecta depth of origin, according to Cintala and Grieve [1998]); the M3
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Figure 2.2: Global lunar crustal thickness maps from the GRAIL models 1 through 4, in panels a to d
[Wieczorek et al., 2013]. All crustal thickness maps are stretched between 0 and 82 km. The outlines of
three major lunar terranes defined by Jolliff et al. [2000] are shown: the PKT in blue, the SPA basin in red,
and the anorthositic FHT (FHT-a) in yellow. The outer FHT (FHT-o) was defined as the remainder of the
lunar surface that is not part of the FHT-a, PKT, SPAT, or basin-filling mare [Jolliff et al., 2000]. e. Craters
selected on the basis of the Pcmi value calculated with GRAIL crustal thickness model 1 and overlaid on the
LRO WAC mosaic. Craters with a Pcmi value > 0 are symbolized as red circles, whereas craters with a Pcmi
value < 0 are symbolized as green circles. f. Craters selected on the basis of the Pcmi value calculated with
GRAIL crustal thickness model 3 (see section 2.2.4) and overlaid on the LRO WAC mosaic. Craters with a
Pcmi value > 0 are symbolized as red circles, whereas craters with a Pcmi value < 0 are symbolized as green
circles.

optical period considered; and the crater age. The location of the selected craters are
indicated in Fig. 2.2e–f.
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2.3. Results
2.3.1. Mineralogical Detections

The mineralogical diversity of the 36 surveyed craters is summarized in Fig. 2.4.
Phases detected include plagioclase, olivine, High-Calcium Pyroxene (HCP), Low-
Calcium Pyroxene (LCP), spinel, pyroxene-dominated mixture spectra, and featureless
spectra.

Plagioclase was detected in 17 out of 36 craters (Fig. 2.3a–b), and selected pla-
gioclase spectra are shown in Fig. 2.4a. Olivine was detected in 3 out of 36 craters
(Fig. 2.3c–d). The narrow absorption band and its right shoulder on the spectra in
Fig. 2.4b are compatible with a forsteritic composition. The asymmetry and ratio be-
tween the band 1 depth and the band 2 depth of Humboldt and Petavius spectra is
compatible with olivine. The shallow absorption band observed near 2000 nm may
be caused by the presence of chromite [Isaacson et al., 2011], or small amounts of
pyroxene [Mustard and Pieters, 1987].

LCP was detected in 3 out of 36 craters (2.3e–f), and the spectra are displayed
in Fig. 2.3c. HCP was observed in 4 out of 36 craters (Fig. 2.3e–f), and the spectra
are shown in Fig. 2.4d. Spectra displaying two absorption bands which band 1 and
2 centers are close to but different from the LCP or HCP spectra field of values from
[Horgan et al., 2014] and [Martinot et al., 2018] were labeled as pyroxene-dominated
mixture spectra. Pyroxene-dominated mixture spectra were observed in 20 out of 36
craters (Fig. 2.3g–h). A selection of spectra is shown in Fig. 2.4e, with the LCP and
HCP fields represented in light gray and dark gray, respectively. A continuum removal
error could cause a displacement of the band centers, but in the case of the pyroxene-
dominated mixture spectra, the bands are broad and strong, which strongly suggests
a pyroxene-dominated mixture composition.

Spinel spectra were observed in 3 out of 36 craters (Fig. 2.3c). Spectra are shown
in Fig. 2.4f. Spinel was not found in the central peaks of the craters selected with the
GRAIL crustal thickness model 3.

Spectra with no diagnostic 1000 and 2000 nm absorption bands were reported
in previous studies as featureless spectra [e.g., Hawke et al., 2003, Spudis et al., 1984,
Yamamoto et al., 2015]. The study of reflectance spectra from shocked plagioclase
showed that the weakening and disappearance of plagioclase absorption band can be
caused by shock pressures [Adams et al., 1979, Bruckenthal and Pieters, 1984], or space
weathering of plagioclase [Lucey, 2002]. Locations of featureless spectra detections,
observed in 14 out of 36 craters, are shown in Fig. 2.3a–b. Featureless spectra, which
could correspond to shocked or weathered plagioclase, are presented in Fig. 2.4g.

Spectra observed in Curie and Gagarin craters have shallow absorption features
that do not correspond to any typical lunar mineral (plagioclase, HCP, LCP, olivine or
spinel), and are different from featureless spectra. Such spectra were labeled as spectra
with no particular signature. Examples of spectra detected in Curie and Gagarin are
shown in Fig. 2.4h.
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2.3.2. Lateral Distribution
The locations of all mineralogical occurrences are summarized in Fig. 2.3. Multi-

ple mineralogical detections are observed in the central peak or peak ring of several
craters. Plagioclase, featureless spectra, and pyroxene-dominated mixture spectra
occurrences are widely detected in the selected craters. A few plagioclase and fea-
tureless spectra are located near the edge of the PKT (in Pythagoras, Lorentz, Riccioli
and Theophilus craters), but most detections are located in the FHT-o. Olivine, spinel
and HCP detections are concentrated in a relatively restricted latitude and longitude
range: 30° N, 35° S; 20° W, 100° E, located in the FHT-o. LCP was scarcely detected in
the selected craters. Two detections are located in Clavius and Maginus craters, near
the edge of the SPAT, and one occurrence is found in d’Alembert crater, in the FHT-a.

2.3.3. Vertical Distribution
Table 2.2 shows the mineralogical detections of the selection of impact craters

sorted by decreasing Pcmi value obtained with the GRAIL crustal thickness model 1
(i.e., decreasing distance to the crust-mantle interface). Featureless spectra are de-
tected at all studied Pcmi values. Plagioclase is widely detected, even in impact craters
supposedly sampling mantle material, except in crater central peaks where LCP is ob-
served. The plagioclase detection associated to the lowest Pcmi value in a central peak
crater is located in Humboldt crater. The three olivine occurrences are concentrated
in a Pcmi value interval ranging from +6.3 km to −1.2 km, as calculated with GRAIL
crustal thickness model 1, and +13.9 km and +7.5 km as calculated with GRAIL crustal
thickness model 3. The three spinel detections are clustered in a narrower Pcmi value
range, ranking from +6.3 km to +2.0 km with GRAIL crustal thickness model 1, and
+13.9 km and +10.0 km with GRAIL crustal thickness model 3. The HCP detections oc-
cur between +8.5 km and 0.0 km with GRAIL crustal thickness model 1, and +17.4 km
and +8.3 km with GRAIL crustal thickness model 3. The LCP detections range from
−1.5 km and −9.2 km with GRAIL crustal thickness model 1, and +7.8 km and −0.6 km
with GRAIL crustal thickness model 3. Pyroxene-dominated mixture detections occur
at all investigated Pcmi values, except where LCP is detected.
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Figure 2.3: Mineralogical detections on the selected craters’ central peak or peak ring, overlaid on LRO WAC
global mosaic. The red line materializes the border of the SPAT defined by Jolliff et al. [2000]. Detections
in craters having Pcmi values < 0 are represented with light colored symbols, whereas detections in craters
having Pcmi values > 0 are represented with dark colored symbols. The circles represent the craters selected
with the GRAIL crustal thickness model 1 and 3, overlaid on the LRO WAC global mosaic. The black crosses
symbolize the craters where no clear mineralogical detection was observed. a. Plagioclase and/or fea-
tureless spectra occurrences in the craters selected with GRAIL model 1. b. Plagioclase and/or featureless
spectra occurrences in the craters selected with GRAIL model 3. c. Olivine and spinel occurrences in the
craters selected with GRAIL model 1. d. Olivine occurrences in the craters selected with GRAIL model 3.
e. HCP and LCP occurrences in the craters selected with GRAIL model 1. f. HCP and LCP occurrences in
the craters selected with GRAIL model 3. g. Pyroxene-dominated mixture detections in the craters selected
with GRAIL model 1. h. Pyroxene-dominated mixture detections in the craters selected with GRAIL model
3.
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Figure 2.4: Representative continuum removed spectra showing the mineralogical diversity encountered
in the selected craters. Black spectra are from the M3 observations; gray spectra are the corresponding
RELAB database spectra. The gray areas materialize the diagnostic absorption regions for each mineral. a.
Plagioclase spectra. b. Olivine spectra. c. LCP spectra. d. HCP spectra. e. Pyroxene-dominated mixture
spectra. f. Spinel spectra. g. Featureless spectra. h. Spectra with no particular mineralogical signature
(observed in Curie and Gagarin craters). Laboratory spectra from the RELAB database were added in order
to show that the observed spectra do not correspond to known lunar mineralogical detections (spectra,
from top to bottom: spinel, green glass, orange glass, plagioclase, olivine, HCP, LCP).



2.3. Results 55

Ta
b

le
2.

2:
P

cm
i

va
lu

e
ca

lc
u

la
te

d
w

it
h

ea
ch

G
R

A
IL

cr
u

st
al

th
ic

kn
es

s
m

o
d

el
o

ft
h

e
cr

at
er

s
st

u
d

ie
d

in
th

is
su

rv
ey

,s
o

rt
ed

ag
ai

n
st

th
e

P
cm

i
va

lu
e

ca
lc

u
la

te
d

w
it

h
G

R
A

IL
cr

u
st

al
th

ic
kn

es
s

m
o

d
el

1
(f

ro
m

gr
ea

te
st

to
sm

al
le

st
va

lu
e)

.T
h

e
fi

rs
tp

ar
to

ft
h

e
ta

b
le

sh
ow

s
cr

at
er

s
w

it
h

ce
n

tr
al

p
ea

k,
an

d
th

e
se

co
n

d
p

ar
to

f
th

e
ta

b
le

lis
ts

al
lc

ra
te

rs
d

es
cr

ib
ed

as
p

ea
k-

ri
n

g
cr

at
er

s
b

y
B

ak
er

et
al

.[
20

11
].

T
h

e
p

re
se

n
ce

o
fa

m
in

er
al

o
gi

ca
ld

et
ec

ti
o

n
o

n
th

e
ce

n
tr

al
p

ea
k

an
d

/o
r

p
ea

k
ri

n
g

(p
la

gi
o

cl
as

e,
fe

at
u

re
le

ss
sp

ec
tr

a,
H

C
P,

p
yx

ox
en

e-
d

o
m

in
at

ed
m

ix
tu

re
sp

ec
tr

a,
LC

P,
o

liv
in

e
o

r
sp

in
el

)
is

sy
m

b
o

liz
ed

b
y

a
cr

o
ss

.

P
cm

i
va

lu
e

(k
m

)
M

in
er

al
o

gi
ca

ld
et

ec
ti

o
n

s
N

am
e

M
1

M
2

M
3

M
4

P
la

gi
o

cl
as

e
Fe

at
u

re
le

ss
P

yr
ox

en
e-

d
o

m
in

at
ed

m
ix

tu
re

H
C

P
LC

P
O

liv
in

e
Sp

in
el

Fe
rm

i
9.

9
11

.5
19

.6
20

.1
X

R
ic

ci
o

li
9.

6
10

.6
17

.9
18

.0
X

X
Ts

io
lk

ov
sk

iy
9.

3
10

.7
18

.9
19

.2
X

M
es

sa
la

9.
1

9.
8

17
.8

17
.5

X
X

P
yt

h
ag

o
ra

s
8.

9
9.

7
18

.2
18

.0
X

X
H

o
m

m
el

8.
8

9.
5

16
.9

16
.6

X
La

n
gr

en
u

s
8.

5
9.

2
17

.4
17

.0
X

X
X

Fu
rn

er
iu

s
8.

2
9.

0
16

.6
16

.4
X

d
e

la
R

u
e

8.
2

8.
8

17
.0

16
.6

X
T

h
eo

p
h

il
u

s
6.

3
7.

0
13

.9
13

.7
X

X
X

X
Lo

n
go

m
o

n
ta

n
u

s
6.

2
7.

0
14

.7
14

.6
X

X
C

le
o

m
ed

es
5.

9
6.

5
14

.0
13

.7
X

X
C

u
ri

e
5.

5
6.

3
14

.0
13

.8
Jo

li
o

t
5.

3
6.

2
14

.7
14

.6
X

X
X

R
oz

h
d

es
tv

en
sk

iy
4.

2
5.

0
13

.0
12

.8
X

N
ep

er
2.

0
2.

5
10

.0
9.

6
X

X
X

X
Sc

h
ic

ka
rd

1.
8

2.
9

11
.5

11
.5

X
Pa

st
eu

r
1.

8
3.

2
11

.9
12

.3
X

G
au

ss
1.

6
2.

5
10

.4
10

.3
X

X
X

P
et

av
iu

s
1.

6
2.

6
11

.0
10

.9
X

X
C

o
m

p
to

n
*

0.
4

0.
8

8.
1

7.
6

X
X

X
Fa

b
ry

0.
0

0.
9

8.
3

8.
3

X
X

H
u

m
b

o
ld

t*
−1

.2
−0

.4
7.

5
7.

3
X

X
X

M
ag

in
u

s
−2

.0
−1

.4
6.

4
6.

0
X

B
el

’k
ov

ic
h

−5
.1

−4
.6

3.
7

3.
2

X
G

ag
ar

in
−8

.2
−7

.0
0.

7
1.

0
C

la
vi

u
s

−9
.2

−8
.4

−0
.6

−0
.8

X
d

’A
le

m
b

er
t

−1
.5

−0
.3

7.
8

8.
0

X
Sc

h
w

ar
zs

ch
il

d
−5

.3
−4

.6
2.

8
2.

5
X

M
iln

e
−1

2.
2

−1
1.

2
−3

.1
−3

.2
X

X
M

en
d

el
ee

v
−1

2.
3

−1
0.

8
−2

.6
−2

.2
X

X
X

B
ai

lly
−1

4.
2

−1
3.

3
−5

.2
−5

.3
X

X
Lo

re
n

tz
−1

9.
4

−1
8.

4
−1

0.
6

−1
0.

5
X

X
X

B
ir

kh
o

ff
−2

0.
4

−1
9.

3
−1

1.
2

−1
1.

2
X

X
C

on
ti

n
u

ed
on

n
ex

tp
ag

e



56
2. Compositional variations in the vicinity of the lunar crust-mantle interface from

Moon Mineralogy Mapper data
Ta

b
le

2.
2

–
C

on
ti

n
u

ed
fr

om
p

re
vi

ou
s

p
ag

e
P

cm
i

va
lu

e
(k

m
)

M
in

er
al

o
gi

ca
ld

et
ec

ti
o

n
s

N
am

e
M

1
M

2
M

3
M

4
P

la
gi

o
cl

as
e

Fe
at

u
re

le
ss

P
yr

ox
en

e-
d

o
m

in
at

ed
m

ix
tu

re
H

C
P

LC
P

O
liv

in
e

Sp
in

el
Sc

h
il

le
r-

Z
u

cc
h

iu
s

−2
2.

3
−2

1.
4

−1
3.

2
−1

3.
2

X
K

o
ro

le
v

−2
8.

8
−2

7.
0

−1
8.

4
−1

7.
7

x
X

X
P

re
vi

o
u

s
p

la
gi

o
cl

as
e

o
cc

u
rr

en
ce

s
d

et
ec

te
d

b
y

D
on

al
d

so
n

H
an

n
a

et
al

.[
20

14
],

Ya
m

am
ot

o
et

al
.[

20
10

]o
r

Ya
m

am
ot

o
et

al
.[

20
12

],
as

w
el

la
s

th
is

st
u

d
y

is
d

en
o

te
d

as
X

.
P

re
vi

o
u

s
p

la
gi

o
cl

as
e

o
cc

u
rr

en
ce

s
d

et
ec

te
d

b
y

Ya
m

am
ot

o
et

al
.[

20
10

],
b

u
tn

o
to

u
r

st
u

d
y,

ar
e

d
en

o
te

d
as

x.
C

ra
te

rs
w

it
h

*
w

er
e

lis
te

d
b

y
B

ak
er

et
al

.[
20

11
]a

s
tr

an
si

ti
o

n
cr

at
er

(C
o

m
p

to
n

cr
at

er
)

an
d

cr
at

er
w

it
h

ri
n

g-
lik

e
ce

n
tr

al
p

ea
k

(H
u

m
b

o
ld

tc
ra

te
r)

.
N

o
te

th
at

th
e

ta
b

le
se

p
ar

at
es

th
e

ce
n

tr
al

p
ea

k
cr

at
er

s,
at

th
e

to
p

o
ft

h
e

ta
b

le
,f

ro
m

th
e

p
ea

k
ri

n
g

cr
at

er
s,

at
th

e
b

o
tt

o
m

o
ft

h
e

ta
b

le
.



2.4. Discussion 57

2.4. Discussion
2.4.1. Methods Limitations

The lunar crust-mantle interface and its lateral and vertical compositional struc-
ture are investigated in this study. However, some limits have to be kept in mind when
considering the results presented here: (1) while the relative GRAIL crustal thickness
variations are robust, there can be a difference of > 10 km in the absolute crustal thick-
ness values from one model to the other; (2) the melting depth and other the crateri-
sation equations were empirically determined, which can introduce a non-negligible
error in the calculation of the proximity value to the crust-mantle interface; (3) the
central peak likely contains mixed material that originate from shallower depths than
the maximum depth of melting. This implies that shallow layers of the crust can be
represented in the central peak.

2.4.2. Previous Studies’ Craters Pcmi Calculation and Comparison to
the Present Survey Crater Selection

Previous surveys [Lemelin et al., 2015, Tompkins and Pieters, 1999] have examined
craters sampling deep crustal to mantle material. Here, we focus on a specific depth
range that presumably includes the transition from the lower crust to the mantle and
the potential urKREEP layer.

In order to enable comparison with previous works, the Pcmi values of the craters
surveyed in Tompkins and Pieters [1999] and Lemelin et al. [2015] were calculated
using the method presented here (the maximum depth of melting representing the
minimum depth of origin of the central peak material, and the GRAIL models pro-
viding the crustal thickness). Table 2.3 presents the Pcmi value range considered in
their studies and the present survey. Tompkins and Pieters [1999] investigated craters
presumably tapping crustal material, while Lemelin et al. [2015] surveyed craters sam-
pling deeper material. It is worth noting that the crater sampling deepest material in
Lemelin et al. [2015] selection, von Kármán crater, is located in the SPA basin, where
a thick impact melt sheet was formed during the impact event [Morrison, 1998]. The
next crater in their selection (Petavius crater) has a Pcmi value of +1.6 km. The craters
surveyed in the present study are therefore supposedly tapping deeper material than
the craters investigated in previous studies.

2.4.3. Spinel and Olivine Detections
Table 2.2 and Fig. 2.5 show that spinel and olivine are concentrated in a latitude

and longitude range in the FHT-o defined by Jolliff et al. [2000], and a Pcmi value range
between +6.3 km and −1.2 km as calculated with GRAIL crustal thickness model 1, and
+13.9 km and +7.5 km as calculated with GRAIL crustal thickness model 3. According
to Pieters et al. [2011], olivine and spinel could have a lower crustal origin. Gross et al.
[2011] proposed that spinel could have formed in the lunar crust by magma-wall rock
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Figure 2.5: Schematic view of the crust-mantle interface presenting the mineralogical detections as a func-
tion of the Pcmi as calculated with GRAIL crustal thickness model 1. The gray dotted line symbolizes the
possible crust-mantle interface.
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interactions, and Vaughan et al. [2013] suggested that the crystallization of a melt
mixture between the anorthositic crust and mantle could form spinel. Spinel could
alternatively have formed in the final stages of the LMO solidification: Lin et al. [2017b]
performed water-bearing LMO crystallization experiments, and showed that spinel
is among the last minerals to be crystallized during solidification of a water-bearing
magma ocean. According to their calculation, a spinel-bearing layer could be found
around 30 km underneath the surface after magma ocean solidification. The urKREEP
layer being the last layer to crystallize from LMO solidification [Shearer et al., 2006], it
could be stratigraphically linked or mingled with such a spinel-bearing layer. Warren
and Wasson [1979] estimated that a global urKREEP layer would be thinner than 2 km,
whereas Wieczorek and Phillips [2000] proposed that it was unevenly distributed, and
concentrated under the PKT region instead.

If the surveyed craters where spinel is observed sample depths around 30 km, they
may tap this final LMO solidification layer. In the craters where spinel is observed,
the minimal depth of origin of the central peak material (maximum depth of melting,
Cintala and Grieve [1998]) ranges from 17.5 to 26.9 km (Theophilus: 17.5 km; Neper:
22.1 km; Joliot: 26.9 km). However, eleven other craters sampling a depth between
25 and 35 km are included in the study (Compton, Fabry, Fermi, Gauss, Humboldt,
Longomontanus, Maginus, Petavius, Rozhdestvenskiy, Schickard, Tsiolkovskiy), and
spinel was not detected in any of those, suggesting it might not be a continuous layer.
Instead, these central peaks show the presence of plagioclase, pyroxene-dominated
mixture spectra or LCP.

Olivine is observed in craters supposedly sampling material from above and below
the crust-mantle interface, according to GRAIL crustal thickness model 1. However,
olivine detections are scarce in the craters studied here (only 3 craters out of 36), and
does not appear to have a major role in the transition from the crust to the mantle.
This is consistent with the recent study by Melosh et al. [2017], who proposed that the
lunar upper mantle has a large LCP component instead of olivine signatures.

Albeit surveying craters supposedly tapping around the crust-mantle interface,
where the urKREEP layer would allegedly be observed, we found no evidence of a
mineralogically distinct, global urKREEP layer. Our observations rather support the
presence of lateral heterogeneity in the crust. Olivine and spinel could have a plutonic
origin [Head and Wilson, 1992b]. Pieters et al. [2014] described the spinel occurrences
in Joliot and Theophilus crater as Pink Spinel Anorthosite (PSA, feldspar-dominated
rock with Mg-spinel and less than 5 % mafic minerals), and proposed that PSA orig-
inates from the lower crust, which is in agreement with the Lin et al. [2017b] experi-
ments.

2.4.4. Plagioclase Detections
Fig. 2.5 shows that pure plagioclase occurrences are widely detected, even in craters

supposedly tapping lower crustal to mantle material (for example, in Humboldt crater
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central peak), except in the central peaks where LCP is observed. This means that
plagioclase-rich rocks are present in the lower crust. One could interpret the lack of
plagioclase occurrence (crustal material) in the central peaks where LCP is observed
as evidence that mantle material is emplaced in the central peaks, and place the crust-
mantle interface at Pcmi values between those of Humboldt and Maginus craters. How-
ever, plagioclase being spectrally nearly transparent, its presence may be masked by
LCP. An alternative explanation to the presence of LCP could be that the craters where
it is observed are tapping plutons.

In craters where plagioclase was observed, the minimal depth of origin of the cen-
tral peak material ranges from 17 to 60 km, which is consistent with the existence
of a widespread purest anorthositic layer (> 98 vol% plagioclase) that was proposed
by Ohtake et al. [2009], Yamamoto et al. [2012] and Donaldson Hanna et al. [2014].
However, HCP, pyroxene-dominated mixture spectra, spinel or olivine were also de-
tected in most of the surveyed central peaks where purest anorthosite was detected in
previous studies [Donaldson Hanna et al., 2014, Yamamoto et al., 2010, 2012]. A pure
anorthositic layer may exist and be mixed with mafic material originating from other
crustal depths in the surveyed central peaks during the impact event. Alternatively,
the anorthositic crust may be intruded later by more mafic plutons. Head and Wilson
[1992b] proposed that as much as 50 % of the lower crust is intruded by plutons; and
Dygert et al. [2017] proposed that the present-day lunar crust is composed of a rela-
tively impure, old crust, later intruded by pure anorthositic diapirs. Both processes are
consistent with the observation of PAN occurrences juxtaposed to mafic detections.

2.4.5. Pyroxene Detections
All pyroxene detections with regards to the crust-mantle interface are shown in

Fig. 2.5. Pyroxene-dominated mixture spectra are widely detected in the crust, except
in the central peaks or peak rings where HCP or LCP can be identified. The pyroxene-
dominated mixture spectra observed in this study have a band 1 center close to the
LCP band 1 center values, and a band 2 center that is in the region of the HCP band 2
center. This could result from a mixture of pyroxene and other minerals, resulting in
the shift of the absorption band centers beyond the LCP or HCP fields.

The Pcmi values associated to this study’s HCP and LCP detections show a clear ver-
tical progression: the HCP detections are concentrated in a range of Pcmi values that
is shallower than that of the LCP detections (+8.5 km to 0 km with GRAIL crustal thick-
ness model 1, and +17.4 km to +8.3 km with GRAIL crustal thickness model 3 for the
HCP detections; and −1.5 km to −9.2 km with GRAIL crustal thickness model 1, and
+7.4 km and −0.6 km with GRAIL crustal thickness model 3 for the LCP detections).

This supports Tompkins and Pieters [1999] observations of an LCP-enrichment
with depth. It is worth noting that no other mineral is detected in central peaks
where LCP is observed, and the transition from HCP to LCP happens very close to
the model crust-mantle interface. This points to the potential existence of a deep LCP-
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rich crustal (or upper mantle) layer, consistent with Melosh et al. [2017] simulations.

The Pcmi values of the first crater where LCP is observed are −2.0 km with GRAIL
crustal thickness model 1, and +6.4 km with GRAIL crustal thickness model 3. LCP is
observed in the central peaks of two of the central peak craters supposedly tapping
the deepest material in the crater selection (Maginus and Clavius craters). Craters
with more negative Pcmi values were studied, but these craters have peak rings in-
stead of central peaks. According to Baker and Head [2015] and Miljković et al. [2017],
the maximum depth of melting for peak-ring basins can not be taken as a proxy for
estimating the depth of origin of the material exposed in the peak rings. Therefore,
the Pcmi values calculated for the peak-ring craters of this study may not be appro-
priate reflections of the exhumation process. This is strengthened by the results of
a spectroscopic survey of Orientale basin peak rings by Cheek et al. [2013], finding
that Orientale basin peak rings are composed of pure anorthositic material. Cheek
et al. [2013] confirmed the hypothesis that the material composing the Orientale basin
peak rings originated from the crust [Head et al., 1993, Pieters et al., 1993]. All peak
ring craters apart from d’Alembert and Schiller-Zucchius display plagioclase in their
peak ring, which confirms their crustal origin. The mafic detections in d’Alembert and
Schiller-Zucchius peak rings may be caused by the sampling of plutons at depth.
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Figure 2.6: Global map with maria and cryptomaria locations (from the LRO archive and Kring et al. [2012],
Appendix Table 2.3, for a summary of cryptomaria locations from the literature) and all pyroxene detections
of this study. The background image is the LRO WAC global mosaic. The outlines of three major lunar
terranes defined by [Jolliff et al., 2000] are shown: the PKT in blue, the SPA basin in red, and the anorthositic
FHT in yellow.
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2.4.6. Comparison Between Pyroxene Detections and Mare / Crypto-
mare Locations

Fig. 2.6 shows the location of maria and cryptomaria on the Moon, with this study’s
pyroxene detections (shapefiles from Whitten and Head [2015]). Cryptomare were
defined by Head and Wilson [1992a] as mare deposits that were subsequently covered
by higher albedo deposits. All pyroxene detections in craters located near maria or
cryptomaria have a HCP or pyroxene-dominated mixture spectra signature. In some
craters, the HCP or pyroxene-dominated mixture spectra occurrences are located near
the bottom of the central peak. The altitude difference between the HCP or pyroxene-
dominated mixture spectra detections and the crater floor can be as low as 2 km. In
these instances, contamination by surficial volcanic units is possible. The Pcmi value
range considered in this study highlights the crust-mantle interface. If the central peak
and peak rings were not contaminated by surficial volcanic units, the link between
maria and cryptomaria locations (which have a pyroxene signature), and HCP and
some pyroxene-dominated mixture detections may point at the presence of lateral
heterogeneities at the crust-mantle interface.

2.4.7. Summary
The results presented here rely on the accuracy of the GRAIL models crustal thick-

ness estimates, and the craterisation equations. The results tend to show that there is
an evolution of the composition of pyroxene with depth (from HCP to LCP), that may
correspond to the transition between the crust and the mantle. Olivine and spinel
detections are concentrated in a thin interval of the lower crust, however they do not
seem to be linked with the emplacement of a specific layer like urKREEP material;
but rather seem to have a plutonic origin. Plagioclase is detected widely in the crust,
including in craters supposedly sampling lower crust to mantle material. However,
other minerals like HCP, spinel, olivine of pyroxene-dominated mixture spectra are
also detected in most of the surveyed central peaks where plagioclase is detected. If a
global anorthositic layer exists, as suggested by Ohtake et al. [2009], Yamamoto et al.
[2012] and Donaldson Hanna et al. [2014], it may be mixed by subsequent impact
events. According to impact simulations of Melosh et al. [2017], the lower crust to
mantle is LCP-rich, also supported by the observations of LCP-enrichment with depth
from Tompkins and Pieters [1999]. The transition between HCP to LCP in our data
occurs close to the model crust-mantle interface, and could correspond to the tran-
sition from crust to mantle. Moreover, plagioclase was not detected in craters where
LCP occurrences are found. The transition from crust to mantle appears to be gradual,
with plagioclase and pyroxene-dominated mixture spectra being observed throughout
the investigated crustal and putative mantle column. The mineralogical observations
reported in this study fit the GRAIL crustal thickness model 1 better than the model
3, although the small number of observations reported here does not allow strong
conclusions to be drawn.
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2.5. Conclusions
Spectroscopic data of a selection of 36 craters central peaks and peak rings dis-

tributed on the lunar surface, coupled with their Pcmi value, show that plagioclase is
widely present throughout the crust, except in central peaks where LCP is detected.
An evolution of pyroxene composition with depth that may correspond to the tran-
sition between the crust and the mantle is observed. According to the mineralogical
detections reported here, a crust-mantle interface could be placed at Pcmi values be-
tween Humboldt and Maginus craters −1.2 km with GRAIL crustal thickness model 1,
and +7.5 km with GRAIL crustal thickness model 3 for Humboldt crater; −2.0 km with
GRAIL crustal thickness model 1, and +6.4 km with GRAIL crustal thickness model 3 for
Maginus crater). Lateral heterogeneities seem to exist at the depth of the crust-mantle
interface, as the HCP detections and some pyroxene-dominated mixture spectra are
situated close to maria and cryptomaria locations. The GRAIL crustal thickness model
1 fits these mineralogical detections better than model 3. This study illustrates how
mineralogical detections in crater central peaks can be used to provide independent
constraints on interior models.
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��� �).
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2. Compositional variations in the vicinity of the lunar crust-mantle interface from

Moon Mineralogy Mapper data
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to study the mineralogy of the central peak or peak ring of 75 craters located in the
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lunar anorthositic Feldspathic Highlands Terrane (FHT-a), as defined by Jolliff et al.
[2000]. The thickness of South-Pole Aitken (SPA) ejecta at the location of the selected
craters is estimated, and crustal thickness models and empirical cratering equations
are used to estimate the depth of origin of the material excavated in the studied cen-
tral peaks, and its distance to the crust-mantle interface. The goal of the survey is to
study the composition of the FHT-a crust, and the extent of its potential lateral and
vertical heterogeneities. High-Calcium Pyroxene (HCP) and featureless spectra are
mostly detected throughout the entire FHT-a, whereas the number of pure plagioclase
detections is small. No relationship between the central peak composition and the
distance to SPA or the depth within the SPA ejecta is observed. The SPA ejecta material
cannot be distinguished from crustal material. We interpret the paucity of plagioclase
spectra in the FHT-a, which contrasts with more frequent plagioclase detections in the
central peaks of craters sampling the crust in younger lunar terranes using identical
spectroscopic techniques [Martinot et al., 2018b], as a possible effect of terrane mat-
uration, or of mixing with mafic components that mask their signature in the visible
near-infrared. Overall, the FHT-a appears homogeneous laterally. However, data hint
at a pyroxene compositional change with increasing depth, from high-calcium con-
tent in the upper crust towards less calcic compositions with increasing depth, which
is consistent with prior studies of the architecture of the lunar crust.

