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French Summary

Ce manuscrit de thèse intitulé Base de données sur le signal d'auto�uorescence des tissus pour
améliorer le diagnostic per-opératoire des tumeurs cérébrales, traite d'aspects importants liés à
l'utilisation d'approches d'imagerie spectroscopique pour le diagnostic de tumeur cérébrale en per-
opératoire. Une telle étude a été motivée par la place prise par le cancer dans la société.

En 2011, Le ministère français de la santé et l'institut national du cancer(INCa) ont réalisé une
étude sur la perception de cette maladie. Les résultats ont montré que dans l'esprit des gens le
cancer avait toujours une connotation fortement négative. La plus part considérant que c'est la
maladie la plus mortelle, bien loin devant le SIDA. Alors qu'en réalité l'étude montre également,
que si un homme sur deux et une femme sur trois déclarent un cancer dans leur vie, le taux de
survie est aujourd'hui supérieur à 50% [1].
Néanmoins le cancer traîne toujours cette forte connotation négative, due à certaines formes très
agressives présentant encore une forte et rapide mortalité, laissant place à de nombreux dé�s on-
cologiques. Les tumeurs cérébrales font parties des cancers présentant toujours un fort taux de
mortalité et donc dé�s dans le processus de traitement. Les tumeurs cérébrales ne sont pas les plus
fréquentes, 17eme cancer seulement en terme d'incidence. Toutefois dans certains groupes d'âge, il
s'agit de l'une des formes les plus meurtrières. Une étude réalisée en 2016 a montré qu'il s'agissait
de la première cause de décès liés au cancer chez les 0 à 14 ans et la troisième chez les 15 à 39 ans
[8, 9].
Comme le montrent ces statistiques, le diagnostic et le traitement des tumeurs cérébrales sont des
sujets brûlants dans le monde de l'oncologie. Le principal dé� étant l'amélioration du taux de
survie à long terme des patients. Ceci est particulièrement un challenge en neuro-oncologie dû à la
nature majoritairement in�ltrante des tumeurs, résultant en processus complexe pour atteindre un
diagnostic �able. Aujourd'hui, le standard pour établir un diagnostic dé�nitif sur la nature d'un
tissu cérébral est l'examen histologique, c'est-à-dire l'analyse microscopique ex vivo d'échantillons
de tissu extraits lors de la chirurgie et ensuite chimiquement traités (�xation, coloration). Pour
un diagnostic per-opératoire, rapide et �able de nouvelles méthodes et approches sont nécessaires
de manière urgente, tel que de nouvelles techniques d'imagerie ou de mesures en temps réel. C'est
exactement le rôle que pourrait jouer la microscopie optique à détection multimodale, en met-
tant l'accent sur l'imagerie d'auto�uorescence, ainsi que les routines d'analyses automatisées pour
l'analyse per-opératoire des tumeurs cérébrales présentées dans cette thèse.
Pendant ces trois années de doctorat j'ai mené des recherches au sein du laboratoire français IMNC
(Imagerie et modélisation en neurobiologie et cancer) dans le groupe de Darine Abi Haidar. Cette
équipe de recherche travaille avec un hôpital français (Le Centre Hospitalier Sainte-Anne, Paris,
France) a�n d'apporter de nouvelles solutions techniques pour améliorer la précision et qualité des
résections chirurgicales des tumeurs cérébrales, le but étant de prolonger l'espérance de vie des
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patients. Pour répondre à cette problématique, l'équipe a démarré, en collaboration avec l'hôpital,
un projet visant à développer un nouvel outil révolutionnaire, a�n d'intégrer l'endomicroscopie non
linéaire au bloc opératoire. Une base de données sur la réponse optique des tissus a également été
construite, pour être utilisée avec l'endomicroscope a�n de guider le chirurgien lors de la résection
des tumeurs et d'obtenir les meilleurs résultats possibles.
Ma thèse s'est inscrit dans ce projet large et interdisciplinaire, avec un focus particulier sur la
construction de la base de données multimodale et multi-échelle de la réponse optique des tissus
cérébraux. Ce manuscrit s'articule autour de cinq publications majeures écrites et publiés pendant
mon doctorat, une large introduction sur le contexte clinique et technique à l'origine de ce projet
est d'abord présentée, puis les cinq articles sont articulés a�n de répondre à cinq grandes questions
soulevées pendant ma thèse autour du diagnostic optique des tumeurs cérébrales. Le manuscrit ce
conclut par une discussion sur les résultats obtenus et les futures orientations et perspectives du
projet.

Le chapitre d'introduction est divisé en 7 sous-chapitres, commençant par un résumé des dif-
férentes formes de tumeurs cérébrales et de leur physiopathologie. Pour mieux comprendre les dé�s
se rapportant aux tumeurs cérébrales, il est important de connaître les di�érents types de tumeurs
malignes pouvant provenir des cellules du cerveau et leur classi�cation. La classi�cation des tumeurs
cérébrales est basée sur leur cellule d'origine et leur agressivité. Deux groupes principaux peuvent
être dégagés: les tumeurs primaires et secondaires. Une tumeur primitive provient des cellules et
des tissus du cerveau et ne se propage généralement pas vers d'autres organes. Ce type de tumeur
peut être soit bénigne, se développant lentement avec une limite distincte présentant un danger
seulement si elle comprime une fonction vitale, ou alors maligne, se développant rapidement avec
des limites irrégulières et avec la capacité d'in�ltrer les zones environnantes [10]. Environ la moitié
des tumeurs cérébrales primitives se développent à partir de cellules gliales et sont classées dans la
catégorie des gliomes, avec un grade allant de I à IV dépendant de leur agressivité [10]. Elles peuvent
également provenir des cellules nerveuses (tumeurs de Schwannome), de l'hypophyse (adénomes de
l'hypophyse), du cervelet (tumeurs médulloblastomateuses, les plus courantes chez les enfants), des
cellules germinales et également de la membrane entourant le cerveau, la méninge, ce qui entraîne
l'apparition de tumeurs appelées méningiomes [10, 11]. Les tumeurs secondaires, appelées métas-
tases, proviennent de cellules ayant migré d'une tumeur primaire dans un autre organe - poumon,
sein, peau, rein et côlon sont les origines les plus courantes des métastases cérébraux [10].
Au cours de cette thèse, les gliomes (principalement les glioblastomes de grade IV), méningiomes et
métastases ont été étudiés. Trois catégories pouvant présenter un caractère in�ltrant, particulière-
ment les tumeurs gliales, rendant le diagnostic et traitement chirurgical très compliqué. Même si
le panel de tumeurs cérébrales est large, elles subissent toutes le même protocole de diagnostic et
traitement. Tout d'abord le patient doit passer par une phase de diagnostic, où en cas de suspicion
de tumeur au cerveau, une combinaison de techniques d'imagerie sera prescrite pour réaliser un
diagnostic préliminaire. Pour évaluer la présence ou non d'une tumeur, un scanner de tomogra-
phie axiale (CT-Scan) et une imagerie par résonance magnétique (IRM) sont prescrits. Ensuite,
si l'oncologue et les chirurgiens ont besoin d'informations plus précises et plus fonctionnelles pour
commencer à plani�er le traitement, ils demanderont une imagerie plus avancée (IRM fonctionnelle
(IRMf), tomographie par émission de positrons (TEP)). Dans le cas d'une masse détectée, ce ne
sera que la première étape vers un diagnostic �nal. Pour avoir toutes les informations sur la nature
et le l'agressivité de la tumeur, une analyse histologique sur prélèvements après une biopsie, doit
être réalisée. Ceci amenant à un rapport pathologique dé�nitif, qui sera alors analysé par une
équipe composée d'un oncologue, d'un radio-oncologue et d'un neurochirurgien a�n d'élaborer le
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plan de traitement. Les décisions de traitement sont individualisées et basées sur le type de tumeur,
la localisation, la malignité et le patient (âge, condition physique). Toutefois la méthode privilégiée
et appliquée en premier lieu est la résection chirurgicale, celle-ci peut être ensuite suivi de radio-
thérapie et chimiothérapie. Parfois, un seul type de traitement peut être nécessaire, mais la plupart
du temps, une combinaison de ceux-ci est recommandé. Dans ce processus de traitement l'étape
la plus compliquée et qui est à l'origine du faible taux de survie des patients, est la qualité de la
résection chirurgicale. Si les tumeurs sont fortement in�ltrantes, il n'existe à ce jour aucun moyen
per-opératoire pour identi�er les zones in�ltrées en marge de la tumeur solide. La seule méthode
pour s'assurer de la qualité de la résection est de faire l'analyse histologique des berges, cependant
ces analyses sont réalisées ex-vivo et donc coûteuses en temps et moyens.

Pour améliorer la qualité de la résection plusieurs approches ont été considérées, tout d'abord
chirurgicale, avec la chirurgie électro-stimulée et éveillée. Une méthode qui permet d'élargir au
maximum le résection tout en préservant les fonctions vitales du patient pour lui assurer une qual-
ité de vie post-opératoire. Ces techniques ont montré une amélioration du taux de survie et de la
qualité de vie du patient, toutefois la résection est toujours réalisée sans connaitre la réelle nature
du tissu réséqué, certaines régions enlevées peuvent être complètement saines et certaines cellules
tumorales oubliées dans les régions hautement fonctionnelles. Les chirurgies sont allongées, et par
conséquent coûteuses à l'hôpital et aux patients.
Une autre approche pour améliorer la résection des tumeurs cérébrales et se rapprocher d'une
résection totale, fût d'améliorer les techniques d'imagerie per-opératoire. La première direction
prise pour obtenir des évaluations per-opératoires en temps réel consista à introduire les techniques
d'imagerie préopératoires actuelles, telles que l'IRM ou l'échographie, dans la salle d'opération.
Malheureusement même si ces techniques o�rent plus d'assurance au chirurgien dans ces choix,
elles manquent toujours en résolution à l'échelle cellulaire et ne peuvent identi�er l'in�ltration.
Ceci laisse place à une recherche interdisciplinaire, pour apporter la possibilité au chirurgien de
discriminer en temps-réel les berges tumorales. Une direction importante prise pour répondre à ce
dé� médicale est l'utilisation de la �uorescence, et les di�érentes façons de l'imager.
En premier lieu la �uorescence exogène a été explorée, des marqueurs des types cellulaires, des
protéines ou des gènes, sont introduits chez le patient, excités et leur signal émis collecté par
l'endoscope. Les �uorophores les plus testés et répandus pour la résection des tumeurs cérébrales
sont la �uorescéine de sodium, le vert d'indocyanine(ICG) et l'acide 5-aminoluvulinique(5-ALA).
Toutefois le développement des marqueurs exogènes a été ralenti dû au long et di�cile processus
d'approbation par les comités médicaux et la di�culté à trouver des marqueurs spéci�ques de la
tumeur à l'échelle cellulaire. Ces limitations et la disponibilité des technologies d'imagerie à haute
résolution ont poussé les physiciens à envisager un autre moyen de contraste: l'auto�uorescence.
Dans tous les tissus, on peut trouver des molécules dans les cellules qui, lorsqu'elles sont excitées
à une longueur d'onde appropriée, deviennent �uorescentes. Ces �uorophores endogènes sont liés
aux propriétés morpho-fonctionnelles de la cellule et du tissu. Tous les changements intervenus au
cours de processus physiologiques et pathologiques ont une incidence sur la distribution des �uo-
rophores et donc sur leurs caractéristiques d'émission. Il en résulte un outil puissant pour surveiller
directement l'état morphologique et physiologique d'un tissu et ou d'une région de cellules.
Le signal de �uorescence peut être caractérisé par trois paramètres quanti�ables: 1) le spectre
de �uorescence, intensité de la �uorescence en fonction de la longueur d'onde, 2) le rendement
quantique, e�cacité du processus d'émission et 3) la durée de vie de la �uorescence, temps moyen
pendant lequel un �uorophore reste dans son état excité. Les technologies de détection ont été
développées pour tirer avantage de ces paramètres et donner des indicateurs quantitatifs aux ré-
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gions observées. De plus, d'autres transitions peuvent être excitées et permettent également une
détection quantitative. Ils sont classés dans la spectroscopie Raman. A�n d'améliorer l'information
donné au chirurgien, les nouvelles techniques de microscopie hautement résolues ont été développées.
A�n d'essayer de produire des images à l'échelle cellulaire et de quanti�er les di�érents paramètres
de l'auto�uorescence. Les di�érentes techniques modernes de microscopie, plein champ, confocale
et multiphoton, ont vu l'intérêt s'accroître a�n d'obtenir des outils miniaturisés pour s'adapter à
l'environnement chirurgicale et être utilisé de façon per-opératoire. Les technologies les plus ré-
centes suscitant l'intérêt a�n d'assurer la di�érenciation en temps réel des cellules tumorales sont la
spectroscopie Raman et la microscopie multiphotonique. Ces techniques en sont encore au stade de
la validation de la conception et n'ont pas encore été appliquées dans des essais cliniques de phase
III et ne sont toujours pas dans les protocoles de routine. L'un des principaux éléments techniques
manquants dans le développement à ce jour est l'absence de détection multimodale, ainsi qu'une
base de données de haute qualité sur le tissu étudié. Par conséquent, la technologie actuelle ne
parvient pas à conférer une discrimination su�samment �able aux normes cliniques. Cela laisse
de la place pour le développement d'une technologie précise et �able d'assistance à la chirurgie des
tumeurs cérébrales, car le tissu cérébral en particulier manque d'une base de données optique sur sa
réponse en auto�uorescence. L'équipe de recherche du Dr Darine Abi Haidar a choisi de travailler
sur cette question clinique en apportant son expertise technique. Ce groupe de recherche possède
une expérience en optique et en microscopie, plus précisément en techniques non linéaires. Grâce
aux collaborations de l'équipe, une large gamme d'échantillons de biopsie fut disponible au près
du centre hospitalier Saint-Anne(CHSA), ainsi que trois plates-formes d'imagerie. Un endoscope
visible placé au département de neuropathologie du CHSA pouvant mesurer la réponse spectrale à
un photon et la durée de vie de la �uorescence. La plate-forme PIMPA (plate-forme d'imagerie du
petit animal) consistant en un microscope à deux photons avec quatre modalités de détection (im-
agerie par �uorescence, SHG, spectroscopie et FLIM).Sur la ligne DISCO du synchrotron SOLEIL,
de la microscopie à excitation dans l'UV profond possible dans deux con�gurations : microscopie
plein-champ et spectroscopie.

Dans ces conditions de larges campagnes de mesure sur la réponse d'auto�uorescence des tissus
cérébraux ont put être menées pendant ma thèse, a�n de répondre à cinq grandes questions:

Des mesures optiques bimodales quantitatives sous excitation visible pourraient-elles discriminer
la nature du tissu cérébral �xé ?

Les mesures spectrales et de durée de vie, sous excitation visible, ont-elles permis de discriminer la
nature du tissu cérébral fraîchement extrait ? Les mesures de �uorescence sur tissu �xé aurait-elle
pu être su�sante pour constituer une base de données optique?

L'excitation mono et bi-photonique pourrait-elle discriminer l'auto�uorescence des grades de ménin-
giomes ?

L'imagerie à deux photons pourrait-elle fournir des informations équivalentes au standard H&E
pour discriminer les tumeurs cérébrales primaires et secondaires ? La détection quantitative multi-
modale pourrait-elle améliorer le diagnostic des tumeurs cérébrales?

Comment une étude optique multi-échelle et multimodale pourrait-elle améliorer la précision et
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la �abilité de la discrimination des tumeurs primaires et secondaires? Ces questions trouveront une
réponse dans les études publiés dans cinq articles écrits lors de mon doctorat et présentés dans la
suite de ce manuscrit.

A�n de répondre à la première question : Des mesures optiques bimodales quantitatives sous
excitation visible pourraient-elles discriminer la nature du tissu cérébral �xé ?, le chapitre 2 présente
une étude publiée dans Scienti�c Reports rapportant comment les coe�cients optiques, l'émission
d'auto�uorescence et les données de durée de vie peuvent mettre en évidence la structure du
tissu cérébral. Cette première étude analyse quantitativement la �uorescence endogène en déri-
vant plusieurs indices optiques, à partir des résultats tiré d'un endoscope à détection bi-modale et
excitation dans le visible. Cette étude a été menée sur des coupes de tissus �xés et inclus 28 pa-
tients. Les résultats ont montré la capacité de discriminer à partir d'indicateurs optiques les tissus
tumoraux des tissus sain. Cependant, pour appliquer ces paramètres optiques en per-opératoire, ils
doivent également être con�rmés sur du tissu cérébral frais.

Ainsi, le chapitre 3 décrit la caractérisation de tissus cérébraux fraîchement extrait après la
chirurgie sur 54 patients. Les tissus ont été analysés par microscopie à un ou deux photons détec-
tant l'auto�uorescence avec une détection multimodale (imagerie de durée de vie par �uorescence, de
�uorescence à deux photons et de génération de seconde harmoniques (SHG), ainsi que des mesures
spectroscopiques). Le but de cette étude également publiée dans Scienti�c Reports est de répondre
à la question : "Les mesures spectrales et de durée de vie, sous excitation visible, permette-elle de
discriminer la nature du tissu cérébral fraîchement extrait? Les mesures de �uorescence établies sur
du tissu �xé eut-elle été su�santes pour constituer une base de données optique?" Ces analyses in
vivo ont montré la capacité de détection quantitative bimodale sur la �uorescence endogène à dis-
criminer la nature des tissus. Cependant, cette con�guration ne présente pas de modalité d'imagerie
et donc la possibilité de comparaison avec le standard histologique, la coloration H&E. Pour pou-
voir fournir des informations comparables, la modalité d'imagerie doit combiner des informations
nucléaires et extracellulaires, la microscopie non linéaire est un excellent candidat car elle produit
deux signaux complémentaires : la SHG et la �uorescence par excitation à deux-photons (TPEF).
Les images TPEF-SHG ont permis d'identi�er les structures typiques du standard histologique,
montrant que cette technique optique pourrait être équivalente à la coloration H&E avec le grand
avantage d'être plus rapide et d'être exempte de produits chimiques. L'excitation à deux-photons
permet aussi de réaliser des mesures quantitatives de spectroscopie et de temps de vie. Ces résultats
préliminaires sur une excitation à deux photons ont montré le potentiel de discrimination qualita-
tive et quantitative en ajoutant une troisième dimension spatiale par rapport à la con�guration de
con�guration visible.

Les résultats prometteurs trouvés sur cette petite cohorte de tissus de tumeurs cérébrales ont
ouvert la possibilité de les utiliser pour des problèmes neuropathologiques avec une précision com-
parable à celle de l'analyse histologique. Le chapitre 4 présente une étude publié dans Journal of
Biophotonics a�n de répondre à une autre question importante en neurochirurgie, à savoir si les
tumeurs de méningiome peuvent être classées selon leur grade utilisant la réponse d'auto�uorescence
excitée à un ou deux photons. Cette étude portant sur neuf échantillons de méningiome humain a
montré le potentiel de la méthode pour di�érencier le grade de ces tumeurs, une question impor-
tante à traiter lors d'une intervention chirurgicale car le grade détermine le pronostic du patient.
Les résultats majeurs sont: 1) des images fusionnées de TPEF et de SHG comparables au standard
histologique H&E; 2) La réponse spectrale à un et deux photons produisant une intensité plus élevée
pour le grade II que pour le grade I; 3) la durée de vie de �uorescence résultant en une valeur plus
courte pour le grade II que pour le grade I; et 4) l'intensité de la �uorescence corrélé à un indicateur
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de prolifération histologique, Ki-67. Avec cette étude, la microscopie à deux photons a montré son
potentiel pour aider à répondre à une question clinique relativement précise. Ces résultats nous
rapprochent de l'objectif plus large qui consiste à distinguer toute tumeur cérébrale d'un tissu sain.

L'étape suivante a consisté à concevoir une étude visant à trouver des critères optiques permet-
tant de distinguer les tumeurs primaires et secondaires des tissus sains, en utilisant une con�guration
au microscope à deux photons et des échantillons de tumeurs fraîchement extraites. Les résultats de
cette campagne sont présentés dans le chapitre 5, publié dans Scienti�c Report. Dans cette étude
un système de notation quantitative basé sur une analyse minutieuse des données d'imagerie non
linéaires a été développé pour obtenir une discrimination �able des natures tissulaires. Ce travail
a été réalisé sur 25 patients. Pour exploiter au mieux les données de cette étude, trois indicateurs
quantitatifs ont été extraits: métabolique (rapport d'oxydoréduction), structurel (intensité du SHG)
et conformationnel (mesures de la durée de vie), a�n de créer un système de notation en 3D. Dans
cette représentation 3D, chaque type de tissu occupait une région spéci�que de l'espace, soulignant
la possibilité d'une discrimination automatisée utilisant l'analyse de la �uorescence endogène. Les
types discriminés ainsi sont les tumeurs primaires des tumeurs secondaires. Cependant, on a égale-
ment appris à quel point une analyse statistique pouvait être sensible et qu'il existait une grande
variabilité d'un type de tissu à l'autre. Ces observations ont conduit à prendre conscience de la
nécessité d'aller plus loin dans l'analyse des données et de trouver d'autres molécules pouvant aider
à con�rmer le diagnostic. Pour obtenir plus de données pour l'analyse, pourquoi ne pas examiner
une plage d'excitation plus large, de l'UV profond au proche infrarouge?

C'est cette ré�exion qui conduit à l'étude du chapitre 6, publié dans Frontiers. Une étude qui est
basé sur une cohorte de patients statistiquement pertinente, présentant un algorithme discriminatif
quantitatif basé sur des données d'auto�uorescence linéaires et non linéaires allant de l'UV au
proche infrarouge, et couvrant un large éventail de �uorophores endogènes.

L'algorithme trouvé ici basé sur des approches multimodales et multi-gammes a permis une
discrimination �able entre les tissus contrôles, les tumeurs primaires et secondaires. Les résultats,
notamment ceux basés sur l'algorithme multimodal, présentent un taux de faux négatifs inférieur
à 5%, ouvrant la voie à l'automatisation du diagnostic. Ceci est renforcé par le développement
d'algorithme non basé sur des notions de �t, tel que le clustering, pouvant être la première étape
d'algorithmes de classi�cation automatisés.

Ces résultats ouvre la porte vers un diagnostic e�ectué par une intelligence arti�cielle et non
par un opérateur humain. Dans les chapitres 2 à 6, une vaste base de données sur l'évaluation
des tumeurs primaires et secondaires par rapport à des tissus contrôles a été construite et a abouti
au développement d'un algorithme discriminant pouvant être automatisé dans un endomicrospe.
Ces résultats soutiennent le développement d'un endomicroscope à deux photons pour fournir au
chirurgien une réponse en temps réel au cours de l'opération. La thèse se termine par une dis-
cussion des résultats expérimentaux obtenus, ainsi qu'une ouverture sur l'utilisation des méthodes
pour discriminer d'autres types de cancer, comme les tumeurs de la vessie, et la présentation des
perspectives du projet, tel que de futures études in vivo.
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Chapter 1

Introduction

In 2011, the French Ministry of Health and The National Institute of Cancer (INCa) did a study
on the perception of cancer in the French society. The image stuck in people's heads was strongly
negative. Most people considered it as the most deadly disease, far ahead of AIDS. However the
study also showed that even if one in two men and one in three women have cancer some time in
their lives, the survival rate in reality is higher than 50% [1].
Nevertheless this disease still frightens society because some of its forms are strongly and rapidly
deadly resulting in major ongoing medical challenges. Using only current medical resources to un-
lock all the mysteries surrounding cancer doesn't seem enough. Medical research turns to other
domain of science such as chemistry and physics to perform interdisciplinary research in order to
improve diagnosis and treatment in the remaining deadly forms of cancer. It is in the context
of this fast growing �eld of interdisciplinary research, that the work of my thesis takes place. I
have conducted my research for the last three years, in the French IMNC laboratory (Imaging and
Modelisation in Neurobiology and Cancer) in Darine Abi Haidar's group. This research team has
been working with a French hospital (Le Centre Hospitalier Saint-Anne, Paris, France) to answer
the problem of how to improve surgical accuracy during tumor resection to extend patient life ex-
pectancy. To answer that question the team started, in collaboration with the Saint-Anne Hospital
(Paris, France), a project to develop a revolutionary new tool to address several modern scienti�c
challenges by bringing nonlinear endomicroscopy to the surgical operating room. A database on
tissue optical response was also built and used with the endomicroscope in order to guide the sur-
geon during resection of tumor and to achieve the best possible results.
I will orient this thesis around the scienti�c articles that have been produced during the three years
of my project. The manuscript will be constructed as follows: there will be a long introduction
putting my work in context. Then the di�erent questions and answers arising during this thesis
will be illustrated in the scienti�c articles. Finally I will discuss the results obtained and show
the future directions and perspectives of the project. In this introduction I will �rst explain the
terminology and biology of cancer with a focus on brain tumor. Secondly, the state of the art on
the current methods of diagnosis and treatments of brain tumors will be presented. Thirdly, I will
show the direction that the �eld of optical research is taking to help surgeons tackle the issue of
cellular contrast during surgery. Finally I will show how my project takes place in this environment
and what I was able to bring to the �eld.
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1.1. CENTRAL NERVOUS SYSTEM CANCER

1.1 Central nervous system cancer

1.1.1 Preambule

Cancer is a disease, that was �rst described in the ancient times by the Greek Hippocrates. He
compared the tumors to a crab, to give it the �rst names of "karkinos" and "karkinoma" (meaning
crabs) [2]. For a long time, cancer has been an incurable disease. Nowadays, however, one patient in
two survives cancer. This has been possible thanks to strong advances in prevention and diagnosis
in the last century [1]. Yet the word cancer still retains a powerful symbolic charge, associated with
particularly dark imagery. Even though undeniable progress has been made in management, reduc-
ing the risk of death, and consequently demystifying the disease. Our lifestyle maintains cancer as
a recurrent disease, and some forms of it remain highly deadly [3].
Cancer shouldn't be a singular noun because it refers to a very varied panel of diseases that concur
only in their way of emerging. Cancer is used as a generic name to regroup a large number of dis-
eases in any part of the body, de�ned by the fast reproduction of abnormal cells that can migrate
and spread to other organs [4]. It is initiated by a lesion in the DNA that results in a transformed
cell able to inde�nitely divide itself and avoid programmed cellular death [5]. This process creates
a mass of cancerous cells in the organ of origin called a malignant tumor or a malignant neoplasm.
Non-malignant or benign tumors (or neoplasms) can exist and are not as dangerous as cancer (�gure
1.1). At some point in their growth cancerous cells can develop the capacity to migrate to other
organs through blood or lymphatic vessels, and there to redevelop secondary tumoral masses called
metastases [5].

Figure 1.1 � From the cancerous cell to a malignant tumor [6].

The mortality following a cancer depends on the types (organ of origin) and the population
group (children, young adults, adults, elderly). It is the second leading cause of death in the world,
with 8.8 million deaths in 2015, and the number of new cases is set to rise by about 70% in the
next twenty years [7].

In this work, the focus will be on a speci�c group of cancers, issuing from the brain and central
nervous system (CNS). Looking at the statistics on the whole population, brain and CNS cancers
are 17th in terms of new cases expected in 2018 and 10th in the number of expected deaths [8].
However, in certain age groups, it is one of the most common and deadly forms of cancer. A study
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CHAPTER 1. INTRODUCTION

in 2016 showed that it was the �rst and most common in cancer-related deaths in the 0 to 14 age
category and the third in the 15-39 age group [8, 9].
As these statistics show, diagnosis and treatment of brain and CNS cancer are a hot topic in the
world of oncology, with the constant research to improve patients long- term survival rate. To
better understand these tumors and the challenges related to them, it is important to know the
di�erent types of malignant ones that can arise from brain cells and how they are classi�ed.
Classi�cation of tumors is based on their origin and aggressiveness. Inside the brain two main
groups can be found : primary and secondary tumors. A primary tumor takes its origin from brain
cells and tissues and usually does not spread to other organs. This kind of tumor can be benign,
so it can grow slowly with distinct boundary and can be dangerous only if it compresses any vital
functions, or malignant, so it grows quickly with irregular boundaries and with the capacity to
in�ltrate surrounding areas [10]. The primary tumors can be divided in subgroups according to the
types of cells and tissues from which they originate. About half of all primary brain tumors grow
from glial cells and are classi�ed as glioma, with a grade from I to IV depending on aggressiveness
[10]. They can also arise from nerves (Schwannoma tumors), pituitary gland (Pituitary adenomas),
cerebellum (medulloblastoma tumors, the most common in children), germ cells and from the mem-
branes that surround the brain, which result in meningioma tumors [10, 11]. Secondary tumors,
called metastasis, come from cells that have migrated from a primary tumor in another organ -
lung, breast, skin, renal and colon are the most common origins of metastasis [10]. Subgroups in
secondary tumors metastasis are classi�ed by their organ of origin [11]. In this work glioma (mainly
grade IV glioblastoma), meningioma and metastasis have been studied; their di�erent location are
show in �gure 1.2 shows the di�erent locations. Each of them will be detailed in the following
sections.

1.1.2 Gliomas

Gliomas are the most common intra-axial primary tumor. These tumors, a�ecting glial cells,
consist of a central mass surrounded with single invasive cells decreasing in number toward the
periphery of the main lesion. The di�use nature of these tumors were discovered when the standard
surgical procedure of resection failed to eradicate them [12].
They are classi�ed according their aggressiveness from grade I to IV by the World Health Orga-
nization (WHO). Grade I gliomas are usually astrocytomas occurring in young people. The most
common grade II gliomas consist of di�use astrocytoma and oligodendrogliomas. Di�use astro-
cytomas, mostly arise in young adults and are slow-growing, in�ltrating neoplasms. This tumor
always in�ltrates the brain parenchyma, making complete surgical removal practically impossible.
Di�use gliomas transform most of the time into grade III or IV tumors. The timing of the transfor-
mation into such an aggressive tumor will de�ne the patient outcome [13]. Oligodendrogliomas are
in�ltrated glial neuroplasms commonly arising from the frontal lobe. They represent 6% of glial tu-
mors [14]. The architecture of oligodendroglial tumors is a highly cellular lesion with closely packed,
relatively small cells, that often in�ltrate far away from the central lesion with prominent secondary
structure formation [15]. Grade III gliomas consist of anaplastic astrocytomas and anaplastic oligo-
dendrogliomas. This higher grade of astrocytoma or oligogendroglioma present atypical features
and increased mitotic activity. One quarter are new tumors and three quarters are the consequence
of lower grade tumor transforming into higher grade [16]. Grade IV gliomas are glioblastomas
(GBM). GBM represents 82% of malignant gliomas. These tumors are highly aggressive and are
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1.1. CENTRAL NERVOUS SYSTEM CANCER

Figure 1.2 � The di�erent types of brain tumor that were studied in this work [10, 11]

characterized by architectural features such as high cellularity and mitotic activity, vascular prolifer-
ation, and necrosis. These tumors are highly invasive, in�ltrating the brain parenchyma. However,
they do not metastasize [17]. Recurrence is almost inevitable with glioblastoma, arising within
two centimeters of the original tumor site. About 10 percent are accompanied by additional non-
contiguous lesions [18]. In the last twenty-�ve years, multiple modalities of treatment have been
tried experimentally and are now standardized for this type of tumor. The treatments are cytore-
ductive surgery, radiation therapy, and chemotherapy [19, 20].

1.1.3 Meningioma

Meningiomas are the most common extra-axial tumor. Meningiomas are tumors a�ecting
meninges, arising from arachnoid cells with a progressive enlargement compressing adjacent struc-
tures and leading to clinical symptoms (epileptic seizures, neurological de�cits, increased intracra-
nial pressure). These tumors are classi�ed in three grades by the WHO, from Grade I to the most
malignant Grade III which has a �ve-year survival rate of 44% [21]. The main treatment for these
tumors is surgical resection which can cure or allow long-term control of the cancer. The capacity
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of completing a total resection on meningioma depends on the extent, and the localization of tumor
in�ltration in the dura, bone and vascular sinuses. Residual left in any of these adjacent compart-
ments lead to high risks of tumor recurrence even for benign meningiomas [22].

1.1.4 Metastasis

Secondary tumors are the most predominant. For example in the US, two hundred thousand
cases of brain metastases occur each year, which is 10 times higher than the number of patients
diagnosed with primary brain tumors [23]. Brain metastasis results in high morbidity and poor
prognosis, even after diagnosis and the classical choice of treatment: surgical resection, radiother-
apy (stereotactic radio-surgery or whole brain radiotherapy), chemotherapy and immunotherapy.
Metastases are formed through the following mechanisms: cells dissociate from the bulk tumor
to invade neighboring tissue, then will invade new or pre-existing blood vessels, traveling through
vessels to other parts of the body and then extravating from the vessels to invade tissues growing
into micro-metastases and macro-metastases, namely secondary tumors [24]. The pattern in which
the metastases migrate into the brain can be very dependent on the origin of the primary tumor
(lung cancer, melanoma). To achieve invasion of the brain they degrade the extra-cellular matrix
[23, 25].

1.2 How to diagnose brain tumor

1.2.1 Imaging techniques

The �rst step toward any medical treatment solution is to detect and diagnose the disease. In
the case of brain tumor the symptoms that will draw the patient to the doctor o�ce are headaches
that worsen in the morning, seizures, stumbling, dizziness, speech problems, weakness on a body
side, nausea and vomiting [11, 26]. The doctor will �rst obtain the patient's personal and family
medical history and perform a complete physical and neurological exam (memory, cranial nerve
function, muscle strength, coordination, re�exes, and response to pain). He can also order more
tumor speci�c test if he suspects a type of tumor with the described symptoms, such as audiometry
(detects hearing loss due to tumors near the cochlear nerve), endocrine evaluation (detect abnormal
levels caused by pituitary tumors) or lumbar puncture (examine cerebrospinal �uid for tumor cells,
proteins, infection, and blood). From the results of all these primary exams if a brain tumor is
suspected, the next step toward a de�nite diagnosis is the use of imaging techniques [26].
An imaging diagnosis can con�rm the absence of tumor, but in the case of a detected mass it will
only be the �rst step to a �nal diagnosis. A con�rmed diagnosis will be given after tissue sampling
and histological analysis. Still with the imaging techniques available nowadays you can collect much
information on the tumors, and start planning the course of action to treat it. Imaging in the last
few decades has accelerated and improved the capacity to detect many diseases. It has become
in many cases the preferred �rst step on the road to diagnosis and treatment, due to its greatest
advantage - non-invasiveness [27�29]. Table 1.1 resumes the di�erent techniques used nowadays. All
these imaging techniques are not competing with each other but work together in a common aim. If
a brain tumor is suspected, to perform a high level preliminary diagnosis a combination of imaging
techniques will be prescribed. To assess the presence or not of tumor, Computed Axial Tomography
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1.2. HOW TO DIAGNOSE BRAIN TUMOR

Scan (CT-Scan) and Magnetic Resonance Imaging (MRI) are prescribed. Then if the oncologist
and surgeons need more precise and functional information to start planning the treatment course
of action, they will ask for more functional imaging (advanced magnetic resonance, functional MRI
(fMRI) and Positron Emission Tomography (PET)).

1.2.1.1 CT-scan

CT-scan is a computerized x-ray that can show a combination of soft tissue, bone, and blood
vessels. It was invented in 1972 by British engineer Godfrey Houns�eld and South Africa-born
physicist Allan Cormack [38]. CT-scan was �rst designed only to image the head and explore the
brain. The �rst CT-scan scans were very slow, and the patient had to be completely still for a
long time. An acquisition could take hours. However the possibility of getting a 3D morphological
representation of any body part spurred fast development of the technology [39]. CT-scan tech-
nology has made great improvements in speed, patient comfort, and resolution. Faster scanning
helps to eliminate artifacts from patient motion such as breathing or peristalsis. Nowadays multi-
slice CT-scan systems can collect up to 4 slices of data in about 350ms and reconstruct a 512 x
512-matrix image from millions of data points in less than a second, making the CT-scan scan the
most widely available technology, and the �rst exam prescribed if an intra-cranial mass lesion is
suspected [40]. It gives an initial work-up before using other technologies such as MRI. CT-scan
is the gold standard to diagnose the presence of acute intracranial hemorrhage, calci�cations, and
osseous anatomy. However CT-scan still has limitations compared to MRI. It su�ers from a lower
contrast capability on soft tissue, fossa and spine regions, and the use of ionizing radiation. These
limitations make the MRI the real gold standard for pre-surgical planning, post-operative assess-
ment, pre-radiotherapy planning, and post-treatment assessment. Consequently MRI is the second
imaging always prescribed along with the CT-scan of a suspicion of brain tumor [41].

1.2.1.2 MRI

MRI is the other major breakthrough of the last century in medical imaging. The fundamental
principle was discovered in 1946 by Felix Bloch and Edward Purcell, who were awarded the Nobel
Prize in 1952. Up until the 1970s MRI was being used for chemical and physical analysis. The �rst
image on tissue was performed in 1971 by Raymond Damadian, who showed that nuclear magnetic
relaxation times of tissues and tumors were di�erent, motivating scientists to use MRI to study
disease [42]. From that point on, MRI has has experienced fast development for implementation
in hospitals worldwide, becoming a standard in diagnosis. As with CT-scan, the MRI was �rst
developed for neurology. It accelerated the knowledge of brain anatomy and the nervous system,
becoming the standard to give images of the central nervous system. It could distinguish white
matter, gray matter and cerebrospinal �uid.
MRI's multi-planar capability, superior contrast resolution, and �exible protocols have allowed it
to play an important role in assessing tumor location and extent. It provides good soft tissue
contrast, producing di�erent types of contrast by varying excitation and repetition times. MRI has
the capacity to give di�erent contrasts in the image with the use of di�erent acquisition protocols.
Each of the protocols provide di�erent and complementary information, contributing to the power
of contrast in the technology. The most common protocols are : spin-echo T1-weighted image
(T1WI), proton density-weighted image (PDWI), T2- weighted image (T2WI), and T1WI after the
administration of paramagnetic agent. Tumors appears hypointense on T1W1 and hyperintense on
T2W1, and can show intermediate hyperintensity on PDWI. Contrast can be facilitated by contrast
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Technique Image Highlights Limitations
Spatial

Resolution

CT
Mass e�ect, herniation,

hydrocephalus,
hemorrhage, calci�cations

Low contrast capability
on soft tissue, fossa and
spine regions use of
ionizing radiation

0,5 to 1,5
mm [30]

MRI

Localizing the tumor and
surrounding structures
with a high-resolution

image, diagnosis of extra-
and intra-axial tumors

Di�cult to di�erentiate
brain neoplasms from
non-neoplastic mass

lesion lack of functional
information

1 to 3 mm
[30]

MR
di�usion

Reduced in highly cellular
portions of tumor.
Establishing spatial
relationships between

tumor border and white
matter

Problem can arise with
the simpli�cation in

tensor calculation. Long
scanning time so a system

sensitive to physical
motion.

0,8 to 1,2
mm [31]

MR
perfusion

Tumor/tissue vascularity

User dependent on : the
account for contrast

leakage e�ects, de�ne a
region of interest,

quantify the resulting
parametric information

around 1
mm [32]

MR spec-
troscopy

Obtaining biochemical
and metabolic

information about the
tumor, determining

tumor type and grade by
assessing the cellular

contents

highly operator
dependent, choose

interest region avoiding
areas of necrosis,

hemorrhage, calci�cation
and/or tumoral cysts

0,6cm3 per
voxel [33]

fMRI
Pre-operative functional
mapping, research into

treatment e�ects

phenomenon of
neurovascular uncoupling
: cortex adjacent to the
tumor can show a false

variation

2 to 4 mm
[30]

PET

Metabolic assessment of
Tumor aggressiveness.
Shows highly metabolic

area in tumor

Exposure to radioactive
rays 10 to 20 min
acquisition time :
sensitive to patient

movements

2 to 5 mm
[30]

Table 1.1 � Di�erent imaging techniques to diagnose brain tumors[34�37] 15
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agents. The most commonly used in MRI for brain tumor is gadolinium (Gd). In brain tumors with
the possible disruption of the blood-brain barrier, Gd can accumulate in the extracellular space of
the tumor speci�c to it. This e�ect results in an enhanced contrast of the tumor in T1W1 compared
to the surrounding normal brain tissue [19, 43].
MRI with or without contrast agents gives anatomical information on brain tissue. However it is
still di�cult based only on this imaging technique to always di�erentiate brain neoplasms from
non-neoplastic lesions, or to easily distinguish low grade from high grade tumors. Indeed this
assessment is based on the contrast intensity. However higher grade does not always induce contrast
enhancement [34, 41]. To have a more complete initial work-up on the tumor, new more advanced
MRI techniques have been developed to give physiological information (metabolic and molecular
state of brain tissue) as well.

1.2.1.3 MR di�usion

Two di�usion imaging techniques can be derived from magnetic resonance imaging. These are
the MR di�usion-weighted imaging (DWI) and di�usion tensor imaging (DTI). DWI is sensitive
to water molecule motion in tissues, and from it the apparent di�usion coe�cient (ADC) can be
calculated. The ADC maps can show relatively low values in certain brain tumors, and mostly in
high cellular tumors such as CNS lymphoma, and high grade glioma. DTI images water di�usion
with more directional information than DWI. It generates maps of the fractional anisotropy and
the mean di�usivity. This technique has been shown to di�erentiate between high grade and low
grade glioma, and distinguish glioblastoma from metastases. Tumors margins can also be detected
with more precision than in conventional MRI [34, 41]. These methods present certain limitations.
The map obtained in DTI imaging comes from tensor calculations, in which simpli�cations are
done along the way that could overlook some macroscopic e�ects and adjust them to microscopic
features. Moreover this method presents long acquisition time making it hard to suppress the
physical movement of brain while imaging [44].

1.2.1.4 MR perfusion

MR perfusion is a technique that give complementary information about the blood �ow in brain
tumors and the surrounding tissue. Two approaches have been developed, with and without the use
of an exogeneous contrast agent. The method consist of either intravenously injecting a contrast
agent and monitoring the loss of signal during its propagation through tissue, or taking direct
advantage of the magnetically labeled blood itself as an endogenous tracer to quantify cerebral
blood �ow [45]. Brain tumors have the characteristic of showing neoangiogenisis (greater density of
vessels per volume unit) which will a�ect these parameters. The disadvantages of this techniques are
some highly user-dependent steps in the process: the accounting for contrast leakage, the de�nition
of a region of interest, and the method of quantifying the resulting parametric information [34, 41].

1.2.1.5 MR spectroscopy

MR spectroscopy is an advanced MR based technique that relies on the phenomena of chemical
shift and spin-spin coupling. This technique highlights certain metabolites in the volume of interest.
The main metabolites that give information in brain tumors are N-acetylasparate (marks neuronal
integrity), choline (marks cellular membrane turnover), creatine (marks bioenergy storage), and also
lipids and lactate (marks necrosis and hypoxia). These indicators will change in the presence of
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malignant brain tumor, where, for example an increase of choline and a decrease of N-acetylasparate
can be observed. The drawbacks of the technique are high operator dependence and the need
to avoid necrosis, hemorrhage, or calci�cation areas while choosing the region of interest for the
measurement [34, 41].

1.2.1.6 fMRI

fMRI uses the relative changes in blood oxygen level dependence to translate brain activity. It
is based on the principle that neuronal activation within grey matter utilizes oxygen supplied in
the form of oxygenated blood to a greater degree than areas of grey matter at rest or in a state of
inhibition. In diagnosis of brain tumor it is used to pre-operatively map the brain area responsible
for locomotion and language nearby the lesion [34, 41]. One drawback to be attentive to is the
phenomenon of neurovascular uncoupling. In normal brain the regulation of cerebral blood �ow
is an interaction between neurons, glia and vascular cells. fMRI measurements are based on the
fact that this interaction is still viable in presence of tumor. However some tumors can lack this
interaction, phenomenon of neurosvascular uncoupling, resulting in regions of cortex adjacent to
the tumor that can show a false variation in fMRI parameters [46, 47].

1.2.1.7 PET

The standard for functional information is PET which uses a radioactive substance to quantify
the metabolic activity of cells. A small amount of radioactive tracer is injected into a peripheral
vein and the emitted radioactivity is detected. Tracers are labelled commonly with isotopes such
as oxygen-15, �uorine-18, carbon-11, or nitrogen-13. The radiolabel 18-�uorodeoxyglucose (FDG)
accumulates on glucose analogue allowing the measurement of the glucose consumption rate. Malig-
nant tumors metabolize glucose at a faster rate than benign tumors, making the technology of use
in the clinical discrimination of tumoral tissue by tracing their metabolic activity. A scan usually
takes from 10-40 minutes [48].
The technology behind a PET is far from new and was actually discovered before CT-scan and MRI
in 1950s. However, for a long time it stayed as a strictly research tool and only emerged as a clinical
tool in the 1990s-2000s. The reason is that PET requires the use of a tracer, and the road to �nding
one both suitable for the target clinical application, and then approved by the hospital's committee
was long. PET was able to take o� when the tracer FDG was approved for its use in oncology. PET
has since been combined with the other technologies of CT-scan and MRI, giving complementary
information in an attempt to improve the power of discrimination of imaging techniques. However
it remains a very new and hybrid technology that has to prove the real extent of its potential. A
pitfall of PET scan is the relatively long acquisition time 10 to 20 minutes acquisition for a whole
brain, making it very sensitive to patient movements or intracranial movements that will blur the
resulting image [49].

CT-scan is a cheap, fast and good technique, so it is the �rst to be prescribed in the course of
diagnosis. However contrast on MRI gives higher resolution and is more suited to evaluate brain
tumors. It is the gold standard for this reason and has to be included in the initial workup. The goal
of this initial assessment is to identify the lesions in order to determine if surgery can be avoided.
Classical MRI giving only anatomical information can be insu�cient to distinguish neoplastic from
non-neoplastic tumor, and low grade from high grade. It is in these cases that advanced MRI
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Figure 1.3 � Frameless stereotactic biopsy system that relies on neuronavigation systems for lesion
targeting [52].

(di�usion, perfusion, spectroscopy and functional) can be done to get more information, identify
the type of lesion, and make a more suitable decision on the next course of action. If surgery is
chosen, fMRI will often be used to map the highly functional area surrounding the tumor.

1.2.2 Biopsy

Even though all of these techniques have witnessed growing developments in the last few decades
allowing the detection of tumors at earlier stages, none of them are able to give a conclusive and high
reliable diagnosis on the degree of malignancy and on the precise type of tumor in glial subgroups.
The result is a continuing need for tissue samples for histopathological analysis [50]. This last step
in diagnosis of brain tumor is called a biopsy, and remains the gold standard for assessment of
tumor presence and malignancy. It consists of the surgical extraction of tissue samples to perform
in depth ex vivo analysis by an experienced neuropathologist. The traditional biopsy method has
been through a craniotomy, open skull surgery, but this procedure appeared in some cases to not be
required or indicated, leading to the development of less invasive methods such as the stereotactic
biopsy (SB). Stereotactic neurosurgery appeared in 1908, and involves a physical 3D-frame �rst
developed by Horsley and Clarke. The goal is to perform a minimally invasive procedure using an
electrode guide based on the 3D cartesian coordinate system [51].

It was �rst used in intracranial targeting for psychiatric and functional dis- orders, and saw re-
duced use through the end of 1960s. The development of CT-scan and advanced imaging techniques
revived stereotactic neurosurgery with numerous new applications. This breakthrough was made
possible with the publication, in 1979 by Russell A. Brown, of a new device called the N-localizer
that enables the guidance of stereotactic surgery with imaging obtained on other devices, such as
CT-scan, MRI or PET. The device is built with rods that form a capital "N" shape to relate the
spatial information of a tomographic scan to spatial information in the physical world [53]. Stereo-
tactic surgery is now widely used for delivery of radiation, surgical targeting of electrodes, and
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resection to treat tumors, epilepsy, vascular malformations, and pain syndromes [51]. Classical SB
without assistance had a rate of conclusive diagnosis up to 68% to 98%. It is presented as a safe,
e�cient and valuable procedure, but it still can have fatal complications, with a morbidity rate up
to 0,9 to 15%, and a mortality rate of 0 to 4.2% [54]. To improve SB, the imaging technologies
previously described were used pre-biopsy to build a map to guide the procedure. Moreover the
classical frame has been abandoned in most cases for scalp �ducials, which provide a physically
less crowded system of external markers (�ducials) used to create reference points for surgery. This
current method is referred to as a frameless stereotactic neuro-navigation system and is presented
in �gure 1.3. The protocol for the frameless neuronavigated biopsy is the following : 1) Head
secured and �ducials are registered into the computerized navigation system. 2) A small incision
is marked out and an opening in the skull (the size of a quarter) is made and the dura is opened.
3) A stereotactic biopsy needle, with a diameter around 2mm [55], is introduced into the target
guided by the neuronavigation system to obtain biopsy samples [56]. Multi-planar neuro-navigated
SB has given a 98-99% of conclusive diagnosis, a 0.7-0.9% of hemorrhage related morbidity, and no
mortality [54, 57].

1.2.3 Histology

Once the sample has been extracted using one of these techniques, it needs to go through
di�erent processes (histopathological analysis) to obtain a de�nite diagnosis by an experienced
neuropathologist.

1.2.3.1 Classical process

The most widespread process is to �rst perform a chemical �xation of the tissue, in order to
preserve tissue from degradation, and to maintain the structure of the cell and of the sub-cellular
components such as cell organelles (nucleus, endoplasmic reticulum, mitochondria). The most
common �xative is formalin (10% neutral bu�ered formaldehyde in water). Then to highlight the
tissue structure, a stain is applied with one or more pigments. The table 1.2 summarizes the
available stains and their purpose.

The most commonly used stain is still the combination of hematoxylin with eosin (H&E stain-
ing). It was introduced more than a century ago, and has remained the standard stain for histologic
examination of human tissues [59]. H&E is commonly used mainly because it is an inexpensive dye
working well with a large number of �xatives and highlighting a large panel of cytoplasmic, nuclear,
and extracellular matrix structures [60, 61]. The hematoxylin will stain the nuclei in blue and the
eosin will stain the cytoplasm and extracellular connective tissue matrix in di�erent shades of pink.
Once stained, histological slices are examined under a microscope [58]. The histological method
of diagnosis has to be done ex vivo and in a neuropathology laboratory. In this procedure the
most time consuming step is the chemical �xation which requires between 16 to 24 hours and more
when special �xatives are used. Once the analysis is complete the medically trained specialist, a
neuropathologist, formulates a pathology report. This report, usually produced several days after
excision of biopsy, is the basis for assessing tumor nature and is required to choose the treatment
protocol [62]. The other major limitation is the indirect diagnosis, when it is used to locate the
region that should be later resected, the brain shift can be di�erent once the surgeon opens the
skull again and the coordinates of regions to resect are not exactly the same anymore.
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Stains Common use Higlight structures

Haematoxylin General staining when
paired with eosin

Nucleus, Cytoplasm,
nucleic acids and

endoplasmic reticulum

Eosin General staining when
paired with haematoxylin

Cytoplasm, red blood
cells, collagen �bers,

elastic �bers and reticular
�bers

Toluidine blue General staining Classical features and
mast cells granules

Masson's trichrome
stain

Connective tissue Classical features and
cartilage and muscle

�bers

Mallory's
trichrome stain

Connective tissue Classical features and
Keratin, Cartilage, Bone
matrix and Muscle �bers

Weigert's elastic
stain

Elastic �bers Nucleus and elastic �bers

Heidenhain's
AZAN trichrome

stain

Distinguishing cells from
extracellular components

Classical �bers and
muscle �bers, cartilage,

bone matrix

Silver stain Reticular �bers, nerve
�bers, fungi and reticular

reticular �bers and nerve
�bers

Wright's stain Blood cells Classical features and
neutrophil granules,
rosinophil granules,
basophil granules,
platelet granules

Orcein stain Elastic �bers Nucleus, red blood cells,
elastic �bers and smooth

muscle

Periodic acid-Schi�
stain

Basement membrane,
localizing carbohydrates

Nucleus, collagen �ber,
and glycogen and other

carbohydrates

Table 1.2 � The most common stain in histology [58].
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1.2.3.2 Peri-operative process

The classical lengthy process far from operating room reality has spurred the development of
peri-operative assessments with shorter processing time. Two techniques can be identi�ed: the
frozen section and the cytologic smear. As shown previously the factor limiting intra-operative as-
sessment in the classical procedure is the long �xative process. In frozen section protocol, extracted
tissues are immersed in liquid nitrogen (N2) and isopentane on dry ice, resulting in a �xative state
that can be then sliced using a cryostat and stained. This method of �xation is much faster, from
10 minutes to an hour maximum and requires less equipment, making it possible to use during
surgical procedure to help determine the next step in surgery, such as perioperative determination
margin resection clearness [62].
In cytologic smear preparation, developed to give intraoperative neuropathologic diagnosis, the ex-
tracted piece of tissue is placed between two slides and gently squashed to obtain a thin smear.
Then it goes through �xation by being immersed for �ve minutes in 95% ethylalcohol and is stained
with papanicolaou for a few minutes processing, and can also have hematoxylin and eosin staining
[63�65]. Compared to frozen section, cytology smear preparation requires less tissue leaving more
for the de�nitive ex vivo diagnosis. It also avoids freezing artifacts, is simpler and quicker, around
10 minutes overall, and gives higher details in nuclear, cytoplasmic and �brillary processes features.
Nowadays, the two techniques are used together to improved diagnosis. It agrees with the �nal,
gold standard histological analysis in 95% of CNS cases [64].

