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Abbreviations and notations

Abbreviations

Ad: Adenovirus

AIC: Akaike criterion

AIDS: Acquired Immune Deficiency Syn-

drome

ASC: Antibody-secreting cell

cART: Combination Antiretroviral Therapy

ChAd: Chimpanzee adenovirus

DC: Dendritic cell

DNA: Deoxyribonucleic acid

DRC: Democratic Republic of Congo

EBOV: Ebola virus

ELISA: Enzyme-linked immunosorbent as-

say

EVD: Ebola virus disease

FDA: Food and Drug Administration

GP: Glycoprotein

GRN: Gene regulatory network

HAV: Hepatitis A virus

HBV: Hepatitis B virus

HIV: Human Immunodeficiency Virus

HPV: Human Papillomavirus

IFN: Interferon

Ig: Immunoglobulin

IL: Interleukin

LCVa: Approximation of the leave-one-out

cross validation criterion

MAP: Maximum a Posteriori

MARV: Marburg virus

MCMC: Markov chain Monte Carlo

MHC: Major Histocompatibility complex

mRNA: Messenger Ribonucleic acid

MVA: Modified Vaccinia Ankara

NHP: Non-Human Primate

NK: Natural Killer

NP: Nucleoprotein

ODE: Ordinary Differential Equation

PEB: Parametric Empirical Bayes

PDMP: Piecewise Deterministic Markov

Process

RNA: Ribonucleic acid

RVS: Robust-variance scoring

rVSV: Recombinant Vesicular Stomatitis

Virus

SDE: Stochastic Differential Equation

SUDV: Sudan ebolavirus

TAFV: Tai Forest ebolavirus

TNF: Tumor Necrosis Factor

VV: Vaccinia Virus

ZEBOV: Zaire ebolavirus
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ABBREVIATIONS AND NOTATIONS

Notations

— In chapter 3 "Modeling the immune response to Ebola vaccine":

• x: scalar x

• x: vector x

• X: vector X

• xT : x transpose

• p(A|B): probability of A conditional on B

• Eθ[X]: expectation of X under the distribution of θ

• Tr(M): trace of matrix M

— In chapter 4 "Optimizing immune therapies in HIV-infected patients":

• x: scalar x

• x: vector x

• X: space X

• E
u
x0

: expectation under strategy u with starting point x0

16



Résumé substantiel

Introduction

Les vaccins ont constitué une avancée majeure de la médecine des dernières décennies

et ont permis l’éradication de certaines maladies telles que la variole ou la rougeole. Le

principe de la vaccination est basé sur la mémoire immunitaire : après exposition à un pa-

thogène, l’organisme est capable de générer une meilleure réponse en cas de ré-exposition.

Cette réponse est spécifique au pathogène et se produit de manière plus rapide et plus

efficacement, en termes qualitatif et quantitatif. Cependant, les mécanismes permettant

de générer et maintenir cette mémoire immunitaire ne sont pas encore totalement connus,

et les connaissances immunologiques à propos de la vaccination sont principalement em-

piriques. Cela pose donc problème quant au développement de vaccins efficaces contre

certaines maladies infectieuses plus complexes, telles que le VIH, Ebola ou bien le palu-

disme. Certaines stratégies vaccinales récentes ont engendré des résultats encourageants :

ces stratégies, dites "prime-boost", consistent à combiner plusieurs produits en injections

répétées. Cependant, l’utilisation de ces nouveaux vaccins soulève de nouvelles questions :

en particulier, combien d’injections sont nécessaires ? Dans quel ordre ? A quel délai ? En

effet, on considère que si l’injection de boost est effectuée trop tôt, les cellules sont trop

sollicitées et la différentiation en cellules mémoires n’est pas encore terminée. La réponse

secondaire n’est donc pas optimale. Si l’on attend trop longtemps, la quantité de cellules

mémoires aura déjà commencé à diminuer et la réponse ne sera pas optimale non plus. Il

est difficile de mettre en place un essai clinique pour répondre à chacune de ces questions,

car ceux-ci sont très longs et coûteux. De plus, un autre défi dans le développement vacci-

nal réside dans la variabilité populationnelle de la réponse immunitaire à une stimulation

antigénique. En effet, de nombreux facteurs peuvent influencer la réponse immunitaire,

que ce soit des facteurs génétiques, démographiques, environnementaux, ou bien liés au

microbiome. Ces facteurs ne sont pas indépendants les uns des autres et il est donc encore

difficile de les prendre en compte et de quantifier leur impact sur la réponse immunitaire.

Pour répondre à ces questions, de nombreuses données sont générées dans le cadre d’essais

cliniques vaccinaux chez des humains. Ces données sont de différents types : génomiques,

protéomiques, métaboliques, ... Cependant, il est aussi difficile d’intégrer toutes ces don-
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nées et d’en retirer l’information nécessaire pour comprendre les mécanismes d’action des

vaccins.

L’approche dite de biologie systémique a pour objectif de mieux comprendre le fonc-

tionnement du système immunitaire en analysant sa dynamique dans son ensemble, grâce

à l’intégration de données de multiples marqueurs de la réponse immunitaire. Cela passe en

particulier par la modélisation mathématique du système immunitaire. En effet, les inter-

actions biologiques entre les acteurs du système immunitaire sont généralement complexes

et non linéaires. Le comportement global est donc difficile à prédire. La modélisation ma-

thématique permet de prendre en compte cette complexité. L’intérêt des modèles réside

aussi et surtout dans leur capacité à quantifier les dynamiques du processus biologique étu-

dié et à capturer l’impact de certains facteurs sur la variabilité du processus. Les modèles,

bien calibrés et estimés, représentent également un vrai outil de prédiction. De nombreux

modèles du système immunitaire ont déjà été proposés dans la littérature et leur intérêt

a largement été discuté. Il y a cependant peu de modèles concernant spécifiquement la

réponse à un vaccin.

Le travail de cette thèse s’inscrit dans l’approche de biologie systémique, avec deux

objectifs particuliers : le premier est de modéliser la dynamique de la réponse immuni-

taire à un vaccin, et le suivant est de proposer un outil numérique pour optimiser les

protocoles d’injections répétées. En pratique, le travail est divisé en deux projets. Dans le

premier, nous proposons l’application d’un modèle de la réponse immunitaire humorale,

basé sur un système d’équations différentielles et nous estimons les paramètres du mo-

dèle en utilisant des données provenant d’essais cliniques de phase 1 sur un vaccin contre

Ebola. L’estimation du modèle permet de quantifier la dynamique du système immuni-

taire, de prédire la durabilité de la réponse, ainsi que de déterminer l’impact de facteurs

environnementaux et liés au vaccin sur la variabilité de cette réponse. Dans le deuxième

projet, nous nous intéressons à des problèmes d’optimisation. En effet, l’idée principale est

d’utiliser les modèles mathématiques de la réponse vaccinale pour déterminer le schéma

optimal de prime-boost, et en particulier le délai optimal entre les injections. Nous pro-

posons donc un outil numérique, basé sur la théorie du contrôle optimal et permettant

d’optimiser des schémas d’injections. En particulier, cet outil est appliqué à des protocoles

d’immunothérapie injectée à des patients atteints par le VIH.
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Modélisation de la réponse immunitaire à un vaccin contre

Ebola

L’épidémie d’Ebola de grande envergure qui a eu lieu en Afrique de l’Ouest entre 2014

et 2016 a mis en évidence le manque de produits thérapeutiques et/ou vaccinaux efficaces

contre le virus Ebola. Cela a engendré la mise en place de nombreux projets visant à

accélérer le développement de vaccins ou médicaments contre le virus. En particulier, un

vaccin prime-boost consistant en une injection avec le vecteur adénovirus 26 (Ad26) et

le vecteur Modified Vaccinia Ankara (MVA) est évalué dans des essais cliniques de phase

1 à 3. Certains de ces essais sont réalisés dans le cadre du consortium EBOVAC, qui est

inclus dans le programme Ebola+ de l’Innovative Medicines Initiative (IMI). Ce consor-

tium réunit des partenaires académiques avec le laboratoire pharmaceutique fabriquant

le vaccin. L’INSERM faisant partie de ce consortium, nous avons eu accès aux données

de 3 essais cliniques de phase 1 réalisés sur des adultes volontaires sains dans 4 pays :

Royaume Uni, Kenya et Ouganda/Tanzanie. Dans ces essais cliniques, les participants ont

été randomisés pour recevoir soit Ad26 puis MVA ou MVA puis Ad26 à 28 ou 56 jours

d’intervalle. Des mesures des marqueurs de la réponse immunitaire ont été effectuées à

des temps consécutifs jusqu’à 1 an après la première injection vaccinale. En particulier,

le niveau d’anticorps a été mesuré ; on ne sait pas encore si un niveau donné d’anticorps

engendre une protection contre l’infection par le virus Ebola, mais des études chez des

primates non humains ont montré que la survie après une injection intramusculaire du

virus était associée à un niveau élevé d’anticorps. C’est donc actuellement le marqueur

préférentiel pour évaluer l’immunogénicité des vaccins candidats dans les essais cliniques.

Une question majeure concerne la durabilité de la réponse immunitaire ainsi que les fac-

teurs pouvant influencer cette durabilité. En particulier, certaines études ont montré que

les anticorps étaient maintenus dans l’organisme grâce à une population de cellules B pro-

ductrices d’anticorps ayant une longue demi-vie. Cependant, il semblerait qu’une autre

population de cellules B soit capable de réagir rapidement après rencontre avec l’antigène

pour produire un certain nombre d’anticorps avant de rapidement mourir.

Nous avons donc utilisé un modèle pour la dynamique de la réponse humorale après

l’injection de boost, constitué de deux populations distinctes de cellules productrices d’an-

ticorps, ayant des demi-vies différentes et des taux de production d’anticorps différents.

La dynamique de chaque compartiment du modèle est décrite à l’aide d’une équation dif-

férentielle ordinaire. L’intérêt étant de quantifier la dynamique de la réponse immunitaire

humorale après l’injection, les paramètres du système d’équations différentielles ont été

estimés en utilisant les données des 3 essais cliniques de phase 1 réalisés en Europe et
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Afrique de l’Est. Cette estimation est basée sur une approche populationnelle, utilisant

des modèles linéaires mixtes sur chacun des paramètres. Cela permet d’estimer une valeur

moyenne du paramètre dans la population, ainsi que l’impact de covariables (facteurs liés

au vaccin ou à l’environnement géographique) sur ces paramètres et également la varia-

bilité intra-individuelle, induite par un effet aléatoire normalement distribué autour de la

valeur moyenne. De plus, l’estimation est basée sur un modèle d’observation, qui suppose

que les observations cliniques correspondent à une fonction des compartiments du mo-

dèle mathématique à laquelle s’ajoute une erreur d’observation normalement distribuée.

Concrètement, l’estimation est effectuée en maximisant la vraisemblance globale, obtenue

en calculant les vraisemblances individuelles et en intégrant sur les effets aléatoires. La

maximisation est ensuite effectuée en utilisant un algorithme de type Newton, qui est

basé sur une approximation de la matrice hessienne utilisant seulement les dérivées pre-

mières de la log vraisemblance, ce qui facilite les calculs numériques. De plus, plusieurs

critères sont utilisés afin de s’assurer de la convergence de l’algorithme. Un autre aspect

du programme de maximisation est qu’il permet d’utiliser des connaissances biologiques

obtenues à partir d’expérimentations ou d’autres estimations en définissant des distribu-

tions a priori sur les paramètres. Dans ce cas, on réalise une approximation normale de la

distribution a posteriori et on estime le maximum a posteriori du paramètre en question.

Cela se traduit numériquement par la maximisation d’une vraisemblance pénalisée par les

connaissances a priori.

Après sélection et estimation du modèle, les résultats suivants ont été obtenus : la

demi-vie moyenne des anticorps a été estimée à 24 jours (intervalle de confiance [22,26]

jours). Cette estimation semble cohérente avec des études précédentes ayant estimé la

demi-vie des anticorps entre 3 semaines et 2 mois. De plus, deux populations de cellules

productrices d’anticorps ont pu être bien distinguées : la première a une demi-vie variant

de 1 à 5 jours, selon le régime de vaccination. Cette estimation est également cohérente

avec d’autres études qui montrent que les cellules productrices d’anticorps sont sujettes à

un pic autour de 7 jours après injection vaccinale et disparaissent après 10 à 14 jours. La

deuxième population de cellules a une demi-vie de plusieurs années. Comme les données

ne sont disponibles que jusqu’à 1 an après la première injection vaccinale, il est diffi-

cile d’identifier avec précision un intervalle de confiance autour de la demi-vie de cette

population à longue durée de vie. Cependant, un profil de vraisemblance a été effectué

et a permis de déterminer une valeur minimale de 5 années. Cela signifie que la moi-

tié des cellules présentes 7 jours après l’injection de boost persiste au moins 5 ans dans

l’organisme, tout en continuant à produire des anticorps. D’autres études concernant des

vaccins différents ont également permis d’identifier une persistance des anticorps pendant

plusieurs années, suggérant le maintien par une population de cellules B capables de vivre
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longtemps dans l’organisme. Nous avons également identifié comment certains facteurs

influencent la dynamique de la réponse immunitaire humorale. Le régime vaccinal semble

notamment modifier la demi-vie des cellules productrices d’anticorps qui répondent rapi-

dement. Cette modification n’a pas d’impact sur la persistance des anticorps à long terme.

En revanche, la localisation géographique a un impact sur les niveaux de persistance des

anticorps. En effet, les participants d’Europe ont des niveaux d’anticorps à long terme

plus élevés que les participants d’Afrique de l’Est. Dans le modèle, cela est dû à une dif-

férence significative de valeur d’un paramètre signifiant que les cellules ayant une longue

durée de vie produisent plus d’anticorps et/ou sont présentes à un niveau plus élevé 7

jours après l’injection de boost chez les européens que chez les africains. Cette différence

pourrait être liée à l’environnement immunitaire, les participants africains étant plus su-

jets à un environnement immunitaire activé par d’autres co-infections ou parasites. Nous

avons également examiné l’impact potentiel de la réponse cellulaire de lymphocytes T

CD4 produisant des cytokines sur la dynamique humorale. Cependant, nous n’avons pas

pu identifier d’effet significatif de la réponse cellulaire. Cela peut être dû au fait que la

réponse mesurée correspond aux cellules circulant dans le sang, alors que les interactions

entre les cellules T et B se produisent généralement dans les centre germinatifs dans les

organes lymphoïdes.

Ce premier modèle de la réponse immunitaire humorale à un vaccin contre Ebola a

donc engendré des résultats intéressants, tant sur l’aspect quantitatif de la dynamique que

sur l’identification des facteurs de variabilité de la réponse immunitaire. Il peut cependant

être amélioré, notamment en prenant en compte la mémoire immunitaire. En effet, c’est

la génération de la mémoire immunitaire qui est d’intérêt principal lors d’une vaccination.

Pour cela, un travail a été commencé dans l’équipe afin de proposer des modèles pour la

réponse immunitaire dès la première injection vaccinale dans lesquels les cellules B mé-

moires sont générées. Ces cellules sont rapidement capables de se différencier en cellules

productrices d’anticorps après la deuxième injection vaccinale. Un premier travail a dé-

terminé l’identifiabilité du modèle, la sensibilité de la dynamique des compartiments par

rapport aux paramètres, ainsi que la calibration du modèle. Des données supplémentaires,

en particulier celles concernant les cellules B, doivent être utilisées pour pouvoir estimer

ce modèle.

Dans le cadre d’une modélisation qui s’inscrit dans une approche de biologie systé-

mique, il serait également intéressant d’intégrer d’autres marqueurs de la réponse immu-

nitaire, et en particulier des acteurs de la réponse innée. Cela pourrait être effectué en

utilisant des valeurs de certains marqueurs majeurs à certains moments de la réponse

comme covariable dans un modèle de la réponse adaptative. Il serait également envisa-

geable d’utiliser un système d’équations différentielles modélisant les dynamiques de tous
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les acteurs d’intérêt mais cela engendre plus de difficultés en terme d’estimation des pa-

ramètres. Une autre possibilité serait d’intégrer les données d’expression génique dans un

modèle mécaniste de la réponse immunitaire. A l’heure actuelle, cela représente un vrai

défi méthodologique. Le choix du type de modèle est également crucial, car les mécanismes

de transcription et expression génique contiennent une stochasticité intrinsèque qu’il est

difficile d’ignorer. Des modèles de réseaux de gènes ainsi que des méthodes d’inférence ont

déjà été développés et il serait intéressant d’évaluer la possibilité d’utiliser ces méthodes

et de les intégrer dans un modèle mécaniste de la réponse immunitaire. Cela permettrait

à long terme de définir des modèles intégratifs de la réponse vaccinale, permettant d’aider

à la mise en place de futurs essais cliniques.

Optimisation d’immunothérapies pour des patients in-

fectés par le VIH

Un autre aspect de la thèse consiste à développer des méthodes d’optimisation de

régimes d’injections répétées. Cela a été effectué en particulier dans le cadre clinique de

patients atteints par le VIH. Ces patients reçoivent un traitement antirétroviral, ce qui

leur permet de contrôler le virus et d’avoir une charge virale indétectable. Cependant,

leur système immunitaire n’est pas totalement reconstruit suite à la prise du traitement,

et les niveaux de lymphocytes T CD4 sont effectivement trop bas, inférieurs à 500 cellules

par µL de sang. Des études ont montré que des patients infectés par le VIH avec des

niveaux de CD4 plus élevés que cette limite ont un état de santé aussi satisfaisant qu’une

personne saine. Il est donc crucial de développer des thérapies permettant d’augmenter les

niveaux immunitaires de ces patients. L’immunothérapie par injections d’une cytokine,

l’interleukine 7 (IL-7) est donc envisagée, cette cytokine stimulant la prolifération des

lymphocytes T CD4 et augmentant potentiellement leur production thymique, leur survie

et leur maturation. Des essais cliniques ont évalué l’effet d’injections répétées d’IL-7 sur

la reconstitution de l’ensemble des lymphocytes T CD4 et ont montré que des injections

réalisées en cycles de 3 injections espacées d’une semaine pouvaient aider à maintenir les

niveaux de CD4 au-dessus de 500 cellules par µL de sang.

Afin de mieux comprendre et quantifier les mécanismes d’action de l’IL-7, des modèles

ont déjà été développés et estimés sur les données des essais cliniques précédemment

évoqués. Un modèle simple contient deux populations de CD4, une population étant au

repos et l’autre étant en train de proliférer. Ces deux populations ont des taux de mort

différents et les cellules au repos peuvent entrer en prolifération au taux π alors que

celles en prolifération arrêtent de proliférer après une dernière division au taux ρ. Ce

22



RÉSUMÉ SUBSTANTIEL

modèle a permis d’évaluer l’effet des différentes injections dans un même cycle sur la

prolifération des cellules, ainsi que leur effet sur la survie des cellules. Ce modèle ayant

également montré un pouvoir prédictif certain, il est possible de l’utiliser pour simuler

l’effet de différents protocoles d’injections sur des patients infectés par le VIH. L’étape

suivante est donc d’optimiser les protocoles d’injections, c’est-à-dire utiliser un minimum

d’injections d’IL-7 tout en maximisant le temps passé avec le nombre de lymphocytes T

CD4 au-dessus de 500. Pour cela nous avons développé une méthode basée sur la théorie

du contrôle optimal, et cette méthode a été évaluée sur un ensemble de pseudo-patients.

Ce sont des patients fictifs générés en tirant aléatoirement un ensemble de paramètres

suivant la loi a posteriori estimée sur les données des essais cliniques. Cela permet d’avoir

un ensemble de patients représentatif de la population d’étude.

Afin d’appliquer des résultats récents de la théorie du contrôle optimal, nous avons

d’abord décrit le processus à l’aide d’un modèle spécifique : un processus de Markov dé-

terministe par morceaux (PDMP). Cette classe de modèles correspond à un processus qui

suit une trajectoire déterministe ponctuée de sauts aléatoires. Un PDMP peut être défini

de manière itérative : à partir d’un point de l’espace d’état, le processus suit une trajec-

toire définie par le flot (par exemple la solution d’un système d’équations différentielles)

jusqu’à ce qu’un saut se produise. Cela peut arriver de manière aléatoire, selon une cer-

taine intensité, ou bien de manière déterministe lorsque le processus atteint une frontière

de l’espace d’état. Dans les deux cas, la mesure de transition permet de déterminer l’état

à partir duquel le processus reprend. Dans le cas particulier du contrôle impulsionnel à la

frontière, il est possible d’effectuer des actions ponctuelles lorsque le processus atteint la

frontière de l’espace, ce qui peut modifier l’état à partir duquel le processus recommence.

Dans notre cas particulier, nous suivons la trajectoire des CD4 et les injections d’IL-7

peuvent modifier la valeur du paramètre de prolifération des cellules pendant un temps

aléatoire de plusieurs jours. Une stratégie (ici un protocole d’injections) correspond à un

ensemble d’actions réalisées jusqu’à un certain horizon. A chaque stratégie, il est possible

d’associer un critère de performance qui compile en fait l’ensemble des coûts engendrés

par chacune des actions. Ici, le critère combine le nombre d’injections d’IL-7 effectuées

ainsi que le temps passé avec un nombre de cellules CD4 inférieur à 500 cellules par µL.

L’objectif est de minimiser ce critère de performance et de déterminer la stratégie corres-

pondante. Pour cela, un opérateur intégro-différentiel, aussi appelé opérateur de Bellman

dans la littérature, est défini à partir des caractéristiques du PDMP. En itérant l’opérateur

de Bellman, on obtient une suite de fonctions qui converge théoriquement vers la valeur

minimale du critère de performance, encore appelée la fonction valeur. Celle-ci permet

alors de déterminer la stratégie optimale.

A l’heure actuelle, il n’y a pas de méthode générale pour résoudre les problèmes de
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contrôle optimal. La résolution du problème optimal par l’itération d’une suite nous a

permis de développer une méthode numérique basée sur la programmation dynamique.

Pour cela, la suite est approchée sur une grille de l’espace d’état. La difficulté numérique

réside non seulement dans l’organisation de la grille pour permettre de calculer la suite

itérative sur la grille, mais également dans la taille de la grille qui peut engendrer des temps

computationnels assez élevés. L’algorithme itératif a été développé sur le logiciel de calcul

Matlab, et a été appliqué à un ensemble de 50 pseudo-patients afin de vérifier l’efficacité

de la méthode. Le critère de performance a été calculé sur la stratégie optimale ainsi

déterminée, et comparé à d’autres protocoles cliniques "naïfs". Les résultats obtenus sur

les pseudo-patients ont montré que la stratégie optimale déterminée avait un coût moins

élevé que les 5 autres protocoles cliniques envisagés. En effet, même si le nombre moyen de

CD4 sur un horizon d’1 an était plus faible que celui obtenu avec des protocoles contenant

plus d’injections, le temps passé en dessous de 500 était similaire, tout en utilisant moins

d’injections. Cela montre que la stratégie ainsi déterminée est bien capable de réaliser un

équilibre entre ces 2 quantités. De plus, la stratégie optimale ainsi déterminée est assez

intuitive, puisqu’il s’agit d’utiliser 2 injections par cycle tant que les niveaux de CD4 du

patient sont faibles (inférieur à 500), puis des injections seules permettant de maintenir

le patient au-dessus de la limite de 500. Les résultats suggèrent donc que la méthode de

détermination d’un protocole optimal d’injection fonctionne sur ces pseudo-patients, et

pourrait être utilisée dans le cadre d’optimisation de protocoles de futurs essais cliniques.

Une limitation majeure de cette méthode est qu’elle suppose que les paramètres du

patient sont parfaitement connus. Même si les méthodes d’estimation se sont montrées

efficaces dans ces cas de modélisation, il y a cependant de l’incertitude lorsque les pa-

ramètres d’un nouveau patient inclus dans l’essai clinique sont estimés. Il est néanmoins

difficile de gérer les problèmes d’estimation et d’optimisation de manière simultanée. L’es-

timation engendre une stochasticité due à l’incertitude autour de la valeur des paramètres

biologiques du patient étudié, tandis que lors de l’optimisation du PDMP, la stochasticité

est intrinsèque au modèle biologique en lui-même. Dans ce dernier cas, il pourrait être

intéressant d’appliquer la méthode provenant de la théorie du contrôle optimal à d’autres

processus biologiques. En particulier, les réseaux de gènes, déjà évoqués dans le cadre

d’une approche de biologique systémique, peuvent être modélisés par des PDMP. L’ex-

pression génique pourrait être intégrée dans un modèle de la dynamique de marqueurs

majeurs de la réponse immunitaire. Il pourrait alors être envisagé d’utiliser les méthodes

de contrôle pour optimiser l’expression de ces gènes. Cela permettrait de contrôler de

manière précoce la réponse vaccinale.
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Conclusion

Dans cette thèse, nous avons donc réalisé des travaux à la fois mathématiques, im-

munologiques et biostatistiques afin de comprendre, quantifier et optimiser la réponse

immunitaire à des interventions préventives et thérapeutiques contre des maladies infec-

tieuses. Cela montre que des outils méthodologiques complexes peuvent être utilisés pour

répondre à des questions cliniques concrètes et analyser des données longitudinales obte-

nues lors d’essais cliniques. Ces outils permettent la mise en place d’essais cliniques dits

in silico, qui consistent à utiliser des simulations computationnelles spécifiques à chacun

des patients étudiés, afin d’améliorer les développements cliniques. Ces essais pourraient

à terme réduire le nombre de sujets recrutés dans les essais cliniques ou bien même rem-

placer des études animales ou humaines. Concernant les essais vaccinaux, une approche

in silico pourraient également être proposée grâce aux outils de modélisation et d’optimi-

sation : après avoir développé et estimé un modèle mécaniste intégrant toutes les informa-

tions disponibles (génomiques, protéomiques, microbiome, facteurs environnementaux),

des pseudo-patients peuvent être simulés en utilisant les distributions des paramètres dans

la population d’étude. Ensuite, des méthodes d’optimisation peuvent être utilisées pour

déterminer, à titre individuel ou populationnel, quelle(s) serai(en)t la (les) meilleure(s)

stratégie(s) optimale(s) à tester dans un futur essai clinique. Des choix devront être effec-

tués dans la modélisation, notamment concernant la complexité du modèle au regard des

données disponibles, mais également la stochasticité qui ne peut être négligée lorsque la

dynamique de certaines acteurs, notamment à l’échelle génomique, est modélisée. Ces mé-

thodes pourront permettre d’adopter une approche de biologie systémique pour de futurs

développements vaccinaux.
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1 Introduction

Even though vaccines have contributed to a major improvement of global public health,

the development of effective immune interventions against infectious diseases such as Hu-

man Immunodeficiency Virus (HIV), Ebola or malaria is more difficult. These interven-

tions can be preventive – to avoid infection by the virus, or therapeutic – to help the

immune system to get rid of the virus. The development of vaccines remains a chal-

lenge not only because we need a better understanding of the mechanisms of protection

generated by immunological memory after vaccination, but also because clinical trials

assessing the safety, tolerability, immunogenicity and efficacy of vaccines are very long

and expensive. Moreover, recent developments in vaccines have been based on "prime-

boost" regimens, which combine several products in consecutive immunizations. This has

induced new questions regarding the design of clinical trials, in particular: how many

immunizations should be made ? In which order ? How long should we wait between

the immunizations ? The "systems biology" approach aims at addressing these questions

and understanding the whole operating mode of the immune system by integrating data

from several markers of the immune response. This is difficult, as the immune system

is composed of a large number of actors, connected by complex, non linear interactions.

Mathematic models and computational methods are major useful tools in this approach.

The work presented in this thesis aims to fit in this approach, with two particular

objectives: the first is to model the dynamic of the immune response following vaccine

immunizations. It helps quantifying the biological process, especially by estimating the

parameters associated to the model, based on data generated in human clinical trials.

Determining a suitable model could also help predicting the immune response of a newly

studied participant and to numerically compare several vaccine regimens. Defining a

model complex enough to capture the dynamics of the immune response, but also not too

complicated regarding the availability of the data for parameter estimation represents a

challenge in itself. The second objective of the work is to optimize the clinical protocol

for generating an efficient immune response. This is obtained by the development of a nu-

merical tool based on optimal control theory, to determine the best product combinations

that should be tested in a protocol of clinical interventions.

In practice, my work was separated into two main projects. The first is part of a

European project, funded by IMI (Innovative Medicines Initiative) and based on interna-
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tional collaborations with both private and academic partners. This project consists in

developing a mathematical model for the humoral immune response to an Ebola vaccine,

tested in humans in phase 1 to 3 clinical trials. The models allows not only to evaluate the

durability of the immune response, as measured by the persistence of antibody concentra-

tions, but also to determine some factors explaining the variability of the response across

the studied population. The model is mechanistic: it aims at translating the knowledge

about the biological process into mathematical equations. In particular, we worked on

a basic mechanistic model, based on a system of ordinary differential equations (ODEs).

The estimation of parameters relies on a population approach: each of the parameters

is assumed to admit a mean value in the population, and individual variation can be

observed around this value. This variability can also be explained thanks to environmen-

tal or vaccine-related factors. The parameters are estimated through a statistical method

based on likelihood maximization. The second project consists in developing optimization

tools for protocols based on consecutive injections. A first application of interest consists

in the optimization of immunotherapeutic interventions in HIV-infected patients. The

optimization of these injections (time and doses) is obtained by solving an optimal con-

trol problem. The method requires to model the process with another mathematical tool,

piecewise deterministic Markov models (PDMP), where the system follows a deterministic

trajectory and changes in the system can occur discretely after some random time periods.

These models have been widely studied and some recent theoretical results allow to solve

the optimal control by computing an iterative sequence based on an integro-differential

operator. All together, these projects aim at developing mathematical and computational

methods for the analysis of the dynamics of the immune system, in order to improve the

understanding of the mechanisms of action of the immune system and to propose opti-

mized and/or personalized immune interventions that should be tested in future clinical

trials.

The thesis is organized as follows: as the modeling work is based on immunological

knowledge, the first chapter aims at introducing the major notions of immunology, nec-

essary to understand the principle of vaccinations. We focus in particular on the interest

of prime-boost regimens. We also emphasize the different factors of variability influenc-

ing the immune response to vaccination. In this chapter, we also underline the role of

mathematical modeling for understanding the key mechanisms of the immune response,

quantifying the dynamics of the different actors and predicting the outcome of some in-

terventions on the immune system.

The second chapter is devoted to the first project of modeling the humoral response

to Ebola vaccine. We review in this chapter the latest clinical developments of Ebola

vaccines, which were accelerated by the recent large West Africa epidemic: this helps
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understanding the context of the generation of the data used for the estimation of the

model. We also remind the existing methods of modeling the humoral immune response,

to justify the choice of the model. Then, we present the model and its possible extensions.

In the third chapter, we develop the second project of optimizing the design of clinical

trials. The theory of optimal control is applied to a particular biological framework (IL-7

immune therapy), which results are reminded, to understand the context of the study

and the necessity for developing sophisticated methods of optimization. The theoretical

results previously obtained for controlling PDMP are presented and the numerical method

is applied on a number of pseudo-patients.

Finally, we conclude on how both modeling and optimizing approaches coul be com-

bined in a systems vaccinology approach relying on in silico trials.
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2 Immunological challenges

Abstract: In this chapter, we introduce some key notions in immunology. In particular,

we focus on the establishment and maintenance of the immunological memory, which is

crucial in vaccine development. We explain the principle of vaccination and the challenges

that still remain in developing efficient vaccines against infectious diseases. Finally, we

underline the role of mathematical modeling in understanding the mechanisms of the

immune response and quantifying the dynamics of the biological processes. These models,

coupled with optimization tools, could help improving the design of future clinical trials

and accelerate the clinical development of vaccines.

Key Words: Immunological memory; vaccine; clinical trial; prime-boost regimens;

factors of variability; mechanistic models; ordinary differential equations.

2.1 Generalities on the human immune system

2.1.1 Actors of the immune response

This introduction on the immune response is mostly adapted from the book of Abbas

et al. [2010]. The immune system is composed of cells and molecules able to detect and

react to different varieties of pathogens, inducing in this way immunity. Their organized

response to protect the organism against the pathogens constitutes the immune response.

The initial response is generated by the innate immunity, followed by the response of

adaptive immunity. The innate response is non-specific and provides a first quick re-

sponse against infection by microbes. In particular, it includes the physical and chemical

barriers through the action of the skin and the mucous membranes, the activity of phago-

cytes (neutrophils, macrophages) which ingest pathogens and of natural killer (NK) cells,

which trigger death of viral-infected cells through the release of some specific cell-secreted

proteins, called cytokines.

The adaptive immunity, for its part, adapts to the infection by developing better re-

sponse abilities, acquired with repeated exposures to the pathogen. It consists in the

recognition of the pathogen, the development of a specific response and the generation of

immune memory. It is mediated by the cell population of lymphocytes, produced from dif-
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ferentiation of stem cells into the bone marrow. The adaptive response is itself composed

of two types of responses: the humoral immunity and the cellular immunity. Humoral

immunity is generated by antibodies, circulating in the blood and mucosal secretions and

produced by the B lymphocytes. Antibodies are proteins with the shape of a Y, also

called immunoglobulins (Ig), with one constant region at their base and one variable re-

gion able to recognize the antigen. They are composed of two heavy chains and two light

chains. The heavy chains can be classified in 5 categories, determining 5 types of anti-

bodies: IgA, IgD, IgE, IgG and IgM. Antibodies can either be found on the membrane of

B lymphocytes and they act in this case as surface receptors for recognizing the antigen,

or they are secreted by plasma cells (coming from activated B cells) and in this case they

reside in the circulation, tissue and mucosal sites to eliminate the pathogen. Antibodies

act against the pathogens by different mechanisms. They can bind to the antigen and

promote its elimination by phagocytes. This way, they represent the first line of defense

against extracellular antigens. They can also block the binding of viruses to target cells

and neutralize in this way their infectivity.

Cellular immunity is achieved by the action of T lymphocytes. They are specifically

committed when the antigen is intracellular and proliferates inside host cells, such as

viruses: in that case, antibodies cannot access the antigen and T lymphocytes can en-

hance its elimination by killing infected cells. T lymphocytes can be divided into several

categories of cells with different functions. Helper T cells, expressing the CD4 glycoprotein

at their surface (also written CD4+ T cells), secrete cytokines inducing proliferation and

differentiation of the main actors of the immune response (T cells, B cells, macrophages),

and stimulating antibodies production by B cells. Cytotoxic T cells, expressing the CD8

glycoprotein at their surface (also written CD8+ T cells or CTLs), release cytokines able

to eliminate virally infected cells and tumor cells. Finally, regulatory T cells (written

Treg) are active in suppressing inflammatory responses and reducing the risk of auto-

immune diseases. NK cells, which are part of the innate response also constitute a class

of lymphocytes. The different categories of lymphocytes and their role in the immune

response are summarized in figure 2.1.

The functions of the lymphocytes are mainly mediated through the presence of cy-

tokines, which are proteins secreted by the cells playing a role in the immune response.

Cytokines impact on the differentiation of lymphocytes and their effector functions, as

well as on the hematopoiesis (formation and development of blood cells). Some are also

called interleukins (IL), as they are produced by leukocytes (macrophages or T lympho-

cytes) and act on other leukocytes, with a standard nomenclature written with a number

(IL-1, IL-2, ..). We do not intend here to review the role of all cytokines, but we will

focus on some cytokines of interest, which will be useful for the work done in this thesis:
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Figure 2.1 – Classes of lymphocytes. Taken from Abbas AK, Lichtman AJ, Pillai S,

Cellular and Molecular Immunology, edition 11, Copyright Elsevier 2011.

— Interleukin-2 (IL-2): IL-2 plays a major role in the adaptive immune response.

In particular, it is mainly produced by CD4+ T lymphocytes and enhances the

survival, proliferation and differentiation of activated T lymphocytes. It also has

an impact on the proliferation of B cells and stimulates the production of anti-

bodies. Moreover, IL-2 also has a role in the innate response, by stimulating the

proliferation and differentiation of NK cells and Tregs.

— Interferon γ (IFN-γ): IFN-γ is produced by both NK cells and T lymphocytes

and has functions in both innate and adaptive immunity. First, IFN-γ enhances

phagocytose by macrophages. It also stimulates the differentiation of naive CD4+

T cells and the recognition of antigens by T lymphocytes. Finally, it has an action

on B cells and promotes the antibody response.

— Tumor Necrosis Factor (TNFα): TNFα is a cytokine of the innate immunity,

mainly produced by phagocytes, but can also be produced by T lymphocytes and

NK cells. Its main role is to improve the recruitment and the activation of neu-

trophils and monocytes (precursors of macrophages) to eliminate the pathogen at

the site of infection. It can also induce the programmed death of some cell types.
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— Interleukin-7 (IL-7): IL-7 is a cytokine produced by stromal cells in the bone mar-

row and the thymus. It stimulates the early development of B and T lymphocytes

(before any immune response occurs) and is necessary for the survival of mature

cells, including CD4+ naive and memory T cells [Seddon et al., 2003] and CD8+

naive T cells.

2.1.2 Phases of the adaptive immune response

Adaptive immune response is characterized by several phases: recognition of the anti-

gen, activation of lymphocytes, elimination of the pathogen, before a return to baseline

state and maintenance of the generated memory. This phases are represented in figure

2.2.

Figure 2.2 – Phases of the adaptive immune response. Taken from Abbas AK, Lichtman

AJ, Pillai S, Cellular and Molecular Immunology, 3rd edition, Copyright

Elsevier 2008.

The adaptive immune response is initiated by antigen recognition. T lymphocytes can

only recognize peptide antigens expressed on the cell surface and encoded by genes in a

particular locus defined as the major histocompatibility complex (MHC), but not soluble

antigens. The MHC molecules are recognized by a receptor on the T cell surface called the

T cell receptor (TCR). T cells expressing the same TCR correspond to a same clone of T

cells. The possibility to recognize antigen is ensured by the large diversity of clones within
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a given individual, each clone corresponding to a distinct antigen. To enable recognition

by T cells, antigens should be captured and presented to their corresponding specific

lymphocytes. This role is played by antigen-presenting cells, in particular by dendritic

cells (DCs), able to transport the antigen to lymphoid organs and present it to naive T

lymphocytes to trigger the immune response. In particular, DCs express at their surface

class II molecules of the MHC, which are recognized by CD4+ T cells. On the other side,

CD8+ T cells are able to recognize class I molecules of the MHC, expressed by any cells.

Therefore, CD8+ T cells can target any virus-infected cell for elimination. Naive B cells

are situated in peripheral lymphoid tissues and can be activated when the antigen for

which they are specific bind to their membrane receptor. Naive B cells express first the

IgM and IgD antigen receptors, but can produce other antibodies after being activated

by a pathogen, such as IgA, IgE and most particularly IgG. This process is called isotype

switching. A selection of the B cells producing antibodies with higher affinity to the

antigen is made before expansion of these cells. Most of the time, the activation of B cells

and antibody production is dependent on the CD4+ T cell response [Crotty, 2015].

Antigen recognition by the lymphocytes induces a phase of activation, during which

lymphocytes undergo a large clonal expansion due to proliferation of the activated cells.

For the T lymphocytes, differentiation into effector and memory cells occurs simultane-

ously. These T cells can either stay in the lymphoid organs or migrate to non-lymphoid

tissues. For the humoral response, B cells can differentiate into antibody-secreting plasma

cells or into memory cells. Most of the affinity maturation and memory generation happen

through B-T cells interaction in germinal centers, a region in the lymphoid follicles. Anti-

bodies can enter the circulation, while plasma cells migrate from the peripheral lymphoid

organs to the bone marrow. Both B and T effector cells can act quickly to eliminate the

pathogen during the effector phase, while memory cells will remain in the organism, ready

to respond at the next encounter with the pathogen.

Most of the effector lymphocytes are short-lived and die by apoptosis at the end of

the immune response (after elimination of the pathogen). Apoptosis is a programmed

cell death, induced by different pathways. In the case of an immune response, it is due

to the fact that the survival of lymphocytes can depend on the presence of antigen and

also because the organism is auto-regulated and limits its own number of specific cells by

homeostasis process.

A small proportion of the activated lymphocytes with memory phenotype survive

after the end of the immune response and sustain in the organism. These cells are able to

respond quicker and more intensely in case of re exposure to the pathogen, as explained

in the following section.

Lymphocytes can be classified in different subsets depending on their phenotypes
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(such as effector and memory phenotypes). These phenotypes are defined by specific

combinations of markers. Markers are molecules expressed at the surface of the cells. For

example, as previously defined, T helper cells express the CD4 marker on their surface

and are then written CD4+ T cells. New technologies such as flow cytometry and more

recently mass cytometry allow the identification of the co-expression of a large number

of markers at the surface of the cells, and the level of expression can also be measured.

Combination of markers help defining a number of cell subtypes (e.g., central and effector

within the memory cells), but will not be detailed in this thesis. We can although mention

the Ki67 marker, which is used for detecting the proliferation of cells. We will consider

in this thesis that cells expressing Ki67 are in a proliferating state.

2.1.3 Immunological memory and secondary responses

After primary exposure to a pathogen, the organism acquires the ability to generate

a better response in case of a secondary exposure: it is called immunological memory

[Ahmed and Gray, 1996]. Several definitions can be given to immunological memory

[Farber et al., 2016], but most of them agree to say that this antigen-specific response

occurs faster and is quantitatively and qualitatively better at eliminating the pathogen

compared to the primary response. This is due to two main reasons. First, the number

of antigen-specific lymphocytes increases at each encounter with the pathogen, and then

more cells can recognize the pathogen and expand. Moreover, as mentioned in section

2.1.2, the immune response generates a number of memory cells which have different

characteristics than naive ones, including more efficiency in eliminating the pathogen. As

an example, after a first encounter, B cells can produce antibodies with better affinity and

binding properties than antibodies produced by naive B cells activated during a primary

response. Thus, the antibody level increases after repeated immunization, as well as the

affinity of these antibodies, as shown in figure 2.3. For T lymphocytes, although there are

differences in the differentiation and memory generation of CD4+ and CD8+ lymphocytes

[Seder and Ahmed, 2003], both memory populations show an increased sensitivity to the

antigen and require less stimulation pathways for activation than naive cells. It should be

noted here that there is still poor understanding of human memory T cells, whether it be

the diversity of the memory T cell subsets, the mechanisms involved in the maintenance

of the memory, their migration in the organism or their reactivation, and there is a large

literature on these questions [van Leeuwen et al., 2009; MacLeod et al., 2010; Martin and

Badovinac, 2014; Fraser et al., 2013]. Similarly, the relative roles of long-lived plasma

cells and memory B cells after re-encounter of a pathogen are not completely clear and

more studies should be realized to address these questions [Pape et al., 2011; Nutt et al.,
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Figure 2.3 – Evolution of the number of antibodies and their affinity through repeated

immunizations. Antigen-specific IgGs have more affinity than IgM to the

pathogen. Taken from Janeway et al..

2015; Taylor et al., 2012]. However, it is beyond the scope of this work to develop these

points in details. We will focus on vaccine development, as the principle of vaccination

relies on immunological memory.

2.2 Vaccine development

2.2.1 Principle of vaccination

The development of vaccines has been empirical, following Edward Jenner’s discovery

at the end of the 18th century: he observed that humans infected by an animal poxvirus

underwent an attenuated disease and could be protected against smallpox [Plotkin, 2014].

This led to the eradication of smallpox by 1980 and the development of a large number of

successful vaccines: polio is almost completely eliminated, and the incidence of diphteria,

tetanus, pertussis has been reduced by more than 95% in the last decades [Rappuoli

et al., 2011]. Globally, 2-3 millions of deaths are currently prevented every year thanks

to immunization against diphteria, tetanus, pertussis and measles [WHO, 2018d]. For
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example, measles vaccination is estimated to having helped reducing the number of deaths

by 20.4 millions between 2000 and 2016 [WHO, 2018e]. In the specific case of Human

Papillomavirus (HPV), an elimination sounds possible [Brisson et al., 2016] with the

vaccine as reported especially in Australia [Patel et al., 2018].

The basis of vaccination relies on the immunological memory: the immune system

is able to generate a better response to a pathogen after a primary exposure, inducing

protection and preventing the recipient from infection by the pathogen. Exposure to

an attenuated virus can therefore develop an immunological memory to the pathogen

without putting the recipient at risk of developing the disease. This approach has been

very successful for some viruses but revealed insufficient and unsafe for other pathogens

for which there is no natural recovery after infection, with high levels of mutations, or

for which the antibody response is not sufficient to protect against the disease [Germain,

2010]. New technologies have allowed developing new vaccine platforms, such as DNA

vaccines, virus-like particles, viral subunits, fusion proteins and peptids, or viral vector-

based vaccines; they rely on the same initial idea of vaccination and aim at presenting

one particular part of the antigen to the immune system to generate a strong and long-

lived immunological memory able to protect against infection in case of encounter with

the real antigen. In particular, viral-based vaccines are gene-depleted viruses in which are

inserted genes of the targeted virus. These vaccines are effective as they can generate high

immunogenicity through both humoral and cellular responses [Ura et al., 2014]. For safety

purpose, non replicative and low pathogenic viruses are usually selected. However, their

efficacy can be limited by the pre-existing immunity to the vector: previous exposures can

have induced the development of neutralizing antibodies specific to the viral vector [Mast

et al., 2010; Priddy et al., 2008]. In particular, the class of adenoviruses (Ad) is widely

evaluated in clinical trials [Hammer et al., 2013; Gurwith et al., 2013]; there exists a large

number of human serotypes causing, among others, cold and sore throats. Vaccinia virus

is also generally used: it is a member of the poxvirus family, used in the smallpox vaccine.

More specifically, modified vaccinia Ankara (MVA), an attenuated strain of this virus,

has been evaluated in several clinical trials for vaccines against several diseases, e.g. HIV

[Gómez et al., 2011] and malaria [Bejon et al., 2007].

2.2.2 Challenges in vaccine development for infectious diseases

Even though vaccines have allowed major progresses in reducing the incidence of some

diseases worldwide, we are still lacking effective vaccine against some infectious diseases

such as HIV, malaria and Ebola virus disease. This represents a major public health

challenge. The current difficulties to develop effective vaccines against these infectious
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diseases is due to our lack of deep knowledge in immunology and the mechanisms of

action of immune memory [Hagan et al., 2015; Pulendran and Ahmed, 2011; Germain,

2010]. We will develop in this section some specific difficulties faced by researchers in the

development of effective vaccines.

2.2.2.1 Clinical development

The development of vaccine is a long and expensive process. As every other drug, it

needs to be tested in several phases before approval process by the health authorities,

such as the Food and Drug Administration (FDA) in the USA or the European Medicines

Agency (EMA) in Europe. Before evaluating the vaccine in human studies, it is first

tested on animals in preclinical studies, such as mice or non-human primates (NHP).

Clinical development undergoes a process in three phases. Phase 1 clinical trials recruit

a small number of subjects (less than one hundred), usually healthy, to assess the safety

and tolerability of the vaccine. These trials can also be dose-escalating, where increasing

doses are tested until finding a dose inducing an acceptable level of the immune response

while limiting the amount of adverse events. Phase 2 trials are realized on more sub-

jects (100-300), representative of the vaccine target population, and aim at evaluating

the immunogenicity of the vaccine, while still monitoring its safety. They can last several

months to years. Phase 2 trials are sometimes divided in phase 2a and 2b trials, where

phase 2b trials are specifically designed to evaluate the efficacy of the vaccine. Phase 3

trials aim at evaluating the effectiveness of the vaccine intervention. For that, a large

number of subjects are recruited (300 to thousands) and are randomized in a placebo arm

(or other reference if another vaccine already exists) and a vaccine recipient arm. For

a prophylactic vaccine, effectiveness corresponds to the ability to prevent from infection

when at risk. Finally, after the vaccine has been licensed and is made available, it under-

goes a so-called phase 4, corresponding to the long-term surveillance of the product. So

far, only a few HIV vaccine candidates have been evaluated in efficacy trials [Stephenson

et al., 2016], but encouraging results were recently obtained from a phase 1/2 clinical

trial [Bekker et al., 2018] and initiated a phase 2b/3 efficacy trial to assess the capacity

of the vaccine to confer protection against HIV infection in South Africa [Barouch, 2018].

The beneficial effect of some vaccine, such as HIV or Ebola vaccine are very difficult to

assess in phase 3 trials: indeed, due to its mode of transmission and the preventive actions

taken in parallel to vaccine studies, it is difficult to assess the real amount of protection

induced by an HIV vaccine candidate. For Ebola, it would be necessary to observe the

potential protection induced during an epidemic, during which vaccine transmission is

active. These diseases require then the use of surrogates of protection, which can be used

to replace the disease incidence criterion. Although some surrogates of protection exist
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for other diseases, as reviewed in Plotkin [2010], it is not yet the case for HIV and Ebola.

This will be developed in more details for Ebola in section 3.1.2.2. This issue constitutes

a real challenge in developing and evaluating new vaccines.

2.2.2.2 Prime-boost regimens

In the last few years, there has been some growing interest in the so-called "prime-

boost" regimens for developing new vaccines [Ramshaw and Ramsay, 2000]. These regi-

mens combine several products in distinct, consecutive immunizations. They can either

be homogeneous, by using the same product, or heterogeneous when different products are

injected. They are expected to produce a better immune response, both quantitatively

and qualitatively. The only clinical trial that showed moderate classical efficacy (31.2

% with confidence interval 1.1-52.1) of a vaccine against HIV infection was based on a

prime-boost regimen, consisting of four priming immunizations of a first vaccine followed

by two booster immunizations of another type of vaccine [Rerks-Ngarm et al., 2009]. Fol-

lowing this study, there has been a wide range of clinical trials evaluating prime-boost

regimens for HIV or Ebola vaccines [Baden et al., 2016; De Rosa et al., 2011; Tapia et al.,

2016; Milligan et al., 2016]. However, these regimens raise a number of questions that

are still to be answered by improving our immunological knowledge [Sallusto et al., 2010].

In particular, we have not yet determined how many immunizations are necessary, and

how the order of administration has an impact on the immune response, in the case of

heterogeneous regimens. Moreover, the interval of time that should be considered between

immunizations is still an open question of research. There is some consensus on the fact

that boosting the immune response too early is sub-optimal [Sallusto et al., 2010], as some

time is needed for the cells to acquire a memory phenotype [Wherry and Ahmed, 2004],

and the cells of the immune system have a limited capacity of expansion and could be

exhausted with intense stimulation [Pollard et al., 2009]; waiting too long before the next

immunization can also be sub-optimal as the immunity wanes with time as the number of

immune cells decreases. Determining the optimal window of time for booster immuniza-

tions can also depend on other factors, such as the type of vaccine, the strength of the

primary immunization or the baseline state of the immune system [Wherry and Ahmed,

2004]. It represents then a real challenge in the development of new efficient vaccines.

