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Abstract

Nowadays, a wide range of devices can browse the web, ranging from smartphones,
desktop computers, to connected TVs. To increase their browsing experience, users
also customize settings in their browser, such as displaying the bookmark bar or their
preferred languages. Customization and the diversity of devices are at the root of browser
fingerprinting. Indeed, to manage this diversity, websites can access attributes about
the device using JavaScript APIs, without asking for user consent. The combination of
such attributes is called a browser fingerprint and has been shown to be highly unique,
making of fingerprinting a suitable tracking technique. Its stateless nature makes it also
suitable for enhancing authentication or detecting bots. In this thesis, I report three
contributions to the browser fingerprinting field:

1. I collect 122K fingerprints from 2,346 browsers and study their stability over more
than 2 years. I show that, despite frequent changes in the fingerprints, a significant
fraction of browsers can be tracked over a long period;

2. I design a test suite to evaluate fingerprinting countermeasures. I apply our test suite
to 7 countermeasures, some of them claiming to generate consistent fingerprints,
and show that all of them can be identified, which can make their users more
identifiable;

3. I explore the use of browser fingerprinting for crawler detection. I measure its
use in the wild, as well as the main detection techniques. Since fingerprints are
collected on the client-side, I also evaluate its resilience against an adversarial
crawler developer that tries to modify its crawler fingerprints to bypass security
checks.





Résumé

De nos jours, une grande diversité d’appareils tels que des smartphones, des ordinateurs ou
des télévisions connectées peuvent naviguer sur le web. Afin d’adapter leur expérience de
navigation, les utilisateurs modifient également diverses options telles que l’affichage de la
barre des favoris ou leurs langues préférées. Cette diversité d’appareils et de configurations
sont à l’origine du suivi par empreintes de navigateurs. En effet, pour gérer cette diversité,
les sites web peuvent accéder à des informations relatives à la configuration de l’appareil
grâce aux interfaces du langage JavaScript, sans obtenir l’accord préalable de l’utilisateur.
La combinaison de ces informations est appelée empreinte de navigateur, et est bien
souvent unique, pouvant donc servir à des fins de suivi marketing. Néanmoins, le fait
que les empreintes ne soient pas stockées sur la machine rend cette technique également
intéressante pour des applications relatives à la sécurité sur le web. À travers cette thèse,
je propose 3 contributions relatives aux domaines des empreintes de navigateurs :

1. Je collecte 122,000 empreintes de 2,346 navigateurs et analysons leur stabilité
pendant plus de 2 ans. Je montre qu’en dépit de changements fréquents dans
leur empreinte, une part significative des navigateurs peut être suivie pendant de
longues périodes;

2. Je conçois une suite de tests afin d’évaluer la résistance des outils de protection
contre le suivi par empreinte de navigateurs. Je l’applique à 7 outils de protection,
et montre que tous peuvent être détectés, ce qui peut rendre leur utilisateurs plus
facilement identifiables, et donc vulnérables au suivi;

3. Enfin, j’explore l’utilisation des empreintes de navigateurs pour la détection de
crawlers. Après avoir mesuré l’usage de cette technique sur le web, je présente
les différents attributs et tests permettant la détection. Comme les empreintes de
navigateurs sont collectées côté client, j’évalue également la résilience de cette forme
de détection contre un adversaire développant des crawlers dont les empreintes ont
été modifiées.
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Chapter 1

Introduction

1.1 Motivations

As users, we all have our own way to browse the web. Some users browse the web using
a smartphone, while others prefer to use a laptop, sometimes with an external monitor.
Some users decide to have the bookmark bar visible in their browser, while others prefer
to increase the default font size because they usually sit far from their monitor. This
diversity of devices, browsers, and operating systems, as well as their customization,
is at the root of browser fingerprinting. In his thesis, Mayer [2] showed that browsers
could be uniquely identified because of their configuration. Indeed, to adapt websites’
behavior based on the user device, browsers enable scripts to access information about the
user device and its configuration using JavaScript APIs. The combination of attributes
collected from these APIs is called a browser fingerprint and can be collected by tracking
scripts without obtaining the user consent.

In 2010, Eckersley [3] studied browser fingerprints uniqueness. He created the Panopticlick
website and collected more 470K browser fingerprints, among which 83.6% were unique.
He also showed that more than 94.2% of the fingerprints when Flash or Java plugins
were activated. Because of this uniqueness, he argued browser fingerprints can be used
for tracking. In particular, it can be used in addition to cookies, to respawn them when
they have been deleted by the user. Indeed, while cookies are stored in the browser and
can, therefore, be erased, browser fingerprints are collected in the browser but are then
stored on a remote server the user has no control over.
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After Eckersley’s study, several studies [4–6] have measured the use of fingerprinting in
the wild. These studies all showed that fingerprinting was used by a significant fraction
of the most popular websites. They also showed that commercial fingerprinters adapt
their behavior to leverage new APIs. Indeed, while Eckersley showed that both Flash and
Java could be used to obtain the list of fonts, in their 2013 study, Nikiforakis et al. [4]
showed that none of the commercial fingerprinters they studied were still using Java.
They also noticed that since Flash was getting less popular due to its deprecation, one of
the fingerprinters was using a new approach to obtain the list of fonts using JavaScript.
More recently, Englehardt et al. [6] showed that fingerprinters had found new approaches
to exploit APIs introduced by HTML5, such as the canvas, WebGL and audio APIs.

To protect against fingerprinting, several countermeasures have been proposed, ranging
from simple browser extensions that lie about the device nature to forked browsers
that lie about the list of fonts available [7–9]. Niforakis [4] and Acar [10] evaluated
the effectiveness of fingerprinting countermeasures, such as simple user agent spoofers,
or Fireglove, a browser extension that randomly lies about attributes constituting a
fingerprint. Their evaluations showed that countermeasures could be detected because
they generated inconsistent fingerprints. Thus, they argued that using these kinds of
countermeasures could be counterproductive for a user since she could become identifiable.

Besides tracking, browser fingerprinting can also be used to improve web security. The
main use-case studied in the literature is to enhance authentication [11–14] by using the
fingerprint as a second factor. Burztein et al. [15] showed that browser fingerprinting can
also be used to detect crawlers. They proposed a dynamic challenge-response protocol
that leverages the unpredictability and yet stable nature of canvas rendering to detect
devices that lie about their nature—e.g. emulated devices or devices that modify the
browser and OS contained in their user agent.

In this thesis, I aim at improving the understanding of browser fingerprinting both
concerning its impact on privacy, as well as its applications to improve web security.
Concerning its impact on privacy, this thesis aims to answer the following research
questions:

1. Are fingerprints stable enough to be used for tracking?

2. How long can browsers be tracked using only their fingerprint?

3. What is the overhead of using browser fingerprinting tracking algorithms at scale?
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4. Are fingerprinting countermeasures effective and what are the privacy implications
of using these countermeasures?

Regarding the adoption of browser fingerprinting in a security context, this thesis aims
to answer the following research questions:

1. How widespread is the use of fingerprinting for crawler detection among popular
websites?

2. What fingerprinting techniques are used specifically to detect crawlers?

3. How resilient is browser fingerprinting against an adversary that alters its fingerprint
to escape detection?

1.2 Contributions

1.2.1 Tracking Browser Fingerprint Evolutions

While browser fingerprints need to be both unique and stable for tracking, studies tend
to focus only on uniqueness at the expense stability. Nevertheless, browser fingerprints
can change frequently for several reasons ranging from a browser or a driver update
to a change in the browser settings. Thus, I argue that it is essential to accurately
measure browser fingerprint stability, in particular, the stability of the different attributes
constituting it, and whether or it varies across browsers. Moreover, to better understand
how effective browser fingerprinting is as a tracking mechanism, there is a need to measure
how long can browsers be tracked using only their fingerprints.

To address the study of the stability and the tracking duration, I analyze more than 122K
browser fingerprints from 2,346 distinct browsers collected over a two year period using the
AmIUnique browser extensions. My results confirm Eckersley findings that fingerprints
change frequently. I show that half of the browser instances display at least one change
in their fingerprint in less than five days. Nevertheless, we observe discrepancies across
browsers, with some browsers having frequent changes in their fingerprints and others
with more stable fingerprints. I also study the stability of fingerprinting techniques
that were not available when Eckersley’s study was conducted. In particular, I show
that—in addition to having a high entropy—canvas fingerprint is one of the most stable
attributes in a fingerprint. For half of the browsers, its value remains stable more than
300 days. Then, I study how long browsers can be tracked using only their fingerprints. I
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propose two linking algorithms, one based on rules, and another hybrid one, that leverage
both rules and machine learning to link fingerprint evolutions over time. I show that
while a significant fraction of browsers is immune against fingerprinting, mostly because
their fingerprints are not unique or are too close from other fingerprints, around 32% of
browsers can be tracked for more than 100 days. Moreover, I show that these linking
algorithms can be easily parallelized to run on cheap public cloud instances, making of
fingerprinting a threat to privacy.

1.2.2 Studying The Privacy Implications of Browser Finger-
printing Countermeasures

Different defense strategies and countermeasures have been proposed to protect against
browser fingerprinting. With new APIs being added frequently to browsers, it is difficult to
always have up-to-date countermeasures that protect against new forms of fingerprinting.
Moreover, studies [4, 10] revealed the risk of becoming more identifiable when using
fingerprinting countermeasures. Thus, I plan to study the privacy implications of using
fingerprinting countermeasures, and whether or not they are counterproductive. I propose
Fp-Scanner, a test suite that detects inconsistent fingerprints created by fingerprinting
countermeasures. I apply Fp-Scanner to 7 different countermeasures, ranging from
simple browser extensions to peer-reviewed forked browsers, and I show that even when
countermeasures claim to generate consistent fingerprints, their presence can be revealed.
Beyond spotting fingerprinting countermeasures, I demonstrate that Fp-Scanner can
also recover original values, such as the browser or the operating system. I leverage
my findings to discuss different strategies for building more effective fingerprinting
countermeasures that do not degrade user privacy.

1.2.3 Evaluating the Resilience of Browser Fingerprinting to
Block Adversarial Crawlers

Although some studies showed browser fingerprinting can be used in a security context, for
example, to enhance authentication or to detect emulated devices, fingerprinting is often
associated with unwanted tracking. I propose to study the use of browser fingerprinting
in a security context, as a mechanism to detect bots, in particular, crawlers on the web. I
show that fingerprinting for crawler detection is popular among websites of the Top Alexa
10,000. I study the techniques used by commercial fingerprinting scripts. While these
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scripts use techniques also used for tracking, such as canvas or font enumeration, they
also developed specific techniques that aim at identifying if a fingerprint belongs to known
headless browsers or if a browser is instrumented. I also evaluate the effectiveness and
resilience of such detection techniques. Indeed, using fingerprinting in a security context
is challenging due to the adversarial nature of an attacker. Since browser fingerprints are
collected in the browser, it means a skilled attacker can modify its value to bypass security
checks. Thus, I show that, while crawler detection using fingerprinting provides better
results against simple crawlers with few modifications on their fingerprints compared to
other existing approaches, it fails to detect crawlers with more modifications, as well as
non-headless crawlers. Therefore, my results show that fingerprinting can quickly detect
simple headless crawlers, while its integration in a layered approach, in addition to other
existing detection approaches, can strongly increase its resilience.

1.3 List of Scientific Publications

During the course of this thesis, I published papers in the following conferences and
workshops:

[16] Vastel, A., Laperdrix, P., Rudametkin, W., & Rouvoy, R. (2018, May). FP-
STALKER: Tracking Browser Fingerprint Evolutions. In IEEE S&P 2018-39th
IEEE Symposium on Security and Privacy (pp. 1-14). IEEE: https://hal.inria.fr/
hal-01652021.1

[17] Vastel, A., Laperdrix, P., Rudametkin, W., & Rouvoy, R. (2018). FP-scanner: the
privacy implications of browser fingerprint inconsistencies. In 27th USENIX Security
Symposium (USENIX Security 18) (pp. 135-150): https://hal.inria.fr/hal-01820197.
2

[18] Vastel, A., Rudametkin, W., & Rouvoy, R. (2018, April). FP-TESTER: Automated
Testing of Browser Fingerprint Resilience. In 2018 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW) (pp. 103-107). IEEE: https:
//hal.inria.fr/hal-01717158.2

1I am the main author of the paper. I wrote the majority of its contents. I proposed the contributions
and the evaluation protocol and I wrote the experimental framework.

2I am the main author of the paper. I wrote the majority of its contents. I proposed most of the
contributions and the evaluation protocol and I wrote the experimental framework.

https://hal.inria.fr/hal-01652021
https://hal.inria.fr/hal-01652021
https://hal.inria.fr/hal-01820197
https://hal.inria.fr/hal-01717158
https://hal.inria.fr/hal-01717158
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Vastel, A., Blanc, X., Rudametkin, W., & Rouvoy, R. FP-Crawlers: Evaluating
the Resilience of Browser Fingerprinting to Block Adversarial Crawlers (under
submission). 1

[19] Vastel, A., Snyder, P., & Livshits, B. Who Filters the Filters: Understanding the
Growth, Usefulness and Efficiency of Crowdsourced Ad Blocking (under submission):
https://arxiv.org/abs/1810.09160. 3

1.4 List of Tools and Prototypes

During the course of this thesis, I developed several algorithms, tools, prototypes, and
libraries to gather data, test different research hypothesis or simply made or research
more accessible. To encourage the reproducibility of my results, I published the entirety
of the code:

• Implementations of Fp-Stalker, our two algorithms to link browser fingerprints over
time [20],

• Implementation of Fp-Scanner, our test suite to detect inconsistencies introduced
by fingerprinting countermeasures [21],

• Code of the crawlers and the labeling interface used in Chapter 5 to explore the
use of browser fingerprinting for crawler detection [22],

• An open-source implementation of Picasso canvas as described in Burztein et al. [15]
paper [23],

• Fp-Collect, a browser fingerprinting library oriented towards bot detection [24],

• Fp-Scanner (bis), a library that leverages Fp-Collect browser fingerprints to detect
bots [25].

1.5 Outline

The thesis is organized as follows.
3I am the main author of the paper. I wrote a significant part of its contents. I proposed some of

the contributions and some of the evaluation protocol. I was the main contributor of the experimental
framework.

https://arxiv.org/abs/1810.09160
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Chapter 2 starts by introducing the context of this thesis. I present how the diversity
of devices and customization are at the root of browser fingerprinting. Then, I define
what is browser fingerprinting, what are the main attributes constituting a fingerprint
and how they are collected. I review the existing literature on browser fingerprinting. I
analyze existing fingerprinting countermeasures along with their main shortcomings. I
also explore existing approaches that use fingerprinting in a security context. Finally, I
present other non-fingerprinting crawler detection approaches, such as time series analysis
and CAPTCHAs, to explain how fingerprinting compare to them.

Chapter 3 presents my study on tracking using fingerprinting. Most large-scale studies
focus on fingerprint uniqueness. In Chapter 3, I fill the gap by studying the stability of
fingerprints over more than 2 years using data collected from the AmIUnique browser
extensions. Moreover, I propose two linking algorithms that aim at linking evolutions of
fingerprints of the same browser over time and show that, despite frequent changes, a
significant fraction of browsers can be tracked for more than 100 days. This chapter is
an extension of the FP-Stalker paper [16] published at S&P 18 and includes 25,000 new
fingerprints than in the original paper.

Chapter 4 investigates the privacy impact of fingerprinting countermeasures. Because
countermeasures may generate inconsistent fingerprints, they can be detected and harm
their user privacy by making them more identifiable. We design a test suite that leverages
inconsistencies to detect the presence of fingerprinting countermeasures and show that
all of the 7 countermeasures I evaluate can be detected. This chapter was originally
published as a conference paper entitled Fp-Scanner: The Privacy Implications of Browser
Fingerprint Inconsistencies [17] published at Usenix Security 18.

Chapter 5 explores the use of fingerprinting in a context of crawler detection. I explore
its popularity among websites of the Top Alexa 10K and describe the main detection
techniques used by commercial fingerprinters to distinguish humans from bots. Because
fingerprints can be modified, I also measure the resilience of this approach against an
adversarial crawler developer.

Finally, Chapter 6 concludes this thesis by summarizing my contributions, proposing
future work and discussing a possible future for browser fingerprinting.
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Chapter 2

State-of-the-art

2.1 Context

2.1.1 Browsers Evolution

The complexity of browsers has continuously increased over time. Before 1995 and the
introduction of the JavaScript language, web pages were only constituted of static content
structured using HTML tags to describe the semantics of the content. Thus, it was not
possible for pages to perform any dynamic tasks on the client-side, such as reacting to
clicks or mouse movements. In 1995, Brendan Eich developed the JavaScript language,
while working at Netscape, the company behind the proprietary Netscape browser. The
introduction of this new language in the browsers started a new era of a more dynamic
web.

An increasing diversity of APIs. Since then, browser vendors have kept on adding
new features to attract users. Applications that were once available only as heavy desktop
clients are now available as web applications that can run in a browser. For example,
advanced text and slides editors, such as Microsoft Word or Open Office Impress were
only available as desktop clients. Nowadays, several online services propose similar
tools running as web applications, such as Google Docs, Slides.com, and Prezi. From
a developer point of view, web applications are supposed to make the development
process more convenient, as it removes the burden of managing device compatibility
issues. Indeed, web applications should be able to run in all browsers that stick to the
web standards. Besides text and slides editors, other complex applications, such as
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video games and real-time video chats, can now efficiently run in browsers. For these
applications to work in browsers, it required browser vendors to add several APIs, like the
canvas and the WebGL APIs, to efficiently generate 2D and 3D shapes or the WebRTC
API that enables real-time communication.

An increasing diversity of devices. In addition to the increasing number of APIs and
features available in browsers, the diversity of devices capable of browsing the web has
also increased drastically. While a few years ago only desktop computers could browse
the web, now, a wide range of devices ranging from mobile devices, desktop computers,
to connected TV that embeds a browser can browse the web. To help websites to manage
this diversity of devices, for example, to better display the content or adapt the website
to the performance of the device, browser vendors provide several JavaScript APIs that
enable websites to access information about the device, which as we show in this thesis,
is at the root of browser fingerprinting.

Evolution of browsers market share and its consequences. While during the two
browser wars,1 there was a race between the different browser vendors to continuously
add more features, often at the expense of a proper evaluation of their impact on privacy,
nowadays, the situation has stabilized, with fewer browser vendors left. Google, with its
Chrome browser, represents more than 62% of the browser market share,2 followed by
Safari with 15% and Firefox, with less than 5% of the market share. Browser vendors and
the World Wide Web Consortium (W3C) tend to better take into account the privacy
aspects before introducing new APIs, in particular, how the API could be used for to
fingerprint a browser. For example, in the case of the new navigator.deviceMemory
attribute introduced in December 2017,3 the W3C recommended to round the value
returned to reduce the fingerprinting risk.4 Moreover, privacy and security have become
strong commercial arguments.5 Thus, major browser vendors, such as Mozilla and Apple,
added more user-friendly mechanisms to manage privacy preferences and countermeasures
in their browser, such as the anti browser fingerprinting protection in Firefox,6 or the
Inteligent Tracking Prevention (ITP) in Safari.7 New privacy-friendly browsers, such

1https://en.wikipedia.org/wiki/Browser_wars
2http://gs.statcounter.com/browser-market-share#monthly-201812-201812-map
3https://developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory
4https://w3c.github.io/device-memory/#sec-security-considerations
5https://www.theverge.com/2019/3/14/18266276/apple-iphone-ad-privacy-

facetime-bug
6https://blog.mozilla.org/futurereleases/2019/04/09/protections-against-

fingerprinting-and-cryptocurrency-mining-available-in-firefox-nightly-and-beta/
7https://webkit.org/blog/7675/intelligent-tracking-prevention/

https://en.wikipedia.org/wiki/Browser_wars
http://gs.statcounter.com/browser-market-share#monthly-201812-201812-map
https://w3c.github.io/device-memory/#sec-security-considerations
https://www.theverge.com/2019/3/14/18266276/apple-iphone-ad-privacy-facetime-bug
https://www.theverge.com/2019/3/14/18266276/apple-iphone-ad-privacy-facetime-bug
https://blog.mozilla.org/futurereleases/2019/04/09/protections-against-fingerprinting-and-cryptocurrency-mining-available-in-firefox-nightly-and-beta/
https://blog.mozilla.org/futurereleases/2019/04/09/protections-against-fingerprinting-and-cryptocurrency-mining-available-in-firefox-nightly-and-beta/
https://webkit.org/blog/7675/intelligent-tracking-prevention/
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as Brave and Cliqz, have also emerged. Browser vendors are also more willing to take
measure for fixing security issues, even though it can impact the user experience by adding
significant performance overhead. For example, Google Chrome added site isolation8

to enhance security, in particular against side-channel attacks, such as Spectre and
Meltdown, even though this can lead to a memory increase of 10%. Similarly, browser
vendors deprecated browser plugins because of the security issues they engendered, even
though some of them—e.g. the Adobe Flash plugin—were used on popular websites,
like YouTube.9 Instead, they favored browser extensions that have fewer privileges
than plugins and that use a system of permissions similar to the one used for mobile
applications.

2.1.2 Monetizing Content on the Web: Advertising and Track-
ing

Evolution of online advertisting. Advertising is the most popular way to monetize
content on the web [26]. Nevertheless, since the first online advertising banners in 1995,
to the advanced ad-targeting platforms, advertising has gone through multiple stages.
At the beginning of online advertising, websites charged advertisers an upfront cost to
occupy some space with a banner on their website. Because of the popularity of these
banners, advertisers started to help their customers choose the most adapted audience
to display their banners depending on the demography of the users they were trying to
target. To help companies to measure how their advertising campaigns were performing in
real-time, Doubleclick introduced a service, called DART (Dynamic Advertising Reporting
and Targeting) that aimed at helping companies to measure the number of times their
ads had been viewed and clicked on the different websites their ads were present on.
This new feature was game-changing and lead to the creation of a new pricing model.
While advertisers used to pay websites to host their banner, no matter the amount of
traffic, views, and clicks, after the introduction of DART, the price started to depend
on the number of times ads were viewed (cost per impression). Around 2000, search
engines became increasingly more important in the web ecosystem, providing users
a convenient way to find relevant content on an ever-growing web. Search engines
monetized their popularity by enabling advertisers to target users based on the keywords

8https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.
html

9https://youtube-eng.googleblog.com/2015/01/youtube-now-defaults-to-html5_27.
html

https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://security.googleblog.com/2018/07/mitigating-spectre-with-site-isolation.html
https://youtube-eng.googleblog.com/2015/01/youtube-now-defaults-to-html5_27.html
https://youtube-eng.googleblog.com/2015/01/youtube-now-defaults-to-html5_27.html
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they were searching for. This also created a new shift in the advertising pricing model,
with the introduction of pay per click instead of pay per impression. Finally, around
2005, advertisers have started to gather data to make advertising more relevant to users
and therefore maximize their incomes. This technique, called behavioral advertising or
targeted advertising, consists in gathering data about the users, such as their IP address,
the pages they have visited and the products they bought online, to build user profiles of
interests that are later used to provide more relevant ads. Since users only see ads they
are more interested in, there is more chance they click on it, which, therefore, increases
the advertiser revenues.

The tracking industry. To build these user profiles, the advertising industry heavily
relies on trackers. Trackers are scripts or images used to gather and transmit data to
the tracking company servers. To increase the amount of data collected, trackers are
placed on several websites, most of the time not owned by the tracking company, as
third-party resources. To incentivize websites to use trackers on their pages, trackers
tend to provide a useful service. For example, trackers may take the form social media
widgets, such as the Facebook Like button or the Twitter retweet button that aim at
increasing the website visibility by making it more easily shareable on social media.
Trackers can also take the form of analytic services, e.g. Google Analytics, to help
websites better understand their audience. To keep track of users over time and across
different websites, trackers generate a unique user identifier (UUID) that they store
in the browser using cookies or other storage APIs, such as local and session storage,
as well as indexed database. Trackers also misuse the ETag cache header to store and
retrieve user identifiers. The idea behind multiplying the number of storage mechanisms
is that, if a user deletes only one of its stored identifiers, the other identifiers can still be
regenerated using the other storage mechanisms.

Data protection laws. Because of the invasive nature of trackers, policymakers have
proposed laws to protect users data. One of the most recent and important law is
the European General Data Protection Regulation (GDPR) that requires websites and
trackers to obtain user consent before they gather data. Moreover, websites are required
to specify the purpose of the data collection, as well as the list of companies they will
share the data with. While previous laws used to specifically targets cookies,10 GDPR is
more general. Thus, when they refer to the notion of user identifier, it does not refer
only to explicit identifiers stored in cookies, but to any forms of data that could be used
as an identifier, for example, a browser fingerprint.

10https://www.cookielaw.org/the-cookie-law/
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Conclusion. To gather information about users, the online advertising industry heavily
relies on trackers that take different forms, ranging from social media widgets to analytics
services. To keep track of user identities along time and across different websites, trackers
store a unique user identifier in the browser using cookies or other storages mechanisms.
Nevertheless, by using a single storage mechanism, trackers run the risk that when a
user deletes her cookies, they lose track of her valuable information. Thus, some trackers
have come up with a more invasive tracking technique: browser fingerprinting. This
technique consists in gathering attributes about the user device and configuration using
APIs provided by the browsers. Due to the high diversity of devices and configurations,
the combination of these attributes, called a browser fingerprint, is often unique, and
can, therefore, be used for tracking. Contrary to cookies that can be erased by the user,
fingerprints cannot be deleted since they are not stored on the user device, making it
more difficult for users to protect themselves against it.

2.2 Browser Fingerprinting

2.2.1 Definition

A Browser fingerprint is a set of attributes that can be used to identify a browser. The
analogy with a digital fingerprint arises from the fact that this combination of attributes
is often unique [3, 27]. Browser fingerprints are used for tracking purposes, as well as
for security purposes, such as bot detection or to enhance authentication. One of the
main differences between browser fingerprinting and cookies lies in the stateless nature
of browser fingerprints. While cookies used for tracking rely on storing an identifier in
the browser, browser fingerprints are totally stateless, which means they are not stored
on the user device, making its detection more difficult and its deletion impossible.

In this thesis, the words fingerprint and browser fingerprint, as well as the words
fingerprinting and browser fingerprinting are used interchangeably. Moreover, we consider
only permissionless browser fingerprinting—i.e., attributes that can be accessed without
requesting any permission to the user. Thus, it excludes several attributes, such as the
precise geolocation using the navigator.geolocation API or advanced forms of WebRTC
fingerprinting [6] that can obtain the name of multimedia peripherals connected to a
device. While this definition of fingerprinting is widely accepted in the literature, the
different analyses of fingerprinting scripts conducted during this thesis also show that
commercial fingerprinters do not use attributes that require permissions. Nevertheless,
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in the case where fingerprinting is used for more legitimate purposes, such as enhancing
authentication, we consider these attributes could be part of the fingerprints as users
would probably have more incentives to grant their authorization to the fingerprinting
script.

Attributes constituting a browser fingerprint can be either collected in the browser using
JavaScript or plugins, such as Flash, as well as attributes sent by the browser, such as
HTTP headers. Typically, the IP address or the geolocation that can be derived from it
are not considered as part of a browser fingerprint [3, 27, 28]. This definition also excludes
other forms of fingerprinting techniques, such as TCP fingerprinting [29], a technique
that leverages lower-level information from the TCP stack, such as the order of the TCP
options. While our definition of browser fingerprinting allows fingerprints collected both
on computers and mobiles, the only constraint is that it must bcollected using a browser.
Thus, it excludes all forms of fingerprinting conducted using applications, whether or not
they require permissions, such as presented by Kurtz et al. [30] and Wu et al. [31].

Collecting browser fingerprints. Figure 2.1 provides an overview of the process to
collect a browser fingerprint. When a user visits a website with her browser, it sends
a GET request to the server to retrieve a page. Upon receiving the request, the server
sends a response containing the content of the page. Fingerprinting scripts are included
as JavaScript files in the HTML returned. These scripts may be served as first-party
scripts by the domain visited, or by third-party domains to track users across different
websites. Once the script was loaded, the fingerprinting script can execute to collect the
different attributes. In practice, most of the fingerprinting scripts wait for the Document
Object Model (DOM) to be also loaded since the script may need to interact with it
to collect some fingerprinting attributes, such as the list of fonts. After the JavaScript
fingerprinting script completes to execute, it needs to transmit the fingerprint collected
to a server. Some fingerprinting script etransmit the whole list of attributes, while others
simply compute a hash that is transmitted. Different fingerprints can be used to transmit
the fingerprint to a remote server. If only a hash is transmitted or if the fingerprint
collected is small, the fingerprint can be sent using an image pixel where the value of
the fingerprint is added as a GET parameter of the image URL. When fingerprints are
too big to be sent as images, some can trigger a POST request using the XMLHttpRequest
request API11 or the navigator.sendBeacon API.12 The sendBeacon function has the
advantage of being asynchronous, which means that data can be transmitted when a

11https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
12https://developer.mozilla.org/en-US/docs/Web/API/Navigator/sendBeacon

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/sendBeacon
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1. The browser 
requests a page

2. The server sends the 
requested page along 

with additional 
JavaScript and CSS stylesheets 

3. JavaScript Fingerprinting 
script executes in the browser 

and collects a fingerprint

4. The fingerprinting script
 transmits the fingerprint 

to a remote server

Browser running 
on a device

Server

Figure 2.1 Schema representing the process to collect a browser fingerprint. To make the
schema more comprehensive, we consider that all resources, including the fingerprinting
script, are delivered by the first party.

user closes a tab without blocking it. It is particularly useful when fingerprinters also
collect dynamic information, such as clicks and mouse movements in addition to the
fingerprinting attributes. Thus, they besides its fingerprint, they can also monitor all
her activity on the page. While this feature is also interesting for security purposes, one
should be careful since the beforeunload event used to signal that a user is closing the
page is often badly implemented in headless browsers.13

Upon reception of the fingerprint, the server can also collect the HTTP headers associated
with the GET or the POST request used to send the fingerprint, add these attributes to
fingerprint and then store the fingerprint in a database.