1.2.3.3 Limitations of peri-operative process

Even if these techniques have been shown to be faster than the classical para�n-embed sam-
pling, they still do not o�er real-time diagnosis. The turnaround time is around 20 minutes for
frozen section [66] and 10 minutes for squash smear [67]. The frozen section technique is also a
costly technique. It requires access to a frozen environment (cryostat, liquid nitrogen,...) and a
pathologist available to perform evaluation at the same time as the surgery [68]. Moreover DiNardo
et al. have shown that the accuracy drastically drops in the case of positive margins. The accuracy
was of 71.3% in the evaluation of close or positive �nal margins compared to a 98.3% on solid
tumor. This lack of accuracy compared to the cost of technique is evaluated with a cost-bene�t
ratio of 20:1 [69]. The smear preparation was preferred in CNS lesions not only to reduce the cost
and to avoid frozen artifacts but also to enhance cellular morphology. However the technique has
a lower accuracy than with frozen section [70], failing primarily in assessing glial tumor grading
due to inadequate sampling and lack of histological features [65]. Moreover heterogeneity inside a
tumor can result in a low malignancy assessment within overall very aggressive tumors. This error
is due to biopsy being performed on a fraction of a tumor [65]. These peri-operative assessments
will be su�cient in biopsy surgical procedures where the intra-operative consultation only aims to
show the presence of "lesioned tissue". However, for tumor grading and histological typing of the
tumor during resection surgery, where speci�c diagnosis is required, these techniques will lack the
needed accuracy [64]. So challenges still remain for improving intra-operative diagnosis. Moreover,
even if faster, these neuropathological techniques still require tissue extraction and staining with
external agents, introducing a bias versus the in vivo tissue condition and fail to provide real-time
analysis for the surgeon during resection surgery.
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Figure 1.4 � The treatment of choice for each type of brain tumors [28].

1.3 How to treat brain tumor

1.3.0.1 General treatment choice

Now that images and pathology reports are available, a team consisting of an oncologist, a
radiation oncologist, and a neurosurgeon can together make the plan of action for the treatment.
Treatment decisions are individualized and based on tumor type, location, malignancy, and the
patient (age, physical condition). Classical ways to treat brain tumors include surgery, radiotherapy
and chemotherapy. Sometimes just one type of treatment can be required but most of the time a
combination of it is needed. Clinical trials would also be proposed as an option for some high-grade
tumors [26, 28]. Figure 1.4 shows the classical combination of treatments depending on the tumors
type.

1.3.1 First choice of treatment for brain tumors

In order to surgically remove a brain tumor, the surgeon performs a craniotomy, an operation
where he makes an opening in the skull. If the complete removal is not possible without sustaining
brain damage, he will remove as much as possible to help relieve symptoms. Three procedures
have �ourished in the last few decades: maximum extent resection, electro-stimulated surgery, and
awake surgery.

1.3.1.1 Maximum extent of resection

A theoretical principle of neurosurgical oncology is that a maximum resection will reduce mass
e�ect and tumor burden resulting in improved diagnosis and prolonged survival. However some
brain tumors such as high-grade glioma are very in�ltrative and their removal can be challenging.
The recent preferred approach is to perform maximal surgical resection, but these tumors can be
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located in highly functional area (language, motor, memory, ...) and resection of these regions
have to be avoided at all cost to preserve a certain quality of life for the patient. The principle of
brain tumor resection consequently become to achieve a maximal resection while monitoring the
oncological-functional balance to preserve brain functional area. Such surgeries are based on the
evaluation of tumor margins with previous biopsies and imaging analysis, combined with mapping
of surrounding functional areas using advanced MRI techniques. So far the best pre-operative com-
bination of functional imaging to a successful maximal resection surgery, is fMRI and DTI imaging,
showing increase survival and better motor function post-surgery [71].

One of the major drawbacks of basing the surgical plan on pre-operative analysis is the phenomena
of brain shift during craniotomy. The human brain is plastic by nature, and can be very �exible
and easily deform once an open surgery is started. This phenomenon, called "brain shift", has been
documented in the last years [72]. Di�erent factors happening during a surgery can play a role
in this shift, such as the mechanical action of resection, gravity, evacuation and drainage of �uid,
cystic components and others. The displacement of a cortical target region preoperatively can be
from 0.8 to 14.2 mm once the dura is opened [73]. This highlights the strong limitations of actual
neuro-navigation methods which are established on preoperative data.

1.3.1.2 Electrostimulated surgery

To solve this issue and to improve surgical outcomes, new surgical methods have been devel-
oped. The �rst successful approach was to use electro-stimulation during surgery in order to map
the cortical and subcortical function during the resection and to adjust it in order to insure the
conservation of important functions for the patient post-surgery. If used under general anesthesia
electro-stimulation can allow mapping of the motor functions. Bipolar electrodes are placed on the
surface brain for few seconds with a current in the range of 2 to 16 mA, and patient is watched
for movement response. If a region of the brain show activity when a movement is stimulated,
the surgeon will stop resecting this area to preserve the essential function. However language and
cognitive function could not be identi�ed during surgery with this method [74]. If this method
show great advantages over pre-operative function mapping by solving the problem of brain shift,
there are still some limitations. Electrostimulation can result in some false negatives. Because the
patient is under anesthesia any motor stimulations are external, and not coming voluntarily from
the patient as they would be normally. Further external stimulation excites the largest axons and
neurons �rst, where in voluntary movement stimulation can start from smaller neurons. Conse-
quently these small neurons will not be activated with the external stimuli and may be wrongfully
resected [75]. Another limitation that often results in false positive is the propagation of the signal
along axons. Even if it is an advantage by highlighting the connectivity in the brain, it can also
show signal after stimulation in a region that could have been resected [75].

1.3.1.3 Awaken surgery

To have access to all vital functions related to brain activity, the process of awake surgery was
developed. The process of such surgery is asleep-awake- asleep protocol, the patient is asleep for
scalp opening and bone removal and then fully awake for speech function mapping. The distance
of the resection margin from the nearest language site is critical to hope for post-operative intact
language function. A 40% language de�cit is expected if the resection comes within 10 mm of
important language sites. However, for distances greater than 1 cm, no permanent de�cit can
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be expected [74]. A recent study of awake surgeries with electrostimulation for function mapping
showed that in 107 patients with glioma of grade II to IV, surgeons were able in 80% of cases to
have a resection superior to 90% [76]. Also 74% of patient were able to resume their employment
activity. They determined that with this technique, maximal functional-based resection, an increase
in both survival and quality of life was possible [76]. Even if this surgical technique showed an
improvement in patient survival and quality of life, the resection is still performed "blind" in the
in�ltrated margins and performed maximally to be sure to reach the 90% rate of resection [77].
However some resected regions may have been completely healthy and some cells may have been
left in the highly functional regions.

1.3.2 Other standard treatment

If complete removal is not possible without sustaining brain damage, the surgeon will remove as
much as possible to help relieve symptoms. The rest of tumor left can be treated with the additional
and complementary options of radiation therapy and chemotherapy. Radiation therapy, also called
radiotherapy, uses high-powered rays to damage cancer cells and stop them from growing. It can be
done by two di�erent processes. External radiation coming from a large machine is generally given
over �ve days during several weeks, depending on type and size of tumor and the patient's age [10].
The other method is internal radiation therapy (brachytherapy), where radioactive implants are
put directly in the tumor after resection of the tumor. With this process the radiation is impacted
the �rst few millimeters of tissue in the resection cavity, where residual in�ltration could sustained
[10]. This limits radiation to other parts of the body, however the patient has to stay in the hospital
for several days while the radiation is most active. In most of cancer another method of treatment,
to avoid recurrences, is chemotherapy. Chemotherapy, is a treatment based on the use of drugs
to eradicate cancer cells. The drugs are usually given orally or by injection (in bloods or muscle),
they aim to disrupt mitosis to result in the death of abnormal cells and shrink the tumor [10].
However for a long time it has been considered ine�cient for brain tumor due to the selectivity of
the blood-brain barrier (BBB). Indeed to regulate the uncontrolled di�usion of most molecules into
the brain, this one is surrounded by the BBB. It prevents harmful toxins and bacteria contained in
the blood stream from entering the brain, enabling access only to selected substances and molecules
like water, some gases, and essential nutrients. If it stays intact through appearance of malignant
tumors, what should be seen as a life-saving defense, is also in reality a di�culty for treatment by
blocking many drugs and agents from reaching brain cells and tissues [20, 78]. Recently new drugs
appeared, with small size or high lipid solubility, naturally able to pass through the BBB, allowing
e�cient brain tumor chemotherapy. However even if these improvement, this technic still has to
prove real impact in brain tumor management, especially in high grade glioma [79].

1.4 Current technologies of assisted resection with intra-operative

imaging

To answer the problem of brain shift on pre-operative mapping and the limitation of electro-
stimulated surgeries, another approach had been to �nd ways to give contrast at the cellular scale
for the surgeon during his surgery. For this, intra-operative imaging techniques have been developed
and have started to make their appearance in the operating room. The �rst direction taken to get
real- time intra-operative assessments was to bring the current pre-operative imaging techniques,
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such as MRI or Ultrasound into the operating room [80].

1.4.1 ioMRI

One of the more advanced intra-operative non-optical technologies is the intra-operative MRI
(ioMRI) [81, 82]. The �rst attempts began in the 1990s with a collaboration between researchers and
physicians from Brigham and Women's Hospital in Boston (Massachusetts, USA), and engineers
from General Electric Medical Systems, resulted in a pioneer 0.5THz intra-operative MRI system.
Since then few other systems have been invented. Siemens produced a 0.2THz open-con�guration
system that was implemented and used in several places (Los Angeles, Heidelberg,...). Philips devel-
oped a high �eld 1.5T MR scanner with a pit con�guration that requires in and out displacement of
the patient between surgical actions and imaging [81]. These systems give the surgeon anatomical
and functional information, helping to make a more precise decision on tumor margin delineation.
ioMRI has a high sensitivity on soft tissue discrimination and allows 3D visualization of the oper-
ative site. It also helps the surgeon to adapt his surgical trajectory to a safer and more e�cient
option by enhancing the contrast of intra-cranial lesions. Consequently, the extent of resection can
be optimized and the risk of critical hemorrhage greatly reduced. The studies of the use of ioMRI
in brain surgery have shown little improvement in the quality of gross total resection. Eljamel et
al showed that patients undergoing high grade glioma resection had a gross total resection rate
of 70% with the use of ioMRI. Although this rate was assessed to be an improvement compared
to non-assisted surgery, it was lower than with intra-operative ultrasound and �uorescein guided
surgery [83]. Cobuger et al. showed that in low grade glioma resection ioMRI correlated signi�-
cantly with the histo-pathological diagnosis (p<0.006), however no test was done on the impact on
gross total resection [84]. Kubeen et al. tried to compare ioMRI to conventional neuro-navigation
guided surgery and did not �nd signi�cant advantage with respect to extent of resection, clinical
performance, and survival using ioMRI [82]. ioMRI has not shown signi�cant results in assisting
brain tumor resection and presents important drawbacks. It is a costly and time-consuming proce-
dure, requiring specialized non-magnetic tools and a long acquisition time that disrupts the surgical
work�ow [80, 85]. Moreover some residual neoplastic tissue cannot be identi�ed by this imaging
modality. There is not always a correlation of contrast enhancement with presence of neoplastic
tissue. Even if an increase in contrast correlates with tumor, a lack of contrast does not always
correlate with the absence of lesions [86].

1.4.2 ioUS

Another technique implemented in the operating room is the intra-operative ultrasound (ioUS).
It is a real-time imaging technique and inexpensive compared to ioMRI. The imaging scan can be
performed several times during the surgery without major disruption to the work�ow [80]. This is
based on the technique of ultrasound imaging that uses high frequency sound waves which are sent
to the examined area and the return echo is registered. A computing process gives a live image
of the observed region inside the body. The probe is made of acoustic transducers that generate
pulses of sound. When these pulses �nd a material with a di�erent density, a wave is re�ected
back to the probe and detected as an echo. The system measures the time the echo takes to return
and calculates the depth of tissue that generated the echo. In medical imaging the frequency of
the pulses is in the range of 1 to 18 MHz. In ioUS the transducer is in direct contact with the
examined organs, giving the advantages of avoiding any signal degradation due to air, bone, blood
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or overlying tissue [87]. Petridis et al showed that in low grade glioma it gave better results than
other intra-operative neuro-navigation systems. On 34 patients with low grade glioma, 15 were
treated using ioUS and in all cases the tumor was identi�ed. Nineteen were treated with standard
neuro-navigation, which failed 5 times to identify and locate the tumor [88]. These results showed
that used before resection, ioUS gives a useful and promising contrast on identifying low grade
glioma and delineating its margins. The shortcomings showed in this study and others before is
that once the resection have been performed ioUS image quality at the resection border decreases
signi�cantly and remaining tumors can be confused with artifact, such as the "rim e�ect". Another
major shortcoming of ioUS is that it requires an experienced and trained operator to correctly
interpret the images, which makes it di�cult to include in a surgical work�ow [80, 89].

Despite all their technical and computing advances, ioMRI and ioUS still do not provide the accu-
racy and precision required to assist with extended resection. Ultrasound, MRI and CT imaging
are still not able to discriminate tumor heterogeneity and can not give precision at the near-cellular
scale [90].

1.5 New contrast in intra-operative imaging: the �uorescence

1.5.1 Exogenous �uorescence

A new contrast of imaging that has been emerging in the area of biology and physics in the last
decades, is the �uorescence. The principle is an incident light exciting an electron to an orbital
state that will relax, emitting a photon. The �rst type of �uorescence to be explored was exogenous
�uorescence. Fluorescent markers were introduced into target cell types, proteins, genes, where
they will then be excited and their emitted signal collected by the endoscope. The �rst step is to
�nd a speci�c probe for the analyzed tissue and cells. Some �uorophores are now able to provide
reliable results in intra-operative diagnosis, and the next di�cult step is to win approval for clinical
application from di�erent European and American committees. The most tested and widespread
�uorophores are �uorescein sodium, indocyanine green (ICG) and 5-aminoluvulinic acid (5-ALA).
We are going to review their discovery, performance and limitations [91].

1.5.1.1 Fluorescein

Fluorescein was the �rst marker to be clinically used by Moore et al in 1948 on glioma surgery. It
accumulates in glioma tissue and give a homogenous yellow �uorescent signal that can be observed
with naked eye. However �uorescein will accumulate everywhere there is blood and will become
highly non-speci�c [92]. These brought large debate and dispute in the literature on the real capacity
of �uorescein to be tumor speci�c. Even though it was the �rst tested �uorophore, �uorescein is
not FDA (Food and Drugs Administration, United-States) approved even today, and can only be
used in clinical research study.

1.5.1.2 ICG

Another interesting marker is ICG. It has to be excited in the near infrared range and it emits
�uorescence in the same range. NIR light is in the therapeutic window of tissue, resulting in less
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absorption and is safer with regard to tissue damage. ICG has shown great results in the techniques
of ICG video angiography, and has been used in other surgical procedures, assessment of blood �ow,
vessel patency, and not only intestinal perfusion but also in gastrointestinal oncology [93�95]. ICG
could be used to show blood �ow in glial tumor surgeries. The �rst studies showed that used alone it
failed to give enough �uorescence. The most promising results have been when ICG was conjugated
to other molecules enhancing the signal such as 5-ALA [96]. Still one of the major drawback of this
�uorophore is the necessity to display the image on a monitor and use specialized detectors and
instruments due to excitation and collection in the infrared region [90].

1.5.1.3 5-ALA

Where �uorescein and ICG are passive agents, accumulating in tissue by di�usion processes, 5-
ALA is a metabolic targeting agent. This means that a metabolic process activates a non-�uorescent
component into a signal-generating form in targeted tissue. It is an intermediate metabolite, that
after oral administration the patient will convert to protoporphyrin IX (PpIX) an endogenous
�uorophore emitting in near infrared (620-710nm) [97]. 5-ALA was �rst introduced in glioma
surgery by Stummer et al. in 1998 [98] on 9 patients. They reported the usefulness of 5-ALA-PpIX
in 7 of them to detect and remove residual tumor tissue. Later on, with a phase-III study in Europe,
Stummer et al. demonstrated that the use of 5-ALA contrast resulted in higher rates of gross total
resection (65% vs. 36%) and, in patient older than 55 years, an improved 6-month progression-free
survival (41% vs. 21.1%) [99]. In Europe 5-ALA has been approved by regulation committees and
used more and more by surgeons to assist their resection surgeries. It has shown great results in
high glioma, more especially in GBM.
Still it has its limitations, in low grade glioma. Due to the needed blood-brain-barrier disruption,
the accumulation of �uorophore can decrease and consequently decrease contrast [90]. These �rst
studies were made using a 405 nm excitation source, that induced considerable photobleaching.
Kantelhardt et al conducted a study of the PpIX �uorescence in orthopic glioma model using a two-
photon imaging set-up (DermaInspect, JenLab). They were able to get a higher structural de�nition
of the tumor tissue, with the high resolution of the two-photon microscopy [100]. Discrimination
of �uorescence from the cytoplasm of tumor cells from the 5-ALA induced PpIX �uorescence of
normal brain parenchyma adjacent to tumor were possible [100]. 5-ALA more and more used in
clinical setting and evaluated by the di�erent national ethical committees for general approval, have
consequently be questioned on the eventual secondary e�ects that patient will su�er. The impact of
5-ALA has recently raised di�erent arguments. Bi and Law have published a review of the literature
were they assert that transient allergic reactions, including generalized edema, and photosensitivity
have been described after 5-ALA administration in several case series [22]. However in a letter
Stummer has answered that it was a single case of mucosal edema and that in 500 patients closely
monitored no issues of this nature have been encountered and that no other case has been reported
to the European Risk Management plan [101]. Coming to a conclusion on the impact that could
have 5-ALA on patient safety, is a hard task and is one of the reasons that this exogenous method
will take time to be accepted and used on a larger scale. Consequently, other methods must continue
to be explored to tackle the question of assisted resection surgery.

1.5.2 Endogeneous �uorescence

Exogenous markers development was slowed down by di�cult regulatory approval processes
and the hard task of �nding tumor speci�c markers at a cellular scale. These limitations and the
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availability of high resolution imaging technologies, pushed physicists to consider another mean of
contrast - auto�uorescence. This is a signal from native components of biological tissue. It has been
seen for a long time as a noise in exogenous �uorescence optical detection, recently gaining interest
as a direct mean of contrast for optical tumor diagnosis. In all tissues, we can �nd molecules in
cells, that when excited at a suitable wavelength becomes �uorescent. This emitted �uorescence, an
intrinsic property of cells, is called auto�uorescence in contrast with previously described exogenous
�uorescence. Endogenous �uorophores are link to the morpho-functional properties of cell and
tissue. All changes during physiological and/or pathological processes impact the distribution of
�uorophores and so their emission features. It results in a powerful tool to monitor directly the
morphological and physiological state of a tissue and/or region of cells.

1.5.2.1 Fluorescent molecules in brain tissue

Auto�uoresence originates primarily from mitochondria (molecules such as reduced nicotinamide
adenine dinucleotide (NAD(P)H) and �avin adenine dinucleotide (FAD) coenzymes, porphyrins
and lipopigments), lysosomes (lipofuscins in cells), extracellular matrix (structural proteins such as
collagen and elastin) and various aromatic amino acids (such as tyrosin and tryptophan)[102�104].
Figure 1.6 shows the distribution of these �uorophores as a function of on their optimal excitation
wavelength and their emission spectrum [105].
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aging for the detection, differential diagnosis, staging or 
characterization of malignant and premalignant lesion in 
these and other body sites. If the goal of early detection of 
primary or recurrent tumors can be achieved, this may in- 
crease the likelihood of successful radical treatment and re- 
duce complications. 

Additional potential applications of these techniques are 
to provide guidance in locating the optimum sites for biopsy 
(7), to define the surgical margins for tumor resection 
(73,105,106) and to optimize and monitor PDT treatments 
(21,94,107,108). A controversial but recurring concept is 
that of the optical biopsy, where it is envisaged that diag- 
nosis based on in situ optical measurements could be per- 
formed without tissue removal for histopathological exami- 
nation. Focusing on this (probably unachievable) goal de- 
tracts from the valuable and realistic uses of fluorescence 
and other optical techniques. 

The potential clinical advantages of fluorescence tech- 
niques include: the high signal sensitivity, especially if point 
measurements are used; the particular suitability for exami- 
nation of tissue surfaces (compared to the volume imaging 
of most radiological techniques); flexibility in the anatomical 
sites that can be investigated, especially using small-diam- 
eter optical fiber probes; reduction in the use of random tis- 
sue biopsies and the ease of use by the clinician. The poten- 
tial for reduced health-care costs as a consequence of the 
minimally invasive nature and speed of the techniques and 
the improved patient outcome may be significant. However, 
as will be indicated in the applications section below, it is 
critical that the clinical (and associated laboratory) studies 
to evaluate fluorescence spectroscopy and imaging are per- 
formed in a medically relevant context. Thus, for example, 
there is little benefit in showing that tumors that are visible 
to the naked eye also fluoresce if this does not alter patient 
management or outcome, or if the procedures have signifi- 
cant toxicity or only incrementally improve lesion detection 
compared to established techniques. 

FLUOROPHORES 
Each class of fluorophore outlined above, namely endoge- 
nous, endogenously synthesized and exogenous, has distinct 
advantages and limitations for different clinical applications. 

Endogenous fluorophores 

As recently surveyed by Richards-Kortum and Sevick-Mur- 
aca (8) ,  most endogenous fluorophores are associated with 
the structural matrix of tissues or are involved in cellular 
metabolic processes. The most important of the former are 
collagen and elastin, the fluorescence of which is the result 
of cross-linking between amino acids. Fluorophores involved 
in cellular metabolism include reduced nicotinamide adenine 
dinucleotide (NADH) and flavins. Other fluorophores in- 
clude the aromatic amino acids (e.g. tryptophan, tyrosine, 
phenylalanine), various porphyrins and lipopigments (e.g.  
ceroids, lipofuscin) that are the end-products of lipid metab- 
olism. In addition, red porphynn fluorescence due to bacteria 
may be significant in certain body sites and/or lesions. 

Characteristics that are important to consider in optimiz- 
ing and interpreting clinical studies include the following: 
(a) Each fluorophore has a distinct excitation and emission 
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Figure 1. Fluorescence excitation (A) and emission (Bj spectra of 
various endogenous tissue fluorophores. Spectral shapes are shown 
for the best relative excitatiodemission conditions (derived from 
Richards-Kortum and Sevick-Muraca (8), Wolfbeis (1 1) and Botti- 
roli et al. (78). 

spectrum (Fig. 1). (b) Any given tissue contains a mixture 
of many fluorophores of different concentration. (c) The 
fluorophores are not uniformly distributed in tissue and, in 
particular, may vary markedly with depth below the tissue 
surface. For example (Fig. 2) ,  in hollow organs such as the 
bronchus, GI tract or bladder, there is a distinct layered 
structure (mucosa, submucosa, muscularis), each of which 
has a different fluorophore composition. Thus, the fluores- 
cence spectrum measured at the tissue surface has different 
contributions from the fluorophores in each layer. 

The detection of premalignant lesions or early cancer us- 
ing autofluorescence then depends on changes in one or 
more of (1) the fluorophore concentration or spatial distri- 
bution; ( 2 )  the metabolic status: e.g. NADH is fluorescent 
only in its reduced form; (3) the biochemicalhiophysical 
microenvironment of the tissue, which may alter the fluo- 
rophore quantum yield, spectral peak positions and line 
widths; (4) the tissue architecture, such as mucosal thick- 
ening or loss of layered structure, which affects the relative 
contributions to the measured fluorescent signal at the inti- 
ma1 tissue surface and ( 5 )  the wavelength-dependent light 
attenuation due to the concentration and distribution of (non- 
fluorescent) chromophores, particularly hemoglobin. 

The degree to which the fluorescence signal measured in 
vivo is altered by these metabolic or morphologic changes 

Figure 1.5 � Fluorescence excitation(A) and emission(B) spectra of various endogenous �uorophores
[105].

NADH has a favored absorption wavelength at about 365 nm and emits �uorescence in the
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420-490 nm region. The �uorescent properties of NAD(P)H change with enzyme bidding and as
a consequence a shift of the main emission peak can be observed. NADH is mainly involved in
oxydoreduction reaction during energy production, which makes it a good metabolism indicator
[106]. FAD has an absorption maximum at 445 nm and emits �uorescence around 525 nm. It
is an oxidized form of the metabolic process of energy production in cells and as for NADH, the
monitoring of its �uorescences give access to metabolic information [106]. Lipopigments, a product
of lipid oxidation can be excited in the 340-440 nm range. The main peak of emitted �uorescence
is at 600 nm with a broad width [106]. The signal is produced by granules that accumulates in
cell cytoplasm and are associated with tumoral condition [107, 108]. This motivated the use of
lipopigments as a diagnosis tool. Porphyrins, molecules involved in transport of oxygen, catalysis
and pigmentation, emit �uorescence at 630 and 670 nm if excited in the visible range. Porphyrins
have been observed as an indicator in necrotic tumors [109]. Some amino acids are also endoge-
nous �uorescent molecules. They are best excited with wavelength under 280 nm, and three of
them can emit �uorescence : tryptophan around 340 nm, tyrosin around 300 nm and phenylanine
around 280 nm. Their �uorescence response is in�uenced by structure, spatial conformation and
microenvironment, making it an interesting tool to monitor tissue state [106]. Proteins themselves
can also result in an auto�uorescence signal, such as structural collagen proteins. The maximum
absorption of collagen is around 340 nm with an emission peak at 400 nm. Collagen is one of the
main component of the extracellular matrix (ECM) and presents di�erent types, at least eleven.
These proteins are able to produce �uorescence through formation of covalent cross-links [106].
During most cancers the ECM is altered through di�erent mechanisms, which can result in increase
of collagen or/and a more oriented alignement. Being able to quantify the amount of collagen could
be a hallmark of tumoral nature. Also some types of collagen (I,II and V) have a very distinct triple
helical structure, which make them, as shown before, a source for SHG signal and so an indicator
of structural change in the ECM, such as �ber orientation [110].

Using this intrinsic contrast signal in multi-photon microscopy showed promising results, over
linear microscopy, to give information at a cellular scale. Teams have worked on mouse models
of gliomas to count cell density imaging two-photon auto�uorescence of NADH and FAD [100].
Lepert et al. have applied multi-photon microscopy on ex vivo murine tumor and human brain
tumor [111]. In murine tumor, the images of the auto�uorescence response were compared to the
gold standard H&E staining in histology. The demarcation between tumor and healthy tissue were
identi�ed in the multi-photon images with a cellular scale. The invasive tumor cells were identi�ed
at a single cell level and some sub-cellular structures too. They also explored some human ex vivo
samples taken from macroscopic edge and solid tumor tissue after resection of a glioblastoma. In
the margin, they showed single invasive cell as in murine tissue [111].

1.5.2.2 Metabolic activity

The metabolic activity of the brain is the sum of all the biochemical processes responsible
for cerebral functions, like maintaining cell life and enabling their functions in the tissue. The
brain is one of the most energy consuming organs, using 20 to 23% of the total body energy re-
quirement [112]. When a cerebral stimulation occurs the metabolism activated requires higher
adenosine triphosphate (ATP) production than typical basal state. Being able to measure this
cerebral metabolic activity gives access to monitoring changes in brain activity and irregular phys-
iological conditions such as hypoxia, hyperoxia and even acute ischemia [112, 113]. The two major
pathways for brain metabolic activity are glycolysis and oxidative metabolism. These two process
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are shown in �gure 1.6. In these reactions co-factors NADH and FAD play role of electron donors
and acceptors. NAD(P), an electron acceptor, has only its reduced form, NAD(P)H, that �uoresce.
FAD a primary electron and proton acceptor has only its oxidized form, FAD, that �uoresce. Aut-
o�uorescence measurements of these co-enzymes consequently gives a way to monitor the energetic
metabolism [103, 112, 114].

Figure 1.6 � Diagram of the major metabolic pathways in brain tissue [112].

A recent study has shown that measuring the �uorescence ratio of NADH over FAD could
translate the di�erent perturbations in the di�erent metabolic process such as enhanced glycolysis
and glutaminolysis, extrinsic and intrinsic mitochondrial uncoupling, and fatty acid oxidation and
synthesis [115]. In cancerous tissue it was observer that the glycosis pathway was favored. This
phenomenon is called the Warburg e�ect [116]. An increased glucose consumption even in the
presence of oxygen resulting in a change in the energy production and so a change in the ratio
between NAD(P)H and FAD.

The method of the redox ratio were proved to be a tool to monitor such changes, di�erent
group have therefore proposed an experimental de�nition of this redox ratio as an indicator of
malignancy of tissue. The de�nition of the redox ratio is not always consistent in the literature
[117]. Skala et al. de�ned the redox ratio, as the ratio of the �uorescence intensity of FAD and
NADH, measuring it in a dimethylbenzanthracene (DMBA)-treated hamster cheek pouch model of
oral cancer [118]. The redox ratio was di�erent from one type of cell to another in the epithelial
layers however these results were not observed in precancerous tissue. Ranji et al. and Drezek
et al. used another de�nition of the redox ratio [119, 120]. They presented it as the ratio of the
�uorescence intensity of FAD and the sum of the �uorescence intensities of FAD and NADH .
Ranji et al observed apoptosis in myocardial cells and found a higher ratio in initiation of apoptosis
[119]. Drezek et al. measured it in fresh section of normal and dysplastic cervical tissue [120]. A
decreased redox ratio in dysplastic tissue sections was observed in one-third of the paired samples,
which indicates increased metabolic activity. There are still very few studies reporting on the redox
state in brain tumors versus normal brain tissue despite a growing use of �uorescence spectroscopy
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in brain cancer diagnosis. Chung et al. looked at in-vitro human brain tissue. A di�erence
between normal and cancerous in term of intensity was found in both measured NAD(P)H and
�avin �uorescence, however the computed redox ratio did not change from normal to cancerous
[121]. Croce et al. investigated the auto�uorescence properties of normal and neoplastic brain
tissues on patients a�ected by glioblastoma. They used a ratio of �uorescence intensities at 520
(approximatively FAD emission peak) and 470nm (approximatively NAD(P)H emission peak) to
monitor the change in the spectral shape with neoplastic growth. It gave a higher ratio in neoplastic
tissue than in non-neoplastic tissue [103, 122].

1.5.3 Methods of measurements based on �uorescence signal

Fluorescence of molecules is the radiative transition from its �rst singlet state S1 to the ground
singlet state S0. This transition is characterized by three parameters : 1) the �uorescence spectrum,
�uorescence intensity as a function of wavelength, 2) the quantum yield, e�ciency of the emission
process and 3) the �uorescence lifetime, the average time during which a �uorophore remains in its
excited state. Detecting technologies have been developed to take advantage of these parameters and
give quantitative indicators on the observed regions. Moreover other transitions besides �uorescence
can be excited and also result in quantitative detection. They are classi�ed under the Raman
spectroscopy. This section will described in details the quantitative methods used in this thesis to
measure the �uorescence signal, the spectroscopy and �uorescence lifetime.

1.5.3.1 Methods of spectroscopic measurements

Fluorescence spectroscopy (FS) is based on the measurement of �uorescence intensity which
is the number of photons emitted at a speci�c wavelength. This measure is a function of the
�uorophore concentration, the absorption, the scattering and the �uorophore quantum yield. This
signal is a linear combination of the emitted �uorescence of each molecule in the tissue. This gives
biochemical and morphological information based on the scattering and absorption dependence.
Di�usive re�ectance spectroscopy (DRS) excites tissue with a broad-band light source resulting in
a series of absorption and scattering interactions producing a di�usely re�ected light. The intensity
of this re�ected light will be measured by a detector de�ning the re�ectance spectrum. With this
technique the absorption and scattering coe�cient of a tissue can be measured, translating the
concentration of absorber into the size and density of cellular and subcellular structures [123]. The
two methods are compared in the �gure 1.7

A combination of the di�use re�ectance and intrinsic tissue �uorescence were used in a large
study on primary and secondary brain tumors compared to control tissues. Algorithms were de-
veloped to �nd a discrimination criteria combining these two quantitative modalities. Lin et al.
pursued their work with two-step algorithms [124]. Other groups have also started using intrinsic
�uorescence and di�use re�ectance to �nd discrimination criteria in brain tumors [125]. However
strong limitations lie in the fact that they use the complete spectral response over a large range of
wavelengths and do not try to quantify biomarkers.

Method only based on the �uorescence spectroscopy were also developed [117, 126�128]. The
spectral response over a large emitted wavelength range was analyzed. Either by developing �ttings
methods to get the area under emission peak[127, 128], or directly take the intensity value from the
curve on speci�c emission band [117, 126]. These methods show statistical discrimination between
normal and cancerous brain tissue in rat [117, 128] or human samples [127].

31



1.5. NEW CONTRAST IN INTRA-OPERATIVE IMAGING: THE . . .

Figure 1.7 � Schematic overview of two optical spectroscopy methods. (A) Di�use re�ectance
spectroscopy(DRS). (B) Fluorescence spectroscopy(FS) [123].

1.5.3.2 Methods of �uorescence lifetime measurements

When a molecules absorbs a photon, it can result in the photo-physical process of �uorescence.
The time required by a population of N electronically excited molecules to be reduced by a factor
of e in this process is called the �uorescence lifetime, τ , which is on the order of nanoseconds [129].
Fluorescence lifetime is an intrinsic property of the �uorophore, independent of intensity-based
parameters (intensity of excitation, detection gain, optical loss in setup, �uorophore concentration,
microscope focusing, photobleaching). It is sensitive to environmental factors such as temperature,
pH, oxygen and ion concentration, viscosity, molecular association (binding to other molecules,
proteins) and polarity. These dependencies create the opportunity to use the �uorescence lifetime
technique as a probe of the local microenvironment of the �uorophore [129�131].

1.5.3.2.1 Detection technique

Fluorescence lifetime can be measured either in the time-domain or in the frequency domain.
The major di�erence between these two methods is the type of excitation used. In the time domain
short pulses of light with signi�cant delay between the pulses are sent to the tissue. In the frequency
domain a sinusoidally modulated light at a high frequency is used to excite the tissue [129]. The
Figure 1.8 illustrates the detection methods for time-domain and frequency domain �uorescence
lifetime techniques.

In the time domain, there are two major methods to detect and measure �uorescence lifetime.
These are time-gated integration and time-correlated single photon counting (TCSPC).

In the time-gated method the excitation pulse is split in two in order to excite the samples
and to trigger a gated CCD. The �uorescence emitted is detected and integrated during a certain
time gate on the CCD, and gates with several delays are record to reconstruct the decay histogram
[130]. This is not a photon counting method and can avoid the pile-up limitation. Consequently it
can be used in con�gurations with higher photon �uxes and imaging rates. However it has so far
never shown the same precision as the TSCPC method and is preferred in situations where speed
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Figure 1.8 � Methods of single point lifetime measurements. (a) analog measurements of decay
pro�le, time-gated method. (b) time-correlated single-photon counting (TCSPC). (c) frequency
domain measurement of change in phase and modulation depth of �uorescence with respect to
excitation signal [132].

prevails over resolution [132]. In the TSCPC method a voltage is recorded at each arrival of a
photon and is related to the excitation pulse start, resulting in a time decay histogram by binning
individual recordings in the same time frames. The main advantages of TCSPC are low sensitivity
to shot noise, high photon economy, and high dynamic range. One drawback is the relatively low
acquisition time, thus requiring low intensity. However in most recent electronic development this
has been reduced and is less important than general limitations of �uorescence lifetime techniques
such as photon pile-up [130, 132].

In the frequency-domain, a sinusoidally modulated excitation source will produce a �uorescence
signal with the same periodicity but with a di�erent modulation range and a delay in phase. The
�uorescence lifetime is calculated from two parameters, relative modulation and phase delay). Data
are acquired with photomultipliers or charge-coupled devices equipped with a gain modulator [130,
132].

The choice of either time or frequency domain to perform FLIM measurements will dependent
on the observed molecules. Frequency domain is more adequate to evaluate short-lifetime. The
choice of FLIM instrumentation therefore depends on the particular. Time domain is more �exible
and can access longer-lifetime molecules, which is better suited for tissue measurements where a
broad range of molecules can be observed.
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1.5.3.2.2 Analysis method

Time-domain and frequency approaches are mathematically the same. There is only a Fourier
transform needed to convert data from one domain to another. Therefore the data analysis meth-
ods are the same for both [129]. The most popular analysis technique is curve �tting analysis,
but other non-�tting methods have been developed. The collected data from �uorescence lifetime
measurements can be analyzed with various methods. From the literature three major methods
can be extracted: multi-exponential �tting, Laguerre polynomial �tting, and phasor plot analysis
[130, 132].

Multi-exponential �tting is the most widespread technique, due to the relative simplicity of
implementing it. Fluorescence lifetime measured in a region of interest in tissue is the convolution
of the instrument response function (IRF) and the intrinsic �uorescence decay. The �uorescence
lifetime of a unique molecule is an exponential decay. If you have a mixture of molecules, the
response is a linear combination of the exponential decay of each of the molecules. Consequently
in multi-exponential �tting two approaches can be applied: a deconvolution of the response by
the measured IRF and several exponentials, or a tail �t where you �t only the second part of the
decay after the IRF in�uence. The optimization of the �tting is usually done with an iterative
least-squares method that minimizes residuals and chi-square goodness of �t (χ2) [130].
A second method is the Laguerre polynomial �tting, the measured decays are individually �tted
by a set of unique and discrete Laguerre functions in an orthogonal basis. The advantages of this
technique over the polynomial �tting are the fact that no assumption is made on the decay form.
The information on all pixels are processed simultaneously resulting in faster �tting and a unique
best �t [130].
The third technique is the phasor plot analysis, which was �rst developed to analyze frequency-
domain FLIM (Fluorescence Lifetime Imaging). In this method the modulation and the phase are
transformed according to Eq 6.5 1 in order to be graphically represented as a phasor vector on the
plot [130].

x =Mcosϕ

y =Msinϕ
(1.1)

Time-domain FLIM can also be analyzed by this method using pulsed frequency to go into the
phasor space with modi�ed equations [133]. The �uorescence lifetime information behind each
pixel is represented in a 2D plot where analysis can be rapidly performed by identifying cluster of
pixels. And a color can then be attributed at each cluster and projected in the 2D acquired image
to obtain a pseudo-colored lifetime map. This type of analysis has the advantages on the other
method to being free of "�tting", and o�ers a representation accessible to non-experts [130, 132].

1.5.3.2.3 Application of �uorescence lifetime to brain tumor imaging

Kanteldhard et al. performed a �rst study using two-photon imaging and FLIM measurements
on mouse models and a few ex vivo samples of fresh brain tumor just after resection [134]. This study
did not have enough samples to give statistical evaluation of the discrimination power (sensitivity
and speci�city). However they did show di�erences in lifetime in the di�erent structures and found
that the �uorescence lifetime of tumor-adjacent brain was consistently longer than that of normal
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white matter [134].
More in-depth ex vivo studies were performed by Marcu et al., who showed on 23 samples (9 GBM,
9 cortex and 5 white matter) that the average lifetime was longer in tumor tissue than in normal
white matter and cortex [131]. The study also showed, looking at 460nm emission wavelength,
that GBM have a dominant form of bound NADH (average lifetime 1,3 ns) whereas normal tissue
are dominated by the free form of NADH (average lifetime 1 ns) [131]. Butte et al performed a
study on 17 patients (34 biopsy extracted) with primary brain tumor of di�erent grades, and they
showed that they could discriminate low grade from high grade glioma, and from normal cortex
and white mater, with speci�city and sensitivity in a range from 75 to 100% [135]. The �rst in
vivo measurements were performed by Sun et al. who implemented FLIM detection in their �ber
probe design for performing image-guided brain tumor surgery. They were able to perform a �rst
exploratory clinical trial, on three patients undergoing craniotomy, evaluating the signal from 14
sites, and showed that GBM had a signi�cantly more irregular excitation lifetime distribution as
compared to normal cortex[136]. Butte et al. also reported in vivo measurements on glioma with
two studies, they showed that low grade glioma had a shorter lifetime decay than normal tissue
[137]. The high grade glioma could also be separated from low grade glioma and normal tissue,
however with a lower sensitivity and speci�city.

1.6 Optical developments in optical endomicroscopy

In order to answer limitations presented for ioMRI and ioUS, new miniaturized probes have
been developed based on optical technics. Optical imaging is a �eld that has developed rapidly in
the last few decades and has showed high resolution in bench-top con�gurations, if developments
are able to brought these set-ups to clinical standard for intra-operative use, it will answer the lack
of resolution and crowding of current techniques.

1.6.1 Optical coherence tomography

Optical coherence tomography (OCT), appeared in the 1990s. It is an optical imaging technique
based on the interference of low-coherent light that detects singly backscattered light to reconstruct
two and three dimensional images of tissue [138]. To get contrast OCT uses the scattering opti-
cal properties of tissue and get tomographic images with a micrometer spatial resolution at a few
millimeters of depth [139, 140]. OCT has revolutionized the �eld of ophthalmology [141], gastroen-
terology [142] and cardiology [143], giving a 3D rendering of human tissue at a millimeter depth
while being a non-invasive tool. More recently it started to be explored to image and diagnose
cancerous tissue. In 2015 an ex vivo and an in vivo study were performed on brain gliomas (grade 2
and 4). They were able to discriminate ex vivo the grade with high sensitivity, and showed on a few
in vivo patients that there were signal changes in in�ltrated region, as histologically diagnosed [144].

If OCT probes showed promising results as a tool for optical biopsy, with the main advantages
to give a large �eld of view and to be non-invasive, and a no-contact probe which integrates itself
very well in the surgical �eld. This technique still su�ers from some important drawbacks, the max-
imal resolution that can be obtained is 10 to 30 microns which is still higher than the cellular scale
and have been proven to be insu�cient in tumor margin identi�cation [145]. Another disadvantages
is that this technique use a slow scan system, in general 4mm requires 8 seconds, and during this
time the respiratory and arterial cycle can induce movement of several millimeters that will result
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in distortion in the image or completely move out of the region of interest [139]. Added to that
OCT scan cannot access any functional information about the tissue which reduces the quantity of
collected information [146].

1.6.2 Wide-�eld endomicroscopy

The �rst and most common microscopy technique to have been used in endoscope is the wide-
�eld microscopy. This technique refers to low power surgical microscopy, where the whole �eld of
view (FOV) is seen at once (10-100 mm of FOV) and is acquired continuously with an eyepiece
and/or a fast digital detector (CCD, charge coupled device, or CMOS, complementary metal oxide
semiconductor). These systems have a magni�cations of x5 to x40, and a spatial resolution from
10 to 100 microns, again much higher than the cellular level [90, 117]. The advantages of such
techniques are, the capacity to view the full surgical �eld, to have a real-time assessment, an ease
of use that does not interrupt the surgical work�ow, all at a very low cost [140]. However strong
limitations and drawbacks must be pointed out. One of the main drawbacks is ambiguity at the
margins. The low resolution, higher than the cellular scale, results in the �uorescence intensity
decay to even vanishing in regions where tumor cells density decline. However, on histological
slice these regions show that there is still glioma cell in�ltration [117]. Another limitation is the
sensitivity to the variation in optical properties such as absorption and scattering of tissues that
results in a subjective heterogeneous �uorescence [147]. The sensitivity in low grade tumor is also
very low, with visible �uorescence not produced in 95% of cases [90, 117]. Moreover the geometry of
excitation and collection causes much light loss compared to a point detection technique, and even
today the state of the art shows no possibility to perform spectrally resolved data, giving access
only to anatomical information [140].

1.6.3 Confocal endomicroscopy

1.6.3.1 Principe of confocal microscopy

To address the limitations of wide-�eld imaging, the world of intra-operative imaging has looked
at other microscopy techniques to bring into the operating room. One of the major breakthroughs
in the modern area of microscopy was the invention of confocal microscopy, in 1957 by Marvin
Minsky [148]. Its aim was to answer the current limitation of wide-�eld imaging. In wide-�eld,
the whole sample is illuminated and the all �uorescence emitted is conjugated to a CDD to obtain
a image. In the confocal con�guration, in the detection path a pinhole is conjugated to the focal
point to eliminate out-of-focus signal and performed a point-by-point detection.
The image's optical resolution, particularly in the sample depth direction, is much better than the
one in wide-�eld microscopy, due to the presence of the pinhole. This di�erence is shown in the
�gure 1.9.

However the point-by-point detection made it mandatory to have a scanning system to obtain
images with the same �eld of you than wide-�eld imaging, resulting in a slower imaging system.
The pinhole also reduces the quantity of �uorescence detected in each point, very sensitive detectors
are consequently needed, making this technique also more costly than wide-�eld.
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Figure 1.9 � Wide-�eld microscopy (a,b,c) against confocal microscopy(d,e,f) [149].

1.6.3.2 Adaptation towards a clinical use

Bench-top microscopy technology cannot be brought directly to the operating room due to spa-
tial crowding, and the architecture of the excitation path making impossible to introduce object at a
centimeter scale under, such as human brain. Miniaturization was required to see these technologies
used intra-operatively. This was made possible with the development of three miniaturized tech-
nologies : optical �ber to guide the light to the sample, micro-optics, and a miniaturized scanning
system to achieve centimeters scale tools that would also be easy for surgeons to handle.

Optical �ber The arrival of step-index �ber to serve as a light guide and allowing remote
excitation light delivery was the �rst step to endomicroscopy. For confocal endomicroscopy, single-
mode �ber (SMF) is well suited and easily available commercially. SMF �ber has a core refractive
index usually 1 to 2% higher than the cladding index, with a numerical aperture equal to the sine of
the half angle of the emitted light and a core diameter around 3 to 7 micrometers (for set-ups using
a visible excitation) [150]. The SMF can be used in two con�gurations for confocal imaging. In one
the single SMF serves for both excitation and collection, with a very small core size serving as the
detection pinhole. In the second con�guration (dual-axis imaging), two SMFs are placed apart from
one another at an angle. One will excite and the other will collect the light. This con�guration,
compared to the �rst one, o�ers a longer optical working distance, no o�-axis aberrations, and
good axial resolution with economical objective lenses, at the cost, however, of harder alignment
and less collection e�ciency. Another type of �ber widely used on confocal endomicroscopy is the
�ber bundle. The �ber bundle consists of hundreds of individual step-index �bers in a packed
arrangement, with a diameter from hundreds of microns to a few millimeters. The advantage of
such system is the possibility to use proximal conventional scanning systems. However one strong
limitation is the low resolution due to image pixelation [150]. More recently few teams have been
trying to use multimode �ber to perform confocal endomicroscopy and resolve some limitations
of the other con�gurations. Multimode �bers can independently guide several spatial modes of
light in cross-sectional diameter around 100 µm, consequently allowing the transmission of multiple
pixels image with di�raction-limited resolution. This solves the limitation of the SMF con�guration
that transmit only light with Bessel intensity pro�le and the limitation of the bundle con�guration
which has a low resolution due to the �ber spacing. However distortion through the multimode
�ber propagation requires heavy computing processing to reconstruct the right image at the output
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Figure 1.10 � Scanning mechanisms in miniaturized microscopy. (a) Proximal scanning of a �ber
bundle [152]. (b) Mechanical resonance of �ber tip with piezoelectric actuators [152]. (c) a MEMS
mirror [21].

[151]. This limitation is the reason that SMFs are still the most used method to perform confocal
endomicroscopy.

Scanning system One of the most challenging parts of an endomicroscope con�guration is
the scanning system. Di�erent architectures have emerged, divided into two big families: proximal
scanning (placed between laser source and �ber probe) or distal scanning (placed at the tip of the
�ber probe). Proximal scanning is classically used with �ber bundle probes and consists of a pair of
galvanometric mirrors placed at the entrance of the bundle (Fig 1.6.a)[152]. A bundle of hundreds
of �bers is scanned by the laser beam at the proximal end of the probe. Each �ber serves as a
point source as well as a detection pinhole for imaging. The resonant galvanometer can go up to
15 frames/s [153].

Where a single �ber is used to excite tissue, distal scanning systems have been developed.
Two technology have emerged: a piezoelectric placed at the distal end of the �ber, and a micro-
electromechanical systems (MEMS) mirror placed after the distal tip of the �ber. For piezoelectric
technology (Fig 1.6.b), when supplied with a signal closed to the resonance frequency of the �ber, a
2D scanning pattern is generated, which can be a lissajouls, or more often a spiral. The resolution of
such a system is determined by the driving signal, but can achieve quite good performances. Some
teams have shown imaging of organs with this scanning system [154]. The other distal technology for
scanning is the use of a MEMS-mirror at the end of the �ber probe. It allows a fast X-Y scanning,
and can be miniaturized at a very small scale (around 1mm). The linear scanning pattern makes
it easier to reconstruct an image than with the di�erent patterns accessible with the piezoelectric
con�guration. It was �rst used in OCT con�gurations, but now the endomicroscopy community is
showing interest [155�157].

Miniaturized optics The third component for a successful confocal endomicroscopy system
is the access to a miniature objective to focus the excitation light and to collect the emitted �u-
orescence. Recent advances in the development of micro-optics have largely contributed to the
development of endomicroscope. The speci�cation needed to achieve confocal endoscopy is a high-
NA (numerical aperture) objective with a millimetric or sub-millimetric size and diameter.

Preferred are GRIN lenses (gradient index lenses) due to their small outer diameter, ranging
from 350-1,000 µm. Cylindrical GRIN lenses exhibit a refractive index that declines approximately
quadratically with radius. They are usually used as a combination of two GRIN to form an objective.
There is a �rst lens with a typical 0.4 to 0.6 NA, to reach a micrometer scale resolution and then
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a relay lens to reach deep tissue [150]. However GRIN lenses usually failed to reach a suitable
correction of the chromatic aberration and curvature of �eld, often problematic in �uorescence
confocal endoscopy [158].

Other lens designs have been studied to avoid these limitations. A solution is the use of custom-
designed lens system [158]. Teams have developed systems combining �ve to six lenses [159�161].The
combination is composed of aspheric and achromatic lenses to work around the limitations found
with the GRIN lens and reach an optimal collection e�ciency for �uorescence imaging. However
one di�culty to consider is the fabrication process for miniaturized aspherical or achromatic lenses
that can be costly and technically di�cult. To tackle that point systems of semi [161] or all plastic
[160] lenses have been studied. The critical remaining point is the length of such an assembly that
is still on the order of ten millimeters, which reduces the �exibility needed to reach certain organs
compared to GRIN lens [158].

A last solution that is found in the literature is the use of vari-focal liquid lenses often combined
with an aspheric lens to reach the high-NA required [162]. The ability to adjust the focal length
avoids regions in tissue not clearly imaged due to tissue irregularity [163][164]. However there are
still limitations to such systems. The axial resolution is only in the order of 20 µm that can be
a limitation for certain diagnoses based on structures with smaller size. The system can also be
a�ected by pressure and temperature changes, parameters which can �uctuate in an operating room
[164].

Computing System In order to reach a real-time assessment in vivo embedded computing
systems had to been developed, combining advances in electronic and data analysis. To be able to
process at a high rate the data recorded by the detector and to produce an image to the surgeon,
FPGA (�eld programmable gate array) boards have been used. An FPGA is a recon�gurable
logic circuit with logic elements allowing programming with �exibility on the number of inputs
and outputs. An algorithm can be developed and loaded onto the FPGA chip and then combined
to a display device as an output [165]. Di�erent algorithms to reach a high quality image can
be programmed in the board such as arithmetic, neighborhood and convolution operation �lters.
Teams have also added a daughter boards to serve as a Z-depth controller and to perform 3D
imaging in real time [166].

1.6.3.3 Commercial system

The combination of these miniaturized technologies has allowed confocal microscopy to come
into the operating room. Confocal endomicrsocpy has been extensively tested in other medical
applications such as Barret's oesophagus [167], urothelial bladder neoplasia [168] and cervical in-
traepithelial neoplasia [169]. These research projects have resulted in two commercial systems:
the Optiscan FIVE 1 (Optiscan, Australia) and the Cellvizio (Mauna Kea Technologies, France).
These techniques provide a better contrast than wide-�eld imaging by suppressing the out-of-focus
background with the use of a pinhole in the optical path. It also allows in-depth imaging. With the
Optiscan FIVE 1, 250 microns can be scanned, and with the Cellvizio up to 70 microns. Its �rst
use in neurosurgery experiments was reported in 2010, with the use of in vivo confocal probe in a
mouse tumor removal surgery [90, 170]. It appears in this study to be able to give real-time images
close to histopathological standard without the long staining process [171]. The Cellvizio was used
in a preliminary in vivo study on 9 patients with low and high grade glioma using two contrast
agents used: 5-ALA or intravenous �uorescein. They reported di�erences between healthy and
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Figure 1.11 � Comparison between confocal(a) and multi-photon excitation(b) process [178].

pathological tissue, however they were not able to have enough speci�city to di�erentiate low-grade
from healthy [172]. Di�erent studies were then performed with the Optiscan on human brain tumor
using �uorescein as an exogenous marker [173]. Another study was performed with the Optiscan
endoscope where ten patients with WHO Grades I and II gliomas underwent microsurgical resection
with 5-ALA. Intra-operative confocal microscopy identi�ed tumor �uorescence at a cellular level,
where with macroscopic tumor �uorescence it was not evident [174].

1.6.3.4 Limitations

The preliminary studies with confocal endomicroscopy have showed promising results, how-
ever the medical community has not been easily convinced that it should become a standard in
medical procedure. Important drawbacks : 1) the di�culty of interpreting the given image for
non-specialist, such as surgeon, 2) the small �eld of view, 3) limited resolution at a scale higher
than cellular structure, making it, for example, non-discriminant for low grade and in�ltrated re-
gions in glioma suspected regions, 4) access to only one contrast, resulting in di�culty in reliability
and reproducibility of the results, and 5) limited penetration depth has also been an obstacle in
�elds like gastrointestinal surgery, where some important deeper layers could not be imaged. Newer
techniques like two-photon endomicroscopy could remediate these current limitations [145, 175].

1.6.4 Multi-photon endomicroscopy

1.6.4.1 Confocal vs multi-photon

Linear microscopy has not succeeded in giving enough information to discriminate tumoral
nature of tissue at a cellular scale. To address the limitations of confocal microscopy, the �eld has
turned its attention to the new fast-growing technique of non-linear microscopy. This microscopy
technique is based on the combination of several photons passing the energy gap and exciting the
samples. Multi-photon excitation requires high spatial and temporal con�nement resulting in no
excitation of tissue outside of the focal points. This property, shown in the Figure 1.11, results
in a 6 to 20 times better signal-to-noise ratio [176], allow less photo-bleaching compared to linear
technology and higher optical sectioning giving a better imaging depth [177].