2.2.2.3 Variability of the immune response

The variability of the immune response at both individual and population levels has

been observed in several vaccination studies. It can be induced by a large number of

factors, including genetic factors, demographic factors, environmental factors and micro-
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biome. These factors were widely covered in Van Loveren et al. [2001] and Pulendran

[2014], and their effect in the case of HIV vaccine was reviewed in de Bruyn [2010]. This

section does not intend to establish a review of all factors impacting the immune response,

but rather to give some insights on previously conducted studies and the difficulty to as-

sess the relative and causal effect of all these factors. The influence of genetic factors was

described in particular in studies on identical twins: they have shown that the heritability

for antibody response to several vaccines was at least of 40% [Lee et al., 2006; Newport

et al., 2004]. A summary of the studies correlating genomic and transcriptomics varia-

tions to the immune response can be found in O’Connor and Pollard [2013]. In term of

demographic factors, sex has been regularly shown to induce different immune response to

both infectious diseases and vaccines. In a review on human vaccines, Cook [2008] shows

that a large number of studies have found differences in antibody response between men

and women, associated to a difference in the clinical efficacy in some vaccines - against in-

fluenza, hepatitis A virus (HAV), hepatitis B virus (HBV), pneumococcal polysaccharide,

diphteria and to a difference of adverse effects - for rubella, measles and yellow fever vac-

cines. The difference was not consistent among all vaccines, meaning that in some cases

female had greater antibody concentrations than male and it was the other way around

in other cases. These observed differences could be due to genetic factors (genes from

the X chromosome), hormones levels or anatomic differences [Fish, 2008]. In addition

to sex, age is also known to be associated with vaccine efficacy, especially for influenza

vaccine [Seidman et al., 2012; Nakaya et al., 2015] and dengue vaccine, where efficacy was

observed to increase with age [Capeding et al., 2014], especially against severe disease.

This variation could however be partly explained by increased prevalence of baseline im-

munity with age [Dans et al., 2018; Sridhar et al., 2018]. Moreover, higher variations in

the immune response seem to be observed in aging populations [Shen-Orr and Furman,

2013]. The effect of nutrition was also studied as a potential factor impacting on the

immune response [Savy et al., 2009], and oral polio vaccine was shown to be less effective

in infants with malnutrition [Haque et al., 2014]. Of interest is also the observed differ-

ence of immune response between different populations (due to geographic settings and/or

ethnicity). A study of demographic factors influencing the immune response to an HIV

vaccine candidate showed that African Americans secreted more neutralizing antibodies

after vaccination compared to White Americans, suggesting that ethnicity itself could

affect the immune response to some immunogens [Montefiori et al., 2004]. In this study,

the effects of age and sex on the immune response were not found significant. In other

studies comparing African subjects to Western countries subjects, the immune response

was mostly found lower in Africa. A study assessing the immunogenicity of Ad-based

strategies for prophylactic HIV vaccine showed that T cell responses were lower in East
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Africa compared to South Africa and the United States, although no difference in anti-

body concentrations was observed [Baden et al., 2016]. An interesting study on yellow

fever vaccine showed the induced CD8+ T cell and B cell responses were lower in subjects

recruited in Uganda compared to subjects in Switzerland [Muyanja et al., 2014]. Prior to

vaccination, the immune environment was more activated in African subjects, as shown by

higher frequencies of differentiated T and B cell subsets and proinflammatory monocytes,

as well as exhausted and activated NK cells. This immune activation at baseline was

negatively correlated with yellow fever specific neutralizing antibody concentrations after

vaccination. Altogether these results showed that the state of the immune environment

before vaccination was different between African and European subjects and could impair

the efficacy of the vaccine. Some studies showed the efficacy of Bacille Calmette-Guérin

vaccination was lower in African infants compared to European ones [Black et al., 2002;

Lalor et al., 2009]. This difference was actually explained by pre-existing immunity, as

the percentage of subjects with IFNγ response at baseline (before vaccination) was higher

in Malawi than in the UK and the fold-increase of IFNγ response after vaccination was

higher in the UK compared to Malawi. Vector-based approaches for developing vaccines

are also affected by this point, as pre-existing immunity to the vector can also have in-

fluence on the outcome of the vaccination. It was especially shown in the Step trial,

which was interrupted after an increased rate of HIV infection was observed in vaccinated

subjects who were seropositive for Ad5 at baseline compared to placebo recipients [Buch-

binder et al., 2008]. Other factors such as co-existing infections are also considered as

factors influencing the immune response to vaccination, in particular with infectious dis-

eases (HIV, HBV, cytomegalovirus [Nielsen et al., 2015]) or parasites [Da’dara and Harn,

2010]. In addition to all these factors, the microbiome has been recently suggested to

affect the response to some vaccines [Ferreira et al., 2010], possibly due to cross-reaction

between some microbiota peptides and agents of the immune system. In particular, the

impact of microbiome on vaccine response was studied on HIV vaccine [Williams et al.,

2018] and oral rotavirus vaccines [Magwira and Taylor, 2018]. The effect of gut/intesti-

nal microbiome could also reflect the effect of nutrition on the vaccine response. It also

suggests the interest of assessing the effect of prebiotics, probiotics and antibiotics on the

immunogenicity of vaccines: some studies have shown that probiotics could increase the

immunogenicity of polio vaccination [de Vrese et al., 2005] and oral rotavirus vaccination

[Isolauri et al., 1995]. However, in a study on Indian infants, an antibiotic therapy modi-

fied the intestinal environment without improving the immunogenicity of oral poliovirus

vaccine [Grassly et al., 2016]. Finally, all these factors (genetic, environmental, micro-

biome) are not independent from each other and the way they affect the immune response

still remains a key question in vaccinology.
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2.3 The role of mathematical modeling

Mathematical modeling of the dynamics of the immune system is part of the effort

of systems biology, mentioned in the introduction, to understand more deeply the whole

process of immunity and the mechanisms establishing the immune memory. The necessity

for using mathematical tools comes from both the limitation in immunological knowledge

and the availability of more and more immune data that should be precisely analyzed to

improve our understanding of the immune system. Modeling offers the opportunity to

integrate the information of several datasets. Moreover, biological interactions are usually

very complex and lead to non-linear behaviors of the systems: it can be due to feedbacks

processes or amplification of effects due to high proliferation [Germain, 2001]. It can make

it difficult to experimentally predict the reaction of the immune system to stimulations.

Models can help understanding the underlying mechanisms of the biological process and

generating new hypotheses. More than that, the value of the models reside in their ability

to quantify the dynamics of biological process [Germain, 2017] and the factors impacting

on these dynamics, but also the variability of dynamics within a given population. Finally,

well calibrated and estimated models can be useful for predicting the outcome of interest

using observed factors.

There exist different types of models, but we can mainly distinguish descriptive from

mechanistic models. Descriptive models are data-driven and aim at best fitting the data

and trying to explain an outcome (such as a biological marker) from other factors. They

are mainly composed of statistical models, such as, for example, linear or non linear mixed

models when the data is constituted of repeated measurements. On the other hand, mech-

anistic models are based on biological knowledge and aim at describing the mechanisms

of action of a process: the initial knowledge of how the process evolves is translated into

mathematical equations which can then be applied and compared to experimental results

[Vodovotz et al., 2017]. These models can better account for the complex nonlinear re-

lationships between biological components than descriptive models. We will focus here

on mechanistic models composed of systems of ODEs, as it will be the main tool in this

thesis. However, other tools can be used such as agent-based models, where each agent

is an individual model entity and evolves in a complex system by interacting with other

agents and following established rules [Bonabeau, 2002]. This type of models is relevant

when studying spatial and local interactions between cells and they were for example de-

veloped for antigen recognition and activation of lymphocytes [Seiden and Celada, 1992],

interactions between innate and adaptive responses [Folcik et al., 2007] or in multi-scale

models of the cellular immune response [Prokopiou et al., 2014]. However, it presents some

limitations, as the outcome is usually only a computational simulation of the evolution
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of the system and it is difficult to obtain a mechanistic interpretation of the dynamics of

the system.

Rather than considering individual agents, systems of ODEs model population sizes

and concentrations. They constitute a widely-used, flexible tool for modeling the dynam-

ics of the immune system and their utility in immunology have been reviewed in several

papers [Yates et al., 2001; Callard and Yates, 2005; Castro et al., 2016]. One of the main

challenges when modeling the immune system is to find a good balance between the com-

plexity of the model, the scientific question and the availability of the information/data.

For example, there are quite a number of studies aiming at modeling the whole immune

system using systems of ODEs. These models account for the dynamics of a large number

of actors of the immune system and include the spatial dimensions [Lee et al., 2009; Kim

et al., 2007]. However this leads to systems with many equations and parameters, and

we do believe that the complexity of these models is too high compared to the amount

of data available to correctly estimate, or at least calibrate the model. Smaller systems

of ODEs have been successfully used for modeling the dynamics of infectious diseases. In

particular, HIV infection has been substantially studied [Perelson et al., 1993; Perelson,

2002; Perelson and Ribeiro, 2013] which allowed, among others, better understanding of

the CD4-HIV interactions, quantification of rates of HIV production, prediction of the

effect on some antiretroviral treatments and offered more recently the possibility to indi-

vidualize the treatment strategies [Prague et al., 2013b]. This subject is however beyond

the scope of the thesis.

Regarding the establishment of the immune memory, ODE models have been useful

for quantifying the generation of immune cells and determining the pathway of differenti-

ations leading to different subset of immune cells. In particular, a model of the CD8+ T

cells dynamics following infection by lymphocytic choriomeningitis virus in mice was first

developed in de Boer et al. [2001] and allowed quantifying the magnitude of the response

to different epitopes of the virus. It consisted in antigen-specific naive cells becoming ac-

tivated cells after encounter with pathogen, a proportion of them able to differentiate into

memory cells after some given time. This model was then used in several studies [de Boer

et al., 2003; Kohler, 2007; Graw et al., 2012] and helped predicting the generation of

memory cells. This model was also extended in Antia et al. [2003] and Antia et al. [2005]

to determine the pathway of differentiation from naive to memory cells, by comparing

two models (one where proliferating effector cells differentiate into memory cells and one

where proliferating memory cells differentiate into effectors) and trying to fit mice data

with both models. This allowed to identify a preferential pathway of differentiation, as

the other model was not able to fit the data within biologically reasonable ranges of pa-

rameters values. Pathways of differentiation were also studied in Crauste et al. [2017], by
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considering more subsets of effector and memory cells, defined by combinations of mark-

ers. This model allowed predictions of the quantity of memory cells generated during the

immune response using early measurements during the effector phase.

Mechanistic models have proved valuables in both understanding the mechanisms of

the immune response and predicting the quantity of memory response generated after

infection. However, there is less literature on mechanistic models for the response to

vaccine immunizations and the study of the interval between prime-boost immunizations.

Some papers studied the immune response to yellow fever and vaccinia virus vaccination

in humans [Le et al., 2015], and hepatitis A vaccination [Andraud et al., 2012]. They will

be described in more details in section 3.1.3. For the study of the interval between prime-

boost immunizations, we can mention the work of Castiglione et al. [2012], where authors

developed an agent-based model for the dynamics of innate and adaptive immunity dur-

ing the different phases of antigen recognition and response to pathogen, accounting for

affinity between the different actors of the immune response. The model was calibrated on

real data and allowed identification of an optimal time window for a boost immunization.

A combined agent-based and ODE-based model accounting for the spatial aspects of the

immune response, with actors in the lymph nodes and the blood, was also developed by

Gong et al. [2014] and allowed the simulation of the response to a boost immunization.

Both models gave insights into the determination of optimal schedule of secondary immu-

nization, but were lacking a clinical application, due to the fact that the model was not

estimated on real data. More generally, there is some literature on determining optimal

schedules of repeated injections in other applications than vaccine, as will be developed

in section 4.2.1.1, and these type of methods could be applied in other frameworks, such

as optimization of vaccine regimens. Control theory applied to immunology should help

designing future immune interventions for preventing and curing infectious diseases.

This justifies our approach in this thesis, of first developing a model of the immune

response to an Ebola vaccine and estimating its parameters on data from clinical trials,

and then applying the theory of optimal control to establish a tool for the optimization

of repeated injections, applied in particular to the HIV framework. Both aspects of this

work are developed in the following chapters.
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3 Modeling the immune response to Ebola

vaccine

Abstract: In this chapter, we show how Ebola vaccine development has accelerated

in the past few years. In particular, prime-boost strategies combining Ad26 and MVA

platforms have been tested in phase 1 to 3 clinical trials in Europe, Africa and the USA.

We present a model for the dynamics of the humoral response following the boost immu-

nization, in order to quantify the contribution of two populations of ASC (differing by

their half-life) and estimate the factors impacting the immune response. The parameters

are estimated using binding antibody concentrations data from 177 subjects in Europe

and East Africa, with a population approach accounting for the effect of covariates and

unexplained inter-individual variability. In particular, the different vaccine regimens seem

to affect only the peak of the antibody response, but the geographical location has an

impact on the dynamics of the long-lived ASCs: it induces a persistence of antibodies

at higher levels in European subjects compared to East African ones. This could have

an impact in the implementation of future clinical vaccination strategies. Models of the

immune response could be improved by integrating more data and compartments.

Key Words: Ebola virus disease; vaccine; EBOVAC consortium; humoral response;

antibodies; antibody-secreting cells; mechanistic model; ordinary differential equations;

population approach; linear mixed models; parameters estimation; likelihood maximiza-

tion; factors of variability.

3.1 Biological and clinical context

3.1.1 General introduction on Ebola

3.1.1.1 Ebola virus disease

Ebola virus disease (EVD) is a pathology that has repeatedly caused deadly epidemics

of hemorrhagic fever in African countries [Peters and Peters, 1999] since its discovery in

1976 in the Democractic Republic of Congo (DRC) and Sudan [Johnson et al., 1977]. EVD

is due to Ebola virus (EBOV), a filovirus of the genus Ebolavirus. Filoviruses also include
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of infected animals found in the rainforest or during hunt-related activities. Human-to-

human transmission of EBOV occurs via direct contact with body fluids of infected people

and surfaces and/or materials contaminated with these fluids. High risk of transmission

are also induced by burial rituals involving direct contact with the body of the deceased.

This close-contact mode of transmission explains why relatives and health-care workers

are frequently infected [WHO, 2018a]. Sexual transmission from survival patients could

induce EBOV infections even after West African countries are declared Ebola-free [Butler,

2015]. Studies have shown viable Ebola virus can persist in semen for months and there

is a risk of sexual transmission [Thorson et al., 2016]. Additional surveillance data and

research are necessary to better assess this risk.

EBOV penetrates the body through lymphatic and blood vessels by direct contact with

broken skin of mucous membrane. The main target cells of the virus are the dendritic

cells and macrophages. These cells circulate in the body and allow the virus to spread

in the body. It induces a systemic inflammatory response syndrome and multiple tissue

damages, especially in the liver.

The incubation period can last up to 21 days. The first symptoms are not specific and

include headache, fatigue and muscle pain. It is usually followed by vomiting, diarrhea,

symptoms of impaired kidney and liver function and in some cases, internal and external

bleeding (especially from the digestive system). Laboratory tests are necessary to confirm

diagnosis [Liu et al., 2015].

EVD is often fatal in humans, with a case fatality rate around 50%, varying from 25%

to 90 % in previous outbreaks. Filoviruses have been classified as Category A potential

bioterrorism agents by the Centers for Disease Control and Prevention [CDC, 2018], which

corresponds to the highest risk pathogens for public health.

3.1.1.2 West Africa epidemic

The recent outbreak that occured in 2014-2016 in West Africa caused 28 616 cases

and 11 310 fatalities [WHO, 2016b]. The epidemic was due to an outlier strain (Makona)

of ZEBOV, sharing a common ancestor with the known DRC and Gabon strains, but in

a different clade [Baize et al., 2014]. It started in Gueckedou rainforest region, on the

east of Guinea, in December 2013, closely followed by infections in Macenta region. A

first press release was issued by the World Health Organization on March 23, 2014. Cases

then spread to Sierra Leone and Liberia, which are bordering countries of Guinea. These

3 countries were the most affected by the epidemic, but some travel-related cases were

reported in other African countries (Mali, Nigeria, Senegal), Europe (UK, Italie, Spain)

and the USA. The Public Health Emergency of International Concern was started by

WHO on August 8, 2014 and terminated on March 29, 2016. The unprecedented scale
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of the epidemic was not found to come from higher rates of infection and transmissibility

than already observed [WHO Ebola Response Team, 2014]. The infection was easily

spread due to the large number of connections between Guinea, Liberia and Sierra Leone

populations in the border area, with high traffic between rural and urban areas. Moreover,

control measures were not set quickly enough to contain the epidemic.

An additional outbreak started in the western part of DRC on April 4, 2018. This

outbreak was declared by the Ministry of Health on May 8, 2018. A total of 54 cases were

reported, including 33 fatalities. The last laboratory confirmed EVD case was found on

June 2, 2018 and the end of the outbreak was declared on July 24, 2018 [WHO, 2018b].

However, another (unrelated) outbreak in the eastern part of the country was reported

to WHO by the Ministry of Health on August 1, 2018. As of August 20, 2018, a total of

102 cases were reported, including 59 deaths [WHO, 2018c]. Both outbreaks were caused

by the ZEBOV species.

3.1.1.3 Prevention measures and therapeutic developments

There is no licensed therapeutic treatment for EVD at the moment, and most of the

patient care constitutes of rehydration with oral or intravenous fluids, and treatment of

his/her specific symptoms. To limit outbreaks, prevention and control measures should

be implemented. They mainly concern the reduction of the risk of human-to-human

transmission in households and health-care facilities, but also the reduction of wildlife-

to-human transmission and of the risk of sexual transmission [WHO, 2018a]. Isolation

of patients with suspected or confirmed EVD is necessary to allow them access to care

and prevent them from transmitting the disease. Persons who have been in contact with

an infected patient should be monitored for 21 days to detect a possible infection. As

burial traditions induce high transmission risks, precautions should be taken with dead

bodies and communicated to the community. The population should be informed of

simple hygiene measures, such as hand hygiene. It is also necessary to train all health-

care workers to use personal protective equipment [WHO, 2016a]. However, in the case

of large-scale epidemics, it can be problematic to establish rapidly and effectively these

control and prevention measures.

Having developed preventive vaccines or efficient treatments before the next epidemic

could help preventing a similar large-scale epidemic by reducing both transmission rate

and fatality rate of the virus. In this section, we will only speak of the therapeutic

treatments. Several products are currently being evaluated, but no antiviral drug could

demonstrate a significant effect on the survival rate in humans. Most of the products have

been tested in animals during the past years (mice or NHP), but not in humans. The

West Africa outbreak accelerated the evaluation of some candidate products, which have
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been undergoing phase 1 to 3 trials since then [WHO, 2015]. However, these products

have experienced low enrollments of patients (due to late initiation during outbreaks),

making it difficult to assess their efficacy with enough statistical power and to validate

their effect on different populations. The treatment candidates can be divided in two

categories [Liu et al., 2017]: small molecule inhibitors (including the antiviral molecule

Favipiravir and the small inhibitory RNA TKM-100802) and immune-based therapeu-

tics (including interferons, convalescent plasma, combination of monoclonal antibodies

ZMapp). In particular, the antiviral Favipiravir has shown activity against EBOV in

mice and tolerance in phase 1 clinical trials on healthy humans and phase 2/3 clinical

trials on humans infected with influenza. A clinical efficacy trial was started in Guinea

in December 2014 and enrolled 126 patients but showed no efficacy in reducing mortality

of patients infected with EVD [Sissoko et al., 2016]. Recent encouraging results from a

macaque study suggest the drug efficacy could be improved at higher doses [Guedj et al.,

2018]. The combination of monoclonal antibodies ZMapp showed 100% survival in NHP

when administered 5 days after virus challenge and safety was evaluated in phase 1 clinical

trials. A randomized controlled efficacy study was run in 2015 in Liberia, Sierra Leone

and Guinea but showed no efficacy on survival in infected humans [PREVAIL II Writing

Group, 2016]. The TKM-100802 inhibitory RNA treatment showed some limited efficacy

in NHP and some related side effects were found in phase 1 trials. It was tested in a single

arm phase 2 clinical trial in Sierra Leone, showing no efficacy [Dunning et al., 2016b]. The

Brincidofovir, a small antiviral molecule, was also tested with no efficacy on 4 patients in

2015 [Dunning et al., 2016a] but trial was incomplete and the product was withdrawn by

the company. Overall, treatments against EVD have not yet showed convincing results of

efficacy in reducing mortality in infected patients, but some are still under investigation

and development.

3.1.2 Ebola vaccine development

3.1.2.1 Clinical state of the art

Similar to therapeutic development, Ebola vaccine research has been accelerated fol-

lowing the West Africa outbreak. A large number of platforms have been considered as

vaccine candidates against EVD. All contain a viral component of EBOV, usually the GP

and/or NP of the virus, coming from potential different species and strains. Reviews of

Ebola vaccine development can be found in Venkatraman et al. [2018], Keshwara et al.

[2017], Lambe et al. [2017] and Wang et al. [2017]. We also realized a review and a meta-

analysis in the team [Gross et al., 2018]; details will be given in the following section.

In addition, we searched for Ebola vaccine in clinicaltrials.gov to determine a list of the
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different platforms and their state of development.

Similar to hepatitis A or flu vaccine, the first attempt was the use of an inactivated

whole virus, which raised safety concerns, and other types of vaccines were developed.

DNA vaccines consist in a circular DNA molecule (plasmid) encoding one or several

genes of viral proteins. The first human clinical trial tested in 2003 a DNA vaccine

and showed that 3 immunizations were safe and immunogenic [Martin et al., 2006]. It

was followed a few years after by a phase 1 [Sarwar et al., 2014] and a phase 1b trial

[Kibuuka et al., 2015], showing that multiple doses were needed to sustain the immune

response. Several other platforms have also been tested in phase 1 clinical trials, including

a vaccine based on human parainfluenza virus 3 (HPIV3) in the USA, human monoclonal

antibodies in the USA or an EBOV GP nanoparticle vaccine (with or without adjuvant)

in Australia. In parallel, a replication-defective recombinant Ad5 platform (rAd5) was

first tested in the USA [Ledgerwood et al., 2010], then in China [Zhu et al., 2015; Li

et al., 2017] and Sierra Leone [Zhu et al., 2017]. However, some concern was raised on the

pre-existing immunity in the population to Ad5 virus. Research on replication-defective

recombinant vectors focused then on serotypes with low human seroprevalence. It included

chimpanzee adenovirus (ChAd), and in particular ChAd3 alone [Ledgerwood et al., 2015,

2017; Rampling et al., 2015; De Santis et al., 2016] or combined with MVA [Tapia et al.,

2016; Ewer et al., 2016] or with Ad26. The ChAd3 vaccine has been evaluated in phase 2

trials in West Africa. It has also been investigated simultaneously with the VSV platform

in a phase 2 trial under the Partnership for Research on Ebola Virus in Liberia (PREVAIL)

[Kennedy et al., 2017]. Adenoviruses Ad26 and Ad35 were also considered as potential

vectors for Ebola vaccine. After showing its beneficial boosting effects, MVA platform has

also been tested in combination with adenoviruses [Tapia et al., 2016; Ewer et al., 2016],

and in particular, Ad26/MVA regimens have been undergoing phase 1 to 3 trials. Some

of these trials have been realized in the EBOVAC consortium, as part of the Innovative

Medicines Initiative Ebola+ program [Eurosurveillance editorial team, 2015], which aims

to assess a novel prime-boost preventive vaccine regimen against EVD. This consortium

associates academic European partners (University of Oxford, London School of Hygiene

and Tropical Medicine, INSERM and INSERM transfert) with the manufacturer of the

vaccine (Janssen). In particular, as part of this consortium, we had access to the data

of three phase 1 trials realized on healthy adult volunteers in four countries - United

Kindgom [Milligan et al., 2016; Winslow et al., 2017], Kenya and Uganda/Tanzania. In

these trials, participants were randomized to received either Ad26 then MVA or MVA

then Ad26 with a delay of 28 or 56 days. Another arm tested a 15 days delay in the UK

only. In addition, phase 2 trials have been conducted under this consortium in Europe

(France, UK) and Africa (Burkina Faso, Uganda, Kenya, Ivory Coast), and a phase 2b
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trial is ongoing in Sierra Leone. All assess the Ad26 then MVA regimen at 28, 56 or

84 days of delay. In parallel, a recombinant replication-competent platform, using the

recombinant vesicular stomatitis virus (rVSV) has been developed [Regules et al., 2017;

Agnandji et al., 2016; Huttner et al., 2015; Heppner Jr et al., 2017] and tested during the

2014-2015 epidemic using a ring-vaccination approach: after diagnosis of a new infected

patient, all people who were in contact with that case in the previous 21 days were defined

as a ring. A total of 117 rings were identified, containing a mean number of 80 people.

Randomization was applied to the rings in a 1:1 ratio to receive the vaccine either one

day after identification or 21 days after. The outcome was considered to be only cases

of Ebola virus disease with an onset 10 or more days from randomization. In that sense,

vaccine efficacy was estimated 100% (95% confidence interval 68.9–100.0), but this perfect

efficacy was questioned due to differences of interventions in the placebo and treated

clusters [Metzger and Vivas-Martínez, 2018]. The ring vaccination was also implemented

in DRC during the epidemics of 2018. In the first epidemic, vaccination was realized

between May 21 and June 26, 2018 with a total of 3481 people vaccinated, including

health professionals, contacts of confirmed EVD cases and contacts of these contacts. In

the second epidemic, vaccination started on August 8, 2018. As of August 19, 2018, health

care workers were first vaccinated and immunizations were realized in 10 vaccination rings

around 28 recently confirmed cases. Additional investigations on potential Ebola vaccines

are necessary and still undergoing, especially under the Partnership for Research on Ebola

VACcinations (PREVAC), a phase 2b trial on healthy individuals in Guinea, Liberia, Mali

and Sierra Leone [Lévy et al., 2018]. In this trial, participants are randomized in a 2:1:2:1:1

ratio to receive either Ad26/MVA or placebo/placebo or rVSV/placebo or rVSV/rVSV

or placebo/placebo, all with a 56 days delay. If funding permits, participants will be

followed up to 5 years under the PREVAC-UP project. Finally, longer follow-ups will

also be realized for some participants of EBOVAC1 and EBOVAC 2, and an additional

phase 2 trial will be conducted in Sierra Leone, Guinea and DRC to evaluate the safety and

immunogenicity of the Ad26/MVA vaccine candidate in children, under the EBOVAC3

project. A summary of the trials recorded in clinicaltrials.gov and assessing platforms

that reached the phase 2 clinical development can be found in table 3.1.
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Table 3.1 – Clinical trials assessing Ebola virus vaccine platforms. N indicates the number of patients enrolled in trial (including placebos)

if recruitment is completed. If the trial is still recruiting or has not yet started recruitment, N∗ indicates the estimated targeted

number of enrolled participants. Regarding the status, "ongoing: long follow-up" means that all participants were recruited,

vaccination was administered and only long-term (more than 1 year) measurements still need to be made. Grey colored trials

correspond to EBOVAC1, blue to EBOVAC2, green to EBOVAC3, yellow to PREVAC.

Platform Immunogen Phase Country Population (N) Published results/status

rAd5 EBOV GP, SUDV GP

1 USA Adults (31) Ledgerwood et al. [2010]

1 China Adults (120) Li et al. [2017]

2 Sierra Leone Adults (500) Zhu et al. [2017]

ChAd3

EBOV GP, SUDV GP 1 USA Adults (20) Ledgerwood et al. [2015]

EBOV GP

1 UK Adults (60) Rampling et al. [2015]

1 Switzerland Adults (120) De Santis et al. [2016]

2 Cameroon, Mali, Adults (3013) Completed

Nigeria, Senegal

2 Mali, Senegal Children (600) Completed

ChAd3/MVA

ChAd3: EBOV GP 1a UK Adults (38) Completed

(or EBOV, SUDV GP). 1b Senegal Adults (40) Completed

MVA: EBOV GP 1b Uganda Adults (90) Completed

1b USA Adults (143) Completed

ChAd3: EBOV GP. 1b Mali Adults (91) Tapia et al. [2016]

MVA: TAFV NP, 1 UK Adults (60) Ewer et al. [2016]

EBOV GP, SUDV GP 1 USA Adults (60∗) Not yet recruiting

ChAd3/Ad26 EBOV GP 1 UK Adults (32) Completed

ChAd3 // rVSV
ChAd3: EBOV GP. 2 Liberia Adults (1500) Kennedy et al. [2017]

rVSV: EBOV GP
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Ad26/MVA

1 USA Adults (65) Ongoing: long follow-up

1 USA Adults (164) Completed

3 USA Adults (525) Completed

3 USA Adults (329) Completed

2 USA, Kenya, Mozambique, Adults (578) Ongoing: long follow-up

Nigeria, Tanzania, Uganda

Ad26: EBOV GP. 1 UK Adults (87) Winslow et al. [2017]

MVA: TAFV NP, 1 Kenya Adults (72) Ongoing: long folllow-up

EBOV GP, SUDV GP 1 Uganda, Tanzania Adults (72) Ongoing: long follow-up

2b Sierra Leone Adults, children (1019) Ongoing: long follow-up

2 UK, France, Adults (290) Ongoing: long follow-up

2 Burkina Faso, Uganda, Adults: healthy (616), HIV+ (141) Ongoing: long follow-up

Kenya, Ivory Coast Adolescents (129), children (131) +additional immunization

2 Guinea, DRC, Adolescents & children HIV -/+ (600∗) Not yet recruiting

Sierra Leone

rVSV EBOV GP

1 USA Adults (78) Regules et al. [2017]

1 Germany, Switzerland, Adults (158) Agnandji et al. [2016]

1 Gabon, Kenya

1 USA Adults (513) Heppner Jr et al. [2017]

1/2 Switzerland Adults (56) Huttner et al. [2015]

2 Canada, Burkina Faso, Adults & adolescents HIV+ (200∗) Ongoing: recruitment

Senegal

2 USA, Canada Adults at occupational risk (18∗) Ongoing: recruitment

3 Guinea Adults (5643), children (194) Henao-Restrepo et al. [2017]

Ad26/MVA // rVSV

Ad26: EBOV GP. 2b Guinea, Liberia, Adults (1400∗) Ongoing: recruitment

MVA: TAFV NP, Mali, Sierra Leone Adolescents (466∗)

EBOV GP, SUDV GP. Children (934∗)

rVSV: EBOV GP55
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3.1.2.2 Immune marker of interest

A prophylactic (preventive) vaccine is assessed on its ability to prevent the infection

by a pathogen. Vaccine efficacy is estimated by comparing the incidence of the disease

among vaccinated subjects to equally exposed unvaccinated subjects and computing the

percentage of reduction of risk between these two populations. However, EVD epidemics

are usually localized and induce moderate numbers of fatalities (< 100), making it difficult

to evaluate the efficacy of a vaccine candidate during active transmission. A substitute

endpoint should then be used; it is a quantity (e.g., a biological marker) that can be

measured instead of the clinical endpoint. More precisely, in vaccine development, a

surrogate of protection is needed. It has to be statistically associated with the occurrence

of the disease and situated on the causal pathway between vaccination and protection

[WHO, 2013].

No immune surrogate of protection has been identified so far for the evaluation of

Ebola vaccine. Some studies on animals have shown that humoral response and survival

were associated. In particular, protection against lethal challenge of EBOV in rVSV vac-

cinated macaques was found to be correlated with high titers of EBOV-specific IgG [Wong

et al., 2012; Marzi et al., 2015], although a large variation of level value was observed,

possibly due to differences in assays. Also, heterologous prime-boost regimens combining

Ad26 vector with either Ad35 or MVA induced protection in NHP after intramuscular

challenge, and survival was particularly associated with high humoral response and less

so with cellular response [Callendret et al., 2018]. With rVSV vaccine, neutralizing anti-

bodies were not always detected after immunization, meaning that they may not correlate

with protection. In the case of non-replicating, Ad-based vaccines injected to NHP, anti-

body response was associated to protection against EBOV challenge [Sullivan et al., 2011]

but the cellular response may also play a role, especially for long-term protection [Stan-

ley et al., 2014]. Although no surrogate of protection has been identified and bridging

studies between NHP models and humans are undergoing but have not been completed

yet [Golding et al., 2018; Sullivan et al., 2009], the community has focused on using the

antibody response as main criterion for assessing Ebola vaccine candidates in phase 1/2

trials [Krause et al., 2015].

The binding antibody response is measured with the enzyme-linked immunosorbent

assay (ELISA). This assay is used to detect the presence of antigens or antibodies in a

sample. When used to assess the binding antibody levels, the protocol is the following:

Ebola protein samples are fixed in probes on a microplate. The analysis sample is then

added to the protein mixture. If the sample contains Ebola-specific antibodies, they will

bind to the proteins situated on the microplate. A step of washing is realized, to make
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sure that only specific binding relationships are maintained. Secondary antibodies are

then added to the plate. These antibodies are labeled with enzymes which are activated

with an additional substrate and can be detected using fluorescence technologies. The

signal detected is proportional to the number of binding antibodies in the sample. The

optical density of the sample is compared to a standard curve, which allows to determine

an equivalent concentration of binding antibodies (in ELISA units).

As mentioned in section 2.2.2.3, many factors can have an impact on the quality and

quantity of the immune response to vaccine immunizations. In order to assess the factors

influencing the antibody response variability after Ebola vaccination, a meta-analysis was

conducted in the team. This work, Ebola vaccine development: Systematic review

of pre-clinical and clinical studies, and meta-analysis of determinants of an-

tibody response variability after vaccination, L. Gross, E. Lhomme, C. Pasin, L.

Richert, R. Thiébaut was published in the International Journal of Infectious Diseases

(september 2018), volume 74, pp 83-96 [Gross et al., 2018]. The article can be found

in appendix A. In short, a review of Ebola vaccine studies was conducted and a meta-

regression was estimated on human groups including at least 8 subjects. Among different

factors, related to the vaccine (platform, route of administration, insert), to the mea-

surement (delay between immunization and measure, method, antigen, strain, similarity

between strain and vaccine insert) or to the population (geographic location, age, sex),

only vaccine platforms and viral strains used for antibody detection were associated with

antibody response. However most of the heterogeneity of the response remained unex-

plained (95%), suggesting that other factors could impact the antibody response, such as

genetics, as previously mentioned, or the measurement technique for ELISA. It justifies

the interest of randomized clinical trials for formal comparisons of vaccine immunogenic-

ity. This study also underlined the opportunity we had to work on data generated in the

context of the EBOVAC1 consortium, as the clinical trials were realized with very similar

study protocols, reducing the risk of variation induced by factors related to the vaccine

and the measurement technique.

3.1.3 Modeling the humoral immune response: state of the art

3.1.3.1 Dynamics of the humoral immune response

As previously shown, antibodies represent the marker of interest when evaluating vac-

cines against Ebola virus. They actually play a crucial role in preventing many infections

and represent a good correlate of protection for a lot of vaccines [Plotkin, 2010]. Anti-

bodies are actors of the humoral response, which also include B cells. After activation,

B cells differentiate into either ASCs producers of antibodies, or into memory B cells
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with an ability of quick reaction during secondary encounters. It has been observed that

ASCs peak a few days (7-10) after encounter with the pathogen, and levels drop after a

few weeks [Lanzavecchia and Sallusto, 2009; Fink, 2012; Huang et al., 2014; Frölich et al.,

2010; Odendahl et al., 2005]. In the meantime, antibody concentrations also increase until

reaching a peak around 20-30 days after encounter, before decreasing with time. Main-

tenance of antibodies has been studied and can last several years [Amanna et al., 2007;

Amanna and Slifka, 2010; Pool et al., 2018]. Yet, antibodies are known to be short-lived,

with a half-life depending on the antibody subtype: around 2-3 days for IgDs and IgEs

[Abbas et al., 2010], 5-8 days for IgMs and IgAs [Abbas et al., 2010; Brekke and Sandlie,

2003] and estimations vary between 20 and 50 days in different studies of intravenous

IgG preparations [Berkman et al., 1990; Brekke and Sandlie, 2003] and passive immunity

through maternal antibodies [O’Dempsey et al., 1996; Leuridan et al., 2011; Brinkhof

et al., 2013; Vilajeliu et al., 2016; Voysey et al., 2017]. The maintenance of the antibodies

is actually explained by the existence of a population of long-lived ASCs which produce

and sustain antibodies over time [Slifka et al., 1998; Radbruch et al., 2006; Hammarlund

et al., 2017]. In parallel, memory B cells remain in the organism, ready to react faster

and to differentiate into ASCs producing antibodies with higher affinity to the antigen

[Tarlinton and Good-Jacobson, 2013; Inoue et al., 2018]. Modeling the whole process of

the humoral response is very challenging, and most of the models in the literature have

focused on modeling the antibody decay, in order to predict the duration of the response

and the time at which a threshold of interest is reached (e.g., the value corresponding to

a correlate of protection).

3.1.3.2 Models for the antibody decay

One of the first modeling work for the decrease of antibodies was realized in the case

of hepatitis B vaccine. A threshold of antibody concentrations under which subjects are

at risk of infection was defined in Jilg et al. [1984]. Below this value, an additional im-

munization was required to boost the immune system and the time of this additional

immunization needed to be determined. A simple model was used to quantify the vari-

ability of antibody decline among the population [Nommensen et al., 1989] and led the

authors to recommend that the duration of protection against HBV should be individually

estimated with a second measurement of antibody concentrations. In this paper, authors

assumed an exponential decline on the antibodies. It actually comes from the assumption

that after the observed peak, antibodies decline with a time-independent decay rate δ. In

that case, the differential equation verified by the antibodies (Ab) is the following:

dAb(t)

dt
= −δAb(t), (1)
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which can be solved in:

Ab(t) = Abpe
−δ(t−tp), (2)

with tp the time of peak and Abp the antibody concentration at tp. As antibody concen-

trations are usually transformed using the log10, equation (2) can be written as:

log10(Ab(t))− log10(Abp) = − δ

log(10)
(t− tp), (3)

which corresponds to a linear decrease of the log10-transformed antibodies. By using a

measurement at tp and an additional measurement at a time after tp, parameter δ can be

estimated for each subject and the time at which antibodies will reach the given threshold

can also be determined.

Basically, assuming an exponential decrease of the antibodies corresponds to using a

linear model on the log-transformed antibodies. This linear decay has also been applied to

geometric mean titers following Hepatitis A Vaccine injections [Van Damme et al., 1994].

Similar to Nommensen et al. [1989], individual estimates of the decline of antibodies follow-

ing hepatitis A vaccine immunization were estimated to account for the between-subjects

variability [Wiens et al., 1996]. Accounting for this variability by treating individual data

instead of using the mean titers over the studied population can actually be addressed

by using linear mixed models: these statistical tools allow to evaluate the inter-individual

variability through random effects and the possible influence of other factors, such as age,

gender or environmental factors on the antibodies dynamics, as detailed in section 2.2.2.3.

In that case, if we consider that t = 0 corresponds to the time at which antibodies reach

their peak, the antibody concentration for individual i at time j can be written:

log10(Ab(tij)) = β0 + γ0i + βTZi + (β1 + γ1i)tij + βT
s Zsitij + ǫij, (4)

with β0 the population mean value at time of peak, β1 the population mean value of

the decreasing slope. Z are covariates modifying the value at time of peak and β their

associated effects, and Zs are covariates affecting the decreasing slope, with βS their

associated effects. Z and Zs can be similar and share common variables. Random effects

γ on the intercept and the slope are such that:

(
γ0i

γ1i

)
∼ N

((
0

0

)
,

(
σ2
0 σ01

σ01 σ2
1

))
, (5)

Finally, ǫ is a normally distributed error ǫij ∼ N (0, σ2). Linear mixed models were used

in several studies to predict the persistence of antibodies following vaccinations or natural

infections. In particular, they were applied in studies with a follow-up data between 3 and

6 years after the last vaccine immunization to model the decline of antibodies and predict
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their persistence up to 10 to 20 years. Applications include hepatitis A vaccine [Bovier

et al., 2002], diphteria, tetanus and pertussis vaccine [Cheuvart et al., 2004; Bailleux et al.,

2008] and Japanese Encephalitis vaccine [Abe et al., 2007]. Linear mixed models were

also used in the case of hepatitis B vaccine [Renard et al., 2001], by including data up to

11 years after the vaccine immunization and predicting the antibodies concentrations at

year 12. Another interesting application was proposed by Amanna et al. [2007] to assess

the long-term duration of humoral immunity to common antigens.

However, using a linear mixed model to describe the decrease of antibodies after

their peak relies on the strong assumption that the decay rate is independent of time

and induce a single-slope decrease. Some studies have shown that this assumption is

simplistic. In particular, a biphasic decay of the antibodies has been widely observed

in experiments, with a strong decrease right after the peak of the antibody response

followed by a slower decline [Vidor, 2010; White et al., 2015]. Some early mention of

the necessity to model the biphasic decay of the antibody response can be found in

Wiedermann et al. [1997], as authors found that classical models could not fit their data

and proposed a "two-component model" accounting for the two phases of the dynamic.

Several ways to improve the linear modeling have been proposed. One natural method to

account for time-changing slope values and still consider the between-subject variability

is to use piecewise linear mixed models: it corresponds to using linear mixed models with

parameters differing on some time intervals, in particular slope values. Other methods

consider non-linear models. Indeed, instead of considering the log-transformed antibody

concentrations as a linear function of time, "exponential-type" models assume a power of

time. In that case, the modeling equation is of the form:

log(Ab(t)) = c+K(t− t0)
a. (6)

Note that when a = 1, we obtain the particular case of a linear model. These exponential-

type models were applied in particular in the case of Haemophilus influenzae type b

infections, with data up to 4 years and predictions up to 10 years [Leino et al., 2000].

Linear-mixed models, piecewise linear-mixed models and non linear model based on an

exponential-type function were compared in some studies: in particular, estimations on

data from Japanese Encephalitis vaccine [Desai et al., 2012] and hepatitis A [López et al.,

2015; Theeten et al., 2015] showed that piecewise linear-mixed models induce better fit

and can help predict the persistence of antibodies after immunization. Another non-linear

approach is the "power-law" model [Fraser et al., 2007]: it accounts for the heterogeneity

in the rate of decay of several populations of ASCs by using a Gamma distribution, which

leads to the following equation for the antibody dynamics:

log(Ab(t)) = k − a log(c+ t). (7)
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This model was proposed to be extended in the same article by considering two distinct

populations of ASCs: one population is active, with an heterogeneous decay rate modeled

by a Gamma distribution and a given proportion of the cell population is memory, with

a null decay. This model induces a long-term antibody plateau. It is written as:

log(Ab(t)) = k + log[(1− π)−a(c+ t) + π], (8)

with π > 0 inducing a long-term antibody persistence. Modified power-law model was

shown to fit better the data from HPV vaccination compared to the simple power-law

model [Fraser et al., 2007]. Still in the HPV context, the data was better fitted by a

modified power-law model compared to a power-law model and piecewise linear models

[David et al., 2009]. In both cases, models were fitted on follow-up data up to 6 years

and used for predictions between 20 and 30 years after vaccine immunization. Power-law

and modified power-law models were also fitted on hepatitis E vaccine data up to 6 years

after immunization [Chen et al., 2015]. Both models allowed predictions of persistence up

to 30 years, but their performances could not be clearly distinguished with the available

data. Finally, models of the antibody dynamics using fractional polynomial models were

proposed and estimated on hepatitis A vaccine data [Hens et al., 2014]: a piecewise linear-

mixed model with 3 slopes was found to fit the best the data up to 17 years and allowed

prediction of persistence up to 25 years.

Overall these models represent a good tool to predict the long-term persistence of

antibodies after vaccination, when data is already available up to a few years after the

immunization. However, they only model the decreasing phase of the antibody dynamics

and do not account for the previous temporal phase or the dynamics of ASCs. Moreover,

the biological interpretation of complex descriptive statistical models is difficult, as men-

tioned in section 2.3. A good alternative to model the dynamics of the humoral response,

accounting for both ASCs and antibodies dynamics, is to use mechanistic, ODE-based

models.

3.1.3.3 Mechanistic models for the humoral response to vaccine

Mechanistic models are based on the knowledge from the biological process, and are

able to account for the non-linear interactions between the actors of the process. They can

be based on ODEs from which parameters can be estimated to quantify the characteristics

of the process. In the case of the humoral immune response following vaccination, only

a few ODE-based models were used. In Wilson et al. [2007], the dynamics of circulating

antigen, immunological memory and antibody concentrations after hepatitis B vaccine

immunization were modeled with ODEs to quantify the mechanisms of the immune re-

sponse. The interest is focused on immunological memory, as defined by the ability to
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produce circulating antibody. Protection from infection is driven by this immunological

memory, as some patients with low anti-HBVs antibody concentrations can also be pro-

tected, thanks to reactivation of their immunological memory. Immunological memory

does not correspond to a given population of cells but more to the expansion capacity of

memory B and T lymphocytes, changes in cytokine production, and affinity phenomena.

Vaccine antigen (V) is supposed to decrease at constant rate σ. Memory (M) is assumed

to be generated at both antigen-dependent and independent rates, with a limited capacity

N . Memory has the capacity to produce antibodies (A) in presence of vaccine antigen

at rate δ, with a maximum level N . Antibodies decrease at a time-dependent rate µ/T ,

with T the time since last vaccination. The equations of the dynamics following a booster

immunization are the following:





dV

dt
= −σV,

dM

dt
= (γV + βM)

(
1− M

N

)
,

dA

dt
= δMV

(
1− A

N

)
− µA

T
.

(9)

The model was used to fit antibodies concentration data from several clinical trials as-

sessing the effect of different vaccines (three generations of vaccines have been used up to

now). The estimation showed that quantity of memory and the time before its generation

significantly varied between the different vaccines. As the amount of memory (and not

the antibody concentrations) is supposed to generate protection, predictions of the model

supported the hypothesis that a single dose of vaccination could be sufficient to induce

protective immunological memory.

Another study by Le et al. [2015] modeled the dynamics of ASCs after vaccinia virus

(VV) vaccination in human volunteers with ODEs. The model was actually an extension

of a widely known model for the CD8+ T cell response, developed in de Boer et al. [2001]

and Antia et al. [2003], as mentioned in 2.3. After VV vaccination, it takes some time Ton

until ASCs (written B in the article) are activated and start proliferating. Then, after

a few days, a contraction phase arises and most of the ASCs die at rate δB; it happens

during some given period of time. Some memory cells remain in the organism and die

with a much lower rate δM . The equation of the dynamics can be written as:

dB(t)

dt
=





0 if t < Ton,

ρB(t) if Ton ≤ t < Toff ,

−δBB(t) if Toff ≤ t < Tmem,

−δMB(t) if Tmem < t.

(10)
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Antibodies (Ab) are produced by ASCs cells at rate θ(t) and die at rate δAb:

dA(t)

dt
= θ(t)B(t)− δAbAb(t). (11)

A first model considered a rate θ constant with time and another rate linearly increasing

with time after Ton. Finally, an improvement of this model was also proposed in the same

paper, in order to account for the hypothesis that antibodies are produced by several

populations of ASCs. Authors included in the model circulating ASCs, that were able

to migrate to the bone marrow and differentiate at rate m into long-lived plasma cells.

Antibodies are then produced at constant rate θ by both circulating cells and cells from

the bone marrow. A patient-by-patient estimation method allowed good fit of the data

by the models. Unfortunately, due to the few number of data measurements and the

increased number of parameters in the alternative models, statistical differences between

the three models could not be assessed. The models helped quantifying the kinetics of

the immune response following vaccination, but could not help distinguishing the main

mechanisms involved in the production of antibodies by ASCs.

Finally, in Andraud et al. [2012], authors aimed at applying the "plasma-cell imprinted

lifespan" model developed by Amanna and Slifka [2010]: it assumes that antibodies are

maintained by a population of long-lived plasma cells, located in survival niches and with

an "imprinted" lifespan, independent from the replenishment from memory B cells (due

to boost immunizations of possible re infections). In the model, the plasma cells are then

divided in two populations with two different lifespans (one short and one long). These

populations are assumed not to be renewed and to decline with time at two different decay

rates. Model equations are then:





dPs

dt
= −µsPs,

dPl

dt
= −µlPl,

dAb

dt
= φsPs + φlPl − µAbAb.

(12)

The system has an analytic solution, as plasma cells admit an exponential decline. By

writing Φs = φsPs0 and Φl = φlPl0, we obtain:

Ab(t) =
Φs

µAb − µs

e−µst +
Φl

µAb − µl

e−µlt +

(
A0 −

Φs

µAb − µs

− Φl

µAb − µl

)
e−µAbt. (13)

Additional hypothesis can simplify the model; especially, a model where µl = 0 was tested,

as long-lived cells are expected to have a very long lifespan. Moreover, a model assuming

that antibodies die much faster than ASCs was also tested (with µAb ≫ µs and µl).

These models were used to fit data of antibody concentrations from 1 to 10 years after
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hepatitis A vaccine immunizations and compared with power-law decay models. They

were estimated with a population approach and allowed both individual and population

prediction of immunity waning. The asymptotic model, assuming that µl = 0 was found

to be the best for fitting the data. However, additional measurement of the early antibody

response (before one year) were found to help improving parameters estimation, and in

particular those related with the long-lived ASCs. It could mean that early measurements

would help better distinguishing between the role of short-lived and long-lived ASCs. This

modeling work succeeded in estimating three scales of the humoral response dynamics,

corresponding to the lifespan of antibodies (around 20-30 days), short-lived plasma cells

(several months) and long-lived ones (decades).

There has been a large interest in modeling the humoral immune response to vaccine

immunizations, but only a few studies accounted for the dynamics of the ASCs in addition

to the antibodies. This is also related to the availability of the data, as most of the

time only the antibody concentrations are measured. Moreover, we have seen that both

individual and population fitting are used to estimate the key parameters of the dynamics

of the response. In our work, we have focused on using a population approach to estimate

the parameters of an ODE-based mechanistic model for the dynamics of the humoral

response to Ebola vaccine. We will detail in the next section the method for the estimation.

3.2 Method: parameters estimation

3.2.1 The population approach

A first way to use ODE-based mechanistic models is to simulate trajectories with

a certain range of parameters values to assess the ability of the model to reproduce

qualitatively the dynamics of the biological process. These simulations also allow to get

an idea of how parameters may impact the trajectories of the compartments of the system.

Parameters of the model can also be chosen by calibration: it consists in determining

some well-chosen combinations of the parameters that allow to reproduce quantitatively

the clinical data. This is done by comparing the predicted compartment trajectories to

the data. Both approaches can be valuable for running simulations and comparing several

models related to different biological hypotheses. They actually represent a first step of

study when developing a model. However, ODE systems can almost never be solved with

an analytic solution and the output is usually non-linear in the parameters. Simulations

with a given number of parameter combinations does not allow to explore the whole space

of possible solutions and do not ensure to determine the optimal values corresponding to

the clinical data. One way to deal with this issue is to estimate the parameters of the
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ODEs. However, due to the complexity of the models and the clinical constraints on the

data, estimation of parameters is not that easy and represents a real statistical challenge.