2.2.2 Building a Browser Fingerprint

In this subsection, we present the different attributes constituting a browser fingerprint.
While fingerprinting can be used for security purposes, we focus on attributes used

13https://github.com/GoogleChrome/puppeteer/issues/2386

https://github.com/GoogleChrome/puppeteer/issues/2386
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for tracking. We provide more details about fingerprinting attributes used for security
at the end of this chapter, as well as in Chapter 5 where we explain how commercial
fingerprinters detect crawlers based on their fingerprint. Fingerprint attributes require
two properties when used for tracking:

1. Uniqueness. While not each attribute need to be unique individually, their
combination—i.e., the browser fingerprint—should be unique in order to distinguish
between different browsers. Indeed, if different browsers have the same fingerprint,
they cannot be tracked using browser fingerprinting.

2. Stability. Even in the case where a browser fingerprint is unique, tracking requires
a certain stability of the fingerprinting. Indeed, if we consider an extension that
randomizes the value of a canvas at each visit, then the browser fingerprint keeps
on being unique solely because the canvas is unique. Nevertheless, since the canvas
keeps on changing, it becomes challenging for a fingerprinter to keep track of the
fingerprint over time.

We distinguish three main families of attributes constituting a fingerprint: HTTP
headers, attributes collected using JavaScript and attributes collected using Flash. For
each category, we present the different attributes of this category. We explain how these
attributes are collected and we also provide examples, as well as information about the
attribute such as its uniqueness.

2.2.2.1 HTTP Headers

When a browser sends an HTTP request to obtain a page or to transmit data using
the XMLHttpRequest API for example, it attaches headers to its request that provide
information to the server receiving this request. The role of these headers has been
defined in different Request For Comments (RFC), in particular in the RFC 7231 [32]
where they define the semantics and the contents of header. They also explain how some
of the headers leak information about the user or the device, and the risk it can be used
for fingerprinting (Section 9.7 of the RFC)14.

We present four different HTTP headers, as well as a fifth attribute, the order of the
headers, that leak information about the device and its user and that can therefore be
used for fingerprinting.

14Fingerprinting risks related to HTTP headers: https://tools.ietf.org/html/rfc7231#section-
9.7

https://tools.ietf.org/html/rfc7231#section-9.7
https://tools.ietf.org/html/rfc7231#section-9.7
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User-Agent. This header provides information about the device and the software, a
browser in our case, sending the request. The semantic and the content of this header
are defined in the section 5.5.3 of the RFC 7231 [33]. It can be used by servers to gather
analytics data or for compatibility purposes when an application is only available on
certain kinds of devices. The User-Agent header provides several information useful
for fingerprinting, such as the browser and its version, as well as the Operating System
(OS). To protect against fingerprinting, the RFC advises developers not to include fine-
grained details about the device. Nevertheless, it does not specify any format for the
User-Agent header. Thus, as we show in the table presenting examples of user agents,
some applications on mobile devices with an embedded browser may indicate sensitive
information, such as the name of the carrier.

User-Agent Description

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_3)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/72.0.3626.121 Safari/537.36

Chrome browser version 72 on
MacOS

Opera/9.30 (Nintendo Wii; U; ; 3642; en) Opera browser on a Wii

Mozilla/5.0 (iPhone; CPU iPhone OS 12_1 like Mac OS X)
AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/16B92
[FBAN/MessengerForiOS;FBAV/ 192.0.0.46.101;
FBBV/131204877; FBDV/iPhone8,4; FBMD/iPhone;FBSN/iOS;
FBSV/12.1;FBSS/2;FBCR/Play;
FBID/phone;FBLC/pl_PL;FBOP/5]

Browser integrated in the
Messenger app on iPhone

Accept-Language. This header is sent by the browser to indicate the languages the
user prefers [34]. The user can declare multiple languages, each one associated with a
preference value. This preference value, also called quality value, is specified using a q
parameter. Thus, both the list of languages and their associated quality values chosen
by the user can be collected to be part of a fingerprint. Contrary to the majority of
the fingerprinting attributes that reflect the nature of the device or the browser, this
attribute reflects the user preferences.

Accept-Encoding. This header is sent by the browser to indicate the accepted encodings
for the response. Similarly to the Accept-Language header, the browser can indicate
multiple encodings, each with a quality value. Nevertheless, quality values are not
commonly used with this header in the main browsers.
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Accept-Language Comments

ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7
Russian in priority, then
American english then any form
of English.

en,en-US; q=0.9,de-DE; q=0.8,de; q=0.7,fr; q=0.6,pl;
q=0.5,uk; q=0.4,ru; q=0.3,sv; q=0.2,nb;q=0.1

American English or any form or
English in priority. Then
German, French, Polish,
Ukrainian, Russian, Swedish,
Norwegian.

zh-CN,zh;q=0.9,en;q=0.8 Chinese then English.

Accept-Encoding Comments

br, gzip, deflate Encoding header sent by Safari

gzip , deflate, br Encoding header sent Chrome and Firefox

Accept. The Accept header specifies the response media types accepted by the browser.
Similarly to the Accept-Language header, the browser can indicate multiple types, each
with a quality value to indicate its preferences.

Accept Description

text/html,application/xhtml+xml, application/xml;
q=0.9,image/webp, image/apng,*/*;q=0.8

Accept header when requesting a
page on Chrome version 72.

text/html,application/xhtml+xml, application/xml;
q=0.9,image/webp, */*;q=0.8

Accept header when requesting a
page on Firefox version 65

Order of the HTTP headers. Besides the headers values, different studies [11, 3, 35]
also showed that the order of the HTTP headers depend on the browser and can be used
to identify a browser. While the type of browser is already specified in the User-Agent
header, this can be used for verification.
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2.2.2.2 JavaScript Attributes

Attributes collected using JavaScript are the main source of entropy for browser finger-
prints. In order to help developers adapt their websites to their user device—for example,
to change the style depending on the size of the screen—browsers expose different APIs
that leak information about the device. We present how different JavaScript APIs
accessible without any permission, such as the canvas or the audio API, are used by
fingerprinters to gather highly unique fingerprinting attributes.

We first introduce several attributes that can be accessed using the navigator object,15

a special object exposed by default in all main browsers, which provides information
about the browser and the OS.

navigator.userAgent. The user agent value can also be accessed in JavaScript trough
the navigator.userAgent property. In normal conditions—i.e., in the absence of any
user agent spoofers, this property returns the same value as the user agent contained in
the HTTP headers.

navigator.plugins. This attribute returns the list of plugins installed in the browser.
For each plugin, it provides information about its name, the associated filename, a
description as well as a version of the plugin. Due to the deprecation of the Netscape
Plug-in API (NPAPI),16 mostly because of security reasons, the entropy of this entropy
has decreased over time.

15Navigator object: https://developer.mozilla.org/en-US/docs/Web/API/Navigator
16https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html

https://developer.mozilla.org/en-US/docs/Web/API/Navigator
https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
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Plugins Description

Chromium PDF Plugin:: Portable Document
Format::internal-pdf-viewer::
__application/x-google-chrome-pdf pdf Portable
Document Format

Plugins on a Chrome browser

Shockwave Flash:: Shockwave Flash 31.0 r0::
NPSWF32_31_0_0_108.dll::
31.0.0.108__application/x-shockwave-flash swf Adobe
Flash movie,application/futuresplash spl
FutureSplash movie

Browser with the Flash plugin.
The .dll file extension indicates
that they browser is running on
Windows.

Edge PDF Viewer::Portable Document
Format::::__application/pdf pdf Edge PDF Viewer

Plugins on an Edge browser.

navigator.mimeTypes. The mimeTypes property returns an array containing the list
of MIME types supported by the browser. Each MIME type object provides information
about the type supported, a description and the filename:

• Type: ’Portable Document Format’, description: ’application/x-google-chrome-
pdf’ and filename: ’pdf’

• Type: ’Widevine Content Decryption Module’, description: ’application/x-ppapi-
widevine-cdm’

navigator.platform. It returns the platform the browser is running on. While this
information is redundant with the OS that contained in the User-Agent header, it can
be used to verify if the OS claimed has been modified.
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Platform Comments

Linux x86_64, Linux armv7l, Linux armv8l, Linux i686,
Linux aarch64

Possible values for browsers
running on Linux.

MacIntel
Value for browsers running on
MacOS.

iPad, iPhone
Possible values for browsers
running on iOS.

Win64, Win32
Possible values for browsers
running on Windows.

navigator.hardwareConcurrency. This property returns an integer representing the
number of logical processors available to the browser.

navigator.oscpu. The oscpu property returns a string corresponding to the operating
system of the device. Similarly to the platform attribute, it is also redundant with
the OS contained in the User-Agent header. Contrary to navigator.platform that is
available in all the main browsers, this attribute is only available in Firefox.

oscpu Comments

Linux x86_64, Linux armv7l, Linux armv8l, Linux i686,
Linux aarch64

Possible values for browsers
running on Linux.

Intel Mac OS X 10.12, Intel Mac OS X 10.9, Intel Mac OS
X 10.11

Value for browsers running on
MacOS.

Windows NT 6.1; Win64; x64, Windows NT 10.0; WOW64,
Windows NT 5.2; WOW64

Possible values for browsers
running on Windows.

navigator.languages. It returns an array containing the user’s preferred languages.
The array is ordered by preference with the most preferred language first. The value
returned is based on the same value as the Accept-Language header, the main difference
is that it does not include the quality values represented by the letter "q" in the header.
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Date.getTimezoneOffset. The getTimezoneOffset method of the Date class returns
the difference in minutes between the user timezone and UTC timezone. As pointed out
by Gomez et al. citegomez2018hiding, the entropy of this attribute mostly depends on the
distribution of the location of the users visiting the website that collect the fingerprints.

navigator.enumerateDevices. The enumerateDevices function returns the list of
input and output media devices, such as microphones or webcams. When no permission
is granted, it can simply be used to count the distinct number of speakers, microphones,
and webcams. Nevertheless, in the case a media permission has been granted to access a
webcam, for example, then enumerateDevices can provide more fine-grained information
about the peripherals, such as their name or whether or not it is built-in.

navigator.cookieEnabled. This property returns a boolean indicating whether or not
cookies are enabled by the browser. Since it has only two possible values, true or false,
this attribute has a low entropy [27].

navigator.doNotTrack. The doNotTrack property aims at indicating whether or not
a user accepts to be tracked. Depending on the browser, it returns "0" if the users refuses
to be tracked, "1" if she accepts to be tracked. Some browsers do not specify its value
and decide to return null instead. Nevertheless, starting from version 12, Apple decided
to remove the doNotTrack property from the navigator object because they consider it
misleading.17 Indeed, users tend to believe it protects them from tracking even though
there are no proofs that advertisers and trackers in general respect its value.

navigator.getBattery. The function getBattery returns an object containing infor-
mation about the device’s battery that can be used for tracking [36]. The returned object
contains the following information:

• charging: a property that represents whether or not the battery is charging,

• chargingTime: a property that represents the time before the battery is fully
charged,

• level: a property that represents the charging level of the battery.

navigator.deviceMemory. The deviceMemory property returns the amount of memory
of the device in gigabytes. It is only available on Chromium-based browsers, such as
Chrome and Opera, since December 2017 (Chrome version 63).18

17https://developer.apple.com/safari/technology-preview/release-notes/
18https://developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory

https://developer.apple.com/safari/technology-preview/release-notes/
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory
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Navigator prototype. Acar et al. [10] showed that the order of the properties of the
navigator object, as well as the presence or absence of certain properties, can be used to
fingerprint a browser and its version. For example, on Chrome 68 the navigator prototype
has 58 properties, while the Samsung browser version 7 has only 56 properties, and
Safari mobile 12 has between 33 and 39 properties. More generally, besides the special
case of the navigator object, Mulazzani et al. [37] and Nikiforakis et al. [4] showed that
the presence or absence of features could be used to accurately identify the version of a
browser. While this feature does not bring any information not already contained in the
User-Agent header, it can be used to verify if the browser claimed has been modified by
a spoofer.

Canvas fingerprinting. Mowery et al. [38] showed that the HTML canvas API could be
used to generate images whose rendering depends on the browser and the device. These
canvas use different techniques that, when combined, generate an image whose rendering
is highly unique. For example, Acar et al. [5] showed that commercial fingerprinters used
strings that are pangrams—i.e., strings constituted of all the letters of the alphabet—or
use emojis since their rendering depends on the OS and the kinds of device. Figure 2.2
presents the canvas generated by Akamai and PerimeterX fingerprinting scripts.

(a) Canvas fingerprint generated by Akamai Bot Manager fin-
gerprinting script.

(b) Canvas fingerprint generated by PerimeterX fingerprinting
script.

Figure 2.2 Example of two canvas fingerprints used by commercial fingerprinting scripts.

Window and screen size. The browser exposes different properties, through the
screen and the window objects, that reflect the size of the screen and the window.
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Table 2.1 presents and defines these different attributes. Figure 2.3 presents a screenshot
of a browser on MacOS that shows how these attributes relate to each other.

Table 2.1 Definition of different attributes that provide information about the size of
the screen and the window. For each attribute we present a possible value for of the
attribute. All the possible values shown in the table come from the same user.

Attribute Possible value Description

screen.width 1280

Width of the web-exposed screen area in
pixels. In there case where there are multiple
screen, it should return the value of the screen
where the browser window is located. The
value is not influenced by the size of the
browser window.

screen.height 1024
Height of the web-exposed screen area in
pixels. Similar definition as screen.width.

screen.availWidth 1280
Amount of horizontal space in pixels available
to the browser window.

screen.availHeight 1024
Amount of vertical space in pixels available to
the browser window.

window.innerWidth 1050
Width of the browser window in pixels,
including the size of the scroll bar.

window.innerHeight 1050
height of the viewport, i.e. the part of the
webpage a user can see, in pixels, including
the size of the scroll bar.

window.innerHeight 932
height of the viewport in pixels, including the
size of the scroll bar.

window.outerWidth 1050 Width in pixels of the whole browser window.

window.outerHeight 1004 Height in pixels of the whole browser window.

screen.colorDepth 24 Color depth of the screen.

Audio fingerprinting. Similarly to canvas fingerprinting that uses the HTML canvas
API to generate highly unique images, audio fingerprinting leverages the Web Audio
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Figure 2.3 Presentation of the different attributes related to the size of the screen and
the window.
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API to generate sound signals with high entropy. Englehardt et al. [6] showed that one
popular fingerprinting script relied on a OscillatorNode object to generate and process
an audio signal. Due to hardware and software differences, the resulting signal is slightly
different depending on the device.

WebGL.vendor/renderer. The WebGL API enables to draw 3D shapes in the browser.
Although it works in the majority of the browsers and devices—even devices without a
GPU thanks to technologies, such as SwiftSchader19 that enables to have a compatible
API on a CPU—the WebGL API keeps exposing information about the user device to
help developers to tailor their code to the user device. In particular, two attributes
exposed by the WebGL API can be used for fingerprinting. The first attribute is the
WebGL vendor and returns the name of the GPU vendor:

• Apple Inc.

• Intel Open Source Technology Center2

• Qualcomm

• ATI Technologies Inc

The second attribute, WebGL renderer, returns the name of the GPU:

• Adreno (TM) 405

• AMD PITCAIRN (DRM 2.50.0 / 4.15.0-43-generic, LLVM 6.0.0)

• ANGLE (AMD Radeon HD 7310 Graphics Direct3D9Ex vs_3_0 ps_3_0)

• NVIDIA Quadro K4000 OpenGL Engine

WebGL canvas. Besides static attributes, the WebGL API can also be used to generate
a 3D canvas fingerprint. Laperdrix et al. [27] used the WebGL API to generate 3D shapes.
Nevertheless, they did not succeed in crafting a stable and unique WebGL canvas. More
recently, Cao et al. [1] contradicted Laperdrix et al. findings and showed the WebGL API
could be used to generate canvas that are both unique and stable, even across different
browsers of the same machine. They carefully selected different parameters, such as the
texture, the anti-aliasing or the light intensity to render more than 20 different tasks. To
create unique 3D scenes, the tasks exploit different mechanisms, such as the fact that
interpolation algorithms used by fragment shaders vary depending on the graphic card.

19https://developers.google.com/web/updates/2012/02/SwiftShader-brings-software-
3D-rendering-to-Chrome

https://developers.google.com/web/updates/2012/02/SwiftShader-brings-software-3D-rendering-to-Chrome
https://developers.google.com/web/updates/2012/02/SwiftShader-brings-software-3D-rendering-to-Chrome
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Figure 2.4 Examples of two 3D scenes generated with WebGL using Cao et al. ’s [1]
approach.

The tasks generate fingerprints that are also resilient when the screen or the window
size changes, or when the zoom level is altered. Figure 2.4 presents two examples of 3D
scenes they generate. They also showed that even when WebGL was not using GPU,
e.g. when the device has no GPU or a blacklisted GPU, and uses the SwiftSchader
library to run the computation on the CPU, the 3D scenes still have entropy.

Touch screen. The presence of a touch screen, as well as its characteristics, can be
used for fingerprinting. In order to test the presence of touch support on the device,
one can create a TouchEvent and observe if it succeeds or look at the presence of the
ontouchstart property in the window object. In case the device has touch support, one
can use the navigator.maxTouchPoints or the navigator.msMaxTouchPoints prop-
erties to obtain the number of simultaneous touch contact points supported by the
device.

Audio and video codecs. Audio and video codecs support depends on the browser
and the OS.20 During the analyses conducted in this thesis, we observed some of the
commercial fingerprinting scripts testing the presence of audio and video codecs using
the function HTMLMediaElement.canPlayType. Given an audio or a video type, this
function return three possible values:

1. "probably", which means that the media type appears to be playable,
2. "maybe" indicates that it is not possible to tell if the type can be played without

playing it,
20https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_

formats

https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
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3. "", an empty string indicating that the type cannot be played.

Font enumeration. At the end of this section, we present how the whole list of fonts
installed on the system can be obtained using Flash. Nevertheless, with the decrease of
the popularity of the Flash plugin caused by its deprecation,21 fingerprinters have come
up with new approaches to obtain the list of fonts installed on the system [4]. The idea
to test if a font is installed is to compare the size of two HTML elements, one that uses
the system fallback font and the other element that uses the font whom the fingerprinter
wants to test the presence. It can be done the following way:

1. The script creates a div element containing a span element,

2. The script sets a predefined text with a fixed size. Moreover, it sets a font-family
that does not exist. Thus, the browser will use the fallback font of the system,

3. The script measure and save the size of the span element using its offsetWidth
and offsetHeight properties,

4. For each font whom the script wants to test the presence on the user system, it
creates a span element inside a div. Then, it sets the text of the span element
using the same string and size as in step 2 and it specifies that the text should be
rendered using the font that it wants to test. Finally, the script measures the size
of the span element,

5. If the span element has the same dimensions as the span element that use the
fallback font, then it means the font is not present on the device. Otherwise, it
means the font is installed.

To be sure to decrease the chance of false negatives—i.e., fonts that would not be
detected—the font-size should be large enough, so that even small differences in the
font rendering are amplified and can be detected by offsetWidth and offsetHeight
properties. Gomez et al. [28] collected fonts on more than 2M users using this approach
and showed that the list of fonts provided more than 6.9 bits of entropy.

Fifield et al. [39] showed that simply measuring how different Unicode glyphs are rendered
can provide a stable and unique identifier. Indeed, the rendering of the font depends on
different factors, such as the fonts or anti-aliasing. They measured the size of the glyph
bounding boxes for different Unicode characters and found that across the 1,016 different
devices in their experiment, 349 could be identified solely using the font metrics.

21https://www.bleepingcomputer.com/news/security/google-chrome-flash-usage-
declines-from-80-percent-in-2014-to-under-8-percent-today/

https://www.bleepingcomputer.com/news/security/google-chrome-flash-usage-declines-from-80-percent-in-2014-to-under-8-percent-today/
https://www.bleepingcomputer.com/news/security/google-chrome-flash-usage-declines-from-80-percent-in-2014-to-under-8-percent-today/
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Performance fingerprinting. Mowery et al. [40] used the SunSpider and the V8
benchmarks to build a fingerprint. In total, they run 39 performance tests, each five times
and measured the time each test takes to execute. Using these timing information, they
create different heuristics to predict the OS, the browser, as well as the CPU architecture.
While the test sample is relatively small, less than 1,000 different configurations, they
are still able to achieve a browser classification accuracy of more than 80%. In the
case of CPU architecture, they achieve an accuracy of 45.3%, which is still interesting
considering that a random choice would have resulted in an accuracy of 6.7%. While
the CPU architecture can be used as an additional attribute in a fingerprint, being able
to properly classify the OS and the browser enables to verify if the values displayed
in the user agent have been spoofed. More recently, Sanchez et al. [41] proposed an
approach that measures the time to execute sequences of cryptographic functions to
generate fingerprints capable of distinguishing similar devices.

Extension probing. Similarly to the list of plugins, the list of extensions can be used
as a fingerprinting attribute. Nevertheless, the main difference between plugins and
extensions is that there is no API to retrieve the list of extensions installed by a user.
Thus, the different techniques we present to obtain the list of extensions either rely on
bugs or side effects caused by the usage of these extensions, Mowery et al. [40] showed
that it was possible to infer the list of websites whitelisted by the NoScript extension
by observing whether or not scripts from a certain domain could be executed or they
were blocked. Since these whitelists are often unique, they argued it could be used as an
additional fingerprinting technique. Starov et al. [42] showed that browser extensions
could be identified because of the way they interact with the DOM. Among the 10,000
most popular extensions of the Chrome store, around 15% had a unique way to interact
with the DOM, making their presence detectable. They also showed that among 854
users, 14.1% had a unique set of browser extensions. Sjosten et al. [43] proposed an
approach that leverages Web Accessible Resources (WAR) to test the presence of browser
extensions. Their approach is able to detect more than 50% of the top 1,000 Chrome
extensions. Even though Firefox protected against this kind of attacks by randomizing
each extension identifier,22 Sjosten et al. [44] showed it was still possible to test the
presence of extensions using a revelation attack. Their strategy is to convince the
extension to inject content in the DOM using a WAR URL, making, therefore, the
extension reveal its unique randomized identifier that can be used for tracking. Thus,

22Protecting against extension probing: https://developer.mozilla.org/en-US/docs/Mozilla/
Add-ons/WebExtensions/manifest.json/web_accessible_resources

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/web_accessible_resources
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with this approach, they can reveal the presence of an extension and also obtain a unique
and stable identifier.

2.2.2.3 List of Fonts Using Flash

Flash usage went from 80% in 2014 to 8% in 2018.23 Flash, and plugins, in general, have
been deprecated by browser vendors24 mainly because of the security risk they represent
and are now being replaced by browser extensions that have fewer rights as plugins used
to have. In particular, plugins are able to access more information than JavaScript. We
only present the Flash attribute with the most entropy, the list of fonts. As we show in
the oldest contribution of this thesis presented in Chapter 3, FP-Stalker, where we use
fingerprinting to track browser over time, the only Flash attribute still worth considering
was the list of fonts. Nevertheless, we show that even on fingerprints collected around
2017, it does not bring significant information since most of the users had already Flash
disabled. The Font.enumerateFonts enables to collect the complete list of fonts using
Flash. Contrary to JavaScript font enumeration that needs to test the presence of each
font, this method is straightforward and provides a simple mechanism to obtain the list
of all the fonts installed on the system, even the most uncommon fonts. Thus, when
Flash’s use was still high, it was one of the attributes with the highest entropy [3, 27].
Eckersley [3] also showed that the order of the fonts depended on the system.

Even though the Flash plugin can be used to obtain other attributes, such as the platform,
the preferred languages or the screen resolution, we decide not to present these attributes
because of the decline of Flash usage, and the fact that these attributes do not provide
significantly more entropy than their JavaScript counterpart. Moreover, other plugins,
such as Java or Silverlight were also used by fingerprinters to obtain more fine-grained
information as the one provided in JavaScript. Nevertheless, in a 2013 study conducted by
Nikiforakis et al. [4], they showed that none of the three popular commercial fingerprinters
they studied were still using Java.

2.2.3 Studying Browser Fingerprints Diversity

Mayer [2] brought to light the privacy problems that arise from browser diversity and
customization. Since there are different OS, browsers, screen resolutions or plugins,

23https://www.bleepingcomputer.com/news/security/google-chrome-flash-usage-
declines-from-80-percent-in-2014-to-under-8-percent-today/

24https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html

https://www.bleepingcomputer.com/news/security/google-chrome-flash-usage-declines-from-80-percent-in-2014-to-under-8-percent-today/
https://www.bleepingcomputer.com/news/security/google-chrome-flash-usage-declines-from-80-percent-in-2014-to-under-8-percent-today/
https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html


2.2 Browser Fingerprinting 35

this diversity could be exploited to uniquely identify browsers. At the time the thesis
was written in 2009, the situation was even worse due to the widespread use of Java
applets and Flash Action scripts that had access to even more attributes than JavaScript
programs. Over two weeks, Mayer collected fingerprints from 1,328 different browsers,
among which 1,278 (96.23%) were unique.

Mayer’s work motivated the first large-scale study on browser fingerprinting uniqueness
conducted by Eckersley [3], with the collaboration of the Electronic Frontier Fondation
(EFF).25 They created a website, Panopticlick,26 on which they collected 470,161 finger-
prints between 27th January and 15th January 2010. Their results confirm Mayer’s initial
findings: 83.6% of the browsers had a unique fingerprint. Uniqueness was even higher,
94.2%, for browsers with either Flash or Java activated. Indeed, among Flash and Java
users, only 1% of the browsers had an anonymity set larger than two. They showed that
that the list of plugins and the list of fonts were the two attributes with the most entropy.
With this proportion of unique browser fingerprints, they argue that this technique can
be used for tracking, in particular as a mechanism to regenerate supercookies or deleted
cookies. To support this claim, they proposed a simple heuristic that aims at linking
multiple fingerprints of the same browser. First, they studied the stability of browser
fingerprints over time and showed that among the 8,833 users that had accepted a cookie
and that had visited the websites multiple times, more than 37% displayed at least one
change (besides activating or deactivating JavaScript) in their fingerprint. Nevertheless,
they are aware this number may be overestimated because of the nature of their website
that tends to make people change their fingerprint on purpose, e.g. by changing the list
languages they prefer or by deactivating a plugin. Nevertheless, they showed that despite
these frequent changes in the fingerprint, browser fingerprinting could still be used for
tracking. Their heuristic was able to make correct predictions 65% of the time, incorrect
predictions 0.56% of the times. Otherwise, 35% of the time, it made no prediction.

Laperdrix et al. [27] also created a website, AmIUnique, to study the diversity of
fingerprints. Between 2014 and 2015, they collected more than 118,000 fingerprints finger-
printing. In addition to the attributes collected in the study conducted by Eckerlsey [3],
they also collect new attributes, such as canvas [38] and WebGL fingerprinting. They use
the normalized Shannon’s entropy to compare their dataset with Panopticlick dataset.
They found similar results, except for the list of plugins and the list of fonts where they
obtained a lower entropy. This difference can be explained by the decrease of Flash usage,

25https://www.eff.org/
26https://panopticlick.eff.org/

https://www.eff.org/
https://panopticlick.eff.org/
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which means that the list of fonts was not collected for all the fingerprints, therefore
decreasing its entropy. The difference can also be explained by the rise of mobile usage,
on which there are no plugins, which also includes Flash. Besides attributes also collected
on Panopticlick, they analyzed the entropy of seven new attributes, such as canvas and
WebGL fingerprinting or the presence of an ad-blocker. They found that canvas was
among the five most discriminating attributes, with a normalized entropy close to the
entropy of the list of plugins. Among the 118,934 fingerprints they collected, there
obtained 8,375 distinct canvas values, among which 5,533 were unique. They also studied
the differences between computer, either desktop or laptops, and mobile fingerprints.
While 90% of desktop fingerprints were unique, only 81% of mobile fingerprints were
unique. This difference was mostly explained by the low entropy of the list of fonts
and the list of plugins on mobile. Nevertheless, mobile fingerprints still achieve a high
uniqueness because of attributes such as the user agent or the canvas that are more
unique on mobile. Indeed, in the case of the user agent, they noticed that some phone
manufacturers were adding sensitive information to this header, such as the precise
version of the model or the version of the Android firmware. In the case of the canvas,
they noticed that the emoji included in it was also a great source of entropy since its
rendering depends on the phone OS version as well as the phone manufacturer.

More recently, between 2016 and 2017, Gomez et al. [28] collected more than 2 million
fingerprints on a popular french website from the Top 15 Alexa. Since it is a popular
website visited by a wide range of users, it avoids the bias of data collected by Eckersley
and Laperdrix studies. Indeed, as acknowledged by Eckersley, Panopticlick was mostly
visited by users aware of privacy issues on the web. Thus, these users may have a more
customized browser and device configurations than random users. Gomez et al. compared
the diversity of browser fingerprints in their dataset with the ones from Eckersley and
Laperdrix studies. They collected the same set of attributes, at the exception of the
canvas that was modified to obtain a higher uniqueness. They also collected the list of
fonts using JavaScript instead of Flash since Flash usage had already hugely decreased at
the time their study was conducted. They found significantly different results compare
to the two previous studies. While previous studies claimed that more than 80% of the
fingerprints were unique, only 33.6% are unique in their dataset. The difference is even
more important for mobile devices. While 81% of the mobile fingerprints collected on
AmIUnique were unique, only 18.5% of the fingerprints in their dataset are unique.
Despite this uniqueness difference, the attributes with the most entropy are still the
same:
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1. The list of plugins (9.49 bits of entropy),

2. The canvas fingerprint (8.55 bits of entropy),

3. The user agent (7.15 bits of entropy),

4. The list of fonts (6.90 bits of entropy).

Similarly to the AmIUnique study, they also observed a decrease of uniqueness on
mobile for the list of plugins (10.3 bits on computer against 0.2 bits on mobile) and
the lists of fonts (7.0 bits on computer against 2.2 bits on mobile), even when fonts are
obtained using JavaScript. Their study also confirmed that mobile user agents provide
more information compare to computer user agents (6.3 bits on computer against 8.7
bits on mobile).