Another advantage of multi-photon microscopy is that NIR-near infrared excitation is in the
therapeutic window, where the water and hemoglobin absorption of light is low, resulting in an
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increase of the possible imaging depth. In the literature it is reported that the maximum depth
can be up to 1mm [179]. One of the major assets of multi-photon microscopy is an excitation
wavelength (NIR range) far from the emission range (visible). There is no spectral overlap between
the two, o�ering a better contrast due to less noise in the signal of interest.
These advantages of non-linear techniques such as two-photon imaging have been highlighted by
Bao et al [180]. The same samples were observed in one-photon and two-photon imaging, and
three parameters were compared: resolution, depth of imaging, and the risk of photo bleaching. In
these three domains two-photon imaging showed an improvement over confocal technology. More
structures were identi�able, two-photon could give an image 40 microns more in depth, and after
10 minutes of continuous scanning no change in intensity was observed, which is two times better
than for one-photon excitation. Multi-photon also provides other contrasts than �uorescence such
harmonic generation, which will be discussed in the next-paragraph.

1.6.4.2 Second harmonic generation

Using two-photon excitation on tissue gives access to another imaging contrast besides emitted
�uorescence. Incident photons can be scattered with a harmonic up-conversion process; It is coher-
ent scattering, and the radiation patterns are highly sensitive to phase [181]. When two photons
are combined, the process is called second-harmonic generation (SHG), producing emitted photons
with twice the energy. Structures able to produce such signals have a speci�c molecular orienta-
tion, generally non-centro-symmetric molecular structures [182]. Some biological materials such as
collagen [183], muscle myosin [184] and cellulose [185] present large non-centrosymetric structures
and are able to produce a SHG signal. SHG imaging is able to give information on molecular or-
ganization both at the micro and nano scale level. In a diseased state, such as cancer, where there
is often alteration in the secondary, tertiary or quaternary structure of proteins, these changes
will a�ect the level of SHG, making it a useful tool for diagnosis [182]. With the same excitation
it is possible to observe the auto�uorescence response of tissue and the SHG signal, resulting in
two images modality with one set-up. Some molecules such as collagen can be found in di�erent
types of tissue in the human body and resulted either in a �uorescence signal or a SHG response.
In ovarian cancer, an analysis method using the spatial structure and the intensity of SHG, has
already been implemented. Indicators can be, for example, the ratio between elastin and collagen
(SAAID, SHG to auto�uorescence aging index of dermis) or the orientation of the collagen �bers
at the tumor-stroma boundary (TACS, tumor-associated collagen signature). Nadiarnykh et al.
have shown that in ovarian cancer, compared to normal tissue malignant tissue had a denser and
more ordered collagen [186]. Other groups also used the SHG signal in the detection of breast
cancer. For example Conklin et al. have found that an increased presence of collagen �bers aligned
perpendicularly to the tumor boundary (TACS-3) was associated with decreased survival [187].

1.6.4.3 Optical �ber

To achieve an endomicroscope architecture for multi-photon microscopy, new e�orts are required
in the development of optical �bers. Indeed, the ultrashort optical pulses (80 to 250 fs in duration)
used for in vivo two-photon imaging generate a light-matter interaction while propagating in the
glass �ber core of a SMF. This process will result in distortion of both the pulse shape and spectrum
through a nonlinear process known as self-phase modulation (SPM), making it di�cult to excite
e�ciently with the SMF used for linear imaging [150]. SMFs have a small numerical aperture
and �ber core, so when used in a two-photon con�guration the system aberrations are increased,
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resulting in fewer photons to form an image. A solution could have been the multimode �ber, but
it cannot be focused to a spot size adequate to produce a nonlinear excitation, which requires high
spatial con�nement. A new type of �ber, photonic crystal �ber (PCF), which has appeared in
the last decades has revolutionized the �eld. They had the properties able to overcome previous
limitations. Traditional �ber is the association of two mediums with di�erent refractive indexes
guiding light with total internal re�ection. PCF on the other hand uses a photonic crystal as a
mechanical guide for light, surpassing the limits of traditional �ber.

Di�erent architecture can be found and have been tested for non-linear ex- citation and imaging.
They are shown in the Fig 1.12.

Figure 1.12 � Di�erent types of �ber used in multi-photon endomicroscopy [152]

One way to reduce SPM is to have a larger core size in the �ber. The advantages of PCFs
over SMF for that, is that you can design a PCF that will have a larger mode area or even with
an endless single-mode-operation. So the �rst group of �bers to be developed was the large-mode-
area (LMA) PCF with large core size (up to 35 microns of diameter) and a single-mode guide for
wavelengths where silica is transparent. This design strongly reduces the nonlinear e�ect for short
pulse delivery, for 3nJ pulses at 800nm, you can deliver 140 fs pulses over 1.3m [188]. If these �bers
have suitable characteristics for nonlinear excitation, the low NA make them more limited for an
imaging setup.
Another design alternative is hollow core PCF. It o�ers high power for a good non-linear excitation
and there is no need for a pre-compensation unit, but the collection of visible light cannot be per-
formed by the same �ber due to a low NA. A point that could be a drawback in certain cases is that
the hollow core �ber is designed to work a few tens of nanometers around the central wavelength,
so it cannot be used in a tunable setup, and cannot collect the visible backward emitted light [189].
A design that could play this dual role of excitation and collection is the double clad crystal �ber
(DCF). They possess a LMA core to reduce nonlinearity at the excitation and an inner cladding with
a high NA and large diameter to propagate visible and near infrared light with a high e�ciency that
serves as a dual tool to excite and collect [190]. The drawback is the need for a pre-compensation
unit to maintain a femtosecond pulse at the output. However, we will see in the next section that
e�ciency developments have been made to achieve that. Consequently, these �bers are the �ber of
choice for recent developments of imaging non-linear endomicroscopes.
The latest popular design in PCFs is the highly non-linear PCFs, which exploit nonlinearity e�ects
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rather than avoiding them. Core sizes are very small, (around 1 micron) surrounded by microstruc-
tures, creating high nonlinearity. They are designed to have a zero-dispersion wavelength of choice,
in visible and near infrared spectra [191]. This con�guration generates a super-continuum with a
bandwidth as large as sunlight however ten thousand times brighter, making it very e�cient for
multi-photon microscopy [192]. However, the drawbacks are the narrow window for excitation mak-
ing not suited for tunable lasers and it cannot be used in a dual con�guration of excitation-collection
[152].

1.6.4.4 Pre-compensation unit

Two of the �ber designs presented in the previous section required pre- compensation in order
to keep a very short pulse after long distances in the �bers. A �rst idea was to use pre-�ber with a
negative dispersion that will compensate the dispersion from the second exciting �ber. However this
solution implies never changing the excitation �ber length, nor changing the whole setup. The more
fully developed solutions in the literature are passive pre-compensation units that can be adjusted
to the characteristics of the second excitation �ber. Di�erent solutions have been developed in the
last decades, and are presented in the Table 1.3.

A �rst approach was to �nd system that compensate for second-order dispersion (SOD). Pas-
sive dispersive lines such as grating lines and prism lines were tried [193, 194]. With these methods
pulses in the range of 100 fs could result at the output of the excited �ber for pulses of similar
duration in a 1 or 2 meter �ber.
Still with these methods the third-order of dispersion (TOD) was not corrected resulting in pulses
still su�ering from temporally broadening through propagation. New combinations of passive sys-
tems were studied to compensate for SOD and TOD simultaneously, such as chirp mirrors before
a prism line [194], or grism line (association of prism and gratings) [195]. These con�gurations re-
sulted in pulses even shorter than at the input after several meters of propagation in the excitation
�ber, making it a solution of choice for two-photon endomicroscopes [196�198].

Two-photon microscopy setups still require the same system elements as needed in confocal
endomicroscopy and they can be translated fairly easily. The scanning systems are the same, the
miniaturized objectives change in requirements (NA, focal length, wavelength of choice) but use the
same technologies (GRIN, customized assembly), and the processing units are based on the same
electronic technologies. Only the data process algorithms change.

1.6.5 State of the art in multi-photon endomicroscopy

Few research teams have already tackled the task of developing a miniaturized technology using
two-photon excitation. The setups di�er in the choice of excitation wavelength, modality of de-
tection, �ber design, miniaturized objectives and scanning techniques. Their designs, advantages,
and limitations will be discussed in this section and the �rst studies conducted with them will be
presented.

The group of Laura Marcu at UC Davis University (California, USA) has been working for the
past decade on the use of auto�uorescence to improve medical diagnosis, for example, in tumor
margin delineation [135]. They developed a probe system, compatible with peri-operative clinical
use, based on the FLIM technique, as shown in Figure 1.13. The system uses as an excitation
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Dispersive
line

Prism line
Chirped
mirros +
prism line

Grism line

Set-up

references [193] [194] [194] [195]

Architecture

1m SMF + a
pair of 1200
grooves/mm
di�raction
gratings

a 4 prisms line

one or two pairs
of dispersive
mirrors + a 4
prisms line

0.5m SMF +
grisms line (2
prisms +
gratings)

Corrections

SOD
+10.104fs2.
Transmission
around 35%

SOD corrected
TOD

+62000fs3

Transmission
31%

SOD and TOD
corrected

Transmission
around 31%

SOD and TOD
corrected

(−1, 28.105fs2,
−8, 22.104fs3
respectively)

Fiber for
light

delivery

�ber bundle
(Fujikura,

30000 cores, 3.8
µm core

spacing, 1.7
µmm core mode
�eld radius,
0.35 N.A.)

0.6m
LMA-PZ-800
(Crystal Fibre)
Mode �eld
diameter of
20µmm

NA=0.04 at 800
nm

1.6m
LMA-PZ-800
(Crystal Fibre)
Mode �eld

diameter of 20
µmm NA=0.04

at 800 nm

2m SMF �ber
with 3.5 µmm

core

Endoscope
perfor-
mances

100 fs at 75
MHz at 830nm
=> 250 fs after

1m

- 24 fs after 1.6m
150 fs at 76

MHz at 830nm :
45 fs after 2m

Table 1.3 � Di�erent pre-compensation units in the literature
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Figure 1.13 � Design of a �berred endomicroscope by the team of Laura Marcu at UC Davis
University(USA) [199].

source a Ti:Sapphire laser (Chamelon, Coherent) with 690-1040 nm tuning range, 2.5 W, 140 fs
pulse duration and 80 MHz repetition rate. The light is brought to the sample using a double clad
photonic crystal �ber (DC-PCF) from Crystal Fibre (DC165 16, Crystal Fibre, Denmark) and a
GRIN lens (GRIN, GT M0-080-018-810, GRINTECH GmbH, Germany) which serves as an objec-
tive at the end of the probe. Their setup doesn't use a pre-compensation unit before the excitation
�ber, and the laser pulse is consequently temporally broadened during propagation from 140 fs to 1
ps in the focal plane [199]. However they were able to make measurements with this con�guration
using a 714 nm excitation wavelength, but will not be able to use it with a long excitation �ber
(no more than 1 m). This point is a serious limitation for a clinical application, where the minimal
�ber length must be around 5 m to �t into the surgical environment and work�ow. This setup has
been tested only on a few exogenous �uorescent molecules (Rhodamine, Coumarine) and in vivo
muscle tissue, and was able to give a di�erent lifetime value for each type of sample. However no
large study on human tissue has been started with this set-up [199].

Towards the end of the 1990's the Medical Faculty of the Friedrich Schiller University (Jena, Ger-
many) formed a company, JenLab, to commercialize CE-marked femtosecond laser based-technology
for medical applications [200]. They initially worked on dermatology applications, with multi-
photon microscope DermInspect, which has an imaging head at the head of a moving arm in order
to be adaptable in a clinical setting or examining room [201, 202]. They then developed a tech-
nology more intended for in vivo optical biopsy. Called MPT�ex, it was a commercial portable
multi-photon tomograph, that performs FLIM measurements [134]. See �gure 1.14. The optical
setup of the MPT�ex consists of a titanium:sapphire laser (pulse width of 100 fs, repetition fre-
quency 80 MHz, in situ mean power 2-50 mW, wavelength range 710-920 nm) as an excitation
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Figure 1.14 � Design of the MPT�ex instrument (JenLab,Germany) [134].

source [134]. It has an image acquisition time of 6 to 10 seconds per frame. Kanterldhart et al.
used this tool to image human brain tumor. In their study the authors presented three stages
of testing, from the murine tumor model, to the ex vivo human biopsy and �nished with in-situ
tests on patients with diverse human brain tumors (metastasis, meningioma, glioma) [134]. In ex
vivo biopsy, multi-photon technology showed its capacity to highlight structure at a cellular scale
concurring with the histology standard. In vivo only an exploratory campaign was performed to
show the capacity to get a highly resolved image in the region that would be resected [134].

The team of Professeur Louradour, at the XLIM laboratory, the last years has been working on the
development of a multi-photon endomicroscope. Ducourthial et al. recently published the technical
speci�c of the technology with a few ex vivo and animal in vivo test [203].

The con�guration of the endomicroscope is presented in Figure 1.15a. They used a Ti:Sapphire
laser at a chosen wavelength of 810nm, a frequency rate of 76MHz and excitation pulse of 150 fs.
A pre-compensation unit with a GRISM line was used to insure a 39 fs pulse at an average power
of 20mW at the output of a �ve meter custom-made air-silica double-clad photonic crystal �ber
(DC-PCF). A piezoelectric scanning system and a home-built achromatic triplet composed the head
of the probe. TPEF (two-photon excited �uorescence)+SHG images were performed on a few rat
and human ex vivo samples in order to demonstrate the ability to form an image. They also tried
the setup in vivo on anesthetized mice, and looked at healthy and �brotic kidney, highlighting the
changes in the SHG signal. However, the architecture was not built for clinical use and doesn't
provide quantitative information [203].

Recently an even more compact set-up has appeared for multi-photon endomicroscopy. The
design is presented in Figure 1.15b. Zhao et al. have used a new very compact infrared femtosecond
�ber laser (pulsewidth, 250 fs, output power, 180 mW, wavelength, 1580 nm). They combined it to
a frequency doubling system to obtain an excitation wavelength suitable for two-photon excitation
on endogenous �uorescence. This was followed by a MEMS scanning system and a focusing lens
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(a) XLIM endomicroscope con�gurations
[203].

(b) Design of a compact multi-photon
handheld probe developed by Zhao et al
[204]

assembly and the all was packaged in a handheld probe [204]. At this point this system has never
been used in any biomedical experiments, and is still a proof of concept technology. Even though
the main advantage is the very compact system due to the use of a �bered laser, it can also be
seen as the main drawback allowing only one wavelength. Consequently if one wants to change the
excitation to target a new application, the whole system has to be changed.

1.7 Thesis project

1.7.1 Context

In this comprehensive, wide-ranging review of the literature, the medical challenges remaining in
the treatment of brain tumors were presented. The di�erent technical solutions tried in the last few
decades were described and the needs still facing by surgeons explained. Technologies able to image
or give information at a cellular scale have been adapted and designed for intra-operative clinical
use. The latest technologies attracting interest and attention for being able to provide real-time
di�erentiation of tumor cells are Raman spectroscopy [205] and multi-photon microscopy [134, 199,
204] based on the intrinsic �uorescence. These techniques are still at the proof of concept stage and
have yet to been implemented in phase III clinical trials and in routine protocols. One of the major
technical missing elements in the development to this point is the lack of multimodal detection,
along with a high quality database on the studied tissue. Consequently current technology fails to
give discrimination reliable enough for clinical standards. This leaves room for further development
of a precise and reliable technology to assist brain tumor surgery, since brain tissue in particular
lacks of an optical database on its auto�uorescence response.

The research team of Dr Darine Abi Haidar at the IMNC laboratory have chosen to work on
this clinical question bringing their technical expertise to the medical world. This research group
has experience in optics and microscopy, more precisely in non-linear techniques. Drawing on the
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strength of their expertise, they created a project with clinical partners, to bring to the operating
room a new intra-operative technique. Looking at the various directions and approaches described
in the literature, and based on their experience, they sought a technology capable of a high spatial
resolution, miniaturized and adapted to the surgical operating room, with reliable and reproducible
multimodal detection. The technical solution chosen by Dr. Abi Haidar's team is a two-photon
endomicroscope with multimodal detection combining two imaging modalities (emitted �uorescence
and second harmonic generation). In addition there are two quantitative modalities (spectroscopy
and lifetime measurements) to monitor the auto�uorescence of tissue.

It is in the context of this project that I was recruited to do my Phd. When I arrived, this
dynamic research team had already reached several milestones in the development of such a tool.
An intra-operative probe combining �uorescence and lifetime detection with a visible excitation,
375 and 405nm had been developed and tested on rat brain tissue [128]. The promising results
obtained in these tests, brought this �rst set-up at the Sainte-Hospital close to the operating room
to acquire data and suggested the development of a more advanced technology. They worked on the
development of a two-photon endomicroscope, with a miniaturized probe to achieve the diameter
of a surgeon's trocar, a tool with a 1.9 mm inner diameter. They worked on the development of
a compensation unit based on the process of a GRISM line [195], and looked at the best �ber to
achieve simultaneous excitation and collection in a two-photon microscope con�guration [196]. They
chose �rst to characterize various commercially available double clad �bers in order to determine
if one could be suited to this application [196]. Then they looked at the resolution and collection
e�ciency that could obtained combining these DCF with GRIN objectives [197]. These studies
reached conclusions about an available architecture for a two-photon endomicroscope, however the
best suited �ber did not yet exist. So they described the ideal �ber as a combination of some
of the tested �bers, thus leading to the development of a custom made DC-PCF. These results
showed the technical relevance and the possibility of two-photon endomicroscopy, however to bring
a new technique to the operating room, its ability to answer the medical challenges has to be
proved. In brain tumor has shown by the review of literature, there is only a few things done
on two-photon imaging and quantitative detection of tissue �uorescence. In order to give sense
to our technical development and to prove that medical practice could be revolutionized using
optical endomicroscopy, a large project of establishing a database on the auto�uorescence response
of tissue was developed. This was the task of my PhD, working on brain biopsy samples, di�erent
optical excitations and methods of detection were tested to collect a large amount of data and
developed reliable and reproductible algorithm to discriminate the nature of brain tissue. Several
collaborations were developed to reach the most extensive and accurate database possible.

1.7.2 Actors and partners

I conducted my PhD at the IMNC laboratory a mixed unit of the CNRS (National Center
of Scienti�c Research) and the French university (University of Paris Saclay and Paris Diderot).
This lab contains several research teams all working on developing themes at the interdisciplinary
boundaries of physics, biology and medicine, hosting talents from each �eld in the same environment.
The three leading problems of the laboratory are: multimodal, pre-clinical and peri-clinical imaging
(optical and isotopic), the modeling of tumoral processes and new approaches in radiotherapy. The
lab contains a technical services and a biology team in addition to several research teams in the
di�erent themes. In this context, Dr. Darine Abi Haidar has formed a group developing non-linear
endomicroscopy to improve, by optical methods, the quality of surgical procedure. With this project

48



CHAPTER 1. INTRODUCTION

she was able to receive several funding from the CNRS, "plan Cancer", and create a �ourishing
environment for such a technological project. Consequently several collaborations were initiated.

For the technical development of the endoscope two collaborations were put in place. The
team of Alexandre Kudlinsky of PhLAM (Physique des Lasers, Atomes et Molècules, Lille, France)
lab. They work using a dedicated platform on the development of photonic crystal �bers (PCF)
with properties adapted to the targeted application. A collaboration was put in place with them to
develop a customized double clad photonic crystal �ber (DC-PCF) for the multi-photon endomicro-
scope answering the speci�cations de�ned through the characterization of commercial �bers [128].
The second collaborator for the technical development is the Sainte-Anne Hospital Center, (CHSA,
Paris, France) specialized in psychiatry and neurology. This hospital is known to be one of the
most active research centers. During the last century it has been the catalyzer of ground breaking
techniques, such as the use of neuro-epileptic or stereotactic surgery. In the last few decades they
developed a very strong department of neuro-oncology, able to diagnose and treat all types of tu-
mor of the central nervous system (brain, meninges, nerve, ...). Developing a surgical tool without
surgeons advice and guidance will lead nowhere. To envision a successful future endomicrosocpe,
surgeons were questioned during various phases of design in order to build a tool adapted to their
habits and work�ow.

Sainte-Anne Hospital was also the main collaborator for the development of an optical database
on brain tumor tissue. Their neurosurgery and neuropathology departments have been working
closely with us to provide a large number of biopsy samples of di�erent brain tumors and control
tissues. They brought their knowledge on tissue diagnosis and analysis of histological staining to
the project, and discrimination criteria were found in collaboration with them.

The second collaborator on the optical database was Synchrotron SOLEIL (Source Optimisée de
Lumière d Energie Intermédiaire du LURE) located in the city of Saint-Aubin in France. SOLEIL
is a particle (electron) accelerator producing synchrotron radiation. The emitted light source has
a brilliance ten thousand times brighter than sunlight, with a spectral range from infrared to hard
X-rays. Further, it can be polarized and pulsed. We worked on the DISCO beamline (Dichroism,
Imaging, mass Spectrometry for Chemistry and biology), that delivers deep ultra-violet (DUV)
excitation and o�ers a detection station optimized at these wavelengths. Two setups are available
at the DUV imaging center : A micro-spectrometer called POLYPHEME and a fast full �eld
microscope with Z scanning and 3D reconstruction known as TELEMOS. This collaboration gave
us access to a larger range of excitation to study the auto�uorescence of tissue and have a better
understanding of the studied response.

1.7.3 Design of the project

Due to these di�erent collaborations and the previous work done by this research team, a large
set of biopsy samples were accessible from the CHSA and three imaging platforms. First, at Sainte-
Anne Hospital a visible endoscope in the neuropathology department could measure one-photon
spectral and �uorescence lifetime response of tissue. Second at the IMNC, the PIMPA (plateforme
d'imagerie du petit animal) platform consisted of a two-photon microscope with four modalities
of detection (�uorescence imaging, SHG, spectroscopy and FLIM). And third, At SOLEIL, DUV
microscopy was possible on two setups with imaging and spectroscopy detection.
From this several problems could be considered and tackled :
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Could quantitative bimodal optical measurements under visible excitation discriminate �xed
brain tissue nature ?

Were spectral and lifetime measurements, under visible excitation, able to discriminate freshly
extracted brain tissue nature? Were �uorescent measurements established on �xed tissue suitable
enough to build an optical database ?

Could mono and bi-photon excitation discriminate label-free �uorescence emission of menin-
gioma tumor grade?

Could two-photon imaging match the performances of H&E standard discrimination of primary
and secondary brain tumor? Could multimodal quantitative detection improve brain tumor diag-
nosis ?

How could multi-range and multimodal optical study improve the precision and reliability of
primary and secondary tumor discrimination ?

These questions will be answered through the articles written during my PhD project. In the
last part I will discuss the place in the literature of such results, and to what extent we were able to
shown a discriminative power on low density tumor cell regions. Finally, the future perspectives of
such a project will be presented along with the new paths already being explored to improve such
technology to furnish them to surgeons and hospitals.
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Chapter 2

Could quantitative bimodal optical

measurements under visible

excitation discriminate �xed brain

tissue nature ?

2.1 Context of the study

A bimodal endoscope under visible excitation able to acquire quantitative measurements was
build and tested on rat by previous members of my research team [128]. It tracks the spectral
response and the �uorescence lifetime of intrinsic molecules.

Fluorescence emission is very dependent on the absorption and the scattering of tissues and
surrounding environment (hemoglobin, water). These two parameters can be known by calculating
optical coe�cients of absorption, scattering and anisotropy [206]. Di�erent set-ups and methods
of analysis have been tried in the literature. The knowledge of the optical properties of the tissue,
obtained with di�erent optical techniques can help to :

� Correct the spectral response of the di�erent environmental absorbers, such as water, hemoglobin,
�bers, melanin, ...

� Understand the variation of the emitted spectral intensity from one tissue to another.
� Di�erentiate tissue nature following scattering, depending on cells morphological structures,

and absorption, depending on chromophores (blood, water, melanin, fat, yellow pigments)
content.

Di�erent studies from the literature attempt to characterize optical properties of health and
tumoral human brain tissues. The major results are summarized in table 2.1.

These studies, performed on human brain tumor samples and healthy white or grey matter,
have highlighted di�erences between healthy regions and tumors. In the majority of the studies the
absorption of tumor tissues (glioma, GBM, meningioma) is higher than in healthy regions [207�
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Paper Wavelength Samples Results

Eggert et al.
1987

200nm to
900nm

Frozen samples from 13
human cadavers White
matter, grey matter,
glioma, GBM and

meningioma

No statistical di�erences
between tumor types,

White matters
signi�cantly di�erent of
all tumors for absorption
and scattering,GBM and
meningioma showed

higher absorption than
grey matter

Van der zee
et al. 1993

500nm to
1000nm

2 post mortem neonatal
brain samples, 2

postmortem adult brain
samples

Comparison between
white and grey matter
µagm = 0.035mm−1 and
µawm = 0.002mm−1,
µsgm = 62mm−1 and
µswm = 47mm−1

Bevilacqua
et al. 1999

674, 811, 849
and 956nm

2 patients with in vivo
measurements during

brain surgery

µatumor(0.09mm
−1) >

µahealthy(0.03mm
−1),

explained by higher
vascularity in tumor. No
signi�cant di�erences in

scattering

Yaroslavski
et al. 2002

360nm to
11000nm

7 postmortem patients
with healthy brain, 6
meningioma biopsy, 4
astrocytoma biopsy

Tumor tissue presented
slightly higher scattering
coe�cients than normal

grey brain
µsgm ∈ [5, 10]mm−1 and
st µst ∈ [10, 20]mm−1

White matter compared
to grey matter

µagm ≈ 0.002mm−1 and
µawm ≈ 0.01mm−1

Gebhart et
al. 2006

400 to
1300nm

83 samples on 12 patients
acquired during tumor

resection open
craniotomy

Signi�cant di�erences
with the scattering

coe�cient : white matter
> tumor > grey matter.
In absorption glioma are
higher than grey matter

after 700nm

Table 2.1 � Summary of literature on measurements of optical coe�cient from brain tissue
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210]. One group explained this di�erence by the presence of denser vascularity in tumor [208].
Hemoglobin being a strong absorber, the absorption coe�cient will drop. Di�erences could also be
found in the scattering. Two groups found a higher scattering in white matter than grey matter
[209, 210], but one group found an opposite variation [211]. In two studies a higher scattering
was found in tumor compared to grey matter [209, 210]. The literature contains collected data,
on brain tumor tissue highlighting di�erences in the optical properties of tissues, and suggests the
possibility of discriminating them based on intrinsic optical technique. Moreover it shows that the
measurement of optical coe�cients could be a diagnosis tool by itself.

A limitation noted in the literature is the lack of extensive study on large statistically signi�cant
cohort. Of the �ve articles three were based on fewer than 10 patients [208, 209, 211]. The other
two contained 13 [207] and 12 patients (with 84 samples taken over the twelve patients)[210]. This
lack of statistical signi�cance combined with very di�erent experimental conditions and deployed
algorithms from one study to another results in values that are hardly comparable. Because the
data values in the literature were very speci�c to the set-up con�guration, tissue conservation, and
method of analysis, it would have been biased to choose one as a standard.

In this �rst test of a bi-modal endoscope with visible excitation on human tissue, the question
set to be answered was : can quantitative measurements of endogenous �uorescence signal dis-
criminate brain tumor tissue type ? A study was designed, where spectral and lifetime endoscopic
measurements were coupled to the measurement of optical parameters. Biopsies from twenty dif-
ferent patients were used to �nd quantitative discrimination between tumor types, and relate it to
the intrinsic properties of tissue (absorption, scattering and anisotropy).

Methods A cohort of twenty-eight �xed in alcohol samples of brain tumor biopsy was analyzed
at three di�erent wavelengths, 375, 495 an 430nm , on two di�erent set-ups. The samples were slices
of 200 and 600 microns, from 10 healthy cortex, 10 metastasis, 4 di�use glioma and 4 GBM. An
integrating sphere set-up was used to determine the optical coe�cients with a 430nm excitation
diode laser. The second set-up was the bi-modal endoscope used in the previous rat study [128].
Spectral and lifetime measurements were done using 375 and 405 nm excitation.

Results and discussion A threshold value was found between control and tumor in both scat-
tering and absorption coe�cient. Looking at the scattering parameters, tissues with µs<26 mm−1

were healthy and the ones with µs>29 mm−1 were tumoral, in the interval where µs∈[26,29]mm−1

no conclusion could be drawn on the tissue nature. For the absorption a threshold value around
1mm−1 could be determined between control and three tumoral groups, glioblastoma, meningioma
and metastasis. However the absorption coe�cient of di�use glioma wasn't signi�cantly di�erent
from control. The metastasis could also be signi�cantly discriminated from the other tumors using
the absorption coe�cients. These di�erences from tumor to healthy tissue could be explained by
changes in tissues architecture and environment during tumor growth. In tumor, denser networks
of collagen �bers form, which is a notable source of scattering. The meningioma is a tumor with
particularly dense structures of collagen (psamome, enrollment of collagen �ber,...) and it resulted
in the higher scattering coe�cient. The increase in absorption was explained by the presence of
denser vascularization in tumor, hemoglobin being a strong absorber of light. Metastasis, a tumor
with formation of a highly dense vascular network resulted in the highest absorption coe�cient
signi�cantly di�erent from the other tissues. Even if it is di�cult to truly compare values to the
literature, the experimental conditions were very close to Yaroslavsky et al. and the values found
were very similar to theirs [209]. These results highlighted that the intrinsic optical signal will
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change from one tissue type to another as its optical coe�cients are di�erent, and could be a dis-
criminative tool when monitored with quantitative measurements. However these di�erences in
optical parameters also show that scattering and absorption could be an indicator for diagnosis,
and that combining the results of both will give signi�cant results from all types of tumor compared
to control, even di�use glioma.

The second part of the study was analysis of these biopsy samples using the bi-modal endoscope.
The �rst response to be observed was the emitted spectral intensity and shape using 375 and 405nm
excitation wavelengths. A higher emitted intensity in healthy tissue compared to all tumor types
was found at both excitation wavelengths. This con�rmed the conclusions made by looking at
the optical properties. The variation of intensity from one tissue to another was in line with
the observed change in absorption and scattering coe�cients. An algorithm to �t the spectral
response of the molecular contribution, allowed monitoring of a metabolic indicator, the redox ratio
(NADH/FAD ratio), and the ratio between NADH and porphyrins, an indicator of various process
such as transport of oxygen and catalysis [106]. The two indicators resulted in a signi�cantly higher
value in control than in tumoral tissue : at 375nm excitation for the redox ratio and a 405nm
excitation for the NADH/Porphyrin ratio.

To con�rm these results, a second parameters of �uorescence was evaluated, the �uorescence
lifetime. The �uorescence lifetime is sensitive to di�erent factors than is spectral response. It
will be in�uenced by the molecular environment and conformation, whereas spectral response is
more sensitive to the concentration of molecules. The lifetime of each molecules contributing to the
�uorescence response was measured. A discrimination was found between control, glioblastoma and
meningioma looking at the NADH lifetime at both 375 and 405 excitation. The porphyrin lifetime
measured under 405nm excitation had a di�erent value for each of the �ve groups of tissue while
control tissue had the longer lifetime. As in the rat studies [128], porphyrin was revealed to be an
important indicator of tissue nature, giving a discriminative response between each type of brain
tissues, healthy or tumoral.

This �rst study on the quantitative analysis of the endogenous �uorescence, using a visible
endoscope with bi-modal detection, showed promising results for discriminating brain tissues. These
results were obtained on a signi�cant cohort including twenty-eight patients. However this �rst
study was done on �xed ex vivo samples and it has been shown in the literature that the optical
parameters will certainly change in in vivo conditions [206]. Concentration of blood and water can
be di�erent and this will cause variation in optical response. All these observations lead my research
project answering a second question : can we also quantitatively discriminate fresh biopsy with a
bi-modal endoscope and how will the results di�er from to ex vivo measurements ? This was the
work of a second study that will be developed in the next chapter.
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2.2 Paper: Optical properties, spectral, and lifetime measure-

ments of central nervous system tumors in humans

1SCIENTIFIC REPORTS | 7: 13995  | DOI:10.1038/s41598-017-14381-1

www.nature.com/scientificreports

Optical properties, spectral, and 
lifetime measurements of central 
nervous system tumors in humans
F. Poulon1, H. Mehidine1, M. Juchaux1, P. Varlet2,3, B. Devaux4,5, J. Pallud3,4,5 & D. Abi Haidar  1,6

A key challenge of central nervous system tumor surgery is to discriminate between brain regions 
infiltrated by tumor cells and surrounding healthy tissue. Although monitoring of autofluorescence 
could potentially be an efficient way to provide reliable information for these regions, we found little 
information on this subject, and thus we conducted studies of brain tissue optical properties. This 
particular study focuses on the different optical quantitative responses of human central nervous 
system tumors and their corresponding controls. Measurements were performed on different 
fixed human tumoral and healthy brain samples. Four groups of central nervous system tumors 
(glioblastoma, diffuse glioma, meningioma and metastasis) were discriminated from healthy brain 
and meninx control tissues. A threshold value was found for the scattering and absorption coefficient 
between tumoral and healthy groups. Emission Spectra of healthy tissue had a significant higher 
intensity than tumoral groups. The redox and optical index ratio were thenn calculated and these also 
showed significant discrimination. Two fluorescent molecules, NADH and porphyrins, showed distinct 
lifetim values among the different groups of samples. This study defines several optical indexes that can 
act as combinated indicators to discriminate healthy from tumoral tissues.

The success of oncological surgery, the most widely used curative treatment for solid tumor whatever its histo-
pathological type, is based on the accurate identification of the tumor’s boundaries in order to achieve a complete 
tumor resection. For tumors of the central nervous system, the goals of oncological surgery are identical but their 
realization is made more difficult by their infiltrating character, especially the diffuse gliomas, within a highly 
eloquent organ. The main challenge of any neurosurgical oncological intervention is to define the limits of the 
resection while optimizing the onco-functional balance1. Resection is based on the limits of tumor infiltration, 
which should be removed, and on the identification of eloquent brain areas, which should be respected. The 
actual identification of the tumor infiltration at the cellular scale is not possible intraoperatively and requires the 
development of an efficient and reliable intraoperative imaging tool, based on an imaging database of the main 
tumors of the central nervous system (diffuse gliomas, metastases, meningiomas, and healthy tissues).

The development of an intraoperative probe/device should be accompagnied by the construction of a large 
database of endogenous fluorescence response of tumor tissues. This intraoperative tool, in association with 
knowledge on collected optical response, will lead to an “optical biopsy” giving a real time result, and providing 
additional relevant morphological and physiological information during surgery, which may guide the surgical 
resection.

The optical properties of biological tissues have a major importance in several medical applications for diag-
nosis and therapy2. Knowing the optical properties of brain tissues results in quantitative information3, which 
allows the optimization of imaging techniques and the possibility of modeling the light path, the fluorescence 
distribution, the penetration depth and the possible interaction between fluorophores in the tissues. These param-
eters are related to the density and the distribution of sizes of the ultrastructure of a tissue, thus allowing the char-
acterization of the tissues, particularly the differentiation of tumoral tissues from healthy ones–in other words, 
detection of the evolution of a pathology. Current knowledge of optical properties of healthy and tumoral brain 
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2.2. PAPER: OPTICAL PROPERTIES, SPECTRAL, AND . . .

2.2.1 Introduction

The success of oncological surgery, which the most widely used curative treatment for solid
tumor whatever its histopathological type, is based on the accurate identi�cation of the tumor's
boundaries in order to achieve a complete tumor resection. For tumors of the central nervous system,
the stakes of oncological surgery are identical but their realization is made more di�cult by the
in�ltrating character of several tumors of the central nervous system, especially the di�use gliomas,
within a highly eloquent organ. The main challenges of any neurosurgical oncological intervention
is de�ning the limits of the resection while optimizing the onco-functional balance1. Resection is
based on the limits of tumor in�ltration, which should be removed, and on the identi�cation of
eloquent brain areas, which should be respected. The actual identi�cation of the tumor in�ltration
at the cellular scale is not possible intra-operatively and requires the development of an e�cient
and reliable intra-operative imaging tool, based on an imaging database of the main tumors of
the central nervous system (di�use gliomas, metastases, meningiomas, and healthy tissues). The
development of an intra-operative probe/device should be accompanied by the construction of a
large database of endogenous �uorescence response of tumor tissues. This intra-operative tool,
associated with a knowledge on collected optical response, will lead to an "optical biopsy" giving
a real time result, and providing additional relevant morphological and physiological information
during surgery, which may guide the surgical resection.

The optical properties of biological tissues have a major importance in several medical ap-
plications for diagnosis and [208]. Knowing the optical properties of the brain tissues results in
quantitative information[209], allowing the optimization of imaging techniques and the possibility
to model the light path, the �uorescence distribution, the penetration depth and the possible in-
teraction between �uorophores in the tissues. Theses parameters are related to the density and
the distribution of sizes of the ultrastructure of a tissue, thus allowing the characterization of the
tissues and in particular the di�erentiation of the tumoral tissues from healthy ones (detection of
the evolution of a pathology). The knowledge of optical properties of human brain, healthy and
tumor tissues is currently insu�cient and do not exist for di�erent tumoral variety [206, 212, 213].
There is a lack of data in the visible spectral range, especially for 405 nm excitation wavelength,
which is optimal to excite di�erent endogenous �uorophores such as nicotinamide adenine dinu-
cleotide (NADH), �avins (FAD), lipopigments and porphyrins, but also a lack of results on human
brain tissues[208, 209] where at the contrary we can �nd a large literature on rats, mice, pigs and
kidney[214, 215]. Willing to answer the surgeon needs, this lack of guidance in the literature moti-
vate our exploratory study on the optical coe�cients, absorption, scattering and anisotropy. These
optical parameters are required to apprehend correctly the signal from endogenous �uorescence of
tissue, but to have a quantitative answer in real time of tissue nature. The most suited and growing
technique is to follow the spectral response. Few research teams have already started to work on
spectral emission of healthy or tumoral brain tissue [102], still none of them have really tackled
a large type of brain tumors. Our previous study on the grade of malignancy of meningiomas in
adults [216], gave us interesting results through the spectral response to dicriminate tissues. Here,
this will be applied to a larger cohort and will also be used to follow the metabolic changes. In-
deed, we can �nd in the literature that some groups have started to calculate the ratio between
the contribution of the molecules in the emission spectra to track the metabolic reaction [118, 217,
218]. Another quantitative response appear with the progress in nonlinear optics and the access
to femtosecond pulsed laser, which is the measurement of the �uorescence lifetime[129, 137]. This
measure is not in�uenced by the concentration, but by the conformational or environmental changes
surrounding the �uorescent molecules. A study of the optical properties, the spectral response and
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lifetime of the endogeneous �uorescence on brain tissue, will allow to have an understanding of the
evolution of the hyperstructure, the metabolic process and environment going from a healthy region
to a tumoral region. In this paper, we studied a wide cohort of brain tissues, including four tumor
types and a control group (epileptic cortex). To span the wider range of tumor type, we chose
primary (glioblastoma, meningioma and di�use glioma) and secondary (metastasis) tumors of the
central nervous system. Several optical properties were looked at, using integrating-sphere tech-
niques and employing an inverse Monte Carlo technique. The absorption, scattering and anisotropy
coe�cients were measured using 405 and 430 nm excitation wavelengths. Moreover, spectral and
lifetime �uorescence measurements were acquired on these tissues using 405 nm and 375 nm exci-
tation wavelength. The 405 nm excitation wavelength was used to excite and collect e�ciently the
�uorescence signal of �ve endogenous �uorophores : NADH, FAD, lipopigments, porphyrins and
chlorins. The 375 nm excitation wavelength was used to excite e�ciently the NADH and the FAD.
The 405 and 430 nm excitation wavelengths were used in the integrating sphere technique to study
the e�ect of the wavelength on the optical coe�cients. Through the analysis of all these quantitative
data, we were able to de�ne several discriminatory indicators between control and tumor samples
and also we were able to discriminate several tumor types and grades of malignancy.

2.2.2 Materiel and methods

2.2.2.1 Samples

An approval of the Sainte-Anne Hospital - University Paris Descartes Review Board (CPP Ile
de France 3) was obtained for this study in collaboration with the Neurosurgery and the Neu-
ropathology Departments of the Sainte-Anne Hospital (S.C.3227). All the following methods were
performed in accordance with the relevant guidelines and regulations from this protocol and a
informed consent was obtained from all participants and/or their legal guardians.

Healthy 10
Metastasis 5

Thyroid carcinoma 1
Colloid adenocarcinoma 2
Primary renal carcinoma 1
Cell lung carcinoma 1

Di�use Glioma 5
Glioblastoma 4
Meningioma 4

Table 2.2 � Summary of the cohort used in the paper

A cohort of twenty height samples was used , the repartition is resumed in the Table 2.2. A
group of ten healthy cortex samples was obtained from epileptic surgery and compared to four
di�erent groups of central nervous system tumor. The tumoral cohort contains four Isocitrate
Deshydrogenase (IDH) wildtype glioblastomas, �ve IDH-mutated di�use gliomas, �ve meningiomas
and �ve carcinoma metastases originating from di�erent part of the organism

Once received from the hospital, the samples were stored at -80◦C. Few hours before cutting
they were put at -20◦C. Then, the tissues were cut at -18◦C into 200 µm and 600 µm slices using
a cryostat (CM 1950, Leica Microsystems). After, tissues were �xed with ethanol at 100◦ and
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stored at 4◦C until the experiment. The slices of 200 µm were used in the integrating sphere set-up
to measure the optical coe�cients and the slice of 600 µm were use in the endoscopic set-up for
spectral and lifetime measurements.

2.2.2.2 Integrating sphere set-up

A standard set-up was used for the measurements of transmittance T(λ) and re�ectance R(λ).
It consists of an integrating sphere (model : IS200-4 thorlabs) including four identical ports, each
port has a 12.7 mm diameter, and a �fth port with a 3 mm diameter used to collect light from
the sphere to a spectrometer (HR2000-Ocean optics) using an optical �ber (QP60-600µm diameter,
Ocean optics). The excitation was achieved with two laser diodes, emitting at 430 nm (LDH-
P-C-430B, Picoquant Germany) and 405 nm (LDH-P-C-405B, Picoquant Germany ) respectively
with a maximal power of 5.1 mW and 1 mW respectively. To have a 1 mm laser beam diameter,
a diaphragm was placed just after the laser diodes. For collimated transmittance measurements,
the integrating sphere is not used, three diaphragms were aligned in front of the laser, and an
absorbant �lter (OD=2.3) is placed to reduce the laser intensity. In each sample, �ve regions of
interest (ROI), selected in area of same visual appearances, for the transmittance, the re�ectance
and the collimated transmittance were measured. The average of these �ve measurements was used
to determine the optical coe�cients of the sample.

2.2.2.3 Spectral and lifetime measurements

Details of this setup were published elsewhere [198, 216] .The excitation is performed with two
pulsed diode lasers from Picoquant, emiting at 405 nm (LDH-P-C-405B, FWHM 60 ps, Picoquant-
Germany) and 375 nm (LDH-P-C-375B, FWHM 45ps, Picoquant-Germany). The diodes are con-
trolled by a driver (PDL-808 "Sepia", PicoQuant GmbH, Berlin, Germany), the repetition frequency
used for this study is 40 MHz. A single-core �ber with a 200 µ m diameter, is used to bring the
excitation to the sample, the signal is then collected through a single-core optical �ber with a 365
µm diamter. Then the collected signal goes through a long pass �lter (SR420, Semrock) to cut the
signal from laser re�ection. For spectral measurement, a spectrometer (QEPro 6500, Ocean Optics,
1.5 nm spectral resolution over a 365-950 nm spectral range) was used. For lifetime measurements
a �lter wheel (FW102C, Thorlabs, Newton, USA) with �ve �lters (Semrock, New York, USA, 450
± 10 nm, 520 ± 10 nm, 550 ± 30 nm, 620 ± 10 nm and 680 ± 10 nm) in front a photomultiplier
link to TCSPC acquisition card (PMA 182 and Time Harp 200, Picoquant, Germany) was used.

2.2.2.4 Data analysis

2.2.2.4.1 Optical properties

Reduced scattering (µs'), absorption (µs) and anisotropy coe�cients (g) of the samples were
obtained from measured values of the re�ectance, transmittance and collimated transmittance using
the Inverse Adding Doubling (IAD) algorithm developed by scott Prahl (http://omlc.ogi.edu/software/iad/)
[219]. This algorithm solves iteratively the radiative transport equation until the numerical ad-
justment and the experimental values of re�ectance, transmittance and collimated transmittance
matches, it takes also the parameters of the sample, the laser beam and the integrating sphere
used into account to �nd the optical coe�cients desired Noting that µs' is the reduced scattering
coe�cient, we will deduce the scattering coe�cient µs using the equation 2.1
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µs =
µs′

1− g
(2.1)

According to the literature [206, 208], the refractive index of human brain tissues is between 1.33
and 1.53. We have considered that the refractive index is n = 1.4 for all samples [208].

2.2.2.4.2 Spectral analysis

At the excitation of of 375 and 405nm �ve �uorophores are excited : NADH, FAD, lipopigments,
porphyrins and chlorines. The measured spectra present the sum of the emission spectrum of these
endogenous �uorophores. Spectral data are processed from a Matlab program developed previously
by our team and already used in a previous publication[216], using this program we can determine
the contribution of each molecule by adjusting the measured data to the equation 4.1.

Stotal(λ) =
∑

i = 1(fi.Si(λ))

Stotal(λ) : measured spectra

i : the �uorophore

Si(λ) : emission spectra of �uorophores i

fi : multiplying coe�cient

(2.2)

NADH spectra is adjusted by a spectra obtained from a previous experiment done by our team
on rats at 375 nm [128]. FAD spectra is adjusted by a spectra taken from the literature [220], The
other spectras of Lipopigments, Porphyrins and Chlorins are given by Gaussian adjustment.

2.2.2.4.3 Lifetime analysis

The measured �uorescence decay curves obtained are adjusted by a mono-exponential �t using
FluoFit software (Picoquant,Germany), which allows us to extract the �uorescence lifetime of the
curve.Two criteria are taken into account to validate the �t : χ2 must be -1.2 <χ2<1.2, and the
residuals must have a distribution around 0 in an interval of [-4,4].

2.2.2.4.4 Staistical analysis

Optical coe�cients(scattering and absorption) and �uorescence lifetime results were evaluated
using a one-way analysis of variances (ANOVA). If the ANOVA was statistically signi�cant, a post-
hoc t-test was performed. A probability value (p) <0.05 was considered statistically signi�cant.

2.2.3 Results

Figure 2.1 summarizes the scattering (µs) and absorption (µa) coe�cient for di�erent types
of brain tissues at two di�erent excitation wavelengths. Figure 2.1.a and .b show the scattering
coe�cient results for healthy (control) and tumoral (di�use gliomas, metastasis, meningioma and
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glioblastoma tissues). The tumoral tissues present a signi�cantly (p<0.001) higher scatering co-
e�cient Figure 2.1.c and .d represent the absorption coe�cient of tumoral and control tissues.
Metastasis, meningioma and glioblastoma are signi�cantly (p<0.001) di�erent from control tissues.
Di�use gliomas other than glioblastoma have an absorption coe�cient not signi�catly di�erent to
those of control tissues (p=0.09).

Figure 2.1 � Distribution of scattering coe�cient values for tumoral and healthy control tissues
excited with 405 nm(a) and 430 nm(b) , and of absorption coe�cient using 405 nm(c) and 430 nm
(d) excitation wavelengths.

The anisotropy coe�cient could also be calculated for 405 and 430 nm excitation wavelength.
The results for the di�erent groups are plotted in �gure 2.2. Three groups of tissues had already
been examined in the literature and allowed us to compare our values, the meningioma with a
g=0.87 [209] where we found 0.87 and 0.86 , the control tissue with a g=0.86 [209] where we found
0.85 and 0.865 and the di�use gliomas with a g=0.88 [209] where we found 0.90 and 0.20. Our
value were in line with the previous literature which validate our set-up and protocols. We also did
measure two other types of tumor that were not tackled before, adding information to the existing
literature. A trend can be extracted from the value, the tumoral tissues tend to have higher g value
than the control tissues, nevertheless this is not statistically signi�cant.

Having seen these di�erences in the fundamental optical properties of the tissue, we needed to
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Figure 2.2 � Average of anisotropy coe�cient g, under 405 and 430 nm wavelength excitation and
compared to the g values found in literature.

look at other measurements of the endogenous �uorescence, that could be implemented more easily
in vivo and could also give an insight on the metabolic state of the tissue. Through a �rst bi-modal
device developed in our group [221] , we did measure consequentially the spectral and �uorescence
lifetime response from tissues. Figure 2.3 presents the emitted �uorescence of each type of tissue
at the 375 and 405 nm excitation wavelengths. The shapes of the spectra change with 405 nm
excitation wavelength. At this wavelength, we were able to excite �ve endogenous molecules. With
375 nm, we e�ciently excite NADH and FAD only, thanks to their higher absorption cross section
at this excitation wavelength. We can underline a di�erence in the �uorescence intensity between
each type of tissue. The gap between control and tumoral tissues was signi�cant and encouraging.
At both wavelengths, the healthy tissue has signi�cantly higher intensity than tumoral tissue. This
is explained by the lower absorption and scattering coe�cient in healthy tissue that results in more
�uorescence emitted and collected by our set-up.

Every spectra is the sum of emission spectrum of �ve �uorphores : NADH, FAD, lipopigments,
porphyrins and chlorins. In addition, by calculating the integral under the curve of the emission
spectra of NADH, FAD and the porphyrins, using a Matlab program developed by our team[128],
we obtained two di�erent ratios under 405 nm and 375 nm excitation wavelength.

Under 375 nm excitation wavelength, we calculated the redox ratio [217] :

ROx =
FAD −NADH
FAD +NADH

(2.3)

Under 405 nm excitation wavelength, we calculated the optical index ratio[222] :

OIR =
NADH

Porphyrins
(2.4)
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Figure 2.3 � Fluorescence spectra of all tissues excited with 405 nm wavelength (a) and 375nm (b).

At 375 nm, the calculated ratio has negative values because NADH is more present in brain
tissues than FAD at the excitation wavelength [128, 223]. As shown in Figure 2.4.a, the healthy
tissues have a higher ROx than tumor tissues (p<0.001), which is inline with the literature [217].
At 405nm, the Figure 2.4.b also shows a signi�cative di�erence (p<0.001) tumoral and healthy
tissues. Similar results were obtained on bladder tumor tissues [223].

Figure 2.4 � (a) Variation of the ROx report of all tissues excited with 375 nm and (b) Variation
of the NADH/ Porphyrins of all tissues excited with 405 nm.

To complete our study, we also collected data from a promising quantitative technique, the
�uorescence lifetime. As previously done, we used two excitation wavelengths, 375nm and 405nm.
We had a closer look at two molecules emitting endogenous �uorescence, this choice was motivated
by our previous study on a cohort of fresh samples that highlights the changes in NADH and our
study on brain rats that show a variation in porphyrins [128, 223].

In Figure 2.5.a and .b we see that at both excitation wavelengths, the NADH presents a dif-
ference in lifetime between glioblastoma, meningioma, and control samples. Nevertheless, at 405
nm excitation wavelength, control has a shorter lifetime than healthy tissue, where at 375nm the
control has a longer lifetime. The meningioma is very well distinguished from the control tissue
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Figure 2.5 � Comparison of mean �uorescence lifetime in di�erent types of tissues. Evolution of of
NADH lifetime at 375nm (a) and 405nm(b) in three types of tissues (control, glioblastoma, Menin-
gioma). Evolution of porphyrins lifetime at 405nm between control, glioblastoma and meningioma
(c), between di�use gliomas and control (d) and between metastasis and control (c).

(p=0.002 at 405nm; p=0.004 at 375nm ). In Figure 2.5.c the results for the porphyrin, well excited
at 405nm are presented in all the tumoral tissues (Glioblastoma, Meningioma, Di�use glioma and
Metastasis) a signi�cantly shorter lifetime than the control tissue, respectively with a p-value of
p=0.05, p=0.001, p=0.02 and p<0.001. The Figure 2.6 illustrates this di�erence between a tumoral
tissue and a control looking at the histogram of �uorescence lifetime decay.

2.2.4 Discussion

In this study, an integrating sphere was used to measure the optical parameters of sample from
healthy brain tissues and from tumor of the central nervous system of human patients. Di�erent
tumor tissues were selected, from primary or secondary tumors and with di�erent grades of ma-
lignancy. We measured the optical properties with di�erent excitation wavelengths. The results
improved our understanding on the evolution of the absorption coe�cient and scattering coe�cient
on di�erent types of tissues. We could observe a trend from these results, the scattering coe�cient
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Figure 2.6 � Histogram of lifetime �uorescence decay of the porphyrin component with a 405nm
excitation between astrocytoma and control (a) and between metastasis and control (b).

of healthy tissues is lower than those from the di�erent tumor tissues. This di�erence can be ex-
plained by the fact that tumor tissues have more collagen �bers and a strongest vascularization
than healthy ones, source of a stronger scattering. A threshold can be determined to discriminate
between healthy and tumor, regarding this coe�cient a tissue with µs<26 is healthy and with a
µs>29 is tumoral, in the interval where µs [26,29] no conclusion can be drawn on the tissue nature .
The absorption coe�cient also discriminate meningioma, glioblastoma and metastasis from healthy
tissue, it can be explained by the stronger vascularization in tumoral tissue. In addition, the higher
the grade of malignancy, the more the chromatin is condensed, so the absorption is higher (seen
in the evolution µa of from healthy, di�use glioma to glioblastoma). The obtained values for the
di�erent coe�cient were closed to the literature for the studied tissues in similar conditions or when
applied on animals [209].