Patients-by-patients fits have been widely used [Ribeiro et al., 2002; Dixit and Perelson,

2005; Le et al., 2015]: parameters are determined for each patient, by minimizing a given

criterion – usually the mean squared error on the patient’s data and population parameters

are generally obtained by computing empirical means of the patients’ estimated values.

Our approach is based on population estimation, for several reasons. First, data can be

unbalanced in biological experiments. It means that measurement timings and availability

can differ between subjects. This additional constraint can make it difficult to estimate

parameters of some individual with only a few measurement. Using the whole population

data can handle that issue [Thiébaut and Walker, 2008]. Another argument for the

statistical power of the approach relies on a simple analogy with statistical regression

models. Indeed, if several groups of individuals can be defined based on a covariate (e.g.,

immune intervention), it is possible to stratify the estimation within each intervention

group, but more powerful to use the data on all subjects and include the covariate in

the model. Finally, the variability between patients adds information to the model; for

example, it can help constraining the parameters value of the model. Indeed, if a model

is considered to be acceptable for both a placebo and an immune intervention group,

with the intervention affecting only the value of some parameters, the estimation on the

placebo dynamics will help constraining the values of other parameters that are supposed

to be shared between the two groups. The population approach can also help determining

which parameters induce more or less variability between subjects behaviors. Here, linear-

mixed models are applied to the parameters of the ODE system; covariate effects can be

estimated on these parameters, and the unexplained inter-individual variability is modeled

with random effects.

3.2.2 Estimation with NIMROD

Parameter estimation of ODE systems was mostly realized using NIMROD (normal

approximation inference in models with random effects based on ordinary differential

equations) tool, which was previously developed in the team [Prague et al., 2013a]. This

method of estimation was implemented in Fortran. In this section, we present the general

model of ODEs handled by NIMROD and the statistical method of estimation. It relies on

likelihood maximization using a Newton-like algorithm which approximates the Hessian

using first derivatives. Acceptable computation times are achieved thanks to parallel

computation.
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3.2.2.1 General model

The general model is based on three layers. First, we consider the mathematical

model, which consists of a system of ODEs modeling the biological compartments (e.g.

population of cells), represented by the vector X(t) = (X1(t), . . . , XK(t)). In a given

population of n independent subjects, the ODE system for subject i is written:




dXi(t)

dt
= f(Xi(t), ξi(t)),

Xi(0) = h(ξi(0)).
(14)

ξ is the vector of nb biological parameters. The parameters can be transformed to account

for biological constraints (e.g., logarithmic transformation if parameters correspond to

rates and are positive). We use one-to-one transformation functions ψl, l = 1 . . . nb:

ξ̃il (t) = ψl(ξ
i
l (t)). (15)

From now, we will consider that ψ = log. The population approach includes statistical

linear-mixed models on the biological parameters. This allows to introduce covariates on

parameters and to account for the between-subjects variability. For every parameter ξl

and patient i, we write:

ξ̃il (t) = ξ̃l0 + βT
l z

i
l(t) + uil, (16)

where ξ̃l0 is the intercept and represents the mean value of parameter over the population,

βl is a vector of regression coefficients, zil is a vector of ne explanatory variables and uil

is an individual random effect, following a centered normal distribution with variance ω2
l .

Random effects are independent and applied on a subset of q biological parameters. The

last aspect of the model is the observation model, as in practice not all compartments of the

model are directly observed and we only have access to discrete time observations Yi(tij)

of some function of Xi(t). We suppose there are known link functions gm, m = 1, . . . ,M

allowing an additive measurement error model:

Y i
m(tij) = gm(X

i(tij)) + ǫijm, (17)

with ǫijm ∼ N (0, σ2
m). The estimation problem corresponds to the determination of all

parameters: intercepts, regression coefficients, variance of random effects and variance of

measurement errors. It corresponds to the vector of parameters θ such that:

θ =
[
(ξl0)l=1..nb

, (βl)l=1..ne
, (ωl)l=1..q, (σl)l=1..M

]
. (18)

3.2.2.2 Likelihood and scores computation

For each individual i at time j and each link function m, we assume that the error

follows a normal distribution: ǫijm ∼ N (0, σ2
m). The individual likelihood of subject i
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given the random effects can be computed as in Guedj et al. [2007a]:

LFi|ui =
∏

m=1..M
j=1..ni

1

σm
√
2π

exp


1
2

(
Y i
m(tij)− gm(X

i(tijm, ξ̃
i))

σm

)2

 . (19)

The observed individual likelihood is obtained by integration over the random effects:

LOi =

∫

Rq

LFi|ui(u)Φ(u) du, (20)

where Φ is the normal density of N (0, Iq). Then the full (given random effects) and

observed individual log likelihood are : LFi|ui = logLFi|ui and LOi = logLOi . Finally, the

global observed log likelihood is obtained by summing all individual contributions:

LO =
n∑

i=1

LOi . (21)

The likelihood is computed thanks to adaptative gaussian quadrature [Guedj et al., 2007a].

Indeed, it has been shown that this method may be more precise than others, and es-

pecially Laplacian methods [Lesaffre and Spiessens, 2001]. The likelihood is then maxi-

mized through a Newton-like algorithm using only the first derivatives of the log likelihood

(scores). The observed individual scores are deduced by Louis’ formula [Louis, 1982] :

UOi
=
∂LOi

∂θ
= (LOi

)−1

∫

Rq

LFi|ui(u)UFi|ui(u)Φ(u) du. (22)

These scores have analytic expressions. As an example, we will present here the formula

for the fixed effects φ and refer to Guedj et al. [2007a] for the other parameters. The score

is computed given the random effect of subject i:

Uφl

Fi|ui(θ) =
∂LFi|ui

∂ξ̃il
=
∑

m,j

1

σ2
m

∂gm(X
i(tijm, ξ̃

i))

∂ξ̃il

[
Yijm − gm(X(tijm, ξ̃

i)
]
. (23)

This computation requires the determination of the sensitivity equations of the ODE

system,
∂Xk(t, ξ̃

i)

∂ξ̃il
, as:

∂gm(X
i(t, ξ̃i))

∂ξ̃il
=
∑

k≤K

∂gm(X(ti, ξ̃
i))

∂Xk

∂Xk(t, ξ̃
i)

∂ξ̃il
. (24)

The observed individual scores are obtained by numerical integration, using an adaptive

Gaussian quadrature, similar to the computation of the individual log likelihood.

3.2.2.3 Newton-like algorithm for likelihood maximization

The maximization of the likelihood is usually realized using a Newton method. The

method implemented in NIMROD is an extension of the Newton-Raphson algorithm using
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an approximation of the Hessian matrix based on the scores only. Consider a model

(Pθ)θ∈Θ with Θ an open subset of Rm. In a population of n independent subjects, LOi =

logLOi is the observed individual log likelihood for subject i and Lθ =
∑n

i=1 L
θ

i is the

global observed log likelihood. The maximum likelihood estimator is defined by :

θ̂ = argmax
θ∈Θ

Lθ. (25)

The method requires the computation of the score and the Hessian matrix (assuming that

the log likelihood is twice differentiable):

Uθ

i =
∂Lθ

i

∂θ
, (26)

Uθ =
n∑

i=1

Uθ

i , (27)

H(θ) =
∂2Lθ

i

∂θ2
. (28)

The information matrix is

I(θ) = Eθ[−H(θ)] = Eθ[−Uθ(Uθ)T ]. (29)

Assume that the Lθ

i are iid, then we can write I(θ) = nI(θ), with I(θ) independent

from n. Moreover, assuming that ∃θ∗ ∈ Θ such that Pθ∗ = P∗, the maximum likelihood

estimator θ̂ verifies the following:

n−1/2(θ̂ − θ∗) → N (0, I(θ∗)
−1). (30)

The likelihood maximization can be realized with the Newton-Raphson iterative algo-

rithm, defined by the following iteration:

θk+1 = θk −H−1(θk)U(θk). (31)

The idea of the algorithm comes from Taylor’s formula. We will explain the principle for

a function f : R → R twice differentiable. For x and x0 ∈ R, we can write:

f ′(x) = f ′(x0) + (x− x0)f
′′(x0) +O((x− x0)

2). (32)

As the aim is to maximize f , we are looking for x such that f ′(x) = 0. It comes from

equation (32) that if x and x0 are close enough:

x ≈ x0 − (f ′′(x0))
−1f ′(x0). (33)

The iterative sequence such that:

xk+1 = xk − (f ′′(xk))
−1f ′(xk) (34)
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Algorithm Value of G

Marquart G = H + λdiag(H)

Levenberg G = H + λId

RVS algorithm G(θk) =
∑

i≤n

Ui(θk)U
T
i (θk)− n−1U(θk)U

T (θk)

Table 3.2 – Different types of Newton-like algorithms

converges to x such that f(x) is a maximum of f . A classical Newton-Raphson algorithm,

as expressed in (31), requires an inversion of matrix H. Some extensions of the algorithm

have been proposed to handle more general cases where H is not positive definite. The

iterative step is of the form:

θk+1 = θk −G−1(θk)U(θk), (35)

where G(θ) has to be positive definite for all θ and close to H(θk) when θk → θ̂. As

shown in table 3.2, Marquart and Levenberg algorithms [Marquardt, 1963] propose to

use matrix H with modifications of its diagonal. The Robust-variance scoring (RVS)

algorithm, developed in Commenges et al. [2006], is based on an expression of G from

Berndt et al. [1974]. This algorithm was shown to have a good convergence rate and

to run faster that the Marquardt algorithm, as it only requires the computation of the

scores, which is less computationally demanding than computing the Hessian matrix. This

advantage is even more interesting when the number of parameters is large. Convergence

of the RVS algorithm is ensured by three criteria. A stopping criterion is a condition of

the form Ck < c, computed at each iteration of the algorithm, with c a given stopping

value. The first two criteria are based on the evolution of the algorithm on the parameter

space and on the log likelihood value (with d a distance defined on both spaces):

d(θk+1,θk) ≤ η1 (36)

and

d(L(θk+1), L(θk)) ≤ η2. (37)

However, both criteria could be small even when the algorithm is fixed on a wrong di-

rection (close to local maxima for example). A criterion was proposed in Commenges

et al. [2006], with a stopping value independent from the problem of estimation. It corre-

sponds to the ratio of the numerical approximation error d(θk, θ̂) and the statistical error

Eθ∗ [d(θ̂,θ∗)]:

Ck =
d(θk, θ̂)

Eθ∗ [d(θ̂,θ∗)]
. (38)
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By using a distance of the form d(x, y) = (x− y)TM(x− y) and taking M = G, it can be

shown that:

Ck ≃ m−1U(θk)
TG(θk)

−1U(θk). (39)

In practice, we use Ck < c, with c < 1 and as close as possible to 0 (taken if possible

equal to 0.1).

3.2.2.4 Prior distributions

Depending on the number and schedule of observations available, the number of sub-

jects in the study, the measurement precision and the observed components of the model,

estimation identifiability issues can arise [Guedj et al., 2007b]. One method to deal with

this problem is to reduce the number of parameters to be estimated by fixing some of

them, using values from previous studies. Another more flexible way to improve the ac-

curacy obtained on the estimation of parameters relies on bayesian approaches, which

help constraining the space of exploration of the algorithm. Bayesian inference is usually

implemented with Markov chain Monte-Carlo (MCMC) method, as in the Stan software

[Gelman et al., 2015]. However, these methods can be time-consuming in complex mod-

els. An alternative was implemented in NIMROD, by using a normal approximation of

the posterior distribution and estimating the Maximum A Posteriori (MAP) [Drylewicz

et al., 2012]. This method is easy to include in the model, with a faster computation time

than MCMC. This approach is justified by the fact that the posterior distribution can be

approximated. In particular, Bernstein-Von Mises theorem [Van der Vaart, 2000] states

than under weak conditions, the posterior distribution converges to a normal distribution.

Parameter θ is initially defined by a probability density π(θ). The posterior distribution

is obtained by accounting for the observations: π(θ|Y ). As shown in Drylewicz et al.

[2012], applying Bayes formula gives:

θ̂MAP = argmax
θ∈Θ

Lθ

MAP , (40)

with

Lθ

MAP = L(θ) + log(π(θ)). (41)

Numerically, it corresponds to maximizing the penalized log-likelihood:

L(P )(θ) = L(θ)− J(θ), (42)

with J(θ) = − log(π(θ)). The same algorithm (RVS) can be used for likelihood maxi-

mization, but with a modified function G such that:

G(θk) =
n∑

i=1

Ui(θk)U
T
i (θk)− n−1U(θk)U

T (θk)−
∂2J

∂θ2
(θk), (43)
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and G(θk) ≃
∂2L(P )

∂θ2
(θk) near the maximum [Prague et al., 2012]. In practice, J is easy

to compute as only normal priors are used on the biological parameters φ. In that case:

J(θ) =
∑

j

(φj − E(φj))
2

2var(φj)
. (44)

It allows to determine an approximately normal posterior distribution on the biological

parameters.

3.2.2.5 Individual parameters

In addition to providing population estimation of the parameters, the method also

allows the computation of individual parameters. Using some individual data, parameters

of a given patient can be computed using parametric empirical bayes estimators (PEB)

[Morris, 1983; Kass and Steffey, 1989]. The individual estimator can be written as:

ξ̂i|F i
j
= ξ̂0 + β̂Tz(t)i + ûi

|F i
j
, (45)

where ξ̂0 and β̂ are the MAP values obtained from the estimation on a dataset excluding

observations 1 to j of patient i (written as F i
j ). Estimation of the individual random

effects ûi
|F i

j

can be computed by maximizing the individual likelihood of patient i, based

on observations Yi1, ..,Yij:

ûi
|F i

j
= argmax

u∈Rq

{
log[p(Yi1, ..Yik|θ̂, zi,u)]− J(θ̂,u)

}
, (46)

with θ̂ the MAP value. Similar to the likelihood maximization, computation of individual

random effects can be realized with different methods, but the one implemented in NIM-

ROD is a Newton-like algorithm. This allows to compute individual trajectories from the

population estimation.

3.2.2.6 Model selection

In practice, a number of statistical models are evaluated to fit the data, by testing

different combinations of random and fixed effects on several parameters. Models are

compared and selected using several criteria: first, quality of fit, which is a visual check-

ing that the trajectories correspond to the expected dynamics, regarding the data. For

example, the Visual Predictive Check (VPC) is a tool comparing the percentiles of the

real data to the percentiles of data simulated with the estimated parameters [Post et al.,

2008]. Moreover, the likelihood is used to compare models (a higher likelihood is expected

for better models). We also use an approximation of the leave-one-out cross-validation

criterion (LCVa), developed in Commenges et al. [2007], which is an extension of Akaike
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criterion (AIC), accounting for the number of parameters but also for the penalization

and the number of observations [Commenges et al., 2008, 2015]. The LCVa estimates a

risk, so better models are expected to obtain lower values of LCVa. It is defined as :

LCV a = −n−1
[
L(θ̂)− Tr(H−1

LP (θ̂)HL(θ̂))
]
, (47)

where HLP and HL corresponds to the Hessians of minus the penalized log-likelihood and

the log-likelihood respectively.

Several methods of model selection can be used. Our method of selection can be

considered as a backward stepwise approach. The model is first estimated by considering

random effects on all parameters. Then, for each random effect, we can test if the variance

is significantly different from 0, using a Wald test. Non significant random effects can

be removed from the model, one by one, by starting by the less significant one and

estimating again the model at each removal. The same method can be applied to the

selection of fixed effects (covariates) on the parameters. Significance of the fixed effects

is also tested using a Wald test and by checking that the variance of random effect is

usually reduced. We can process with the same removing method with the covariates.

Each time a parameter is removed, the LCVa and likelihood of the models with and

without the parameter are checked to make sure the parameter can actually be removed

without reducing the performance of the model. In the end, we obtain a model with

selected random and fixed effects on the parameters. However, it should be underlined

that it can be computationally difficult to estimate a model including random effects on

all parameters, as the likelihood is integrated on each random effect and the integration

dramatically increases the computational time. It can then be more convenient to evaluate

combinations of random effects on several subsets of parameters to determine the best

fitting one. Also, it should be kept in mind that the method of model selection should

be adapted to the modeling question. Indeed, the method described here corresponds

more to an explanatory approach and a statistical selection. As we are using mechanistic

models, some mechanisms can already be known from previous work and some of the

effects (either random and/or fixed) can be applied to the model because it makes sense

in a biological point of view.

3.2.3 Estimation with other tools

In this work, parameters estimation was mainly realized using NIMROD, as de-

scribed in the previous sections. However, other algorithms proposed different approaches

for likelihood maximization. In particular, the Stochastic Approximation Expectation-

Maximization (SAEM) algorithm is widely used, especially in the pharmacokinetics/phar-

macodynamics (PK/PD) field, as implemented in NONMEM [Beal et al., 1992] and
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MONOLIX [Kuhn and Lavielle, 2005]. This algorithm is a stochastic version of the

EM algorithm developed by Dempster et al. [1977]: it is an iterative procedure, and each

iteration is composed of two steps. The first one simulate the random effects with the

conditional distribution using a MCMC procedure and the second one updates the values

of the parameters of the model. This method was shown to converge to the maximum

likelihood estimate and MONOLIX is used in a wide range of non linear mixed models

estimated with a population approach, in particular in the PK/PD field [Lavielle and

Mentré, 2007; Chan et al., 2011]. This software can also be used to perform statistical

tests used in model selection such as Wald test and likelihood ratio test [Samson et al.,

2007]. However, there is a risk of convergence to local maxima, because the number of

iterations is limited and the parameters distance between two iteration steps decreases.

As the convergence is ensured with more criteria in NIMROD, we have observed in our

general use of these softwares that convergence was more robust in NIMROD in the con-

text of our applications. Yet, it should be underlined here that MONOLIX has been used

punctually during my PhD, to explore the space of estimated values, choose well initial

values to be tested in NIMROD, or to compare estimations obtained with NIMROD.

3.3 Application of the mechanistic modeling to Ebola

vaccine trial data: "Dynamics of the humoral im-

mune response to a prime-boost Ebola vaccine: quan-

tification and sources of variation"

The following paper is under preparation for submission.
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b INRIA SISTM team, Talence, France ;7

c Janssen8

ABSTRACT The Ebola vaccine based on Ad26.ZEBOV/MVA-BN-Filo prime-boost immunizations is being evaluated9

in multiple clinical trials. The long-term immune response to the vaccine is unknown, including factors associated10

with the response and variability around the response. We analyzed data from three phase I trials performed by11

the EBOVAC1 consortium in four countries - UK, Kenya, Tanzania and Uganda. Participants were randomized in12

four groups according to the interval between prime and boost immunization (28 or 56 days) and the sequence13

in which Ad26.ZEBOV and MVA-BN-Filo were administered. Consecutive ELISA measurements of the IgG binding14

antibody concentrations against the Kikwit glycoprotein (GP) were available in 177 participants to assess the15

humoral immune response up to 1 year post prime. Using a mathematical model for the dynamics of the humoral16

response, from 7 days after the boost immunization up to 1 year after the prime immunization, we estimated the17

durability of the antibody response and the influence of different factors on the dynamics of the humoral response.18

Ordinary differential equations (ODEs) described the dynamics of antibody response and two populations of19

antibody-secreting cells (ASC), short-lived (SL) and long-lived (LL). Parameters of the ODEs were estimated using a20

population approach. It has been estimated that half of the LL ASCs could persist at least five years. The vaccine21

regimen significantly affected the SL ASCs and the antibody peak but not the long-term response. The LL ASCs22

compartment dynamics differed significantly by geographic regions analyzed, with a higher long-term antibody23

persistence in European subjects. These differences could not be explained by the observed differences in cellular24

immune response.25

IMPORTANCE The Ebola virus disease epidemic of 2014-2016 has caused 11 310 deaths in Guinea, Sierra Leone26

and Liberia. As prevention measures did not completely control the disease and no treatment is available yet,27

research has focused on accelerating the development of preventive vaccines. Combining different vector-based28

vaccines in prime-boost immunizations could induce a long-term response, assessed through binding antibody29

concentrations to Ebola virus GP. Using data from phase I trials in East African and European subjects, the dynamics30

of the humoral immune response following a boost immunization were modeled. We found that half of the LL31

plasma cells, which are responsible for the persistence of antibodies, could sustain at least five years after the32

boost immunization. Moreover, the vaccine regimens affect only the early humoral immune response after the33

boost immunization, while long-term antibody concentrations are significantly higher in European subjects than in34

East African ones.35

KEYWORDS: Ebola, vaccine, mechanistic modeling, antibody response36

Following the recent outbreak of Ebola virus disease (EVD) in West Africa that caused 28 616 cases and 1137

310 fatalities (1), the clinical development of several Ebola vaccine candidates has been accelerated. Among38

the vaccine candidates, a heterologous prime-boost strategy combining immunizations with adenovirus type 2639

(Ad26.ZEBOV, Janssen Vaccines and Prevention) and modified vaccinia Ankara (MVA-BN-Filo, Bavarian Nordic®) is40

being developed by Janssen. Prime-boost regimens are expected to be more immunogenic than prime-only vacci-41



nation strategies (2) (3) (4) (5). In the case of the heterologous Ad26.ZEBOV/MVA-BN-Filo prime-boost vaccination42

regimen, non-human primate studies have shown full protection in vaccinated animals following lethal Ebola virus43

challenge (6). Different immunization regimens using Janssen’s vaccine candidate have been evaluated in phase 144

to 3 clinical trials. In particular, we will focus here on three phase 1 trials performed by the EBOVAC1 consortium45

on healthy adult volunteers in four countries - United Kingdom (7) (8), Kenya (9), Uganda and Tanzania (10). The46

consortium is part of the Innovative Medicines Initiative Ebola+ programme (11), which aims to assess a novel47

prime-boost preventive vaccine regimen against EVD. Results of the three phase 1 trials showed no vaccine-related48

serious adverse events and persistent levels of IgG binding antibodies in all vaccine recipients.49

One of the potential assets of the Ad26.ZEBOV/MVA-BN-Filo vaccine regimens is the establishment of a long-50

term immune response, which is in part characterized by the Ebola virus GP-specific binding antibody response after51

vaccination. Although no immune correlate of protection has been identified yet, preclinical studies have shown52

that the peak antibody concentrations post-vaccination are correlated with survival after intramuscular challenge53

in a non-human primate model, which is the closest model to humans (12) (13) (14). Whether circulating antibody54

concentrations also correlate with long term protection is not established, however it is of particular interest to55

quantify the dynamics of the humoral immune response and to estimate the durability of the antibody response.56

We proposed to use a mathematical model to address these questions. We had a unique opportunity to analyze57

the data from the three trials in the context of EBOVAC1, because they were conducted almost simultaneously58

with very similar study protocols. The uniqueness of the data also relied on the large number of consecutive59

immunogenicity measurements following the boost immunization.60

Most of the models that were already developed for the dynamics of the antibody response focused on61

the decline of the antibody concentrations after the peak response. Linear or piecewise-linear decreases of the62

antibody response were fitted to data from a large number of vaccines, including Hepatitis B vaccine (15), combined63

diphteria, tetanus and pertussis vaccine (16) (17), Japanese encephalitis chimeric virus vaccine (18), Hepatitis64

A vaccine (19) (20) and human papillomavirus-16/18 vaccine (21) (22) (23). However, linear mixed models are65

limited in term of biological interpretation. The structure of mechanistic models is based on biology and is able to66

capture non-linear interactions. The estimation of the model parameters gives a quantification of the biological67

phenomenon. Only a few within-host models were developed to describe the humoral immune response following68

vaccination. The dynamics of ASCs after vaccinia virus vaccination of human volunteers were described (24) by69

extending a widely known model for the CD8 T cell response (25) (26). However, this model did not account for70

the immunologic hypothesis that antibodies are produced by several populations of ASCs. Indeed, it has been71

suggested that the vast majority of plasma cells generated through immunization are SL cells (27) (28), peaking 772

days after the immunization and lasting very shortly in the organism (28) (29) (30) (31). However, the half-life of73

antibodies was estimated between 20 and 50 days in several studies (32) (33) (34) (35) (36) (37) (38). Therefore,74

the persistence of antibody response, observed to last for several years (39), is expected to be generated by LL75

plasma cells (28) (40) (41) (42) (43). Using long-term data following hepatitis A vaccination (up to 10 years after76

the boost immunization), an ODE-based mechanistic model helped quantifying 3 scales of the humoral response77

dynamics (44), corresponding to the life spans of antibodies (around 20-30 days), and two populations of ASCs (one78

living several months and the other one decades).79

Here, we used the same mechanistic model for the humoral immune response, with two populations of80

ASCs (SL and LL) and the antibody population. Parameters were estimated on data available from three trials81

of the EBOVAC1 consortium, with a 1 year follow-up for participants of the study including up to 9 consecutive82

measurements of antibody concentrations. This model allowed to quantify the dynamics of the humoral immune83

response following different prime-boost vaccine regimens.84

RESULTS85

Mechanisticmodel of the immune response. A preliminary analysis was performed to estimate linear trends86

of the antibody concentrations decrease from 21 days after the boost immunization onwards. The method and87

results of this analysis are detailed in Appendix A3. This analysis showed in particular the need to model two88

phases of antibody decline. A mechanistic model was used to fit these dynamics. Based on previous work in89

immunology (45) and modeling (24) (44), we made the hypothesis that antibodies are produced by two distinct90



















Following this result, we explored if the estimated difference between East African and European subjects could188

be explained by the magnitude of the cellular CD4+ T cell response. It came from the hypothesis that differences in189

the pathogens to which individuals are exposed during everyday life could have an effect on the cellular response190

(50). As CD4+ T cells are required for the humoral immune response, we made the hypothesis that the difference191

between East African and European subjects could be mediated by a difference in the T helper response early after192

the boost immunization. In the mechanistic model, the difference was estimated on parameter φL : the mean value193

over European subjects was higher than in East African subjects. As there was also a random effect on φL , we were194

able to compute the individual estimated value of this parameter. We computed the correlation between the value195

of φL and the percentage of CD4
+ T cells producing at least one of the three cytokines IL2, IFNγ or TNFα at different196

time points: after prime prior to boost immunization, 7 and 21 days after the boost immunization. Results are197

displayed in Fig 9. We did not observe any clear relationship between the CD4+ T cell percentages and φL values.198

Pearson correlation coefficients were only significantly different from zero at 7 days after boost immunization, with199

a moderate value of 0.2. To further explore the hypothesis that the difference of value of φL could be mediated200

by the T helper response, we introduced the percentage of the CD4+ T cell producing cytokines 7 days after the201

boost immunization in the mechanistic model as a covariate on φL . Effect of the covariate was added and tested202

separately on φL , with or without the geographic region variable, as shown in equation 6 from the materials and203

methods section. Without the geographic region variable, the estimated effect of the CD4+ T cell was significant204

(p-value = 0.03), but the likelihood of the model was much lower than for the model including the geographic region205

variable without the CD4 variable (136.34 versus 171.97). In a model including both geographic region and CD4206

variables, the estimated effect of the CD4+ T cell response was not significant (p-value 0.64). Overall, these results207

suggested that the difference of φL value between the geographic regions could not be explained by the measure208

of the percentage of CD4+ T cells producing at least one of the cytokines IL2, IFNγ or TNFα 7 days after the boost209

immunization.210

DISCUSSION211

The mechanistic model accounting for two populations of ASCs allowed to quantify the dynamics of the antibody212

response following different prime-boost vaccine regimens. In particular, it allowed to estimate a lower bound213

of the durability of the antibody response through LL plasma cells. Moreover, we were able to identify several214

factors influencing the response to vaccine. We found that vaccine regimen impacts the magnitude of the early215

antibody response through the dynamics of the SL ASCs, but has no effect on the LL ASCs and thus on the216

long-term persistence of antibodies. It suggests a minor impact of the interval between the prime and the boost217

immunizations on the long-term level of the binding antibodies.218

The dynamics of LL ASCs were estimated to differ by geographic region, inducing a higher long-term level of219

antibodies in European subjects compared to East African ones. Several factors could contribute to the geographic220

effect, such as HLA subtypes, nutritional status, co-infections or pre-existing immunity. Demographic factors could221

also play a role in this difference, although no significative effect of sex and age was found on the decrease of222

the antibody concentrations in the linear mixed model or on the parameter φL (see appendix A3 for details). The223

absence of association between this difference and circulating CD4+ T cells producing cytokines does not exclude224

alternative effects of the CD4+ T cells on the humoral response, for example a link with plasma cells and antibody225

production at the level of the lymphoid organs. The difference of immune response between different geographic226

regions has already been identified in some other vaccination studies, even if the vast majority of vaccination227

programs in Africa have had a tremendous positive public health impact. The efficacy of Bacille Calmette-Guérin228

vaccination was observed to be lower in African infants compared to European ones (51). West Africans showed229

lower T-cell response following vaccination which an HIV vaccine candidate compared to South Africans and North230

Americans (5). The efficacy of the licensed yellow fever vaccine 17D was also found to be lower in African population231

compared to European one; an activated immune environment prior to vaccination was hypothesized (49). In232

the case of Ebola vaccine, as the protective level has not been determined yet, we do not know if the difference233

in antibody concentrations has implications on the efficacy of the vaccine. Yet, the observed difference in long-234

term antibody responses between East African sites and the UK site is an interesting outcome that would justify235





additional mechanistic studies to identify which factors contribute to these differences.236

The fact that immune memory is not considered in the model represents a limitation, especially in term of237

prediction of the response to exposure to wild type virus. However, the role of the memory response and the238

immune response levels required for protection are not known at the moment. Moreover, the main limitations for239

the estimation of the model are the low number of subjects as the data was generated in phase 1 trials, the lack240

of data on the number of plasmablasts, and the lack of measurements beyond 1 year. However, the statistical241

analysis using a population approach allowed to determine a lower bound of the long-term response.242

These results will benefit from additional data coming from phase 2 studies to confirm the robustness of the243

long-term response. Several studies showed that antibody responses in humans do not reach steady state levels244

until approximately 2-3 years after infection or vaccination (45). More data should also allow a better identification245

of the half-life of the two ASC populations and will increase the statistical power of the analysis. Moreover, the246

differences between geographic regions will be refined using data from West African subjects. Additional studies247

looking at the effect of other factors on the immune response, such as malaria co-infection, will help explaining248

these potential differences.249

In conclusion, this first modeling study estimates promising binding antibody responses to prime-boost250

regimens combining Ad26 and MVA in an Ebola vaccine. While the long-term antibody persistence is not found to251

be influenced by the vaccine regimen in the model, the geographic region could potentially impact the long-term252

dynamics by its effect on dynamic parameters associated to the LL ASCs.253

MATERIALS AND METHODS254

Ethics statement. The UK trial protocol and study documents were approved by the UK National Research255

Ethics Service. The Kenya trial protocol and study documents were reviewed and approved by the local Ethics256

Committee, and the Kenyan regulatory authority. The Uganda/Tanzania trial protocol and study documents were257

reviewed and approved by the Tanzanian Medical Research Coordinating Committee of the National Institute for258

Medical Research; the Tanzania Food and Drugs Authority; the Uganda Virus Research Institute Research and259

Ethics Committee; the Uganda National Council for Science and Technology; the Uganda National Drug Regulatory260

Authority and the Ethics Committee of the London School of Hygiene and Tropical Medicine. These trials were261

conducted in accordance with the principles of Good Clinical Practice and the Declaration of Helsinki, and all262

participants gave formal, written consent before undergoing any trial-related procedure.263

Immunogenicitymeasurements. We analyzed data from three randomized, observer-blind, placebo-controlled,264

phase I trials in four countries on healthy volunteers aged 18 to 50. They aimed at assessing the safety and tol-265

erability of two novel candidate Ebola vectors combined in different prime-boost regimens. The first vector is a266

monovalent, recombinant, E1/E3-deleted, replication-defective, adenovirus type 26 vector vaccine encoding Ebola267

virus Mayinga variant GP (Ad26.ZEBOV). It was produced in PER.C6 human cells and injected in single dose at268

concentration of 1 × 10
11 viral particles/mL. The second vector is a recombinant, replication-defective, modified269

vaccinia Ankara vector vaccine (MVA-BN-Filo) expressing Mayinga variant GP, Sudan virus Gulu variant GP, Marburg270

virus Musoke variant GP, and Tai Forest virus nucleoprotein. It was produced in chicken embryo fibroblasts and271

injected at a concentration of 2 × 10
8 median tissue culture infective dose (TCID50)/mL.272

Trials were realized in UK, Kenya and Uganda/Tanzania. Results of the UK trial were described in (7) and (8).273

Within each trial, eligible participants were equally randomized into four vaccination regimens (within each they274

received active vaccine or placebo in a 5:1 ratio): two with MVA-BN-Filo as a prime vaccine on day 1 followed275

by Ad26.ZEBOV on day 29 or day 57 (MVA/Ad26 D29 and MVA/Ad26 D57) and two with a prime immunization276

of Ad26.ZEBOV at day 1 boosted by MVA-BN-Filo on day 29 or day 57 (Ad26/MVA D29 and Ad26/MVA D57). In277

UK, there was an additional open-label group receiving Ad26.ZEBOV on day 1 followed by MVA-BN-Filo on day278

15. This arm was not included in the analysis as this regimen was not realized in East African countries. We279

included in the analysis only subjects who received both prime and boost immunizations, which corresponded280

to a total of 177 subjects over all groups and countries. Subjects were followed up to 1 year after receiving281

the prime immunization, with consecutive immunogenicity assessments performed on blood samples. These282

samples were taken before prime and boost immunizations, 7 days after prime and boost immunizations and283

21 days after the boost immunization. Subjects allocated to groups receiving a boost immunization at day 57284





The corresponding ordinary differential equations are the following:308

dS

d t
= −δSS (1)309

dL

d t
= −δLL (2)310

dAb

d t
= θSS + θLL − δAbAb (3)311

with δ corresponding to decay rates and θ production rates. The equation for the antibodies dynamics can be312

written as:313

dAb

d t
= φSe

−δS t + φLe
−δL t − δAbAb (4)314

with φS = θSS0 and φL = θLL0, where S0 = S (t = 0) and L0 = L(t = 0) are the initial conditions at 7 days after the315

boost immunization. As SL and LL ASCs populations were not observed, θS and S0 could not be identified separately316

(and so were θL and L0). The initial condition Ab(t = 0) is given by the data (measure at 7 days after the boost317

immunization). Among the 177 subjects, only 1 did not have a measure of the antibody concentration 7 days after318

the boost immunization. The value was imputed by using the mean value of his/her group of vaccination in his/her319

trial, i.e., the mean value of Kenyan subjects in group MVA/Ad26 D29. Finally, we estimated the five following320

biological parameters: ξ = (φS , δS ,φL , δL , δAb ).321

For the statistical model, as described in (52), the parameters ξl , l = 1..5 are transformed using a logarithm322

transformation to ensure positivity of production and decay rates. Moreover, a mixed-effect model was introduced323

on each parameter to account for between-subject variations and possible covariates. Value of parameter ξ̃l = l n(ξl )324

for each subject i can be written:325

ξ̃il (t ) = ξ̃l0 + β l z
i
l + u il (5)326

where ξ̃l0 is the intercept and represents the mean ln-transformed value of parameter ξl across the population, β l327

is a vector of regression coefficients, z i
l
is a vector of ne explanatory variables and u i

l
is an individual random effect,328

following a centered normal distribution with variance ω2

l
. Random effects were independent from each other329

and applied on a subset of q biological parameters. In practice, after selection (see section Parameters estimation330

for the model selection method), we applied random effects on the following parameters: φS , φL and δAb . We331

assessed the effect of ne = 3 explanatory variables on all parameters except δAb : the order of immunization (binary332

variable equal to 0 when the subject receives a prime with MVA-BN-Filo boosted by Ad26.ZEBOV, 1 if the subject333

receives Ad26.ZEBOV then MVA-BN-Filo), the interval between the two immunizations (binary variable equal to 0334

when the subject receives a prime-boost regimen with an interval of 28 days, 1 when the interval is of 56 days), and335

the geographic region (binary variable equal to 0 in Europe and 1 in East Africa). Additionally, we also assessed336

the effect of the cellular response as an explanatory variable. This was done by considering the percentage of337

CD4+ T cells producing cytokines 7 days after boost immunization. The variable CD4
i (boost + 7day s) was added to338

the vector z l of explanatory variables, and its effect was estimated on parameter φL . Values of βgr and βCD4 were339

estimated in :340

φ̃i
L(t ) = φ̃L0

+ βgr geog r aphi c_r eg i on
i
+ βCD4CD4

i (boost + 7day s) + u il (6)341

with CD4
i (boost + 7day s) the percentage of CD4+ T cells producing cytokines 7 days after the boost immunization342

in participant i .343

For the observation model, we had access to immunological measurements of IgG binding antibodies concen-344

trations against the Kikwit GP in all studies. We assumed there was a measurement error normally distributed on345

the l og10 value of the antibody concentrations. In practice, we assumed we observe for patient i at discrete time j , :346

Y (t i j ) = l og10(Ab(t i j )) + ǫi j (7)347

with348

ǫi j ∼ N(0,σ2

Ab ). (8)349

ǫ being an additive normally distributed measurement error.350



Parameters estimation With the three layers of the mechanistic model, the estimation problem corresponds351

to the determination of parameters intercepts, regression coefficients, standard deviations of random effects and352

standard deviations of measurement errors. The vector of parameters θ can be written as :353

θ = [(ξ̃l0 )l=1..nb , (β l )l=1..ne , (ωl )l=1..q , (σl )l=1..M ] (9)354

Estimation was made using NIMROD software, available at355

http://etudes.isped.u-bordeaux2.fr/BIOSTATISTIQUE/NIMROD/documentation/html/index.html. It uses a maximum-356

likelihood approach (53) with a Newton-like algorithm (54) which approximates the Hessian by using first derivatives357

of the likelihood. Several criteria ensured the convergence of the algorithm. Moreover, we could account for358

information on parameters, obtained from biological knowledge and previous estimations in the literature, by359

adding a prior distribution on these parameters. This led to the determination of the Maximum a Posterior (MAP)360

estimator through the maximization of a penalized likelihood (55). In practice, we used a normal prior distribution361

on the ln-transformed population mean value of biological parameters ξ̃l0 . Some previous work showed that362

antibodies half-life could vary between a few weeks to a couple of months. Studies of intravenous IgG preparations363

reported half-life around 20 to 30 days (32) (33), while studies of passive immunity with maternal transmission364

of antibodies to infants have reported half-life varying from 20 days (34) to 35-50 days (35) (36) (37) (38). These365

studies also highlighted the inter-individual variability over the half-life of antibodies, as well as the possible366

effect of geographic regions. We used an informative prior distribution on δ̃Ab0 such that mean antibody half-life367

would be 45.2 days, and the variance was chosen such that the 5-95 quantiles of the distribution were 6 days -368

9 months. Additional sensitivity analyses were performed with a much lower variance on the prior distribution369

implying 5-95 quantiles of the a priori distribution to be 34-51 days. We used non informative prior distributions370

on parameters φ̃S0 and φ̃L0
as we did not have any information on their possible value: mean value of the ln-371

transformed parameters is taken equal to 0, with standard deviation equal to 10. We used prior distributions372

on δ̃S0 and δ̃L0
. It helped constraining the estimation such that δS0 > δL0

as expected by the definition of the SL373

and LL populations. We used a large prior distribution on δ̃S0 as we did not know exactly the time scale of their374

half-lives. Mean value corresponded to a half-life of 1.88 days, with 5 - 95 quantiles equal to 0.0005 day and375

7000 days. Parameter δL was expected to be close to 0, but as data were collected up to 1 year after the prime376

immunization, we did not expect the model to be able to distinguish a half-life of more than a few years. To account377

for this constraint, we used a prior distribution with a mean value corresponding to a half-life of 1.2 year, and 5 - 95378

quantiles corresponding to half-lives of 40 days and 14 years. Table in Appendix A2 sums up the information on379

the prior normal distributions.380

Selection of the model random effects and covariates was realized by performing estimation on several models381

that were compared according to two criteria: log-likelihood (to be maximized) and approximation of the likelihood382

based cross-validation criterion (LCVa) (48) (to be minimized). We proceeded in the following way: we first estimated383

the model parameters using several combinations of 2 random effects (one on the SL compartment, i.e., either on384

φS or δS and one on the LL compartment). We selected the best combination and then added a random effect385

on δAb , which considerably improved the model. The variability on parameter δL was complicated to capture:386

δL has an effect mainly on the late dynamics of the antibodies and data is not available beyond 1 year after387

the prime immunization. It brought us to compare only two combinations of three random effects: on φS , φL388

and δAb and on δS , φL and δAb . Using model criteria, we kept the combination corresponding to the best model,389

namely the one with random effects on φS , φL and δAb . For the covariate selection, we proceeded with a backward390

stepwise approach. First, the model was estimated with all covariates (order, interval and geographic region) on all391

parameters except δAb . Covariates were removed one by one: in particular, at each iteration i , the less significant392

covariate Zk was determined using the p-value of the Wald test and removed. Model criteria ensured that the393

model was not worse without the covariate Zk compared to the model including Zk . At the next iteration, the394

model did not contain covariate Zk . The least significant covariate Zk+1 was removed in a similar way. These steps395

were repeated until only significant covariates that could not be removed without altering the performance of396

the model were kept. Sensitivity analyses were realized: in particular, we estimated first the model with only the397

geographic region covariate on all parameters and applied the backward stepwise approach. Then we added the398





immunization: this time point was redefined as the origin of time. More precisely, for groups receiving boost at day414

29, data were rescaled from day 50 and available measurements were then at day 0, 130, 190 and 310. For groups415

receiving boost at day 57, data were rescaled from day 78 with available measurements at day 0, 102, 162, 282.416

As two observation points (at least) were needed before and after the value of τ to estimate the two slopes in all417

groups, we chose τ = 150 days on the rescaled time. Covariates such as age and BMI were centered around the418

mean value of the study population. We also used the variable relative to vaccine regimens (order and interval) and419

geographic settings. This last categorical variable was either the geographic region (=0 for Europe and 1 for East420

Africa) or the trial (=0 for UK, 1 for Kenya, 2 for Uganda/Tanzania). Finally, the vector of covariates was :421

Z = (age, sex ,BMI , or der , i nt erv al , geog r aphi c_set t i ng , or der ∗ i nt erv al ) (10)422

We estimated the effect of covariates Z on the peak value of antibodies (intercept) and on the decreasing slopes of423

antibody concentrations. For individual i at rescaled time j, we write the corresponding antibody concentration Abi j .424

Linear mixed models can be written as :425

(SS ) : l og10(Abi j ) = β0 + γ0i + β1t i j + βTcovZi + βTcovt Zi t i j + ǫi j (11)426

(CS ) : l og10(Abi j ) = β0 + γ0i + βTcovZi + βb t i j 1{t i j <τ } + βTcovb Zi t i j 1{t i j <τ } (12)427

+βa t i j 1{t i j ≥τ } + βTcova Zi t i j 1{t i j ≥τ } + ǫi j428

where 1{t<τ } and 1{t ≥τ } are equal to 1 when t < τ and t ≥ τ respectively, 0 otherwise. In both cases, ǫi j ∼ N(0,σ2).429

We first realized backward selection on SS model using the geographic region variable. At each step, covariate with430

the highest p-value of Student test for β (> 0.05) was removed from the model. Performance of the models was431

assessed with Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). At the end of this first432

selection, CS model was estimated, using only selected variables. At this point, no additional selection was needed.433

In the final selected model, we also evaluated the trial variable instead of the geographic region.434

After selection process, the best SS model was the following:435

l og10(Abi j ) = β0 + γ0i + βage age i + βor der or deri (13)436

+ βi nt erv al i nt erv al i + βgr geog r aphi c_r eg i on i437

+ β1t i j + βi nt erv al t i nt erv al i t i j438

+ βgrt geog r aphi c_r eg i on i t i j + ǫi j439

Variables age, order, interval and geographic region have a statistically significant effect on the value of antibody440

concentration 21 days post boost, and only variables interval and geographic region have a significant effect on the441

decreasing slope of antibody concentration. Using a CS model significantly improved the BIC criterium (BIC of SS442

model = 660.5, BIC of CS model = 532.7). However, using the trial variable instead of the geographic region variable443

improved the AIC criterium but not the BIC one (AIC/BIC of CS model with geographic region variable = 473.8/532.7,444

AIC/BIC of CS model with trial variable = 463.6/536.0). Table 3 shows the results of the CS linear mixed model445

using the trial variable. The biphasic decay is well captured by this model, as it can be seen that the decrease is446

estimated to be stronger before 150 days post boost than after, for all groups in all trials. Overall, we see that447

antibody concentrations have similar values 21 days after boost immunization across countries, with higher values448

when subjects are boosted at day 57. The decrease is lower in European subjects compared to East African ones,449

both before and after 150 days after boost immunization. It can be noted that subject characteristics BMI and sex450

were not statistically associated to antibody concentrations, and age was only associated to the concentration451

21 days after boost immunization but not the decrease. Adjusted on other covariates, an increase of 10 years in452

age induces a reduction of 0.10 log10 of antibody concentration at 21 days after boost immunization (confidence453

interval -0.17;-0.038), and in the trials population, 50% of the subjects were aged 22-35 years. It is clinically less454

important than the order of vaccine immunizations, as the MVA/Ad26 regimen compared to the Ad26/MVA induces455

higher concentrations at 21 days after boost immunization of 0.18 log10 (confidence interval 0.086;0.28) and a456

boost at day 57 compared to boost at day 29 induces higher concentrations at 21 days after boost immunization of457

0.27 log10 (confidence interval 0.15;0.38).458



TABLE 3 Results of the CS linear mixed model

Europe East Africa

UK Kenya Uganda/Tanzania

Antibody concentrations 21 days post boost

(in log10 ELISA units/mL)

Group MVA/Ad26 D29 3.94 [3.81;4.07] 3.80 [3.67;3.93] 3.69 [3.67;3.93]

Group MVA/Ad26 D57 4.21 [4.08;4.34] 4.07 [3.94;4.20] 3.96 [3.94;4.20]

Group Ad26/MVA D29 3.76 [3.63;3.89] 3.62 [3.49;3.75] 3.51 [3.49;3.75]

Group Ad26/MVA D57 4.03 [3.90;4.16] 3.89 [3.76;4.01] 3.78 [3.76;4.01]

Slope value before 150 days post boost

(in log10 ELISA Units/mL per 30 days)

Group MVA/Ad26 D29 -0.075 [-0.10;-0.048] -0.20 [-0.23;-0.17] -0.17 [-0.19;-0.14]

Group MVA/Ad26 D57 -0.15 [-0.18;-0.12] -0.28 [-0.31;-0.25] -0.24 [-0.27;-0.21]

Group Ad26/MVA D29 -0.075 [-0.10;-0.048] -0.20 [-0.23;-0.17] -0.17 [-0.19;-0.14]

Group Ad26/MVA D57 -0.15 [-0.18;-0.12] -0.28 [-0.31;-0.25] -0.24 [-0.27;-0.21]

Slope value after 150 days post boost

(in log10 ELISA Units/mL per 30 days)

Group MVA/Ad26 D29 -0.038 [-0.049;-0.027] -0.12 [-0.13;-0.11] -0.089 [-0.10;-0.078]

Group MVA/Ad26 D57 -0.086 [-0.098;-0.074] -0.16 [-0.18;-0.15] -0.14 [-0.15;-0.12]

Group Ad26/MVA D29 -0.038 [-0.049;-0.027] -0.12 [-0.13;-0.11] -0.089 [-0.10;-0.078]

Group Ad26/MVA D57 -0.086 [-0.098;-0.074] -0.16 [-0.18;-0.15] -0.14 [-0.15;-0.12]

This preliminary analysis showed the importance of modeling the biphasic decay of antibody concentrations,459

as a CS model was better than a SS one. Moreover, it highlighted the differences in immune response between460

East African and European subjects, especially on the decreasing slope of antibody concentrations. Finally, no461

subject-specific factors had an effect on the dynamics of antibody concentrations except for age, but with a lower462

impact than geographic region and vaccine-related factors. Only these last factors were considered to potentially463

affect the dynamics of the humoral immune response in the mechanistic model.464

A final check was realized after parameter φL of the mechanistic model was estimated to be significantly465

different between East African and European subjects. As the proportion of women included in the UK trial is466

higher than the one in East Africa (64% versus 29% and 20%) and the average age is 10 years higher in the UK trial,467

as seen in Table 1, the variables age and sex were tested separately as additional covariates on the parameter φL ,468

with or without the geographic region variable. Without the geographic region variable, the estimated effect of469

age and sex was not significant (p-value = 0.54 and 0.23 respectively). With the geographic variable, the estimated470

effect of sex was not significant either (p-value = 0.46) and the effect of age was significant (p-value = 0.045) but471

with a low magnitude compared to the effect of geographic region (β = 0.024 for a 10-years difference versus a472

difference of β = 1.36 between European and East African subjects). These results suggested that the difference of473

φL value between the geographic regions could not be explained by potential confounding demographic factors.474
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3.4 Discussion

3.4.1 Additional insights

We have shown that a simple model of the humoral immune response is able to capture

the dynamics of the antibody concentrations and some of the factors associated with

their variability. The obtained results could be strengthened in several ways. Additional

measurements with a longer follow-up could help refining the estimation of the LL ASCs

half-life. This could also help confirming the different levels at which antibodies are

sustained in European and African participants. This estimation refinement should be

made possible by a follow-up of 4 years on subjects enrolled in the EBOVAC1 Sierra

Leona trial and some of the African subjects enrolled in EBOVAC2.

Moreover, it would be interesting to apply the same model to data collected in the

consortium (to maintain consistency between the clinical protocols), but on other subjects.

