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Introduction 

Numerous advanced technologies require a combination of properties for polymer films, 

including high thermal stability, inertness, excellent resistance towards solvents and aggressive 

media, etc. Cyanate ester resins (CERs), also known as polycyanurates, offer a unique 

outstanding combination of physical properties which makes them suitable for use in high 

performance technology ranging from printed circuit boards and radomes to magnet casings for 

thermonuclear fusion reactors and support structures for interplanetary space probes. The 

attractive features of CERs are their low dielectric loss characteristics (≈ 2.6-3.2), dimensional 

stability at molten solder temperatures (220-270 °C), high purity, inherent flame-retardancy 

(giving the potential to eliminate brominated flame retardants), low moisture absorption, and 

good adhesion to miscellaneous substrates. Though polyimides, such as bismaleimide-

derivatized materials, may outmatch CERs in temperature stability, they have a poor shelf-life 

and are more difficult to process. Phenolics also have similar disadvantages.  

Compared to polyepoxides, CERs have much improved hydro/thermal stability. 

Moreover, CERs offer several advantages over aforementioned thermosets, including their 

processability, shelf-life, and compatibility with a variety of reinforcements. Despite these 

qualities, they are rather brittle due to aromatic content and expensive, which limits their 

potential for high‐performance applications. The choice of monomer also plays a critical role 

for processing operations. Most monomers meant for the synthesis of highly thermostable 

thermosets require high temperatures to achieve low viscosities and therefore are less 

processible. Though, dicyanate ester of bisphenol E (DCBE) is particularly unique due to its 

low melting point and low ambient viscosity (0.09-0.12 Pa∙s) caused by the rotational flexibility 

of the structure. It is known, that DCBE outperformed an epoxy (Epon 828) in all mechanical 

tests, even at high temperatures (200 °C). This monomer being liquid at room temperature can 

undergo a thermally initiated polycyclotrimerization reaction to generate densely packed cross-

linked thermosets with high glass transition temperature, without releasing volatile products. 

However, the rate of non-catalyzed thermal polycyclotrimerization is generally slow, and it 

depends on the concentration of impurities (traces of phenols and other residues from 

synthesis). Using a catalyst is necessary to achieve a controlled polycyclotrimerization process, 

which is a key factor for producing materials with excellent properties. This reaction is 

generally catalyzed by a combination of salts of transition metals, like acetyl acetonates of Cu, 

Co, Zn, Fe, Mn, Cr, etc. and an active hydrogen containing initiator like nonylphenol. Because 
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of the well-known toxicity of phenolic compounds, attempts to find new effective catalysts for 

dicyante ester polycyclotrimerization are of scientific and practical interest.  

Ionic liquids (ILs) are the subject of widespread interest as alternatives to conventional 

catalysts, due to their peculiar properties. Being composed entirely of ions, these novel 

multifunctional agents, so called as «designer solvents», have extremely low vapour pressure 

and low volatility, are non-flammable, and exhibit a wide temperature range of liquid state up 

to about 300 °C in some instances, thus providing the opportunity to carry out high-temperature 

reactions. As a result of one or more of these characteristic properties, ILs have already been 

exploited in polymer chemistry for diverse applications. Nevertheless, the investigation of the 

design and synthesis of CERs in the presence of ILs is fairly limited in the literature, and only 

a few reports have been published so far (mainly by the French-Ukrainian consortium involved 

in this PhD thesis). Certainly, the addition of ionic liquids can be a challenging and facile way 

to tune the properties of CER-based materials and eventually to widen their applications.  

The first chapter focuses on a general overview on the existing literature about using ILs 

as catalysts, curing agents, electroconductive components, plasticizers, lubricants or porogens 

for a wide range of applications in thermosetting polymers, and more particularly epoxy and 

cyanate ester resins. This review emphasizes the urgent need for understanding the role, 

efficiency, and perspectives of ILs with the potential to impact across many areas of 

thermosetting polymers.  

As a starting point for our investigation of the catalytic behaviour of ILs in CER systems, 

the second chapter is dedicated to a thorough kinetic and mechanistic study on the 

polycyclotrimerization reaction of DCBE in the presence of varying concentrations (from 0.5 

to 5 wt%) of an aprotic IL. The third chapter then extends this investigation to the comparison 

of the catalytic behaviour associated with three ILs with contrasted reactivity, namely an 

imidazolium-based aprotic IL, an imidazolium-containing protic one, and a protic polymeric 

one. It is expected that using ionic liquids can give rise to combinations of properties not 

possible with conventional catalysts. In this way, such properties can be tuned by the selection 

of IL type. A comprehensive study of their effect on kinetic peculiarities (induction time, 

reaction time, monomer conversion degree, etc) of DCBE polycyclotrimerization as well as on 

thermal stability and viscoelastic properties of the resulting CERs is addressed. Plausible 

mechanisms for all the DCBE/IL systems are also proposed to explain the acceleration           

effect of ILs.  



 

 

3 
 

In the fourth chapter, the effects of a pyridinium-based aprotic IL on the formation 

peculiarities and properties of CER nanocomposites are investigated in view of the scarcity on 

this type of IL-based networks. To the best of our knowledge, it is the first trial to investigate 

the influence of pyridinium-based ILs on the CER curing process and to examine the thermal 

behavior and viscoelastic properties, as well as the photosensitivity of related nanocomposite 

materials. Moreover, inert ILs can be easily recovered and recycled from the CER-based 

composites that could be applied as precursors to designing porous materials.  

Accordingly, the last chapter focuses on the engineering of novel nanoporous CER-based 

films by quantitative extraction of pyridinium-based aprotic IL from nanocomposites 

synthesized in the previous chapter. The effect of porogen content on the structure and 

properties of resulting porous CERs is examined. To the best of our knowledge, ILs have not 

been used as porogens to generate porous thermosets so far. 
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CHAPTER 1 

Application of Ionic Liquids in Thermosetting 

Polymers: Epoxy and Cyanate Ester Resins 

 

 

Abstract: Thermosetting polymers are widely used as industrial materials due to good heat 

resistance, dimensional stability and chemical resistance. There is a longstanding and 

widespread interest in designing novel polymer networks, and utilization of ionic liquids (ILs) 

opens up new frontiers to meet this challenge by creating new materials. For thermosetting 

polymers, ILs offer many advantages, either as catalytic agents, plasticizers, conducting 

additives, or porogens. Furthermore, ILs show rich structural diversity and can be incorporated 

into a polymer matrix to achieve better final properties. This review emphasizes the urgent need 

for understanding the role, efficiency and perspectives of an innovative class of components, 

namely ILs with the potential to impact across many areas of thermosetting polymers. To avoid 

ambiguity and make the review self-reading, basic ideas about the application of ILs in 

thermosetting polymers are first outlined.  

 

 

A.Vashchuk, A. Fainleib, O. Starostenko, D. Grande: Application of ionic liquids in thermosetting polymers: 

epoxy and cyanate ester resins. eXPRESS Polymer Letters, 12, 898-917 (2018). 
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1.1. Introduction 

Ionic liquids (ILs) are the subject of widespread interest as alternatives to conventional 

organic solvents due to their very special properties, including recycling ability. Many known 

ILs are commercially available from several suppliers. Ideally, ILs are non-flammable, optically 

clear and are relatively inexpensive to manufacture [1]. Many ILs exhibit a wide temperature 

range of liquid state up to about 300 °C, providing the opportunity to carry out high-temperature 

reactions. Being composed entirely of ions, these novel multifunctional agents so called as 

«designer solvents» have extremely low vapour pressure and low volatility. As a result of one 

or more of these characteristic properties, ILs have already been found useful in the polymer 

chemistry for diverse applications [2-5]. ILs make an increasing impact in the field of cross-

linked polymers, in particular on the development of thermosetting polymers and composite 

materials with various interesting properties [6-12]. All these applications require a strong 

confinement of the ionic liquid within the polymer network with no exudation of the ILs. 

In this way, herein, we are going to review the using of ILs for a wide range of 

applications in thermoset materials that could be important hosts for ILs. The application of ILs 

in thermosets has quickly advanced from using them as a reaction media to application as 

functional additives. Certainly, innovation in this field requires the control of their structure at 

nanoscale and addition of ILs can be a new and facile method to manage the morphology and 

properties of thermoset polymers as well as to widen their application. 

 

1.2. Ionic liquids 

ILs may be considered as a class of salts with a melting temperature below 100 °C.  The 

story of ILs begins with the first report on the preparation of ethylammonium nitrate salt using 

the reaction of ethylamine with nitric acid having melting point of 12 °C in 1914 [13]: 

EtNH2 + HNO3 = [EtNH4]
+ [NO3]¯ 

Despite this pioneering work, the interest in ILs has developed after the discovery of 

binary ILs made from mixtures of aluminum (III) chlorides and N-alkylpyridinium [14]              

or 1,3-dialkylimidazolium chlorides [15]. Nevertheless, a major drawback of all 

chloroaluminate (III) ILs, their moisture sensitivity remained unresolved. In particular, Wilkes  
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and Zawarotko [16] prepared and characterized the air and water stable 1-ethyl-3-

methylimidazolium ILs with different anions.  

Over the last two decades a large variety of ILs have been investigated marked by an 

exponential growth in a number of publications represented by the yearly increase starting from 

near 10 in 1990 to more than 7000 papers published last year (Figure 1-1). The first publications 

on using ILs in polymers have appeared in 2002 and then increased quickly in the last two 

decades and a summary on their applications and properties may be found in a number of review 

articles [17-23] and book [24]. There is no doubt that this area of research has been an important 

point of polymer chemistry as well.  
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Figure 1-1: Publications on ILs as determined from the ISI Web of Science® (December 12, 2017). 

 

ILs are self-dissociated and do not need a solvent to dissociate into cations and anions 

that uniquely distinguish them from classical salts like NaCl, KBr. What is the difference 

between a molten salt and an IL? Both molten salts and ILs are liquid salts containing only ions 

(Figure 1-2). However, in molten salts, there are symmetric cations and anions making the 

lattice well packed and hence it requires a large energy to break the lattice. Contrary to molten 
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salts, IL cations have irregular shape preventing crystal packing [25-27]. Therefore, molten salts 

melt above 100 °C (Tmelt NaCl = 801 °C, Tmelt KCl = 770 °C), and ILs melt much below that 

temperature (in particular, Room temperature ILs (RTIL) are liquid already at an ambient 

temperature). 

Figure 1-2: Schematical image of ionic structure of molten salt and IL. 

 

The most common classes of cations and anions are illustrated in Figure 1-3. The 

structural design of ILs is playing a very important role as the major properties may be easily 

controlled by changing the combinations of cation and anion types (1018 potential structures 

[28]). In this way, their properties can be varied dramatically by the creation of unique 

combinations of cations, anions and chains lengths. The change of anion can drastically affect 

physical properties of ILs such as hydrophilicity, viscosity and melting point as well as thermal 

stability. On the basis of reported data, the relative thermal stability (Tonset,°C) of imidazolium 

IL, i.e. [C2MIm] containing some common anions decreases in the following order: [C(CN)3]¯ 

≈ [BF4]¯ (450 °C) > [I]¯ (303 °C) > [Cl]¯ (285 °C) > [N(CN)2]¯ (275 °C) > > [SCN]¯ (226 °C) 

[29-32]. The purity of ILs is a very important issue and the influence of major contaminants 

such as water and chlorine ion on some of their physical properties has been discussed by 

Seddon et al. [33]. It is noteworthy that ILs are often determined as green solvents, but such 

character is disputable. Typical ILs consisting of halogen-containing anions may cause serious 

concerns if the hydrolytic stability of the anion is poor e.g. for [AlCl4]¯ and [PF6]¯ or if a 

thermal treatment of ILs used is required [29]. In both cases, additional effort is needed to avoid 

the liberation of toxic and corrosive HF or HCl into the environment. 
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Figure 1-3: Structure of commonly used cations and anions species for ILs. 

 

ILs can be divided into two broad categories, namely protic ILs (PILs) and aprotic ILs 

(AILs) [34-37]. PILs are formed in general by the transfer of a proton between аn equimolar 

amount of Brønsted acid and base. Due to the «free» available proton, they are capable of 

hydrogen bonding, including proton acceptance and proton donation. AILs contain no acidic 

protons and exhibit characteristics significantly different from those of PILs (Table 1-1). It 

should be noted that AILs are more thermally and electrochemically stable than the 

corresponding PILs [38]. 
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Table 1-1: Basic types of aprotic and protic ILs 

Protic ILs Aprotic ILs 

 

 

 

R1 – different alkyl groups 

 

· simpler and cheaper to synthesize             

(no by-products) 

· high fluidity and conductivity 

· low melting points 

· suitable for fuel cells 

 

 

 

 

R1, R2 – different alkyl groups 

 

· more expensive and complicate 

(multistep reactions) 

· low fluidity and conductivity 

· high melting points 

· suitable for lithium batteries 

 

 

Due to their ability to be reused/recycled, most ILs could replace toxic industrial volatile 

organic compounds (VOCs) [39], and solve the following problems: (i) loss of solvent by 

uncontrolled evaporation, and (ii) traces of solvent in final product. In addition to the 

interactions existing in VOCs (hydrogen bonding, dipole–dipole and van der Waals 

interactions), ILs have ionic interactions (mutual electrostatic attractions or repulsion of 

charged particles), which make them very miscible with polar substances. Generally speaking, 

ILs have properties that are quite different from those of organic solvents (cf. Table 1-2). 
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Table 1-2: Comparison of ionic liquids with organic solvents [20] 

Property Organic Solvents Ionic Liquids 

Number of solvents >1,000 > 1,000,000 

Applicability Single function Multifunction  

Catalytic ability Rare Common and tunable  

Chirality Rare Common and tunable 

Vapour pressure Obeys the Clausius-Clapeyron 

Equation 

Negligible under normal conditions 

Flammability Usually flammable Usually nonflammable 

Solvation Weakly solvating Strongly solvating 

Tunability Limited range of solvents 

available 

Unlimited range means «designer 

solvents» 

Polarity Conventional polarity concepts 

apply 

Polarity concept questionable 

Cost Normally inexpensive 2 to 100 times the cost of organic 

solvents 

Recyclability Green imperative Economic imperative 

Viscosity/cP 0.2-100 22-40,000 

Density/g cm-3 0.6-1.7 0.8-3.3 

Refractive index 1.3-1.6 1.5-2.2 

 

 

1.3. Applications of ILs in thermosetting polymers 

Numerous advanced technologies require polymers possessing high thermal stability, 

inertness, excellent resistance towards solvents and aggressive media, etc. It is well known that 

highly crosslinked structures via covalent bonds are directly responsible for the high mechanical 

strength and high thermal stability, but at the same time provides a poor elasticity or elongation 

compared with thermoplastics or elastomers (Figure 1-4). Unlike thermoplastics, thermosets 

retain their strength and shape even when heated. In this context, the generation of high-

performance thermosetting polymers in the presence of ILs may thus constitute an interesting 

challenge.  
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Figure 1-4: Schematical image of the structure of thermoplastics, elastomers and thermosets. 

 

In the next sections the application of ILs in epoxy based thermosets as catalysts, curing 

agents, electroconductive components, plasticizers, lubricants and porogens is presented 

(Figure 1-5). Additionally, using ILs in high-performance Cyanate Ester Resins (CERs) will 

be discussed as well. 

 

Figure 1-5: Potential applications of ionic liquids in thermosetting resins. 

 

1.4.  Epoxy resins 

1.4.1. Ionic liquids as catalytic agents 

ILs represent an exciting new class of catalytic or/and crosslinking agents for 

thermosetting polymers, especially for epoxy resins [40-50]. The first trial of using                         
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1-butyl-3-methylimidazolium tetrafluoroborate [BMIm][BF4] IL for cross-linking of epoxy 

resin was described by Kowalczyk and Spychaj in 2003 [41]. Palmese’s team for the first time 

[47] used 1-ethyl-3-methylimidazolium dicyanamide [EMIm][N(CN)2] in a range of 3-20 wt.% 

and found a lower cross-linking temperature than that reported by Kowalczyk and               

Spychaj for [BMIm][BF4]. 

As discussed in the literature [40-41], imidazolium-based ILs act as curing agents for the 

epoxy systems at high temperature. Liebner et al. [51] suggested that such ILs may undergo a 

thermal decomposition leading to formation of imidazole and other decomposition products. In 

an early study, Farkas and Strohm, reported about the high catalytic activity of imidazoles for 

curing of epoxy resins, proving that the imidazole became permanently attached to the polymer 

chain [52]. The curing kinetics and mechanisms of diglycidyl ether of bisphenol A (DGEBA) 

using imidazole and 1-methyl imidazole as curing agents were studied by Ghaemy and Sadjady 

[53]. Soares et al. [42] synthesized epoxy crosslinked materials containing                              

N,N'-dioctadecylimidazolium iodide (1-12 wt.%) by curing a mixture of DGEBA with 4,4'-

methylene-bis 3-chloro-2,6-diethylaniline (MCDEA) as a hardener. It was found that the high 

temperature used for curing might favour some degradation of the IL, generating new species, 

which also took part in the curing process. 

Maka et al. [46] also reported that reaction activity of ILs towards epoxy resins was 

connected with its thermal decomposition characteristics. They prepared and investigated the 

epoxy compositions with ILs possessing the imidazolium cation with alkyl chains of different 

length (butyl or decyl), and different anion type ([N(CN)2]¯, [BF4]¯, [Cl]¯), the ILs 

concentration was varied as well (1, 3, or 8 wt.%). On the basis of the results, the authors 

concluded that i) the curing process started at lower temperature (120→150 °C) when ILs with 

[N(CN)2]¯ anion were applied, in comparison with those containing [BF4]¯ anions (200→240 

°C); ii) the alkyl chain length of imidazolium cation influenced slightly the onset temperature 

curing range: for decyl substituent, 200→240 °C, and butyl, 210→230 °C;  iіі) as a rule bimodal 

exotherms appeared on DSC thermograms, the first was placed at a lower temperature range 

above 110 °C (compositions with ILs and basic [N(CN)2]¯ anion) and the second was placed 

above 250 °C (compositions with ILs bearing [BF4]¯ anion). The observed bimodal exotherms 

and FTIR absorption bands at 1740-1750 cm−1 were explained by the proposed mechanism of 

epoxy resin anionic polymerization initiated by thermal decomposition products of                         

1,3-dialkylimidazolium liquids. In 2015, the same group [49] performed comparison of two 

dicyanamide ILs with various cation types: imidazolium, i.e.1-ethyl-3-
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methylimidazolium dicyanamide ([EMIm][N(CN)2]) and phosphonium, i.e. (trihexyltetradecyl 

phosphonium dicyanamide ([THTDP][N(CN)2]). The composition of neat epoxy resin with IL 

exhibited prolonged storage times, namely > 45 days and > 70 days, when [EMIm][N(CN)2] 

and [THTDP][N(CN)2] was applied, respectively. Increasing the IL amount in epoxy 

composition resulted in shortening the pot life, and this influence was more pronounced in the 

case of [EMIm][N(CN)2]. It was also shown that DSC thermograms for compositions with 

[EMIm][N(CN)2] were bimodal with the first maximum (Tmax) in a temperature range from 136 

to 133 °C and the second one from 180 to 164 °C. Epoxy compositions with [THTDP][N(CN)2] 

exhibited unimodal thermograms with Tmax from 180 to 170 °C. A simple relationship between 

IL thermal stability and its activity as epoxy resin curing agent was found: the observed Tmax 

values for the second exothermal peaks of investigated epoxy curing process correlated 

qualitatively with the thermal degradation of IL. It should be noted that epoxy compositions 

cured with 6 wt.% [THTDP][N(CN)2] showed higher transparency (≈ 85 %) in comparison to 

that with 3 wt.% [EMIm][N(CN)2] (black opaque) [49]. 

Gérard et al. [43] has fulfilled a comparative study on the effects exerted by different ILs 

(imidazolium, pyridinium and phosphonium) with long alkyl chains on DGEBA curing at high 

temperature. The hardener used for the curing process was MCDEA. The results clearly 

demonstrated once again that imidazolium- and pyridinium-based ILs may decompose at high 

temperature used for the curing process, and the resulting decomposition products (imidazole 

or pyridine [54-56], respectively) could act as additional curing agents for epoxy systems. In 

contrast, phosphonium-based IL did not participate in the curing process and/or displayed the 

highest thermal stability or if they decomposed, the products formed did not react with the 

epoxy prepolymer. However, there has been some discrepancy concerning the catalytic activity 

of phosphonium-based IL on epoxy resins curing. Nguyen et al. [57] substantiate the use of 

different amounts (9, 17, 23 wt.%) of tributyl (ethyl) phosphonium diethyl phosphate 

(CYPHOS® IL169) and trihexyl (tetradecyl) phosphonium bis 2,4,4-(trimethyl pentyl)-

phosphinate (CYPHOS® IL104) for DGEBA curing. In both cases, all the samples were 

homogeneous except the mixtures containing 17 and 23 wt.% IL104, in which some exudation 

was observed. The results clearly showed that 9 wt.% IL104 was an excellent alternative to a 

large amount of amines (40 wt.% Jeffamine D400) required for crosslinking of epoxy resins. 

The lower reactivity of phosphate anion was explained by its lower basicity compared to 

phosphinate anion (higher pKa): phosphinate anion possessing two alkyl groups exerts an 

inductive donor effect, which leads to enrichment of electrons for the -OH bond and makes very 
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difficult the rupture of the -OH bond. Soares et al. [58] highlighted the double role of 

CYPHOS® IL104 as a curing agent for the epoxy prepolymer and an excellent dispersant aid 

for the multiwalled carbon nanotubes (MWCNTs), giving rise to materials which combine 

excellent electrical conductivity and high thermal properties. Maka et al. [50] reported that 

phosphonium ionic liquid trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) 

phosphinate played a triple function: carbon nanofiller dispersing medium, catalytic curing 

agent, and antiflamming additive. With increasing IL content (3→8 wt.%) in epoxy resin, the 

curing reaction started at lower temperature as determined by rheometry (145→125 °C) and 

DSC (133→118 °C). Only slight influence of carbon nanotubes or graphene (0.25-1.0 wt.%) 

on curing characteristics of epoxy systems was observed. 

Nguyen et. al [59] reported a new way to synthesize epoxy networks using 9-23 wt.% of 

phosphonium-based ILs combined with phosphinate, carboxylate, and phosphate counter-

anions. In all the cases, ILs displayed a high reactivity towards epoxy prepolymer and led to 

the formation of epoxy networks with high epoxy group conversion (up to 90 %). The authors 

have demonstrated that the reactivity of ILs is controlled by their basicity and is ranked in the 

following order: carboxylate > phosphinate > phosphate [59]. The findings of this study 

indicated that ILs were excellent alternatives to conventional amines as lower amounts of the 

former are required for crosslinking reaction: 9 wt.% for phosphinate and carboxylate, 23 wt.% 

for phosphate compared to 25 wt.% for Jeffamine D230 and 35 wt.% for MCDEA. 

So far imidazolium-based ILs have been more often applied in epoxy resin systems as 

curing agents than phosphonium ones [50]. However, the reasons why one might be interested 

in phosphonium ILs, even in industrial processes, include their availability and cost. 