Keywords:
Feldspathic Highlands Terrane, Moon Mineralogy Mapper, Spectroscopy

3.1. Introduction
Studying the lunar surface composition and mineralogy can provide constraints

on the Moon’s magmatic and thermal evolution [e.g., Jaumann et al., 2012, Shearer
et al., 2006]. An asymmetry between the nearside and the farside surface was first
observed on the images retrieved from the early Luna missions. Analyses of the Lu-
nar Prospector geochemical data showed that there is a geographic link between the
surface abundance of heat-producing elements and the location of basaltic maria
[Lawrence et al., 1998]. Jolliff et al. [2000] divided the lunar surface into three major ter-
ranes based on Clementine multispectral data and global geochemical data provided
by the Lunar Prospector gamma-ray probe (Fig. 3.1). The Procellarum KREEP Ter-
rane (PKT) includes the nearside high-thorium region; the South-Pole Aitken Terrane
(SPAT) comprises the farside high average FeO non-mare material. The Feldspathic
Highlands Terrane (FHT) is anorthositic, and characterized by low FeO and thorium
abundances. It is subdivided into two sub-terranes, based on their geochemical sig-
nature: the anorthositic FHT (FHT-a), highly anorthositic and covering most of the
lunar farside outside the SPAT, and the outer FHT (FHT-o), including cryptomare and
impact basins ejecta.
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Legend: FHT-a SPA PKT

129 counts

4 counts

Prospector Thorium
abundance map

Figure 3.1: Outline of the three major terranes as defined by Jolliff et al. [2000]. The PKT is in blue, the
SPAT is in red, and the FHT-a is in yellow. The surface that is not comprised in the PKT, SPAT or FHT-a is
the FHT-o. Prospector’s qualitative Thorium abundance map is color-coded from high (red) to low (blue)
abundances is displayed in transparency over the Lunar Reconnaissance Orbiter Wide Angle Camera global
mosaic.

The lunar nearside-farside asymmetry is not limited to the lunar surface. A 2 km
offset towards the Earth of the Moon center of mass relative to the center of figure was
observed [Bills and Ferrari, 1977, Kaula, 1979]. The crustal thickness models derived
from the Clementine mission data suggested that the farside had a higher average
crustal thickness (68 km) than the nearside crust (60 km) [Zuber et al., 1994]. More
recently, data from the Gravity Recovery and Interior Laboratory (GRAIL, Wieczorek
et al. [2013]) show that the FHT has a higher average crustal thickness than the SPAT
and the PKT (36 km for the FHT and 27 km for the SPAT and the PKT).

Different lunar evolution models were proposed to explain the nearside-farside
asymmetry. Hypotheses include: an asymmetric crystallization of the magma ocean
[Charlier et al., 2018, Ohtake et al., 2012, Wasson and Warren, 1980]; the asymmetric
accumulation of a liquid iron alloy, resulting in the displacement of the colder, undif-
ferentiated core upwards [Stevenson, 1980]; or the result of a gravitational instability
that triggered the preferential emplacement of lunar mare on the nearside [Parmentier
et al., 2002]. Yamamoto et al. [2016] proposed that a two-stage crustal growth could
explain the observed discrepancy between thorium abundance and crustal thickness.
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They proposed that low-thorium floating plagioclase plateaus crystallized and aggre-
gated to form a lid on the surface of the magma ocean, followed by a downward growth
of the lunar crust. More recently, Laneuville et al. [2018] proposed a thermal evolution
model in which the mantle beneath the PKT is moderately enriched in heat producing
elements compared to the mantle beneath the highlands, resulting in a slower cooling
of some parts of the PKT. This influences the temperature of the mantle, thus able to
sustain a volcanic activity on the nearside for longer than on the farside.

A number of remote sensing studies have surveyed the mineralogy of the farside-
centered FHT to further elucidate the nearside-farside asymmetry. Lucey and Cahill
[2006] and Arai et al. [2008] combined geochemical data with remote sensing stud-
ies, and proposed that the lunar nearside crust is composed of ferroan anorthosites,
whereas the farside crust (and presumably the FHT-a) is composed of more magne-
sian material. As a consequence, and based on the cumulate sequence where high-
Mg rocks crystallize before lower Mg rocks, Arai et al. [2008] proposed a two-stage
crystallization for the Lunar Magma Ocean with the crystallization of the troctolitic
farside crust prior to that of the noritic nearside. Their suggestion could explain the
observed extended age range and overlap between lunar anorthosites and magnesian
suite plutonic rocks [e.g., Borg et al., 1999, 2015, Gross et al., 2014, Papanastassiou and
Wasserburg, 1971a,b]).

Several remote sensing surveys have investigated the composition of the lunar
crust at depth using impact craters as natural, vertical probes in the lunar interior.
Several remote sensing surveys used visible near-infrared (VNIR) observations in or-
der to study the global distribution of anorthosite, and concluded that there is a global,
but discrete, ≈30 to 50 km thick layer of anorthosite buried under a 3 to 10 km thick
more pyroxene-rich mixed layer resulting from impact events, depositing a thickness
ejecta material on top of the anortositic layer [Donaldson Hanna et al., 2014, Hawke
et al., 2003, Ohtake et al., 2009, Yamamoto et al., 2012a]. Hawke et al. [2003] described
pure anorthosites (PAN) as rocks with over 95 vol.% plagioclase. Donaldson Hanna
et al. [2014], Ohtake et al. [2009], Yamamoto et al. [2012a] reported the presence of
PAN exposures in the FHT.

Farside crust studies however need to take into account the effects of the forma-
tion of the South-Pole Aitken basin, which is the largest impact structure on the Moon
[e.g., Stuart-Alexander, 1978, Wilhelms et al., 1979]. According to Arai et al. [2008], the
FHT was significantly resurfaced by the SPA basin formation, and subsequent post-
magma ocean magmatism.
The SPA basin itself shows geochemical and mineralogical signatures [e.g., Jolliff et al.,
2000, Moriarty and Pieters, 2018]. Yamamoto et al. [2012b] studied the distribution
of olivine in the SPA basin with spectroscopic data, and reported a paucity of olivine
exposures in the SPA basin. Moriarty et al. [2013] and Moriarty and Pieters [2018] stud-
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ied the SPA basin with spectroscopic data from M3 and showed that the composition
of the basin is organized in concentric annuli, from pyroxene-rich signatures in its
center to more anorthositic-rich signatures towards the SPA exterior. Melosh et al.
[2017] modeled the formation of the SPA basin, and showed that it must have sampled
the lunar upper mantle. The lack of olivine detections in and around SPA, combined
with the abundance of Low-Calcium Pyroxene (LCP) led them to conclude that the
upper mantle of the Moon is LCP-rich.

According to the Lunar Magma Ocean (LMO) concept, the lunar crust was formed
by flotation of plagioclase after half of the magma ocean crystallized, whereas denser,
mafic cumulates of olivine and pyroxene minerals sank to the bottom of the magma
ocean, forming the lunar mantle [e.g., Smith et al., 1970, Warren, 1985, Wood, 1970].
This concept is supported by a range of recent experimental studies of LMO crystal-
lization [Charlier et al., 2018, Lin et al., 2017a,b, Rapp and Draper, 2018]. Some authors
proposed that the mafic content of the crust builds up with increasing depth [Cahill
et al., 2009, Ryder and Wood, 1977, Spudis and Davis, 1986, Tompkins and Pieters,
1999], while observations from other authors debate this conclusion [Lemelin et al.,
2015, Song et al., 2013]. Martinot et al. [2018b] found in their study of craters located in
the PKT and FHT terranes that crustal pyroxene composition changes with increasing
depth, from HCP to LCP. However, they did not find a clear mineralogical change be-
tween crustal and mantle material, as they detected plagioclase occurrences (implying
the presence of > 95 % plagioclase, Cheek et al. [2013]) in craters supposedly sampling
mantle material. In the present study, the mineralogical diversity specifically of the
FHT-a crustal column is constrained. The goal of this work is to find out whether the
FHT-a crust becomes more mafic with increasing depth, which could provide further
constraints to lunar evolution models. The central peak or peak ring of 75 impact
craters located within the FHT-a were studied with spectroscopic data from M3.

3.2. Material and Methods
3.2.1. Reflectance Data and Crater Selection

Reflectance data from the Moon Mineralogy Mapper (M3) were used in order to
derive the mineralogic diversity of the craters central peak or peak ring. M3 is a hy-
perspectral imager that orbited the Moon between 2008 and 2009. It acquired VNIR
images of the lunar surface. M3 data span 85 spectral channels, from 430 to 3000 nm
[Pieters et al., 2009]. The M3 data used here were archived in the Planetary Data Sys-
tem (PDS, version 1 of Level 2). These data are calibrated, and were corrected for
radiometry, geometry, thermal effects and geometry [Besse et al., 2013, Boardman
et al., 2011, Clark et al., 2011, Green et al., 2011]. The mosaics were made with data
from the same optical period OP2C2. The same optical period was used in order to
keep similar detector conditions (temperature, beta angle, spacecraft altitude). The
optical period OP2C2 was selected because it covers the maximum number of central
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peak or peak ring craters in the FHT-a. Data from the OP2C2 optical period have a spa-
tial resolution of 280 m/pixel. The Lunar Impact Crater Database (LICD) Losiak et al.
[2009] (revised by Ohman at LPI) provides a list of lunar impact craters. To maximize
the retrieval of information about the vertical and lateral architecture of the FHT-a
crust, all complex craters located in the FHT-a, and which central peak or peak ring
is partially or completely covered by the M3 OP2C2 optical period data, were selected
for mineralogical study. A total of 75 craters were selected (Figure 3.2, Table 3.3).
Because of their low signal-to-noise ratio, wavelengths below 620 nm were discarded
[Green et al., 2011]. Thermal effects due to the contribution of the lunar surface are
significant at wavelengths beyond 2700 nm [Clark et al., 2011]. Therefore, reflectance
data beyond 2700 nm were not analyzed.
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Figure 3.2: LOLA global digital elevation model [Smith et al., 2010] of the selection of craters, centered on
the FHT-a (yellow outline). The transparent white strips represent the M3 OP2C2 optical period footprints.
The black circles outline the craters selected in this study. The SPA basin is outlined in red.

The global Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) mosaic
(spatial resolution of 100 m/pixel) was used in order to visualize the geological context
of the central peaks. The LRO Lunar Orbiter Laser Altimeter (LOLA) global digital
elevation model (horizontal precision: 118 m at the Equator, vertical precision: 1 m)
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was used in order to provide information on the topography and elevation of the
central peaks or peak rings [Smith et al., 2010].

The GRAIL mission acquired gravimetric data from the Moon between 2011 and
2012. Wieczorek et al. [2013] derived four crustal thickness models, assuming different
crustal porosities and constraining the crustal thickness with Apollo 12 and 14 landing
sites’ seismic data. Here, the GRAIL crustal thickness model 1 was used in order to
constrain crustal thickness values at each crater location as in our previous studies
Martinot et al. [2018a,b], see Table 3.3.

3.2.2. Data Processing and Pyroxene Composition Analysis
M3 data were processed using the continuum-removal algorithm and output spec-

tral parameter maps developed by Martinot et al. [2018a]. With this algorithm, the
continuum is found by maximizing the absorption band area of lunar mafic minerals
at 1000 and 2000 nm. Tie points to the spectrum continuum are searched for in fixed
intervals (620–1100 nm; 1100–1660 nm) on a smoothed spectrum, in order to limit
the influence of noise on the tie point positions. A third tie point is fixed at 2700 nm.
Output parameter maps (e.g., band 1 and 2 position, depth, area, asymmetry) are
stretched in order to highlight the central peak or peak ring diversity. In this study, the
band 1 position and the band 2 position and band 2 depth maps are primarily used.
Only spectra with a band 2 depth stronger than 2 % were considered for pyroxene
compositional analyses, in order to limit the effect of noise. Pixels located in shad-
owed areas were also discarded, due to their low reflectance (which could lead to a
mis-interpretation of the mineralogical signature).

This specific continuum-removal algorithm is optimized for spectra displaying two
absorption bands (e.g., pyroxene). Minerals displaying a single absorption band (e.g.,
plagioclase) can also be processed correctly by the continuum-removal algorithm, if
the absorption band is strong. However, the spectra observed on the FHT-a terrane
generally have high slopes, and shallow absorption bands. The maximum absorption
band depth does not exceed 20 % in any of the surveyed central peak or peak ring
craters. This explains why some plagioclase occurrences previously described in Don-
aldson Hanna et al. [2014] were not detected using this algorithm. For the purpose of
this study, spectral parameters developed specifically for the detection of plagioclase
were therefore used in order to identify plagioclase occurrences on the selected cen-
tral peaks. Two spectral parameters were used: the band depth at 1250 nm (BD1250,
developed by Donaldson Hanna et al. [2014]), and the 1250 nm integrated band depth
(IBD1250). The BD1250 parameter calculates the band depth at 1250 nm, by using
continuum boundaries at 749 and 1579 nm. It calculates the band depth between
1030 and 1700 nm. This spectral parameter highlights plagioclase spectra with band
depth exceeding 1-2 % [Donaldson Hanna et al., 2014].

The number and position of absorption bands in M3 VNIR reflectance spectra en-
able the identification of several minerals. In this survey, plagioclase, High-Calcium
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Pyroxene (HCP) and featureless spectra were detected. Detailed descriptions distin-
guishing features of these spectra can be found in Martinot et al. [2018b] (see their
Fig. 4).

Moriarty et al. [2013] used scatter plots presenting band depth values as a func-
tion of band positions in order to assess pyroxene compositional variations within a
central peak, and to obtain the degree of homogeneity in a central peak. We used a
similar method to study pyroxene compositional variations. In each central peak or
peak ring crater, all spectra displaying a pyroxene signature (a band 1 center centered
between 850 nm and 1100 nm, and a band 2 center centered between 1700 nm and
2400 nm) were selected. These output pixels are further referred to as the pixels in the
central peak having a pyroxene signature.
In some craters, less than 10 % of the pixels covering the central peak surface had a
pyroxene signature, leading us to question whether these occurrences are representa-
tive of the central peak.For craters with more than 10 % of central peak pixels showing
pyroxene signature, the spectral dispersion of the pyroxene composition was assessed
using the median position of the 200 pixels in each central peak having the strongest
band depth. The number 200 was determined empirically. In order to show the spread
of data against wavelength, the minimum and maximum positions of the band 1 and
2 center are extracted from the data, as well as the minimum and maximum values of
the band 1 and 2 depth values, and the distribution of those values (Table 3.1).

3.2.3. SPA Ejecta Thickness Calculation
Given its large size, the SPA basin formation probably ejected material over the

whole Moon; it is thus important to take the SPA basin ejecta into account when in-
vestigating the composition of the nearby FHT-a province. Several material transport
models predict the thickness of ejected material at a given distance to an impact basin.
Equations (1) and (2) describe the models from McGetchin et al. [1973] and Housen
et al. [1983], respectively.

T = 0.14×R0.74 × (r /R)−3 (1) , and
T = 0.0078×R × (r /R)−2.61 (2)
Estimates of SPA ejecta thickness at the location of the selected craters are noted

T (Table 3.3). In both equations, the distance to SPA, noted r was measured from the
center of the SPA basin, in meters. The SPA basin diameter is noted R, in meters, and
is taken to be 2600 km [Melosh, 2011]. The model from McGetchin et al. [1973] gives
an ejecta thickness that is 2 times lower than that of Housen et al. [1983]. We favor
equation (1) in our final discussion in order to have a lower estimate (and possibly, a
more realistic one) for the thickness of ejecta.

3.2.4. Proximity Value to an Interface
The proximity value to an interface, introduced by Cahill et al. [2009], compares

the distance of origin of the material emplaced in a crater central peak to a given
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interface (e.g., the crust-mantle interface). [Cintala and Grieve, 1998] proposed that
the maximum depth of melting (Dm) can be approximated as the minimum depth
of origin of central peak material. Two proximity values were calculated in this study
(Table 3.3): the proximity value to the interface between the SPA ejecta and the FHT-
a crust, and the proximity value to the crust-mantle interface (referred to as Pcmi

value). The proximity value to the interface between the SPA ejecta and the FHT-a
crust (i.e., depth in the SPA ejecta) is noted D∗

SPA when calculated using Equation 1,
and D∗∗

SPA when calculated using Equation 2. The thickness of the crust before the
impact event was calculated following the method in Flahaut et al. [2012]. The crustal
thickness of an annulus around the impact crater was averaged, at a distance of one
crater diameter, ± 10 % of the crater diameter. The GRAIL crustal thickness model 1
was used to provide crustal thickness values [Wieczorek et al., 2013] for the proximity
value to the crust-mantle interface. If the Pcmi value is positive, only crustal material
should be chemically represented in the central peak; if the Pcmi value is negative,
then material from below the crust-mantle interface is potentially emplaced in the
central peak material.

3.3. Results

3.3.1. Mineralogical Detections
This study’s mineralogical detections are shown in Fig. 3.3a.

Fig. 3.3 b, c and d show previous work on the lithology and mineralogy of central
peak craters located in the FHT-a from Tompkins and Pieters [1999], Lemelin et al.
[2015], and Donaldson Hanna et al. [2014]. The mineralogical detections from all
studies are in general agreement.

In the craters selected here (Fig. 3.3a), HCP, featureless spectra and plagioclase
occurrences are detected. HCP is detected in the vast majority of studied craters (61
out of 75 craters). Featureless spectra are observed at all latitudes in the FHT-a (39
out of 75 craters), and some plagioclase occurrences are detected (7 out of 75 craters).
HCP spectra are observed in a wide range of Pcmi values (between 45.7 and −1.5 km,
see Table 3.3). Featureless spectra are observed in craters spanning the whole range
of Pcmi values (between 48.9 and −1.5 km). Plagioclase is detected in craters having a
positive Pcmi value (between 39.2 and 12.1 km). Featureless spectra occurrences span
across all crater ages (ages taken from the LICD, Losiak et al. [2009], revised by Ohman
at LPI), whereas plagioclase occurrences appear more concentrated in younger craters
(Copernican to Eratosthenian in age). The plagioclase detections reported here are
concentrated in the center of the FHT-a (5 out of 7 detections), and the South of FHT-a
(2 out of 7 detections). Featureless occurrences span a wider range of latitude, from
the South to the North of the FHT-a (Fig. 3.3a).

The band 1 and 2 positions for all 60 craters where HCP was detected are shown
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in Table 3.1.

In the craters present in both Tompkins and Pieters [1999] and this study’s selec-
tions, pyroxene was detected where Tompkins and Pieters [1999] detected pyroxene-
compatible lithologies (anorthositic troctolite, anorthositic gabbronorite, anorthositic
gabbro and gabbroic-noritic-troctilitic anorthosite containing less than 90 % plagio-
clase). Plagioclase or featureless spectra were detected in the craters where Lemelin
et al. [2015] reported between 88 and 95 % plagioclase, and locations of the highest
plagioclase contents from Lemelin et al. [2015] (Fig. 3.3c) are in agreement with the
most anorthositic detections from Tompkins and Pieters [1999]. There is also a good
agreement between the anorthositic detections by Tompkins and Pieters [1999] and
the plagioclase occurrences detected by Donaldson Hanna et al. [2014] (Fig. 3.3d). No
plagioclase was detected in the craters where Lemelin et al. [2015] estimated less than
79 % plagioclase. Pyroxene-compatible lithologies were detected by Tompkins and
Pieters [1999] in the 2 craters that are in both Tompkins and Pieters [1999] and Don-
aldson Hanna et al. [2014] craters selection. In craters that are part of both Donaldson
Hanna et al. [2014] and this study’s selections, pyroxene detections are in good agree-
ment. In some cases, Donaldson Hanna et al. [2014] reported plagioclase in central
peaks where it was not detected in this study.
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3. Mineralogical survey of the Anorthositic Feldspathic Highlands Terrane crust using

Moon Mineralogy Mapper data
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Figure 3.4: Spectral dispersion of the band 2 center in King central peak. a. Scatter plot presenting band
2 depth values as a function of band 2 center positions. The colors represent the density of points, from
blue to red. The redder the color, the higher the density of points. b. Scatter plot presenting the positions
of the band 2 center as a function of the band 2 depths. The colors represent the classes, projected in d. c.
M3 2896 nm band of King crater central peak, outlined in white. d. M3 2896 nm band of King crater central
peak. The colored pixels have the characteristics (band 2 center and depth) of the classes drawn in b.
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3.3.2. Pyroxene Compositional Variations
As discussed in section 3.2.2, we used a method similar to that described in the

study by Moriarty et al. [2013], to evaluate the pyroxene compositional variations in
these craters. The global median and the median of the 200 pixels with strongest band
depth were calculated for three classes: spectra with band depth values between 2 and
5.5 % in a first class, spectra with band depth values between 5.5 and 7 % in a second
class, and spectra with band depth values larger than 7 % in a third class. These classes
were defined in order to check if the composition of pyroxene remains the same with
increasing band depth values. The results are presented in Table 3.2. In general, the
band depth values are homogeneous in the different band depth classes: in all cases,
the band 2 position difference between the classes does not exceed 2 spectral channels
(about 80 nm).
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Fig. 3.5a shows the position of the band 2 center (median per central peak as
outlined in the Methods section) as a function of the distance to the SPA basin center.
The band 2 position spans between 2018 and 2337 nm in the whole investigated range
(1200 to 3400 km from the SPA basin center), compatible with a HCP composition [e.g.,
Cloutis and Gaffey, 1991, Klima et al., 2011]. Fig. 3.5b shows the position of the band
2 center as a function of the depth within the SPA basin ejecta blanket. The depth
in the SPA basin ejecta was calculated by subtracting the depth of melting (depth
of origin of the material emplaced in a central peak, Cintala and Grieve [1998]) to
the ejecta thickness at the center of the considered crater (calculated with McGetchin
et al. [1973] equation (1)). Positive values represent depths within the SPA ejecta, while
negative values represent depths below the SPA ejecta, i.e., in the lunar crust.

No significant trend with depth within the SPA ejecta or distance to SPA appears in
the band 2 positions. There is a hint of a decrease in median band 2 position between
−20 and −40 km in Fig. 3.5b, but the low number of craters in this range of depth
below the SPA ejecta preclude a definitive conclusion.

3.3.3. Evolution of the Pyroxene Composition With Depth
Fig. 3.6 shows the distribution of craters where more than 10 % of the central peak

has a pyroxene signature as a function of distance to the crust-mantle interface. A
weak linear regression suggests that the position of the band 2 band center shifts
towards shorter wavelength with increasing depth as the distance to the crust-mantle
interface decreases.

3.4. Discussion
3.4.1. Mineralogy

The mineralogical detections presented in this study are generally in good agree-
ment with results from previous remote sensing surveys. [Cheek et al., 2013] showed
that pyroxene can spectrally dominate a rock composed of < 95 % plagioclase, which is
consistent with the lack of plagioclase detections in craters where Lemelin et al. [2015]
estimated less than 79 % plagioclase.

In some cases, Donaldson Hanna et al. [2014] reported plagioclase occurrences in
central peaks where it was not detected in this study (even when using the spectral
parameters developed for the detection of plagioclase, BD1250 and IBD1250). This
can be explained by the fact that Donaldson Hanna et al. [2014] used M3 observations
in all optical periods, whereas only optical period OP2C2 was considered in this study.
This choice was made in order to keep similar detector conditions (temperature, beta
angle, spacecraft altitude), to allow for data comparison between craters.

The featureless spectra occurrences from Donaldson Hanna et al. [2014] and this
study are generally in good agreement. In some craters (24 out of 33 craters in com-
mon), Donaldson Hanna et al. [2014] detected only featureless spectra, while pyroxene
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Figure 3.5: a. Position of the median band 2 center as a function of the distance to the SPA basin center.
Blue triangles represent the median of the 200 central peak pixels with strongest band depth that 1/ have a
band depth stronger than 2 %, 2/ which band 2 center position fall between 1700 and 2400 nm. When less
than 200 pixels were represented in the central peak, the median of all pixels was calculated. Symbol size
depend on the number of central peak pixels having a pyroxene signature. The symbol is small if there are
fewer than 50 pixels; large if there are more than 50 pixels. Vertical error bars indicate the minimum and
maximum band 2 center position. b. Position of the median band 2 center as a function of the depth in the
SPA basin ejecta (calculated with Equation 1).



3.4. Discussion 89

0 10 20 30 40 50
1700

1800

1900

2000

2100

2200

2300

2400

0 10 20 30 40 50
Proximity to the crust mantle interface (km)

1700

1800

1900

2000

2100

2200

2300

2400

B
an

d 
2 

ce
nt

er
 p

os
iti

on
 (n

m
)

Median sup. to 10 %

y = 1917 + 6.2x R = 0.49

Figure 3.6: Position of the band 2 center as a function of the Pcmi value for all craters in which more than 10
percent of the central peak surface has a pyroxene signature (grey crosses). The linear regression is shown
as a dotted line.

and/or featureless spectra were detected using our method.

The age of craters where featureless detections are observed in this study span a
wide range of ages, from Pre-Nectarian ages to Copernican ages, therefore we cannot
link their occurrence to terrain maturation. Plagioclase occurrences from this study
are concentrated in younger craters (Copernican to Eratosthenian in age). However,
Donaldson Hanna et al. [2014] detected plagioclase both in young and old craters (the
oldest is pre-Nectarian Mach crater). Therefore, no clear link between plagioclase,
featureless spectra occurrences and crater age is observed.

In the craters selected for this study, plagioclase occurrences are concentrated
in the center and South of the FHT-a, and featureless spectra detections are mainly
concentrated in the center of the FHT-a. HCP occurrences are dispersed throughout
the whole FHT-a, and the periphery of FHT-a seems to be richer in HCP than its
center. This could be explained by a mixing with PKT, mare or cryptomare material.
The locations of the plagioclase and featureless spectra detections from Donaldson
Hanna et al. [2014] show that plagioclase and featureless spectra are widely dispersed
throughout the FHT-a.

3.4.2. Central Peak Pyroxene Compositional Variation
The mineralogical detections presented here have spectra with shallow band depths:

the strongest band depth of all surveyed spectra in the craters selection was equal to
18 %. When looking at band depth classes, it is worth noting that the strongest classes
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are generally located on topographic highs. In the case of King, Moore F and Tsinger
Y craters, the position of the band 2 center shifts towards longer wavelength with
decreasing band depth. Moriarty et al. [2013] interpreted this to be caused by the de-
velopment of soil post-impact, rather than significant changes in composition. This is
supported by the fact that the difference between the minimum and maximum band
2 position as a function of band depth does not exceed 2 spectral channels (about
80 nm) in all craters where HCP was identified, suggesting that pyroxene composi-
tion does not vary significantly within individual central peaks. Thus, the pyroxene
composition of the surveyed central peak is fairly homogeneous within each central
peak.

Hawke et al. [2003] introduced the idea of a mixed layer, formed during the LMO
crystallization, and resulting from impact events depositing pyroxene-bearing, mafic
material on top of the pure anorthositic crust formed by flotation. They also proposed
that the SPA impact event deposited ejecta material on top of the crust, in thick pile
close to SPA, and thinning as the distance to SPA increases. Moriarty and Pieters [2018]
recently described four compositionally different units in the SPA basin, organized ra-
dially. The SPA center has a HCP signature. It is surrounded by a Mg-pyroxene annulus,
then a heterogeneous annulus where more anorthositic-rich material is observed, and
finally a highly feldspathic, mafic-free SPA exterior.

We attempted to identify if a significant SPA basin ejecta signature exists, and
if it changes with distance from the SPA basin center. We observe no link between
the position of the band 2 center and the distance to SPA, or the depth within the
SPA ejecta (Fig. 3.5). This hints that the material ejected by the SPA impact event
was probably reworked by the numerous subsequent impact events, and the material
ejected by the SPA-forming event is no longer discernible from the FHT-a material. An
alternative explanation would be that the mineralogical composition of the SPA ejecta
material is very similar to that of the FHT-a crust.

Several studies pointed at the existence of a global anorthositic layer, buried under
a shallow (3 to 10 km thick) layer of more pyroxene-rich material [Donaldson Hanna
et al., 2014, Hawke et al., 2003, Ohtake et al., 2009, Yamamoto et al., 2012a]. The re-
sults from Tompkins and Pieters [1999] and Lemelin et al. [2015] point at a highly
plagioclase-rich FHT-a crust. Only seven plagioclase occurrences were detected in
this study. However, Lucey [2002] discussed that space weathering of plagioclase can
cause featureless spectra, and the study of shocked plagioclase reflectance spectra
showed that shock pressures can trigger the weakening or disappearance of plagio-
clase absorption band [Adams et al., 1979, Bruckenthal and Pieters, 1984]. The numer-
ous featureless spectra occurrences reported here could therefore have formed from
space weathered or shocked anorthositic material.

The plagioclase detections reported here are too scarce to draw any conclusions
on the evolution of the plagioclase abundance with depth, so we are unable to con-
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firm the proposed decrease in plagioclase abundance with increasing depth in the
crust [Spudis and Davis, 1986, Tompkins and Pieters, 1999]. However, the observation
of plagioclase over a wide range of depth in the FHT-a crust is consistent with the
existence of a thick anorthositic crust.