In particular, the Ad26/MVA was tested on a number of subjects enrolled in phase 2 trials

in Europe and Africa. Using the antibody concentrations data from all these subjects will

help refining the estimation of the parameters of the model and the effect of the factors

on the variability of the response. Also, a clinical trial was conducted in Sierra Leone

under the EBOVAC1 consortium. As we found differences of dynamics between European

and East African subjects, it would be beneficial to check if West African subjects also

have different antibodies dynamics induced by the parameters values by using the data

generated in both the EBOVAC1 Sierra Leone and the EBOVAC2 trials. It would help

determining if the observed dissimilarities in antibody concentrations after one year of

follow-up are mainly between European and African subjects, or reveal differences at

a more regional level. This could be explained by other region-specific environmental

factors, and/or genetic and/or co-infection parameters. To assess the effect of co-infection,

it would be useful to work on the sub-study of the Sierra Leone measuring the presence

of malaria infection at baseline. This could be added as a covariate which effect can be

tested on parameters of the mechanistic model. The effect of HIV infection could also

be assessed by using data generated in the EBOVAC2 clinical trial, as an HIV+ cohort

has been recruited. Moreover, children have been recruited in both the EBOVAC1 Sierra

Leone clinical trial and EBOVAC2 in West Africa. Using these data would help estimating

the effect of age on the immune response to immunizations. Finally, some participants

enrolled in the phase 2 trials in Africa received their boost immunizations at different

times than the one initially planned by the original clinical design; this heterogeneity

could be useful in the modeling approach to understand more deeply the impact of the

delay between immunizations on the immune response.
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3.4.2 Through more complete models of the humoral immune

response

The modeling work of the immune response to Ebola vaccine was initiated by using

a mechanistic model with only 3 compartments (two compartments of ASCs and a com-

partment of antibodies). Although simple, this model induced good fit of the antibody

concentrations data, helped quantifying the dynamics of the humoral response and gave

insights into the potential variability factors. However, we are aiming for a more com-

plete model of the immune response. This would help refining the quantification of the

dynamics of the response and understanding the role of the different populations of B lym-

phocytes in the establishment and maintenance of the response. In particular, it would

be interesting to capture the proliferation phase of the B lymphocytes following a vac-

cine immunization and their differentiation into memory cells. Overall, a more complete

model would give better understanding of the mechanisms of action of the immunological

memory and the impact of the different vaccine regimens on the immune response: this

could help determining optimized vaccine regimens and predicting the effect of a third

injection/a natural infection by EBOV, especially in African populations.

Investigation of more complete models of the humoral immune response has been re-

alized with Irene Balelli, during her post-doc project. First, due to its role in secondary

responses, immunological memory should be included in the model. Moreover, heterol-

ogous prime-boost regimens rely on the use of different vaccine platforms, which could

induce different reactions of the immune system; antigen should also be included in the

model. Finally, as ASCs are produced by differentiation of the naive B cells, these should

be added to the model as well. A graphic representation of a more complete model of the

humoral immune response is shown in figure 3.2A. This model is however very complex

due to its large number of compartments and parameters. A simplified version without

the naive compartment was considered (see figure 3.2B): this model was shown to induce

similar dynamics with less parameters, so it can improve the initial model without adding

too much complexity in it. The corresponding equations are the following:




dA

dt
= −δAA,

dM

dt
= ρAA− (µMS + µML)AM − δMM,

dS

dt
= µMSAM − δSS,

dL

dt
= µMLAM − δLL,

dAb

dt
= θSS + θLL− δAbAb.
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A: Complete mechanistic model of the humoral immune response

B: Simplified mechanistic model of the humoral immune response

Figure 3.2 – Models of the humoral immune response. A: antigen, N: naive B cells, M:

memory B cells, S: short-lived ASCs, L: long-lived ASCs, Ab: antibodies.

Courtesy of I. Balelli.

In this model, as the vaccine platforms are not recombinant, antigen decrease expo-

nentially. The presence of antigen (A) artificially triggers the generation of memory cells

(M). This compartment contains actually both activated B cells specializing against the

antigen and memory B cells when the reaction is over. Under the presence of the antigen,

memory B cells differentiate into either short-lived ASCs or long-lived ones (L). The com-

partments of short and long-lived ASCs are not renewed. These cells produce antibodies

and die at different rates, in the same way as in the model presented in the article section

3.3.
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Initial analyses of this model included identifiability investigation, sensitivity analysis

and calibration of the model using the antibody concentrations data from EBOVAC1

clinical trials conducted in UK, Kenya and Uganda/Tanzania. The next step is the

estimation of the parameters using additional data to quantify the dynamics of the model.

In short, structural identifiability analysis showed that we can reach local identifiability

by observing compartments M, S+L and Ab. It means that the antibody concentrations

data only is not sufficient to correctly estimate the parameters of the model. However,

this identifiability analysis makes the hypothesis that we wish to estimate the values

of all parameters using "perfect" data (observable at every time with no measurement

error). This is obviously not the case in real data, available at sparse time points with a

measurement error. Moreover, a population approach aims at estimating distributions of

parameters, which is different from a patient-by-patient approach where trajectories are

estimated one-by-one. Sensitivity analysis has allowed to determine the relative variation

of the antibody concentrations trajectory with respect to the parameters of the model

during time. It helps understanding which parameters have more impact on the variation

of the antibody concentrations, and at which moment of the time frame.

Finally, calibration was realized under consideration of previous knowledge on some

parameters and additional hypothesis. Indeed, parameters δS, δL and δAb were already es-

timated. Moreover, some biodistribution information were used for calibrating parameter

δA [Sheets et al., 2008; Hanke et al., 2005]. Parameters ρA, µMS and µML were expected

to be platform-dependent. In particular, calibrated values are such that µMS and µML

are lower with MVA than with Ad26. It can explain why after a single injection of MVA,

antibodies are not detectable, as there are not enough memory cells who differentiate into

ASCs. This calibrated model was also used to predict the effect of a third immunization

one year after the boost immunization and showed for example that in any case the an-

tibody concentrations were increased compared to the second immunization, due to the

presence of LL plasma cells and memory cells, and that the MVA/Ad26/Ad26 regimen

could induce a higher antibody peak than the Ad26/MVA/Ad26 (see figure 3.3). This

work should definitely be confirmed by parameters estimation using additional data gen-

erated in EBOVAC1 and EBOVAC2 consortium, in particular some B cells data generated

from the EBOVAC2 UK subjects.
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A: MVA/Ad26/Ad26 regimen B: Ad26/MVA/Ad26 regimen

Figure 3.3 – Prediction from the calibrated model of the antibody concentrations under

two regimens of vaccination consisting of 3 immunizations at 56 then 365 days

of delay. In the plot, time starts from the second immunization. Courtesy of

I. Balelli.

3.4.3 Through a systems vaccinology approach

The development of vaccine has mainly been empirical until now and there is a consen-

sus on the need for a better understanding of the mechanisms involved in the establishment

of the immune response to drive a more rationale vaccine development. Systems biology is

a promising approach to improve this field of research and has broadly emerged in the last

years [Pulendran et al., 2010; Germain, 2010; Hagan et al., 2015]. It aims at understand-

ing the immune system as a whole entity by accounting for a large number of its actors

and integrating all the newly available data generated thanks to biotechnology progress

(genomic, expression profiling, proteomic, RNA sequencing, ..). Moreover, this approach

is supposed to be quantitative and to be able to assess the respective contributions of

the compartments of the immune response [Germain, 2017]. This kind of approach raises

many challenges, including both the methods for data collection and for the computa-

tional analysis of the complex data sets to identify relationships between the numerous

markers involved.

In vaccine development, aiming for a so-called systems vaccinology approach involves

the inclusion of the information from genes, the microbiome and the environment: as

shown in figure 3.4 and discussed in section 2.2.2.3, they are determinants of the human

physiology, inducing different response to immunizations. In particular, we have shown in

our modeling work how environment variables could be included in a mechanistic model of

the immune response using covariates on the parameters. This approach should also aim
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Figure 3.4 – Systems vaccinology approach. Figure taken from Pulendran [2014]

at including the early immune response following vaccination, for two main reasons. First,

there has been increasing interest in understanding how the innate immune response can

be modified by repeated immunizations and its role in the immune response. The review

of Adams et al. [2016] shows that secondary NK cell responses, which are antigen-specific

and produce more IFNγ, are very likely to happen and affect the immunity. Moreover,

Palgen et al. [2018] have shown that prime and boost vaccine immunizations induced

different phenotypic profiles of innate responses. Also, even though there is still work

to do to understand the mechanisms by which innate immunity affects the generation of

both memory T and B cells, there is evidence that the innate immune system can modify

the protective immunity [Pulendran and Ahmed, 2006]. In addition, there is growing

evidence on the fact that early markers of the immune response can be predictive of

the efficacy of vaccines, or at least of the levels of biomarkers of interest. Only a few

studies identified early innate immune signatures to predict the antibody response, in the

case of yellow fever vaccine [Querec et al., 2009] and influenza vaccine [Nakaya et al.,

2011]. More specifically on Ebola, a study on the rVSV-ZEBOV vaccine showed that 5

early innate markers were correlated with antibody concentrations at day 28 and after

[Rechtien et al., 2017]. These markers included cytokines levels and specific cluster of

innate cells (identified with phenotypic markers). These early signatures identifications

could help rapid screening of vaccines with a quick determination of non responders and

acceleration of the vaccine development pipelines. However, these identifications do not
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necessary explain the mechanisms of immunity establishment.

In an effort of integrative analyses and quantification of the mechanisms of the immune

response, it would be interesting to include the information provided by early markers in

mechanistic models. Several methods could help the integration of this information: a

simple way would be to add covariates on the parameters of the model, as done with the

CD4+ data on the antibody response in the article presented in section 3.3. For example,

after identifying that a cytokine’s concentration, a gene expression level, or a specific

cell type’s percentage at a given time point is associated to the antibody response, we

could use this value as a covariate and test its effect on the parameters of the model.

Let us imagine that the effect is significant on the half-life of the ASCs, but not on

the antibody production rate, then it would mean that the presence cytokine or the

innate cell population in question is associated to a better survival and/or proliferation

of the ASCs, but not to their ability to generate antibodies. This method does not add

complexity to the model itself, but makes a linear hypothesis regarding the association

between the innate response marker levels and the parameters affecting the dynamics

of the adaptive immune response, which could be a limitation of the modeling method.

Another possibility is to model the dynamics of the innate marker and its underlying

mechanisms of the effect on the compartments of the adaptive immune response: this

can be realized by adding an equation to the ODE system, corresponding to the innate

marker compartment, and accounting for its interactions with the other compartments

of the system in the equations. It could eventually lead to a large system of ODEs for

the dynamics of the immune response. However, this option has several drawbacks: the

processes at different levels (genes, molecules, cell populations...) occur at different time

scales. It could induce numerical issues. Moreover, there is some intrinsic stochasticity at

the single-level that cannot be neglected and would not be accounted for in a deterministic

ODE-based model. Finally, this option adds complexity to the model and can induce

identifiability issues, if the data available is not rich enough compared to number of

parameters added to the initial ODE model. Another way to use the gene expression

data would be to obtain information on some unmeasured cell populations: if some genes

are known to be expressed in majority by a population of cell X, their observed expression

Y could be written as in equation (17), by:

Y i(tij) = f(X i(tij)) + ǫij. (48)

However, this method would request additional estimation techniques to determine func-

tion f and this adds a challenge to the parameters estimation method.

The transcriptomic data could be included by modeling the dynamics of gene expres-

sion after immunizations. Indeed, gene expression happens in two steps: first DNA is
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transcribed into mRNA, then protein production is induced by the translation of the

mRNA. The transcription of the gene DNA can be inhibited or activated by regulatory

proteins (called transcription factors). Gene regulatory networks (GRN) have been widely

used to capture these dynamics and interactions: their structure is constituted of nodes

(genes, proteins) and edges (molecular interactions and relationships). This tool could

be used to analyze the transcriptomic data. However, this kind of analysis raises several

challenges. First, there is some large variability in gene expression, and it cannot be

accounted simply by a perturbation around a population mean. There is a first difficulty

in modeling this system with embedded stochasticity, and several methods have been

developed, including bayesian networks, boolean networks, information theory, ODEs

and piecewise deterministic Markov processes with deterministic trajectories defined with

ODEs [de Jong, 2002; Hecker et al., 2009; Wu et al., 2014]. A major additional difficulty

resides in estimating and inferring the model, both in statistical and computational terms.

Indeed, there has been some work on how to infer GRN [Yu et al., 2004; Herbach et al.,

2017] but it still represents a challenge [Marbach et al., 2010]. Moreover, even if a method

is able to infer the gene network, the information provided should then be included in

a mechanistic model of the biomarkers of interest. This question is far from trivial, and

even if there has been some growing interest on methods for developing models integrating

several types of data [Joyce and Palsson, 2006] there is still no general method and poor

literature on how to integrate GRN modeling into a large-scale mechanistic model of the

immune response.

In any case, the choice of the methodological tools for developing integrative models is

directly related to the data available for the study. In the specific case of Ebola vaccine and

more particularly the EBOVAC consortium, several datasets could provide information

that would feed this kind of integrative model. In particular, NK cells subsets have been

measured in the UK subjects of EBOVAC1 trial. Moreover, omic data will be obtained

from European subjects included in EBOVAC2 trials.

Overall, our computation and modeling tools should be constantly improved to tackle

this effort on integrating the different types of data generated during clinical trials. How-

ever, it should be kept in mind that in humans, the data is collected from blood samples

and corresponds to circulating actors of the immune response. We know that major

aspects of the immune response occur in lymphoid organs [Rappuoli et al., 2017]: for ex-

ample, the differentiation of activated B cells into memory cells happens in the germinal

centers and long-lived plasma cells are believed to migrate quickly to the bone marrow

where they reside. Also, a study in nonhuman primates showed that most of the protec-

tive CD8+ T cells were present in the liver compared to blood [Ishizuka et al., 2016]. This

induces limitations in our understanding of some key mechanisms of the immune response
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in humans. It could be included in the model, by modeling both circulating and tissue-

residing cells in the ODE system, and accounting only for the circulating compartments in

the observation part of the statistical model, but would induces parameters identifiability

issues. Challenges remain in identifying blood signatures which are good predictors of the

immune response occurring in other spatial compartments of the organism [Hagan and

Pulendran, 2017].
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4 Optimizing immune therapies in HIV-

infected patients

Abstract: In this chapter, we explain why immunotherapy is considered for some HIV-

infected patients. In particular, we focus on interventions based on interleukin 7 (IL-7)

injections to help patients recovering acceptable levels of CD4+ T lymphocytes when

antiretroviral therapy is not sufficient. We recall the previous modeling work that was

realized for quantifying the dynamics of CD4+ T lymphocytes following IL-7 injections.

As the mechanistic model has good ability to fit the data and predict the dynamics for

new included patients, tools can be developed for optimizing and adapting the schedules

of injections. In particular, we show that the process can be modeled using a piecewise

deterministic Markov process (PDMP) and the control problem can be reduced to an

impulse problem at the boundary of the state space. Based on theoretical results, this

problem can be solved numerically using the dynamic programming approach by iterating

an integro-differential operator, the so-called Bellman operator, leading to a sequence of

functions converging to the value function. We show how our numerical method can

help determining an optimal protocol of injections which allows administering fewer IL-7

injections than other naive clinical protocols but still maintains the patient at acceptable

levels of CD4+ T lymphocytes.

Key Words: Human Immunodeficiency Virus; immunotherapy; interleukin-7; immune

reconstitution; repeated injections; piecewise deterministic Markov process; impulse con-

trol; dynamic programming; optimal protocols.

4.1 Biological and clinical context

4.1.1 General introduction on HIV

4.1.1.1 HIV epidemic

Since the start of the HIV epidemic more than 30 years ago, there has been 76.1 million

of infections of people worldwide and 35 million of deaths related to AIDS [UNAIDS,

2017]. Prevention and treatment measures have allowed reducing by 16% the number
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of transmission events between 2010 and 2016 and by 48% the number of deaths from

AIDS-related causes between 2005 and 2016. However, HIV/AIDS still represent a major

public health concern. At the end of 2016, approximately 36.7 million people were living

with HIV; during that year, 1.8 million people were newly infected and 1.0 million people

died of AIDS-related causes.

4.1.1.2 HIV infection

HIV is a retrovirus, characterized by a long period between the time of infection and

the development of AIDS during which the immune system fails and eventually allows

opportunistic infections to occur in the organism. Two types of HIV were identified, them-

selves containing several groups. The classification is mainly based on genetic differences.

HIV-1 is present all over the world while HIV-2 is mainly present in West Africa. HIV-1

is related to SIV, which was transmitted either by chimpanzees (groups M, N and O)

or gorillas (group P), probably first to bush meat hunters. Globally, most of the cases

of HIV/AIDS are due to group M virus, which can itself be divided in nine subtypes or

clades, from A to K.

HIV has a spherical structure. The viral envelope is composed by the glycoproteins

gp120 and gp41. It contains a capsid with two single strands of RNA and enzymes

allowing the replication of the virus. This replication requires human cells. In particular,

HIV targets cells from the immune system, especially CD4+ T lymphocytes but also

macrophages and dendritic cells. HIV binds to receptors on the surface of the target cell

through the CD4 receptor, and enters the cell after fusion of the envelope of the virus with

the membrane of the cell. Reverse transcription allows then the conversion of the genetic

material contained in HIV RNA into HIV DNA, which enters the cell nucleus. This viral

DNA is integrated into the DNA of the cell. It allows the virus to use the cell system to

generate HIV proteins. These proteins are assembled with HIV RNA at the surface of the

cell to form new immature HIV. When out of the cell, protease release allows maturation

to a new infectious virus. The whole cycle of replication of HIV is represented in figure

4.1.

Both humoral and cellular responses play their role in the attempt to eradicate HIV,

thanks to antibody production and cytotoxic lymphocytes action. However, the immune

system itself is weakened by the virus, as activated CD4+ T lymphocytes are the most

likely to be infected by HIV. After proliferation, some of these infected cells migrate to

secondary lymphoid organs and can live there for several years. It creates the so-called

HIV reservoirs. As HIV is integrated to their nucleus, it is impossible for the immune

system to detect and eliminate the virus unless it starts to replicate.

The dynamics of the interaction between HIV and the immune system follow three
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Figure 4.1 – HIV replication cycle and type of therapies targeting different steps of this

cycle (AIDS info - NIH, 2017).

clinical phases: a primary infection phase lasting a few weeks after the infection, fol-

lowed by an asymptomatic phase that can last several years and finally the AIDS phase.

Primary infection is characterized by an initial burst of viremia and a fall of the CD4+

T lymphocyte counts. During the asymptotic phase, viral load remains stable and the

number of CD4+ T lymphocytes is small but still acceptable (generally around 500-600
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cells per µL of blood). Without any treatment, patients evolve to the AIDS phase after

an average of 10 years. During this final phase, the immune system collapses, with a

particular drop of the CD4 counts, and the viral load sharply increases. Patients usually

die from opportunistic infections.

4.1.1.3 Combination Antiretroviral Therapy

Since the approval of the first antiretroviral molecule in 1987 by the FDA, a large num-

ber of treatments with different mechanisms of action have been introduced, now offering

many possibilities to clinicians for treating HIV-infected patients. The first treatments

were monotherapies based on Nucleotide Reverse Transcriptase Inhibitors (NRTI), a class

of molecules interrupting HIV replication cycle via competitive inhibition of HIV reverse

transcriptase and termination of the DNA chain (step 3 of figure 4.1) [Fischl et al., 1987].

They were shown to help decreasing the rate of progression to AIDS and increasing the

CD4 counts in asymptomatic adults [Volberding et al., 1990] but drug resistances were

also observed in early and late stages patients [Larder et al., 1989; Kozal et al., 1994].

Later, two new classes of antiretroviral molecules were introduced: the Protease Inhibitors

(PI) which prevent viral formation after viral budding from infected cells (step 7 of figure

4.1), and the Non-Nucleotide Reverse Transcriptase Inhibitors (NNRTI), blocking step

3 of figure 4.1 as NRTIs. This significantly improved treatment strategies against HIV

thanks to combination Antiretroviral Therapy (cART), which uses a minimum of two

drugs from different classes and can help reducing the risk of mutations. More recently,

two other types of molecules were made available: the Fusion Inhibitors (FI), in 2003,

which prevent the entry of the virus in the target cell (step 2 of figure 4.1) and the Inte-

grase Inhibitors (INI), in 2007, preventing viral DNA to integrate the host DNA (step 4

of figure 4.1). Several clinical trials have shown the increased efficacy of cART compared

to monotherapies [Hammer et al., 1996; Delfraissy et al., 2008; Bierman et al., 2009]. The

choice of the combination has evolved with time, and recommendations are currently pub-

lished annually by health institutions, giving guidelines for clinical practice. In France,

tritherapy is recommended to contain 2 NRTIs and a third agent, either a NNRTI, an INI,

a PI alone or combined with ritonavir to improve pharmacokinetics properties [Morlat,

2017]. These regimens are preferred because of their efficacy, tolerability and they are

easy to use.

Overall, cART have improved life expectancy [Hammer et al., 1996; Autran et al.,

1997; Palella Jr et al., 1998] and a large number of the patients who benefit from cART

manage to control the virus and reconstitute their immune system [Battegay et al., 2006].

This has led to major improvement in reducing morbidity and mortality in HIV-infected

patients [Young et al., 2012]. However, in some cases, we can observe either a virological
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failure or an immunological failure. The virological failure is defined as the inability of

the patient to control the virus and to reduce the viral load. In that case, the treatment

should be modified, depending on some other parameters, such as the value of given

biomarkers, the presence of other co-morbidities or the patient’s habits. The reason for

this failure should also be investigated: it could be due to non-adherence of the patient,

meaning that medicine and doses prescriptions are not respected. Adherence constitutes

a real challenge in the treatment of HIV-infected patients, but will not be developed in

this thesis. We will focus here on the immunological failure: some patients are able to

control the virus replication but cannot recover normal levels of CD4+ T cells [Lange

and Lederman, 2003]. Even if the percentage varies between studies, a significant subset

of HIV-infected patients under treatment do not reach normal levels of CD4+ T cells

[Julg and Walker, 2009] – which lie between 500 and 1500 cells/µL in healthy individuals.

In several European studies, this percentage was found to vary between 16 and 33%

[Thiébaut et al., 2005]. In a study on 366 HIV-infected patients from cohorts in the

USA, 44% of patients starting cART with CD4 counts below 100 cells/µL and 25% of

the patients starting cART with CD4 counts between 100 and 200 cells/µL were found

to have CD4 count below 500 cells/µL even after 7 years of cART [Kelley et al., 2009].

Among 400 patients from the UK Collaborative HIV Cohort Study, 7%, 33% and 65%

of the participants were found to present CD4 counts below 200, 350 and 500 cells/µL

respectively, after at least 2 years of treatment [O’Connor et al., 2014]. To evaluate the

CD4+ T cell response after treatment initiation, some studies have focused on providing

curves of the evolution of the CD4+ T cell response in large cohorts in Europe [Bouteloup

et al., 2017] and South Africa [Yotebieng et al., 2015]. They showed that the median

CD4 number after 12 months of cART was below 500 cells/µL and this number depends

on the CD4 number at treatment initiation. A low CD4 gain was also found associated

to an increased risk of death, consistent with other studies showing that low CD4+ T

cell numbers are associated with higher mortality, opportunistic infections or AIDS event

[Thiébaut et al., 2005; Kitahata et al., 2009; Opportunistic Infections Project Team Of

The Collaboration Of Observational HIV Epidemiological Research In Europe (COHERE)

In EuroCoord et al., 2012]. It has also been shown that in HIV-infected patients, CD4+ T

cell counts above 500 cell/µL are associated with a nearly healthy clinical status [Lewden

et al., 2007]. Immunological failure is then a major concern in HIV-infected patients. In

that case, the treatment is not necessarily modified but co-infections are investigated and

immunotherapies are considered to complement the cART. In the following section, we

will introduce in particular the immune therapy with the cytokine interleukin-7 (IL-7).
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4.1.1.4 Immune therapy with interleukin-7

IL-7 is a cytokine produced by non-marrow-derived stromal and epithelial cells. It

has been considered as a good candidate for intervention in HIV-infected patients with

immunological failure because it may improve thymic production [Mackall et al., 2001;

Okamoto et al., 2002] and cell survival, as shown in vivo [Tan et al., 2001; Vella et al., 1998;

Leone et al., 2010]. A review showed that IL-7 has a role in thymic T cell development

as well as survival, proliferation and maturation outside of the thymus [Beq et al., 2004].

Moreover, IL-7 was shown to regulate proliferation and survival of antiviral CD4+ T

cells [Lenz et al., 2004]. The safety and beneficial effect of injections of exogenous IL-

7 was first established in an observational study [Camargo et al., 2009] and a phase I

trial [Sereti et al., 2009]. Following encouraging results, the safety and immunogenicity

of repeated administrations of recombinant human IL-7 were assessed in a prospective

open-label phase 1/2a trial [Levy et al., 2009]. 14 HIV-infected patients under cART

with CD4+ counts between 100 and 400 cells/µL received 8 injections every two days in

a 16 days period at dose 3µg/kg (6 patients) or 10µg/kg (8 patients) and were followed

up to 48 weeks after the first injection. IL-7 was well tolerated and a significant dose-

dependent increase of naive and central memory CD4+ and CD8+ T cells was observed,

even at long term. Proliferation was also enhanced after injections, as observed thanks

to increased expression of the Ki67 marker. These results suggested that IL-7 could have

an effect on T cell cycling, thymic output and/or T cell survival. Then, a dose escalation

study of repeated administration of a glycosylated rhIL7 (CYT107 - equivalent to IL-7)

was realized in a multicenter phase 1/2a placebo controlled trial (INSPIRE study) [Levy

et al., 2012]. Patients were divided in 3 groups receiving three weekly injections of IL-7,

at day 0, 7 and 14 at doses 10µg/kg (7 patients + 2 placebos), 20µg/kg (8 patients +

2 placebos) or 30µg/kg (6 patients + 2 placebos). They were followed up to 52 weeks

after the first injection. This trial confirmed the tolerability of IL-7 injections, as well

as the dose-dependent increase of CD4 levels, up to 52 weeks after the first injection,

as seen in figure 4.2A. In parallel with this increase, the measurements of Ki67 marker

showed it underwent a peak of expression during IL-7 administration, with an observed

maximum 7 days after the first injection (first available measurement) and a return to

baseline expression between 7 and 14 days after the last injection of the cycle, as seen

in figure 4.2B. It means that IL-7 stimulate cellular proliferation, which induces a peak

of CD4+ T cells shortly after the injections. Other potential effects on thymic output

and cell survival are suggested by additional biomarkers measurements, but will not be

developed here. Details can be found in Levy et al. [2012] and Thiébaut et al. [2014].

From tolerance and biologic activity, the dose of 20µg/kg was selected to be the most
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written as: 



dR

dt
= λ+ 2ρP − µRR− πR

dP

dt
= πR− ρP − µPP

(49)

The initial condition is taken at t = 0, before any injection and it was assumed that both

R P
λ

µR µP

π

ρ

Figure 4.3 – Simple model of the CD4+ dynamics. P=proliferating cells. R=resting cells.

populations were at equilibrium, meaning that dR/dt = 0 and dP/dt = 0. Estimation of

parameters (λ, π, ρ, µR, µP ) was realized using a population approach on INSPIRE data,

using the estimation method described in section 3.2.2 and the discrete observations of

both CD4+ T cell counts and Ki67+ percentages. A statistical model of the form:

ξ̃il (t) = ξ̃l0 + βT
l z

i
l(t) + uil (50)

was used on every log-transformed parameter ξl for each individual i. In particular, the

covariates vector z included the treatment effect (=0 if the patient received placebo or

1 if the patient received IL-7 injections) and the dose effect, assumed to be linear. For

example, parameter π was written as:

π̃ =





π̃0 if t = 0,

π̃0 + β0trt+ β1dose if 0 < t ≤ τ,

π̃0 if t > τ.

(51)

The time τ of IL-7 effect on proliferation rate was fixed to 16 days after sensitivity analyses.

Several models were tested and compared :

— model 1 with only an effect of IL-7 on proliferation (π)

— model 2 with an effect of IL-7 on proliferation (π) and resting cells survival (µR),

during or after IL-7 administration

— model 3 with an effect of IL-7 on proliferation (π) and thymic output (λ), during

or after IL-7 administration
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The potential additional effects of IL-7 on survival and thymic output were tested sepa-

rately as a model including both effects and the effect on proliferation was not identifiable.

After model selection, random effects were estimated on both λ and ρ rates and a sta-

tistically significant effect of dose was estimated on the proliferation rate. Model 1 was

found to be worse than both models 2 and 3, indicating that proliferation is not the only

effect induced by IL-7 on CD4+ T cells. Model 2 was found slightly better than model 3

in terms of statistical criterion but the difference was not striking in term of patient fits.

Using these estimation results, simulations suggested that strategies including repeated

cycles of IL-7 injections could be used to maintain CD4 levels above 500 cells/µL and

helped designing the clinical trial INSPIRE 3.

4.1.2.2 Effect of repeated cycles of IL-7 injections on CD4+ T cell dynamics

Repeated cycles of IL-7 injections at dose 20µg/kg were assessed in two multicenter

phase II trials. INSPIRE 2 was a single-arm trial including 23 patients and INSPIRE 3 was

a 2 arms trial with a 3:1 randomization to IL-7 versus placebo, with a total of 84 patients

treated and included in the analysis. Results of both studies were presented in Thiébaut

et al. [2016]. HIV-infected patients were included if they were under cART, had low

CD4+ T cell counts (between 100 and 400 cells per µL of blood) and controlled the virus

(undetectable viral load for at least 6 months). The design of INSPIRE 3 study (treatment

group only) is represented in figure 4.4. A first cycle of injections was administered at the

beginning of the study, then patients were followed up to 2 years. Repeated visits were

made every 3 months, and if the CD4 T cell counts were measured < 550 cells/µL at the

visit, a new cycle was administered to the patient. Patient in placebo group received no

treatment until 1 year after enrollment and started the same design after. These trials

showed that repeated cycles of IL-7 were well tolerated and allowed the maintenance of

CD4+ T cell counts above 500/µL in most of the study participants.

The modeling work was continued, in particular to quantify the effect of different in-

jections in a cycle, the effect of repeated cycles on the CD4+ T cell dynamics and the

long-term efficacy of the therapy in maintaining CD4+ T counts above 500 cells/µL. Sev-

eral models, including more compartments or other processes such as feedback terms, were

developed and tested on INSPIRE data in Jarne Munoz [2015], but will not be detailed

here. However, we will summarize the results obtained in Jarne et al. [2017], using the

same mathematical model as described in figure 4.3 with some statistical improvements.

The parameters of the model were estimated on grouped data from all INSPIRE studies,

including a total of 128 patients (21 from INSPIRE, 23 from INSPIRE 2 and 84 from IN-

SPIRE 3), using the same population approach as presented in sections 3.2.2 and 4.1.2.1.

All patients had repeated measurements of total CD4+ T cell counts during the follow-up
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µR is assumed to be constant from 2 days after the first injection, to last 12 months and

to linearly decreases to 0 during the following 12 months. Random effects were estimated

on production rate λ and reversion rate ρ, meaning that these two parameters induce the

observed inter-individual variations. The effect of IL-7 was found to be dose-dependent

and to increase the value of the proliferation rate π during 7 days (the duration of the

effect was determined by profile likelihood). Moreover, within a cycle, the quantitative

effect of the injections on proliferation rate π value differs: in particular βπ1 ≥ βπ2 > βπ3

with the first and second injections having a similar effect, but the third injection has a

much weaker effect than the previous ones. The effect of all cycles on the proliferation rate

π were found to be lower than the effect of the first cycle. That could be either due to the

fact that the immune system reacts to IL-7 by generating antibodies against the cytokine

or simply because of homeostatic regulation, as the number of CD4+ T cells is lower at

the moment of the first cycle compared to the other ones. However, we were not able to

distinguish these effects by modeling the available data. The model induced good fits of

the data as shown in figure 4.5. The mechanistic modeling and parameters estimation in

Figure 4.5 – Fits of some patients from INSPIRE studies. Time is in days. Red points

correspond to the data and blue line corresponds to the fit obtained through

the estimation of the mechanistic model.

the population approach allowed then the quantification of the effect of repeated cycles
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of IL-7 on the dynamics of CD4+ T cells. A major interest in the modeling approach is

that the model can be used to simulate other potential designs of clinical trials and help

determining better protocols of injections.

4.1.2.3 Simulation and comparison of clinical protocols

From the estimation of a good predictive model, simulations were realized in Jarne

et al. [2017] to evaluate the possibility to reduce the number of injections in protocols.

Four protocols were compared, all based on the same original design: visits are realized

every 3 months and a new cycle is administered if the CD4+ T cell counts is measured

below 550 cells/µL. The variation between the protocols is due to the number of injections

realized in each cycle. Protocol A corresponds to the original one, with cycles of 3 injec-

tions. Protocol B contains a first cycle of 3 injections, followed by cycles of 2 injections,

while in protocol C it is followed by cycles of 1 injection. Finally, protocol D contains

cycles of 2 injections only. The comparison of these four protocols was based on three

criteria of clinical interest: the number of injections received, the mean CD4+T cell counts

and the time spent below 500 cells /µL. These protocols were applied to pseudo-patients,

generated using the (normally approximated) posterior distribution of parameters esti-

mated on INSPIRE data with the final model. The whole target population is considered

as "low" responders to cART and have their CD4+ T cell counts below 400 cells/µL when

included in the trial. Two other sub-groups of interest were studied, in particular "very

low" responders with CD4+ T cell counts between 100 and 200 cells/µL, and "not too

low" responders with CD4+ T cell counts between 300 and 400 cells/µL. Protocols were

studied and compared on these pseudo-patients. Results are detailed in Jarne et al. [2017].

In short, protocols B and D allow to reduce the number of injections compared to protocol

A without significantly reducing the mean CD4 count or increasing the time spent under

500 cells/µL, for all patients. Protocol C could be used for "not too low" responders, as it

dramatically reduces the number of injections compared to the other protocols, without

reducing the mean CD4 count or increasing the time spent under 500 cells/µL. However,

this protocol is not convenient for "very low" responders, for which it increases very much

the time spent with low CD4 counts. These results are mainly due to the fact that the

effect of a third injection in a cycle on cells proliferation was estimated to be much lower

than the effect of the two previous injections.

This comparison of protocols suggested the possibility to reduce the number of injec-

tions in clinical trials, while still maintaining the patients’ CD4+ T cell count above 500

cells/µL. However, the simulation was still based on the criterion that all patient would

undergo follow-up visits every 3 months. This may not be clinically relevant for all pa-

tients. Indeed, as shown by the data and estimated by the model, there is inter-individual
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variability in the response to IL-7 injections: in particular, following the peak induced by

the repeated injections of a cycle, the CD4+ T cell counts decrease much faster in some

patients compared to others. For patients with a strong decrease, the limit of 500 cells/µL

could be reached quickly and before the following control visit at 3 months, whereas for

patients with slower decline, the control visit could be realized much later than 3 months

after the administration of the cycle of injections. Thus, it could be more efficient to adapt

visits and measurements of CD4+ T cell counts by patients or group of patients; this could

reduce the number of visits and injections for patients while making sure that CD4+ T

cell levels are maintained over time. This question led us to develop methodological tools

to optimize the response to immune interventions such as IL-7 injections. The pipeline is

the following: when a new patient is included in a study, its individual parameters could

be estimated using population distributions previously estimated in INSPIRE (or other)

data. Then, optimization methods could be used on this patient. Figure 4.6 shows the

possible pipeline for optimizing and adapting injections protocols. In particular, we will

mention a Bayesian approach (3’) and develop more precisely an approach based on the

optimal control theory (3). However, as our main goal was to assess the feasibility of these

approaches, step 2 was replaced by the generation of pseudo-patients using the posterior

distribution estimated on the population of INSPIRE. These simulated data were used in

the evaluation of the optimal control method.

4.2 Method: optimal control

4.2.1 Optimizing clinical protocols

4.2.1.1 Possible approaches

In control theory, two main methods have been developed separately to solve op-

timization problems: Pontryagin’s maximum principle [Pontryagin, 1987] and Bellman’s

dynamic programming [Bellman, 1957]. Both methods can be applied to deterministic and

stochastic processes. Pontryagin’s maximum principle provides, under suitable assump-

tions, a set of necessary conditions that should be satisfied by an optimal control. The

problem is reduced to solving a so-called Hamiltonian system including the maximum con-

dition equation. In the dynamic programming method, the optimal control problem can

be solved using an integro-differential equation, known as the Hamilton-Jacobi-Bellman

equation.

A large number of biological applications have been modeled using an ODE system of
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2) Inclusion of a new patient

Estimation of its individual parameters using the first

observations.

1) Parameters estimation

Estimation of the ODE parameters θ using INSPIRE

data =⇒ determination of a posterior distribution.

3) Optimal control approach

• Use of optimal control theory to

determine an optimal strategy of

injections from minimizing a cost

function.

• Stochasticity attributed to the

biological process.

• Global optimization until a given

horizon

3’) Bayesian approach

• Adaptive treatment decision at each

new observation, by updating indi-

vidual parameters’ estimation with

MCMC algorithm.

• Stochasticity attributed to the

uncertainty on the parameters

estimation.

• Local adaptation of decision

Figure 4.6 – Pipeline for optimizing schedule of IL-7 injections in a new patient

the form:

dx(t)

dt
= f(x(t),u(t)), (53)

where the solution of the ODE system depends on the dynamics of the control function

u(t). The problem corresponds to minimizing a cost function depending on the control u.

In most of the cases Pontryagin’s maximum principle was used to address this question.

In the HIV field, Stengel [2008] and Yang et al. [2013] were interested in determining an

optimal HIV treatment to minimize the viral load and maximize the number of uninfected

CD4+ T cells taking into account the occurrence of viral mutations. Solving this issue

relied on using a model for the dynamics of viral infection and adding a control repre-

senting the effect of treatment. In Stengel [2008] the treatment was represented by terms

corresponding to the mechanisms of the different possible treatments, e.g., the protease

inhibitor reduces the rate of infection of CD4+ T cells by the virus. In Yang et al. [2013],

the control corresponded to the increase of number of CD8+ T cells. Pontryagin’s prin-

ciple was used and adapted in both works. A similar method was used for determining

optimal therapeutic protocols in cancer immunotherapy [Castiglione and Piccoli, 2006;

Cappuccio et al., 2007; Castiglione and Piccoli, 2007; Pappalardo et al., 2010]. The first

intervention corresponds to the injection of tumor specific DCs which allows activation of
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helper and cytotoxic cells targeting the cancer cells. Other therapeutic scenarios, includ-

ing CD8+ T lymphocytes therapy and immunotherapy with cytokines were also explored.

The cost function that should be minimized combines the size of tumor at the end of

experiment and the potential toxicity of repeated treatment injections. Even if this tool

has been widely used in biological applications, Pontryagin’s maximum principle only

provides necessary conditions and may only help to explicitly determine an optimal con-

trol strategy. Moreover, it can be applied to models including either ODEs or stochastic

differential equations (SDEs), for which the theory is well developed [Yong and Zhou,

1999]. However, to the best of our knowledge, no maximum principle exists for PDMPs

which are very well adapted for modeling most of the dynamical systems undergoing

stochasticity, as will be described in section 4.2.2.1. In biology, stochasticity is difficult to

account for, especially in inference. However, it is inherent to many processes and cannot

be neglected at some levels of precision, for example in single-cell analysis where processes

such as gene activation and protein production are modeled [Herbach et al., 2017; Cloez

et al., 2017; Puszynski et al., 2016]. Markov Decision Processes, a subclass of constant

piecewise PDMPs, have also been developed in the special case of a countable space and

punctual observations [Winkelmann et al., 2014] to determine optimal treatment strate-

gies in HIV by accounting for the potential mutation of the virus and the emergence of

resistant strains to some treatments [Duwal et al., 2015]. The stochasticity can also be

due to the variability between individuals, with a population distribution of some values

of the key parameters affecting the biological process and inducing heterogeneity in the

population. Theses sources of stochasticity were not accounted for in the previous cited

examples using Pontryagin’s maximum principle. Also, the dynamic of the control is not

always known and cannot always be explicitly included in the ODE system as in equation

(53). It is especially the case in immunology, as highlighted by Eftimie et al. [2016] in

their review on mathematical modeling for immunology. In this paper, authors underline

the crucial need for developing complex optimal control approaches in parallel to im-

munology experiments to improve clinical interventions. As part of this effort, we aimed

at developing a tool based on optimal control theory and using dynamic programing for

optimizing schedules of IL-7 injections in HIV-infected patients by accounting for some

stochasticity in the biological process. This work was published [Pasin et al., 2018] and

will be presented in section 4.2.2.

4.2.1.2 Bayesian approach for adapting protocols

In this section, we will present a Bayesian approach for adapting protocols of IL-

7 injection in a succinct way. This approach was developed in parallel to the optimal

control work by Laura Villain during her PhD, supervised by Daniel Commenges and
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Rodolphe Thiébaut. For more details, the interested reader can refer to the manuscript of

the article Adaptive protocols based on predictions from a mechanistic model

of the effect of IL7 on CD4 counts, L. Villain, D. Commenges, C. Pasin, M. Prague,

R. Thiébaut, accepted in Statistics in Medicine and presented in Appendix B. The general

idea of this method relies on the fact that the model used for the dynamics of the CD4+

T lymphocytes, as detailed in section 4.1.2 and Thiébaut et al. [2014], Thiébaut et al.

[2016], Jarne et al. [2017] is deterministic; when a distribution of the parameters of a given

patient is known, the corresponding trajectory of the CD4+ T cells can be computed, as

well as the distribution of any related quantity. Decisions to adapt the treatment can be

taken using these predicted quantities. Moreover, each time a measurement is made on a

patient, more data is available and the parameter estimation can be updated, with more

precision. In practice, the individual parameters are estimated with an MCMC algorithm.

Two strategies were evaluated: one, the adaptive criterion of injection (ACI) is based on

the predicted risk to have CD4 counts below 500 cells/µL before the next visit (at 3

months). The other one, the adaptive time of injection (ATI) is based on the predicted

time at which CD4 counts will reach 500 cells/µL. Within both criteria, the possibility to

administer less than 3 injections per cycle was also assessed. It should be underlined that

here, both criteria are computed from the estimation of individual parameters, obtained

thanks to the observations, but not from the observations themselves as in the original

protocol. In short, the results showed that all adaptive protocols had the ability to reduce

the time spent with CD4 levels below 500 cells/µL without increasing much the number

of injections for each protocol. The protocols based on the ATI criterion actually helped

in reducing the number of visits of the patient. All protocols maintained the CD4 counts

at higher numbers than the original protocol. This approach offers clinical prospects, as

it could be applied in a larger trial to evaluate the impact of adaptive strategies on other

clinical outcomes. Its feasibility relies on the good capacity of the deterministic model to

capture the biological process and to be estimated using a limited number of markers and

measurements. In parallel on this work, we developed the optimal control approach, as

described in the following sections.

4.2.2 Optimal control on piecewise deterministic Markov pro-

cesses

In this section, we will introduce the notations and definitions related to uncontrolled

and controlled PDMPs. We will also remind the main results from Costa et al. [2016]

and adapt them to our particular context. The terminology will be mostly taken from

this article. From now, we will use the term of "impulse control" problem to refer to an
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optimal control problem with a possibility of punctual actions but only on the boundaries

of the system.

4.2.2.1 Uncontrolled PDMPs

In his paper, Davis [1984] observed that almost all continuous stochastic models could

be defined as combination of diffusion, deterministic motion, and/or random jumps. Diffu-

sions correspond to continuous time stochastic processes and include stochastic differential

equations, which are ordinary differential equations with a white noise perturbation. The

theory of control was well developed in this framework [Bensoussan, 1982; Peng, 1990] and

numerical tools were then developed to solve the control problems. However, the number

of applications was limited, because SDEs are not adapted for modeling a large number

of physical and biological processes. Now, control of SDEs is particularly developed in

finance [Framstad et al., 2004; Shen et al., 2014]. By developing PDMPs, Davis [1984]

proposed a general framework for modeling and eventually optimizing continuous-time

dynamical systems including uncertainty due to random occurrences, but without diffu-

sion. Since this paper, PDMPs have been used to model processes in many applications

including questions in biology such as neuronal membranes [Buckwar and Riedler, 2011]

or gene expression [Bobrowski et al., 2007] or in physics such as maintenance of metallic

structures [de Saporta et al., 2012].

A PDMP is characterized by local characteristics defined in a given state space X:

the flow φ, the jump rate η and the transition measure Q. The trajectory of a PDMP

can be described by iteration: starting from a point x0 ∈ X, the process follows the flow

φ(x0, t) until a jump occurs at time T1. This jump can either be spontaneous, following

a Poisson-like law defined by rate η or deterministic when the flows hits the boundary of

the state space. In both cases, the process starts again from a point determined by the

transition measure Q(.|φ(x0, T1)) and follows the flow until a new jump occurs. A graphic

representation of a PDMP is shown in figure 4.7. In a more formal way, the state space X

is an open subset of Rd, d ∈ N; ∂X corresponds to its boundary. The flow associated with

the process φ(x, t) : Rd × R 7→ R
d is a Lipschitz continuous vector field in R

d, meaning

that φ(x, t + s) = φ(φ(x, s), t) for all x ∈ R
d and (t, s) ∈ R

2. The active boundary is

defined as Ξ = {x ∈ ∂X : x = φ(y, t)} for some y ∈ X and t ∈ R
∗
+. We will then denote

X = X∪Ξ and for x ∈ X, we can define t∗(x) = inf{t ∈ R+ : φ(x, t) ∈ Ξ}. The definition

of the flow φ outside the space X can be arbitrary, as it has no impact on the definition

of the process. The controlled jump intensity η is a R+-valued measurable function and

determines the law of the stochastic jumps. The transition measure Q(.|x) corresponds

to the distribution of the state after a natural jump occurring at x ∈ X.

A PDMP can be constructed using the flow, the jump intensity rate and the transition
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X
x0×

φ(x0, θ1)×

x2×

φ(x1, θ2)×

x1×

random jump (η)

transition measure (Q)

deterministic jump (Ξ)

Figure 4.7 – Graphic representation of a PDMP, starting from x0, with a random jump

at time τ1 = θ1, then starting again from x1 and undergoing a deterministic

jump at time τ2 = θ1 + θ2 when reaching the boundary of state space X,

before starting again from x2.

measure. We will not focus on technical details here, but roughly speaking, a canonical

space of trajectories Ω can be defined. A trajectory in this space can be written as

ω = (x0, θ1, x1, θ2, x2, ..) ∈ Ω, with initial state x0 ∈ X. Written this way, θi corresponds

to the time interval between two consecutive jumps and xi the value of the process right

after the jump. Note that the θs depend on the jump intensity rate as well as the flow and

the boundary of the state space, and the xs are determined by the transition measure.

We note hn = (x0, θ1, x1, θ2, x2, .., θn, xn) the path up to n ∈ N and Hn the set of all such

paths. The process has only n jumps when θn < ∞ and θn+1 = ∞. In that case, we can

fix θm = ∞ and xm = x∞ for every m ≥ n + 1, with x∞ corresponding the an isolated

artificial point after which no jump occurs. We note X∞ = X ∪ {x∞} and then we can

define mappings Xn : Ω → X∞ such that Xn(ω) = xn, corresponding to the post-jump

locations and Θn : Ω → R
∗

+ by Θ0(ω) = 0, Θn(ω) = θn corresponding to the sojourn

time (in a deterministic regime). We can also define the sequence of R
∗

+-valued mappings

(Tn)n∈N∗ corresponding to the time at which jump occurs, with Tn(ω) =
∑n

i=1 Θi(ω) and

T∞(ω) = limn→∞Tn(ω). From Xn and Θn, we can determine Hn = (X0,Θ1, X1.., Xn).

Finally we can define the PDMP {ξt}t∈R+
such that:

ξt(ω) =

{
φ(Xn, t− Tn) if Tn ≤ t < Tn+1 for n ∈ N,

x∞ if T∞ ≤ t.
(54)
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4.2.2.2 Impulse control of PDMPs

In this section, we will remind the theoretical results presented in Costa et al. [2016]

and adapt them to a particular context which will constitutes our framework in the

case of protocols of IL-7 injections: here, we will be interested in an impulse control

problem where the decision maker can modify the measure of transition Q, but only on

the boundary of the system. The process is not controlled inside of the state space. It

means that punctual decisions can be taken to modify from where the process starts again

when a boundary is reached.

The action space is denoted A. For a particular point z ∈ Ξ at the boundary of the

system, the set of possible actions at this point is written A(z). We can then define the

state K = {(z, a) ∈ Ξ × A : a ∈ A(z)} of pairs containing all the elements of the active

boundary and their corresponding possible actions. The stochastic kernel Q on X given K

determines the state of the process after any jump. For any (z, a) ∈ K, Q(.|z, a) describes

the distribution of the state after the jump induced by the impulsive action a from point z

on the active boundary. If a natural jump occurs in state x ∈ X, the measure of transition

does not depend on any action, as the process is uncontrolled inside of the state space.

We can write Q(.|x, a) = Q(.|x) the distribution of the state after the jump as well. In

the case of a stochastic jump, the signed kernel computes the difference between the state

before and after the jump:

q(dy|x) = η(x)
[
Q(dy|x)− δx(dy)

]
. (55)

For any function V : X → R, we can define for (z, a) ∈ K:

QV (z, a) =

∫
V (y)Q(dy|z, a), (56)

and for x ∈ X:

qV (x) =

∫
V (y)q(dy|x). (57)

The set of all actions realized by the decision-maker constitutes a control strategy. For-

mally, an admissible control strategy is a sequence u = (χn)n∈N with, for any n ∈ N,

χn a stochastic kernel on A given Hn. When the process hits the boundary from xn,

the decision maker chooses randomly an action according to the distribution χn(.|Hn),

satisfying χn

(
A(φ(xn), t

∗(xn))|hn
)
= 1, for hn = (x0, θ1, x1, θ2, x2, .., θn, xn) ∈ Hn, with

xn 6= x∞ and t∗(xn) <∞. The set of all admissible control strategies is denoted by U .

The optimization problem corresponds to determining a strategy in U which minimizes

a performance criterion. This criterion is defined from a cost function, itself divided in

two parts: the gradual cost Cg, penalizing continuously the trajectory of the process, and
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the cost C i associated to an impulsive action. The associated performance criterion for

strategy u ∈ U starting from state x0 ∈ X is:

V(u, x0) = E
u
x0

[∫

]0,+∞[

e−αsCg(ξs)ds

]

+E
u
x0

[
+∞∑

n=1

e−αTn1{
ξTn−∈Ξ

}
∫

A
(
ξTn−

)C i(ξTn−, a)χn(da|Hn)

]
,

(58)

where α is a discount factor ensuring the convergence of the integral when the process is

defined on an infinite horizon. However, when working on a finite horizon Th, it is possible

to define a boundary of the process when t ≥ Th at which the process enters a so-called

absorbing state ∆, where nothing happens, φ(∆, t) = ∆ and Cg(∆) = C i(∆) = 0. In

that case, equation (58) can be computed with integrals on ]0, Th] instead of ]0,+∞[. The

optimization problem aims at finding an optimal strategy û ∈ U such that:

V(û, x0) = inf
u∈U

V(u, x0). (59)

Below are a list of assumptions that should be verified to solve the optimization problem,

as defined in section 3.2 of Costa et al. [2016]. They mainly ensure the ability to compute

values of the performance criterion and the existence of an optimal solution to the problem.

Assumption A. There are constants K ≥ 0, ε1 > 0 and ε2 ∈ [0, 1[ such that

(A1) For any x ∈ X, η(x) ≤ K.

(A2) For any (z, a) ∈ K, Q(Aε1 |z, a) ≥ 1− ε2, where

Aε1 = {x ∈ X : t∗(x) > ε1}.

Assumption B.