 

1.4.2. Ionic liquids as ionic conducting agents 

ILs are promising candidates for novel high-performance electrolytes for electrochemical 

devices such as lithium-ion batteries and electronic double layer capacitors. ILs have low 

viscosity and excellent ionic conductivity up to their decomposition temperature. Nevertheless, 

a drawback for practical application is that IL fluidity may cause liquid electrolyte leakage. 

Ohno and co-workers attempted to polymerize ILs composed of imidazolium substituted 

methacrylates [60-62]. However, polymerization of ionic compounds often reduces the 

molecular motion and provides low ionic conductivity. To solve this problem, polymers which 
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have three-dimensionally highly crosslinked structures and possess excellent physicochemical 

properties could be used. DGEBA/Jeffamine D400 system was modified with 2.5 and 5.0 wt.% 

of ILs based on imidazolium and phosphonium cations with long alkyl chains, such as N,N'-

dioctadecyl-imidazolium iodide, or octadecyl-triphenylphosphonium iodide ([ODTPP][I]) 

[63]. These results clearly demonstrated the higher conductivity of DGEBA/D400/[ODTPP][I] 

system compared to the others although the conductivity values were not high enough for a 

solid electrolyte, probably because of the low amount of IL used. 

Polymer networks confining an 1-ethyl-3-methylimidazolium bis(trifluoromethane 

sulfonyl) imide ([EMIm][TFSI]), were prepared [64] by curing a mixture of DGEBA and 

tetrafunctional epoxy resins with tetraethylenepentamine (TEPA) in the presence of ionic 

liquid. The ionic liquid confinement, ionic conductivity, mechanical strength, and morphology 

of the materials strongly depended on the ionic liquid content. At a low [EMIm][TFSI] content 

(< 40 wt.%), the material tightly confined the ionic liquid and showed little ionic conductivity 

with a high Young’s modulus. This seems reasonable because there are no freely mobile ions 

in the samples, in which rigid and glassy polymer network locally confine ions. At a high IL 

content (> 40 wt.%), the material did not tightly confine the IL showing higher ionic 

conductivity. The microphase separation between the [EMIm][TFSI] and the epoxy networked 

polymer was observed by scanning electron microscopy (SEM). The ionic conductivity of the 

DGEBA/TetradX/TEPA/(50 wt.%) [EMIm][TFSI] was equal to 1.0-12.0×10-2 S/m in the 

frequency range from 1to 100 KHz, which is quite high and corresponds to about 1/8 of the 

reported bulk [EMIm][TFSI] conductivity (84.0×10-2 S/m). Subsequently, Matsumoto et al. 

[65] synthesized the highly flexible ion conductive films of an epoxy-based crosslinked 

polymer containing an ionic liquid having a quaternary ammonium salt structure. The polymers 

having trimethylammonium bis(trifluoromethanesulfonyl)imide groups were synthesized by 

heating a mixture of diepoxide, glycidyl trimethylammonium bis(trifluoromethanesulfonyl)-

imide (GTMATFSI), and diamine curing reagent. Ethylene glycol diglycidyl ether (EGGE), 

poly(ethylene glycol) diglycidyl ether (PEGGE), and poly(propylene glycol) diglycidyl ether 

(PPOGE) were used as diepoxides, and ethylene glycol bis(3-aminopropyl) ether (EGBA), 

poly(ethylene glycol) diglycidyl ether bis(3-aminopropyl ether) (PEGBA), and polypropylene 

glycol bis(2-aminopropyl ether) (PPOBA) were used as diamine curing reagents. The obtained 

networks having quaternary ammonium structure showed high thermal stability (temperature 

of 5 wt.% decomposition above 270 °C), low crystallinity, low glass transition temperature, and 

good ionic conductivity. In particular, the crosslinked polymers consisting of poly(ethylene 
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glycol) segments showed high ionic conductivity (> 0.1×10-2 S/m) at room temperature and 

reached 5.8×10-2 S/m for EGGE-GTMATFSI-1.2/PEGBA and 4.1×10-2 S/m for 

PEGGE/GTMATFSI-1.2/PEGBA at 90 °C, which is also quite high for a solid polymeric 

material. These networks were mechanically strong and tough enough to produce self-standing 

thin films and will be useful materials for application as ionic conductive membranes in 

electrochemical devices.  

Livi et al. designed IL-containing polymer networks, which could be employed as new 

polymer electrolytes [66]. They used trihexyl(tetradecyl)phosphonium IL with dicyanamide 

counteranion as functional additives to synthesize nanostructured epoxy networks with very 

high mechanical properties and thermal stability (> 400 °C). In addition, TEM micrographs 

(Figure 1-6) showed the formation of ionic clusters of the size of 20-30 nm with excellent 

distribution (characterized by the white spots) for the epoxy network loaded with the highest 

concentration (23 wt.%) of this IL. These results are promising and open new perspectives in 

the field of energy where the IL can be used as ionic channels for lithium salts to ensure suitable 

conduction properties [66]. 

 

Figure 1-6: TEM micrographs of epoxy networks cured with phosphonium dicyanamide IL, 

wt.%: (a) 5, (b) 9, (c) 23 [66]. 

 

Shirshova et al. [67] prepared a series of epoxy resin-ionic liquid composites to identify 

the optimum system microstructure required to achieve a high level of multifunctionality. 

Structural electrolytes based on fully formulated commercially available epoxy resins (pure one 

with trademark MVR® 444 and toughened ones, MTM® 57 and VTM® 266) were obtained by 

adding the mixture of bis(trifluoromethane) sulfonimide lithium salt (LiTFSI) and ethyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]) ionic liquid. Detailed 
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temperature-dependent ionic conductivity measurements were carried out using dielectric 

spectroscopy in a temperature range of -30 °C to 60 °C. The ionic conductivity was extracted 

from the plateau region of each dielectric spectrum (Figure 1-7). At only 30 wt.% of structural 

resin (MVR®444) and 70 wt.% of IL-based mixture, containing 17 wt.% of the Li salt, stiff 

monolithic plaques with thicknesses of 2-3 mm possessing room temperature ionic conductivity 

of 8.0×10-2 S/m (0.5×10-2 S/m at -20 °C) and Young’s modulus of 0.2 GPa were obtained. The 

authors concluded that the room temperature conductivity close to 8.0×10-2 S/m was not only a 

desirable value for supercapacitor applications, but was also high enough to potentially consider 

thin films of MVR® 444/30 as separation membranes for Li-ion batteries [67]. 

 

Figure 1-7: Temperature dependence of ionic conductivity of samples with varying resin 

contents (wt.%): 1) 30; 2) 50; 3) 40; 4) 50; 5) 50. Samples 1, 3, 5 –based on MVR® 444;                          

2 – VTM® 57; 4 – VTM® 266 [67]. 

 

Soares et al. [68] investigated the influence of different ILs based on 

tetraalkylphosphonium cations containing different counter-anions, such as dicyanamide, 

bis(trifluoro-methanesulfonyl)imide and dodecylbenzene sulfonate on the ionic conductivity of 

epoxy resin based on DGEBA cured with poly(propylene glycol) bis(2-aminopropyl ether). A 

significant increase in the ionic conductivity (0.01×10-2 S/m at 110 °C) was observed with the 

presence of 13 wt.% of CYPHOS 105, mainly at a temperature higher than Tg, when the ion 
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mobility increased. Other epoxy-IL systems reported in the literature possess higher 

conductivity values, but with the higher IL content (60-80 wt.%) [67]. The incorporation of a 

1-decyl-3-methylimidazolium bromide ([DMIm][Br]) content as high as 50 wt.% within the 

epoxy matrix resulted in solid and flexible electrolyte with high thermal stability and ionic 

conductivity of around 0.1×10-2 S/m at room temperature, which increased up to 10×10-2 S/m 

at 170 °C [69]. It was concluded that this electrolyte presented a prodigious potential for 

applications at high temperature in electrochemical devices like batteries and supercapacitors, 

and the flexibility of this solid electrolyte persisted at low temperature because of its low glass 

transition temperature. Furthermore, leakage problems were not observed.  

 

1.4.3. Ionic liquids as plasticizers 

A plasticizer is a substance incorporated into a polymer to increase its flexibility, 

workability or distensibility. Normally, plasticizers have a large influence on physical, 

chemical, and electrochemical properties of modified polymers: for instance, they reduce melt 

viscosity, temperature of a second order glass transition (Tg) or elastic modulus of a polymer. 

The plasticizers used in the industry are mostly derivatives of phthalates, which represent 

approximately 70 percent of the market. However, due to their toxicity, academic and industrial 

researchers have been looking for new plasticizers. In fact, RTILs have the necessary qualities 

of a good plasticizer: i) excellent melting properties, ii) minimal interaction with resins at room 

temperature and iii) non-volatility at ambient conditions. As one can conclude, RTILs can be 

utilized as efficient plasticizers to manage mechanical properties of thermosetting polymers, at 

that the chemical nature of organic cations and anions plays a significant role in the distribution 

of ionic domains in the polymer matrix. According to the literature, imidazolium and 

pyridinium ILs lead to the formation of aggregates of ionic clusters, while phosphonium ILs 

generate a structuration at a nanoscale denoted as «spider-web» morphology [52]. Thus, it is 

possible to control the plasticization effect of thermosets by varying IL molar mass and 

chemical structure. 

Lu et al. reported [3] a significant decrease in the Tg, of epoxy networks by using several 

types of ILs, and this effect was more pronounced in the systems modified with imidazolium-

based ILs, than that in the systems containing phosphonium-based ILs. Duchet-Rumeau and 

Gérard’s group successfully used N,N'-dioctadecylimidazolium iodide with long alkyl chains 

as a new additive for epoxy networks [42]. The Tg value as determined at the maximum of the 
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tand peak decreased as the amount of the IL increased. This behaviour suggested a plasticizing 

effect of the IL imparted by the presence of the two long alkyl chains in its structure. The authors 

noted that the storage moduli at temperatures below Tg were higher in the thermosets containing 

IL probably because of the good interactions between the components (Figure 1-8) [42]. At 

temperatures above Tg, the modulus of the system containing 1 wt.% of IL was higher than that 

of the pure epoxy network, indicating high interactions between the blend components. 

However, when increasing the amount of IL, the moduli in this region decreased, suggesting 

that the plasticizing effect imparted by the long alkyl groups in the IL molecules contributed 

more for this property than the interactions between the components. The Tg tendency found in 

DSC experiments was similar to that detected by DMA analysis and also confirmed the 

plasticizing effect of the IL.  

 

Figure 1-8: Dynamical mechanical properties of DGEBA/IL/MCDEA networks as a function 

of the IL content, wt.%): (a) 0, (b) 1.0, (c) 1.6, (d) 3.0 [42]. 

 

Sanes et al. [70-76] also reported that addition of IL to epoxy resins enhanced chain 

mobility and provided a plasticizing effect as well as reduced friction coefficient and wear rate 

of the final materials. 

 

1.4.4. Ionic liquids as lubricants 

It is known that the poor tribological performance of epoxy resins is a major limitation in 

many applications. The main strategy which has been followed in order to improve their 
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resistance consists in using internal lubricants. The first IL used as an inner lubricant of epoxy 

resin was the short alkyl chain 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIm][BF4]) 

added in a concentration range between 0.5 and 3.3 wt.% [70]. It was found that dry friction 

coefficients decreased exponentially from 0.73 to 0.29 as the IL proportion increased and wear 

resistance was improved in several orders of magnitude for a critical                                                                  

IL concentration of 2.7 wt.%. 

Hameed et al. [77] described the controlled mechanical behaviour of epoxy resin from 

brittle to ductile and even to elastomeric behaviour, when high amounts (10-60 wt.%) of the 1-

butyl-3-methylimidazolium chloride IL were added. The authors proposed the formation of 

electron donor-electron acceptor complexes between the hydroxyl groups of the epoxy chains 

and bulky IL ions, resulting in high modulus and toughness. At the elevated temperatures, these 

complex bonds break and the presence of detached bulky ions leads to flexible networks and 

reduced glass transition region. 

Saurín et al. [71-72] claimed a good tribological performance and even self-healing effect 

of abrasion surface damage on an epoxy resin material with the addition of a relatively high (7-

12 wt.%) amount of the 1-octyl-3-methylimidazolium tetrafluoroborate ([OMIm][BF4]). It was 

the first paper describing a self-healing process induced by an IL additive [71]. From the results, 

it was concluded that the addition of IL (i) reduced hardness and tensile strength, (ii) increased 

elongation at break by a 42 %, (iii) showed an area reduction of approximately 55 % after 5 h, 

(iv) induced a self-healing process with a 41 % recovery after 30 min and a total self-repair of 

the abrasion damage under multiple scratching after 22 h at room temperature, and (v) reduced 

the surface damage by 88 % with respect to individual network, after 24 h at room temperature 

(single scratches under the maximum load of 20 N). Further investigation [72] emphasized that 

material with 7 wt.% IL content demonstrated a lower friction coefficient than the neat epoxy, 

due to its lower instantaneous surface damage. In contrast, the self-healing ability over time 

increased with increasing IL concentration with maximum obtained for the 9 wt.% IL 

proportion (96.2 % reduction after  22 h at room temperature). The surface topography and 

cross-section profiles with time after the scratch tests on epoxy resin containing 12 wt.% of 

[OMIm][BF4] are shown in Figure 1-9 [72]. Authors concluded that interactions between the 

cation-anion pairs of the [OMIm][BF4] and the polar groups of the polymer chains reduced the 

brittle behaviour of the resin and the permanent damage produced by crack propagation under 

load and could be responsible for the observed self-healing behaviour. 
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Figure 1-9: Surface topography (a) and cross section profiles (b) for the evolution of the wear 

track on a surface of epoxy resin/[OMIm][BF4] (12 wt.%). 

 

It was found that [OMIm][BF4] showed an outstanding friction-reducing and anti-wear 

performance for the epoxy resin-stainless steel contact, which was further improved by addition 

of ZnO nanoparticles [73], graphene [74] or single walled carbon nanotubes (SWCNTs) [75]. 

The reinforcement effect of graphene responsible for the good tribological performance, while 

IL acts as a plasticizing agent, increasing chain mobility, reducing Tg and shifting the storage 

modulus onset, the loss modulus and tan d peaks to lower temperatures [74]. SWCNTs and the 

IL show a synergistic effect when are added to an epoxy resin matrix, being able to reduce both 
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friction coefficient, in a 53 %, and wear rate, in a 86 %, with respect to neat epoxy resin under 

pin-on-disc sliding contact against stainless steel [75]. Very similar effects can be achieved with 

SWCNTs pre-modified by ILs. 

Recently, Avilés [76] et al. synthesized and characterized a new self-lubricating, wear 

resistant epoxy polymer by addition of 9 wt.% of the room-temperature protic ionic liquid – tri-

[bis(2-hydroxyethyl)ammonium)] citrate (DCi). It was shown more than 50 % reduction of the 

friction coefficient with respect to neat epoxy resin, and a polished surface, in contrast with the 

severe wear that takes place in the case of neat epoxy resin. The high polarity of the protic ionic 

liquid molecules produced low miscibility of the liquid phase within the epoxy matrix and 

reduces the wettability of the resin surface. 

 

1.4.5. Ionic liquids as porogens 

The novel peculiarity of ILs as «designer solvents» is the possibility to design porous 

thermosets with the necessary properties for the specific applications. The basic requirements 

to porogens are as follows: (i) boiling point higher than the temperature of polymer synthesis; 

(ii) inertness towards basic components of polymer synthesis; (iii) predetermined ratio of 

polarity and solubility parameters of monomer, polymer, and porogen. The solubility parameter 

(δ, (J/cm3)1/2) of the polymer is defined as the square root of the cohesive energy density in the 

amorphous state at room temperature [78], which provides a numerical estimation of the degree 

of interaction between materials: 
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The solubility parameter is crucial for a porogen selection, and it is used to compare the 

solvation, miscibility, and swelling properties of the components used. The consideration of 

nature and possible interactions of porogen-polymer, porogen-monomer (s), and                   

porogen-initiator is also an important issue during synthesis of porous materials.                    

Mohamed et al. [79] reported that the closer the solubility parameters of a porogen, reactants 

(monomer/crosslinker/polymer), the greater the surface area and the smaller the pore volume, 

while the smaller surface area and the higher pore volume in porous polymers could be reached 

at higher difference in solubility parameters of the components used. The uni-modal (micro, 

meso, or macroporous) polymer can be obtained by varying the type and amount of a porogen. 
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In addition to this, bi-modal (micro-meso, meso-macro, or micro-macro) porosity can be 

generated using a porogen mixture or varying the porogen ratio. A low molar mass porogen is 

generally preferred to obtain the smaller pore size, which results into a greater surface area and 

vice-versa for a high molar mass porogen [80]. However, increasing the molar mass of a 

porogen increases the viscosity of the polymerization reaction composition, and it is 

recommended to use high molar mass porogens in combination with a porogen of low molar 

mass [81]. Therefore, the use of RTILs as porogens for the preparation of porous polymers [82-

86] has some distinct advantages: (i) ILs are thermally stable and nonvolatile and can be easily 

recycled; (ii) the morphology and porous structure can be easily changed through  a  proper  

selection of the structural features of the IL used; (iii) pore diameter can be managed by varying 

the amount of IL used; (iv) due to extremely low viscosity, ILs can be used as porogens without 

using any additional solvent. 

Nowadays, several researchers have studied the extraction of ILs from epoxy polymer 

networks, however no-one has reported on the characterization of porous thermosets obtained 

thereof. Matsumoto and Endo [64] extracted the IL from polymer/IL composites in order to 

examine the morphologies of the cross-linked materials. Figure 1-10 shows the results of 

acetone extraction of various ILs from DGEBA/TEPA/IL epoxy network systems. The IL 

confinement was in the order [EMIm][TFSI] > [HMIm][TFSI] > [BMIm][TFSI], which was 

the opposite order of the steric hindrance of the cations. The reason for this remained unknown, 

but the authors assumed that the hexyl or benzyl groups in the cationic part may increase the 

compatibility of the IL with the epoxy network that provides the enhanced segmental motion 

of the network, so the IL can easily escape from the network. Materials confining IL were 

insulating with a high Young’s modulus, while those not confining IL were ion conducting with 

a low Young’s modulus. SEM observation revealed that the drastic change of the fundamental 

properties of the epoxy materials could be due to the morphology transition of the materials, in 

which the IL transformed discrete phases to continuous phases in the epoxy-based networks. 

These results suggest that the addition of IL can be a new and facile method to control the 

morphology of polymer networks. 
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Figure 1-10: Time dependence of the extracted ionic liquid fraction from films of 

DGEBA/Tetrad-X/TEPA with [EMIm][TFSI], [HMIm][TFSI] and [BMIm][TFSI] (extraction 

solvent: acetone) [64]. 

 

Shirshova et al. [67] reported that there were no dimensional changes observed as a result 

of electrolyte ([EMIM][TFSI] + LiTFSI) extraction removing more than > 95 wt.% of the 

original IL-based electrolyte content from an epoxy network (MVR® 444). The SEM images of 

all the samples showed a bicontinuous morphology (Figure 1-11). It seemed likely that 

MVR®444 formed a fully miscible one-phase system at the cure temperature, but that phase 

separation occurred at an earlier stage during the polymerization as a result of its lower 

miscibility with the ionic liquid. The authors concluded that this system based on commercial 

components could be readily applied to the development of structural electrical energy storage 

composite devices. 

   

Figure 1-11: SEM micrographs of epoxy samples after extraction of different amounts of 

electrolyte (EMIm-TFSI + LiTFSI): (a) 60 wt.%; (b) 70 wt.% [67] 

(a) (b) 
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In conclusion, ILs constitute excellent multifunctional agents that are sustainable for 

developing new high-performance epoxy materials (Table 1-3). 

Table 1-3: General overview of IL influence on epoxy resins  

Base polymer Ionic liquid Results Ref. 

DGEBA [DiOIm][I] crosslinking promotion, plasticizing effect [42] 

[apbIm][NTf2] 

[N4444][Leu] 

catalytic effect, conductivity improvement [40] 

[DodIm][I] 

[OdPyr][I] 

[OdTPP][I] 

[OdTPP][PF6] 

accelerating effect, plasticizing effect, stiffness  

improvement 

[43] 

CYPHOS® IL104 catalytic effect,   thermal stability improvement [44] 

[BMIm][N(CN)2] 

[BMIm][BF4] 

[DMIm][N(CN)2] 

[DMIm][BF4] 

[DMIm][Cl] 

catalytic effect 

 

[46] 

[EMIm][N(CN)2] thermally latent curing agent [47] 

CYPHOS® IL104 

CYPHOS® IL169 

homopolymerization promotion, hydrophobicity 

and thermal stability improvement 

[57] 

CYPHOS® IL104 curing agent for the epoxy prepolymer, excellent 

dispersant aid for the MWCNT 

[58] 

[OdTPP][I] 

[DodIm][I] 

accelerating effect, phase separation, tensile 

properties and conductivity improvement 

[63] 

CYPHOS® IL105 catalytic effect, phase separation generation [66] 

[DMIm][Br] solid and flexible electrolyte with good thermal 

stability below 180°C 

[69] 

[OMIm][BF4] accelerating effect, lower hardness, viscoelastic 

recovery and healing ability of damaged surface 

with time 

[70] 

[72]

[74] 

DGEBA, 

TEPA 

[EMIm][TFSI] 

[HMIm][TFSI] 

[BMIm][TFSI] 

microphase separation, morphology and 

properties dependence on IL content 

[64] 

Bisphenol A 

epichlorhydrin 

[OMIm][BF4] self-healing under ambient conditions [71] 

EGGE 

PPOGE 

PEGGE 

PPOBA 

PEGBA 

[GTMA][TFSI] high thermal stability, flexibility and good ionic 

conductivity  

[65] 

Bisphenol  A-

based  Epidian  

6 (E6)  

[BMIm][SCN] catalytic activity [48] 

[EMIm][N(CN)2] 

[THTDP][N(CN)2] 

catalytic effect [49] 

MVR®444 

MTM®57 

VTM®266 

[EMIm][TFSI] ionic conductivity improvement [67] 
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1.5. Ionic liquids in Cyanate Ester Resins (CERs) 

To the best of our knowledge, only a few reports on the IL utilization for designing CER 

systems have been published so far [87-89]. Throckmorton and Palmese in 2016 firstly reported 

[87] a new way to accelerate CER polycyclotrimerization by using dicyanamide-containing 

RTILs ([DCNA]¯) as a new catalytic system alternative to conventional catalysts normally 

based on metal acetylacetonates and nonyl phenol. Novel ionic thermosetting polymers, i.e. 

polycyanurates containing the ILs incorporated chemically directly into the triazine network, 

were thus synthesized. The catalytic effect was found in a number of dicyanamide-containing 

ILs with diverse cations, namely 1-ethyl-3-methyl imidazolium, 1-(3-cyanopropyl)-3-methyl 

imidazolium, 1-(2-hydroxyethyl)-3-methylimidazolium, 1-butyl-1-methyl-pyrrolidinium, and 

1-butyl-3-methyl pyridinium. For comparison, the non-dicyanamide RTIL, 1-ethyl-3-methyl 

imidazolium tetrafluoroborate ([BMIm][BF4]) was checked as a catalyst for CER 

polycyclotrimerization. It was found that the reaction kick off temperature in 

CER/[BMIm][BF4] system was significantly higher than that for the [DCNA]¯ containing ILs. 