Craters where plagioclase and featureless spectra are detected do not cluster in
a specific Pcmi values range, which implies the existence of a thick plagioclase-rich,
anorthositic crust. The anorthosite crust is estimated to be 27 km thick if only craters
where plagioclase is detected are taken into account; 50 km thick if both plagioclase
and featureless spectra are considered. Donaldson Hanna et al. [2014], Ohtake et al.
[2009], Yamamoto et al. [2012a], respectively speculate the existence of a 27 km, 50 km
and at least 30 km thick, discrete PAN-rich layer. The numerous HCP detections pre-
sented in this study at all investigated crustal depths are not in agreement with the
existence of a discrete PAN-rich layer, but do not negate the existence of a thick (27
to 50 km) plagioclase-rich, anorthositic crust. The numerous HCP detections in the
FHT-a crust at all crustal depths support the presence of a thick anorthositic crust that
is mingled with the mixed layer introduced by Hawke et al. [2003], where pyroxene-
bearing material is mixed with anorthositic material through impact events.

3.4.3. Link Between Pyroxene Composition and Crustal Depth
Fig. 3.6 shows that a weak positive correlation between the position of the band 2

center and the proximity to the crust-mantle interface was observed. Craters tapping
upper crustal material seem to have a pyroxene signature that is more calcic than
craters tapping material originating from closer to the crust-mantle interface. The
change in pyroxene calcium content with depth is consistent with the results from
Martinot et al. [2018b], who observed that the pyroxene signatures changes from HCP
to LCP at the crust-mantle interface on the basis of the analysis of 36 craters spreading
the FHT (anorthositic and outer part as described by Jolliff et al. [2000]), and with the
conclusions from Melosh et al. [2017], who proposed that the lunar upper mantle is
LCP-rich.

It would be helpful to add craters tapping material closer to the crust-mantle in-
terface in order to assess the validity of this trend. The detection of pyroxene with
low-calcium composition in craters tapping material originating from close to the
crust-mantle interface would confirm the trend, whereas the detection of pyroxene
with high-calcium composition would invalidate the trend. In the latter case, perhaps
pyroxene compositions reflect the widespread emplacements of plutonic intrusions
in the crust [e.g., Head and Wilson, 1992]. Unfortunately, there are no craters tap-
ping closer to the crust-mantle interface that are covered by M3 data from the optical
period OP2C2 used in this study.

It is worth noting that pyroxene is spectrally dominant over plagioclase: Cheek
and Pieters [2014] showed that as little as 2 vol.% of pyroxene in a plagioclase-rich
rock could hide a potential plagioclase signature. Therefore, the detection of pyroxene
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does not preclude the presence of plagioclase in a rock. Consequently, the detection
of HCP in the FHT-a means that the mafic component of the FHT-a is spectrally dom-
inated by HCP, but does not exclude that the rock petrologically fits the definition of
an anorthosite.

Finally, to further analyze the compositional variations in pyroxenes detected in
this study, we incorporate band 1 position analyses. The pyroxene compositions ob-
tained from the pyroxene composition analysis in the central peaks was compared
with the positions of the band 1 and 2 centers obtained by Adams [1974]’s study of
orthopyroxene and clinopyroxene (Fig. 3.7). Fig. 3.7a presents Adams [1974]’s study of
orthopyroxene and clinopyroxene band 1 and 2 centers with all studied impact craters
where pyroxene was detected (61 out of 75). Fig. 3.7b, c and d show the band 1 and 2
centers of the selected craters where more than 10 % of the central peak (respectively,
3 to 10 % in c, and 0 to 3 % in d) has a pyroxene signature compared to the pyroxene
selection from Adams [1974].

Error bars in Fig. 3.7d are bigger than in Fig. 3.7b and c, because there are only a
few spectra having a pyroxene signature in the central peak, so a potential difference
in pyroxene composition within the central peak has a strong effect on the standard
deviation. Moreover, in the case of craters where fewer than 200 pixels in the central
peak have a pyroxene signature, all spectra are taken into account in the median band
center calculations, which means anomalous pyroxene compositions will strongly
affect the resulting median and standard deviation of the pixel population.

The compositions of pyroxene observed in the studied central peaks are generally
consistent with clinopyroxene (e.g., diopside, augite, or HCP), and a small number of
pyroxene compositions is compatible with orthopyroxene (e.g., ferrosilite, enstatite,
or LCP), within error bars. This is consistent with the fact that the pyroxene calcium
content changes with depth. The band 2 center of studied craters stretches until
2340 nm, so the pyroxenes observed in this study are probably less calcic than the
calcic endmember studied in Adams [1974].

Overall, the data again hint at a decrease in pyroxene calcium content with depth.
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3.5. Conclusions
The analysis of 75 impact craters’ central peaks with spectroscopic data showed

that HCP and featureless spectra are widely detected in the FHT-a.
The plagioclase detections reported here are consistent with the existence of an

anorthositic crust at least 27 km thick, which is probably mixed with pyroxene-bearing
material emplaced during the LMO crystallization through impact events [Hawke
et al., 2003].

Data hint at a pyroxene compositional change with depth. The composition of
pyroxene is more calcic far from the crust-mantle interface than closer to the crust-
mantle interface. This result is compatible with the conclusions from Martinot et al.
[2018b], who proposed that there is a transition from HCP to LCP around the crust-
mantle interface. A transition from HCP to LCP at the crust-mantle interface is also
consistent with the conclusions from Melosh et al. [2017], who proposed that the
upper mantle is LCP-rich.

At the time of the SPA formation, the ejecta from the SPA basin probably over-
printed the FHT-a material (and the lunar surface more broadly). Yet, no significant
SPA signature was detected, and no link between the position of the band 2 center
and the distance to SPA of the depth in the SPA ejecta was observed. This suggests
that the material ejected by the SPA-forming event was reworked by subsequent im-
pact craters and mixed with the FHT-a material, or that the ejected crust from the SPA
impact event formation and the FHT-a crust were petrologically similar.
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4
Application of the developed

tools to future science exploration
Science-rich sites for future lunar
exploration (Chang’E-4 mission)

The chance to apply the continuum removal and spectral study tools for future
lunar exploration presented itself, and I had the opportunity to contribute to the
characterization of the soon to be launched Chinese Chang’E-4 and 5 landing sites.
Two scientific article were published as part of this collaboration, in preparation to
the missions launch:

• Geological Characteristics of Von Kármán Crater, Northwestern South Pole-
Aitken Basin: Chang’E-4 Landing Site Region, J. Huang, Z. Xiao, J. Flahaut,
M. Martinot, J. Head, X. Xiao, M. Xie, L. Xiao, JGR-Planets, https://doi.org/
10.1029/2018JE005577 (chapter 4).

• Geology and Scientific Significance of the Rümker Region in Northern Oceanus
Procellarum: China’s Chang’E-5 Landing Region, Y. Qian, L. Xiao, S. Zhao, J.
Zhao, J. Huang, J. Flahaut, M. Martinot, J. W. Head, H. Hiesinger, and G. X. Wang,
JGR-Planets, https://doi.org/ 10.1029/2018JE005595 (chapter 5).

The two following chapters are the reproduction of both articles.
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4.1. Geological Characteristics of the Chang’E-4 Landing
Site Region: Von Kármán Crater, Northwestern South
Pole-Aitken Basin

Jun Huang1, Zhiyong Xiao1, Jessica Flahaut2,3, Mélissa Martinot4,5, James Head6, Xiao
Xiao1, Minggang Xie7, Long Xiao1

1 State Key Laboratory of Geological Processes and Mineral Resources, Planetary Science

Institute, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
2 CRPG-CNRS/Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France
3 IRAP-CNRS-CNES/Université Paul Sabatier, 31400 Toulouse, France
4 Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
5 Université Lyon 1, ENS-Lyon, CNRS, UMR 5276 LGL-TPE, Villeurbanne, France
6 Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, 02912

USA
7 Space Science Institute, Macau University of Science and Technology, Macau, China

Corresponding author: Jun Huang (junhuang@cug.edu.cn)

Keypoints:

• We report a detailed 3-D geological analysis of the nature and history of pre-
Nectarian aged Von Kármán crater in the lunar South Pole-Aitken basin

• The region contains farside mare basalts affected by linear features and ejecta
material from a wide range of surrounding craters

• Our geological analysis provides a framework for the Chang’E-4 mission to carry
out in situ exploration

Abstract
Von Kármán crater (diameter = ∼186 km), lying in the northwestern South Pole-

Aitken (SPA) basin, was formed in the pre-Nectarian. The Von Kármán crater floor
was subsequently flooded with one or several generations of mare basalts during the
Imbrian period. Numerous subsequent impact craters in the surrounding region de-
livered ejecta to the floor, together forming a rich sample of the SPA basin and far-
side geologic history. We studied in details the targeted landing region (45.0–46.0°S,
176.4–178.8°E) of the 2018 Chinese lunar mission Chang’E-4, within the Von Kármán
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crater. The topography of the landing region is generally flat at a baseline of ∼60 m.
Secondary craters and ejecta materials have covered most of the mare unit and can be
traced back to at least four source craters (Finsen, Von Kármán L, Von Kármán L’, and
Antoniadi) based on preferential spatial orientations and crosscutting relationships.
Extensive sinuous ridges and troughs are identified spatially related to Ba Jie crater
(diameter = ∼4 km). Reflectance spectral variations due to difference in both composi-
tion and physical properties are observed among the ejecta from various-sized craters
on the mare unit. The composition trends were used together with crater scaling
relationships and estimates of regolith thickness to reconstruct the subsurface stratig-
raphy. The results reveal a complex geological history of the landing region and set
the framework for the in situ measurements of the CE-4 mission, which will provide
unique insights into the compositions of farside mare basalt, SPA compositional zone
including SPA compositional anomaly and Mg-pyroxene annulus, regolith evolution,
and the lunar space environment.

4.1.1. Introduction
The farside South Pole-Aitken (SPA) basin is the largest known impact structure

on the Moon (Stuart-Alexander, 1978; Wilhelms et al., 1987). Its geology provides
insights into the composition of the lower crust and upper mantle, the impact flux
in early lunar history, the nature and evolution of basin-scale impact melt deposits,
and the nature of large impact basins and their formation and modification processes
(Garrick-Bethell & Zuber, 2009; Head et al., 1993; Moriarty & Pieters, 2018; Potter et
al., 2012; Spudis et al., 1994; Vaughan & Head, 2014). The SPA basin has been studied
with spectral observations (e.g., Ohtake et al., 2014; Pieters et al., 2001) and recently
been subdivided into four distinct compositional zones based on Moon Mineralogy
Mapper (M3) data (Moriarty & Pieters, 2018): (1) a central ∼700-km-wide SPA com-
positional anomaly (SPACA), which exhibits a strong Ca-pyroxene signature, which
is different from typicalmare basalts; (2) a Mg-Pyroxene Annulus, which is charac-
terized by Mg-rich pyroxenes; (3) a Heterogeneous Annulus, which exhibits mixing
of localized pyroxene-rich units and feldspathic materials; and (4) the SPA Exterior,
which is mafic-free and dominated by feldspathic materials. Pyroxene compositions
in both the Heterogeneous Annulus and Mg-Pyroxene Annulus are similar. Moriarty
and Pieters (2018) have indicated that the Mg-pyroxene unit is beneath the SPACA
Ca-pyroxene unit from the stratigraphic relationships and central peak exposures
among craters within SPACA. The material of Mg-Pyroxene Annulus was the main
material excavated and melted by the SPA-forming event due to the relatively uniform
composition and the great area, depth, and thickness of the Mg-Pyroxene Annulus.
The extremely large size of the SPA basin strongly suggests that it has excavated sub-
crustal and mantle material (e.g., Melosh et al., 2017); however, the lack of evidence
for widespread dunite or olivine-dominated mineral assemblages, and the dominance
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of Mg-pyroxenes in the basin interior, suggests that lunar mantle must include a sig-
nificant Mg-pyroxene component (Moriarty & Pieters, 2018).

Von Kármán crater (diameter D = 186 km; central coordinates as 44.4°S, 176.2°E;
Fig. 4.1a) lies within the Mg-Pyroxene Annulus, just northwest of the SPACA terrain.
This crater is a pre-Nectarian crater (Losiak et al., 2009; Yingst et al., 2017), younger
than the Von KármánMbasin (D = 219 km; central coordinates as 49.4°S, 174.9°E), and
older than the Leibnitz crater (diameter D = 236 km; central coordinates as 38.2°S
179.3°E: Fig. 4.1b and 4.1c; Yingst et al., 2017). Mare basalts flooded parts of the Von
Kármán crater floor during the Imbrian Period (Pasckert et al., 2018; Wilhelms et al.,
1979; Yingst & Head, 1997; Yingst et al., 2017), but a portion of the central peak remains
exposed near the center of the crater (Fig. 4.1d). Finsen crater (diameter D = 73 km;
central coordinates as 42.3°S, 182.3°E), Von Kármán L crater (diameter D = 29 km;
central coordinates as 47.8°S 177.9°E), and a similar-sized unnamed crater nearby (we
informally denote it as Von Kármán L’ in this study) were formed subsequent to the
Von Kármán crater (Wilhelms et al., 1979; Fig. 4.1c). Relatively higher albedo linear
features on the mare basalt of Von Kármán crater converge toward the crater Finsen
(Fig. 4.1b), which is located within the SPACA, suggesting that the SPACA material has
been derived from Finsen crater.

In 2018, the Chinese lunar mission Chang’E-4 (CE-4; Wu et al., 2017) will explore
the SPA basin. It will be the first in situ exploration of the farside of the Moon. The
selected landing region for CE-4 (45°S–46°S, 176.4°E-178.8°E; Wu et al., 2017) is lo-
cated on the southern floor of the Von Kármán crater. In situ exploration within the
Von Kármán landing region will bring unprecedented imaging, spectral, radar, and
low-frequency radio spectral data for the landing region, and it will greatly improve
our understanding about the compositions of farside mare basalt, SPA compositional
zones including SPA compositional anomaly and Mg-pyroxene annulus, regolith evo-
lution, and the lunar space environment. Indeed, the U.S. National Research Council
(2007) has identified key scientific priorities for future lunar exploration that can be
addressed from the Von Kármán crater, including the possibility to study the existence
and extent of differentiation of the SPA melt sheet (Morrison, 1998; Nakamura et al.,
2009; Vaughan & Head, 2014) and possible exposed upper mantle materials (Melosh et
al., 2017; Moriarty & Pieters, 2018). In this study, we have (1) investigated the geologi-
cal characteristics of the landing region using available remote sensing data including
topography, high-resolution imaging, and reflectance spectral data; (2) identified tar-
gets of high scientific interests; and (3) proposed testable hypothesis for the CE-4
mission.
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Figure 4.1: a Color-coded Lunar Orbiter Laser Altimeter (LOLA) digital elevation model of the South Pole-
Aitken Basin (altitude scale on the left). The polygon shows the location of subsets b and c. Letter "A"
indicates the location of the Antoniadi crater. b Global normalized reflectance (incidence = 30, emission
= 0, phase = 30) of the 643 nm Lunar Reconnaissance Orbiter Camera (LROC) Wide-Angle Camera (WAC)
mosaic of the Von Kármán area. The rectangle shows the location of Fig. 4.5a and 4.8a. The yellow arrows
indicate the ray materials on the floor of Von Kármán crater, and they are converged to Finsen crater. c
LROC WAC mosaic of the same area. The white box shows the location of subset d. d LRO WAC mosaic of
Von Kármán crater. The white box shows the selected landing region, which shows the locations of Fig. 4.2a
and 4.2b, red box in Fig. 4.3a, black boxes in Fig. 4.5c and 4.5d, 4.7, and 4.9a–4.9d. The red, green, blue
and yellow rectangles show the locations of Fig. 4.3b–4.3d and 4.4c, respectively. We informally named the
unnamed impact crater (diameter D = 3.6 km; central coordinates as 43.3°S 176.1°E) near the landing region
as Ba Jie, which we use in italics to indicate its informal designation. North is toward the top in subsets b–d.
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4.1.2. Methods
Data Sets

We analyzed the local geology using the Lunar Reconnaissance Orbiter Camera
(LROC) Wide Angle Camera (WAC) mosaic (100 m/pixel) for regional context (Robin-
son et al., 2010), Kaguya Multiband Imager (MI) 750 nm reflectance mosaic (14 m/pixel)
for albedo variations (Ohtake et al., 2008), Terrain Camera (TC) morning mosaic (7
m/pixel) for local context (Kato et al., 2010), and LROC Narrow Angle Camera (NAC)
images (0.5–1.6 m/pixel) for small geological feature identification. Topographic anal-
yses were performed using the merged digital elevation model (DEM) that is derived
from the LRO Lunar Orbiter Laser Altimeter (LOLA; Smith et al., 2010) and Kaguya TC
data (SLDEM: 59 m/pix; Barker et al., 2016). We produced a slope map for the landing
region using SLDEM at a 59 m scale.

Regolith and Ejecta Thicknesses
We estimated the thickness of the regolith within the proposed landing area using

NAC images that have incidence angles less than 55° following the method described
in Quaide and Oberbeck (1968). Quaide and Oberbeck (1968) found that relatively
fresh concentric craters with diameters less than 250 m could be used to estimate
the thickness of the regolith with the equation: thickness = (k - DF/DA) * DA * tan
(α)/2, where DA is the rim-to-rim diameter of a crater, DF is the diameter of the inner
concentric ring, k is an empirically constant, and α is the angle of repose of materials
on the surface of the Moon. The angle of repose of lunar regolith (α) is 31°, so the
corresponding k is 0.86 and the corresponding slope of inner walls of fresh craters is
31° ± 2° (Quaide & Oberbeck, 1968). It is considered more robust to identify concentric
craters using images with smaller incidence angle; otherwise, the flat bottomed craters
and concentric craters could be misrecognized as normal craters and flat-bottomed
craters, respectively (Fa et al., 2014). Thus, we conservatively chose these LROC NAC
images with incidence angles less than 55°. Only relatively well-preserved craters with
diameters less than 250 m were used to estimate the regolith thickness (Oberbeck
& Quaide, 1967) due to the difficulties in diameter identification and measurements
using degraded craters (Soderblom, 1970).

The thickness of ejecta deposits (i.e., the mixture of ejecta and excavated local ma-
terial) that were transported from craters outside of the landing region are estimated
using the empirical scaling laws estimated by Xie and Zhu (2016). Local geological
context suggests that the Finsen, Von Kármán L, and Von Kármán L’ craters have con-
tributed most of the ejecta deposits within the proposed landing region (McGetchin
et al., 1973; Oberbeck et al., 1975; Petro & Pieters, 2006; Sharpton, 2014). We have a
detailed description of the model in section 4.4.
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Absolute Model Ages
The absolute model age of the landing region is derived from crater statistics. Since

obvious secondary craters (i.e., secondaries) that occur in chains and clusters have
almost covered the entire landing region (see section 3.2), we employed two indepen-
dent methods to estimate the model age. (1) The mare surface on the floor of Von
Kármán was interpreted to be emplaced by one episode of basaltic volcanism based
on the uniform reflectance spectral characteristics (Yingst & Head, 1999). Therefore,
the model age for the mare surface is derived via craters that are substantially larger
than the largest obvious secondaries (diameter D > ∼2 km; see section 3.1) on the
LROC WAC mosaic. (2) There are a few subareas, including two within the proposed
landing region of CE-4, where craters larger than ∼300–400 m are not heavily modified
by obvious secondaries. The model ages for these subareas are derived by studying
the size-frequency distributions of craters larger than 300–400 m in diameter using
Kaguya TC mosaics. During analysis of the crater statistics, the CraterTools toolbox in
ArcMap was employed to collect the craters by fitting circles based on three points on
the crater rims. The crater chronology and production functions proposed by Neukum
et al. (2001) were used to derive the model ages based on the Poisson Possibility anal-
yses method advocated by Michael et al. (2016).

Compositional Aspects
In order to distinguish geological units of different composition, age, or texture, a

RGB composite mosaic of MI data was built (R = 750 nm/415 nm, G = 950 nm/750 nm,
B = 415 nm/750 nm (e.g., Huang et al., 2011; Weitz & Head, 1999). Observed variations
in this RGB composite that mimic the Clementine false color ratio are commonly due
to variations of the titanium and iron contents and the maturity of the surface ma-
terials (Pieters et al., 1993). We marked locations representative of different spectral
units in the MI RGB composite. The mineralogy of these locations was derived from
spectroscopic data from Chandrayaan-1 M3 instrument (Pieters et al., 2009). M3 is
a visible to near-infrared hyperspectral imager, with 85 spectral channels spanning
from 430 to 3,000 nm. The data used in this study are archived in the Planetary Data
System (PDS, version 1 of Level 2), radiometrically corrected (Green et al., 2011), geo-
metrically corrected (Boardman et al., 2011), thermally corrected (Clark et al., 2011),
and photometrically corrected (Besse et al., 2013). The optical period used in this
study is the OP2C2, with a resolution of 280 m/pixel. We selected this optical period
because it covers the entire landing site region. The continuum of the spectra was
removed with the algorithm developed by Martinot et al. (2018), and a suite of band
parameters were calculated. The continuum is modeled as linear segments connected
to the original M3 spectrum in points called tie points, defined in fixed intervals. The
algorithm maximized the 1 and 2 μm absorption band areas and automatically ex-
tracted the continuum. After continuum removal, a suite of spectral parameters is
calculated (e.g., band center position, band area, and band depth) and exported as



112
4. Application of the developed tools to future science exploration

Science-rich sites for future lunar exploration (Chang’E-4 mission)

maps.

4.1.3. Results
Surface Morphology and Terrain Characteristics

The selected landing region is located on the mare units within Von Kármán crater.
The average elevation of this area is about -5926 m, with a standard deviation of 20.4
m. The elevation ranges over about 321 m. The highest geological feature in the region
is the mound located near the north boundary (Fig. 4.2a). The proposed landing
region is generally flat at a scale length of 59 m, as nearly 99% of the area has a slope
less than 15°, and the slopes of about 94% of the area are less than 5° at a 59 m scale
length (Fig. 4.2b). Local steep slopes (>15°) are mostly associated with craters larger
than ∼1 km diameter (Fig. 4.2b). The northeastern and southwestern portions of the
landing area are lower in elevation compared with the northwestern and southeastern
portions (Fig. 4.2a). NE-SW linear features with elevated topography are visible across
the landing region (Fig. 4.2) and correspond to the ejecta deposits and secondary
craters that originated from the Finsen crater (Fig. 4.1b).

Obvious secondary craters are widespread within the entire landing region (Fig. 4.3a).
With irregular planar morphology, secondaries are recognized by their spatial occur-
rences in chains and/or clusters that exhibit herringbone-shaped morphology. Sec-
ondaries within a given chain and cluster have similar preservation states and their
elevated crater rims all point in the same direction. Based on the preferential spatial
orientation of secondaries within the landing region (Fig. 4.1d and 4.3), we have iden-
tified at least four sets of various-sized secondary craters that have different preserva-
tion states. The NE-SW trending secondary craters (Fig. 4.3a) are larger than 500min
diameter, and they converge toward the Finsen crater (Fig. 4.1b and 4.3a). These
secondaries are heavily degraded because their rims now occur as subparallel ridges
(Fig. 4.3b) and the original shallow cavity has been gradually filled by mass wasting and
subsequent ejecta deposition. The second set of secondaries generally trend north to
south and are larger than 1 km in diameter. The secondaries overlap those formed by
Finsen and have a better preservation state (Fig. 4.3c and S1). The steepened crater
walls are located at the southern part of the secondaries, suggesting that the source
crater is located to the south of Von Kármán. The minimum diameter of the parent
crater should be at least 20 km considering that the maximum ratio between continu-
ous secondaries and primaries is ∼5% on terrestrial planets (Melosh, 1989) and that
distant secondaries are much smaller than those on continuous secondaries facies
(Xiao, 2016). Tracing southward along a great ellipse circle in ArcMap, we noticed that
the Antoniadi crater (D = 138 km; central coordinates as 69.3°S, 186.9°E) is the most
likely source crater that fulfills the above criteria (Figure S1). Judging by the same crite-
ria, the freshest secondaries within the proposed landing region are the east-northeast
and south-southwest trending secondaries that are located on top of the secondaries
formed by Finsen and Antoniadi. These secondaries (e.g., Fig. 4.3d) are much smaller,
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Figure 4.2: a Colorized SLDEM topography overlain in transparency over the TC morning mosaic of the
landing region. The black arrow points to the mound with the highest altitude in this region. The white ar-
rows indicate NE-SW linear features with elevated topography. b Slope map of the landing region calculated
with a baseline of 59 m. The location of a and b is indicated in Fig. 4.1d.
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and they are ∼250–500 m in diameter (Fig. 4.3d). Tracing along the secondaries, we
find that the Von Kármán L and Von Kármán L’ craters to the south of the landing
region are the possible source craters (Figure S2).

Notably, we have identified extensive sinuous ridges within the landing region,
which are different from wrinkle ridges (e.g., Binder, 1982) and degraded secondary
crater chains (e.g., Lucchitta, 1977) on the Moon. The ridges are asymmetric in shape
and extend in a sinusoidal-like shape (Fig. 4.4a): the widths of the ridges are tens
of meters. Sinuous troughs are formed between the ridges (Fig. 4.4b), and both the
troughs and ridges are spatially associated with Ba Jie crater, which is to the west of
the landing region (Fig. 4.4c).

Compositional Diversity
Variations in composition are identified in the reflectance spectra of the proposed

landing area (Fig. 4.5). Spectrally, the entire region is dominated by pyroxene signa-
tures (Fig. 4.5b, 4.5d, and 4.5e). Pyroxene reflectance spectra are characterized by the
presence of diagnostic, broad absorption bands located around 1 and 2 μm, shifting
toward longer wavelengths with increasing iron or calcium content (e.g., Klima et al.,
2007). The 1 and 2 μm absorption band center positions, displayed on the parameter
maps, show that the mare itself is rather homogenous (Fig. 4.5b). Minor variations of
the 1 and 2 μm absorption band center positions of pyroxene spectra are observed
within impact crater ejecta located on the mare floor, suggesting variations in chem-
istry with depth (Fig. 4.5b). On the MI color composite (Fig. 4.5d), relatively fresh
small craters (diameter ∼66 to 324 m; Fig. 4.6a) show blue-toned ejecta (e.g., site 1
in Fig. 4.5d) and higher albedo in the MI 750 nm reflectance data (Fig. 4.5c). Their
reflectance spectra are consistent with that of Low-Calcium Pyroxene (LCP)-bearing
material (Fig. 4.5e). The orange-toned ejecta (e.g., site 2 in Fig. 4.5d) are related to
larger craters (diameter 252–950 m; Fig. 4.6b), with spectra consistent with Higher-
Calcium Pyroxene (HCP)-bearing materials (Fig. 4.5e). The spectra of the ejecta of Ba
Jie crater are similar to the spectra of the orange-toned ejecta (sites 4, 5, 6, and 7 in
Fig. 4.5d). The ejecta on the rim of Ba Jie crater presents HCP signatures, but with
larger spectral contrast (site 5 in Fig. 4.5d). The mare itself (site 3 in Fig. 4.5d) has a
spectral signature consistent with these HCP-rich materials with weaker absorption
bands.

Regolith Thickness
We analyzed relatively fresh concentric impact craters using LROC NAC images

with incidence angle less than 55° to estimate the regolith thickness using the method
of Quaide and Oberbeck (1968). These images have solar angles greater than 35°,
which are larger than the repose angle of the regolith (31°). Therefore, we can clearly
determine the morphology of the impact craters with these NAC images (Fa et al.,
2014). The estimated thickness of the regolith in this area varies from ∼2.5 to 7.5 m
(Fig. 4.7). It appears that the regolith in the northeastern portion of the region is thicker



4.1. Geological Characteristics of the Chang’E-4 Landing Site Region: Von Kármán
Crater, Northwestern South Pole-Aitken Basin 115

Figure 4.3: a TC morning mosaic shows secondary craters occurrence all over the landing region (indicated
by the red box). The red box is the same location of the white box in Fig. 4.1d. b NE-SW trending linear
features formed by Finsen, which are interpreted as highly degraded secondary craters with diameters >500
m. c N-S trending secondary craters (D > 1 km) overlapping the previous NE-SW trending linear features
formed by Finsen. The source crater is most likely Antoniadi crater. d NE-SW relatively fresh secondary
craters superposing the NE-SW trending linear features. The source craters are most likely the Von Kármán
L and Von Kármán L’ craters. North is up in all the panels. The locations of b–d are indicated in Fig. 4.1d.
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Figure 4.4: a LRO NAC image (M1100060445RE) of a region west of the landing region. The red arrows
indicate the position of asymmetric sinuous ridges. b LRO NAC image (M1183658592RE) of an area in the
western part of the landing region. The blue arrows indicate the position of sinuous troughs. c The spatial
relationships between sinuous ridges and sinuous troughs observed in the vicinity Ba Jie crater. The red
lines indicate sinuous ridges, and the blue lines indicate sinuous troughs. North is toward the top in all the
panels.
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Figure 4.5: a. M3 750 nm reflectance mosaic of Von Kármán crater (stretch: 0.044-0.082). High albedo linear
features oriented WSW-ENE are visible on the crater floor. The landing area is indicated as a white rectangle.
b. M3 color composite of Von Kármán crater. R = 2 micron band center (2000-2500); G = 2 micron band
depth (0.04-0.17); B = reflectance at 1580 nm (0.085-0.15). Stretch values are indicated in brackets. LCP-
bearing material appears in light blue, and HCP-bearing material is displayed in green. Spectral parameters
were calculated using the method described in Martinot et al. (2018). c. MI 750 nm reflectance mosaic of
the landing area outlined as a rectangle. High albedo features are mostly associated with ejecta deposits
of small fresh craters, and impact rays from the Finsen crater, whereas low albedo features are mostly
associated with mare basalts and ejecta deposits of large craters. The landing area is indicated as a white
rectangle. d. RGB composite of MI data. R: 750 nm/415 nm (1.797-1.925), G: 950 nm/750 nm (0.877-1.034),
B: 415 nm/750 nm (0.515-0.564). The blue-toned ejecta are associated with smaller craters of higher albedo.
The orange-toned ejecta are associated with larger craters of lower albedo. e. Continuum-removed M3

spectra of locations (1 to 7) in b. Each spectrum corresponds to a single pixel. Spectra were processed
with the method described in Martinot et al. (2018). A pigeonite (LCP) and an augite (HCP) spectrum from
the RELAB database are displayed above the observed spectra (respective RELAB-ID: DL-CMP-008 and
AG-TJM-010). Shaded areas represent the diversity of values of the 1 and 2 micron bands.
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than that of the southwestern portion, which is consistent with a larger contribution
of ejecta deposits (Fig. 4.10), as well as a strong gardening effect of secondary crater
chains (Fig. 4.2a) formed as a result of the Finsen crater-forming event.