While their study shows that browser fingerprint uniqueness has probably been overesti-
mated by previous studies, either because of small or biased datasets, it is unclear in
which proportions. It is difficult to measure the variation caused by their use of a more
representative dataset and the variation caused by the fact that attributes that used to
have a high entropy, such as the list of plugins, become less unique over time due to the
deprecation of plugins27 that started being replaced by browser extensions. Indeed, to
compare fingerprint uniqueness and attributes entropy with previous studies, they have
restricted themselves to 17 attributes already collected by Eckersley [3] and Laperdrix et
al. [27]. While they improved the canvas and modified the way fonts are collected,
they did not take into account several attributes available at the time their study was
conducted. Thus, the main critic of this study is that it while it properly evaluates
the entropy of the attributes studied, it underestimates the fingerprint uniqueness by
excluding attributes that were available at the time their study was conducted between
2016 and 2017. In particular, they did not consider the following attributes:

1. navigator.enumerateDevices. This function has been available since Chrome
version 4528 (September 2015)29 and provides information about the number of
microphones, speakers and webcams;

2. Audio fingerprinting. This technique relies on the HTML Audio API available
since Chrome version 35 and Firefox version 25. In a crawl conducted in January

27https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
28https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/

enumerateDevices
29Google Chrome version history: https://en.wikipedia.org/wiki/Google_Chrome_version_

history

https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/enumerateDevices
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/enumerateDevices
https://en.wikipedia.org/wiki/Google_Chrome_version_history
https://en.wikipedia.org/wiki/Google_Chrome_version_history
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2016, Englehardt et al. [6] already mentioned the use of audio fingerprinting by
popular websites and estimated it had an entropy of 5.4 bits;

3. Screen and window properties. While they collect information about the
screen width and height, as well as the color depth, they did not collect more ad-
vanced information window.innerHeight/Width or window.outerHeight/Width
that enables to infer the presence of a desktop toolbar and its size, or whether or
not a bookmark bar is displayed in the browser;

4. Audio and video codecs. The presence of audio and video codecs can be tested
using the HTMLMediaElement.canPlayType function that was already available at
the time their study was conducted 30;

5. Touch screen details. In the case of mobile devices, they did not collect any
information about the maximum simultaneous touch points supported by the screen
using the navigator.maxTouchPoints property available since Chrome 35;31

6. Number of cores. The navigator.hardwareConcurrency returns the number
of logical processors available to the browser and has been available since Chrome
37 and Firefox 48.32

Thus, it is unclear how different the fingerprint uniqueness would have been, had they
considered these attributes. In particular, when we consider their second research question
that studied the proportion of almost unique fingerprints—i.e., fingerprints that would
become unique if a slight modification was applied to attributes whom the user can
naturally modify through the browser user interface, such as the value of do not track or
the list of preferred languages—they showed that, for computer fingerprints, applying
small changes on random fingerprints would lead to a uniqueness rate of 80%. Therefore,
we should take care of the real fingerprint uniqueness. Moreover, adding to fingerprints
new attributes presented in Section 2.2, such as navigator.deviceMemory or extensions
probing, would probably also rise fingerprint uniqueness. We consider evaluating the
entropy of these attributes as part of future work.

30https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/
canPlayType

31https://developer.mozilla.org/en-US/docs/Web/API/Navigator/maxTouchPoints
32https://developer.mozilla.org/en-US/docs/Web/API/NavigatorConcurrentHardware/

hardwareConcurrency

https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/canPlayType
https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/canPlayType
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/maxTouchPoints
https://developer.mozilla.org/en-US/docs/Web/API/NavigatorConcurrentHardware/hardwareConcurrency
https://developer.mozilla.org/en-US/docs/Web/API/NavigatorConcurrentHardware/hardwareConcurrency
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2.2.4 Use of Browser Fingerprinting on the Web

We present multiple large-scale studies that analyzed the use of browser fingerprinting on
the web. We present these studies in a chronological order to better convey the evolution
of fingerprinting use and techniques over time.

The first large-scale studies on browser fingerprinting started in 2013, three years after
Mayer [2] and Eckersley [3] brought to light the privacy risk arising from browser
customization. Nikiforakis et al. [4] analyzed the code of three popular fingerprinters.
They noticed that commercial fingerprinters used more aggressive techniques than those
presented by Eckerlsey [3]. For example, commercial fingerprinters heavily relied on Flash
and ActiveX plugins to obtain information not available in JavaScript, such as whether
or not the browser is behind a proxy. They noticed that even for simple attributes,
such as the platform that can be accessed using navigator.platform or the user agent,
the Flash platform attribute provides more detailed information, such as the exact
version of the Linux kernel, which can be used both for tracking, as well as to exploit
vulnerabilities. They detected that fingerprinters adapted their behavior based on the
nature of the browser and the plugins available. For example, when the script detected
Internet Explorer, it tried to exploit specific APIs available only on Internet Explorer,
such as navigator.systemLanguage. When specific plugins were detected, two of the
fingerprinters even tried to invoke them to obtain sensitive information, such as the hard
disk identifier, the computer’s name, the installation date of Windows as well as the list
of installed system drivers. They also detected a shift in the way fonts were obtained
because of the decline of Flash. Thus, while two of the fingerprinters used Flash to obtain
the list of available fonts, one of the fingerprinters was using JavaScript [39].

They also crawled the Top Alexa 10K to study the adoption of these three fingerprinting
scripts among websites of the Top Alexa 10K. They detected 40 sites (0.4%) of sites
using scripts provided by one of the three commercial fingerprinters. They also used
Wepawet,33 an online platform for the detection of web-based threats, to detect if these
scripts were used by less popular websites and found out that 3,804 domains analyzed by
Wepawet used one of these scripts.

Also in 2013, Acar et al. [10] proposed FPDetective, a crawling framework to detect and
analyze fingerprinting on the web. They applied FPDetective to the Top Alexa 1M
websites and were able to detect 16 new fingerprinting scripts, as well as new fingerprinting
techniques that had not been documented by previous studies. Instead of relying on lists

33Wepawet: https://wepawet.cs.ucsb.edu

https://wepawet.cs.ucsb.edu
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of URLs to detect fingerprinting scripts, their crawler logs access to properties commonly
used for fingerprinting, such as the properties of the navigator and screen objects, as
well as properties used for JavaScript font enumeration such as offsetWidth/Height.
The crawler also intercepts calls to the getFontData functions used in Flash to obtain
the list of fonts. They consider a script is doing fingerprinting if it loads more than 30
fonts, enumerates plugins or mimeTypes and accesses the screen and navigator properties.
With this methodology, they detected 13 distinct fingerprinting scripts present on 404
websites doing JavaScript font enumeration.

In 2014, Acar et al. [5] conducted a large scale study about stateful and stateless tracking
mechanisms used in the wild. In particular, they were the firsts to measure the use of
canvas fingerprinting at scale. To detect scripts that collect canvas fingerprints, they log
values returned by the toDataURL function used to obtain the value of a canvas. They
also monitor the arguments of the fillText and strokeText functions used to draw
text on a canvas. To decrease false positives, they consider a script is using canvas for
fingerprinting if both the toDataURL and fillText or strokeText functions are called.
Moreover, they also define a constraint on the size of the canvas that should be at least
16x16 pixels. Finally, the image should not be requested in a lossy compression formation,
such as JPEG. They observed that 5.5% of the websites in the Top Alexa 100K were
using canvas fingerprinting on their home page. While there were 20 different companies
providing canvas fingerprinting scripts, one of the companies, AddThis, represented more
than 95% of the scripts. Moreover, they noticed that fingerprinters had considerably
improved the canvas fingerprinting techniques since the original study conducted by
Mowery et al. [38]. For example, new canvas fingerprinting scripts draw the same text
twice with different color and trigger the default fallback font. These scripts also use
pangrams—i.e., strings that include all the letters in the alphabet—as well as different
emojis. While Acar et al. argued that emojis were used to check if the browser supported
emojis, Laperdrix et al. [27] later showed that beyond testing emoji support, emojis were
also rich source of entropy since their representation depends on the OS and the device.

More recently, in 2016, Englehardt et al. [6] crawled the top Alexa 1M to study the
use of cookies and multiple fingerprinting techniques. They proposed openWPM, an
extensible crawler framework that aims at making privacy studies at scale easier. They
detected more than 81,000 third parties present on at least two first-parties. Moreover,
they showed that four companies, Google, Facebook, Twitter and Adnexus, were present
each on more than 10% of the websites crawled.
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To measure the use of fingerprinting, they monitored access to properties commonly used
for fingerprinting, similarly to the approach proposed by Acar et al. [10]. They detected
that among the Top Alexa 1M websites, canvas fingerprinting was only used by 1.6% of
the websites. Nevertheless, canvas fingerprint was used by 5.1% of the websites in the
Top Alexa 1K. Thus, they showed a decrease of canvas fingerprinting use compare to the
previous study conducted by Acar [5] in 2014. In particular, the popular fingerprinting
script delivered by AddThis was no longer in use in 2016. They also measured the use of
canvas-based font enumeration and showed that it was used by 2.5% of the websites in
the Top Alexa 1M. Finally, they measured the use of audio fingerprinting at scale and
detected 518 websites that compute an audio fingerprint, among which 512 delivered
scripts from the same company.

2.3 Countermeasures Against Fingerprinting

In this section, we present the three main strategies to protect browser against browser
fingerprinting:

1. Blocking the execution of fingerprinting scripts. This strategy can be
achieved by disabling JavaScript or by intercepting requests that load fingerprinting
scripts;

2. Breaking the stability of browser fingerprints. Fingerprint tracking requires
both uniqueness and stability to be effective. This strategy aims at frequently
modifying the attributes constituting a fingerprint in order to break the fingerprint
stability, and thus make tracking impossible or less effective;

3. Breaking the uniqueness of browser fingerprints. This strategy acts on the
uniqueness required for tracking. It aims at increasing the anonymity set of each
fingerprint so that multiple browsers from different users share the same fingerprint
or fingerprints with high similarity.

Countermeasures can achieve these strategies by implementing different mechanisms.
For example, in order to unify the value of fingerprints, one can either lie about the
values returned by fingerprint attributes so that all browsers return the same value or
one can block access to attributes with a high entropy so that browsers converge towards
a similar fingerprint. In the following subsections, we go through the three different
defense strategies. For each of the strategies, we present the different countermeasures
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that use this strategy and the different mechanisms they implement to achieve it. Note
that some countermeasures may implement multiple strategies or hybrid strategies. For
example, FaizKhademi et al. [45] proposed a modified Chromium with two modes, a first
mode that aims at making all fingerprints look the same and a second mode that aims at
breaking the stability of fingerprints by randomizing their values.

We first present countermeasures that protect by blocking the execution of fingerprinting
scripts. Then, we present the countermeasures that aim at breaking the stability of
fingerprints and the countermeasures that unify browser fingerprints to make each browser
less unique. Finally, we present the main weaknesses of the countermeasures presented
in this section.

2.3.1 Blocking Fingerprinting Script Execution

The first strategy we present relies on blocking the execution of fingerprinting scripts.
Blocking the execution of the script makes the collection of the fingerprint impossible.
While the server can still collect a reduced version of the fingerprint using HTTP headers,
not collecting JavaScript attributes hugely decreases the entropy of the fingerprint.
Countermeasures that aim at blocking script execution are not specifically designed to
counter browser fingerprinting. Nevertheless, they may include rules that block some
fingerprinting scripts. These countermeasures are among the most popular privacy-
enhancing technologies [46]. For example, in March 2019, four out of the ten most
popular browser extensions for Firefox where ad-blockers and tracker-blockers [47]. In
particular, the two most popular extensions, AdblockPlus [48] and uBlock Origin [49]
represent more than 11% of the total browser extensions used on Firefox. The majority
of these script blocking countermeasures relies on crowdsourced filter lists that specify
if a resource should be blocked. There exist different lists that serve different purposes.
One of the most popular, EasyList [50], focuses on blocking advertising content while
EasyPrivacy [51] focuses on blocking trackers, which can include fingerprinting-based
trackers. These lists are used in popular browser extensions, such as AdblockPlus [48],
uBlock origin [49] or Adblock [52], as well as browsers, such as Brave [53] that integrates
a native ad-blocker. Other browser extensions, such as Ghostery [54], rely on proprietary
filter lists to block content. One of the main problems of these lists, whether they are
proprietary or not, is that they need to be manually updated and require a significant
amount of work to be maintained [19]. Thus, other more dynamic approaches have been
proposed to get rid of these lists. For example, Privacy Badger [55], a browser extension
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developed by the EFF, uses heuristics to determine if a request should be blocked. It
keeps track of third-party resources included in the pages visited and observe if their
behavior is similar to the ones of trackers based on their use of cookies, local storage or
even browser fingerprinting techniques. When it observes a suspicious third-party on more
than three domains, Privacy Badger automatically blocks the content. Umar et al. [56]
apply a machine learning-based approach that considers features extracted from HTML
elements, HTTP requests, and JavaScript to determine if a request should be blocked.
Merzdovnik et al. [57] quantified the effectiveness of ad-blockers and trackers blockers
at scale. They show that rule-based extensions, such as uBlock Origin or Ghostery
outperform learning-based extensions, such as Privacy Badger, even though they took
care of training Privacy Badger’s heuristic on 1,000 websites before applying it during
their evaluation. They show that while the majority of these blocking tools are effective
against stateful third-party trackers, they all failed to block well-known stateless trackers
that use browser fingerprinting. Englehardt et al. [6] also showed that popular filter lists
tend to detect only a fraction of fingerprinting scripts.

Finally, a more radical approach is to block the execution of JavaScript code. The
most popular tool for blocking JavaScript is the NoScript [58] browser extension. Other
browser extensions, such as uBlock Origin [49] and uMatrix [59], as well as other browsers,
such as Brave [53] or Tor browser [60] also propose convenient mechanisms to disable
JavaScript execution. While this approach guarantees to block JavaScript-based browser
fingerprinting, it may also render many websites unusable since the majority of websites
relies on JavaScript to make their site dynamic. Moreover, as shown by Yu et al. [61],
breaking websites and thus decreasing the usability can also lead to a decrease of privacy
as users are more tempted to disable their countermeasures, without understanding the
privacy implications of doing it.

2.3.2 Breaking Fingerprint Stability

Another defense strategy consists in modifying frequently the values of different attributes
of a fingerprint to break the stability property required for tracking fingerprints over time.
The user agent is a key attribute for fingerprinting as its value reflects the browser and the
OS used by the user. For this reason, a wide range of user agent spoofer extensions enables
to lie on the user agent sent by the browser. For example, Ultimate User Agent [62],
a Chrome extension enables to change the user agent enclosed in the HTTP requests
as the original purpose of this extension is to access websites that demand a specific
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browser. The main drawbacks of user agent spoofers to protect against fingerprinting
lies in the fact that they create inconsistent browser fingerprints [4]—i.e., combinations
of attributes that cannot be found in the wild.

More advanced extensions, such as Random Agent Spoofer [63] aim to address
this inconsistency problem. Random Agent Spoofer (RAS) is an extension that
was available until Firefox 57—in version 57, Firefox changed the APIs for browser
extensions so that they become compatible with the Chrome browser—that protects
against fingerprinting by providing a mechanism that enables to switch between different
device profiles, composed of several attributes, such as the user agent, the platform,
and the screen resolution. Even though RAS is not available on modern versions of
Firefox, it has been forked and recently ported to web extensions that are supported
by the most recent versions of Firefox [64]. Since the device profiles used to spoof
fingerprints are extracted from real browser configurations, all of the attributes contained
in a profile are consistent with respect to each other. Besides spoofing attributes, RAS
also enables to block advanced fingerprinting techniques, such as canvas, WebGL or
WebRTC fingerprinting.

Nikiforakis et al. [7] proposed PriVaricator, a modified Chromium browser that
randomizes the list of plugins and the list of fonts. Besides the high entropy of these two
attributes [3, 27, 28], the main reason PriVaricator focuses on these attributes is to
avoid inconsistencies in the fingerprints generated. Indeed, their strategy does not lie
about the browser or its version nor about the platform the browser is running on, making
it more difficult for an adversarial fingerprinter to detect the use of a countermeasure.
To randomize the list of plugins, they define a probability of hiding each individual
entry in the list of plugins. Concerning the list of fonts, they focus on font enumeration
using JavaScript. They override values returned by two properties, offsetHeight and
offsetWidth as well as the getBoundingClientRect function, the three of them being
used for font enumeration [65, 4, 45]. They proposed three font randomization policies
that become active whenever a script accessed one of these properties more than a defined
threshold. They implemented their changes directly into Chromium C++ code for
performance purposes and also because the offsetWidth and offsetHeight properties
are not properties of the HTMLElement prototype, making it more difficult to override
these properties directly in JavaScript in an efficient way. They evaluated their approach
based on three criteria:

1. Performance. They measured the performance overhead using three JavaScript
benchmarks and noticed no statistically significant overhead;
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2. Privacy protection. They also evaluated the privacy gain against four fingerprint-
ers: BlueCava and Coinbase, two commercial fingerprinting scripts, FingerprintJS,
an open-source fingerprinting script and PetPortal, an academic research platform.
Overall, their approach was able to generate unique and different fingerprints
against the four fingerprinters, which means it was effective to protect against
browser fingerprinting;

3. Visual breakage. Finally, they evaluated the visual breakage caused by their
tool. To do so, they instrumented PriVaricator with different randomization
policies that were considered successful during the evaluation step; They measured
a negligible visual breakage of 0.6% on average with their third randomization
policy.

Torres et al. [66] proposed FP-Block, a Firefox browser extension that ensures that
any embedded party will see a different fingerprint for each site it is embedded in. Thus,
a browser fingerprint can no longer be linked between different websites, even when the
same third-parties are included on these websites. Whenever a user visits a new site, FP-
Block generates a new fingerprint so that different websites observe different fingerprints
for the same browser. Their approach focuses on properties of the navigator and the
screen objects. It also adds random noise to canvas fingerprints. FP-Block’s authors
are aware of what they call the “fingerprinting countermeasure paradox”—i.e., the
fact that using a fingerprinting countermeasure can make a user more identifiable if
the countermeasure is detected since she becomes more unique and identifiable. Thus,
contrary to naive countermeasures that randomize the value of attributes without any
constraints, FP-Block tries to ensure fingerprint consistency. To generate consistent
fingerprints, they model how different attributes of a fingerprint relate to each other
using a Markov chain model.

FaizKhademi et al. [45] proposed FPGuard, a combination of a modified Chromium
and a browser extension. The browser extension aims at detecting fingerprinting scripts to
blacklist them, while the modified Chromium aims at spoofing attributes of a fingerprint.
The browser extension monitor accesses to attributes and functions used for fingerprinting.
To detect if a script uses fingerprinting, they rely on 9 different metrics, such as the
number of navigator and screen properties accessed or whether a canvas element has
been programmatically accessed. Then, using these metrics, they assign a score that
represents a level of suspicion that the script is doing fingerprinting. Whenever a script
is considered suspicious, it is added to a blacklist and is automatically blocked the
next times a website tries to load it. Thus, FPGuard can also be partly classified in
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the set of countermeasures that block fingerprinting script execution. Their modified
Chromium spoofs the values of attributes and functions used in fingerprinting whenever
a user visits a website. They argue that naively randomizing the values of fingerprints
can degrade the user experience since some websites rely on the screen resolution or
the type of device to properly display their content. Thus, they aim at generating
fingerprints that “represent the properties of the browser almost correctly”. To do so,
they developed different randomization strategies for the screen and navigator objects,
for the list of plugins, for the canvas as well as for the list of fonts. For example, they may
alter the browser sub-version or randomize canvas by adding minor noise to its content.
FPGuard’s authors are aware that their countermeasure can be detected because of
their extension module that overrides getters in JavaScript. Nevertheless, they argue that
since a fingerprinter cannot recover the original values, it is still a privacy improvement.

Baumann et al. [8] proposed DCB, a modified Chromium, that protects against browser
fingerprinting and in particular, Flash fingerprinting. To do so, they proposed two
opposite strategies that leverage a dataset of real browser fingerprints:

1. 1:N. one browser, many configurations. The goal of this strategy is to have unique
fingerprints that keep on changing to break the stability required for tracking;

2. N:1. many browsers, one configuration. The goal of this strategy is to create
collisions between the fingerprint of different browsers. To do so they apply
modifications to the fingerprints of different browsers so that they converge towards
a unique fingerprint. Thus, browsers with this fingerprint become more difficult to
track since they are not unique anymore.

The N:1 strategy means that DCB can also be partly classified in the set of counter-
measures that aim at breaking the uniqueness of browser fingerprints. They proposed
the notion of configuration groups to generate consistent fingerprints. While this no-
tion is not well defined in the paper, they provide an example saying that a possible
configuration group could consist of users with the same browsers, OS and language.
Thus, no actual users would have to adopt a configuration that contradicts their real
system and browser configurations. In addition to modifying attributes related to the
size of the screen or the browser language, they also proposed a particular strategy
to randomize canvas fingerprint. Instead of applying random noise to canvas, DCB
modifies the drawTextInternal function used to render canvas in a deterministic way.
Thus, between two sessions, canvas is different, but for a given session the modifications
applied to canvas are constant. Thus, DCB is resilient to replay attacks—i.e., attacks
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where a fingerprinter asks to generate the same canvas multiple time to observe if the
values returned are the same. Similarly to Nikiforakis et al. [7], they tested DCB against
BlueCava and Coinbase, two commercial fingerprinting scripts, and FingerprintJS, an
open-source fingerprinting library. While their 1:N strategy was able to generate more
than 99% of unique fingerprints, making it effective against long-term fingerprinting
tracking, their N:1 strategy that aimed at breaking the uniqueness of browser fingerprints
performed worse since some of the fingerprinters were still able to distinguish different
browsers that should have had the same fingerprint.

FPRandom [9] is a modified version of Firefox that adds randomness in the com-
putation of the canvas fingerprint, as well as the audio fingerprint. FPRandom also
randomizes the order of the navigator properties. They decided to focus on canvas
fingerprinting since it is a strong source of entropy [27, 28]. Moreover, both audio and
canvas fingerprints rely on multimedia functions that can be slightly altered without
significantly degrading the user experience. Concerning the order of the navigator
properties, it is not defined by the ECMAScript specification [67], which means that it is
up to the browser vendor to decide the order. FPRandom includes two modes, one in
which the noise added to the canvas and the audio fingerprint is different at every call and
a second mode where the noise remains constant during a session. The goal of the second
mode is to protect against replay attacks. Contrary to canvas poisoning extensions that
apply random noise independently for each pixel, FPRandom adds a more consistent
noise. Indeed, they modify the parseColor function of the canvasRenderingContext2D
class so that whenever a color is added to the canvas, it is slightly modified. Thus, with
their approach, all the shapes of the canvas that use a given color will have the same
color.

Canvas Defender [68] is a browser extension available on Chrome and Firefox that
adds a uniform noise to a canvas. The first time Canvas Defender is installed, it
generates four random numbers corresponding to the noise that will be applied to the
red, green, blue and alpha components of each pixel. Thus, since the four random noise
numbers are constant, the extension is not vulnerable to replay attacks.

Finally, Blink [69] exploits reconfiguration through virtual machines or containers to
clone real fingerprints—i.e., contrary to countermeasures that lie on their identity by
simply altering the values of the attributes collected—Blink generates virtual environ-
ments containing different fonts, plugins, browsers in order to break the stability of
fingerprints, without introducing inconsistencies. Thus, the main strength of Blink is
that contrary to other countermeasures that lie on the values of the attributes in order to
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change the fingerprint, Blink does not lie on the fingerprint. Indeed, all the fingerprint
it generates are genuine, the modifications are done directly at the virtual machine level,
which means that they could exist in the wild. Nevertheless, this approach has a cost: it
requires to use a virtual machine of multiple gigabits in order to browse the web, which
makes this approach less user-friendly than a browser extension or a forked browser.
Moreover, since Blink is running in a virtual machine, users can be detected using red
pill techniques [70].

2.3.3 Breaking the Uniqueness of Browser Fingerprints

The last defense strategy we present aims at breaking the uniqueness of browser finger-
prints from different browsers so that users become less unique. Contrary to the previous
strategies that aimed at breaking the stability of the fingerprints by randomizing different
attributes, this strategy aims at increasing the anonymity set of each user. To achieve
this goal, one can either block access to attributes with high entropy or spoof their values
so that multiple users return the same value.

Started from version 41 34, Firefox started to implement anti-browser fingerprinting
features similar to those available in the Tor Browser. Firefox standardizes values of
attributes used for fingerprinting, such as the user agent, the timezone or the number
of cores in the CPU. For the user agent, it spoofs the browser version by replacing
it with the version of the latest extension support release (ESR) of Firefox. To spoof
the timezone, Firefox pretends the user is located UTC timezone—i.e., it returns a
timezone offset of 0 when new Date().getTimezoneOffset() is called. Concerning
the number of cores, it modifies the value of navigator.hardwareConcurrency so that
all browsers pretend to have two cores. Besides standardizing the values of attributes,
Firefox also blocks access to critical functions used for canvas fingerprinting. Whenever a
script tries to access a canvas value using toDataURL or getImageData, Firefox asks the
permission to the user,35 similarly to what is done with the geolocation API for example.
Firefox also blocks the access to several APIs, such as WEBGL_debug_renderer_info,36

the geolocation or the device sensors. Moreover, whenever the fingerprinting protection
is activated, navigator.plugins and navigator.mimeTypes also return empty arrays.

34https://bugzilla.mozilla.org/show_bug.cgi?id=418986
35https://bugzilla.mozilla.org/show_bug.cgi?id=967895
36https://bugzilla.mozilla.org/show_bug.cgi?id=1337157

https://bugzilla.mozilla.org/show_bug.cgi?id=418986
https://bugzilla.mozilla.org/show_bug.cgi?id=967895
https://bugzilla.mozilla.org/show_bug.cgi?id=1337157
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Brave browser [53] is a Chromium-based browser oriented towards privacy that
proposes specific countermeasures against browser fingerprinting. In particular, they
enable to block attributes identified as having a high entropy, such as audio, canvas,
and WebGL fingerprinting. They also block local IP address leakage through WebRTC
and they disable the battery API since it can be used for fingerprinting purposes [36].
Moreover, Brave browser also integrates natively an ad-blocker and a tracker blocker
that rely on crowdsourced filter lists, as well as a simple mechanism to disable the
execution of JavaScript on a page.

Canvas Blocker [71] is a Firefox extension that blocks access to the HTML 5 canvas
API. Besides blocking, it also provides another mode, similar to Canvas Defender [68],
that randomizes the value of a canvas every time it is retrieved. Thus, it can also
be classified in the category of countermeasures that act by breaking the stability of
fingerprints.

2.3.4 Summary of Existing Countermeasures

Table 2.2 provides an overview of the different countermeasures we presented in this
section associated with their strategies to protect against fingerprinting.

2.3.5 Limits of Fingerprinting Countermeasures

Eckersley discussed the impact of privacy-enhancing technologies against fingerprinting.
He considers some of the countermeasures can be productive in the case they coun-
termeasures can be detected because of their side effects. For example, they noticed
users in their dataset that were using Privoxy,37 a privacy-enhancing proxy that aims at
blocking advertising and trackers. Privoxy was altering the user agent sent by adding
the "Privoxy" string in it. Thus, while the original goal of the extension was to preserve
users against trackers, this feature could be used by fingerprinters to specifically target
privacy-aware users. More generally, they argue that whenever a countermeasure has
observable side-effect, its effect can be counterproductive if it is used by a few users.

Nikiforakis et al. [4] also discussed the privacy impact of using simple countermeasures,
such as user agent spoofers. They showed that, while the user agent provides information
about the user’s browser and OS, changing its value can be counterproductive. Indeed,

37https://www.privoxy.org/

https://www.privoxy.org/
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Table 2.2 Overview of the different countermeasures and their strategies to protect against
browser fingerprinting.

Countermeasure Blocking script Breaking stability Unifying

uBlock Origin [49] ✓

Adblock [52] ✓

Ghostery [54] ✓

Privacy Badger [55] ✓

Adblock Plus [48] ✓

NoScript [58] ✓

uMatrix [59] ✓

Tor browser/Firefox [60] ✓ ✓

Brave browser [53] ✓ ✓

FPGuard [45] ✓ ✓

PriVaricator [7] ✓

FP-Block [66] ✓

DCB [8] ✓ ✓

Canvas Defender [68] ✓

Random Agent Spoofer [63] ✓ ✓

Canvas Blocker [71] ✓ ✓

Blink [69] ✓

FP-Random [9] ✓

Ultimate User Agent [62] ✓
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naive spoofers tend to generate inconsistent fingerprints—i.e., combination of attributes
that cannot be found in the wild. For example, in the user agent the browser claims
to be on MacOS while the navigator.platform attribute returns Linux. Thus, they
argue that using such countermeasures for privacy purposes can be counterproductive
since fingerprinters can more easily target users with this kind of extensions. They also
showed that it is unclear how effective user agent spoofers are at breaking the stability
of fingerprints. Similarly to Mulazanni et al. [37], they showed that using different
techniques such as the presence or absence of different browser features, or the behavior
(mutability and order) of special browser built-in objects such as navigator or screen,
it was possible to infer the real browser of the user.

Acar et al. [10] studied the Tor browser protection against fingerprinting. They showed
the difficulty to properly protect against all fingerprinting channels. Indeed, while the
Tor browser aimed at protecting against font enumeration by limiting the number of
fonts that can be queried by a page, it was still possible to test the presence of fonts
without any limits using the CSS font-face directive. They also studied Fireglove,
a browser extension created for research purposes. Fireglove aimed also at protecting
against font enumeration by limiting the number of fonts that can be loaded by a tab
by reporting wrong offsetHeight/Width values. Nevertheless, they could bypass the
protection using the getBoundingClientRect function that provides similar information
as offsetHeight/Width. Fireglove also randomized the value of different attributes
such as the screen resolution, or the user agent. Nevertheless, Acar et al. showed that
Fireglove failed at properly lying about the real nature of the browser. For example,
when they pretended to be a Chrome browser, they did not remove APIs only available
on Firefox such as navigator.mozCameras.

More recently, in 2019, Schwarz et al. [72] proposed an approach to automatically learn
the browser fingerprint differences between browsers. While their approach can be used
for targeting exploits that work only on specific OS, architecture or browser, it can
also be used to detect the presence of privacy-enhancing extensions. They applied their
automated approach to 6 privacy extensions and were able to detect all of them. In
particular, similarly to the evaluation we conduct in Chapter 4, they were able to detect
the presence of the Canvas Defender countermeasures because of its side-effects.
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2.4 Security Applications

In this section, we first present approaches that leverage browser fingerprinting in a
security context. We show how it can be used to enhance authentication and to detect
crawlers. Then, we present other non-fingerprinting crawler detection techniques to
better understand how fingerprinting based detection compare to them.

2.4.1 Enhancing Web Security Using Browser Fingerprinting

2.4.1.1 Enhancing Authentication Using Fingerprinting

Different studies focused on the use of browser fingerprinting to enhance the security
of HTTP sessions and authentication, either a second factor or in addition to other
traditional second factors, such as SMS or emails. The idea is, for each user, to collect
the browser fingerprints of her trusted devices. Then, whenever she tries to connect to a
website, the server can verify both the correctness of her password and whether or not
the device the user is trying to connect from belongs to her list of trusted devices.