The following conclusions could be done on the basis of these results: (i) RTILs of varying 

structures and concentrations accelerated curing of CERs; (ii) [DCNA]¯ ILs were incorporated 

directly into the triazine network; (iii) plasticization effect was fixed depending on RTIL 

content (0.5-10 wt.%) due to decrease in cross-linking density (nearly 100 °C decrease in Tg at 

10 wt.% IL loading). Finally, the ionic thermoset structure presented a cured resin with ionically 

bound species that provided an excellent subject for future research in ionomers and 

nanocomposites. 

Although the reaction mechanism of CER curing in the presence of [DCNA]-based ILs 

was investigated thoroughly, the mechanism of catalysis by non-dicyanamide RTILs was not 

discussed. Based on the studies mentioned above, one can conclude that in order to develop 

novel CER-based materials with new properties, research on the application of other ILs should 

be continued. 

 

1.6. Conclusions 

According to the best of our knowledge, up to now, no systematic study on the application 

of ionic liquids in thermosetting polymers, especially epoxy and cyanate ester resins have been 

reported. The present review aims at defining a new generation of thermally stable materials 

based on thermosets modified by ionic liquids (ILs). Among the wide range of potential 
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applications of ILs, their use in the development of new thermoset-IL hybrid materials has been 

limited by modification of epoxy and cyanate ester resins. In fact, the studies on epoxy resin 

systems with ILs are quite extensive. In the reviewed studies, we have found that ILs can be 

effectively used for epoxy resins as catalytic or/and crosslinking agents, plasticizers, lubricants, 

electrolytes or porogens thus providing a new route to the design of advanced materials. So far, 

imidazolium ILs have been more often applied in epoxy resin systems than other ones, however 

the reasons why one might be interested in a phosphonium ILs, even in industrial processes, 

include its availability and cost. It seems that epoxy resin systems could be improved by the 

selection of IL type and concentration as well as by the introduction of additives, e.g. 

nanoparticles, graphene or carbon nanotubes, in low loading to obtain high-performance 

materials. On the other side, the investigation of cyanate ester resins (CERs) is fairly limited in 

the literature and only few researchers have developed the use of ILs as catalysts and porogens. 

Despite these successes, using ILs still remains an exciting and emerging field of research. The 

influence of IL on the ductility, abrasion resistance, and self-repairing ability of epoxy resins 

has been well understood, however, self-healing ability of IL-based CER materials remains to 

be studied. It appears reasonable to expect (i) comprehension of IL organization within the 

polymer network; (ii) network-IL interactions; (iii) suitable functionalization of the ILs for 

reactive modification of thermosets; (iv) molecular mechanisms of IL lubrication; (v) 

separation/sorption properties of IL-based thermosetting networks before and after extraction 

for membrane technologies; (vi) compatibilizing effect of ILs in the hydrophobic polymer 

networks filled with hydrophilic fillers. Through numerous attempts made so far, the prospect 

of ILs as electrolyte salts for engineering of highly conducting polymer electrolytes and 

characterizing their ion transport behaviour left out of consideration and further studies are still 

needed. The IL-based thermosetting materials could be good candidates for use in any 

application, in which high conductivity combined with high thermal stability and non-volatility 

are required. 
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CHAPTER 2 

Acceleration Effect of Ionic Liquids on 

Polycyclotrimerization of Dicyanate Esters 

 

 

 

Abstract: The polycyclotrimerization reaction of dicyanate ester of bisphenol E (DCBE) in the 

presence of varying amounts (from 0.5 to 5 wt%) of 1-octyl-3-methylimidazolium 

tetrafluoroborate ([OMIm][BF4]) ionic liquid has been investigated using differential scanning 

calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) techniques, after a 

curing stage at 150 °C for 6 h. It is noteworthy that an amount of [OMIm][BF4] as low as                    

0.5 wt% accelerates dramatically the thermal curing process leading to the formation of a 

polycyanurate network. The conversion of DCBE increased with increasing [OMIm][BF4] 

content in the temperature range studied. A reaction mechanism associated with the ionic liquid-

catalyzed DCBE polycyclotrimerization is newly proposed via the involvement of                                      

a s+[CN]---[OMIm] s
¯ complex as a key intermediate.  

 

 

A. Fainleib, O. Grigoryeva, O. Starostenko, A.Vashchuk, S. Rogalsky, D. Grande: Acceleration effect of ionic 

liquids on polycyclotrimerization of dicyanate esters. eXPRESS Polymer Letters, 10, 722-729 (2016). 
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2.1. Introduction 

Cyanate ester resins (CERs) – also known as polycyanurates (PCNs) – are commonly 

used in aerospace applications and electronic devices as high temperature polymer matrices. 

The specific interest in these high performance polymers arises from their unique combination 

of intrinsic properties, including thermal, fire, radiation and chemical resistance, high tensile 

moduli (3.1-3.4 GPa) and glass transition temperatures (Tg > 250 °С), low dielectric constants 

(ε ~ 2.5-3.2), high adhesion to conductor metals and composites as well as low water/moisture 

adsorption [1, 2]. 

Ionic liquids (ILs) have attracted widespread interest in polymer science, due to their 

unique properties, such as low melting temperature, incombustibility, electrochemical, and 

high-temperature stability. They have progressively been used as solvents and substances with 

catalytic properties [3, 4] as well as conductive fillers [5]. Miscellaneous reports on using ILs 

in polymerization processes have been published [6-12]. For instance, Wu et al. [12] have 

recently investigated the cationic polymerization of isobutyl vinyl ether in 1-octyl-3-

methylimidazolium tetrafluoroborate ([OMIm][BF4]). It was noticed that the cationic process 

led to higher monomer conversions in the presence of [OMIm][BF4]. Although the 

polymerization reaction in [OMIm][BF4] could not be controlled, due to the presence of 

β proton elimination, the monomer addition experiments confirmed the existence of long-lived 

species. The results showed that introducing a small amount of 2,6-di-tertiobutyl pyridine into 

the system might lead to a controlled polymerization. In contrast, reports on ILs involved in 

crosslinking processes are much scarcer [13]. 

The curing kinetics of neat CERs has extensively been reported in the literature [14-21]. 

It is of common knowledge that the polycyclotrimerization of dicyanate esters is rather slow, 

and it generally requires the presence of a curing catalyst which may be either a Lewis acids or 

acetylacetonates of Cu2+, Co3+, Zn2+ and Mn2+ [22], or a chelate in the presence of an active 

hydrogen-containing co-catalyst (such as nonylphenol), acting as a source of proton. Recently, 

Throckmorton [23] has examined the effect of ILs on curing of cyanate esters in  IL-modified 

thermosets and their nanocomposites, and interestingly, he concluded that the ionic liquids 

accelerated the CER curing. 

In the present work, we have highlighted the acceleration effect occurring in the 

polymerization of a dicyanate monomer in the presence of a specific ionic liquid, namely 

[OMIm][BF4], and for the first time suggested the mechanism of the polycyclotrimerization of 
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cyanate ester in the presence of imidazolium IL. It is worth noting that ILs are thermally stable 

compounds that is important for the polycyclotrimerization, which is usually carried out at high 

temperatures up to 230-280 °C [1, 2]. The structure of such catalyst systems allows for easier 

separation, recovery, and recycling from the reaction mixtures [24]. 

Additionally, introducing ILs into CER frameworks may impart conductivity to the CER-

based nanocomposites. ILs could be extracted and potentially used repeatedly; therefore, 

CER/IL composites could be applied as precursors to porous materials as well. 

 

2.2. Experimental 

2.2.1. Materials 

1,1′-Bis(4-cyanatophenyl)ethane (dicyanate ester of bisphenol E, DCBE) under the trade 

name Primaset™ LECy, was kindly supplied by Lonza Ltd., Switzerland, and was used as 

received. The following chemicals were used for the synthesis of the 1-octyl-3-

methylimidazolium tetrafluoroborate ([OMIm][BF4]): 1-methylimidazole, 1-bromooctane, 

tetrafluoroboric acid (50 % in H2O), ethyl acetate, hexane, methylene chloride, and sodium 

sulfate. The chemicals were provided by Fluka and were used as received. 

 

2.2.2. Ionic liquid synthesis 

1-octyl-3-methylimidazolium tetrafluoroborate [OMIm][BF4] was synthesized using the 

approaches described elsewhere [25, 26]. The mixture of 1-bromooctane (27 g, 0.14 mol) and 

1-methylimidazole (10 g, 0.12 mol) was heated at 140 °C for 2 h under stirring and argon 

atmosphere. The viscous liquid of light brown color obtained was cooled to room temperature 

and washed with ethyl acetate-hexane mixture (3:1 (v/v), 3×100 mL). Residual solvents were 

removed under reduced pressure, and the obtained product was dissolved in 150 mL of water. 

Tetrafluoroboric acid (25 mL) was added to the solution, followed by stirring for 1 h. The water 

immiscible layer formed was extracted with methylene chloride (2×100 mL), and dried 

overnight with sodium sulfate. The solvent was distilled off, and the resulting ionic liquid was 

dried under a reduced pressure of 1 mbar at 80 °C for 12 h. The product yield was equal to 72%. 

The onset temperature of thermal degradation (Td) was equal 343 °C as determined by 

thermogravimetric analysis (TGA) under air. 1H NMR (300 МHz, DMSO-D6): δ = 0.86 (t, 3H, 
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CH3, J= 7.2 Hz), 1.25 (m, 10H, CH3(CH2)5), 1.78 (m, 2H, NCH2CH2), 3.85 (s, 3H, NCH3), 

4.16 (t, 2H, NCH2, J= 7.2 Hz), 7.67 (br s, 1H, C4–H), 7.74 (brs, 1H, C5–H), 9.06 (s, 1H, C2–H). 

19F NМR (188 MHz, DMSO-D6): δ = -148.8 (s, 4F, BF4). 

 

2.2.3. Preparation of CER/[OMIm][BF4] samples 

The blends of DCBE monomer with 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 wt% [OMIm][BF4] 

were stirred at T ≈ 20 °C for 3 min to obtain homogeneous mixtures, followed by a heating step 

at 150 °C for 6 h. 

 

2.2.4. Physico-chemical techniques 

1H NMR and 19F NMR techniques were used to characterize the ionic liquid. The spectra 

were recorded with a Varian (300 MHz) NMR spectrometer at 23 °C using DMSO-D6 as the 

deuterated solvent. 

The thermal stability of the ionic liquid was assessed by TGA under air atmosphere using 

a TA Instruments TGA Q-50 thermobalance over a temperature range from 25 to 700 °С at a 

heating rate of 10 °C·min–1. 

Differential scanning calorimetry (DSC) measurements were performed using a Perkin-

Elmer DSC-7 under nitrogen atmosphere, in a temperature range from 150 to 340 °C at a 

heating rate of 10 °C·min–1. The samples mass was about 6-9 mg. The post-curing conversion 

(αpost) of cyanate (O–C≡N) groups from DCBE was calculated from Equation 2-1 [27]: 

 

"#$%& = (') +
*,-

*,-.-
/ × 100    (2-1) 

where )(
tot

posttot

c
H

HH

D

D-D
a  [28] is the conversion after heating at 150 oC for 6 h, ΔHt is the 

reaction enthalpy at time t, ΔHtot is the total enthalpy of polycyclotrimerization of DCBE 

monomer (ΔHtot = 770 J g-1 [29]), and ΔHpost is the post-curing enthalpy, which was calculated 

from the exotherm area of cured sample divided by its mass. 
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Fourier transform infrared (FTIR) spectra were recorded between 4000 and 600 cm–1 

using a Bruker Tensor 37 spectrometer. For each spectrum, 16 consecutive scans with a 

resolution of 0.6 cm–1 were averaged. All spectra were recorded at room temperature. 

The mono mer conversion was determined from the absorbance variation of the bands 

with maxima at 2266 and 2235 cm–1, corresponding to the stretching vibrations of the cyanate 

groups. The stretching band of benzene ring at 1501 cm–1 was used as an internal standard. The 

conversion (αc) of cyanate groups after heating at 150 °C for 6 h was calculated                                      

from Equation 2-2: 

') = 1 2
3(-/445564478 3(9/445564478:

3(-/;89; 3(9/;89;:
× 100   (2-2) 

where A(t)2266-2235 is the area under absorption bands of O–C≡N groups at time t, A(t)1501 is the 

area under absorption band of benzene ring at time (t), and A(0) is the area under absorption 

bands of the corresponding groups in initial DCBE monomer. 

 

2.3. Results and discussion 

In the first stage the mixtures of DCBE monomer with different amounts of ionic liquid 

[OMIm][BF4] were heated at 150 °C for 6 h. In the presence of a catalyst, one such curing step 

permitted to attain a gel point [30]. 

 

2.3.1. DSC analysis 

Figure 2-1a exhibits the DSC thermograms for neat CER and CER/[OMIm][BF4] 

samples of different compositions cured at 150 °C for 6 h, and their main thermal characteristics 

are summarized in Table 2-1. For the neat CER sample, the exotherm maximum is associated 

with a temperature of post-curing (Tp1) equal to 294 °С with some weak shoulder at T ~239 °С. 

The shoulder may be attributed to the formation of the intermediate linear CER dimers, trimers 

and potentially other higher even-mers [31]. The CER/[OMIm][BF4] samples display bimodal 

curing profiles with distinct exothermic peaks corresponding to CER post-curing process at the 

selected heating rate (10 °C·min–1). For the CER/[OMIm][BF4] specimens, Tp1 was shifted 

toward much lower temperatures, i.e. 218-221 °C (Table 2-1). This fact attested that, in the 

presence of [OMIm][BF4], the polycyclotrimerization of DCBE mostly occurred at lower 
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temperatures. Yet, in the latter case, it should be noted that weak peaks (Tp2) appeared around 

279-282 °C, namely at a temperature similar to that of pure DCBE polymerization. One could 

suppose that the first exotherm maximum corresponded to the curing reaction catalyzed by 

[OMIm][BF4], while the second peak was attributed to a higher temperature thermal curing 

without catalyst participation. 
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Figure 2-1: DSC thermograms (a) and temperature dependence of post-curing conversion (b) 

for CER samples with different [OMIm][BF4] contents. 

 

Table 2-1: Thermal characteristics of CER/[OMIm][BF4] samples cured at 150 °C for 6 h as 

determined by DSC 

[OMIm][BF4]  

content [wt. %] 

Post-curing interval [oC] Tp1
b 

[oC] 

Tp2
c 

[oC] 

∆Hpost
d 

[J g-1] 

∆Hc
e 

[J g-1] Tonset Tend ∆Тa 

0.0 208 340 132 294 - 755 15 

0.5 160 318 158 219 280 296 474 

1.0 162 317 155 218 279 233 537 

2.0 166 309 143 221 280 223 544 

3.0 167 300 133 218 281 203 567 

4.0 171 268 97 220 282 120 650 

5.0 174 262 88 218 282 114 656 

a Post-curing temperature interval: ∆Т = Tend – Tonset; b Peak temperature of post-curing associated with first 

endotherm maximum; c Peak temperature of post-curing associated with second endotherm maximum;                     
d Post-curing enthalpy under selected conditions (from 150 °C to 340 °C at 10 °C min-1);  e Curing enthalpy 

after heating at 150 °C for 6 h: ∆Hc  = ∆Htot - ∆Hpost, ∆Htot = 770 J g-1 [29]. 
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Table 2-1 clearly shows that the reaction rate of CER curing was enhanced by the 

presence of [OMIm][BF4]. It is noteworthy that loading of [OMIm][BF4] was associated with 

a substantial narrowing the post-curing temperature interval from 179 °С for neat CER to                       

163-168 °С for CER/[OMIm][BF4] samples. Moreover, the enthalpy of post-curing process 

(∆Hpost) for pure DCDE was equal to 755 J·g–1. According to literature [29], the total enthalpy 

of polycyclotrimerization of DCBE monomer (∆Htot) was equal to 770 J·g–1. Therefore, one 

could conclude that the polymerization of neat DCBE practically did not occur after the 6 h-

curing stage at 150 °C. In sharp contrast, ∆Hpost for DCBE post-polycyclotrimerization in the 

IL-containing samples dramatically decreased with increasing [OMIm][BF4] contents, so in 

turn the curing enthalpy after the curing stage at 150 °C for 6 h (∆Hc) increased accordingly. 

Figure 2-1b displays the temperature dependence of post-curing conversion values (αpost) for 

neat CER and CER/[OMIm][BF4] samples. As stated above, the polymerization of DCBE 

monomer hardly occurred during thermal heating at 150 °C for 6 h, thus the corresponding 

curve started around 2 % conversion. When pure DCBE was post-cured from 150 to 340 °C 

with a heating rate of 10 °C min–1, an induction period was found to last around 7.5 min before 

reaching 225 °C, i.e. the temperature from which αpost appeared to sharply increase up to 100 

% conversion. Contrarily, the O–C≡N conversion (αc) in the CER/[OMIm][BF4] samples after 

heating at 150 °C for 6 h reached values as high as 62-85 %, depending on the [OMIm][BF4] 

content (Table 2-2).  

 

Table 2-2: Conversion values <(')/ for CER/[OMIm][BF4] samples after heating                                      

at 150 oC for 6 h. 

a The experimental error on values determined by DSC was estimated to be equal to 1 %. 
b The experimental error on values determined by FTIR was estimated to be equal to 2 %. 

[OMIm][BF4] content  

[wt. %] 

<')< [%] 

DSCa FTIRb 

0.0 2 1 

0.5 62 59 

1.0 69 65 

2.0 71 76 

3.0 74 77 

4.0 84 86 

5.0 85 87 
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Notably, complete conversion was not reached because of the low curing temperature 

(150 °C) as far as the final curing temperature should be equal to 230-270 °C, and even 

higher [1, 2]. When heating from 150 to 340 °C, the DCBE conversion values (αpost) further 

increased gradually to attain completion. In summary, the higher the [OMIm][BF4] content, the 

higher the O–C≡N conversion (αc) reached after heating at 150 °C for 6 h, and the shorter the 

time to reach complete conversion during post-curing process. 

 

2.3.2. FTIR analysis 

The peculiarities of DCBE polycyclotrimerization in the absence and in the presence of 

[OMIm][BF4] were also investigated using FTIR. Figure 2-2 shows the FTIR absorption 

spectra for uncured DCBE monomer (curve 0), neat CER (curve 0T), and CER/[OMIm][BF4] 

samples (curves 0.5T-5.0T) after heating at 150 °C for 6 h.  
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Figure 2-2: FTIR spectra of: DCBE monomer (curve 0) (a) and CER samples with different 

[OMIm][BF4] contents after heating at 150 °C for 6 h (curves 0T–5.0T, the number                

indicating the IL content); uncured DCBE (curve 0) (b) and CER/[OMIm][BF4]                         

sample (95/5 wt.%) before (curve 5.0) and after (curve 5.0T) the same heating stage in the 

spectral zone of 2370-2200 cm–1. 
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For neat CER, no visible changes in the intensity of the bands of cyanate groups at 2266-

2235 сm–1 were observed, and a very low conversion of DCBE could be suggested on the basis 

of the appearance of small bands at 1563 and 1366 сm–1, corresponding to C=N–C groups and 

N–C–O groups of cyanurate cycles, respectively. In contrast, concerning CER/[OMIm][BF4] 

samples, the intensity of the bands at 2266-2235 сm–1 decreased, and bands clearly appeared at 

1563 and 1366 сm–1, thus evidencing the formation of polycyanurate crosslinked structures. 

This conclusion was in a good agreement with the DSC data discussed above. The conversion 

values (αc) of O–C≡N groups associated with the different [OMIm][BF4] contents was 

calculated using FTIR data, and both sets of values obtained from FTIR and DSC data matched 

pretty well (see Table 2-2). 

Both FTIR and DSC results clearly evidenced an acceleration effect of [OMIm][BF4] on 

the CER formation during curing process at 150 °C for 6 h. Interestingly, the catalytic effect 

was already noticeable at the lowest content of [OMIm][BF4] investigated, i.e. 0.5 wt.%. This 

could be attributed to the presence of an acid center in the ring of the [OMIm] cation, which 

might accelerate the polycyclotrimerization of the dicyanate monomer. 

 

2.3.3.Proposed mechanism of the [OMIm][BF4]-catalyzed cyclotrimerization of DCBE 

It has been well investigated that Lewis acids, such as TiCl4, could be used as catalysts 

for polycyclotrimerization of dicyanate esters [32]. Martin and coworkers [33, 34] reported the 

appearance of bands around 2300 сm–1 when dicyanates were treated with an excess of 

Lewisacid. A strong band at 2320 сm–1 indeed appeared upon addition of 1-5 equiv. of TiCl4 to 

bisphenol A dicyanate ester; no ‘free’ cyanate was detectable in these cases [32]. The band at 

2320 сm–1, attributed to a cyanate-catalyst complex, was formed rapidly on mixing before 

gradually disappearing at the end of the reaction. Therefore, the band around 2300-2320 сm–1 

was ascribed to a simple cyanateLewis acid complex [32-34]. 

Likewise, in our investigation, we proposed a mechanism involving a cyanate-ionic liquid 

complex. Indeed, the appearance of a shoulder at 2330 сm–1 in the FTIR spectra after mixing 

DCBE with 5 wt% of [OMIm][BF4] was observed in Figure 2-2b (curve 5.0). After heating the 

mixture at 150 °C for 6 h and reaching high conversion of cyanate groups, this shoulder 

disappeared (curve 5.0T). We proposed a possible mechanism for the DCBE/[OMIm][BF4] 

system in Figure 2-3. First, a pseudo-nitrillium ion 2 was formed when mixing dicyanate1with 
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[OMIm][BF4] via the involvement of a [CN]δ+–[OMIm]δ– complex whose characteristic FTIR 

absorption band could be assigned to the shoulder at 2330 cm–1. This cyanateionic liquid 

complex was then attacked by a ‘free’ cyanate monomer 1, thus leading to the formation of a 

nitrillium ion 3. The latter was attacked by a ‘free’ dicyanate molecule 1 with formation of a 

nitrillium ion 4, which was transformed into an acyclic trimer 5 with [OMIm][BF4] release, and 

finally into a cyclotrimer (cyanurate) 6. Taking in account the existence of an acid center in the 

ring of 1-octyl-3-methylimidazolium cation (i.e., C–H bond in position 2 imparts slight acidity); 

we could suppose that this center indeed catalyzed the cyclotrimerization reaction of DCBE. It 

has to be noted here that a small shoulder at 2330 cm–1 is also observed in the FTIR spectrum 

of the DCBE. It is known that phenolic groups catalyze polycyclotrimerization of CER and it 

occurs also through formation of the intermediate structure, which disappear after formation of 

triazine cycle and reclaiming phenol [1]. So the traces of bisphenol E, left after DCBE synthesis, 

could form the dimer structures with cyanate ester and this complex may be also characterized 

by the shoulder at 2330 cm–1 in FTIR spectrum of neat cyanate ester. 