Stratigraphic Ages of the Landing Area
Obvious secondary crater chains have dominated the entire mare unit on the floor

of Von Kármán (Fig. 4.3a). Most of the secondaries are less than 2 km in diameter
(section 3.2). Therefore, we studied the size-frequency distribution of craters larger
than 2 km in diameter to estimate the model age of the mare unit. The absolute model
age derived by probability analyses (Michael et al., 2016) is 3.6 (+0.09, -0.2) Ga, which
falls in the Imbrian period. This result is consistent with the recent geological mapping
(Yingst et al., 2017), and crater statistics (Haruyama et al., 2009). We also selected three
sub-regions on the mare units that have been less affected by large secondary craters
in order to verify the model age. Fig. 4.8a shows the locations of the counting areas.
The surface morphology of the sub-regions shows that craters larger than ∼300–400
m are not obvious secondary craters (e.g., Fig. 4.8c, 4.8e, and 4.8g), and model ages
derived from the crater counts are identical with those estimated from craters larger
than 2 km in diameter.

4.1.4. Discussion
Context of CE-4 Mission

CE-4 is scheduled to launch in 2018 and will be the first lunar farside in situ ex-
ploration mission. The CE-4 mission will be carried out in two phases. First, a relay
satellite with two microsatellites will be launched by a CZ-4C rocket from Xichang,
China. The relay satellite will be sent to the Earth-Moon Lagrange Point 2. A Dutch-
made low-frequency radio spectrometer (0.1–80 MHz) is carried by the relay satellite
to perform space physics measurements. In addition, the relay satellite will carry sev-
eral laser reflectors for assisting orbital determination. This mission will also include
two microsatellites that will orbit the Moon, and they will be equipped with very-long-
baseline interferometry instruments to conduct radio science experiments. One of the
microsatellites will have a visible wavelength microcamera contributed from Saudi
Arabia. Six months after the launch, the second part of the CE-4 mission, which is
composed of a lander and a rover, will be launched by a CZ-3B rocket launched from
Xichang, China. Since both the lander and the rover were designed as a backup for
the Chang’E-3 (CE-3) mission, some of the science payloads on CE-4 are similar to
those on CE-3 (Jia et al., 2018), which include a landing camera, a terrain camera, a
panorama camera on the lander and a visible/near infrared imaging spectrometer
(He et al., 2014), and two ground penetrating radars (Fang et al., 2014) on the rover.
Additional instruments on the lander (Jia et al., 2018) include (1) a low-frequency ra-
dio spectrometer (0.1–40 MHz) to perform joint space physics observations with the
low-frequency radio spectrometer on the relay satellite, (2) a German lunar neutron
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Figure 4.6: Diameter distribution of craters with a low-Ca pyroxene bearing ejecta (blue) and b high-Ca
pyroxene bearing ejecta (orange) within the landing region (see Fig. 4.5d).

and radiation dose detector to explore the farside surface radioactive environment,
and (3) a lunar micro-ecosystem for astrobiology experiments and public outreach.
A new instrument on the rover (Jia et al., 2018) is the Swedish neutral atom detector
designed to study the interaction between the solar wind and lunar surface materials.
However, the CE-4 will not be equipped with the alpha particle X-ray spectrometer
that was previously used by CE-3 to detect elemental abundances within surface ma-
terial (Jia et al., 2018; Wu et al., 2017). Still the lander and rover together should be able
to perform imaging, spectral, radar, and low-frequency radio spectral measurements.

Geological Features
Several features of interest have been identified within the landing region, includ-

ing farside mare basalts, sinuous linear features, and ejecta rays. Non-nearside mare
basalts will be investigated in situ for the first time at Von Kármán and may bring new
clues about the farside and SPA volcanism. Spectral data show HCP signatures asso-
ciated with the mare unit, which is consistent with most lunar mare (e.g., Staid et al.,
2011). However, in contrast to the CE-3 landing site, olivine has not yet been detected
at Von Kármán (Ling et al., 2015; Zhang et al., 2015), which suggests that the farside
mare might be of slightly different composition. The mare unit is homogeneous and
likely to represent a single eruptive episode during the lunar peak volcanic period that
occurred in the Late Imbrian (3.80–3.20 Ga; e.g., Yingst & Head, 1999). A single erup-
tive episode was one in which the mechanism of emplacement did not significantly
vary over the period of activity, meaning that the rock unit left in place should share
generally similar morphological and compositional characteristics, making it a viable
geologic unit.



120
4. Application of the developed tools to future science exploration

Science-rich sites for future lunar exploration (Chang’E-4 mission)

Figure 4.7: Estimated thickness contour of regolith in the landing region based on available LROC NAC
images with incidence angle inferior to 55°. The background image is WAC mosaic, and the location is in-
dicated in Fig. 4.1d. The IDs of NAC images used are M143453659RE, M143453659LE, M143460468RE,
M143460468LE, M156434145RE, M156434145LE, M189435642RE, M189435642LE, M1133052548RE,
M1133052548LE, M1145979809RE, M1145979809LE, and M1163658519LE.

Sinuous linear features, ridges and troughs, have been identified in the vicinity
of Ba Jie crater. They are distinct from lunar wrinkle ridges, but their origin remains
controversial. For example, Oberbeck (1975) proposed these to be ejecta deposits
typical of small craters in which the ejecta is emplaced at relatively low velocity, and
Atwood-Stone et al. (2016) suggested that these structures are likely the results of
Kelvin-Helmholtz instabilities within the ejecta flows. The key information to under-
stand their formation mechanism is the subsurface structure of these features, that
is, the depth and structural disturbance of the ejecta deposits of the Ba Jie crater, and
whether or not fractures deeper than Ba Jie’s ejecta exist. The ground penetrating
radars onboard CE-4 could reveal the subsurface structure of these linear features and
provide clues to their possible formation mechanism.

The secondary craters produced by the Finsen crater-forming event, and asso-
ciated with relatively high albedo linear features, are heavily degraded but also of
interest (Fig. 4.1b and 4.3). Hawke et al. (2004) proposed four different mechanisms to
explain the formation of impact rays: (1) immature primary ejecta emplacement, (2)
secondary craters immature local material deposition, (3) the action of debris surges
downrange of secondary clusters, and (4) immature interior. Reflectance spectra for
the landing region show that the rays formed by Finsen appear to have distinct com-
position compared with the buried mare basalts (Fig. 4.5b), indicating that the rays
are composed of primary ejecta deposits. With the aid of the CE-4 cameras and radar
system, the thickness and spatial distribution of impact ejecta from the Finsen crater
could be more well constrained. This would be the first in situ constraint for the sub-
surface structure of compositional rays, which will serve as an observational basis for
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Figure 4.8: Absolute model ages derived from crater statistics for the mare unit located within the floor of
Von Kármán crater. a Counting areas on the crater floor based on Kaguya TC mosaic. The mare units on
the crater floor were classified as a single geological unit based on recent geological mapping (Yingst et al.,
2017). The blue area shows the counting area where only craters larger than 2 km in diameter are used in
deriving the model age. The locations of the three subareas are shown in yellow polygons. These regions
were selected as they are less affected by obvious secondaries in comparison to the rest of the crater floor.
b Model age for the mare unit derived from probability analysis (Michael et al., 2016). c Detailed surface
morphology of the subarea 1 shown in Kaguya TC mosaic. This area is located within the selected landing
area, where the population of obvious secondary craters is smaller. Degraded secondary craters within
this subarea are less than 400 m in diameter. d Model age for the subarea 1 on the mare surface derived
from probability analysis (Michael et al., 2016). e Context of subarea 2 shown by Kaguya TC mosaic and the
location of the counting area (blue polygon). f Model ages derived for the crater population in subarea 2.
g Context of subarea 3 shown by Kaguya TC mosaic and the counting area (blue polygon). h Model ages
derived for the crater population in subarea 3. North is to the top in a, c, e, and g.
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Figure 4.9: Proposed stratigraphy of the landing region. The thickness of the layers is not to scale.

understanding the efficiency of material transport by impact cratering on the Moon.

Stratigraphy of the Landing Region
Impact craters are probes of local stratigraphy (Melosh, 1989). Variations of re-

flectance spectra of crater ejecta deposits indicate vertical variations in composi-
tion/mineralogy in the landing area (section 3.3). We used the geometric relationship
between the diameter of impact craters and the depth from which the ejecta was ex-
cavated to reconstruct the regional stratigraphy (Fig. 4.9). The maximum depth of
excavation is approximately 1/10 of the transient crater diameter, which equals to 0.84
times final crater rim-to-rim diameter for simple craters (Melosh, 1989). Therefore,
we used this relationship for the diameter measured on the image to calculate the
excavation depth of each of the simple craters located upon the mare unit. Note that
most of the small craters less than 2 km in diameter are probably secondary craters;
thus, they have smaller excavation depths than similar-sized primary craters (McEwen
& Bierhaus, 2006; Oberbeck, 1975), indicating that the calculated excavation depths
are the upper bound for the actual values.

The regolith constitutes the uppermost layer of the reconstructed stratigraphic col-
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umn (A in Fig. 4.9), with a thickness of ∼2.5 to 7.5 m (the regolith in the northeastern
part is thicker than in the southwestern part in the landing region; Fig. 4.7). The main
uncertainties in the regolith thickness estimates come from LROC NAC images with
the necessary illumination geometry (incidence angle less than 55°), the determina-
tion of rim-to-rim diameter of craters, and the limitations of the estimation method
(Quaide & Oberbeck, 1968).

Beneath the regolith is the Finsen LCP-bearing ejecta layer (B in Fig. 4.9; which
might be discontinuous or variable in thickness). Represented in blue tones in the
MI color composite (Fig. 4.5d), this layer is excavated by craters ∼66 to 336 m in di-
ameter (Fig. 4.6a). The majority of these craters is 96 to 156 m in diameter (Fig. 4.6a),
suggesting that the LCP-bearing material is at least ∼8 to 13 m deep.

The HCP-bearing layer (D + E + F in Fig. 4.9) is exposed in the orange-toned ejecta
in the MI color composite (Fig. 4.5d) of larger craters with diameters ranging from
268 to 988 m (Fig. 4.6b) as well as Ba Jie crater. The majority of orange toned ejecta
craters fall in the 388 to 628 m range in diameter (Fig. 4.6b), indicating that the HCP-
bearing materials (D) are at least ∼33 to 53 m deep. Ba Jie crater is ∼3.7 km in diameter,
suggesting that local minimal depth of the HCP-bearing materials (and hence mare
unit) is greater than 310 m. The spectrum extracted from the site 5 of Ba Jie crater’s
ejecta has a deeper absorption band than the spectra of sites 6 and 7 (Fig. 4.5e). This
absorption band depth difference could indicate that the material of site 5 is slightly
distinct compared to material of sites 6 and 7, possibly more enriched in HCP or with a
different grain size or texture (or less mature). Alternatively, the ejecta could be thicker
at site 5 and less mixed with the underlying likely space-weathered layer, resulting in a
more intense signature. Spectral variations within the ejecta of Ba Jie crater (Fig. 4.5d
and 4.5e) could hint at a subtle vertical compositional difference in the layer of HCP-
bearing materials. The material located at site 5 (layer F) are from deeper portions of
the preimpact stratigraphy than the material located at sites 6 and 7, due to the fact
that the deeper seated material tends to be ejected closer to the crater rim (Stöffler
et al., 1975). Therefore, there is probably a layer of enriched HCP-bearing material
(F) under the HCP-bearing-material layer, and could imply a possible paleo-regolith
layer (E) between layers D and F if there were at least two episodes of basalt emplace-
ment. The paleo-regolith thickness (if such a layer exists) could be studied with the
radar instrument onboard the CE-4 rover, similarly to the detections made at the CE-3
landing site (Xiao et al., 2015). It appears reasonable to speculate that there could be
somewhere in the stratigraphy a layer of mixed LCP and HCP-bearing material (C) due
to collision of these two types of materials. However, we are not able to constrain the
thickness of this mixed layer. The main uncertainties of the reconstructed stratigraphy
come from ejecta of unidentified impact craters, mixing of ejecta of local materials,
and products of uncertain geological events between stratigraphic layers.

We propose a stratigraphic column with several layers beneath the HCP-bearing-
material layer/mare unit based on the regional setting and previous geological maps
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(Wilhelms et al., 1979; Yingst et al., 2017). However, the thickness of these layers
cannot be constrained using available data and previous mapping results. We expect
a layer G made of ejected material from Imbrian-aged craters (e.g., Alder) resurfacing
HCP-bearing basalts. Layer B to G were formed during the Imbrian epoch. Ejecta of
Leibnitz crater (H) occurred as the layer beneath, and this impact event occurred in
Nectarian. Then there should be a layer (I) of breccia from Von Kármán crater forming
event lying above the target materials (J) of Von Kármán crater. Layer I and J are of
pre-Nectarian age (Fig. 4.9), likely to be part of the SPA basin Mg-Pyroxene Annulus
(Moriarty & Pieters, 2018).

The two ground penetrating radars onboard the CE-4 rover will be able to reveal
the subsurface structure of the landing area and test the stratigraphy predicted in this
study. In a manner similar to the CE-3 Yutu rover, the radar system of the CE-4 rover
has two frequency channels with different penetrating depths and vertical resolutions:
Channel 1 has a frequency of 40.80 MHz, whereas Channel 2 has a frequency of 250.750
MHz (Jia et al., 2018). The radar system on the CE-3 mission demonstrated that the
Channel 2 radar could detect details of the subsurface structures up to a depth of
∼12 m, and the Channel 1 radar could reveal subsurface structures up to ∼400 m
(Xiao et al., 2015). Therefore, the ground penetrating radars Channel 1 can detect
layers A, B, C, D, E, and F, and it could detect layer G, H, I, and J depending on their
thickness. Channel 2 could detect detailed structures within layers A and B, and the
upper portion of the layer C.

The Origin of the LCP Bearing Materials
The LCP-bearing materials have relatively higher albedo compared to the relatively

lower albedo mare basalts in the landing region. Regional geological context suggests
that the LCP-bearing materials are part of the ejecta of the Finsen crater forming event
(section 3.1). Besides Finsen crater, we have surveyed the nearby regions for younger
craters that might have contributed ejecta over the landing region. Von Kármán L and
Von Kármán L’ adjacent to the landing region are the two large craters that are younger
than the mare units, and they have inevitably launched ejecta into the landing region.
We estimate the thickness of ejecta deposits formed by the impact of ejecta from Fin-
sen, Von Kármán L, and Von Kármán L’ craters. First, we estimate the ejecta thickness
distribution. Then, the thickness of local material excavated by the impact of ejecta
is derived from empirical equation. Finally, the ejecta deposit thickness is the sum
of ejecta from other craters and local material. Assuming a power law distribution
of ejecta with slope of -3 (McGetchin et al., 1973) and using the scaling relationship
between ejecta thickness at final crater rim crest and final crater radius given by Sharp-
ton (2014), we estimate the ejecta thickness distribution by using this relationship T
= 3.95R0.399(r/R)−3, where r is the distance from crater center in meters and R is the
final crater radius (all in meters). Therefore, the amount of ejecta contributed from
Finsen (Fig. 4.10a; diameter D = 73 km) is the largest among the three craters, followed
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Figure 4.10: The thickness of ejecta from a Finsen crater, b Von Kármán L crater, and c Von Kármán L’ crater.
d Thickness of all ejecta deposits consisting of excavated local material and accumulated ejecta from Finsen,
Von Kármán L, and Von Kármán L’. The locations of a–d are labeled in Fig. 4.1d.
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by Von Kármán L (Fig. 4.10b; diameter D = 29 km) and Von Kármán L’ (Fig. 4.10c;
diameter D = 29 km). Assuming the incident angle of ejecta was 75°, Oberbeck et al.
(1975) established an empirical model that can estimate the excavation efficiency (μ)
of crater ejecta for given thickness of ejecta and the distance from crater center based
on the analysis of Copernicus secondary craters (i.e., μ = 4.5 x 10−5r0.87, all in meters).
However, recent works (e.g., Petro & Pieters, 2006; Xie & Zhu, 2016) suggested that
the authors may have overestimated the excavation efficiency. Here we adopt half of
excavation efficiency of Oberbeck et al. (1975) (i.e., μ = 2.25 x 10−5r0.87) according to
the result of Petro and Pieters (2006). The thickness of local material excavated by the
ejecta from either Von Kármán L or Von Kármán L’ is predicted to be smaller than 1
m, whereas the thickness of Finsen ejecta is larger than 2.5 m (Fig. 4.10a). In addition,
Finsen crater is older than both Von Kármán L and Von Kármán L’ (Wilhelms et al.,
1979; Yingst et al., 2017). Therefore, the ejecta from Von Kármán L or Von Kármán L’ is
expected to rework the ejecta deposits formed by Finsen crater ejecta. The thickness
of ejecta deposits including the excavated local material and the total accumulated
ejecta is predicted to vary from about 7.2 to 15.5 m (Fig. 4.10d), which is consistent
with the depth of LCP bearing materials discussed previously. This is independent
evidence that the LCP-bearing materials were likely from Finsen crater, Von Kármán
L, and Von Kármán L’.

LCP-bearing materials are pervasive across the SPA basin, including the central
peak of Finsen crater (Moriarty et al., 2013; Moriarty & Pieters, 2018; Pieters et al.,
2001). However, the origin of the LCP bearing materials is still under debate. The LCP-
bearing material could correspond to exposed KREEP-related Mg-suite rocks (Pieters
et al., 1997; Klima et al., 2011) or the differentiated upper layer of the hypothesized SPA
melt sheet (Nakamura et al., 2009; Uemoto et al., 2017). Alternatively, the LCP-bearing
materials could come from a LCP-dominated lunar upper mantle (Melosh et al., 2017;
Moriarty & Pieters, 2018).

The hypotheses can be evaluated using geological context, but it is challenging to
use orbital remote sensing data to pin down the origin of the LCP bearing materials
due to lack of detailed geochemical data. The definitive way to establish the origin of
the LCP-bearing materials is by sample return (e.g., Jolliff et al., 2010), and the current
payloads onboard the CE-4 mission are not designed to reveal element distribution
for surface materials. However, we point out that the penetrating radar onboard the
CE-4 rover can test and help verify the stratigraphy of the landing area, which might be
used to indirectly infer the composition (e.g., by backward modeling for the dielectric
constant) and provide additional clues about the origin of the LCP-bearing materials.
These LCP-bearing materials could help to better constrain the history of the SPA
region (Moriarty & Pieters, 2018) and might represent high priority targets for future
sample return missions, for example, Chang’E-6.
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4.1.5. Conclusions
The Chinese CE-4 lunar mission will be the first in situ exploration to explore the

surface of the Moon and study its environment on the farside. The selected landing
area is located in the southern portion of the Von Kármán crater, on the top of the
infilling mare unit, and within the SPA basin (Fig. 4.1). We characterized the terrain
and geological characteristics of the landing region using multisource remote sensing
data sets. The main conclusions are as follows:

1 The landing region (45°S–46°S, 176.4°E–178.8°E) is generally flat at a length scale
of 59 m and located within a rather homogenous mare unit.

2 The absolute model age of the mare unit within Von Kármán crater is 3.6 Ga
(+0.09, -0.2), based on multiple crater size-frequency distribution measurements.

3 Secondary craters have almost covered the entire landing area. The oldest sec-
ondary craters (NE-SW direction) look degraded and converge to Finsen crater.
N-S direction secondary craters are superposing on them, and they are converg-
ing to Antoniadi crater. The youngest secondary craters are NE-SW, and they
are likely from Von Kármán L and Von Kármán L’.

4 The thickness of the regolith is estimated to be ∼2.5 to 7.5 m in the landing area.

5 Extensive sinuous ridges and sinuous troughs are identified in the landing area.
They are related to Ba Jie crater spatially, but the origin is controversial. The
ground penetrating radar onboard CE-4 rover will reveal the subsurface struc-
ture and provide clues to the origin of these linear features.

6 Spectral variations among the ejecta of craters of various sizes reveal the sub-
surface structures. Along with the estimated thickness of the regolith, crater
size-frequency distribution absolute model age, and previously geological map-
ping results, we proposed a stratigraphic profile of the landing area that can be
tested with CE-4 ground penetrating radar data.

7 LCP-bearing material, probably excavated from the nearby Finsen crater from a
depth <7 km, are widespread in the landing region and could bring more clues
about SPA history.

8 The detailed stratigraphy and the diversity of farside geologic units sampled by
impact craters in the region (in both the vertical and lateral sense) and delivered
to the landing and traverse area to form secondary craters ensure that the Von
Kármán landing site will be an excellent candidate for the first sample return
mission to the lunar farside by Chang’E-6. Soils in the Von Kármán regolith are
very likely to contain samples of farside lunar maria, a diversity of farside high-
land rock types, and samples of the SPA basin Mg-Rich Annulus (impact melt
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and possible mantle of the SPA basin). The Change’E-4 mission and surface tra-
verses will provide the surface and three-dimensional stratigraphic information
necessary to help refine the lateral and vertical stratigraphy to ensure optimal
sample return.
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Keypoints:

• The Rümker region is located in the northwest of the Procellarum KREEP Ter-
rane, experiencing a long and complex geological history

• We carried out a detailed geological study and defined and dated 14 geological
units

• The Em4 is the science-richest unit and suitable for landing. It is proposed as
the first priority for sample return

Abstract
The Rümker region (41–45°N, 49–69°W) is located in northern Oceanus Procel-

larum of the Moon. Mons Rümker is the most distinctive geological feature in the
area. The region is characterized by prolonged lunar volcanism (Late Imbrian Period
to Eratosthenian Period), forming multiple geologic units in the area, including very
low-Ti to low-Ti mare basalts, high-Ti mare basalts, and volcanic complexes. Each ge-
ologic unit has distinct element composition and mineral assemblages. The Rümker
region, overlying the Procellarum KREEP Terrain, was selected as the landing region
for China’s Chang’E-5 lunar sample return mission. Prelanding analyses of the geo-
logic context and scientific potential are reported in this contribution. We conducted
detailed geological mapping using image, spectral, and altimetry data. Fourteen geo-
logical units were defined, a geologic map was constructed, and the geologic history
was outlined. The western mare units (Im1, Im2, and Im3) are Imbrian-aged (∼3.4–
3.5 Ga) representing the major stage of lunar mare eruptive volcanism. The eastern
young mare units (Em3 and Em4; <2 Ga) are among the youngest mare basalts on
the Moon. They have never been explored in situ or studied in the laboratory. We
suggest that samples returned from the eastern mare unit (Em4) could answer many
fundamental questions and that this unit should be listed as the top priority landing
site for Chang’E-5 sample return mission.

5.1.1. Introduction
The Procellarum KREEP Terrane (PKT) is one of the most prominent geochemically

anomalous areas on the Moon (Haskin, 1998; Jolliff et al., 2000). It is characterized
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Figure 5.1: Location of the Rümker region and previous landing sites. The Rümker region is located in
northern Oceanus Procellarum, away from previous sampling sites. The basemap is a Lunar Orbiter Laser
Altimeter and Kaguya Terrain Camera merged hillshade map (simple cylindrical projection; Barker et al.,
2016).

by high concentrations of heat producing elements (Th, U, and K; e.g., Haskin et
al., 2000; Lawrence et al., 2000; Prettyman et al., 2006), a thin crust (Wieczorek et
al., 2013), a complex thermal evolution history (Laneuville et al., 2013; Wieczorek &
Phillips, 2000), and a long duration of lunar volcanism relative to most of the rest of
the Moon (Hiesinger et al., 2000, 2003, 2010, 2011; Morota et al., 2011).

Located in northern Oceanus Procellarum (Fig. 5.1), the Rümker region is in the
northwest part of the PKT (Fig. 5.2; Haskin, 1998; Jolliff et al., 2000). Its extended and
complex geologic history includes multiple volcanic episodes, each differing in ele-
ment composition and mineral assemblages (e.g., Hiesinger et al., 2003, 2011; Morota
et al., 2011; Pieters, 1978; Zhang et al., 2016).

Earliest geological mapping (Wilhelms & McCauley, 1971; 1:5 million) defined two
mare units in the Rümker region, that is, Imbrian-aged and Eratosthenian-aged mare
units (Im and Em). Scott et al. (1977) combined these into an Imbrian-Eratosthenian-
aged mare unit (EIm). Scott and Eggleton (1973) subdivided two nonmare units (Ith
and If) and two mare units (Im and Em) in their 1:1 million geological map. The
authors concluded that the Ith unit resembles the Alpes Formation and that the If unit
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Figure 5.2: Thorium abundance map of the lunar nearside. The thick black line denotes the boundary of
the Procellarum KREEP Terrane (Th > 3.5 ppm). "A" represents the Apollo sampling sites; "L" represents the
Luna sampling sites. The white box indicates the CE5 designated landing region. The basemap is a Lunar
Orbiter Laser Altimeter and Kaguya Terrane Camera merged hillshade map (Barker et al., 2016) superposed
on the Lunar Prospector thorium data (Prettyman et al., 2006).

is part of the Fra Mauro Formation, both of which are interpreted as ejecta materials
from the Imbrium impact basin (Page, 1970; Scott & Eggleton, 1973).

Whitford-Stark and Head (1980) later subdivided four lithostratigraphic forma-
tions in Oceanus Procellarum according to surface morphology and spectral character-
istics. Three of them occur in the Rümker region, including the Telemann Formation
(the western part), the Sharp Formation (the eastern part), and the Hermann Forma-
tion (the central southern part). Three basalt end-members were identified (Dechen
Basalt, Lavoisier Basalt, and Roris Basalt), and their sources and emplacement styles
were studied in detail (Whitford-Stark & Head, 1980).

More recent stratigraphic works were based on Clementine data. Hiesinger et
al. (2003, 2011) used Clementine color ratio data (750–400 nm/750 + 400 nm as red,
750/990 nm as green, and 400/750 nm as blue) to map the mare units in Oceanus
Procellarum. Three spectrally homogeneous units in the Rümker region were defined
and dated by crater size-frequency distribution (CSFD) methods (P9, 3.47 Ga; P10,



5.1. Geology and Scientific Significance of the Rümker Region in Northern Oceanus
Procellarum: China’s Chang’E-5 Landing Region 139

3.44 Ga; P58, 1.33 Ga; Hiesinger et al., 2003, 2011). Using Clementine false-color
mosaics (750 nm/415 nm as red, 750 nm/950 nm as green, and 415 nm/750 nm as
blue), titanium and iron data, Boroughs and Spudis (2001) mapped six lava flows in
northern Oceanus Procellarum. Four of them are located within the Rümker region
(Flow2, Flow3, Flow5, and Flow6).

Mons Rümker (i.e., Rümker Hills), the most distinctive topographic feature in
northern Oceanus Procellarum, has long been recognized as one of the three major
volcanic complexes in Oceanus Procellarum (Whitford-Stark & Head, 1977). Its mor-
phology, composition, mineralogy, and formation mechanism have been well stud-
ied (Campbell et al., 2009; Dmitrovsky et al., 2017; Farrand et al., 2015; Smith, 1974;
Whitford-Stark & Head, 1977; Wöhler et al., 2007; Zhao et al., 2017). A comprehensive
analysis using recent lunar orbital data (Zhao et al., 2017) identified three geologic
units at Mons Rümker and further obtained their model ages by CSFD methods (IR1,
3.71 Ga; IR2, 3.58 Ga; IR3, 3.51 Ga). Zhao et al. (2017) concluded that the steep-sided
domes and shallow domes on Mons Rümker are probably formed at different stages
of evolution of this volcanic complex.

China’s first lunar sample return mission, Chang’E-5 (CE5) mission, is scheduled
to launch in 2019, following the successful Chang’E-3 (CE3) soft landing and roving
exploration of northern Mare Imbrium (44.12°N, 19.51°W; Ling et al., 2015; Xiao, 2014;
Xiao et al., 2015; Zou et al., 2016). The Rümker region in northern Oceanus Procel-
larum (41–45°N, 49–69°W, ∼58,000 km2 in area) is the landing region selected for the
CE5 mission (Zeng et al., 2017). Up to 2 kg of lunar samples from the surface and
subsurface (up to 2 m in depth) are planned to be collected and returned to the Earth
(Wang & Xiao, 2017; Zou & Li, 2017), providing an opportunity to study new lunar
samples in terrestrial laboratories since Luna-24 (1976).

The Rümker region remains unexplored by robotic or human landing missions
carried out earlier by the United States (Surveyor, Apollo) or the Soviet Union (Luna),
and no samples have ever been returned from this broad area (Figures 1 and 2). Un-
derstanding its geological context and evaluating the scientific value of materials from
this region are key to the further exploration and preparation for sample return and
analysis. A detailed study of Mons Rümker was carried out, and several candidate
landing sites were proposed by Zhao et al. (2017). However, the extensive mare areas
to the north, making up the majority of the landing region (Fig. 5.3), have not been
well studied using newly obtained orbital remote sensing data. herefore, the goals
of this study are (1) to characterize the geological context of the Rümker region, (2)
to assess their science potential for understanding and resolving outstanding lunar
science questions, and (3) to propose the most scientifically significant landing and
sampling sites for the CE5 mission. To understand better the context of the Rümker
region, we extend our study area to 39–46°N, 48–70°W (Fig. 5.3).

5.1.2. Data and Methods
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Figure 5.3: a Terrane camera (TC) morning map of the Rümker region (Lambert conformal conic projection).
The white box denotes the CE5 landing region. The yellow boxes represent the locations of other figures in
this paper. The yellow dashed lines denote the ejecta from Harpalus carter. The blue dashed lines denote
ejecta from Pythagoras crater. The green dashed lines denote ejecta probably from Copernicus crater. b
Topography of the Rümker region. The image is a Lunar Orbiter Laser Altimeter and Kaguya TC merged
hillshade map superposed on the TC DTM data (Lambert conformal conic projection). The white box
denotes the CE5 landing region. The black lines denote wrinkle ridges. The red lines denote Rima Sharp.
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Topography and Geomorphology
A Kaguya Terrain Camera (TC) global image mosaic with uniform morning illu-

mination (TC Morning Map data) and TC DTM data, with a spatial resolution of ∼10
m/pixel (Haruyama et al., 2008, 2014), were mosaicked to analyze topographic and
geomorphologic features. TC Morning Map data were used to perform the CSFD
measurements on the major mare units to determine their absolute model ages. TC
Morning Map and TC DTM data were downloaded from the SELENE Data Archive
(http://darts.isas.jaxa.jp/planet/pdap/selene/). Lunar Reconnaissance Orbiter (LRO)
wide-angle camera (WAC) DTM data (∼118 m/pixel; Scholten et al., 2012) were applied
at a baseline length of 354 m to survey surface slopes. LRO narrow-angle camera (NAC)
data were used for more detailed studies of local features, due to their high spatial res-
olution (up to ∼0.5 m/pixel) and more variable illumination conditions (Robinson et
al., 2010). WAC DTM data and NAC data were downloaded from the LROC website
(http://lroc.sese.asu.edu/).