(B1) The set A(y) is compact for every y ∈ X.

(B2) The kernel Q is weakly continuous.

(B3) The function η is continuous on X.

(B4) The flow φ is continuous on R
d × R+.

(B5) The function t∗ is continuous on X.

Assumption C.

(C1) The multifunction Ψ from Ξ to A defined by Ψ(z) = A(z) is upper semicontinous.

(C2) The cost function Cg (respectively, C i) is bounded and lower semicontinuous on X

(respectively, K).
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When assumptions (A1) and (A2) hold, constants KA and KB can be defined as in section

5 from Costa et al. [2016]:

KB ≥ K

1− ε2
,

KA ≥ K(1 +KB)(1− e−(K+α)ε1) + (K + α)(K +KBε2)e
−(K+α)ε1

α(1− e−(K+α)ε1)
.

(60)

The theorem allowing to determine the optimal cost and providing an optimal strategy

is adapted from theorem 5.5 in Costa et al. [2016]. It is stated as follows:

Theorem 1. Suppose assumptions A, B and C are verified. We define the sequence of

functions {Wm}m∈N for any x ∈ X as follows:
{
Wm+1(x) = BWm(x) for m ∈ N,

W0(x) = −KA1Aε1
(x)− (KA +KB)1Ac

ε1
(x),

(61)

with constants KA and KB defined as in equation (60), Aε1 = {x ∈ X : t∗(x) > ε1} and

BV (y) =

∫

[0,t∗(y)[

e−(K+α)tRV (φ(y, t))dt+ e−(K+α)t∗(y)T V (φ(y, t∗(y))), (62)

with real-value functions RV and T V defined for any V respectively on X and Ξ :

RV (x) = Cg(x) + qV (x) + ηV (x),

T V (z) = inf
a∈A(z)

{
C i(z, d) +QV (z, a)

}
,

with qV and QV defined as in equations (57) and (56) respectively.

The sequence of functions {Wm}m∈N converges to a function W defined on the state space

and such that :

i) W (x0) = infu∈U V(u, x0)
ii) there is a measurable mapping ϕ̂ : Ξ → A such that ϕ̂(z) ∈ A(z) for any z ∈ Ξ and

satisfying

C i(z, ϕ̂(z)) +QW (z, ϕ̂(z)) = inf
a∈A(z)

{
C i(z, a) +QW (z, a)

}
. (63)

The value function W as previously defined verifies W (x) = BW (x) for any x ∈ X,

which is an integral form of the Hamilton-Jacobi-Bellman equation. This theorem shows

that the optimal cost can be obtained by computing the value function W in x0. Note

that, due to the definition of W as the convergence of sequence {Wm}, its value should be

computed on the state space X in order to obtain the specific value W (x0). Moreover, the

optimal strategy is obtained by choosing the optimal action ϕ̂(z) for every point z ∈ Ξ

reached on the trajectory of the process. The optimal strategy is simulated as follows:

we start with the trajectory from x0, then when a boundary is reached, the chosen action

corresponds to the one minimizing the criterion C i(z, a)+QW (z, a), as given by equation

(63).
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4.2.2.3 Numerical aspects

The theory of impulse control on PDMPs, as developed in previous sections 4.2.2.1 and

4.2.2.2, can be applied to biological or physical questions by using a two-steps method:

first, the PDMP associated to the process should be developed, then the impulse control

problem can be solved using theorem 1.

The defined PDMP can be simulated using a numerical software. Simulations consti-

tute a way to check if the PDMP is able to reproduce the biological process. Moreover,

simulations of the PDMP allow to generate and compare the effect of several injections

strategies on the process. It helps getting a first evaluation of the ability of the cost func-

tion to distinguish between the different strategies. It also gives a basis of comparison to

the optimal strategy, after it is determined.

Then, the impulse control problem should be solved numerically, but at the moment

there is no general computation method [de Saporta et al., 2015]. Some methods have

been developed in de Saporta and Dufour [2012], and they have also shown that some

tools are still under development. Results from Costa et al. [2016], and in particular

theorem 1 gives a natural method to solve the problem. Indeed, the value function W is

obtained by iteration of a sequence {Wm}m∈N. This sequence is defined by equation (61),

with Wm+1(x) = BWm(x). An approximation of the operator B defined in equation (62)

can be realized on a grid of the state space and it will allow to compute an approximation

of all functions Wm on the grid. This grid, written Γ, must be chosen to be stable by

transformation with BWm, for all m ∈ N: it can be ensured by approximating BWm(x)

on Γ, for every x ∈ Γ. Finally, it will give an approximation of the function W on Γ,

and in particular of W (x0), corresponding to the optimal cost. Our main contribution in

this work was to determine the PDMP associated to the context of IL-7 and to develop a

numerical method able to solve the optimal control problem for some given patients. The

challenge comes with finding a right way to organize the grid Γ to ensure good computation

of the sequence {Wm}m∈N on every point of the grid. Moreover, a computational challenge

is induced by the size of the grid, as a large number of elements is easily reached, which

can dramatically increases the time of computation.

In the next section, we include the article corresponding to the application of the theory

of optimal control on PDMPs to the IL-7 question. Details of the two steps of the method

are given: first the PDMP is described and the algorithm for computing the sequence of

functions is explained. We decided to focus on a biological process slightly simpler than

the one described by the ODE models on INSPIRE data and focused only on the effect of

IL-7 on the proliferation of cells. This is partly due to the fact that our work was more a

"proof-of-concept" and mainly aimed at showing that the theory of optimal control could
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be used in a context of optimization of schedules of injections. It was then natural to

choose a simple biological model, but still realistic and good enough to fit the data from

INSPIRE studies. The numerical method was applied to 50 pseudo-patients that were

generated using the posterior distributions previously estimated on the parameters using

INSPIRE data. All codes (both simulation of the PDMP and computation of the iterative

sequence for solving the optimal problem) were written in Matlab version R2016b (The

MathWorks, Inc., Natick MA, USA, 1984).

4.3 Application of the optimal control to the IL-7 con-

text: "Controlling IL-7 injections in HIV-infected

patients"

The following paper was published in Bulletin of Mathematical Biology (2018), volume

80, issue 9, pp 2349-2377.
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Abstract

Immune interventions consisting in repeated injections are broadly used as they are

thought to improve the quantity and the quality of the immune response. However,

they also raise several questions that remain unanswered, in particular the number

of injections to make or the delay to respect between different injections to achieve

this goal. Practical and financial considerations add constraints to these questions,

especially in the framework of human studies. We specifically focus here on the use of

interleukin-7 (IL-7) injections in HIV-infected patients under antiretroviral treatment,

but still unable to restore normal levels of CD4+ T lymphocytes. Clinical trials have

already shown that repeated cycles of injections of IL-7 could help maintaining CD4+

T lymphocytes levels over the limit of 500 cells/µL, by affecting proliferation and

survival of CD4+ T cells. We then aim at answering the question: how to maintain

a patients level of CD4+ T lymphocytes by using a minimum number of injections

(i.e., optimizing the strategy of injections)? Based on mechanistic models that were

previously developed for the dynamics of CD4+ T lymphocytes in this context, we

model the process by a piecewise deterministic Markov model. We then address the

question by using some recently established theory on impulse control problem in order

to develop a numerical tool determining the optimal strategy. Results are obtained on a

reduced model, as a proof of concept: the method allows to define an optimal strategy

for a given patient. This method could be applied to optimize injections schedules in

clinical trials.
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1 Introduction

The infection by the Human Immunodeficiency Virus (HIV) compromises the immune

system functions, mainly because of the depletion of CD4+ T lymphocytes. Combined

antiretroviral (cART) therapy has led to a spectacular improvement of patients’ sur-

vival by controlling virus replication and consequently restoring the immune system

functions. However, some patients fail at reconstituting their immune system and

recovering normal CD4+ T cell levels, especially when they start antiretroviral treat-

ment late (Lange and Lederman 2003). Immune therapy has been considered as a

complement to cART to help immune restoration. In particular, interleukin-7 (IL-7),

a cytokine produced by non-marrow-derived stromal and epithelial cells, is thought to

improve thymic production (Mackall et al. 2001; Okamoto et al. 2002) and cell sur-

vival (Tan et al. 2001; Vella et al. 1998; Leone et al. 2010). The safety and beneficial

effect of injections of exogenous IL-7 was first shown in phase I trials (Sereti et al.

2009; Levy et al. 2009) and observational studies (Camargo et al. 2009). Then, phase

I/II human clinical trials (INSPIRE 1, 2 and 3 studies) have evaluated the effect of

repeated cycles of three IL-7 injections and showed that this therapy helped maintain-

ing HIV-infected patients with CD4+ T cells levels above 500 cells/µL (Levy et al.

2012), a level associated with a nearly healthy clinical status (Lewden et al. 2007).

The dynamics of CD4+ T lymphocytes following IL-7 injections can be fitted by

mechanistic models based on ordinary differential equations (ODEs). These models

contain compartments corresponding to different populations of CD4+ T lymphocytes

and biological parameters characterizing these populations. Hence, it was possible to

quantify the effect of repeated cycles of IL-7 on CD4+ T lymphocytes on specific

parameters. Previous work using data from clinical trials (INSPIRE studies) has shown

that IL-7 enhances both proliferation and survival of CD4+ T lymphocytes (Thiebaut

et al. 2014). Moreover, a differential effect of the injections within a given cycle

has been found, the third injection of a cycle appearing to have a weaker effect on

proliferation than the first ones (Jarne et al. 2017).

In addition to providing insight into the most important mechanism of the effect

of exogenous IL-7, the models have shown a very good predictive capacity (Thiebaut

et al. 2014; Jarne et al. 2017). Hence, the next step was the determination of the best

protocol of injections. A first approach, realized in Jarne et al. (2017), consisted in

simulating and comparing the regular protocol to three other protocols with different

numbers of injections by cycle. In all four protocols, CD4 counts were measured every

3 months, and a new cycle was administered when the CD4 numbers were below 550

cells/µL. Comparison was based on three criteria: number of injections received, mean

CD4 count and time spent below 500 cells/µL over a 4-years period. Results showed

that cycles of two injections could be sufficient to maintain CD4 levels, while using

less injections than in the clinical protocol. These results suggest the possibility to

reduce the number of injections in clinical protocols. However, the 3 months delay

between visits is independent of the patient and constrains the protocol. While some

patients with “not too low” baseline CD4 levels could afford coming back later than

3 months after the last visit, some patients with “low” baseline CD4 levels would

need more repeated cycles or more injections by cycle. Individualized protocols could

help in achieving the maintenance of the patient’s CD4+ T lymphocytes levels over a
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given threshold by using different patient-dependent timing of injections and doses.

The possibility of conducting the lightest intervention for every patient could be very

important for the development of IL-7 in HIV-infected patients especially for further

large clinical trials.

Optimization of schedule and doses is an up-to-date question when working on

protocol of injections. In their review on mathematical modeling for immunology,

Eftimie et al. (2016) emphasize the need for complex optimal control approaches

coupled with immunology experiments, in order to improve clinical interventions.

Basically, there are two kinds of techniques that can be used to solve optimal control

problems: methods involving Pontryagin’s maximum principle and dynamic program-

ming approaches. Pontryagin’s maximum principle has been applied to a number of

biological problems of the form dx(t)
dt

= f (x(t), u(t)), where the solution to the

ordinary differential equation depends on the dynamics of the control function u(t).

For example, it was applied to the determination of the optimal schedule of dendritic

cells vaccine injection in cancer immunotherapy by Castiglione and Piccoli (2006),

Cappuccio et al. (2007), Castiglione and Piccoli (2007) and Pappalardo et al. (2010).

However, in our case, the model is a piecewise deterministic Markov model (PDMP),

where dynamics of IL-7 are unknown and not modeled. Addressing the objective of

spending the least time possible under the threshold of 500 cells/µL by using repeated

injections of IL-7 corresponds in a more formal way to determining actions (injec-

tion or not and choice of dose) at given time points over a horizon of time: this can

be treated as a problem of impulse control in the optimal control theory. To the best

of our knowledge, there is no maximum principle solving this kind of problem. We

will focus on a dynamic programming method, as developed in Costa et al. (2016).

In a formal mathematical framework, we addressed the question of optimizing the

schedule of IL-7 injections for a given patient by a two-steps method: determining an

adapted mathematical model for the process, and developing a numerical method to

determine an optimal strategy of IL-7 injections for a given patient.

As described in Davis (1984), most of the continuous-time stochastic problems of

applied probability (including those modeling biological processes) consist of some

combination of diffusion, deterministic motion and/or random jumps. Ordinary dif-

ferential equations can be included in the class of deterministic motion with random

jumps. In our particular framework of modeling cell dynamics after IL-7 injections,

jumps correspond to the change of some parameters value. This can be easily and

naturally modeled by the largely studied class of Piecewise Deterministic Markov

Processes (PDMPs). A non-controlled version of this model can be described by iter-

ation as follows: from a point in the state space, the process follows a deterministic

trajectory determined by the flow, until a jump occurs. This jump happens either spon-

taneously in a random manner, or when the flow hits the boundary of the state space.

After the jump, the system restarts from a new point determined by the transition

measure of the process. We will show in this article how to model the dynamics of the

CD4+ T cells in HIV-infected patients following IL-7 injections using a PDMP.

According to the problem studied in Costa et al. (2016), impulse control consists

in possible actions only when the process reaches its boundary. This will constitute

our framework: the decision-maker has the possibility to inject IL-7 when the number

of CD4+ T lymphocytes reaches a given level or when a certain amount of time has
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passed since the last injection. Each action has a cost, and a strategy is defined as

the set of all realized actions over a given horizon. The impulse problem consists in

determining a strategy of injections minimizing the optimality criterion induced by

the cost function. In our case, the cost function depends on the number of injection

realized and the time spent with the CD4+ T lymphocytes levels under the threshold

of 500 cells/µL, as both quantities should be minimized.

As emphasized by the authors of Dufour and Zhang (2015), the development of

computational methods for the control of PDMPs has been limited, and at the moment,

there is no general method allowing the numerical resolution of optimal control on

PDMPs (and in particular impulse control). This constitutes a real challenge. We

propose in this work a numerical method based on the results developed in Costa et al.

(2016). In this paper, the authors studied the existence of a solution of the Bellman–

Hamilton–Jacobi equation by showing that the value function is the limit of a sequence

of functions given by iteration of an integro-differential operator. This construction

leads to a natural method for the computation of the optimal cost and the determination

of an optimal strategy of injections. In particular, we have developed an algorithm for

the iteration of the operator and applied our numerical tool to the case of the biological

model. This provides a proof of concept as it succeeded in determining an optimal

strategy for a number of pseudo-patients simulated using previous estimations. The

paper is organized as follows: Sect. 2 presents the mathematical modeling of the

process, including data and design of INSPIRE studies, as well as mechanistic model

and finally the associated PDMP. Section 3 focuses on the optimal control problem, by

reminding the main theoretical results from Costa et al. (2016) and adapting them to the

IL-7 study. Section 4 presents some numerical aspects of the dynamic programming

work, necessary to determine the optimal cost function and strategy for a given patient.

Results are presented in Sect. 5, and discussion is done in Sect. 6.

2 Mathematical Modeling

2.1 Material

Our work is based on three phase I/II multicenter studies assessing the effect of a

purified glycosylated recombinant human Interleukin 7 (IL-7) treatment for immune

restoration in HIV-infected patients under treatment: INSPIRE (Levy et al. 2012),

INSPIRE 2 and INSPIRE 3 (Thiébaut et al. 2016). A total of 128 HIV-infected patients

under antiretroviral therapy with CD4+ T cell count between 100 and 400 cells/µL and

undetectable viral load for at least 6 months were included among the three studies from

the time of the first injection. IL-7 was administered in cycles of weekly injections,

with a “complete cycle” defined as three weekly injections. In INSPIRE, all 21 patients

received complete cycles of IL-7 at different weight-dependent doses: 10, 20 and 30

µg/kg. In INSPIRE 2 and INSPIRE 3, 23 and 84 patients (respectively) received

repeated (and sometimes incomplete) cycles of IL-7 at dose 20 µg/kg. Repeated visits

and follow-up once every 3 months after the first cycle allowed to measure biomarkers

levels in patients, in particular total CD4+ T cell counts and number of proliferating

CD4+ T cells through Ki67 marker. At every visit, a new cycle of injections was
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administered if the patient’s CD4+ T cell level was under 550/µL, in order to globally

maintain the levels above 500 cells/µL. The total duration of the studies was 12, 24

and 21 months for INSPIRE, INSPIRE 2 and INSPIRE 3, respectively.

2.2 Mechanistic Model

The dynamics of CD4+ T lymphocytes were largely described in Thiebaut et al.

(2014) and Jarne et al. (2017) by using several mechanistic models. We focus here

on the following model, described in Fig. 1: it includes two populations of cells, non-

proliferating (or resting, R) and proliferating (P). Resting cells are produced by thymic

output at rate λ, become proliferating cells at rate π and die at rate μR . Proliferating

cells die at rate μP and can also divide and produce two non-proliferating cells at rate

ρ. The system of differential equations is written as follows:

⎧
⎪⎨
⎪⎩

dR

dt
= λ − μR R − π R + 2ρ P

dP

dt
= −μP P − ρ P + π R

(1)

We assume the system is at equilibrium at t = 0, before the study begins and any

injection is administered. IL-7 injections are realized through cycles containing up

to three injections with 7 days elapsed between each injection. Parameters estimation

was performed using a population approach. Mixed-effect models including intercept,

random and fixed effects, were used on log-transformed parameters, in order to both

obtain an estimation across population and account for between-individuals variability.

In the controlled framework, the decision-maker can decide to inject IL-7 to a patient at

a given dose d, and this will affect the value of the proliferation rate π . Each injection

denoted by n ∈ {1, 2, 3} of a cycle has a different effect on the value of π for patient

i , defined as follows:

π̃ i = π̃0 + β(n)
π d0.25

i 1{t∈[t i
inj,t

i
inj+τ i ]} (2)

with π̃ = log(π); βπ = [β
(1)
π , β

(2)
π , β

(3)
π ] is the vector of effect of each injection of a

single cycle; d is the injected dose; tinj is the time (in days) at which IL-7 is injected,

Fig. 1 Mechanistic model for

the dynamics of CD4+ T

lymphocytes

R P
λ

µR µP

π

ρ
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and τ is the length of effect of the injection (in number of days), considered equal

to 7 in previous models (Jarne et al. 2017). Estimation of parameters showed that

effect of successive injections on the proliferation rate decreases within a cycle, and

in particular, the third injection seems to have a much weaker effect (as β
(3)
π < β

(2)
π <

β
(1)
π ) (Jarne et al. 2017).

2.3 Mathematical Model: Piecewise Deterministic Markov Process

As described in the introduction, ODEs-based mechanistic models can be included

into the broader class of PDMPs. A PDMP is characterized by a state space in which

it evolves, a flow, a jump intensity and a measure of transition. From a mathematical

point of view, we note X the state space, an open subset of Rd , d ∈ N, and ∂ X its

boundary. The flow associated with the process is φ(x, t) : R
d × R �→ R

d . The

active boundary is defined as Ξ = {x ∈ ∂ X : x = φ(y, t)} for some y ∈ X

and t ∈ R
∗
+. We will then denote X = X ∪ Ξ and for x ∈ X , we can define

t∗(x) = inf{t ∈ R+ : φ(x, t) ∈ Ξ}. The controlled jump intensity η is a R+-valued

measurable function and determines the law of the stochastic jumps. When the process,

i.e., the trajectory of CD4+ T lymphocytes, reaches Ξ , the decision-maker can act

by injecting IL-7 to the patient. The action varies according to the dose injected. This

leads to a jump in some parameters value, and the process restarts from a new point

defined by the transition measure Q(.|φ(x0, τ ), d), depending on the dose and the

position of the state before the jump φ(x0, τ ).

In this section, we present the PDMP associated with the biological process

described in Sect. 2.2. Here, the PDMP is patient-dependent. As we focus on the

control question (and not the estimation one), we suppose that parameters values

of the studied patient are known. Previous work has shown that estimation of ODE’s

parameters based on population approaches can be reliable (Lavielle and Mentré 2007;

Prague et al. 2013). Moreover, the model developed in our particular framework for

the CD4 dynamics has shown good predictive abilities (Jarne et al. 2017). Therefore,

we make the assumption that we determine the strategy for a patient who is already

included in a clinical study and for which we had enough observations to estimate its

parameters (by running a first cycle of injection for example). As developed in this

part, the stochasticity is supposed to be induced by the biological model but not by the

uncertainty on the parameters estimation. Sensitivity analysis of the method regarding

the estimation uncertainty is provided in “Appendix C”.

The PDMP modeling the dynamics of CD4+ T lymphocytes of a given patient is

defined using six variables: the state vector is denoted by x = (γ, n, σ, θ, p, r). γ

determines the value of parameter π when combined with n, the number of injections

realized in the ongoing cycle. If d = [d0, d1, .., dmd
] is the vector of all possible doses

(with d0 = 0), then γ ∈ {1..md + 1}. Injecting dose dk at the n-th injection of a cycle

gives the following: γ (dk) = k + 1 and π = π0 + β
(n)
π d(γ )0.25. The two variables σ

and θ are time variables, discretized with steps of 1 day. In particular, σ corresponds to

the number of days since the last injection and θ to the running time (θ = 1 at the first

injection of the first cycle). Finally, variables p and r are values of compartments P

and R solutions of system 1 with parameter π defined by γ and n and other parameters
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are supposed to have been previously estimated. We suppose the patient is followed

until a horizon of time Th , then the state space is X = X̃ ∪ Δ with

X̃ = {1..md + 1} × {1..ninj} × {0..Th − 7(ninj − 1)} × {0..Th}

×{pmin..pmax } × {rmin..rmax }

and Δ is an absorbing state representing the end of the study, at t = Th : Δ =

(0, 0, 0, Th, 0, 0). For x = (γ, n, σ, θ, p, r) ∈ X , the flow is defined as:

– φ(x, t) = (γ, n, σ + t, θ + t, p, r) if θ ≤ 1

– φ(x, t) = (γ, n, σ + t, θ + t, P(t, γ, n), R(t, γ, n)) if θ ∈ [1, Th − 1], with

P(t, γ, n) and R(t, γ, n) solutions of system 1 with initial conditions p and r and

π determined with γ and n

– φ(Δ, t) = Δ

Moreover, even if the deterministic mechanistic model allowed good fits for the data,

we make the hypothesis that the process undergoes some stochasticity: in particular,

as the value of parameter π is modified by an injection of IL-7 during some days,

we suppose that this modification can last randomly up to 7 days after the injection.

Stochastic jumps can then occur with intensity η such that for x ∈ X̃ , η(x) = η1{γ>1}

with η a given value and η(Δ) = 0. It means that if we consider the modification of π

value after an IL-7 injection through Eq. 2, τ follows there a random exponential law

of parameter η. We define the constant K = η such that η(x) ≤ K for every x ∈ X̃ .

IL-7 injections aim at maintaining the CD4+ T cell level over 500 cells/µL. When

this value is reached, we consider that the system has reached a deterministic boundary

of the state space. A new injection of IL-7 injection is possible at that moment and gives

the possibility to increase CD4+ T cell counts. To account for clinical constraints, we

assume a minimum time σmin is observed between the beginning of two consecutive

cycles, even if the number of CD4 falls below the threshold of 500. During cycles, the

deterministic boundary corresponds to the 7 days delay between injections. In a more

formal way, the boundary can actually be reached in five different situations described

in the following:

– for a technical reason due to the mathematical modeling which cannot account for

an impulse action at t = 0, we define a first artificial boundary when the study

begins, at θ = 1: Ξ1 = {x : θ = 1}. This allows a cycle of injections to begin at

θ = 1. We suppose the studied patient is already included in the clinical study: it

means that its biological parameters are known, and her/his CD4+ T cell count at

t = 0 as well (either because she/he is at equilibrium, and the values are known

from biological parameters, or because some measures have been realized at this

time).

– we also define a time corresponding to the end of the study and a boundary when

the time reaches the horizon Th :Ξ2 = {x : θ ≥ Th}

– another boundary is reached when the patient is undergoing a cycle of injections

and 7 days have passed since the last injection:Ξ3 = {x : n < ninj, σ = 7, θ < Th}

– we also consider a boundary when at least one cycle was already achieved and the

count of cells is equal to or below the threshold of 500 cells/µL . We also assume a
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minimum time σmin is observed between the beginning of two consecutive cycles:

Ξ4 = {x : p + r ≤ 500, n = ninj, σ ≥ σmin, θ < Th}

– finally, an artificial boundary is created when π has not returned to its baseline

value 7 days after the last injection of a cycle: Ξ5 = {x : γ > 1, n = ninj, σ =

7, θ < Th}

We define the active boundary as Ξ = �1 ∪Ξ2 ∪Ξ3 ∪Ξ4 ∪Ξ5. In this process, actions

(IL-7 injections) can only be realized when the process hits the active boundary. We

model the possibility of not doing an injection in a given cycle by using a fictive dose

d0 equal to zero. When beginning a new cycle of injections, the first injection needs to

be positive though. The possible action made by the decision-maker depends on the

boundary reached. Therefore, for every x ∈ Ξ :

A(x) =

⎧
⎨
⎩

{d1, ..dmd
} if x ∈ Ξ1 ∪ Ξ4

{0, d1, ..dmd
} if x ∈ Ξ3

∅ if x ∈ Ξ2 ∪ Ξ5

We also define the transition measure (or Kernel): it determines the new point from

which the process restarts after a jump. It depends on the injected dose only when the

boundary of the process is reached. All possible situations are the following:

– when the flow hits Ξ1, the study begins with administration of a cycle of injections.

γ takes the value corresponding to the chosen dose. (p, r) = (Pc, Rc), known

values from either equilibrium or biological measures made on the patient before

the beginning of the study

– when the flow hits Ξ2, the study is over and nothing happens from absorbing state

Δ

– when the flow hits Ξ3, a new injection is administered to the patient. γ takes the

value corresponding to the chosen dose γ (d), n increases by one, σ goes back to

0

– when the flow hits Ξ4, a new cycle of injections begins. γ takes the value corre-

sponding to the chosen dose, n goes back to 1, σ goes back to 0

– when the flow hits Ξ5, there is no injection. γ goes back to 1

– in case of spontaneous jump, there is no injection and γ goes back to 1

In a formal way, the Kernel Q is written:

Q(dy|x, d) = δ(γ (d),1,0,1,Pc,Rc)(dy)1{x∈Ξ1} + δΔ(dy)1{x∈Ξ2}

+ δ(γ (d),n+1,0,θ,p,r)(dy)1{x∈Ξ3} + δ(γ (d),1,0,θ,p,r)(dy)1{x∈Ξ4}

+ δ(1,n,σ,θ,p,r)(dy)1{x∈Ξ5} + δ(1,n,σ,θ,p,r)(dy)1{x∈X̃}

The impulse control problem consists in determining the optimal scheme of injec-

tions and their associated dose according to a given optimality criterion, based on the

cost function C: in our case, this cost function depends on the number of injections

realized and the time spent with the CD4+ T lymphocytes levels under the threshold

of 500 cells/µL. Both quantities need to be minimized, in order to maintain the patient

in good health by injecting the least possible. The cost can be divided in two parts.

First, the gradual cost penalizes the trajectory of the process through the time spent
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under the threshold after the beginning of the first cycle. This time is considered in

months, approximately, as it is computed as the number of days divided by 30. For

x = (γ, n, σ, θ, p, r) ∈ X̃ :

Cg(x) =
1

30
1{p+r<500}1{θ≥1}

Then, the cost associated with an impulsive action penalizes the fact of injecting IL-7

to the patient:

C i (x, d) = 1{x∈Ξ1∪Ξ4} + 1{d 
=0}1{x∈Ξ3}

After the horizon, the cost is null, as C i (Δ) = Cg(Δ) = 0.

3 Optimal Control

In this section, we will first remind the main theoretical results obtained in Costa et al.

(2016), then we will transpose these results to our particular context.

3.1 Main Theoretical Results

The objective of this section is to adapt some results obtained in Costa et al. (2016) to

our specific context. We follow closely their notation. The set of all realized injections

over a given horizon constitutes the strategy of injections. In a more formal way, a

strategy u of the decision-maker is a sequence u = {un}n∈N of functions un : X �→ A

giving the action to realize at punctual time points tn ≥ 0 when the system is in state

x ∈ X . The set of all admissible strategies is noted U . According to section 2.2 in

Costa et al. (2016), there exists a continuous-time stochastic process ξ defined on

probabilistic space using characteristics φ, η and Q depending on the action given

by u, such that ξt , t ∈ R+ corresponds to the state of the variables at time t . To

each admissible strategy u ∈ U , we associate a discounted cost optimality criterion

depending on the gradual cost on the trajectory of the process ξ , Cg , and the cost

related to an injection, C i , as defined in Sect. 2.3:

V(u, x0) = E
u
x0

[ ∫

]0,+∞[

e−αsCg(s)ds

]

+E
u
x0

[ ∫

]0,+∞[

e−αs I{ξs−∈�}

∫

A(ξs−)

C i (ξs−, a)u(da|s)μ(ds)

] (3)

with α > 0 the discount factor and where μ is a measure that counts the number

of jumps in the process. The impulse control problem aims at finding a strategy u

minimizing the discounted cost optimality criterion. Here we want to determine the

patient-specific schedule of injections and their dose to optimize the patient’s CD4+ T

lymphocyte numbers by using a minimum number of injections. The theorem allow-

ing to determine the optimal cost and providing an optimal strategy is adapted from

Theorem 5.5 in Costa et al. (2016). It is stated as followed:
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Theorem 1 Suppose assumptions A, B and C from section 3.2 in Costa et al. (2016)

are verified. We define the sequence of functions {Wq}q∈N for any x ∈ X as follows:

{
Wq+1(x) = BWq(x) for q ∈ N

W0(x) = −K A1Aε1
(x) − (K A + K B)1Ac

ε1
(x)

(4)

with constants K A and K B defined as in section 5 of Costa et al. (2016), Aε1 = {x ∈

X : t∗(x) > ε1} and

BV (y) =

∫

[0,t∗(y)[

e−(K+α)t
RV (φ(y, t))dt + e−(K+α)t∗(y)

TV (φ(y, t∗(y))) (5)

with real-value functions RV and TV defined for any V , respectively, on X and Ξ :

RV (x) = Cg(x) + qV (x) + ηV (x)

TV (z) = inf
d∈A(z)

{
C i (z, d) + QV (z, d)

}

q being the signed kernel, which computes the difference between the states before

and after the spontaneous jump. For x ∈ X, it is defined with:

q(dy|x) = η(x)[Q(dy|x) − δx (dy)]

The sequence of functions {Wq}q∈N converges to a function W defined on the state

space and such that:

(i) W (x0) = infu∈U V(u, x0), with V defined as in Eq. 3

(ii) there is a measurable mapping ϕ̂ : Ξ → A such that ϕ̂(z) ∈ A(z) for any z ∈ Ξ

and satisfying

C i (z, ϕ̂(z)) + QW (z, ϕ̂(z)) = inf
d∈A(z)

{
C i (z, d) + QW (z, d)

}
. (6)

This theorem allows to determine the optimal cost and an optimal injection strategy,

consisting in choosing the optimal action ϕ̂(z) for every point z ∈ Ξ reached on

the trajectory of the process. Indeed, the iteration of the sequence {Wq}q∈N defined

by Eq. 4 can be realized by numerically approximating the operator B defined in

Eq. 5. This will give an approximation of the function W , and in particular of W (x0),

corresponding to the optimal cost. Moreover, to obtain an optimal strategy, the process

is the following: we simulate a trajectory from x0, then when a boundary is reached, the

chosen action corresponds to the one minimizing the criterion C i (z, d) + QW (z, d),

as given by Eq. 6.

3.2 Application

The process describing the effect of IL-7 on CD4+ T lymphocytes dynamics is now

well defined by its characteristics φ, η and Q, boundaries and possible actions in
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Sect. 2.3. Moreover, both gradual cost on the trajectory and impulse cost were defined

in that section. We will quickly describe in this part how to apply the results from

Theorem 1 for our specific problem, i.e., determining the function B needed for the

computation of the optimal strategy. For a more detailed and formal computation, we

refer the reader to “Appendix A”. We need to compute:

BV (y) =

∫

[0,t∗(y)[

e−(K+α)t
RV (φ(y, t))dt + e−(K+α)t∗(y)

TV (φ(y, t∗(y)))

We define

G(V , y) =

∫

[0,t∗(y)[

e−(K+α)t
RV (φ(y, t))dt (7)

and

H(V , y) = e−(K+α)t∗(y)
TV (φ(y, t∗(y)) (8)

We define a time interval Δt (in practice equal to 1 day) and for every y =

(γ, n, σ, θ, p, r) ∈ X̃ , we note

n∗(y) =

⌊
t∗(y)

Δt

⌋

For every j ∈ {0..n∗(y) − 1}, we denote φ j (y, t) = φ(y, jΔt) and φ(y, t∗(y)) =

(γ, n, σ +t∗(y), θ+t∗(y), p∗(y), r∗(y)). The integral defined in Eq. 7 is computed by

approximation using the classic trapezoidal rule using the jΔt nodes. Thus, G(V , y)

can be approximated by a linear combination of {V (y j )} j∈{0..n∗(y)−1}, with y j depend-

ing on φ j (y, t). Moreover, H(V , y) is proportional to V (y), with y depending on the

boundary reached in φ(y, t∗(y)). Finally, for every point y ∈ X̃ , if we note y = yn∗(y),

BV (y) can be computed as a linear combination of {V (y j )} j∈{0..n∗(y)}.

4 Numerical Aspects of the Dynamic ProgrammingMethod

From Theorem 1, we know that we need to compute the sequence {Wq}q∈N such that

for y ∈ X, W0(y) = −K A1Aε1
(y) − (K A + K B)1Ac

ε1
(y) and Wq+1(y) = BWq(y)

for q ∈ N. The sequence converges to a function W defined on X that allows the

determination of the optimal cost and the optimal protocol of injections achieving

that cost. This computation is realized on a grid of the state space: at each iteration

q, a new matrix is computed, each element on line v and column s corresponding to

BWq(xvs), with xvs element of the grid Γ of the state space. The implementation of

our algorithm was realized in Matlab version R2016b (The MathWorks, Inc., Natick

MA, USA, 1984). In this section, we give elements to understand how the method is

implemented. The structure of the code is detailed in “Appendix B”.
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4.1 Discretization of the State Space

The grid Γ contains points of the form (γ, n, σ, θ, p, r). γ and n are discrete variables

with γ ∈ {1 . . . md + 1}, n ∈ {1..ninj}. σ and θ are discretized with a time step of

1 day, with σ ∈ {0..σmax} and θ ∈ {0..Th}. Solutions p and r of the ODE system are

continuous and are discretized in a regular grid, with p ∈ {pmin..pmax} with regular

step h p and r ∈ {rmin..rmax} with regular step hr . We then obtain:

n p =
pmax − pmin

h p

+ 1

nr =
rmax − rmin

hr

+ 1

hr and h p are chosen such that both n p, nr ∈ N count the number of values of p and

r on the grid, respectively.

4.2 Organization of the Grid

We arrange all points of the grid Γ in a matrix M of size Nsum × Npr , with Nsum

corresponding to the number of possible (γ, n, σ, θ) combinations and Npr = n pnr

number of possible (p, r) combinations. Each element M(v, s)v∈{1..Nsum}
s∈{1..Npr }

corresponds

to a given combination (γ, n, σ, θ, p, r) of Γ , through the following bijection:

χ : Γ → {1..Nsum} × {1..Npr }

xvs = (γ, n, σ, θ, p, r) �→ (v, s) =
(
χl(γ, n, σ, θ), χc(p, r)

)

χl is defined in the following way: v corresponds to a given value of (γ, n, σ, θ).

Possible combinations of (σ, θ) depend on the value of (γ, n): for example, during

the first cycle, when n = 1, σ = 0 is associated with θ = 1, while when n = 2, σ = 0

is associated with θ = 8. We divide the lines of matrix M by defining then Nγ n =

(md+1)ninj blocks, corresponding to the possible combinations of (γ, n). Each block is

indexed by i = f (γ, n) = γ +(md +1)(n−1) ∈ {1..Nγ n} and contains combinations

of (σ, θ), indexed by j = gi (σ, θ) ∈ {1..Nbi
} within the i-th block. The total number of

lines of matrix M is the sum of the number of lines in each block: Nsum =
∑Nγ n

i=1 Nbi
.

We can define a vector lblock = (1, 1 + Nb1 , .., 1 +
∑k

i=1 Nbi
, ..,

∑Nγ n−1

i=1 Nbi
) of

length Nγ n , that determines the index of the first line of each block. Finally:

v = χl(γ, n, σ, θ) = lblock(i) + j − 1

with i = f (γ, n) and j = gi (σ, θ). χc is defined in the following way:

s = χc(p, r) =
p − pmin

h p

+ 1 + n p

r − rmin

hr

such that s = 1 when (p, r) = (pmin, rmin) and s = n pnr when (p, r) = (pmax, rmax).

123



Controlling IL-7 Injections in HIV-Infected Patients 2361

4.3 Iteration of the Algorithm

Each iteration of the algorithm computes then a matrix Mq such that

Mq(v, s) = Wq

(
M(v, s)

)
= Wq(xvs)

For every x = (γ, n, σ, θ, p, r) ∈ Γ , Wq(x) is a linear combination of some Wq(xm),

m ∈ {1..Mx }, as shown in Eq. 12 from “Appendix A”. Values of Wq(xm) are given by

Mq(χ(xm)); they are linearly combined and implemented in Mq+1(χ(x)).

4.4 Convergence Criterium

We assume that the sequence converges when ‖Wq+1 − Wq‖∞ < ǫ. In practice, we

compute maxv,s |Mq+1(v, s)−Mq(v, s)| and we consider that the sequence converges

with ǫ = 0.001. It usually occurs after 35 to 45 iterations.

5 Results

We applied the previously described method to the model detailed in Sect. 2.3, with a

choice of md = 2 possible doses: d = [0, 10, 20] (unit = µg/kg), cycles of 3 injections:

ninj = 3 and a reduced horizon Th = 365 days. We also assumed a minimum time

of σmin = 30 days between the end of a cycle and the beginning of a new one. For a

given patient with fixed biological parameters, we can approximate the function W in

a grid of the state space through convergence of the sequence {Wq}: this determines

the optimal cost over all strategies. Moreover, using Eq. 6 from Theorem 1, we can

simulate the strategy choosing the optimal action to realize when reaching the boundary

of the state space and compute the cost of the obtained strategy. As some randomness

is included in the model by the time of effect of an injection of parameter π , we

simulate N = 5000 realizations of a protocol on a given patient with a Monte Carlo

method and compute the expectation of its cost. From that, we check the numeric

performance of our method by first comparing the cost of the optimal strategy to the

computation of the optimal cost from the value function W . Moreover, we wish to

compare the optimal strategy to other “naive” protocols. For each protocol, including

the optimal one, we compute by Monte Carlo the mean cost, the standard deviation and

the minimum cost achievable. This is usually reached when the patient responds well

to all injections, i.e., the effect of the injection on parameter π lasts 7 days after every

injection. In order to compare protocols based on clinical criteria, we also computed

by Monte Carlo the mean number of CD4+ T cells count until horizon, the mean

time spent under 500 cells/µL (in days) and the mean number of injections over all

simulations. These comparisons were realized with 50 pseudo-patients. Parameters

values were generated from the posterior law estimated on real data from INSPIRE

trials in Thiébaut et al. (2016). Patients are divided in three categories according to

their initial levels of CD4+ T cells: “very low” baseline (100−200 cells/µL), “low”

baseline (200−300 cells/µL) and “not too low” baseline (300−400 cells/µL). Table 1

sums up the characteristics of the pseudo-patients population.
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Table 1 Characteristics of the

pseudo-patients population
Parameter Mean (SD)

λ (cells/day) 2.24 (0.39)

ρ (/day) 1.96 (0.84)

π0 (/day) 0.0461 (0.0035)

μR (/day) 0.0503 (0.0033)

μP (/day) 0.0717 (0.014)

βπ1 0.958

βπ2 0.752

βπ3 0.143

Category Number of patients (%)

Very low 4 (8%)

Low 24 (48%)

Not too low 22 (44%)

Table 2 Comparison of cost

values from value function and

Monte Carlo simulation

Patient A Patient B Patient C

very low low not too low

Optimal cost W (x0) 9.47 6.11 2.87

Cost of optimal strategy:

mean (SD) (obtained by

Monte Carlo)

9.53 (0.85) 6.20 (0.56) 2.90 (0.36)

We first compare the value of the optimal function obtained from the numerical

computation of W with the cost of the optimal strategy. For a sake of clarity, we show

detailed results in Table 2 only for three chosen patients. Patient A is in category “very

low”, patient B in category “low” and patient C in category “very low”. We note that

for these three patients the two cost values are very similar, meaning that we make

a good approximation of the value function with our numerical method. We make

the same observation on the 47 other patients (data not shown). Also of note is the

hierarchy of the cost between the categories of patients. Very low patients have higher

optimal costs (between 8.4 and 12) than low (between 3.9 and 9.4) and not too low

(between 2.1 and 4.2). This is consistent with the fact that the lower baseline CD4

levels the patient has, the more time will be spent under 500 cells/µL and the more

injections are needed, which both increase the cost of the strategy of injections.

We also realized comparisons of several protocols. We simulated five “naive” proto-

cols: P1 with 3-injections cycles, P2 with a first cycle of 3 injections then 2-injections

cycles, P3 with 2-injections cycles, P4 with a first cycle of 2 injections then 1-injection

cycles and P5 with 1-injection cycles, all protocols with dose 20. Assessing the cost

of these protocols is interesting as they imply variable trajectories within the same

patient as well as different values for clinical criteria. Moreover, they would be clini-

cally feasible and represent a good basis for comparison for our optimal strategy. For

every protocol k, we note P+k the space of patients such that cost of optimal strategy

is lower than cost of protocol k and n+k its size. We have computed the mean relative
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Table 3 Computation of the mean relative variation of cost value (MRC) for every protocol allows

determining the mean percentage of gain in term of cost function when using the optimal strategy over

protocol k

Protocol P1 P2 P3 P4 P5

n+ 50 50 50 49 50

MRC (%) 43 31 20 5.7 8.8

P1 Cycles of 3 injections. P2 First cycle of 3 injections then cycles of 2 injections. P3 Cycles of 2 injections.

P4 First cycle of 2 injections then cycles of 1 injection. P5 Cycles of 1 injection

positive variation of cost value (MRC), as shown in Table 3. We note Copti
the mean

cost of optimal strategy for patient i and CPki
the mean cost of protocol k for patient

i . The MRC allows computing the mean percentage of gain in term of cost function

when using the optimal strategy over protocol k:

MRCk =
1

n+k

∑

i∈P+k

(CPki
− Copti

)

CPki

(9)

Results show that mean cost of the optimal strategy is always lower than all other

simulated strategies (except one patient for protocol 4, but this is due to numerical

approximation, as for this patient W (x0)=4.0, Copt = 4.1 and CP4 =4.0). The percent-

age of cost reduction of the optimal strategy compared to the other protocols in the

simulated population of pseudo-patients varies from 5.7 to 43%. It confirms that our

numerical method allows optimizing the cost function.

In addition to comparing the cost value of all five protocols to the optimal strategy,

we have also compared clinical criteria such as the mean number of CD4+ T cells count

until horizon, the mean time spent under 500 cells/µL (in days) and the mean number

of injections over all simulations. Results of these comparisons are shown in Fig. 2,

where each point corresponds to the value of the criterion for one pseudo-patient, and

each color corresponds to the category of the patients (“very low”, “low” and “not

too low” baseline). We observe that mean cost of the optimal strategy is lower than

other simulated protocols and the optimal strategy achieves a good balance between all

clinical criteria. Even if CD4+ T cells levels are not as high as for protocols P1, P2 and

P3, the optimal strategy allows to spend as much time with levels over 500 cells/µL

as these protocols by using less injections. Protocol P5 has the same performance as

the optimal strategy for “not too low” patients, as these strategies are very often the

same on these patients. The same observation is made on protocol P4 and the “low”

patients. Overall, Fig. 2 shows that the determined strategy allows optimization of

the cost function through the chosen criteria (time spent under 500 and number of

injections).

More detailed results of comparison of cost function and clinical criteria between

optimal strategy and protocols Pk are displayed in Table 4 for patients A, B and C.

For these three patients, we observe again that mean cost of the optimal strategy is

lower than all other simulated strategies. For patient A, the optimal strategy is achieved

by two first cycles of two injections then cycles of one injection. For patient B, the

optimal strategy consists in a first cycle of 2 injections followed by 1-injection cycles.
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Fig. 2 (Color figure online) Comparison of cost (a) and clinical criteria (b mean number of CD4+ T cells count until horizon, c mean time spent under 500 cells/µL in days, d

mean number of injections over all simulations) between the determined optimal strategy and the five other protocols. Each point corresponds to the value of a pseudo-patient,

with “very low” patients in yellow, “low” in purple and “not too low” in blue. Mean values within each category are represented by horizontal colored lines. P1: cycles of 3

injections. P2: first cycle of 3 injections then cycles of 2 injections. P3: cycles of 2 injections. P4: first cycle of 2 injections then cycles of 1 injection. P5: cycles of 1 injection
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Table 4 Comparison of protocols of injections for patients A, B and C

Protocol P1 P2 P3 P4 P5 Optimal

Patient A

Mean cost 14.8 11.6 10.7 10.4 11.1 9.53

Std 0.52 0.62 0.68 1.21 1.23 0.85

Min cost 14.6 11.4 10.4 9.56 10.1 8.82

CD4 mean 671 662 659 552 506 578

Days under 500 54.5 55.4 56.5 102 150 58.0

Number of injections 15.1 11.1 10.2 8.25 7.48 8.66

Patient B

Mean cost 9.35 7.62 6.91 6.26 6.63 6.20

Std 1.14 1.00 0.98 0.70 0.87 0.56

Min cost 8.62 6.91 6.14 5.91 6.12 5.91

CD4 mean 762 742 736 622 598 625

Days under 500 18.4 19.0 24.2 28.1 61.9 24.4

Number of injections 9.83 7.73 6.84 6.05 5.27 6.10

Patient C

Mean cost 5.54 4.75 3.80 3.08 2.93 2.90

Std 0.29 0.24 0.31 0.37 0.49 0.36

Min cost 5.46 4.70 3.73 2.95 2.79 2.79

CD4 mean 774 762 758 666 631 631

Days under 500 5.56 5.53 5.65 5.90 8.43 5.89

Number of injections 6.02 5.02 4.04 3.13 3.03 3.07

P1 Cycles of 3 injections. P2 First cycle of 3 injections then cycles of 2 injections. P3 Cycles of 2 injections.

P4 First cycle of 2 injections then cycles of 1 injection. P5 Cycles of 1 injection

We can see that the minimum cost is the same for the optimal strategy and protocol P3

(= 5.91): when the patient has a good response to all injections, these strategies are the

same. For patient C, the optimal strategy is obtained with 1-injection cycles. Similarly,

the minimum cost is the same for the optimal strategy and protocol P5 (= 2.79). For all

patients, the optimal strategy is very intuitive: the first complete cycles are needed to

raise the number of CD4 over 500 cells/µL; then, 1-injection cycles allow to sustain

the levels over 500 cells/µL. For “not too low” patients, CD4 levels are high enough to

use only one injection in the first cycle. This helps reducing the number of injections:

in patient A, the optimal strategy requires 2–7 less injections than P1, P2 and P3 but

allows to spend as much time over 500 cells/ µL. In patient C the optimal strategy

requires one less injection as P3 but allows to spend as much time over 500 cells/

µL. It can be noted that a third injection is never used, even for the first cycles of

very low patient. It is due to our choice of cost function: it balances the number of

injections and the number of months spent under 500 cells/µL. The effect of a third

injection is usually too low to allow increasing the time spent over 500 cells/µL by

1 month and is then not chosen as part of the optimal strategy. These results suggest

that our numerical method allows to determine an optimal strategy of injections, and

the clinical interpretation of the results are consistent with the mathematical method.
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Fig. 3 Dynamics of CD4+ T lymphocytes in patient A. Straight line corresponds to the “best” outcome, i.e.,

when the effect of all injections lasts 7 days. Dashed line corresponds to other possible trajectories, when this

effect can last less than 7 days. a Dynamics of CD4+ T lymphocytes in patient A under P3, a 2-injections

cycles protocol (dose 20). b Dynamics of CD4+ T lymphocytes in patient A under the determined optimal

strategy

In terms of trajectories of the process, Fig. 3a, b show some trajectories obtained

with, respectively, the 2-injection cycles protocol (P3) and the optimal strategy for

patient A. We can note that even if CD4+ levels are globally lower in the optimal

strategy compared to the two injections cycles at dose 20 µg/kg, it still allows a

maintenance over the threshold of 500 cells/µL by using less injections: indeed, in

the best case scenario, the 2-injections cycle strategy implies 5 cycles of 2 injections
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which is a total of 10 injections, while the optimal strategy induces 2 cycles of 2

injections and 4 single injections, which is a total of 8 injections. The trajectories for

patients B and C are provided in “Appendix D”. All together, our results support the

interest of determining the optimal strategy based on a criterion combining both the

number of injections and the time spent under 500.

6 Discussion

In this work, we have developed a numerical tool allowing to solve an impulse control

problem for a PDMP. The specificity of our work is in the development of a dynamic

programming method in the context of a specific biological framework. The objective

is to determine the optimal strategy of IL-7 injections for a given HIV-infected patient,

in order to maintain CD4+ T lymphocytes levels over the threshold of 500 cells/µL.

We first modeled the dynamics of CD4+ T lymphocytes during repeated cycles of

IL-7 injections by a PDMP. Then, we solved the impulse control problem by iterating

a sequence defined by an integro-differential operator. Theoretical results have shown

that this sequence converges to the value function, which allows to determine the

optimal action that should be realized at every point of the boundary. We proposed a

numerical tool approximating the sequence and the value function on a grid of the state

space and applied it to our clinical question. As our method relies on numerical approx-

imation, the obtained optimal strategy could be an approximation of the theoretical one.

However, the obtained results suggest that we managed to determine optimal strategies

for pseudo-patients and that our method allows improving the strategy of injections.