 

Figure 2-3: Proposed mechanism for the [OMIm][BF4]-catalyzed cyclotrimerization of DCBE.  
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2.4. Conclusions 

The [OMIm][BF4]-catalyzed polycyclotrimerization of DCBE was investigated through 

DSC and FTIR analyses. A dramatic influence of the ionic liquid on CER curing was 

demonstrated. For samples containing [OMIm][BF4], polycyclotrimerization of DCBE took 

place even at the heating stage at 150 °C, while for pure DCBE polycyclotrimerization 

practically did not occur. The conversion of DCBE increased with increasing [OMIm][BF4] 

contents in the temperature range studied. A plausible mechanism based on the formation of a 

[CN]δ+–[OMIm]δ– complex was proposed to account for the acceleration effect of the ionic 

liquid on the curing process associated with CERs. We assume that one such catalytic effect of 

imidazoliumbased ILs will take place for any dicyanate mono -mer. The effect of other IL types 

on kinetics of polycyclotrimerization of dicyanate esters has to be further studied. 

It should be emphasized that [OMIm][BF4] displayed a catalytic activity in the absence 

of any additional organic solvent or co-catalyst. Interestingly, the ionic liquid is not destroyed 

during the CER synthesis. 
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CHAPTER 3 

Effect of Ionic Liquids on Kinetic Peculiarities of 

Dicyanate Ester Polycyclotrimerization and on 

Thermal and Viscoelastic Properties of Resulting 

Cyanate Ester Resins 

 

Abstract: A strong catalytic effect of 1.0 wt.% ionic liquids (ILs) on kinetic peculiarities of 

dicyanate ester of bisphenol E (DCBE) polycyclotrimerization was evidenced, and structure-

property relationships of resulting densely cross-linked cyanate ester resins (CERs) were 

investigated. Three different ILs with contrasted reactivity were employed as a catalysts: an 

aprotic IL, i.e. 1-octyl-3-methyl imidazolium tetrafluoroborate ([OMIm][BF4]), a protic IL, i.e. 

2-(hydroxyethylamino) imidazolinium chloride ([HEAIm][Cl]), and a protic polymeric IL, i.e. 

poly(hexamethylene guanidine) toluene sulfonate ([PHMG][TS]). Both [HEAIm][Cl] and 

[PHMG][TS] were reactive towards DCBE monomer, whereas [OMIm][BF4] was chemically 

inert, as confirmed by FTIR spectroscopy. Noticeably, the conversion (ac) of cyanate groups in 

the presence of ILs dramatically increased, and a significant dependence of ac values on   IL 

chemical structure was found. The corresponding mechanisms of DCBE polycyclotrimerization 

in the presence of different ILs were proposed. All the CER/IL networks exhibited a high 

thermal stability inherent to neat CER, as shown by TGA, whereas unexpected significant 

changes of the viscoelastic characteristics for CER/IL networks compared to pure CER 

analogue was observed using DMTA. 

 

A. Fainleib, O. Grigoryeva, A.Vashchuk, O. Starostenko, S. Rogalsky, A. Rios de Anda, T-Th-T. Nguyen, 

D. Grande: Effect of ionic liquids on kinetic peculiarities of dicyanate ester polycyclotrimerization and on thermal 

and viscoelastic properties of resulting cyanate ester resins. eXPRESS Polymer Letters, submitted. 
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3.1. Introduction 

Cyanate ester resins (CERs) represent a family of thermosetting polymers possessing 

attractive intrinsic features, such as excellent dimensional stability, high glass transition 

temperature (Tg > 250 °С), low dielectric constants (2.5-3.2), flame-retardancy, and high 

adhesion to conductor metals and composites. Therefore, they are promising materials for 

aerospace and microelectronic applications, especially as polymer matrices for structural 

composites, adhesives, potting resins, and coatings that work under severe conditions (high 

temperature, humidity, corrosive media, etc) [1-6]. Dicyanate ester monomers undergo thermal 

polycyclotrimerization to generate high Tg polycyanurate networks (PCNs), i.e. cyanate ester 

resins (CERs), without releasing volatile products. Figure 3-1 describes the reaction scheme of 

polycyclotrimerization of one of the widely used monomers, i.e. dicyanate ester of bisphenol E 

(DCBE). 

 

Figure 3-1: Reaction scheme of DCBE polycyclotrimerization. 

 

Dicyanate ester homopolymerization occurs at high temperature in the presence or the 

absence of a specific catalyst. The rate of non-catalyzed polycyclotrimerization is generally 
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slow, and it depends on the concentration of impurities (traces of phenols and other residues 

from synthesis) [1]. Using a catalyst is necessary to achieve a controlled polycyclotrimerization 

process, which is a key factor for producing materials with excellent properties. This reaction 

is generally catalyzed by a combination of salts of transition metals, like acetyl acetonates of 

Cu, Co, Zn, Fe, Mn, Cr, etc. and an active hydrogen containing initiator like nonylphenol. 

Because of the well-known toxicity of phenolic compounds, attempts to find new effective 

catalysts for dicyante ester polycyclotrimerization are of scientific and practical interest. In this 

regard, Throckmorton and Palmese [7] have found an acceleration of cyanate ester trimerization 

by dicyanamide-containing ionic liquids (ILs). 

ILs are salts with melting points at temperatures below 100 ○C. They have attracted much 

attention due to their interesting properties, including negligible vapour pressure, large choice 

of salts liquid at room temperature, tunable physico-chemical characteristics, excellent thermal 

and chemical stability, selective solubility, ease of synthesis and good stability to oxidative and 

reductive conditions [8]. Since they are non-flammable, non-volatile and recyclable, they are 

greener alternatives to conventional organic solvents. Furthermore, they may be used as 

effective and reusable catalysts in some polymerization reactions [9-13] and as initiators of 

free-radical [14, 15] or cationic [16, 17] polymerization processes. Thus, ILs have attracted 

widespread interest in polymer chemistry, due to their versatile properties [18, 19]. In addition, 

ILs can also be suitable as porogens for producing nanoporous films and membranes, due to 

their high thermal stability and chemical inertness. In this regard, our teams have indeed 

successfully used 1-heptyl pyridinium tetrafluoroborate [HPyr][BF4] as inert porogenic agent 

to produce nanoporous thermostable CER films [20]. 

Recently, our consortium has also found that an addition as small as 1.0 wt.% of the latter 

aprotic IL significantly accelerated the kinetics of DCBE polycyclotrimerization, which was 

explained by the formation of a [CN]δ+[HPyr]δ– complex as a key intermediate [21]. 

In the present paper, we thoroughly investigate the catalytic behaviour of three ILs with 

contrasted reactivity, namely an aprotic IL, i.e. [OMIm][BF4], a protic IL,                                             

i.e. 2-(hydroxyethylamino) imidazolinium chloride ([HEAIm][Cl]), and a protic polymeric IL, 

i.e. poly(hexamethylene guanidine) toluene sulfonate ([PHMG][TS]). A comprehensive 

investigation of their effect on kinetic peculiarities (induction time, reaction time, monomer 

conversion degree, etc) of DCBE polycyclotrimerization as well as on thermal stability and 

viscoelastic properties of the resulting CERs is addressed. 
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3.2. Experimental 

3.2.1. Materials 

1,1-bis(4-cyanatophenyl) ethane (dicyanate ester of bisphenol E, DCBE), under the trade 

name PRIMASET™ LECy was kindly supplied by Lonza (Switzerland), and was used as 

received. The following chemicals (Fluka) were used as received for the synthesis of ILs:                     

1-methylimidazole, 1-bromooctane, 2-ethanolamine, tetrafluoroboric acid (50 % in H2O), ethyl 

acetate, hexane, methylene chloride, sodium sulfate, isopropanol, potassium hydroxide, 

guanidine hydrochloride, hexamethylenediamine, 0.1 N sodium chloride, sodium 

toluenesulphonate, and ethanol. 

 

3.2.2. Synthesis of ionic liquids 

3.2.2.1. Synthesis of 1-octyl-3-methyl imidazolium tetrafluoroborate ([OMIm][BF4]) 

[OMIm][BF4] ionic liquid was synthesized using literature methods previously described 

[22,23]. The stirred mixture of 1-bromooctane (27 g, 0.14 mol) and                                                                   

1-methylimidazole (10 g, 0.12 mol) was heated at 140 °C for 2 h under argon atmosphere. The 

viscous liquid of light brown color obtained was cooled to room temperature and washed with 

ethyl acetate-hexane mixture (3:1 (v/v), 3×100 mL). Residual solvents were removed at reduced 

pressure and the obtained product was dissolved in 150 mL of water. Tetrafluoroboric acid (25 

mL) was added to the solution followed by stirring for 1 h. The immiscible aqueous layer 

formed was extracted with methylene chloride (2×100 mL), and dried overnight with sodium 

sulfate. The solvent was distilled off, and the resulting ionic liquid was dried under reduced 

pressure of 1 mbar at 80 °C for 12 h. The product yield was equal to 72 %. 1H NMR (300 MHz, 

CDCl3): δ (ppm): 0.86 (t, 3H, CH3, J=7.2 Hz), 1.25-1.31 (m, 9H, CH2), 1.86 (m, 3H, CH2), 3.94 

(s, 3H, NCH3), 4.16 (t, 2H, NCH2, J=7.2 Hz), 7.27-7.38 (m, 2H, NC(H)C(H)N), 8.78 (s, 1H, 

NC(H)N). 19F NMR (188 MHz, CDCl3):  δ (ppm): -151.4. 1H NMR (300 МHz, DMSO-d6, 

TMS): δ (ppm): 0.85 (t, 3H, CH3), 1.25 (m, 10H, CH3(CH2)5), 1.78 (m, 2H, NCH2CH2), 3.85 

(s, 3H, NCH3), 4.16 (t, 2H, NCH2), 7.67 (br s, 1H, C4-H), 7.74 (br s, 1H, C5-H), 9.06 (s, 1H, 

C2-H). 19F NМR (188 MHz, DMSO-d6, CFCl3): δ (ppm): -148.8 (s, 4F, BF4). 
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3.2.2.2. Synthesis of 2-(hydroxyethylamino) imidazolinium chloride ([HEAIm][Cl]) 

2-methylmercaptoimidazoline-2-chlorohydrate was obtained according to a literature 

method [24]. 1H NMR (300 MHz, DMSO-d6): δ (ppm): 2.71 (s, 3H, CH3), 3.84 (s, 4H, CH2), 

10.64 (2H, br s, NH). 

The stirred mixture of 2-methylmercaptoimidazoline-2-chlorohydrate (5 g, 0.032 mol) 

and 2-ethanolamine (2.1 g, 0.035 mol) in 50 mL of isopropanol was heated to boiling for 6 h. 

Methylmercaptane formed as by-product was absorbed by 20 % water solution of potassium 

hydroxide. The solvent was removed at reduced pressure and the obtained solid residue of 

[HEAIm][Cl] was purified by double recrystallization from isopropanol. Yield: 85 %. 1H NMR 

(300 MHz, DMSO-d6): δ (ppm): 3.25 (m, 2H, CH2OH), 3.56 (m, 6H, NHCH2CH2OH),            

7.64 (4H, br s, NH, OH)  

 

3.2.2.3. Synthesis of poly(hexamethylene guanidine) toluene sulfonate ([PHMG][TS]) 

The mixture of guanidine hydrochloride (10 g, 0.104 mol) and hexamethylene diamine 

(11.7 g, 0.1 mol) was heated at 100 °C for 4 h under constant stirring. Further, the reaction was 

carried out for 4 h at 140 °C, 4 h at 180 °C and 3 h at 200 °C to obtain a highly viscous liquid. 

After cooling the reaction mixture to room temperature, the vitreous solid of 

poly(hexamethylene guanidine) hydrochloride obtained ([PHMG][Cl]) was dissolved in water 

(150 mL), filtered and precipitated by addition of saturated water solution of sodium chloride 

(50 mL). The polymer was isolated by decantation of water solution, dried at 140 °C for 24 h 

and ground in a porcelain mortar. The intrinsic viscosity was equal to 7 cm3/g for [PHMG][Cl] 

solution in 0.1 M sodium chloride at 25 °C. 1H NMR (300 MHz, DMSO-d6): δ (ppm): 1.3-1.44 

(m, 8H, (CH2)4,), 3.14 (m, 4H, (N-CH2)2), 7.15-7.8 (br s, 4H, C-NH, C=NH2
+). Elemental 

analysis: (C7H16N3Cl)x (177.5)x: calculated (%): C 47.3, H 9.0, N 23.6, Cl 20.0; found (%): C 

46.7, H 8.6, N 24.1, Cl 20.6. 

Sodium toluene sulfonate (11.4 g, or 0.058 mol) was added to a solution of [PHMG][Cl] 

(10 g, 0.056 mol) in 100 mL of ethanol, and the mixture was stirred for 20 h at room 

temperature. The resulting sodium chloride precipitate was filtered off, and the filtrate was 

poured into water (300 mL). The white slurry was separated by decantation, followed by 

washing with water. It was dried at 120-130 °C for 24 h and ground to obtain [PHMG][TS] as 

a powder. 1H NMR (300 MHz, DMSO-d6): δ (ppm): 1.24 (m, 4H, (CH2)2), 1.42 (m, 4H, 
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NCH2CH2), 2.29 (s, 3H, TsO-CH3), 3.14 (m, 4H, (NCH2), 7.14 (d, 2H, H-3, H-5), 7.3-7.35 

(br s, 4H, C-NH, C=NH2
+), 7.53 (d, 2H, H-2, H-6). Elemental analysis: (C14H23N3O3S)x (313)x: 

calculated: C 53.6, H 7.3, N 13.4, S 10.2; found: C 53.1, H 7.0, N 13.8, S 10.5. 

The chemical structure and some physico-chemical characteristics of individual 

components used in this study are summarized in Table 3-1. The solubility parameters (δ) of 

DCBE and ILs were calculated according to Fedor's Group Contribution Method [25]. 

 

Table 3-1: Chemical structure and basic physico-chemical characteristics of components under 

investigation 

Component Structure Characteristics 

1,1-bis(4-cyanatophenyl) 

ethane 

DCBE 
 

M = 264 g/mol 

Tm » 29 °С 

Td » 434 °С 

d = 24.5 (J/cm3)1/2 

1-octyl-3-

methylimidazolium 

tetrafluoroborate 

[OMIm][BF4]  

M = 282 g/mol 

Tm » -88 °С 

Td » 401 °С 

d = 18.8 (J/cm3)1/2 

2-(hydroxyethylamino) 

imidazolinium chloride 

[HEAIm][Cl] 

 

M  = 164 g/mol 

Tm » 97-98 °С 

Td » 244 °С 

d = 28.9 (J/cm3)1/2 

Polyhexamethylene 

guanidine toluene 

sulfonate 

[PHMG][TS] 
 

Mn = 12,520 g/mol (n ~ 40-50) 

Tm » 110-115 °C 

Td » 371 °С 

d = 25.6 (J/cm3)1/2 

 

3.2.3. Preparation of CER-based networks 

Mixtures of DCBE with 1.0 wt.% IL were first stirred until homogeneous state as follows. 

DCBE monomer was mixed with [OMIm][BF4], [HEAIm][Cl] or [PHMG][TS] at  T ~ 150 °C 
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for ~3 min, then the homogeneous DCBE/IL mixtures were polymerized by a step-by-step 

curing procedure with the following successive heating conditions: 150 °C/8 h, 180 °C/3h, 210 

°C/3 h, 230 °C/1 h. 

The effect of IL chemical structure on the resulting CER/[OMIm][BF4], 

CER/[HEAIm][Cl] or CER/[PHMG][TS] networks was studied by FTIR to detect possible 

chemical reactions between OCN groups of DCBE and functional groups of ILs. A model 

composition for DCBE/IL equal to 50/50 wt.% was used at 150 °C for 3 min to obtain 

homogeneous mixtures, followed by a step-by-step curing procedure with the following heating 

conditions: 150 °C/8 h, 180 °C/3 h, 210 °C/3 h, 230 °C/1 h. 

 

3.2.4. Physico-chemical techniques 

1H NMR and 19F NMR techniques were used to characterize the ionic liquids synthesized. 

The spectra were recorded with a Varian (300 MHz) NMR spectrometer at 23 °C using DMSO-

d6 as the deuterated solvent. 

Elemental analysis of the ionic liquids synthesized was performed using classical 

approaches described elsewhere [24]. 

For kinetic measurements by FTIR, neat DCBE or DCBE/IL mixtures of 99/1 wt.% 

compositions were poured directly onto NaCl windows, followed by their isothermal heating 

in a temperature-controlled oven at 150 °C for 8 h with periodic sampling out (every 30 min). 

FTIR spectra were recorded at room temperature between 4000 and 600 cm-1 using a Bruker 

Tensor 37 spectrometer. For each spectrum, 32 consecutive scans with a resolution of 4 cm-1 

were averaged. 

The IR band at 1500 cm-1 of benzene ring vibrations was used as an internal standard. 

DCBE conversion was determined by monitoring the disappearance of –O–C≡N stretching 

band at 2266 cm-1. The conversion (ac) of cyanate groups was calculated using Equation 3-1: 

100)
/

/
1(

1500)0(1500)(

2266)0(2266)(
c ´-=

II

II

t

ta              (3-1) 

where I(t)2266 is the intensity of C≡N vibration band in –O–C≡N at 2266 cm–1 at time t; I(t)1500 is 

the intensity of carbon-carbon stretching vibrations in aromatic ring band at  1500 cm–1 at time 
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t; I(0) is the intensity of corresponding vibration bands in the initial DCBE-containing mixture. 

Thermogravimetric analysis (TGA) measurements were performed using a Setaram 

SETSYS evolution 1750 thermobalance. Samples were heated in a platinum crucible from 20 to 

700 °C at a heating rate of 10 °C∙min−1 under argon atmosphere. The sample mass was about 

10 mg. 

Dynamic mechanical thermal analysis (DMTA) was carried out using a DMA-Q800 

equipment (TA Instruments) in a temperature range from 20 to 350 °C at a heating rate of 

4 °C/min and frequency values of 1, 3, 5, 10, 15 and 20 Hz using single cantilever bending 

mode. Rectangular samples of size 40×5×1 mm were tested. 

The apparent activation energy (∆Ea) for a relaxation was determined by applying the 

Vogel-Fulcher-Tammann (VFT) equation as follows (Equation 3-2) [26-29]: 

)
)(

exp(0

VFT

a

TTR

E
ff

-
D

-=                                                     (3-2) 

where f represents the frequency, fo is analogous to the rate constant and pre-exponential factor 

of Arrhenius Equation, R is the gas constant (R = 8.314·10-3 kJ·mol-1·K-1), T stands for absolute 

temperature, TVFT is about 50 °C lower than the a transition temperature Ta. 

The shift of a  relaxation temperatures (Ta1 and Ta2) due to changes in the test frequencies 

(f1 and f2) allows for the determination of ∆Ea values by using Equations 3-3, 3-4 and 3-5 [30]: 
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3.3. Results and discussion 

3.3.1. Kinetic investigation by FTIR 

Kinetics of neat CER formation and DCBE polymerization in the presence of [OMIm][BF4], 

[HEAIm][Cl] or [PHMG][TS] was investigated by FTIR. The normalized FTIR spectra of 

corresponding networks during their isothermal curing at 150 °C are shown in Figure 3-2.  
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Figure 3-2: Typical FTIR spectra in 2320-1290 cm-1 region during curing procedure for: neat 

CER (a), CER/[OMIm][BF4] (b), CER/[HEAIm][Cl] (c), and CER/[PHMG][TS] (d). The 

spectra were shifted vertically for the sake of clarity. 

 

The absorption doublet at 2266-2237 cm-1 corresponding to -O-CºN group stretching 

vibrations diminished with the curing time for pure CER as well as for all the CER/IL networks, 

while the bands at 1565 and 1369 сm–1, respectively corresponding to valence vibrations of 

C=N bonds (nC=N) in C=N–C groups and N–C bonds (nN–C) in N–C–O groups of cyanurate 

cycles, appeared [1, 2]. The time dependence of cyanate group conversion (ac) and reaction 
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rate (W = da/dt) for neat CER and CER/IL networks is shown in Figure 3-3. For pure CER, 

the induction period of DCBE polycyclotrimerization was equal to about 60 min, whereas for 

CER/[OMIm][BF4], CER/[HEAIm][Cl] and CER/[PHMG][TS], the induction period was by 

1.5-3.0 times shorter, depending on IL structure (Table 3-2). 
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Figure 3-3: Kinetic curves at T = 150 oC: time dependence of (a) conversion (ac) of –OCN 

groups from DCBE and (b) reaction rate (da/dt). Neat CER (1), CER/[OMIm][BF4] (2), 

CER/[HEAIm][Cl] (3), and DCBE/[PHMG][TS] (4). 

 

Table 3-2: Kinetic parameters of DCBE polymerization in the absence and the presence of            

1.0 wt.% IL 

Network ti 

[min] 

Wmax ∙103 

[min-1] 

tmax 

[min] 

ac 

[%] 

Neat CER 60 8.4 89 89 

CER/[OMIm][BF4] 20 10.2 52 91 

CER/[HEAIm][Cl] 34 9.7 68 82 

CER/[PHMG][TS] 40 9.2 83 78 

ti : induction period; Wmаx : maximal rate of reaction (W = da/dt); tmax : time to maximal rate of reaction;                     

ac : maximal conversion of -O-CºN groups 

 

In addition, the maximal rate of reaction, Wmax, increased by 10-20 % and the time to 

maximal rate of reaction, tmax, decreased by 7-42 % (Table 3-2). Therefore, the introduction of 
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ILs into the DCBE reaction medium significantly accelerated the conversion of –O–C≡N 

groups from the early stages of CER network formation. It should be noticed that conversion 

of –O–C≡N groups reached the value of ac~ 0.98 for all the CER networks synthesized after 

the complete curing schedule. Further, for all CER-based systems, the reaction rate increased 

dramatically in the kinetic-controlled stage (linear part of conversion vs. time curve in             

Figure 3-3a) until it reached a maximum Wmax (Figure 3-3b). After reaching the gel point, the 

reaction rate decreased drastically as the polymerization process became diffusion-limited. For 

all the CER/IL networks, the reaction was was faster compared to neat CER (completion after 

about 360 min). 

 

3.3.2. CER/IL curing mechanisms 

The curing mechanisms of CER/IL composites were studied on model reactions starting 

from DCBE/IL mixtures with a 50/50 wt.% composition. The spectrum of CER/[OMIm][BF4] 

showed only characteristic absorbance bands of both individual components (see Figure 3-4, 

curve 3) that evidenced the chemical inertness of [OMIm][BF4] towards DCBE. In a previous 

work [31], we have already proposed the mechanism of DCBE polymerization in the presence 

of [OMIm][BF4] via the formation of a [CN]δ+–[OMIm]δ– complex as a key                                 

intermediate (Figure 3-5). 
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Figure 3-4: FTIR spectra in 1780-1350 cm-1 

region for: (1) neat CER, (2) [OMIm][BF4], (3) 

CER/[OMIm][BF4] 50/50 wt.%, (4) [HEAIm][Cl], 

(5) DCBE/[HEAIm][Cl] 50/50 wt.% before curing, 

(6) CER/[HEAIm][Cl] 50/50 wt.% after curing, (7) 

[PHMG][TS], (8) DCBE/[PHMG][TS] 50/50 

wt.% before curing, (9) CER/[PHMG][TS] 50/50 

wt.% after curing. The spectra were shifted 

vertically for the sake of clarity. 



 

 

57 
 

 

Figure 3-5: Proposed mechanism for [OMIm][BF4]-catalyzed DCBE polycyclotrimerization. 