Composition
TiO2 and FeO Contents Kaguya Multiband Imager (MI) data were downloaded
from the SELENE Data Archive (http://darts.isas.jaxa.jp/planet/pdap/selene/). MI
has five visible bands (415, 750, 900, 950, and 1,000 nm) and a spatial resolution of 20
m (Ohtake et al., 2008). TiO2 and FeO abundances were calculated from MI data using
the algorithms described by Otake et al. (2012):

θTi = arctan[(R415=R750) - 0.208]=(R750 + 0.108) (1)
wt%TiO2 = 0.72 x θTi14.964 (2)
θFe = arctan[(R950=R750) - 1.250]/(R750 - 0.037) (3)
wt%FeO = 20.527 x θFe - 12.266 (4)

where R415, R750, and R950 are the reflectance at each corresponding band. The
standard deviation of the TiO2 and FeO contents are 0.43 and 0.81 wt%, respectively.
Caution should be exercised in interpretations when the TiO2 content is lower than
2 wt%, at which point the linear correlation between UV/VIS (321 nm/415 nm) and
TiO2 content tends to break down (Coman et al., 2018; Sato et al., 2017).

A false color composite map was produced from MI data by assigning 750 nm/415
nm as red, 750 nm/950 nm as green, and 415 nm/750 nm as blue (Pieters et al., 1994).
Because of its sensitivity to surface maturity and composition, and its ability to high-
light subtle spectral differences (Eliason et al., 1999; Pieters et al., 1994), the false color
composite map, together with titanium and iron variation and crater distribution data,
was used to determine the nature and boundaries of geologic units.

Mineralogy Moon Mineralogy Mapper (M3) reflectance data acquired from the
optical period OP2C were selected because of their full spatial coverage over the
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Rümker region. M3 OP2C data have a spatial resolution of 280 m/pixel, with 85 bands,
spanning from 430 to 3,000 nm (Pieters et al., 2009). The M3 data used in this study
are calibrated data archived in the Planetary Data System (version 1 of Level 2), ra-
diometrically corrected (Green et al., 2011), geometrically corrected (Boardman et al.,
2011), thermally corrected (Clark et al., 2011), and photometrically corrected (Besse
et al., 2013).

To decrease the effects of space weathering and to permit a more robust spectral
study, we removed the continuum following the method of Horgan et al. (2014) and
Martinot et al. (2018). These authors defined the continuum by maximizing the 1 and
2 micron absorption bands. Spectral parameters such as band centers, band depths,
band areas, and band asymmetries were calculated for the 1 and 2 micron absorption
bands of each spectrum. M3 RGB composite maps using these criteria were produced
to highlight the mineralogical diversity of the Rümker region (Martinot et al., 2018;
Mustard et al., 2011). Both M3 original and continuum-removed spectra were visually
analyzed for definitive mineral identification, performed by comparison of the M3

spectra with the RELAB reference library (http://www.planetary.brown.edu/relab/).

5.1.3. Results
Topography

The Rümker region is located within the relatively smooth mare plains of northern
Oceanus Procellarum (Kreslavsky et al., 2013; Rosenburg et al., 2011; Fig. 5.3a). This
area is covered by widespread mare basalts and is generally flat. The mean slope of
the area is 1.1° (at a baseline length of 354 m), with only 10% of the area exceeding a
slope of 2°. The average elevation of the mare area is ∼-2,145 m. The western maria is
200–300 m higher than the eastern maria (Fig. 5.3b). The highest point is in the south
of Mons Rümker (-1,271 m), and the lowest point is at the bottom of Mairan G crater
(-3,571 m). The regional topography is largely influenced by mare ridges, along which
the mare surface is locally raised, up to 100–200 m. Mons Rümker, ∼70 km in diameter,
stands up to 1,300 m above the surrounding mare. It has a mean slope of 2.7°. The
individual domes on Mons Rümker are slightly steeper than the plateau.

Geomorphology
Impact Craters Most of the craters in the area are simple primary craters smaller
than 2 km in diameter, characterized by bowl-shaped floors, only few with flat bottoms.
Almost all craters larger than 2 km in diameter are found in the western maria. It is also
apparent that the western maria has a much higher crater density than the eastern
maria. Harding D (centered at 42.8°N, 67.6°W; Fig. 5.4a) is the largest crater in the area.
It has a diameter of 6.3 km and a bowl-shaped floor. Its rim is ∼250 m higher than the
surrounding mare. This crater formed on a NE-orientated wrinkle ridge.

Secondary crater clusters formed by ejecta from the crater Copernicus (NW trend),
Harpalus (NE trend), and Pythagoras (NW trend) are distributed in the area (Fig. 5.3a;
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Figure 5.4: Typical impact crater-related structures in the Rümker region. a Harding D crater (centered at
42.8°N, 67.6°W; Fig. 5.3a). This crater formed on a NW oriented wrinkle ridge (blue dashed lines). Its ejecta
(yellow arrow) buries a portion of the wrinkle ridge. b Secondary crater clusters (centered at 42.9°N, 58.0°W;
Fig. 5.3a). The yellow dashed line denotes Harpalus secondaries (Scott & Eggleton, 1973). The secondary
craters denoted by the blue dashed line are radial to Copernicus crater and are thus probably formed by
Copernicus crater ejecta. The blue arrow denotes secondaries without any dominant orientations. c A
buried crater (centered at 44.4°N, 61.9°W; Fig. 5.3a). The yellow arrows denote the exposed rim crest of the
preexisting crater. This preexisting crater is almost completely buried by the later lavas. The subsequent
lava flooding is estimated to be less than 800 m, using the depth/diameter relationships of fresh craters
(Pike, 1974).

Scott & Eggleton, 1973). For example, the NE-oriented clusters to the north of Mons
Rümker are formed by Harpalus crater ejecta (Fig. 5.4b; Scott & Eggleton, 1973). How-
ever, the sources of the secondaries that are not characterized by any preferred orien-
tations are mostly unknown.

There are at least 35 buried craters in the study area (39–46°N, 48–70°W) and 15
buried craters that lie within the Rümker region (41–45°N, 49–69°W), mostly in the
eastern maria. These premare craters were partially filled by lava flows, leaving only
the raised rim crests visible on the surface (Fig. 5.4c).

Wrinkle Ridges Lunar wrinkle ridges are abundant in the study area (Fig. 5.3b).
Most of the wrinkle ridges have typical shapes as described by Strom (1972) and Sharp-
ton and Head (1988) (i.e., a gently sloping, broad arch at the base, and a sharper but
irregular ridge at the top; Fig. 5.5). The dimensions of the wrinkle ridges are variable
in the Rümker region. In the western maria, the wrinkle ridges range up to 6 km in
width and 110 km in length and are 200 m above the surrounding mare. In the eastern
maria, the wrinkle ridges are smaller than those in the western maria, mostly less than
1.5 km in width and 20 km in length, and are seldom much higher than 50 m above
the surrounding mare.

The wrinkle ridges in the Rümker region have three preferred orientations (NW,
NNW, and NE, respectively). In the western maria, most wrinkle ridges are oriented
NW or NNW, consistent with the preferred orientation of those in Oceanus Procel-
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Figure 5.5: Wrinkle ridges. a NW-orientated parallel wrinkle ridges (centered at 41.7°N, 66.3°W; Fig. 5.3a).
The blue dashed lines denote parallel wrinkle ridges. AA’ shows the location of the profile in d. The yellow
box denotes the location of b. b A southwest trending fault cuts the wrinkle ridge in the area (the yellow
arrow). The craters denoted by blue arrows are cross-cut by the ridge front. c Wrinkle ridges in the eastern
maria (centered at 41.3°N, 53.9°W; Fig. 5.3a). They are oriented NE along the outer ring marked by kipukas
(see section 3.2.5). d Topographic profile across wrinkle ridges (AA’ in a). The wrinkle ridges in the area
display the typical broad arches (2–3°) and sharp ridges (up to 8°; Sharpton & Head, 1988; Strom, 1972).
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larum as a whole (Yue et al., 2015). For example, the wrinkle ridges between Harding
D and Harding H craters in the western maria are parallel and have a distinct NW
trend (Fig. 5.5a). Five independent wrinkle ridges are parallel with each other, with
variable lengths (10 to 100 km) but similar morphologies and slopes. In the vicinity of
these parallel wrinkle ridges, a linear fault vertically cuts a wrinkle ridge (Fig. 5.5b).

In the eastern maria, the wrinkle ridges have a prominent NE trend along the outer
ring of the Imbrium basin marked by the shoreline of Mare Frigoris (Spudis et al., 1988;
Wilhelms & McCauley, 1971). This trend suggests that the wrinkle ridge formation in
the eastern maria was affected by the ring system of the Imbrium basin (Head, 1982;
Maxwell et al., 1975).

Sinuous Rilles In the eastern maria, a sinuous rille (Rima Sharp) is incised into
the mare plains along the mare/highland boundary (Fig. 5.3b). Rima Sharp is even the
longest sinuous rille on the Moon (Hurwitz et al., 2013). It originates in Sinus Roris, to
the north of the Rümker region, at an elevation of -2,300 m, and fades into the mare
surface to the south at an elevation of -2,500 m(Fig. 5.6). Rima Sharp is 566 km long,
257 km of which are within the study area. The width of Rima Sharp varies from 0.8 to
3 km. Its depth varies from 20 to 50 m, and the narrowest parts of the channel have
greater depths than those of the wider parts. The channel wall slopes of Rima Sharp
fluctuate between 8 and 12°. The regional slope of Rima Sharp (defined as the gradient
of the material surrounding the sinuous rille) is -0.02° as measured by Hurwitz et al.
(2013). A thermal erosion formation mechanism is favored for such sinuous rilles
(Hurwitz et al., 2012).

Volcanic Domes Volcanic domes are relatively common in the lunar maria (Head
& Gifford, 1980; Smith, 1973). They are often observed in clusters, as in the case of
Mons Rümker (Smith, 1974; Whitford-Stark & Head, 1977), where most of the volcanic
domes in the study area are located. Zhao et al. (2017) identified 22 volcanic domes
on the Rümker plateau and divided them into two groups: steep-sided domes and
shallow domes (Fig. 5.7a). The steep-sided domes usually have relatively steep flank
slopes (>5°) and greater heights, with associated volcanic features such as possible
summit pits and flow features (Fig. 5.7b). The shallow domes have gentle topographic
relief and lower heights (<200 m); only two domes have associated volcanic features.
Both dome groups are interpreted to have formed by extrusion of basaltic magma to
form small shield volcanoes similar to those in Marius Hills (Head & Gifford, 1980;
Head & Wilson, 2017; Lawrence et al., 2013; Zhao et al., 2017).

Another possible volcanic dome (named East Dome in this study; 49.85°W, 43.68°N)
is located near the Mairan domes, close to the mare/highland boundary. The East
Dome is circular in shape (Fig. 5.7d), with a diameter of ∼3 km, and is up to 205 m
higher than the mare (Fig. 5.7e). The flank slope is up to 9°, less than those of the
Mairan domes (Glotch et al., 2011; Head & McCord, 1978). This dome is cratered,
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Figure 5.6: Sinuous rilles. a The narrow and deep parts of Rima Sharp (centered at 45.0°N, 51.0°W; Fig. 5.3a).
Rima Sharp is ∼1.3 km wide and 40–50 m deep in this part. The yellow arrows denote small channels within
Rima Sharp. The blue arrow denotes a shallow (∼30 m in depth) branch of Rima Sharp. The white line (BB’)
shows the location of the profile in c. (b) The wide and shallow part of Rima Sharp (centered at 41.7°N,
50.0°W; Fig. 5.3a). Rima Sharp is 3.1 km wide and ∼20 m deep in this part. The yellow arrows denote small
channels within Rima sharp. The white line (CC’) shows the location of the profile in d. c Topographic
profile of the narrow part of Rima Sharp. The black arrow denotes a branch of Rima Sharp. d Topographic
profile of the wide part of Rima Sharp.

but most of the craters appear to be fresh secondaries that not highly degraded. A
circular depression (∼1.3 km in diameter) which may be a volcanic depression is out-
lined in the northwest (the yellow dashed line in Fig. 5.7d). The East Dome was first
described as a silica-rich dome by Glotch et al. (2011). Similar features in the vicinity
(the Gruithuisen and Mairan domes) are interpreted to have formed from high viscos-
ity silica-rich magmas of rhyolitic or dacitic composition (Glotch et al., 2010, 2011;
Head & Wilson, 2017; Ivanov et al., 2016; Wilson & Head, 2003).

Kipukas Kipukas are islands or exposures of earlier structures or units that have
been surrounded by later units. Numerous isolated kipukas are identified within the
eastern maria. They are hilly to hummocky highland materials of various shapes and
are up to 500 m higher than the surrounding surface. The kipukas have relatively
smooth surfaces with fewer craters than the maria, and the few remaining craters
are all heavily degraded (Figures 8a and 8b). At the base of the kipukas, debris from
the upper slopes encircles the kipukas and forms a 200 to 300-m wide deposit zone
(Head, 1977). Although the kipukas usually display a scattered distribution in the
eastern maria, the highlands in the northeastern part of the study area near Louville P
crater have similar morphologies (Fig. 5.8c). Both the isolated kipukas and highlands
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Figure 5.7: Volcanic domes in the Rümker region. a Volcanic domes on Mons Rümker. The yellow lines
denote steep-sided domes (flank slopes >5°). The blue lines denote shallow domes (flank slopes <5°). The
yellow arrow denotes the steep-sided dome in Fig. 5.7b. b Steep-sided dome in the southwest of Mons
Rümker. The yellow arrow denotes a summit pit, which may be a volcanic crater (Zhao et al., 2017). c
Topography of the steep-sided dome in Fig. 5.7b. The image is a Lunar Orbiter Laser Altimeter and Kaguya
Terrane Camera (TC) merged hillshade map superposed on TC DTM data. d The East Dome (centered at
49.85°W, 43.68°N; Fig. 5.3a). The yellow dashed line denotes a circular structure that may be a volcanic
depression. The blue line denotes NE trending secondary craters. e Topography of the volcanic dome in
Fig. 5.7d. The image is a narrow-angle camera (NAC) hillshade map superposed on NAC DTM data.
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Figure 5.8: Kipukas in the Rümker region. a Isolated kipukas (centered at 40.4°N, 54.8°W; Fig. 5.3a). These
kipukas are reshaped by wrinkle ridges (the blue dashed lines), especially in the places denoted by the
yellow arrows. b The largest isolated kipuka (centered at 42.6°N, 52.1°W; Fig. 5.3a). The yellow arrows
denote debris. The blue arrows denote a buried crater (∼3.9 km in diameter). c Highlands near Louville
P crater, with a morphology that is similar to the kipukas scattered in the eastern maria. The blue dashed
lines denote wrinkle ridges.

near Louville P crater are characterized by subdued shapes and heavily degraded
superposed craters, lying on the possible Imbrium basin ring (Wilhelms & McCauley,
1971).

Composition
TiO2 and FeO Concentrations TiO2 and FeO abundance maps (Fig. 5.9) were
used to estimate the surface TiO2 and FeO contents. The results show that both the
TiO2 and FeO abundances vary significantly across the area. The TiO2 contents range
up to 7.5 wt % (Fig. 5.9a), and the FeO contents vary from 10 to 18.0 wt % (Fig. 5.9b).
The western and the eastern maria are dominated by two different types of mare
basalts, with distinctly different TiO2 contents, and varying FeO contents. However, it
should be noted that about 45% of the study area has TiO2 contents lower than 2 wt
%, a value at which the specific TiO2 contents are probably not accurate (Coman et al.,
2018).

The western maria are characterized by very low-Ti to low-Ti basalts (up to 5.0 wt
%, TiO2 content; Neal & Taylor, 1992). The mean content of TiO2 is 1.6 wt %. About 80%
of the area has TiO2 contents lower than 1%. The northwestern part of the western
maria exhibits the lowest TiO2 contents in the study area (1.3 wt %, mean content).
The TiO2 contents increase from north to south in the western maria and reach an
average of 2.4 wt % to the south of Harding D crater. The FeO contents of the western
maria are lower than of the eastern maria. The FeO contents range from 14 to 17 wt %
(15.8 wt %, mean content), increasing toward the south.

The western maria are characterized by very low-Ti to low-Ti basalts (up to 5.0 wt
%, TiO2 content; Neal & Taylor, 1992). The mean content of TiO2 is 1.6 wt %. About 80%
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Figure 5.9: TiO2 and FeO abundance maps of the Rümker region (Lambert conformal conic projection). a
TiO2 abundance map of the study area. b FeO abundance map of the study area. The white boxes denote
the CE5 landing region. The black dashed lines denote geologic boundaries discussed in section 3.4.
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of the area has TiO2 contents lower than 1%. The northwestern part of the western
maria exhibits the lowest TiO2 contents in the study area (1.3 wt %, mean content).
The TiO2 contents increase from north to south in the western maria and reach an
average of 2.4 wt % to the south of Harding D crater. The FeO contents of the western
maria are lower than of the eastern maria. The FeO contents range from 14 to 17 wt %
(15.8 wt %, mean content), increasing toward the south.

A very low-FeO zone occurs in the northeast of the western maria, without varia-
tion of TiO2 abundances, suggesting an origin due to the emplacement of ejecta from
Pythagoras crater (low-Fe and very low-Ti), rather than due to the composition of local
bedrock or regolith. Large craters and their surrounding ejecta in the western maria
have even lower TiO2 contents than the mare surface (<1 wt %); we interpret this to
be due to the excavation of underlying very low-Ti lava flows or underlying fresh rocks
of the same lithology. This relationship between lava flows and their compositions
can be used to obtain the thickness of lava flows (Thomson et al., 2009; Weider et al.,
2010), which is discussed in section 4.1.1. The eastern maria are clearly more enriched
in TiO2 (4.7 wt %, mean content) and FeO (16.7 wt %, mean content) than the west-
ern maria. About 65% of the eastern area has TiO2 contents between 4 and 7 wt %
and about 80% of the area has FeO contents greater than 16%. Most of the eastern
maria are covered by bright (high albedo) ray materials radiating from Copernican-
aged Harpalus crater (Fig. 5.3a), whose bedrock target is low-Ti mare basalts. These
materials clearly decrease the surface TiO2 contents in the eastern maria. Except for
these areas covered by ejecta, rocks in the region are classified as high-Ti basalts (TiO2

contents between 6 and 7 wt %; Neal & Taylor, 1992).
The underlying older low-Ti materials are clearly excavated by superposed impact

craters, as shown in the nature of the ejecta from relatively large and fresh craters. This
ejecta has TiO2 contents close to those of the western maria (1.9 wt %, mean content).
The kipukas are expected to show very low TiO2 and FeO contents due to their origin
as highlands (Spudis et al., 1988), but mixture with the surrounding high-Ti basalts by
impacts has commonly raised their titanium and iron abundance.

Mons Rümker is dominated by low-Ti basalts (1.8 wt %, mean content; Neal &
Taylor, 1992). The mean content of FeO is 15.6 wt %. The FeO content is lower in
the northeastern Rümker plateau, due to admixing of highland and basaltic materials
(Zhao et al., 2017).

Mineralogy The color composite maps shown in Fig. 5.10 highlight the presence
of distinct spectral units, represented by different colors. The area is dominated by
pyroxene signatures, characterized by broad absorption bands centered around 1 and
2 microns (Adams, 1974). Other common lunar minerals such as olivine or plagioclase
have not been detected throughout the study area. Although several parameters, such
as surface physical properties and rock texture, may also influence the band shape,
band center positions are often indicative of the pyroxene cation content (Adams,
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1974; Burns et al., 1973; Cloutis & Gaffey, 1991).
The western maria spectra (Fig. 5.10c) are characterized by greater band depths

and band centers at shorter wavelengths than the eastern maria spectra. Spectra
from the eastern maria (Fig. 5.10d) are quite homogenous, with the exception of those
taken from the interiors of impact craters with diameters exceeding 900 m, where
the spectra have band centers located at shorter wavelengths, consistent with the
western maria spectra. It is therefore likely that the impact craters of the eastern maria
have excavated material from an older, buried unit, spectrally similar to the western
maria. Spectra of the western maria show 1 and 2 micron bands centered around 990
and 2,180 nm, consistent with a pyroxene of intermediate-Ca composition such as
pigeonite (Fig. 5.10e). Spectra of the eastern maria have 1 and 2 micron bands centered
at ∼1,010 and 2,260 nm, consistent with high-Ca pyroxene such as augite (Fig. 5.10e).
Ling et al. (2017) also conducted spectral observation of the Rümker region. Both Ling
et al. (2017) and this survey suggest that there is little low-Ca pyroxenes in the mare
area.

Mons Rümker, the Mairan T dome, and the highlands in Montes Jura to the east
of the study area are all characterized by weaker pyroxene absorptions bands, which
likely indicate a lower mafic component, or more mature regolith (Fischer & Pieters,
1994). The pyroxene component of the highlands is slightly more variable, with ab-
sorption bands shifted toward shorter wavelengths (∼950 and 2,140 nm), suggesting
the presence of low-Ca pyroxene rather than the intermediate to high-Ca pyroxene
detected in the mare units. The Mons Rümker pyroxene component is closer in com-
position to the older, western maria in composition (intermediate-Ca pyroxene). The
Mairan T dome, Mons Rümker, and the highlands in Montes Jura have higher average
reflectance values than the mare units, which may indicate the presence of a less mafic
component, such as silica or feldspar, which cannot easily be detected in the VNIR
domain when mixed with pyroxene (e.g., Adams & McCord, 1972; Pieters, 1986).

Geologic Units
Fourteen geologic units were defined and mapped in this study, including seven

mare units (Im1, Im2, IM3, Em1, Em2, EM3, and Em4), three Rümker plateau units
(IR1, IR2, and IR3), one nonmare highland units (Ith), and three dome units (ld, sd,
and Idm; Fig. 5.11). In order to define the geologic units, we followed the assumption
by Hiesinger et al. (2000) that spectrally and compositionally homogeneous units
are formed within a short period and each unit represents a single volcanic eruptive
phase. Therefore, each spectrally and compositionally homogeneous unit is regarded
as a geologic unit. We used TiO2 and FeO contents and a false color composite from
Kaguya MI data to define spectral and compositional units. The boundaries revealed
by TiO2 and FeO abundance data (Fig. 5.9) correlate well with those revealed by M3

color composite data (Fig. 5.10). Boundaries are shown as black lines in Fig. 5.11 and
black dashed lines in Fig. 5.9.
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Figure 5.10: M3 spectral analysis of the Rümker region. a. M3 2900 nm mosaic. b. M3 RGB composite
of spectral parameters (R = 2 micron band center, stretched values: 2000-2500; G = 2 micron band depth,
stretched values: 0.04-0.13; B = reflectance at 1580 nm, stretched values: 0.085-0.15). c. M3 original spectra
averaged over the entire units defined in next section (see yellow outlines on a). d. M3 continuum-removed
spectra of the same units (using the method of Martinot et al., 2018. e. M3 continuum-removed 3x3 pixel
average spectra of selected impact craters (A through E) and of the nearby mare (A’ through E’) within the
eastern mare (see positions on a). f. M3 continuum-removed 3x3 pixel average spectra of selected impact
craters (F through L) and of the nearby mare (F’ through L’) within the western mare (see positions on
a). g. RELAB database pyroxene spectra processed using the method of Martinot et al., 2018 (respective
RELAB-IDs: PD-CMP-006, AG-TJM-010, DL-CMP-008 and DH-MBW-005 for diopside, augite, pigeonite and
enstatite).
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Figure 5.11: Geologic units of the Rümker region. The black lines denote the geological boundaries. The
white box denotes the CE5 landing region. Im1, Im2, and Im3 are Imbrian-aged mare units. Em1, Em2, Em3,
and Em4 are Eratosthenian-aged mare units. IR1, IR2, and IR3 are Rümker plateau units. Ith is a highland
unit. Idm is an Imbrian-aged dome unit.

Crater size-frequency distribution methods were carried out to analyze the homo-
geneous units using TC Morning Map data to determine their absolute model ages.
The results are shown in Table 5.1 together with optical maturity values, TiO2 and
FeO contents, and their uncertainties (shown as standard deviation). The cumulative
crater frequency plots are shown in Fig. 5.12. Mons Rümker was mapped, and surface
ages were determined by Zhao et al. (2017), and we used their results in this study.

Im1, Im2, and IM3 are Imbrian-aged mare units (referred to as western maria
above), adopting the lunar stratigraphy system by Stöffler and Ryder (2001). Im1 is the
oldest mare unit (∼3.42 Ga) in the area. It is dark bluish-purple in color with a red hue
in the false color map (Fig. 5.11), dominated by low-Ti basalts (2.4 wt %, mean content
of TiO2). Im2 (∼3.39 Ga) is the largest mare unit in the area, containing five large
craters (>3 km in diameter), Eratosthenian-aged Pythagoras secondaries, and large
wrinkle ridges. It is orange-red in the false color map (Fig. 5.11), and the TiO2 content
(1.3 wt %, mean content) is apparently lower than that of Im1. IM3 is located in the
northeast near Louville P crater (∼3.16 Ga; Fig. 5.11), with a low TiO2 content (1.4 wt
%, mean content). It is the smallest Imbrian-aged unit in the area, embaying some of
the highlands near Louville P. Most of the unit is covered by NE-orientated Pythagoras
secondary ejecta, resulting in the largest OMAT value (0.184) in the area. Our mapping
results of Imbrian-aged mare units correlate well with previous stratigraphic studies
by Whitford-Stark and Head (1980) and Hiesinger et al. (2003).

Em1, Em2, EM3, and Em4 (EM3 and Em4 are referred to as eastern maria above)
are Eratosthenian-aged mare units. Em1 (∼2.30 Ga) embays Mons Rümker in the
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Figure 5.12: Cumulative crater frequency plots and absolute model ages of the mare units analyzed. See
Table 5.1 for details. The lunar production function and the chronology function are given by Neukum et al.
(2001).
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southwest. It has similar color ratios and TiO2 contents as the neighboring unit, Im1,
but it is different in its relatively high FeO contents and lower crater density. Em2
(∼2.13 Ga) has the lowest TiO2 contents (1.6 wt %, mean content) among the Eratos-
thenian units. It has an orange-red hue in the false color map (Fig. 5.11) similar to the
Im2 unit, but it has fewer craters and a younger model age. EM3 (∼1.51 Ga) is located
to the east of Mons Rümker. It is purple in the false color map (Fig. 5.11), characterized
by a low-Ti composition (3.6 wt %, mean content of TiO2). This unit embays a portion
of Mons Rümker in the east.

Em4 (∼1.21 Ga) is the youngest mare unit in the area. This unit has a high TiO2

(6–7%) content, except for the areas covered by Copernican-aged secondary ejecta, as
discussed in section 3.2.1. The FeO contents of Em4 are also high (16.7 wt %, mean).
This unit is purple-blue in the false color map (Fig. 5.11) and embays dozens of high-
land kipukas. The wrinkle ridges are smaller than those of western maria, trending NE
along the outer ring of the Imbrium basin. Rima Sharp incises this unit at its boundary
with Montes Jura.

IR1, IR2, and IR3 are Rümker plateau units, according to the definition and crater
counting results of Zhao et al. (2017) (Table 5.1). IR1 (∼3.71 Ga) is a lineated terrain
in the north of Mons Rümker, formed by a mixing of Iridum crater ejecta and basaltic
materials. IR2 (∼3.58 Ga) occurs northeast of Mons Rümker, exhibiting lower TiO2

contents. IR3 (∼3.51 Ga) covers the main portion of Mons Rümker, characterized by
higher TiO2 and FeO contents than IR2 (Zhao et al., 2017).

Three dome units are identified in the area. Two of them (ld, ∼3.5 Ga; sd, active
until ∼3.0 Ga) were defined by Zhao et al. (2017) on the basis of their flank slopes. The
silica-rich domes including the East Dome and the Mairan domes (Idm) are mapped
as another independent unit with a highland volcanism formation mechanism in the
Imbrian Period (Head & McCord, 1978).

Kipukas/highlands are informally defined as massif materials (Wilhelms, 1970)
that resemble the Alpes Formation (Page, 1970), interpreted to have been formed by
the ejecta of the Imbrium basin in previous studies (Scott & Eggleton, 1973; Spudis et
al., 1988). In the current study, we defined it as the Ith unit after Scott and Eggleton
(1973). It is the oldest unit in the area, contemporary with the Imbrium basin impact
(∼3.93 Ga; Snape et al., 2016).

5.1.4. Discussion
Volcanic Events and Geologic History
Volcanic Events The oldest recognizable mare basaltic unit in Oceanus Procel-
larum is the Repsold Formation (medium to high TiO2 content). At present it is only
exposed in northwestern Oceanus Procellarum near the Rümker region (Whitford-
Stark & Head, 1980). It is inferred to be beneath the uppermost mare basalts defined
in this study, on the basis of superposition relationships and its extensive coverage
(Whitford-Stark & Head, 1980). The Repsold Formation was emplaced around 3.75 ±
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0.05 Ga (Boyce & Jonnson, 1978) or 3.72 Ga (P28; Hiesinger et al., 2003, 2011) ago.

The basaltic unit IR1 formed ∼3.71 Ga during the same period or shortly after the
emplacement of the Repsold Formation, followed by IR2 (3.58 Ga) and IR3 (3.51 Ga;
Zhao et al., 2017). Shallow domes (ld) formed around 3.5 Ga ago (Zhao et al., 2017).
Extrusive steep-sided domes formed later by relatively high viscosity magma, and vol-
canic activity continued until ∼3.0 Ga ago (Zhao et al., 2017). The basaltic eruptions in
the Mons Rümker region are similar to the western maria flows in elemental composi-
tion (low TiO2), mineralogy (intermediate pyroxene composition), and emplacement
ages (Imbrian-aged), suggesting that they may be from the same mantle source region
but have different eruption styles.

Although the small silica-rich East Dome has not been dated in this study due
to its small area, it most likely formed in the Imbrian Period, contemporary with
the Mairan domes (Head & McCord, 1978) and other silica-rich domes, for example,
the Gruithuisen domes (3.7–3.85 Ga, Wagner et al., 2002) and the Hansteen domes
(3.65–3.74 Ga, Wagner et al., 2010). On the other hand, its relatively shallow slopes
(9°), low thorium abundance (8.6 ppm), and lower silica content compared with other
Mairan domes (Glotch et al., 2011) might indicate that it is not completely similar to
typical red spots that are formed by more viscous, silica-rich magmas (Glotch et al.,
2010, 2011; Head & Wilson, 2017; Ivanov et al., 2016; Wilson & Head, 2003).