Unger et al. [11] proposed to use fingerprinting to protect against HTTP(s) session
hijacking. Their framework, SHPF, collects the browser fingerprint when the user logs-in.
The fingerprint collected is constituted of HTTP headers, as well as features corresponding
to the presence or the absence of several CSS and HTML5 features, whom presence
was not widespread at the time the paper was written in 2013. Then, continuously
during a session, their framework collects and monitors the browser fingerprint to detect
changes that could indicate that the session has been hijacked by an attacker, for example,
because the session cookie has been stolen using an XSS vulnerability [73]. Thus, if the
fingerprint changes, going from a Windows 10 on Chrome 65, to an Ubuntu on Firefox
55 for example, or if the IP address suddenly changes, SHPF interrupts the session and
redirects the user to a stronger authentication mechanism.

Preuveneers et al. [14] developed an authentication framework, SmartAuth, that uses
dynamic context fingerprinting to enhance authentication. Contrary to Unger’s [11]
approach that considers only static fingerprints, whose values did not depend on any
kind of context, SmartAuth takes different context information into account, such as
the geolocation or the time. For example, when a user is connecting at work she may use
a monitor with a certain resolution. Nevertheless, when she comes home, she may use
another monitor that has a different resolution. Thus, their approach aims at taking this
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context into account to provide better security guarantees, as well as less false positives
during the authentication process. The fingerprints they collect are constituted of different
attributes accessible using JavaScript, such as the user language, the screen resolution or
the list of plugins. They also collect the IP address range and information provided by
HTTP headers. They acknowledged one of the problems with using fingerprinting in a
security context: fingerprint attributes spoofing. Since fingerprints are collected in the
browser—i.e., on the client side—every attribute can be modified by an attacker, either
when it is transmitted to the server or at runtime by overriding JavaScript getters and
functions used in the fingerprinting process. Thus, they added a checksum mechanism
to ensure the fingerprint collected has not been modified during its transmission to
the server. They also acknowledged the possibility of an attacker stealing a browser
fingerprint in addition to the password, for example using a phishing website, and then
this attacker could try to replay the fingerprint stolen in order to bypass the security
mechanisms. To protect against replay attacks, they added a counter whose value is
incremented during the user session, as well as a timestamp whom they verify the value
on the server-side whenever a fingerprint is collected. Thus, if a fingerprint corresponds
to a non-trusted device, or if they detect that it has been tampered, they redirect the
user a stronger fallback authentication mechanism. They evaluated their approach using
more than 2,000 different system and network configurations in 10 different contexts and
were able to achieve a 99% accuracy using only 10 fingerprinting attributes.

Alaca et al. [12] analyzed the strengths and weaknesses of several fingerprinting attributes
when used in an authentication context. Contrary to tracking, when fingerprinting is used
in a security context, it is important to consider the fact that an attacker may try to spoof
fingerprint attributes or replay fingerprints. They analyzed 29 attributes, ranging from
simple attributes provided by the browser using JavaScript, to more complex attributes,
such as the TCP fingerprinting stack. For each of these attributes, they analyzed five
important properties to consider when fingerprinting is used in a security context:

1. Entropy. Attributes with high entropy enables to distinguish between different
users and thus reduce the chance of fingerprint collisions that could be used by an
attacker to connect from an untrusted device;

2. Repeatability. Given the same browser, hardware and network configuration, has
an attribute the same value?

3. Resource consumption. The CPU and memory overhead required to obtain
the value of an attribute; While they consider a high overhead is not necessarily a
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problem for authentication since each attribute is collected only once, this property
is important when fingerprinting is used continuously to protect against session
hijacking [11];

4. Spoofing resistance. While some attributes, such as the IP address are difficult
to spoof, it is not the case of simple attributes, such as the user agent that can be
overridden using few lines of JavaScript or a browser extension;

5. Stability. The attribute should be stable over time in order to link different
fingerprints of the same browser.

Van Goethem et al. [13] focused on authentication on mobile devices. They proposed
an approach that does not require any permission and that works in a browser. To
build a fingerprint, they use data provided by the accelerometer sensor, all while making
the phone vibrate using the navigator.vibrate API. They consider that accelerometer
sensor is a good candidate for authentication since it enables to create an approach more
resilient against replay and spoofing attacks. When a user registers, their fingerprinting
script collects several traces of accelerometer data. Each trace is constituted of multiple
chunks that correspond to a varying period of time during which the phone is vibrating.
For each chunk, they collect the information returned by the accelerometer and extract
features such as the minimum, maximum and mean acceleration along the different axis.
Then, when a user tries to connect to her account, they send her a challenge that consists
in generating randomly selected chunks. If enough chunks are consistent, according to
a determined threshold, the user is allowed to connect. They evaluated the uniqueness
and stability of the different features they proposed using three different mobile devices.
They showed that accelerometer data were both unique and stable, in particular, short
chunks contained more entropy than long chunks. They evaluated their approach using
15 different devices and only one fingerprint was classified as accepted even though it
should have been rejected.

In his thesis, Laperdrix [74] proposed to use canvas fingerprinting in a challenge-response
protocol as a second-factor authentication mechanism. Their approach relies on canvas
rendering because of its unpredictable but yet stable nature. Contrary to other static
fingerprinting attributes studied in the literature, it is less vulnerable to spoofing and
replay attacks when used properly. The first time a user connects to her account, the
server sends her one challenge that consists in drawing a canvas on which several random
operations are applied, such as writing text or drawing geometric shapes. Once rendered,
the browser sends the result of the canvas rendering to the server that stores it. The next
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time the users tries to connect, the server sends her two different challenges. The first
challenge is the same as the one used for the previous connection. After the first canvas
is drawn, the browser sends the value back to the server that verifies if it is equal to the
canvas they stored at the previous connection. If it is the case, the user can connect to
her account, otherwise, the server may ask the user to verify her identity using another
mechanism, such as an SMS or an email. The browser also solves the second challenge
and sends the value back to the server that stores it. Thus, the value of the second
canvas will be used for the next connection of the user. Since canvas challenges are not
reused, even if an attacker was able to steal a canvas value from her victim to replay it,
she will not be able to solve the canvas rendering challenge because it will have changed.

For this approach to work, they need, given a certain random seed, to generate unique
and stable canvas. They run three collect phases where they collected different kinds of
canvas fingerprints that use different canvas primitives, such as drawing text or curves.
Their final canvas algorithm takes as input a seed and randomizes different parameters
such as the number of strings to draw, their size and their rotation, as well as curves,
color gradient and the shadow applied to the canvas. They verified the uniqueness of
their canvas challenges on more than 1 million browsers using different seeds and did
not observe any collisions. They also used the AmIUnique extensions38 to study the
stability of their canvas and showed that, on 27 browsers monitored for a year, half of
them had less than three canvas changes. Concerning performance, they showed that
from end to end, when considering the generation of the challenge, the time for the
browser to solve it by drawing the canvas and then hash the result, it takes less than 250
ms on average.

2.4.1.2 Detecting Bots and Crawlers Using Fingerprinting

Another security application of browser fingerprinting is bot and crawler detection. While
Acar et al. [10] identified scripts from companies that claimed to use it for bot and crawler
detection, few studies focused on this topic.

Bursztein et al. [15] proposed Picasso, an approach that relies on canvas fingerprinting [38]
to create dynamic challenges that aim at detecting emulated devices or devices that lie in
their user agent. Their approach has several applications, such as distinguishing between
real Android devices used by humans and emulated devices used to post fake reviews
on App Store or to artificially increase the number of videos viewed. Similarly to the

38https://amiunique.org/timeline

https://amiunique.org/timeline
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approach proposed in Laperdrix’s thesis [74], Picasso is a challenge-response protocol that
relies on the unpredictable but yet stable nature of canvas rendering. Their approach
aims at being resilient to replay attacks and to skilled adversaries with perfect knowledge
of the code used for the detection. Picasso relies on drawing random canvas primitives,
such as Bezier curves, polynomial curves or text, with random parameters. Contrary to
situations where canvas is used for tracking, the canvas generated should be the same
among devices and browsers of the same nature but different otherwise. Their approach
works as follows:

1. A server sends the canvas algorithm code, along with a random seed used to
initialize the pseudo-random generator (PRNG), as well as a number of rounds,
i.e., the number of canvas primitives to draw,

2. The client initializes the PRNG and creates an empty canvas,

3. The client executes the challenge. At each round, it randomly selects a canvas
primitive with random parameters and applies shadow and color gradient to the
canvas,

4. At the end of each round, the value of the canvas is hashed with the output of the
previous round,

5. The final result is sent back to the server for verification.

Their challenge can be seen as a proof of work since it requires the device to spend
CPU or GPU resources, as well as RAM resources to solve it. Moreover, the amount of
resources needed to solve the challenge can easily be increased, either by increasing the
size of the canvas or the number of rounds. A challenging part of their approach is the
bootstrap phase. During this phase, they need to collect values of canvas for different
seeds and different classes of devices. To address this problem, they proposed several
solutions, such as sending challenges to trusted devices, e.g. devices belonging to users
logged in to the website service and with a good reputation, or to buy missing devices,
which can be expensive.

To protect against replay attacks or against attackers that would pre-compute canvas
values for several challenges using other devices, they continuously generate new challenges.
Their idea is similar to what was done for the first versions of Google reCAPTCHA
that displayed two words in the CAPTCHA: a word known and a word unknown. In
their case, they send a challenge whom they know the response along with multiple
challenges whom they ignore the response. If the known challenge is solved correctly,
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they consider the responses to all the other unknown challenges to be correct. Thus,
they can continuously get values associated with new challenges. To protect against a
pollution attack—i.e., an attacker that would submit the right answer to the known
challenge but wrong answers to unknown challenges—they apply similar techniques as
the one used to protect against cheating in user-generated labels [75].

They evaluated their approach on more than 52 million devices and were able to distinguish
all device classes with 100% accuracy. In total, they obtained around 130K unique
responses from 52M challenges. They showed that the time to generate a canvas is linear
with respect to the number of rounds. When 50 rounds were used, it required at most 400
ms. Anecdotally, during their experiment they were able to detect PhantomJS browsers
that spoofed their browser and OS, running attacks from AWS ec2 instances.

2.4.2 Detecting Bots and Crawlers Without Fingerprinting

HTTP headers and trafic shape analysis.

Jacob et al. [76] proposed a system to manage unwanted crawlers. Their system builds a
knowledge base of IP addresses and indicates if they belong to a human or to a crawler.
When a request is done, they consult the knowledge. If the IP address belongs to a
human or to an allowed crawler, e.g. Google bot, the request is allowed. Otherwise, if
the request belongs to an unwanted crawler, the request is blocked. When the IP address
is not in the knowledge base, they need to determine whether or not it belongs to a
human or a crawler. To do so, they proposed three approaches:

1. Heuristic based detection. Their first approach leverages a set of heuristics
that rely on features extracted from the HTTP headers, as well as the URLs
requested by the user. Some of these features had already been proposed in the
state-of-the-art [77–82], such as the error rate, the proportion of pages revisited or
whether or not the user ignores cookies. They also proposed new features, such
as low URL parameters usage or whether or not URLs are accessed in alphabetic
order. If the majority of the heuristics consider the user is a human, then the
IP address is whitelisted in the knowledge base. Otherwise, they consider the IP
address is used by a crawler and the IP address is blacklisted;

2. Traffic shape detection. Their second approach models the traffic of a user as a
time series. It aims at being more effective than other state-of-the-art approaches
that divide chunks of requests into session on which they extract features, such
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as the mean arrival time or the number of requests. In their case, the goal of
this second approach is to extract features from the user time series to classify
the traffic. First they compute the sample auto-correlation function (SAC). This
statistical function aims at estimating the stability of the traffic for an IP address.
They extract features from this function, such as the speed of decay, that captures
the short term stability of the traffic. For example, a small decay is often linked to
a non-human activity since it indicates the traffic is stable over a long period of
time, contrary to a fast decay that indicates more instability, which is often linked
to human activity. They also extract the number of local spikes in the function, as
well as whether or not these spikes are observed at defined lags such as half days or
days, which are often signs of human activity. In a second time, they use time-series
decomposition [83]—i.e., a process that consists in decomposing a time-series into
a trend, a season, and a noise component. Since naive crawlers tend to have a
stable activity, the trend component should be almost stable—i.e., the derivative of
the trend component should be almost 0, contrary to users which have more erratic
patterns. Concerning seasonality, humans tend to have patterns at the day and
weeks frequency, contrary to crawlers which do not follow human cycles. To classify
the traffic as human or crawler, they proposed three machine-learning classifiers,
each using features extracted from the SAC function and from the time-series
decomposition. The final result is the majority of the three classifiers.

3. Distributed crawlers. Their third approach enables to detect crawling campaign
distributed over multiple hosts. To do detect such campaigns, they apply incre-
mented clustering techniques on time series. The idea is to cluster time-series with
high similarity, which could represent crawlers with the same code, launched from
different IP address. Since crawlers are not launched at the exact same time, their
clustering approach aims at being resilient to translation in the time series.

All of their three approaches require a significant amount of data before they can
accurately classify the traffic. Thus, if an IP address is not yet in the knowledge base,
they need to obtain data on it. To address this problem, they allow a number of requests
for each IP address not in the knowledge base. Once the IP address has reached the
limit, then their system sends crawler traps, such as CAPTCHAs or hidden links.

They implemented their approach and evaluated it on a large social network. They used
10 days of real-world traffic taken from the server logs. They exclude users who had less
than 1,000 requests per day since they consider it is not enough for their second and
third approaches based on time-series analysis. Nevertheless, they consider these sources
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will be handled by their active containment policy. For their evaluation they needed to
obtain the ground truth—i.e., whether or not an IP address belongs to a human or a
crawler. To obtain these labels, they used a semi-automatic approach:

• They applied their approach based on HTTP headers and asked for feedback from
the social network engineers. Based on this feedback, they adjusted the labels.

• They performed manual analysis by looking at the time series, user agent strings
to adjust the labels.

In order to choose the different parameters of their heuristics and train their machine
learning models, they used a train set of more than 70M requests from 813 IP addresses.
Then, they evaluated their three heuristics on a test set of 62M requests from 763 IP
addresses. Their first approach that relies on a set of heuristics based on HTTP headers
and URLs achieved a detection rate of 71.6%. Their second approach based on traffic
shape analysis achieved an accuracy of 94.89%. Finally, their third approach that aims
at detecting distributed crawling campaign was able to achieve 91.89% of accuracy.
Combining the different the first two approaches did not improve the accuracy since
crawlers detected by HTTP headers and URLs based heuristics were already detected by
the traffic shape detection approach.

CAPTCHAs. CAPTCHAs [84] rely on Turing tests, such as image recognition, to
determine if a user is human. Figure 2.5 shows an example of a Google reCAPTCHA, a
popular service proposed by Google. While the use of CAPTCHAs is widespread, their
main drawback is that they require user interaction. Moreover, recent progress in image
and audio recognition, as well as crowdsourcing services [85, 86] have made it easier to
break popular CAPTCHA services, such as Google’s reCAPTCHA [87, 88].

Behavior biometrics. Chu et al. [89] leverage behavioral biometrics to detect bots
that post spam in the comment section of blogs. Their hypothesis is that human users
need their mouse to navigate on a blog and also their keyboard to type comments. They
run customized bots in a controlled environment to collect events such as keystrokes or
clicks and train a decision tree that relies on the features collected to predict if a user
trying to post a comment is a human or a bot.

Video games & social networks. The problem of bot detection has also been studied
in the context of video games [90, 91] and social networks, such as Twitter [92, 93].
Wang et al. [94] addressed the problem of detecting fake accounts used to send spam
or spread malware via social media. They trained an SVM classifier using features
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Figure 2.5 Example of a Google reCAPTCHA.

extracted from clickstreams—i.e., sequences of HTTP requests made by a user. They
also proposed an unsupervised approach that requires less labeled data than the state-of-
the-art. Nevertheless, this problem is different from crawler detection since social media
users are logged in. Moreover, contrary to crawlers that are not human by definition,
fake accounts may be operated by humans.

Detecting virtual machines. Another strategy to detect crawlers is to look for features
correlated with crawling. For example, the use of an IP address blacklist [95] to detect
if a user is connected from a public proxy, or if the requests are coming from a cloud
provider, such as AWS or Azure. Ho et al. [70] proposed several red pills that rely on the
time to execute different operations such as spawning web workers, to detect browsers
running in virtual machines, which may also indicate the presence of a non-human user.

2.5 Conclusion

This thesis provides three main contributions to better understand fingerprinting in
a context of tracking and security. My first contribution aims at providing a better
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measurement of the stability of browser fingerprints, as well as evaluating how long users
can be tracked using only their browser fingerprints.

Through my second contribution, I evaluate the privacy implications of using fingerprinting
countermeasures. I show that even countermeasures that claim to generate consistent
fingerprints can be detected, which can harm user privacy. Based on these findings, I
provide recommendations to build more effective fingerprinting countermeasures.

While several studies measured the use of fingerprinting on the web as a tracking
mechanism, none of them focused on its use for bot detection. Through my third and
last contribution, I aim to fill this gap by measuring the fraction of websites that use
fingerprinting for crawler detection, describing the techniques they use and evaluating
their resilience against adversarial attackers.

2.5.1 FP-Stalker: Tracking Browser Fingerprint Evolutions

Through my first contribution, I aim to provide better measurements of browser finger-
prints stability and how long can browsers be tracked using only their fingerprint. In
2010, Eckersley [3] measured fingerprint stability and how it could be used for tracking
using 470,161 fingerprints collected on the Panopticlick website. Eckersley acknowledged
two main biases in the dataset collected:

• First, users coming on the Panopticlick are aware their fingerprint is collected and
may be challenged to change it purposefully, e.g. by removing a plugin or adding
a language, to see how it impacts their uniqueness;

• Secondly, the Panoticlick website is likely to be visited by users with privacy
countermeasures, in particular fingerprinting countermeasures, such as user agent
spoofers, that artificially modify fingerprints.

These biases can impact the accuracy of the fingerprint stability and the tracking
measurements. Moreover, since their study was conducted, new fingerprinting attributes
that rely on HTML5 features have been proposed. Thus, I conduct a large scale study
that aims to minimize these measurement biases by leveraging browser extensions over
long period of times, and that analyze the most recent fingerprinting attributes. In
particular, I study the stability of new techniques with high entropy such as canvas
fingerprinting that did not exist when Eckersley’s study was conducted. Moreover, no
study measured how the uniqueness and the stability of browser fingerprints translate
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in terms of tracking duration. Thus, I address this issue by measuring how long can
browsers be tracked using only their fingerprints.

FP-Scanner: The Privacy Implications of Browser Fingerprint Inconsisten-
cies. My second contribution aims at better understanding the privacy implications of
using browser fingerprinting countermeasures. Nikiforakis et al. [4] and Acar et al. [10]
showed that countermeasures, such as user agent spoofers can be detected because they
generate inconsistent fingerprints, which can harm user privacy. Nevertheless, since
these two studies have been published, several countermeasures that claim to generate
consistent fingerprints have been developed [9, 45, 66] but the consistency of the fin-
gerprints they generate has not been properly evaluated. Moreover, during the crawls
conducted in this thesis, I encountered fingerprinting scripts from a commercial tracking
company, Augur [96], and discovered the presence of multiple tests that aim at detecting
the presence of fingerprinting countermeasures. Thus, this finding shows the need to
properly evaluate fingerprinting countermeasures since commercial fingerprinters may try
to detect their presence.

To better evaluate these countermeasures, I propose to extend the notion of fingerprint
inconsistency introduced by Nikiforakis et al. to more advanced countermeasures, such
as canvas poisoners. I design a test suite that leverages these inconsistencies and evaluate
how existing countermeasures can be detected, and what is the impact on user privacy.
I also evaluate how existing fingerprinting solutions, either open-source or commercial,
perform to detect these countermeasures. Finally, I address a lack of recommendations for
countermeasures developers by providing good practices when developing fingerprinting
countermeasures so that they do not end up being counterproductive.

FP-Crawlers: Evaluating the Resilience of Browser Fingerprinting to Block
Adversarial Crawlers. In 2013, Acar et al. [10] crawled 100,000 websites and showed
that a significant fraction of fingerprinting scripts was used for security purposes, in par-
ticular, crawler and bot detection. While several studies [10, 4, 6] focus on the techniques
used by commercial fingerprinters for tracking, none investigates how fingerprinting can
be used to detect bots.

Different non-fingerprinting based techniques have been proposed for crawler detection.
One of the most popular, CAPTCHA [84], relies on Turing tests, such as image or
audio recognition, to detect if a user is human or not. However, with recent progress
in automatic image and audio recognition, as well as different services that propose
to solve CAPTCHAs for money [87, 85, 86], CAPTCHAs can easily be bypassed [88].
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Other techniques rely on the analysis of the sequence of requests sent by the web client.
Traditional rate-limiting techniques [97–99, 94] analyze features, such as the number
of requests or the number of pages loaded, to classify the web client as a human or
a malicious crawler. More advanced techniques [76] extract features from time series
representing the data sent to a website in order to identify if the traffic originates from a
human user or a crawler.

However, I argue that browser fingerprinting can be used to address some of the weaknesses
of state-of-the-art crawler detection techniques, such as:

• Contrary to CAPTCHAs, browser fingerprinting does not require any user interac-
tion;

• Contrary to methods based on HTTP requests or time series analysis [76], finger-
printing requires a single request to decide whether or not a client is a crawler.

In this thesis, I plan to improve the understanding concerning the use of browser
fingerprinting as an additional layer for crawler detection. First, I measure its use among
popular websites of the top Alexa 10K and analyze the different techniques used by
commercial fingerprinters to detect crawlers. I explain how fingerprinting techniques
for crawler detection differ from techniques used for tracking. Finally, one of the main
challenges in using fingerprinting in a security context lies in the fact that fingerprints
are collected in the client-side, and therefore, can be modified by an attacker. Thus, I
evaluate the resilience of current fingerprinting techniques against an adversarial crawler
developer.
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Chapter 3

Fp-Stalker: Tracking Browser
Fingerprint Evolutions

The majority of the browser fingerprinting literature has focused on fingerprint uniqueness,
a condition required for tracking. However, fingerprint uniqueness, by itself, is insufficient
for tracking if fingerprints change frequently. Indeed, one needs to keep track of these
evolutions to link them to previous fingerprints belonging to the same browser. In this
chapter, I aim at measuring how vulnerable are browsers against fingerprinting-based
tracking by measuring how long they be tracked using solely their fingerprint. This
chapter extends my Fp-Stalker paper published at S&P 18 [16]. I conduct an analysis
on a dataset that contains more than 25,000 new fingerprints, which results in a dataset of
122,350 fingerprints from 2,346 browsers. First, in Section 3.1 I describe our dataset and
highlight the limits of browser fingerprint uniqueness for tracking purposes by showing
that fingerprints change frequently (around 50% of browser instances changed their
fingerprints in less than 5 days, 70% in less than 10 days). Then, in Section 3.2 I
propose Fp-Stalker, a novel algorithm that detects if two fingerprints originate from
the same browser instance, which refers to an installation of a browser on a device.
However, browser instances change overtime, e.g. they are updated or configured
differently, causing their fingerprints to evolve. Therefore, I introduce two variants of Fp-
Stalker: a rule-based and a hybrid variant, which leverages rules and a random forest.
In Section 3.3, I evaluate my approach using 122,350 browser fingerprints originating
from 2,346 browser instances, which we collected over two years. The fingerprints were
collected using two browser extensions advertised on the AmIUnique website, one for
Firefox and the other for Chrome. I compare both variants of Fp-Stalker and an
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implementation of the algorithm proposed by Eckersley. In my experiments, I evaluate
Fp-Stalker’s ability to correctly link browser fingerprints originating from the same
browser instance, as well as its ability to detect fingerprints that originate from unknown
browser instances. I show that Fp-Stalker can link, on average, fingerprints from a
given browser instance for more than 49.3 days, which represents an improvement of 34
days compared to the closest algorithm from the literature. I also discuss the impact
of my findings, in particular when browser fingerprinting is used in addition to other
stateful tracking techniques such as cookies or E-tag. Finally, I conclude this chapter in
Section 3.4.

3.1 Browser Fingerprint Evolutions

This paper focuses on the linkability of browser fingerprint evolutions over time. Using
fingerprinting as a long-term tracking technique requires not only obtaining unique browser
fingerprints, but also linking fingerprints that originate from the same browser instance.
Most of the literature has focused on studying or increasing fingerprint uniqueness [1, 3, 27].
While uniqueness is a critical property of fingerprints, it is also critical to understand
fingerprint evolution to build an effective tracking technique. Our study provides more
insights into browser fingerprint evolution in order to demonstrate the effectiveness of
such a tracking technique.

Input dataset The raw input dataset we collected contains 199,909 fingerprints
obtained from 8,898 different browser instances. All browser fingerprints were obtained
from AmIUnique extensions for Chrome and Firefox installed from July 2015 to early
October 2017 by 8,898 participants in this study. The extensions load a page in the
background that fingerprints the browser. Compared to a fingerprinting website, the only
additional information we collect is a unique identifier we generate per browser instance
when the extension is installed. This serves to establish the ground truth. Moreover, we
pre-process the raw dataset by applying the following rules:

1. We remove browser instances with less than 7 browser fingerprints. This is because
to study the ability to track browsers, we need browser instances that have been
fingerprinted multiple times;

2. We discard browser instances with inconsistent fingerprints due to the use of
countermeasures that artificially alter the fingerprints. To know if a user installed
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Figure 3.1 Number of fingerprints and distinct browser instances per month

such a countermeasure, we check if the browser or OS changes and we check that
the attributes are consistent among themselves. Although countermeasures exist in
the wild, they are used by a minority of users and, we argue, should be treated by
a separate specialized anti-spoofing algorithm. We leave this task for future work.

After applying these rules, we obtain a final dataset of 122,350 fingerprints from 2,346
browser instances. All following graphs and statistics are based on this final dataset.
Figure 3.1 presents the number of fingerprints and distinct browser instances per month
over the two year period. The decrease in October 2017 is caused by the fact that we
collected fingerprints until October 6th.

Most users heard of our extensions through posts published on popular tech websites,
such as Reddit, Hackernews or Slashdot. Users install the extension to visualize the
evolution of their browser fingerprints over a long period of time, and also to help
researchers understand browser fingerprinting in order to design better countermeasures.
We explicitly state the purpose of the extension and the fact it collects their browser
fingerprints. Moreover, we received an approval from the Institutional Review Board
(IRB) of our research center for the collection as well as the storage of these browser
fingerprints. As a ground truth, the extension generates a unique identifier per browser
instance. The identifier is attached to all fingerprints, which are automatically sent every
4 hours. In this study, the browser fingerprints we consider are composed of the standard
attributes described in Table 3.1.
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Table 3.1 An example of a browser fingerprint collect by the AmIUnique extension.

Attribute Source Value Examples

Accept HTTP header text/html,application/xhtml+xml,application
/xml;q=0.9,image/webp,*/*;q=0.8

Connection HTTP header close

Encoding HTTP header gzip, deflate, sdch, br

Headers HTTP header Connection Accept X-Real-IP DNT Cookie
Accept-Language Accept-Encoding User-Agent Host

Languages HTTP header en-US,en;q=0.8,es;q=0.6

User-agent HTTP header
Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/54.0.2840.99 Safari/537.36

Canvas JavaScript

Cookies JavaScript yes

Do not track JavaScript yes

Local storage JavaScript no

Platform JavaScript MacIntel

Plugins JavaScript

Plugin 0: Chrome PDF Viewer; ; mhiehjai.
Plugin 1: Chrome PDF Viewer; Portable
Document Format; internal-pdf-viewer.
Plugin 2: Native Client; ; internal-nacl-plugin.

Resolution JavaScript 2560x1440x24

Timezone JavaScript -180

WebGL Javascript NVIDIA GeForce GTX 750 Series; Microsoft .

Fonts Flash List of fonts installed on the device
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Figure 3.2 Browser fingerprint anonymity set sizes

Figure 3.2 illustrates the anonymity set sizes against the number of participants involved
in this study. The long tail reflects that 95% of the browser fingerprints are unique
among all the participants and belong to a single browser instance, while only 20 browser
fingerprints are shared by more than 5 browser instances.

Evolution triggers Browser fingerprints naturally evolve for several reasons. We
identified the following categories of changes:

Automatic evolutions happen automatically and without direct user intervention.
This is mostly due to automatic software upgrades, such as the upgrade of a
browser or a plugin that may impact the user agent or the list of plugins;

Context-dependent evolutions being caused by changes in the user’s context. Some
attributes, such as resolution or timezone, are indirectly impacted by a contextual
change, such as connecting a computer to an external screen or traveling to a
different timezone; and

User-triggered evolutions that require an action from the user. They concern configuration-
specific attributes, such as cookies, do not track or local storage.

To know how long attributes remain constant and if their stability depends on the browser
instance, we compute the average time, per browser instance, that each attribute does
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Table 3.2 Durations the attributes remained constant for the median, the 90th and the
95th percentiles.

Percentile (days)

Attribute Trigger 50th 90th 95th

Resolution Context Never 3.0 1.8
User agent Automatic 31.9 11.7 7.4
Plugins Automatic/User 42.6 12.9 8.8
Fonts Automatic Never 15.8 6.4
Headers Automatic 371.2 33.0 13.9
Canvas Automatic 306.9 36.5 17.8
Major browser version Automatic 49.8 30.8 20.0
Timezone Context 291.8 58.6 30.1
Renderer Automatic Never 85.2 33.7
Vendor Automatic Never 146.1 56.5
Language User Never 155.6 55.6
Dnt User Never 203.7 58.6
Encoding Automatic Never 124.1 70.4
Accept Automatic Never 194.6 128.5
Local storage User Never Never Never
Platform Automatic Never Never Never
Cookies User Never Never Never

not change. Table 3.2 presents the median, the 90th and 95th percentiles of the duration
each attribute remains constant, on average, in browser instances. In particular, we
observe that the User agent is rather unstable in most browser instances as its value is
systematically impacted by software updates. In comparison, attributes such as cookies,
local storage and do not track rarely change if ever. Moreover, we observe that
attributes evolve at different rates depending on the browser instance. For example,
canvas remains stable for 306.9 days in 50% of the browser instances, whereas it changes
every 36.5 days for 10% of them. The same phenomena can be observed for the screen
resolution where more than 50% of the browser instances never see a change, while 10%
change every 3 days on average. This is likely explained by laptops that are connected
regularly to external monitors. More generally this points to some browser instances
being quite stable, and thus, more trackable, while others are not.
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Figure 3.3 CDF of the elapsed time before a fingerprint evolution for all the fingerprints,
and averaged per browser instance.