 

One could suppose the same mechanism for DCBE polymerization in the presence of 

[HEAIm][Cl]. However, in the latter case, the competition between the catalytic complex 

formation and the covalent bonding through the reaction of cyanate groups of DCBE with –OH 

and >NH groups of [HEAIm][Cl] should be considered. Thus, a three-step mechanism was 

proposed for the formation of cyanurate cycles from DCBE polymerization being catalyzed by 

[HEAIm][Cl] (Figure 3-6). Our hypothesis was based on the well-known mechanisms of 

polycyclotrimerization of CERs in the presence of hydroxy [1, 32-35] and amino [36, 37] 

compounds. First, during the mixing procedure, the –OCN groups of DCBE could react with 

hydroxyl groups of [HEAIm][Cl] with formation of imidocarbonate O–C(=NH)–O fragment 

(Figure 3-6, compound 2), which further reacted with a second DCBE molecule with formation 

of a stabilized dimer (Figure 3-6, compound 3). A third DCBE molecule reacted with the dimer 

3, thus giving rise to the intermediate 4, which was further transformed into the triazine ring. 

This transformation could be potentially followed by two mechanisms: either [HEAIm][Cl] 

release leading to product 5 (cyanurate cycle) or [HEAIm][Cl] incorporation directly into the 

cyanurate network (Figure 3-6, compound 6) with release of ROH (monocyanate of bisphenol 

A). According to Grigat and Putter [36] as well as our previous works [33-35], the more acidic 

phenol compared to alcohol was released, and thus, a substituted triazine ring should be 

obtained with the release of a monophenol derived from DCBE. Moreover, we presumed that 
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[HEAIm][Cl] could also increase the polarization of the C=N bond in the imidocarbonate 

(Figure 3-6, compound 2), thus making the carbon atom of this functional group more 

electrophilic. This was confirmed by FTIR through the appearance of a shoulder at 1440 cm-1 

attributed to N–С=О asymmetric vibrations along with a band at 1706 cm-1, which could be 

related to С=О stretching vibrations in the urea linkage of imidazolidinone (Figure 3-6, 

compound 4’; see Figure 3-4, curve 6) [38]. The formation of compound 4’ from 2 might be 

possible upon releasing of monophenol derivative through the formation of iminooxazolidine 

3’, which could also be accompanied by its partial isomerization into compound 4’. 

Furthermore, the reaction between the secondary >NH groups of [HEAIm][Cl], which were 

less reactive than –OH groups, was possible as well. The occurrence of structure 3’ was 

confirmed by FTIR with the appearance of a shoulder at 1633 cm-1 assigned to the N–H in the 

isourea linkage [39] (see Figure 3-4, curve 6), which seemed to be formed together with the 

cyanurate-based compounds (Figure 3-6, compounds 5 and 6). Accordingly, hybrid chemical 

structures with additional network junctions could be produced for the CER/[HEAIm][Cl] 

system. 

 

Figure 3-6: Proposed mechanism for [HEAIm][Cl]-catalyzed DCBE polycyclotrimerization. 
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The proposed mechanism of DCBE polycyclotrimerization process in the presence of 

[PHMG][TS] was also based on the reactivity of secondary amino groups towards cyanate 

groups, as represented schematically in Figure 3-7. The new strong absorption FTIR bands 

around 1565 and 1369 cm-1 could be attributed to the C=N–C and O–C–N stretching vibrations 

in cyanurate groups. Two routes of grafting of [PHMG][TS] polymer chains onto the CER 

network structure were possible. Meanwhile, the existence of a new group conjugated to a 

triazine ring was proved by the FTIR bands at around 1544 cm-1 (vC=N) [40] and 1512 cm-1 

attributed to aromatic ring stretching vibrations (Figure 3-7, compound 3’; see Figure 3-4, 

curve 9). The absorption band at 1391 cm-1 could be assigned to the stretching vibrations                

vN–C [41] associated with groups bridging the triazine rings (Figure 3-7, compound 4). All these 

observations confirmed the [PHMG][TS] incorporation into the polycyanurate network 

structure. 

 

Figure 3-7: Proposed mechanism for [PHMG][TS]-catalyzed DCBE polycyclotrimerization. 

 

Additionally, a band at 1772 cm-1 attributed to С=О stretching vibrations appeared in the 

FTIR spectra of both initial DCBE/[PHMG][TS] mixture and CER/[PHMG][TS] after 

complete curing (see Figure 3-4, curves 8 and 9). We could suppose that the reaction of cyanate 

groups from DCBE and CER with traces of water [42] or phenolic impurity could occur to 

generate an imidocarbonate intermediate (Figure 3-8). 
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Figure 3-8: Chemical reaction between cyanate groups of DCBE and traces of water or phenol 

impurity accompanying the DCBE monomer. 

 

3.3.3. Thermal stability of CER-based networks by TGA 

The thermal stability of CER/IL networks as well as individual components (i.e., neat 

CER and ILs) was investigated by TGA (Figure 3-9, Table 3-3). It is noteworthy that all 

CER/ILs networks exhibited high thermal stability, similarly to pure CER, as no visible mass 

loss was observed at temperatures below 420 °C. For all the CER-based networks, the main 

degradation stage occurred in a temperature range from Td onset ≈ 420-427 °C to                                          

Td end ≈ 450-460 °C, depending on IL structure. One could also observe some weak degradation 

stage in a temperature range of T ≈ 500-640 °C for all the samples under investigation, which 

could be attributed to CER mass loss due to the elimination of alkenes and hydrogen, leaving a 

carbonaceous char containing residual oxygen and nitrogen [43, 44]. 
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Figure 3-9: TGA curves for CER-based networks (a) and pure ILs (b): neat CER (-), 

CER/[OMIm][BF4] (-●-), CER/[HEAIm][Cl] (-■-), CER/[PHMG][TS] (-▲-),               

[OMIm][BF4] (-○-), [HEAIm][Cl] (-□-), and [PHMG][TS] (-∆-). 
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Table 3-3: Thermal stability of CER-based networks and pure ILs as investigated by TGA 

Sample 
Td onset 

a 

[○C] 

Td max 
b 

[○C] 

Dm c 

[%] 

Char residue at 680 ○C 

[%] 

Neat CER 427 441 33.7 47.5 

CER / [OMIm][BF4] 425 443 33.1 46.7 

CER / [HEAIm][Cl] 424 443 35.1 45.7 

CER / [PHMG][TS] 420 438 34.3 45.4 

[OMIm][BF4] 396 439 91.3 0.0 

[HEAIm][Cl] 240 295 94.2 1.3 

[PHMG][TS] 372 403 78.1 13.0 

a Td onset: onset temperature for intensive degradation stage considered; b Td max: temperature of maximum 

degradation rate for intensive stage considered; c Dm: mass loss for intensive degradation stage considered 

 

The thermal stability of CER/[OMIm][BF4] and CER/[HEAIm][Cl] was quite similar to 

that of neat CER (see Figure 3-9, Table 3-3). This meant that using 1.0 wt.% of corresponding 

ILs did not change significantly the chemical structure and cross-linking density of the CER 

network. We considered that one such behaviour resulted from the fact that [OMIm][BF4] had 

no chemical bonds with the CER network (cf. Figure 3-5). [HEAIm][Cl] had a covalent 

grafting with the cyanurate network but the molecular mass of the IL molecules was too small 

(M = 164 g/mol, see Table 3-1), and above all, an amount of 1.0 wt.% was too low to 

significantly change the chemical structure and notably the cross-linking structure of the CER 

matrix. Interestingly, despite a thermal stability of pure [HEAIm][Cl] substantially lower than 

that of other ILs and neat CER (Figure 3-9b,    Table 3-3), the careful analysis of the TGA 

curve of the CER/[HEAIm][Cl] network did not show the corresponding mass loss                      

(i.e. 1.0 wt.%) of the IL in the temperature range in which the main degradation of pure IL 

occurred. Therefore, the highly crosslinked CER network might prevent the IL from regular 

thermal degradation, probably due to its chemical incorporation into the CER matrix (see 

Figure 3-6). On the contrary, the CER/[PHMG][TS] network was characterized by a lower 

thermal stability compared to the other analogues (cf. Table 3-3). Obviously enough, one such 

behaviour might arise from the formation of a CER network with lower cross-linking density 

and structural regularity, due to the chemical incorporation of relatively long linear polymer 

fragments of [PHMG][TS] (Mn = 12,520 g/mol, see Table 3-1) into the CER matrix. 
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3.3.4. Viscoelastic properties of CER-based networks by DMTA 

Figure 3-10 shows the temperature dependence of storage modulus (E′) and loss factor 

(tanδ) for neat CER and CER/IL networks. All the samples were characterized by                                  

high a relaxation temperature values (Ta > 240 °C, Table 3-4), as typically found for 

thermostable cross-linked polymers, due to high temperature resistance of cross-links and high 

cross-linking density of polymer networks [1-6, 32-35]. Unpredictably, a significant effect of 

the low IL content (i.e. 1.0 wt.%) on the viscoelastic properties of all CER/IL networks was 

found compared to those of pure CER (Figure 3-10, Table 3-4).  
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Figure 3-10: Plot of E′ (a) and tand (b) as a function of temperature at 1 Hz for: CER (-), 

CER/[OMIm][BF4] (-●-), CER/[HEAIm][Cl] (-■-), and CER/[PHMG][TS] (-▲-). 

 

Table 3-4: Viscoelastic properties of CER-based networks as investigated by DMTA. 

Network Ta 
a
 

[○C] 

tandmax ∆Tb
 

[○C] 

DEa 
c 

[kJ/mol] 

E′ [GPa] Tpc(onset) 
d 

[○C] 20 °C 200 °C 250 °C 

CER 263 0.38 33 292 2.2 1.6 0.60 288 

CER/[OMIm][BF4] 262 0.52 40 286 2.1 1.4 0.56 277 

CER/[HEAIm][Cl] 248 0.67 40 255 2.3 1.5 0.10 268 

CER/[PHMG][TS] 242 0.68 42 196 1.6 0.8 0.02 260 

a Ta: a relaxation temperature; b ∆T: temperature width at ½ tan dmax height; c DEa: apparent activation energy 

of a relaxation; d Tpc(onset): onset of temperature of CER post-curing as determined from E¢ = f (T) 
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As expected, the lowest changes were observed for the CER/[OMIm][BF4] network. This 

was probably due to the fact that the IL was not chemically embedded into the CER network 

structure. Nevertheless, a slight decrease in Ta and E¢ values as well as an increase in tandmax 

and ∆T values were evidenced, thus demonstrating a higher mobility of the kinetic segments 

between the cross-links of the CER matrix. On the contrary, the chemical incorporation of 

[HEAIm][Cl] and especially [PHMG][TS] into the CER matrix resulted in a substantial 

decrease in the values of Ta as well as a significant rise in values of tandmax and ∆T compared 

to those for neat CER. Again, these facts evidenced the increase in mobility of the kinetic 

segments within the CER matrix, due to the reduced cross-linking density of the polycyanurate 

network in the CER/IL samples. Such changes turned out to be more drastic for the 

CER/[PHMG][TS] network, due to the chemical incorporation of polymeric chains from the IL 

into the CER network compared to the grafting of small molecules of [HEAIm][Cl] into the 

corresponding CER matrix. For the CER/[PHMG][TS] network, a dramatic decrease in E′ 

values was observed in the whole glassy region up to 235 °C (Figure 3-10a, Table 3-4), which 

confirmed the aforementioned conclusion on the formation of a CER matrix with more 

structural defects compared to all other analogues. 

Furthermore, the changes in values of apparent activation energy of a relaxation (∆Ea) 

calculated for all the samples (Table 3-4) confirmed the aforementioned observations. First of 

all, the temperature dependence of frequency, i.e. plots of logf vs. (1000/T) (Figure 3-11), 

displayed a steep linearity in the region close to 1 Hz (f = 1.0-20.0 Hz), which is typical of the a  

relaxation. For higher f values (at around 1∙103 Hz and above), this linearity was lost. From these 

plots, reliable values of ∆Ea were determined. Indeed, the Ea value can be translated as the 

amount of energy required to activate the molecular motion and rearrangement of some 

molecular segments around Ta [45, 46]. The Ea value for the CER/[OMIm][BF4] network was 

very close to that for pure CER (∆Ea = 286 kJ/mol and ∆Ea = 292 kJ/mol, respectively), thus 

corroborating a similar main transition process related to similar cross-linked structures in both 

samples because the IL was not chemically embedded into the network. The observed decline in 

∆Ea values for CER/[HEAIm][Cl] (∆Ea = 255 kJ/mol) and CER/[PHMG][TS] (∆Ea = 

196 kJ/mol) was consistent with the hypothesis of the formation of hybrid CER/IL networks with 

lower cross-linking density and more mobile kinetic segments between junctions due to the 

chemical incorporation of the ILs into the CER matrix. 
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Figure 3-11: Plot of logf vs. 1000/T for: CER (-), CER/[OMIm][BF4] (-●-),            

CER/[HEAIm][Cl] (-■-), and CER/[PHMG][TS] (-▲-). 

 

For the CER/[PHMG][TS] network, it is noteworthy that in the tan δ = f (T) curve, a second 

tand peak was also observed at 284 °C, which could be explained by the post-curing process 

occurring in the CER matrix, while heating the sample during DMTA measurements above Ta 

(T > 240 °C) [47], due to reaction of high mobility residual –O–C≡N groups in the hybrid 

CER/[PHMG][TS] network. Interestingly, a noticeable increase in the E′ modulus above Ta 

(Figure 3-10a) for all the networks was also caused by a post-curing effect which occurred upon 

heating the samples during DMTA measurements, resulting in some increase in the final cross-

linking density of CER/IL networks. As it could be seen from Table 3-4, the post-curing started 

at different temperatures (Tpc(onset)) for the different samples: one could assume that the lower the 

cross-linking density of the cured network, the higher the mobility of the residual –O–C≡N 

groups from CER, and the lower the onset temperature of post-curing. 

 

3.4. Conclusions 

This paper thoroughly discussed the kinetic peculiarities of DCBE polycyclotrimerization 

in the presence of very small amounts (i.e. 1.0 wt.%) of ionic liquids with contrasted reactivity, 

i.e. an aprotic IL ([OMIm][BF4]), a protic IL ([HEAIm][Cl]), and a protic polymeric IL 
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([PHMG][TS]). Further, the relationships between the structure of the densely cross-linked 

CER/IL networks and their thermal and viscoelastic properties were compared to those 

associated with neat CER. A strong catalytic effect of all ILs used on DCBE 

polycyclotrimerization leading to CER network formation was found, and the IL catalytic 

activity could be ranked as follows: aprotic [OMIm][BF4] > protic [HEAIm][Cl] > protic 

polymeric [PHMG][TS]. Plausible mechanisms for all the DCBE/IL systems were proposed to 

explain the acceleration effect of the ILs. 

One such acceleration effect was significantly higher in the presence of [OMIm][BF4], 

due to its chemical inertness towards DCBE monomer. In the case of [HEAIm][Cl] and 

[PHMG][TS], the chemical grafting of the ILs to CER might occur. The polymer segment 

mobility and activation energy (Ea) for a relaxation were studied using DMTA for neat CER 

and CER/ILs networks. All the samples exhibited a high Ta (i.e., 242-262 °C at 1.0 Hz). It was 

found that the physical incorporation of [OMIm][BF4] into the CER network had no significant 

influence on Ta value compared to that of neat CER. On the contrary, the chemical 

incorporation of both [HEAIm][Cl] and [PHMG][TS] resulted in the significant decrease of Ta 

values for corresponding CER/IL networks caused by the formation of hybrid chemical 

structures with lower structural regularity that that of neat CER. Nevertheless, TGA results 

revealed that the catalytic amounts of ILs had no major influence on the thermal stability of 

CER-based networks compared to pure CER. 

Accordingly, catalytic amounts of ILs used for the synthesis of CER thermosetting 

materials do not impair their main thermal characteristics, thus keeping their applicability as 

suitable matrices for aerospace composites or microelectronic devices. 
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CHAPTER 4 

Structure-Property Relationships in Nanocomposites 

Based on Cyanate Ester Resins and 1-Heptyl 

Pyridinium Tetrafluoroborate Ionic Liquid 

 

Abstract: Novel thermosetting systems based on cyanate ester resins (CERs) have been created 

through the polycyclotrimerization reaction of dicyanate ester of bisphenol E (DCBE) in the 

presence of different amounts of 1-heptyl pyridinium tetrafluoroborate [HPyr][BF4] Ionic 

Liquid (IL). A significant accelerating effect on the curing kinetics of DCBE was found by 

FTIR analysis. The reaction mechanism for the [HPyr][BF4]-catalyzed polycyclotrimerization 

of DCBE was newly proposed via the formation of a [CN]d+–[HPyr]d- complex as a key 

intermediate. Structure-properties relationships for the thermostable CER/IL networks were 

investigated by using DSC, DMTA, dielectric spectroscopy, tensile testing, quasi-dc 

measurements (I-V characteristics), and TGA. All the nanocomposites showed excellent 

thermal stability up to 300 °C, indicating the formation of a densely crosslinked network even 

at high IL content (40 wt.%), and they could be used at high temperatures above their Tg without 

significant thermal degradation. Nanoscale phase separation led to the creation of ionic channels 

within the CER matrix to ensure photosensitivity properties. 
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4.1. Introduction 

Cyanate Ester Resins (CERs) constitute a family of high performance materials that offer 

advantages as composite matrices because of their high thermal stability (Tg > 350 °C 

approaching their thermal decomposition temperature) and radiation resistance [1-3]. As 

compared to other thermosets like epoxy, bismaleimide,and polyimide resins, CER 

homopolymers present relatively lower dielectric constant (e) and tand values [4, 5], lower 

water absorption at saturation and relatively higher toughness [6]. Since all highly cross-linked 

thermosets tend to be brittle, the use of CERs is limited, and improving their toughness without 

sacrificing their thermo-mechanical properties is sought. Increasing toughness can be achieved 

by encapsulating a second phase [7], dispersing inorganic fillers [8-10] or modifying the 

structure via copolymerization reaction [11-12]. The use of conventional plasticizers gives films 

with poor mechanical stability and limits the performance of related devices [13]. Accordingly, 

using the unusual properties and designable nature of Ionic liquids (ILs) seems very promising 

for producing CER materials with controlled structure and properties. 

ILs are salts with poorly coordinated ions, and they constitute solvents being liquid below 

100 °C, or even at room temperature [14]. At least one ion has a delocalized charge and one 

component is organic, which prevents the formation of a stable crystal lattice; thereby their 

properties can be easily tuned by altering the combination of cations and anions [15]. Many ILs 

have even been developed for specific synthetic problems and have been termed «designer 

solvents» [16-18]. Due to their unique properties, such as excellent thermal stability, ionic 

conductivity, relatively low viscosity and low vapour pressure [19-20], ILs represent an 

alternative to conventional solvents, while avoiding their toxicity and volatility; moreover, they 

are increasingly used in polymer chemistry as multifunctional agents [21-27]. 

Recently, novel thermostable nanoporous CER materials have been generated by 

polycyclotrimerization of dicyanate ester of bisphenol E in the presence of varying amounts 

(from 20 to 40 wt.%) of 1-heptyl pyridinium tetrafluoroborate ([HPyr][BF4]), followed by its 

quantitative extraction after complete CER network synthesis [28]. Thus, our investigations 

have shown that nanopores with an average pore diameter centered around 45-60 nm may be 

formed. Interestingly, [HPyr][BF4] IL has segregated into nanosized phases during the in-situ 

CER network formation. Therefore, CER/IL-based materials may be classified as 

nanocomposites. 
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In the present chapter, the effects of [HPyr][BF4] on the formation peculiarities and 

properties of CER/[HPyr][BF4] nanocomposites have been investigated in view of the scarcity 

on this type of IL-based networks. It is expected that the polymerization of dicyanate esters in 

the presence of [HPyr][BF4] may provide the formation of highly thermostable polycyanurate-

based nanocomposites, which will afford novel high performance electrolytes and/or separator 

membranes. To the best of our knowledge, it is the first trial to investigate the influence of 

[HPyr][BF4] on the CER curing process and to examine the thermal behavior and viscoelastic 

properties, as well as the photosensitivity of related nanocomposite materials. The novelty of 

the present study firstly consists in investigating the catalytic effect of high amounts of a 

pyridinium-based ionic liquid on the curing kinetics of dicyanate ester of bisphenol E (DCBE). 

i.e. a CER precursor. Secondly, the reaction mechanism for the [HPyr][BF4]-catalyzed 

polycyclotrimerization of DCBE is newly proposed. Thirdly, it has also been shown for the first 

time that the high compatibility of CER matrix with [HPyr][BF4] due to complex formation 

allowed for obtaining photosensitive densely crosslinked polymer nanocomposites having 

excellent mechanical and thermal properties, even at high IL content (up to 40 wt.%). 

 

4.2. Experimental part 

4.2.1. Materials 

1,1′-bis(4-cyanatophenyl) ethane (dicyanate ester of bisphenol E, DCBE), under the trade 

name Primaset™ LECy, was kindly supplied by Lonza (Bazel, Switzerland) and used without 

further purification. 

1-heptyl pyridinium tetrafluoroborate, [HPyr][BF4], was synthesized as described 

elsewhere [28]. Its purity was confirmed by 1H NMR spectroscopy [28] and melting point was 

measured by DSC (Tm » -59 °C). 

 

4.2.2. Preparation of CER/[HPyr][BF4] nanocomposites 

DCBE was mixed with [HPyr][BF4] in a given ratio (i.e., the content of [HPyr][BF4] was 

varied from 20 to 40 wt.%). A pale yellow transparent solution was obtained even with 40 wt.% 

IL, thus indicating the macroscopic homogeneity of the mixture. The solution was then 

degassed in an ultrasound bath at 60 °C for 30 min. The mixture was then poured into a PTFE-
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coated mold and cured over the temperature range from 25 to 250 °C with a heating rate of 

0.5°C min-1. Attempts were made to produce film by 50 wt.% [HPyr][BF4], but for one such IL 

content, exudation on the surface occurred after curing. The polycyclotrimerization of DCBE 

monomer results in the formation of three-dimensional CER networks (Figure 4-1). 

 

Figure 4-1: Reaction scheme associated with polycylotrimerization of DCBE. 

 

Nanocomposites were obtained as films with thicknesses of 100 and 900 µm. The 

following codes were applied to the samples studied: CER0, CER1,CER20,CER30, CER40, where 

the subscripts indicated the [HPyr][BF4] mass content. 

 

4.2.3. Instrumentation 

Kinetic peculiarities of the DCBE polymerization reaction were studied by using Fourier 

transform infrared (FTIR) spectroscopy in the range of 4000-600 cm-1 using a Bruker Tensor 

37 spectrometer. For each spectrum, 32 consecutive scans with a resolution of 4 cm-1 were 

averaged; all spectra were recorded at room temperature. A given DCBE/[HPyr][BF4] mixture 

was deposited on NaCl glass to create a very thin film (a few μm) of the material, and the 

measurements were performed each 10-30 min of isothermal curing procedure                                               

at 150 °C for 6 h. The stretching band of benzene ring at 1501 cm-1 was used as an internal 

standard.  
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The conversion of cyanate groups<"><after heating at 150 °C for 6 h was calculated from 

Equation 4-1, as follows: 

') = (1 2
?(-/444@ ?(9/44A@:

?(-/;89; ?(9/;89;:
/ × 100   (4-1) 

where I(t)2278 is the intensity of absorption band of –OCN with maxima at 2278 cm-1at time t, 

I(t)1501 is the intensity of benzene ring band at time t, and I(0) is the intensity of absorption bands 

of the corresponding groups in initial DCBE monomer. 