The Imbrian-aged mare basalts (Im1, Im2, and IM3) defined in the current study
comprise the major mare eruption phase during the Late Imbrian Period (3.2–3.8
Ga; Hiesinger et al., 2000, 2003, 2010, 2011). This eruption phase has a very low-Ti
to low-Ti and intermediate pyroxene composition (e.g., pigeonite), suggesting early
magma source regions without ilmenite. The materials excavated from the largest
crater (Harding D, 6.3 km diameter) have similar mineral, TiO2, and FeO contents as
those in the surface of the mare, unlike the underlying Repsold Formation materials,
as do other impact craters. This implies that the thickness of the Imbrian mare units
is at least 700 m. The sources of the Imbrian-aged basalt units are hard to trace, but
the sinuous rilles in Mons Rümker and Aristarchus regions were probably the source
of some of these materials (Whitford-Stark & Head, 1980).

The Eratosthenian-aged mare basalts (Em1, Em2, EM3, and Em4) represent the
young phase of volcanism, characterized by high titanium content (Blewett et al., 1997;
Elphic, 2002; Pieters, 1978) and high olivine content (Pieters, 1978; Staid et al., 2011;
Staid & Pieters, 2001; Zhang et al., 2016). The Eratosthenian-aged mare basalts in
this area are also rich in iron, especially the EM3 and Em4 units. The Em1 and Em2
units are not as high in TiO2 and FeO content as the early Late Eratosthenian Period
aged EM3 and Em4 units. The spectra from these units have band center positions
shifted toward shorter wavelengths from EM3 to Em4 (Fig. 5.10d), suggesting a slight
change in the pyroxene compositions (decrease of calcium) of the eruptive high-Ti
mare basalts with time.

Em4 comprises the main member of the Eratosthenian mare units in the area.
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Table 5.2: Basalt Thickness of the Young Mare Units (Em3 and Em4) and Craters Used to Calculate the
Thickness

No Latitude (o) Longitude (o) Diameter Dt Rbase Hb

(km) (km) (km) (m)
1 40.9 50.8 6.1 5.1 5.0 228 (±105)
2 42.1 52.2 1.6 1.4 0.9 119 (±7)
3 40.3 52.8 4.3 3.6 4.4 78 (±78)
4 39.8 53.2 2.0 1.7 1.4 106 (±22)
5 42.6 54.1 1.7 1.4 1.7 50 (±39)
6 43.2 55.5 1.2 1.0 0.7 97 (±3)
7 42.1 55.6 1.8 1.5 1.0 137 (±5)
8 42.3 56.0 3.3 2.8 2.6 132 (±53)

Note. The applied method is described in Thomson et al. (2009). Dt is the transient
crater diameter. Rbase is the radius of ejecta. Hb is basalt thickness.

Rima Sharp is the longest sinuous rille on the Moon and feeds most of the lavas of
Em4 from the north in Sinus Roris with the assistance of Rima Mairan from the south-
east (Whitford-Stark & Head, 1980). The Em4 lava flow boundaries are undetectable in
WAC low solar illumination image data, although Eratosthenian-aged lava flow fronts
can be readily observed in Mare Imbrium (Chen et al., 2018; Wu et al., 2018). This
observation suggests that the Em4 lava flow unit thickness is too small to be recog-
nized. Spectroscopic observations by M3 show that materials excavated by craters
with diameter greater than 900 min the eastern maria (EM3 and Em4) are different
from surface materials associated with EM3 and Em4 and similar to the older west-
ern maria. This observation indicates that the eastern Eratosthenian-aged mare units
(EM3 and Em4) are superposed on the old western Imbrian-aged mare units (Im1,
Im2, and IM3). Thus, we estimated the thickness of the eastern mare basalt to be less
than 90 m using depth/diameter relationships (Pike, 1974). Further constraints on
basalt thickness were provided by crater penetrating measurements (Thomson et al.,
2009), yielding a thickness of 50–100 m for the young basalts (EM3 and Em4; Table 5.2),
comparable to the 30–60 m estimated by Hiesinger et al. (2002).

In summary, the Imbrian-aged and Eratosthenian-aged mare units in the study
area have a significant variation in age, mineralogy, composition, and volume, which
are interpreted to originate from different mantle source regions or depths (Kato et al.,
2017; Staid et al., 2011).

Geological History The sequence of geologic events in the area, including volcanic
activity, tectonism (wrinkle ridge formation), and impact cratering, are now summa-
rized. A geologic map (Fig. 5.13) was produced, and we interpret the geological evolu-
tionary history of the Rümker region as follows:
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1 The Imbrium impact at 3.92 Ga ago generated a complex multiring system
(Snape et al., 2016) and the outer ring materials formed the Ith unit in the
area (Scott & Eggleton, 1973; Spudis et al., 1988). Ejecta of the Iridum impact
(3.84–3.7 Ga; Wagner et al., 2002) formed the lineated terrain in the north of
Mons Rümker before 3.71 Ga (Zhao et al., 2017).

2 The earliest detectable basaltic volcanism in the area erupted around 3.72 Ga
ago (Hiesinger et al., 2003), forming medium to high-titanium mare basalts
belonging to the Repsold Formation (Whitford-Stark & Head, 1980).

3 Basaltic volcanism was active from 3.71 to 3.51 Ga ago in Mons Rümker, forming
plateau basalts IR1 (3.71 Ga), IR2 (3.58 Ga), and IR3 (3.51 Ga; Zhao et al., 2017).

4 Silica-rich domes (Idm) formed contemporaneously to, or a little earlier than,
Mons Rümker by silica/felsite volcanic activity (Glotch et al., 2010, 2011; Head
& McCord, 1978; Head & Wilson, 2017; Ivanov et al., 2016; Wilson & Head, 2003).

5 The major phase of basaltic volcanism occurred during the Late Imbrian Period,
forming very low-Ti to low-Ti mare basalts (Im1, 3.42 Ga; Im2, 3.39 Ga; IM3, 3.16
Ga).

6 NW-oriented wrinkle ridges in Oceanus Procellarum were tectonically gener-
ated around 3.35 Ga ago (Yue et al., 2017).

7 The youngest phase of mare volcanism started at ∼2.30 Ga ago and ceased at
∼1.21 Ga ago, forming four episodes of mare units (Em1, 2.30 Ga; Em2, 2.13
Ga; EM3, 1.51 Ga; Em4, 1.21 Ga). The youngest mare volcanism (with elevated
titanium content) formed the Em4 unit.

Potential Science Outcomes From Sample Return
Laboratory studies of lunar samples from Apollo and Luna missions (landing sites

shown in Figures 1 and 2) solved numerous fundamental scientific issues of selenology
and heralded the beginning of a golden age of lunar research that continues to this
day (e.g., Hiesinger, 2006; Jaumann et al., 2012; Neal, 2009; Taylor, 2014; Taylor et
al., 2006). However, most of the Moon remains unexplored and there are still many
unanswered scientific questions (National Research Council, 2007) that remain to be
addressed by returned samples (e.g., Crawford et al., 2007, 2012; Crawford & Joy, 2014;
Flahaut et al., 2012; Kring & Durda, 2012). China’s CE5 lunar sample return mission
to the Rümker region provides a great opportunity to solve some of the significant
outstanding questions of lunar science. Samples from each geologic unit in the area
have specific scientific importance, which should be ranked to maximize the science
outcomes.
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The Young Mare Units On the Moon, the phase of mare basalt volcanism that
records internal mantle evolution began (cryptomaria; Whitten & Head, 2015) prior
to the end of impact basin formation (Orientale basin, ∼3.68 Ga; Whitten et al., 2011)
peaked between 3 and 4 Ga and subsequently declined with time, with only a few
extrusive mare basalt deposits, widely spaced in the last 50% of the lunar history
(Head & Wilson, 2017; Hiesinger et al., 2000, 2003, 2010, 2011; Morota et al., 2011).
Where is the youngest mare basalt volcanism, what is its exact radiometric age, and
what does its mineralogy and geochemistry tell us about the lunar mantle in the last
half of lunar history?

Remote sensing data and counts of superposed impact craters on mare basalt
units show that the youngest mare basalts could be as young as 1.2 Ga (Hiesinger et al.,
2003, 2011). The youngest mare basalts are concentrated in the northern Oceanus Pro-
cellarum region, centrally located in the PKT, characterized by elevated abundances
of radioactive heat-producing elements such as U, Th, and K (e.g., Haskin, 1998; Jolliff
et al., 2000; Prettyman et al., 2006).

One (P58, 1.33 Ga) of the five young mare units (others are P56, P57, P59, and P60)
occurs in the Rümker region (Hiesinger et al., 2003, 2011). P58 nearly corresponds
with EM3 (1.51 Ga) and Em4 (1.21 Ga) in the current study. These two mare units have
extremely young model ages, especially Em4, which is one of the youngest mare units
on the Moon revealed by crater counting methods (Hiesinger et al., 2000, 2003, 2010,
2011; Morota et al., 2011). These high-Ti basalts (EM3 and Em4) are younger than
any existing lunar samples, including the youngest lunar meteorites (NWA032, 2.8 Ga;
Fagan et al., 2002).

These factors led scientists to place the return of samples from these young mare
basalt units as a top priority for future lunar exploration (National Research Council,
2007). Analysis of these samples in Earth laboratories will (1) provide exact radio-
metric dates for the extrusive events and thereby improve our knowledge of lunar
chronology, (2) provide new knowledge of the nature of the geochemistry and miner-
alogy of basaltic source regions and their isotopic and trace element characteristics,
(3) permit the testing of the role of the radioactive PKT in the generation of late-stage
mare volcanism, and (4) improve understanding of the thermal state of the lunar in-
terior in late lunar history, thereby testing and constraining models for the thermal
evolution of the Moon.

Finally, the ages of these young basalts are currently determined by impact CSFD
of the craters superposed on the units, calibrated by counts of craters on geologic units
radiometrically dated in Earth laboratories from samples collected by Apollo and Luna
missions. However, no samples have currently been returned from such young lunar
units, and, thus, there is a high level of uncertainty in the size-frequency distribution
ages in the last half of lunar impact chronology (Crawford et al., 2007; Stöffler et al.,
2006; Stöffler & Ryder, 2001). Return of samples from these young basalts would thus
serve to provide an absolute calibration for the cratering flux, an accomplishment
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that will assist in our understanding of the geological evolution of planetary bodies
throughout the Solar System (Crawford et al., 2007; Kring & Durda, 2012; National
Research Council, 2007).

Other Geological Units The Imbrian-aged mare basalts in the area are low-Ti
(Im1) to very low-Ti (Im2 and IM3) and dominated by intermediate composition py-
roxene such as pigeonite. Samples from the Imbrian-aged mare basalts are similar
in age (Imbrian-aged) and composition (very low-Ti to low Ti) to Apollo and Luna
samples (Apollo 12 and 15 missions collected low-Ti basalts, and Apollo 17 and Luna
24 missions collected very low-Ti basalts). Samples from these units can provide im-
portant ground truth to help evaluate the low-Ti and VLT basalt petrogenesis models
(Neal & Taylor, 1992) and reveal mantle source region properties (Snyder et al., 1992).

Steep-sided lunar domes and volcanic complexes have not been sampled in previ-
ous lunar missions. Samples from the domes on Mons Rümker and the silica-rich East
Dome can reveal the elemental and mineral compositions of these surface materials,
providing ground truth for remote sensing data/methods. Geochemical analysis can
constrain the nature of magma source regions and test the existing models and mech-
anism of dome formation (Head & Wilson, 2017; Wilson & Head, 2003; Wilson & Head,
2017). Samples from the silica-rich East Dome can reveal the nature of silica-rich
volcanism on the Moon, the effects of thorium concentration on red spot formation,
and lead to further understanding of the late stage magmatic evolution of the Moon
(Glotch et al., 2010, 2011; Hagerty et al., 2006).

Proposed Sampling Sites
Comparing the potential science return of each of the geologic units, we suggest

that the Em4 unit has the richest scientific value and should be the top priority landing
unit for the CE5 mission. Sampling anywhere in the Em4 unit could return young mare
materials and fulfill the desired scientific goals. Thus, we propose the entire Em4 unit
as a candidate from which to choose a specific landing site (proposed landing site A).
Our suggestion to land in the young mare unit is supported by Ling et al. (2017) and
Jolliff et al. (2017).

Furthermore, sampling the regolith developed on the Em4 unit could readily re-
turn samples of the underlying older materials (i.e., Imbrian-aged mare basalts) exca-
vated by impacts. In addition, the secondary clusters and crater rays in the area indi-
cate that material in the soils is likely to contain admixed ejecta from distant craters,
such as Copernicus, Harpalus, and Pythagoras. Finally, ejecta from craters superposed
on the exposed kipukas in the Em4 unit may provide fragments from the underlying
Imbrium basin ejecta unit. In contrast, landing in the western maria is likely to return
only the Imbrian-aged mare deposits and possible ejecta and fragments (similar in
age and composition to Apollo and Luna samples) that could also be sampled in Em4
unit.
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Figure 5.13: The location of proposed landing sites in this study. Landing site A indicates the region of the
Em4 mare unit.

Mons Rümker and the silica-rich East Dome are also valuable sampling units of
significant scientific interest. We list these as the second and third priority landing
sites for the CE5 mission and propose two landing sites within each unit (proposed
landing sites B and C). Proposed landing site B is at a steep-sided dome on Mons
Rümker (centered at 58.53°W, 41.41°N). This steep-sided dome is ∼7.5 km in diameter.
The top of this dome is flat and may be suitable for landing (<2°). The third proposed
landing site is on the silica-rich East Dome (centered at 49.85°W, 43.68°N), which is
discussed in detail in sections 3.2.4 and 4.1.1.

These three proposed landing sites (Fig. 5.14 and Table 5.3) can be further evalu-
ated to assess the engineering requirements (e.g., surface slopes, rock abundance, and
crater density) in a future study.

Engineering Advantages of Sampling the Em4 Unit
The proposed landing site A (Em4) is not only the very highest scientific priority

but also very favorable from an engineering and landing safety point of view. It offers a
relatively safe landing site, which is regionally flat, young, and is really homogeneous
and so does not require pin-point landing. These benefits are listed:

1 The Em4 unit is regionally flat (1.1°, mean slope) and very similar to the topogra-
phy and slopes observed at the CE3 landing site. CE3 landing data can be used
to simulate the nature of the landing region.

2 The Em4 unit is very young (1.21 Ga), which means it contains fewer large im-
pact craters and has smoother topography.
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3 The Em4 unit is very widely distributed and continuous in the CE5 landing re-
gion (Figures 11 and 14), making up almost one third of the total landing region.
Landing and sampling anywhere in the Em4 unit would fulfill the primary sci-
entific objectives of the mission.

4 The Em4 unit is a mare unit very similar in age and surface characteristics to
that explored by CE3 (Qiao et al., 2014; Zhao et al., 2014) and suited for soft
landing by CE5. Ground penetrating radar data from the CE3 landing site (Fa et
al., 2015; Xiao et al., 2015; Yuan et al., 2017; Zhang et al., 2015) show the type of
vertical structure to be expected in the CE5 Em4 unit.

5.1.5. Conclusions
We systematically studied the topography, geomorphology, composition, and sur-

face properties of the Rümker region, the target region for the CE5 sample return
mission. Principle results include the following:

1 The Rümker region is an unexplored and unsampled area in northern Oceanus
Procellarum. It is located within the unusual PKT, characterized by levels of high
heat producing elements.

2 Fourteen geologic units were defined and mapped, including seven mare units
(Im1, Im2, IM3, Em1, Em2, EM3, and Em4), three Rümker plateau units (IR1,
IR2, and IR3), one nonmare highland units (Ith), and three dome units (ld, sd,
and Idm).

3 The Rümker region experienced long (∼3.7 to ∼1.2 Ga) and complex volcanic
activity, forming multiple volcanic units with distinct composition and mineral-
ogy.

4 Three candidate landing sites are proposed for the CE5 mission. We interpret
the Em4 unit (proposed landing site A) to be the most scientifically valuable and
also the safest from a landing and engineering point of view and should be listed
as the top priority for the CE5 mission.
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Scientific Research (NWO) grant. The Kaguya TC Morning Map data, TC DTM data, and Multiband Im-

ager (MI) data are available from the SELENE Data Archive (�����������	
�	�	
���
����������

�����	������). The LRO WAC Data and NAC data are available from the LROC website (�����������


	�	�
�	�
����). The LOLA and Kaguya TC merged hillshade map are available from USGS Astroge-

ology Science Center ����	����	����������
�	�	
����). The M3 Level 2 data are archived in the

Planetary Data System. Spectra for lunar minerals are available from RELAB reference library (�����

�����
���������
�����
����������). The thorium abundance data by Prettyman et al. (2006) are

available from the Planetary Data System Geoscience Node (���������	����	������	
��	��
����

�������������	��������������������). The crater counting files (.scc) are in Data Set S1 in the sup-

porting information. Crater counting was carried using CraterTools (Kneissl et al., 2011). Statistics on

CSFD based on crater counting files (.scc) were performed on CraterstatsII (Michael & Neukum, 2010).

CraterTools, CraterstatsII, and the introduction on how to use these software are available from �����

�����
���
��������
���������������������������������	������������
����. The geologic

map of the Rümker region (Fig. 5.13) has been uploaded individually to Figure S1 in the supporting infor-

mation.
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6
Conclusions and

Recommendations

During this PhD, several questions related to the architecture of the lunar crust
were tackled using remote sensing data.

First, the mineralogical nature of the lunar crust as a function of depth, of the
crust-mantle interface, and of the upper mantle were investigated using data from the
Moon Mineralogy Mapper (M3) instrument. We struggle to detect olivine occurrences
in craters supposedly sampling mantle material. Moreover, while pyroxene composi-
tion changes from high-calcium (HCP) to low-calcium (LCP) with increasing depth,
plagioclase occurrences are detected in craters that allegedly sample mantle mate-
rial (chapter 2). The detection of plagioclase in reflectance spectra is possible only in
cases where it is extremely abundant: Cheek and Pieters [2014] showed that as little as
2 vol. % of olivine or pyroxene in a plagioclase-rich rock would completely mask the
plagioclase signal. The observation of plagioclase in the central peak of craters that
are thought to sample mantle material indicates that the crust-mantle interface in
the Moon is likely not equal to the depth at which plagioclase is not present anymore.
Significant reservoirs of almost pure plagioclase seem to occur across a substantial
depth range in the Moon.

A change in pyroxene composition (from HCP to LCP) from crustal to mantle
material is consistent with Melosh et al. [2017]’s work. They proposed that the lunar
upper mantle is dominated by LCP and not olivine, contrary to the more traditional
concept of olivine-dominated planetary upper mantle composition.

The lack of a sharp transition from crustal to mantle material led us to question,
in chapter 3, whether the lunar crust becomes more mafic with depth. To study this,
we focused on the architecture of the anorthositic part of the Feldspathic Highlands
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Terrane (FHT-a), highly anorthositic and covering most of the lunar farside outside
the South-Pole Aitken Terrane (SPAT) as defined by Jolliff et al. [2000]. The FHT-a is
removed from the maria deposits influence, unlike the Procellarum Kreep Terrane or
the outer Feldspathic Highlands Terrane. The approach was more automated than
the one used for the crust-mantle interface study. Data hint at a pyroxene composi-
tional change, from highly calcic to lesser calcic contents with increasing depth in the
crustal column. However, plagioclase occurrences are still detected at depth, and are
consistent with the existence of an anorthositic crust at least 27 km thick.

Several key questions related to lunar science still need to be addressed in light
of the results of this thesis. This work shows that remote sensing of crater central
peaks provides a useful method to give insight into the architecture of the lunar crust
and upper mantle. However, limitations of the visible near-infrared (VNIR) spectro-
scopic techniques mean that this insight is not always complete. When analysing
spectroscopic data, it is important to consider the spatial resolution: the analysis of a
spectrum from a footprint covering several hundred squared meters (M3 has a spatial
resolution of 140 or 280 m/pixel) has different implications on the mineralogy than
the analysis of the spectrum from a single rock or mineral. Some minerals having a
stronger spectroscopic signature than others, this can result in a biased conclusion of
the mineralogy and ultimately inferred rock petrology. Moreover, a mixture between
two minerals will result in different spectra depending on how they are mixed. An
areal mixture (a pixel contains separate patches of pure mineralogic occurrences) re-
sults in a linear combination of the two minerals spectra, whereas an intimate mixture
(a pixel contains the two minerals mixed in the same rock) is non-linear. Therefore,
deconvolving spectra remains difficult and the approach is rarely used for quantitative
assessments. Another important aspect of spectroscopic data is the sampling depth:
VNIR spectroscopy samples the top few microns on the surface of a planetary surface,
which on the Moon always limits us to the regolith upper layer.

The interpretation of spectroscopic data could be improved by performing more
Earth-based analogue measurements on mineral mixtures, key to the understanding
of how reflectance spectra of mineral mixtures change as a function of mineral pro-
portions and grain size. Combining datasets from several instruments over the same
footprint (for instance, spectroscopic, X-ray and thermal data) may help characteriz-
ing minerals or rocks based on a series of key absorption or emission features located
at different wavelengths.

With the benefit of hindsight, it is apparent that the criteria for crater selection
of the study on the FHT-a crust architecture (chapter 3) were suboptimal. Indeed,
some plagioclase occurrences reported in previous surveys using spectroscopic data
from the M3 instrument were not detected using our approach. For instance, it may
be easier to detect plagioclase occurrences with a higher spatial resolution or a lower
detector temperature. The optical period OP2C2, retained for the study discussed in
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chapter 3, has a spatial resolution of 280 m/pixel, whereas the optical periods OP1A,
OP1B, OP2A and OP2B have a spatial resolution of 140 m/pixel. Additionally, the
optical period used for this study has a sensor temperature that is higher than that of
other optical periods (optical periods OP1B, OP1A and OP2C3).

The detection of plagioclase occurrences may be further improved using a differ-
ent continuum removal algorithm. The algorithm developed and used here is able to
process plagioclase spectra with strong absorption bands. However, it does not pro-
cess continuum removal ideally in the cases where the absorption band is weak. Using
a continuum removal algorithm specifically developed for the detection of plagioclase
in the FHT-a will improve detection of the plagioclase occurrences and yield better
agreement with detections that were reported in previous studies.

Studying the cratering process further is necessary to provide better constraints
on scaling relationships. Pike [1980] observed that the transition from simple crater
to complex crater on the Moon is different in mare material than in highland material,
suggesting an effect of the target properties on the final impact crater morphology.
Target properties may in turn influence the central peak material depth of origin. It
is important keep these limitations in mind when working on establishing a more
detailed crustal stratigraphy.

Remote sensing surveys have greatly expanded our catalogue of mineralogical de-
tections, but also allowed the identification of new geological features. In order to
obtain ground truth, it becomes obvious that many surface and sample return mis-
sions will become necessary in the next years. The complementary nature of remote
sensing datasets and sample analysis should not be underestimated: remote sensing
datasets, and more specifically, spectroscopy, clearly advanced our knowledge of the
diversity of lunar petrography beyond what was learned from the samples. Moreover,
remote sensing data offer a global view of a planetary surface, and allow us to study
the geological context of the areas sampled, whereas sample analysis provides ground
truth for spectroscopy trough quantification of a rock composition, and a more com-
plete understanding of the rock formation conditions than spectroscopy allows for.
Techniques like the one we used (spectroscopic mapping) may be used in order to
locate and target the most promising sites and samples.

To further advance our knowledge of the lunar crust architecture specifically, ob-
taining more lunar samples from key locations would enable perfecting the incom-
plete picture provided by the Apollo and Luna samples.

Collecting highlands samples in particular, which are poorly represented in the
Apollo and Luna samples, could help determine how the lunar farside crust was
formed, a topic that cannot be solved solely with the type of data used in this the-
sis.

Obtaining samples from the South-Pole Aitken basin would bring crucial con-
straints to the understanding of the lower crust and perhaps upper mantle of the
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Moon. Providing an absolute age for the South-Pole Aitken basin formation would
also improve crater density age calibration, as well as clarify its influence on lunar
crustal formation. The current Chang’E-4 mission on the lunar farside (chapter 4)
may help us understand the geology of the South-Pole Aitken basin.

Unlike the Earth, where there is no direct evidence of the magma ocean episode
because of secondary or tertiary processes, the Moon provides a classic example of
a planetary body influenced by a magma ocean episode. However, our current labo-
ratory models of lunar evolution during the magma ocean phase are still too simple
to account for the observed complexity of the lunar geological history. For instance,
secondary processes like post-magma ocean magmatic activity are not resolved by
current laboratory models. What is more, examination of recently acquired data en-
abled the detection of new features on the lunar surface: from irregular mare patches
(Braden et al. [2014]) to the discovery of volatiles in permanently shadowed regions
(Spudis et al. [2010]), as well as a new rock type, Mg-spinel anorthosite (Pieters et al.
[2011]), also not accounted for in current lunar evolution models. The detection of
these new features proves yet again that remote sensing datasets are complementary
to lunar samples. Collecting new datasets would undoubtedly shed more light on
lunar science.

In 2022, the Luna 27 mission, led by Russia, and in collaboration with the Eu-
ropean Space Agency, is planned to land on the lunar South pole. It will carry on
the PROSPECT (Package for Resource Observation and in-Situ Prospecting for Explo-
ration, Commercial exploitation and Transportation) instrument package, which aim
is to collect and analyse volatile elements from the lunar subsurface, and evaluate their
potential as resource for future lunar missions. Moreover, the upcoming Chang’E-5
mission will bring back up to 2 kg of lunar samples from a young maria deposit with
intermediate TiO2 contents (chapter 5), for which we have only a small number of
samples. Samples returned by Chang’E-5 could therefore fill a gap in the sample suite,
a first step towards advancing lunar science this decade.
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Abstract
The identification and characterization of hydrated minerals within ancient aqueous
environments on Mars are high priorities for determining the past habitability of the
planet. Few studies, however, have focused on characterizing the entire mineral as-
semblage, even though it could aide our understanding of past environments. In this
study we use both spaceborne and field (VNIR spectroscopy) analyses to study the
mineralogy of various salt flats (salars) of the northern region of Chile as an analog
for Martian evaporites. These data are then compared to laboratory based Raman
and XRD analyses for a complete overview on mineral assemblages. Central (core)
and marginal zones within the salars are easily distinguished on the Landsat 8 band
color composites. These areas host different mineral assemblages that often result
in different landscapes. The lower elevation Salar de Atacama, located in the Andean
pre-depression, is characterized by a unique thick halite crust at its center, whereas
various assemblages of calcium sulfates (gypsum, bassanite, anhydrite) and sodium
sulfates (mirabilite, thenardite, blodite, glauberite), borates (ulexite, pinnoite), Al/Fe-
clays and carbonates (calcite, aragonite) were found at its margin. Sulfates form the
main crust of the Andean salars to the east, although various compositions are ob-
served. These compositions appear controlled by the type of feeder brine (Ca, SO4 or
mixed), a result of the local geology among other factors. Sulfate crusts were found
to be generally thin (< 5 cm) with a sharp transition to the underlying clay, silt, or
sand-rich alluvial deposits. Coupled with morphologic analyses, VNIR spectroscopy
provides a powerful tool to distinguish different salt crusts. XRD analysis allowed us
to quantify the mineral assemblages and assess the limitations of VNIR techniques in
the presence of hydrated sulfates, which tend to mask the signatures of other minerals
such as clays, chlorides, and carbonates. We found that the Atacama’s unique arid and
volcanic environment, coupled with the transition recorded in some of the salars has
a strong Mars analog potential. Characterizing the outcrop mineralogy at a variety
of environments from alkaline, lake waters to more acidic salar brines may help in
constraining geochemical environments on Mars.

A.1. Introduction
Remote sensing and in situ data from past and current Mars orbiter and lander mis-
sions have provided extensive evidence for the presence of water-lain sedimentary
rocks on Mars (Carr and Head, 2010, and references therein). Infrared technology
has been utilized to detect hydrated minerals, including phyllosilicates, carbonates,
sulfates, and chlorides in specific areas of the Martian surface (Poulet et al., 2005; Gen-
drin et al., 2005; Osterloo et al., 2008; Murchie et al., 2009; Ehlmann et al., 2008, 2011;
Carter et al., 2010, 2013). These minerals are generally found in Noachian (∼4.1–∼3.7
Gy) and Hesperian-aged (∼3.7–∼3.0 Gy) terrains, although younger, more localized
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outcrops have also been detected (e.g., Murchie et al., 2009; Carter et al., 2013). Cou-
pled with morphological evidence for ancient lakes and valleys (e.g., Fassett and Head,
2008; Hynek et al., 2010), this key observation has led to the hypothesis that Mars likely
underwent major climate change, and could have experienced warmer, wetter, and
more habitable conditions in its past (< 3.7 Gy) (Bibring et al., 2006). The nature and
timing of this potential, planetary-scale, climate change is a major outstanding ques-
tion in current Mars studies. In an attempt to better interpret the exact environmental
conditions for the formation of hydrated minerals on the Martian surface, terrestrial
analogs were examined.

The region of northern Chile/Central Andes (including the Atacama desert) is char-
acterized by a succession of north-south trending mountain ranges and closed basins.
The central parts of the basins are infilled by evaporate deposits or occupied by saline
lagoons, collectively referred to as salars. Receiving only a few millimeters of rain per
year, and being spread along a volcanic ridge, this region appears similar to some Mar-
tian paleo-environments (Ericksen, 1983; Stoertz and Ericksen, 1974). Martian sulfate
and chloride-rich deposits may have formed through similar processes to those that
formed the salars salts and appear to share common features and mineralogy (e.g.,
Sutter et al., 2007). Future Mars research should benefit from a detailed terrestrial ana-
log survey that permits a full understanding of the geological context, mineralogical
assemblages, and the geochemical and environmental processes responsible for the
formation of evaporate deposits in enclosed settings, under arid conditions.

To that end, we performed an in-depth combined remote sensing and in situ an-
alytical study of five salars located within the Antofagasta region of Northern Chile.
Our site selection includes the largest salar, the Salar de Atacama, formed at interme-
diate elevations (2500 m) under dry and hot conditions, and located on sedimentary
basement, as well as various salars located at higher elevations (> 4000 m) within the
slightly wetter Andean volcanic highlands. We report the mineralogy and morpholog-
ical characteristics of each salar as observed from space and in the field and discuss
the mineral zonation and intra-salar variations as a function of environmental pa-
rameters (source type, temperature, elevation, evaporation rate etc.). The ultimate
objective of this study is to correlate the remote and field observations made in the
salars and interpret their variations in term of the overall geochemical and sedimen-
tary environment. By comparing features and assemblages with observations made
on Mars we aim to be able to place constraints on past Martian environments and
their habitability potential.