Evolution frequency Another key indicator to observe is the elapsed time (Et) before
a change occurs in a browser fingerprint. Figure 3.3 depicts the cumulative distribution
function of Et for all fingerprints (blue), or averaged per browser instance (orange). After
one day, at least one transition occurs in 57.35% of the observed fingerprints. The 90th

percentile is observed after 9.8 days and the 95th percentile after 18.08 days. This means
the probability that at least one transition occurs in 9.8 days is 0.9 (blue). It is important
to point out that changes occur more or less frequently depending on the browser instance
(orange). While some browser instances change often (22.6% change in less than two
days) others, on the contrary, are much more stable (29.8% have no changes after 10
days). In this context, keeping pace with the frequency of change is likely a challenge for
browser fingerprint linking algorithms and, to the best of our knowledge, has not been
explored in the state of the art.

Evolution rules While it is difficult to anticipate browser fingerprint evolutions, we
can observe how individual attributes evolve. In particular, evolutions of the User agent
attribute are often tied to browser upgrades, while evolutions of the Plugins attribute
refers to the addition, deletion or upgrade of a plugin (upgrades change its version).
Nevertheless, not all attribute changes can be explained in this manner, some values are
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difficult to anticipate. For example, the value of the canvas attribute is the result of
an image rendered by the browser instance and depends on many different software and
hardware layers. The same applies, although to a lesser extent, to screen resolution,
which can take unexpected values depending on the connected screen. Based on these
observations, the accuracy of linking browser fingerprint evolutions depends on the
inference of such evolution rules. The following section introduces the evolution rules
we first identified empirically, and then learned automatically, to achieve an efficient
algorithm to track browser fingerprints over time.

3.2 Linking Browser Fingerprints

Fp-Stalker’s goal is to determine if a browser fingerprint comes from a known browser
instance—i.e., it is an evolution—or if it should be considered as from a new browser
instance. Because fingerprints change frequently, and for different reasons (see section 3.1),
a simple direct equality comparison is not enough to track browsers over long periods of
time.

In Fp-Stalker, we have implemented two variant algorithms with the purpose of
linking browser fingerprints, as depicted in Figure 3.4. The first variant is a rule-based
algorithm that uses a static ruleset, and the second variant is an hybrid algorithm that
combines both rules and machine learning. We explain the details and the tradeoffs of
both algorithms in this section. Our results show that the rule-based algorithm is faster
but the hybrid algorithm is more precise while still maintaining acceptable execution
times. We have also implemented a fully random forest-based algorithm, but the small
increase in precision did not outweigh the large execution penalty, so we do not present
it further in this paper.

3.2.1 Browser fingerprint linking

When collecting browser fingerprints, it is possible that a fingerprint comes from a previous
visitor—i.e., a known browser instance—or from a new visitor—i.e., an unknown browser
instance. The objective of fingerprint linking is to match fingerprints to their browser
instance and follow the browser instance as long as possible by linking all of its fingerprint
evolutions. In the case of a match, linked browser fingerprints are given the same
identifier, which means the linking algorithm considers they originate from the same
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browser instance. If the browser fingerprint cannot be linked, the algorithm assigns a
new identifier to the fingerprint.

More formally, given a set of known browser fingerprints F , each f ∈ F has an identifier
f.id that links to the browser instance it belongs to. Given an unknown fingerprint
fu /∈ F for whom we ignore the real id, a linking algorithm returns the browser instance
identifier fk.id of the fingerprint fk that maximizes the probability that fk and fu belong
to the same browser instance. This computation can be done either by applying rules,
or by training an algorithm to predict this probability. If no known fingerprint can be
found, it assigns a new id to fu. For optimization purposes, we only hold and compare
the last ν fingerprints of each browser instance bi in F . The reason is because if we
linked, for example, 3 browser fingerprints fA, fB and fC to a browser instance bi then,
when trying to link an unknown fingerprint fu, it is rarely useful to compare fu to the
oldest browser fingerprints of bi. That is, newer fingerprints are more likely to produce a
match, hence we avoid comparing old fingerprints in order to improve execution times.
In our case we set the value of ν to 2.

3.2.2 Rule-based Linking Algorithm

The first variant of Fp-Stalker is a rule-based algorithm that uses static rules obtained
from statistical analyses performed in Section 3.1. The algorithm relies on rules designed
from attribute stability presented in Table 3.2 to determine if an unknown fingerprint fu

belongs to the same browser instance as a known fingerprint fk. We also define rules
based on constraints that we would not expect to be violated, such as, a browser’s family
should be constant (e.g., the same browser instance cannot be Firefox one moment and
Chrome at a later time), the Operating System is constant, and the browser version is
either constant or increases over time. The full list of rules are as follow:

1. The OS, platform and browser family must be identical for any given browser
instance. Even if this may not always be true (e.g. when a user updates from
Windows 8 to 10), we consider it reasonable for our algorithm to lose track of a
browser when such a large change occurs since it is not frequent;

2. The browser version remains constant or increases over time. This would not be
true in the case of a downgrade, but this is also, not a common event;

3. Due to the results from our statistical analyses, we have defined a set of attributes
that must not differ between two fingerprints from the same browser instance. We
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(a) Rule-based variant of Fp-Stalker.
Uses a set of static rules to determine if
fingerprints should be linked to the same
browser instance or not.

(b) Hybrid variant of Fp-Stalker. The training phase is used
to learn the probability that two fingerprints belong to the same
browser instance, and the testing phase uses the random forest-
based algorithm to link fingerprints.

Figure 3.4 Fp-Stalker: Overview of both algorithm variants. The rule-based algorithm
is simpler and faster but the hybrid algorithm leads to better fingerprint linking.
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consider that local storage, Dnt, cookies and canvas should be constant for any
given browser instance. As observed in Table 3.2, these attributes do not change
often, if at all, for a given browser instance. In the case of canvas, even if it seldomly
changes for most users (see Table 3.2, the changes are unpredictable making them
hard to model. Since canvas are quite unique among browser instances [27], and
do not change too frequently, it is still interesting to consider that it must remain
identical between two fingerprints of the same browser instance;

4. We impose a constraint on fonts: if both fingerprints have Flash activated—i.e.
we have a list of fonts available—then the fonts of fu must either be a subset or a
superset of the fonts of fk, but not a disjoint set. That means that between two
fingerprints of a browser instance, it will allow deletions or additions of fonts, but
not both;

5. We define a set of attributes that are allowed to change, but only within a certain
similarity. That means that their values must have a similarity ratio > 0.75,
as defined in the Python library function difflib.SequenceMatcher().ratio.
These attributes are user agent, vendor, renderer, plugins, language, accept,
headers. We allow at most two changes of this kind;

6. We also define a set of attributes that are allowed to change, no matter their value.
This set is composed of resolution, timezone and encoding. However, we only
allow one change at the same time among these three attributes;

7. Finally, the total number of changes from rules 5 and 6 must be less than 2.

The order in which rules are applied is important for performance purposes: we ordered
them from the most to least discriminating. The first rules discard many candidates,
reducing the total number of comparisons. In order to link fu to a fingerprint fk, we
apply the rules to each known fingerprint taken from F . As soon as a rule is not matched,
the known fingerprint is discarded and we move onto the next. If a fingerprint matches
all the rules, then it is added to a list of potential candidates, candidates. Moreover,
in case fingerprints fk and fu are identical, we add it to the list of exact matching
candidates, exact. Once the rule verification process is completed, we look at the two
lists of candidates. If exact is not empty, we check if there is only one candidate or if
all the candidates come from the same browser instance. If it is the case, then we link
fu with this browser instance, otherwise we assign a new id to fu. In case no exact
candidate is found, we look at candidates and apply the same technique as for exact.
We summarize the rule-based approach in Algorithm 1.
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Algorithm 1 Rule-based matching algorithm
function FingerprintMatching(F,fu)

rules = {rule1, ..., rule6}
candidates←∅
exact←∅
for fk ∈ F do

if VerifyRules(fk,fu, rules) then
if nbDiff = 0 then

exact← exact∪⟨fk⟩
else

candidates← candidates∪⟨fk⟩
end if

end if
end for
if |exact|> 0 and SameIds(exact) then

return exact[0].id
else if |candidates|> 0 and SameIds(candidates) then

return candidates[0].id
else

return GenerateNewId()
end if

end function
SameIds is a function that, given a list of candidates, returns true if all of them share the
same id, else false.
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On a side note, we established the rules using a simple univariate statistical analysis to
study attribute stability (see Table 3.2), as well as some objective (e.g., rule 1) and other
subjective (e.g., rule 4) decisions. Due to the difficulty in making complex yet effective
rules, the next subsection presents the use of machine learning to craft a more effective
algorithm.

3.2.3 Hybrid Linking Algorithm

The second variant of Fp-Stalker mixes the rule-based algorithm with machine learning
to produce a hybrid algorithm. It reuses the first three rules of the previous algorithm,
since we consider them as constraints that should not be violated between two fingerprints
of a same browser instance. However, for the last four rules, the situation is more fuzzy.
Indeed, it is not as clear when to allow attributes to be different, how many of them
can be different, and with what dissimilarity. Instead of manually crafting rules for each
of these attributes, we propose to use machine learning to discover them. The interest
of combining both rules and machine learning approaches is that rules are faster than
machine learning, but machine learning tends to be more precise. Thus, by applying
the rules first, it helps keep only a subset of fingerprints on which to apply the machine
learning algorithm.

3.2.3.1 Approach Description

The first step of this algorithm is to apply rules 1, 2 and 3 on fu and all fk ∈ F . We keep
the subset of browser fingerprints fksub that verify these rules. If, during this process, we
found any browser fingerprints that exactly match fu, then we add them to exact. In
case exact is not empty and all of its candidates are from the same browser instance, we
stop here and link fu with the browser instance in exact. Otherwise, if there are multiple
exact candidates but from different browser instances, then we assign a new browser
id to fu. In the case where the set of exact candidates is empty, we continue with a
second step that leverages machine learning. In this step, for each fingerprint fk ∈ fksub,
we compute the probability that fk and fu come from the same browser instance using
a random forest model. We keep a set of fingerprint candidates whose probability is
greater than a λ threshold parameter. If the set of candidates is empty, we assign a
new id to fu. Otherwise, we keep the set of candidates with the highest and second
highest probabilities, ch1 and ch2. Then, we check if ch1 contains only one candidate or
if all of the candidates come from the same browser instance. If it is not the case, we
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check that either the probability ph1 associated with candidates of ch1 is greater than
the probability ph2 associated with candidates of ch2 +diff , or that ch2 and ch1 contains
only candidates from the same browser instance. Algorithm 2 summarizes the hybrid
approach.

3.2.3.2 Machine Learning

Computing the probability that two fingerprints fu and fk originate from the same
browser instance can be modeled as a binary classification problem where the two classes
to predict are same browser instance and different browser instance. We use
the random forest algorithm [100] to solve this binary classification problem. A random
forest is an ensemble learning method for classification that operates by constructing a
multitude of decision trees at training time and outputting the class of the individual
trees. In the case of Fp-Stalker, each decision tree makes a prediction and votes if
the two browser fingerprints come from the same browser instance. The result of the
majority vote is chosen. Our main motivation to adopt a random forest instead of other
classifiers is because it provides a good tradeoff between precision and the interpretation
of the model. In particular, the notion of feature importance in random forests allows
Fp-Stalker to interpret the importance of each attribute in the decision process.

In summary, given two fingerprints, fu /∈ F and fk ∈ F , whose representation is reduced
to a single feature vector of M features X = ⟨x1,x2, ...,xM ⟩, where the feature xn is
the comparison of the attribute n for both fingerprints (the process of transforming
two fingerprints into a feature vector is presented after). Our random forest model
computes the probability P (fu.id = fk.id | (x1,x2, ...,xM )) that fu and fk belong to the
same browser instance.

Input Feature Vector To solve the binary classification problem, we provide an input
vector X = ⟨x1,x2, ...,xM ⟩ of M features to the random forest classifier. The features are
mostly pairwise comparisons between the values of the attributes of both fingerprints (e.g.,
Canvas, User agent). Most of these features are binary values (0 or 1) corresponding
to the equality or inequality of an attribute, or similarity ratios between these attributes.
We also include a number of changes feature that corresponds to the total number of
different attributes between fu and fk, as well as the time difference between the two
fingerprints.
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Algorithm 2 Hybrid matching algorithm
function FingerprintMatching(F,fu,λ)

rules = {rule1, rule2, rule3}
exact←∅
Fksub←∅
for fk ∈ F do

if VerifyRules(fk,fu, rules) then
if nbDiff = 0 then

exact← exact∪⟨fk⟩
else

Fksub← Fksub∪⟨fk⟩
end if

end if
end for
if |exact|> 0 then

if SameIds(exact) then
return exact[0].id

else
return GenerateNewId()

end if
end if
candidates←∅
for fk ∈ Fksub do
⟨x1,x2, ...,xM ⟩= FeatureVector(fu,fk)
p← P (fu.id = fk.id | ⟨x1,x2, ...,xM ⟩)
if p≥ λ then

candidates← candidates∪⟨fk,p⟩
end if

end for
if |candidates|> 0 then

ch1,ph1← getCandidatesRank(candidates,1)
ch2,ph2← getCandidatesRank(candidates,2)
if SameIds(ch1) and ph1 > ph2 +diff then

return candidates[0].id
end if
if SameIds(ch1∪ ch2) then

return candidates[0].id
end if

end if
return GenerateNewId()

end function
getCandidatesRank is a function that given a list of candidates and an rank i, returns a
list of candidates with the ith greatest probability, and this probability.



82 Fp-Stalker: Tracking Browser Fingerprint Evolutions

In order to choose which attributes constitute the feature vector we made a feature
selection. Indeed, having too many features does not necessarily ensure better results.
It may lead to overfitting—i.e., our algorithm correctly fits our training data, but does
not correctly predict on the test set. Moreover, having too many features also has a
negative impact on performance. For the feature selection, we started with a model using
all of the attributes in a fingerprint. Then, we looked at feature importance, as defined
by [101], to determine the most discriminating features. In our case, feature importance
is a combination of uniqueness, stability, and predictability (the possibility to anticipate
how an attribute might evolve over time). We removed all the components of our feature
vector that had a negligible impact (feature importance < 0.001). Finally, we obtained
a feature vector composed of the attributes presented in Table 3.3. We see that the
most important feature is the number of differences between two fingerprints, and the
second most discriminating attribute is the time difference between the two fingerprints
compared. Even attributes with low entropy, such as the list of languages, are among
the most important features. Although this may seem surprising, it can be explained
by the stability of the list of languages, as shown in Table 3.2, which means that if two
fingerprints have different languages, this often means that they do not belong to the
same browser instance. In comparison, screen resolution also has low entropy but it
changes more often than the list of languages, leading to low feature importance. This is
mostly caused by the fact that since screen resolution changes frequently, having two
fingerprints with a different resolution does not add a lot of information to determine
whether or not they are from the same browser instance. Finally, we see a high drop
in feature importance after rank 7 (from 0.018 to 0.004), which means that most of the
information required for the classification is contained in the first seven features.

Training Random Forests This phase trains the random forest classifier to estimate
the probability that two fingerprints belong to the same browser instance. To do so, we
split the input dataset introduced in Section 3.1 chronologically into two sets: a training
set and a test set. The training set is composed of the first 40% of fingerprints in our
input dataset, and the test set of the last 60%. The random forest detects fingerprint
evolutions by computing the evolutions between fingerprints as feature vectors. During
the training phase, it needs to learn about correct evolutions by computing relevant
feature vectors from the training set. Algorithm 3 describes this training phase, which is
split into two steps.
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Table 3.3 Feature importances of the random forest model calculated from the fingerprint
train set.

Rank Feature Importance

1 Number of changes 0.324
2 Time difference 0.225
3 User agent HTTP 0.194
4 Languages HTTP 0.112
5 Plugins 0.094
6 Canvas 0.020
7 Renderer 0.018
8 Resolution 0.004
9 Timezone 0.002
10 Fonts 0.001

Algorithm 3 Compute input feature vectors for training
function BuildTrainingVectors(ID,F ,δ,ν)

T ←∅
for id ∈ ID do ▷ Step 1

Fid←BrowserFingerprints(id,F )
for ft ∈ Fid do

T ← T ∪FeatureVector(ft,ft−1)
end for

end for
for f ∈ F do ▷ Step 2

fr← random(F )
if f.id ̸= fr.id then

T ← T ∪FeatureVector(f,fr)
end if

end for
return T

end function
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In Step 1, for every browser instance (id) of the training set, we compare each of its
fingerprints (ft ∈BrowserFingerprints(id,F )) present in the training set (F ) with
the previous one (ft−1). By doing so, Fp-Stalker captures the atomic evolutions that
occur between two consecutive fingerprints from the same browser instance. We apply
BuildTrainingVectors() for different collect frequencies (time difference between t

and t−1) to teach our model to link fingerprints even when they are not equally spaced
in time.

While Step 1 teaches the random forest to identify fingerprints that belong to the same
browser instance, it is also necessary to identify when they do not. Step 2 compares
fingerprints from different browser instances. Since the number of fingerprints from
different browser instances is much larger than the number of fingerprints from the same
browser instance, we limit the number of comparisons to one for each fingerprint. This
technique is called undersampling [102] and it reduces overfitting by adjusting the ratio
of input data labeled as true—i.e., 2 fingerprints belong to the same browser instance—
against the number of data labeled as false—i.e., 2 fingerprints are from different browser
instances. Otherwise, the algorithm would tend to simply predict false.

Random forest hyperparameters. Concerning the number of trees of the random
forest, there is a tradeoff between precision and execution time. Adding trees does
obtain better results but follows the law of diminishing returns and increases training
and prediction times. Our goal is to balance precision and execution time. The number
of features plays a role during the tree induction process. At each split, Nf features are
randomly selected, among which the best split is chosen [103]. Usually, its default value
is set to the square root of the length of the feature vector. The diff parameter enables
the classifier to avoid selecting browser instances with very similar probabilities as the
origin of the fingerprint; we would rather create a new browser instance than choose the
wrong one. It is not directly related to random forest hyperparameters but rather to
the specificities of our approach. In order to optimize the hyperparameters number of
trees and number of features, as well as the diff parameter, we define several possible
values for each and run a grid search to optimize the accuracy. This results in setting
the hyperparameters to 10 trees and 3 features, and the diff value to 0.20.

After training our random forest classifier, we obtain a forest of decision trees that predict
the probability that two fingerprints belong to the same browser instance. Figure 3.5
illustrates the first three levels of one of the decision trees. These levels rely on the
languages, the number of changes and the user agent to take a decision. If an
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languages HTTP <= 0.978

number of changes <= 4.5

True

number of changes <= 5.5

False

languages HTTP <= 0.759 number of changes <= 5.5

(...) (...) (...) (...)

user agent HTTP <= 0.869 user agent HTTP <= 0.974

(...) (...) (...) (...)

Figure 3.5 First 3 levels of a single tree classifier from our forest.

attribute has a value below its threshold, the decision path goes to the left child node,
otherwise it goes to the right child node. The process is repeated until we reach a leaf of
the tree. The prediction corresponds to the class (same/different browser instance) that
has the most instances over all the leaf nodes.

Lambda threshold parameter For each browser fingerprint in the test set, we
compare it with its previous browser fingerprint and with another random fingerprint
from a different browser, and compute the probability that it belongs to the same browser
instance using our random forest classifier with the parameters determined previously.
Using these probabilities and the true labels, we choose the λ value that minimizes the
false positive rate, while maximizing the true positive rate. However, this configuration
parameter depends on the targeted application of browser fingerprinting. For instance, if
browser fingerprinting is used as a second-tier security mechanism (e.g., to verify the
user is connecting from a known browser instance), we set λ to a high value. This
makes the algorithm more conservative, reducing the risk of linking a fingerprint to an
incorrect browser instance, but it also increases false negatives and results in a reduction
of the duration the algorithm can effectively track a browser. On the opposite end, a
low λ value will increase the false positive rate, in this case meaning it tends to link
browser fingerprints together even though they present differences. Such a use case might
be acceptable for constructing ad profiles, because larger profiles are arguably more
useful even if sometimes contaminated with someone else’s information. By applying
this approach, we obtained a λ threshold equal to 0.994.
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3.3 Empirical Evaluation of Fp-Stalker

This section assesses Fp-Stalker’s capacity to i) correctly link fingerprints from the
same browser instance, and to ii) correctly predict when a fingerprint belongs to a
browser instance that has never been seen before. We show that both variants of Fp-
Stalker are effective in linking fingerprints and in distinguishing fingerprints from new
browser instances. However, the rule-based variant is faster while the hybrid variant is
more precise. Finally, we discuss the impact of the collect frequency on fingerprinting
effectiveness, and we evaluate the execution times of both variants of Fp-Stalker.

Figure 3.6 illustrates the linking and evaluation process. Our database contains perfect
tracking chains because of the unique identifiers our extensions use to identify browser
instances. From there, we sample the database using different collection frequencies and
generate a test set that removes the identifiers, resulting in a mix of fingerprints from
different browsers. The resulting test set is then run through Fp-Stalker to reconstruct
the best browser instance chains as possible.

3.3.1 Key Performance Metrics

To evaluate the performance of our algorithms and measure how vulnerable users are
to browser fingerprint tracking, we consider several metrics that represent the capacity
to keep track of browser instances over time and to detect new browser instances. This
section presents these evaluation metrics, as well as the related vocabulary. Figure 3.6
illustrates the different metrics with a scenario.

A tracking chain is a list of fingerprints that have been linked—i.e., fingerprints for
which the linking algorithm assigned the same identifier. A chain may be composed of
one or more fingerprints. In case of a perfect linking algorithm, each browser instance
would have a unique tracking chain—i.e., all of its fingerprints are grouped together and
are not mixed with fingerprints from any other browser instances. However, in reality,
fingerprinting is a statistical attack and mistakes may occur during the linking process,
which means that:

1. Fingerprints from different browser instances may be included in the same tracking
chain,

2. Fingerprints from a given browser instance may be split into different tracking
chains.
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The lower part of Figure 3.6 shows examples of these mistakes. Chain 1 has an incorrect
fingerprint fpB1 from Browser B, and chain 3 and chain 4 contain fingerprints from
browser C that have not correctly been linked—i.e., fpC3 and fpC4 were not linked
leading to a split).

We present the tracking duration metric to evaluate the capacity of an algorithm to track
browser instances over time. We define tracking duration as the period of time a linking
algorithm matches the fingerprints of a browser instance within a single tracking chain.
More specifically, the tracking duration for a browser bi in a chain chaink is defined as
CollectFrequency× (#bi ∈ chaink−1). We subtract one because we consider a browser
instance to have been tracked, by definition, from the second linked fingerprint onwards.

The average tracking duration for a browser instance bi is the arithmetic mean of its
tracking duration across all the tracking chains the instance is present in. For example,
in Figure 3.6, the tracking duration of browser B in chain 1 is 0×CollectFrequency,
and the tracking duration in chain 2 is 1×CollectFrequency, thus the average tracking
duration is 0.5×CollectFrequency. In the same manner, the average tracking duration
of browser C is 1.5×CollectFrequency.

The maximum tracking duration for a browser instance bi is defined as the maximum
tracking duration across all of the tracking chains the browser instance is present in.
In the case of browser C, the maximum tracking duration occurred in chain 3 and is
equal to 2×CollectFrequency.

The Number of assigned ids represents the number of different identifiers that have been
assigned to a browser instance by the linking algorithm. It can be seen as the number
of tracking chains in which a browser instance is present. For each browser instance,
a perfect linking algorithm would group all of the browser’s fingerprints into a single
chain. Hence, each browser instance would have a number of assigned ids of 1. Figure 3.6
shows an imperfect case where browser C has been assigned 2 different ids (chain 3
and chain 4).

The ownership ratio reflects the capacity of an algorithm to not link fingerprints from
different browser instances. The owner of a tracking chain chaink is defined as the browser
instance bi that has the most fingerprints in the chain. Thus, we define ownership ratio
as the number of fingerprints that belong to the owner of the chain divided by the length
of the chain. For example, in chain 1, browser A owns the chain with an ownership
ratio of 4

5 because it has 4 out of 5 of the fingerprints. In practice, an ownership ratio
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Figure 3.6 Overview of our evaluation process that allows testing the algorithms using
different simulated collection frequencies.

close to 1 means that a tracking profile is not polluted with information from different
browser instances.

3.3.2 Comparison With Panopticlick’s Linking Algorithm

We compare Fp-Stalker to the algorithm proposed by Eckersley [3] in the context of
the Panopticlick project. To the best of our knowledge, there are no other algorithms
to compare to. Although Eckersley’s algorithm has been characterized as “naive" by
its author, we use it as a baseline to compare our approach. The Panopticlick
algorithm is summarized in Algorithm 4. It uses the following 8 attributes: User agent,
accept, cookies enabled, screen resolution, timezone, plugins, fonts and local
storage. Given an unknown fingerprint fu, Panopticlick tries to match it to a
previous fingerprint of the same browser instance if a sufficiently similar one exists—i.e.,
no more than one attribute changed. Otherwise, if it found no similar fingerprints, or
too many similar fingerprints that belong to different browser instances, it assigns a new
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Algorithm 4 Eckersley fingerprint matching algorithm [3]
ALLOWED = {cookies,resolution,timezone, local}
function FingerprintMatching(F,fu)

candidates←∅
for fk ∈ F do

changes←Diff(fu,fk)
if |changes|= 1 then

candidates← candidates∪⟨fk, changes⟩
end if

end for
if |candidates|= 1 then
⟨fk,a⟩ ← candidates[0]
if a ∈ALLOWED then

return fk

else if MatchRatio(fu(a),fk(a)) > 0.85 then
return fk

else
return NULL

end if
end if

end function
MatchRatio refers to the Python standard library function
difflib.SequenceMatcher().ratio() for estimating the similarity of strings.
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id. Moreover, although at most one change is allowed, this change can only occur among
the following attributes: cookies, resolution, timezone and local storage.

3.3.3 Dataset Generation Using Fingerprint Collect Frequency

To evaluate the effectiveness of Fp-Stalker we start from our test set of 59,159
fingerprints collected from 1,395 browser instances(60% of our input dataset, see Sec-
tion 3.2.3.2). However, we do not directly use this set. Instead, by sampling the test
set, we generate new datasets using a configurable collect frequency. Because our input
dataset is fine-grained, it allows us to simulate the impact fingerprinting frequency has
on tracking. The intuition being that if a browser is fingerprinted less often, it becomes
harder to track.

To generate a dataset for a given collect frequency, we start from the test set of 59,159
fingerprints, and, for each browser instance, we look at the collection date of its first
fingerprint. Then, we iterate in time with a step of collect_frequency days and recover
the browser instance’s fingerprint at time t + collect_frequency. It may be the same
fingerprint as the previous collect or a new one. We do this until we reach the last
fingerprint collected for that browser id. This allows us to record a sequence of fingerprints
that correspond to the sequence a fingerprinter would obtain if the browser instance was
fingerprinted at a frequency of collect_frequency days. The interest of sampling is that
it is more realistic than using all of the fingerprints from our database since they are
very fine-grained. Indeed, the extension is capable of catching even short-lived changes
in the fingerprint (e.g., connecting an external monitor), which is not always possible in
the wild. Finally, it allows us to investigate how fingerprint collection frequency impacts
browser tracking. Figure 3.7 provides an example of the process to generate a dataset
with a collect_frequency of two days. Table 3.4 presents, for each simulated collect
frequency, the number of fingerprints in the generated test sets.

The browser fingerprints in a generated test set are ordered chronologically. At the
beginning of our experiment, the set of known fingerprints (F ) is empty. At each iteration,
Fp-Stalker tries to link an unknown fingerprint fu with one of the fingerprints in
F . If it can be linked to a fingerprint fk, then Fp-Stalker assigns the id fk.id to fu,
otherwise it assigns a new id. In both cases, fu is added to F . The chronological order
of the fingerprints implies that at time t, a browser fingerprint can only be linked with
a former fingerprint collected at a time t′ < t. This approach ensures a more realistic
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Figure 3.7 Example of the process to generate a simulated test set. The dataset contains
fingerprints collected from browser’s A and B, which we sample at a collect_frequency
of 2 days to obtain a dataset that allows us to test the impact of collect_frequency on
fingerprint tracking.

scenario, similar to online fingerprint tracking approaches, than if we allowed fingerprints
from the past to be linked with fingerprints collected in the future.

3.3.4 Tracking Duration

Figure 3.8 plots the average tracking duration against the collect frequency for the three
algorithms. On average, browser instances from the test set were present for 129.4 days,
which corresponds to the maximum value our linking algorithm could potentially achieve.
We see that the hybrid variant of Fp-Stalker is able to keep track of browser instances
for a longer period of time than the two other algorithms. In the case where a browser
gets fingerprinted every three days, Fp-Stalker can track it for 50.8 days, on average.
More generally, the hybrid variant of Fp-Stalker has an average tracking duration of
about 9 days more than the rule-based variant and 34 days more than the Panopticlick
algorithm.

Figure 3.9 presents the average maximum tracking duration against the collect frequency
for the three algorithms. We see that the hybrid algorithm still outperforms the two
other algorithms because the it constructs longer tracking chains with less mistakes. On
average, the maximum average tracking duration for Fp-Stalker’s hybrid version is in
the order of 82 days, meaning that at most users were generally tracked for this duration.

Figure 3.10 shows the number of ids they assigned, on average, for each browser instance.
We see that Panopticlick’s algorithm often assigns new browser ids, which is caused
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Table 3.4 Number of fingerprints per generated test set after simulating different collect
frequencies.

Collect frequency (days) Number of fingerprints

1 227,706
2 114,288
3 76,480
4 57,569
5 46,247
6 38,681
7 33,285
8 29,219
10 23,560
15 16,003
20 12,231
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Figure 3.8 Average tracking duration against simulated collect frequency for the three
algorithms
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Figure 3.9 Average maximum tracking duration against simulated collect frequency for
the three algorithms. This shows averages of the longest tracking durations that were
constructed.

by its conservative nature. Indeed, as soon as there is more than one change, or multiple
candidates for linking, Panopticlick’s algorithm assigns a new id to the unknown browser
instance. However, we can observe that both Fp-Stalker’s hybrid and rule-based
variants perform similarly.