Although the horizon of study is only 1 year, these results are also consistent with a clin-

ical interpretation. The optimal strategy determined for different patients is indeed intu-

itive: the first cycles aim at increasing the CD4+ T lymphocytes levels and should con-

tain as many injections as possible until the levels are acceptable. Then, the following

cycles sustain the CD4 levels over the threshold, and punctual injections are sufficient

to reach this objective. The optimal strategy, determined with our method, has a lower

cost than other possible clinical strategies. Actually, the obtained optimal strategy

depends on the cost previously defined, and we could explore other optimal strategies

depending on other cost functions. For example, it could be interesting to use different

weights on the time spent under 500 cells /µL and the number of injections (depending

on the clinician priorities), or to account for the possible negative side effects due to

higher doses (this would need additional data on the question). Finally, the model could

be extended by studying the patient until a longer horizon (up to 2 years). This rises

the issue of the increase in computational time (by increasing the size of the grid of the

state space) and constitutes a new challenge in itself. In the end, we hope to use this tool

in future possible clinical trial investigating the effect of IL-7 injections with patients-

specific schedules of injections, personalized and optimized using this method.
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A Optimal Control: Application

We defined the process describing the effect of IL-7 on CD4+ T lymphocytes dynamics

by its characteristics φ, η and Q, boundaries and possible actions in Sect. 2.3. We also

defined both gradual cost on the trajectory and impulse cost in that section. As we aim

at applying the results from Theorem 1 to determine the optimal cost and an optimal

strategy by dynamic programming, we need to determine how to compute numerically

the function B to iterate the sequence {Wq}q∈N defined in Eq. 4. As a reminder, B is

defined in Costa et al. (2016) by:

BV (y) =

∫

[0,t∗(y)[

e−(K+α)t
RV (φ(y, t))dt + e−(K+α)t∗(y)

TV (φ(y, t∗(y)))

We will first detail the computation of R then T, and we will finally show how to

compute B.

Computation ofR

For x = (γ, n, σ, θ, p, r) ∈ X , and function V : X → R, R is defined as:

RV (x) = Cg(x) + qV (x) + ηV (x)

with q computing the difference between the states before and after the spontaneous

jump. As Q depends on the action only when the process hits the active boundary,

q(dy|x, d) = η(x)[Q(dy|x) − δx (dy)]

= 1{γ>1}η[δ(1,n,σ,θ,p,r)(dy) − δ(γ,n,σ,θ,p,r)(dy)]

then for every function V , and as K = η:

qV (x) =

∫
V (y)q(dy|x)

= 1{γ>1}K [V (1, n, σ, θ, p, r) − V (γ, n, σ, θ, p, r)]

Then

RV (x) =
1

30
1{p+r≤500} + qV (x) + K V (x)

=
1

30
1{p+r≤500} + K V (1, n, σ, θ, p, r)1{γ>1} + K V (x)1{γ=1}

Finally,

RV (x) =
1

30
1{p+r≤500} + K V (1, n, σ, θ, p, r)

RV (Δ) = K V (Δ)
(10)

Computation ofT

For x ∈ Ξ , and function V : X → R, T is defined as:
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TV (x) = inf
d∈A(x)

{
C i (x, d) + QV (x, d)

}

= inf
d∈A(x)

{
1x∈Ξ1∪Ξ4 + 1d 
=01x∈Ξ3 +

∫
V (y)

[
δ(γ (d),1,0,1,Pc,Rc)(dy)1{x∈Ξ1}

+ δΔ(dy)1{x∈Ξ2} + δ(γ (d),n+1,0,θ,p,r)(dy)1{x∈Ξ3}

+ δ(γ (d),1,0,θ,p,r)(dy)1{x∈Ξ4}

+ δ(1,n,σ,θ,p,r)(dy)1{x∈Ξ5}

]}

Finally,

TV (x) = inf
d∈A(x)

{
[1 + V (γ (d), 1, 0, 1, Pc, Rc)]1x∈Ξ1

+[1d 
=0 + V (γ (d), n + 1, 0, θ, p, r)]1x∈Ξ3

+[1 + V (γ (d), 1, 0, θ, p, r)]1x∈Ξ4

}
+ V (Δ)1x∈Ξ2

+ V (1, n, σ, θ, p, r)1x∈Ξ5

TV (Δ) = V (Δ)

(11)

Computation ofB

Now, for Y ∈ X , and function V : X → R, we need to compute:

BV (y) =

∫

[0,t∗(y)[

e−(K+α)t
RV (φ(y, t))dt + e−(K+α)t∗(y)

TV (φ(y, t∗(y)))

As we cannot make an exact computation of BV on X , we need to approximate this

computation on a grid of the state space. In order to detail the approximation of the

computation, we define

G(V , y) =

∫

[0,t∗(y)[

e−(K+α)t
RV (φ(y, t))dt

and

H(V , y) = e−(K+α)t∗(y)
TV (φ(y, t∗(y))

as in Eqs. 7 and 8. We define a time interval Δt (in practice equal to 1 day) and for

every y = (γ, n, σ, θ, p, r) ∈ X̃ , we note

n∗(y) =

⌊
t∗(y)

Δt

⌋

For every j ∈ {0..n∗(y) − 1}, we note φ j (y, t) = φ(y, jΔt) and φ(y, t∗(y)) =

(γ, n, σ + t∗(y), θ + t∗(y), p∗(y), r∗(y)). The integral defined in Eq. 7 is computed

by approximation using the classic trapezoidal rule using the jΔt nodes:

G(V , y) ≃
Δt

2
RV (y) +

Δt

2
e−(K+α)t∗(y)

RV (φ(y, t∗(y)))

+

n∗(y)−2∑

j=1

Δte−(K+α) jΔt
RV (φ j (y, t))
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with RV (x) =
1

30
1{p+r≤500} + K V (1, n, σ, θ, p, r), as computed in Eq. 10. Then

we obtain the following for every y = (γ, n, σ, θ, p, r) ∈ X̃ :

G(V , y) =
Δt

2

(
1

30
1{p+r<500} + K V (1, n, σ, θ, p, r)

)

+
Δt

2
e−(K+α)t∗(y)

(
1

30
1{p∗+r∗<500}

+ K V (1, n, σ + t∗, θ + t∗, p∗(y), r∗(y))

)

+Δt

n∗(y)−2∑

j=1

e−(K+α) jΔt

(
1

30
1{p j +r j <500}

+ K V (1, n, σ + jΔt, θ + jΔt, p j , r j )

)

Now, we need to compute H as defined in Eq. 8: it depends onTV (φ(y, t∗(y))), which

takes different values according to the boundary reached in that point, as written in

Eq. 11. Moreover, as we know the flow, we can give conditions on y = (γ, n, σ, θ, p, r)

to reach a given boundary in φ(y, t∗(y)). Then:

– if φ(y, t∗(y)) ∈ Ξ1 (θ ≤ 1) then

H(V , y) = inf
d∈[d1,..dmd

]

{
e−(K+α)t∗(y)

[
1 + V (γ (d), 1, 0, 1, Pc, Rc)

]}

– if φ(y, t∗(y)) ∈ Ξ2 (θ + t∗(y) ≥ Th) then

H(V , y) = e−(K+α)t∗(y)V (Δ)

– if φ(y, t∗(y)) ∈ Ξ3 (n < ninj, θ + t∗(y) < Th) then

H(V , y) = infd∈[0,d1,..dmd
]

{
e−(K+α)t∗(y)

[
1{d 
=0}

+ V (γ (d), n + 1, 0, θ + t∗(y), p∗(y), r∗(y))
]}

– if φ(y, t∗(y)) ∈ Ξ4 (n = ninj, γ = 1, θ + t∗(y) < Th) then

H(V , y) = inf
d∈[d1,..dmd

]

{
e−(K+α)t∗(y)

[
1 + V (γ (d), 1, 0, θ

+ t∗(y), p∗(y), r∗(y))
]}

– if φ(y, t∗(y)) ∈ Ξ5 (n = ninj, γ > 1, θ + t∗(y) < Th) then

H(V , y) = e−(K+α)t∗(y)V (1, n, σ + t∗(y), θ + t∗(y), p∗(y), r∗(y))

Finally, for every y = (γ, n, σ, θ, p, r) ∈ X̃ :
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BV (y) =
Δt

2

(
1

30
1{p+r<500} + K V (1, n, σ, θ, p, r)

)

+
Δt

2
e−(K+α)t∗(y)

[ 1

30
1{p∗+r∗<500} + K V (1, n, σ

+ t∗, θ + t∗, p∗(y), r∗(y))
]

+Δt

n∗(y)−2∑

j=1

e−(K+α) jΔt
[ 1

30
1{p j +r j <500}

+ K V (1, n, σ + jΔt, θ + jΔt, p j , r j )
]

+ inf
d∈[d1,..dmd

]

{
e−(K+α)t∗(y)

[
1 + V (γ (d), 1, 0, 1, Pc, Rc)

]}
1{θ≤1}

+ e−(K+α)t∗(y)V (Δ)1{θ+t∗(y)≥Th}

+ inf
d∈[0,d1,..dmd

]

{
e−(K+α)t∗(y)

[
1{d 
=0}

+ V (γ (d), n + 1, 0, θ + t∗(y), p∗(y), r∗(y))
]}

1{n<ninj,θ+t∗(y)<Th}

+ inf
d∈[d1,..dmd

]

{
e−(K+α)t∗(y)

[
1 + V (γ (d), 1, 0, θ + t∗(y), p∗(y), r∗(y))

]}

×1{n=ninj,γ=1,θ+t∗(y)<Th}

+ e−(K+α)t∗(y)V (1, n, σ + t∗(y), θ + t∗(y), p∗(y), r∗(y))

×1{n=ninj,γ>1,θ+t∗(y)<Th} (12)

and

BV (Δ) =

∫

[0,+∞)

e−(K+α)t K V (Δ)dt =
K

K + α
V (Δ)

B Structure of the Code

Structure of the code and its subroutines are shown in Fig. 4. Application in the results

section requires the following grid:

– γ ∈ {1..3}

– n ∈ {1..3}

– σ ∈ {0..351}

– θ ∈ {1..365}

– p ∈ {2..110} depending on the patient

– r ∈ {100..1500} depending on the patient

The grid of the state space created in Matlab contains 67,614 lines and 7755 columns.

For a given patient, the computation of 40 iterations of the sequence (convergence is

reached between 35 and 45 iterations) requires between 5 and 6 days.
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SequenceBW

Initiation W0 (from S3)
Iteration q+1 for every v ∈ {1..Nsum}, s ∈ {1..Npr}
Step 1:
Determine xvs = (γ, n, σ, θ, p, r) = χ−1((v, s)) by identifying block i (γ,n),
line j (σ,θ) using S1, column s (p,r).
Step 2:
Get t∗(xvs) with S3 and the flow from xvs with S2 =⇒ define the elements
of the grid xm necessary for the computation of GWq(xvs).
Step 3:
Determine the positions χ(xm) of xm in the grid using S1.
Step 4:
From previous iteration, get Wq(xm) = Mq(χ(xm)) and use linear combina-
tion determined in Appendix A to compute GWq(xvs)
Step 5:
Determine boundary reached in t∗(xvs) and compute HWq(xvs) as in
Appendix A.
Step 6:
Compute Wq+1(xvs) = GWq(xvs) +HWq(xvs)

Outputs: at each iteation q, a matrix Mq of size Nsum × Npr with value of
Wq(xvs) in position (v, s).

Subroutine 1 (S1)
Creation of combinations (σ,θ)

Outputs: for every combina-
tion i of (γ,n), a matrix C(σ,θ),i of
size Nbi × 2 containing all possible
pairs (σ,θ) at line j = gi(σ, θ).

Subroutine 3 (S3)
Creation of t∗(x) and W0(x) for
every x of the grid, identified using
S1.

Outputs: a matrix of size
Nsum ×Npr with value of t∗(xvs) in
position (v, s) and a matrix of size
Nsum × Npr with value of W0(xvs)
in position (v, s).

Subroutine 2 (S2)
Creation of flows for every initial
possible (p, r) of the grid.

Outputs: for every combina-
tion i of (γ,n), a matrix Fi of size
np × nr such that F (k, l) is the
approximated flow on the grid from
initial point pk = pmin + (k − 1)hp

and rl = rmin + (l − 1)hr.

Fig. 4 Structure of the code and its subroutines
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C Sensitivity Analysis of theMethod

To evaluate how the uncertainty on individual parameters estimation could impact the

determination of the optimal strategy, we have realized a sensitivity analysis. For a

given patient, we suppose a normal distribution of parameters λ and ρ. We generate

L = 500 pairs of parameters (λ, ρ) from this joint distribution. Each pair corresponds

to an initial value of lymphocytes T CD40. We determine the empirical quartiles of

the distribution of the CD40 and focus on the pairs inducing values close the first and

the third quartiles. Then, for each pair, we simulate the five possible protocols P1 to

P5 and compare them to the optimal strategy determined on the mean value of (λ,ρ).

In practice, values of pairs and associated values of CD4 are displayed in Table 5. For

the mean value of (λ,ρ), we determined the optimal strategy to be a first cycle of 2

injections and then cycles of 1 injection, which corresponds to protocol P4. We show in

Table 5 the cost of each protocol for each pair of (λ,ρ), and we put in bold the minimum

cost over the five protocols. We can see that protocol P4 achieves the minimum cost for

all pairs inducing CD4 values at the first quartile. For pairs inducing CD4 values at the

third quartile, the protocol achieving the minimum cost is P5. However, the difference

of cost is not huge and P4 actually induces more time spent over the 500 threshold

and less than one more injection than P5 on average, which is still acceptable. Overall,

this shows that even with some error on the estimation on λ, ρ we would be able to

determine a strategy achieving a good balance between clinical criteria.

Table 5 Pairs of (λ,ρ), associated CD4 values and mean cost for protocols P1 to P5

Category λ ρ C D40 P1 P2 P3 P4 P5

Mean 2.065 2.022 289 6.55 5.54 5.54 4.16 4.95

Q1 1.506 2.305 224 8.59 6.94 6.03 5.20 5.67

Q1 2.062 1.180 223 11.6 9.19 8.52 7.28 8.02

Q1 1.701 1.747 224 8.94 7.31 6.50 5.60 6.40

Q1 2.163 1.078 222 11.9 9.50 8.82 8.04 8.39

Q1 1.737 1.371 224 9.06 7.39 6.64 5.71 6.48

Q1 1.689 1.758 223 8.92 7.31 6.52 5.62 6.40

Q1 1.728 1.689 224 9.00 7.35 6.63 5.71 6.45

Q1 1.426 2.599 222 8.54 6.90 5.98 5.14 5.62

Q1 2.493 0.838 222 13.3 11.0 10.3 8.85 9.76

Q1 1.805 1.542 223 9.23 7.59 6.94 6.36 6.66

Q3 2.160 2.594 337 5.62 4.81 3.88 3.15 3.04

Q3 2.424 1.956 336 5.83 4.99 4.10 3.81 3.21

Q3 2.638 1.625 335 6.10 5.22 4.30 3.93 3.31

Q3 2.219 2.429 337 5.68 4.85 3.93 3.21 3.11

Q3 2.477 1.879 337 5.87 5.04 4.12 3.83 3.21

Q3 2.466 1.896 337 5.86 5.01 4.09 3.82 3.22

P1 Cycles of 3 injections. P2 First cycle of 3 injections then cycles of 2 injections. P3 Cycles of 2 injections.

P4 First cycle of 2 injections then cycles of 1 injection. P5 Cycles of 1 injection. P4 Is the optimal protocol

for mean value of (λ,ρ)
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D Trajectories of Patients B and C

See Figs. 5, 6.
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Fig. 5 Dynamics of CD4+ T lymphocytes in patient B. Straight line corresponds to the “best” outcome, i.e.,

when the effect of all injections lasts 7 days. Dashed line corresponds to other possible trajectories, when

this effect can last less than 7 days. a Dynamics of CD4+ T lymphocytes in patient B under P3, a 2-injections

cycles protocol (dose 20). b Dynamics of CD4+ T lymphocytes in patient B under the determined optimal

strategy
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Fig. 6 Dynamics of CD4+ T lymphocytes in patient C. Straight line corresponds to the “best” outcome, i.e.,

when the effect of all injections lasts 7 days. Dashed line corresponds to other possible trajectories, when

this effect can last less than 7 days. a Dynamics of CD4+ T lymphocytes in patient C under P3, a 2-injections

cycles protocol (dose 20). b Dynamics of CD4+ T lymphocytes in patient C under the determined optimal

strategy

References

Camargo JF, Kulkarni H, Agan BK, Gaitan AA, Beachy LA, Srinivas S, He W, Anderson S, Marconi VC,

Dolan MJ et al (2009) Responsiveness of T cells to interleukin-7 is associated with higher CD4+ T

cell counts in HIV-1-positive individuals with highly active antiretroviral therapy-induced viral load

suppression. J Infect Dis 199(12):1872–1882

123



2376 C. Pasin et al.

Cappuccio A, Castiglione F, Piccoli B (2007) Determination of the optimal therapeutic protocols in cancer

immunotherapy. Math Biosci 209(1):1–13

Castiglione F, Piccoli B (2006) Optimal control in a model of dendritic cell transfection cancer immunother-

apy. Bull Math Biol 68(2):255–274

Castiglione F, Piccoli B (2007) Cancer immunotherapy, mathematical modeling and optimal control. J

Theor Biol 247(4):723–732

Costa O, Dufour F, Piunovskiy A (2016) Constrained and unconstrained optimal discounted control of

piecewise deterministic markov processes. SIAM J Control Optim 54(3):1444–1474

Davis MH (1984) Piecewise-deterministic markov processes: a general class of non-diffusion stochastic

models. J R Stat Soc Ser B (Methodol) 46:353–388

Dufour F, Zhang H (2015) Numerical methods for simulation and optimization of piecewise deterministic

markov processes. Wiley, New York

Eftimie R, Gillard JJ, Cantrell DA (2016) Mathematical models for immunology: current state of the art

and future research directions. Bull Math Biol 78(10):2091–2134

Jarne A, Commenges D, Villain L, Prague M, Lévy Y, Thiébaut R et al (2017) Modeling CD4+ T cells

dynamics in HIV-infected patients receiving repeated cycles of exogenous interleukin 7. Ann Appl

Stat 11(3):1593–1616

Lange CG, Lederman MM (2003) Immune reconstitution with antiretroviral therapies in chronic HIV-1

infection. J Antimicrob Chemother 51(1):1–4

Lavielle M, Mentré F (2007) Estimation of population pharmacokinetic parameters of saquinavir in HIV

patients with the monolix software. J Pharmacokinet Pharmacodyn 34(2):229–249

Leone A, Rohankhedkar M, Okoye A, Legasse A, Axthelm MK, Villinger F, Piatak M, Lifson JD, Assouline

B, Morre M et al (2010) Increased CD4+ T cell levels during IL-7 administration of antiretroviral

therapy-treated simian immunodeficiency virus-positive macaques are not dependent on strong pro-

liferative responses. J Immunol 185(3):1650–1659

Levy Y, Lacabaratz C, Weiss L, Viard JP, Goujard C, Lelièvre JD, Boué F, Molina JM, Rouzioux C, Avettand-

Fénoêl V et al (2009) Enhanced T cell recovery in HIV-infected adults through IL-7 treatment. J Clin

Investig 119(4):997

Levy Y, Sereti I, Tambussi G, Routy J, Lelievre J, Delfraissy J, Molina J, Fischl M, Goujard C, Rodriguez

B et al (2012) Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in

HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-

controlled, multicenter study. Clin Infect Dis 55(2):291–300

Lewden C, Chêne G, Morlat P, Raffi F, Dupon M, Dellamonica P, Pellegrin JL, Katlama C, Dabis F, Leport

C et al (2007) HIV-infected adults with a CD4 cell count greater than 500 cells/mm3 on long-term

combination antiretroviral therapy reach same mortality rates as the general population. JAIDS J

Acquir Immune Defic Syndr 46(1):72–77

Mackall CL, Fry TJ, Bare C, Morgan P, Galbraith A, Gress RE (2001) Il-7 increases both thymic-dependent

and thymic-independent T-cell regeneration after bone marrow transplantation. Blood 97(5):1491–

1497

Okamoto Y, Douek DC, McFarland RD, Koup RA (2002) Effects of exogenous interleukin-7 on human

thymus function. Blood 99(8):2851–2858

Pappalardo F, Pennisi M, Castiglione F, Motta S (2010) Vaccine protocols optimization: in silico experiences.

Biotechnol Adv 28(1):82–93

Prague M, Commenges D, Guedj J, Drylewicz J, Thiébaut R (2013) NIMROD: a program for inference via

a normal approximation of the posterior in models with random effects based on ordinary differential

equations. Comput Methods Programs Biomed 111(2):447–458

Sereti I, Dunham RM, Spritzler J, Aga E, Proschan MA, Medvik K, Battaglia CA, Landay AL, Pahwa S,

Fischl MA et al (2009) Il-7 administration drives T cell-cycle entry and expansion in HIV-1 infection.

Blood 113(25):6304–6314

Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, Surh CD (2001) Il-7 is critical for homeostatic

proliferation and survival of naive T cells. Proc Nat Acad Sci 98(15):8732–8737

Thiebaut R, Drylewicz J, Prague M, Lacabaratz C, Beq S, Jarne A, Croughs T, Sekaly RP, Lederman MM,

Sereti I (2014) Quantifying and predicting the effect of exogenous interleukin-7 on CD4+ T cells in

HIV-1 infection. PLoS Comput Biol 10(5):e1003,630

123



Controlling IL-7 Injections in HIV-Infected Patients 2377

Thiébaut R, Jarne A, Routy JP, Sereti I, Fischl M, Ive P, Speck RF, D’offizi G, Casari S, Commenges D

(2016) Repeated cycles of recombinant human interleukin 7 in HIV-infected patients with low CD4

T-cell reconstitution on antiretroviral therapy: results of 2 phase II multicenter studies. Clin Infect Dis

62(9):1178–1185

Vella AT, Dow S, Potter TA, Kappler J, Marrack P (1998) Cytokine-induced survival of activated T cells in

vitro and in vivo. Proc Nat Acad Sci 95(7):3810–3815

123



OPTIMIZING IMMUNE THERAPIES IN HIV-INFECTED PATIENTS

4.4 Discussion

4.4.1 Numerical method: consistency with theoretical results,

calibration, performance

In order to ensure consistency with the theoretical results obtained in Costa et al.

[2016], assumptions A, B and C were verified during our work. However, we will not

develop these theoretical considerations, as the focus of our work was mainly on the

development of a numerical tool for solving the optimal control problem using dynamic

programming.

Part of the proof of theorem 1 in Costa et al. [2016] relies on the fact that the se-

quence {Wm}m∈N defined in equation (61) is increasing and uniformly bounded, and thus

converges. Actually, it can be shown that the sequence of function {Vm}m∈N similarly

defined, such that
{
Vm+1(x) = BVm(x) for m ∈ N,

V0(x) = KA1Aε1
(x) + (KA +KB)1Ac

ε1
(x),

(64)

is decreasing and uniformly bounded and converges to the same function as the sequence

{Wm}m∈N. This property was verified in the numerical method. As reminded in section 4

of the article from section 4.3, the numerical method computes at each iteration a matrix

containing the value of Wm at all the points of the grid of the state space. For each of

the first pseudo-patients studied, we have checked that Wm+1(x) −Wm(x) ≥ 0 for every

point of the grid until convergence. Moreover, we have run the sequence Vm with the

same criterion of convergence, namely ‖Vm+1−Vm‖∞ < ǫ with ǫ = 0.001 and checked first

that Vm+1(x)− Vm(x) ≤ 0 and that ‖W∞ − V∞‖∞ < ǫ̃ with a small ǫ̃. These verifications

ensured consistency of the numerical method with theoretical results.

As mentioned in the "Results" section of the article presented in section 4.3, we first

evaluated the performance of our optimization algorithm by comparing the approximated

value of the optimal function obtained from the numerical computation of W with the cost

obtained from numerical approximation of the optimal strategy. The cost is estimated

with Monte Carlo method, by simulating the strategy and the corresponding trajectory

of the process a large number of times. In the article, results were only presented for 3

pseudo-patients among the 50 generated. We also computed a mean relative variation

between these two values on all pseudo-patients by defining:

MRV =
1

50

50∑

i=1

|W (x0)i − Copti |
Copti

, (65)

with W (x0)i given by the approximation of the value function for patient i and Copti the
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value obtained by simulating the trajectories associated to the numerical approximation

of the optimal strategy for patient i. We find a mean relative variation of 1.5%, showing

the consistency of our numerical results. However, the performance of the method could

depend on the precision of the grid of the state space. To evaluate the sensitivity of the

numerical approximation to the grid of the state space, we ran the sequencing algorithm

on the 3 patients A, B and C presented in the article with 3 other grids of the state space.

As mentioned in Appendix B of the article presented in section 4.3, the grid contains

vectors of six elements: (γ, n, σ, θ, p, r). Parameters γ and n only takes a few number of

values, and it makes sense to discretize the time in days, so we evaluated variations only

on the choice of step for the discretization on values of p and r. For all grids, we consider

pmin = 2, pmax = 142, rmin = 100, rmax = 1500 to include most of the patients’ values.

Note that the intervals [pmin; pmax] and [rmin; rmax] can be reduced and adapted to patients

if necessary. The program was run on each grid for the same patients A, B and C as those

presented in the results section of the article presented in section 4.3. Table 4.1 below

sums up the characteristics of the grids of computation, their size and the computation

time requested for each patient. For each patient and each grid, we computed the value

Grid hp hr Size of the Total size Computational time (n†
it)

p× r grid of the grid Pat A Pat B Pat C

Γ∗
1 2 10 10 011 676 883 754 5.5d (34) 7.2d (40) 7.6d (45)

Γ2 10 10 2 115 143 003 610 30h (36) 36h (41) 41h (45)

Γ3 2 50 2 059 139 217 226 28h (35) 36h (43) 37h (44)

Γ4 10 50 435 29 412 090 6.2h (35) 7.7h (41) 8.3h (45)

Table 4.1 – Characteristics of the different grids used for the numerical approximation.

Computational time is in days (d) or hours (h). Γ∗
1 corresponds to the grid

used in the article presented in section 4.3. † nit: number of iterations of the

sequence until convergence.

W (x0) corresponding to the minimal cost that can be reached and we also simulated and

computed the cost of the associated optimal strategy. Table 4.2 shows the values and the

MRV computed on these 3 patients. We can see that all grids induce the same optimal

strategy (as simulated by choosing the optimal action when reaching the boundary), as

the value of the cost stays pretty much the same among the different grids. It should

be highlighted here that the strategy is simulated on continuous values of P and R, but

the action is determined by projecting their values on the grid of the state space. This

can explain the differences of values between the grids when simulations of the optimal

strategy are realized. However, we observe larger differences in the determination of the
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Pat A Pat B Pat C

Grid W (x0) Copt(sd) W (x0) Copt(sd) W (x0) Copt(sd) MRV

Γ∗
1 2.87 2.90 (0.36) 6.11 6.20 (0.56) 9.44 9.54 (0.85) 1.2%

Γ2 2.91 2.90 (0.36) 6.06 6.21 (0.57) 9.46 9.54 (0.84) 1.2%

Γ3 2.28 2.91 (0.37) 6.51 6.18 (0.57) 8.97 9.80 (0.80) 12%

Γ4 2.45 2.91 (0.38) 5.65 6.21 (0.57) 9.45 9.79 (0.75) 10%

Table 4.2 – Comparison of cost value from value function and Monte Carlo simulations

(with the standard deviation sd) in patients A, B, C on the 4 different grids.

value function between the grids, meaning that the evaluation of the optimal strategy is

more robust that the computation of the value function. In particular, grids Γ3 and Γ4

induce a mean variation of 12 and 10% between the value W (x0) obtained from the value

function and cost function computed with Monte Carlo simulation. With grid Γ3 the

computation time is almost the same as for Γ2, but there is less variation between W (x0)

and the optimal cost obtained with simulations when using Γ2 (only 1.2%). Actually, grid

Γ2 seems to have similar estimations of the value function on these 3 patients as grid Γ1,

with a much lower computation time. If we had to consider increasing the time of the

grid but looking at a longer horizon of time, it could be interesting to investigate further

these considerations (on a larger number of patients) and the grid Γ2 could be a good

choice to reduce computation times.

4.4.2 Cost function

The numerical approximation of the optimal strategy is dependent on the definition

of the cost function. Indeed, the method allows to determine an approximation of the

strategy û minimizing V(u, x0) as in equation (59) and the criterion V directly depends on

the cost function. In our particular framework, the criterion combines the time spent with

CD4 counts below 500 cells/µL and the number of injections realized. The combination

could be weighted to balance these two quantities. We chose to allocate the same cost

to an injection of IL-7 and to spending 30 days below 500 cells/µL. This choice is not

in favor of a third injection in cycle, as we have seen that the third injection has less

effect on the cells’ proliferation than the two previous ones. Most of the time, the third

injection does not allow any patient to increase the sustainability of CD4 levels above

500 cells/µL during more than a month. In order to illustrate the impact of the choice

of the cost function on the ranking of the strategies of injections, we have computed for

patients A, B and C of the article presented in section 4.3 the mean criterion of several

protocols, using either the cost counting the number of months spent below 500 cells/µL
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– used in the article (Cm) or the number of days (Cd). This computation was also realized

for an additional pseudo-patient (written Patient A’, with very low levels of CD4+ T cells

at baseline). Table 4.3 sums up the computed values obtained from protocols P1 to P5

as described in the article section 4.3 and the optimal strategy obtained using Cm (as in

the article), denoted optimalm. We note that for patient C, with not too low levels of

Patient

Protocol
P1 P2 P3 P4 P5 Optimalm

A (very low)
Cm 14.8 11.6 10.7 10.4 11.0 9.54

Cd 65.7 63.5 63.6 102 144 63.4

A’ (very low)
Cm 16.8 13.7 13.2 14.7 14.2 11.8

Cd 96.3 98 103 183 222 109

B (low)
Cm 9.41 7.62 6.91 6.25 6.63 6.21

Cd 27.5 25.3 29.7 32.2 64.2 29.3

C (not too low)
Cm 5.53 4.75 3.80 3.08 2.94 2.89

Cd 10.8 10.0 9.25 8.72 11.3 8.48

Table 4.3 – Comparison of mean criteria for protocols P1 to P5 and optimal strategy writ-

ten Optimalm because it was obtained using Cm, the cost computed from the

number of months spent below 500 cells/µL. Cm corresponds to the criterion

computed from the number of months spent below 500/µL and Cd from the

number of days. For each line, we have written in bold red the worst protocol

(highest cost) and in bold green the best one (lowest cost).

CD4+ T cells at baseline, the optimal strategy determined with Cm still has the lowest

cost among all other protocols P1 to P5. This is also the case for patient A, although

the difference between the optimalm and protocols P2 and P3 is less clear with cost Cd

(63.4, 63.5 and 63.6 respectively). For patients A’ and B, the optimalm strategy does not

have the lowest cost when computed with Cd, and in particular for patient A’ protocol

P1 was the worst using Cm and is the best choice with Cd. Overall, using Cd is not in

favor of protocol P5. This is easily explained by the fact that Cd counts all the days spent

with CD4+ levels below 500 days/µL, and each day has the same weight as one injection

with Cd. This cost function penalizes more the protocols inducing more days with low

CD4 levels (even if less injections are realized, as in P5). It is also the reason why Cd

is more in favor with protocols with a large number of injections for patients requesting

many injections to sustain their CD4 levels. As some subjects tend to spend many more

days with low CD4 levels if the number of injections is reduced compared to others, they

will be more sensitive to the choice of the balance between number of injections and time
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spent with low CD4 levels in the cost function.

We have shown that the choice of the cost function can be crucial for determining

the optimal strategy of injections, but the impact of this choice can also differ among all

participants of the study. The cost function could account for other parameters than the

ones studied. In particular when several doses of a given product are tested, side effects

due to higher doses could be included by accounting for a term dependent of the dose

in the cost function. Finally, these considerations emphasize the need to define the cost

function in agreement with clinicians and real expectations from the optimization of the

design.

4.4.3 Improving the biological model

Our main contribution is a "proof-of-concept", showing that the theory of optimal

control can be applied successfully to the question of optimizing schedule of injections.

As we focused mainly on this proof-of-concept, we chose to work on a simple, although still

realistic, mechanistic model of the effect of IL-7 on the CD4+ T cells dynamics. In order

to apply this method to actual clinical studies, we would need to consider an improved

biological/mechanistic model. This would require first to account for the additional effect

of IL-7 on survival, modeled by a modification of parameter µR after IL-7 injection and

depending on time [Thiébaut et al., 2014]. A cycle effect was also estimated [Jarne et al.,

2017]. It could simply be due to the fact that CD4 counts are higher during the repeated

cycles than at the beginning of the study and the homeostatic regulation of the immune

system limits the number of CD4+ T cells generated; but it could also mean that the

immune system is also responding to IL-7 by generating antibodies against it. Both the

effect of IL-7 on cell survival and the decreased effect of IL-7 on cells proliferation in

the repeated cycles compared to the first one should be accounted in a more biologically

plausible model. For example, the cycle effect could be added in the PDMP by adding a

state variable c counting the number of cycles realized so far. The value of the parameter

π would be different when c = 1 and c > 1.

In term of modeling, we also chose to introduce stochasticity in the PDMP through

the time of effect of an IL-7 injection, τ . Adding stochasticity to the model could be

discussed, as the deterministic model had good fitting and predictive abilities. However,

it makes biological sense to assume that there is some stochasticity in the mechanism of

action of IL-7 on the CD4+ T cells. This stochasticity could have been introduced in

other ways in the model: for example, the value of the effect of IL-7 on the proliferation

rate, βπ could be random. In term of trajectories, the impact of both hypothesis would be

difficult to assess on the available data. As a first way to account for stochasticity in the
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process, we decided to add randomness in the time of effect of an IL-7 injection because

it could easily be handled by the jump intensity η in the PDMP.

One limitation of the optimal control approach resides in the assumption that the

process is continuously observed which allows the action to be adapted when needed. In

the clinical context of treatment injections, the patient can only be observed at punctual

time points. To account for these constraints, we would need to model the process as

partially observable and time of observations should also be optimized in the problem, to

determine the best visit times to obtain information on the patient and adapt the decision

from this observation. This would lead to a more complex modeling and optimizing

problem.

Finally, another inconvenient of the optimal control approach is that the parameters of

the studied patient are assumed to be known. Although we are confident in the estimation

obtained from the population approach, uncertainty on the parameters could induce some

modifications in the determined optimal strategy. It makes this method less applicable

in the clinical context of IL-7 than the Bayesian approach mentioned in section 4.2.1.2.

This point constitutes one of the reason why we did not pursue in improving the biological

model by accounting for the previous points discussed in this section, but we rather focused

on understanding the gain from both approaches and trying to determine a framework

where the optimal control method would be beneficial. In particular, the optimal control

method could be more efficient when the model requires intrinsic stochasticity. This is

discussed in the next following sections.

4.4.4 The challenge of both estimation and optimization

The Bayesian approach presented in section 4.2.1.2 and the optimal control approach

were developed in parallel and it gave us a unique opportunity to discuss both methods

for optimizing and adapting schedule of IL-7 injections in HIV-infected patients. This

section does not aim at realizing a formal comparison between the two approaches but

constitutes more of a discussion on the interests of both approaches in this framework

and in prospects.

First, it should be reminded that both estimation and optimal control problems are

difficult to assess simultaneously. Indeed, it would correspond to a partially observed

optimal control problem and it represents a real challenge from both theoretical and

numerical point of views [Hernández-Lerma, 1989; Bäuerle and Rieder, 2011]. In our

particular case, we assumed that the principle of separation was valid, meaning that we

are able to separately estimate the parameters of the model and optimize its control. In

the optimal control approach presented in section 4.3, we assumed that the stochasticity
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was due to the biological process itself and not to the estimation of the parameters. The

pseudo-patient parameters are assumed to be determined before the optimization step. It

is a strong assumption, especially as the estimation is realized on a deterministic model

and not the stochastic model itself. Moreover, it should be underlined that the optimal

control method depends on the chosen model, by making the strong assumption that

the model is valid throughout the follow-up of the patient. In the previous section, we

mentioned possibilities to modify the biological model, by accounting for example for a

reduced effect of IL-7 on cell proliferation due to consecutive cycles. This could also

modify the final optimal strategy obtained with our method. In our work, we then based

the optimization method on two main assumptions: in term of parameters estimation,

the population approach was already shown to give good results in ODE-based models

[Lavielle and Mentré, 2007; Prague et al., 2013a]. In term of model choice, the previous

work on modeling the effect of IL-7 on CD4+ T cells dynamics and developed in section

4.1.2 ensured the model induced good fits of the data and had good prediction abilities.

In the Bayesian approach, the stochasticity was considered to arise from the uncer-

tainty on the estimation of a patient’s parameters, but the model for the CD4 dynamics

was still deterministic, as previously developed in 4.1.2. The advantage of this method is

that the parameters estimation can be updated each time new information is obtained.

Moreover, decisions allow to locally optimize some criteria and they are based on the

prediction from the model, not directly from the observation of a biological marker. It

was also showed that the algorithm only requested a short phase of learning before having

a reliable estimation of the parameters and a sequence of right decisions to take.

Overall, we have showed that both approaches could be used to adapt schedules of

injections while maintaining patients above 500 CD4+ T cells as long as possible. We

should underline here that the IL-7 question provided a specific context of work for several

reasons. First, the mechanistic model for the dynamics of the marker of interest (CD4+

T cells) is very simple with linear equations. Moreover, it can be estimated using only

two biomarkers (CD4 and Ki67), which makes the clinical context much easier. For other

questions, the marker of interest could depend from the dynamics of a large number of

markers and its dynamics could be less clear to describe. It would lead to a more complex

mathematical model, with more compartments and interactions between the agents of

the process and could request more measures for estimation. Moreover, the model is

deterministic and induces good fits and predictions, which makes the use of the Bayesian

approach easier. If the model needed stochasticity, the computation of the criteria of

decision would have much more variance and it would make it more difficult to take any

adaptive decision. We believe that in that case, the optimal control approach could be

more adapted and robust. This should not be neglected, as we know that most of the
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biological and physical processes actually undergo stochasticity, and if we aim at modeling

systems with more granularity, it could request accounting for more stochasticity.

Finally, in practice, due to the limitation in term of computation time and not account-

ing for the uncertainty on the patient’s estimation, the optimal control approach is harder

to apply directly in clinical studies. The Bayesian approach can be easily implemented

and at the moment it offers clinical perspectives, such as the evaluation of the adaptive

strategies on other clinical outcomes in larger trials. The optimal control approach offers

prospects in other applications where the stochasticity needs to be included and modeling

the process with a PDMP is more appropriate; we will discuss the particular case of gene

networks in the following section.

4.4.5 Prospects in vaccinology

One of the objectives of developing methods for optimizing schedules of injections is

also to be able to optimize prime-boost vaccination regimens, combining several products

in distinct immunizations. We have already mentioned in section 3.4.3 that systems vac-

cinology is a promising approach which consists in integrating data from different sources

and measurements techniques into a broader model of the immune response to immuniza-

tions. This already represents in itself a challenge: currently, there is no general method

for integrating information from the environment, the microbiome and the gene expres-

sion into mechanistic models of the biomarker(s) of interest (antibodies, cell populations,

or others, possibly acting as a surrogate of protection). In fact, modeling and infering

this information is still an open question, especially regarding the gene expression data.

We have seen that gene regulatory networks (GRN) have been widely used, but there is

no consensus on the best way to model and estimate these processes. In view of the work

realized in this thesis, an interesting way to model GRN is actually to use PDMPs: the

gene expression is determined by the state of the promoter of the gene, which randomly

shifts between active (on) or inactive (off) state. The state of the promoter depends

on transcription factors (proteins) that can bind to the DNA. The level of mRNA and

proteins can be considered as continuous quantities, and their dynamics are modeled by

ODEs. The mRNA is transcribed only during the active state. The PDMP related to

this kind of process was described in Zeiser et al. [2010] and Herbach et al. [2017]. In a

particular case of this model, the transcription occurs on very short periods which induce

a burst of mRNA and of the protein synthesis [Bokes et al., 2013]. In these models, the

flow is defined by the ordinary differential equations determining the dynamics of both the

mRNA and the protein concentrations; these equations depend on the state i ∈ {0, 1} of

the gene promoter, with 0 corresponding to inactive and 1 to active. The transition rates
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from state inactive to active and active to inactive can depend on protein concentrations,

generated by the gene itself and possibly other genes included in the model. This rate of

transition determine the random time at which the jumps occur. Vaccine immunizations

can modify the gene expression. This could be modeled in the PDMP by modifying some

transition rates following immunizations to induce higher or lower rates of activation, as

some gene are observed to be differentially expressed. Further investigations should be

realized to assess the possibility to infer complex GRN modeled this way: in Herbach

et al. [2017], the theory is not based on a limited number of genes but simulations were

conducted for networks with only 2 genes. Moreover, as we have developed in this thesis

work a numerical tool for solving impulse control problems, it could be interesting to in-

vestigate the possibility to control gene expression levels by vaccine immunizations using

a similar framework. This could be realized first on a calibrated GRN if inference is not

completely achieved. The decision-maker would have the choice to realize immunizations

at given time points, using one or several vaccine platforms. If some genes are related to

the dynamics of the biomarker(s) of interest, it could be useful to be able to have devel-

oped methodological tools to optimize their expression. In that case, further investigations

are also necessary to evaluate how the optimization performs regarding the complexity

of the GRN and the number of genes included. The optimization method could help a

rapid adaptation of the vaccine immunization regimen depending on the responder/non

responder profile of the recipient. A representation of this modeling/optimizing approach

in systems vaccinology is given in figure 4.8.
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Gene expression data

Model: GRN with PDMP

Challenge: inference
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Model: ODE-based, mechanistic

Challenge: integrating data
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Microbiome
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Optimal control on PDMP

Numerical method using dynamic

programming

Vaccine / Immune interventions

Figure 4.8 – Schematic representation of a modeling/optimizing approach in systems vac-

cinology
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5 General discussion

In this thesis, we have conducted some work combining mathematics, immunology

and biostatistics, as part of an effort to use models for understanding, quantifying and

optimizing the immune response to preventive and therapeutic interventions against in-

fectious diseases. This work is driven by concrete clinical questions, and sophisticated

methods are developed to analyze longitudinal data obtained in human clinical trials:

the challenge of parameter estimation in ODE-based models is handled by a population

approach based on likelihood maximization, and the optimization of a clinical protocol

of repeated injections is realized by developing a dynamic programing numerical method

based on recent theoretical results. The originality of this thesis resides in both the ana-

lyzed data, as no mechanistic model of the response to Ebola vaccine has been studied on

human data so far, and the application of complex optimal control theory on stochastic

processes to the specific biological framework of optimal administration of IL-7.

In particular, we have shown that a simple model of the humoral immune response,

including the dynamics of two populations of ASCs and of the antibodies, could fit well

the binding antibody concentration data measured on subjects receiving Ebola vaccine

candidates in phase 1 clinical trials. This model was based on ODEs and the parameters

were estimated in order to quantify the dynamics of the humoral immune response and to

determine factors involved in its variability. The advantage of the mechanistic model relies

in the fact that its structure is biologically justified, and not data-driven; in this way, it

can be applied in other contexts and could be estimated on other datasets generated in the

EBOVAC consortium or other clinical trials. Moreover, the findings from this modeling

work could have clinical implications, in particular in the adaptation of vaccine regimens

according to the targeted population. The predictions of the model could be checked

using longer follow-up measurements. The model would obviously benefit from additional

data measurements, whether it be other biomarker measurements (ASCs for example),

genomic, proteomic or microbiome measurements, or measurements from other subjects

enrolled in other clinical trials. However, this would raise additional methodological

challenges, especially regarding the integration of all necessary compartments in a large

model. All this additional information would help: i) refining the estimated durability

of the humoral immune response, ii) quantifying the effect of factors impacting on the

variability of the immune response, iii) understanding more deeply the mechanisms of the
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immune memory, iv) predicting the effect of additional interventions, such as additional

immunization or probiotic intervention, aiming at increasing the immunogenicity of the

vaccine, v) aiming at optimizing protocols of vaccine immunizations.

Regarding the optimization of vaccine regimens based on several immunizations, we

have developed in parallel to the modeling work a numerical tool based on optimal control

theory. This was applied to the context of immunotherapeutic interventions in HIV-

infected patients, as a proof-of-concept, showing that the theory could indeed be applied

in some specific biological framework. We have focused on using PDMPs for modeling the

biological process of interest, as this class of model corresponds to stochastic processes

where the system undergoes deterministic trajectories that are changed discretely after

some random time periods. The deterministic part can indeed be modeled by ODEs,

which is our preferential tool in mechanistic modeling. In particular, we have applied

some previously developed theory on the optimal control of PDMP to the particular

case of impulse control on the boundaries of the system. A numerical method based on

dynamic programming was developed and helped determining optimized immunotherapy

protocols for HIV-infected patients. This development opens the door to other biological

applications, especially in the field of vaccinology.

More generally, the work realized in this thesis highlights the availability of complex

methodological tools for analyzing data from clinical trials on preventive and therapeutic

interventions against infectious diseases. Of course, these tools should be constantly

improved and adapted to the availability and of the data, evolving with the development

of new technologies. However, mathematical tools can already be useful to accelerate

the clinical development thanks to in silico trials. This term corresponds to the use

of patient-specific computer simulations [Viceconti et al., 2016] for the development of

a product, the diagnosis of the disease or the design of a treatment. For that, all the

information regarding the characteristics of the patient and the mechanisms of effect of

the studied product should ideally be integrated in a multi-scale model, able to predict

the outcome of interest. As described in Viceconti et al. [2016] in silico trials could be

used in several ways, in particular to reduce the number of subjects enrolled in clinical

trials or the length of the study, to refine the efficacy of a product or replace some

animal and human studies. In the last few years, there has been growing interest in these

computation methods. Some examples of use of this approach cover the feedback control

of glucose concentration in diabetic patients [Magni et al., 2009], the development of drugs

accounting for variability due to several factors [Rostami-Hodjegan and Tucker, 2007] or

the simulation of immunotherapy to design optimized interventions: this is in particular

due to the non linearity of the process and the possibility to generate counter-intuitive

predictions of the immunotherapy effect with the model [Clermont et al., 2004]. An in
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silico phase 3 clinical trial was also implemented on 10000 pseudo-patients with Chron’s

Disease to evaluate the response to new treatments [Abedi et al., 2015]. It was also recently

suggested to regulatory agencies to account for modeling and simulations analyses in the

development process of biologic products, as explained in Pappalardo et al. [2018]. This

review also underlines the potential usefulness of in silico trials at all phases of the clinical

development of future vaccines. In the team, a classic in silico pipeline of analysis has

consisted in developing a deterministic, ODE-based mechanistic model and estimating

the distribution of the parameters in the population of the study. Two applications can

be considered, either at the individual or population level. Indeed, if a new subject is

included in the study, its individual parameters can be estimated based on the model and

the previous estimations. Simulations of the deterministic model by accounting for the

uncertainty around the individual parameters estimation can help adapting the treatment

of this subject. This type of approach was used for adapting the schedule of IL-7 injections

as already mentioned, and described in appendix B. On the other hand, a large number of

pseudo-patients can be generated from the posterior distribution of the parameters. This

population is supposed to be representative of the population studied in the clinical trials

used for the estimation of the model. In that case, the outcome of several interventions

can be simulated on all pseudo-patients. This can help determining the best intervention

to use in a target population, or for different classes of profiles of patients. For this type of

approach, a work in collaboration with Mélanie Prague aims at developing in silico trials

to evaluate therapeutic relief in HIV-infected patients [Prague et al., 2018]. In particular,

short-cycle therapies consisting of x days under treatment and 7-x days with no treatment,

are though to be promising and have been under clinical investigation for a few years.

By comparing the results obtained through the simulation approach with existing results

from current clinical trials, we have shown that the computer-based approach was a good

predictor of the effect of short-cycle therapies on HIV-infected patients, meaning that this

approach should be considered in the development of new treatments strategies based on

already existing antiretroviral therapies.

Following these results, a similar in silico pipeline could be considered in vaccinol-

ogy and especially in the development of prime-boost regimens. Several designs could

be tested, including different orders of immunizations, different intervals between the im-

munizations or hypothetical additional immunization and its timing. In the light of our

findings on Ebola vaccine, it could also be interesting to evaluate optimal vaccine strate-

gies according to the geographical location of the subject. The in silico method could

help determining optimized vaccine regimens that should be tested in new clinical trials.

The good results obtained from the methods used in the IL-7 and the ART frameworks

can mostly be attributed to the ability of the deterministic model to fit the data using a
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small number of biomarkers and the short phase of learning for estimating the parameters

of a new subject. However, we have mentioned the necessity to integrate more than just a

few biomarkers’ data in a model for the immune response: transcriptomic, proteomic and

microbiome data should also be included if possible. A step of selection of the necessary

information could be considered to reduce the complexity of such model. But accounting

for additional types of data could be crucial and induces other methodological challenges,

either in modeling the dynamics of the underlying processes and/or in integrating the

information in a large mechanistic model. Indeed, stochasticity cannot be ignored at

the single-cell level, but on the other hand, adding stochasticity in the model makes the

inference harder. The optimal control work realized in this thesis has highlighted the

availability of other tools for modeling and optimizing stochastic processes, in particular

by using PDMPs. The optimization is based on theoretical results and not on empiri-

cal methods. PDMPs could be used in a modeling strategy when stochasticity cannot

be ignored, as we have shown that optimization of this kind of process in a biological

framework could be realized. This type of modeling raises other challenges, especially in

the inference of the model. However, it could be interesting to investigate the possibility

to modify the in silico pipeline, by first calibrating the stochastic model on clinical data

and then applying the optimal control tools on the calibrated model: an application of

interest could be for example the modeling of the gene expression through GRN. Over-

all, a good balance should be found between the complexity of the model (including the

number of compartments, the stochasticity, the time scales...) and the availability of the

data. Here, the population approach is very much valuable, as specific measurements are

usually realized on sub-cohorts of clinical trials. The population approach allows to pool

the data from the principal study with ancillary studies, as having the same amount of

data for all subjects is not mandatory in this approach. In any cases of modeling and

optimizing methods, the in silico methods could help for a more rational development of

vaccines, based on the quantification of the immune response generated by the immuniza-

tions and the understanding of the underlying mechanisms, instead of the actual empirical

methods. It should be kept in mind that these methods are not supposed to replace the

experimental methods, as a model is always a simplification of the real biological process:

anything that will be predicted from in silico trials is related to the knowledge included

in the construction of the model and the data used for the inference/calibration of the

model. Experimentations should be combined to computation approaches as complemen-

tary roles in a collaborative effort between immunologists and mathematicians to further

improve the development of new preventive and therapeutic interventions against infec-

tious diseases. This would constitute a loop process, where generated data can be used

for the development of models, which themselves can generate new hypotheses and help
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designing future studies and determining additional data to be collected. These data can

then validate or not the hypotheses and refine the model [Vodovotz et al., 2017].

In conclusion, further work directions can be pursued: in terms of modeling, more

complex models of the immune response should be developed, including the immune

memory and integrating early signals of the response. Stochasticity should be considered,

especially at the single-cell levels, and in this prospect, inference of gene networks should

be investigated and possibly adapted depending on the data available. In term of clinical

interpretation, additional data (long term follow-up, sub-cohorts) will help refining the

quantification of the immune response to vaccine immunizations and the factors associated

to its variability. In terms of optimization, the numerical method based on dynamic

programming could be improved and applied to other frameworks, especially where the

modeling by a PDMP seems to be more adapted and necessary. All together, this will allow

for adopting a substantial system vaccinology approach for future clinical developments.
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A B S T R A C T

Objectives: For Ebola vaccine development, antibody response is a major endpoint although its

determinants are not well known. We aimed to review Ebola vaccine studies and to assess factors
associated with antibody response variability in humans.