A.2. Regional context
The subduction of the Nazca Plate below the South American Plate resulted in the
formation of north-south trending compressional features, including the Andean oro-
genic belt. The high topography of the Andes has a major impact on the climate of
South America, referred to as the rain-shadow effect. Whereas lands to the north
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are wet and warm, lands on the western side of the Andes barrier (including the Ata-
cama desert) are extremely hot and dry. This effect is enhanced by the action of the
upwelling, northwest-flowing, cold Pacific Humboldt current that inhibits the mois-
ture capacity of onshore winds and prevents precipitations (e.g., Houston and Hartley,
2003; Armijo et al., 2015). The Atacama Basin is estimated to have a mean annual
precipitation below 50 mm and an average temperature of about 11°C (Stoertz and
Ericksen, 1974). It is one of the oldest deserts on Earth and has experienced extremely
arid conditions for at least 15 My (Houston and Hartley, 2003). The presence of water
in the Atacama desert and surrounding regions is rare, only occuring as near-surface
groundwater or occasional transient rivers draining from the Andes (Houston, 2006).
The semi-arid high Andean reliefs contain > 100 basins with interior drainage; most
contain salt-encrusted playas referred to as salars. The Atacama desert is defined as
the plateau of northern Chile located between the Andes and the Pacific coast. Hills
and valleys in the Atacama desert are covered with extensive saline crusts of diverse
types (Stoertz and Ericksen, 1974). Because it is the driest non-polar desert on Earth,
the Atacama desert has been used as an analog for martian and lunar environments
over the past two decades (e.g., Wettergreen et al., 1999; Navarro-Gonzales et al, 2003;
Piatek et al., 2007; Wynne et al., 2008).

The present study area is located in the Antofagasta region of Chile, north of the
Atacama region, south and east of the San Pedro de Atacama village, between -23
and -24° latitude, and -68.8 and -67.3°longitude (Fig. A.1). This area of northern Chile
is underlain by marine Cretaceous rocks, as well as rhyolitic to basaltic rocks in the
Andean highlands (Stoertz and Ericksen, 1974). The main morpho-structural units
in this region of Chile, are, from west to east: (1) the Coast Range, (2) the Central
Depression or Central Valley, (3) the Precordillera (also referred to as the Domeyko
Range), (4) the pre-Andean Depression, (5) the Western Cordillera, (6) the Altiplano,
and (7) the Eastern Cordillera (Risacher et al., 2003; Fig. A.1). Most of the major reliefs
formed as a result of the late Tertiary to Holocene faulting, accompanied by the uplift
of Cordillera Domeyko Range. Our study area includes portions of the pre-Andean
Depression (Atacama basin) and of the Andean highlands (also called the Western
Cordillera) and encompasses the main salar, the Salar de Atacama, as well as several
high elevation, smaller scale salars (including the Salar de Quisquiro, Laguna Tuyajto,
Salar de Laco, Salar de Aguas Calientes 3), (Fig. A.1). The study area is predominantly
underlain by Tertiary and Quaternary rhyolotic and dacitic ignimbrite sheets and
covered by numerous andesitic stratovolcanoes, reaching up to 6500 m in elevation.
Native sulfur deposits are found throughout the area and were mined at the Cerro Toco
(white arrow on Fig. A.2 a). The Atacama basin is filled with Tertiary to Quaternary (or
Cenozoic) alluvium and lacustrine sediments (Stoertz and Ericksen, 1974; Risacher et
al., 2003) and represents the largest structural basin in the area. The basin is fringed
to the west by the Cordillera de la Sal, a former evaporate body that was faulted and
folded as a result of compression during the Cenozoic (Dingman, 1962, 1967), and
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Figure A.1: a) Location of the study area (ArcGIS world imagery maps, ESRI/TerraColor), b) ASTER global
digital elevation model (GDEM) of the study area. The ASTER GDEM is a product of METI and NASA. c)
AB East-west Topographic profile highlighting the succession of mountain ranges (CR: Coastal Range; CD:
Cordillera de Domeyko; CdlS: Cordillera de la Sal, WC: Western Cordillera) and basins/plateaus. d) Location
of the sampling sites (green and red circles, red circles locations where sterile sampling was performed for
astrobiological analyses (see companion paper by Monaghan et al., 2016), main salars (yellow outlines) and
protected areas (Flamingo reserve, orange hatch) on DigitalGlobe 1 m/pixel satellite imagery (ArcGIS world
imagery maps, ESRI/DigitalGlobe).

that includes the famous Lunar Valley and Death Valley sites.

Our study area differs from previous Mars analogs studies that focused on the
Central Depression, between the Coast Range and the Domyeko Range, near the ghost
town of Yungay (e.g., Navarro-Gonzales et al, 2003; McKay et al., 2003; Sutter et al.,
2007; Piatek et al.,2007; Fig. A.1). The Central Valley, which is comprised of a thick fill
of Tertiary to Holocene detrital and lacustrine sediments, was not considered in the
present study as multiple authors (Eriksen, 1981; Berger and Cooke, 1998; Rech et al.,
2003; Bao et al., 2004; Michalski et al., 2004) have pointed out the possible influence
of an oceanic source on the formation of local evaporate deposits; this is not thought
to be applicable to martian environments.
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Figure A.2: Landsat observations of the study area. a) RGB color composite of Landsat 8 reflectance bands
5, 6, 7. Distinct zones are highlighted within the salars, which correlate with mineralogical variations (see
text for more details). Green and red circles indicate the location of sampling sites, yellow lines delimit the
location of the main salars (see Fig. A.1.b) Landsat reflectance spectra collected on the Salar de Atacama
halite-rich core (red), sulfate-rich margin (dark blue), clay-rich margin (cyan), on the water in the Salar
de Tara (black) and on the sulfate-rich margin of the Salar de Laco (orange). A field spectrum (gypsum)
collected at the Salar de Laco (brown) is shown for comparison. Field observations suggest that the lower av-
erage reflectance level at the Salar de Laco is due to the mixture of sulfates with a high proportion of detrital
silicate material. c) The ratio between band 5 and band 7 can be utilized to highlight sulfate-rich areas, such
as the Andean salars located along the Paso Sico road (south east). Colored squares indicate the location
of the spectra shown in Fig.A.2 b. d) The ratio between band 4 and band 2 can be utilized to infer the effect
of salt dilution on soils. High values (red tones) are attributed to iron-rich terrains (volcanic highlands),
whereas the sedimentary bedrock of the Atacama basin as well as the Andean salars are characterized by
lower values (blue tones).
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A.3. Method
A.3.1. GIS setting
Available remote sensing datasets and maps were gathered into a geographic infor-
mation system (GIS) that enables management of the data and also supports simul-
taneous visualization and analyses of various data of diverse types. Field data were
collected on a tablet using the GIS pro application (Garafa) and later integrated into
our GIS.

Remote sensing data from imaging satellites were used to map and character-
ize the Atacama salars from space. ArcGIS (ESRI) world imagery maps (including
15 m/pixel TerraColor imagery at small and mid-scales, and DigitalGlobe 1 m/pixel
imagery at large scale) and data (boundaries, places) were used as a background
(more information is available at ������������	
���
���������������������
����������������������������
���; Source: Esri, DigitalGlobe, GeoEye, Earth-
star Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN,
IGP, swisstopo, HERE, DeLorme, MapmyIndia, ©OpenStreetMap contributors, and
the GIS user community). Landsat imagery has previously been demonstrated to be
efficient at mapping salar zonation (e.g., Chapman et al., 1989) and was, therefore,
used to survey the terrain diversity from space and select representative field sites.
The recent Landsat 8 reflectance data provide full coverage of the area at multiple
wavelengths (Fig. A.1). The Landsat 8 satellite is equipped with two push broom sen-
sors, the Operational Land Imager (OLI), that covers nine VNIR channels at 15–30 m
spatial resolution, and the Thermal Infrared Sensor (TIRS), whose two thermal bands
enable thermal wavelength atmospheric correction at a resolution of 100 m (Irons et
al., 2012). Orthorectified and terrain corrected Level 1T OLI imagery was obtained
from the USGS EarthExplorer (���������	�������	�	� ����!�). VNIR bands 1
to 7 were converted to surface reflectance using the USGS L8SR on demand tool, that
produces provisional Landsat 8 Surface Reflectance (SR) product (USGS, 2015).

A.3.2. Field sampling and field VNIR spectroscopy
Field sites were first selected based on their spectral diversity as suggested by Landsat
imagery, then refined based on their accessibility, in terms of available roads or tracks,
protected natural areas, and potential landmines. A total of ∼50 sites in 5 different
salars were visited during a field campaign that was carried out in February-March
2015 with the local support of ESO/APEX (Table A.1). Several E-W and N-S transects
were undertaken in the main salar, the Salar de Atacama (mixed brines), which lies at
relatively low elevation (2500 m) on a sedimentary basement (Fig. A.1). In addition,
four salars were visited at higher elevations (> 4000 m) in the Andean highlands: the
Salar de Quisquiro (Ca-brines), the Laguna Tuyajto (SO4-brines), the Salar de Laco
(SO4-brines), and the Salar de Aguas Calientes 3 (mixed brines) (Fig. A.1 d). For each
salar, we performed (where possible) transects out from the center towards margins
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to collect spectroscopy measurements and samples. The location and morphology of
the outcrops was documented with the GIS pro application including field pictures,
while the in situ mineralogy was derived from VNIR reflectance spectra measured with
an Analytical Spectral Devices (ASDinc) field spectrometer. The ASDinc Fieldspec 4
Hi-Res instrument collects visible and near-infrared (VNIR) spectra in the 350–2500
nm spectral domain with three detectors (VNIR: 300–1000, SWIR-1: 1000–1800, SWIR-
2: 1800–2500 nm) and has a spectral resolution of 3 nm in the 350–1000 nm range, and
8 nm in the 1000–2500 nm range. All spectra were acquired in the field at a distance
of ∼10 cm from the outcrops, using the bare fiber inserted directly in the pistol grip,
which produces a 25° field of view (FOV). As the atmospheric water vapor content is
very low (< a few %) in the Atacama there was no need for a contact probe. A 100%
white panel was used for calibration prior to every set of measurements. From each
outcrop a set of 5 to 10 spectra were acquired from different locations to assess the
outcrop homogeneity. Spectra were converted from radiance to reflectance using the
ASDinc software and compared with the VNIR spectra of reference minerals from the
USGS and CRISM spectral libraries (Clark et al., 2007; Murchie et al., 2007). All field
VNIR spectra correspond to single measurements and are presented unsmoothed, in
units of absolute reflectance, and uncorrected for atmospheric gases, as their effect is
only minor.

Samples were collected in sealed tubes and bags at each site to be further char-
acterized by Raman spectroscopy and X-Ray diffraction in the laboratory. Additional
samples were collected and preserved in sterile conditions for a complementary as-
trobiologic investigation performed jointly with Leiden University and the European
Space Agency (Martini et al., 2016; Monaghan et al., 2016). For this purpose eight
samples were also collected at a 20 cm depth below salar crusts at 7 different sites.

A.3.3. Raman spectroscopy
Selected samples, collected from the field, were taken from sealed containers under a
nitrogen atmosphere (to avoid atmospheric water contamination) and measured with
a Renishaw InVia Reflex confocal Raman microscope (Wotton-under-Edge, United
Kingdom) at the Vrije University Amsterdam, the Netherlands. Spectra were recorded
using a 80 mW, 532-nm frequency doubled Nd:YAG excitation source in combination
with a 1800-l/mm grating and a Peltier cooled CCD detector (203 K). The 521 cm−1

Raman shift of an internal silicon standard was used to verify the spectral calibration
of the system. Spectra were compared with the Raman spectra of reference minerals
present in the RUFF libraries and in the WURM database (Downs and Hall-Wallace,
2003; Caracas et al., 2011).

A.3.4. X-ray diffraction
Semi-Quantitative X-ray diffraction (XRD) analyses were conducted to determine the
composition and relative abundance of the various salts. Selected samples were dried
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at 70°C for 48 hours, ground in an agate mortar, dry sieved to < 100 μand measured
using a Bruker D8 Advance diffractometer equipped with an X-ray Cu source at the
Centre de Diffractométrie of the University Lyon 1, France. Disoriented measure-
ments were made over a 2Theta range of 3° to 70°. XRD patterns were analyzed using
the Bruker DIFFRAC.SUITE EVA software. Mineralogical fits were performed by com-
paring D-spacing values to those of minerals listed in the International Center for
Diffraction Data database and the Crystallography Open Database (Kabekkodu et al.,
2002; Grazulis et al., 2009). Basic mineralogy and crystallinity were derived from the
analyses, with the exception of clay mineralogy, which would require a different tech-
nique of XRD analysis. Mineral abundance was determined as weight percent (wt. %)
using the Rietveld method, with a 10 to 20% accuracy.

A.4. Results
A.4.1. Remote sensing observations
Salars in the study area are easily mapped from space due to their high albedo and
being confined within topographic lows. In Landsat imagery, salars are also easily
distinguished from their surroundings, which are mostly volcanic in nature. Previous
studies have demonstrated the potential of Landsat Thematic Mapper data to map
compositional zoning within the Salar de Llullia-Ilaco (Chapman et al., 1989) and the
Salar de Atacama (Houston, 2006). Bands 4, 5, and 7 (at 0.772–0.898, 1.547–1.749 and
2.064–2.345 μm respectively) were found to be efficient at capturing the majority of
the mineralogical information and were used as color composites to map the different
evaporate mineral zones within the salars. In this study, we make use of the equiva-
lent bands on the Landsat 8 instrument by performing a 5, 6, 7 band color composite
(Fig. A.2) (bands are at 0.851–0.879, 1.566–1.651, 2.107–2.294 μm respectively). Land-
sat 8 image LC82330762014345 covers the Salar de Atacama to the east as well as most
of the Andean salars, including the four in our study. Core and marginal zones within
the salars are easily distinguished on the RGB color composite, and mapped as differ-
ent colors (Fig. A.2 a). Previous field investigations (e.g., Houston, 2006) and present
investigations confirm that distinct mineral assemblages are observed within specific
zones of an individual salar, with the exception of the red zones that correspond to
wet soils. Distinct mineral assemblages are also observed between the various salars.
Surrounding volcanic terrains appear in various tones of black, gray, green, and blue
(Fig. A.2 a).

The lower elevation Salar de Atacama, located in the Andean pre-depression, is
characterized by a unique, thick halite crust at its center (gray color on the Landsat
5, 6, 7 RGB, Fig. A.2 a), whereas various assemblages of sulfates or mixed sulfates and
chlorides (white tones) and clays/carbonates (yellow tones) were found at its margin.
Most of the Andean salars are mapped in tones of white, orange and red on this color
composite, suggesting wet soils and a composition possibly closer to the margins of
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the Salar de Atacama (Fig. A.2 a). Houston (2006), however, suggested that the lower
albedo of the Salar de Atacama core (gray on Fig. A.2 a) could be a result of dust
covering on the old halite crust, and that a halite crust that was frequently inundated
and re-crystallized should have a higher albedo and appear in tones of white, like
some of the salts at the margins.

Consequently, parameters were developed to highlight the possible differences
between the Andean salars and the Salar de Atacama margins on the Landsat 8 data
(Fig. A.2 c,d). Band ratios 4/7 and 5/7, which are adapted from previous Landsat sulfate
parameters (Amos and Greenbaum 1987; Mougenot et al. 1990; Mougenot, 1993) show
high values in the some of the Andean salars (Laco, Tuyajto, Aguas Calientes 3) and
on the eastern margin of the Salar de Atacama and other salars (e.g., Quisquiro, Aguas
Calientes 2) (Fig. A.2 c). The Salar de Quisquiro and Salar de Aguas Calientes 2 have
low values in their central parts, that correlate with lower albedo material on the
visible optical imagery. Based on previous work (Epema, 1986, 1990; Mougenot et
al., 1990), band ratios 5/2 and 4/2 should also help track the effect of salt dilution on
soils. These ratios have higher values in the Andean highlands, likely highlighting the
difference in bedrock composition with the eastern Atacama basin, which is underlain
by sediments (Fig. A.2 d).

A.4.2. Field observations
A variety of salt crusts have been observed and previously reported in the northern
Chilean salars (e.g., Stoertz and Ericksen, 1974). Soils in the Atacama desert are either
covered by salt rich fines or cemented by a hard saline crust. In the present study
area, salt crusts were found to be generally thin (< 5 cm) with a sharp transition to
underlying clay, silt or sand-rich alluvial deposits. The only exception lies within
the Salar de Atacama, where the lower limit of the hard (halite) crust could not be
observed, but is estimated to be at least a few meters deep (Stoertz and Ericksen,
1974).

Salt crusts were classified in the field into multiple types based on their morphol-
ogy (Figs. A.3, A.4). The main categories include (1) thick, sharp, blocky, hard crust
(red squares in Fig. A.3), (2) thick, smooth, hard crust (magenta square in Fig. A.3), (3)
thin, dry and friable soft crust (dark blue squares in Fig. A.3), (4) smooth, moist soft
crust (green squares in Fig. A.3). Other common terrain types include (5) muddy sur-
faces with polygonal cracks, sometimes covered with thin salt deposits accumulated
in topographic lows (light blue squares in Fig. A.3), and (6) cm-scale rock pebbles
forming a beach near the water (purple square in Fig. A.3). To the first order these
morphologies correlate to mineralogy based on field spectra (cf. next section).

Type 1 is a hard saline crust, which was mostly observed in the field within the
core section of the Salar de Atacama (Fig. A.4 a–d). This crust is massive, > 10’s of
centimeters to meters thick, and made of sharp, irregular blocks with clinkerlike tex-
ture, forming a rugged, hummocky surface (Fig. A.4 a, b). Stoertz and Ericksen (1974)
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Figure A.3: Remote sensing views of the salars in the study areas and types of terrains. a) Classification
of crust types at the location visited in the field. b-i) Close-up of various salars. The squares indicate the
location visited on the field. Colored numbers indicate different crust types as inferred from field and
remote sensing data (DigitalGlobe images).
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noticed that this crust is usually associated with the zone of chlorides, in permanently
(or nearly) dry areas. Type 1 crusts appear in dark tones on the aerial and spaceborne
images as they are older and generally covered by a thin layer of dust or sand from the
underlying sediments, which are trapped in pits (Fig. A.3 a, h). At the hand specimen
scale, outcrops are characterized by colorless crystals, consistent with halite, some-
times covered or containing brown sediments. On the eastern part of the Salar de
Atacama, this crust transitions to a Type 3 crust in an area where the crust appears less
rugged, and is characterized by half a meter scale polygons with upturned edges and
layering of the massive rock salt in the upper 5 cm (Fig. A.4 c, d). White, high purity
rock salt can be seen in the central, flat part of the polygon, suggesting recent salt
precipitation. Spaceborne images suggest Type 1 crust could also be present in the
Salar de Aguas Calientes 1 and 2, Salar de Capur and in parts of the Salar de Quisquiro
that were not accessible in the field but appear dark-toned on visible space imagery
(Fig. A.3 a–e, h).

Type 2 is a thick but smooth, flat hard crust, and was observed in the core area of
the Laguna Tuyajto (Fig. A.4 e, f). This type of crust was wet, suggesting that pure salt
are nearly continuously renewed at the surface. This crust appears white on visible
images (Fig. A.3 a, f). This crust is a few centimeters thick, and fractured by meter-scale
polygons. Fractures between the polygons appear randomly oriented and infilled with
salts. Based on spaceborne visible and Landsat imagery, this very white, wet crust
could also be present in the inaccessible Salar de Capur (Fig. A.3 e).

Type 3 is a soft, dry friable crust, that was observed at the margins of the Salar de
Atacama, Salar de Quisquiro, Salar de Laco and Salar de Aguas Calientes 3 (Figs. A.3,
A.4 g–i). The surface in these areas appears undulated at a scale of about 20 cm and
rigid. This crust is, however, easily crumbled with fingers into a loose dry powder.
In contrast to Types 1 and 2, Type 3 crusts are not made up of nearly pure salt, but
rather consist of the underlying sands or silts cemented together in the upper cen-
timeter. Less saline, moist material is found at depths of 20–30 cm, suggesting that
the surface is kept in a puffy condition by crystallization of salts in the capillary fringe
of the water table (Stoertz and Ericksen, 1974). Previous authors (e.g., Goodall et al.,
2000) have suggested that puffy and powdery textures (crust type 3) are consistent
with salts formed by efflorescence; whereas crusts formed by precipitation more com-
monly show blocky or polygonal morphologies (crust type 1, 2), consistently with our
observations. A former, 1 cm-thick carbonate-rich white crust was observed at 20 cm
depth in the Salar de Laco, confirming the previous assumptions made on airborne
images that this salar must have been occupied by a deeper lake in the past (Stoertz
and Ericksen, 1974).

Type 4 is a smooth, moist crust and is observed in marginal zones, close to water
ponds and lagoons, in the Salar de Atacama (near Laguna Cejar and Laguna Piedra),
Laguna Tuyajto and the Salar de Quisquiro (Fig. A.4 j–l). These areas are characterized
by a shallow fluctuating groundwater table that keeps the surface moist (Stoertz and
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Ericksen, 1974). Type 4 crusts are extremely thin and show various color shades in the
field (from white to dark gray) and on spaceborne images, suggesting variable saline
contents or types, or suggesting the substrate is showing through (Figs. A.3, A.4 j–l).
Gypsum-rich ramparts sometimes terminate this crust at the edge of the saline ponds.

Type 5 terrains consist of clastic sediments, ranging from clay, silt and fine sand
(clay playa) to coarser sands and gravels (lake sediments) (Fig. A.4 m–o). Clay playas
are often marked by mud-cracked polygons (10’s of cm scale, smaller than the poly-
gons seen in halite-rich terrains of crust type 1 and 2) and are observed in the marginal
areas of the Salar de Atacama, salar de Laco and Laguna Tuyajto (Fig. A.3 a, f, g, h).
Clay playa result from the infrequent flooding of marginal areas, creating extensive
ephemeral lakes, that can dry up in a few days to weeks (Stoertz and Ericksen, 1974).
Coarser clastic sediments are observed in the most distal part of Laguna Tuyajto and
beneath the salt crust of most salars. Erosion of the surrounding high volcanoes dur-
ing storms that trigger mud-flows is likely the source of these lake sediments. A thin,
patchy, white saline material is sometimes accumulated in topographic lows suggest-
ing temporary rises of the groundwater table in these marginal areas (Fig. A.4 o).

Type 6 terrain is made of cm-scale angular pebbles, and was observed next to the
water pond in the Salar de Aguas Calientes 3. It is interpreted as a local, beach facies
(Figs. A.3 e, A.4 p, q).

Our observations, derived from field observations at five salars and spaceborne
imagery, are consistent with the many observations made by Stoertz and Ericksen
(1974, their figure 11) based on aerial imagery and field observations at the Salar de
Atacama. A few differences on the distribution of hard and soft crusts are observed
and can be attributed to changes over time, given that at the time of their research
there was no water body (and a hard crust) in the Laco and Tuyajto locations, but there
was an ephemeral lake in the south-east part of the Salar de Atacama, that we did not
observe (mapped as a clay playa, Fig. A.3 h).

A.4.3. VNIR spectroscopy
Over a hundred VNIR spectra were acquired in the field; a representative set is pre-
sented in Fig. A.5, along with a comparison to reference spectra from the USGS spec-
tral library (Clark et al., 2007). Most of the samples show absorption features around
1.4 and 1.9 μm, and eventual overtones around 0.97 and 1.2 μm, that are attributed
to adsorbed water and hydrated minerals in general (e.g., Hunt and Salisbury, 1970;
Fig. A.5 b). The relative strength of these two absorptions, the symmetry of the bands
and the positions of the absorptions centers vary with the mineral structure and com-
position. In some samples (e.g., sample J2L2R3, J9L2R1, Fig. A.5 b) the water saturation
results in an additional features near 1.85 μm. Narrower absorptions in the 2.1–2.5 μm
domain are used to distinguish among the different types of OH-bearing minerals.

Sulfates were identified thanks to a drop in reflectance at 2.4 μm caused by vibra-
tions of the SO4 group (e.g., Gendrin et al., 2005; Cloutis et al., 2006; Bishop et al., 2009).
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Although a similar feature can also be attributed to chloride salts or chlorine oxyanion
salts (e.g., Lynch et al., 2015), additional absorptions allow for the identification of
specific sulfate minerals. Ca-sulfates such as gypsum (CaSO4, 2H2O) show a diagnos-
tic triplet at 1.45, 1.49, and 1.54, single bands near 1.75 and 1.94 μm, and a doublet
at 2.22 and 2.27 μm (Bishop et al., 2014a; Fig. A.5 a). In bassanite (CaSO4, 0.5H2O),
these bands are shifted towards shorter wavelengths and occur as a triplet at 1.44, 1.47
and 1.54 μm, single bands at 1.78 and 1.93, and a doublet at 2.16 and 2.26 μm (Bishop
et al., 2014a). Anhydrite (CaSO4) often displays a band centered at 1.94 μm due to
adsorbed water. Additional absorptions also differ in Na-sulfates depending on their
hydration state and additional cations that might be present. Thenardite (NaSO4) in
the USGS library shows diagnostic absorptions at 1.42, 1.94 and 2.11 μm indicating
it is partially hydrated, whereas mirabillite (NaSO4, 10H2O) shows diagnostic absorp-
tions at 1.46, 1.77, 1.96 and ∼2.2 μm (Fig. A.5 e). Reference libraries are incomplete
for mixed sulfates but bloedite (Na 2 Mg(SO4) 2,4H2O) is present in the USGS spectral
library and shows absorptions at 1.47, 1.7 (broad), 1.96, 2.09, and 2.44 μm (Fig. A.5
b, Clark et al., 1990, 2007; Cloutis et al., 2006). Anhydrous chlorides and perchlorates
(e.g., NaCl, MgCl2, NaClO 4) show little to no features in the VNIR domain except for
adsorbed water features (Drake, 1995; Bishop et al., 2014c; Fig. A.5 b, c). Na-, Ca-, Fe-
and Mg- bearing chloride hydrates share some spectral absorptions with sulfates near
1.19, 1.45, 1.96 and 2.42 μm (Hanley et al., 2014, 2015; Bishop et al., 2014b).

Borates have also been previously reported in the Chilean salars. Na-borate spectra
exhibit overtones/combinations of the B-O vibrations in the 1.55, 1.75, 2.15, and 2.25
μm regions (Cloutis et al., 2016). Ulexite (NaCaB 5 O 6 (OH) 6,5H2O) and pinnoite
(MgB2O4, 3H2O) spectra are characterized by a strong decrease in reflectance from 0.5
to 2.5μm and absorption features at 1.43–1.46 (doublet), 1.96, 2.13–2.18 (doublet), 2.25
μm for ulexite, 1.44, 151–1.55 (doublet), 1.64, 1.98, 2.13–2.22 (doublet) for pinnoite
(Crowley, 1990; Clark et al., 2007; Fig. A.5 d).

Carbonates and clays can be identified by their metal-OH absorptions in the
2.1–2.5 μm domain. Smectite clays are commonly characterized by water absorp-
tions centered at shorter wavelengths than sulfates (1.40–1.41 and 1.90–1.92 μm). In
contrast to the Al-phyllosilicates that have a diagnostic Al-OH absorption band at
2.19–2.21 μm, spectra of Fe- and Mg-rich phyllosilicates exhibit Fe-OH and Mg-OH
bands at longer wavelengths (e.g. Bishop et al., 2008; Fig. A.5 e): 2.28–2.29 μm for non-
tronite, 2.30–2.31 μm for saponite, 2.31–2.33 μm for serpentines, and 2.33–2.37 μm
for chlorites. Carbonates are more easily identified by absorptions near 3.4–3.5 and
3.9–4.0 μm, but can also be characterized by overtones near 2.30–2.33 and 2.50–2.53
μm (e.g., Gaffey, 1986; Ehlmann et al., 2008, 2009; Bishop et al., 2013; Fig. A.5 f).

All these minerals have been identified at diverse locations of the study areas.
Broad absorptions at 1.43 and 1.93 μm are observed in the spectra of the rocks col-
lected in the Salar de Atacama (J1L1R1) and Salar de Quisquiro hard crusts (J11L1R4)
and on the thin white salt deposits sometimes covering clay playas (e.g., J9L2R1).
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Those absorptions are characteristic of water, and given that all samples are morpho-
logically consistent with halite, we interpreted those spectra as hydrated halite (Fig. A.5
b). A few samples collected east of the Salar de Atacama (J7L10, J7L14) have absorp-
tions centered at 1.46, 1.78, 1.98 and 2.24 μm that are more consistent with MgCl2

(Fig. A.5 c). Additional absorptions in many spectra are sometimes present near 2.2
μm and could be attributed to a Cl-O combination, an Al-OH combination or an Si-
OH combination (Cloutis et al., 2006; Bishop et al., 2008). The location of the band
center suggest the presence of clay impurities in many cases (2.21 μm absorption,
J7L8, J2L2R4 on Fig. A.5 f). An additional band at 2.31 μm in sample J1L1R2 (Fig. A.5
f) is present and could be due to the presence of calcium carbonates or Fe/Mg-rich
clays. Clays are detected in some of the clay-bearing playa thanks to their absorptions
centered at 1.41, 1.91, 2.21 μm (J7L4, Fig. A.5 e), but most clay-bearing playas exhibit
spectra with bands centered at longer wavelengths (e.g., bands at 1.42, 1.93 and 2.21
μm in J8L1, Fig. A.5 e), suggesting a mixture with additional material such as halite and
sulfates. Gypsum is detected in the samples of all five salars in both dry and wet crusts
(e.g., J5L1R4, J2L2R2, Fig. A.5 a), sometimes mixed with halite (e.g., J5L1R3, Fig. A.5 a).
The resulting spectra exhibit flat-bottomed absorption features at 1.94–1.98 μm and a
stronger 1.4 absorption feature relative to the 1.9 μm feature. Absorptions at respec-
tively 1.44, 1.96, 2.12–2.18 μm and 1.44, 1.74, 1.94, 2.12–2.22 μm in some spectra of
dry crust within the Salar de Atacama are best matched by the borates ulexite (J1L1R4,
Fig. A.5 d) and pinnoite (J1L1R3, Fig. A.5 d).

Finally, a 0.68 μm absorption is present in the spectra of two samples (J2L2R2 and
J9L2R3, Fig. A.5 a) that were taken in wet areas, near water ponds located respectively
at laguna Tuyajto and laguna Cejar. The samples contain green microbial mats visi-
ble with the naked eye; chlorophyl in those mats could be responsible for this sharp
feature in the visible part of the spectra.

A.4.4. Raman spectroscopy
Raman spectra are presented in Fig. A.6, along with a comparison to reference spec-
tra from the American Mineralogist Crystal Structure Database available on RRUFF
(Downs and Hall-Wallace, 2003). Since Raman spectra were acquired on raw rocks
(unprepared samples), minerals were identified by their main peak, which is found
around 970 cm−1 for borates, 990 for Na sulfates, 1008 for gypsum, 1015 for anhydrite,
1085 for calcite (Fig. A.6 b). Distinguishing between different minerals within the same
group is, however, challenging due to the precision of the instrument. Carotenoids
were also detected in several samples of wet crusts thanks to a set of 3 peaks located
around 1005, 1150 and 1510 cm−1 (e.g., Hooijschuur et al., 2015; Verkaaik et al., 2015).