Differential Scanning Calorimetry (DSC) analyses were performed on a TA Q2000 

calorimeter under nitrogen atmosphere with a heating rate of 20 °C min-1 from 20 to 300 °C. 

The equipment was regularly calibrated using an Indium standard. About 10 mg of samples 

were sealed in hermetic aluminum pans and heated. In order to standardize the effects of 

previous thermal history, the Tg value was determined as the mid-point temperature between 

the glassy and rubbery asymptotes using the first heating scan. 

The densities ρ of all CER films (average value of three measurements) were determined 

employing the Archimedes principle using isooctane (ρ = 0.689 g cm-3) as the immersion liquid. 

The experiments were conducted at room temperature (T = 25 °C). 

Dynamic Mechanical Thermal Analyses (DMTA) were performed on a TA Instruments 

Q800 analyzer operating with 0.05 % of strain amplitude and a frequency of 1 Hz. The samples 

were heated from -150 °C to 320 °C at a heating rate of 3 °C/min. The software IgorPro was 

used to analyze the E′′ plot data allowing for the identification and study of the secondary and 

main molecular relaxations as a function of temperature. Such identifications were conducted 

by fitting the experimental data by purely mathematical Gaussian curves with no physical 

parameters. 

Tensile tests were conducted on four formulations according to the ISO 527-4 norm on 

an Instron 5965 Universal testing machine equipped with a load cell of 100 N. Samples were 

cut into dog-bone shapes with a cutting mold giving a specific length of 18 mm and a width of 

2 mm. Seven samples per formulation were tested with a crosshead speed of 1 mm/min 

(corresponding to BC= 3.33 Hz under a controlled temperature of 21 °C. The Young modulus E 

for each sample was calculated as the slope of the σ vs. ε plot between 0.25 % and 0.5 % of 

deformation ε. 
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Broadband dielectric measurements were recorded on a Novocontrol Alpha Analyzer 

equipped with a Quatro Temperature control system. 100 μm-thick samples were cut in disks 

of diameter 2 cm and were placed in between two upper and lower gold-plated electrodes of       

2 and 4 cm in diameter respectively. The electric field voltage was fixed at 3V. The samples 

were analyzed from -150 °C to 300 °C with 5 °C steps with 41 frequencies ranging from 0.01 Hz 

to 106 Hz for each step. The software WinFit from Novocontrol was used to analyze the 3-D 

plot data for identifying and quantifying secondary and main molecular relaxations as a function 

of temperature and frequency. 

Quasi-dc measurements of current-voltage (I-V) characteristics were performed by a 

standard automated tester 14 TKS-100 (Russia). Voltage step-by-step sweeps were applied to 

900 μm-thick samples with a 250 ms duration for each step and 90 ms measurement time, 

respectively. A halogen lamp with a 10 mW cm−2 power irradiation was used to obtain the 

current-voltage characteristics under light conditions. The experiment was conducted at room 

temperature. The I-V curves were processed by a differential approach based on the 

determination of dimensionless differential slope α [29, 30], according to Equation 4-2: 

 

'(D/ =
E(FGH ?/

E(FGHI/
=

E?

EI
×

I

?
    (4-2) 

where dI/dV is the differential conductivity, and V/I = R is the static resistance. 

 

The thermal stability of composites was determined using a Setaram SETSYS evolution 

1750 thermobalance, with a platinum pan under 20 mL min-1 nitrogen flow at a heating rate of 

10 °C min-1 from 20 °C to 700 °C.The initial mass of the samples was equal to about 10 mg in 

all the cases. 

Solubility parameters (δ) of DCBE and [HPyr][BF4] were calculated according to Fedor’s 

Group Substitution Method [31]: 

 

δ = (∆Ecoh/∆V)1/2                 (4-3) 

 

where ∆Ecoh stands for the total contribution of the structural groups to cohesive energy (Ecoh) 

and ∆V is the fragmental molar volume constant. 
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4.3. Results and discussion 

4.3.1. Kinetic peculiarities and proposed mechanism for [HPyr][BF4]-catalyzed 

polycyclotrimerization of DCBE 

The peculiarities of DCBE polycyclotrimerization in the absence and in the presence of 

[HPyr][BF4] were studied using FTIR. In Figure 4-2, the FTIR spectra for pure DCBE (Figure 

4-2a) and all the CER/[HPyr][BF4] samples studied (Figure 4-2b-d) at their isothermal heating 

(150 °C for 6 h) are shown. For neat CER0, after some induction time for ~60 min, the gradual 

decrease in the intensity of the bands of cyanate (–OCN) groups at 2266–2235 сm–1 was 

observed (Figure 4-2a), and the appearance of bands at 1563 and 1366 сm–1 corresponding, 

respectively, to C=N–C groups and N–C–O groups of cyanurate cycles, was evidenced (Figure 

4-3). Interestingly, for all the CER/[HPyr][BF4] samples, i.e. for CER1 (Figure 4-2b), CER20 

(Figure 4-2c) and CER40 (Figure 4-2d), after a shorter induction time, the intensity of the bands 

at 2266–2235 сm–1 decreased quite steeply, and the bands at 1563 and 1366 сm–1 (Figure 4-3) 

clearly appeared, thus evidencing the formation of polycyanurate crosslinked structures. 
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Figure 4-2: FTIR spectra in the spectral zone of 2310-2200 cm-1 obtained at isothermal curing 

(T = 150 °C for 6 h) of pure DCBE (a)  and DCBE/[HPyr][BF4] samples: CER1 (b), CER20 (c), 

and CER40 (d). 
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Figure 4-3: FTIR spectra in the spectral zone of 1600-650 cm-1 for pure [HPyr][BF4] (a),     

CER0 (b), and CER40 (c). 

 

The conversion values (αc) of O–C≡N groups associated with the different [HPyr][BF4] 

contents was calculated using FTIR data. Figure 4a illustrates the fractional conversion (ac) of 

–OCN groups calculated according to Equation 4-1. It is clearly seen that 

polycyclotrimerization of DCBE is characterized by the presence of some induction time for 

pure DCBE as well as for the all compositions studied depending on the IL content. 

Unpredictably, the introduction of the smallest content of IL (1.0 wt.%) led to the largest 

decrease in the induction time, i.e. from ~60 min (for neat DCBE) to ~30 min, as well as to a 

significant enhancement of both the fractional conversion, ac, and the reaction rate values            

(cf. Figure 4-4b) as compared to neat CER0. One could conclude that the presence of even           

1.0 wt.% of [HPyr][BF4] significantly accelerated the conversion of –OCN groups from DCBE 

to lead to CER1 network formation. Surprisingly, increasing the IL content up to 20 and                  

40 wt.% resulted in some increase in the induction time compared to CER1 sample, probably 

due to a dilution effect. Indeed, it was possible that during the sample curing the propagation 

step became diffusion-controlled, instead of being chemically controlled. However, similarly 

to the CER1 sample, the strong increase in ac (Figure 4-4a) and reaction rate values             

(Figure 4-4b) were observed for CER20 and CER40 samples compared to neat CER0. 

Furthermore, some other logical dependence could also be clearly seen, i.e. the higher content 



 

 

77 
 

of [HPyr][BF4], the higher values of reaction rate and maximal fractional conversion, ac. It is 

noteworthy that after reaching the gel point, the reaction became diffusion-limited, and the 

presence of ionic liquid [HPyr][BF4] obviously facilitated the species diffusion and further 

reaction of -OCN groups of growing CER network. Accordingly, only the highest content of IL 

(40 wt.%) permitted to achieve full conversion (~ 100 %) (Figure 4-4a). 
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Figure 4-4: Kinetic plots of (a) -OCN groups fractional conversion, ac, and (b) reaction rate, 

dac/dt, versus curing time: CER0 (○), CER1 (●), CER20 (●), CER40 (■) 

 

It could be concluded that a significant acceleration of –OCN conversion during DCBE 

polycyclotrimerization as well as increasing values of reaction rate and maximal fractional 

conversion resulted from the effect of [HPyr][BF4]. The polycyclotrimerization reaction is 

known to be promoted by heat and a range of catalysts including Lewis acids, such as TiCl4 

[32]. The catalytic effect of aprotic ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate 

on the polycyclotrimerization reaction of DCBE has recently been reported [33]. The proposed 

possible mechanism included the stabilization of pseudo-nitrillium ions due to the formation of 

a complex with acidic C2-H hydrogen of imidazolium cation. It should be noted that 

imidazolium ionic liquids were found to act as Lewis acid catalysts in the Diels-Alder reaction 

of cyclopentadiene with crotonaldehyde and methacrolein [34] or with methyl acrylate [35]. In 

latter case, it was demonstrated that the rate enhancement was due to an explicit hydrogen bond 

between the cation of the ionic liquids and the carbonyl group of the methyl acrylate [35]. 
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In the present investigation, the DCBE polycyclotrimerization reaction was also found to 

be accelerated by another aprotic ionic liquid, i.e.1-heptyl pyridinium tetrafluoroborate, 

[HPyr][BF4]. The ability of pyridinium-based ionic liquids to act as Lewis acid catalysts in the 

Diels-Alder reaction has also been reported [36]. Indeed, the pyridinium cation contains weakly 

acidic hydrogens in 2 and 6 positions which could play a role of hydrogen bond donors 

stabilizing pseudo-nitrillium ions (Figure 4-5). 

 

Figure 4-5: Proposed mechanism for [HPyr][BF4]-catalyzed polycyclotrimerization of DCBE. 

 

Interestingly, FTIR investigations showed a shift of 5-8 cm-1 toward higher frequencies 

for the bands of CER40 attributed to the triazine ring compared to neat CER0 (cf. Figure 4-3). 

On the contrary, the bands corresponding to [BF4]
- were shifted by 6-13 cm-1 to lower 

frequencies, thus indicating that B-F and C-F were more stretched. At the same time, the 

vibration bands of the pyridine ring appeared at approximately the same frequencies and 

implied that [HPyr]+ did not have a strong influence on the IL-CER matrix interactions. The 
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latter may be explained by the formation of intermolecular hydrogen bonds between BF4
- anion 

and acidic C-H2/6 groups of the 1-alkylpyridinium cation [37] thus preventing their physic-

chemical interaction with polymer. The noticeable shift of B-F band absorption may indicate 

the interaction of tetrafluoroborate anions with electrophilic centers of triazine rings located at 

carbon atoms (Figure 4-6). Such interactions may also cause the observed shift of C=N, C-O, 

and N-C-O stretching bands (Figure 4-3). 

 

Figure 4-6: Scheme for complex formation in CER/[HPyr][BF4] networks. 

 

4.3.2. Molecular mobility and viscoelastic properties of CER/[HPyr][BF4] 

nanocomposites 

4.3.2.1. DSC investigation 

Figure 4-7 shows the DSC thermograms obtained for the CER-based samples under 

investigation, and the corresponding thermal characteristics are summarized in Table 4-1.                       

It should be stressed that, since these materials were highly crosslinked, it was difficult to 

characterize their Tg, and thus rapid heating rates had to be applied. This could be seen itself in 

Figure 4-7 for the CER40 sample. For this sample after the step-like transition, an overshoot 

(i.e. the baseline was not reached) was observed. This phenomenon was certainly due to a rapid 

change in volume of the sample provoked when reaching the glass transition. Further, it could 

be seen that there was no residual curing reaction, implying that the samples were fully cured. 

Then, it should be mentioned that the presence of a single Tg value for the CER/[HPyr][BF4] 
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nanocomposites would suggest a homogeneous dispersion of the IL within the CER matrix. 

CER0 showed a Tg value around 235 °C, and using 40 wt.% [HPyr][BF4] reduced the Tg value 

to 66 °C (Table 4-1). Such a dramatic decrease resulted from the increase in the polymer chain 

mobility, due to the IL acting as a plasticizing effect. A broadening of glass transitions with 

increasing plasticizer contents was observed (Table 4-1), which was attributed to the 

heterogeneity of the composite systems. The values of glass transition temperatures for 

CER/[HPyr][BF4] networks were higher than that measured by DSC for the CER/Dicyanamide 

IL system described in the literature, where a nearly 100°C decrease in Tg at 10 wt.% IL loading 

was obtained [38]. It is noteworthy that a decrease in the value of Tg contributes to easier 

movements of polymer chains, and as a result, an increase in the conductivity is expected. In 

addition, for CER/[HPyr][BF4] networks, a significant shift of the glass transition temperature 

onset (Tg onset) toward lower values was observed in all the compositions (cf. Table 4-1) 

compared to the individual CER0. One such decrease was also associated with a plasticizing 

effect of [HPyr][BF4]. 
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Figure 4-7: DSC thermograms for CER/[HPyr][BF4] networks: CER0 (1), CER20 (2), CER30 

(3), CER40 (4). 
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Table 4-1: Thermal and mechanical characteristics for CER/[HPyr][BF4] nanocomposites 

 

Samples DSC DMTA Tensile testing

Tg
1
 

[°C] 
Tgonset

2 

[°C] 
∆Tg

3 

[°C] 
Ta (tanδ)

4 

[°C] 
Ta (E′)5 

[°C] 

E′ 6 [MPa] at E′R7 

[MPa] 

ρ 

[g/cm3] 

GR
8 

[MPa] 

E9 

[MPa] 

σS
10

[MPa]-140°C Ta 

CER0 235 216 36 293 277 4442 922 30 1.259 17 2050  

± 244 

30.1 

± 12.7
CER20 135 116 41 217 160 4846 1196 11 1.268 16 3074  

± 12 

65.4

 ± 19.6
CER30 106 75 57 151 98 4950 1714 9 1.253 13 2259  

± 142 

66.2 

± 12.3
CER40 66 37 57 111 57 5005 2097 7 1.247 12 1796  

± 90 

40.3

± 7.7
1Tg:midpoint temperature of the heat capacity jump; 2 Tg onset:value associated with the intercept of tangent to midpoint of the specific heat increment with the «glassy» 

baseline; 3∆Тg = Tgend –Tgonset: width of glass transition range, where Tgend stands for the temperature value associated with the intercept of tangent to 

specific heat increment with the «rubbery» baseline;4 Ta (tanδ): glass transition temperature determined from tand; 5 Ta (E¢) : glass transition temperature determined from 

E¢ data; 6 E′: storage modulus;7 E′R : storage modulus at the rubbery plateau; 8 GR : calculated theoretical storage modulus at the rubbery plateau,

10 σS :Yield stress value; 11 εR :elongation at break; 12Td 5% : temperature values for a 5% mass loss; 13Td max :temperature value of maximal degradation rate.
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It could be plausible that, in the case of CERs, the network swelled in the presence of IL 

and the forces of attraction between the polymer chains exceeded the forces of attraction 

between the IL molecules and the chain components. There was an exchange of secondary bond 

interactions, thus leading to an increase in the free volume of the network, and potentially a 

softening due to the fewer chain-chain interactions and an increasing plasticizing effect. The 

effect of [HPyr][BF4] on the CER network described as a plasticizer is the separation of the 

polymer chains by a molecule that does not form covalent bonds with the chains [28], but simply 

serves as a space occupier. Thus, such materials are potentially crosslinked polymers that may 

contain [HPyr][BF4] as well as low molecular weight reaction products between cross-links 

(Figure 4-8). To obtain a numerical estimation of the degree of interaction between 

[HPyr][BF4] and DCBE, the values of solubility parameters were calculated. It was determined 

that d[HPyr][BF4] was equal to 18.7 (J/cm3)1/2 for [HPyr][BF4] and dDCBE was equal to 24.5 

(J/cm3)1/2 for DCBE. It is known that the higher the difference between the solubility parameter 

values, the higher the degree of phase separation. Based on this assertion, the [HPyr][BF4] could 

then be recovered from CER/IL nanocomposites by ethanol extraction to design nanoporous 

frameworks with controlled morphology and   porosity [28]. 

   (a)    

 

 

 

 

                                                     (b) 

Figure 4-8: Scheme of CER matrix (a) and agglomerated IL in the CER matrix (b). 
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Therefore, the main effect of [HPyr][BF4] was the reduction of interchain interactions, 

such as entanglements and secondary bonding. 

 

4.3.2.2. Dynamic Mechanical Thermal Analysis 

The effect of [HPyr][BF4] on the viscoelastic properties of CER/[HPyr][BF4] composite 

networks was then evaluated by DMTA. Figure 4-9 shows the variation in storage modulus (E′) 

and tanδ as a function of temperature for the CER networks with different [HPyr][BF4] contents. 

The E′ value is closely related to the load-bearing capacity of a material, which is an important 

parameter reflecting its stiffness. It is noticeable that the incorporation of [HPyr][BF4] led to an 

increase in E′ compared to the CER0 network in the temperature range below the glass transition 

(Table 4-1), which could be explained by an improvement of stiffness due to complex 

formation between [BF4]
- and C atoms of the CER matrix. Then, with increasing temperature, 

this complex was destroyed, and the presence of detached [HPyr][BF4] led to reduced Ta values. 

All systems also displayed E′ value at Ta higher than that of neat CER0 (from 0.9 to 2.1 GPa for 

CER40), i.e. CER40 showed about 44% improvement compared to CER0 which was considered 

to be significant. This behavior may be attributed to the presence of an aromatic ring in the 

[HPyr][BF4] structure, which imparts a higher stiffness to the CER chains. According to rubber 

elasticity theory, the value of storage modulus above Ta may be related to the crosslink density. 

The theoretical storage modulus at the rubbery plateau GR was calculated from Equation 4-4 

[53,54]. 

JK =
LMKN

OPQ
                 (4-4) 

where ρ is the density, R is the ideal gas constant (8.314 J mol-1 K-1), T is the temperature 

(usually Ta+ 50°C) and MC is the molar mass between crosslinks, which for these materials was 

considered to be 212 g/mol. For both the experimental ER′ and the theoretical GR moduli at the 

rubbery plateau, it was firstly observed that their values were comparable and had the same 

order of magnitude (see Table 4-1). In the case of “classical” elastomeric crosslinked polymers, 

where the distance between crosslinks is of at least 50 monomeric units, the modulus at the 

rubbery state is of ca. 0.1 to 1 MPa [53]. Our theoretical and experimental values (of ca. 20-30 

MPa) correspond to a polymer at the rubbery state where the distance between crosslinks is 

typically that of one monomeric unit, thus confirming the proposed network chemical structure. 

Therefore, it could be concluded that Equation 4-4 is not only limited to “classical” elastomers, 
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but it may also be extended to denser crosslinked materials, as long as the storage modulus is 

carefully taken in the elastomeric regime [53,54]. 

It is then seen that when the concentration of [HPyr][BF4] increased, the values of such 

moduli decreased. This effect was more pronounced in the systems modified with 40 wt.% 

[HPyr][BF4] which then could be explained by the presence of long alkyl chains in the 

pyridinium-based IL that did not react with the CER network [28]. 
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Figure 4-9: Dependence of storage modulus E′ (a) and loss factor tanδ (b) on temperature at  1 

Hz for CER and CER/[HPyr][BF4] networks: CER0 (-), CER20 (●), CER30 (▲), CER40 (■). 
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It is well known that the Ta(tanδ) values are widely considered to be equivalent to the 

calorimetric Tg in literature. It is important to mention that the data obtained from DSC were 

much lower (typically 50-60% lower, see Table 4-1) than Ta(tanδ) evaluated from the tanδ peak 

of DMTA curves as they approached Ta(E′) and Ta(E′′). The main reason for this is that DSC 

characterizes the enthalpy change induced by local segmental motion, which is reliable to define 

Tg, whereas this change is relatively small in the case of highly crosslinked materials. Therefore, 

it is difficult to detect the change step in DSC, while in DMTA, the dynamic modulus variation, 

which is more sensitive, is used to identify this transition temperature. This makes DMTA a 

preferred technique for measuring Tg’s of highly filled materials, such as composites. 

Furthermore, it was clear that the tand peak was shifted towards lower temperatures when 

the [HPyr][BF4] content was increased (Figure 4-9). Moreover, the Ta (tanδ)peak became broader 

with the addition of [HPyr][BF4],because of an increase in the molecular dynamic heterogeneity 

in the system induced by the IL presence. On the other hand, no peak doubling could be 

observed, thus indicating good compatibility between [HPyr][BF4] and the CER matrix. This 

was confirmed in Figure 4-10 in which CER20 had a considerably smaller loss modulus E′′ in 

the transition region compared to CER0. This molecular miscibility diminished when the 

[HPyr][BF4] concentration increased. For CER30 and CER40, E′′ tended to increase towards the 

values for pure CER. This can be explained by the ILs leading to the formation of ionic 

aggregates in which IL ions were close together (Figure 4-8), and the chain mobility could be 

increased resulting in a decrease in the rubbery modulus. 

The loss modulus (E″) can be considered to be more sensitive to molecular motions in 

polymer chains than E′ for stiff polymers. Therefore, the E″ curve was deconvoluted by the 

contribution of single relaxation processes, which when summed through a fit yielded the 

experimental curve. This deconvolution showed four distinct peaks, with the observed 

following features (Figure 4-10): (i) the one at higher temperature was due to the α-relaxation, 

while the other ones at lower temperatures were identified as β- and g-relaxation; (ii) the 

intensity of the low-temperature sub-Tα process was much lower than that of the α-relaxation. 

All materials exhibited a broad transition interval of temperatures, with a maximum near -100 

°C associated with the g-relaxation of CER, which could be ascribed to the motion of the 

phenylene groups present in the links between the planar six-member three-arm cyanurate 

structures [39-42]. The secondary transition, appearing as a shoulder around -50 °C in the CER 

materials, was a shifted b-relaxation, attributed to the motions of chain fragments between 
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network junctions [39-42]. Two further molecular relaxations of low intensity between the β 

and α relaxations were also detected. These relaxations were named b′ and b′′. These relaxations 

appeared to be well separated from β and α processes. A discussion concerning their origin was 

further developed. In the frame of in this work, it was interesting to enlighten their origin and 

their associated molecular dynamics, as these relaxations are usually not reported in such 

polymers. 
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Figure 4-10: Dependence of E′′ on temperature at 1 Hz for CER and CER/[HPyr][BF4] 

networks: CER0 (-), CER20 (●), CER30 (▲), CER40 (■). The four observed molecular relaxations 

in CER0 were mathematically deconvoluted and are highlighted (blister lines). 

 

4.3.2.3. Broadband dielectric spectroscopy 

Figure 4-11 shows a 3-D plot of the loss permittivity ε′′ as a function of temperature and 

frequency obtained for neat CER0. In this spectrum, it is noteworthy that the same molecular 

relaxations observed by DMTA were also detected by Broadband Dielectric Spectroscopy 

(BDS). It is important to mention that the so-called β′ and β′′ processes are well separated from 

β and α relaxations, as observed above by DMTA. 
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Figure 4-11: 3D spectrum of loss dielectric permittivity as a function of frequency and temperature 

obtained by BDS measurements for neat CER0 with highlighted molecular relaxations.  