Methods: We searched PubMed and Scopus for preventive Ebola vaccine studies in humans or non-

human primates (NHP), published up to February 2018. For each vaccination group with Ebola Zaire
antibody titre measurements after vaccination, data about antibody response and its potential

determinants were extracted. A random-effects meta-regression was conducted including human groups

with at least 8 individuals.
Results: We reviewed 49 studies (202 vaccination groups including 74 human groups) with various

vaccine platforms and antigen inserts. Mean antibody titre was slightly higher in NHP (3.10, 95%

confidence interval [293; 327]) than in humans (2.75 [257; 293]). Vaccine platform (p < 0�001) and viral

strain used for antibody detection (p < 0�001) were associated with antibody response in humans, but
adjusted heterogeneity remained at 95%.

Conclusions: Various platforms have been evaluated in humans, including Ad26, Ad5, ChimpAd3, DNA,

MVA, and VSV. In addition to platforms, viral strain used for antibody detection influences antibody
response. However, variability remained mostly unexplained. Therefore, comparison of vaccine

immunogenicity needs randomised controlled trials.

© 2018 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

Introduction

Following the deadly 2013-2016 epidemic in West Africa, there
has been an accelerated development of several candidates for an
Ebola preventive vaccine. Outbreaks of Ebola virus disease (EVD)
have occurred recurrently and unpredictably for the past 40 years
with a high lethality rate (Liu et al., 2015). The 2013-2015 outbreak
was unprecedented in scale, with over 28,000 cases and more than
11,000 deaths (Ebola Situation Report, 2016). Incidental cases are
still reported as recently in the Democratic Republic of Congo in
May 2017 (Dhama et al., 2015). In the absence of any specific

treatment, EVD prevention and control measures are primarily
based on case identification and isolation, early non-specific
medical care, surveillance of suspect cases, and safe burial
practices (Henao-Restrepo et al., 2017). These measures are now
sometimes complemented by ring vaccination of contacts of cases,
based on the promising results of a phase III cluster-randomized
ring vaccination efficacy trial conducted in Guinea in 2015
(Ohimain, 2016). However, the vaccine used for ring vaccination
(rVSV ZEBOV vaccine) is not yet licenced and conducting new
efficacy trials for licencing is not feasible in the absence of a large
outbreak. Nevertheless, preparation for future outbreaks is
required and the licensing of one or several preventive vaccines
for stockpiling is a priority.

Several candidate vaccines strategies have been investigated
since the first reported EVD outbreak in 1976. During and following
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the 2013-2015 epidemic, the process of vaccine development has
been substantially accelerated, and several strategies have been
moved into clinical phases. Despite the promising results of the
ring vaccination trial in Guinea (Ohimain, 2016), many questions,
such as durability of immune responses, and immune responses
and protection in specific sub-groups such as young children,
remain to be addressed and Ebola vaccine development continues
to be very active. Based on their delivery technologies, several
candidate vaccine platforms can be distinguished: whole-virus
vaccines, DNA vaccines, virus-like particles vaccines, and recom-
binant vaccines with different viral vectors (vesicular stomatitis
virus or VSV, modified vaccinia Ankara or MVA, human adenovirus
or Ad, and chimpanzee adenovirus or ChAd) (World Health
Organisation, 2013). Each platform may use specific dose levels
and Ebola antigen inserts.

Vaccine trials aim to assess vaccine safety and immunogenicity
in phase I and II trials in humans prior to testing for a protective
effect in phase III. Assessment of vaccine efficacy during pre-
clinical and clinical studies is required to go through the vaccine
license steps. Clinical protection from EVD in human populations is
impossible to observe outside an epidemic period. In the non-
epidemic context, Ebola vaccines are thus currently evaluated by
using a main immunogenicity endpoint: the antibody response
after vaccination. There is no definite evidence that antibody
response is the correlate of protection or surrogate endpoint for
efficacy in humans, that is a specific immune response to vaccine
associated with vaccine-induced protection (Sullivan et al., 2009)
and it may vary according to the vaccine platforms (Sullivan et al.,
2000a,b). However, we know that antibody response is correlated
with survival after challenge in nonhuman primate models, which
is the nearest model to humans for EVD and hence the animal gold
standard to test candidate Ebola vaccines; this association is found
consistently for different Ebola candidate vaccines (Wong et al.,
2012; Food and Drug Administration, 2015; Sridhar, 2015).

For these reasons, antibody response is used as the main
criterion to assess the Ebola candidate vaccines in phase I/II trials.
In the absence of the possibility to conduct additional phase III
trials, regulatory pathways not requiring such efficacy results are
also under discussion (Food and Drug Administration, 2015).
Significant variations in antibody responses are observable across
studies, which could be due to the different types of vaccines
evaluated, or not. Various factors are suspected to influence the
level of antibody response beyond the vaccine features (vaccine
platform, Ebola viral insert, dosage, single injection or boost, . . . )
such as the measurement techniques (time of measurement,
antigen used to detect antibody response, . . . ) or the population
type (human or nonhuman primates, age, sex, study site, . . . ).
There is a lack of quantification of the contribution of each factor in
the observed variation of the reported antibody responses.

Although previous reviews exist on Ebola vaccines (Ohimain,
2016; Sridhar, 2015; Wu et al., 2015), the specific topic of antibody
response determinants has not yet been addressed by a systematic
review or meta-analysis. Yet, the identification of factors poten-
tially associated with antibody response after Ebola vaccination
could provide relevant information for further vaccine trials and
for regulatory decision making.

By conducting this systematic review with a meta-analysis, we
aimed to determine whether the reported antibody response
variability in Ebola vaccine trials is not only determined by the
vaccine platform but also by other characteristics of vaccine and by
population and measurement characteristics and to quantify these
factors.

Methods

Search strategy and selection criteria

Studies were identified by searching electronic databases
PubMed and Scopus. Pubmed was searched using the following
terms: (« hemorrhagic fever, ebola » [MeSH Terms] OR « ebola » [All
fields] OR « ebolavirus » [MeSH Terms] OR « ebolavirus » [All fields])
AND (« vaccines » [MeSH Terms] OR « vaccines » [All fields] OR «
vaccine » [All Fields]). Scopus was searched using the following
terms TITLE-ABS-KEY (ebola) AND TITLE-ABS-KEY (vaccine).
Additionally, the Clinicaltrials.gov website was searched to identify
unpublished and ongoing studies. Several experts in the field were
contacted to find papers which could be not indexed in databases.
Reference lists of relevant papers and reviews were examined to
identify further articles.

The search was performed on March 23, 2016 and updated as of
February 24, 2018 with a publication date limit of the same date in
order to identify all published studies which met the inclusion
criteria and without restriction on language. All preventive Ebola
vaccine clinical trials conducted in humans or in nonhuman
primates and with a measure of Ebola Zaire antibody titre after
vaccination were included in our systematic review. Studies were
excluded in case of duplicate study, studies without original data,
preclinical studies conducted in animals other than nonhuman
primates or in vitro experimentation.

Data extraction

A first step of selection was performed on the title and abstract,
and then a second step was performed after reading the full article.
Two authors independently assessed each full article to include
papers matching the review’s inclusion criteria. Disagreements
between reviewers were resolved by consensus.

Data were extracted by two independent reviewers, with
differences reconciled by consensus. The following variables were
extracted: paper identification (title, first author, publication year),
study design, inclusion and exclusion criteria, characteristics of the
population (number of subjects; human or nonhuman primates;
proportion of women, average age and study site for clinical trials;
and animal species for pre-clinical studies using nonhuman
primates), characteristics of vaccine (vaccine platform in terms
of delivery technology used, specific vector for recombinant
vaccines, Ebola viral insert, dosage, route of administration,
vaccination schedule), characteristics of measurement techniques
(time interval between last injection and measure, strain and
nature of antigen used to detect antibody response, measurement
method), antibody response after vaccination (geometric mean
titre and its variance). Regarding the antibody response after
vaccination, geometric mean titre was extracted from the text or
estimated from figures. If a single vaccination group had more than
one measure of antibody response, data from measurement after
each injection were extracted. Therefore, if available, measurement
post-prime and measurement post-boost from a same vaccination
group were both included in our meta-analysis. If several
measurements post-prime or if several measurements post-boost
were available, for each injection we extracted the one closest to
28 days after injection, which is a standard time point in Ebola
vaccine trials. Variance of titre (within-group variance) was
extracted directly from the text or calculated from confidence
interval or from individual values. The present study was
registered in PROSPERO (no. 54303).
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Data analysis

For all analyses, the statistical unit used was the vaccination
group (one or several groups for a single study), i.e. a protocol-
defined group undergoing the same intervention and follow-up
procedures (such as a randomized arm of a clinical trial or an
animal group in NHP studies).

First descriptive analyses were performed among all groups,
separately for nonhuman primates and for humans. Then, a
random-effect meta-regression analysis was performed including
only human groups with 8 individuals or more. This threshold
allowed both to have sufficient inter-individual variability in each
group and to avoid excluding too many groups. Thus, it was not
possible to perform the regression analysis with NHP studies
because of the usual small sample size of the groups. The effect of
every potential determinant of antibody response was assessed
through fixed effects. A random intercept was allowed to capture
between-group variability not explained by the fixed effects. The
residual variance (within-group variance) was fixed in the model
according to the values resulting from data extraction as described
by Van Houwelingen (Van Houwelingen et al., 2002).

Each potential determinant associated in unadjusted analyses
with a p-value <0.25 was included in the multivariable model
using forward step-wise selection. The heterogeneity was checked
visually with forest plots and quantified by using the Q test. The
proportion of total variation across groups due to heterogeneity
(I2) and the amount of variability explained by the factors included
in the random-effect model (R2) were estimated. Antibody titres
after vaccination were log transformed in the model.

For the meta-regression analysis, the dosage variable was
categorized into “low dose” or “high dose” per vaccine platform,
since units of measurement for dose level were platform-
dependent. For each unit of dose measurement and each vaccine
platform, the average dose level among the human groups
included in the meta-regression model was used as a classification

threshold for this variable; if only one dose level was assessed for a
vaccine platform, the dosage variable was defined as undifferenti-
ated. The absence of interaction between vaccine platform and
dosage was checked (likelihood ratio test: p = 0.223).

All analyses were performed using the metafor package of R
(i386 3.2.2 version, the R Foundation, Vienna, Austria).

Results

Study selection

The selection process of the studies and vaccination groups is
described in Figure 1.

The search yielded a total of 2166 studies. Of these, 49 met the
inclusion criteria to the research question corresponding to 202
vaccination groups. Unpublished clinical trials and one trial found
by contact with an expert were excluded since no results were
available. Studies not reporting any antibody measurements were
also excluded. This led to the exclusion of the “Ebola ça suffit” ring
vaccination trial conducted in Guinea, the only trial that was able
to assess clinical efficacy in humans so far (Ohimain et al., 2016).
This trial was conducted under emergency conditions and did not
collect blood samples for immunogenicity measurements.

Table 1 shows details of all trials included in the systematic
review: 32 studies were conducted in NHP, 13 trials in humans
were phase 1, two trials phase 1/2, and two phase 2. The number of
trials has increased significantly since the last outbreak of EVD.
Clinical trials were conducted mostly in Europe and North America
(Figure 2).

Description of included vaccination groups

Among the 202 vaccination groups included in our systematic
review, 74 were human groups and 128 were non-human primate
groups. The distribution of the number of individuals by groups is

Figure 1. Flow chart for study/vaccination group selection.
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Table 1

Main characteristics of the preclinical studies and clinical trials included in the systematic review.

Title First author Year of

publication

Population and study

features

Vaccine(s) Measurement of

antibody response

Phase 1 Trials of rVSV Ebola Vaccine in Africa

and Europe (Agnandji et al., 2016)

Agnandji 2016 Humans (Germany,

Switzerland, Gabon,

Kenya), phase 1,

randomization and

placebo

Recombinant VSV-GP(Zaire), single injection,

IM, 300 000 to 50 million PFU

Antibodies anti GP

(Kikwit), D28 or

D180

Successful topical respiratory tract

immunization of primates against Ebola

virus (Bukreyev et al., 2007)

Bukreyev 2007 NHP: rhesus monkeys;

placebo

Recombinant HPIV3(+/� modified)-GP +/� NP

(Zaire Mayinga), single injection +/� boost

D28, IN + IT, 4 to 20 million TCID50

Antibodies anti

virion, D28 (or D39

after boost)

Mucosal parainfluenza virus-vectored vaccine

against Ebola virus replicates in the

respiratory tract of vector-immune

monkeys and is immunogenic (Bukreyev

et al., 2010)

Bukreyev 2010 NHP: rhesus monkeys

(+/� HPIV3

seropositive); placebo

Recombinant HPIV3-GP(Zaire Mayinga),

boost D28, IN + IT, 20 million PFU

Antibodies anti

virion, D28

Safety and immunogenicity of a chimpanzee

adenovirus-vectored Ebola vaccine in

healthy adults: a randomised, double-blind,

placebo-controlled, dose-finding, phase 1/

2a study (De Santis et al., 2016)

De Santis 2016 Humans (Switzerland),

phase 1/2,

randomization and

placebo

Recombinant ChAd3-GP(Zaire Mayinga),

single injection, IM, 25 to 50 billion VP

Antibodies anti GP

(Mayinga), D28,

results in EC90

Respiratory tract immunization of non-

human primates with a Newcastle disease

virus-vectored vaccine candidate against

Ebola virus elicits a neutralizing antibody

response (DiNapoli et al., 2010)

DiNapoli 2010 NHP: rhesus monkeys;

no placebo

Recombinant NDV-GP(Zaire Mayinga) or

HPIV3-GP(Zaire Mayinga), boost D28, IN + IT,

20 million PFU

Antibodies anti

virion (Mayinga),

D28

A Monovalent Chimpanzee Adenovirus Ebola

Vaccine Boosted with MVA (Ewer et al.,

2016)

Ewer 2016 Humans (United

Kingdom), phase 1, no

randomization, no

placebo

Recombinant ChAd3-GP(Zaire Mayinga) 10 to

50 billion VP, boost between D7 and D46 with

recombinant MVA-GP(Zaire Mayinga + Sudan

Gulu)/NP(Taï Forest) 150 to 300 millions PFU,

IM

Antibodies anti GP

(Mayinga) or anti

virion (Makona)

Vesicular stomatitis virus-based vaccines

protect nonhuman primates against aerosol

challenge with Ebola and Marburg viruses

(Geisbert et al., 2008a,b)

Geisbert 2008 NHP: cynomolgus

macaques; placebo

Recombinant VSV-GP(Zaire Kikwit), single

injection, 20 million PFU

Antibodies anti

virion (Kikwit), D14

or D27

Vesicular stomatitis virus-based ebola vaccine

is well-tolerated and protects

immunocompromised nonhuman primates

(Geisbert et al., 2008a,b)

Geisbert 2008 NHP: rhesus monkeys

(SHIV infected);

placebo

Recombinant VSV-GP(Zaire Mayinga), single

injection, IM, 10 million PFU

Antibodies anti

virion (Mayinga),

D14

Single-injection vaccine protects nonhuman

primates against infection with marburg

virus and three species of ebola virus

(Geisbert et al., 2009)

Geisbert 2009 NHP: cynomolgus

macaques and rhesus

monkeys; placebo

Recombinant VSV-GP(Zaire Mayinga and/or

Sudan Boniface +/� Marburg), single injection

+/� boost D14, IM, 10 to 20 million PFU

Antibodies anti

virion, between

D14 and D28

Recombinant adenovirus serotype 26 (Ad26)

and Ad35 vaccine vectors bypass immunity

to Ad5 and protect nonhuman primates

against ebolavirus challenge (Geisbert et al.,

2011)

Geisbert 2011 NHP: cynomolgus

macaques (+/� Ad5

seropositive); placebo

Recombinant Ad5, Ad26, or Ad35, or prime

Ad26 + boost Ad35 D28 - GP (Zaire + Sudan

Gulu), IM, 20 to 200 billion VP

Antibodies anti GP,

D21, results in EC90

Codon-optimized filovirus DNA vaccines

delivered by intramuscular electroporation

protect cynomolgus macaques from lethal

Ebola and Marburg virus challenges (Grant-

Klein et al., 2015)

Grant-Klein 2015 NHP: cynomolgus

macaques; placebo

Vaccin ADN-GP(Zaire +/� Sudan, Reston et

Marburg), 3 injections (28 jours apart),

electroporation IM, 500 mg to 2 mg

Antibodies anti GP

(Mayinga) DTM or

DMuc, D28

Demonstration of cross-protective vaccine

immunity against an emerging pathogenic

Ebolavirus Species (Hensley et al., 2010)

Hensley 2010 NHP: cynomolgus

macaques; placebo

Vaccin ADN-GP(Zaire Mayinga + Sudan Gulu),

4 injections IM, 4 mg (28 to 42 days apart +/�

boost D371 recombinant Ad5-GP (Zaire

Mayinga) IM 100 billion VP

Antibodies anti GP,

D21 or D371,

results in EC90

Venezuelan equine encephalitis virus replicon

particle vaccine protects nonhuman

primates from intramuscular and aerosol

challenge with ebolavirus (Herbert et al.,

2013)

Herbert 2013 NHP: cynomolgus

macaques; placebo

VRP GP(Zaire Kikwit +/� Sudan Boniface),

single injection, IM, 10 to 20 billion FFU

Antibodies anti GP,

D28

The effect of dose on the safety and

immunogenicity of the VSV Ebola candidate

vaccine: a randomised double-blind,

placebo-controlled phase 1/2 trial (Huttner

et al., 2015)

Huttner 2015 Humans (Switzerland),

phase 1/2,

randomization and

placebo

Recombinant VSV-GP(Zaire), single injection,

IM, 300 000 PFU

Antibodies anti GP,

D28

Live attenuated recombinant vaccine protects

nonhuman primates against Ebola and

Marburg viruses (Jones et al., 2005)

Jones 2005 NHP: cynomolgus

macaques; placebo

Recombinant VSV-GP(Zaire Mayinga), single

injection, IM, 10 million PFU

Antibodies anti

virion, D28

Phase 2 Placebo-Controlled Trial of Two

Vaccines to Prevent Ebola in Liberia

(Kennedy et al., 2017)

Kennedy 2017 Humans (Liberia),

phase 2,

randomization and

placebo

Recombinant ChAd3-GP(Saire) 100 billion VP

or VSV-GP(Zaire Kikwit) 20 million PFU, single

injection, IM

Antibodies anti GP

(Kikwit), D28

Safety and immunogenicity of Ebola virus and

Marburg virus glycoprotein DNA vaccines

assessed separately and concomitantly in

healthy Ugandan adults: a phase 1b,

Kibuuka 2015 Humans (Uganda),

phase 1b;

randomization and

placebo

Vaccin ADN GP(Zaire + Sudan +/� Marburg), 3

injections, IM, 4 mg

Antibodies anti GP,

D28
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Table 1 (Continued)

Title First author Year of

publication

Population and study

features

Vaccine(s) Measurement of

antibody response

randomised, double-blind, placebo-

controlled clinical trial (Kibuuka et al.,

2015)

A replication defective recombinant Ad5

vaccine expressing Ebola virus GP is safe

and immunogenic in healthy adults

(Ledgerwood et al., 2010)

Ledgerwood 2010 Humans (USA), phase

1; randomization and

placebo

Recombinant Ad5-GP(Zaire Mayinga + Sudan

Gulu), single injection, IM, 2 to 20 billion VP

Antibodies anti GP

(Mayinga), D28

Chimpanzee Adenovirus Vector Ebola Vaccine

– Preliminary Report (Ledgerwood et al.,

2015)

Ledgerwood 2015 Humans (USA), phase

1, no randomization

and no placebo

Recombinant ChAd3-GP(Zaire

Mayinga + Sudan), single injection, IM, 20 or

200 billion VP

Antibodies anti GP

(Mayinga or Zaire-

Guinea), D28,

results in EC90

Immunity duration of a recombinant

adenovirus type-5 vector-based Ebola

vaccine and a homologous prime-boost

immunisation in healthy adults in China:

final report of a randomised, double-blind,

placebo-controlled, phase 1 trial (Li et al.,

2017)

Li 2017 Humans (China),

phase 1;

randomization and

placebo

Recombinant Ad5-GP(Zaire Makona), 2

injections (168 days apart), IM, 40 or 160

billion VP

Antibodies anti GP,

D28, results in

EC90

A DNA vaccine for Ebola virus is safe and

immunogenic in a phase I clinical trial

(Martin et al., 2006)

Martin 2006 Humans (USA), phase

1, randomization and

placebo

Vaccin ADN GP/NP(Zaire Mayinga) + GP

(Sudan Gulu), 3 injections (28 days apart), IM,

2 to 8 mg

Antibodies anti GP

or NP (Mayinga),

D28

Antibodies are necessary for rVSV/ZEBOV-GP-

mediated protection against lethal Ebola

virus challenge in nonhuman primates

(Marzi et al., 2013)

Marzi 2013 NHP: cynomolgus

macaques (with

depletion CD4+ or CD8

+ or CD20+); placebo

Recombinant VSV-GP(Zaire Mayinga), single

injection, IM, 10 million PFU

Antibodies anti GP,

D28

Vesicular stomatitis virus-based vaccines

against Lassa and Ebola viruses (Marzi et al.,

2015a,b,c)

Marzi 2015 NHP: cynomolgus

macaques (vaccinated

with VSV-Lassa);

placebo

Recombinant VSV-GP(Zaire Mayinga), single

injection, IM, 10 million PFU

Antibodies anti GP,

day of

measurement non

specified

Vaccines. An Ebola whole-virus vaccine is

protective in nonhuman primates (Marzi

et al., 2015a,b,c)

Marzi 2015 NHP: cynomolgus

macaques; placebo

Attenuated whole-virus Zaire Mayinga, single

injection, IM, 10 to 20 million FFU

Antibodies anti GP,

D28

EBOLA VACCINE. VSV-EBOV rapidly protects

macaques against infection with the 2014/

15 Ebola virus outbreak strain (Marzi et al.,

2015a,b,c)

Marzi 2015 NHP: cynomolgus

macaques; placebo

Recombinant VSV-GP(Zaire Kikwit), single

injection, unique, 50 million PFU

Antibodies anti GP,

between D3 and

D28

Cytomegalovirus-based vaccine expressing

Ebola virus glycoprotein protects

nonhuman primates from Ebola virus

infection (Marzi et al., 2016)

Marzi 2016 NHP: rhesus monkeys

(CMV seropositive);

placebo

Recombinant RhCMV-GP(Zaire Mayinga),

boost D84, SC, 10 million PFU

Antibodies anti GP,

D28

Vaccination With a Highly Attenuated

Recombinant Vesicular Stomatitis Virus

Vector Protects Against Challenge With a

Lethal Dose of Ebola Virus (Matassov et al.,

2015)

Matassov 2015 NHP: rhesus monkeys;

placebo

Recombinant VSV-GP(Zaire Mayinga), single

injection, IM, 10 million PFU

Antibodies anti GP,

D21

Aerosolized Ebola vaccine protects primates

and elicits lung-resident T cell responses

(Meyer et al., 2015)

Meyer 2015 NHP: rhesus monkeys;

placebo

Recombinant HPIV3-GP(Zaire Mayinga) 40 to

400 million PFU or VRP(Zaire Mayinga) 10

billion PFU, boost D28, IM or aerosol or IN + IT

Antibodies anti

virion (Mayinga),

D23 or D28

Safety and immunogenicity of novel

adenovirus type 26–and modified vaccinia

ankara–vectored ebola vaccines: A

randomized clinical trial (Milligan et al.,

2016)

Milligan 2016 Humans (United

Kingdom), phase 1,

randomization and

placebo

Recombinant Ad26-GP(Zaire Mayinga) 50

billion VP or recombinant MVA-GP(Zaire

Mayinga + Sudan Gulu)/NP(Taï Forest) 100

millions TCID50, boost between D15 and D56,

IM

Antibodies anti GP

Kikwit), D28 after

prime and D21

after boost

Vesicular stomatitis virus-based vaccines

protect nonhuman primates against

Bundibugyo ebolavirus (Mire et al., 2013)

Mire 2013 NHP: cynomolgus

macaques; placebo

Recombinant VSV-GP(Zaire Mayinga and/or

Sudan Boniface or Bundibugyo) +/� boost

VSV-GP(Zaire Mayinga) D14, IM, 20 million

PFU

Antibodies anti GP,

between D22 and

D29

Single-dose attenuated Vesiculovax vaccines

protect primates against Ebola Makona

virus (Mire et al., 2015)

Mire 2015 NHP: cynomolgus

macaques; placebo

Recombinant VSV-GP(Zaire Mayinga), single

injection, IM, 20 million PFU

Antibodies anti GP,

D28

Protection of nonhuman primates against two

species of Ebola virus infection with a single

complex adenovirus vector (Pratt et al.,

2010)

Pratt 2010 NHP: cynomolgus

macaques or rhesus

monkeys (+/� Ad5

seropositive); placebo

Recombinant CAdVax-GP(Zaire

Kikwit + Sudan Boniface +/� Marburg), boost

between D65 and D238, IM, 100 million to 20

billion PFU

Antibodies anti

virion, between D7

and D49

A Kunjin Replicon Virus-like Particle Vaccine

Provides Protection Against Ebola Virus

Infection in Nonhuman Primates (Pyankov

et al., 2015)

Pyankov 2015 NHP: African green

monkeys; placebo

Recombinant VLP Kunjin-GP(Zaire Mayinga),

boost D28, SC, 1 billion VLP

Antibodies anti

virion, D21 or D28

A Monovalent Chimpanzee Adenovirus Ebola

Vaccine - Preliminary Report (Rampling

et al., 2015)

Rampling 2015 Humans (United

Kingdom), phase 1, no

randomization, no

placebo

Recombinant ChAd3-GP(Zaire), single

injection, IM, 10 to 50 billions VP

Antibodies anti GP,

D28, results in

EC90

A Recombinant Vesicular Stomatitis Virus

Ebola Vaccine - Preliminary Report (Regules

et al., 2015)

Regules 2015 Humans (USA), phase

1, randomization and

placebo

Recombinant VSV-GP(Zaire Kikwit), single

injection, IM, 3 to 20 million PFU

Antibodies anti GP

(Kikwit or

Mayinga), D28
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presented in Figure 3. The vast majority (82.4%) of human groups
included 8 or more individuals, while only 6 for non-human
primate groups (range 2; 22 with an average of 4.1 individuals by
group).

Characteristics of nonhuman primate and human groups are
described in Tables 2 and 3, respectively.

There is a wide heterogeneity of features among studies
included in the systematic review. Vaccine platforms varied
between studies, especially in NHP (18 different vaccine platforms
in NHP groups versus 8 in human groups). The strain of Ebola virus
used as vaccine insert or for the antibody detection after
vaccination was also variable. For almost a third of the human

Table 1 (Continued)

Title First author Year of

publication

Population and study

features

Vaccine(s) Measurement of

antibody response

Safety and immunogenicity of DNA vaccines

encoding Ebolavirus and Marburgvirus

wild-type glycoproteins in a phase I clinical

trial (Sarwar et al., 2015)

Sarwar 2015 Humans (USA), phase

1, no randomization

and no placebo

Vaccin ADN GP(Zaire + Sudan), 3 injections

(28 days apart) + boost D168, IM, 4 mg

Antibodies anti GP,

D28

Chimpanzee adenovirus vaccine generates

acute and durable protective immunity

against ebolavirus challenge (Stanley et al.,

2014)

Stanley 2014 NHP: cynomolgus

macaques; placebo

Recombinant ChAd3-GP(Zaire + Sudan), 1 to

10 billion VP or recombinant ChAd3-GP

(Zaire + Sudan) or recombinant MVA-GP

(Zaire + Sudan) 100 million VP, single

injection, IM

Antibodies anti GP,

D21, results in EC90

Development of a preventive vaccine for Ebola

virus infection in primates (Sullivan et al.,

2000a,b)

Sullivan 2000 NHP: cynomolgus

macaques; placebo

DNA vaccine GP/NP(Zaire) + GP(Sudan + Taï

Forest), 3 injections, 4 mg (28 days apart),

boost D84 recombinant Ad5-GP(Z) 10 billion

PFU, IM

Nature of viral

antigen non

specified, D28

Accelerated vaccination for Ebola virus

haemorrhagic fever in non-human primates

(Sullivan et al., 2003)

Sullivan 2003 NHP: cynomolgus

macaques; placebo

Recombinant Ad5-GP/NP(Zaire) +/� boost

D63, IM, 2000 billion VP

Antibodies anti

virion, between D7

and D63

CD8+ cellular immunity mediates rAd5

vaccine protection against Ebola virus

infection of nonhuman primates (Sullivan

et al., 2011)

Sullivan 2011 NHP: cynomolgus

macaques; placebo

Recombinant Ad5-GP(Zaire), single injection,

IM, 10 billion VP

Antibodies anti GP,

day of

measurement non

specified, results in

EC90

Vaccine to confer to nonhuman primates

complete protection against multistrain

Ebola and Marburg virus infections

(Swenson et al., 2008)

Swenson 2008 NHP: cynomolgus

macaques; placebo

Recombinant Ad5-GP/NP(Zaire) + GP(Sudan

Boniface), boost D63, IM, 40 billion PFU

Antibodies anti

virion, D14 after

prime and D21

after boost

Use of ChAd3-EBO-Z Ebola virus vaccine in

Malian and US adults, and boosting of

Malian adults with MVA-BN-Filo: a phase 1,

single-blind, randomised trial, a phase 1b,

open-label and double-blind, dose-

escalation trial, and a nested, randomised,

double-blind, placebo-controlled trial

(Tapia et al., 2016)

Tapia 2016 Humans (Mali), phase

1, randomization and

placebo

Recombinant ChAd3-GP(Zaire), 10 to 100

billion VP, boost D97 recombinant MVA-GP

(Zaire + Sudan + Marburg) + NP (Taï Forest)

200 millions PFU, IM

Antibodies anti GP,

D28

Ebola virus-like particle-based vaccine

protects nonhuman primates against lethal

Ebola virus challenge (Warfield et al., 2007)

Warfield 2007 NHP: cynomolgus

macaques; placebo

VLP GP/VP40/NP(Zaire), 2 injections (42 days

apart), boost D42, IM, 250 mg

Antibodies anti

virion, D42

Vaccinating captive chimpanzees to save wild

chimpanzees (Warfield et al., 2014)

Warfield 2014 NHP: chimpanzee; no

placebo

VLP (with adjuvant: IDC-1001 ou CpG) GP/

VP40/NP(Zaire), 2 injections (29 days apart),

boost D27, IM, 3 mg

Antibodies anti

GPDTM or VP40,

between D27 and

D29, results in

EC50

Homologous and heterologous protection of

nonhuman primates by Ebola and Sudan

virus-like particles (Warfield et al., 2015)

Warfield 2015 NHP: cynomolgus

macaques; placebo

VLP GP/VP40/NP(Zaire et/ou Sudan), boost

D42, IM, 3 mg

Antibodies anti

GPDTM or VP40,

between D14 and

D28

Immune parameters correlate with protection

against ebola virus infection in rodents and

nonhuman primates (Wong et al., 2012)

Wong 2012 NHP: cynomolgus

macaques; placebo

Recombinant VSV-GP(Zaire Mayinga), single

injection, IM or IT or PO, 20 millions PFU

Antibodies anti GP,

D28

An Adenovirus Vaccine Expressing Ebola

Virus Variant Makona Glycoprotein Is

Efficacious in Guinea Pigs and Nonhuman

Primates (Wu et al., 2016)

Wu 2016 NHP: cynomolgus

macaques; placebo

Recombinant Ad5-GP(Zaire Makona), single

injection, IM, 40 or 200 billion VP

Antibodies anti GP,

D28

Safety and immunogenicity of a novel

recombinant adenovirus type-5 vector-

based Ebola vaccine in healthy adults in

China: preliminary report of a randomised,

double-blind, placebo-controlled, phase 1

trial (Zhu et al., 2015)

Zhu 2015 Humans (China),

phase 1,

randomization and

placebo

Recombinant Ad5-GP(Zaire Makona), single

injection, IM, 40 to 160 billions VP

Antibodies anti GP

(Makona), D28

Safety and immunogenicity of a recombinant

adenovirus type-5 vector-based Ebola

vaccine in healthy adults in Sierra Leone: a

single-centre, randomised, double-blind,

placebo-controlled, phase 2 trial (Zhu et al.,

2017)

Zhu 2017 Humans (Sierra

Leone), phase 2;

randomization and

placebo

Recombinant Ad5-GP(Zaire Makona), single

injection, IM, 40 or 160 billion VP

Antibodies anti GP,

D28

88 L. Gross et al. / International Journal of Infectious Diseases 74 (2018) 83–96



groups, the detection of antibody response was done with a
heterologous strain. The time interval between the last vaccination
and the antibody detection was also remarkably variable (range 3;
371 days).

Among all the 202 vaccination groups, the mean antibody titre
ranged from 0 (for a group of NHP infected by the simian/human
immunodeficiency virus prior to the Ebola vaccination) to 5.81
log10, with an average of 2.97 (95% CI: [2.84; 3.10]).

The NHP groups had a crude antibody response level that was
significantly higher than the human groups (p = 0.006): in NHP
groups the log10 geometric mean titre ranged from 0 to 5.81 with
an average of 3.10 (95% CI: [2.93; 3.27]), and in human groups the
titre ranged from 0.90 to 4.60 with an average of 2�75 (95% CI:
[2.57; 2.93]) Figure S1 (appendix) shows antibody responses in
human groups and in NHP groups.

Meta-regression of factors associated with variability in antibody

response levels in humans and evaluation of between-groups

heterogeneity

Sixty-one human vaccination groups with 8 individuals or more
were included in the meta-regression analysis.

Among these, 32 were vaccinated with a low dose of vaccine, 19
with a high dose (for 10 groups, the dose category was
undeterminable as only one dose level was assessed for the given
vaccine platform).

The distribution of the antibody titres after Ebola vaccination
per vaccination group is shown by vaccine platform in Figure 4. The
antibody response seems to be higher in groups with a prime-
boost strategy (Ad26/MVA or ChAd3/MVA) than in the other
groups. The distribution of the antibody titres by viral strain used
for antibody detection is presented in Figure S2 (appendix).

In univariate meta-regression analyses (appendix: Table S1),
the antibody response after Ebola vaccination was significantly
associated with the vaccine platform (p < 0.001), the viral strain
used to detect the antibody response after vaccination (p < 0.001),
the year of publication (for publication in 2014 and after versus
before 2014: +1.15, p < 0.001), the mean age of vaccinated
population (for �39 years versus <32 years: +0.90; p < 0.001),
the vaccine dosage (for high dose versus low dose: +0.57, p = 0.006),
the use of a vaccine boost (for boost versus no boost: +0.63,
p = 0.009), the similarity between the viral strain used as vaccine
insert and the viral strain used to detect the antibody response (for
identical strains versus different strains: �0.74, p = 0.009), the site
of the study (p = 0.014), the time interval between the last vaccine
injection and the antibody measure (for <28 days versus �28 days:

Figure 2. Description of the number of vaccine clinical trials against Ebola per country.

The Ring trial, single phase 3 trial (Guinea), has been excluded from the systematic review.

Several other vaccine clinical trials against Ebola are currently ongoing worldwide but only published trials are reported in the figure.

Figure 3. Number of vaccination groups of humans and of nonhuman primates,

according to the number of individuals by group.
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Table 2

Main characteristics of included non-human primates (NHP) groups.

Characteristic Vaccination schedule All NHP groups

No boost (n = 98) Boost (n = 30) n = 128

Vaccine platform

DNA vaccine (plasmid) 6 6.1% 0 0.0% 6 4.7%

Adenovirus 26 4 4.1% 0 0.0% 4 3.1%

Adenovirus 26 then adenovirus 35 0 0.0% 1 3.3% 1 0.8%

Adenovirus 35 4 4.1% 0 0.0% 4 3.1%

Adenovirus 5 8 8.2% 3 10.0% 11 8.6%

DNA vaccine (plasmid)/adenovirus 5 0 0.0% 2 6.7% 2 1.6%

CAdVax 6 6.1% 2 6.7% 8 6.2%

Chimpanzee adenovirus 3 2 2.0% 0 0.0% 2 1.6%

Chimpanzee adenovirus 63 1 1.0% 0 0.0% 1 0.8%

HPIV3 12 12.2% 7 23.3% 19 14.8%

MVA 1 1.0% 0 0.0% 1 0.8%

NDV 1 1.0% 1 3.3% 2 1.6%

RhCMV 1 1.0% 0 0.0% 1 0.8%

Whole-virus vaccine 4 4.1% 0 0.0% 4 3.1%

VLP 21 21.4% 10 33.3% 31 24.2%

VLP Kunjin 1 1.0% 1 3.3% 2 1.6%

VRP VEEV 3 3.1% 1 3.3% 4 3.1%

VSV 23 23.5% 2 6.7% 25 19.5%

Route of administration

Intramuscular 78 79.6% 21 70.0% 99 77.3%

Other routes 20 20.4% 9 30.0% 29 22.7%

Vaccine insert: Ebola species

Monovalent Zaire 63 64.3% 17 56.7% 80 62.5%

Monovalent no Zaire 6 6.1% 2 6.7% 8 6.2%

Monovalent no Zaire + monovalent Zaire 0 0.0% 1 3.3% 1 0.8%

Monovalent no Zaire + multivalent 0 0.0% 1 3.3% 1 0.8%

Multivalent 29 29.6% 7 23.3% 36 28.1%

Multivalent + monovalent Zaire 0 0.0% 2 6.7% 2 1.6%

Vaccine insert: Ebola strain (only for Zaire species)

Mayinga 34 64.2% 13 76.5% 47 67.1%

Kikwit 16 30.2% 4 23.5% 20 28.6%

Makona 3 5.7% 0 0.0% 3 4.3%

Missing data 45 – 13 – 58 –

Nonhuman primates species

Cynomolgus macaques 65 66.3% 17 56.7% 82 64.1%

Chimpanzees 10 10.2% 2 6.7% 12 9.4%

Rhesus macaques 22 22.4% 10 33.3% 32 25.0%

African green monkeys 1 1.0% 1 3.3% 2 1.6%

Year of publication

Publication < 2014 49 50.0% 14 46.7% 63 49.2%

Publication � 2014 49 50.0% 16 53.3% 65 50.8%

Time interval between last injection and antibody measure

Mean [standard deviation] 29.1 [363] 25.5 [762] 28.3 [319]

Missing data 3 – 0 – 3 –

Antibody measurement method

Maximal dilution 65 66.3% 18 60.0% 83 64.8%

Effective concentration 90 (EC90) 15 15.3% 2 6.7% 17 13.3%

Effective concentration 50 (EC50) 18 18.4% 10 33.3% 28 21.9%

Antigen used for antibody detection: nature

Glycoprotein (GP) 55 56.7% 7 24.1% 62 49.2%

Other nature (virion, viral protein 40) 42 43.3% 22 75.9% 64 50.8%

Missing data 1 – 1 – 2 –

Antigen used for antibody detection: Ebola strain

Mayinga 14 87.5% 8 100.0% 22 91.7%

Kikwit 2 12.5% 0 0.0% 2 8.3%

Missing data 82 – 22 – 104 –

Similarity between strain used as vaccine insert and strain used for antibody detection

Identical strains 12 100.0% 8 100.0% 20 100.0%

Missing data 86 – 22 – 108 –

CAdVax: complex adenovirus-based vector, DNA: deoxyribonucleic acid, GP: glycoprotein, HPIV3: human parainfluenza virus 3, MVA: modified vaccinia Ankara, NDV:

Newcastle disease virus, RhCMV: rhesus cytomegalovirus cytomegalovirus, VLP: virus-like particles, VRP VEEV: Venezuelan equine encephalitis virus replicon particle, VSV:

vesicular stomatitis virus.
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+0.70, p = 0.021), and the Ebola species of vaccine insert (for
multivalent and other species versus monovalent Zaire: �0.47,
p = 0.027).

Alone, the vaccine platform was the factor which explained the
largest part of heterogeneity among all the studied factors (R2 for

vaccine platform = 55%). For all the univariate models, the
heterogeneity was very high with I2 ranging from 97% to 99%.

Results of the final multivariate meta-regression model are
shown in Table 4. High heterogeneity was found with a I2 of 95%
and a R2 of 68%, even after adjustment on the factors associated

Table 3

Main characteristics of included human groups.

Characteristics Vaccination schedule All human groups

No boost (n = 48) Boost (n = 26) (n = 74)

Vaccine platform

DNA vaccine (plasmid) 9 18.8% 1 3.8% 10 13.5%

Adenovirus 26 3 6.2% 0 0.0% 3 4.1%

Adenovirus 26/MVA or MVA/adenovirus 26 0 0.0% 5 19.2% 5 6.8%

Adenovirus 5 6 12.5% 2 7.7% 8 10.8%

Chimpanzee adenovirus 3 14 29.2% 0 0.0% 14 18.9%

Chimpanzee adenovirus 3/MVA 0 0.0% 18 69.2% 18 24.3%

MVA 2 4.2% 0 0.0% 2 2.7%

VSV 14 29.2% 0 0.0% 14 18.9%

Route of administration

Intramuscular 48 100.0% 26 100.0% 74 100.0%

Vaccine insert: species

Monovalent Zaire 31 64.6% 19 73.1% 50 67.4%

Monovalent Zaire + multivalent 0 0.0% 4 15.4% 4 5.4%

Multivalent 17 35.4% 1 3.8% 18 24.3%

Multivalent + monovalent Zaire 0 0.0% 2 7.7% 2 2.7%

Vaccine insert: strain (only for Zaire species)

Mayinga 22 71.0% 22 91.7% 44 80.0%

Kikwit 5 16.1% 0 0.0% 5 9.1%

Makona 4 12.9% 0 0.0% 6 10.9%

Missing data 17 – 4 – 19 –

Proportion of women

Mean [standard deviation] 40% [18%] 52% [10%] 44% [17%]

Mean age (years)

Mean [standard deviation] 34.8 [45] 34.6 [54] 34.7 [48]

Geographic location of the study

Africa 14 29.2% 1 3.8% 15 20.3%

China 2 4.2% 2 7.7% 4 5.4%

Europe 15 31.2% 22 84.6% 37 50.0%

USA 17 35.4% 1 3.8% 18 24.3%

Year of publication

Publication < 2014 8 16.7% 0 0.0% 8 10.8%

Publication � 2014 40 83.3% 26 100.0% 66 89.2%

Time interval between last injection and antibody measure (days)

Mean [standard deviation] 31.2 [220] 26.1 [32] 29.3 [179]

Antibody measurement method

Maximal dilution 35 72.9% 24 92.3% 59 79.7%

Effective concentration 90 (EC90) 13 27.1% 2 7.7% 15 20.3%

Antigen used for antibody detection: nature

Glycoprotein (GP) 45 93.8% 25 96.2% 70 94.6%

Other nature (virion, nucleoprotein) 3 6.2% 1 3.8% 4 5.4%

Antigen used for antibody detection: Ebola strain

Mayinga 14 36.8% 16 72.7% 30 50.0%

Kikwit 18 47.4% 5 22.7% 23 38.3%

Makona 6 15.8% 1 4.5% 7 11.7%

Missing data 10 – 4 – 14 –

Similarity between strain used as vaccine insert and strain used for antibody detection

Different strains 9 32.1% 6 27.3% 15 30.0%

Identical strains 19 67.9% 16 72.7% 35 70.0%

Missing data 20 – 4 – 24 –

CAdVax: complex adenovirus-based vector, DNA: deoxyribonucleic acid, GP: glycoprotein, HPIV3: human parainfluenza virus 3, MVA: modified vaccinia Ankara, NDV:

Newcastle disease virus, RhCMV: rhesus cytomegalovirus cytomegalovirus, VLP: virus-like particles, VRP VEEV: Venezuelan equine encephalitis virus replicon particle, VSV:

vesicular stomatitis virus.
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Figure 4. Forest plot of antibody titre after Ebola vaccination for each vaccination group by vaccine platform. Colour codes indicate dose levels within a given platform. GP:

glycoprotein. PFU: plaque forming unit. VP: viral particle. TCID: tissue culture infectious dose.

References for Figure 4:

1: Agnandji 2016, VSV vaccine (3.106 PFU) with Zaire insert, Germany, detection with Zaire Kikwit GP

2: Agnandji 2016, VSV vaccine (2.107 PFU) with Zaire insert, Germany, detection with Zaire Kikwit GP

3: Agnandji 2016, VSV vaccine (3.105 PFU) with Zaire insert, Gabon, detection with Zaire Kikwit GP

4: Agnandji 2016, VSV vaccine (3.106 PFU) with Zaire insert, Gabon, detection with Zaire Kikwit GP

5: Agnandji 2016, VSV vaccine (3.106 PFU) with Zaire insert, Kenya, detection with Zaire Kikwit GP

6: Agnandji 2016, VSV vaccine (2.107 PFU) with Zaire insert, Kenya, detection with Zaire Kikwit GP

7: Agnandji 2016, VSV vaccine (1.107 PFU) with Zaire insert, Switzerland, detection with Zaire Kikwit GP

8: Agnandji 2016, VSV vaccine (5.107 PFU) with Zaire insert, Switzerland, detection with Zaire Kikwit GP

9: De Santis 2016, ChAd3 vaccine (2.5.1010 VP) with Zaire Mayinga insert, Switzerland, detection with Zaire Mayinga GP

10: De Santis 2016, ChAd3 vaccine (5.1010 VP) with Zaire Mayinga insert, Switzerland, detection with Zaire Mayinga GP
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with antibody response in this final model. This emphasises the
lack of factors that explained the antibody response among the
variables included in the model.

Vaccine platform and viral strain used for detection were the
two factors which were independently associated with antibody
response after vaccination against Ebola. Compared to the MVA
vaccine platform, the recombinant vaccines using DNA or Ad26
(associated or not with an injection of MVA vaccine), ChAd3or VSV
vectors were significantly associated with a higher antibody
response after vaccination (more than 1.2 log10 units more
compared to MVA alone). The statistical association between the
vaccine platform and the antibody response was strong and
consistent regardless of which other variables were included in the
model (sensitivity analyses, data not shown). The antibody
response using Makona strain for antibody detection was
significantly higher than with use of Mayinga strain (1 log10 unit
more compared to the Mayinga strain). By contrast, the antibody

response with Kikwit detection strain was not significantly
different from the ones with Mayinga strain.

The vaccine dosage, analysed as a binary variable of high versus
low dose in the present analyses, was not found to be associated
with antibody response variability. Different classifications were
tested for this variable (same threshold across the different vaccine
platforms corresponding to the mean dose level for categorizing
into “low-dose” and “high-dose” groups, classification into three
categories, classification of groups with undifferentiated dosages
into “low-dose” or into “high-dose” groups), but the dosage was
never significant in the multivariate models in these sensitivity
analyses (data not shown), nor was the interaction between dose
and vaccine platform.