The spectral response con�rmed the conclusions made on the optical properties. The evolution of
spectra from a tissue to another one is in line with the observed change in absorption and scattering
coe�cient. These spectral measurements have been established in a "�bered" con�guration to be
as close as possible to clinical intra-operative con�guration. These spectral results gave us another
technique to look at the discriminating indicator found with the optical coe�cients. Nevertheless,
we exploited a bit further the spectral response by looking at the metabolic ratio in order to get
a more robust indicator of tissue nature. In our previous work [128], we noticed that in rat brain
tissues the porphyrin showed di�erent responses in term of �uorescence lifetime depending on tissue
nature. Observing the important presence of porphyrins in the human brain tissue spectral response,
we wanted to exploit our knowledge on rat and look at the ratio between NADH and porphyrins
to obtain more discriminatory informations. This ratio will link the metabolic and vascular aspect
of tissues and consequently bring decisive information. To �nalize the study and obtain more
quantitative data, the �uorescence lifetime have also been measured with the intra-operative device
con�guration using 375nm and 405nm as excitation wavelength. Results are interesting and showed
the sensibility "of the measure to the nature and state of conservation of tissues". If we compare
these results on �xed tissues to the ones previously obtained on fresh tissues with same same set-up
[223], we can observe the variability of the results. For example for the NADH in cortex-control
�xed tissue the mean lifetime is of 4.44 ns, whereas for the fresh tissue in our previous article the
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mean lifetime is of 3.38 ns. We can also conclude, as in the rat studies, that porphyrin is a strong
indicator of tissue nature, giving us a discriminatory response between tumoral and the healthy
tissues and in between the tumors (glioblastoma, di�use glioma, metastasis and minigioma), we
went also further in this study showing that NADH had also a �uorescence lifetime di�erent from
one tissue to another, signi�cantly discriminating meningioma from healthy tissue.

We intended to present an original study, based on the auto�uorescence response of healthy
and tumoral brain tissues observed with di�erent modalities, either in a �ber con�guration or in
a integrating sphere set-up. All these techniques allowed to established a group of discriminating
indicators between healthy and tumoral. To our knowledge, such a study on a substantial cohort of
human samples have never been performed. To go further, we wish to expand our cohort to tumor
margins, samples where the concentration in tumor cells is very low, in order to test the reliability
of the indicators we demonstrated here.
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Chapter 3

Could spectral and lifetime

measurements, under visible

excitation discriminate freshly

extracted brain tissue nature ? Were

�uorescent measurements established

on �xed tissue suitable enough to

build an optical database ?

3.1 Context of the study

It was highlighted in the literature [206], that in the in vivo condition many elements will vary,
such as blood, water and collagen content, impacting the light scattering and absorption. These
elements are not as present in the ex vivo �xed condition, in which the �xative will stop the tissue
in one state and hemoglobin will be altered [224]. Few teams have tried to evaluate the impact
of the �xation with formaldehyde on tissue auto�uorescence response [225�228]. They all pointed
out that the intensity increase in �xed tissue compared to fresh analysis. This has been attributed
to enzyme degradation, dehydration, along with changes in blood [227, 228]. Fillipidis et al. [225]
and Xu et al. [227] showed that in monitoring over two to four days the spectral shape in human
abdominal aortia and mouse skeletal muscle was not signi�cantly a�ected by formaldehyde �xation.
Majumder et al. [226] and Gabrecht et al. [228] looked at the impact of �xation when using spectral
response to discriminate breast and bronchial tumor tissues from healthy ones. Majumder et al.
showed that even if the spectral shape (the collagen contribution) and the intensity were impacted
by the �xation process, the relative di�erences between cancerous and normal breast tissue were
preserved and a discrimination could still be done [226]. Gabrecht et al. showed that neoplasic
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and normal tissue could be discriminated, however all the pre-neoplasic tissue had undi�erentiated
response after �xation, whereas they were able to be discriminated in fresh tissue [229]. These
studies con�rmed the hypothesis that optical parameters intensity will change in un�xed vs. �xed
tissue, suggesting further focus on investigation of fresh tissue samples.

To study fresh biopsy material the bi-modal endoscope set-up was placed at a hospital, very
close to the operating room. The tissue were brought to the set-up in less than two hours after the
resection and could be analyzed close to intra-operative conditions.

To have more relevant results than on the �xed tissues study presented in chapter 2, in this work
all the samples were compared to their appropriate control and the statistics was increased, �fty-four
patients were included in the cohort. Three tumoral groups were analyzed : intra-axial primary
glioma and secondary metastasis tumor that were compared to cortex control samples. Extra-
axial tumor, meningioma were also studied and compare to healthy dura matter. This bi-modal
endoscope didn't give access to an imaging modality that could allow comparison with histology
gold standard H&E staining, consequently an exploratory study on 13 samples of this cohort was
done using a two-photon excitation. The two-photon excitation using a bench-top microscope
gave access to a merged image of the �uorescence emission and the SHG showing cellular and
extracellular information. These spatial measurements were also combined to make quantitative
assessments, in order to track at a molecular scale the changes in tissue. Five molecules that emit
an auto�uorescence signal were followed in this study : NADH, FADH, lipopigments, porphyrin
and chlorine, giving information on metabolism and structure. Their responses were analyzed using
a spectral detection and �uorescence lifetime imaging.

Methods Biopsy samples taken from �fty-four patients were analyzed in this study. They
were originated from cortex-control (n=11), healthy dura matter (n=5), intra-axial glioma (n=16)
and metastasis (n=14) tumors and extra-axial meningioma tumor (n=8). Two set-ups were used
to measure the auto�uorescence response of tissue. The whole cohort was �rst analyzed on the
bi-modal endoscope used in chapter 2. This set-up performs spectral and �uorescence lifetime
measurements using a 375 and a 405nm excitation. A portion of the samples (n=13) were used
in an exploratory study on a two-photon set-up. A bench-top multi-photon microscope (TCS SP8
MP, Leica, Germany) coupled to Ti:Sapphire laser (Mai Tai Deepsee, Spectra-Physics, USA) with
a tunable cavity from 690nm to 1040nm for two-photon excitation. For this study, two excitation
wavelengths of 810 and 890nnm were used. The set-up was used to perform �uorescence and SHG
imaging, spectroscopy and �uorescence lifetime measurements.

Results and discussion Under visible excitation a decreased intensity in tumoral tissue com-
pared to their respective controls was observed, for all excitation wavelengths and �tted molecules.
This decrease has been attributed to two phenomena, the Warburg e�ect that decreases the amount
of NADH in tumor cells [116] and also presence of structures such as necrosis (up to 87% of glioblas-
toma in the present series), tumor hyper-perfusion or neo-angiogenesis which are a high source of
absorption [230]. Using 405 nm excitation wavelength, �uorescence lifetime measurements were
signi�cantly shorter in glioma group than in control group for NADH (p = 0.008), FAD (p = 0.035)
and lipopigment (p = 0.035). In metastasis we observed the same trend but the values were not
all signi�cantly di�erent. At 375nm we could not extract a discrimination. Meningioma could be
discriminated with a statistical signi�cance from their control at both 405 and 375 nm excitation
wavelengths. The lower NADH lifetime could be explained by changes in NADH bound/free ratio
or in the distribution of NADH enzyme binding sites [231, 232].
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Intensity
(a.u.)
control-
cortex

RId(%)
Glioma-
control

RId(%) :
metastasis-
control

Lifetime(ns)
control-
cortex

Chapter 2
- �xed
samples

455 55 53 4.44

Chapter 3
- fresh
samples

10 60 75 3.38

Table 3.1 � Comparison between �xed and fresh results on intensity and �uorescence lifetime of
NADH emission at 470nm. RId : Relative intensity decrease

To evaluate the impact of �xation on tissue, the results acquired on the visible bi-modal en-
domicroscope can be compared to the �ndings of the previous chapter. Table 3.1 compares the
results of spectral and lifetime measurements of the NADH acquired on �xed and fresh samples
for di�erent tumor tissues. As in the literature [227], the intensity is higher in �xed tissue than
in fresh ones. This is due to the impact of �xation on hemoglobin [224] and also some chemical
process degrading enzymes and dehydrating the tissue. The increase in �xed tissue found in the
literature were very variable. One study found a factor of 2.6 between 72 hours to 5 days [229],
while another found a factor of 20 after 4 days [227]. In this chapter's study the results were in
the range of the second group results, a factor of 40. Knowing that the samples had been �xed
for several days or weeks could explain the higher value. Also the probe to sample distance wasn't
precisely controlled from one experiment to another, which could also explain the higher value
than in literature. Then, to understand if discrimination was still possible once �xed, the relative
decrease in intensity between control and tumor were compared both in glioma and metastasis.
For both tumors a di�erence higher than 50% was measured for fresh and �xed tumors. However
the decrease was more signi�cant in fresh tissue. These results translate to what was seen in the
literature [229], that �xation diminishes the speci�city, and consequently low grade tumors are hard
to di�erentiate from healthy regions in �xed state. The lifetime results showed a decreased of 1 ns
between �xed and fresh measurements which is non-negligible. However in the one reference found
about �uorescence lifetime in fresh and �xed tissue, a signi�cant change in the lifetime value and
the amplitude factor was found [233]. Consequently it is di�cult to draw conclusions about the
reliability of the �uorescence lifetime response in �xed tissue. A more extensive study has been
performed in our group in parallel of this work, on the impact of �xation on the spectral and �uo-
rescence lifetime response. study should be performed to con�rm or contradict the result that was
found here. As in literature, a systematically longer �uorescence lifetime was found in �xed tissues
compare to freshly extracted ones. However the relative di�erence between �uorescence lifetime of
two tissue types did not appear to change from on condition to another. In conclusion using fresh
tissue appears mandatory to have the best speci�city for discrimination and exploit precise value of
�uorescence lifetime. However to test the feasibility of a method, on di�erent histological groups,
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NADH/FAD FAD/(NADH+FAD)

Control 0.28 0.76

Glioma 0.31 0.75

Table 3.2 � Di�erent redox ratio at 405nm excitation wavelength

�xed tissue will be su�cient.

In this paper, the di�erent molecules contributing to the auto�uorescence signal were studied
separately looking at the spectral and temporal response. Signi�cant discrimination was found for
most of the molecules, p-value < 0.05. Being able to track molecules individually, such as NADH
and FAD that are involved in metabolic processes opens doors to build metabolic indicators in order
to precisely monitor tissue state. As shown in the introduction. Two formula of the ratio tried in
the literature, FAD/(NADH+FAD) and NADH/FAD, were evaluated on the results of this chapter
(table 3.2) to see if this method could be further developed in our analysis.

The NADH/FAD ratio gave a signi�cant di�erence and could be a good quantitative indicator
in further study to evaluate the metabolic state of tissue. The second ratio gave a less signi�cant
di�erence but still showed the same trend as in the literature.

These in vivo analyses showed the capacity of bi-modal quantitative detection on endogenous
�uorescence to discriminate tissue nature. However this set-up lacked an imaging modality and the
possibility of comparison to histology gold standard for diagnosis, the H&E stained images. The
H&E are a combination of two stains, the nuclear information appears in purple-blue and cytoplasm
and extracellular matrix are revealed in pink. The H&E stain, based on this dual information and
the changes in contrast and textures, give access to vast intracellular information (mitochondria,
�laments, mucous sites, lipides, vessels walls) and provides pieces of information on the functional
status of the cells [60]. It makes H&E the standard for pathological diagnosis with a high accuracy.
To be able to give comparable information, the new imaging modality must also combine nuclear
and extracellular information. Non-linear microscopy is the best candidate because for example
two-photon excitation produces two complementary signal : SHG from the light interaction with
ECM �bered organization, and emission �uorescence highlighting cytoplasmic-nuclear information.
The TPEF-SHG images of control-cortex and each tumoral groups were compared to their H&E
equivalent stain. Typical structures of histology were identi�ed in the �uorescence images. SHG
signal highlighted lobules in metastasis, necrosis in glioma, and vessels in control. TPEF showed
signal in cytoplasm cells, with lobular arrangement in meningioma, in dense areas of glioma can-
cerous cells, and in triangular neurons in control. These structures are standard elements used
to make a diagnosis, showing that this optical technique could be an equivalent to H&E staining
with the strong advantage of being faster and chemical free. Spectral measurements using the two-
photon excitation resulted in similar spectral shape as the one-photon results, leading to the same
quantitative molecular analysis as in the one-photon con�guration. In the lifetime measurements
di�erent mean values were found for each tissue types, but the smallness of the group of samples did
not allow a statistical comparison. These preliminary results on a two-photon excitation showed
the potential of qualitative and quantitative discrimination using the addition of a third spatial
dimension compared to the visible set-up con�guration. To tackle more in depth clinical questions
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with multimodal optical analysis of auto�uorescence signal, the two-photon excitation would be
preferred. The promising results found on this small cohort of brain tumor tissue, opened the
possibility of using it on neuropathological challenges with a comparable precision to the histolog-
ical analysis. To evaluate the capacity of the two-photon con�guration, a study on tumor grading
was then established to compare qualitative and quantitative optical analysis versus the H&E and
immunohistochemistry analysis of neuropathologist. The results will be presented in the chapter 4.
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3.2 Paper: Multimodal optical analysis discriminates freshly

extracted human sample of gliomas, metastases and menin-

giomas from their appropriate controls
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Multimodal optical analysis 
discriminates freshly extracted 
human sample of gliomas, 
metastases and meningiomas from 
their appropriate controls
Marc Zanello1,2,3, Fanny Poulon1, Johan Pallud2,3, Pascale Varlet3,4, H. Hamzeh5, 
Georges Abi Lahoud2,3, Felipe Andreiuolo3,4, Ali Ibrahim1, Mélanie Pages3,4, 
Fabrice Chretien3,4, Federico Di Rocco6, Edouard Dezamis2,3, François Nataf2,3,  
Baris Turak2,3, Bertrand Devaux2,3 & Darine Abi Haidar1,7

Delineating tumor margins as accurately as possible is of primordial importance in surgical oncology: 
extent of resection is associated with survival but respect of healthy surrounding tissue is necessary 
for preserved quality of life. The real-time analysis of the endogeneous fluorescence signal of brain 
tissues is a promising tool for defining margins of brain tumors. The present study aims to demonstrate 
the feasibility of multimodal optical analysis to discriminate fresh samples of gliomas, metastases 
and meningiomas from their appropriate controls. Tumor samples were studied on an optical fibered 
endoscope using spectral and fluorescence lifetime analysis and then on a multimodal set-up for 
acquiring spectral, one and two-photon fluorescence images, second harmonic generation signals 
and two-photon fluorescence lifetime datasets. The obtained data allowed us to differentiate healthy 
samples from tumor samples. These results confirmed the possible clinical relevance of this real-time 
multimodal optical analysis. This technique can be easily applied to neurosurgical procedures for a 
better delineation of surgical margins.

Surgical resection, whenever feasible, remains the first line of therapy to treat central nervous system tumors1,2. 
The extent of resection is a major prognostic factor, whatever the histopathological subtype3. Although maximal 
resection is required, preserving surrounding healthy brain areas is warranted to equilibrate the onco-functional 
balance: improving the outcomes through maximal tumor removal and preserving the postoperative quality of 
life. The identification of the tumor limits, in case of gliomas, metastases and meningiomas may be difficult intra-
operatively. Intraoperative microscopy, intraoperative ultrasonography, or intraoperative MRI are insufficient to 
resolve tissue microstructure and discriminate between tumor induced tissue alterations and surgically induced 
changes, such as contusion, ischemia or edema4–6.

The most notable achievement concerning optical imaging for brain tumor margin delineation was realized 
by Stummer et al. with the use of external dye, δ -aminolevulinic acid (ALA)7. Clinical studies have shown an 
increased extent of resection and improved overall survival using ALA8,9, however, its sensitivity can be improved, 
especially in infiltrative areas10,11. Moreover, any dye has contraindications and side effects. Our group tries to 
overcome these limits by analyzing human tissue endogenous fluorescence. First attempts of label-free optical 
imaging were made during 1990’s and active research is still currently underway in this field with no major clini-
cal translation12–16. Meanwhile, nonlinear microscopy technique has emerged over the last 20 years17,18. It differs 
from classical confocal microscopy by its ability to use several endogeneous contrasts, especially second harmonic 
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3.2.1 Introduction

Surgical resection, whenever feasible, remains the �rst line of therapy to treat central ner-
vous system tumors [234, 235]. The extent of resection is a major prognostic factor, whatever
the histopathological subtype [236]. Although maximal resection is required, preserving surround-
ing healthy brain areas is warranted to equilibrate the onco-functional balance: improving the
outcomes through maximal tumor removal and preserving the postoperative quality of life. The
identi�cation of the tumor limits, in case of gliomas, metastases and meningiomas may be di�cult
intra-operatively. Intra-operative microscopy, intra-operative ultrasonography, or intra-operative
MRI are insu�cient to resolve tissue microstructure and discriminate between tumor induced tis-
sue alterations and surgically induced changes, such as contusion, ischemia or edema [82, 237, 238].
The most notable achievement concerning optical imaging for brain tumor margin delineation was
realized by Stummer et al. with the use of external dye, δ-aminolevulinic acid (ALA) [98]. Clinical
studies have shown an increased extent of resection and improved overall survival using ALA [99,
239], however, its sensitivity can be improved, especially in in ltrative areas [173, 240]. Moreover,
any dye has contraindications and side e�ects. Our group tries to overcome these limits by analyz-
ing human tissue endogenous �uorescence. First attempts of label-free optical imaging were made
during 1990's and active research is still currently underway in this �eld with no major clinical
translation [124, 125, 137, 241, 242]. Meanwhile, nonlinear microscopy technique has emerged over
the last 20 years [150, 243]. It di�ers from classical confocal microscopy by its ability to use several
endogeneous contrasts, especially second harmonic generation and two-photon �uorescence without
introducing exogenous dye. The near infrared excitation source allows a deeper penetration and
a lower level of photodamage compared with confocal microscopy, which helps to preserve tissue.
Auto�uorescence analysis is di�cult primarily due to the low signal to noise ratio: the combination
of multiple modalities could help distinguish tumor margins more precisely than techniques that
o�er a unique modality [144, 244, 245]. In this work we implement spectral and lifetime �uores-
cence in spatial imaging. This quantitative information provides additional information on the
physicochemical environment and molecular interaction.

The present study investigated the ability of visible and nonlinear optical imaging techniques to
discriminate between tumor and control healthy tissues. For this purpose, metastasis, glioma and
meningioma samples were compared to their appropriate controls: healthy brain samples and dura
mater samples, respectively. In this study, thin human samples, freshly extracted, are analyzed to
be as close as possible to clinical conditions. We made qualitative and quantitative measurements
on these di�erent sample groups. This comparative study was made on two set-ups: endoscopic
�bered set-up and multimodal microscope. With the optical �bered endoscope we acquired spec-
troscopic and lifetime measurements on freshly extracted human samples as a �rst step before in
vivo clinical measurements. It allows excitation with two di�erent visible wavelengths, 375 and 405
nm. These wavelengths are well known [128, 216] to excite di�erent endogenous molecules, like
reduced nicotinamide adenine dinucleotide (NADH), �avins (FAD), lipopigment, porphyrins. Our
team is currently working on a new surgical tool that allows performing nonlinear optical analy-
sis of endogenous �uorescence in real time during neurosurgical procedures. To further enhance
the speci�city and sensitivity of the optical analyses, four di�erent contrasts will be studied: (1)
one and two-photon spectral detection, (2) time domain measurement and two-photon Fluorescence
Lifetime Imaging, (3) second harmonic generation imaging and (4) one and two-photon �uorescence
imaging. The aim is to help neurosurgeons to realize maximal resection of brain tumors based on
the endogenous contrast between the �uorescence of tumor tissue and healthy surrounding tissue.

As a �rst step before this �bered multimodal optical surgical tool, we have chosen to use a
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multimodal bench top microscope. It allows us to (i) test the safety of multimodal excitation on
fresh human samples, (ii) obtain the four di�erent contrasts previously discussed, (iii) compared
�uorescence images with gold standard histopathology and (iv) discriminate potential di�erences
between the di�erent samples (glioma, metastasis, meningioma, and healthy cortex).

3.2.2 Materiel and methods

3.2.2.1 Samples

The inclusion criteria for this monocentric prospective collection of fresh samples were: (1)
adult patients; (2) newly diagnosed central nervous system tumor at the Sainte-Anne Hospital
(Paris, France); (3) available fresh samples to be analyzed on optical set-ups in addition to the
routine histopathology protocols; (4) selection by a senior neuropathologist of representative and
homogeneous samples (meningioma, glioma, metastasis, and control). The institutional review
board of the Sainte-Anne Hospital center � University Paris Descartes approved the study proto-
col (number SC3227), all the following methods were performed in accordance with the relevant
guidelines and regulations issue in this protocol. Moreover informed consents were obtained from
all the samples coming from human subjects. Sample size varied from 32 mm3 (4x4x2 mm) to
750 mm3 (15x10x5 mm). They were maintained in normal saline solution to avoid desiccation, in
a temperature-controlled dark room dedicated to optical imaging. They were cut with a scalpel
to obtain a planar surface. The sample was studied �rst on a visible set-up then on a nonlin-
ear multimodal set-up. The whole process took less than 120 min. The fresh samples were then
�xed with 4% paraformaldehyde, embedded in para�n and stained with Hematoxylin-Eosin then
digitized using Digital Slide Scanner NanoZoomer 2.0 (Hamamatsu Photonics K.K, Hamamatsu,
Japan). Detailed clinical data including age at diagnosis, past medical history and histopathologi-
cal data including presence of mitosis, necrosis, neoangiogenesis and immunohistochemical analysis
were recorded. We examined non-tumor brain parenchyma fresh samples as control samples for
intraparenchymal tumor samples (glioma and metastasis) and dura mater samples for meningioma
samples. The non-tumor brain parenchyma samples (n = 11, the so-called control group) provided
from patients operated for a drug-resistant temporal epilepsy during the same period. Dura mater
control samples (n = 5, the so-called meningioma control group) provided from dural boundaries
far from meningioma resection. A senior neuropathologist performed a central review of de�nitive
Hematoxylin-Eosin staining of the study's samples, without prior knowledge of the two-photon
analysis status (performed or not). Detected tissue alteration were reported to the investigators.

3.2.2.2 Optical endoscope architecture

Two pulsed diode lasers, one emitting at 405 nm and the other one at 375 nm, from PicoQuant
(GmbH, Berlin, Germany) were used as laser sources. The diode 375, FWHM 45 ps and 405 nm,
FWHM 60 ps were used. The same �Sepia� driver controlled the diodes. Repetition frequency can
be set between 2.5 and 40 MHz. Repetition frequency used for this study is 40 MHz. Excitation and
collection were acquired thanks to a bi-�bered con�guration. The �bres used for tissue excitation
and collection had a core diameter of 200 µm and 365 µm, respectively, with a numerical aperture
of 0.22. The spatial resolution was of 500 µm. A beam Splitter divided and sent the collected
�uorescence into two detectors: 70% of the signal toward a computer controlled cooled spectrometer
(Ocean optics QP600-1-UV-VIS) for spectroscopic analysis and 30% toward a Photomultiplier Tube
a Photomultiplier Tube (PMT) (PMA-182 NM, PicoQuant GmbH, Berlin, Germany) for lifetime
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Figure 3.1 � Optical �bered endoscope setup. Spectral and lifetime measurements were acquired
using this set up and under 405 and 375 nm excitation wavelength. Two �bered was used for
excitation and �uorescence collection.

measurement. The synchronization output signal from the diode driver and the start signal from the
PMT were connected to their respective channels on the data acquisition board Time-Correlated
Single Photon Counting (TCSPC) (TimeHarp 200, PicoQuant GmbH, Berlin, Germany). A �lter
wheel was used to select the spectral emission band during lifetime measurement. Five �lters
were used when exciting with 405 nm (450 ± 10 nm, 520 ± 10 nm, 550 ± 30 nm, 620 ± 10
nm and 680 ± 10 nm). Using theses �lters we can respectively detect the emitted �uorescence
from NADH, FAD, lipopigments, porphyrin I and porphyrin II. Two �lters are used when exciting
with 375 nm (450 ± 10 nm and 520 ± 10 nm) for NADH and FAD (Fig. 3.1). Each lifetime
measurement lasted 2 seconds. Data were adjusted by a mono-exponential �t via FluoFit software
(PicoQuant, GmbH, Berlin, Germany) to recover the lifetimes from the measured �uorescence
decays. Spectral acquisition was accomplished for several longitudinal lines of each sample thanks
to a speci�c mechanical support mounted on a motorized microtranslator stage ( Thorlabs, Newton,
USA) [128] and it lasted 5 to 10 minutes per sample. The spectral measurements were processed
using a homemade Matlab program, as previously described [128]. The same �ve �uorophores
were considered: reduced Nicotinamide adenine dinucleotide (NADH), �avins (FAD), lipopigments,
porphyrin I and porphyrin II. Data were adjusted by a mono-exponential �t via FluoFit software
(PicoQuant, GmbH, Berlin, Germany) to recover the lifetimes from the measured �uorescence
decays.

3.2.2.3 Microscopic multimodal setup: Confocal, two-photon and FLIM imaging of
endogenous �uorescence

A Mai Tai DeepSee Ti:Sapphire laser source (Mai Tai DeepSee, Spectra-Physics, Santa Clara,
USA) with automated dispersion compensation. The average power is around 2.4 W at 800 nm
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excitation wavelength. It's tunable from 690 to 1040 nm. The repetition rate of the laser source
was 80 MHz and the output pulse duration was around 70 fs. This laser is combined to a TCS SP8
MP confocal microscope from Leica Microsystems (Leica Microsystems, Wetzlar, Germany). This
set up was used for confocal, two-photon and �uorescence lifetime (FLIM) imaging of samples. The
presence of two additional �lters (FF01-448/20-25 and FF01-520/35-25, Semrock, New York, USA)
on the dichroic cube set the detection band for each path toward one of the two external hybrids.
This optical set-up recorded four di�erent optical signals on the Regions Of Interest (ROI): (1)
one and two-photon Spectral analysis, (2) two-photon FLIM measurement, (3) second harmonic
generation imaging and (4) Fluorescence imaging under one and two-photon excitation. Analy-
ses were performed using the dedicated Leica software (Leica Microsystems, Wetzlar, Germany).
Fluorescence and second harmonic generation images processing were made using the dedicated
Leica software as well as Matlab and imageJ. For FLIM measurements, three positions at least
per sample were analyzed using 810 and 890 nm excitation wavelengths. The data were collected
and analyzed via the software Symphotime (PicoQuant, GmbH, Berlin, Germany). On each FLIM
image, twelve ROI were selected on the di�erent structures and �tted by a mono or bi-exponential
decay to extract the �uorescence lifetime.

3.2.2.4 Statistical analyses

Fluorescence intensity and lifetime results were evaluated using a one-way analysis of variances
(ANOVA). If the ANOVA was statistically signi�cant, a post-hoc Wilcoxon test was performed. A
probability value (p) < 0.05 was considered statistically signi�cant. All statistical analyses were
performed using JMP software (version 11.0.0, SAS Institute Inc).

3.2.3 Results

3.2.3.1 samples

Clinical and histopathological characteristics are summarized in �gure 3.2. Fifty-four samples
(tumor and control samples) were analyzed. Thirty-eight fresh human tumor samples from 38
patients (21 men, 17 women, mean age at diagnosis 58.3 ± 12.1 years) have been analyzed on the
endoscopic �bered set-up and ten of these 38 samples (26%) have also been analyzed on the nonlinear
microscopic set-up. This cohort was divided into two parts: intra-axial tumor part, subdivided in
Glioma group (n = 16) and Metastasis group (n = 14), and extra-axial tumor part, Meningioma
group (n = 8). Each part was compared to appropriate controls: healthy cortex samples (n =
11) for intra-axial tumor part, named Control Group and healthy dura mater samples (n = 5) for
extra-axial tumor part, named Meningioma Control Group.

No signi�cant di�erence in tissue alteration was noticed between the samples analyzed with the
optical endoscope only and the samples analyzed on both set-ups.

3.2.3.2 Fibered set-up results

3.2.3.2.1 Spectral measurements of endogenous �uorescence
. As shown in Fig. 3.3, glioma group auto �uorescence is almost two times lower than control
group auto�uorescence. At 405 nm excitation wavelength and at 375 nm excitation wavelength,
�uorescence intensity from glioma tissue was lower for all investigated endogenous molecules than
the control group. This di�erence was signi�cant for NADH (p = 0.018), lipopigment (p = 0.038),
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Figure 3.2 � Clinical and Histopathological Characteristics of our human samples series. *Only one
sample had a calculated proliferation rate.

and porphyrin I (p = 0.048) whereas a trend existed concerning FAD (p = 0.054), and porphyrin II
(p = 0.126) without reaching statistical signi�cance. At 375 nm excitation wavelength, �uorescence
emission from glioma tissue was also reduced for NADH (p = 0.007) and FAD (p = 0.005).

Metastasis group emitted signi�cantly less auto�uorescence than control group. At 405 nm and
at 375 nm excitation wavelengths, �uorescence intensity was signi�cantly reduced at all investigated
emission wavelengths compared to control group. With 405 excitation wavelength, �uorescence
emission of each molecules from glioma samples are lower than control: NADH (p > 0.001), FAD
(p = 0.002), lipopigment (p = 0.006), porphyrin I (p = 0.033) and porphyrin II (p = 0.029). At
375 nm excitation wavelength, �uorescence intensity was also reduced for NADH (p = 0.009) and
FAD (p = 0.012).

Glioma and Metastasis groups did not exhibit signi�cant di�erences. However, �uorescence
intensity was reduced for NADH in Metastasis group compared to Glioma group with 375 nm and
405 nm excitation wavelengths without reaching statistical signi�cance.

Meningioma group presented a 4-fold decrease in auto�uorescence compared to meningioma
control group (Fig. 3.4). At 405 nm excitation wavelength, �uorescence intensity was signi�cantly
reduced at four investigated endogenous molecules compared to meningioma control group: NADH,
FAD, porphyrin I and porphyrin II (p = 0.028, p = 0.028, p = 0.019, and p = 0.019, respectively).
At 375 nm emission wavelength, �uorescence intensity was reduced for both NADH and FAD (p =
0.019, and p = 0.028, respectively).

3.2.3.2.2 Lifetime measurements of endogenous �uorescence
. Lifetime values of glioma, metastasis, meningioma and respective control group using 375 and
405 nm excitation wavelength are resumed in �gure 3.5.

Using 405 nm excitation wavelength, �uorescence lifetime measurements were signi�cantly shorter
in glioma group than in control group for NADH (p = 0.008), FAD (p = 0.035) and lipopigment (p
= 0.035). As shown in Fig. 3.6, no signi�cant di�erence existed using 375 nm excitation wavelength.

Concerning metastasis group, the same trend as glioma group is observed as shown in Fig. 3.6.
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Figure 3.3 � Results of spectroscopic endogenous �uorescence measurements for intra-axial tumor
part. Fluorescence intensity of NADH and FAD when exciting with 405 and 375 nm for Glioma,
metastasis and control samples. Results for Lipopigment, porphyrin I and II are presented for 405
nm excitation wavelength. F F Under a bar denote statistically signi�cant di�erence (p < 0.01).

Figure 3.4 � Results of spectroscopic endogenous �uorescence measurements for extra-axial tumor
part. Fluorescence lifetime of NADH and FAD when exciting with 405 and 375 nm from meningioma
and control samples. Results for Lipopigment, porphyrin I and II are presented for 405 nm excitation
wavelength.
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Figure 3.5 � Fluorescence Lifetime measurements of our human samples series.

Fluorescence lifetime values were signi�cantly shorter in metastasis group than in control group
for NADH (p = 0.009), FAD (p = 0.026) and lipopigment (p = 0.040). No signi�cant di�erence
existed at 375 nm excitation wavelength. With 405 and 375 nm excitation wavelengths, �uorescence
lifetime values were signi�cantly reduced in meningioma group compared to meningioma control
group. Figure 3.7 present this tendency.

3.2.3.3 Results on multimodal microscopic imaging set-up

.

3.2.3.3.1 Choice of the excitation wavelength
. A speci�c spectral study was accomplished to de�ne the best excitation wavelength able to excite
endogenous �uorescence as well as second harmonic generation signal. For this purpose we made an
excitation-emission matrix, thanks to the tunable Ti:sapphire lasers (from 690 to 1040 nm). This
study reveals that 810 nm was best suited to excite endogenous �uorescence, whereas 890 nm was
the adequate wavelength to excite �uorescence as well as second harmonic generation signal and
con�rmed our previous results [216]. These two wavelengths was used as excitation wavelength for
our study.

3.2.3.3.2 Multimodal nonlinear analysis of endogenous �uorescence under nonlinear
excitation
Figure 3.8 illustrates the results of this multimodal analysis of intra and extra- axial tumor analysis.

A-Glioma group . Using two-photon excitation, at 810 nm excitation wavelength, glioma
samples showed a peak centered at 540 nm and a second peak at 660 nm. At 890 nm excitation
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Figure 3.6 � Boxplot of endogenous �uorescence lifetime measurements for intra-axial tumor
part.Lifetime variation of NADH and FAD when exciting with 405 and 375 nm from Glioma,
metastasis and control samples. Results for Lipopigment, porphyrin I and II are presented for 405
nm excitation wavelength.

wavelength, besides the two described peaks, second harmonic generation signal was visible at 445
nm. At 810 nm excitation wavelength, FLIM study found out two components with lifetimes values
of 2.40 ns and 0.40 ns, always longer than the values of control group.

B-Metastasis group . At 810 nm excitation wavelength, metastasis samples exhibited one
peak centered at 540 nm. At 890 nm excitation wavelength, the same peak centered at 540 nm was
observed as well as second harmonic generation signal was detected around 445 nm. At 810 nm
excitation wavelength, FLIM study found out two components with lifetime's values of 2.57 ns and
0.50 ns, once again the values increased compared to control group.

C-Control group . At 810 nm excitation wavelength, control samples showed a peak centered
at 520 nm. At 890 nm excitation wavelength, the same peak was observable. At 810 nm excitation
wavelength, FLIM study showed two components with lifetimes values of 2.10 ns and 0.35 ns.

D-Meningioma group . At 810 nm excitation wavelength, meningioma samples emitted
three peaks centered at 520 nm, 580 nm and 640 nm with a broad �uorescence emission. At 890 nm
excitation wavelength, a peak at 445 nm was visible corresponding to second harmonic generation
signal. At 810 nm excitation wavelength, FLIM study showed three components with lifetimes
values of 2.30 ns, 1.8 ns and 0.40 ns.

Using one photon excitation, all tumors spectra were red shifted and presented lower �uorescence
intensity than control samples. These statements were less visible with two-photon excitation.
Spectrum shape and intensity were quite di�erent for each tissue type. Extra-axial and intra-axial
tumors strongly di�erentiate with a broader spectrum in extra-axial due to a higher contribution of
porphyrins and chlorins, a di�erence is also noticeable in the three types of intra-axial tissues, glioma
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Figure 3.7 � Boxplot of Endogenous Fluorescence lifetime measurements for extra-axial tumor
part.Lifetime variation of NADH and FAD when exciting with 405 and 375 nm from tumorous and
control tissue. Results for Lipopigment, porphyrin I and II are presented for 405 nm excitation
wavelength.

appears narrower in the principal peak, explained by a very low lipopigment signal, compared to
metastasis and control tissue.

3.2.3.3.3 Comparison with gold standard histopathology
. Figure 3.8 represents illustrative cases and we observed variability in spectral acquisition from a
sample to another. Two-photon images revealed the same structures as than gold standard H&E
images. The second harmonic generation signal, in green, delimitated lobules in metastasis and
necrosis in glioma whereas it was absent from the control sample. It corresponded to the spectral
acquisition made at 890 nm excitation wavelength. Auto�uorescence signal, in red, underlined cell
cytoplasm and, for instance, showed the lobular arrangement in the meningioma sample. Image
from nonlinear set-up showing SHG signal in green corresponding to collagen �bers and two distinct
zones of red �uorescence, one pale corresponding to necrosis and the second intense corresponding
to glioma cells. Hematoxylin-Eosin staining showing necrosis and collagen �bers.

3.2.4 Discussion

We have, for the �rst time, carried out a multimodal optical analysis in a cohort of 58 fresh
human brain tumors samples compared to their appropriate control samples. We showed that: (i)
glioma, metastasis and meningioma emitted signi�cantly lower �uorescence than their controls at
405 and 375 nm excitation wavelengths; (ii) at 405 nm excitation wavelength, lifetime values of
glioma, metastasis and meningioma were shorter than their controls and at 375 nm we did not �nd
any di�erence; (iii) multimodal nonlinear analysis of human brain samples provided new insights
in the tissue architecture upon analyzing FLIM, two-photon �uorescence and second harmonic
generation signal. Altogether, those results suggest multimodal optical analysis as a promising tool
to help the intra-operative identi�cation of tumor margins.
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Our study con�rmed that �uorescence emission was signi�cantly reduced in tumor tissue as
compared to healthy tissue in accordance with previous reports [122, 124�126, 135, 137, 242, 246].
The auto�uorescence decrease we observed in tumor tissues had been ascribed to reduction of NADH
amount in tumor cells due to the Warburg e�ect, the increased metabolization, almost tenfold, of
glucose to lactate by neoplastic tissue compared with healthy tissue in aerobic condition [116, 247].
However, this point is still a matter of debate with a recent review quoting a possible increase of
NADH with mitochondrial dysfunction in tumor [248]. It might be possible that tumor necrosis (up
to 87% of glioblastoma in the present series), tumor hyperperfusion or neoangiogenesis explained,
at least in part, the observed lower emission �uorescence [158, 249]. Previous studies reported a
shift in the emission wavelength between the di�erent tissue types [122, 242]. In the present series,
we observed a redshift using one photon excitation. This trend was less evident with two-photon
excitation but the main peak was centered at 540 nm for metastasis and glioma versus 520 nm
for the control samples. Even if analysis of �uorescence intensity seems promising to discriminate
tumor in�ltration from normal zones, some drawbacks must be taken into account: spectral shape
was quite variable, blood contamination during surgery can drastically decrease the collected signal.
Distinguishing tumor borders from healthy tissue should be more di�cult than di�erentiating solid
tumor and healthy tissue. In this way, multimodal analysis seems mandatory [250].

Fluorescence lifetime is a sensitive technique for recording low-level signals with high precision
[251]. To our knowledge, our lifetime measurements are the only ones using 375 and 405 nm excita-
tion wavelengths. The absence of any previous work using the same excitation wavelengths makes
harder comparison with literature. Lifetime values that we obtained are in accordance with general
review on this topic but not with the previous work on human brain samples [131, 135�137, 252,
253]. However, the values remained in the same order of magnitude. For instance, Yong et al. used
a 337 nm excitation wavelength and found out lifetime values at 390 nm emission wavelength equal
to 1.27 ns for cerebral cortex; 2.3 ns for normal white matter; 1.4 ns for low grade glioma; 1.4 for
high grade glioma and 2.0 ns for high grade glioma with necrotic change. At 440 nm and 460 nm,
emission wavelengths closer to the studied emission wavelength in this paper, this trend was less
evident. In our multivariate analysis, 470 nm corresponding to NADH, 520 nm corresponding to
�avins and 580 nm corresponding to lipopigments had signi�cantly longer lifetime values in the
control group than tumor groups using 405 nm as excitation wavelength. This is in accordance
with a previous work by our team on rats tissues and literature [128, 231]. NADH lower lifetime in
neoplastic tissue can be explained by change in NADH bound/free ratio or changes in the distri-
bution of NADH enzyme binding sites [231, 232]. Our literature review found out some works of
multimodal nonlinear optical microspectroscopy on brain or nervous system [254, 255] but only one
multiphoton analysis of human brain samples was performed with 750 nm excitation wavelength
using the DermaInspect set-up [256]. FLIM results ranged from 1.4 ns (brain parenchyma sam-
ple) to 2.1 ns (glioblastoma sample) [256]. Correlation between gold standard histopathology was
made only on rat samples and no second harmonic generation study was performed. We worked
on a dedicated set-up for nonlinear analysis and we recorded four di�erent types of signals: second
harmonic generation, FLIM, one and two-photon �uorescence imaging. This preliminary study
con�rmed the potential of nonlinear microscopy for human brain investigation: mosaics composed
of second harmonic generation signal and �uorescence signal at 890 nm excitation wavelength are
presented in Fig. 5. Second harmonic generation signal revealed collagen �bers, present in necrosis
for example. Fluorescence showed multiple focal points, corresponding to cell cytoplasm or mito-
chondria. A pathologist made a comparison between nonlinear images and H&E slides. Matching
mosaics and H&E slides was possible in the ten cases. No macroscopic tissue alteration was found
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Figure 3.8 � Multimodal analysis of intra and extra-axial tumor analysis of glioma(A) and metasta-
sis(B) samples versus control samples (C) and meningioma control sample (D). From top to bottom:
Axial MR slice on contrast enhanced T1-weighted sequence. Spectra at 890 nm excitation wave-
length from nonlinear set-up showing a clear peak of SHG at 445 nm. Image from nonlinear set-up
showing SHG signal in green and �uorescence in red. Hematoxylin-Eosin staining Images. Scale
bars: 100 µm. Spectra analysis: X-axis: emission wavelength (nm) and Y-axis: Fluorescence in-
tensity (a.u.); Fitted by Matlab so ware: blue, purple and green line represent respectively NADH,
FAD and lipopigment �uorescence emission spectra. Red and purple dot lines for porphyrin I and
porphyrin II.
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out after two-photon excitation. Despite the limits of such macroscopic analysis, this results was
in accordance with previous results [257, 258]. Our FLIM measurements were in accordance with
a previous study performed on �xed meningioma samples [216]. Two-photon FLIM measurement
di�ered from the results of endoscopic visible set-up due to several reasons: (1) the excitation wave-
length and the focal volume (due to the di�erent setup con�guration) were not the same and by
consequence the lifetime could di�er; (2) the absorption e�ective section of the various molecules
was di�erent under two-photon excitation; (3) under two-photon excitation, we collected the global
emission spectra without any selective �lter in front of detectors as in the endoscopic set-up. Ex
vivo condition was the major limitation of this study. However, the whole process took less than
two hours ensuring the fresh condition of our samples [259] and this delay was essentially due to
the transportation of samples. Even if we presented the largest cohort of ex vivo fresh human brain
samples to date, another limit was the de�nition of our groups: gliomas vary by subtypes and grade
and metastases vary by their primary. Such subgroup analyses were not possible to maintain robust
statistical analyses. The same consideration remained true for the e�ects of oncological treatment
on �uorescence signal. Finally the control group (healthy brain tissue) used in the study could not
have same �uorescence/optical characteristics as the normal brain tissue surrounding the tumor but
this control group de�nition ensured that our control samples were healthy, without any tumoral
in�ltration. Moreover, the small number of samples analyzed on the multimodal microscopic setup
precluded any relevant statistical calculations.

These results represent the �rst step in producing optical signatures from human brain tissue
with multimodal analyses using one and two-photon excitation. This emerging database needs
to be widened. A nonlinear endomicroscope adapted to the intra-operative condition is under
development by our group. Given that the aim of this surgical tool is to distinguish in�ltrated and
healthy tissue, it seems mandatory to combine second harmonic generation signal, spectral analysis,
lifetime values and two-photon �uorescence to detect in�ltrated tissue and not only solid tumor.
Multimodal analysis may potentially help di�erentiating tumor in�ltration from healthy zones,
allowing the improvement of the quality of life and the survival of patients harboring a central
nervous system tumor. Such nonlinear endomicroscopy presents obvious advantages: (1) easy to
use in the operating room; (2) fast time acquisitions; (3) and low cost [125]. Moreover, subcellular
investigation of human brain can help current research on many topics such as age related diseases
or psychiatric diseases.
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Chapter 4

Could mono and bi-photon excitation

discriminate label-free �uorescence

emission of meningioma tumor grade

?

4.1 Context of the study

As presented in the introduction of this thesis, Meningioma is one of the most common brain
tumors. So large cohort of patients were available thanks to the collaboration with the Sainte-Anne
Hospital.

In the literature, there are few studies on this tumors. Using a 337nm excitation, Butte et al.
showed the discrimination between meningioma and healthy dura matter with a 90% level of con�-
dence [252]. In an exploratory study on ex vivo brain tumor tissue, Kantelhardt et al. looked at one
WHO grade I meningioma using a two-photon microscope. They showed high �uorescence intensity
of the cytoplasm of tumor cells and low-signal-intensity nuclei in the TPEF images, and distinctly
longer lifetimes than for tumor-adjacent brain [134, 256]. The scarcity of detailed literature on the
endogenous response of meningioma leaves place for more in-depth work.

In the previous chapter, the performed quantitative discrimination on freshly extracted tissue
using one-photon endoscopic con�guration was presented, and it was hinted that similar results
could be obtained using a two-photon excitation. Moreover, two-photon excitation allows to obtain
a multi-contrast image (TPEF-SHG), revealing structures which are very close to H&E gold stan-
dard. To grade meningioma based on the H&E images, neuropathologists use structures such as
�ber arrangement, vessels organization and cells density. These structures have been identi�ed in
TPEF-SHG of the previous chapter exploratory study. There the clinical need of grading menin-
gioma tumor would be a suited challenge to perform a �rst complete study using a two-photon
con�guration.

The questions that arise are : is it possible to detect these structures with a two-photon imaging
system, without any coloration of the tissue and then to perform a diagnosis ? Could quantitative
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discrimination be found and lead to further automated decisions ? To evaluate the potential of the
two-photon microscopy, and compare it to the previous one-photon technique, a study on grading
meningioma tumor was designed. The chosen meningioma tumor cohort contained WHO grade
I and II samples. Neuropathologist compared the TPEF-SHG images obtained to �nd standard
hallmark of grade. Quantitative spectral and FLIM measurements were then acquired to test if
discriminative indicator could be extracted.

This study does not answer yet the complete problem set in thesis, the discrimination of brain
tumors from healthy regions, but it could be seen as a starting point to evaluate the capabilities of
two-photon endomicroscopy. Answering this challenges will be the �rst step to tackle larger clinical
problem such as the discrimination of primary and secondary brain tumor.

Methods Nine formaldehyde �xed meningioma samples were used in this study, four WHO
grade I and �ve WHO grade II. The samples were analyzed using 405nm excitation wavelength
on the bi-modal set-up presented in the two previous chapters. Then they were analyzed using a
two-photon bench-top microscope using 810 and 890 nm excitation, performing �uorescence, SHG
and FLIM imaging, as well as spectral and �uorescence lifetime measurements. H&E staining were
performed on the samples, as well as a Ki-67 immunohistochemical staining to calculate the mean
Ki-67 proliferative index.

Results and discussion In this study, the question of the discrimination of meningioma
grade was tackled for the �rst time by monitoring endogenous �uorescence with multimodal optical
set-ups. The study showed: 1) that merged images of TPEF and SHG are comparable to H&E
histological standard; 2) that the spectral response with both one and two photon excitation resulted
in a higher intensity for grade II than I; 3) that �uorescence lifetime resulted in a shorter value
for grade II than grade I; and 4) that when �uorescence intensity was compared to a histological
proliferative indicator, Ki-67, a correlation was found.

Using two photon-excitation gave access to another imaging modality besides TPEF, the SHG
response. The molecules producing �uorescence were predominant in cells cytoplasm and intercon-
nective tissue, where the SHG is generated by non-centrosymmetric structures, such as �bers or
vessels walls. These secondary signals were particularly advantageous in meningioma tumor, where
�brillar collagen is dominant and where changes in its architecture are a strong marker of tumor
grade. Di�erent structures were identi�ed in the TPEF images that serve for neuropathological di-
agnosis on H&E images: whorls, psammoma and winding �bers of collagen. Moreover blood vessels
walls also resulted in SHG, and thus could be used as a diagnosis marker since vascular architecture
is strongly modi�ed through the tumor process. With this study it has been shown that the visual
grading of meningioma done on H&E stained images could also be performed directly on the TPEF-
SHG images. An H&E image requires chemical manipulation and long preparation time, several
hours to a day, while the optical image combining TPEF and SHG is acquired in a few seconds
and can be measured directly on the tissue without any manipulation. Being able to perform the
diagnosis on TPEF-SHG images will speed up considerably the process of histopathology analysis
and reduce the bias due to chemical manipulation, resulting in faster medical decision and better
care for the patient.

However the real advantage of the optical method is the possibility to use quantitative mea-
surements that will be more reliable than the human judgement. As in one-photon, two-photon
excitation was used to measure the spectral response of tissue. In both con�gurations the grade
II tissue resulted in a higher �uorescence signal than the grade I. The grade II meningioma in
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this study were de�ned as "intrinsic", tumor marked by an increased in mitotic activity, and a
denser cellularity [260]. These two characteristics of grade II are sources of a higher intensity of
�uorescence, due to a higher concentration of cells and increased metabolic activity explaining the
higher signal in grade II tumor. In histopathology, techniques have been developed to get access
to indicators o�ering quantitative results and assessing changes at a molecular scale. One direction
has been to monitor antigen in tissue using an antibody binding technique. This is called immuno-
histochemistry (IHC) and localizes speci�c proteins in cells or tissue [261]. IHC can highlight cells
proliferation, proteins of regulatory cycle, hormone receptors and growth factors, it has been used
to improve routine histological grading. In meningioma, a proliferation marker is used, the Ki 67,
a nuclear protein active during the mitotic phase and showing di�erent values for cell proliferation
in each grade of meningioma [262]. The mean Ki-67 proliferative index was calculated to grade
the tumors, and the tissue spectral intensity detected by our set-up was compared to this value.
A correlation was found. Higher were the proliferative index (translating to higher grade), higher
the spectral intensity was. These results are very encouraging. In histopathology two staining
techniques are used: �rst the H&E staining to evaluate the type of tumor and then an IHC stain-
ing to have molecular information and give a grading to the tumor. With the multimodal optical
microscope, one set-up can give the spatial and molecular information at the same time.

As with the one-photon set-up, �uorescence lifetime is also measured with the two-photon con-
�guration. In the previous study longer lifetime values were found in healthy tissue compared to
tumor, so here it was expected to �nd longer value for grade I than grade II. This was the case
at 375 and 810nm excitation wavelength, however at 405 and 890nm, this trend could be seen for
some molecules but was not always signi�cant. Still, a distinction could be done between grades by
also using the �uorescence lifetime imaging.

With this study, two-photon microscopy has shown potential to help answer a relatively simple
clinical question which is the grading of meningioma using �xed tissue. These results bring us
a step closer to the larger objective of discriminating any brain tumor from healthy tissue. The
next step took was to design a study to �nd optical criteria discriminating primary and secondary
tumor from healthy tissue, using two-photon microscope con�guration and freshly extracted tumor
samples. The results of this campaign will be the object of the next chapter.
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Meningioma is the most frequent primary central nervous
system tumor. The risk of recurrence and the prognosis
are correlated with the extent of the resection that ideally
encompasses the infiltrated dura mater and, if required,
the infiltrated bone. No device can deliver real-time in-
traoperative histopathological information on the tumor
environment to help the neurosurgeon to achieve a gross
total removal. This study assessed the abilities of non-
linear microscopy to provide relevant and real-time data
to help resection of meningiomas. Nine human meningio-
ma samples (four World Health Organization Grade I,
five Grade II) were analyzed using different optical mod-
alities: spectral analysis and imaging, lifetime measure-
ments, fluorescence lifetime imaging microscopy, fluores-
cence emitted under one- and two-photon excitation and
the second-harmonic generation signal imaging using a
multimodal setup. Nonlinear microscopy produced images
close to histopathology as a gold standard. The second-har-
monic generation signal delineated the collagen back-
ground and two-photon fluorescence underlined cell cyto-
plasm. The matching between fluorescence images and
Hematoxylin and Eosin staining was possible in all cases.
Grade I meningioma emitted less autofluorescence than
Grade II meningioma and Grade II meningioma exhibited

a distinct lifetime value. Autofluorescence was correlated
with the proliferation rates and seemed to explain the ob-
served differences between Grade I and II meningiomas.
This preliminary multimodal study focused on human me-
ningioma samples confirms the potential of tissue auto-
fluorescence analysis and nonlinear microscopy in helping
intraoperatively neurosurgeons to reach the actual bound-
aries of the tumor infiltration.

Correspondence between H&E staining (top pictures)
and the two-photon fluorescence imaging (bottom pic-
tures).
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4.2.1 Introduction

Meningioma represents the most frequent primary central nervous system tumor [263]. Menin-
gioma arises from arachnoid cells and their progressive enlargement compresses adjacent structures,
leading to clinical revelation through epileptic seizures, neurological de�cits, or increased intracra-
nial pressure [264]. These tumors are histologically classi�ed into three grades, from Grade I to
Grade III, according to the World Health Organization (WHO) classi�cation. Most meningiomas
are classi�ed as Grade I tumors and up to 10% exhibit a more aggressive pattern, leading to their
classi�cation as atypical (Grade II) or anaplastic/malignant (Grade III) meningiomas [264]. These
latter have a greater risk of recurrence with increased mortality: The �ve-year survival rates are
78% and 44% respectively for Grade II and Grade III mengingiomas [21].

The gold standard for therapeutic management of meningiomas is gross total surgical resection
en-compassing, whenever possible, the dural insertion, the perilesionnal dura mater and the over-
lying bone if in�ltrated. The postoperative management consisted of radiotherapy, if required, for
grade II and Grade III cases [265]. The extent of the dural resection, measured by the Simpson
grading system, is correlated with the risk of recurrence [266, 267]. However, repeated surgeries
and extensive resections are associated with operative risks and quality of life impairment [268].
To improve the bene�t-to-risk ratio, neurosurgeons used intra-operative tools such as ultrasonogra-
phy, neuro-navigation, macroscopic induced �uorescence using 5-aminolevulinic acid or indocyanine
green, radioisotope, intraoperative magnetic resonance imaging (MRI) or intraoperative computed
tomography [269�275]. None of these devices can currently deliver su�cient information on the
histopathological nature of the perilesional dura mater. An intra-operative tool, able to provide
real-time multiple data on dural in�ltration, extrinsic brain invasion, or histopathological grade
during surgery could help the neurosurgeon to achieve gross total removal of a meningioma.

Progresses in optical technologies make it possible and optical devices are currently being ex-
plored in the �eld of surgical neuro-oncology [137, 170, 174, 244] 18 . Their micrometric resolution
o�ers a new type of medical imaging and allows for quickly obtaining details on the tumor envi-
ronment and architecture with fast time acquisition. However, they are frequently associated with
the use of external markers, such as 5-aminolevulinic acid or indocyanine green, and their devices
are a wide-�eld or a laser scanning confocal microscopy system [270, 276]. Nonlinear microscopy
presents several advantages: visualization of deeper structures, reduced phototoxicity due to bet-
ter localization of the excitation and additional imaging modalities [170]. However, multiphoton
endomicroscopy is still under development [196, 197]. On the other hand, the analysis of tissue
�uorescence emitted by endogenous brain �uorophores, namely auto�uorescence, seems to be a
promising way to avoid any bias and metabolic alteration related to external markers [137]. To our
knowledge, no series investigating human meningioma samples has combined auto�uorescence and
nonlinear multimodal microscopy.