 

The complex permittivity ε* data for the identified relaxations was fitted on the 

frequency-time domain with a Havriliak-Negami model [43-46] (Equation 4-5): 
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    (4-5) 

The use of this model to fit the α relaxation was found to be pertinent. Indeed, the m and 

n parameters (0 < m & n ≤ 1) describing respectively the broadening and the symmetry of a 

relaxation were found to differ from the unity. This would mean that the relaxation had a broad 

range of relaxation times τ and that it was asymmetrical, thus confirming the behavior of a main 

molecular relaxation. On the other hand, it was observed that the n asymmetry exponent on the 

Havriliak-Negami model was equal to unity for the γ, β, β′, and β′′ relaxations, while the 

exponent m remained different from 1. This would mean that these relaxations had also a broad 

range of relaxation times τ but that they were symmetrical. This behavior would correspond to 
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that of local secondary relaxations. Hence, the Cole-Cole model was used to better fit such 

relaxations [43-46] (Equation 4-6): 
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*                   (4-6) 

From these fits, the n and m parameters as a function of the frequency as well as the mean 

relaxation time τ for each relaxation as a function of temperature were obtained. Figure 4-12 

shows the inverse of the n and m parameters as a function of the frequency for each relaxation, 

i.e. their amplitudes. As stated above, it was seen that all of the molecular relaxations, with 

exception of the α relaxation, were symmetrical. 
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Figure 4-12: Molecular relaxation amplitude for the observed molecular relaxations obtained 

from BDS measurements for neat CER0: g (▼), b (●), b′ (▲), b′′ (■), a (○). 

 

The relaxation times were then transformed into frequencies f according to f = 1/2pt, so 

that we were able to plot the relaxation map for each molecular relaxation, which is displayed 

in Figure 4-13. 
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Figure 4-13: Molecular relaxation cartography for the observed molecular relaxations obtained 

from BDS measurements for neat CER0: g (▼), b (●), b′ (▲), b′′ (■),a (○). 

 

Considering that the γ, β, β′, and β′′ relaxations were symmetrical, their activation energy 

and the f0 factor were calculated according to an Arrhenius equation [46, 47] (Equation 4-7): 

úû

ù
êë

é-=
RT

E
fTf aexp)( 0      (4-7) 

where T corresponds to the temperature associated with a given frequency, and R is the ideal 

gas constant (8.314 J mol-1·K-1). Concerning the α relaxation, it was observed in Figure 4-10 

that its trend was more asymptotic than linear, plus that it was asymmetrical. This behavior 

corresponded to that of a main glassy molecular relaxation and thus in order to obtain its 

activation energy, the Vogel-Fulcher-Tamman equation was used [46, 48-53] (Equation 4-8): 

( )úû
ù

ê
ë

é

-
-=

VFT

a

TTR

E
fTf exp)( 0

    (4-8) 

In the latter relationship, the main relaxations were considered to tend to an asymptotic 

temperature TVFT at high frequencies that was fairly equal to Tg - 50 °C.  
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The calculated activation energy Ea and f0 factor values for all relaxations are summarized 

in Table 4-2. Concerning the secondary γ and β as well as the main α relaxations, the calculated 

energies corresponded to those expected for such types of molecular motions. However, in the 

case of the β′ and β′′ relaxations, the Ea values calculated with the Arrhenius equation seemed 

to be too high for localized motions. Ea values for these relaxations were then calculated with 

the VFT equation as if they were main relaxations (Table 4-2). The obtained values were in 

good agreement with those of very strong localized molecular motions as well as for weak main 

relaxation processes. Moreover, the f0 values gave also a good indication of the nature of 

molecular processes [43]. In the case of secondary relaxations, i.e. Arrhenian motions, f0 varied 

from 1012 to 1017 Hz. Higher values denote a main relaxation behavior. It was herein observed 

(Table 4-2) that the γ relaxation had a f0 value corresponding to that of a secondary relaxation. 

For the β′′ relaxation, a f0 value higher than 1017 Hz (by nine orders of magnitude) was 

calculated. Such a large value is non-physical and thus confirmed that this relaxations seemed 

to behave as a VFT process (i.e. main relaxation). In the case of the β and β′ relaxations, they 

presented f0 values of 1017 Hz. This would mean that they had an intermediary behavior between 

a secondary and a main relaxation. However, as mentioned above, the activation energy of the 

β′ relaxation did not correspond to that of a secondary relaxation, meaning that it behaved as a 

mild main process. 

 

Table 4-2: Calculated activation energy Ea for each of the observed molecular relaxations of 

CER samples 

Molecular relaxation 
Ea (kJ/mol) – 

Arrhenius 

f0 (Hz) – 

Arrhenius 
Ea (kJ/mol) – VFT 

γ 45 6.6 x 1013 - 

β 82 3.9 x 1017 - 

β' 135 6.7 x 1017 89 

β'' 205 6.1 x 1026 105 

α - - 274 
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4.3.2.4. Discussion on β′ and β′′ relaxations 

It is known that secondary transitions may have a significant influence on the mechanical 

properties of polymers, namely their toughness [46, 53, 55]. It is thus important to study the 

effect of additives such as plasticizers on these relaxations as well. The variation of Tg, Tb, Tb′, 

and Tb′′ with the content of IL is shown in Figure 4-14. 
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Figure 4-14: Secondary transition temperatures of CER/[HPyr][BF4] networks as determined 

by DMTA: Tg (▼), Tb (●), Tb′ (▲),Tb′′ (■). 

 

The results observed in Figure 4-14 suggested that Tg and Tb did not seem to be 

influenced by the IL presence. However, as it was observed for Tα, both Tb′ and Tb′′ were 

sensitive to chemical composition and decreased when [HPyr][BF4] content increased.                            

A hypothesis to explain such a plasticizing effect due to the IL presence on Tb′ and Tb′′ would 

be that these relaxations are not secondary but main molecular motions. Moreover, it would 

seem that the β relaxation is indeed a secondary relaxation, From BDS measurements, it was 

observed that these relaxations were very steep (Figure 4-13). It might be possible that they 

exhibited a VFT behavior at high frequencies but unfortunately this could not be verified as the 

relaxations motions at high frequencies were masked within the loss permittivity ε′′ of the 

samples (Figure 4-11). 
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The origin of these relaxations may come from the curing technique used in this study. 

Previous works conducted in our team on CER samples have used an isothermal step-by-step 

curing process. In an earlier study, the same γ, β, and α relaxations observed herein where also 

identified [42]. In the present work, as mentioned in the Experimental part, the samples were 

cured with a temperature ramp. As these systems were extremely reactive, it might be possible 

that polymerized non-crosslinked chains were present within the materials structure. The 

chemical nature of the so-called non-crosslinked chains was identical to that associated with 

the crosslinked polymer, and thus the molecular motions giving place to the main molecular 

relaxation would be similar. However, as these «free» chains are not constrained in the network, 

these movements could be activated at lower energies and temperatures, thus giving birth to 

supplementary main relaxations within the materials. This hypothesis could be verified by 

studying the CERs containing ILs by BDS. Indeed, the amplitude and the asymmetry of the 

molecular relaxations for these formulations could be compared to those of pure CER. 

However, samples containing ILs would become electrically conductive within the 

spectrometer, hiding the observation of the molecular relaxations. 

 

4.3.2.5. Tensile testing 

As it could be seen from Table 4-1, the IL presence surprisingly seemed to reinforce 

CERs mechanically at 25 °C, namely an increase in Young’s modulus E was observed for 

CER20 and CER30. However, for the CER40 sample, its Young’s modulus decreased to the level 

of pure CER. This trend was identical to that observed by DMTA at 25 °C (dashed line in 

Figure 4-9a). These results could be explained by the fact that for CER samples containing ILs 

their glass transition temperature was greatly reduced. In the case of CER20 and CER30, the 

onset of their glass transitions occurred at ca. 20-30 °C, meaning that the network had begun to 

become mobile. In the case of the CER40 material, the glass transition process at 25 °C already 

started, which meant that a part of the network was already mobile and thus plasticized. Tensile 

tests confirmed the results obtained by DMTA. Furthermore, the yield stress σy and the 

elongation at break εR were also obtained by tensile tests (Table 4-1). It is noteworthy that the 

yield stress followed the same trend as that of Young’s and storage moduli, somehow 

confirming the probable influence of [HPyr][BF4] on CER mechanical behavior. However, it 

would seem that the [HPyr][BF4] content had no apparent influence on the value of elongation 

at break. 
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4.3.3. Photosensitivity of CER/[HPyr][BF4] nanocomposites 

Figure 4-15a,b presents the results of I-V characteristics at room temperature for the 

CER/[HPyr][BF4] networks as a function of the [HPyr][BF4] amount. It is noteworthy that both 

In/CER/Ag and In/CER/IL/Ag structures have photosensitivity. The current values of CER30 

found in darkness were similar to that of CER0, obviously because of the rigid network which 

made the mobility of the ions difficult. At the same time the difference between dark and light 

currents was noticeable. Contrariwise, the CER40 materials had higher current even in the dark 

condition. 

100 150 200 250 300
-1

0

1

2

3

4

100 150 200 250 300
-1

0

1

2

3

4

100 150 200 250 300

1,0x10
-8

2,0x10
-8

3,0x10
-8

4,0x10
-8

5,0x10
-8

6,0x10
-8 b)

C
u
rr

e
n
t 

[A
] 

 

Voltage [V]

a)

d)c)

a=1

Voltage [V]

 

 

a
lp

h
a a=2

Voltage [V]

 

 

a
lp

h
a

100 150 200 250 300

1,0x10
-8

2,0x10
-8

3,0x10
-8

4,0x10
-8

5,0x10
-8

6,0x10
-8

C
u
rr

e
n
t 

[A
] 

 

 

Voltage [V]

 

Figure 4-15: Current-voltage characteristics of In/CER/Ag structure for 900 μm-thick samples 

at room temperature: in darkness (a) and under white light (b): CER (●), CER30 (▲) and CER40 

(■) and differential slope of CER40 in darkness (c) and under white light (d). 

 



 

 

94 
 

A differential approach based on I-V characteristic approximation was introduced in order 

to recognize mechanisms of injection and recombination and to determine physical parameters 

of structures (see Experimental part). It was found that the «dark» plot with a differential slope 

a = 1 (cf. Figure 4-15c) corresponded to Ohmic conductivity, and the «illuminated» plot with 

a= 2 (cf. Figure 4-15d) fitted with a monomolecular mechanism of recombination. This meant 

that in the first case the structure had not barriers which could create additional resistivity for 

charge carriers, whereas in the second case there were structures with deep traps. 

 

4.3.4. Thermal stability of CER/[HPyr][BF4] nanocomposites 

The effect of [HPyr][BF4] on the thermal stability of CER networks is illustrated in 

Figure 4-16 as a function of IL content in the system. All CER-based films showed good 

thermal stability, although the materials had not been purified or treated in any way after 

polycyclotrimerization. 

The CER0 network displayed high thermal stability (Table 4-1). Its degradation begun 

with hydrocarbon chain scission and cross-linking junctions at temperatures above 415 °C, 

followed by a sharp thermal decomposition on decyclization of the triazine ring at 450 °C that 

released volatile cyanate-ester decomposition products. Moreover, the CER0 exhibited a second 

decomposition stage between 500-650 °C that was attributed to mass loss with the elimination 

of alkenes and hydrogen, leaving a carbonaceous char containing residual oxygen                                   

and nitrogen [56]. 

As one could see, there was only one degradation stage for CER/IL composites, thus 

confirming the good dispersion of [HPyr][BF4] within the CER matrix. Despite the higher 

thermal stability of pure IL, the introduction of [HPyr][BF4] into the CER matrix lowered the 

onset of thermal decomposition of the nanocomposites, probably due to the formation of 

networks with lower crosslink density compared to CER0. However, it was also shown that the 

high compatibility between CER matrix and IL allowed for obtaining densely crosslinked 

polymer materials having a good thermal stability up to 300 °C even at high [HPyr][BF4] 

content (up to 40 wt.%). The char yield after pyrolysis empirically related to the char-forming 

tendency decreased with the [HPyr][BF4] content. 

 



 

 

95 
 

100 200 300 400 500 600 700
-100

-80

-60

-40

-20

0

 

 

M
as

s 
lo

ss
 [

%
]

Temperature [
o
C]

a)

100 200 300 400 500 600 700

-20

-15

-10

-5

0

b)

 

d
m

/d
t 

[%
/°

C
]

Temperature [
o
C]  

Figure 4-16: Evolution of mass loss as a function of temperature, i.e. a) TGA and b) DTG data, 

of CER networks modified with [HPyr][BF4]: CER0 (─), CER20 (●), CER30 (▲), CER40 (■), 

[HPyr][BF4] (---). 

 

4.4. Conclusions 

In this study, we investigated new highly filled nanocomposites containing physically 

inserted [HPyr][BF4] within the CER network. The kinetics of the thermal curing process in the 

IL presence was studied by FTIR analysis, and the following conclusions could be underlined: 

(i) even 40 wt.% of IL accelerated the curing process, (ii) with an IL content increasing in the 

curing system, a higher total conversion was observed. A plausible mechanism based on the 
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formation of a [CN]δ+–[HPyr]δ– complex was firstly proposed to account for the acceleration 

effect of the ionic liquid on the curing process associated with CERs. Hence, during the 

synthesis of CER/[HPyr][BF4] nanocomposites, the IL acted both as a catalyst and a structure-

directing agent increasing free volume. The materials obtained were mechanically strong and 

tough enough to produce self-standing thin films. It was found that CER-[HPyr][BF4] complex 

formation had an impact on the viscoelastic properties of CER matrix by increasing the storage 

modulus in the glassy region. Interestingly, Tg and Tb seemed not to be influenced by the 

[HPyr][BF4] presence, while Tα, Tb′ and Tb′′ were sensitive to chemical composition. From the 

BDS results, b′ and b′′ relaxations were not secondary but main molecular motions. 

Furthermore, the effect of the IL on the CER/IL tensile strength was elucidated. The 

incorporation of IL into the CER matrix decreased the packing density of polymer chain and 

increased free volume, while leading to better toughness. Moreover, nanoscale phase separation 

led to the creation of ionic channels within the CER matrix to ensure photosensitivity properties. 

All systems had excellent thermal stability up to 300 °C, indicating the formation of a densely 

crosslinked network even with a content of ionic liquid up to 40 wt.%. In general, the 

nanocomposite materials obtained could be used at high temperatures above their Tg (66-135 

°C) without significant thermal degradation. These results are promising and open new 

perspectives in the field of power industry where the ionic liquid can be used as ionic channels 

for lithium salts to ensure suitable conduction properties. 
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CHAPTER 5 

Nanoporous Polymer Films of Cyanate Ester Resins 

Designed by Using Ionic Liquids as Porogens 

 

 

Abstract: Novel nanoporous film materials of thermostable Cyanate Ester Resins (CERs) were 

generated by polycyclotrimerization of dicyanate ester of bisphenol E in the presence of varying 

amounts (from 20 to 40 wt. %) of an ionic liquid (IL), i.e. 1-heptylpyridinium tetrafluoroborate, 

followed by its quantitative extraction after complete CER network formation. The completion 

of CER formation and IL extraction was assessed using gel fraction content determination, 

FTIR, 1H NMR, and energy dispersive X-ray spectroscopy (EDX). SEM and DSC-based 

thermoporometry analyses demonstrated the formation of nanoporous structures after IL 

removal from CER networks, thus showing the effective role of IL as a porogen. Pore sizes 

varied from ~20 to ~180 nm with an average pore diameter of around 45-60 nm depending on 

the initial IL content. The thermal stability of nanoporous CER-based films was investigated 

by thermogravimetric analysis. 

 

 

A. Fainleib, A.Vashchuk, O. Starostenko, O. Grigoryeva, S. Rogalsky, T-Th-T. Nguyen, D. Grande: Nanoporous 

polymer films of cyanate ester resins designed by using ionic liquids. Nanoscale Research Letters. 12, 1-9. (2017). 
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5.1. Introduction 

High crosslink density Cyanate Ester Resins (CERs) – also known as polycyanurates 

(PCNs) – are commonly used in aerospace applications and electronic devices as high 

temperature polymer matrices [1-3]. The specific interest in these high performance polymers 

arises from their unique combination of intrinsic properties, including thermal, fire, radiation 

and chemical resistance, high tensile moduli (3.1-3.4 GPa) and glass transition temperatures  

(Tg > 220 °С), low dielectric constants (e ~ 2.6-3.2), high adhesion to conductor metals and 

composites as well as low water/moisture uptake [1, 2]. 

Ionic liquids (ILs) are organic salts that typically consist of bulky, asymmetric organic 

cations and inorganic symmetric anions. Room-temperature ILs are defined as salts with 

melting points below or equal to room temperature [4, 5]. ILs have attracted widespread interest 

in polymer science due to their versatile properties, such as negligible saturated vapor pressure, 

wide liquid-state temperature range, non-flammability, incombustibility, high electrical 

conductivity, and good stability to oxidation [6-10]. They have progressively been used as 

solvents and catalysts for polymerization reactions [10] as well as additives in the design of 

polymer materials [11]. Their peculiar structure enables easy separation, recovery, and 

recycling of the catalyst from the reaction mixtures. In the case of membrane processes, ILs are 

being used in the design and modification of advanced materials that enable performance levels 

not typical of conventional materials [12]. Another application of ILs consists of their use as 

effective and reusable porogens in vinylic networks [13]. When ILs are used as porogenic 

solvents, during the in-situ formation of polymer networks, chemically-induced phase 

separation occurs. To act as efficient porogens, ILs have to possess: (i) high-boiling temperature 

to  avoid  any premature  evaporation,  (ii) high thermal stability to remain unchanged up to the 

complete curing of the polymer networks, and (iii) easy extractability to be readily removed 

from the cured networks, thus affording porous thermosetting materials. 

Porous polymeric materials have a large variety of applications in many areas as highly 

selective membranes, selective adsorbents and filters, porous electrodes for fuel cells, sensors 

or insulators, etc [14]. Pioneering reports on the design of porous CERs were published by 

Hedrick and co-workers in the late 1990’s [15-17]. Since 2008 two of our research groups have 

jointly developed various original approaches to nanoporous CER-based thermosetting films 

[18-23]. Two strategies relied on the use of oligo(ε-caprolactone) chains as porogens, which 

were removed from the synthesized CER networks by either extraction [18] or selective 
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hydrolysis [19]. Alternatively, other pore generation methods involved: (i) the use of high-

boiling temperature liquids, i.e. phthalates, as porogens [20, 21], (ii) the synthesis of CER 

networks with different degrees of cyanate group conversion, followed by the extraction of 

unreacted dicyanate monomer [22], and (iii) the irradiation of CER films by α-particles, 

followed by an alkaline etching to reveal the tracks created after bombing [23]. 

Recently, we have investigated the catalytic effect of ILs on the curing process of CERs 

and an acceleration effect has clearly been highlighted in the polycylotrimerization of dicyanate 

ester of bisphenol E in the presence of a specific ionic liquid [24]. To the best of our knowledge, 

ILs have not been used as porogens to generate porous CER thermosets so far. In the present 

work, novel nanoporous CER-based thermosetting films are engineered by using a room-

temperature ionic liquid, namely 1-heptylpyridinium tetrafluoroborate ([HPyr][BF4]), as a 

porogen, and the effect of porogen content on the structure and properties of resulting porous 

CERs is examined. 

 

5.2. Experimental 

5.2.1. Materials 

1,1′-bis(4-cyanatophenyl) ethane (dicyanate ester of bisphenol E, DCBE), under the trade 

name Primaset™ LECy was kindly supplied by Lonza (Basel, Switzerland) and was used as 

received. The following chemicals were used for the synthesis of the 1-heptylpyridinium 

tetrafluoroborate, [HPyr][BF4]: pyridine, 1-chloroheptane, ethyl acetate, hexane, 

tetrafluoroboric acid (48 wt.% in H2O), methylene chloride, and sodium sulfate. The chemicals 

were provided by Fluka and were used as received. 

 

5.2.2. Ionic liquid synthesis 

1-Heptylpyridinium tetrafluoroborate [HPyr][BF4] was synthesized using the following 

method. A mixture of dry pyridine:1-chloroheptane with a molar ratio 1.0:1.1 was heated at 

140 °С for 20 h under stirring. A white solid product, i.e. 1-heptylpyridinium chloride, was 

obtained after cooling the reaction mixture to room temperature. It was purified by 

recrystallization from ethyl acetate:hexane mixture (1:1 vol/vol). 1-heptylpyridinium chloride 

(50 g, 0.23 mol) was dissolved in 300 mL of water and 30 mL of tetrafluoroboric acid was 
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added to the solution. The water immiscible layer of the ionic liquid [HPyr][BF4] formed was 

extracted with methylene chloride (3 × 150 mL), washed with water and dried over sodium 

sulfate. The solvent was distilled off, and the resulting ionic liquid was dried under a reduced 

pressure of 1 mbar at 80 °С for 12 h. The synthetic route to the ionic liquid [HPyr][BF4] is 

depicted in Figure 5-1. 

 

Figure 5-1: Synthetic route to ionic liquid [HPyr][BF4]. 

 

5.2.3. Preparation of CER-based films 

DCBE was mixed with [HPyr][BF4] in a given ratio (the content of [HPyr][BF4] was 

equal to 20, 30, and 40 wt. %) and the homogeneous mixtures were subjected to an ultrasonic 

bath at 60 °С for 30 min. These solutions were then poured into a PTFE-coated mold and cured 

over the temperature range from 25 to 250 °С with a heating rate of 0.5 °С/min. 

The polycyclotrimerization of DCBE resulted in the formation of a CER network 

(see Figure 5-2). 

 

Figure 5-2: Scheme of CER network formation. 
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For generation of porous structure the films obtained with a thickness around 100 µm 

were subjected to extraction with ethanol in a Soxhlet apparatus for 16 h. After extraction, the 

samples were dried up to a constant weight at 25 °С. The following codes were applied to the 

samples under investigation: CERext, CER20ext, CER30ext, CER40ext, respectively for the extracted 

CER sample synthesized without IL and for extracted CER samples synthesized in the presence 

of IL, where the subscripts indicate the initial content of [HPyr][BF4]. The code CER40 was 

applied to the non-extracted sample with a [HPyr][BF4] content of 40 wt. %: it was used as a 

reference sample for the sake of comparison. 

 

5.3.4. Physico-chemical techniques 

Gel fraction contents of the CER-based networks were determined after Soxhlet 

extraction and drying up to constant weight. The experimental values of gel fraction contents, 

wg(exp), were determined as the contents of insoluble part of the samples using Equation 5-1:  

%100
1

2

(exp) ×=
m

m
wg                                                  (5-1) 

where m1 and m2 stand for the mass of a dried sample before and after extraction, respectively. 

The theoretical values of gel fraction contents were calculated with the conjecture that 

non-reactive [HPyr][BF4] was completely extracted from CER films using Equation 5-2: 

] g[HPyr][BFg(exp)CERR g(theor)CE 4
www -=                                         (5-2) 

where wg(exp)CER and wg[HPyr][BF4] stand for the experimental value of gel fraction content for pure 

CER (~100 wt. %) and the initial [HPyr][BF4] content in the systems, respectively. 