Finally, Figure 3.11 presents the average ownership of tracking chains against the
collect frequency for the three algorithms. We see that, despite its conservative nature,
Panopticlick’s ownership is 0.94, which means that, on average, 6% of a tracking chain
is constituted of fingerprints that do not belong to the browser instance that owns the
chain—i.e., it is contaminated with other fingerprints. We also see that Fp-Stalker has
an average ownership of 0.924, against 0.977 for the rule-based. Thus, while the hybrid
version can tracker browser instances for longer period of times than the rule-based
version, this can be partly explained by the fact that the hybrid version links more
frequently fingerprints from different browser instances.

When it comes to linking browser fingerprints, Fp-Stalker’s hybrid variant is better,
or as good as, the rule-based variant. The next paragraphs focus on a few more results
we obtain with the hybrid algorithm. Figure 3.12 presents the cumulative distribution
of the average and maximum tracking duration when collect_frequency equals 7 days
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Figure 3.10 Average number of assigned ids per browser instance against simulated collect
frequency for the three algorithms (lower is better).

for the hybrid variant. We observe that, on average, 12,4% of the browser instances
are tracked more than 100 days. When it comes to the the longest tracking chains, we
observe that more than 32.4% of the browser instances have been tracked at least once
for more than 100 days during the experiment. These numbers show how tracking may
depend on the browser and its configuration. Indeed, while some browsers are never
tracked for a long period of time, others may be tracked for multiple months. This is also
due to the duration of presence of browser instances in our experiments. Few browser
instances were present for the whole experiment, most for a few weeks, and at best we
can track a browser instance only as long as it was present. The graph also shows the
results of the perfect linking algorithm (grey line), which can also be interpreted as the
distribution of duration of presence of browser instances in our test set.

The boxplot in Figure 3.13 depicts the number of ids generated by the hybrid algorithm
for a collect frequency of 7 days. It shows that half of the browser instances have been
assigned 2 identifiers, which means they have one mistake, and more than 90% have less
than 9 identifiers.

Finally, we also look at the distribution of the chains to see how often fingerprints from
different browser instances are mixed together. For the Fp-Stalker hybrid variant,
more than 95% of the chains have an ownership superior to 0.8, and more than 90%
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Figure 3.11 Average ownership of tracking chains against simulated collect frequency for
the three algorithms. A value of 1 means the tracking chain contains only fingerprints of
the same browser instance.
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days (Fp-Stalker hybrid variant only).
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Figure 3.13 Distribution of number of ids per browser for a collect frequency of 7 days
(Fp-Stalker hybrid variant only).

have perfect ownership—i.e., 1. This shows that a small percentage of browser instances
become highly mixed in the chains, while the majority of browser instances are properly
linked into clean and relatively long tracking chains.

Comparison with the original dataset. Compare to the original version of the
paper [16] published in 2018 with fewer fingerprints, we observe that the hybrid algorithm
has a similar average tracking duration. The average maximum tracking duration
increases, which can be explained by the fact that our evaluation dataset spans over a
longer period. However, this difference does not necessarily imply there is a performance
improvement. It is likely caused by the fact that as browser instances remain longer
in the dataset, this increases the chance that some of them can be tracked longer.
Concerning the number of identifiers per user, we also observe similar results with the
original dataset: the hybrid and rule-based algorithms have similar performances, all
while significantly outperforming the Panopticlick algorithm. Nevertheless, we observe a
significant difference concerning the average ownership, i.e., the quality of the tracking
chains. With the original dataset, the hybrid algorithm and the rule-based algorithms
performed similarly, with an average ownership > 0.975, no matter the collect frequency.
However, in this chapter, we observe a significant drop for the hybrid algorithm, going
from an average ownership of 0.985 in the original paper to 0.924 with the new dataset.
This difference illustrates the difficulty of having machine learning models whose accuracy
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remains stable over time. Indeed, even though the model was trained on 40% of the new
dataset, its performance decreased. This drop can be partly explained by the fact that
the random forest model is trained on old fingerprints while applied on recent fingerprints
for evaluation. Nevertheless, browser fingerprinting is a constantly evolving field, which
means that when we learn to predict fingerprint evolutions on the first 40% of the dataset,
it does not fully transfer to the way the latest 60% of the fingerprints collected evolved.
Thus, for better performance, it would have required to train the model on more recent
fingerprints. While this is not possible in our case because of the number of fingerprints
available and our need to have an evaluation dataset of significant size, it is not the case
of commercial fingerprinters that have more fingerprints available to train their models.

A second factor that can explain the average ownership drop lies in the increase of the
dataset size. Since there are more fingerprints, there is more chance the dataset contains
similar or close fingerprints. This problem has already been discussed by Eckersley [3]
and shows the limits of using relatively small datasets to study browser fingerprinting.
We discuss this problem of representativity of the dataset as well as other limits in
Section 3.3.6. Thus, it is possible that our machine learning model lacked discrimination
power to distinguish between fingerprints originating from the same browser instances
and fingerprinting originating from different browser instances. Nevertheless, there exist
solutions to address this problem:

1. Doing more advanced feature engineering;

2. Adding new attributes to the fingerprints collected and use them in the machine
learning model.

Concerning the second solution, I argue that adding new attributes, such as audio
fingerprinting or more detailed attributes related to the size of the screen and the window,
would help to improve the accuracy of the tracking algorithm.

3.3.5 Benchmark/Overhead

This section presents a benchmark that evaluates the performance of Fp-Stalker’s
hybrid and rule-based variants. We start by providing more details about our imple-
mentation, then we explain the protocol used for this benchmark, demonstrate that
our approach can scale, and we show how our two variants behave when the number of
browser instances increases.
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The implementations of Fp-Stalker used for this benchmark are developed in
Python, and the implementation of the random forest comes from the Scikit-Learn library.
In order to study the scalability of our approach, we parallelized the linking algorithm to
run on multiple nodes. A master node is responsible for receiving linkability requests,
then it sends the unknown fingerprint to match fu to slave nodes that compare fu with
all of the fk present on their process. Then, each slave node sends its set of candidates
associated either with a probability in case of the hybrid algorithm, or the number of
changes in case of the rule-based version. Finally, the master node takes the final decision
according to the policy defined either by the rule-based or hybrid algorithm. After the
decision is made, it sends a message to each node to announce whether or not they should
keep fu in their local memory. In the case of the benchmark, we do not implement an
optimization for exact matching. Indeed, normally the master nodes should hold a list of
the exact matches associated with their ids.

The experimental protocol aims to study scalability. We evaluate our approach on
a standard Azure cloud instance. We generate fake browser fingerprints to increase the
test set size. Thus, this part does not evaluate the previous metrics, such as tracking
duration, but only the execution times required to link synthetic browser fingerprints,
as well as how well the approach scales across multiple processes.

The first step of the benchmark is to generate fake fingerprints from real ones. The
generation process consists in taking a real fingerprint from our database and applying
random changes to the canvas and the timezone attributes. We apply only two random
changes so that generated fingerprints are unique, but they do not have too many
differences which would reduce the number of comparisons. This point is important
because our algorithms include heuristics related to the number of differences. Thus,
by applying a small number of random changes, we do not discard all fk fingerprints,
making it the worst case scenario for testing execution times. Regarding the browser
ids, we assign two generated fingerprints to each browser instance. It would not have
been useful to generate more fingerprints per browser instance since we compare an
unknown fingerprint only with the last 2 fingerprints of each browser instance. Then,
the master node creates n slave processes and sends the generated fingerprints to them.
The fingerprints are spread evenly over the processes.

Once the fingerprints are stored in the slave processes memory, we start our benchmark.
We get 100 real fingerprints and try to link them with our generated fingerprints. For each
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Figure 3.14 Speedup of average execution time against number of processes for Fp-
Stalker’s hybrid variant

fingerprint, we measure the execution time of the linking process. In this measurement,
we measure:

1. The number of fingerprints and browser instances.
2. The number of processes spawned.

We execute our benchmark on a Standard D16 v3 Azure instance with 16 virtual
processors and 64 Gb of RAM, which has an associated cost of $576 USD per month.
Figure 3.14 shows the execution time speedup in percentage against the number of
processes for the hybrid approach. We see that that as the number of processes increases,
we obtain a speedup in execution time. Going from 1 to 8 processes enables a speed up
of more than 80%. Figure 3.15 shows the execution time to link a fingerprint against the
number of browser fingerprints for Fp-Stalker’s hybrid and rule-based variants, using
16 processes. Better tracking duration from the hybrid variant (see 3.3.4) is obtained
at the cost of execution speed. Indeed, for any given number of processes and browser
instances, the rule-based variant links fingerprints about 5 times faster. That said, the
results show that the hybrid variant links fingerprints relatively quickly.

However, the raw execution times should not be used directly. The algorithm was
implemented in Python, whose primary focus is not performance. Moreover, although we
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Figure 3.15 Execution times for Fp-Stalker hybrid and rule-based to link a fingerprint
using 16 processes. Time is dependent on the size of the test set. The increased
effectiveness of the hybrid variant comes at the cost slower of execution times.
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scaled by adding processes, it is possible to scale further by splitting the linking process
(e.g., depending on the combination of OS and browser, send the fingerprint to more
specialized nodes). In our current implementation, if an unknown fingerprint from a
Chrome browser on Linux is trying to be matched, it will be compared to fingerprints
from Firefox on Windows, causing us to wait even though they have no chance of being
linked. By adopting a hierarchical structure where nodes or processes are split depending
on their OS and browser, it is possible to increase the throughput of our approach.

Furthermore, the importance of the raw execution speeds depend highly on the use
case. In the case where fingerprinting is used as a way to regenerate cookies (e.g., for
advertising), a fingerprint only needs to be linked when the cookie is missing or has been
erased, a much less frequent event. Another use case is using browser fingerprinting as a
way to enhance authentication [12]. In this case, one only needs to match the fingerprint
of the browser attempting to sign-in with the previous fingerprints from the same user,
drastically reducing the number of comparisons.

3.3.6 Threats to Validity

First, the results we report in this work depend on the representativity of our browser
fingerprint dataset. We developed extensions for Chrome and Firefox, the two most
popular web browsers, and distributed them through standard channels. This does
provide long term data, and mitigates a possible bias if we had chosen a user population
ourselves, but it is possible that the people interested in our extension are not a good
representation of the average Web surfer.

Second, there is a reliability threat due to the difficulty in replicating the experiments.
Unfortunately, this is inherent to scientific endeavors in the area of privacy: these works
must analyze personal data (browser fingerprints in our case) and the data cannot be
publicly shared. Yet, the code to split the data, generate input data, train the algorithm,
as well as evaluate it, is publicly available online on GitHub.1

Finally, a possible internal threat lies in our experimental framework. We did extensive
testing of our machine learning algorithms, and checked classification results as thoroughly
as possible. We paid attention to split the data and generate a scenario close to what
would happen in a web application. However, as for any large scale experimental

1https://github.com/Spirals-Team/FPStalker

https://github.com/Spirals-Team/FPStalker
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infrastructure, there are surely bugs in this software. We hope that they only change
marginal quantitative things, and not the qualitative essence of our findings.

3.3.7 Discussion

This chapter studies browser fingerprint linking in isolation, which is its worst-case
scenario. In practice, browser fingerprinting is often combined with stateful tracking tech-
niques (e.g., cookies, Etags) to respawn stateful identifiers [5]. In such cases, fingerprint
linking is performed much less frequently since most of the time a cookie is sufficient and
inexpensive to track users. Our work shows that browser fingerprinting can provide an
efficient solution to extend the lifespan of cookies, which are increasingly being deleted
by privacy-aware users.

Browser vendors and users would do well to minimize the differences that are so easily
exploited by fingerprinters. Our results show that some browser instances have highly
trackable fingerprints, to the point that very infrequent fingerprinting is quite effective.
In contrast, other browser instances appear to be untrackable using the attributes we
collect. Vendors should work to minimize the attack surfaces exploited by fingerprinters,
and users should avoid customizing their browsers in ways that make them expose unique
and linkable fingerprints.

Depending on the objectives, browser fingerprint linking can be tuned to be more
conservative and avoid false positives (e.g., for second-tier security purposes), or more
permissive (e.g., ad tracking). Tuning could also be influenced by how effective other
tracking techniques are. For example, it could be tuned very conservatively and simply
serve to extend cookie tracking in cases where privacy-aware users, which are in our
opinion more likely to have customized (i.e., unique and linkable) browser configurations,
delete their cookies.

3.4 Conclusion

In this chapter, we investigated the stability of browser fingerprints and show that besides
having a high entropy, new techniques, such as canvas fingerprinting, remain stable for
long periods of time. Then, we measured how long can browsers be tracked using solely
their fingerprint and proposed Fp-Stalker, an approach to link fingerprint changes
over time. We address the problem with two variants of Fp-Stalker. The first one
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builds on a ruleset identified from an analysis of grounded programmer knowledge. The
second variant combines the most discriminating rules by leveraging machine learning to
sort out the more subtle ones.

We trained the Fp-Stalker hybrid variant with a training set of fingerprints that
we collected for 2 years through browser extensions installed by 2,346 volunteers. By
analyzing the feature importance of our random forest, we identified the number of
changes, the time difference, as well as the user agent, as the three most important
features.

We ran Fp-Stalker on our test set to assess its capacity to link fingerprints, as well as
to detect new browser instances. Our experiments demonstrate that the hybrid variant
can correctly link fingerprint evolutions from a given browser instance for 49.3 consecutive
days on average, against 40.9 days for the rule-based variant. When it comes to the
maximum tracking duration, with the hybrid variant, more than 32.4% of the browsers
can be tracked for more than 100 days.

Concerning the differences with the paper published at S&P 18 [16], while the perfor-
mances of the hybrid algorithm in term of tracking duration and number of ids per users
are quite similar, we observe a significant difference concerning the average ownership,
i.e., the quality of the tracking chains. We observe a significant drop for the hybrid
algorithm, going from an average of 0.985 in the original paper to 0.924 with the new
dataset. This can be partly explained by the fact that the model is trained on old finger-
prints while applied on recent fingerprints during the evaluation. Nevertheless, browser
fingerprinting is a constantly evolving field as new features are added and deprecated.
Thus, when our random forest model learns how fingerprints evolve on the first 40%
fingerprints, it does not fully transfer to the most recent 60% fingerprints. Thus, to
obtain better performance, it would have required to train the linking model on more
recent fingerprints. While this was not possible in our cause because of the number of
fingerprints we have and our need to have an evaluation dataset of significant size, it
is not a problem for commercial fingerprinters that have more fingerprints available to
train their models. A second reason to explain this drop comes from the fact that as the
size of the dataset increase, so does the probability that two fingerprints are the same
or close, even though they belong to different browser instance. Thus, to address this
problem, one either needs to improve the feature engineering of the machine learning
model or add new fingerprinting attributes such as the audio fingerprinting or attributes
related to the size of the screen and the window.
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Regarding the usability of Fp-Stalker, we measure the average execution time to link
an unknown fingerprint when the number of known fingerprints is growing. We show
that both our rule-based and hybrid variants scale horizontally. However, even though
our hybrid variant is better in term of tracking duration, we show that it introduces a
non-negligible overhead compared to the pure rule-based approach.

As we showed in this chapter, browser fingerprinting is a threat to privacy and can be
used in addition to other stateful mechanisms, such as cookies, to track users for longer
period of times. To protect against browser fingerprinting, several countermeasures
have been proposed. Nevertheless, these countermeasures may generate inconsistent
fingerprints that can make their users more identifiable and therefore trackable. Thus,
in the next chapter, we evaluate the effectiveness of fingerprinting countermeasures and
how using them impact the privacy of their users.



Chapter 4

Fp-Scanner: The Privacy
Implications of Browser Fingerprint
Inconsistencies

A wide range of countermeasures has been developed to protect against browser finger-
printing. Some of them lie on the nature of the device in order to fool the trackers, while
others add random noise to pixels of canvas fingerprints in order to break to the stability
required for tracking. Nevertheless, the way these countermeasures have been evaluated
does not properly asses their impact on user privacy, in particular regarding the quantity
of information they may indirectly leak by revealing their presence.

My work was motivated by Nikiforakis et al. [4] that first demonstrated how inconsistencies
introduced by user agent spoofers could be used to reveal their presence, which could help
fingerprinters track browsers with such extensions. This chapter goes beyond the specific
case of user agent spoofers and studies a wider range of state-of-the-art fingerprinting
countermeasures. Moreover, I also challenge the claim that being more distinguishable
necessarily makes tracking more accurate.

My motivation to conduct a better evaluation of fingerprinting countermeasures was
strengthened by recent findings when inspecting the code of a commercial fingerprinting
script used by Augur [96]. I discovered that this script computes an attribute called
spoofed, which is the result of multiple tests that evaluate the consistency between the
user agent, the platform, navigator.oscpu, navigator.productSub, as well as the
value returned by eval.toString.length used to detect a browser. Moreover, the code
also tests for the presence of touch support on devices that claim to be mobiles. Similar
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tests are also present in the widely used open source library FingerprintJS2 [65]. While
we cannot know the motivations of fingerprinters when it comes to detecting browsers with
countermeasures—i.e., this could be used to identify bots, to block fraudulent activities,
or to apply additional tracking heuristics—I argue that countermeasures should avoid
revealing their presence as this can be used to better target the browser. Thus, I consider
it necessary to evaluate the privacy implications of using fingerprinting countermeasures.

In this chapter, I show how most of the fingerprinting countermeasures presented in
the state-of-the-art can negatively impact user privacy. First, in Section 4.1 I propose
FP-Scanner, a test suite that leverages fingerprint inconsistencies to detect if a user
has a fingerprinting countermeasure installed in her browser. In Section 4.2, I detail
my implementation of a fingerprinting script and an inconsistency scanner capable of
detecting altered fingerprints. I evaluate it against state-of-the-art countermeasures and
show that none of them can hide their presence to our scanner. Then, I go further and
show that even when countermeasures modify attributes such as the user agent or the
platform, our scanner can still recover the original OS and browser values. In Section 4.3
I discuss how fingerprinters can leverage this information to improve their tracking
algorithms. Finally, I conclude in Section 4.4. This chapter was originally published as a
conference paper entitled Fp-Scanner: The Privacy Implications of Browser Fingerprint
Inconsistencies [17] published at Usenix Security 18.

4.1 Investigating Fingerprint Inconsistencies

Based on our study of existing browser fingerprinting countermeasures published in
the literature, we organized our test suite to detect fingerprint inconsistencies along
4 distinct components. The sequence of tests is ordered by the increasing complexity
required to detect an inconsistency. In particular, the first two tests aim at detecting
inconsistencies at the OS and browser levels, respectively. The third one focuses on
detecting inconsistencies at the device level. Finally, the fourth test aims at revealing
canvas poisoning techniques. Each test focuses on detecting specific inconsistencies that
could be introduced by a countermeasure. While some of the tests we integrate, such as
checking the values of both user agents or browser features, have already been proposed
by Nikiforakis et al. [4], we also propose new tests to strengthen our capacity to detect
inconsistencies. Figure 4.1 depicts the 4 components of our inconsistency test suite.



4.1 Investigating Fingerprint Inconsistencies 107

Figure 4.1 Overview of the inconsistency test suite.

4.1.1 Uncovering OS Inconsistencies

Although checking the browser’s identity is straightforward for a browser fingerprinting
algorithm, verifying the host OS is more challenging because of the sandbox mechanisms
used by the script engines. In this section, we present the heuristics applied to check a
fingerprinted OS attribute.

User Agent. We start by checking the user agent consistency [4], as it is a key attribute
to retrieve the OS and browser of a user. The user agent is available both from the client
side, through the navigator object (navigator.userAgent), and from the server side,
as an HTTP header (User-Agent). The first heuristics we apply checks the equality of
these two values, as naive browser fingerprinting countermeasures, such as basic user
agent spoofers, tend to only alter the HTTP header. The difference between the two
user agent attributes reflects a coarse-grained inconsistency that can be due to the OS
and/or the browser. While extracting the OS and the browser substrings can help to
reveal the source of the inconsistency, the similarity of each substring does not necessarily
guarantee the OS and the browser values are true, as both might be spoofed. Therefore,
we extract and store the OS, browser and version substrings as internal variables OSref,
browserRef, browserVersionRef for further investigation.



108 Fp-Scanner: The Privacy Implications of Browser Fingerprint Inconsistencies

Table 4.1 Mapping between common OS and platform values.

OS Platforms

Linux Linux i686, Linux x86_64, Linux, Linux armv8l

Windows Win32, Win64

iOS iPhone, iPad

Android Linux armv71, Linux i686, Linux armv8l

macOS MacIntel

FreeBSD FreeBSD amd64, FreeBSD i386

Navigator platform. The value of navigator.platform reflects the platform on which
the browser is running. This attribute is expected to be consistent with the variable
OSref, extracted in the first step [4]. Nevertheless, consistent does not mean equal
as, for example, the user agent of a 32-bits Windows will contain the substring WOW64,
which stands for Windows on Windows 64-bits, while the attribute navigator.platform
will report the value Win32. Table 4.1 therefore maps OSref and possible values of
navigator.platform for the most commonly used OSes.

WebGL. WebGL is a JavaScript API that extends the HTML 5 canvas API to render
3D objects from the browser. In particular, we propose a new test that focuses on two
WebGL attributes related to the OS: renderer and vendor. The first attribute reports the
name of the GPU, for example ANGLE (VMware SVGA 3D Direct3D11 vs_4_0 ps_4_0).
Interestingly, the substring VMware indicates that the browser is executed in a virtual
machine. Also, the ANGLE substring stands for Almost Native Graphics Layer Engine,
which has been designed to bring OpenGL compatibility to Windows devices. The second
WebGL attribute (vendor) is expected to provide the name of the GPU vendor, whose
value actually depends on the OS. On a mobile device, the attribute vendor can report
the string Qualcomm, which corresponds to the vendor of the mobile chip, while values,
like Microsoft, are returned for Internet Explorer on Windows, or Google Inc for a
Chrome browser running on a Windows machine. We summarize the mapping for the
attributes renderer and vendor in Table 4.2.

Browser plugins. Plugins are external components that add new features to the browser.
When querying for the list of plugins via the navigator.plugins object, the browser
returns an array of plugins containing detailed information, such as their filename and
the associated extension, which reveals some indication of the OS. On Windows, plugin
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Table 4.2 Mapping between OS and substrings in WebGL renderer/vendor attributes
for common OSes.

OS Renderer Vendor

Linux Mesa, Gallium Intel, VMWare, X.Org

Windows ANGLE Microsoft, Google Inc

iOS Apple, PowerVR Apple, Imagination

Android Adreno, Mali, PowerVR Qualcomm, ARM, Imagination

macOS OpenGL, Iris Intel, ATI

Windows Phone Qualcomm, Adreno Microsoft

file extensions are .dll, on macOS they are .plugin or .bundle and for Linux based
OS extensions are .so. Thus, we propose a test that ensures that OSref is consistent
with its associated plugin filename extensions. Moreover, we also consider constraints
imposed by some systems, such as mobile browsers that do not support plugins. Thus,
reporting plugins on mobile devices is also considered as an inconsistency.

Media queries. Media query is a feature included in CSS 3 that applies different
style properties depending on specific conditions. The most common use case is the
implementation of responsive web design, which adjusts the stylesheet depending on
the size of the device, so that users have a different interface depending on whether
they are using a smartphone or a computer. In this step, we consider a set of media
queries provided by the Firefox browser to adapt the content depending on the value
of desktop themes or Windows OS versions. Indeed, it is possible to detect the Mac
graphite theme using -moz-mac-graphite-theme media query [104]. It is also possible
to test specific themes present on Windows by using -moz-windows-theme. However,
in the case of Windows, there is a more precise way to detect its presence, and even
its version. It is also possible to use the -moz-os-version media query to detect if a
browser runs on Windows XP, Vista, 7, 8 or 10. Thus, it is possible to detect some Mac
users, as well as Windows users, when they are using Firefox. Moreover, since these
media queries are only available from Firefox, if one of the previous media queries is
matched, then it likely means that the real browser is Firefox.

Fonts. Saito et al. [105] demonstrated that fonts may be dependent on the OS. Thus, if
a user claims to be on a given OS A, but does not list any font linked to this OS A and,
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at the same time, displays many fonts from another OS B, then we may assume that OS
A is not its real OS.

This first step in Fp-Scanner aims to check if the OS declared in the user agent is the
device’s real OS. In the next step, we extend our verification process by checking if the
browser and the associated version declared by the user agent have been altered.

4.1.2 Uncovering Browser Inconsistencies

This step requires the extraction of the variables browserRef and browserVersion Ref
from the user agent to further investigate their consistency.

Error. In JavaScript, Error objects are thrown when a runtime error occurs. There
exist 7 different types of errors for client-side exceptions, which depend on the problem
that occurred. However, for a given error, such as a stack overflow, not all the browsers
will throw the same type of error. In the case of a stack overflow, Firefox throws
an InternalError and Chrome throws a RangeError. Besides the type of errors,
depending on the browser, error instances may also contain different properties. While two
of them—message and name—are standards, others such as description, lineNumber
or toSource are not supported by all browsers. Even for properties, such as message
and name, which are implemented in all major browsers, their values may differ for a
given error.

For example, executing null[0] on Chrome will generate the following error message
"Cannot read property ’0’ of null", while Firefox generates "null has no properties",
and Safari "null is not an object (evaluating ’null[0]’)".

Function’s internal representation. It is possible to obtain a string representation
of any object or function in JavaScript by using the toString method. However, such
representations—e.g., eval.toString()—may differ depending on the browser, with a
length that characterizes it. Firefox and Safari return the same string, with a length
of 37 characters, while on Chrome it has a length of 33 characters, and 39 on Internet
Explorer. Thus, we are able to distinguish most major desktop browsers, except for
Firefox and Safari. Then, we consider the property navigator.productSub, which
returns the build number of the current browser. On Safari, Chrome and Opera, it
always returns the string 20030107 and, combined with eval.toString().length, it
can therefore be used to distinguish Firefox from Safari.



4.1 Investigating Fingerprint Inconsistencies 111

Navigator object. Navigator is a built-in object that represents the state and the
identity of the browser. Since it characterizes the browser, its prototype differs depending
not only on the browser’s family, but also the browser’s version. These differences come
from the availability of some browser-specific features, but also from two other reasons:

1. The order of navigator is not specified and differs across browsers [4];
2. For a given feature, different browsers may name it differently. For example, if we

consider the feature getUserMedia, it is available as mozGetUserMedia on Firefox
and webkitGetUserMedia on a Webkit-based browser.

Moreover, as navigator properties play an important role in browser fingerprinting,
our test suite detects if they have been overridden by looking at their internal string
representation. In the case of a genuine fingerprint whose attributes have not been
overridden in JavaScript, it should contain the substring native code. However, if a
property has been overridden, it will return the code of the overridden function.

Browser features. Browsers are complex software that evolve at a fast pace by adding
new features, some being specific to a browser. By observing the availability of specific
features, it is possible to detect if a browser is the one it claims to be [4, 37]. Since for a
given browser, features evolve depending on the version, we can also check if the features
available are consistent with browserVersionRef. Otherwise, this may indicate that the
browser version displayed in the user agent has been manipulated.

4.1.3 Uncovering Device Inconsistencies

This section aims at detecting if the device belongs to the class of devices it claims to
be—i.e., mobile or computer.

Browser events. Some events are unlikely to happen, such as touch-related events
(touchstart, touchmove) on a desktop computer. On the opposite, mouse-related events
(onclick, onmousemove) may not happen on a smartphone. Therefore, the availability
of an event may reveal the real nature of a device.

Browser sensors. Like events, some sensors may have different outputs depending on
the nature of devices. For example, the accelerometer, which is generally assumed to
only be available on mobile devices, can be retrieved from a browser without requesting
any authorization. The value of the acceleration will always slightly deviate from 0 for a
real mobile device, even when lying on a table.
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(a) Canvas fingerprint with no countermeasure.

(b) Canvas fingerprint with a countermeasure.

Figure 4.2 Two examples of canvas fingerprints (a) a genuine canvas fingerprint without
any countermeasures installed in the browser and (b) a canvas fingerprint altered by the
Canvas Defender countermeasure that applies a uniform noise to all the pixels in the
canvas.

4.1.4 Uncovering Canvas Inconsistencies

Canvas fingerprinting uses the HTML 5 canvas API to draw 2D shapes using JavaScript.
This technique, discovered by Mowery et al. [38], is used to fingerprint browsers. To do so,
one scripts a sequence of instructions to be rendered, such as writing text, drawing shapes
or coloring part of the image, and collects the rendered output. Since the rendering
of this canvas relies on the combination of different hardware and software layers, it
produces small differences from device to device. An example of the rendering obtained
on a Chrome browser running on Linux is presented in Figure 4.2a.

As we mentioned, the rendering of the canvas depends on characteristics of the device,
and if an instruction has been added to the script, you can expect to observe its effects
in the rendered image. Thus, we consider these scripted instructions as constraints that
must be checked in the rendered image. For example, the canvas in Figure 4.2b has been
obtained with the Canvas Defender extension installed. We observe that contrary to
the vanilla canvas that does not use any countermeasure (Figure 4.2a), the canvas with
the countermeasure has a background that is not transparent, which can be seen as a
constraint violation. We did not develop a new canvas test, we reused the one adopted
by state-of-the-art canvas fingerprinting [27]. From the rendered image, our test suite
checks the following properties:

1. Number of transparent pixels as the background of our canvas must be transparent,
we expect to find a majority of these pixels;
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2. Number of isolated pixels, which are pixels whose rgba value is different than
(0,0,0,0) and are only surrounded by transparent pixels. In the rendered image,
we should not find this kind of pixel because shapes or texts drawn are closed;

3. Number of pixels per color should be checked against the input canvas rendering
script, even if it is not possible to know in advance the exact number of pixels with
a given color, it is expected to find colors defined in the canvas script.

We also check if canvas-related functions, such as toDataUrl, have been overridden.

4.2 Empirical Evaluation

This section compares the accuracy of Fp-Scanner with FingerprintJS2 [65], an
open source fingerprinting script and Augur [96], a commercial fingerprinting script, to
classify genuine and altered browser fingerprints modified by state-of-the-art fingerprinting
countermeasures.