In this exploratory analysis, we �rst assessed the ability of multimodal optical analyses (spec-
tral analysis, �uorescence lifetime imaging microscopy (FLIM), time-domain measurement, second-
harmonic generation (SHG) imaging, and �uorescence under one- and two-photon excitation) to
individualize pathological features associated with meningioma and we compared the images to
histopathology as the gold standard. Secondly, we investigated the di�erences between the optical
signatures of Grade I and Grade II meningiomas.
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4.2.2 Material and methods

4.2.2.1 Samples

Nine formalin zinc-�xed meningioma samples (4 Grade I, 5 Grade II) were included. None of the
patients had familial history of meningioma, neuro�bromatosis or previous oncological treatment,
including surgery or radiotherapy. We collected only the samples taken two months ago in the
Sainte Anne Hospital Neurosurgery Department with enough material to allow complementary
analysis if necessary. All samples had an immunohistochemical staining of Ki-67 (1 : 200, MIB-
1, Dako Denmark A/S, Glostrup, Denmark). Immunostainings were performed and evaluated
semiquantitatively (number of labeled cells per total number of tumor cells, excluding endothelial
and lymphomonocytic cells). Mean Ki-67 proliferative index was less than 1% (range: < 1%
to 4%) for Grade I meningioma and was 13% (range: 5% to 20%) for Grade II meningioma. The
institutional review board of the Sainte-Anne Hospital Center - University Paris Descartes approved
the study protocol (number SC3227).

4.2.2.2 Spectroscopic and time resolved measurements on a visible setup

The visible setup consisted of two-pulsed laser diodes from Picoquant used as laser sources.
One emitted at 405nm (LDHP-C-405B, FWHM 60 ps, Picoquant GmbH, Berlin, Germany) and
the other emitted at 375nm (LDHP-C-375B, FWHM 45 ps, Picoquant GmbH, Berlin, Germany)
with a maximum power of 1 mW. The diodes were driven by PDL-808 Sepia (PicoQuant GmbH,
Berlin, Germany). The power and the repetition frequency could be adjusted. The repetition
frequency could be set between 2.5 MHz and 40 MHz. Excitation was performed via a �rst �ber
and �uorescence was collected via a second �ber (silica/silica step index �bers of inherent spa-
tial resolution of 0.5 mm). A long-pass �lter (SR 420, Semrock, New York, USA) was used to
remove the laser excitation's contribution to �uorescent signal. A beam splitter divided and sent
the collected �uorescence into two detectors: 70% of the signal for spectroscopic analysis and 30%
for lifetime measurement. For spectroscopic measurement, the collected �uorescence was directed
toward a computer-controlled cooled spectrometer (QE 6500, Ocean Optics, Dunedin, USA) of
1.5 nm spectral resolution over a 200-1000 nm spectral range. A speci�c mechanical support was
mounted on a motorized microtranslator stage (Thorlabs, Newton, USA) for XY scanning. The
X-dimension scanning velocity was 100 µm/s and the acquisition time during X-line scanning was
3 s per �uorescence spectrum. Spectral acquisition was accomplished for several longitudinal lines
of each sample. For time-resolved measurements, the collected �uorescence was guided to a photo-
multiplier tube (PMA-182 NM, PicoQuant GmbH, Berlin, Germany). The temporal resolution of
the photomultiplier tube was 220 ps. The synchronization output signal from the diode driver and
the start signal from the photomultiplier tube were connected to their respective channels on the
data acquisition board time-correlated single-photon counting (TimeHarp 200, PicoQuant GmbH,
Berlin, Germany). A motorized �lter wheel (FW102C, Thorlabs, Newton, USA) was placed in
front of the photomultiplier tube allowing selection of the spectral emission band. With a 405 nm
excitation wavelength, we used �ve �lters (Semrock, New York, USA): 450 ± 10 nm, 520 ± 10 nm,
550 ± 30 nm, 620 ± 10 nm and 680 ± 10 nm. With a 375 nm excitation wavelength, we worked
only with the 450 ± 10 nm and 520 ± 10 nm �lters. Lifetime and spectroscopic measurements were
acquired on the same setup and 2 s were required to measure each �uorophore lifetime.
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4.2.2.3 Confocal, two-photon microscopy and �uorescence lifetime imaging on a mul-
timodal setup

A Mai Tai DeepSee Ti:sapphire laser with automated dispersion compensation (Spectra-Physics,
Santa Clara, USA) and a TCS SP8 MP confocal microscope (Leica Microsystems, Wetzlar, Ger-
many) performed confocal microscopy as well as two-photon microscopy and �uorescence lifetime
imaging of the samples. The laser cavity had over 2.4 W of average power at 800 nm and was tunable
from 690 nm to 1040 nm. The repetition rate was 80 MHz and the temporal width at the output of
the cavity was around 70 fs. The laser was controlled with the Leica software, including easy adjust-
ment of the prechirp unit. Two supersensitive Leica hybrid non-descanned (HyD NDD) detectors
recorded the faintest structures from deep-tissue sections. For two-photon imaging experiments,
�uorescence was collected after the microscope objective via a dichroic beamsplitter, transparent
to wavelengths greater than 680 nm. The collected visible spectrum was split by another dichroic
cube (FF495-Di03-25 x 36, Semrock, New York, USA) into two channels toward the HyD NDD
detectors. This con�guration minimized loss in the �uorescence collection. The presence of two
additional �lters (FF01-448/20-25 and FF01-520/35-25, Semrock, New York, USA) on the dichroic
cube set the detection band. Microscope objectives were long working distance water-immersion
Leica objectives (HCX IRAPO L 25X NA 0.95 or HC PL APO 40X NA 1.1 CORR CS2). An
electro-optical modulator adjusted the laser power at the entrance of the confocal system. This
was particularly useful to automatically compensate for energy loss due to scattering as the focus
moved inside the samples. Spectral unmixing software allowed elaboration of multicolor multi-
photon experiments. The spectral acquisition was performed using an internal hybrid detector.
Fluorescence was dispersed by a prism and a speci�c motorized split mirror selected the spectral
detected band before the hybrid detector. With this spectral detection we made di�erent images of
selected �uorescence for XY imaging plane. The system coupled the single-photon counting tech-
nology �uorescence lifetime imaging with spectral acquisition: it integrated hardware and software
(PicoQuant GmbH, Berlin, Germany) with the high-end confocal system Leica TCS SP8 MP. This
optical setup recorded four di�erent optical signals on the region of interest (ROI): 1) one and
two-photon spectral analysis, 2) two-photon �uorescence lifetime imaging measurement, 3) SHG
imaging, and 4) �uorescence imaging under one- and two-photon excitation.

4.2.2.4 Data analysis

4.2.2.4.1 Analysis of spectroscopic measurements from a visible setup

The spectral measurements were processed using a homemade Matlab program, as previously
described [128]. These spectra represented the di�erent endogenous �uorophores emissions. To de-
termine the contribution of each �uorophore (intensity, maximum wavelength emission and integral
under the curve), we adjusted data following Eq. 4.1 where Stotal(λ) was the measured spectrum,
i the �uoro-phore, Si(λ) the emission spectrum of the �uorophore i and fi a multiplicative fac-
tor of this spectra. Five �uorophores were considered: reduced Nicotinamide adenine dinucleotide
(NADH), �avins, lipopigment, porphyrin and chlorin. We did not use an appropriate excitation
wavelength to excite the �uorescence of collagen. For both excitation wavelength of 375 nm and 405
nm, the spectrum of �avins (SFlav (λ)) is adjusted by an emission spectrum taken from literature
[105], while for NADH (SNADH(λ)) we used the spectra obtained during our previous experiment
on rat under 375 nm excitation [128]. The other 3 peaks, (SLipo(λ)), (SP620(λ)) and (SP680(λ)),
are �tted by Gaussians.

91



4.2. PAPER: MULTIMODAL OPTICAL ANALYSIS OF . . .

Stotal(λ) =
∑

i = 1(fi.Si(λ)) (4.1)

4.2.2.4.2 Analysis of lifetime measurement from a visible setup

Data were adjusted by a monoexponential �t via FluoFit software (PicoQuant, GmbH, Berlin,
Germany) to recover the lifetimes from the measured �uorescence decays. The criteria for an
acceptable �t were: 1) a χ2 value less than 1.0 and 2) residuals randomly distributed around
0 within the interval +4 and -4. The instrument response function was calculated by placing the
probe on a Te�on block and on a mirror. The instrument response function of our system, measured
with 1.1 µW excitation power at 405 nm, was around 240 ps (FWHM = 120 ps).

4.2.2.4.3 Analysis of lifetime measurements from a multimodal setup

For �uorescence lifetime imaging measurements, two positions at least per sample were analyzed
using appropriate excitation wavelengths. The depth was equal to that used for spatial image
acquisition. The image size was 128 x 128 pixels, at 100 Hz and represented the average of 20
frames. The data were collected and analyzed via the software Symphotime (PicoQuant, GmbH,
Berlin, Germany). On each �uorescence lifetime image, twelve ROI were selected on the di�erent
structures and �tted by a mono- or biexponential decay to extract the �uorescence lifetime. The
criteria for an acceptable �t were: 1) a χ2 value less than 1.0 and 2) residuals randomly distributed
around 0 within the interval +4 and -4. Results were the mean of the twelve selected ROI.

4.2.2.4.4 Analysis of spectral analysis, SHG imaging, and �uorescence imaging under
one- and two-photon excitation from a multimodal setup

All the analyses were performed by the dedicated Leica software (Leica Microsystems, Wetzlar,
Germany). Spectra were obtained from spectral acquisition using the Leica software, then they
were �tted using the described methodology. Fluorescence and SHG images reconstruction were
acquired by using the dedicated Leica software as well as an open source-image-processing program
ImageJ.

4.2.3 Results

4.2.3.1 Determination of optimal excitation wavelength on a multimodal setup

The optimal excitation wavelength to work on human brain samples is not perfectly known as
endogenous �uorescence of each tissue type is the combination of di�erent �uorophores. To de�ne
the optimal excitation wavelength, we used two NDD HyD detectors, each one sensitive in a speci�c
wavelength range. Figure 4.1a and b show, respectively, the emission �uorescence intensity of one
sample collected by every detector at each excitation wavelength of the tunable laser cavity from
690 nm to 1040 nm. At a 810 nm excitation wavelength, the NADH �uorescence emission was lower
compared with a 405 nm excitation wavelength and chlorin was not excited. At a 890 nm excitation
wavelength, �uorescence emission of endogenous �uorophores was lower compared with a 810 nm
excitation wavelength, except for chlorin. At a 890 nm excitation wavelength, SHG emission related
to noncentrosymmetric molecules like collagen was visible around 440 nm. We decided, as shown in
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Figure 4.1 � (a) Average �uorescence intensity (in arbitrary unit) detected by non-descanned hybrid
detector 1 according to the excitation wavelength. (b) Average �uorescence intensity detected by
non-descanned hybrid detector 2 according to the excitation wavelength. (c) Superposition and
normalization of the emitted �uorescence by a WHO Grade I meningioma sample using di�erent
excitation wavelengths: 405 nm (black line), 810 nm (dotted line) and 890 nm (line with points).
The peak around 400 nm at 405 nm excitation wavelength was the laser re�ection. The peak around
440 nm at a 890 nm excitation wavelength was the second-harmonic generation signal.

Figure 4.1c, to use two di�erent excitation wavelengths: 1) 810 nm, the double of one wavelength of
the visible setup (405 nm) and 2) 890 nm with emission of �uorescence as well as the SHG signal.

4.2.3.2 Multimodal optical imaging on a multimodal setup

The correspondence between H&E staining and the acquisitions made on a multimodal setup is
represented in Figure 4.2 .

Di�erent images representing features of meningiomas such as collagen fascicles (Figure 4.2a, c,
e and g), whorls (Figure 4.2b and f), and blood vessels (Figure 2d and h) were quite recognizable by
neuropathologists on the corresponding two-photon �uorescence images. The histopathology slices
and �uorescence images were similar.

Figure 4.3 represents a mosaic of numerous images combining the two-photon �uorescence signal
and SHG. The size of the two-photon �uorescence signal images was enlarged to �t gold standard
histopathology. As shown in Figure 4.3, the SHG signal in green delineated whorls and collagen
�bers and two-photon emitted �uorescence in red delineated meningothelial lobules. This resolved
image is matched with the correspondent H&E slides.

4.2.3.3 Optical signature of Grade I and Grade II meningioma on both setups

4.2.3.3.1 Multimodal analysis

Figure 4.4 represents the MRI characteristics, the macroscopic appearance and �uorescence
images obtained with the multimodal setup with corresponding histopathological slices of repre-
sentative cases of Grade I and Grade II meningiomas. The protocol for matching �uorescence to
histology was previously described [244]. It appeared that the MRI and macroscopic appearance
were similar, whereas the �uorescence images were quite di�erent: the SHG signal was stronger and
cell-emitted �uorescence emitted was brighter in Grade II meningioma than in Grade I meningioma
due to more abundant collagen fascicles and cell density, as demonstrated on histopathological
slices.
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Figure 4.2 � Correspondence between H&E staining (top pictures) and the two-photon �uorescence
imaging (bottom pictures) are, respectively, presented. Bundles of collagen (Figure 2a and e),
psammoma bodies (Figure 2b and f), winding collagen �ber (Figure 2c and g) and vessels walls
(Figure 2d and h). Scale bars at 100µm for �uorescence images and Hematoxylin and Eosin staining.

These modalities were complementary. For instance, some bright �brillary formations appeared
discreetly with confocal imaging. These formations were whorls, formed by the rolling-up of some
cells �attened around a big round cell or around a small vessel with a �brous wall and were clearly
discriminated with two-photon excitation, thanks to the SHG signal of the collagen �bers. Another
example of this complementarity was the possibility to distinguish round collagen �bers from vessel
walls with FLIM.

4.2.3.3.2 Spectral emission using visible and multimodal setups

Figure 4.5 highlights representative cases of emission spectrum with 405 nm (Figure 4.5a and
b) and 890 nm (Figure 4.5c and d) excitation wavelengths and the mean spectrum for Grade I and
Grade II meningiomas at the same wavelengths. Two Ki-67 stains, one weak and the other strong,
are showed in Figure 4.7A with the correlation between �uorescence intensity and Ki-67 staining
(Figure 4.7B).

The mean spectrum of each grade was measured on three ROI for each sample (n = 27) at
the 405 nm excitation wavelength on the visible setup. As observed, we globally collected a high-
emitted �uorescence from Grade II meningioma. On average, Grade II samples were 26.6% more
�uorescent than Grade I. Using the 890 nm excitation wavelength, the �ve endogenous �uorophores
(NADH, �avins, lipopigment, porphyrins and chlorins) were observed as well as SHG. We observed
the SHG at 445 nm and the emitted auto�uorescence under two-photon excitation. On average,
Grade II samples were 84.6% more �uorescent than Grade I samples. The signal from Grade I
samples was lower than the signal from Grade II samples in all cases. Given the di�erence of Ki-67
proliferative index between our Grade I and Grade II meningioma, we investigated the relationship
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Figure 4.3 � Correspondence between the macroscopic view of a meningioma sample, the superim-
position of two-photon �uorescence and second-harmonic generation, and the histopathology as a
gold standard. Left top image shows the macroscopic view of the meningioma sample. Left bot-
tom image shows the superimposition of the two-photon �uorescence (�uorescence signal in red)
and the second-harmonic generation (signal in green). Right top image shows the macroscopic
view of the Hematoxylin and Eosin staining of the same meningioma sample. Right bottom image
shows the enlarge Hematoxylin and Eosin staining. Scale bars at 500 µm for macroscopic views
(top). Scale bars at 100 µm for microscopic views (bottom).

between the Ki-67 proliferative index and �uorescence intensity. This latter increased with the
Ki-67 proliferative index.

4.2.3.3.3 Lifetime of the di�erent excited endogenous �uorophores with visible and
multimodal setups

The �uorescence lifetime characteristics of our cohort are summarized in �gure 4.6 . On the
visible setup, at the 375 nm excitation wavelength, lifetime values of NADH and �avins of Grade I
samples were always longer than the lifetime values of Grade II samples: 5% and 10%, respectively.
At the 405 nm excitation wavelength, NADH, �avins, lipopigments; porphyrin, but not chlorin of
Grade meningioma I samples had longer lifetime values than Grade II samples. On the multimodal
setup, at the 810 nm excitation wavelength, NADH and �avins were the two excited �uorophores.
At the 890 nm excitation wavelength, the best �t was obtained with three components for Grade I
meningioma, interpreted like NADH, �avins and SHG signal. For Grade II meningioma, a fourth
component (τ2) appeared for all studied samples with a �uorescence lifetime of 1.8 ns. The lifetime
values from Grade I and Grade II meningiomas were similar.

4.2.4 Discussion

The present study described, for the �rst time, multimodal optical imaging on a series of human
meningioma samples. We showed that: 1) an excitation wavelength of 890 nm allowed two-photon
�uorescence and a SHG signal to be obtained; 2) multimodal analysis could be easily compared with
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Figure 4.4 � Illustrative case of WHO Grade I meningioma (A). From top to bottom: Axial MR
image on contrast enhanced T1-weighted sequence; macroscopic view of meningioma sample; �u-
orescence image at 405 nm excitation wavelength; two-photon �uorescence image at a 890 nm
excitation wavelength with �uorescence in red and second-harmonic generation signal in blue; �u-
orescence lifetime imaging microscopy; gold standard Hematoxylin and Eosin staining. Illustrative
case of WHO Grade II meningioma (B). From top to bottom: Axial MR image on contrast en-
hanced T1-weighted sequence; macroscopic view of meningioma sample; �uorescence image at a
405 nm excitation wavelength; two-photon �uorescence image at a 890 nm excitation wavelength
with the �uorescence signal in red and the second-harmonic generation signal in green; �uorescence
lifetime imaging microscopy of the square in F with di�erent lifetime values in the same structure;
gold standard Hematoxylin and Eosin staining. Scale bars at 100 µm for �uorescence images and
Hematoxylin and Eosin stainings. Scale bars at 500 µm for macroscopic views.
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Figure 4.5 � Representative emission spectrum of a sample (a) at a 405 nm excitation wavelength
on a visible setup and the �ts of the �ve endogenous �uorophores; (b) Mean emission �uorescence
intensity of WHO Grade I meningiomas (red line) and WHO Grade II meningiomas (black line)
at 405 nm excitation wavelength on the visible setup; (c) Representative emission spectrum of
a sample at a 890 nm excitation wavelength on the multimodal setup and the �ts of the �ve
endogenous �uorophores (the peak at 445 nm was the second-harmonic generation signal); (d)
Mean emission �uorescence intensity of WHO Grade I meningioma (continuous line) and WHO
Grade II meningioma (dotted line) at a 890 nm excitation wavelength on the multimodal setup.

Figure 4.6 � Fluorescence lifetime characteristics of our cohort under visible and IR excitation
wavelength. ROI: Region of interest.
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gold standard histopathology; 3) Grade II meningioma emitted more auto�uorescence than Grade
I meningioma; 4) the �uorescence lifetime of Grade I meningioma was longer than the �uorescence
lifetime of Grade II meningioma and Grade II meningioma exhibited a distinct lifetime value on the
visible setup; and 5) the �uorescence intensity and Ki-67 proliferative index seemed to be correlated
in meningioma.

Since the early 1990s, only sparse studies have investigated the capacity of auto�uorescence to
distinguish between pathological and healthy brain tissue [122, 125, 137, 241]. Only three references
studied brain neoplasms with visible setups. Nazeer et al. worked with two excitation wavelengths:
320 nm and 410 nm [126]. The �rst detected collagen, NADH, and �avins around 380nm, 460nm,
and 510nm, respectively. Excitation at 410 nm gave the emission values of �avins, phospholipids and
porphyrin around 500 nm, 590 nm and 630 nm to 695 nm, respectively. Collagen and phospholipid
peaks were less intense for tumor tissue than healthy tissue. Nazeer et al. concluded that collagen
and lipid levels in brain decreased as tissue became tumoral. Less porphyrin but more collagen
was present in extra-axial tumors, such as meningioma, as compared to intra-axial tumors, such
as glioblastoma. No analysis was performed based on the WHO grading system. Butte et al.
performed a two modalities analysis: spectral and lifetime analysis [252]. They had a clear peak of
�uorescence around 390 nm for Grade I meningioma whereas two peaks (390 nm and 440 nm) existed
for dura mater. Lifetime analysis revealed that the �uorescence intensity time-decay characteristics
were wavelength dependent and clearly distinct between dura mater and meningioma. Butte et al.
concluded that there were at least two distinct types of collagens and their crosslinks contributing
to �uorescence emission of dura mater and meningioma and that these �uorophores were not the
same between these two tissues. For dura mater, "P" and "M" �uorophores were cited based on
a previous chromatography study [277]. For meningioma, collagen type I and collagen type III
were responsible of the most important part of the meningioma �uorescence emission according to
Butte et al. Using spectral and time-resolved values, the sensitivity and the speci�city to diagnose
meningioma were equal to 89% and 100%, respectively, far better than spectral analysis used alone
with a sensitivity of 61% and a speci�city of 73%. Saraswathy et al. reported a statistically
signi�cant di�erence in spectral emission between meningioma (without a clear WHO Grading)
and surrounding normal tissue: meningioma exhibited less auto�uorescence than normal tissue and
the peak around 600 nm, attributed to porphyrins, was more intense that the two other detected
peaks (500 nm and 550 nm attributed to collagen and �avins) in meningioma contrary to the
normal tissue spectrum [246]. Only one previous work reported signal of a Grade I meningioma
under two-photon excitation [256]. Kantelhardt et al. showed that the cytoplasm of meningioma
cells exhibited high �uorescence intensity, contrary to the low signal from the nuclei. Lifetime
increased at higher excitation wavelengths and the tumor had longer lifetime than tumor-adjacent
brain. This study was performed with a nondedicated setup, designed for dermatologic analysis
(DermaInspect) and did not explore spectral and SHG signals.

The present work was the more complete optical analysis made on Grade I and Grade II menin-
gioma samples. Non-centrosymmetric �brillar collagen possesses a tremendous nonlinear suscep-
tibility. This is of particular interest in the �eld of neuro-oncology since, apart from the high
proportion of collagen presented in meningioma; this signal underlines vessel walls and necrotic
zones, two classical signs of aggressive behavior for brain neoplasms. In the present study, neu-
ropathologists were able to compare �uorescence images under nonlinear excitation with di�erent
histopathological key criteria. Here, Grade II meningiomas showed a signi�cant increase of aut-
o�uorescence intensity as compared to Grade I ones. This is of particular interest since there are
two types of Grade II meningiomas: 1) intrinsic ones with increased mitotic activity or three or
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Figure 4.7 � (A) From left to right: Representative case of a Grade I meningioma sample weak Ki-
67 stain- ing with the insert showing a stained cell; Representative case of a Grade II meningioma
sample strong Ki-67 staining with the insert showing numerous stained cells. (B) Relationship
between �uorescence intensity at 890 nm and Ki-67 proliferative index.
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more of the following features: increased cellularity, small cells with a high nuclear/cytoplasmic
ratio, prominent nucleoli, uninterrupted patternless or sheet-like growth and foci of 'spontaneous'
or 'geographic' necrosis [260], 2) extrinsic ones with brain invasion [260]. The Grade II menin-
giomas under study consisted exclusively of "intrinsic" Grade II. Hence, the observed di�erence in
auto�uorescence intensity was probably explained by the increased cell density with an increased
level of metabolic activity in Grade II meningiomas as compared to Grade I ones. NADH and
�avins had been widely used to evaluate oxidative metabolic state in cells and tissues [278] and
NADH was considered as the most prevalent endogenous �uorophore. The correlation between
Ki-67 staining and spectroscopic �uorescence intensity corroborated this assessment. The Ki-67
antigen is a nuclear protein present only during mitosis [262]. The lower �uorescence intensity
found with the multimodal setup compared with the visible setup could be explained by a small
two-photon absorption section of NADH at a 810 nm excitation wavelength [279]. The variation
in �uorescence intensity could be a potential criterion to di�erentiate WHO Grade I and Grade
II meningiomas with nonlinear excitation, as with the visible setup. We did not rely on the col-
lected auto�uorescence of meningioma in this study to collagen because we did not use excitation
wavelengths able to excite the collagen �uorescence [102] and this explained why we ascribed the
major part of the spectral response to NADH and FAD, two well-known endogenous �uorophores.
However, endogenous �uorescence of human tissue is always due to several �uorophores and it may
be possible that collagen crosslinks contributed to the collected signal.

The lowering of lifetime values between Grade I and Grade II meningioma on the visible setup
was in accordance with our previous work on mouse brain tumor model [128]. The healthy tissue
had longer lifetime values than tumoral tissue so it seemed logical that Grade I meningioma exhib-
ited longer lifetime values than Grade II meningioma. Our results on the multimodal setup were
close to those previously described [256] but we did not �nd the same decrease in lifetime values
between Grade I and Grade II meningiomas. During oncogenesis, a shift from cellular oxidative
phosphorylation to cellular glycolysis for ATP production occurs. This is called the Warburg e�ect
[248]. The endogenous �uorophore NADH is the principal electron acceptor in glycolysis and an
electron donor in oxidative energy metabolism. NADH has two lifetime components: 1) short when
it is in its free state and 2) long in a protein-bound state [132]. The changes in metabolism due to tu-
mor growth modi�ed the equilibrium between free and bound form of NADH and the conformation
of protein-bound NADH [118]. Considering that Grade II meningiomas are more aggressive than
Grade I ones and that the distinct lifetime value found in Grade II meningiomas (1.8ns) was closer
to free NADH, the greater amount of free NADH could explain this distinct �uorescence lifetime
value presented only in Grade II meningiomas. Another explanation of this distinct �uorescence
lifetime value could be the presence of elastin in Grade II meningioma due to the numerous vessels
present in these tumors.

These results have to be con�rmed in vivo, if possible during neurosurgical procedures, formalin
�xation altering tissues �uorescence. An easier �rst step could be the study of meningioma cells
implanted in an alive rat brain, having an optical window and the tracking of the optical answer
evolution over several weeks. Despite the limits of the present study, multimodal optical imaging
could overcome the current limits of actual optical technics and could provide clinically useful
intra-operative information.
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Chapter 5

Could two-photon imaging match the

performance of H&E standard in

discriminating primary and

secondary brain tumor ? Could

multimodal quantitative detection

improve brain tumor diagnosis ?

5.1 Context of the study

In the two previous chapters, it has been proved that the combination of TPEF-SHG imaging
shows a high resolution and the capability to highlight typical tissue structures comparable to those
seen in H&E stain. In the literature two-photon microscopy has already been used on other types
of tumor to �nd cellular and tissular architecture comparable to the histological standard. Di�erent
studies went further than just highlighting similar structures and performed pathological analysis
directly on the TPEF images, evaluating the accuracy of such method compared to the results of
the H&E standard.

A �rst team used only the �uorescence response imaging to match H&E diagnosis with unstained
images.
Hong et al. studied gallblader cancer [280]. They identi�ed high �uorescence signal in cytoplasm and
a lack of signal in nuclei which gave enough contrast to identify cells morphology and organization.
The mucosa, muscularis and serosa were also distinguished using TPEF. The modi�cation in shape
and organization of these structures could be tracked as in H&E images to evaluate cancer presence
and stage. A pathological diagnosis based on TPEF images, and blind to histology results, was
performed and resulted in 96.4% precision [280].

Other teams used the combined TPEF-SHG images to have the closest correlation to H&E-
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stained images.
Wu et al. looked at breast masses [281]. Breast tissue presented a lot of �brous structures resulting
in high SHG signal, where changes could be tracked as in H&E slices. They asked a pathologist
to analyze TPEF-SHG images, blind to H&E diagnosis. The sensitivity, speci�city and accuracy
of these diagnoses were evaluated at 88.89%, 83.33%, 87.50%, respectively. The false negative rate
was 11.11%.
Yan et al. studied liver cancer [282]. They identi�ed cells architecture, hepatocyte cords, blood-
�lled sinusoids, glandular and tubular structure of vascular septa in the TPEF image and collagen
architecture in the SHG channel. Based on these observations they performed a blind analysis on
the TPEF-SHG images and classi�ed them between two states: cancerous or benign, obtaining a
96.32% sensitivity, 96.43% speci�city, and 96.34% accuracy.

The standard in histology and the previous described methods were all based on human judge-
ment to perform diagnosis. Some teams used another approach to diagnose tumor using two-photon
microscopy to avoid this limitation. They used all the possibilities of optical detection and devel-
oped a quantitative method to have an automated diagnosis.
Yan et al. used the TPEF signal to measure [282], in each image, the redox ratio between the
NADH and FAD component, using NADH/FAD formula. They found a higher ratio in cancerous
cells, with a p<0.001.

Other teams used SHG signal to extract quantitative information and build scoring system to
evaluate tissue nature. Strupler et al. looked at the SHG organization in renal tissue and build a
three-parameters scores to discriminate tissues [283]. Xu et al. evaluated neck margin in pancreatic
cancer measuring the pixel density of collagen between in SHG images [284]. Xu et al. identi�ed
intramural metastasis in esophageal carcinoma using the quanti�cation of �ber 3D-orientation and
directional variance [285].

In the two previous chapter of this thesis it was shown that a bi-modal detection of the spectral
response and �uorescence lifetime could discriminate tissues. Moreover structures in brain tissue
such as neurons, extracellular matrix arrangement, necrosis, blood vessels or dense regions of tumor
cells could be identi�ed in the TPEF-SHG images. o get the most of a two-photon analysis of
brain tissue, the two approaches of the literature were considered in the design of this study. A
qualitative and quantitative analysis of the biopsy samples would be performed to �nd a scoring
system that could discriminate di�erent tumor types. Here a larger clinical question, than the
grading of one tumor type in the previous chapter, was chosen : the discrimination of primary and
secondary brain tumor compared to control cortex tissue. TPEF-SHG modality was �rstly used
to characterize typical structures and perform a blind reading and diagnosis. Then quantitative
measurements were analyzed computing di�erent powerful indicators of molecular states in the
tissues. The spectral intensity of NADH and FAD were used to monitor metabolic activity, the
SHG intensity was used to quantify the �ber organization and density and the average �uorescence
lifetime to translate the molecular distribution. The combination of these quantitative answers was
tried as a scoring system of tissue nature.

Methods A protocol for samples to arrive fresh few hours after excision at the IMNC lab-
oratory was designed in collaboration with the Sainte-Anne Hospital. The cohort for this study
contained 25 patients, 7 control biopsies issued from cortex, 10 metastasis and 8 glioblastoma.
A dedicated transporter was chosen (360◦) to bring the samples from Paris to Orsay (Essonne,
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France). Once in the lab, a multiphoton bench-top microscope was used with a Ti-sapphire pulse
laser, as an excitation source, to perform a multi-modal analysis on the biopsy samples. TPEF
and SHG images were acquired, spectral emission-excitation matrix were analyzed over the 690 to
1040 nm excitation range and �uorescence lifetime images were acquired under 890 nm excitation
wavelength.

Results and discussion The two-photon imaging results on brain tissue highlighted neuronal
cells as a hypo-intense structure in TPEF images, vessel walls as an intense signal in the SHG
channel, and disorganized stroma and dense blood vessels of metastasis as an SHG signal. Cellular
disorganization with vascular proliferation of GBM was observed with combined intense signal in
TPEF and SHG images. Based on all these observations, a neuropathologist was asked to perform
a diagnosis on TPEF-SHG images while blind to the H&E diagnosis. Pathologists answered two
questions on the TPEF-SHG images : Were tissues tumoral or healthy ? If tumoral, was it a primary
or secondary tumor ? For the healthy vs. tumoral discrimination, they could achieve a sensitivity
of 76%, a speci�city of 50% and an accuracy of 72%. The lack of sensitivity was due to 27% of
false negative, that were tissues in which the pathologist couldn't decide on any diagnosis. And the
lack of speci�city is due to 28% of false positive that were healthy tissues diagnosed as glioblastoma
tumor. The rate of false negative could be reduced with a longer training of neuropathologist on
recognizing important structures in TPEF-SHG images. In the literature the study with the best
results, an accuracy higher than 95% [282], had trained the neuropathologist on 60 samples before
performing the blind analysis. Training in this study used only 25 samples. The discrimination
between primary or secondary tumor types resulted in sensitivity of 89%, a speci�city of 71% and
a accuracy of 81%. An already very promising results on a small cohort.

Another direction improving the performance of the direct diagnosis on TPEF-SHG images and
avoiding the issue of training neuropathologists, is to use algorithms to create virtual H&E images
from the �uorescence images [286, 287]. Two studies can be referred: Rivenson et al. used wide-
�eld microscopy images and transformed them into virtual H&E, and Jones or Masson's trichome
stains with a deep-learning algorithm [286]; Bocklitz et al. them, transformed CARS/TPEF/SHG
multimodal images into pseudo-H&E images using multivariate statistics [287]. In the �rst study
[286], once a tissue type is trained in the algorithm, for any new images the computing time is on
the order of 0.6 s. Comparison of results with traditional H&E stains resulted in a di�erence lower
than 5%. They used the pseudo-H&E to show to the medical community that optical images can
recoup the same amount of detail as in the standard stains in histology. With these results it was
shown that without any staining, two-photon imaging can quickly produce images providing the
same details as H&E standards for a precise diagnosis. A direction that could be investigated in the
future to improve the accuracy of the diagnosis based on TPEF-SHG images found in this chapter.

However to have a robust and reproducible diagnosis, there is a need for quanti�cation and au-
tomation of the process. The two-photon set-up used in this chapter gave access to two quantitative
techniques : spectral measurements and �uorescence lifetime imaging. The �rst quantitative mea-
surement was to evaluate cerebral energetic metabolism, using the ratio of the spectral intensity of
NADH and FAD, an indicator already studied by our team on rat brain tissue [128]. In this study,
a higher ratio was observed in tumoral tissue compared to control samples. A second indicator
extracted from the spectral response, was the SHG intensity, to indicate tissue organization. The
highest was detected in metastasis, and GBM tended to be slightly higher than control, however
this di�erence was not signi�cant in all GBM. These two quantitative measurements did not give
signi�cant discrimination in all tissue types and could not be used alone as a diagnosis tool.
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Another modality, �uorescence lifetime, was explored in this study to try to �nd a reliable
quantitative optical response. In this article average lifetime obtained from bi-exponential �t was
monitored in all tissue types. Longer values were found in tumoral tissue compared to control
(p<0.001). Moreover GBM and metastasis had distinguishable values (p<0.001). This modality
which depends only on conformational change, environmental factors (pH, temperature,viscosity)
and ionization was more robust in the exploration of brain tissue. In the literature few groups have
looked at brain tumor spectral and �uorescence lifetime measurements. Butte et al. performed a
study on meningioma healthy dura matter and cortex using these two contrasts [252]. Using the
spectral intensity they discriminated tissue with a sensitivity of 61% and a speci�city of 73% [252].
Looking at the �uorescence lifetime they discriminate tumor tissue with a sensitivity of 84% and a
speci�city of 100% [252]. They also found that �uorescence lifetime is more suited to brain tumor
tissue than spectroscopy alone. They developed an algorithm combining the spectral response and
the �uorescence lifetime and found a discrimination for tumor tissue of 90% sensitivity and 100%
speci�city.

The conclusion of these results is that taking advantage of multimodal detection results in a
reliable discrimination algorithm. To best exploit the data on this study a similar strategy was
applied, adding SHG emission as a third modality in addition to spectral response and �uorescence
lifetime. Three quantitative indicators were extracted : metabolic (redox ratio), structural (SHG
intensity) and conformational (lifetime measurements), to build a 3D scoring system. In this 3D-
plot each tissue type occupied a speci�c region of the space, which highlighted the possibility of
automated discrimination using analysis of endogenous �uorescence.

In this chapter the possibility of discriminating primary and secondary tumor was demonstrated.
However it was also learned how sensitive statistical analysis could be and how there was a large
variability from one type of tissue to another. These observations lead to the realization of needing
to go further in data analysis and to �nd other molecules that could help to con�rm the diagnosis.
To achieve more data for analysis why not look at a larger range of excitation, from the deep-UV
to the NIR ? And try new analysis methods such as spectral clustering on the phasor approach ?
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5.2 Paper : Real-time Brain Tumor imaging with endogenous

�uorophores: a diagnosis proof-of-concept study on fresh

human samples
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5.2.1 Introduction

Surgical resection aims to maximize tumor removal while minimizing morbidity for both pri-
mary and metastatic brain tumors [288, 289]. Such an approach requires the identi�cation of the
surgical margins that can be de�ned by the limits of normal tissue and/or the extent of tumor
in�ltration. For normal tissue, particularly eloquent areas, that represent the corticosubcortical
functional pathways, need to be preserved. Even if eloquent cortico-subcortical pathways can be
identi�ed intraoperatively using brain mapping with direct electrical stimulations under awake con-
dition [290, 291], the identi�cation of tumor boundaries remains challenging. Nowadays, tumor
margins are identi�ed based on the neurosurgeon's experience and with the aid of operating micro-
scopes, MRI-based and/or ultrasonography-based neuronavigation, and intraoperative MRI [74].
Unfortunately, none of these techniques have su�cient spatial resolution to identify tumor in�ltra-
tion at the cellular level and to discriminate in�ltrating tumor from surgically-induced brain tissue
alterations (i.e. contusion, ischemia or edema) [82, 237]. The assessment of tumor borders at the
cellular scale can be performed using pathological intraoperative examination, however this tech-
nique is not adapted for use during surgery due to time and sampling technique constraints. The
inspection of endogenous brain �uorophores, such as reduced Nicotinamide Adenine Dinucleotide
(NADH), Flavin Adenine Dinucleotide (FAD), lipopigments, and porphyrins I and II, all of which
considered as biomarkers of cell energy metabolism [102, 218], is a promising key to perform optical
imaging at the cellular scale. Interestingly, by examining tissue auto�uorescence, one is avoiding
prejudice that results from the use of external markers, such as 5-Aminolevulinic Acid (5-ALA)
that enhances protoporphyrin IX (PpIX) �uorescence. In addition, although such markers induce
�uorescence, they do so through molecular links or processes that are not natural and could there-
fore result in artifact in the �uorescence response. Evaluating intrinsic optical signals using two
photon microscopy (TPM) gives access to two imaging contrasts; �uorescence and second harmonic
generation, which both act as complementary modalities giving high resolved spatial information.
This has motivated its use in real-time optical biopsy in di�erent cancer types, such as breast
tumor masses [281], liver cancer[282] or even pancreatic cancer[284]. Moreover, the ability to com-
bine this technique to quantitative measurements such as spectroscopy and �uorescence lifetime,
results in reliable and reproducible discrimination in clinical settings based on an endogenous con-
trast. Compared to other endomicroscopy techniques, such as confocal laser endoscope . TPM
provides multiple advantages [177] such as 1) intrinsic sectioning up to 1 mm; 2) no out-of-focus
photobleaching and photodamage; 3) localized phototoxicity and photobleaching; 4) deeper pen-
etration into biological tissue compared with confocal microscopy (up to 1mm) [292], and 5) no
spectral overlapping between excitation and emission signals. To top it up, four di�erent optical
contrast mechanisms which are: 1) spectral analysis; 2) two photon Fluorescence Lifetime Imaging
Microscopy (FLIM); 3) Second Harmonic Generation (SHG) imaging [293], and 4) Two Photon
Excitation Fluorescence (TPEF), can be extracted with the use of TPM to provide complementary
information for improved tissue characterization. The aim of the present study was to evaluate the
ability of TPM in di�erentiating tumorous brain tissue from normal tissue in order to support the
development of an intraoperative two-photon endomicroscope, that will be able to give a real-time
answer to the surgeon. We investigated TPM auto�uorescence signal analysis from the visible to
the infrared domains, exploring all known endogenous molecules coming from freshly extracted
brain tissue, including normal (control) tissue, glioblastoma (GBM), and brain metastasis collected
from adult patients. In this study, we evaluated: 1) the capacity of TPM in distinguishing between
tumorous and normal tissue; 2) the correlation between the optical signatures extracted from TPM
and the histopathological diagnosis derived from the gold standard, whereby we can evaluate the
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Metastasis (n=10) Origin Number
Thyroid carcinoma 1

Larynx and esophagus carcinoma 1
Bronchial adenocarcinoma 2
Mammary adenocarcinoma 1

colon carcinoma 2
Heel melanoma 1

Otorinolaringologia carcinoma 1

Table 5.1 � Origin of the metastasis tissues used in this study

clinical relevance of TPM as a more robust intraoperative diagnosis modality, and 3) the predictive
power of TPM imaging features in di�erentiating malignant gliomas from normal tissue as well as
from brain metastasis.

5.2.2 Materiel and methods

5.2.2.1 Samples

This prospective longitudinal study was conducted at a tertiary referral neurosurgical center for
brain tumor patients, between March 2015 and May 2017. The human research institutional review
board of the Sainte-Anne Hospital � University Paris Descartes (CPP Ile de France 3, S.C.3227)
approved the study protocol. All methods were carried out in accordance with relevant guidelines
and regulations. An informed written consent was obtained from all patients prior to enrollment.
Twenty-�ve individuals (25 patients, 13 males, 12 females; mean, 51.2±15.2 year-old; range, 19-69
year-old) were included Fresh human tumor brain tissue specimens (n=18 from 18 individuals)were
obtained from the planned surgical margin surrounding the tumor core (10 metastasis samples,
originating from thyroid, larynx, oesophagus, colon and otorinolaringologia carcinoma, bronchial
and mammary adenocarcinoma and heel melanoma, summed up in Table 5.1; and 8 glioblastoma
samples, GBM). The gross location of each specimen was recorded intraoperatively with MRI-
based neuronavigation (BrainLAB, AG, Feldkirchen, Germany). Control brain tissue specimens (7
patients with no history of brain cancer) were obtained during surgical removal of drug-resistant
mesial temporal lobe epilepsy.

Fresh samples in excess to what was needed for routine histopathological diagnosis were ob-
tained directly from the operating room. Half of each fresh sample under study was sent to
histopathology (solution of serum Physio, ambient temperature, black box), where it was formalin-
�xed (4% paraformaldehyde), para�n-embedded, stained with H&E for histopathological analysis,
and digitized using Digital Slide Scanner NanoZoomer 2.0 (Hamamatsu Photonics K.K, Hama-
matsu, Japan). The other half was carried to the PIMPA platform under similar conditions (so-
lution of serum Physio, ambient temperature, black box) and imaged with TPEF, SHG, FLIM
and spectral imaging without tissue �xation. No specimen was excluded from TPM or histopatho-
logical analysis. Samples were 1.25±0.45 cm (range, 0.5-2.0) in size and 3.36±1.05mm (range,
2-5) thick. TPEF, SHG, FLIM and spectral imaging were recorded sequentially without tissue
processing within a mean time interval of 1±0.2 s (range, 0.8-1.2s).
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5.2.2.2 Correlation between TPM and histopathology

We initially collected 25 paired TPM and H&E images from 25 samples (10 metastasis, 8 glioblas-
tomas, 7 controls). A senior neuropathologist performed an initial histopathological analysis, while
blind to the TPM results. No specimen was excluded due to lack of histopathological representativ-
ity. To control for intra-observer bias, we presented a Web-based survey of TPM images (png �le
of the superimposed image of TPM and SHG response) to two senior neuropathologists six months
after the initial H&E based diagnosis pertaining to 25 randomly selected patients (control, n=7,
GBM, n=8, metastasis, n=10). They were asked to classify the sampled tissue in four categories:
1) GBM; 2) metastasis; 3) healthy tissue; or 4) unclassi�ed. The neuropathologist had access to
clinical data typically available along with the TPM images. This includes patients' age, gender,
clinical presentation, tumor location, and the pre-operative MR images. The neuropathological
blind analysis of TPM images and its corresponding ability to discriminate between control, GBM,
and metastasis tissues was evaluated using the classi�cation properties de�ned as the sensitity,
speci�cty and the accuracy of a diagnostic test, respectively following Eq. 5.1 , Eq. 5.2 and Eq.
5.3.

Se =
TP

TP + FN
(5.1)

Sp =
TN

TN + FP
(5.2)

Acc =
TN + TP

TN + FN + TP + FP
(5.3)

TP = True Positive, FP= False Positive, TN= True Negative and FN= False Negative. Their
signi�cation depended on:

� Discriminating tumor tissues (GBM, metastasis) from control tissues: TP=tumoral tissue
classi�ed as tumoral, FP=control tissue classi�ed as tumoral, TN=control tissue classi�ed
as healthy and FN=tumoral tissue classi�ed as healthy.

� Discriminating GBM tissues from metastasis tissues: TP=metastasis classi�ed as metas-
tasis, FP=GBM tissue classi�ed as metastasis, TN=GBM tissue classi�ed as GBM and
FN=metastasis classi�ed as GBM.

5.2.2.3 Fluorescence and SHG image acquisition

This study was conducted on the multimodal two-photon microscope at the PIMPA (multi-
photonic imaging platform for small animals) platform of the IMNC laboratory, Orsay, France. A
Mai Tai DeepSee Ti:Sapphire laser source with automated dispersion compensation was used for
two-photon excitation. The source's average power was 2.4 W at 800 nm excitation and was tun-
able from 690 nm to 1040 nm. The repetition rate of the laser source was 80 MHz and the output
pulse duration was set to 70 fs. The laser was combined to a confocal and multiphoton microscope,
the TCS SP8 MP (Leica Microsystems, Germany) and was controlled through the Leica software,
Symphotime x64. Di�erent visible excitation diodes were also included in the setup, including
the 405 nm excitation wavelength. Two super sensitive non-descanned hybrid detectors (Leica,
Germany) were used to collect the two-photon �uorescence signal. The collected signal passed
through a transparent dichroic �lter ( 680 nm.) to laser re�ection, then through a second dichroic
�lter (FF495-Di03-25x36) to direct the light towards the two hybrid detectors. An additional �lter

108



CHAPTER 5. COULD TWO-PHOTON IMAGING . . .

(Semrock, FF01-448/20-25, FF01-520/35-25) was placed in front of the detector to de�ne speci�c
spectral bands. Two di�erent water-immersion Leica objectives were used (HCX IRAPO L 20X
NA 0.95 and HC PL APO 40X NA 1.1 CORR CS2). Images were 512 by 512 pixels in size. The
speed scan was 400 Hz and the pixel size was 866.65 nm by 866.65 nm (no zoom factor). The pixel
dwell time was 1.20µm and the frame rate was 0.52 frames per second. Large regions of interests
were selected with Leica's acquisition software for image and spectral

5.2.2.4 Spectral imaging and analysis

The spectrally-resolved �uorescence intensities were detected by a hybrid detector (HyD, Leica,
Germany) placed in the confocal head of the microscope piloting the grating and mirror in front
of the detector. The spectral resolution was 10 nm, covering the range from 380 nm to 780 nm.
A spectral mosaic was acquired on a 3x3 image area i.e. a spectral measurement was made for
each image of the mosaic then the software merged the information to give its mean �uorescence
spectrum. The spectral excitation-emission matrix was acquired by varying the excitation wave-
length and detecting the �uorescence across the whole emission band. The power at the output
of the microscope objective was measured using a power meter (Nova II, Ophir, USA) so that
the �uorescence spectra were adjusted according to the corresponding excitation power. The ac-
quired spectra were treated with Matlab scripts developed at the IMNC laboratory [128], , where
the �uorescence and SHG signal of �ve endogenous molecules were spectrally decomposed (NADH,
FAD, lipopigments, porphyrins I and II). Five ROIs, each corresponding to 200µm in diameter were
chosen for spectral analysis. The SHG, NADH and FAD peak intensities were extracted at 890nm
excitation wavelength to calculate two quantitative markers, the SHG peak intensity and the redox
ratio (ROx) [217] . The ROx is de�ned in Eq. 5.4 as:

ROx =
NADH

FAD
(5.4)

5.2.2.5 FLIM acquisition

The microscope integrated a FLIM module from PicoQuant (GmbH, Berlin, Germany), in order
to acquire �uorescence lifetime imaging. Each ROI (512x512 pixels) was also imaged in FLIM mode
at a repetition rate of 100 Hz, where the �nal image was the result of averaging twenty single frames.
For each pixel, the �uorescence decay pro�les were �t to a mono- or bi-exponential function using
the Symphotime software (Symphotime x64 bit, PicoQuant, GmbH, Berlin, Germany) to recover
the lifetime values. Ten to �fteen ROIs were selected from di�erent structures observed in the FLIM
image. The goodness of �t was assessed by calculating χ2-value as de�ned in Eq. 5.5:

χ2 =
∑
i

(xi − µi)
2

σ2
i

(5.5)

µi: mean, σ2: variance

The criterion for an acceptable �t was having χ2-values of around 1.0 (χ2 range 0.8 to 1.6).
Additionally, the residuals had to be randomly distributed around zero within the intervals 4 and
-4. The average lifetime ( τavg) for each ROI was measured using Eq. 5.6.
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τavg =

∑
i aiτi∑
i ai

(5.6)

5.2.2.6 Scoring system

Three quantitative indicators were used: (1) Redox ratio: NADH/FAD, (2) �tted SHG intensity
and, (3) the average lifetime, all under an 890nm excitation wavelength. The three measurements
were performed on the same region of interest that could be projected in a 3D space with these
values as coordinates. The scatter cloud of a group was �tted by a Gaussian ellipsoid using the
mean and the standard deviation as parameters for the covariance so that the ellipse can cover 95%
of the total probability mass. The percentage of overlap between the ellipses for each group was
then calculated to assess of the performance of such algorithm.

5.2.2.7 Statistical analysis

Statistical analyses of the SHG and �uorescence intensities, along with the spectral widths were
performed in Matlab (R 2013a), using an ANOVA test for the three tissue groups. This was followed
by applying the Bonferroni method to determine which mean values are signi�cantly di�erent within
a 95% con�dence interval. The statistical values found in Figure 7 (B, C, D) were computed using
the software R (x64 3.2.0), where the computed p-values < 0.05 were considered to be statistically
signi�cant.

5.2.3 Results

The routines of the TPM procedure match the requirements for clinical use of freshly resected
brain tissue. Specimens from twenty-�ve patients, comprising 10 metastasis, 8 GBM, and 7 epileptic
patients with no history of brain tumors, were included in the cohort. Fresh samples were either
sent to histopathology and/or to the multimodal imaging platform (PIMPA), providing similar
imaging conditions for TPEF, SHG, FLIM and spectral imaging. In the histopathology circuit,
the samples followed a �rst protocol of �xation, para�n embodiment and hematoxylin and eosin
(H&E) coloration that lasts several hours, then the stained samples were imaged and analyzed by
neuropathologists. In the multimodal imaging platform circuit, the samples were directly placed
(without any preparation or chemical modi�cation) under the multiphoton microscope, from which a
multimodal imaging protocol (TPEF/SHG, spectral, FLIM) was performed within several seconds,
after which the results were analyzed. Being a crucial point to take into account, the time required
to obtain imaging data from brain samples was compared in each of the above circuits. The standard
histological H&E staining method, that results in the most precise diagnostic and that yields the
nature and the grading of the tumor, required 450±30 min. Surgeons can also use a faster method
during surgery, with the help of a neuropathologist, based on frozen sections that can be evaluated
in 20 min in parallel to the operation and yield some information on the lesioned nature of tissue.
However, both these techniques were more time consuming than the required time of 0.01±0.005
min for the optical analysis method by TPM, which included data from TPEF, SHG, FLIM and
spectral imaging (p<0,001), with a real-time discriminating algorithm. Additionally, TPM has a
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Figure 5.1 � Comparative H&E (a,b,c) and TPM images (d,e,f) . (a,d) Control sample, stars:
neurons, arrow: brain vessels in the SHG, scale bar 100 microns, (b,e) Brain carcinoma metastasis:
scale bar 100 microns, stars: tumor cells, arrow : dense vascularization forming a dense network
around the tumor cells, (c,f) GBM sample scale bar 40microns: stars : proliferative endothelial
cells, arrow : zoom on a proliferating vessel.

major advantage over both histological techniques, the analysis is performed in vivo on unlabeled
tissue.

TPM images match standard histopathology with H&E staining The work then comprised a
thorough comparison between the TPM based images and the H&E-stained images. The PIMPA
platform provides simultaneously two di�erent images obtained by the two external hybrid de-
tectors: a TPEF image at the maximum �uorescence peak (�lter 520±20nm) to capture tissue
characteristics; and a SHG image (�lter 448±20nm) to detect non centrosymmetric structures such
as collagen �bers and vessels walls. The TPEF and SHG images were merged using ImageJ to
obtain a superimposed image showing the complete morphological structures of the tissue. For
each sample, a senior neuropathologist was asked to identify normal or tumorous cellular com-
ponents (neuron oligodendrocyte, astrocyte; endothelial cell, carcinoma cell) and/or a particular
morphological aspect (necrosis, neo-angiogenesis and microvascular proliferation, calci�cation) on
H&E-stained images that served as a reference, and was then asked to localize these patterns in
the merged TPEF and SHG images. In all samples (n=25), the senior neuropathologist was able to
identify in TPEF and SHG images the features that were �rst identi�ed on H&E-stained images.
Examples are shown in Figure 5.1.

In control non tumoral brain samples, cellular nuclei appeared as hypointense structures in a
homogeneous matrix-dominated background. Neuronal cells were easily discernable in both H&E
stained images as well as merged TPEF-SHG images (black and white stars in �gure 5.1 A-B).
In brain metastasis, typical cytoarchitecture hallmarks such as hypercellularity and disorganized
stroma with numerous blood vessels generated a particular SHG signal (black and white arrows
in �gure 5.1 C-D). In GBM samples, a highly cellular disorganized tumoral cell architecture was
observed with microvascular proliferation. In general, the SHG signal highlights collagen structure
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Figure 5.2 � "Blind" histological analysis on TPM images. (a) Flowchart summarizing the results of
the pathologists' diagnosis based on TPM images, sensitivity (Se,Sew), speci�city (Sp) and accuracy
(Acc,Accw) of this method were calculated with the unknown classi�cation (Non-diagnosed, n=5)
either excluded (Se, Acc) or taken into account as False Negative (Sew, Accw). (b) Results of
the pathologists' diagnosis of tumoral tissue, discriminating GBM from Brain metastasis. The
sensitivity (Se), speci�city (Sp) and accuracy (Acc) were also calculated.

and metastasis samples had the densest collagen network. The control and GBM samples revealed
sparse SHG signals representative of vessel walls.