FTIR spectra were recorded on a Bruker Tensor 37 spectrometer between 4000 and 450 

cm-1 using the Attenuated Total Reflection (ATR) mode. For each spectrum, 32 consecutive 

scans with a resolution of 0.6 cm-1 were averaged. 

1H NMR spectroscopy was conducted with a Bruker AV II spectrometer operating at a 

resonance frequency of 400 MHz. The spectra were recorded at room temperature using 

DMSO-d6 as an internal standard (d = 2.5 ppm). 
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Scanning Electron Microscopy (SEM) analyses of the samples were performed on a 

MERLIN microscope from Zeiss equipped with Inlens and SE2 detectors using an accelerating 

voltage of 4 kV. Prior to analyses, the films were cryofractured and coated with a Pd/Au alloy 

(4 nm thickness) in a Cressington 208 HR sputter-coater. Energy-dispersive X-ray spectroscopy 

(EDX) was performed using a SSD X-Max detector of 50 mm2 from Oxford Instruments (127 

eV for the Kα of Mn) coupled to the SEM equipment. To determine the main porosity 

characteristics derived from SEM data (i.e., pore sizes and pore size distributions), 1000 pores 

for each sample were at least evaluated using the ImageJ 1.48v software. Pores with area 

inferior to 20 nm2 and superior to 1.25×105 nm2 were ignored to avoid counting of improbable 

values. Since pore circularity values revealed from ImageJ analysis varied from 0.80 to 0.90 

(assuming that «0» corresponded to an infinitely elongated polygon and «1» was related to a 

perfect circle), pore diameters were calculated assuming circular pore shapes. 

DSC-based thermoporometry was used as an independent quantitative technique for 

determining pore sizes and pore size distributions. The basic principles of this technique are 

well-known [25,26]. In this study, thermoporometry was performed using water as a penetrating 

liquid. From the melting thermograms of water contained in the porous films,  

 

Equation 5-3,  5-4, 5-5 were applied to determine pore diameters (Dp), pore size distributions 

(dV/dRp), and heat flow values ΔH(T) respectively: 
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where Tm and Tm0 are the melting temperatures of confined and bulk water, respectively; dq/dt, 

ρ, n, m, and ΔH(T) are the heat flow recovered by DSC, the water density, the heating rate, the 

sample mass and the melting enthalpy of water, correspondingly. 

Due to the hydrophobicity of CER films, we resorted to an ethanol pretreatment in order 

to improve their hydrophilic character and favor the water penetration into the pores. Such a 

pretreatment using an organic solvent miscible with water, followed by its subsequent 

replacement by water, ensured pore accessibility to water. In addition, it was assumed that pore 

filling was predominant over the bulk polymer swelling either in ethanol or water, due to the 
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high cross-link density of the CER network. The samples were first immersed to ethanol for 2 

h, and then distilled water was gradually added to remove the ethanol. Afterwards, the samples 

were kept in pure distilled water for 2 weeks. After surface wiping, the melting thermograms 

were recorded using TA Instruments 2010 calorimeter under nitrogen atmosphere in 

temperature range from -50 to 5 °С at a heating rate of 1 °С/min. The typical sample mass was 

about 10-15 mg. 

Thermogravimetric analysis (TGA) measurements were performed using a Setaram 

SETSYS evolution 1750 thermobalance. Samples were heated in a platinum crucible from 20 

to 700 °С at a heating rate of 10 °С min-1 under argon atmosphere. 

 

5.3. Results and Discussion 

The generation of nanoporous thermosetting films was accomplished through the formation 

of CER-based thin films derived from the in-situ polycyclotrimerization of DCBE in the presence 

of [HPyr][BF4] with further removal of the latter (Figure 5-3). The gel fraction contents 

associated with CER samples were determined after ethanol extraction. Figure 5-4 clearly shows 

that the experimental and theoretical values of the gel fraction content nearly matched, thus 

strongly suggesting the completion of CER formation and [HPyr][BF4] extraction from CER-

based networks, while confirming the chemical inertness of the ionic liquid towards CER. It 

should be noted that even a [HPyr][BF4] content as high as 40 wt. % in the initial system did not 

hinder the formation of a highly crosslinked CER structure. 

 

Figure 5-3: Representative scheme of CER formation in the presence of [HPyr][BF4] and 

subsequent pore formation.  
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Figure 5-4: Experimental (1) and theoretical (2) values of gel fraction contents after extraction 

as a function of [HPyr][BF4] content. 

 

5.3.1. Spectroscopic analyses of network structure 

In order to evaluate the effect of [HPyr][BF4] on network structure and further confirm 

its chemical inertness to DCBE, FTIR analysis was performed. Figure 5-5 displays FTIR 

spectra of CERext, CER40ext, CER40, and pure [HPyr][BF4].  
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Figure 5-5: FTIR spectra of ionic liquid [HPyr][BF4] and typical CER networks before and 

after extraction. 
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The FTIR analysis of the CER40ext samples (and of the other extracted CER samples, not 

shown here) demonstrated the presence of C=N–C and N–C–O/N=C-O stretching absorption 

bands of cyanurate repeating units at 1356 cm-1 and 1558 cm-1, respectively, and did not indicate 

any stretching absorption bands of unreacted cyanate groups at 2272-2236 cm-1, thus 

corroborating the formation of CER network. It should be pointed out that, for both the CER40 

and the pure [HPyr][BF4], the band at 1490 cm-1 and the broad band with maximum at 1058 

cm-1, corresponding to the stretching mode of pyridinium cation [27] and the asymmetric 

stretching of BF4
- anion of the ionic liquid, respectively, were observed. Logically, after 

[HPyr][BF4] extraction, such absorption bands disappeared from FTIR spectrum of the CER40ext 

sample, while the intensities of the bands at 1558 cm-1 and 1356 cm-1 did not change 

significantly. It is noteworthy that the well-defined bands in the region of 1100-1000 cm-1 in 

the spectra of CERext and CER40ext corresponded to C–O–C bonds in the CER network structure. 

Consequently, FTIR analysis confirmed the chemical inertness of IL to the CER network and 

the efficient removal of [HPyr][BF4] from CER matrix. 

1H NMR spectra of [HPyr][BF4] and a typical sol fraction obtained after CER extraction 

are shown in Figure 5-6. The resonance signals at 0.84, 1.28, 1.91, 3.34 and 4.60 ppm could 

be assigned to the protons from -C7H15, and the presence of protons from pyridinium ring could 

be observed with chemical shifts equal to 8.16, 8.60, and 9.08 ppm.  

 

 

Figure 5-6: 1H NMR spectra of [HPyr][BF4] (a) and sol fraction after CER40 extraction (b). 
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Obviously enough, the 1H NMR spectrum of the sol fraction closely matched that of 

[HPyr][BF4], only traces of unreacted DCBE and/or soluble low molar mass cyanurate 

fragments non-incorporated into CER network being observed in the interval of 6.62-7.08 ppm. 

Once again, this spectroscopic analysis confirmed that [HPyr][BF4] was successfully removed 

from CER networks. 

 

5.3.2. SEM and EDX analyses of CER-based films 

Typical SEM images of CER films before extraction of [HPyr][BF4] and after extraction 

of the latter are presented in Figure 5-7. As it was expected, both CERext and CER40 samples 

(Figure 5-7a and Figure 5-7c, respectively) exhibited compact and non-porous structures, 

whereas CER20ext and CER40ext samples (Figure 5-7b and Figure 5-7d, respectively) displayed 

a nanoporous structure with pore diameters ranging from 25 to 170 nm, depending on their 

CER/IL composition. Pore sizes generally increased and pore size distributions widened when 

increasing the porogenic solvent (i.e. [HPyr][BF4]) content (Table 5-1) in the IL-filled CER 

precursors.  

The micrographs obtained were carefully analyzed using the ImageJ software. Most of 

pore area fractions ranged from 500 to 5000 nm2 (Figure 5-8) that corresponded to pore 

diameters (Dp) from ~25 to 80 nm. The quantity of larger pores (with pore area higher than 

5000 nm2, i.e. Dp > 80 nm) turned out to be negligible. The values of average pore diameters 

were found to be around 40, 60, and 65 nm for CER20ext, CER30ext, and CER40ext, respectively 

(Table 5-1). It is noteworthy that the porosity ratio values as determined from SEM data were 

in excellent agreement with expected values, considering the complete removal of IL initial 

content. Besides SEM micrographs, Figure 5-7 also shows corresponding EDX spectra. As 

expected, the absence of B and F elements of [HPyr][BF4] was observed in the porous samples 

studied, which confirmed the complete extraction of IL from CER/IL precursor samples. Table 

5-2 summarizes the experimental and theoretical values of element contents in the CER-based 

samples under study. Interestingly, both sets of values were in good agreement. 
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Figure 5-7: Typical SEM micrographs of CER-based samples: CERext (a), CER20ext (b), CER40 

(c), CER40ext (d), and corresponding EDX spectra (e). 
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Figure 5-8: Pore area distributions derived from SEM data for the nanoporous CER samples. 

 

Table 5-1: Main porosity characteristics for nanoporous СER-based films 

Porous 

films 

SEM DSC-based thermoporometry 

Average pore 

diameter 

 [nm] 

Pore size 

distribution 

[nm] 

Porosity 

ratio 

Average pore 

diameter  

[nm] 

Pore size 

distribution 

[nm] 

Total pore 

volume 

[cm3/g] 

CER20ext 40 25-100 0.18 45 20-105 0.037 

CER30ext 60 25-165 0.30 60 20-175 0.120 

CER40ext 65 25-170 0.39 60 20-180 0.124 

 

Table 5-2: Experimental and theoretical values of element contents in typical CER samples 

 

Samples 

Element contents (wt. %) 

Experimental (EDX) Theoretical (calculated) 

C N O F B C N O F B 

CERext 76.0 12.0 12.0 0 0 76.2 11.1 12.7 0 0 

CER20ext 75.8 12.1 12.1 0 0 76.2 11.1 12.7 0 0 

CER30ext 76.8 11.5 11.7 0 0 76.2 11.1 12.7 0 0 

CER40ext 77.3 11.7 11.0 0 0 76.2 11.1 12.7 0 0 

CER40 67.1   9.0   7.1  14.4    2.4 69.3   9.0   7.7  12.1    1.8 
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5.3.3. Investigation of nanoporous CER-based films by DSC-based 

thermoporometry 

The melting thermograms of water in nanoporous CER samples in the temperature region 

between -3 and 4 °С as well as the corresponding profiles of pore size distributions are given 

in Figure 5-9a and 5-9b, respectively. In the thermograms of CER samples, two endothermic 

peaks were detected: one with a maximum, Tm, between -2 and 0 °С corresponding to the 

melting of water constrained within the pores of the films, and a second one with a maximum, 

Tm0, between 0 and 2 °С related to the melting of bulk water (Figure 5-9a). It was found that 

pore size distributions for the porous CER-based films under investigation were in the range of 

~20-180 nm (Figure 5-9b), and their average pore diameters were around 45-60 nm, depending 

on the initial IL content in the CER precursors (Table 5-2). It is noteworthy that an increase in 

the [HPyr][BF4] content resulted in an increase in pore diameters and a broadening of pore size 

distributions, along with increasing pore volumes. These results were in close agreement with 

those obtained from SEM analysis. Minor discrepancies between the pore characteristics 

determined by both techniques could be explained by a difference between real pore shapes of 

CER structures and circular ones used for the mathematical data processing in SEM analysis. 
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Figure 5-9: DSC melting thermograms of water confined within the pores of nanoporous CERs 

(a) and corresponding pore size distribution profiles (b). 
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5.3.4. Thermal stability of CER-based films by TGA 

The influence of [HPyr][BF4] on the thermal stability of nanoporous CER networks was 

investigated by TGA. Mass loss and corresponding derivative curves are presented in Figure 

5-10, and the main corresponding data are summarized in Table 5-3. For the neat CER sample, 

the first step of the intensive mass loss was observed in the temperature range of ~ 390-490 °C, 

which was associated with the degradation of the skeleton of cross-linked CER network, and 

the second step was observed at higher temperatures with a small mass loss. For pure 

[HPyr][BF4], we could observe a single degradation stage in the temperature interval ranging 

from ~ 350 to 438 °C with an intense mass loss value of about 94 wt. %. 
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Figure 5-10: Mass loss (a) and corresponding derivative (b) curves as determined by TGA for 

[HPyr][BF4] and typical CER-based films. 
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In contrast to pure CER, the thermal decomposition of nanoporous CER films was more 

complex and involved more stages, especially in the lower temperature range. A slight initial 

mass loss of about 2-5 wt. % below 280 °C might arise from the removal of entrapped moisture 

within the CER network. The first decomposition step for CER20ext, CER30ext and CER40ext really 

occurred in the temperature range of 285-395 °C with a mass loss of ~14-17 wt. % 

corresponding to the degradation of porous and defective network regions of CER structures. 

Near 400 °C, the onset temperature of intensive degradation with higher mass loss (~29-30 wt. 

%) then occurred, which could be attributed to the destruction of triazine cycles of CER 

skeleton. The overall decomposition approximately led to 40-42 wt. % char residues. 

Surprisingly, the thermal stability of the nanoporous CER-based networks decreased compared to that 

of pure CER, although they had the same chemical structure: the temperature values for onset of 

intensive degradation (Td1) and 50 % mass loss (Td50%) decreased respectively from 425 °C and 694 

°C for the CER sample to 395 °C and 503 °C for the CER40ext sample (Table 5-3). The higher the initial 

[HPyr][BF4] content in the CER precursors, the lower the thermal stability of the nanoporous films 

obtained. Nevertheless, the temperatures of maximum mass loss (Tdmax) are nearly identical for 

the CER, CER20ext, CER30ext, and CER40ext films. Interestingly, the presence of IL in the CER40 

sample led to a significant reduction of Tdmax by 50 °C, and one such film degraded in a single step. 

One could suppose that one such strong dilution (40 wt. % of IL) hindered the DCBE 

polycyclotrimerization, as the probability of the elementary reaction step might decrease, i.e. 

the reaction of three cyanate groups together to afford the formation of cyanurate rings. The 

existence of molecules of DCBE monomer or other intermediate oligomeric molecules, which 

were not incorporated into the CER network (as confirmed by 1H NMR spectrum of the sol 

fraction, see Figure 5-6), along with IL, might drastically decrease the Tdmax value of CER40 

sample. After extraction of all the soluble fragments, the final nanoporous CER40ext sample was 

characterized by a high Tdmax value comparable to that of the other nanoporous materials 

obtained (Tdmax = 435 °C). 

Removing IL from CER precursory networks afforded nanoporous films, which degraded 

in two steps corresponding to the destruction of the defective CER network at lower 

temperatures and the degradation of the regularly crosslinked network regions with Tdmax equal 

to that of nonporous CER analogue. Consequently, applying [HPyr][BF4] as a porogen reduced 

the thermal stability of resulting nanoporous films compared to that of neat CER to some extent, 

probably due to the formation of less regular CER structures. 
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Table 5-3: TGA data obtained for CER-based networks and pure [HPyr][BF4] 

Samples Td1
a 

[ºC] 

Tdmax
b 

[ºC] 

Td50%
c 

[ºC] 

Mass loss at 

Tdmax [%] 

Char residue 

[wt. %] 

CER 425 435 694 16 50 

CER20ext 399 435 538 32 42 

CER30ext 396 434 528 33 42 

CER40ext 395 435 503 35 40 

CER40 340 385 393 42 25 

[HPyr][BF4] 376 416 407 67 2 

a Td1: onset temperature of intensive degradation as determined by value for intersection of tangents to curve at 

the first inflection point; b Tdmax: temperature value of maximal degradation rate; c Td50%: temperature values for 

a 50 % mass loss. 

 

5.4. Conclusions 

Novel nanoporous film materials based on thermostable polycyanurates generated in situ 

by polycyclotrimerization of DCBE in the presence of ionic liquid [HPyr][BF4] have been 

developed. Nanoporous CER-based films were obtained by extraction of the ionic liquid from 

CER networks. Complete IL removal was confirmed by determination of gel fraction contents, 

FTIR, 1H NMR, and EDX spectroscopic analyses. SEM and DSC-based thermoporometry were 

used as complementary techniques for nanopore characterization. Depending on the IL porogen 

content, the average pore diameter values were found in the range of 45-60 nm with pore size 

distributions of ~20-180 nm. It is also noteworthy that an increase in the [HPyr][BF4] content 

resulted in increasing pore diameters and broader pore size distributions. The TGA curves 

showed high thermal stability of the nanoporous films obtained with an onset decomposition 

temperature near 300 °С. It should be stressed that the synthesis of CERs in the presence of IL 

was carried out without using any additional solvent or specific catalyst, the ionic liquid being 

highly thermostable and potentially being utilized repeatedly. 
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Conclusions and Prospects 

 

A new approach toward the synthesis of heat-resistant CERs in the presence of various 

types of ionic liquids (aprotic, protic or polymeric protic) with diverse functional roles  

(catalyst, filler, porogen, inert or reactive modifier) has been developed. The comprehensive 

studies on the obtained polymer materials have made it possible to draw the following 

conclusions.  

1. For the first time, thermostable polycyanurate networks and corresponding   

nanoporous films were synthesized  by using ionic liquids of various chemical structures as 

multifunctional agents, namely catalysts, reactive modifiers, fillers or porogens. The 

relationships between synthetic conditions, structure, and miscellaneous physical properties of 

the materials were established. 

2. Regardless of their chemical structure, type and content in the system, all ionic liquids 

catalyzed the polycyclotrimerization reaction of DCBE during CER synthesis: they promoted 

reduction of the induction period and reaction time, accelerated the conversion of cyanate 

groups and provided complete conversion at lower temperatures. 

3. The catalytic activity of the inert aprotic [OMIm][BF4] and [HPyr][BF4] resulted         

from the ability of formation of intermediate complexes with –O–CºN groups, i.e. 

[CN]δ+[OMIm]δ¯ and [CN]δ+[HPyr]δ¯, respectively, and the mechanisms of catalysis for     

DCBE polycyclotrimerization were proposed. 

4. In the presence of reactive [HEAIm][Cl] or [PHMG][TS], the process of DCBE 

polycyclotrimerization begun with the formation of covalent bonds between –O–CºN groups 

and –OH and/or >NH groups of ionic liquid with subsequent stepwise transformation of 

intermediates, which may also be involved in catalysis. It was determined that the synthesized 

hybrid CER/IL networks retained a high glass transition temperature (Tg = 242-284 °C) and 

thermal stability (Td= 420-424 °C). 

5. Using the inert aprotic [HPyr][BF4] as a filler during in situ synthesis of CER caused 

significant changes in physico-chemical and mechanical properties of CER/[HPyr][BF4] 

composites, due to the interaction of [BF4]
δ¯anions with electrophilic centers of triazine rings 

from CERs. Depending on the IL content (20-40 wt.%) in the CERs, increasing elastic modulus 

in the glassy region by 10-25 %, increasing tensile strength by 34-120 %, increasing Young's 

modulus by 10-50 %, and retaining high thermal stability (Тd = 330-340 °С) were fixed. 
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Simultaneously, the plasticizing effect of IL was revealed, that led to decreasing in the glass 

transition temperature of the samples to Tg = 111-217 °С (depending on the IL content). 

6. A straightforward and effective method for creating nanoporous CER films has been 

developed by complete extraction of [HPyr][BF4] from CER/IL composites. By using 

[HPyr][BF4] as a porogen, film materials with high thermal stability (Td = 395-399 °C), 

independently of the porogen content, and regular nanoporous structure with an average pore 

diameter of 40-65 nm were formed. The resulting nanoporous CERs are promising for 

applications as heat-resistant membranes. 

 

In our studies, we have found that ILs can be effectively used for CERs as catalytic or/and 

crosslinking agents, plasticizers, fillers or porogens, thus providing a new route to the design 

of advanced materials. Despite these successes, using ILs still remains an emerging field of 

research and the effect of other IL types has to be further studied. The influence of IL on the 

ductility, abrasion resistance, and self-repairing ability of IL-based CER materials remains to 

be investigated. It appears reasonable to expect (i) undersatnding of IL organization within the 

polymer network; (ii) network-IL interactions; (iii) suitable functionalization of the ILs for 

reactive modification of thermosets; (iv) molecular mechanisms of IL lubrication; 

(v) separation/sorption properties of IL-based thermosetting networks before and after 

extraction for membrane technologies; (vi) compatibilizing effect of ILs in the hydrophobic 

CERs filled with hydrophilic fillers. The prospect of ILs as electrolyte salts for engineering of 

highly conducting polymer electrolytes and characterizing their ion transport behaviour left out 

of consideration and further studies are still needed. The IL-based thermosetting materials could 

be good candidates for use in any application, in which high conductivity combined with high 

thermal stability and non-volatility are required. 
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Résumé 
 

Cette thèse de doctorat aborde de nouvelles conceptions de films à base de résines d’ester de 

cyanate (CER) en présence de liquides ioniques (LIs) en tant qu'agents multifonctionnels: 

catalyseurs, agents  de modification réactifs, renforts ou agents  porogènes. Les liquids ioniques 

de structures et de concentrations variables accélèrent de manière significative la 

polycyclotrimérisation du dicyanate d’ester de bisphenol E, en l'absence de tout solvent 

organique supplémentaire ou additif. Les réseaux de polycyanurates resultants dopés avec des 

liquides ioniques aprotiques peuvent constituer des matériaux prometteurs pour la production 

de structures photosensibles. De tels systèmes nanocomposites permettent la séparation, la 

récupération et le recyclage aisés des LIs par simple extraction, ce qui permet finalement 

l'obtention de films nanoporeux thermostables. Les caractéristiques de la porosité de ces 

matériaux dépendent de la concentration des LIs dans les précurseurs CERs. Les LІs 

protoniques contenant des groupements fonctionnels >NH et –OH, indépendamment de leur 

masse molaire, de la structure chimique du cation et de l'anion, sont incorporés chimiquement 

dans le réseau polycyanurate. Ainsi, les matériaux hybrides obtenus avec des fragments de 

liquides ioniques pourraient fournir d’excellents candidats pour des recherches futures sur les 

ionomères et les nanocomposites. 

 

Mots-clefs: résines d'ester de cyanate, liquides ioniques, catalyseur, agent multifonctionnel, 

matériaux nanoporeux 

 

 

Abstract 
 

This PhD thesis addresses new designs of cyanate ester resin (CER) films in the presence of 

ionic liquids as multifunctional agents: catalysts, reactive modifiers, fillers or porogens. It 

should be emphasized that ionic liquids (ILs) of varying structures and concentrations 

significantly accelerate the polycyclotrimerization of dicyanate ester of bisphenol E, in the 

absence of any additional organic solvent or additive. The resulting polycyanurate networks 

doped with aprotic ionic liquids can be promising materials for producing photosensitive 

structures. Such nanocomposite systems allow for easier separation, recovery, and recycling of 

ILs by mere extraction, which eventually affords thermally stable nanoporous films. The 

porosity features of these materials depend on the concentration of ILs in the CER precursors. 

Protic ILs containing functional >NH and –OH groups, regardless of molar mass, chemical 

structure of cation and anion, chemically incorporate into the polycyanurate network, thus the 

resulting hybrid materials with fragments of ionic liquids could provide excellent candidates  

for future research in ionomers and nanocomposites. 

 

Keywords: cyanate ester resins, ionic liquids, catalyst, multifunctional agent, nanoporous 

materials 