In additional sensitivity analyses, a full model including all
variables significantly associated with the antibody response in
univariate models (i.e. with no forward selection procedure) did
not modify heterogeneity (I2 = 92%) compared to the model

11: Ewer 2016, ChAd3 vaccine (2.5.1010 VP) with Zaire Mayinga insert + boost MVA vaccine at D7 (1.5.108 PFU) with multivalent insert, United Kingdom (UK), detection with

Zaire Mayinga GP (Jenner method)

12: Ewer 2016, ChAd3 vaccine (2.5.1010 VP) with Zaire Mayinga insert + boost MVA vaccine at D7 (1.5.108 PFU) with multivalent insert, UK, detection with Zaire Mayinga GP

(ADI method)

13: Ewer 2016, ChAd3 vaccine (2.5.1010 VP) with Zaire Mayinga insert + boost MVA vaccine at D14 (1.5.108 PFU) with multivalent insert, UK, detection with Zaire Mayinga GP

(Jenner method)

14: Ewer 2016, ChAd3 vaccine (2.5.1010 VP) with Zaire Mayinga insert + boost MVA vaccine at D14 (1.5.108 PFU) with multivalent insert, UK, detection with Zaire Mayinga GP

(ADI method)

15: Ewer 2016, ChAd3 vaccine (1 to 5.1010 VP) with Zaire Mayinga insert + boost MVA vaccine (1.5.108 PFU) with multivalent insert, UK, detection with Zaire Makona virion

16: Huttner 2015, VSV vaccine (3.105 PFU) with Zaire insert, Switzerland, detection with Zaire Kikwit GP

17: Kennedy 2017, ChAd3 vaccine (2.1011 PU) with Zaire insert, Liberia

18: Kennedy 2017, VSV vaccine (2.107 PFU) with Zaire insert, Liberia

19: Kibuuka 2015, 3 injections of DNA vaccine (4 mg) with multivalent insert, Uganda, detection with Zaire GP

20: Kibuuka 2015, 3 injections of DNA vaccine (8 mg) with multivalent insert, Uganda, detection with Zaire GP

21: Ledgerwood 2010, Ad5 vaccine (2.109 VP) with multivalent insert, USA, detection with Zaire GP

22: Ledgerwood 2010, Ad5 vaccine (2.1010 VP) with multivalent insert, USA, detection with Zaire GP

23: Ledgerwood 2014, ChAd3 vaccine (2.1010 PU) with multivalent insert, USA, detection with Zaire Mayinga GP

24: Ledgerwood 2014, ChAd3 vaccine (2.1010 PU) with multivalent insert, USA, detection with Zaire Makona GP

25: Ledgerwood 2014, ChAd3 vaccine (2.1011 PU) with multivalent insert, USA, detection with Zaire Mayinga GP

26: Ledgerwood 2014, ChAd3 vaccine (2.1011 PU) with multivalent insert, USA, detection with Zaire Makona GP

27: Li 2017, 2 injections of Ad5 vaccine (4.1010 VP) with Zaire Makona insert, China

28: Li 2017, 2 injections of Ad5 vaccine (1.6.1011 VP) with Zaire Makona insert, China

29: Martin 2006, 3 injections of DNA vaccine (2 mg) with multivalent insert, USA, detection with Zaire NP

30: Martin 2006, 3 injections of DNA vaccine (4 mg) with multivalent insert, USA, detection with Zaire GP

31: Martin 2006, 3 injections of DNA vaccine (4 mg) with multivalent insert, USA, detection with Zaire NP

32: Martin 2006, 3 injections of DNA vaccine (8 mg) with multivalent insert, USA, detection with Zaire GP

33: Martin 2006, 3 injections of DNA vaccine (8 mg) with multivalent insert, USA, detection with Zaire NP

34: Milligan 2016, MVA vaccine (108 TCID50) with multivalent insert, UK, detection with Zaire Kikwit GP

35: Milligan 2016, MVA vaccine (108 TCID50) with multivalent insert + boost Ad26 vaccine at D28 (5.1010 VP) with Zaire Mayinga insert, UK, detection with Zaire Kikwit GP

36: Milligan 2016, Ad26 vaccine (5.1010 VP) with Zaire Mayinga insert, UK, detection with Zaire Kikwit GP

37: Milligan 2016, Ad26 vaccine (5.1010 VP) with Zaire Mayinga insert + boost MVA vaccine at D28 (108 TCID50) with multivalent insert, UK, detection with Zaire Kikwit GP

38: Milligan 2016, MVA vaccine (108 TCID50) with multivalent insert, UK, detection with Zaire Kikwit GP

39: Milligan 2016, MVA vaccine (108 TCID50) with multivalent insert + boost Ad26 vaccine at D56 (5.1010 VP) with Zaire Mayinga insert, UK, detection with Zaire Kikwit GP

40: Milligan 2016, Ad26 vaccine (5.1010 VP) with Zaire Mayinga insert, UK, detection with Zaire Kikwit GP

41: Milligan 2016, Ad26 vaccine (5.1010 VP) with Zaire Mayinga insert + boost MVA vaccine at D56 (108 TCID50) with multivalent insert, UK, detection with Zaire Kikwit GP

42: Milligan 2016, Ad26 vaccine (5.1010 VP) with Zaire Mayinga insert, UK, detection with Zaire Kikwit GP

43: Milligan 2016, Ad26 vaccine (5.1010 VP) with Zaire Mayinga insert + boost MVA vaccine at D14 (108 TCID50) with multivalent insert, UK, detection with Zaire Kikwit GP

44: Rampling 2015, ChAd3 vaccine (1010 VP) with Zaire Mayinga insert, UK, detection with Zaire GP

45: Rampling 2015, ChAd3 vaccine (2.5.1010 VP) with Zaire Mayinga insert, UK, detection with Zaire GP

46: Rampling 2015, ChAd3 vaccine (5.1010 VP) with Zaire Mayinga insert, UK, detection with Zaire GP

47: Regules 2015, VSV vaccine (3.106 PFU) with Zaire Kikwit insert, USA, detection with Zaire Kikwit GP

48: Regules 2015, VSV vaccine (3.106 PFU) with Zaire Kikwit insert, USA, detection with Zaire Mayinga GP

49: Regules 2015, VSV vaccine (2.107 PFU) with Zaire Kikwit insert, USA, detection with Zaire Kikwit GP

50: Regules 2015, VSV vaccine (2.107 PFU) with Zaire Kikwit insert, USA, detection with Zaire Mayinga GP

51: Sarwar 2015, 3 injections of DNA vaccine (4 mg) with multivalent insert, USA, detection with Zaire GP

52: Sarwar 2015, 4 injections of DNA vaccine (4 mg) with multivalent insert, USA, detection with Zaire GP

53: Tapia 2016, ChAd3 vaccine (1010 VP) with Zaire insert, Mali, detection with Zaire GP

54: Tapia 2016, ChAd3 vaccine (2.5.1010 VP) with Zaire insert, Mali, detection with Zaire GP

55: Tapia 2016, ChAd3 vaccine (5.1011 VP) with Zaire insert, Mali, detection with Zaire GP

56: Tapia 2016, ChAd3 vaccine (1012 VP) with Zaire insert, Mali, detection with Zaire GP

57: Tapia 2016, ChAd3 vaccine (1010 to 1012 VP) with Zaire insert + boost MVA vaccine at D97 (2.108 PFU) with multivalent insert, Mali, detection with Zaire GP

58: Zhu 2015, Ad5 vaccine (4.1010 VP) with Zaire Makona insert, China, detection with Zaire Makona GP

59: Zhu 2015, Ad5 vaccine (1.6.1011 VP) with Zaire Makona insert, China, detection with Zaire Makona GP

60: Zhu 2016, Ad5 vaccine (4.1010 VP) with Zaire Makona insert, Sierra Leone, detection with Zaire Makona GP

61: Zhu 2016, Ad5 vaccine (1.6.1011 VP) with Zaire Makona insert, Sierra Leone, detection with Zaire Makona GP
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presented above. In the full model, the vaccine platform was
significantly associated with the antibody response (p = 0.002), but
the viral strain used to detect the antibody response after
vaccination was not (p = 0.996). The other variables were not
associated with the antibody response.

Discussion

This systematic review on preventive Ebola vaccine trials has
found 49 studies conducted in humans or in NHP. The meta-
analysis, using a random-effect inverse variance meta-regression
including 61 human vaccination groups, showed a major part of
antibody response variability in humans that remained unex-
plained by the factors included in the model. Indeed, the between-
group heterogeneity I2 exceeded 90%, even after adjustment for the
factors associated with antibody response. Two significant
determinants were independently associated with antibody
response after preventive vaccination against EVD: the Ebola
vaccine platform and the Ebola strain used for antibody detection.

The use of a systematic review methodology, including
solicitation of experts, allowed us to conduct exhaustive descrip-
tive analyses on all Ebola vaccinated groups in NHP or humans
published in the literature up to January 2017. Our descriptive
results showed an extreme variability of study designs and
features, especially in nonhuman primate trials. This variability
is related to the recentness of the research topic. The higher
variability within nonhuman primate studies compared to human
trials is easily explained by the process of vaccine development,
which selects for further clinical trials only the subset of candidate
vaccines proven to be immunogenic in nonhuman primates. The
comparison of antibody response levels between humans and
nonhuman primate only had an indicative purpose. It is indeed
difficult to compare these very different models, mostly because of
potential multiple confounding factors.

Due to the low sample size of each group of nonhuman
primates, we decided to restrict heterogeneity analyses to human
groups. Human groups with small sample size were excluded,
since their between-group variance would have been too low to
contribute to the meta-regression model. It was not possible to
pool small groups together because of high heterogeneity in the
factors likely to influence the antibody response (vaccine and
population characteristics, and measure of antibody response). The
threshold of at least 8 individuals per group allowed us to include
the majority of human groups in the meta-regression. Sensitivity
analyses using a threshold of 10 individuals led to the same final
results.

The very high heterogeneity between vaccination groups could
be explained by various reasons. Firstly, some factors influencing
the antibody response may be missing, for instance, genetic factors
that are influencing the immunogenicity of the vaccines (Sridhar,

2015). Secondly, the analysis of grouped data, due to unavailability
of individual data for the groups included in our meta-regression
model, led to a lack of precision in the estimation of influence of
factors on antibody response, and also in the evaluation of
antibody response heterogeneity across vaccination groups.
Thirdly, the enzyme-linked immunosorbent assay (ELISA) measur-
ing relative antibody concentration of immunoglobulin G against
EBOV glycoprotein used in the different trials could have a
variation of its precision (Logue et al., 2018). Lastly, the extreme
variability of study designs certainly explains parts of the high
between-group variance for antibody response observed in our
results.

Despite the major between-group heterogeneity in our meta-
regression model, two factors significantly associated with
antibody response variability could be identified. The Ebola strain
used for antibody detection seems to influence the results of ELISA
tests. This demonstrates the importance of harmonisation for the
measurement methods used in vaccines evaluations, and high-
lights the difficulty in directly comparing published results across
several trials. The Ebola vaccine platform was also strongly
associated with antibody response.

For the other factors studied in our meta-analysis, no
association was found with the antibody response variability. In
particular, the vaccine dosage did not have any significant
influence on the level of the antibody response in our results.
We acknowledge that the use of a binary variable may have limited
the ability to detect a dose-effect in the meta-regression. However,
the regression result is consistent with the descriptive results that
also did not suggest a clear dose-immunogenicity relationship
within a given vaccine platform.

No population characteristic was independently associated
with the antibody response after Ebola vaccination. It may be
possible that the low diversity of the population, which is directly
related to the strict criteria for selection of trial participants,
prevented the identification of a potential impact of these
population characteristics on the antibody response.

Conclusion

Our findings show that there are still significant uncertainties in
the determinants of the antibody response after preventive
vaccination against Ebola virus disease. This emphasises the
interest of harmonizing measurement methods and study designs.
Furthermore, it indicates the impossibility to directly compare
results from one published study to another or to extrapolate
results, due to considerable variations in studies features.
Assessment of immunogenicity between Ebola vaccines needs
randomised controlled multi-arm trials, as performed in PREVAIL
study (NCT02344407) and PREVAC study (NCT02876328).

Table 4

Results of a random-effect meta-regression model (with fixed intragroup variance) of determinants of antibody titre (log10) after Ebola vaccination according to

characteristics of vaccine, population, and measurement techniques. Multivariate analysis. I2 = 95.31%, R2 = 68.45%.

Determinants of antibody response Estimated β [CI 95%] p value

Vaccine platform (reference: MVA vaccine) <0.001

DNA 0.43 [�0.52; 1.37] 0.379

Ad26 1.15 [033; 197] 0.006

Ad26/MVA or MVA/Ad26 2.32 [158; 307] <0.001

Ad5 0.54 [�0.42; 1.50] 0.268

ChAd3 0.97 [010; 183] 0.028

ChAd3/MVA 0.81 [�0.13; 1.76] 0.091

VSV 1.46 [079; 213] <0.001

Viral strain used for antibody detection (reference: Mayinga strain) <0.001

Kikwit 0.30 [�0.27; 0.86] 0.301

Makona 0.99 [050; 148] <0.001
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In human immunodeficiency virus–infected patients, antiretroviral therapy

suppresses the viral replication, which is followed in most patients by a restora-

tion of CD4+ T cells pool. For patients who fail to do so, repeated injections of

exogenous interleukin 7 (IL7) are experimented. The IL7 is a cytokine that is

involved in the T cell homeostasis and the INSPIRE study has shown that injec-

tions of IL7 induced a proliferation of CD4+ T cells. Phase I/II INSPIRE 2 and

3 studies have evaluated a protocol in which a first cycle of three IL7 injections

is followed by a new cycle at each visit when the patient has less than 550 CD4

cells/�L. Restoration of the CD4 concentration has been demonstrated, but the

long-term best adaptive protocol is yet to be determined. Amechanisticmodel of

the evolution of CD4 after IL7 injections has been developed, which is based on a

system of ordinary differential equations and includes random effects. Based on

the estimation of this model, we use a Bayesian approach to forecast the dynam-

ics of CD4 in new patients. We propose four prediction-based adaptive protocols

of injections tominimize the time spent under 500CD4 cells/�L for each patient,

without increasing the number of injections received too much. We show that

our protocols significantly reduce the time spent under 500 CD4 over a period

of two years, without increasing the number of injections. These protocols have

the potential to increase the efficiency of this therapy.

KEYWORDS

adaptive protocols, HIV, interleukine 7, mechanistic models

1 INTRODUCTION

Infection by the human immunodeficiency virus (HIV) leads to a decrease of the concentration of CD4+ T lymphocytes
(CD4) associated with a deficiency of the immune system, which increases the risk of opportunistic infections.1 With
an effective combination antiretroviral treatment, the viral load becomes undetectable. The CD4 pool is then reconsti-
tuted in most cases.2 However, this does not happen for some patients3 who are low immunological responders. These
patients, who present CD4 counts below 500 cells/�L of blood, have a lower life expectancy4 and an increase of nonac-
quired immunodeficiency syndrome conditions, such as cancer or cardiovascular diseases.5 To help the reconstitution
of the CD4 pool, a treatment based on injections of exogenous interleukin 7 (IL7) has been experimented. The IL7 is a
cytokine produced by thymus stromal cells and lymph nodes and is involved in the CD4 homeostasis.6,7 Several trials

Statistics in Medicine. 2018;1–15. wileyonlinelibrary.com/journal/sim © 2018 John Wiley & Sons, Ltd. 1
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have demonstrated the safety and the beneficial effect of exogenous IL7 on immunemarkers.8,9,10 Repeated cycles of three
injections of IL7 have been evaluatedwith the aim ofmaintaining the CD4 counts above 500 cells/�L because, in this case,
HIV infected subjects have about the same life expectancy as the general population.11 In the phase I/II trials INSPIRE 2
and 3,12 the repeated cycles of IL7 could indeed maintain CD4 concentration above the limit of 500 cells/�L most of the
time, although the best adaptive protocol is yet to be determined.
Mechanistic models, based on ordinary differential equations (ODEs), have been applied to model different infec-

tious diseases, eg, modeling of the HIV,13-15 the hepatitis C,16,17 or the human cytomegalovirus,18 and other health-related
processes.19 They have also been used to understand and predict the effects of IL7. A first work quantified the effect of
exogenous IL7 on the proliferation rate of CD4 cells and showed an additional effect on the cells' survival.20 The model
was then extended to fit repeated injections.21 Thanks to a population approachwith random effects, themodels were able
to predict future individual responses to new injections of IL7 with a very good accuracy. This opened the opportunity to
individualize the strategy of IL7 administration.
Dynamical adaptation of the treatment as a function of the response of the patient has been proposed by Murphy22

and Robins23 who developed the optimal treatment regime theory. Many papers have followed in this field.24-27 Methods
based on semi parametric models and dynamic treatment regimens exist.28 However, as Rich et al28 underlined, these
methods are not realistic enough and they often miss some important confounders. This issue can be solved by using
mechanistic models.29 When an ODE-based mechanistic model is available, the modeled treatment can be adapted using
this model. This has been described by Rosenberg et al30 for the supervised treatment interruption strategies, or in the
pharmacokinetic-pharmacodynamic field.17,31 The optimal control theory can be applied for globally optimizing the treat-
ment regime, which has been proposed by Castiglione and Piccoli,32 and applied to optimizing the treatment of HIV
infected patients.33,34 However, as noted by Chakraborty and Murphy35 these works do not sufficiently take into account
the statistical issues of the problem, ie, model parameters have to be estimated and for efficient estimation and random
effects have to be introduced in the statistical model. Such random effect mechanistic model has been applied to tune the
dose of an antiretroviral treatment by Prague et al.36

In the present paper, we aim to find efficient adaptive protocols for IL7 administration based on predictions from a ran-
dom effect mechanistic model proposed in the work of Jarne et al.21 Here, we propose realistic protocols that shorten the
time spent under the limit of 500 CD4 cells/�L and limit the number of IL7 injections. Two approaches will be compared,
ie, adapting the criterion for a new cycle based on the risk of falling under 500 CD4 cells/�L before the next visit, and
adapting the times of control visits. Both of these approaches are based on predictions generated with our random effect
mechanistic model at relatively short term to locally optimize the protocols. This is less ambitious than optimal control
but is more feasible and the proposed protocols could soon be proposed to real patients. In both approaches, we may or
may not adapt also the number of injections per cycle, leading to four possible protocols.
This paper is organized as follows. Section 2 describes the data from INSPIRE 1, 2, and 3, and the design of the protocol

for repeated cycles. Section 3 presents themathematical and statistical features of themodel. In Section 4, we describe two
prediction-based adaptive protocols and their two variants adapting the number of injections per cycle or not. Section 5
presents the simulation study and its results, while Section 6 shows what the method would have predicted for real data.
Section 6 concludes this paper.

2 DATA

The data used for the mechanistic model are drawn from the INSPIRE 1, 2, and 3 studies.8,12 These studies evaluated
the effect of injections of IL7 on the CD4 concentration in low immunological responders aged 18 years or more. The
patients were included in the study if they were under stable combination antiretroviral treatment for at least one year,
had CD4 counts between 100 and 400 cells∕�L of blood, and had an undetectable viral load for at least 6 months before
the beginning of the protocol.
The first study, INSPIRE 1 (initially called simply “INSPIRE”), evaluated the effect of one cycle of injection, which is

defined as three injections with oneweek between each one. Three doses (10, 20, and 30 �g/Kg) were tested, and a placebo
was included, for a total of 21 patients. The INSPIRE 2 and 3 studies evaluated the effect of repeated cycles of injections,
using only the 20 �g/Kg, which was determined to be the most effective without too many side effects.
Overall, the data from 128 patients are used, with regular measurements of the CD4 counts and the marker of prolif-

eration Ki67. The patients had visits at weeks 1, 2, 3, 4, 5, 6, 9, and 12, and then visited every 3 months. The CD4 counts
were measured at each visit, while Ki67 counts were measured only at weeks 1, 2, 3, 5, and 12. For the repeated cycles,
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FIGURE 1 Design of INSPIRE 2 study. The screening phase determines the concentrations of CD4 at baseline to include or not the

patient. The induction phase starts with a first cycle of three interleukin 7 (IL7) injections at weeks 1, 2, and 3. The maintenance phase then

controls the patient every 3 months with a new cycle if the patient is under 550 CD4. The green dots represent the measures of CD4 counts,

and blue dots the measures of Ki67 [Colour figure can be viewed at wileyonlinelibrary.com]

the maintenance phase consisted in repeated visits every 3 months. When the CD4 counts were below 550, a new cycle
of injections was administered. The durations of the studies were 12, 24 and 21 months for INSPIRE, INSPIRE 2, and 3,
respectively. The design of INSPIRE 2 is presented in Figure 1.
The high heterogeneity of the data in terms of number of injections per cycles, number of cycles received and dose, and

the availability of regular measurements of different immunological markers makes this an interesting dataset for mod-
eling. Overall, 197 cycles were administered for 128 patients, with 41 incomplete cycles (one or two injections instead
of three). Because the patients had different trajectories of CD4 counts, they had different times of injections in the
maintenance phase.

3 MECHANISTIC MODEL FOR IL7 TREATMENT

3.1 Modeling of the effect of IL7 injections on CD4 concentration

A mechanistic model for the evolution of the CD4 concentration after repeated IL7 injections was proposed in the work
of Jarne et al.21 In this paper, a two compartment model was described, with the compartment P for the proliferating cells
and the compartmentQ for the quiescent cells. This model and the different effects on the parameters have been selected
with the approximate Likelihood Cross Validation criteria (LCVa),37 as described in the works of Thiebaut et al20 and
Jarne et al.21 The mathematical structure of the model is written as

⎧
⎪⎨⎪⎩

dQ

dt
= � + 2�P − �Q − �QQ

dP

dt
= �Q − �P − �PP.

We allow the parameters to be different from one subject to another. Thus, we denote by �i the vector of parameters of
the ODE system, ie, �i = [�i, �i, �i, �i

Q
, �i

P
] for patient i (i = 1, … ,n) and by Xi = (Q(t, �i),P(t, �i)) his state vector. All

of the parameters are positive because they are rates of proliferation, production, and death for cells. Hence, we use a log
transformation denoted by a tilde, ie, �̃

i
l = log(�i

l
). The meaning and units of each parameter are detailed in Table 1.
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TABLE 1 Parameters of the model and their estimates from the work of Jarne et al21 [Correction

added on 4 October 2018, after first online publication: the Name and Unit in rows 6-8 and 10 have

been corrected]

Parameter Name Units Estimate mean (sd)

� Production rate cells.days−1 5.32 (0.33)
� Reversion rate days−1 2.44 (0.23)
� Proliferation rate days−1 0.06 (0.004)
�P Death rate of P cells days−1 0.07 (0.005)
�Q Death rate of Q cells days−1 0.08 (0.02)

��1 Effect of IL7 on � (Injection 1) days−1.�g−1 0.93 (0.04)

��2 Effect of IL7 on � (Injection 2) days−1.�g−1 0.71 (0.04)

��3 Effect of IL7 on � (Injection 3) days−1.�g−1 0.23 (0.04)

��Q Effect of IL7 on �Q days−1.�g−1 -0.08 (0.006)

�C Cycle effect of IL7 days−1 -0.16 (0.02)
�� Standard deviation of random effect on � cells.days−1 0.24 (0.03)
�� Standard deviation of random effect on � days−1 0.52 (0.08)

�1 Noise parameter on CD4 cells cells0.25 0.29 (0.003)

�2 Noise parameter on P cells cells0.25 0.28 (0.02)

Abbreviations: IL7, interleukin 7.

The initial condition for subject i is the equilibrium point, ie, dQ
dt
(0, �i) = 0, dP

dt
(0, �i) = 0, which gives the initial points

Q(0, �i) =
�i(�i+�i

P
)

�i(�i
P
−�i)+�i

Q
(�i+�i

P
)
,P(0, �i) = �i�i

�i(�i
P
−�i)+�i

Q
(�i+�i

P
)
.

A patient-by-patient inference is inefficient if there is not enough information for each subject; hence, we need a sta-
tistical model of the variability of the parameters using both explanatory variables with fixed effects and random effects.
It can be written as

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�̃i(t) = �̃0 + li

�̃i(t) = �̃0 +

[
�C1{Ci(t)>1} +

3∑
k=1

1{N i
t=k}

��k d
0.25
i

]
1{N i

t−N
i
t−7=1}

�̃i(t) = �̃0 + ri

�̃i
Q
(t) = �̃Q0

+ ��Q�
i(t)d0.25

i

�̃i
P
(t) = �̃P0 ,

(1)

where li and ri are normally distributed random effects li ∼  (0, �2
�
) and ri ∼  (0, �2�); C

i(t) counts the number of cycles
and �C represents the cycle effect, meaning that, after one cycle, the effect of IL7 on the proliferation can be lower; ��k is
the effect of the injection on the proliferation, k being 1, 2, or 3 depending on whether the injection is the first, second, or
third of the cycle. The effects on � are constant during 7 days after each injection, and they then disappear. N i

t counts the
number of injections that patient i has received until time t; thus, 1{N i

t−N
i
t−7=1}

is an indicator function taking the value 1

if an injection was administered in the last 7 days. Let Tit be the time of the last injection received by the patient i at the
time t; the effect on �Q is represented by ��Q� (t), with f written as

� i(t) =

⎧⎪⎨⎪⎩

1, if 2 + Tit < t ≤ 360 + Tit
1 − (t − 360)∕360, if 360 + Tit < t ≤ 720 + Tit
0, if 720 + Tit < t.

In our data, the variables P andQ are not directly observed. The observations correspond to the total number of CD4 and
the number of proliferating cells; hence, we also need an observation model. The observation ofM biomarkers are related
to the solution of the ODE with the function g, ie, Y i

mq = gm(�
i, tq)0.25 + �im�

,m = 1, … ,M. Here,M = 2, as we observe

the CD4 counts and the Ki67 counts. Denoting by Y i
1� the fourth root of the CD4 counts, and by Y

i
2k
, the Ki67 counts for

patient i at times tij ( j = 1, … , Ji) and tik (k = 1, … ,Ki), respectively. This gives the following observation model:
{
Yi1� =

[
P
(
ti� , �

i
)
+ Q

(
ti� , �

i
)]0.25

+ �i1�

Yi
2k

= P
(
tik, �

i
)0.25

+ �i
2k
.

(2)
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We assume that noises variables are normally distributed, ie, �i1� ∼  (0, �21), �
i
2k

∼  (0, �22). This parameter includes the
measurement error and the biological variation not taken into account in the model, eg, the diurnal variation of the CD4
concentration. The fourth root transformation has been applied to make homoscedasticity and normality acceptable.20

3.2 Inference and estimation

To estimate the parameters of themodel, Jarne et al21 used the NIMROD program.38 The implemented estimationmethod
is based on penalized log-likelihoodmaximization. This is a quasi-Bayesian approach in the sense that penalization is built
from a priori values for the parameters found in the literature. Then, this penalized log-likelihood is maximized using a
Newton-Raphson like algorithm, called robust variance scoring.39 The iterative algorithm stops when the relative distance
to maximum criterion is satisfied. The results of this inference are displayed in Table 1. There are enough observations to
consider that the posterior distributions are close to normal distribution (in virtue of the Bernstein-vonMises theorem40),
so that results in Table 1 can be interpreted as summarizing the (marginal) posterior distributions of the parameters by
their expectations and their standard deviations.

4 PREDICTION-BASED ADAPTIVE PROTOCOLS

4.1 General method

In the original protocol of INSPIRE 2 and 3 studies, which is called the “original” (ORI) protocol, patients start a first
cycle of injections, with CD4 counts measurements at the times of injections. There are visits every 3 months. A new
cycle is administered if the CD4 counts are below 550 CD4. The aim is to prevent CD4 concentration to fall under 500.
Thus, the original protocol is already an adaptive protocol, but because the patients have different CD4 dynamics, this
fixed criterion is not always appropriate. If a patient tends to return quickly to his or her baseline concentration, then the
margin can be too small and the decision not to administer a new cycle can lead to cross the limit of 500 CD4 shortly after
the control. In contrast, for some patients, the CD4 concentration decreases slowly after an injection, and the criterion of
550 CD4 for a new cycle may be too high, which results in unnecessary cycles and visits. Here, we propose protocols that
are based on the prediction that can be done with a mechanistic model with the aim of decreasing the time spent under
the limit of 500 CD4, while controlling the number of IL7 injections.
Weuse amechanisticmodel that fits the dynamics of CD4 following a cycle of IL7 injections; the fixed effects parameters

have been estimated using all observations of the three INSPIRE studies. For the mixed effect parameters, � and �, we
have an estimation of the mean of the parameters on the population and the variance of their random effects (�2

�
and �2�).

With these estimates and the information for the patient i available at the time k, calledH
tk
i
, we used anMCMC algorithm

to sample the posterior distribution of the individual parameters �i and �i. For given values of the parameters of a patient,
we can predict the evolution of his or her CD4 concentration.36 Taking into account the uncertainty on the parameters,
we can also compute the distribution of any quantity related to the future CD4 concentration dynamic. This prediction
can be used to adapt the treatment. Every time that the patient comes for a control visit, we have access to new data so
that H

tk
i
⊂ H

tk+1
i
; thus, the prediction is more precise as time goes on.

The algorithm used for sampling the random effects of the patient is a Metropolis within Gibbs.41 At each iteration,
� and � are successively sampled. In the Metropolis part of the algorithm, the instrumental function used for the first
estimation of the protocol (3-month control) is the posterior law estimated with NIMROD. The standard error of the prior
for � and � is the one estimated with NIMROD (respectively, sd� = 0.33 and sd� = 0.23; see Table 1) added with the
standard error associated with the random effect (respectively, �� = 0.24 and �� = 0.52; see Table 1), as the variability
comes from both the error of estimation and the interindividuals variability. Then, for each control visit after the first one,
the distribution given by the previous MCMC is used as the new prior. The likelihood used in the MCMC procedure is42

Li =

M∏
m=1

Km∏
�=1

1

�m
√
2�

exp
⎡
⎢⎢⎣
−
1
2

⎛
⎜⎜⎝
Y i
��

− gm
(
t� , �i

)0.25
�m

⎞
⎟⎟⎠

2⎤
⎥⎥⎦
.

As presented in the work of van der Vaart,40 according to Doob's theorem, the distribution of the parameters �̂i with the
data from patient i at time tk (H

tk
i
) converges to the Dirac of the true value of the parameters, �(�i), when k tends to infinity.



6 VILLAIN ET AL.

FIGURE 2 Flowchart of the two protocols. Adaptive criterion of injection (ACI) protocol: adaptive criterion protocol, the visits are every 3

months and the decision to administer a new cycle is based on the predicted risk R to fall under 500 CD4 before the next visit. Adaptive time

of injection (ATI) protocol: adaptive times protocol, the times of visit are predicted based on the time at which the patient is supposed to

reach the 500 CD4 limit, and a new cycle is administered if this predicted time is too short

Wepropose two prediction-based adaptive approaches; the first is based on an adaptive criterion of injections (ACIs); the
second is based on an adaptive time of injections (ATIs). Both approaches have a variant where the number of injections
per cycle can be adapted. Figure 2 presents the flowchart of the two approaches.

4.2 Prediction ability on real data

Before developing and studying prediction-based adaptive protocols, it is essential to study the prediction ability of our
model. In this aim, we randomly excluded 10 patients from the data and estimated the parameters of the model on the
reduced data set. For each excluded patient, we ran the MCMC algorithm using the estimates from the diminished data
set. For an excluded patient i, at each time of control (every 3 months), the MCMC algorithm gives a distribution of
CD4 concentration at every time of observation tj. At each iteration q of the MCMC, we can generate the predicted dis-
tribution of observation at each time tij by computing CD4

i
�q = P(ti� , �

iq) + Q(ti� , �
iq), and adding a noise variable, ie,

Yi1�q = (CD4i�q)
0.25 + �i1�q. Figure 3 shows examples of these predicted distributions for four (out of the 10) patients. The

black line represents themean of the future trajectories and the light blue band represents 95% credible intervals; the dark
blue band represents 95% predictive interval of observations, and the black dots are the observed values. The 95% credible
and predictive intervals were computed by excluding the 2.5%most extreme values of each side of the distribution. If the
model is well calibrated, then the black dots should be inside the dark blue band, which is the case here.
To show the good calibration of the predicted distributions, a quantile analysis was done. The process of studying the

prediction for 10 excluded patients was repeated 10 times leading to a total of 100 patients, and we analyzed the distri-
butions of the observed data with respect to the predicted distributions by a quantile-quantile plot. The quantiles of the
predicted distributions should be the same as the observed quantiles, which was indeed essentially the case, as shown in
the quantile-quantile plot presented in the Web Supplementary 1.

4.3 Protocol with ACIs

The ACI protocol is similar to the original protocol, ie, the patients come every 3 months for a control visit. However,
instead of using the fixed criterion of CD4 counts below 550, we predict the risk R that the CD4 concentration will fall
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FIGURE 3 Prediction intervals for four random patients. Light blue band: 95% credible interval of trajectories. Dark blue band: 95%

predictive interval of observations. Black line: mean of predicted trajectories. Black dots: real-data observations [Colour figure can be viewed

at wileyonlinelibrary.com]

below500 before the next visit.With the distribution of parameters given by theMCMCalgorithmpresented in Section 4.1,
we can directly have the distribution of CD4 concentration at 3 months, which allows us to compute R

R
(
�̂i|Htk

i

)
= P

(
g1

(
tk + tvisit, �̂

i
)
> 500|Htk

i

)
,

where tvisit is the time between two controls (3 months in INSPIRE studies). If R is larger than a limit risk called Rlim (for
instance, 10%), a new cycle of injections is administered. If R < Rlim, then the patients simply comes back 3months later.
At each visit, the MCMC algorithm is done with new data, and the decision is made with the value of the risk R.
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4.4 Protocol with ATIs

In theATI protocol, the injections times are adaptive. The patient starts his or her first cycle and then comes back 3months

later. We denote tinj such as g1(tinj, �̂
i) = 500, the time at which the patient will reach the 500 CD4 limit. Then, with the

MCMC algorithm, we sample the distribution of tinj and select tinjp as the p quantile (for instance the 0.1 quantile) of this
distribution, ie,� (tinj < t

inj
p ) = p. If tinjp is larger than a fixed limit (here, 1 month), the patient comes for a new visit at

the time tinjp . If not, then a new cycle is administered immediately and the next time of visit is computed again at the end
of the cycle. The time between two cycles is chosen here to be at least 1 month because it is clinically relevant.

4.5 Adaptive number of injections: ACIC and ATIC protocols

Up to now, the proposed protocols used cycles of three injections. In the work of Jarne et al,21 the usefulness of the third
injection was questioned. The estimation of the effect of this injection, ��3, showed that the impact of this injection on
the proliferation rate is much smaller compared to the first two injections. A comparison of the simulation of protocols
showed that the original protocol with only two injections per cycle reduced the number of injections without impacting
the time spent under 500 CD4 or the mean number of CD4. We propose a modification of the ACI and ATI protocols for
adapting the number of injections per cycle, a C is added in the end of their names to represent the adaptation inside a
cycle, leading to the ACIC and ATIC protocols.

• Protocol ACIC: When a decision for a new cycle is taken, the aim is to decide if the decision to diminish the number of
injections will change the decision to inject or not at the next time of control. To do this, we compare the risks to fall

under 500 CD4 at the next control visit for a cycle of three, two, or one injection, ie, R(�̂i�|Htk
i
) = � (g1(�̂

i
� , tk + 2tvisit) >

500|Htk
i
), with j ( j = 1, … , 3) being the number of injections of the cycle, and �̂i� depending on this number of injection

as presented in Equation 1. If in any case a cycle of injections would be necessary at the next time of visit, meaning

that R(�̂i3|Htk
i
) is superior to the chosen Rlim, then we consider that the patient needs a cycle of three injections. If this

is not the case, and if both R(�̂i2|Htk
i
) and R(�̂i1|Htk

i
) are inferior to Rlim, then a cycle of one injection is administered. If

R(�̂i2|Htk
i
) is inferior to Rlim but not R(�̂i1|Htk

i
), a cycle of two injections is administered. Moreover, if only R(�̂i3|Htk

i
) is

inferior to Rlim, a cycle of three injections is administered.
• Protocol ATIC: When a decision for a new cycle is taken, the next tinj∗ is calculated for one, two or three injections:

tinj1p , tinj2p and tinj3p . The relative difference between two and three injections is calculated, ie, d3 =
tinj2p−tinj3p

tinj3p
. If d3 is

superior to dlim, then three injections are administered. If not, then the same process is repeated to choose between

one or two injections, ie, d2 =
tinj1p−tinj2p

tinj2p
, and if d2 is superior to dlim, here taken at 10% as it is clinically relevant, then

two injections are administered; if not, then one injection is administered.

5 SIMULATION

5.1 General description

We simulated the different protocols for 150 “pseudopatients” on a 2-year period. The parameter values of these patients
were sampled from the posterior distribution of the parameters estimated with NIMROD over the 138 patients of the
INSPIRE studies. Because � and � vary between patients, random effects were generated for all patients for these param-
eters, using the estimated variance of the random effects on the population. Moreover, we applied the inclusion criterion
of the INSPIRE studies, keeping only those patients with baseline CD4 counts between 100 and 400. The simulations of
the trajectories were done with R with the DeSolve package.43 This package numerically solves the ODE for a given set
of parameter values �i, using the “lsodes” method, an interface to the FORTRAN ODE solver bearing the same name.44

Observations were generated at times (0, 7, 14, 21, and 55) before the first time of control (day 90) by adding a noise vari-
able (according to Equation (2)) to the value of the trajectories at these times. Each time that we make a decision, the
observations are generated to take into account the decision. If a cycle is administered, then the next observations are at
the time of injections and at the next time of control; if not, then the next generated observation is only at the next time
of control. The total number of CD4 and the number of proliferating cells are observed each time.
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For the ACI and ACIC protocols, the values of the risk limit Rlim used were 0.05, 0.1, and 0.2. For the ATI and ATIC
protocols, we used the 0.05, 0.1, and 0.2 quantiles to obtain tinjp . The MCMC algorithm was performed with a total of 5000
iterations each time, with a burn-in phase of 1000 and a thinning of 2. The convergence of the chain was controlled with
the Heidel diagnostic; the results of the convergence are presented in Web Supplementary 2.

5.2 Results for the adaptive protocols

To compare the different protocols, we used eight criteria, ie, the mean number of CD4 over the protocol, the time spent
under 500 CD4, the number of cycles administered, the number of visits (including the visits for the injections inside
a cycle), the number of injections, and the number of cycles of one, two, and three injections (the number of cycles of
three injections includes the first cycle, which is not decided by the protocol because it is the start of the protocol and
automatically of three injections). The results are presented in Table 2.We considered the value of Rlim(for ACI andACIC)
and the p quantile (for ATI and ATIC) as “threshold” because they both represent the limit value for the decision.
Compared to the original protocol (ORI), the proposed protocols highly reduce the time spent under 500 CD4, while the

number of visits is comparable (slightly increased for the ACI protocol, and decreased for the ATI and ATIC protocols).
The number of injections is increased for the ACI protocol but this increase is not as important when the number of
injections per cycle is also adapted (ACIC) while the time spent under 500 CD4 is similar in both ACI and ACIC protocols.
The number of injections is similar between the ATI and ORI protocols, while it is reduced by the ATIC protocol.
The mean of CD4 is higher for the ACI and ACIC protocols than the ATI and ATIC protocols (which are similar to the

ORI protocol), because the aim of the ATI and ATIC protocols is to start a cycle just before the patient reaches 500 CD4,
while the ACI and ACIC protocols have visits of control only every 3 months, which means that the decision to start a
new cycle can be taken while the patient could wait before he or she reaches 500 CD4 but not 3 months. This means
that, when a new cycle is started, we expect CD4 concentration to be around 500 in the ATI and ATIC protocols, while
these concentrations can be higher in the ACI and ACIC protocols. This induces a higher mean of CD4 for ACI and ACIC
protocols. This is consistent with the choice of the criterion of interest, namely, the time spent with CD4 concentrations
under 500. This choice is justified by clinical results11 and consistency with INSPIRE studies. However, our method can
be modified by using other criteria. If it is clinically relevant to consider the mean number of CD4, it could be easily
implemented in the decision criterion for adapting the protocol.
The sensitivity analysis on the threshold parameter shows that for the ACI and ACIC protocols, the risk Rlim does not

significantly impact the results in any of the criteria. For the ATI and ATIC protocols, the p-quantile at 0.05 does not
increase the frequency of cycles or visits, but it does reduce the time spent under 500 CD4 on average. The p-quantile 0.2
is no better because it increases the time spent under 500 CD4 but does not reduce the number of cycles.
Figure 4 presents the boxplot of the time spent under 500 CD4, the number of visits, the mean of CD4, and the number

of injections for each protocol at the threshold 0.05. This shows that the median of time spent under 500 CD4 is at 0 for
each of the proposed protocols. TheATI andATIC protocols have higher third quantiles than the ACI andACIC protocols,
but the outliers are smaller. This means that the ATI and ATIC protocols are more suitable for patients with difficulties to
maintain their CD4 concentrations above 500. Indeed, the ATI and ATIC protocols allowmore frequent visits for patients
with a fast decrease of CD4 after the end of a cycle compared to the ACI and ACIC protocols, where a minimum delay
of 3 months between visits has to be respected. Globally, it is clear that all four protocols have better results for the time
spent under 500 CD4 than the ORI protocol. We can also see that all protocols have similar distributions for the three
other criteria, but the ACI and ACIC induce higher CD4 means, and the ATIC is lower in number of visits and number
of injections.
Figure 5 shows the plot of the dynamic of CD4 for three protocols (ORI, ACI, and ATI) with the threshold 0.1 for two

pseudopatients. In this figure, the real trajectory is represented by a dark line and the simulated observations are the black
dots. The ORI protocol uses those observations for the decision to administer a new cycle with the criterion of 550 CD4.
The proposed adaptive protocols predict a distribution of the random effects, which gives a distribution of CD4 at each
time point using those observations. The adaptive protocols use those predicted distributions for the decisions while the
ORI protocol relies only on the observation at the current time of control. The 95% credible interval of CD4 is represented
by the light blue band, and the decision taken by the proposed adaptive protocols are based on this prediction. For each of
those distributions of CD4, the distribution of the observations is also predicted by adding a noise variable to the predicted
CD4, as it was done in Section 4.2. The 95% predictive interval of observations is represented by the dark blue band.
At each time of control, new information is available; it induces adjustment of the prediction of the random effects, the
predicted distribution of CD4, and the predicted observations.
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TABLE 2 Comparison of the protocols original (ORI), adaptive criterion of injection (ACI), ACIC, adaptive time of injection (ATI), and ATIC. Eight criteria are

presented: the mean number of CD4 (CD4), the time spent under 500 CD4 (T500), the number of cycle (Nb Cycles), the number of visits (Nb visits), the number of

injections (Nb inj), and the number of cycle of, respectively, one, two, and three injections (C1, C2, and C3). These are calculated per patient over the two year protocols,

and their means and quartiles (or standard error for the mean of CD4) are presented. “Threshold” means Rlim (for ACI and ACIC) or p-quantile (for ATI and ATIC)

Protocol Threshold CD4 T500 (days) Nb Cycles Nb visits Nb inj C1 C2 C3

mean (sd) mean [Q1;Q3] mean [Q1;Q3] mean [Q1;Q3] mean [Q1;Q3] mean [Q1;Q3] mean [Q1;Q3] mean [Q1;Q3]

ORI - 722 (112) 107 [6;173] 4.5 [3;6] 18 [15;20] 13 [9;18] 0 0 4.5 [3;6]
ACI 0.05 882 (146) 18[0;7] 5.9 [4;8] 20 [17;24] 18 [12;24] 0 0 5.9 [4;8]

0.1 866 (143) 19 [0;18] 5.8 [4;8] 20 [17;24] 17 [12;24] 0 0 5.8 [4;8]

0.2 837(137) 21 [0;25] 5.6 [4;8] 20 [17;24] 17 [12;24] 0 0 5.6 [4;8]
ACIC 0.05 853 (124) 17 [0;7] 6.1 [5;8] 18 [12;24] 15 [8;24] 0.8 [0;2] 1.3 [0;2] 4.0 [1;8]

0.1 830 (146) 19[0;20] 6.0 [5;8] 18 [12;24] 15 [7;24] 0.9 [0;2] 1.2 [0;2] 3.9 [1;8]
0.2 804 (130) 23[0;26] 5.8 [4;8] 17 [11;23] 14 [7;23] 0.9 [0;2] 1.1 [0;2] 3.8 [1;7]

ATI 0.05 785 (71) 13[0;18] 5.0 [4;7] 16 [13;20] 15 [12;21] 0 0 5 [4;7]

0.1 764(67) 19 [0;32] 4.9 [3;6] 15 [12;18] 15 [9;18] 0 0 4.9 [3;6]

0.2 743 (64) 28[0;48] 4.7 [3;6] 15 [11;18] 14 [9;18] 0 0 4.7 [3;6]
ATIC 0.05 769 (72) 16 [0;24] 5.4 [4;7] 12 [10;14] 12 [8;14] 0.6 [0;1] 3.5 [2;5] 1.4 [1;2]

0.1 744 (71) 23[0;33] 5.1 [4;7] 12 [9;14] 11 [8;14] 0.6 [0;1] 3.3[2;5] 1.3 [1;2]
0.2 716 (72) 36 [0;60] 4.9 [3;7] 12 [9;14] 11 [6;14] 0.5 [0;1] 3.0 [1;5] 1.4 [1;2]
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FIGURE 4 Boxplot of time spent under 500 CD4, number of visits, mean number of CD4, and number of injections for each protocol at

the threshold 0.05. ACI, adaptive criterion of injection protocol; ATI, adaptive time of injection protocol; ORI, original protocol [Colour figure

can be viewed at wileyonlinelibrary.com]

For Patient 1, the ORI protocol predicts a cycle of injection at the second, third, and seventh visits. However, these
cycles are unnecessary as the decrease of CD4 in this patient is very slow. The ACI protocol correctly predicts that a new
cycle will be necessary only at the fifth visit. The ATI protocol predicts a new cycle at a slightly larger time and has the
advantage of having only two visits for a control, instead of eight for the other protocols.
Patient 2 has an opposite problem, as the ORI protocol fails to detect that a new cycle was necessary, eg, at the first visit,

resulting in a long time spent under 500 CD4. In contrast, the ACI and ATI protocols correctly predict that a new cycle is
necessary. Again, the number of control visits is reduced in the ATI protocol, which yields accurate times of control.
In Web Supplementary 3, the rate of error, defined as the number of times the decision made is not the optimal, is

analyzed. Overall, the rate of time when the algorithm made a decision causing the patient to spend some time under
500 CD4 is extremely low for the ACI and ACIC protocols (between 0.1% and 6%). For the ATI and ATIC protocols, it
corresponds to the risk taken (5% at the p-quantile of 0.05), while this rate was at 47% for the ORI protocol. The rate of
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FIGURE 5 Comparison of the three protocols for two random patients. Dots: observations. Black line: simulated trajectory. Horizontal

line: limit of 500 CD4. Vertical dashed lines: times of controls. Light band: 95% credible interval of trajectories. Dark band: 95% predictive

interval of observations. ACI, adaptive criterion of injection protocol; ATI, adaptive time of injection protocol; ORI, original protocol [Colour

figure can be viewed at wileyonlinelibrary.com]
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mistake when the algorithm predicts a new cycle for the ACI and ACIC protocols while it could have waited is higher
than the ORI protocol; although, this has less impact because this decision can be compensated at the next visit. The rate
of time when the ATI and ATIC predicted a time of visit too short is around 10%, but this also has less impact because it
simply means that the patient has one visit without injections.
Overall, the ATIC protocol with the p-quantile at 0.05 achieves the best balance between all criteria, with a time spent

under 500 CD4 among the lowest, and with the number of injections and visits also among the lowest. Compared with
the ORI protocol, the ATIC divided the time spend under 500 CD4 by around six, and spared six visits and one injection
over a period of two years. However, an analysis done in Web Supplementary 4 shows that, for the patients who have low
CD4 at baseline, the ATI protocol with the p-quantile at 0.05 is the best protocol because, in these patients, we cannot
afford to reduce the number of injections per cycle.

6 CONCLUSION

The very good ability of the mechanistic model to predict CD4 concentrations after a short learning phase to identify
individual parameters allows us to embark on optimizing the IL7 administration for each individual patient. Based on
this model, we have proposed adaptive protocols with the aim to optimize a criterion, here, the time spent under 500 CD4
cells/�L, using the minimum number of IL7 injections. The simulation of pseudopatients showed that the four proposed
protocols succeeded in doing so, reducing the time spent under 500 CD4 cells/�L with a number of injections similar or
lower compared to the original protocol.
Compared with classical approaches that are based on optimal control, our approach presents several advantages. First,

the parameters are not considered to be known and the adaptation of the IL7 injections is donewhile the estimations of the
individual parameters and the predictions are improved with new observations. This dynamic approach is also referred
as dynamic drug monitoring in the work of Murphy et al.25 Second, the statistical approach of treatment optimization
that we propose is less computationally demanding because we are not looking for an optimal strategy over the space
of all potential strategies.45 Rather, we are optimizing the strategy according to that patient's characteristics, by learning
the random effects values as information increases. In our application, this was very relevant because we could take into
account the diversity of response of the patients.
The success of the proposed approach in this application is due to the validity of the predictions that are obtained after

a short learning phase for every patient. However, model misspecification could seriously weaken any optimization of
the treatment strategy. Here, the model used was clearly the best model over a series of models tested in this context.21

The stochasticity was mainly due to inter-individuals variability captured through two parameters (� and �), the other
parameters are fixed at the value estimated in Jarne et al21 and presented in Table 1. Any additional stochasticity, requiring,
for instance, to deal with stochastic differential equations, would compromise the feasibility of the approach in a real
clinical setting.
The clinical perspective is an evaluation of the adaptive strategy with a standard protocol of injection to confirm the

benefit of this intervention on all other immunological markers, such as in the work of Lévy et al,9 before going to a
larger trial to evaluate the impact on clinical outcomes. More generally, this work shows howmechanistic model can help
increasing the efficiency of therapies in realistic contexts where patients may respond differently to treatments.
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Modélisation et optimisation de la réponse à des vaccins et à des
interventions immunothérapeutiques. Application au virus Ebola et au VIH.

Résumé : Les vaccins ont été une grande réussite en matière de santé publique au cours
des dernières années. Cependant, le développement de vaccins efficaces contre les maladies
infectieuses telles que le VIH ou le virus Ebola reste un défi majeur. Cela peut être attribué
à notre manque de connaissances approfondies en immunologie et sur le mode d’action
de la mémoire immunitaire. Les modèles mathématiques peuvent aider à comprendre les
mécanismes de la réponse immunitaire, à quantifier les processus biologiques sous-jacents
et à déveloper des vaccins fondés sur un rationnel scientifique. Nous présentons un modèle
mécaniste de la dynamique de la réponse immunitaire humorale après injection d’un vac-
cin Ebola basé sur des équations différentielles ordinaires. Les paramètres du modèle sont
estimés par maximum de vraisemblance dans une approche populationnelle qui permet de
quantifier le processus de la réponse immunitaire et ses facteurs de variabilité. Le schéma
vaccinal n’a d’impact que sur la réponse à court terme, alors que des différences significa-
tives entre des sujets de différentes régions géographiques sont observées à plus long terme.
Cela pourrait avoir des implications dans la conception des futurs essais cliniques. En-
suite, nous développons un outil numérique basé sur la programmation dynamique pour
optimiser des schémas d’injections répétées. Nous nous intéressons en particulier à des
patients infectés par le VIH sous traitement mais incapables de reconstruire leur système
immunitaire. Des injections répétées d’un produit immunothérapeutique (IL-7) sont en-
visagées pour améliorer la santé de ces patients. Le processus est modélisé par un modèle
de Markov déterministe par morceaux et des résultats récents de la théorie du contrôle
impulsionnel permettent de résoudre le problème numériquement à l’aide d’une suite ité-
rative. Nous montrons dans une preuve de concept que cette méthode peut être appliquée
à un certain nombre de pseudo-patients. Dans l’ensemble, ces résultats s’intègrent dans
un effort de développer des méthodes sophistiquées pour analyser les données d’essais
cliniques afin de répondre à des questions cliniques concrètes.
Mots clés : Modèles mécanistes ; Equations différentielles ordinaires ; Maximisation de la vrai-
semblance ; Modèles linéaires mixtes ; Contrôle optimal ; Processus de Markov déterministes par
morceaux ; Programmation dynamique ; Vaccin ; Ebola ; Réponse immunitaire ; Durabilité ; Fac-
teurs de variabilité ; VIH ; Immunothérapie ; Injections répétées.

Modeling and optimizing the response to vaccines and immunotherapeutic
interventions. Application to Ebola virus and HIV.

Abstract: Vaccines have been one of the most successful developments in public health
in the last years. However, a major challenge still resides in developing effective vaccines
against infectious diseases such as HIV or Ebola virus. This can be attributed to our lack of
deep knowledge in immunology and the mode of action of immune memory. Mathematical
models can help understanding the mechanisms of the immune response, quantifying
the underlying biological processes and eventually developing vaccines based on a solid
rationale. First, we present a mechanistic model for the dynamics of the humoral immune
response following Ebola vaccine immunizations based on ordinary differential equations.
The parameters of the model are estimated by likelihood maximization in a population
approach, which allows to quantify the process of the immune response and its factors of
variability. The vaccine regimen is found to impact only the response on a short term,
while significant differences between subjects of different geographic regions are found at
a longer term. This could have implications in the design of future clinical trials. Then,
we develop a numerical tool based on dynamic programming for optimizing schedule of
repeated injections. In particular, we focus on HIV-infected patients under treatment but
unable to recover their immune system. Repeated injections of an immunotherapeutic
product (IL-7) are considered for improving the health of these patients. The process is
first modeled by a piecewise deterministic Markov model and recent results of the impulse
control theory allow to solve the problem numerically with an iterative sequence. We show
in a proof-of-concept that this method can be applied to a number of pseudo-patients. All
together, these results are part of an effort to develop sophisticated methods for analyzing
data from clinical trials to answer concrete clinical questions.
Key words: Mechanistic modeling; Ordinary differential equations; Likelihood maximization;
Linear mixed models; Optimal control; Piecewise deterministic Markov processes; Dynamic pro-
gramming; Vaccine; Ebola; Immune response; Durability; Variability factors; HIV; Immunother-
apy; Repeated injections.
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