5.2.3.1 "Blind" analysis of TPM images

We next assessed the clinical application of TPM imaging and its capacity to show speci�c
patterns of the di�erent brain tumors needed in clinical practice to discriminate them. Twenty-�ve
TPM images (control, n=7, GBM, n=8, metastasis, n=10) were given to neuropathologists blind
to the nature of tissue. They were asked to classify the tissue in four categories: 1) GBM; 2) Brain
metastasis; 3) Normal brain parenchyma or 4) impossible diagnosis. The neuropathologists were
asked to use TPM derived markers, as determined in the previous section (cell, cell density, collagen
�ber density and organization, angiogenesis, microvascular proliferation, and necrosis) to propose
a diagnosis. The results are summarized in 5.2. Discriminating tumorous tissue from control tissue
using TPM resulted in a sensitivity of 88% and a speci�city of 71%. The accuracy of this procedure,
which means the probability to correctly classify tissues, was 72%. Interestingly, from the results of
the neuropathologists, the ability to discriminate GBM tissues from metastasis tissues using TPM
could also be evaluated. This resulted in a sensitivity of 62% and a speci�city of 80%. The accuracy
of this procedure, was found to be 72%.

5.2.3.2 Quantitative analyses of TPM signals

To determine reliable discriminating criteria, quantitative analyses of spectral and FLIM images
were performed on each sample (n=25; n=10 metastasis, n=8 GBM and n=7 control). Di�erent
wavelengths (from 730 nm to 960 nm) were applied to the three subgroups to de�ne the optimal
excitation wavelength for collecting spectral and FLIM images as well as the SHG signals. The
variation of endogenous �uorescence was measured in order to build an excitation-emission matrix
for control, GBM, and metastasis samples. The results are presented in Figure 5.3.

The �uorescence intensity decreased by 70% as the excitation wavelength changed from 730 to
900 nm. However, secondary maximal �uorescence intensity was present at 890 nm (60% of the
maximum intensity) in a region where SHG signal peaks. Control samples and GBM samples had
a comparable decrease of 15% in the �uorescence intensity when the excitation wavelength varied
from 730nm to 760nm. Interestingly, metastasis samples had a faster rate of decrease (30%) in the
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Figure 5.3 � Analysis of emitted �uorescence for the di�erent groups. (a,b,c) Topological represen-
tation of the emitted �uorescence spectra at di�erent excitation wavelength for the control group
(a,d,g), the metastasis group (b,e,h) and the GBM group (c,f,i). (d,e,f) represent colormaps of the
Emission-Excitation matrix for each type of tissue. The ideal excitation wavelength is highlighted
by a red line and the part of the map corresponding to the SHG signal is identi�ed by a green
arrow. TPEF images (g,h,i) of the selected region is also shown with a scale bar of 100 microns.
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Figure 5.4 � Spectral decomposition and comparison of emitted spectra at 890nm for each group.
(a,b,c) Example of �tted spectra for control (a), metastasis (b), and GBM (c), under 890 nm
excitation . (d) Mean spectra and standard deviations determined from 25 fresh human samples
(10 metastasis samples, 8 GBM samples and 7 cortex samples) along with representative images of
TPEF (red) and SHG (green) corresponding to each tissue group.

�uorescence intensity. In all three subgroups, the overall emitted �uorescence intensities remained
similar upon excitations ranging from 850 nm to 900 nm. The emission spectra then decreases
when �uorophores are excited at longer wavelengths. This optimal 850-900 nm spectral range for
excitation coincides with the emission spectral range optimized for SHG detection. Consequently,
further TPM based imaging were conducted under an 890 nm excitation. It is clear that the emission
spectra are red-shifted when the longest excitation wavelengths are used. Additionally, �uorescence
emitted around 470 nm, which is mainly attributed to NADH auto�uorescence is greatly suppressed.
This is explained by NADH's suboptimal absorption cross section at wavelengths longer than 800
nm. FAD on the other hand showed a second maximal absorption cross section around 900nm [294].

In all cases, the spectral shape di�ered between subgroups indicating the di�erences in the
relative amounts of individual �uorophores present in the three tissue groups. An example of the
�tted spectra at 890 nm of each subgroup is shown in 5.4.

Figures 5.4a,b,c show a spectrally decomposed �tted spectra (n=1) for a sample from each tissue
group. The �uorescence coming from �ve endogenous �uorophores was recovered, namely, NADH,
FAD, lipopigments, porphyrins I and II. The SHG peaks were also extracted. The control sam-
ples (Fig. 5.4.a) presented a broader �uorescence spectrum compared to both metastatic and GBM
samples. Spectra from GBM and metastasis samples (Fig. 5.4.b and c) were particularly dominated
by FAD �uorescence followed by Porphyrin I. The metastatic samples showed a uniquely high SHG
peak corresponding to the presence of dense vessels network, as shown in the TPEF/SHG image,
which was always signi�cantly higher than that from healthy and GBM tissue (p < 0.001: SHG
signal: Mmetastasis=0.057, MGBM=0.0069 and MControl=0.0054). ). GBM and healthy tissues
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exhibited similar SHG peaks suggesting that both types have comparable microvascular density.
GBM did show larger blood vessels, facilitating angiogenesis on the corresponding TPEF/SHG im-
ages. Moreover, the full width at half maximum, L, computed from the total �uorescence spectra
of control samples were found to be signi�cantly di�erent from the ones extracted in Metastatic
and GBM tissue (Lmetastasis=128nm, LGBM=134nm, LControl=185nm). A summary of the spec-
tral analysis at the reference excitation wavelength of 890 nm is presented in Figure 5.4.d. GBM
samples exhibited an overall lower �uorescence intensity than control samples supposedly due to
the necrotic areas in these samples. This was con�rmed by the TPEF images showing a global
darker background. In the emission range of 600 to 650nm, the mean emitted �uorescence was
signi�cantly lower (p<0.001) in the GBM samples as compared to control and metastasis sam-
ples (MGBM=0.0055, Mmetastasis=0.0221 and MControl=0.0160).Metastasis samples exhibited an
overall higher �uorescence intensity than control samples due to the higher tumor cell density as
previously con�rmed by the TPEF images showing a high density of bright red spot, identi�ed
as tumor cells. In the emission range of 500 to 550 nm, the mean emitted �uorescence was sig-
ni�cantly higher (p<0.001) in the metastasis samples as compared to control and GBM samples
(Mmetastasis=0.0435, MGBM=0.0035 and MControl=0.0045). One limitation to spectral response
studies prevails in identifying tissue samples, the intensity is dependent on the �uorophore concen-
tration, which can be very low in peripheral tumor volumes and in tumor margins. To overcome
such an obstacle, we studied �uorescence lifetime, which is a quantitative optical measurement that
depends on environmental conditions such as pH, temperature, viscosity, and structural changes
including molecular conformation and binding partners, but not on �uorophore concentration. We
quanti�ed the �uorescence lifetime on all samples (n=25; n=10 metastasis, n=8 GBM and n=7
Control) through the FLIM technique. Figure 5.5 shows representative results for each tissue
group.

The control samples had the broadest FLIM distribution (FWHMControl=0.856 ns compared
to FWHMmetastasis=0.764 ns and FWHMGBM=0.557 ns) due to a heterogenous range of compo-
nents with short and long lifetime values that were present in similar quantity. GBM samples had
a narrow FLIM distribution; the blue-green structures represented neo-angiogenesis. The metas-
tasis samples had the shortest average lifetime at maximum (metastasis=0,7344 ns compared to
GBM=1,47 ns and Control=1,78 ns) compared to the Control and GBM samples as a result of
the presence of a dense vascular network. However, the tissue background color in between vessels
corresponds to longer �uorescence lifetimes than that of GBM samples (FWHMmetastasis=0,764 ns
> FWHMGBM=0,557 ns).

5.2.3.3 TPM signals scoring system

To translate TPM imaging into the operating room, we aimed to develop quantitative parameters
derived from the spectral analysis and the �uorescence lifetime imaging to construct a scoring system
combining three quantitative tissue dependent variables: the redox ratio, the average lifetime and
the SHG intensity. The redox ratio and the SHG intensity were calculated from the spectral �tting
results whereas the average lifetime was calculated from the exponential-decay �t of the lifetime
measurements. The three derived values were used as coordinates to plot each sample in a 3D
space. Figure 5.6 summarizes these results.

Taken separately, each of the quantitative indicators were not always statistically signi�cant
while discriminating between the di�erent tissue types. The average lifetime of both GBM sam-
ples and metastasis samples were notably shorter than those of Control samples (τGBM=1.13ns -
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Figure 5.5 � FLIM representation at 890nm for each tissue type. (a,b,c) FLIM images of control
sample (a), metastasis sample (b), and GBM (c). Scale bars 100 µm, (d,e,f) give the color scale of
FLIM imaging with the histogram of the average lifetime; shorter lifetimes (blue) are on the left
side of the color scale, and longer lifetime (red) on the right side, two measurements were taken
and the full width at half maximum of distribution and the average lifetime of the maximum. SHG
is not a �uorescent but di�using process, appearing as very short lifetime corresponding to the
instrument response function (IRF), which is of the order of 0.06 ns and shown in blue in the FLIM
images. The typical vascular structures of each tissue are consequently as recognizable as in the
TPEF images.

Figure 5.6 � (a) 3D scatter plot of three quantitative tissue indicators: the redox ratio, �uorescence
lifetime, and SHG signal averaged for each tissue subgroup, (b) box plot of the average lifetimes,
(c) bar graph of the redox ratios for each tissue type with the errors corresponding to the standard
deviations across all measurements, and (d) overlaid TPEF and SHG intensity images.
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τcontrol=1.59ns, p<0.001; τmetastasis=1.37ns - τcontrol=1.59ns, p<0.001). In addition, the average
lifetime of GBM samples was remarkably shorter than those of metastasis samples ( τGBM=1.13ns -
τmetastasis=1.37ns, p<0.001). On average, cancerous tissues had higher redox ratios (ROXcontrol=0.256±0.030,
ROXMeta=0.264±0.030 and ROXGBM=0.357±0.030), compared to normal tissues. Although it did
not reach statistical signi�cance, the larger trend was observed between GBM and control cases
(ROXcontrol=0.256, ROXGBM=0.357, p=0.08). On the other hand, the SHG intensities were partic-
ularly helpful in discriminating metastatic samples from the remaining two types (SHGmetastasis=3.8,
Control=0.35, p<0.001 and SHGmetastasis=3.8 - SHGGBM=0.46) Consequently, in order to have a
more vigorous mean of discrimination, these separate indicators were combined in a unique scor-
ing system, Figure 5.6.a. The performances of the multimodal algorithm were generated using a
Gaussian ellipsoid �t, where the control tissue never overlapped with any tumorous type in 95%
con�dence, and GBM-metastasis only had 16,6% of overlap.

5.2.4 Discussion

In this prospective study, we compared TPM derived optical contrasts measured from di�erent
fresh human brain tumoral and non tumoral samples to gold standard neuropathology. We have
demonstrated that: 1) TPM can readily be integrated into the operating room as the acquisition
times are short; 2) The merged TPEF and SHG images showed some similar features as those
observed by standard neuropathology particularly the vascular and stromal network 3) TPM imag-
ing was capable of discriminating tumorous from normal tissue at a sensitivity and speci�city of
88% and of 71% respectively. Interestingly, TPM also allowed the discrimination between GBM
and metastasis tissues with a sensitivity of 62% and a speci�city of 80%; 4) Quantitative TPM
signals also categorized tissues according to their groups (control, GBM, metastasis) ; and lastly, 5)
the combined scoring system, i.e. combining redox ratios, average lifetimes, and SHG intensities,
allowed tissue samples to be discriminated, with no overlap between control and both GBM and
metastasis response.

An important point to �rstly stress on is the clinical bene�t in acquiring TPEF in real-time
compared to standard histological examination (tTPM=0.01min < tH&E=450min. A classical H&E
image is time and labor consuming given the multiple steps and resting time that are required in
order to obtain a stained slice. On the contrary, optical images are recorded in a few seconds
without any tissue manipulation of the sample, samples being imaged freshly resected directly
under the microscope. This point demonstrates the power of optical imaging in giving quick and
highly resolved images as well as its ability to be used intraoperatively.

Second, having established the technical advantages of TPM, it was crucial to evaluate its ca-
pacity in discriminating tissues. Therefore, a typical comparison between TPEF-SHG images and
histology gold standard H&E staining was performed, and a strong correlation was established
between the two imaging modalities for each tissue type. The cortex could be identi�ed by the
presence of numerous neurons associated with thin branched vessels highlighted by SHG signal.
Glioblastoma are characterized by a high cellularity and large glomerular vessels. Brain metastasis
by contrast show the dense collagen vascular stroma, resulting in a very strong SHG signal. The
tissue speci�c signatures found in this comparison were used by a neuropathologist to perform a
blind analysis of the TPM images. The statistical results of this diagnostic procedure gave promis-
ing results, with high sensitivity (between 75 and 100%) to discriminate tumor from control tissue,
opening the doors to real-time optical biopsy. The low speci�city (50%) of the technique can be
improved by training the neuropathologist with these images as the standard practice for H&E.
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A major common limitation between image comparison and H&E staining is the subjective diag-
nosis. For this reason, a real advantage of TPM is the combination of images with quantitative
measurements to build a computed diagnosis that could be used directly in vivo by the surgeon. In
this study, we explored two quantitative measurements, the spectral emission and the �uorescence
lifetime to build a discriminative algorithm. The spectral measurement is sensitive to the nature
and the concentration of �uorophores measured, thus giving access to information on the metabolic
evolution of tissues, such as indicators of redox status by following NADH and FAD [102, 218,
295]. On the other hand the FLIM measurement is sensitive to binding states, molecular inter-
ferences, and other aspects of the molecular environment such as temperature, molecular liaisons,
viscosity of the medium, and pH [296�300]. Therefore, TPM-FLIM data can provide important
complementary information about the local biochemical medium that may aid in distinguishing
healthy from tumorous tissues. Time-resolved �uorescence of endogenous response is a useful com-
plementing tool that separates pathological tissues based on their metabolism [104, 118]. The extra
quantitative dimensions of information provided by spectral and lifetime imaging could facilitate
diagnostic judgments. Consequently, three of the most signi�cant quantitative indicators found in
the exploratory analysis were combined to build a scoring system of brain tissue nature. These
indicators were the redox ratio to monitor the metabolic state[118, 217, 222, 295], the SHG inten-
sity to evaluate the density of collagen structures [299, 301] and the average �uorescence lifetime
to track environmental and conformational changes [296�300]. Taken separately these numerical
indicators gave us mixed results when discriminating tissues. For example, the Redox ratio failed
to be robust, although it did discriminate GBM from control most accurately, with the tumors
having higher ratios. This result is in accordance with literature [217] and is explained by increased
tumoral metabolic needs (Warburg e�ect) resulting in changes in the NADH/FAD ratios [247]. The
SHG intensity on the other hand gave us a statistical di�erence between control and metastasis,
corresponding to the strong net of vessels and collagen matrix that form around the tumors cells
as also referred to in the literature[302]. The average lifetime was the most robust classi�er, where
the values for tumor and control tissues were signi�cantly di�erent with a shorter lifetime found in
tumor tissue. Nevertheless, when accounting for all three quantitative markers, as displayed in the
3D scatter plot of Figure 6a, classifying brain tissue was achieved. ., one could easily classify brain
tissues. These results underline the necessity of developing an endomicroscope with multimodality
capabilities for robust in vivo tissue interrogation.

All in all, these results based on tissue auto�uorescence signals coming from brain tumors
are taking part in the construction of an optical database that will be implemented in a two-
photon multimodal endomicroscope. A �rst prototype of this intraoperative surgical tool is under
development in our laboratory and has shown great performances when it comes to collecting signals
[198, 221]. Compared to the di�erent diagnostic techniques such as frozen sections or formaldehyde
�xed H&E stains performed by neuropathologists today, this method does not require any tissue
resection. On the contrary, the probe can be directly put in contact with the human brain while
performing a measurement. Another advantage is the turnaround time required to diagnose a tissue,
which is estimated to be less than a minute from the moment the surgeon holds the probe until
the results are displayed on the screen, as compared to at least thirty minutes for the above listed
methods. Additionally, compared to other techniques developed for the same purpose such as MRI
[82], PET [41] or exogenous �uorescence guided endoscopy [279], our tool does not require the use
of any external agents, thus simplifying the work and limiting any biased classi�cation. As for the
techniques based on intrinsic signals such as OCT [139], or intraoperative ultrasound [238], these
simply act as imaging tools that demand the interference of an expert to fully interpret the results.
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By focusing the work on TPEF, this method gave us the possibility to combine imaging modalities
to quantitative measurements to reach unsupervised discrimination in real-time.

In conclusion, this preliminary study highlights the interest of a multimodal two-photon ex-
citation tool to guide intraoperative delineation of tumors' margins. It may be useful to tailor
intraoperatively the surgical resection of malignant brain tumors in addition to brain mapping. In
time to come, the present study will be extended to a larger cohort that includes di�erent brain
tumor subtypes. This study will address the question of whether the quantitative optical markers
studied here can be applied to in�ltrating brain tissue located at tumor margins. The �nal challenge
will be to translate the endomicroscope into the operating room and to be approved for in vivo
clinical studies.
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Chapter 6

Could multimodal and multiscale

optical analysis from DUV to NIR,

be a reliable tool for diagnosis of

primary and secondary tumor ?

6.1 Context of the study

In the previous chapters, the analyze of the auto�uorescence both spatially and quantitatively,
from visible to NIR, has been shown. It resulted in a discrimination between healthy tissue, primary
and secondary tumor. These results showed that the accuracy of the diagnosis could be improved
with a more in-depth study, exploiting the relationship between the di�erent molecules and analyz-
ing a larger excitation range. A campaign with an excitation from DUV to NIR was consequently
designed to increase the quantity of informations collected on tissue and to improve the discrimi-
nation. A collaboration with DISCO beamline scientists from synchrotron SOLEIL was initiated
to analyze our tissues under DUV excitation. Moreover, in the last chapter it was concluded that
multimodality is a key to develop reliable and robust algorithms. Consequently in this chapter, the
development of discrimination algorithms, which could be implemented intra-operatively, using the
multi-range excitation and the multi-modal detection, were explored more in-depth.

Previous we showed that NADH, FAD, Lipopigments and porphyrins, were the analyzed molecules
under one and two-photon excitations. These molecules gave an insight on tissue structure and
metabolism, elements impacted during tumor development. However using a DUV excitation will
excite other types of molecules present in tissue. For instance amino acids are also �uorescent
when excited in the DUV range. In the brain two amino-acids are present and can consequently
be excited, the tyrosin and tryptophan which are structural units forming proteins. Monitoring
their signal can give information about new protein structure and dynamic [104]. Tryptophan is
also linked to NADH in tissue, enzymes carrying tryptophan favor NAD+ to NADH conversion
during oxydo-reduction, consequently metabolic changes involving NADH will result in variations
in tryptophan auto�uorescence response too. This observation has been at the origin of FLIM-
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FRET detection method based on the Trp-NAD(P)H interactions [303, 304]. Being able to register
the information of tryptophan auto�uorescence on the brain biopsy tissue will help to understand
the results found in the NADH/FAD variation. However with our two-photon set-up presented in
the previous chapter, tryptophan couldn't be detected, this is due to the fact that its �uorescence
emission is around 355 nm which is outside our detectors spectral range (390 nm to 790 nm).

DUV excitation gave also access to the �uorescence of structural proteins of collagen. In the
previous one and two-photon study collagen was only accessible through the SHG signal to high-
light its �brillar structure. However collagen is a major component of the extracellular matrix
(ECM), holding organs and cells together. The ECM is an important part of angiogenesis and
neoplasia mechanisms. The �brils of collagen are stabilized by cross-linking that results in aut-
o�uorescence signal and that can be a tool to monitor cancerous structural mechanisms [104]. In
literature monitoring of collagen with DUV excitation was demonstrated for two other types of tu-
mor. Georgakoudi et al. looked at endogenous �uorescence emission in cervical lesions and Barett's
esophagus. Excitations between 340 and 420nm were used to build emission-excitation matrix and
extract collagen and NADH signal. A lower collagen signal was obtained in high-grade dysplasic
legions [305]. Another study from Pu et al. on patients su�ering from prostate cancer, showed that
the collagen decrease in tumor region using a 340nm excitation wavelength. They looked at the
NADH/collagen ratio for a robust quantitative indicator of tissue nature [306]. Both study showed
that in parallel of a collagen decrease, an NADH increase could be associated to tumoral presence.
These two modi�cations resulted in a higher NADH/collagen ratio in prostate cancerous regions.
In brain tumor tissues this has never been observed in the literature yet, motivating study with
larger range of excitation.

To exploit all the possibilities of endogenous �uorescence and highlight as seen the link between
the signal of the di�erent molecules, a large study with an excitation from the DUV to the NIR was
put in place. For this study, samples from patient with consent from the large frozen database of the
Sainte-Anne hospital were accessible and used, making it possible to have a statistically signi�cant
cohort. This large cohort allowed us to build a study testing more robust algorithms and �nding
discriminative threshold that could be replicate clinically. These algorithms are based on spectral
molecular analysis from the DUV to the NIR, combining several indicators to discriminate tissue
nature and also �uorescence lifetime in the NIR range.

Methods Frozen samples from the Saint-Anne database were brought to the IMNC lab in
Orsay. Thin slices of 10 microns were cut and �xed in order to be analyzed on the di�erent set-ups.
The cohort contained biopsy from 51 patients (13 control from cortex, 17 GBM and 21 metastasis).
We �rst analyzed the samples under DUV excitation using 275µm wavelength at the synchrotron
SOLEIL. In this excitation range were performed, a wide-�eld imaging of the emitted �uorescence
and a spectroscopic measurements on the same region. The slices were then imaged using the
two-photon bench-top microscope combined to a Ti-Sapphire laser. Images combining TPEF and
SHG signal were acquired at 890nm. Spectral response and �uorescence lifetime were acquired at
810 and 890nm excitation. All these quantitative data were analyzed using homemade algorithms
optimizing the discrimination between tissue nature, the algorithms are based on spectral and
�uorescence decay �tting, spectral clustering and phasor approach for �uorescence lifetime. The
slices were then stained using the hospital protocol for H&E staining.

Results and discussion Under DUV excitation, a deconvolution was applied on the spectral
response to monitor each molecule. Di�erent ratio giving a discrimination between control, pri-
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mary and secondary tumor were calculated : tryptophan/collagen, tryptophan/NADH and tryp-
tophan/tyrosin ratio. A discrimination based on the combination of these three signi�cant ratio
resulted in a sensitivity of 90% and a speci�city of 73% and accuracy of 84%. In the two-photon
range two quantitative measurements were accessible the spectral and �uorescence lifetime. Dif-
ferent molecular ratio were tested, the redox ratio to express the metabolic state of tissue and the
optical index to translate the vascularity in tissue. An algorithm based on the two spectral indica-
tors was tested and resulted in a sensitivity of 92% and a speci�city of 95% and accuracy of 92%.
However as seen in the literature [252], combining the spectral lifetime to the spectral measurements
improved the results of the discriminative algorithm. Therefore in this chapter, a 3D-scoring system
based on the two spectral ratio and the average lifetime was build and resulted in sensitivity of
97% and a speci�city of 100% and accuracy of 98.3%. In our results the most accurate algorithm
has been to that point the multi-contrast using a two-photon excitation. Having access to the
DUV measurements on the same region make it possible to try the performances of a multi-range
multimodal algorithm. A discrimination was made based on a the tryptophan-collagen ratio, the
optical index and the �uorescence lifetime. This 3D-algorithm resulted in a 98,2% of accuracy to
discriminate tumor from control tissue. Results of the di�erent algorithms are summarized in the
Table 6.1.

UV-
spectral
only

TPEF -
spectral
only

TPEF-
spectral
and

lifetime

TPEF-UV
and

spectral-
lifetime

Sensitivity 90% 92% 97% -

Speci�city 73% 95% 100% -

Accuracy 84% 92% 98,3% 98,2%

Table 6.1 � Performances of the di�erent algorithms tried of this chapter

Looking at the accuracy of each algorithm, the spectral response using the two-photon excitation
gave more precision than the DUV excitation. This is the consequence of a higher rate of false
negative, 15,4%, in the DUV algorithm. This is a critical point in the perspective of improving
surgical resection, it will result in leaving in place regions which are tumorous, because diagnose as
healthy intra-operatively. Looking at algorithm only based on the spectral response, two-photon
excitation between 800 and 900nm gave the most accurate discrimination. However, as seen in the
conclusion of the previous chapter, the use of multimodal detection can improve the discrimination
of tumor tissue. In this study, the precision of bi-modal algorithm based on spectral and lifetime
detection was quanti�ed to answer the question of discriminating primary and secondary tumor
from control tissues. These algorithms resulted in an improved accuracy from 92% to 98,3% with
a very low rate of false positive, 4,3%, which is very encouraging to translate the technology to
the clinic. The last used algorithm test the impact of adding a DUV information to a multimodal
algorithm. The data could be discriminated with the same accuracy (98,2%) than the two-photon
model. However it gave a complete discrimination between secondary tumor and control, where the
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two-photon multimodal algorithm gave a complete discrimination of the primary tumor compared
to the control and had showed false positive cases for secondary tumor discrimination. This shows
that depending on the tumor type, the molecules monitored with the DUV excitation could brought
more precision than the ratio accessible with the two-photon excitation.

This large scale study provide a large amount of data to test di�erent algorithms. All the
previous analysis based on quantitative measurements were done using �tting algorithms [117,
128]. Fitting methods are known to be very dependent of initial parameters and so result in a
low reliability and reproducibility. In intra-operative diagnosis the repeatability and reliability
are important points to a successful technological transfer and failing to achieve that could kill a
development towards clinical use. In this study, non-�tting algorithms were adapted and used on
both the spectral and �uorescence lifetime data. For spectral data, a method was tested on UV
spectral maps to �nd a discrimination, the cluster analysis. The clustering method has been already
extensively explored on the infrared spectra to answer questions like the di�erentiation of colon
cancer [307], the tumor heterogeneity in skin cancer [308] and tumor progression [309]. This method
resluted in high precision to di�erentiate structure and a possibility of automation for a systemic
diagnosis in clinical condition [308]. On our DUV data acquired at SOLEIL, a cluster algorith based
on the k-mean method was used and highlighted variations in the tryptophan/collagen ratio from
healthy to tumoral regions. This observation on the cluster analysis resulted in a classi�cation based
on the quanti�cation of the tryptophan/collagen ratio that gave a threshold to separate healthy
region from tumoral regions.

For FLIM analysis, two methods of non-�tting can be found in the literature, the Laguerre
deconvolution [135] and the phasor approach [310]. Fereidouni et al. compared the performances
of the two methods to �nd their advantages and limitations [311]. They conclude that the phasor
approach resulted in a very accurate estimation of the lifetime value and gave access to a graph-
ical 2D representation of the results compared to Laguerre coe�cients. The future user of such
technology will be surgeons who do not have the same technical background than us, having access
to a graphical results easy to interpret for non specialist will get their approval faster. For these
reasons, phasor approach was the one tested and developed on the data of this study. The two-
photon FLIM data were analyzed with this approach, and �ve distinct regions could be observed
on the phasor plot. It could be identi�ed that two of them were dominant in tumor and the other
three in control tissue, resulting in a discrimination criteria that could signi�cantly di�erentiate the
tumor from control (p<0.05). However this method to extract a discrimination from FLIM analysis
failed to di�erentiate the tumor types (primary and secondary). So there is still work to do on this
non-�tting method to get to the precision of previous presented �tting method. In the literature
other teams have used the phasor with other criteria of discrimination for example determining the
fraction of free-bound NADH [115], this other approach could bring the precision needed in the
analysis of the phasor results. It would be a perspective study.

The algorithm found here based on multimodal and multi-range approaches resulted in reliable
discrimination between control, primary and secondary tumor. The reliable results especially using
multimodal algorithm, with false negative rate lower than 5%, is opening the way to automation
of brain tissue nature diagnosis. This is reinforced with the development of non-�tting algorithm
such as the clustering that can be the �rst step of automated classi�cation algorithms. However
this study presented the �rst stage of algorithms development : the training phase. To get closer
to a reliable clinical use, the found discriminative thresholds and criteria should be tested on a new
set of data to evaluate algorithm robustness. These results and perspectives open the doors to the
idea of a diagnosis performed by an arti�cial intelligence and not a human operator.
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Through the chapter 2 to 6 a large database on the evaluation of primary and secondary tumor
compared to control tissue was build and resulted on the development of discriminative algorithm
that could be automated in an endomicrospe. These results support the development of two-photon
endomicroscope to provide to the surgeon automatized discriminative algorithms during the surgery.
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6.2 Paper: Multimodal analysis of central nervous system

tumor tissue endogenous �uorescence with multiscale ex-

citation
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6.2.1 Introduction

Many Central Nervous System (CNS) tumors, such as glioblastoma and metastasis both pri-
mary and secondary, are in�ltrating. Surgical resection is the main course of treatment for such
tumors. The outcome and life expectancy after these operations is very low and their improve-
ments is one of the major challenges in modern medicine. In recent years many new technologies
such as intra-operative ultrasound [87], intra-operative magnetic resonance imaging (ioMRI) [82],
confocal endoscopy [173] have been brought into the operating room to help guide surgeons in
resecting tumors. However none of these tools has been able to discriminate in�ltrating tumors
margins (ITMs). These techniques have failed to o�er cellular-level resolution, and to detect the
low concentrations of tumor cells in in�ltrating regions. As a consequence, the chosen surgical
approach is to maximize the extent of tumor removal while minimizing intrusion on the eloquent
brain area[312]. And while resection improves the outcome and life expectancy of the patient, the
surgeon still operates "blind" on the true nature of margins. To meet the challenge of discriminat-
ing ITM's intra-operatively, there has been a boom in developing surgical medical imaging tools
that can contrast brain tissues and discriminate cell types. Examining tissue auto�uorescence with
optical microscopy techniques is one answer to the demand for intra-operative ITM discrimination.
Several molecules produce an endogenous �uorescence signal in the brain [102] and this signal can
change from one type of tissue to another. This di�erence can be used to distinguish tumoral regions
from healthy ones [103, 122, 135] . Following that direction, our group miniaturized two-photon
microscopy into a �bered con�guration for intra-operative purpose. This endomicroscope enables
two imaging contrasts: two-photon auto�uorescence emission (TPEF) and second harmonic gener-
ation(SHG), with an excitation in the near infrared (NIR). The NIR excitation lies in the tissue
therapeutic window, resulting in less photodamage and a better penetration depth. In our set-up
we also choose to include several types of measurements: full �eld imaging, micro-spectroscopy
and �uorescence lifetime to provide the most reliable and reproducible response. To validate this
technical approach we built, in parallel, an optical database of the auto�uorescence response from
brain tissues which will be used to develop and test robust algorithms to automatically discriminate
tissue and validate automatic tissue analysis, potentially eliminating subjective reading of images
by a human operator. Multimodal study of endogenous �uorescence on human tissue is relatively
new and, according to the literature, only a few tissue types have been explored. Our lab focused on
brain tissue endogenous �uorescence by partnering with 1) the Saint-Anne hospital (Paris, France)
who provided biopsy samples and medical knowledge, and 2) Synchrotron SOLEIL who provided
access to a deep UV imaging platform at DISCO beamline, while the IMNC, performed two-photon
microscopy with a bench-top microscope.

This study searched for an objective optical marker to discriminate tumor from healthy tissue,
and to discriminate primary from secondary tumors. A large study on �xed biopsy tissue of pri-
mary (glioblastoma), secondary (metastasis) tumor and control cortex was performed, with large
scale excitation ranging from deep-UV (DUV) to near infrared (NIR), and several modalities of
detection from qualitative, �uorescence and lifetime imaging, to quantitative, spectral and lifetime
measurements. Finding a discriminating optical marker was made possible by exploiting multiple
contrast and building 2D and 3D discriminative algorithms for the DUV and NIR excitations indi-
vidually, and then in combination. Discrimination speci�city and sensitivity were in the 70 to 100%
range, highlighting the power of optical analysis to discriminate the nature of tissue with enough
precision to be clinically useful. The qualitative results of our study were also used to compare
optical microscopy technology to the gold standard H&E staining. This comparison highlighted
discriminative histological structure in the optical images, and a "blind" pathologic analysis was
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Figure 6.1 � (a) Schematic of the acquisition-analysis protocol from deep-UV to infrared excitation
(b) Deep-UV excitation-emission matrix. (c) Two-photon (NIR excitation) excitation-emission
matrix. The bottom line present how were �tted tyrosin, tryptophan, collagen crosslinks and
NADH at 275nm (d), NADH, FAD, lipopigments, porphyrin I and porphyrin II at 810 nm (e) and
SHG, NADH, FAD, lipopigments, porphyrin I and porphyrin II at 890nm (f).

then performed directly on our images.

6.2.2 Materiel and methods

6.2.2.1 Study design

The samples were excited in the deep-ultraviolet (DUV) and the near infrared (NIR) range
on two di�erent platforms. The design of the study is presented in Figure 1. On both platforms
an excitation emission matrix was performed to highlight the di�erent excited components and to
select the optimal wavelengths for our study. Under DUV excitation we chose 275nm as the optimal
wavelength, being the most e�cient in set-up, and in exciting four components simultaneously:
Tyrosin (Tyr), Tryptophan (Trp), Collagen crosslinks (Col) and NADH.

In the NIR range we chose two excitation wavelengths: 810nm and 890 nm. Four molecules
and SHG were tracked: NADH, FAD, Lipopigments, Porphyrin. At 810nm excitation NADH
was optimally detected and at 890nm we obtained the best tradeo� between SHG and emitted
�uorescence [216]. Samples (Fig5.a.iv) underwent the following process : (1) large mosaic at 275nm
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Type Nb Patient Age Men Women
Control 13 35,2±7,4 9 4

Primary Tumor : GBM 17 68,3±11,4 12 5
Secondary Tumor :

Metastasis
21 58,8±12,2 10 11

TOTAL 51 54,1±17 31 20

Table 6.2 � Description of samples

in the four detection channel (Tyr, Tryp, Col, NADH) (Fig6.1.a.ii) (2) selection of a region of
interest and spectral measurements at 275nm (Fig6.1.a.i) (3) Large mosaic at 890 nm (Fig6.1.a.v)
(4) selection of the same region of interest as in DUV to perform spectral (Fig6.1.a.vi) and FLIM
measurements (Fig6.1.a.vii) at 810 and 890 nm. Once data acquisition was completed, analysis
followed : (i) spectral �tting of the data at each wavelength using homemade Matlab program
(Fig6.1.a.i & viii) (ii) Fitting of the lifetime data with Symphotime software (Fig6.1.a.ix) (iii)
Phasor analysis of the lifetime data (iv) construction of discriminative algorithm combining the
di�erent analysis results and (v) comparison with the gold standard histology(Fig6.1.a.iii).

6.2.2.2 Samples preparation

A collaboration with the anatomopathology and neurology departments of the Saint-Anne Hos-
pital (Paris, France) provide a large cohort of human biopsy samples. The protocol of experimenta-
tion was approved by the Institutional Review Board of Sainte Anne Hospital (Ref CPP S.C.3227).
Fifty-one individuals (31 males, 20 females; age average 54.1±17 year-old) were included and an
informed written consent was obtained from all patients prior to enrollment. Frozen human brain
tissues, conserved at -80◦C, were obtained from two types of tumor (21 metastasis samples, Meta;
17 glioblastoma samples, GBM) and Control specimens (13 patients with no history of tumor)
selected from epileptic surgery. The metastases were originated from lung, breast, bladder and
skin. The characteristics of the cohort are summarized in Table 6.2 . A dedicated transport (360◦,
France) brought the selected cohort to the IMNC laboratory (Orsay, France). Samples were con-
served at -80◦C, before being transferred to a -20◦ freezer 24 hours before being cut with a cryostat
(Leica CM 1950). Ten-micron slices were deposited on quartz coverslips and microscope slides, and
�xed with an ethanol solution (100%). The quartz coverslips were brought to the Synchrotron in a
dedicated box, and the microscope slides were used for H&E staining and two-photon imaging on
the PIMPA platform.

6.2.2.3 Histological Process: Hematoxylin and Eosin Staining

A gold standard Hematoxylin and Eosin (H&E) staining was performed on one of the microscope
slices following the Sainte-Anne hospital protocol [61] whose steps are hydration, H&E staining,
dehydration, and toluene �xation. Once stained the samples were imaged in a Digital Slide Scanner
NanoZoomer 2.0 (Hamamatsu Photonics K.K, Hamamatsu, Japan).

6.2.2.4 Deep-Ultraviolet imaging and spectral measurements

The Deep-Ultraviolet (DUV) measurements were performed on the DISCO beamline at the
Synchrotron SOLEIL [313]. Two set-ups, a full-�eld microscope (Zeiss Axio-observer Z-1) and a
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microspectro�uorimeter (Olympus IX71), were used for this study. The samples were excited with
the continuous emittance from the DISCO beamline bending magnet between 275nm and 335nm.
The details of the set-up have been presented in other studies [314, 315]. A large mosaic of the
sample was made under the full �eld microscope with an excitation wavelength of 275nm and four
emission �lters (307-323nm, 323-357nm, 408-438nm and 435-455nm, Semrock, USA) in front of a
detector (CCD camera, Pixis BUV, Princeton Instrument, USA). Regions of interest were then
selected in this mosaic and spectral measurements were done with the microspectro�uorimeter at
the same excitation wavelength. One second integration time and a ten microns lateral step size were
applied. An Excitation-Emission matrix was also measured using the microspectro�uorimeter. An
emission spectrum was acquired for each excitation wavelength from 275nm to 335nm every 10nm.

6.2.2.5 Two-photon imaging and quantitative measurements

A two-photon benchtop microscope (TCS SP8 MP microscope, Leica Microsystems, Wetzlar,
Germany) combined with a Ti:sapphire laser source (Mai Tai DeepSee, Spectra-Physics, Santa
Clara, USA) was used to perform �uorescence imaging (TPEF), emission spectra and �uorescence
lifetime imaging (FLIM). The set-up and acquisition methods are described thoroughly in our
previous work [216, 223]. The measurements were recorded on the same region of the sample as
the one imaged with the DUV excitation. On each region TPEF and SHG image were recorded
using 890 nm excitation wavelength. Then spectral and FLIM analyses were performed using 810
and 890nm excitation wavelength. Excitation-Emission matrices were also measured by acquiring
a spectral stack at excitation wavelengths between 740 and 940 nm every 20 nm.

6.2.2.6 Data analysis

6.2.2.6.1 DUV analysis
DUV full-�eld images were processed, using Image J, to create a merged image of the fourth
detection �lter and to visually identify any di�erence between tissue regions. The spectral re-
sults were analyzed using lab-written Matlab script and the PLS toolbox (Eigenvector Research
Inc.,WA,United-States). Two types of analyses were performed on the data. First was a clus-
ter analysis to extract spectral signature of tumoral region, and second was a �tting analysis to
compare tissues at a molecular scale. In the �rst method, the data were �rst preprocessed using
lab-written scripts developed by SOLEIL and IMNC teams, in order to: (1) reduce the noise, (2)
suppress dead pixels, (3) set-up a baseline, and (4) normalize to the maximum of the cohort. Then
a discriminative cluster analysis (DCA, K-Means) was applied to all the pixels of every images using
the PLS toolbox. The number of input clusters was chosen iteratively looking at the results, and
�xed at �ve in our case. The second analysis applied on the spectral data was a spectral �tting
of the di�erent molecular contributions. The �t was performed using a lab-written Matlab script
previously used on visible and near infrared auto�uorescence data [216, 223] and adapted to the
DUV data. The results of the �t were used to compare di�erent molecular ratios. The ratio between
tryptophan and collagen crosslinks was given a particular attention, but tyrosin/tryptophan and
tryptophan/NADH ratio were also computed to build a robust discriminative marker.

6.2.2.6.2 Two-photon analysis

TPEF images were processed using Image J, in order to produce both a good quality and
scaled image of the merged TPEF-SHG signal. The images were then compared with H&E images.
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After highlighting the histological structure on the TPEF images, a neuropathologist was asked
to perform a blind analysis. The analysis was done on paired TPEF and H&E images from 25
samples (10 metastases, 8 glioblastomas, 7 controls). First, a senior neuropathologist, blind to
the TPM results, performed an initial histopathological analysis. No specimen was excluded due
to lack of histopathological representativeness. Then, six months later, we presented a web-based
survey of the TPEF images (PNG TPEF/SHG images) and the participant was asked to classify the
sampled tissue in four categories: 1) GBM ; 2) Meta; 3) healthy tissue; or 4) unclassi�ed. Although
completely blind to the initial histological analysis, the participants had access along with the TPM
images, to typical clinical data including patient's age, gender, clinical presentation, tumor location,
and pre-operative MRI images. These results were then compared to initial histological analysis to
calculate the accuracy of the diagnosis on TPEF images.

The spectral stacks were opened in Image J to extract �ve spectral region of interest (ROIs) in
each of the 810 and 890nm images, and then processed in Matlab. The obtained spectra were �tted
using a lab-written Matlab script previously published and used on meningioma samples [216]. Five
auto�uorescent molecules were �tted: NADH, Flavin adenine dinucleotide (FAD), Lipopigments,
Porphyrin I and Porphyrin II. The results of the �t were used to compute two indicators according
to the literature [117, 222]. The oxydo-reduction ratio between NADH and FAD:

ROx =
FAD890

FAD890 +NADH810
(6.1)

And the optical index ratio between NADH and porphyrin:

OI =
PorphyrinI890
NADH810

(6.2)

The NADH values were extracted from the emission spectrum using 810 nm excitation wave-
length and the FAD and Porphyrin from the emission spectrum using 890 nm excitation wavelength.
To be comparable, the spectra were normalized by the excitation power.

As with spectral data, the FLIM data were analyzed using two methods, �tting and non-�tting,
which were developed. First, bi-exponential �tting � the method implemented in the acquisition
software (Symphotime Vx64, Picoquant)-was used. On each image the same �ve ROI as for spectral
measurements were selected, and on each ROI the �uorescence decay histogram was bi-exponentially
�tted. The amplitude average lifetime was extracted from this �t using a method previously pub-
lished on bladder tumor [316]. The second implemented method used a non-�tting process, called
phasor analysis. We started with the time-correlated single-photon counting (TCSPC) detection
of �uorescence decay curves at each pixel of a 3*3 mosaic image. The intensity of a 32*32 pixel
(a 28±m-side) square was added together to obtain the decay I(t) at each reduced pixel. In the
phasor approach, the decay I(t) at each pixel is transformed into two coordinates in a Cartesian
plot according to the following equations:

Si(w) =

∫∞
0
I(t)cos(ωt)dt∫∞
0
I(t)dt

(6.3)

Gi(w) =

∫∞
0
I(t)sin(ωt)dt∫∞
0
I(t)dt

(6.4)
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where, Si(ω) and Gi(ω) are the x and y coordinates of the phasor in the phasor plot, respectively;
ω is the angular repetition frequency linked to the signal length (L) and the sampling period (Ts)
by the relation: ω = 2π/(LTs). We stored for each pixel Si(ω), Gi(ω) and Mi - the normalized
integration under the decay of each pixel to provide the phasor histogram of the 3*3 mosaic image.
A global phasor histogram grouping the data of all the samples (n=51) was plotted. Five areas were
selected on this global phasor histogram and the images were reconstructed with a �ve colors-scale
corresponding to selected area. Pixel colors criteria following Eq. 6.5 were used to compare the
data from each group.

log
%green pixel +%blue pixel

%red pixel +%yellow pixel
(6.5)

Value of �uorescence lifetime was also determined in this analysis using an error ellipse method.
An ellipse that should contain 95% of phasor counts in each area was �tted on the �ve areas of the
global histogram. The two intersections between the major axis and the circle segment are linked
to the two lifetimes and their contributions.

6.2.2.7 Statistical analysis

The di�erent computed ratios were compared statistically with t-test in Matlab to obtain a
p-value with a criteria of signi�cance at p<0.5. The representation in scatter plot and the blind
analysis were evaluated by de�ning the sensitivity (Se) and speci�city (Sp) of the discrimination
criteria, following Eq. 6.6 and Eq. 6.7.

Se =
TP

TP + FN
(6.6)

Sp =
TN

TN + FP
(6.7)

The variables were TP = True Positive, FP= False Positive, TN= True Negative and FN=
False Negative, de�ned as: TP=Tumoral tissue classi�ed as tumoral, FP=Control tissue classi�ed
as tumoral, TN=Control tissue classi�ed as healthy and FN=Tumoral tissue classi�ed as healthy.

6.2.2.8 Multiscale discriminative algorithm

In the various excitation ranges the three best indicators were chosen: (1) Porphyrin/NADH
ratio using two-photon excitation, (2) Tryptophan/collagen crosslinks ratio at DUV excitation and
(3) the average lifetime using 890nm excitation. A region of interest measured in our protocol
could be then represented in the 3D-scatter plot with these three indicators as its coordinate.
The scatter cloud of a group was �tted by a Gaussian ellipsoid using the mean and the standard
deviation as parameters for the covariance with the ellipse to cover 60% of the total probability
mass. The percentage of overlap between the ellipses for each group was then calculated to assess
of the performance of such algorithm.
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Figure 6.2 � Analysis of the Deep-UV data. Comparison of the three tissue groups control (a,d,h),
glioblastoma (b,e,i) and metastasis (c,f,j) with di�erent analysis methods: wide-�eld(WF) imaging
(a,b,c), spectral clustering (d,e,f) with a 5-cluster decomposition shown on a graph (g), map of the
tryptophan/collagen ration (h,i,j) with comparison of selected ROIs(k). Molecular analysis of the
tryptophan/collagen ratio (l), the tryptophan/NADH ratio(m) and the tyrosin/tryptophan ratio(n)
combined in 3-D scatter discrimination plot (o).

6.2.3 Results

In this large study, we �rst look at the results under DUV excitation. The Figure 6.2 presents
a summary of the analysis results and discrimination reached in this excitation range.

Figure 6.2a.b.c shows an example of the superposition of the tryptophan (green) and collagen
channel of wide-�eld (WF) image in each group. The control image presents an homogeneous color,
while in primary and secondary tumor some regions show a di�erent color, exposing a variation in
the tryptophan-collagen ratio in tumoral tissue. Based on this observation a method of clustering
was applied to the spectral data to validate this hypothesis and to see if two types of spectral
signatures were highlighted.

The �gure 6.2.d.e.f shows the results of the spectral cluster analysis on the same region as the
one on the WF images. The spectra corresponding to each color are superposed in the �gure 6.2.g.
The two dominant colors in control (red and pink) correspond to spectrum with a main peak in
the tryptophan range and a secondary peak in the collagen crosslinks range, where the di�erent
dominant colors (blue and cyan) in tumor correspond to spectrum with only one main peak in the
tryptophan range. These results led us to track the ratio between the two main peaks of the DUV
spectral response, the Tryptophan/collagen ratio.

Figure 6.2h.i.j gives an example of the Tryptophan/collagen ratio in a tissue of each group,
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Figure 6.3 � Analysis of NIR data. Comparison of three tissue groups : control (a,e,k), glioblas-
toma(b,f,l) and metastasis (c,g,m) with di�erent imaging techniques H&E (a,b,c), TPEF imaging
(a,f,g) and FLIM (k,l,m). Results of the "blind" analysis on TPEF for diagnosis (d). Boxplot of
the spectral molecular analysis, redox ratio (h) and optical index (i), these results were combined
in a scatter plot (n). Boxplot of the average lifetime (j). 3D-scatter of the two molecular indicators
and the average lifetime to build a discriminative algorithm (o).

the ratio being higher in tumoral groups than in control group. The results of the selected ROI
are plotted in the Fig.6.2.k. A threshold value distinguishes tissue type: below 2.8 the tissue is
healthy, above 3 the tissue is tumoral. After validation of this method a larger statistical analysis
was performed on all the sets of tissue and new molecular ratios were tested. The results are
shown in Fig.6.2.l.m.n. The Tryptophan/collagen ratio showed a signi�cantly higher ratio in control
tissue (p<0.01). The Tryptophan/NADH ratio also showed the same trend but with less statistical
signi�cance (p=0.13). The third ratio, Tyrosine/Tryptophan, showed a lower value in tumoral
tissue than control (p<0.01). To �nd a discriminative algorithm with statistical signi�cance, these
three molecular ratios were extracted in �ve ROI in di�erent types of tissue, and projected as
the coordinate of the ROI in a 3D-scatter plot (Fig6.2.o). A discriminative cross-section could be
drawn between tumoral tissue (red dots) and control tissue (green dots), with calculated algorithm
speci�city of 73% and sensitivity of 90%. This discriminative algorithm has a high sensitivity,
making it a good diagnosis tool, ruling out tumor presence with precision. However it still gave a
non-negligible level of false positives.

The data obtained in the NIR excitation range were tested with similar approaches. The results
are shown in Figure 6.3.

The �rst approach was to compare the TPEF images to the histological gold standard H&E
images to �nd the structure used to discriminate tissues The TPEF images are a merger of auto�u-
orescence emission, red contrast, and SHG signal, green contrast. In the control, typical cortical
arrangement of neurons (dark violet triangular spot in H&E), showed a strong uorescent spot on
the TPEF images. In the glioblastoma,large vessels, identied by light pink structures in H&E and
lament in SHG green channel. The vessels are surrounded by a high density of tumor cells, identied
with an intense signal in the uorescence image. In the metastasis, strong neovascularization with
tumor cells entangled, light pink signal signal in H&E surrounded by high density of cells, were iden-
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tied on the TPEF images by a strong SHG signal with bright uorescent spots. Thereafter the TPEF
were given to senior neuropathologist for blind diagnosis in order to evaluate the capability of direct
diagnosis on TPEF images. The senior pathologist was able to discriminate tissues with a speci�city
of 50% and a sensitivity of 75%. Next the quantitative results were analyzed on each TPEF image
region. A spectral response with a 810 and 890nm excitation was measured and di�erent molecular
indicators were calculated at di�erent regions of interest for every tissue. The two spectral markers
calculated were the redox ratio and the optical index. In Figure 6.3.h, the redox tended to be higher
in tumoral tissue and discriminative between tumor types (pcontrol−GBM<0.01, pcontrol−meta=0.06,
pGBM−meta<0.01). The optical index is also higher in tumoral tissue and can discriminate primary
from secondary tumor (pcontrol−GBM<0.01, pcontrol−meta=0.01, pGBM−meta<0.01). Complemen-
tary quantitative measurements were performed on the samples: extraction of the average lifetime
using a �tting method applied on the various regions of interest, and boxplot comparison of dif-
ferent tissue types, as shown in Figure.6.3.j. This method could discriminate the three types of
tissue (pcontrol−GBM<0.01, pcontrol−meta<0.01, pGBM−meta<0.01). The results were combined to
develop a discriminative algorithm. First we used the two most e�cient indicators, optical index
and average lifetime (Figure 6.3.n.). Results with speci�city and sensitivity respectively of 92 and
95% are shown in a 2D-scatterplot. To improve the diagnostic algorithm, a third piece of informa-
tion was added to represent the data in a 3D-plot (Figure 6.3.o.). A cross-section was drawn to
obtain a sensitivity of 97% and speci�city of 100%.

The best method to directly discriminate tissue types was shown to be lifetime measurements.
We decided to investigate it more in detail by implementing another analysis method, called the
phasor approach [133] which helped to uncover a discriminative indicator without �tting of data.
The results are shown in Figure 6.4.

Control, GBM and Metastasis decays were gathered on a global phasor counts, Fig.6.4.a. In
this phasor plot �ve local maximums of counts were observed and selected in order to assign a
di�erent color to pixels within each region. Each image using the phasor plot was displayed with
this color code. Examples are shown in Figure 6.4.b,c,d,I,j,k. and compared to the fast FLIM
images obtained by the microscope software. The images show green and blue dominant in control,
while red and yellow are more present in tumoral tissue. To quantify this di�erence a color ratio
was de�ned and calculated in each sample. The results, comparing the tissue groups, are presented
in Figure 6.4.l. Each tumor could be di�erentiated from the control tissue (Control-GBM : p=0.03
and Control-Metastasis : p=0.02). However it did not give a signi�cant discrimination between
primary and secondary tumor. The green and blue areas, occupying the majority of healthy tissue,
had an average lifetime around 1.4-1.6 ns, while control had a mean average lifetime around 1.3ns
in the �tting method. Yellow and red areas, occupying the majority of tumoral tissue, had average
lifetimes around 1.8-2 ns, while the GBM mean was around 1.6 ns and the metastasis mean around
1.9 ns in the �tting method.

From DUV to NIR, various interesting discriminative indicators were highlighted. To improve
the capacity to discriminate not only control from tumor, but also tumor types from one another,
the three most e�cient indicators were combined for scatter plotting the groups in 3D space to
highlight discrimination. The results with the indicators, Porphyrin-NADH ratio at two-photon
excitation (Optical Index), Tryptophan collagen ration at DUV excitation (DUV ratio) and the
average lifetime at 890nm, are shown in the Figure 6.5.