4.2.1 Implementing FP-Scanner

Instead of directly implementing and executing our test suite within the browser, thus
being exposed to countermeasures, we split Fp-Scanner into two parts. The first part
is a client-side fingerprinter, which uploads raw browser fingerprints on a remote storage
server. For the purpose of our evaluation, this fingerprinter extends state-of-the-art
fingerprinters, like FingerprintJS2, with the list of attributes covered by Fp-Scanner
(e.g., WebGL fingerprint). Table 4.3 reports on the list of attributes collected by this
fingerprinter. The resulting dataset of labeled browser fingerprints is made available to
leverage the reproducibility of our results. 1

The second part of Fp-Scanner is the server-side implementation, in Python, of the
test suite we propose (cf. Section 4.1). This section reports on the relevant technical
issues related to the implementation of the 4 components of our test suite.

4.2.1.1 Checking OS Inconsistencies

OSRef is defined as the OS claimed by the user agent attribute sent by the browser
and is extracted using a UA Parser library [106]. We used the browser fingerprint

1FP-Scanner dataset: https://github.com/Spirals-Team/FP-Scanner

https://github.com/Spirals-Team/FP-Scanner
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Table 4.3 List of attributes collected by our fingerprinting script.

Attribute Description

HTTP headers List of HTTP headers sent by the browser and their associated value
User agent navigator Value of navigator.userAgent

Platform Value of navigator.platform

Plugins List of plugins (description, filename, name) obtained by
navigator.plugins

ProductSub Value of navigator.productSub

Navigator prototype String representation of each property and function of the navigator
object prototype

Canvas Base 64 representation of the image generated by the canvas fingerprint
test

WebGL renderer WebGLRenderingContext.getParameter("renderer")

WebGL vendor WebGLRenderingContext.getParameter("vendor")

Browser features Presence or absence of certain browser features
Media queries Collect if media queries related to the presence of certain OS match or

not using window.matchMedia

Errors type 1 Generate a TypeError and store its properties and their values
Errors type 2 Generate an error by creating a socket not pointing to an URL and store

its string representation
Stack overflow Generate a stack overflow and store the error name and message

Eval toString length Length of eval.toString().length

Media devices Value of navigator.mediaDevices.enumerateDevices

TouchSupport Collect the value of navigator.maxTouchPoints, store if we can create
a TouchEvent and if window object has the ontouchstart property

Accelerometer true if the value returned by the accelerometer sensor is different of 0,
else false

Screen resolution Values of screen.width/ height, and screen.availWidth/ Height

Fonts Font enumeration using JavaScript [39]
Overwritten properties Collect string representation of screen.width/height getters, as well as

toDataURL and getTimezoneOffset functions
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dataset from AmIUnique [27] to analyze if some of the fonts they collected were only
available on a given OS. We considered that if a font appeared at least 100 times for
a given OS family, then it could be associated to this OS. We chose this relatively
conservative value because the AmIUnique database contains many fingerprints that
are spoofed, but of which we are unaware of. Thus, by setting a threshold of 100, we may
miss some fonts linked to a certain OS, but we limit the number of false positives—i.e.,
fonts that we would classify as linked to an OS but which should not be linked to it.
Fp-Scanner checks if the fonts are consistent with OSRef by counting the number of
fonts associated to each OS present in the user font list. If more than Nf = 1 fonts
are associated to another OS than OSRef, or if no font is associated to OSRef, then
Fp-Scanner reports an OS inconsistency. It also tests if moz-mac-graphite-theme and
@media(-moz-os-version: $win-version) with $win-version equals to Windows
XP, Vista, 7, 8 or 10, are consistent with OSRef.

4.2.1.2 Checking Browser Inconsistencies

We extract BrowserRef using the same user agent parsing library as for OSRef. With
regards to JavaScript errors, we check if the fingerprint has a prototype, an error message,
as well as a type consistent with browserRef. Moreover, for each attribute and function
of the navigator object, Fp-Scanner also checks if the string representation reveals
that it has been overridden. Testing if the features of the browser are consistent with
browserRef is achieved by comparing the features collected using Modernizr [107]
with the open source data file provided by the website Caniuse [108]. The file is freely
available on Github2 and represents most of the features present in Modernizr as a
JSON file. For each of them, it details if they are available on the main browsers, and
for which versions. We consider that a feature can be present either if it is present by
default or it can be activated. Then, for each Modernizr feature we collected in the
browser fingerprint, we check if it should be present according to the Caniuse dataset.
If there are more than Ne = 1 errors, either features that should be available but are
not, or features that should not be available but are, then we consider the browser as
inconsistent.

2List of available features per browser: https://github.com/Fyrd/caniuse/blob/master/
data.json

https://github.com/Fyrd/caniuse/blob/master/data.json
https://github.com/Fyrd/caniuse/blob/master/data.json
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4.2.1.3 Checking Device Inconsistencies

We verify that, if the device claims to be a mobile, then the accelerometer value is set
to true. We apply the same technique for touch-related events. However, we do not
check the opposite—i.e., that computers have no touch related events—as some new
generations of computers include touch support. Concerning the screen resolution, we
first check if the screen height and width have been overridden.

4.2.1.4 Checking Canvas Poisoning

To detect if a canvas has been altered, we extract the 3 metrics proposed in Section 4.1.
We first count the number of pixels whose rgba value is (0,0,0,0). If the image contains
less than Ntp = 4,000 transparent pixels, or if it is full of transparent pixels, then we
consider that the canvas has been poisoned or blocked. Secondly, we count the number
of isolated pixels. If the canvas contains more than 10 of them, then we consider it
as poisoned. We did not set a lower threshold as we observed that some canvas on
macOS and Safari included a small number of isolated pixels that are not generated
by a countermeasure. Finally, the third metric tests the presence of the orange color
(255,102,0,100) by counting the number of pixels having this exact value, and also
the number of pixels whose color is slightly different—i.e., pixels whose color vector vc

satisfies the following equation ∥(255,102,0,100)−vc∥< 4. Our intuition is that canvas
poisoners inject a slight noise, thus we should find no or few pixels with the exact value,
and many pixels with a slightly different color.

For each test of our suite, Fp-Scanner stores the details of each test so that it is possible
to know if it is consistent, and which steps of the analysis failed.

Estimating the parameters Different parameters of Fp-Scanner, such as the
number of transparent pixels, may influence the accuracy of Fp-Scanner, resulting in
different values of true and false positives. The strategy we use to optimize the value of
a given parameter is to run the scanner test that relies on this parameter, and to tune
the value of the parameter to minimize the false positive rate (FPR)—i.e., the ratio of
fingerprints that would be wrongly marked as altered by a countermeasure, but that
are genuine. The reason why we do not run all the tests of the scanner to optimize a
given parameter is because there may be some redundancy between different tests. Thus,
changing a parameter value may not necessarily results in a modification of the detection
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Table 4.4 List of relevant tests per countermeasure.
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User Agents (global) ✓ ✓ ✓

Platform (OS) ✓ ✓ ✓

WebGL (OS) ✓ ✓ ✓

Plugins (OS) ✓ ✓ ✓

Media Queries (OS, browser) ✓ ✓ ✓

Fonts (OS) ✓ ✓ ✓

Error (browser) ✓ ✓ ✓

Function representation (browser) ✓ ✓

Product (browser) ✓ ✓

Navigator (browser) ✓ ✓ ✓

Enumerate devices (browser) ✓

Features (browser) ✓ ✓ ✓ ✓

Events (device) ✓ ✓

Sensors (device) ✓ ✓

ToDataURL (canvas) ✓ ✓

Pixels (canvas) ✓ ✓ ✓ ✓ ✓

as a given countermeasure may be detected by multiple tests. Moreover, we ensure that
countermeasures are detected for the appropriate symptoms. Indeed, while it is normal
for a canvas countermeasure to be detected because some pixels have been modified,
we consider it to be a false positive when detected because of a wrong browser feature
threshold, as the countermeasure does not act on the browser claimed in the user agent.
Table 4.4 describes, for each countermeasure, the tests that can be used to reveal its
presence. If a countermeasure is detected by a test not allowed, then it is considered as a
false positive.

Figures 4.3, 4.4 and 4.5 shows the detection accuracy and the false positive rate (FPR)
for different tests and different values of the parameters to optimize. We define the
accuracy as #T P +#T N

#F ingerprints where true positives (TP) are the browser fingerprints correctly
classified as inconsistent, and true negatives (TN) are fingerprints correctly classified as
genuine. Table 4.5 shows, for each parameter, the optimal value we considered for the
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Figure 4.3 Detection accuracy and false positive rate using the transparent pixels test for
different values of Ntp (number of transparent pixels).

evaluation. The last column of Table 4.5 reports on the false positive rate, as well as the
accuracy obtained by running only the test that makes use of the parameter to optimize.

In the case of the number of transparent pixels Ntp we observe no difference between 100
and 16,500 pixels. Between 16,600 and 18,600 there is a slight improvement in terms of
accuracy caused by a change in the true positive rate. Thus, we chose a value of 17,200
transparent pixels since it provides both a false positive rate of 0 while maximizing the
accuracy.

Table 4.5 Optimal values of the different parameters to optimize, as well as the FPR and
the accuracy obtained by executing the test with the optimal value.

Attribute Optimal value FPR (accuracy)

Pixels: Ntp 17,200 0 (0.93)
Fonts: Nf 2 0 (0.42)
Features: Ne 1 0 (0.51)
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Figure 4.4 Detection accuracy and false positive rate using the fonts test for different
values of Nf (number of fonts associated with the wrong OS).
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Figure 4.5 Detection accuracy and false positive rate of the browser feature test for
different values of Ne (number of wrong features).
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Concerning the number of wrong fonts Nf , we obtained an accuracy of 0.646 with a
threshold of one font, but this resulted in a false positive rate of 0.197. Thus, we chose a
value of Nf = 2 fonts, which makes the accuracy of the test decrease to 0.42 but provides
a false positive rate of 0.

Finally, concerning the number of browser features Ne, increasing the threshold resulted
in a decrease of the accuracy, and an increase of the false negative rate. Nevertheless,
only the false negative and true positve rates are impacted, not the false positive rate
that remains constant for the different values of Ne. Thus, we chose a value of Ne = 1

Even if the detection accuracy of the tests may seem low—0.42 for the fonts and 0.51 for
the browser features—these are only two tests among multiple tests, such as the media
queries, WebGL or toDataURL that can also be used to verify the authenticity of the
information provided in the user agent or in the canvas.

4.2.2 Evaluating FP-Scanner

4.2.2.1 Building a Browser Fingerprints Dataset

To collect a relevant dataset of browser fingerprints, we created a web page that includes
the browser fingerprinting script we designed. Besides collecting fingerprints, we also
collect the system ground truth—i.e., the real os, browser family and version, as well
as the list of countermeasures installed. In the scope of our experiment, we consider
countermeasures listed in Table 4.6, as they are representative of the diversity of strategies
we reported in the state-of-the-art (Section 2.3). Although other academic countermea-
sures have been published [45, 69, 7, 66], it was not possible to consider them due to
the unavailability of their code or because they could not be run anymore. Moreover,
we still consider Random Agent Spoofer even though it is not available as a web
extension—i.e., for Firefox versions > 57—since it modifies many attributes commonly
considered by browser fingerprinting countermeasures.

We built this browser fingerprints dataset by accessing this web page from different
browsers, virtual machines and smartphones, with and without any countermeasure
installed. The resulting dataset is composed of 147 browser fingerprints, randomly
challenged by 7 different countermeasures. Table 4.6 reports on the number of browser
fingerprints per countermeasure. The number of browser fingerprints per countermeasure
is different since some countermeasures are deterministic in the way they operate. For
example, Canvas Defender always adds a uniform noise on all the pixels of a canvas.
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Table 4.6 Comparison of accuracies per countermeasures

Countermeasure Number of
fingerprints

Accuracy
FP

Scanner

Accuracy
FP-JS2
/ Augur

Random Agent
Spoofer (RAS) 69 1.0 0.55

User agent spoofers (UAs) 22 1.0 0.86
Canvas Defender 26 1.0 0.0
Firefox protection 6 1.0 0.0
Canvas FP Block 3 1.0 0.0
FPRandom 7 1.0 0.0
Brave 4 1.0 0.0
No countermeasure 10 1.0 1.0

On the opposite, some countermeasures, such as Random Agent Spoofer, add more
randomness due to the usage of real profiles, which requires more tests.

4.2.2.2 Measuring the Accuracy of FP-Scanner

We evaluate the effectiveness of Fp-Scanner, FingerprintJS2 and Augur to correctly
classify a browser fingerprint as genuine or altered. Our evaluation metric is the accuracy,
as defined in Section 4.2.1. Overall, Fp-Scanner reaches an accuracy 1.0 against 0.45 for
FingerprintJS2 and Augur, which perform equally on this dataset. When inspecting
the Augur and FingerprintJS2 scripts, and despite Augur’s obfuscation, we observe
that they seem to perform the same tests to detect inconsistencies. As the number of
fingerprints per countermeasure is unbalanced, Table 4.6 compares the accuracy achieved
per countermeasure.

We observe that Fp-Scanner outperforms FingerprintJS2 to classify a browser
fingerprint as genuine or altered. In particular, Fp-Scanner detects the presence of
canvas countermeasures while FingerprintJS2 and Augur spotted none of them.

4.2.2.3 Analyzing the Detected Countermeasures

For each browser fingerprint, Fp-Scanner outputs the result of each test and the value
that made the test fail. Thus, it enables us to extract some kinds of signatures for
different countermeasures. In this section, we execute Fp-Scanner in depth mode—i.e.,
for each fingerprint, Fp-Scanner executes all of the steps, even if an inconsistency is
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detected. For each countermeasure considered in the experiment, we report on the steps
that revealed their presence.

User Agent Spoofers are easily detected as they only operate on the user agent. Even
when both values of user agent are changed, they are detected by simple consistency
checks, such as platform for the OS, or function’s internal representation test for the
browser.

Brave is detected because of the side effects it introduces, such as blocking canvas
fingerprinting. Fp-Scanner distinguishes Brave from a vanilla Chromium browser
by detecting it overrides navigator.plugins and navigator.mimeTypes getters. Thus,
when Fp-Scanner analyzes Brave’s navigator prototype to check if any properties
have been overridden, it observes the following output for plugins and mimeTypes getters
string representation: () => { return handler }. Moreover, Brave also overrides
navigator.mediaDevices.enumerateDevices to block devices enumeration, which can
also be detected by Fp-Scanner as it returns a Proxy object instead of an object
representing the devices.

Random Agent Spoofer (RAS) By using a system of profiles, RAS aims at intro-
ducing fewer inconsistencies than purely random values. Indeed, RAS passes simple
checks, such as having identical user agents or having a user agent consistent with
navigator.platform. Nevertheless, Fp-Scanner still detects inconsistencies as RAS
only ensures consistency between the attributes contained in the profile. First, since
RAS is a Firefox extension, it is vulnerable to the media query technique. Indeed,
if the user is on a Windows device, or if the profile selected claims to be on Windows,
then the OS inconsistency is directly detected. In the case where it is not enough to
detect its presence, plugins or fonts linked to the OS enables us to detect it. Browser
inconsistencies are also easily detected, either using function’s internal representation test
or errors attributes. When only the browser version was altered, Fp-Scanner detects it
by using the combination of Modernizr and Caniuse features.

RAS overrides most of the navigator attributes from the Firefox configuration file.
However, the navigator.vendor attribute is overridden in JavaScript, which makes it
detectable. Fp-Scanner also detects devices which claimed to be mobile devices, but
whose accelerometer value was undefined.

Firefox fingerprinting protection standardizes the user agent when the protec-
tion is activated and replaces it with Mozilla/5.0 (Windows NT 6.1; Win64; x64;
rv:52.0) Gecko/20100101 Firefox/52.0, thus lying about the browser version and
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the operating system for users not on Windows 7 (Windows NT 6.1). While OS-related
attributes, such as navigator.platform are updated, other attributes, such as webgl
vendor and renderer are not consistent with the OS. For privacy reasons, Firefox
disabled OS-related media queries presented earlier in this chapter for its versions > 57,
whether or not the fingerprinting protection is activated. Nevertheless, when the fin-
gerprinting protection is activated, Firefox pretends to be version 52 running on
Windows 7. Thus, it should match the media query -moz-os-version for Windows 7,
which is not the case. Additionally, when the browser was not running on Windows, the
list of installed fonts was not consistent with the OS claimed.

Canvas poisoners including Canvas Defender, Canvas FP Block and FPRan-
dom were all detected by Fp-Scanner. For the first two, as they are browser extensions
that override canvas-related functions using JavaScript, we always detect that the function
toDataURL has been altered. For all of them, we detect that the canvas pixel constraints
were not enforced from our canvas definition. Indeed, we did not find enough occurrences
of the color (255,102,0,100), but we found pixels with a slightly different color. Moreover,
in case of the browser extensions, we also detected an inconsistent number of transparent
pixels as they apply noise to all the canvas pixels.

Table 4.7 summarizes, for each countermeasure, the steps of our test suite that detected
inconsistencies. In particular, one can observe that Fp-Scanner leverages the work
of Nikiforakis et al. [4] by succeeding to detect a wider spectrum of fingerprinting
countermeasures that were previously escaped by their test suite (e.g., canvas extensions,
FPRandom [9] and Brave [109]). We also observe that the tests to reveal the presence
of countermeasures are consistent with the tests presented in Table 4.4.

4.2.2.4 Recovering the Ground Values

Beyond uncovering inconsistencies, we enhanced Fp-Scanner with the capability to re-
store the ground value of key attributes, like OS, browser family and browser version.
To recover these attributes, we rely on the hypothesis that some attributes are harder to
spoof, and hence more likely to reflect the true nature of the device. When Fp-Scanner
does not detect any inconsistency in the browser fingerprint, then the algorithm simply
returns the values obtained from the user agent. Otherwise, it uses the same tests used
to spot inconsistencies, but to restore the ground values:

• OS value To recover the real OS, we combine multiple sources of information,
including plugins extensions, WebGL renderer, media queries, and fonts linked to
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Table 4.7 Fp-Scanner steps failed by countermeasures
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User Agents (global)
Platform (OS) ✓

WebGL (OS) ✓ ✓ ✓

Plugins (OS) ✓ ✓

Media Queries (OS, browser) ✓ ✓ ✓

Fonts (OS) ✓ ✓

Error (browser) ✓ ✓

Function representation (browser) ✓

Product (browser) ✓ ✓

Navigator (browser) ✓ ✓

Enumerate devices (browser) ✓

Features (browser) ✓ ✓

Events (device) ✓ ✓

Sensors (device) ✓ ✓

ToDataURL (canvas) ✓ ✓

Pixels (canvas) ✓ ✓ ✓ ✓
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OS. For each step, we obtain a possible OS. Finally, we select the OS that has been
predicted by the majority of the steps;

• Browser family Concerning the browser family, we rely on function’s internal
representation (eval.toString().length) that we combine with the value of
productSub. Since these two attributes are discriminatory enough to distinguish
most of the major browsers, we do not make more tests;

• Browser version To infer the browser version, we test the presence or absence of
each Modernizr feature for the recovered browser family. Then, for each browser
version, we count the number of detected features. Finally, we keep a list of versions
with the maximum number of features in common.

Evaluation. We applied this recovering algorithm to fingerprints altered only by
countermeasures that change the OS or the browser—i.e., RAS, User agent spoofers
and Firefox fingerprinting protection. Fp-Scanner was able to correctly recover the
browser ground value for 100% of the devices. Regarding the OS, Fp-Scanner was
always capable of predicting the OS family—i.e., Linux, MacOS, Windows—but often
failed to recover the correct version of Windows, as the technique we use to detect the
version of Windows relies on Mozilla media queries, which stopped working after version
58, as already mentioned. Finally, Fp-Scanner failed to faithfully recover the browser
version. Given the lack of discriminatory features in Modernizr, Fp-Scanner can only
recover a range of candidate versions. Nevertheless, this could be addressed by applying
natural language processing on browser release notes in order to learn the discriminatory
features introduced for each version.

4.2.3 Benchmarking FP-Scanner

This part evaluates the overhead introduced by Fp-Scanner to scan a browser fingerprint.
The benchmark we report has been executed on a laptop having an Intel Core i7 and
8 GB of RAM.

Performance of FP-Scanner. We compare the performance of FP-Scanner with
FingerprintJS2 in term of processing time to detect inconsistencies. First, we auto-
mate Chrome headless version 64 using Pupeteer and we run 100 executions of
FingerprintJS2. In case of FingerprintJS2, the reported time is the sum of the exe-
cution time of each function used to detect inconsistencies—i.e., getHasLiedLanguages,
getHasLiedResolution, getHasLiedOs and getHasLiedBrowser. Then, we execute
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Figure 4.6 Execution time of FingerprintJS2 inconsistency tests and Fp-Scanner with
different settings.

different versions of FP-Scanner on our dataset. Input datasets, such as the Caniuse
features file, are only loaded once, when Fp-Scanner is initialized. We start measuring
the execution time after this initialization step as it is only done once. Depending on the
tested countermeasure, Fp-Scanner may execute more or less tests to scan a browser
fingerprint. Indeed, against a simple user agent spoofer, the inconsistency might be
quickly detected by checking the two user agents, while it may require to analyze the
canvas pixels for more advanced countermeasures, like FPRandom. Thus, in Figure 4.6,
we report on 4 boxplots representing the processing time for the following situations:

1. FingerprintJS2 inconsistency tests,

2. The scanner stops upon detecting one inconsistency (Fp-Scanner (default) mode),

3. All inconsistency tests are executed (Fp-Scanner (depth) mode),

4. Only the test that manipulates the canvas (pixels) is executed (Fp-Scanner
(canvas only) mode).

One can observe that, when all the tests are executed (3)—which corresponds to genuine
fingerprints—90% of the fingerprints are processed in less than 513ms. However, we
observe a huge speedup when stopping the processing upon the first occurrence of an
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inconsistency (2). Indeed, while 83% of the fingerprints are processed in less than 0.21ms,
the remaining 17% need more than 440ms. This is caused by the fact that most of
the fingerprints we tested had installed countermeasures that could be detected using
straightforward tests, such as media queries or testing for overridden functions, whereas
the other fingerprints having either no countermeasures or FPRandom (17 fingerprints),
require to run all the tests. This observation is confirmed by the fourth boxplot, which
reports on the performance of the pixel analysis step and imposes additional processing
time to analyze all the canvas pixels. We recall that the pixel analysis step is required
only to detect FPRandom since even other canvas countermeasures can be detected by
looking at the string representation of toDataURL. Thus, when disabling the pixel analysis
test, Fp-Scanner outperforms FingerprintJS2 with a better accuracy (> 0.92) and
a faster execution (90th percentile of 220ms).

Based on this evaluation, we can conclude that adopting an inconsistency test suite like
Fp-Scanner in production is a viable solution to detect users with countermeasures.

4.3 Discussion

In this chapter, we demonstrated that state-of-the-art fingerprinting countermeasures
could be detected by scanning for inconsistencies they introduce in browser fingerprints.
We first discuss the privacy implications of such a detection mechanism and then explain
how these techniques could be used to detect browser extensions in general.

4.3.1 Privacy Implications

We identify and present the two main privacy implications that can arise from the use of
browser fingerprinting countermeasures: discrimination and tracking.

4.3.1.1 Discrimination

Being detected with a countermeasure could lead to discrimination. For example,
Hannak et al. [110] demonstrated that some websites adjust prices depending on the user
agent. Moreover, many websites refuse to serve browsers with ad blockers or users of
the Tor browser and network. We can imagine users being delivered altered content or
being denied access if they do not share their true browser fingerprint. Similarly to ad
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blocker extensions, discrimination may also happen with a countermeasure intended to
block fingerprinting scripts.

4.3.1.2 Trackability

Detecting countermeasures can, in some cases, be used to improve tracking. Nikiforakis et
al. [4] talk about the counterproductiveness of using user agent spoofers because they
make browsers more identifiable. We extend this line of thought to more generally
argue that being detected with a fingerprinting countermeasure can make browsers more
trackable, albeit this is not always the case. We assert that the ease of tracking depends
on different factors, such as being able to identify the countermeasure, the number of
users of the countermeasure, the ability to recover the real fingerprint values, and the
volume of information leaked by the countermeasure. To support this claim, we analyze
how it could impact the countermeasures we studied in this chapter.

Anonymity Set. In the case of countermeasures with large user bases, like Firefox
with fingerprinting protection or Brave, although their presence can be detected, these
countermeasures tend to increase the anonymity set of their users by blocking different
attributes, and, in the case of Firefox, by sharing the same user agent, platform, and
timezone. Since they are used by millions of users at the time we wrote this chapter, the
information obtained by knowing that someone uses them does not compensate the loss in
entropy from the removal of fingerprinting attributes. Nevertheless, for countermeasures
with small user bases, such as Canvas Defender (21k downloads on Chrome, 5k on
Firefox) or RAS (160k downloads on Firefox), it is unlikely that the anonymity
gained by the countermeasures compensate the information obtained by knowing that
someone uses them.

Increasing Targetability. In the case of RAS, we show that it is possible to detect its
presence and recover the original browser and OS family. Also, since the canvas attribute
has been shown to have high entropy, and that RAS does not randomize it nor block it
by default, the combination of few attributes of a fingerprint may be enough to identify a
RAS user. Thus, under the hypothesis that no, or few, RAS users have the same canvas,
many of them could be identified by looking at the following subset of attributes: being
a RAS user, predicted browser, predicted OS, and canvas.

Blurring Noise. In the case of Canvas Defender, we show that even though they
claim to have a safer solution than other canvas countermeasure extensions, the way they
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operate makes it easier for a fingerprinter to track their users. Indeed, Canvas Defender
applies a uniform noise vector on all pixels of a canvas. This vector is composed of 4
random numbers between −10 and 30 corresponding to the red, green, blue and alpha
(rgba) components of a color. With a small user base, it is unlikely that two or more
users share both the same noise and the same original canvas. In particular, the formula
hereafter represents the probability that two or more users of Canvas Defender among
k share the same noise vector, which is similar to the birthday paradox: 1−∏k

i=1(1− 1
404−i

).
Thus, if we consider that the 21k Chrome users are still active, there is a probability
of 0.0082 that at least two users share the same noise vector. Moreover, by default
Canvas Defender does not change the noise vector. It requires the user to trigger
it, which means that if a user does not change the default settings or does not click on
the button to update the noise, she may keep the same noise vector for a long period.
Thus, when detecting that a browser has Canvas Defender installed, which can be
easily detected as the string representation of the toDataURL function leaks its code, if
the fingerprinting algorithm encounters different fingerprints with the same canvas value,
it can conclude that they originate from the same browser with high confidence. In
particular, we discovered that Canvas Defender injects a script element in the DOM
(cf. Listing 4.1). This script contains a function to override canvas-related functions
and takes the noise vector as a parameter, which is not updated by default and has a
high probability to be unique among Canvas Defender users. By using the JavaScript
Mutation observer API [111] and a regular expression (cf. Listing 4.2), it is possible
to extract the noise vector associated to the browser, which can then be used as an
additional fingerprinting attribute.

1function overrideMethods (docId , data) {
2const s = document . createElement (’script ’)
3s.id = getRandomString ();
4s.type = "text/ javascript ";
5const code = document . createTextNode (’try {(’+ overrideDefaultMethods +’

)(’ +data.r+ ’,’+data.g + ’,’ + data.b + ’,’+data.a+’,"’+s.id +’
","’+ storedObjectPrefix +’");} catch(e){ console .error(e);}’);

6s. appendChild (code);
7var node = document . documentElement ;
8node. insertBefore (s, node. firstChild );
9node[docId] = getRandomString ();
10}

Listing 4.1 Script injected by Canvas Defender to override canvas-related function

1var o = new MutationObserver ((ms) => {
2ms. forEach ((m) => {
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3var script = " overrideDefaultMethods ";
4if (m. addedNodes [0]. text. indexOf ( script ) > -1) {
5var noise = m. addedNodes [0]. text.match (/\d{1 ,2} ,\d{1 ,2} ,\d{1 ,2} ,\

d{1 ,2}/) [0]. split(",");
6}
7});
8});
9o. observe ( document . documentElement , { childList :true , subtree :true });

Listing 4.2 Script to extract the noise vector injected by Canvas Defender

Protection Level.. While it may seem more tempting to install an aggressive finger-
printing countermeasure—i.e., a countermeasure, like RAS, that blocks or modifies a
wide range of attributes used in fingerprinting—we believe it may be wiser to use a
countermeasure with a large user base even though it does not modify many fingerprinting
attributes. Moreover, in the case of widely-used open source projects, this may lead to a
code base being audited more regularly than less adopted proprietary extensions. We
also argue that all the users of a given countermeasure should adopt the same defense
strategy. Indeed, if a countermeasure can be configured, it may be possible to infer the
settings chosen by a user by detecting side effects, which may be used to target a subset
of users that have a less common combination of settings. Finally, we recommend a
defense strategy that either consists in blocking the access to an attribute or unifying
the value returned for all the users, rather than a strategy that randomizes the value
returned based on the original value. Concretely, if the value results from a randomization
process based the original value, as does Canvas Defender, it may be possible to infer
information on the original value.

4.3.2 Perspectives

In this chapter, we focused on evaluating the effectiveness of browser fingerprinting
countermeasures. We showed that these countermeasures can be detected because of their
side-effects, which may then be used to target some of their users more easily. We think
that the same techniques could be applied, in general, to any browser extension. Starov et
al. [42] showed that browser extensions could be detected because of the way they interact
with the DOM. Similar techniques that we used to detect and characterize fingerprinting
countermeasures could also be used for browser extension detection. Moreover, if an
extension has different settings resulting in different fingerprintable side effects, we argue
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that these side effects could be used to characterize the combination of settings used by
a user, which may make the user more trackable.

4.3.3 Threats to Validity

A possible threat lies in our experimental framework. We did extensive testing of Fp-
Scanner to ensure that browser fingerprints were appropriately detected as altered.
Table 4.7 shows that no countermeasure failed the steps unrelated to its defense strategy.
However, as for any experimental infrastructure, there might be bugs. We hope that they
only change marginal quantitative results and not the quality of our findings. However,
we make the dataset, as well as the algorithm, publicly available online11, making it
possible to replicate the experiment.