A.4.5. Quantitative analysis from XRD
XRD analyses provide quantitative insights into the mineral assemblages within the
crystalline phase of the samples. A list of key sample compositions is given in Table A.2
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. With the exception of margins/clay-playa rocks and samples taken at depth, all sam-
ples have a crystallinity index > 90%, indicating that they contain very little to no
amorphous material. Gypsum and halite form the most abundant mineral phase for
the majority of salar crusts, and are often coupled with calcium carbonates (calcite or
aragonite). Additional carbonates such as natrite, natron and dolomite are detected in
the samples of: the Salar de Aguas Calientes 3, Laguna de Cejar/ de la Piedra (Salar de
Atacama), Laguna Chaxa (Salar de Atacama; Table A.1), respectively. Detrital material
(anorthite or albite, quartz) are present in most samples, with increasing proportions
at the salar margins or at depth. Additional minor mineral phases include a range of
Ca and Na-sulfates such as bassanite (in the Salar de Atacama and Salar de Quisquiro),
anhydrite (Salar de Atacama, Salar de Quisquiro, Salar de Aguas Calientes 3), alunite
(lauguna Tuyajto), glauberite, hydroglauberite, bloedite, thenardite, mirabillite (Salar
de Atacama), borates such as pinnoite, ulexite, nobleite (Salar de Atacama) and chlo-
rides such as sylvite, hydrophilite (Salar de Atacama) (Table A.2, Fig. A.7).

A.5. Discussion
A.5.1. Correlation between field (VNIR) and lab (Raman, XRD) analy-

ses
There is agreement with the mineralogy determined from Raman and VNIR analyses,
with the exception of some carbonate-bearing samples that are difficult to charac-
terize with VNIR compared to Raman analysis (e.g., sample J7L4; Table A.3, Fig. A.8).
Raman data were a good indicator of the presence of anhydrous sulfates, such as an-
hydrite, which are difficult to identify solely by VNIR spectroscopy. Raman analyses
were performed at a smaller scale (grain scale) than VNIR analyses, resulting in more
heterogeneities in the analyses of a single sample. The measurements are, however,
consistent with all of the minerals identified in the homogenized samples from the
XRD analyses. Field observations were also a helpful complementary tool because
some minerals such as halite displayed characteristic morphology that facilitate their
identification.

For the Atacama salt crusts, VNIR and Raman spectroscopy were often redundant
as most samples are well-crystallized. XRD analysis, however, provided significant
additional information for these samples as 1) it allowed the detection of minerals
that have featureless spectra in the VNIR domain such as halite, quartz, and anorthite,
2) it allowed the detection of all the most abundant mineral phases, 3) it allowed quan-
titative mineral abundance measurements. XRD analysis was also a powerful tool
for distinguishing between different minerals within the same family (e.g., glauberite
and hydroglauberite, thenardite and mirabillite). These minerals should have distinct
VNIR properties, however, spectral libraries for sulfates are incomplete. Addition-
ally, XRD analysis also distinguished between hydrated sulfates and hydrated Cl salts,
which can have similar VNIR spectra, making detections sometimes problematic (e.g.,
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J. Hanley et al., 2015; Lynch et al., 2015).

Laboratory XRD analysis also represents a powerful asset to estimate the benefits
and limitations of VNIR spectroscopy; VNIR spectroscopy however represents an easy,
rapid, passive and non destructive tool during field surveys. Remote sensing VNIR
spectroscopy is also commonly used in planetary sciences to survey the composition
of surfaces (e.g., the OMEGA (Observatoire pour la Mineralogie, l’Eau, les Glaces et
l’Activité), CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) and
M3 (Moon Mineralogy Mapper) instruments, see Bibring et al., 2004; Murchie et al.,
2007; Pieters et al., 2009) and VNIR spectrometers, such as MicrOmega, MA-MISS
(Mars Multispectral Imager for Subsurface Studies), ISEM (Infrared Spectrometer for
ExoMars), LIS (Lunar Infrared Spectrometer) and SuperCam, are being developed for
the next generation Mars and Moon landers and rovers (Pilorget and Bibring, 2013; De
Angelis et al., 2014; Korablev et al., 2015, 2016; Maurice et al., 2015).

Qualitative VNIR spectral interpretation allows identification of one or two min-
erals present in mineral mixtures/common rock samples, however, comparison with
XRD analysis reveals that: 1) most samples are made of a much more complex min-
eral assemblage than inferred from VNIR data alone, and 2) the spectrally dominant
mineral is not necessarily the most abundant. An example is given in Fig. A.8 and
Table A.3 that presents the comparison between the results of the VNIR spectral anal-
yses (spectrally dominant mineral, 8a) and the Raman (Fig. A.8 b) and XRD analyses
(most abundant mineral, A.8 c). Sulfates generally dominate the VNIR spectra when
present even though they are not necessarily the most abundant mineral: for instance
in sample J2L1R2 (far margin of Salar de Laco) gypsum only represents ∼10% of the
crystalline phase but the VNIR signature is typical of this mineral (Table A.2). This is
also true for samples J11L1R1 and J11L1R2 from the salar de Quisquiro margin, which
are dominated by halite with 10–20% of both gypsum and bassanite but whose spectra
are dominated by gypsum absorptions. However, the lower average reflectance values,
the rounded shape of the absorptions and the relative strength of the 1.4 and 1.9 μm
features allow us to deduce the presence of another hydrated material. In one sample
of the Salar de Atacama (J1L1R4), borates appear spectrally dominant in the VNIR
whereas Na-sulfates are slightly more abundant (about 40% thenardite against 23%
pinnoite + ulexite), nevertheless this sample contains ∼50% amorphous material that
could also contribute to the spectral signature. In contrast anhydrous minerals such
as feldspar, or anhydrous chlorides, such as halite, are more difficult to identify with
VNIR or Raman spectroscopy that are more sensitive to minerals having H2O, OH,
CO3, SO4 or ClO4 in their structure such as clays or sulfates. Although halite is more
abundant in most samples from the Salar de Atacama (e.g., J11L1R2, J9L1R5, J7L4,
J2L2R4, J2L2R2), the VNIR spectra are often dominated by clays and/or sulfates which
are present as impurities or very minor phases. XRD analysis and Raman spectroscopy
also detected carbonates in multiple samples (Salar de Laco J2L1R2, Laguna Tuyajto
J2L2R2, Salar de Atacama J7L4, J9L1R1, J9L1R4) that were almost never detected in the



204
A. Remote sensing and in situ mineralogic survey of the Chilean salars: An analog to

Mars evaporate deposits?

VNIR data in our study when mixed with sulfates. Spectra of anhydrous carbonates
exhibit strong absorptions near 2.3, 2.5, 3.4 and 3.9 μm, but these features become
weakened for hydrous carbonates (Bishop et al., 2013), and the IR domain was not fully
covered in our study. One caveat of the XRD analysis we performed is the absence of
information on amorphous phases, which are minor in the samples we collected but
could contribute to spectral features in the VNIR. Additionally, the semi-quantitative
XRD technique used in the present study is not adapted for the characterization of clay
minerals, which have been identified from morphologic observations in the clay-playa
and some of the salar margins. Clays have been detected in VNIR spectra, however,
they appear often mixed with sulfates, which can mask their signature if less than
30% abundance (Stack and Milliken, 2011). Therefore, although VNIR spectroscopy
represents a powerful tool to distinguish between different types of terrains, deriving
detailed mineralogy for complex samples as in this study is difficult with only VNIR
spectra as some minerals, especially sulfates, can dominate the spectra even if present
at low abundances. A suite of instruments / analyses is required to fully characterize
complex mineral assemblages, and used together, VNIR spectroscopy and XRD anal-
yses provided a powerful tool to distinguish different types of well-crystallized salt
crusts.

A.5.2. Correlation between spaceborne and ground data
Multiple zones are observed within the salars on the Landsat 8 RGB composite of three
different bands (Fig. A.2 a). Each colored zone was visited in the field and outcrops
were classified into multiple types based on their morphology (Section 3.2). There is
a good agreement in general between the various zones as mapped from space and
the field observations in terms of: 1) crust types, as assigned from morphological
observations and 2) mineralogy, as determined from VNIR, Raman, and XRD analysis.
To the first order, field observations in terms of morphologies correlate to mineralogy
derived from VNIR and XRD analyses. The type 1 crust, as observed in the central part
of the Salar de Atacama, is made of > 90% halite that may contain traces of detrital
material (clays, feldspar, quartz) and dry sulfates (thenardite, anhydrite). Nearly pure
halite is observed in wetter areas, which appear whiter on the Landsat RGB composite
(Fig. A.2 a), and exhibit large scale polygons. The type 2 crust, as observed in the center
part of Laguna Tuyajjto, is also a wet crust that exhibits polygons and is made of 80%
halite and 20% gypsum (dark orange on Landsat RGB composite (Fig. A.2 a). Sulfates
such as gypsum, glauberite, mirabillite are found in greater abundance in wetter areas
where the Type 4 crust is observed, and correspond to brown to orange-toned terrains
on Fig. A.2 a. Type 4 crusts appear to be formed in wetter areas and near water ponds
at margins or around small-scale lagoons located within the Salar de Atacama (e.g;,
Laguna de Cejar). Type 4 crusts display a highly variable mineralogy and variable
color-tones at the meter scale, with ponds more enriched in halite or gypsum or Na-
sulfates. Type 3 crusts are also characterized by multiple mineral assemblages, but
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are often dominated by gypsum or anhydrite mixed with detrital material. There are
found mostly in marginal and dry areas, where salts are formed by efflorescence (white
to yellow tones on Landsat RGB, Fig. A.2 a). Type 3 and 4 crusts are more consistently
found where the Landsat 8 sulfate parameter (Fig. A.2 c) has higher values. Type 5
terrains (clay playas) are mapped as gray tones on the Landsat RGB composite (Fig. A.2
a) and correspond to dry, marginal areas where the higher proportions of amorphous
and clay material are detected.

Combining field and laboratory observations, however, reveal some observational
bias: sulfate crusts were generally found to be thin (< 5 cm) with a sharp transition to
the underlying clay, silt, or sand-rich alluvial deposits that cannot be observed from
space. Therefore, even though clays and carbonates are almost always observed at
shallow depths below salt crusts in the central part of the salars, and are morphologi-
cally identified in marginal areas under a thin salt efflorescence (< 1 mm), they are very
difficult to detect without digging. Drilling also allowed the identification of a former,
1 cm-thick calcite-rich crust that was observed at 20 cm depth in the Salar de Laco,
confirming the hypothesis derived from airborne images that this salar must have
been occupied by a more alkaline lake in the past. The only exception to thin crusts
lies within the Salar de Atacama where the lower limit of the hard (halite) crust was
not observed, but is estimated to be at least a few meters deep. Therefore, although
multispectral imagery such as Landsat represents a powerful tool to map large-scale
mineralogy variations in desert areas, it presents limitations regarding the vertical
extent of salt crusts that can be thin and provides little information on the nature of
the underlying material in regions with no active erosion or continuous precipitation,
such as playa lakes.

A.5.3. Mineralogy of Chilean salars
Mineralogic zonation (large scale horizontal heterogeneities) was observed within
most salars from both spaceborne and field analyses. Whereas the central part of the
salars is occupied by highly crystalline salt crusts, made of halite and/or gypsum, mar-
gins are characterized by a higher concentration of detrital material, carbonates and
clays. Halite and gypsum are detected at most margins where they form efflorescent
salts deposited in the capillary fringe. Combining geochemical and flow modelling,
previous hydrology studies in the Salar de Atacama have shown that meteoric water
infiltrated from elevated areas in the Andes is transported to the Atacama basin where
it drains laterally from east to west (Risacher et al., 2003; Vasquez et al., 2013). Where
groundwater reaches the surface, discharged aquifers form lagoons or playa. Evapo-
ration can only occur where water is available and is, therefore, concentrated around
the margins of the salar (Houston, 2006). As clays, carbonates, sulfates, and chlorides
precipitate, the remaining brines become more saline with minor discharges occur-
ring by evaporation. Mineral precipitation is responsible for a strong reduction in
permeability in the salt flat nucleus associated with halite and calcite formation and
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could explain the unique preservation of the thick halite crust (Vasquez et al., 2013).

Additionally, distinct mineral assemblages have been identified within the various
salars. Possible causes of these differences include: (1) the presence of water, near
or, at the surface, (2) the nature of the bedrock, (3) the composition of the feeding
brines, (4) the dimension of the basin/salar, and (5) the temperature and evaporation
rate. The environmental parameters (temperature, evaporation rate) do not differ
much for the investigated salars. Temperature and evaporation are slightly higher in
the Salar de Atacama compared to the Andean salars which are exposed to similar
conditions (Table A.1). Whereas the Andean salars are emplaced on volcanic bedrock,
the Salar de Atacama, a much larger salt flat, is emplaced on sedimentary bedrock.
A previous survey by Risacher et al. (2003) showed that bedrock composition can
partially explain the nature of the various brines involved in salt flat formation. Brines
in the Atacama were found to be either sulfate-rich or calcium-rich, near-neutral or
slightly acidic brines. Alkaline brines are almost completely lacking from the area due
to the presence of gypsum-rich desert dust and the oxidation of native sulfur, whose
dissolution results in brine acidification. Theoretically, SO4-rich inflow waters and
their derived SO4-rich brines should be found in the intravolcanic basins of the Andes
because of the nature of the bedrock and ubiquity of native sulfur. Previous workers
(e.g., Risacher et al., 2003) have shown, however, that some of the Andean salars (e.g.,
Salar de Quisquiro) belong to the Ca-rich brines group, or mixed brines group (e.g.,
Salar de Aguas Calientes 3), which may indicate the presence of older sedimentary
formations at depth. Ca-rich brines generally prevail in sedimentary basins of lower
elevation, where Ca-rich minerals are abundant, although it appears that the Salar de
Atacama, which should belong to this category, is fed by two different sources of Ca
(to the west) and SO4 (to the east) and is, therefore, classified as formed from mixed
brines (Risacher et al., 2003). Water undergoing evaporative concentration should
precipitate a sequence of minerals in order of increasing solubility, starting with calcite
and Mg- carbonates and silicates (Hardie and Eugster, 1970) followed by gypsum.
Gypsum induces a new divide of the neutral path producing either Ca-rich/SO4-poor
or SO4-rich/Ca-poor waters, according to the Ca/SO4 ratio at the beginning of gypsum
saturation (Risacher et al., 2003). A few cases of extreme acidification, leading to acid-
sulfate brines, due to hydrothermal processes and enriched sulfur contents have been
reported in Chile (Salars de Gorbea and Ignorado) and Australia (e.g., McArthur et al.,
1991; Long et al., 1992; Risacher et al., 2002) and might be relevant to Mars (cf. next
section), but these are not observed in the salars of our study area. In their final stage,
SO4-rich brines should precipitate a mixture of Na/Ca-sulfates and halite whereas Ca-
rich brines are more likely to precipitate chlorides (Hardie and Eugster, 1970; Risacher
et al., 2003).

A thick, ancient halite crust was only observed in the field in the Salar de Atacama
and the presence of a possibly active halite crust was inferred from spaceborne im-
agery in the Salar de Quisquiro, Salar de Aguas Calientes 1 and 2 and Salar de Capur,
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which are all derived from Ca-rich brines. No halite thick crust was observed in the
salars derived from SO4-rich brines, although halite is present as a mixed component
in the rock samples. The presence of a halite-dominated crust could be related to the
nature of the brines, although as halite is rapidly dissolved and most brines are unsat-
urated, its formation and preservation might also depend on evaporation rates and
permeability. The unique setting of the Salar de Atacama downslope from the Andean
salars and its higher aridity could also explain the thickness of its halite crust that
could have precipitated and accumulated from the chloride salts previously dissolved
in the Andean salars. Alternatively the larger size of the salar (correlated with a higher
basin size, Table A.1) could also somehow account for this unique, thick halite crust.

Whereas gypsum has been detected in all salars, a greater mineral diversity, in-
cluding Na-rich sulfates and borates, was found at Laguna Tuyajto and Laguna Chaxa/
Laguna de Cejar/ Laguna de la Piedra, which all appear to be derived from SO4-rich
brines. A greater diversity is also observed in wetter areas that are often colonized by
life forms including sulfur-reducing bacteria (e.g., Stivaletta et al., 2012). Therefore,
the nature of the brine and soil wetness, among other factors, ultimately influenced
the final mineral assemblage as observed in the salt flats.

A.5.4. Relevance to Mars
A variety of hydrated minerals have been detected on Mars, including clays, carbon-
ates, sulfates, and Cl salts (e.g., Poulet et al., 2005; Bibring et al., 2006; Osterloo et
al., 2008, 2010; Murchie et al.,2009; Ehlmann et al., 2011; Carter et al., 2010, 2013).
Whereas clays are commonly detected in the ancient, Noachian (> 3.7 Gy) highlands,
the distribution of chloride, sulfate, and carbonate-bearing materials on Mars is not
as pervasive (e.g., Bibring et al., 2006; Carter et al., 2013). Mg, Fe and Ca-rich carbon-
ates have been detected at a few locations of the surface in association with exhumed,
Noachian crustal, altered rocks (Ehlmann et al., 2008; Michalski et al., 2010; Bultel
et al., 2015; Wray et al., 2016), but not in lake or playa contexts. Proposed chloride-
bearing materials are identified based on their spectral distinctiveness in the TIR im-
ages and association with light-toned, indurated, fractured material often found in to-
pographic lows (Osterloo et al., 2008, 2010; Glotch et al., 2010; Fig. A.9 c,d), and draped
on both Noachian and Hesperian (3.7–3.0 Gy) units. Based on their context and the
existence of fractures and polygonal textures, proposed chloride-bearing materials
have been inferred to originate from both ponding of surface runoff, and groundwater
upwellings, followed by evaporation (Osterloo et al., 2010). Mg, Fe and sometimes
Ca-sulfates are commonly detected in association with kilometer-thick Hesperian lay-
ered deposits (e.g., Gendrin et al., 2005; Flahaut et al., 2010, 2014, 2015) and polar
dunes (Langevin et al., 2005; Masséet al., 2010), although more localized detections
were also reported (e.g., Wray et al., 2011; Loizeau et al., 2015; Fig. A.9 b). Although
their origin is debated, the morphology and mineralogy of some sulfate salts (e.g.,
sulfate-rich depostis in Meridiani Planum), and their distribution in regions where
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groundwater upwellings are predicted, is consistent with an evaporitic origin (e.g.,
Ardvison et al., 2005; Andrews-Hanna et al., 2007; Osterloo et al., 2010; Davila et al.,
2011; J. Flahaut et al., 2015). The observation of karstic features such as dolines, ridges
and pans in the etched terrains of Meridiani Planum region supports the groundwater
hypothesis and points to the existence of martian sulfate-rich salars locally (Baioni et
al., 2013; J. Flahaut et al., 2015; Fig. A.9 a). Both sulfates and high levels of Cl (which
could be attributed to chlorides) were detected in situ by the Opportunity Rover in
the hematite plains of Meridiani Planum, which lies directly above the etched terrains
unit (Ardvison et al., 2006; Squyres et al., 2006).

Therefore, some of the processes involved in the formation of the Chilean salars are
likely to be active or have been active on Mars. This study also employed similar spec-
troscopic wavelength ranges and resolutions to those used by orbiting instruments to
examine Martian mineralogy. From our observations we can infer that horizontal and
vertical zonation is expected in the martian salars and could be observed, providing
that we have enough spatial resolution. Landsat imagery (∼30 m/pixel) has a similar
ground pixel size as the MRO/CRISM instrument (∼20 m/pixel) which should be able
to capture horizontal features. Landsat spectral resolution is far less, but sufficient to
distinguish between various salt crusts providing promising results for multispectral
cameras such as PanCam on the ExoMars rover (Griffiths et al., 2006). The high reso-
lution of VNIR Instruments such as Micromega and ISEM (Pilorget and Bibring, 2013;
Korablev et al., 2015, 2016) should distinguish between various types of salts and salt
crusts on Mars, but could meet the same difficulties we evidenced with the ASDinc
Fieldspec measurements in the case of mixtures. XRD analyses have been performed
on the Curiosity Rover in an attempt to quantify mineralogic assemblages, with two
major caveats: (1) the rover can only perform disoriented preparations which are not
well-suited for clay identification, (2) the rover analyzed samples containing up to
50% amorphous materials (Morris et al;, 2015) that could not be characterized by XRD
techniques (but could potentially be identified by VNIR techniques). Martian VNIR
data sets also have a higher degree of noise that our Atacama spectra because of the
contribution of atmospheric CO 2, aerosols and dust.

A climate-change related lacustrine to playa transition over time has also been
suggested for Mars and is well documented at the Salar de Laco, where evidence for a
former alkaline lake is found in the field (sampled calcite crust at a 20 cm depth) and
also in spaceborne images (presence of paleoshores). The composition of martian
bedrock is likely to be more basaltic than the andesitic Andean highlands, resulting in
more Fe/Mg-rich brines and minerals, but similar complex evaporitic sequences and
mineral assemblages are expected, with possible variations from one site to another.
A major issue is whether these assemblages can be determined from VNIR surface
spectroscopy solely given that in the presence of hydrated sulfates, a wide range of
minerals can be masked (e.g., clays, carbonates, felsic and mafic minerals). In addi-
tion, given that carbonates are the first to precipitate from an evaporitic sequence,
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they are likely to concentrate at the margins and bottom of the salars and be subject
to burial. As shown here and in recent studies (e.g., Hanley, 2015; Lynch, 2015), it
might be complicated to distinguish some hydrated chloride salts and hydrated chlo-
rine oxyanion salts from sulfate salts, making martian sulfate detections potentially
debatable. For instance, Na-rich sulfates and chlorides are expected to precipitate
alongside with Mg-rich sulfates from MgSO4-rich brines on Mars, but they have yet to
be detected in the km-thick interior layered deposits of Valles Marineris or the etched
terrains deposits of Meridiani Planum. However a recent study from Wang et al. (2016)
interprets the presence of monohydrated Mg-sulfates at the bottom of the layered
deposits as indicative of the presence of associated chlorides and Na-rich sulfates
that would help overcome the metastability of starkeyite (polyhydrated Mg-sulfates);
starkeyite being only detected at higher elevations (e.g., Fueten et al., 2014; Noel et al.,
2015). Determining the exact mineral assemblages on Mars is key to characterizing
past Martian surface chemistry, which should benefit in the coming decades by the
development of spectral libraries (that are still incomplete for sulfates and chlorides)
and the study of the spectral properties of lab mixtures and analog rock samples.

In addition, combining VNIR spectroscopic data with other datasets can aid with
inferring the context and sometimes the mineralogy if certain characteristic patterns
are present. For instance, El-Maarry et al. (2015) noticed that desiccation fractures
are especially present in clay and chloride-rich deposits formed from evaporation.
We concur with this from our field observations and further noticed that larger scale
polygons are present in chloride deposits compared to clay deposits. The texture of the
crust as observed in the Atacama salars was also found to be related to its dominant
mineralogy and formation mechanism (efflorescence versus precipitation). Finally, in
the Atacama salar there is a strong relationship between the dominant mineralogy and
the albedo (higher for sulfate-rich area, and lower for clay-rich playas) of the deposits
as seen from space, with the exception of unfrequently flooded, dust-covered crusts
being darkened.

Understanding the formation of martian salts is also key to providing insight into
the planet’s habitability. Evidence for biomaterials is present in the VNIR data (e.g.,
chlorophyll absorption at 0.68 μm at Laguna Tuyajto J2L2R2 and Laguna de la Piedra
J9L2R3), Raman data (carotenoid peaks in Laguna Tuyajto sample J2L2R3 and Salar
de Quisquiro J11L1R1) and XRD data (presence of pigments in several samples, in-
cluding Laguna Tuyajto J2L2R3 and Laguna de la Piedra J9L2R2) described above. A
complementary survey carried out by Monaghan et al. (2016) aims to determine the
type of organisms that thrive in the Atacama extreme environments and study their
dependence on the mineralogy among other factors. Although perchlorates were not
directly detected in our samples, they have been reported at other locations of the
Atacama desert and on Mars (e.g., Catling et al., 2010) and could play a role in the
development of life and biosignature preservation.
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A.6. Conclusions
We performed a coordinated remote sensing and field survey of the Chilean Atacama
salars, which were studied with various techniques (VNIR reflectance and Raman
spectroscopy, morphologic analyses, XRD analysis). Remote sensing and field ob-
servations, as well as observations made with various techniques led to consistent
results. Although VNIR analyses proved to be an efficient first-order, quick and non-
destructive tool for mineralogic investigation, XRD analyses in the lab provided more
complete information on assemblages, especially those that are spectrally dominated
by sulfate signatures, which can mask the presence of other minerals (clays, chlorides,
carbonates, feldspar).

Landsat multispectral imagery was used to map mineral zones that are easily iden-
tified in the absence of vegetation, and because most units are homogenous on large-
scales. Both orbital and field data show that the formation mechanism of the salar
through groundwater evaporation at topographic breaks in lowlands result in horizon-
tal (margin vs. center) and vertical (salt crust at the surface) zonation. Clays, carbon-
ates and detritic material are found at the margins of the salars and at depth, whereas
salt-rich crust (halite and/or Ca-sulfates) form at their centers. A variability of Na-rich
sulfates and borates are also present near wet areas. The nature of the salt crusts varies
between the different salars and appear to be a function of the local bedrock but also
brine chemistry and wetness. Similar processes are expected on Mars, where salars
have been previously reported, although more acidic/ Mg-rich brines are expected
and should result in slightly different mineral assemblages.
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Figure A.4: Field impressions and crust types. a to f: hard crust, type 1 (a to d = Salar de Atacama, a = J7L10,
b = J7L9 with c and d being a wetter, transition zone (J7L11)) and type 2 (e,f = Laguna Tuyajto (J2L2R3)). g
to i: soft, dry crust (type 3), g = Salar de Quisquiro (J11L1R4), h, i = Salar de Laco (J2L1R1). j,k,l: type 4 soft,
moist crust (j = Laguna de Cejar (J9L1), k = Laguna Tuyajto (J2L2R2), l = Salar de Quisquiro (J11L1R3)). m,
n, o: type 5 clay playa m, n = northern Salar de Atacama (J8L1), o = Laguna Tuyajto (J2L2R4) .p, q: type 6
beach pebbles at Salar de Aguas Calientes 3 (J5L1R3).
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Figure A.4: Continued
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Figure A.5: VNIR reflectance spectra of selected field samples are compared with reference library spectra
(Source: USGS spectral library, unless specify otherwise). a) Gypsum- bearing spectra from the Salar de
Aguas Calientes 3 (J5L1R3, J5L1R4), laguna Tuyajto (J2L2R2) and laguna de la Piedra (J9L2R3). The rounded
1.9 μm band in samples J5L1R3 and J9L2R3 is best matched by a mixture of gypsum and another hydrated
material such as the hydrated halite presented in b. b) Featureless, water-bearing spectra of samples from
the Salar de Atacama (J1L1R1), Salar de Quisquiro (J11L1R4), Laguna Tuyajto (J2L2R3), laguna de la Piedra
(J9L2R1) are all consistent with hydrated material, which is identified by morphologic observations as
(hydrated) halite. c) Shifted water absorptions in some samples from the Salar de Atacama (J7L10, J7L14)
and a kink at 2.24 μm are more consistent with MgCl2 (reference spectra from Bishop et al., 2014c). d) In
the central part of the Salar de Atacama, and in the marginal area of laguna Chaxa, mixtures of pinnoite and
ulexite (J1L1R4) and halite and pinnoite (J1L1R3) can be inferred from VNIR spectra. e) Absorptions in the
spectra collected at laguna Tuyajto (J2L2R4) and various locations of the Salar de Atacama (J7L4, J7L8, J8L1,
J1L1R5) are consistent with mixed halite and Al-rich clays such as montmorillonite (e.g., J7L4). The width
of the 1.4 μm absorption feature suggest the additional presence of Ca or Na-sulfates such as gypsum or
mirabilite in samples J7L8 and J2L2R4. f) Absorptions in spectrum J1L1R2 are consistent with a mixture of
hydrated halite (such as in J1L1R1) and carbonates such as aragonite (reference spectra from Bishop et al.,
2013).
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Figure A.6: a) Raman spectra of a subset of samples that showed interesting peaks. b) Reference library
spectra of the minerals commonly identified in the samples are given for comparison. The black dashed
line indicate the location of the main gypsum peak at 1007, which is detected in most samples.
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Figure A.7: XRD patterns of a set of representative samples. The strongest peaks are identified for each
sample. Hal = halite, Gyp = gypsum, Qz = quartz, Anh = anhydrite, The = thenardite, Ul = ulexite, Pin =
pinnoite, Do = dolomite, Alb = albite, Cal = calcite, Hydg = hydroglauberite, Gla = glauberite, Mir = mirabilite,
An = anorthite, Bass = bassanite.
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Figure A.8: Comparison of the mineralogy ("dominant" mineral phase in each sample) inferred from various
instrument data (also see Table A.3). a) Spectrally dominant mineral as interpreted from the VNIR spectra,
b) Spectrally dominant mineral as interpreted from Raman spectra (superimposed black points indicate
the presence of carotenoids), c) Dominant mineral (= most abundant in this case) as interpreted from XRD
patterns. Outlines of the salars are colored according to the type of brines they originate from (blue =
Ca-rich, red = SO4-rich, magenta = mixed brines (from Risacher et al., 2003). There is a general agreement
between the various instrument data, although some minerals can be masked or dominate the VNIR spectra
when mixed with other material (see Section A.5.1).
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Figure A.9: Example of salt-rich deposits on Mars (Context Camera images at 6 m/pixel, Mars Reconnais-
sance Orbiter mission). a) Sulfate-rich salt pans and karstic features in the Meridiani Planum region of Mars
(modified after J. Flahaut et al., 2015 ), b) Sulfate-rich deposits of groundwater origin deposited on a bench
in the Columbus crater wall (modified after Wray et al., 2011), c) Proposed chloride-bearing deposits from
Osterloo et al. (2010), located in a topographic low south of the Meridiani Planum area (Colorized MOLA
elevation is projected in transparency over CTX imagery, elevations range from -1800 m (blue) to -1000 m
(red)). Proposed chloride-bearing deposits from Osterloo et al. (2010), located in the Terra Sirenum region
of Mars (Colorized MOLA elevation is projected in transparency over CTX imagery, elevations range from
2100 m (blue) to 3200 m (red)).
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