This 3D algorithm was used to �nd an accurate discrimination between a healthy region and
any tumoral region, Figure 6.5.a., the points of each type were approximated by an ellipsoid giving
an overlap of only 1.8%, resulting in high rate of tumor discrimination. This algorithm was also
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Figure 6.4 � Phasor analysis of the FLIM : (a) Global phasor histogram with the selected zones and
the error ellipses. (e) Average lifetime �uorescence decay calculated in each zones. (l) Boxplot of
the pixel colors criterion with p-values of the control-tumor test. Comparison of three tissue groups
control (b,f,i,m), glioblastoma (c,g,j,n) and metastasis (d,h,k,o) with rebuilt images of the phasor
analysis (b,c,d,I,j,k) and Fast FLIM of the microscope (f,g,h,m,n,o).
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Figure 6.5 � Discrimination of tissue types combining three indicators: Porphyrin/NADH ratio
using two-photon excitation (Optical Index), Tryptophan/collagen ratio at DUV excitation (DUV
ratio) and the average lifetime using 890nm excitation. (a) Results comparing Control and any
tumor types. (b) Results for Control, primary tumor (GBM) and secondary tumor (Metastasis).

used to look for discrimination between tumor types, Figure 6.5.b., primary tumors had only 6.7%
overlap with secondary tumors. This second 3D-plot also showed that the secondary tumors could
be unambiguously discriminated from the control tissue.

6.2.4 Discussion

In this study excitation ranging from DUV to NIR, various detection contrasts, and multiple
methods of analysis were applied to biopsied brain tissue of three types: primary tumors (n=17),
secondary tumors (n=21) and controls (n=13). We demonstrated that: 1) Tumor could be discrim-
inated from control in the DUV excitation range using molecular ratio 2) The merged TPEF-SHG
images revealed features similar to those seen in standard neuropathology, and could discriminate
tumor from normal tissue 3) Quantitative TPM signals also discriminated between tissue types
combining molecular ratio and average lifetime 4) Lifetime measurements analyzed with a phasor
method gave a discriminating criteria signi�cantly (p<0.05) distinguishing control from tumor tis-
sue. 5) A multiscale discriminative algorithm, could graphically separate the tissue types in a 3D
plot.

First, using DUV spectral response and cluster analysis, we showed that a distinguishing spectral
signature for tumoral versus healthy tissues, quanti�ed in the tryptophan and collagen peaks ratio
calculated on all spectral mosaic, with <2.8 being healthy, and >3 being tumoral. Few studies
have exploited DUV excitation of Tryptophan. Pradhan et al. [317] studied Tryptophan/NADH
and found a higher ratio in metastasis tissue, similar to our �ndings in ex vivo human brain tumor.
The autouorescence of collagen has also been studied in tumor with a UV excitation. Georgakoudi
et al. looked at cervical lesions and Barett's esophagus and found lower collagen signal in high-
grade dysplasic legions [340]. Pu et al. collagen emission in prostate cancer, and showed a decrease
in tumor region. They looked at the NADH/collagen ratio for a robust quantitative indicator
of tissue nature [306]. The actual state of art is often comparing one or two molecules to �nd
discrimination. A four molecule analysis was performed to get closer to clinical expectations of
accuracy and repeatability. A 3D discriminative algorithm using three molecular ratios achieved
speci�city of 73% and sensitivity of 90% and thus could be used as diagnostic tool. However, low
speci�city indicates signi�cant false-positives when a tumor is detected.

Secondly, we used the NIR images superposing two modalities: �uorescence emission and second
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harmonic generation, to highlight tissue structure comparable to the histological standard for tumor
diagnosis. A neuropathologist was asked to perform a histological diagnosis blind to the H&E
results. This test showed discrimination with a sensitivity of 75% and a speci�city of 50%. Training
neuropathologists on TPEF images could improve these results since this trial was a rst time
experience using this imaging modality. Blind analysis of TPEF-SHG images have never been
performed before on brain tumor, but on other types of cancer, such as gallblader cancer [280],
breast masses [281], and liver cancer [282]. In these analysis, they found even higher results than
us with accuracy of discrimination around 90%, due to training of the neuropathologist on bigger
sets of data. Analysis directly on TPEF images have advantages over staining technique, such as
time management and tissue preservation, however it still requires a trained neuropathologist to
diagnose based on visual observation. The real advantage of optical microscopy in our study is
the capacity to provide more parameters and new measurements, feeding into data analysis and
visualization that support automated distinguishing of tissues. Two-photon excitation provides
other parameters besides �uorescence intensity: the �uorescence lifetime and SHG. We use the
power of these techniques to achieve a better discrimination of the nature of tissue by combining
the results of molecular analysis on emitted spectrum and the lifetime analysis of the same region.
The combination in 3D-plot of: (1) the average lifetime, (2) the FAD/NADH ratio and (3) the
Porphyrin/NADH gave the best discrimination with a 97% sensitivity and 100% speci�city. This
type of analysis were already published only with visible, one-photon excitation [135]. Other groups
tried to build a 2D algorithm, using visible excitation : Liu et al [117] studied redox ratio and
spectral shape with a 89% sensitivity and a 97% speci�city. Lin et al [124] analyzed �uorescence
intensity and re�ectance at 337nm, with a one-step algorithm yielding sensitivity and speci�city
under 85%. A two-steps algorithm gave them better results (sensitivity, 100%, speci�city, 76%).
However we can achieve similar results with a one-step algorithm, which is easier to implement in
a clinical work�ow. Thirdly, using two photons imaging, only the �uorescence lifetime produced
signi�cant discrimination among the three types of tissue (p<0.01). Due to their independence from
concentration, �uorescence lifetime measurements have been the most popular technique. Several
teams have tried to implement it with various analysis algorithms to answer the question of glioma
margin resection. Sun et al [136] used the Laguerre coe�cient value and found a longer lifetime
in GBM than normal tissue with a p-value<0.05. They preferred this technique because there is
no deconvolution process of the data, avoiding any assumption on the decay shape. Another non-
�tting technique is the phasor approach [133]. This is the second method we tried, since it o�ers a
very graphical representation of data. The phasor approach showed �ve distinct regions, with some
being predominant in tumor and others in control tissue. From this a numerical indicator from
region repartition was exploited and resulted in a signi�cant di�erence between tissue types (0.023
< p-value< 0.031). However, compared to the exponential �tting, primary and secondary tumor
could not be discriminate. Other exploitations of phasor plot exist [318], that could be implemented
to improve these results.

We took advantage of our multiscale analysis and designed a graphical discriminating algorithm
based on spectral DUVmeasurements, spectral NIR measurements, and lifetime NIR measurements.
We distinguished an ellipsoid region for each type of tissue. Primary tumor and control had only
1.8% of overlap. Secondary tumor and control had 0% overlap and primary and secondary tumor
had 6.7% overlap.

This study highlights the capability of discriminating brain tissue type from one another, tumoral
from control, but also tumor types from one another. This was achievable by combining the dierent
quantitative and qualitative measurements accessible with optical microscopy. The technique used
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in this study can be implemented in real-time in the operating room with fast and direct analysis.
These results are bringing us closer to clinical use and could improve the surgical practice of tumor
resection. The perspective of this study are to extend the work to fresh tissues and other tissue
types to get information closer to the in vivo condition and improve the discriminating algorithm.
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Chapter 7

Discussion and Conclusion

In this thesis project intrinsic �uorescence signal of tissue has been extensively analyzed using
di�erent excitations and contrasts. Three goals can be extracted from this project : 1) to show
auto�uorescence signal, as a powerful contrast for brain tissues diagnosis, 2) to develop data analysis
and robust algorithms required to �t into surgical work�ow, providing reliable in vivo guidance,
and 3) comforting the development of the multimodal two-photon endomicroscope, presenting an
architecture resolving current issues in a clinical setting. Interesting and promising results have
been obtained for each step. In this last chapter, I will discuss their signi�cance, where they �t in
the literature landscape, and look at the prospects of getting closer to clinical use.

7.1 Auto�uorescence as a diagnosis tool

At present, the key limitation of intra-operative techniques is the lack of cellular level reso-
lution imaging. To discriminate areas with very low concentrations of tumor cells, the standard
is still H&E-stained histopathology, an ex-vivo technique also used to diagnose tumor types and
grades. The aim of this work is to address this challenge and to present a technique that could be
implemented in the operating room and result in direct discrimination for the surgeon.

Two approaches have been explored and combined to answer this question. First, �nding a label-
free imaging technique showing the same cellular features as the techniques now used in histology.
Secondly, being able to quantify and monitor cellular energetic metabolism, hemodynamic, or even
structural changes in order to identify anomaly in the tissue at a cellular scale and give an automated
answer to the surgeon. For this second point di�erent quantitative measurements were performed
on the auto�uorescence response of tissue using a large range of excitation from the deep-UV to
the NIR and on di�erent brain tissue cohorts.

7.1.1 Qualitative analysis of label-free �uorescence images compared to

gold standard H&E-stained

Neuropathologists use H&E-stained images as a gold standard to identify brain tumor type and
grade. These diagnosis are based on the observation of tissue architecture observed by a pathologist.
Looking at three important groups of brain tumors, the di�erent features that are highlighted by
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pathologist are described here :
Glioblastoma tumor, a WHO grade IV glial tumor, is identi�ed by [319] :

� Coagulation necrosis or microvascular proliferation with thickened vascular walls due to
increase in nuclei in vessel wall

� Hyper cellular with mitotic �gures
� Pseudopalisading necrosis : tumor cells around necrotic zones.

Meningioma WHO grade I and II are identi�ed by [320]:

� Lobulated architecture, often containing "meningothelial" whorls
� Syncytial cells with indistinct cell membranes
� Psammoma bodies
� Grade II have increased mitoses, cellularity and sheet-like growth pattern
� Grade II have areas of spontaneous necrosis

Metastasis, secondary brain tumor, revealed structures such as [321, 322]:

� Sharply demarcated from the surrounding brain
� Surrounding brain shows tissue depletion, neovascularization and gliosis
� Epithelial cells with discrete cell boundaries
� Dense vascular regions

Neuro-pathologic analysis happens ex-vivo and H&E staining is a long process, that takes several
hours to days. In order to have a shorter processing time to produce an image, the label-free
technique was explored. In this thesis two-photon microscopy was chosen to do the work. This
method gives access to the auto�uorescence of tissue but also to the di�use signal of SHG from
non-centrosymmetric structures.

The two-photon imaging technique was used on three cohorts, �rst to explore the possibility of
it on a large scope of brain tumors, second to discriminate the grade of meningioma and thirdly
to discriminate primary tumor glioblastoma and secondary metastasis tumor. In the chapter 3,
GBM, metastasis and meningioma were imaged in a �rst exploratory study with a two-photon
excitation. In the TPEF-SHG images, area presenting organization and structure close to the H&E
standard were found. In the chapter 4, WHO grade I and WHO grade II of meningioma were
studied and TPEF-SHG images were compared to gold standard H&E. The SHG signal highlighted
the collagen whorls and psammoma, the sheet like architecture typical of grade II. In the chapters
5 and 6, primary and secondary brain tumor were discriminated using a two-photon microscope.
The TPEF-SHG images in glioblastoma highlighted typical structures such as enlarged vessels walls
(SHG) with surrounding dense cells (high TPEF intensity), and palisadic necrosis with circular-
like intense regions in TPEF images. The metastasis features could also be precisely highlighted
with SHG signal revealing the dense vascularity, and the cells architecture showing in the TPEF
signal. These observations were convincing enough to imagine the possibility of a diagnosis derived
directly from the two-photon images. In the literature on two-photon microscopy analysis of other
cancer types, blind analysis directly on the TPEF images has already been performed [280�282],and
these studies resulted in high accuracy of diagnosis. The same approach was used in the chapter
5 to perform the �rst blind analysis on brain tumor TPEF-SHG images, and this resulted in an
accuracy of 72% to discriminate tumor from healthy tissue. Tumor types were also di�erentiated
one from another resulting in an accuracy of 80%. The factor limiting higher accuracy was the
high rate of false positive 28% during this analysis. There were tissues that, based on the image,
could not result in any diagnosis. The solution for improvement at this point was better training
of the neuropathologist on the TPEF-SHG images as they are with the H&E images, using a
larger cohort of tissue. Another approach presented in chapter 5 proposes to use a deep-learning
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algorithm to transform the auto�uorescence images in a virtual histological stained image that the
neuropathologist could analyze with this already-known expertise.

Still, diagnosis based on a human judgement on an image presents high variability and often
low reliability among di�erent observers. Even the gold standard H&E analysis is subject to dis-
crepancies. Pathological analysis and reports are still the crucial central core of an oncological
diagnosis and choice of treatment course, making it a very sensitive point in the process and in
need of high accuracy [323]. However the diagnosis of CNS disease is the most challenging even
for the most experienced neuropathologist, and most especially in tumor diagnosis. A study was
made to look at the accuracy of diagnosis based on H&E stain between two di�erent observers. A
second opinion was performed on 500 cases and a major diagnostic error was found in 25% of cases
[324].The Childhood Brain Tumor Consortium looked at another source of discrepancies in intra-
observer reliability. Neuropathlogists had to re-evaluate a large number of their cases sometime
after the original, and it resulted in the same diagnosis in only 76% of cases [325]. The most errors
were in the glioma subtype, a crucial point given that most adult brain tumors fall into the glioma
category [323]. So even if H&E were to remain the gold standard, e�orts should be done to improve
diagnostic reliability, and strong challenges still remain in using such a subjective technique for
diagnosis.

Even if the �rst direction was to improve the pathologist recall of diagnosis criteria and to
regularly edit the database and classi�cation of cancers, another direction taken was to use an
additional quantitative indicator as an added method for diagnosis. Immuno-histochemistery (IHC)
methods have appeared in the last two decades, as complementary to H&E-stained histology. These
methods are used to precisely identify the tumor cell type/origin, and to quantify cell proliferation.
They are even used to evaluate the boundary between tumor and the surrounding tissue using
speci�c antibodies to target proteins involved in important tumor process [326]. IHC brought
molecular information to the morphologic information provided by H&E-stained images to improve
accuracy of neuropathologist diagnosis. However these tests require a second set of staining and
so a longer process to arrive at a pathology report for the oncology team. We have seen before
that two-photon imaging can provide morphologic information close to the H&E standard in few
minutes or seconds. If this could be combined with an optical measure that provides molecular
information, this would result in accurate discrimination using only one label-free technique that
could be used in-vivo.

In the chapter 4, the grading of meningioma was explored and an IHC method, the Ki-67
proliferative index, was used to precisely assess the tumor grade. The spectral intensity of each
tissue was compared to the proliferative index and a direct correlation was found between the two
measurements, hinting that spectral response and more generally auto�uorescence emission could
translate molecular processes happening in tissue and give a precise quanti�cation of the tissue
nature. Based on that observation and knowledge of the molecules contributing to the spectral
emission, quantitative studies were performed on brain tissue using optical microscopy methods to
elaborate an automated discrimination method.

7.1.2 Quantitative measurements based on auto�uorescence emission

7.1.2.1 Redox ratio to monitor energetic metabolism

Two important cofactors of cellular energy metabolism are the NADH and FAD that can be
present in the cells in oxidized form (NAD+, FAD) or reduced form (NADH, FADN2), playing
donor and acceptor in ATP formation [114, 327]. Glycolysis and oxidative phosphorylation are the
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two main processes involved in energy metabolism. In the glycolysis process NAD+ is consumed to
produce NADH, and in the mitochondria at the end of the process FAD is consumed to produce
FADN2. In the oxidative phosphorylation process to produce ATP, NADH is the main donor while
FAD is the main electron and proton acceptor. Di�erence between healthy and tumor tissue is
the equilibrium between these two energy producing reactions. It has been shown that tumor
cells privilege glycolysis even in normal oxygen conditions, making NADH dominant compared to
FAD [114, 116]. NADH and FAD are two molecules that can produce an auto�uorescence signal
when excited at suited wavelength. Because they are complementary molecules in the cell energy
metabolism process, monitoring their �uorescence ratio will translate the state of metabolism in
tissue. It can be deduced if the tissue is privileging a glycolysis or oxidative process and thus
showing if the tissue is tumoral or healthy. Di�erent ratios have been explored in the literature
depending on the tissue explored and the setup used.

� FAD/(NADH+FAD) [328]
� (FAD-NADH)/(FAD+NADH) [217]
� NADH/FAD [329, 330]

The ratio with NADH at the denominator resulted in higher response in tumor than in healthy
tissue [329, 330], translating a glycosides dominant pathway in energy production in tumor. On
the contrary, ratio with FAD in the denominator, resulted in lower response in tumor than healthy
tissue [217, 328], translating of the reduced use of oxidation phosphorylation pathway to produce
ATP.

In this thesis the redox ratio was used to discriminate the di�erent brain tumor regions from
healthy regions using di�erent formula of the redox ratio. In chapter 2, �xed brain biopsies
of di�erent tumor types were studied under visible excitation (375 and 405nm) and the spectral
response was measured. NADH and FAD contribution to the spectrum were extracted using a �tting
algorithm, and the redox ratio was calculated using the equation (FAD-NADH)/(FAD+NADH). All
the tumor tissue resulted in a lower redox ratio than the one found in control tissue (p<0.001),which
correlated with results in the literature [217]. However the types of tumor couldn't be discriminated
from one another signi�cantly. In chapter 5, a similar analysis was performed on fresh tissue to
compare primary and secondary tumor to healthy tissue, and the NADH/FAD ratio was used to
monitor the cellular metabolism. Control tissue had the lowest redox ratio, while secondary tumor
and primary had the highest ratios and could be signi�cantly discriminated from healthy tissue.
These results are correlated to the hypothesis of a favored glycolysis pathway in tumor tissue, as
already shown in the literature for other types of tumor [329, 330] and in rat brain tumor [117,
128].

Even if the redox ratio can highlight di�erences between tumor and healthy tissue and gives
a signi�cant discrimination in some cases, it is not reliable enough to be used alone as a de�nite
discrimination tool in the operating room. Other parameters of �uorescence and molecular ratio
have been quanti�ed to be complementary to the metabolic response and bring more reliability to
discrimination based on the intrinsic optical response.

7.1.2.2 Quanti�cation of �ber organization

Collagen is one of the main proteins of the ECM in tissue, varying in types and structures. Col-
lagen of type I and III are composed of triple-helical macromolecules that are non-centrosymmetric
and result in a SHG signal [301]. This optical modality can consequently be used to monitor ECM
organization in tissue and highlights changes due to cancer. In some major cancer types, systematic
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methods of quanti�cation have been developed to quantify di�erent cancer types [331]. Some teams
have looked at the ratio between SHG collagen signal and �uorescence signal from elastic tissue,
sometime called the SAAID (SHG-to-AF Aging Index of Dermis) value [331]. It is a method used
in skin cancer for example to identify margins of basal cell carcinoma, with the highest SAAID
value in tumor [332, 333]. In breast [285] and ovarian cancer [331], the orientation of �bers at
tumor-stroma boundaries (TACS) was used to quantify and classify into three stages of tumor from
early disease(TACS-1) to highly invasive tumor (TACS-3). Some teams also measured the organi-
zation of �ber using a Fourier transform method, for example in colonic cancer showing a certain
organization in cancer tissue compared to random organization of healthy regions [334]. In other
tumors, they only calculated the density of SHG pixels in the studied regions. With for example in
renal �brous, density and average value of SHG computed in three scores [283]. In the evaluation
of neck margin in pancreatic cancer, pixel density of collagen was evaluated [284].

In brain tumors, collagen �ber structures are not as present as in other tumor types such as
breast cancer or bladder cancer. The main groups showing signi�cant SHG signals are the metastasis
that developed dense vascular organization to migrate and also meningiomas that arise from dura
matter in a region made of highly �bered organization. GBM could still result in more SHG signal
than control due to the thickened vessels walls. From these observations, a quantitative indicator
of SHG was used in the study of fresh biopsies from primary and secondary tumor. It was chosen
to track the intensity of SHG and resulted in signi�cant discrimination of the metastasis tissue.
GBM in some cases gave a higher intensity, however it was not always signi�cantly di�erent than
healthy tissue. In the literature, two studies looked closely at collagen �brillar formation in glioma
[335] especially GBM structures [336] and quanti�ed the signal. In the �rst study they looked at
TPEF-SHG images of glioma tissue compared to healthy cortex [335], and calculated the ratio of
SHG pixels to overall pixels in each analyzed region. The ratio was higher in glioma than cortex
tissue. This was explained by the fact that in cortex tissue the ECM has a special composition made
up mostly of hyaluronic acid, and is usually devoid of the �brillar proteins, such as collagen, usually
found in the rest body [337]. However glioma are presented with collagen deposition in connective
tissue and newly formed vessels, which will produce a stronger SHG signal. Another feature of
GBM is the enlargement of vascular structures compared to normal tissue. A study showed that
�brillar structures will form in the vascular elements of GBM and quantify the formation using the
ratio of SHG pixels to the number of TPEF pixels in the vascular region, �nding non-zero values,
and con�rming that SHG could be a means to discriminate GBM based on its vascular formation
[336].

7.1.2.3 Indicator of the molecular compositions

Using visible or two-photon NIR infrared excitation, another molecule that plays a role in cancer
metabolism can be excited, the porphyrin. In a lot of tumor investigation, it has been shown that
porphyrin will accumulate more in the tumoral tissue compared to healthy ones [128, 330]. This
makes porphyrin an interesting tumoral marker. Teams have started to look at the ratio of NADH
over porphyrin as another molecular indicator. In tumor, this ratio has been found to be lower, due
to the higher accumulation of porphyrin compared to NADH. In chapters 2 and 6 this indicator
was measured on �xed tissues of primary and secondary tumor using visible and two-photon exci-
tation. Tumor tissue showed a lower NADH/porphyrin ratio than the control tissues, concurring
with the literature.
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In this thesis we looked at other excitation ranges ,such as the deep-UV, to be able to monitor
more molecules emitting auto�uorescence. These results are presented in the chapter 6. In the
deep-UV range three new molecules could be excited : tyrosin, tryptophan, and collagen. These
molecules were explored to �nd more reliable ratios or correlations between di�erent molecules
excited from DUV to NIR. This will possibly result in more reliable discriminations or a greater
understanding of molecular interactions and metabolism in tumor tissue. In this study the tryp-
tophan/collagen ratio has shown the best results for discriminating tissue. A non-�tting method,
called clustering, was applied to the spectral map and it highlighted variations in the spectral re-
sponse of the tryptophan/collagen ratio. This ratio was also calculated using a �tting method and
a statistical analysis between primary and secondary tumor. The tryptophan/collagen ratio was
higher in tumor than control (p<0,01), which is in correlation with the studied literature [305].

Using a non-�tting method such as spectral cluster analysis is an interesting and powerful
method to reach automated diagnosis, that will be based on an arti�cial intelligence rather than
a human judgement. This technique has shown a growing development, in infrared spectroscopy
techniques, such as Raman and FT-IR [338, 339], applied to tumor tissue discrimination. Studies
presented results with unsupervised and automated algorithms, based on spectral lap clustering,
even more precise than histology in some cases to identify presence of tumor, highlighting also
inhomogeneity in the tumor regions [308]. In our work, the possibility to apply the cluster to DUV-
visible auto�uorescence spectroscopy was demonstrated. The automated algorithms developed in
infrared spectroscopy, could consequently be now transferred to the DUV-visible spectroscopy to
obtained also unsupervised discrimination with 2D representation.

7.1.2.4 Fluorescence lifetime

Spectral measurements have provided interesting indicators to discriminate tumoral from healthy
tissue. However, it has often failed to discriminate between tumor types, limiting the reliability and
speci�city of this method. Another problem is the di�culty of separating the response at a molec-
ular level due to the spectral overlap between the �uorescence emission of each of the molecules.
Molecules like NADH can be presented in two forms in tissue, free or bound to a protein, and
the spectral emission of each form is only separated by 20nm, making it di�cult to separate them
spectrally [114]. Finally, spectral measurements are strongly dependent of the concentration of �u-
orophores, and regions with a low density of tumor cells failed to give a signi�cant discrimination.

To improve these results and to take advantage of all the possibilities of auto�uorescence, another
parameter, the �uorescence lifetime, was tracked in a di�erent study. This measure is independent
from the concentration of �uorophore but is mainly dependent on the �uorophore microenvironment:
pH, temperature, concentrations of ions and oxygen, binding to other molecules or conformation
[114]. Combining this method with spectral measurements could o�er a powerful tool to study
tissue nature. Table 7.1, illustrates the obtained results using �uorescence lifetime to discriminate
brain tissue types.

On fresh tissue, using either one or two-photon excitation, the �uorescence lifetimes of NADH,
FAD, and porphyrin at 405nm, or their average two-photon lifetimes at 890 nm, were always lower
in tumor than in healthy tissue. Higher grades of meningioma also presented a lower �uorescence
lifetimes, leading to the assumption that the more aggressive is the tumor, the lower is the �uores-
cence lifetime.

The results tracking the NADH component showed a decrease in tumor tissue. This decrease
could be related to the di�erent forms of NADH, which presents di�erent lifetime values, 0.3 ns for
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Compared tissue
tissue τNADH τFAD τPph τavg
state 405nm 405nm 405nm 890nm

Control to Primary Glioma
fresh ↘ ↘ ↘ ↘
�xed ≈ ↘ ↗

Control to Secondary Meta
fresh ↘ ↘ ≈ ↘
�xed ↘ ↗

Primary G to Secondary M
fresh ↘ ≈ ↘ ↘
�xed ↗

Control to Meningioma
fresh ↘ ↘ ↘
�xed

Meningioma GI to Meningioma GII
fresh
�xed ↘ ↘ ↘

Table 7.1 � Summary of the �uorescence lifetime results for the di�erent brain tissue discrimination
studied in this thesis. ↘ : decrease , ↗ : increase , ≈ : same order in lifetime value.

the free form and 1.8 for the bound form [114]. Free NADH is localized in the cytosol and plays
a major role in the glycolysis process, while the bound form is localized in mitochondria and is an
actor in oxidative phosphorylation [114, 340]. It has been explained previously that tumor tend to
favor a glycolysis state, resulting in more abundant free NADH and therefore shorter lifetimes.

It could be possible to monitor metabolic state by studying the �uorescence lifetime of free and
bound form of molecules. To exploit the free-bound fraction of NADH in �uorescence lifetime,
more graphical analysis methods have been developed. The lifetime results presented until this
point have been extracted with a bi-exponential �tting method. However a non-�tting method has
been developed and provides direct graphical results of the free/bound fraction of NADH or FAD.
This method is called the phasor FLIM [133, 310, 341].

This method was implemented in the study described in chapter 6 of my thesis, looking at the
discrimination between primary and secondary �xed brain tumor tissues. The phasor plot showed
�ve distinct regions in the pixel analysis that were associated with di�erent colors and re-projected
on false-color images. From that color criteria were used to separate tumor from healthy region.
This method showed a high accuracy in separating tumoral from healthy tissue, however was not
speci�c enough to di�erentiate primary from secondary tumor. To improve the accuracy of phasor
plot analysis and to take advantage of its graphical representation, teams have developed a method
to easily access the free-bound fraction of NADH [341]. This technique can also be applied to the
measurements of the free-bound FAD fraction and is currently under development in the lab for
further tissue studies.

7.1.3 From multimodal detection to automated algorithms

In the literature, studies based on �uorescence spectroscopy or �uorescence lifetime have been
able to highlight some discrimination [105, 130, 131, 332, 342]. Combining these two modalities
improves signi�cantly the sensitivity and speci�city of a discriminative algorithm, as shown, for
example, by Butte et al. [252]. See table 7.2.

Other teams have tried using multi-contrast techniques for discriminating the nature brain
tissue in order to improve the accuracy of their discriminative algorithm. Using a multi-contrast
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Meningioma Normal Dura Normal Cortex

N=75 N=17 N=5

Spectral values only Sensitivity 61% 65% 100%

Speci�city 73% 66% 98%

Time resolved values only Sensitivity 84% 77% 100%

Speci�city 100% 91% 90%

Spectra+time-resolved values Sensitivity 89% 100% 100%

Speci�city 100% 91% 99%

Table 7.2 � Comparison of discrimination algorithm on a study of meningioma and dura matter
[252]

approach based on re�ectance and spectral analysis, Lin et al. performed a pilot clinical trial on 26
brain tumor patients [124].two excitation wavelengths of 460nm and 620nm, and built a two-steps
algorithm combining the �uorescence emission and the re�ectance at each excitation wavelength.
This algorithm gave a sensitivity of 100% and a speci�city of 76% between glioma in�ltrative
margin and normal brain tumor [124]. Toms et al. tried two modality of discrimination using
337nm excitation wavelength [125]. For glioma solid tumor regions compared to healthy cortex
they obtained a sensitivity of 80% and speci�city of 89%, and for glioma in�ltrative regions, a
sensitivity of 94% and speci�city of 93% [125]. This method gave promising results but wasn't able
to produce the same performance as the combination of spectroscopy and lifetime measurements
shown previously.

In this thesis, the approach of spectral and lifetime measurements was chosen to discriminate
tissue. In the chapters 2, 3 and 4, it was shown that each technique was able to give dis-
crimination on �xed and fresh tissue with statistical signi�cance. The �rst multimodal algorithm
for tissue discrimination was tried in the chapter 5, where freshly extracted biopsies of primary
and secondary brain tumor were observed using two-photon excitation, and combining spectral,
�uorescence lifetime and SHG signals. A 3D representation combining the redox ratio, the SHG
intensity and average lifetime gave a clear distinction between healthy tissue, primary tumor and
secondary tumor. In chapter 5, a large cohort of �xed brain tumor tissue was accessible and an
algorithm developed using multi-range and multi-modal analysis from deep-UV to NIR. The results
are summarized in table 7.3.

Our results showed that the multi-modal algorithm combining spectral and �uorescence lifetime
provided the best accuracy, higher than 98%. It was then tried a multi-modal and multi-range
algorithm that combined NIR previous indicator to a molecular ratio in the DUV excitation range.
This resulted in a similar 98% accuracy, which con�rmed our results using two-photon excitation,
but did not improve it.

In the development of a discriminative algorithm, several stages are necessary to reach clinical
use. First is the training phase where the discriminative thresholds are determined. This were done
in the various chapters of this thesis, where thresholds have been tested using di�erent algorithms.
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Spectral
only

(275nm)

Spectral
only (810-
890nm)

Spectral-
lifetime(810

and
890nm)

Spectral-
lifetime(275,
810 and
890nm)

Sensitivity 90% 92% 97%

Speci�city 73% 95% 100%

Overlap 1,8%

Table 7.3 � Di�erent algorithm tried on �xed tissue for discrimination between primary and sec-
ondary brain tumor in chapter 5.

Second,the test phase, were the thresholds have to be tested on a larger cohort. This stage is
a continuing part of the work of this study. Next, the algorithms have to be automated and
implemented in a measuring tool, which will lead to the stage of clinical trials. A prototype is
under development in my research team in order to reach in vivo test. The last phase during these
tests will be algorithm optimization to achieve the most reliable tool and certi�cation for clinical
use.

7.2 Optical development towards an intra-operative endomi-

croscope

7.2.1 First bi-modal non linear endomicroscope

I have had the opportunity to conduct my research project in a dynamic team, around an idea
that has received substantial �nancial support. Several PhD candidates and interns were involved
with the project before and during my PhD, giving me the possibility to participate to their work
in order to be able to take part in all the di�erent aspects of such a large project. When I started
my PhD at the lab, the development of the two-photon endomicroscope had already started. The
architecture of the �rst prototype had been chosen and put in place in a lab setting. See �gure 7.1.

The chosen architecture was a pulsed MaiTai laser tunable from 690 to 1040nm. A pre-
compensation unit was used at the output of the laser. The unit was made of a 50cm SMF �ber and
a GRISM line [195]. A 2 m DCF �ber was used to excite tissue using a GRIN lens as an objective.
The emitted �uorescence was collected by the same GRIN and DCF �ber to be sent into a spec-
trometer for this �rst prototype. The �rst endomicroscope prototype provides bi-modal spectral
and lifetime detection. However the �nal goal is to add to it two PMTs to image �uorescence and
SHG signal.

Using this setup two studies were performed previously to my PhD. In the �rst one various
commercially available DCF's were tested and compared to determine if one of them might be
suited for two-photon excitation and detection at the same time [196]. In the second study the
collection capacities were further tested looking at the resolution obtained combining the �ber to
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Figure 7.1 � Set-up of the �rst developed two-photon endoscope [196].

di�erent GRIN lenses [197]. The tested �bers were three step-index DCF's (Fibercore, Liekki,
Nufern) and one micro-structured DCF (Crystal Fiber). Measured optical characteristics using
800nm excitation wavelength were summarized in table 7.4.

The comparison showed that the micro-structured Crystal Fiber gave the best features at the
excitation, with the shortest pulse to date in the literature (24 fs) and a very good average power
(50mW) for exciting tissues [196]. The Crystal Fiber DCF was also characterized at the collection
using various GRIN lenses and showed poorer lateral resolution compared to other �bers [197]. The
better performances of the Crystal Fiber were due to the high NA of the inner cladding, which is
needed for two-photon detection [196], where its poorer lateral resolution was due to a too large
core diameter, 16µm. The Crystal Fiber is also the most expensive of the four �bers, which is
a drawback for its prospective use in clinical settings [197]. These two studies showed that an
adequate �ber did not yet exist, but that it should ideally have a con�guration close to the Crystal
Fiber DCF with a smaller core diameter. To achieve that, a collaboration was put in place with
the group of Alexandre Kudlinsky (PHLAM, UMR8523, Lille) to build a customized DC-PCF. The
characteristics of such �ber are detailed below :

� Micro-sctructured crystal �ber : hole-to-hole spacing and hole diameter respectively 3.5µm
and 0.41µm.

� Central core diameter = 6.4 µm (single-mode at 800 nm), NA core (800 nm) = 0.097
� NA inner cladding (450nm) = 0.27

During my PhD, I participated in the work of the team post-doc on the characterization of the
customized DC-PCF in the endomicroscope setup. Two papers were published and are presented
in appendix A and B.

In the �rst study, appendix A, �ve meters of this new DC-PCF �ber were placed in the two-
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Manufacturer Core-Inner
cladding ∅

(µm)

Core-Inner
cladding
NA

Pulse
dura-
tion(fs)

Average
power(mW)-

Pulse
energy(nJ)

Fibercore 3,6 - 100 0,19 - 0,25 40 9 - 0,11

Liekki 5,5 - 125 0,15 - 0,46 37 5 - 0,06

Crystal Fiber 16 - 163 0,04 - 0,64 24 50 - 0,14

Nufern 9 - 105 0,12 - 0,2 31 11 - 0,14

Table 7.4 � Comparison of pulses caracteristics at the output of four commercial DCF using a
800nm excitation wavelength with the �rst bi-modal endomicroscope prototype [196].

photon endomicroscope setup. The same characterization as for the commercial �bers was applied
to be able to compare the results and reach some conclusions on the performance of this custom
made one. Measurements were performed using two laser pulse durations, 100 and 300 fs, with an
excitation wavelength from 750 to 900nm. At a preferred wavelength of 800nm the endoscope was
able to produce 33 fs pulse duration, at the output of a �ve meter of DC-PCF, without any objective
lens, and 40fs using a GRIN lens. Over the entire range of excitation wavelength, the pulse was
under 60 fs at the �ber output. The customized DC-PCF gave a better simulated lateral resolution
(0.58 µm with a GRIN) than the most-suited commercial �bers. Using very short pulses to excite
�uorophores resulted in a higher collection e�ciency. These results met all the speci�cations de�ned
as having the best excitation-collection performance in a two-photon con�guration. These results
answered all the speci�cations de�ned to have the best excitation-collection performance in a two-
photon con�guration.

To detail the high collection e�ciency of such a �ber, a second study was conducted where
the DC-PCF was placed in the visible endoscope used in chapter 2 and 3 and compared to the
bi-�ber con�guration and to a multimode commercial con�guration. The results are presented
in appendix B. Moreover, in this study, the �rst spectral and lifetime measurements on tissue
using this custom-made �ber with visible excitation were presented. The use of the DC-PCF
in the endoscopic con�guration showed collection e�ciency four times better than the two other
con�gurations. This result is due to the small core, 6.4 µm, allowing excitation in a small focal
volume and the large clad, allowing optimal collection of emitted �uorescence.

Using this setup, quantitative measurements were performed on the exogenous �uorophores,
�uorescein and rhodamine B, then on brain freshly extracted ex-vivo tissues. Lower �uorescence
intensity was found in tumor tissue with a di�erent spectral shape for each group. The lifetime
values of each �uorophore were also shorter in tumor than control. This result showed that our
custom DC-PCF was the best candidate to optimize auto�uorescence collection. Moreover it was
also shown that the combination of �uorescence intensity, spectral width and �uorescence lifetime
could give a reliable discrimination between tumor and healthy region.
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7.2.2 Position and improvement of our set-up compared to two-photon

endomicroscopy state of the art

In the literature, few studies presenting the architecture of an endomicroscope based on a DCF
�ber can be found. Two groups have developed endomicrosocpes based on the commercial �bers
mentioned earlier. Fu et al. developed a two-photon endomicroscope based on the Crystal Fiber
DCF [190]. They used 1 m of �ber to send 80 fs pulse at the output of a MaiTai laser at 800
nm to a sample. They found a 6 µm axial resolution and approximately 1 µm lateral resolution.
Collection e�ciency was improved compared to a SMF, but not compared to other commercially
available DCF's. They were able to perform TPEF-SHG imaging using a MEMS as a scanning
system and this endomicroscope was then used in in vitro studies on cancerous cells [343] and on
mice with gastrointestinal abnormalities [180, 344]. Chang et al. developed an endomicroscope with
the Liekki DCF to perform FCS measurement [345]. Comparing the DCF to a SMF, they found
increased collection and better resolution. This endomicroscope until that time had been tested
only on cytometry measurements in vitro and in vivo in mice [346]. Two other groups took the
same direction as we did and based their development on a customized DCF. Liang et al. used a
customized DCF and compared it to the Nufern and Fibercore commercial DCFs [347]. They used
75cm of DCF with a core diameter of 5 µm, a core NA of 0,12 and an inner cladding NA of 0,35.
They obtained a lateral resolution of 0,7 µm and an axial resolution of 6,5 µm. Compared to the
other DCF, they found an improved two-photon excitation and collection e�ciency, and a reduced
�ber background noise. In this prototype they used a piezoelectric system to scan the sample and
obtained TPEF-SHG images. They also calculated the redox ratio in order to have a quantitative
indicator. The endomicroscope has been tested only on samples of ex vivo mouse liver and in vivo
experiments have been done on anesthetized mouse kidney. Ducourthial et al. also developped
an endomicroscope using a customized DC-PCF from the PhLAM laboratory, but with a di�erent
architecture than ours. The �ber used in their set-up has an inner core of 3,5 µm diameter and
0,13 NA at 800 nm and a microstructure to maintain polarization. They used 5 m of this �ber
with a GRISM pre-compensation unit to obtain a 38 fs pulse at the output with 800nm excitation.
Their endomicroscope had transverse and axial resolutions respectively of 0,8 µm and 12 µm. The
system was tested on ex vivo and in vivo on the kidney of an anesthetized mouse.

With our con�guration we obtained better lateral and axial resolution than in the literature,
with an improved collection e�ciency compared to the commercial DCF. Compared to literature
we also: 1) implemented and presented a multimodality of detection to obtained more reliable
and reproductible discrimination. 2) Build an optical database on brain tissue auto�uorescence re-
sponse, that will be implemented in the endomicrosocpe. And 3) reached a miniaturization suited
to slide the probe into existing clinical tools. Another advantages is the use of a 5-meter long
�ber. Only one other group used this length. Other �bers were 1 meter long or less, which is not
suitable to �t in the operating room environment. The teams using short �bers did not assess the
pulse duration at the output, which in our study appeared to be an important factor for improving
the excitation and collection e�ciency. However using sub-100fs pulses is uncommon compared to
classical two-photon microscopy con�gurations that generally use pulses of 100 fs or more. There
is therefore only little knowledge of the impact of this ultra-short pulses on a biological material,
such as animal or human tissue. One study can be found in the literature looking at the impact of
pulse duration between 15 and 400 fs on human skin excised tissue [348]. The study �rst showed as
in our study that shorter pulses resulted in higher TPEF and SHG emitted signal. Then the study
looked at the tissue auto�uorescence response using sub-20fs pulses and 120fs pulses at di�erent
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penetration depths. They didn't �nd any distortion in the spectral response using sub-20fs pulses.
This ultra short pulses, on the contrary, resulted in a higher intensity and penetration depth for
both the SHG and TPEF response, improving the quality of detected signal [348]. Even if this
study seems to hint that sub-20 fs will not have a negative impact on tissue and will result in a
better TPEF-SHG response, this still a very limited study and some other parameters should be
evaluated. For instance, no measurements were made on the photobleaching that could be induced
with such pulses, neither on the local temperature changes. In order to con�rm the clinical appli-
cability of our designed endomicroscope, a study was conducted with the post-doc of the group on
brain biopsy tissue monitoring the spectral response and the �uorescence lifetime to evaluate the
position and negatif e�ect of these interesting short pulse for clinical applications. The endomicro-
scope was used to excite ex-vivo �xed samples from 40 to 200 fs, and the spectral and �uoroescence
lifetime responses were evaluated. The spectral measurements resulted in similar conclusions as
in the literature. Shorter pulses improved 8 times the collected intensity but did not a�ect the
spectral shape. Fluorescence lifetime detection acted as a probe of any environmental changes,
such as temperature, viscosity and broken molecular links. The lifetime results were not a�ected by
the sub-100 fs pulses, revealing that no local damage was done to the tissue with these shorter pulses.

As of this point we have developed a bi-modal endoscope able to perform two-photon excitation
with collection e�ciency and without causing any tissue damage. The next step for the instru-
ment development is to implement a scanning system in order to combine spatial response with
quantitative measurements and to o�er a known and comfortable modality to surgeons. Two types
of scanning systems have been favored in the literature for implementation in endomicroscopes.
These are the piezoelectric system [347] and the MEMS [190]. The PZT systems have been able
to reach smaller probe diameter [203, 347]. However the algorithms to reconstruct the images and
the overall stability of the system is better using MEMS, making it an interesting choice too [190].
We have been working at �rst on a piezoeletric solution to reach a miniaturization of the probe
to under 2mm of diameter, a size not available in a MEMS probe. However MEMS have recently
been used in a millimetric-diameter OCT probe [349], opening the door to a collaboration in order
to adapt this technology into a two-photon endomicroscope probe. This solution would o�er more
stability than a piezo probe and a more accessible computing system. The two con�gurations are
currently being developed in the group. The scanning system remains a technological barrier to
overcome. This step requires overcoming several technical challenges: miniaturization, speed, and
a large �eld of view, all in order to provide synchronized images in a multimodal instrument.

7.3 Towards other problematics : the bladder cancer

Our method and resulting technology are not limited to answering questions on brain tumor
tissue. This is a universal technology that could address the di�ering expectations of surgeons and
solve issues such as lack of micro-scale resolution, slow acquisition time, and reliability of intra-
operative feedback. Taking a step back from the problem of brain tumor discrimination, the area
of bladder tumor surgery also presents intra-operative challenges that could improve the quality
of patient management. The surgeons need to evaluate the grade of the tumor to understand
how it has in�ltrated the bladder tissues and to choose the appropriate surgical protocol. Getting
this information in real-time during the �rst surgery, will shorten patient management time and
improved surgical outcomes.
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Miniature intraoperative tools going through the urinary tract have already been developed to
give surgeons a method of assessing tumor nature before the surgical intervention. One endomi-
croscopy technique has made it beyond the exploratory phase, is currently nearing completion of
clinical validation, and will start to be implemented in a multi-center study. It is confocal laser
endomicroscopy (CLE) using �uorescein as a contrast agent [350].

Figure 7.2 � Optical biopsy of bladder mucosa using probe-based confocal laser endomicroscopy
(CLE). CLE of normal, low/high grade papillary bladder cancer, CIS, and in�ammation shown
with corresponding white light cystoscopy (WLC) and hematoxylin and eosin (HE) staining of the
biopsy [351].

This technique has been used to provide images showing structures similar to the ones used in
H&E-stained images as shown in �gure 7.2. Basing a diagnosis on an imaging modality is relatively
subjective. In order to make it a standard, as reliable as possible, an atlas of the diagnostic features
for normal, benign, and cancerous tissue has been presented in the literature [352]. Still this
technique showed some limitations : 1) The contrasts until now have been obtained with exogenous
contrast agents, introducing bias and requiring ethics committee approvals; and 2) there is only one
detection contrast, resulting in low reliability and reducing the possibility of automated diagnosis.
In order to address the �rst limitation of CLE, an optical technique based on intrinsic optical signal,
the OCT, has been developed and used intra-operatively in bladder cancer evaluation. Nevertheless
this technique still provides only an imaging technique and consequently lacks the possibility of an
automated diagnosis. Morever the image provided by OCT requires an expert to be interpreted.

At the exploratory stage, few studies can be found using label-free microscopy techniques with
quantitative detection [217, 222, 353]. Aboumarzouk et al. used a visible excitation to perform
spectral measurements on bladder tissue [353]. They tried three quantitative indicators to dis-
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criminate malignant regions from benign ones: the area under the �uorescence intensity curve, the
mean emission wavelength, and the ratio between emitted porphyrin and NADH intensity. The
means emission wavelengths and porphyrin/NADH ratio gave the most signi�cant discrimination.
The ratio was higher in malignant tissue supporting the idea of porphyrin accumulation in tumor.
Palmer et al., in another study, used UV excitation to look at the NADH and FAD spectral re-
sponse and NIR excitation to monitor the porphyrin. Two indicators were computed to discriminate
tissue, the redox ratio (NADH/FAD) and the NADH/porphyrin ratio [222]. They found a higher
NADH/porphyrin ratio in tumor, a result agreeing with the previous study in literature. They also
showed discrimination with the redox ratio but with an opposite trend than in other studies.

The study used various excitation wavelengths to determine three quantitative indicators: the
SAAID ratio to look at the density of SHG signal compared to the auto�uorescence, the redox ratio
(FAD-NADH/FAD+NADH) and the lifetime measurement of free-bound fraction of NADH and
FAD. Each of these indicators resulted in a discrimination between healthy mucosa and carcinoma
in situ tumor.

These few studies demonstrated that optical endomicroscopy could be applied to bladder tissue
discrimination. We therefore decided to test the acquisition and analysis methods developed on
brain tumor to bladder tissue discrimination, in order to test the power and robustness of such
techniques. The �rst explorative study designed, was set to answer the clinical question of grade
identi�cation among healthy tissue, low grade and high grade bladder tumors. The results obtained
with a two-photon microscope are presented in appendix C.

A cohort of sixteen biopsies was explored and composed of �ve low grade, �ve high grade
urothelial carcinoma and six non-tumoral urothelium. The samples were examined under 870nm
excitation wavelength using a two photon microscope. TPEF-SHG images were compared to the
H&E standard. The organization of the urothelial cells were highlighted in the TPEF image and
served as criteria of di�erentiation between grades, similar to the H&E standard. The SHG image
gave access to the architecture of the stroma and the lamina propria, other important structures
in the diagnosis of tumor type and grade in bladder. These �ndings and comparisons to the H&E
stained images are presented in �gure 7.3.

A quantitative analysis was also performed and combined with the spatial the spatial results.
The spectral response and FLIM images were acquired, and the redox ratio and average lifetime
were determined. The redox ratio was signi�cantly higher in the healthy urothelium compared
to tumor samples (p<0.001). Moreover, it was able to discriminate low grade from high grade
tumors. The low grade has a signi�cantly higher redox ratio (p=0.002) than high grade tumor.
The second quantitative measurement was the average �uorescence lifetime, which translated the
balance between free and bound FAD. The average lifetime was shorter in healthy tissue compared
to tumor (p=0.002 and p<0.001), and the low grade had a shorter lifetime value than high grade
(p<0.001). These results mean that the free FAD form was more prevalent in tumor tissue, which
agrees with the �ndings of Cicci et al. in their analysis of CIS [217].

With this study, it was shown that the spatial and quantitative techniques developed using a
two-photon excitation can be transferred to other types of cancer. These results opened a bit more
the door to a clinical transfer of two-photon endomicroscopy, assuring the clinical relevance of such
project.
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Figure 7.3 � Comparison between hematoxylin-eosin Safran staining (a-c) with two-photon �uores-
cence images at 870 nm excitation wavelength, red color for the �uorescence signal and green color
for the SHG signal (d-f) of three tissue types: healthy (a, d), low-grade tumor (b, e) and high-grade
tumor (c, f). Scale: 100 µm. Star: Fibrovascular cores, arrow: Urothelial cells.

7.4 Conclusion

Technical conclusion This work presents the largest database, known to this day, on the aut-
o�uorescence response of brain tissue to answer the question of tumor demarcation. The database
groups results into several brain tissue types : healthy cortex and dura matter, primary glioma
and meningioma tumor and secondary metastasis tumor. The analysis contains measurements of
1) optical coe�cients, 2) spectral response with one-photon, deep-UV and visible excitation and
two-photon NIR excitation, 3) two-photon imaging of �uorescence, 4) results on SHG signal, and
5) �uorescence lifetime with one and two-photon excitation. These large sets of data multimodal
algorithms were developed to �nd relevant thresholds and to highlight the possibility of providing
reliable automated discrimination of brain tissue types. Combined with the technical developments
achieved by the research team to develop a multimodal two-photon endomicroscope, clinical trans-
fer can be considered and supported. Moreover such methods were also able to produce an answer
on bladder tumor grading, showing the capacity to be a universal tool answering di�erent surgi-
cal challenges. Multimodal two-photon endomicroscopy is presenting itself as a major technical
breakthrough for intra-operative diagnosis.

156



CHAPTER 7. DISCUSSION AND CONCLUSION

Personnal conclusion In this PhD, I was able to work in a strong multi- disciplinary environ-
ment. I discovered the interaction on a daily basis with a team of surgeons and neuropathologists
to be a completely "other" type of science that requires adapting one's communication and to reach
compromise in the team's work. Developing technology to improve medical imaging has to be based
on strong collaboration with a hospital team. These collaborations are very enriching scienti�cally
and push you to develop better communication skills, to work productively with people with di�er-
ent kinds of knowledge and scienti�c backgrounds. This collaborative work was extended to a third
part, DISCO beamline, and started during my master's thesis. I was there from the start of the
collaboration and was able to learn how to build a project with di�erent parties, and make it into
a successful collaboration using the di�erent expertise of each person. Working on such a dynamic
project, involving several parties and a large research team, gave me the opportunity to work on a
large set of publications and to present my work in several international conferences even getting
the chance to be awarded best student poster in a session of 2017 Photonic West conference.

This thesis was also built by overcoming di�culties, which was part of the learning process.
One of the �rst di�culties was in collaborating with the hospital. The studies were based on
biopsy sample imaging and it implies that several factors come together: surgery has to happen,
the patient had to be contacted to sign a consent, and the sample had to be large enough to get a
piece for research. All these requirements have made it di�cult sometimes to have a dataset large
enough for statistics in a short period of time. Working around these di�culties required �nding
solutions with the medical teams to optimize the process and the communication. The other major
di�culties were with natural catastrophe. I had to face the consequences of two �oods, slowing
work, creating administrative challenge and di�culties in collaboration. However this is bound to
happen in a long project and consequently developed capacity in project management.

In conclusion, this was a successful PhD thesis and a strong learning experience in a dynamic,
experienced and very welcoming research team. I have truly committed to this project during these
three years and I would like to continue working on it and be a part of those people who will bring
it to the clinical setting as a regular tool.
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Abstract: In this work, we present a detailed characterization of a small-
core double-clad photonic crystal fiber, dedicated and approved for in vivo 
nonlinear imaging endomicroscopy. A numerical and experimental study 
has been performed to characterize the excitation and collection efficiencies 
through a 5 m-long optical fiber, including the pulse duration and spectral 
shape. This was first done without any distal optics, and then the 
performances of the system were studied by using two kinds of GRIN 
lenses at the fiber output. These results are compared to published data 
using commercial double clad fibers and GRIN lenses. 
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1. Introduction 

Two-Photon Microscopy (TPM) has become a standard technique extensively used for 
imaging optically thick biological tissues [1]. It is able to provide a wealth of information 
about specific structures without exogenous fluorescent labels. This performance is achieved 
through various endogenous contrasts: (1) Second Harmonic Generation (SHG), to highlight 
specific elements, such as myosins and collagens [1], and (2) fluorescence under two photon 
excitation (TPE), to investigate endogenous fluorophores, such as reduced nicotinamide 
adenine dinucleotide (NADH) and Flavin, a well-known biomarkers of cellular energy 
metabolism [3,4]. TPM provide intrinsic sectioning, lack of out-of-focus photobleaching, a 
localized phototoxicity, important penetration depth due to decreased scattering from long 
infrared excitation wavelengths and absence of overlapping between excitation and emission. 
Despite these advantages, the TPM is still limited to laboratory thick tissues testing. 
Currently, its main applications are focused on fixed or ex vivo samples and in vivo tests are 
limited to animals. The systems available nowadays to image in vivo human tissues are 
macroscopic and can only be applied at the skin level [4,5]. A more dedicated solution to 
study in vivo and in situ human tissues could be nonlinear endomicroscopy. It presents the 
advantages of TPM and gives the possibility to an in vivo and in situ tissues imaging without 
resorting to a surgical biopsy, thanks to the use of a thin and elongated optical fiber coupled 
with miniaturized objective lens instead of the microscope objective. It allows less invasive 
tests and earlier detection of diseases. 

The development of such nonlinear endomicroscopic systems requires a specific attention 
to the choice of the endoscopic fiber. It should be able to preserve the temporal confinement 
of short pulses that need to be delivered to the distal optics for different excitation 
wavelengths. For that, dispersion pre-compensation schemes are usually employed. This fiber 
should also have a small core diameter to reach high imaging resolution via miniaturized 
optics as well as a high inner cladding numerical aperture (NA) to be able to collect 
endogenous weak fluorescence signals. This is usually done using so-called double-clad fibers 
(DCFs). 

By referring to the literature, and to our previous study, different commercially available 
DCFs were compared and characterized with and without miniaturized objective [6,7]. The 
DCF DC-165-16-P from NKT Photonics [8], a microstructured fiber, turned out to be the best 
in terms of single-mode delivery of ultrashort pulses around 800 nm. However, its core 
diameter (around 16 µm) is a real problem for the miniaturization of the distal optic. The 
resulting optical resolution is inevitably altered and worse, compared to a DCF with a smaller 
core but a doped inner cladding, such as the Fibercore SMM900. Based on these results we 
were convinced that the ideal fiber did not exist yet. Consequently, it was necessary to 
conceive a specific DCF combining a small and undoped silica core with a high inner 
cladding numerical aperture (NA). Such a fiber will deliver high-quality excitation pulses 
with a low level of optical aberrations in the distal optics, and the highest level of nonlinear 
signal collection with miniaturized optical lenses. Such a small-core double-clad photonic 
crystal fiber (DC-PCF), specially designed for the two-photon endomicroscope, has been 
published recently in the context of the development of an endomicroscope [9,10]. This fiber 
was able to achieve efficient non-linear endomicroscope images. 

This work represents a continuity of our previous studies based on characterization of 
commercial DCFs [6,7]. Here we extend it to the very recently introduced small-core double-
clad photonic crystal fiber (DC-PCF) joined to different GRIN lenses [9,10]. We provide a 
full characterization of the output short pulse properties and collection efficiency from a 
scattering sample for input pulse duration in the range 100-300 fs and wavelength of 750-900 
nm as a function of pump power, showing efficient femtosecond pulse delivery of the system 
made of the DC-PCF coupled to a GRISM pre-compensation scheme and GRIN lenses over 
this whole range of parameters. 
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2. Materials and methods 

2.1. Customized DC-PCF design 

This customized DC-PCF is shown in Fig. 1(a) and 1(b). The hole-to-hole spacing and 
relative hole diameter are respectively 3.5µm and 0.41. The central core has a diameter of 6.4 
µm and is single-mode at 800 nm. It is surrounded by an air/silica microstructured region of 
40 µm diameter. The DC-PCF used here is 5 m-long, which is 5 times longer than commercial 
fibers typically used for the same purpose. The NA of the small core at 800 nm is 0.097, the 
second order dispersion coefficient is β2 = 2.9x10−26 s2/m and the nonlinear parameter is γ = 
10.5W−1.km-1 at this wavelength. The fiber presents a second microstructure (ring of large air 
holes) to separate the collecting inner cladding from the outer maintaining cladding. The size 
of the bridge between the air holes will determine the NA of the inner cladding: the smaller is 
the bridge, the higher is the numerical aperture [11]. Here the thickness of silica bridges 
between air holes is around 500 nm, and the NA of the inner cladding was measured to be 
0.27 at 450 nm. This fiber regroups the advantages of a microstructured fiber, by using an 
undoped core to avoid autofluorescence, but has a smaller core diameter than the NKT 
Photonics DCF, giving a better axial and lateral resolution. 

 
Fig. 1. A. Scanning electron microscope image of the DC PCF. a) Core region surrounded by 
an air-silica microstructure b) Collecting cladding c) Low index air cladding d) Maintaining 
cladding. B. Details of the air-silica microsctructure around the core. 

2.2. Setup design for ultra-short pulse delivery characterization 

The architecture of the proposed endomicroscope, presented in Fig. 2, is composed of a 
femtosecond titanium sapphire oscillator (Ti:Sa, Mai Tai DeepSee, eHP, Spectra physics). A 
Faraday Isolator (FI), placed at the laser output, avoids back reflection from the fiber input 
face and destabilization of the pulse in the laser cavity. 

A pre-compensation unit is used to compensate dispersion (second and third orders 
simultaneously) and nonlinear effects (mainly self-phase modulation) appearing inside the 
endoscopic fiber [10]. This unit is composed of a first polarization-maintaining single mode 
fiber (SMF) (0.5 m) used to broaden the spectrum in order to be able to reach a shorter pulse 
duration afterwards [12]. It is followed by a GRISM-based anomalous stretcher, consisting in 
the assembly of a diffraction grating with a prism [6,7,12]. Pulses are then coupled into the 
endoscopic DC-PCF. It allows simultaneous excitation by the small core and fluorescence 
collection from the tissue by the inner cladding. The focusing of the light in the specimen is 
achieved using a specific miniature GRIN lens. The response through the 5 m-long DC-PCF 
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and the GRIN lenses was characterized spectrally and temporally using respectively a 
spectrometer (FLAME-S-VIS-NIR-ES 1, Ocean optics spectrometer, France) and an 
autocorrelator (Mini-PMT-NIR, AA11.08.01.03, APE). Two different pulse durations were 
set at the output of the laser cavity using the Deepsee system. The first one, around 300 fs, is a 
pulse duration used classically in nonlinear microscopy. The second one, around 100 fs, is 
close to the optimal pulse duration obtained when using a Deepsee after the laser oscillator. 

This DC-PCF has been made to excite the sample and collect fluorescence signals at the 
same time, using a dichroic mirror, Fig. 2. Laser light goes through the GRIN lens to be 
focalized on the sample (Rhodamine) insuring maximum excitation. Fluorescence emitted by 
the Rhodamine is detected by the second core of the DC-PCF and lead through the dichroic 
mirror to the spectrometer (QE Pro, Ocean optics spectrometer, France). 

 
Fig. 2. Experimental setup. 

2.3. GRIN lenses 

Two different GRIN lenses adapted to wavelengths between 800 and 900 nm were used. The 
first one (GRIN 1) coded GT-MO-080-018-810 has a 1.4 mm diameter. It is a complex optical 
system with a spherical lens and two GRIN lenses fabricated with a special gradient profile. 
Its object space NA is 0.8, and the image space NA is 0.18. The total length of this lens is 
7.53 mm. In the second lens (GRIN 2) coded GT-MO-080-0415-810, the image space NA is 
0.4 and the length is 4 mm. Both GRINs, fabricated by GRINTECH, are mounted in stainless 
steel tubing. The differences in the image space NA could affect the collection of the fiber 
output signal. The difference in length could also affect dispersion and pulse duration. 

3. Results 

3.1 Efficient excitation using the DC-PCF fiber for different excitation wavelengths and cavity 
output pulse duration 

Two different pulse durations were set at the output of the laser cavity using the Deepsee 
system. The first one, around 300 fs, is a pulse duration used classically in nonlinear 
microscopy. The second one, around 100 fs, is close to the optimal pulse duration obtained 
when using a Deepsee after the laser oscillator. These two extreme durations allow us to 
estimate the capacity of our system to optimize the pulse at the output of the endoscopic fiber. 
These measurements were performed for different excitation wavelengths from 750 to 900 
nm. The temporal measurements to characterize the fiber and the two GRINs are summarized 
in Table 1. At each wavelength, the GRISM line mentioned above was optimized in order to 
get the shortest pulse duration at the output of the system. The pulse duration is obtained by 
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measuring the full width at half maximum (FWHM) from the autocorrelator data using a 
Gaussian profile for the deconvolution. 

For a pulse duration of 300 fs at the output of the laser cavity, the shortest pulse duration 
at the output of the endoscopic fiber is approximately 42 fs for a 810 nm excitation 
wavelength. This value decreases to 33 fs with a laser output cavity pulse at 100 fs, presented 
in Fig. 3(b). Moreover, by fixing the laser pulse duration at the output of the cavity to 100 fs, 
we notice that the difference between the shortest and the longest pulse duration at the output 
of the DC-PCF is 72 fs at the different wavelength, while for a 100 fs laser pulse duration the 
difference is only 27 fs. The variability of the output pulse duration of the system especially 
for 100 fs cavity pulse duration is low, highlighting the tenability of our setup. This point is 
especially important in the context of in vivo endogenous fluorescence imaging which 
frequently requires the use of different excitation wavelengths depending upon the tissue 
nature. 

Table 1. Measured Pulse Duration at the Output of the Endoscopic Fiber Alone, with 
Grin 1 and with Grin 2 for Different Laser Cavity Pulse Durations 

 Laser Cavity output pulse at 300 fs Laser Cavity output pulse at 100 fs 
DC-PCF DC- PCF + 

G1 
DC- PCF + 

G2 
DC-PCF DC-PCF + 

G1 
DC-PCF + 

G2 
750 nm 72 ± 3,6 84 ± 4,2 80 ± 4 60 ± 3 70 ± 3,5 65 ± 3,25 
780 nm 69 ± 3,45 76 ± 3,8 74 ± 3,7 55 ± 2,75 62 ± 3,1 59 ± 2,95 
800 nm 45 ± 2,25 65 ± 3,25 63 ± 3,15 33 ± 1,65 50 ± 2,5 45 ± 2,25 
810 nm 42 ± 2,1 53 ± 2,65 51 ± 2,55 33 ± 1,65 42 ± 2,1 40 ± 2 
860 nm 64 ± 3,2 75 ± 3,75 87 ± 4,35 49 ± 2,45 58 ± 2,9 58 ± 2,9 
890 nm 85 ± 4,25 136 ± 6,8 93 ± 4,65 55 ± 2,75 75 ± 3,75 70 ± 3,5 
900 nm 114 ± 5,7 150 ± 7,5 105 ± 5,25 58 ± 2,9 90 ± 4,5 78 ± 3,9 

3.2 Coupling GRINs lenses to the DC-PCF 

Two conditions are required for nonlinear absorption: spatial and temporal confinement of the 
excitation pulses. Temporal confinement is obtained thanks to the optimal adjustment of the 
GRISM line, compensating simultaneously for the second and the third orders of dispersion of 
the endoscopic system. For spatial confinement, this new fiber was also coupled with GRIN 
lenses. By that, spatial and temporal confinements of the excitation are acquired for efficient 
nonlinear excitation. Consequently, imaging of tissues with a high resolution is expected. The 
GRIN lens with a radial refractive index and a high numerical aperture (NA) has been already 
validated for clinical use [13] due to their flat surface and small diameter. 

Since the 100 fs laser pulses give the best performances as shown above, we chose to 
analyze the effect of the GRIN lenses on the pulse duration at the endoscopic system output 
with this laser setup. Adding respectively GRIN1 or GRIN2 at the DC-PCF output affects 
marginally the response of the pulse duration. For example, at 810 nm, we have the pulse 
duration values of 33 fs, 42 fs, and 40 fs respectively for the DC-PCF alone, the DC-PCF 
coupled to the GRIN1 and the DC-PCF coupled to the GRIN2. This difference of 24% or 19% 
between the fiber alone and the fiber coupled to GRIN 1 or 2 is due to the two distinct 
dispersion characteristics of these two GRIN lenses. This means that adding GRIN lenses do 
not affect the pulse duration confinement significantly; subsequently excitation quality is not 
affected. These results are also highlighted in Fig. 3(c). 
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Fig. 3. The laser excitation is set to 800 nm (a) Delivery of the fundamental mode of the light 
after adjusting the collimation at the first fiber output. (b) The autocorrelation duration of the 
pulse at the output of DC-PCF obtained by adjusting the laser pulse duration respectively at 
300 fs and 100 fs. (c) The optimal pulse duration obtained without GRIN and with GRIN 1 and 
GRIN 2. (d) Spectral characterization of the laser output and PhLAM fiber output. For these 
measurements, the wavelength and output power used were 800 nm and 20 mW (e) Pulse 
duration variation as a function of fiber output. 

Experimentally, GRIN 2 gave a slight advantage in pulse duration compared to GRIN 1 at 
each wavelength, on average 7% shorter for GRIN 2, except at 860 nm where the pulse 
duration was the same. The spectral analysis performed on the short pulse throughout the 
setup is shown in Fig. 3(d). This figure presents the spectral shape at the laser cavity and the 
DC-PCF output. The DC-PCF output spectrum is wider than at the output of the laser thanks 
to the shaping module before the endoscopic fiber. This allows to obtain shorter compressed 
pulses. Figure 3(e) shows the variation of the DC-PCF pulse duration at the core with the laser 
operating at mean power. In the range from 2 mW to 24 mW, we note a reduction of pulse 
duration with higher power, from 66 fs at 2 and 4 mW, to 39 fs at 22 and 24 mW. 
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The DC-PCF was also compared numerically to the best commercial DCF presented in 
our previous study [7]. These numerical tests were performed with a Zemax (Optics Studio 
14.2, Zemax LLC) simulation. The DC-PCF was coupled to two different GRIN lenses. The 
first one was a custom designed (GT-IRLS-050-11-50-NC) in order to be compared with our 
results previously published results [7], and the second one was the commercial GRIN 1 (GT-
MO-080-018-810) used in the experimental measurements. The axial and lateral resolutions 
of the coupling of the fiber into these GRINs were characterized. These two parameters were 
computed in accordance with a method taken from the literature [14]. It represents the 
resolution at the FWHM, calculated from the spot in the focal plane of the GRIN, using a 
Gaussian beam approximation to simulate the output of the fiber and the propagation through 
the optics. The results are summarized in Table 2. The DC-PCF has a lateral resolution 2.5 
times higher than the NKT Photonics DCF, and is 5-6 times better regarding the axial 
resolution, and only slightly less resolved than the Fibercore one (1.8 times less resolved). 

Table 2. Resolution of the Excitation Spot in the Focal Plan of the Two GRIN Lenses 
Coupled to Our Fiber 

 Homemade GRIN GRIN-GT-MO-080-018-810 
Fiber Core-

Cladding 
diameter
s 

Core 
NA 

Lateral 
resolution 
(µm) 

Axial 
resolution 
(µm) 

Waist 
size 
(µm) 

Lateral 
resolutio
n (µm) 

Axial 
resolution 
(µm) 

Waist 
size 
(µm) 

Fibercore 
(SMM900) 

3.6-100 0.19 0.22 0.33 0.26 0.32 0.80 0.38 

Crystal Fiber 
(DC-165-16 
P) 

16-163 0.04 1.00 7.99 1.20 1.44 16.61 1.73 

DC-PCF 
(T904B) 

6.4-268 0.097 0.40 1.28 0.48 0.58 2.67 0.69 

3.3 Fluorescence collection efficiency using the DC-PCF 

As explained in the introduction, the ability of a DCF to be used as an endoscopic fiber not 
only depends on its excitation properties, but also on its ability to collect the signal emitted by 
samples. The collection efficiency depends on the size of the DCF inner cladding (second 
core) and of its NA. The influence of the pulse duration and average power on the 
fluorescence emission level is analyzed here using Rhodamine as fluorescent solution. 
Fluorescent signal emitted by Rhodamine was characterized as a function of (i) the duration 
of the excitation pulse at the output of the DC-PCF, Fig. 4(a), and (ii) the output average 
beam power while the pulse duration is kept constant, Fig. 4(b). In this part, we used 1mM of 
rhodamine placed after the GRIN 2 lens. First we set the beam power at 14 mW at the focal 
volume, and we changed the pulse duration. We note that the fluorescence signals decrease by 
increasing pulse duration, but they were still detected until 330 fs, Fig. 4(a). This experiment 
confirms the importance of using short pulse duration to enhance the fluorescent signal. In 
second time, we set the pulse duration to 60 fs and we increase the power beam from 1 mW to 
20 mW on focal volume. Note that 20 mW is more than sufficient for exciting endogenous 
fluorophores of tissues. This fiber is not autofluorescent and that was confirmed by measuring 
the collected fluorescence without sample at the output of the system. This measurement is 
defining the level of dark current and is not changing when increasing the power. We note 
that the fluorescence signals emitted decrease by decreasing the beam excitation power, Fig. 
4(a). The variation of the excitation power, for fixed pulse duration, shows that it could be 
possible to reach 40 mW at the output of the DC-PCF while keeping the same spectral shape 
and without expecting autofluorescence from the fiber. 
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Fig. 4. Backward TPF from Rhodamine with the DC-PCF (a) Fluorescence intensity as a 
function of the DC-PCF and GRIN output pulse duration, normalized to the TPF intensity at 60 
fs, (b) Rhodamine TPF as a function of the pulse peak power at DC-PCF output. 

3.4 Transmission of the DC-PCF on a wide spectral range 

In the majority of the cases, the endoscopic imaging requires to use various excitation 
wavelengths according to the aim of the study, and especially if based on the analysis of the 
endogenous molecules. Even when the excitation wavelength is fixed, various endogenous 
molecules can emit. To verify if this fiber is optimal for a wide range of excitation wavelength 
or for the collection of the emitted fluorescence by different molecules, a specific study is 
needed. For this, a spectral lamp (HPX-2000 Family, Ocean Optics, France) was used as 
sample. For this purpose, a monochromator devices was used to select wavelengths of this 
spectral lamp. The beam was collected at the output of this monochromator (Scanning 
Monochromator MonoScan2000, Ocean, Optics, France) and injected in the inner cladding of 
the DC-PCF. The beam power was measured at the input and output of this fiber to calculate 
the transmission coefficient every time we change the wavelength. The transmission from 
different wavelength and at a fixed fiber - sample distance was measured in order to define 
the transmission coefficient. Results prove that this fiber is able to collect different 
wavelength ranging from 200 to 1000 nm). We do not have an important variation in 
transmission coefficient except around wavelengths 340 nm and 850 nm, which presented the 
maximum of transmission coefficient. 

4. Discussion and conclusion 

A new double-clad photonic crystal fiber for nonlinear imaging has been presented and 
characterized experimentally and numerically. First, by using the shortest pulse possible at the 
laser cavity output, combined to a GRISM line, we were able to reach a pulse duration of 33 
fs at the output of a 5 m endomicroscopic customized fiber without a miniaturized GRIN lens, 
and 40 fs at the output of the fiber coupled to a miniaturized GRIN lens. These values 
represent significant improvements over previously reported two-photon imaging that up to 
now have been restricted to picosecond pulses [15]. Obviously, we can fix the pulse 
compression to around 100 fs. In the future, we envisage making a study, which will allow us 
to estimate the potential benefits of these extremely short pulse durations for tissue imaging. 
This homemade fiber is 5-meters-long, which is appreciably much longer than the 1-meter-
long commercial DCF usually tested in endomicroscopy setups. We have demonstrated that 
our setup is able to compensate for the dispersion through such long fibers, and to provide 
pulses as short as those obtained with 1-meter-long fibers. This presents a real advantage in 
medical imaging applications, indeed a 5-meters-long fiber will allow the placement of the 
optical head in the operating room, while the laser and compression system can be kept 
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outside in a non-sterilized environment. Secondly, by comparing our results to those 
previously reported [6] using a DCF, we note that in our case the spectral broadening after the 
DC-PCF is approximately the same. With this spectral large band, we hope to be able to 
excite different endogenous molecules. Thirdly, in order to ensure the coherence in our 
imaging studies, we can adjust our system in such a way as to minimize pulse duration 
variation when the excitation wavelength is changed. In addition, for all possible excitation 
wavelengths, we can obtain pulse durations shorter than 60 fs at the output of our DC-PCF by 
using laser pulse duration of 100 fs. This ensures a temporal confinement required for an 
optimal nonlinear excitation. The collection efficiency was measured for different pulses 
duration showing the importance of using short pulses when we expect tissue imaging. For a 
fixed pulse duration, experimental results show the enhancement of fluorescence signal with 
excitation power. 

Finally, this new fiber coupled to a GRIN lens has a significantly better simulated 
resolution than other microstructured DCF (NKT Photonics DC-165-16 P) used in literature 
for endoscopic imaging and is not far from the performance of the best commercial DCF 
either, the Fibercore SMM900. Moreover, our fiber delivered shorter pulses than those 
generated by the Fibercore one [6], thus showing that the new DC-PCF has the advantages of 
an undoped core fiber, no risk of parasite autofluorescence, while maintaining an acceptable 
resolution for imaging with the same pulse duration performance. 

The influence of the pulse duration and average power on the fluorescence collection was 
analyzed. We note that the fluorescence signals decrease by increasing pulse duration, but 
they were still detectable until 330 fs. The fluorescence signals emitted decrease by 
decreasing the beam excitation power. 

Indeed the critical resolution with deep tissue imaging is the axial resolution, it has to be 
smaller than the characteristic size of the observed sample in order to have a sharp image and 
achieve z sectioning, here for the DC-PCF the axial resolution is about 1.5 μm and the 
smallest characteristic size we obverse in our biopsy sample, using a classical two-photon 
microscope, is approximately 10 microns. Finally, the characterization of the excitation and 
collection path through the DC-PCF shows that we found the homemade architecture to 
answer our technical specifications. 
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We present a customized small-core double-clad photonic
crystal fiber for spectral and fluorescence lifetime measure-
ments of human samples. In this Letter, the new fiber has
been characterized on different fluorophores and samples of
human brain tumor; a comparison to a bi-fiber homemade
system and a commercial fiber probe was made. © 2016
Optical Society of America
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Fibers, polarization-maintaining; (060.3735) Fiber Bragg gratings;

(060.2370) Fiber optics sensors.
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Minimally invasive surgery is becoming the gold standard
of surgery today, even in surgical neurological oncology.
Surgeons use several techniques to perform operations with
a smaller wound opening, making it safer than classical open
surgeries. In the 21st century, surgery requires new tools de-
signed to slide into small surgical approaches and capable of
giving fast and precise information on the tissue [1]. In order
to provide clinically useful data on the human brain, endo-
scopic systems need to overcome the lack of precise guidance.
The new mainstream approach is the use of multimodal optical
detection. We aim to develop a multimodal multiphoton en-
domicroscope by working on a specific customized small-core
double-clad photonic crystal endoscopic fiber (DC-PCF)
which is able to achieve visible and IR excitation for multimo-
dal analysis. Moreover, if our endoscopic fiber is able to achieve
visible and IR excitation, it offers the possibility to add a
varifocal objective [2,3] at the output of the system. Thus,
it allows a large field of view and a high resolution in the same
endomicroscope.

The customized microstructured DC-PCF is based on a
central single-mode core with a diameter of 6.4 μm. The core
is surrounded by an air/silica microstructured region of 40 μm
diameter. The fiber presents a second microstructure (ring of
large air holes) to separate the collecting inner cladding from

the outer maintaining cladding. The thickness of the silica
bridges between the air holes is around 500 nm. The NA of
the inner cladding is around 0.27 at 450 nm.

We prove the efficiency of this fiber to achieve ultrashort
pulses for an efficient nonlinear excitation and collection [4].

In this Letter, we focus on the capacity of this fiber to
achieve visible excitation, as well as to accomplish spectral
and lifetime measurements from endogenous fluorescence of
freshly extracted human samples.

In order to do this, the new DC-PCF fiber was brought into
a fibered setup at the Saint-Anne hospital to replace a bi-fiber
configuration used in a previous study [5–7]. This setup was
placed in the Neuropathology Department of Sainte Anne
Hospital (Paris, France) near the operating room to achieve
measurements, as close as possible, to in vivo conditions.
Bimodal optical signature characterization was performed on
freshly resected samples taken during surgical resection of
human brain tumors. These studies had the approval of the
Sainte Anne Hospital Review Board (CPP: S.C. 3227).

The architectures of the new setup and the previously
validated setup are presented in Fig. 1. The excitation was
accomplished using a diode laser from Picoquant, emitted at
405 nm (LDHP-C-405B, FWHM 60 ps, Picoquant GmbH,
Berlin, Germany) with a maximum power of 1 mW. The
power and the repetition frequency are tunable. The repetition
frequency varies between 2.5 and 40 MHz. The 405 nm ex-
citation was chosen because it is able to excite five different
endogenous molecules: nicotinamide adenine dinucleotide
(NADH), flavin (FAD), lipopigment, porphyrin, and chlorin.
For spectroscopic measurement, the fluorescence was directed
toward a computer controlled spectrometer (QE 6500, Ocean
Optics, Dunedin, USA) characterized by 1.5 nm as spectral
resolution over a 200–1000 nm spectral range. The spectral
measurements were processed using a homemade Matlab script
[6]. Fluorescence lifetime was measured using an electronic
acquisition card (Time Harp 200, Picoquant) that ensures
synchronization between the laser and the detector (PMT)
from PicoQuant (PMA 182) with a temporal resolution of
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220 ps. A motorized filter wheel (FW102C, Thorlabs, Newton,
USA) was placed in the collection path, allowing us to select the
emission band. We used five filters (Semrock, New York, USA)
to separate the five endogenous fluorophores: 450� 10 nm,
520�10nm, 550�30nm, 620�10nm, and 680� 10 nm.
Data were adjusted by a mono-exponential fit via FluoFit soft-
ware (FluoFit, PicoQuant) to recover the lifetimes from the
measured fluorescence decays. The criterion for an acceptable
fit was a χ2 value less than 1.0, and the residuals were distrib-
uted around 0 within the interval 4 and −4. This procedure
allows the reconstruction of a histogram of photon counting
as a function of the time of fluorescence decay [8].

System 1 (bi-fiber probe): this customized bi-fiber system [as
shown in Fig. 1(a)] uses a first fiber (HCG M0200T, multi-
mode, core ∅200 μm) for the excitation and a second one
(HCGM0365T, multimode, core∅365 μm) to collect fluores-
cence (silica/silica step index fibers of inherent spatial resolution
of 0.5 mm). A long pass filter (SR 405, Semrock, New York,
USA) is placed in the collection path to remove the reflective
signal due to the laser to the fluorescent signal. A beam splitter
sends 70% of the fluorescent signal to the spectrometer and
the remaining 30% into the PMT for lifetime measurements.

System 2 (DC-PCF fiber probe): in this configuration, only
one fiber is used [as shown in Fig. 1(b)], to perform the
excitation and the collection. We compared a commercial
multi-mode fiber (QP600-1-UV-VIS, multi-mode, core
∅600 μm, Ocean Optics) and our customized small-core
double-clad photonic crystal fiber (DC-PCF, single mode, core

∅6.4 μm) using this setup. As presented in Figs. 1(c)–1(f ), the
laser beam is injected into the fiber to excite endogenous fluo-
rophores of the human sample. The emitted fluorescent signal
is collected by the same optical fiber. A dichroic filter
(Di02-R405-25 × 36, Semrock) removes the laser reflection,
and only the fluorescent signal provided from the sample
reaches the detectors. The remaining part of the setup is the
same as in the bi-fiber configuration.

We compared one meter of DC-PCF with the bi-fiber sys-
tem and the commercial multi-mode fiber described previously.
This Letter was performed on a rhodamine B solution. The
compared performances were the spectral shape, fluorescence
collection efficiency, and fluorescence lifetime measurements.
The spectral shape of the collected fluorescence for the same
excitation power from rhodamine using these three different
fibers is presented in Fig. 2(a). The DC-PCF fiber restitutes
a perfect rhodamine spectrum Fig. 2(a), and at each laser power
has a collection efficiency four times better than the two other
systems Fig. 2(b). This result is due to the small core of DC-
PCF, allowing an excitation in a small focal volume and
the large clad, allowing an optimal collection of emitted
fluorescence.

Table 1 shows the lifetime measurements of a rhodamine
solution with different fibers: DC-PCF is able to measure
the lifetime of a fluorophore as precisely as the two validated
fibers. It gives values in accordance with the literature [9,10].

Specific attention to the robustness of our lifetime acquis-
ition system is required prior to any measurement on human
samples. We performed different measurements with the DC-
PCF fiber on the well-known fluorophores rhodamine B and
fluorescein. The concentration, solvent and pH of the solu-
tions, and parameters affecting the lifetime measurements
[6,7,11,12] were varied to validate the accuracy of our system.
All other experimental parameters were kept the same.

Table 2 summarizes the lifetime measurements conducted
on rhodamine B and the fluorescein solution. Two parameters
changed: first, the concentration of the fluorophore in a solu-
tion of methanol and, second, the pH. The fluorescence life-
time of rhodamine B in methanol stayed constant over the
concentration from 10−4 M to 10−6 M with a mean value
2.2� 0.06 ns which is comparable to the literature value of
2.38� 0.07 ns. The only value where it changes is at 10−2 M,
where the lifetime decrease is due to the reabsorption process
at a higher concentration of the fluorophore; this has already

Fig. 1. Experimental set-up: (a) system 1 where the excitation and
fluorescence collection are done with two different optical fibers and
(b) system 2 where the excitation and fluorescence collection are per-
formed with the same optical fiber. (c) Spot at the output of a mono-
core optical fiber presenting a Gaussian form. (d) Profile of the spot at
the output of a monocore optical fiber. (e) Spot at the output of the
DC-PCF presenting microstructures surrounding the main core.
(f ) Profile of the spot at the output of the DC-PCF.

Fig. 2. (a) Fluorescence emission from rhodamine B
(C � 0.1 mM) collected through three different fibers at a laser
excitation power of 40 μW. (b) Maximum of collected fluorescence
for different excitation laser power through three different fibers.
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been described in the literature [13]. We also made measure-
ments at different pH values to validate the accuracy of our
probe. These measurements were compared to the literature.
The rhodamine is known to have a constant fluorescence life-
time through changes of pH, where the fluorescein presents a
slight change of 0.6 ns from a basic to an acid solution [10].
Table 2 shows that we were able to have this level of precision
with our system.

After these promising first results, the system was
used on a small cohort of fresh human samples provided by
the Sainte Anne Hospital Neurosurgery Department (Paris,
France). The cohort had 12 samples from three different
groups: two tumor groups glioblastoma (n � 4) and metastasis
(n � 5), and one control group (n � 3), provided from
epilepsy surgery. The spectral and lifetime measurements were
performed on the different samples with an excitation wave-
length of 405 nm. After an optical analysis, all tissue specimens
were formalin-fixed and returned to the Neuropathology
Department of Sainte Anne Hospital. All samples underwent
gold standard pathological analysis using both WHO 2007 and
Sainte Anne’s classifications.

Figure 3 shows the mean emission spectra for each sample
group. We see a first distinction between tumorous and control

groups: the maximum intensity of metastasis and glioblastoma
groups is six times lower than the maximum intensity of the
control group. These measurements show the sensitivity and
success of this new DC-PCF fiber to accomplish measurements
on endogenous fluorescence in human samples. To go further
in the spectral analysis, we used a Matlab script developed in
the lab to fit the different endogenous molecules that emit fluo-
rescence in brain tissues. This script has already been used and
validated in previous studies [6,7].

Figure 4 regroups the fitted data from metastasis, glioblas-
toma, and control groups. We note that in the two tumorous
groups, porphyrin fluorescent emission is two times higher than
in the control group, as shown in Figs. 4(b) and 4(c). In the
metastasis group, the NADH is higher than in the control
group and the glioblastoma group. Figure 4(d) represents a
superposition of the average spectral response from each tissue
group. It shows that the tumorous samples have a broader
emission spectrum, mainly at the longer wavelength. Each

Table 1. Lifetime Measurements of the Rhodamine B (RdB) with Different Collecting Fibers

DC-PCF
τ (ns)

Bi-fiber
τ (ns)

Multi-mode fiber
τ (ns)

Literature
τ (ns)

Rd (B) c � 0.1 mM 1.98� 0.06 1.98� 0.04 1.93� 0.05 1.75� 1.80

Table 2. Lifetimes of Rhodamine B (RdB) and Fluorescein in Nanoseconds (ns)

Concentration (M) 10−2 10−4 10−5 10−6

RdB (methanol) Exp. 1.56� 0.04 1.98� 0.05 2.24� 0.08 2.23� 0.04
RdB Lit. [14] 1.68� 0.05 2.43� 0.08 2.41� 0.07 2.32� 0.06
pH 7 5

Fluorescence in Exp. 4.61� 0.05 4.16� 0.2
Fluorescence in Lit. [10] 4.2� 0.1 3.6� 0.1
RdB (PBS) Exp. 1.79� 0.2 1.79� 0.2
RdB Lit. [10] 1.8� 0.1 1.8� 0.1

Fig. 3. Emission spectra of different fresh human samples using a
405 nm excitation wavelength.

Fig. 4. Spectral emission of (a) the control group, (b) the glioblas-
toma group, and (c) the metastasis group with the five fluorophores
fitted. (d) Superposition of normalized spectrum from each group.
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group has a specific spectral shape, as previously described
[11,12].

Following endogenous spectral modification could allow
non-invasive early detection of metabolic anomalies. NADH
and FAD [15,16] play important roles in a wide range of cel-
lular oxidation-reduction reaction. These natural biomarkers
are diagnostic indicators of anomalies under different
pathological conditions [17–19].

Nevertheless, despite first previous promising results
[20,21], it seems that spectral analysis alone does not provide
sufficient information on the histological nature of the tissue to
help surgeons during intervention.

We developed a multimodal setup to obtain more data on
the sample. These more complementary data can help building
a robust matrix of criteria recognizing the tissue type during
surgery: healthy or tumoral. In this setup, fluorescence lifetime
measurement has been added to the spectral analysis. On each
sample of the three groups (glioblastoma, metastasis and con-
trol), four regions of interest have been measured to establish
the mean lifetime of the group. Table 3 shows the results of
these lifetime measurements. For each endogenous fluoro-
phore, the value of the control group is greater than the
two tumorous groups. However, there is no evident trend to
discriminate the two tumorous groups. Analyzing each fluoro-
phore within a larger series could be interesting to define the
best threshold between different tissue types.

This experiment was conducted at the Sainte-Anne hospital
and has given us the opportunity to work with fresh resected
samples. Our research raises the possibility that a new micro-
structure fiber could be the best candidate to achieve an ideal
multimodal endomicroscopic system. In contrast to commer-
cial optical fibers, it allows reduction of the spectral acquisition
time and uses a minimum of beam power at the output of the
optical fiber. In addition, this fiber proved accurate in spectral
and lifetime measurements when compared to the measure-
ments in the literature. With this system, we were also able
to give preliminary results on a human cohort and to distin-
guish three indicators of sample tumoral nature that seem to
exist: a lower fluorescence intensity, a broader spectrum, and
shorter lifetime value. This Letter represents the preliminary
step before a study on more samples and in vivo during surgery,
in order to help neurosurgeons during tumor resection.
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(IN2P3); PIMPA plateform—Agence Nationale de la
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Abstract:  
 
In the framework of urologic oncology, mini-invasive procedures have increased in the last few 

decades particularly for urothelial carcinoma. One of the essential elements in the management of this 

disease is still the diagnosis, which strongly influences the choice of treatment. The histopathologic 

evaluation of the tumor grade is a keystone of diagnosis, and tumor characterization is not possible 

with just a macroscopic evaluation. Even today intraoperative evaluation remains difficult despite the 

emergence of new technologies which use exogenous fluorophore. This study assessed an optical 

multimodal technique based on endogenous fluorescence, combining qualitative and quantitative 

analysis, for the diagnostic of urothelial carcinoma. It was found that the combination of two photon 

fluorescence, second harmonic generation microscopy, spectral analysis and fluorescence lifetime 
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imaging were all able to discriminate tumor from healthy tissue, and to determine the grade of tumors. 

Spectral analysis of fluorescence intensity and the redox ratio used as quantitative evaluations showed 

statistical differences between low grade and high grade tumors. These results showed that multimodal 

optical analysis is a promising technology for the development of an optical fiber setup designed for 

an intraoperative diagnosis of urothelial carcinoma in the area of endourology. 

 

 
 
 

1. Introduction 
 
With more than 79,000 new cases and a projection of 16,390 deaths in 2017 in the US[1], bladder 

cancer is one of the deadliest cancer worldwide. For urologists, bladder cancer (BC) and upper urinary 

tract transitional cell carcinoma (UUT-TCC) are principal issues in urologic oncology. It is therefore 

critical to diagnose these tumors during endoscopy procedures (cystoscopy or ureteroscopy depending 

of the tumor localization) in order to confirm lesions macroscopically and to collect a tissue sample to 

confirm histopathologic characteristics. For specific cases of urothelial carcinoma (BC and UUT-

TCC), determination of the histopathological grade of urothelial tumors is one of the keystones in the 

oncological management. The tumor grade impacts the treatment strategy at various levels, from the 

type of surgery, to the role of chemotherapy, to the chronological steps in management. In the case of 

a high grade tumor a total ablation of the organ (radical surgery) may be necessary whereas  

conservative treatment can be a valid option for low grade tumors associated with bladder cancer and 

upper urinary tract transitional cell carcinoma (UUT-TCC) [2], [3]. A critical step is proper resection 

of lesions due to a high risk of recurrence[4] particularly for low grade urothelial  carcinoma. This is 

achievable if both lesion detection and diagnosis are optimal. In this framework, peri-operative 

screening of tumor characteristics could be a valuable support to the surgeon to adapt the surgery and 

to plan postoperative cares.  

With the development of minimally invasive surgery, the use of miniaturized technology has become a 

standard procedure, especially for UUT-TCC and BC. For UUT-TCC, flexible ureteroscopy with laser 

photovaporization allows a reduction in both surgical morbidity and renal function impairment [5], 
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[6]. New technologies have been developed to help the surgeon with intraoperative discrimination of 

urothelial carcinoma[7], [8]. Enhanced imaging techniques such as Photodynamic diagnosis (PDD) 

with 5-ALA[9], Narrow Band Imaging system(NBI)[10], real time optical coherence tomography 

(OCT)[11] and confocal laser endomicroscopy (CLE)[12] are now proposed for diagnosis. However, 

all of these technologies have limitations including low specificity (NBI), or difficulty of 

interpretation by the doctors (OCT, CLE), compared to the gold standard histological diagnosis,  due 

to the lack of multimodality and database images.  

After two decades of becoming increasingly popular, two photon microscopy (TPM) has now become 

an important technique for biological tissue imaging. The development of miniaturized high-numerical 

aperture optics[13], lasers with optimized pulse delivery [14], and miniaturized scanning system[15], 

[16] has opened the way for clinical applications. Nonlinear microscopy, as classical confocal 

imaging, can provide an analysis of tissue using only endogenous labels, and thus eliminates the need 

for exogenous fluorescence labeling. Second Harmonic Generation (SHG) can access characteristics 

of tissue structure which have a non-centrosymmetric geometry, such as extra-cellular matrix, muscle 

fibers, walls of blood vessels, while two photon endogenous fluorescence (TPEF) measurements can 

detect and show the presence of endogenous fluorophores associated with cellular metabolic activity 

(reduced nicotinamide adenine dinucleotide: NADH and flavin adenine dinucleotide: FAD).  

TPM offers several advantages such as intrinsic sectioning, lower photobleaching, lower and localized 

phototoxicity, higher penetration depth into the tissues, and an absence of overlap between excitation 

and emission [17]–[20]. Above all, it provides a different endogenous contrast analysis compared to 

standard microscopy and confocal endomicroscopy. Although the heterogeneity of tissue structure can 

lead to complex signal interpretation, endogenous fluorescence analysis of urothelial tissue could be a 

promising way to avoid metabolic alteration related to external markers[21], [22].  The multimodal 

technique is an improved alternative to the unimodal one since it highlights tumors characteristics 

more specifically and precisely.  

Nevertheless, non-linear flexible endoscopy imaging development remains a challenge. Although 

some modalities such as SHG have already been evaluated in-vivo[23] and multiphoton microscopy 
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evaluated on urothelial and prostate samples[24], [25], only one study so far has explored the potential 

of multimodal optical analysis in the area of uro-oncology[26].  

This preliminary study was conducted to establish the efficiency of a multimodal imaging process 

based on endogenous fluorescence analysis to discriminate grades of urothelial tumours as done in 

histopathologic grading. For that reason, we conducted a qualitative and quantitative study, using 

different contrasts to define optical markers of tumours grade.  This study show that optical imaging 

and analysis could provide reproducible and reliable clinical results.   

To the best of our knowledge, this preliminary study assesses for the first time the ability of 

multimodal optical analyses to identify pathological features and histopathological grades associated 

with urothelial carcinoma, in a manner consistent with classical histopathological evaluation. 

 
 

2. Material and Methods 
 

2.1 Sample management 
 

This prospective monocentric study had included a collection of samples from patients suspected to 

have an urothelial carcinoma at fibroscopy or on imagery. The institutional review board (IRB) of the 

Tenon Hospital center – University Pierre-Marie Curie approved the study (IRB-00003835), all the 

following methods were performed in accordance with the relevant guidelines and regulations issue in 

this protocol and informed consent were signed by the patients. 

After endoscopic biopsy or resection, urothelial samples were fixed in a formalin zinc solution. 

Immediately after, the samples were transferred on a specific nonlinear multimodal set-up to perform 

the acquisitions. After the multimodal optical analysis, the samples were conditioned and analyzed by 

the pathologist. Detailed clinical data including age at diagnosis, past medical history including 

urothelial carcinoma and previous treatment were recorded, such as histopathological data.  

 
2.2 Confocal, two-photon microscopy and fluorescence lifetime imaging�on a microscopic 

multimodal setup 
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A Mai Tai DeepSee Ti:sapphire laser with automated dispersion compensation (Spectra-Physics, 

Santa Clara, USA) was used as the source for a TCS SP8 MP microscope (Leica Microsystems, 

Wetzlar, Germany) to perform two-photon microscopy. The set-up allows us to record imaging, 

emission spectra and lifetime fluorescence. The laser cavity had over 2.4 W of average power at 800 

nm and was tunable from 690 nm to 1040 nm. Two supersensitive Leica hybrid nondescanned (HyD 

NDD) detectors recorded the faintest structures from deep-tissue sections. For two-photon imaging 

experiments, fluorescence was collected after the microscope objective via a dichroic beamsplitter, 

transparent to wavelengths greater than 680 nm. The collected visible spectrum was split by another 

dichroic cube (FF495-Di03-25 × 36, Semrock, New York, USA) into two channels toward the HyD 

NDD detectors. This configuration minimized loss in the fluorescence collection. The presence of two 

additional filters (FF01-448/20-25 and FF01-520/35-25, Semrock, New York, USA) on the dichroic 

cube set the detection band, respectively one to collect Second Harmonic Generation(SHG) signal and 

the other one to collect the endogeneous fluorescence.  

A hybrid detector was used to perform the spectral acquisition. A prism dispersed the fluorescence and 

the spectral detected band was selected with a specific motorized split mirror placed before the hybrid 

detector. The spectral resolution was 10 nm, covering the range from 380 nm to 780 nm. Spectral 

acquisition and single-photon counting technology fluorescence lifetime imaging were couples by a 

unique system which integrated hardware and software (PicoQuant GmbH, Berlin, Germany) with the 

high-end confocal system Leica TCS SP8 MP. 

A spectral mosaic was acquired on a 3x3 images area selected with the microscope software: a spectral 

measurement was made for each image of the mosaic then the software merged the information to give 

a mean spectrum of the mosaic. For fluorescence lifetime imaging measurements, a mosaic of 9 

images per sample were analyzed using appropriate excitation wavelengths. The image size was 512× 

512 pixels, at 100 Hz and represented the average of 10 frames.  

Four different optical signals on the region of interest (ROI) were recorded with our multimodal setup: 

1) one and two-photon spectral analysis, 2) two-photon fluorescence lifetime imaging measurement, 
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3) SHG imaging, and 4) fluorescence imaging under one- and two-photon excitation.  

2.3 Histopathology analysis 
 

All the samples were analyzed by the same senior uropathologist using hematoxylin-eosin-saffran 

(HE) staining without prior knowledge of the two-photon analysis status. Results were given 

according to the WHO 2016 classification for urothelial carcinoma[27]. Correlation between point-to-

points optical indexes, imaging abnormalities and pathological examination of biopsy samples in each 

particular tumor type and grade was performed. All samples were categorized and classified as healthy 

urothelium or high grade or low grade tumor by the pathologist. 

2.4 Data Analysis 
 

2.4.1 Spectral analysis 
 

             Five circular Regions of interest (ROI) of 200μm diameter were placed on each spectral 

mosaic stack at the 870nm excitation wavelength. A spectrum was generated for each ROI using 

Image J to calculate the mean intensity of each image of the stack. This spectrum was then fitted using 

a Matlab script developed in the lab and previously used in rat and human brain tumors[28], [29]. The 

script was readapted to urothelial tissue, two components where identify in the emitted response: the 

nicotinamide adenine dinucleotide (NADH) and the flavin adenines dinucleotide (FAD). Indeed, the 

absence of oxygen or a need to increase glucose catabolism cause an increase in NADH fluorescence. 

Hence, the redox ratio is already well-known to be associated with malignant transformation[30]–[32]. 

Different excitation wavelengths were used. For each excitation wavelength a fit was applied to 

extract the contribution of the different molecules. Figures 1.a.b. show the response of endogenous 

molecules using two different excitation wavelengths. As shown, 810 nm excitation wavelength don’t 

give access to the SHG. Exciting with 870 nm could be reasonable to collect the metabolic molecules 

as well as SHG. Consequently, to avoid experimental bias and propose the fastest method to analyze 

tissue only the 870nm wavelength was used in all our analysis. We extracted from this fit the 

maximum intensity at the max emission wavelength of each component (Imax-NADH, Imax-FAD) to then 

calculate a redox ratio, see Figure 1.c.  
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3. Results  
 

3.1 Samples characteristics: 
 
 

In our study, fourteen patients were enrolled prospectively, including sixteen samples of normal and 

tumoral urothelium. Among them, fifteen samples were of bladder origin and one from the upper-

urinary tract. Amongst them, ten represented urothelial carcinoma (five reported as low grade tumors 

and five as high grade tumors). Six samples of non tumoral urothelium were also examined. 

 
 

3.2 Correlation between two-photon fluorescence images and Hematoxylin and Eosin 
staining 

 

To highlight the performances of non-linear microscopy in tissue diagnosis, we compared our images 

with the histological analysis, considered as gold standard. Results are shown in Figure 2. 

Three major urothelial aspects were identified by fluorescence and compared with the 

histopathological morphology. First a healthy layer of urothelial cells, second low grade tumor 

architecture displaying exophytic growth with a fibrovascular core and increased layers of urothelial 

cells without major atypia or necrosis, and third an invasive high grade tumor, with major atypia and 

also with exophytic features and a fibrovascular core, typical for pTa tumours (pathologically staged 

non invasive papillary carcinoma). Moreover, the SHG signal gave us access to the architecture and 

characteristics of the stroma and the lamina propria and could also be compared with the histological 

features. 

The TPF images were collected through the whole sample, from the epithelial surface to the deepest 

part, mostly to the detrusor muscle. After the determination of the grade by the multimodal optical 

analysis, the histopathological images (see Figure 2) were chosen by the pathologist for a better 

correlation to the TPF images, in order to highlight the specific structures.  

Normal urothelium (Figure2; 2a,2d) showed multilayered cells without disorganized architecture, the 

cells were identify in histological images by dark violet spots and in TPEF images by dark hole in the 

homogeneous red fluorescent signal, highlighting easily the organization of the layers. There was no 
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Figure 5. Fluorescence Lifetime analysis at 870nm excitation wavelength. FLIM images of (a) healthy, (b) low 
and (c)high grade tumor cells, (d) respective average lifetime histogram of each image.(e) Variation of mean 
amplitude lifetime between healthy urothelium, low grade and high grade tumor compared in fifteen ROIs in 
each type of tissue. 
 

4. Discussion and conclusion 
 

The multimodal optical analysis of urothelial samples from bladder and urinary upper tract has proven 

its capacity to characterize the urothelium and discriminate healthy tissue, low grade and high grade 

tumor. This characterization was achieved by a qualitative and a quantitative analysis. These 

preliminary results are promising for the development of a peri-operative diagnostic tool. 

Multiphoton microscopy is a rising technology in the field of tissue analysis. Its intrinsic 

characteristics make it an increasingly studied technique even in urology[25], [33]. Indeed, in urology, 

some studies have already shown a good correlation between multi-photonic microscopy and 

histopathologic imaging. Yadav et al. have demonstrated the discrimination of periprostatic neural 

tissue on a rat model with using 780 nm as excitation wavelength excitation[25]. For urothelial 

carcinoma, Jain et al.[33] have assessed the diagnostic potential of this technique in identifying and 

differentiating benign from malignant flat bladder lesion, especially carcinoma in situ (CIS). These 

studies have shown a good correlation between multi-photonic microscopy and histopathology. 

However, none of them have performed a quantitative analysis such as spectral analysis or FLIM 

analysis. Multimodality as quantitative and qualitative analysis is important for reliable and precise 
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d
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response. Moreover, Jain et al. have focused only on the capacity to detect CIS but have not sought to 

determine papillary tumors characteristics especially the grade. As PDD and NBI are performant tools 

for the CIS diagnosis, it is more interesting to develop a specific peri-operative tool able to help 

determine the histologic grade in order to improve oncologic management. 

When multiphoton microscopy is used alone, it is still limited by the difficulty of easily recognizing 

abnormal aspects such as intranuclear modifications. In our study, multiphonic imaging also lead us to 

recognize and discriminate structures as seen in histopathology. In particular, it was possible to 

discern healthy urothelium from low and high grade tumors. It is very interesting and promising that 

optical imaging could be used for live peri-operative histology. It offers high resolved, rapid images 

comparable to histological images. But because of the learning curve for the tissue recognition and 

potential intraoperative variability, imaging alone is not sufficient for a reproducible diagnostic tool. 

This is why, multimodality by adding quantitative analysis to qualitative makes major contribution to 

clinical applicability in endo-urology. 

Our study has shown that fluorescent spectral analysis can discriminate among different types of 

urothelial tissue from healthy to high grade tumors. Likewise, the redox ratio and FLIM analysis were 

able to significantly distinguish tissues characteristics. To date, only one study has used the 

multimodality for urothelial evaluation. Cicchi et al. have assessed TPM for healthy bladder mucosa 

and CIS. Their results shown a potential difference between both groups even with the redox ratio 

analysis. But again, the limitation to the diagnosis of CIS is a limitation for a real applicability 

comparatively to our study which was focused on the grade. To evaluate the redox ratio, different 

formula are proposed in the literature but we decided to take the most used[21], [26], [34].  

Discrimination was also obtained by using the FLIM analysis. The FLIM data are bi-exponential 

fitted, each component fitted will be associated to one of the form of FAD in tissue, either protein-

bound or free. The average amplitude lifetime translates the distribution between free and bound FAD, 

having longer average lifetime In tumoral tissue means that the free FAD is in higher concentration. 

This change in the ratio of protein-bound FAD is a consequence of the impact of the Warburg effect.  

In tumor, an increased metabolizing of glucose to lactate by neoplastic tissue compared with healthy 
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tissue[35]. Indeed the major co-enzyme in this reaction are NADH and FAD. This is in correlation 

with previous results shown on healthy bladder mucosa compared to in situ carcinoma [33]. 

 

There are some limitations to discuss. First, we analyzed fixed samples. This could lead to some 

modifications of the fluorescence and the redox ratio analysis compared to an in-vivo analysis. Indeed, 

the NADH and FAD concentration decrease after the excision of the tissue and that could affect the 

performance of redox ratio analysis. Nevertheless, our analysis has been able to discriminate the 

different tissue as  described in the previous literature for the redox ratio in healthy and tumoral 

tissues[21], [26], [34], [36]–[38]. This means that the redox ratio is also a promising tool for an in-

vivo evaluation. The other limitation of our study is the low number of samples included. To confirm 

our results, we need to increase the number of samples and work on fresh biopsy analysis. 

These preliminary results confirm the potential of multimodal optical analysis and represent the first 

step for the development of a laser fiber optical tool for peri-operative diagnosis. The possibility of 

discriminating the tumor’s grade during the surgery is an essential tool for the oncologic management.  
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Graphical Abstract  
In urologic oncology, quality and rapidity of diagnosis is an influent element in the choice of 

treatment. Intraoperative imaging techniques could help in real-time the surgeon in decision making. 

This paper presents a new technology for intraoperative assessment of the nature of bladder tissue. A 

multimodal tools with two-photon exciton and quantitative-qualitative detection. Histological 

landmarks were found in two-photon images of biopsy and  quantitative measurements gave  

numerical indicators of malignancy. 
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Résumé : Le premier traitement standard pour 
les tumeurs cérébrales est la résection 
chirurgicale. Dans cette procédure un enjeu 
important demeure, l’identification des berges 
tumorales pour assurer une résection totale et 
éviter le risque de récidive pour le patient. A ce 
jour aucune technique d’imagerie peropératoire 
n’est capable de résoudre l’infiltration tumorale 
du tissu sain. La norme pour le diagnostic des 
berges tumorales est l’analyse histologique des 
biopsies. Une méthode ex vivo qui requiert un à 
plusieurs jours pour fournir un rapport 
pathologique final, un lapse de temps qui peut 
s’avérer fatal pour le patient.  La microscopie 
optique a récemment été développée vers une 
utilisation clinique peropératoire pour répondre 
à cet enjeu. Dans cette thèse, la technique de 
microscopie à deux-photons a été préférée pour 
essayer de répondre à cette problématique. Cette 
méthode donne accès à deux contrastes 
d’imagerie, la génération de seconde 

harmonique et l’émission de fluorescence, qui 
peuvent être combinés à des mesures 
quantitatives, tel que la spectroscopie et le 
temps de vie de fluorescence. Combiner ces 
quatre modalités de détection donnera une 
information complète sur la structure et le 
métabolisme de la région observée. Pour 
soutenir le développement technique vers une 
sonde endomicroscopique visant une utilisation 
peropératoire, les données en résultants doivent 
être fiables, et se montrer d’un intérêt pour le 
chirurgien. Par conséquent, une base de données 
sur le signal d’autofluorescence des tissus a été 
construite et présentée dans ce manuscrit, avec 
des algorithmes capables de discriminer de 
façon fiable les régions tumorales des régions 
saines. Des algorithmes qui ont montré le 
potentiel d’être automatisé dans une 
configuration clinique, afin de fournir une 
réponse en temps-réel au chirurgien. 
 

 

 

Title : Tissue database of autofluorescence response to improve intra-operative diagnosis of 
primitive brain tumors 
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Abstract: The first standard approach for brain 
tumor treatment is the surgical resection. In this 
protocol an important challenge remains, the 
identification of tumor margins to ensure a 
complete resection and avoid risk of tumor 
recurrence. Nowadays no intra-operative means 
of contrast are able to resolve infiltrated 
regions from healthy tissue. The standard for 
tumor margin diagnosis is the histological 
analysis of biopsies. An ex vivo method that 
requires one to several days to issue a final 
pathological reports, a time lapse that could be 
fatal to the patient. Optical microscopy has 
recently been developed towards an intra-
operative clinical use to answer this challenge. 
In this work, the technique of two-photon 
microscopy, based on the autofluorescence of 
tissue, has been favored. This technique gives 
access  to  two  imaging contrasts, fluorescence 

imaging and second harmonic generation and 
emission of fluorescence, and can be combined 
to quantitative measurement, such as 
spectroscopy and fluorescence lifetime. The 
combination of these four modalities of 
detection will give a complete structural and 
metabolic information on the observed region. 
To support the technical development towards 
an endomicroscopic probe, the resulted data 
have to be reliable and proved to be of interest 
for the surgeon. Consequently, an extensive 
database of the autofluorescence response of 
brain tumor tissue has been constructed and 
presented in this manuscript, with algorithms 
able to discriminate with reliability tumoral 
from healthy regions. Algorithms that have 
shown potential to be automatized in a clinical 
setting, in order to give a real-time answer to 
the surgeons. 

 