We use a ruleset to detect inconsistencies even though it may be time-consuming to
maintain an up-to-date set of rules that minimize the number of false positives while
ensuring it keeps detecting new countermeasures. Moreover, in this chapter, we focused
on browser fingerprinting to detect inconsistencies. Nonetheless, we are aware of other
techniques, such as TCP fingerprinting [29], that are complementary to our approach.

Fp-Scanner aims to be general in its approach to detect countermeasures. Nevertheless,
it is possible to develop code to target specific countermeasures as we showed in the
case of Canvas Defender. Thus, we consider our study as a lower bound on the
vulnerability of current browser fingerprinting countermeasures.

4.4 Conclusion

In this chapter, we identified a set of attributes explored by Fp-Scanner to detect
inconsistencies and to classify browser fingerprints into 2 categories: genuine fingerprints
and altered fingerprints by a countermeasure. Thus, instead of taking the value of a
fingerprint for granted, fingerprinters could check whether attributes of a fingerprint have
been modified to escape tracking algorithms, and apply different heuristics accordingly.

To support this study, we collected 147 browser fingerprints extracted from browsers
using state-of-the-art fingerprinting countermeasures and we showed that Fp-Scanner
was capable of accurately distinguishing genuine from altered fingerprints. We measured
the overhead imposed by Fp-Scanner and we observed that both the fingerprinter and
the test suite impose a marginal overhead on a standard laptop, making our approach
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feasible for use by fingerprinters in production. Finally, we discussed how the possibility
of detecting fingerprinting countermeasures, as well as being capable of predicting the
ground value of the browser and the OS family, may impact user privacy. We argued that
being detected with a fingerprinting countermeasure does not necessarily imply being
tracked more easily. We took as an example the different countermeasures analyzed in
this chapter to explain that tracking vulnerability depends on the capability of identifying
the countermeasure used, the number of users having the countermeasure, the capacity to
recover the original fingerprint values, and the information leaked by the countermeasure.

Although Fp-Scanner is general in its approach to detect the presence of counter-
measures, using Canvas Defender as an example, we show it is possible to develop
countermeasure-specific code to extract more detailed information.

In the first two contribution chapters of this thesis, I showed that browser fingerprinting is
a threat to privacy. Nevertheless, in the next chapter, I show that browser fingerprinting
can also be applied to increase security on the web. In particular, I focus on how
fingerprinting can be used to detect crawlers in addition to other approaches, such as
CAPTCHAs. After I measure the use of fingerprinting for crawler detection among
popular websites, I study the detection techniques they use and show some similarities with
the approaches proposed in this chapter for detecting fingerprinting countermeasures.



Chapter 5

FP-Crawlers: Evaluating the
Resilience of Browser Fingerprinting
to Block Adversarial Crawlers

In 2017, bot traffic represented more than 40% of the traffic on the web [112]. Bots are
used for various purposes ranging from ad-fraud, to automatically creating social media
fake accounts to spread malware. Bots are also used to automatically gather data on the
web, such as competitor prices, or to steal a website content. In this chapter, I focus
on crawlers—i.e., bots specialized in the collection of data available on the web. While
some of them collect data in agreement of the websites they crawl, it is not the case of
the majority that often infringe the terms of service.

To protect websites against unwanted crawlers, different techniques have been proposed,
such as CAPTCHAs or techniques that rely on features extracted from a series of HTTP
requests. In this chapter, I study how browser fingerprinting can be used to complement
existing crawler detection techniques. Indeed, browser fingerprinting addresses some of
the weaknesses of state-of-the-art crawler detection techniques:

• Contrary to CAPTCHAs, browser fingerprinting does not require any user interac-
tion;

• Contrary to methods based on HTTP requests or time series analysis [76], finger-
printing requires a single request to decide whether or not a client is a crawler.

In Section 5.1, I first study the adoption of browser fingerprinting for crawler detection.
I crawl the Alexa Top 10K and identify 291 websites that block crawlers and show
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Figure 5.1 Overview of FP-Crawlers: In Section 5.1 I crawl the Alexa’s Top 10K to
measure the ratio of websites using fingerprinting for crawler detection. In Section 5.2, I
explain the key fingerprinting techniques they use. Finally, in Section 5.3 I evaluate the
resilience of fingerprinting against adversary crawlers.

that browser fingerprinting is used by 31.96 % of these websites (93 websites). Then,
in Section 5.2, I report on the key crawler detection techniques implemented by the
major fingerprinters and show that they use similar techniques to the ones presented in
Chapter 4 used to reveal the presence of fingerprinting countermeasures. In Section 5.3, I
evaluate the resilience of these fingerprinting scripts against adversarial crawlers that try
to hide their identity to bypass security checks. I show that, while browser fingerprinting
is a good candidate for crawler detection, it can be bypassed by an adversary having
some knowledge on the fingerprints collected. In Section 5.4, I discuss the limits and the
challenges of browser fingerprinting for crawler detection. Finally, I provide a conclusion
to this chapter in Section 5.5.

Figure 5.1 provides an overview of this chapter and the different contributions along
sections.
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5.1 Detecting Crawler Blocking and Fingerprinting
Websites

In this section, we describe our experimental protocol to classify websites that adopt
browser fingerprinting to detect and block crawlers.

This protocol is composed of two main steps:

1. Detecting websites that block crawlers. From Alexa’s Top 10K, we identify
the websites that detect and block crawlers. We consider that these websites at
least use the user agent in the HTTP headers to detect and block the crawlers.
The subset of detected websites then provides us an oracle that we use to evaluate
the resilience of browser fingerprinting (cf. Section 5.3);

2. Detecting websites that use fingerprinting. Among the websites that block
crawlers (step 1), we detect the ones that use fingerprinting for crawler detection
and the ones that either do not use fingerprinting, or use fingerprinting but not to
detect crawlers. We then use the set of websites that use fingerprinting to make
our analysis (cf. the Section 5.2).

5.1.1 Detecting Websites Blocking Crawlers

We first identify websites from Alexa’s Top 10K that block crawlers based on their user
agent.

Crawler 1: easy to detect. For each website of the Alexa Top 10K, a first crawler
(crawler 1) visits the homepage of the website and then browses up to 4 random links
of the same domain accessible from the home page. We crawl only 4 links since the
crawler can be easily identified by its user agent. We consider that a page is loaded when
there is no more than two active network connections for at least 500ms (networkidle2
event of the Puppeteer library). If the page is not loaded after 30seconds, we consider
it failed to load and we add the link of the page to a queue of links that are retried
at the end of the crawl. If a page is loaded, the crawler waits for 3seconds, dumps
the downloaded HTML, and takes a screenshot of the rendered page. Crawler 1 is
based on the Chromium headless version bundled with the Puppeteer library [113]
and is instrumented using Puppeteer. Using a Chrome headless based crawler enables
to crawl the majority of the websites as it supports modern features found in com-
mon non-headless browser. We do not modify the crawler user agent, allowing it to
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be detected solely because this: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_2)
AppleWebKit/537.36 (KHTML, like Gecko) HeadlessChrome /72.0.3582.0 Safari
/537.36. Thus, we can identify websites that block crawlers when these crawlers do not
try to hide their identity. Although the blocking decision might not be based on the
crawler’s entire fingerprint, but mostly on its user agent, it still provides an indication
concerning the way the website reacts to crawlers. Since Chrome headless is a popular
solution for crawling and has replaced older headless browsers, such as PhantomJS, we
consider it unlikely that websites that aim at blocking crawlers do not detect Chrome
headless. Moreover, its user agent has been added to popular user agent lists used for
crawler detection in 2017 [114]. We also make the hypothesis that websites that try
to block bots using advanced approaches, such as traffic shape analysis, are also likely
to use lists of crawlers. Indeed, these lists have no false positives and enable to block
crawlers before they can even load a single page. Thus, it protects websites against large
distributed campaigns where each crawler visit only a few pages.

Crawler 2: verify errors. In parallel, on a second machine that uses another IP
address, a second crawler (crawler 2) visits the homepage of each website of the Alexa
Top 10K. Contrary to crawler 1, this crawler modifies its user agent to pretend to be a
vanilla Chrome browser. We use this second crawler to verify, in case of errors encountered
by crawler 1, that the website is lying about the error in order to stop the crawler, or if
it really exhibits an error. On each home page, crawler 2 waits for the page to be loaded
(using the same criteria as the first crawler), waits 3 seconds, dumps the HTML and
takes a screenshot.

Labeling screenshots. Then, we label websites as blocking crawlers or not. To do
so, we developed a web interface that displays the screenshots taken by crawler 1 and
crawler 2, side by side, for each visited URL. Each URL is assigned 1 of 3 possible labels:

1. "not blocked": we consider that the crawler has not been blocked if the page does
not show any sign of blocking, such as an explicit message or a CAPTCHA;

2. "blocked": we consider that the crawler has been blocked if the page reports some
obvious symptom of blocking, such as a CAPTCHA not linked to any form or a
message indicating that we are blocked.Moreover, in the case an error reports that
the page is not available or that the website is down in the screenshot taken by
crawler 1, we verify if it is actually the case using the screenshot taken by crawler 2.
If only crawler 1 has an error, then we consider it has been blocked;

3. "unknown": corresponds to cases where we cannot assess with certainty the crawler
has been blocked. This situation can occur because the page timed-out. Moreover,
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sometimes both crawler 1 and crawler 2 report a 403 error. In this case, we verify
that the website always returns a 403 error for human users. To do so, we manually
visit the website using a computer with a residential IP address, which has not been
used for the experiment and we verify if the website keeps returning the 403 error.
If it still returns a 403 error, then we classify the URL as "unknown" as it blocks
all users, and not only crawlers. Otherwise, the URL is classified as "blocked".

We consider that a website blocks crawlers if a crawler has been blocked on at least one
of its pages.

5.1.2 Detecting Websites that Use Fingerprinting

In the second phase, we focus on the websites we labeled as "blocked" because they block
crawlers. We crawl these websites to classify them as either using fingerprinting for
crawler detection or not.

Crawler modifications. We apply two modifications to the crawler’s fingerprint to
escape detection based on HTTP headers. Indeed, in order to detect if a website uses
fingerprinting, the crawler needs to load and execute the JavaScript included in the pages.
First, we modify the user agent to look like a user agent from a vanilla Chrome. Second,
we add an accept-language header field as it is not included by default in Chrome
headless [115].

The crawler visits each home page of the websites identified as blocking crawlers and, for
each website, visits up to 3 randomly selected links on the same domain. We visit only 3
links as the goal of this crawl is to detect websites using fingerprinting on popular pages
that can easily be reached from their home page. Thus, it does not aim at detecting if
the website use fingerprinting on specific sensitive pages, such as login or payment pages.
We consider the same heuristics as in the previous step to check if a page is loaded. If
the page fails to load, it is added to a queue of URLs that are retried at the end of the
crawl. For each visited URL, the crawler records the attributes commonly accessed in
browser fingerprinting [10, 28, 6]. To record the access, we inject a JavaScript snippet
executed in each page to override the default behavior of getters and functions, and
that stores, for each script of the page, when it accesses an attribute or calls a function.
We override attributes commonly associated to browser fingerprinting in the literature,
such as the properties of the navigator and the screen objects. We also override
functions related to canvas, audio, and WebGL fingerprinting. Finally, we monitor access
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to attributes considered by security fingerprinting scripts, such as window._phantom or
navigator.webdriver, which are known to belong to crawlers. We explain the role of
these attributes in more details in the next subsection. We monitor these attributes to
detect if a fingerprinting script tries to detect crawlers or if it uses fingerprinting for
tracking purposes. A complete list of the attributes and functions monitored is available
in Appendix A.

Finally, we consider that a website uses fingerprinting for crawler detection if:

1. There is at least one script on one of its pages that called one or more functions
related to canvas, WebGL, audio or WebRTC fingerprinting;

2. This script also accesses one crawler-related attribute, such as window._phantom
or navigator.webdriver;

3. This script also retrieves at least 12 fingerprinting attributes.

We adopt this definition since there is no clear agreement on how to characterize
fingerprinting, in particular when used in the context of crawler detection. For example,
Acar et al. [10] consider font enumeration as a good indicator of fingerprinting. However,
as we show in the next section, it is not the most discriminant feature for crawler detection.
Englehardt et al. [6] do not define fingerprinting in general, but detect if functions used for
complex fingerprinting attributes, such as canvas, canvas font enumeration or WebRTC
fingerprinting are used. Thus, our definition of fingerprinting ensures that a script accesses
a sufficient number of fingerprinting attributes, in particular attributes considered as
strong indicators of fingerprinting, such as canvas. As we study fingerprinting for crawler
detection, we also add a constraint to check that the script must access at least one
crawler-related attribute, given that these are widely known and show intent to block
crawlers [116].

5.2 Analyzing Fingerprinting Scripts

In this section, we first study the ratio of websites that adopt browser fingerprinting for
crawler detection. Then, we present the detection techniques implemented by the main
fingerprinters present on the Alexa Top 10K.
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5.2.1 Describing our Experimental Dataset

The different crawls to detect websites that block crawlers and websites using fingerprint-
ing were conducted in December 2018.

Sites blocking crawlers. Among the 10,000 crawled websites, we identified 291 websites
that block crawlers (2.91%). The median Alexa’s rank of websites blocking crawlers is
4,946, against 5,001 for websites that do not block crawlers. If we compare the two
distributions of the Alexa’s rank among websites that block crawlers and those that do
not, using a Kolmogorov Smirnov test [117], we obtain a p-value of 0.324. This statistical
test indicates that there is no significant difference in the distribution of the rank of
websites that block crawlers and websites that do not block crawlers.

Fingerprinting attributes. For each website that blocks crawlers, we study the number
of fingerprinting attributes they access. For a given website, we look at the script that
accesses the maximum number of distinct fingerprinting attributes. The median number
of distinct fingerprinting attributes accessed is 12. 10% of the websites access more
than 33 distinct fingerprinting attributes. Concerning crawler-related attributes, such as
navigator.webdriver or window._phantom, 51.38% of the websites do not access even
one of such attributes, while 10% of them access 10 crawler attributes. Based on our
definition of browser fingerprinting, we classified 93 websites as using fingerprinting for
crawler detection, which represents 31.96% of the websites that block crawlers.

Diversity of fingerprinting scripts. We group fingerprinting scripts by the combina-
tion of attributes they access. In total, we observe 20 distinct groups among websites
blocking crawlers. While each group is constituted of scripts from the same company,
we also observe that some companies are present in different clusters, as they have
multiple versions of their script. In order to analyze the main fingerprinting techniques
used for crawler detection, we focus on the scripts of 4 fingerprinting companies as
they represent more than 90 % of the scripts among the websites that block crawlers.
Since these companies have multiple versions of their script, we chose the script that
accesses the greatest distinct number of fingerprinting attributes. We decided not to
disclose the names of these companies since it does not contribute to the understanding
of fingerprinting and our findings could be used by crawler developers to specifically
target some websites. Moreover, for copyright reasons, we cannot distribute the original
scripts nor their deobfuscated version. We discuss this point and other ethical issues in
Section 5.4.3.
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In the remainder of this Section, we present the techniques used by the 4 main finger-
printing scripts to detect crawlers. These scripts collect fingerprinting attributes and
then either perform a detection test directly in the browser or transmit the fingerprints
to a server that applies heuristics to perform the detection test. Table 5.1 provides an
overview of the different attributes and tests. In particular for each given attribute and
script, there are three possible values:

1. ✓ indicates that the script collects the attribute and test it in the browser—i.e.
its value is explicitly verified or we know the attribute is used for the detection
because of the evaluation conducted in Section 5.3;

2. ∼ indicates that the script collects the attribute, but no test is run directly in the
script. This means that the fingerprinter may use the value collected to run the
test on the server side. The empirical evaluation we conduct in Section 5.3 help
us to understand if some of the attributes are used on the server side to detect
inconsistencies;

3. The absence of symbol indicates that the attribute is not collected by the script.

It should be noted that the 4 scripts we analyze are obfuscated. We then cannot use
the names of the variables or functions to infer their purpose. Thus, we use different
techniques, such as open source fingerprinting libraries [65], the state-of-the-art literature,
as well as an empirical evaluation conducted in Section 5.3 to explain how different
combinations of collected attributes are used to detect crawlers.

5.2.2 Detecting Crawler-Specific Attributes

The first and most widely used detection technique in the 4 fingerprinting scripts relies
on the presence of specific attributes injected into the JavaScript execution context or in
the HTML DOM by headless browsers or instrumenting frameworks, such as Selenium.
For example, in the case of Google Chrome or Firefox, it is possible to detect if
a browser instance is automated by checking if the attribute webdriver is included in
the navigator object and if its value is equal to true. The scripts test for the presence
of the following properties, which used to be added to the document object by older
versions of Selenium: 1. __fxdriver _unwrapped, 2. __selenium _unwrapped, and
3. __webdriver_script_fn.

Older versions of Selenium and its associated plugins also used to inject variables into
the window object, such as _Selenium_IDE_Recorder, callSelenium, or _selenium.
While all the scripts test for the presence of these variables, they are not added anymore
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Table 5.1 Different fingerprinting tests associated with the scripts that use them. The
symbol ✓ indicates the attribute is collected and that a verification test is run directly
in the script. The ∼ symbol indicates that the attribute is collected but there is no
verification test in the script.

Scripts

Name of the test 1 2 3 4

Crawler-related attributes ✓ ✓ ✓ ✓

B
ro

w
se

r

productSub ∼ ∼ ∼ ✓

eval.toString() ✓ ✓

Error properties ✓ ✓

Browser-specific/prefixed APIs ✓ ✓ ✓ ✓

Basic features ✓ ✓ ✓

Different feature behaviour ✓

CSS features ✓

Codecs supported ✓

HTTP headers ∼ ✓ ∼ ✓

O
S

Touch screen support ∼ ∼ ∼ ✓

Oscpu and platform ∼ ∼ ∼ ✓

WebGL vendor and renderer ∼ ∼ ∼
List of plugins ∼ ∼ ∼ ✓

List of fonts ∼ ∼
Screen dimensions ✓ ∼ ∼ ✓

Overriden attributes/functions ✓ ✓ ✓

O
th

er

Events ∼ ∼
Crawler trap ✓

Red pill ✓

Audio fingerprint ∼
Canvas fingerprint ∼ ∼ ∼
WebGL fingerprint ∼ ∼
WebRTC ∼
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by the most recent versions of Selenium [118] or its associated plugins, such as Selenium
IDE [119]. Besides Selenium, the scripts also detect headless browsers and automation
libraries, such PhantomJS and NightmareJS, by checking the presence of specific
attributes in the window object: _phantom, callPhantom, phantom or __nightmare.

While the presence of any of these attributes provides a straightforward heuristic to
detect crawlers with certainty, these attributes can be easily removed, or renamed to
escape detection. Thus, we describe more robust detection techniques, based on browser
fingerprint inconsistencies, to overcome this limitation. We structure the presentation of
the inconsistencies searched by fingerprinters into four categories and we present a fifth
family of common non-fingerprinting tests found in the fingerprinting scripts: 1. browser
and version inconsistencies, 2. OS inconsistencies, 3. screen inconsistencies, 4. overridden
functions inconsistencies, 5. other tests.

5.2.3 Checking Browser Inconsistencies

Commercial fingerprinting scripts also leverage the notion of fingerprint inconsistency
presented in Chapter 4 to detect automated browsers. The first set of inconsistency
verifications found across the 4 fingerprinting scripts aim at verifying if the browser
claimed in the user agent has been altered. Before we present the different tests used to
verify the nature of a browser, we provide a brief overview of what inconsistencies are
and how they can help reveal crawlers.

Fingerprint inconsistencies. Similarly to the detection test suite I proposed in
the previous chapter, fingerprinters also use inconsistencies to detect combinations of
attributes that cannot be found in the wild for non-headless or non-automated browsers.
In the case of crawlers, inconsistencies can occur in different situations:

• When crawler developers alter the user agent of their crawlers to not be detected.
By doing this, it may introduce inconsistencies between the browser and the OS
claimed in the user agent, and the different attributes composing the fingerprint;

• When a crawler is based on a headless browser. Because headless browsers do not
always implement all the features of modern browsers, or they implement them
differently, they can introduce inconsistencies between the browser claimed in the
user agent and the features it should expose.
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5.2.3.1 Explicit browser consistency tests

One of the scripts implements tests similar to the function getHasLiedBrowser proposed
by the open source FingerprintJS2 library [65]:

productSub. First, it extracts the browser from the user agent and verifies if it has a
consistent navigator.productSub value. While originally this attribute returned
the build number of the browser, it always returns 20030107 on Chromium-based
browsers or Safari and it returns 20100101 on Firefox;

eval.toString. Then, it runs the following snippet of code: eval.toString().length,
which returns the length of the string representation of the native eval function.
While on Safari and Firefox it is equal to 37, on Internet Explorer it is equal to 39
and it is equal to 33 on Chromium-based browsers;

Error properties. It throws an exception and catches it to analyze the properties of
the error. While some of the properties of the Error objects, such as message and
name are standard accross different browsers, some of them such as toSource exist
only in Firefox. Thus, the script verifies that if the toSource property is present
in the error, then the browser is Firefox.

5.2.3.2 Feature Detection

The 4 scripts test the presence of different features. The previous set of tests was the
same as the getHasLiedBrowser function of the FingerprintJS2 library. Thus, we did
not need to infer its purpose. Here, we present how different features tested across the 4
fingerprinting scripts can be used to reveal inconsistencies in the nature of the browser
and its versions, even when the tests are not executed in the fingerprinting scripts.

Browser-specific and browser-prefixed APIs. Instead of relying on the user agent
string to infer the nature of a browser, it is possible to test for the presence of specific
features linked to certain browsers and certain versions [37]. In particular, all the scripts
test for the presence of the window.chrome object, a utility for extension developers
available on Chromium-based browsers. This feature can also help to reveal Chrome
headless since it does not have this object, even though it is based on Chrome.

To verify if a browser is Safari, one of the scripts tests for the presence of the pushNotification
function in window.safari. For Opera, the script verifies the presence of window.opera.
Finally, for Firefox, it verifies if the InstallTrigger variable is defined, and for Internet
Explorer, it verifies the value returned by eval("/*@cc_on!@*/false"). The latter test
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relies on conditional compilation, a feature available in old versions of Internet Explorer
but not in recent browsers. Thus, the code returns true on Internet Explorer and false
on modern browsers.

One of the scripts tests for the presence of features whose name depends on the browser
vendor. For example, it verifies that the function requestAnimationFrame is present
together with msRequestAnimationFrame or webkitRequestAnimationFrame.

Basic features. Two of the studied scripts verify the presence of the bind function.
While this test does not help in detecting recent headless browsers, it used to detect
PhantomJS [120] as it did not have this function. Another script collects the first
100 properties of the window object, returned by Object.keys to verify if they are
consistent with the browser claimed. Finally, one of the scripts tests a set of 18 basic
features, such as creating or removing event listeners using addEventListener and
removeEventListener. It also tests other APIs that have been available in mainstream
browsers for a long time, such as Int8Array [121], which have been included since Internet
Explorer 10, or the MutationObserver [122] API, available since Internet Explorer 11.
Since, the majority of these features are present in all the recent versions of mainstream
browsers such as Chrome, Safari or Firefox, they can be used to detect non-standard or
headless browsers that do not implement these features.

Different feature behavior. Even when a feature is present, its behavior may depend
on the browser. For example, in a blog post [123], I showed that Chrome Headless
fails to handle permissions [124] in a consistent way. When requesting permissions
using two different techniques, as showed in listing 5.1—Notification.permission and
navigator.permissions.query—Chrome Headless returns conflicting values, which
differs from a vanilla Chrome behavior. One of the scripts exploits this inconsistency to
detect crawlers based on Chrome headless.
navigator . permissions .query ({ name:’notifications ’})

.then( function ( permissionStatus ) {
if( Notification . permission === ’denied ’ &&

permissionStatus .state === ’prompt ’) {
console .log(’This is Chrome headless ’)

} else {
console .log(’This is not Chrome headless ’)

}
});

Listing 5.1 Checking if permissions are consistent.
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Another feature whose behavior depends on the browser and whether or not it is in
headless mode is the image error placeholder. When an image cannot be loaded, the
browser replaces it with a placeholder. Nevertheless, in the early versions of Chrome
headless, there was no placeholder [123]. Thus, these versions of Chrome headless can be
detected because the width and the height of the placeholder are equal to 0 pixels. One
of the scripts detects this by creating an image whose src attribute points to a random
URL that does not exist and then measures the size of the placeholder. Since the size
also depends on the browser, it can be used to verify its nature:

• On Chromium-based browsers it measures 16x16 pixels and its size does not depend
on the zoom level,

• On Safari it measures 20x20 pixels and its size depends on the zoom level,
• On Firefox it measures 24x24 pixels and its size does not depend on the zoom level.

CSS features. One of the scripts we studied also collects the CSS properties applied to
the body element using the getComputedStyle function. Similarly to JavaScript features
that are browser-dependent, such as webkit/ms RequestAnimationFrame, it is possible
to test if some of the browser-dependent CSS features are consistent with the browser
claimed in the user agent.

5.2.3.3 Audio & Video Codecs

One of the scripts tests for the presence of different audio and video codecs. To do so,
it creates an audio and a video element on which it applies the canPlayType method
to test the availability of audio and video codecs presented in Tables 5.2 and 5.3. The
canPlayType function returns 3 possible values:

1. "probably", which means that the media type appears to be playable,
2. "maybe" indicates that it is not possible to tell if the type can be played without

playing it,
3. "", an empty string indicating that the type cannot be played.

Tables 5.2 and 5.3 report on the audio and video codecs supported by vanilla browsers.
Tables are based on the dataset from Caniuse [125–131], as well as data collected on
the personal website of the thesis author. We can observe that some codecs are not
supported by all browsers, which means that they can be used to check the browser
claimed in the user agent.
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Table 5.2 Support of audio codecs for the main browsers.

Audio codec Chrome Firefox Safari

ogg vorbis probably probably ""

mp3 probably maybe maybe

wav probably maybe maybe

m4a maybe maybe maybe

aac probably maybe maybe

Table 5.3 Support of video codecs for the main browsers.

Video codec Chrome Firefox Safari

ogg theora probably probably ""

h264 probably probably probably

webm vp8 probably probably ""

5.2.3.4 HTTP headers

Contrary to JavaScript and CSS features, which are collected in the browser, HTTP
headers are collected on the server side. Thus, we cannot directly observe if fingerprinters
collect these headers. Nevertheless, because of side-effects, such as being blocked, we
observe that all fingerprinters collect at least the user agent header. Moreover, we also
detect that 2 of the fingerprinters test for the presence of the accept-language header.
Indeed, by default, Chrome headless does not send this header. In the evaluation, we
show that its absence enables some of the fingerprinters to block crawlers based on
Chrome headless.

5.2.4 Checking OS Inconsistencies

Only one script among the four performs an explicit OS verification. Nevertheless, it does
not mean that others do not conduct such tests on the server side using attributes collected
by the fingerprinting script or using other techniques, such as TCP fingerprinting [29].
However, while users with fingerprinting countermeasures, such as spoofers, may be
tempted to lie about their OS in order to increase their privacy [17], it is not required by
crawlers, which only need to hide their nature to escape detection. Thus, even though
verifying OS consistency can catch crawlers that modified the OS displayed in the user
agent, it does not help against crawlers that only modify the nature of the browser.
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5.2.4.1 Explicit OS consistent tests

The set of tests conducted by the only fingerprinter that verifies the OS in its script is
similar to the getHasLiedOs function of the library FingerprintJS2 [65]. It extracts the
OS claimed in the user agent to use it as a reference and then runs the following set of
tests:

1. Touch screen verification. It tests if the device supports touch screen by
verifying the following properties: the presence of the ontouchstart property in the
object window and navigator.maxTouchPoints or navigator.msMaxTouchPoints
are greater than 0. If the device claims to have touch support, then it should be
running one of the following operating systems: Windows Phone, Android or iOS;

2. Oscpu and platform. Oscpu is an attribute, only available on Firefox, that
returns a string representing the platform on which the browser is executing.
The script verifies that the OS claimed in the user agent is consistent with the
navigator.oscpu attribute. For example, if a platform attribute indicates that
the device is running on arm, then the OS should be Android or Linux. Similarly,
if the platform is iPad or iPhone, then the OS should be iOS. They also conduct
similar tests with the navigator.platform attribute.

Only one fingerprinter runs the above set of tests directly in its script. Nevertheless,
the other three fingerprinting scripts also collect information about the presence of a
touch screen, navigator.platform and navigator.oscpu. Thus, they may run similar
verifications on the server side.

WebGL information. Three of the scripts use the WebGL API to collect information
about the vendor and the renderer of the graphic drivers. As we explained in Chapter 4,
these values are linked to the OS and can be used to verify OS consistency [17]. For
example, a renderer containing "Adreno" indicates the presence of an Android device,
while a renderer containing "Iris OpenGL" reveals the presence of MacOS. One of the
scripts also verifies if the renderer is equal to "Mesa OffScreen", which is one of the
values returned by the first versions of Chrome headless [132, 123].

List of plugins. The four scripts collect the list of plugins using the navigator.plugins
property. While some of the plugins are browser dependent and can be used to verify the
claimed browser, they can also be used to verify the OS [17]. Indeed, the extension of
the filename of a plugin provides indications about the current OS. Plugin file extensions
should be .so on Linux, .plugin on Mac and .dll on Windows.
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List of fonts. Two of the fingerprinting scripts collect a list of fonts using JavaScript font
enumeration [4]. While it can be used to increase the uniqueness of the fingerprint [39],
it can also be used to reveal the underlying OS [105, 17] since some fonts are only found
on specific OSes by default.

5.2.5 Checking Screen Inconsistencies

The four scripts collect information related to the screen and window sizes. In particular,
they all collect the following attributes:

• screen.width/height

• screen.availWidth/Height

• screen.colorDepth

• window.innerWidth/Height

• window.devicePixelRatio

For example, the screen.width and screen.height represent the width and the height of
the web-exposed screen, respectively. The screen.availWidth and screen.availHeight
attributes represent the horizontal and vertical space in pixels available to the window,
respectively. Thus, one of the scripts verifies that the available height and width are
always less than (in case there is a desktop toolbar) or equal to the height and the
width. Another property used to detect some headless browsers is the fact that, by defini-
tion, window.outerHeight/Width should be greater than window.innerHeight/Width.
Nevertheless, one should be careful when using this test since it does not hold on iOS
devices [133] where the outerHeight is always equal to 0.

5.2.5.1 Overriden Inconsistencies

Crawler developers may be aware of the detection techniques presented in this section
and try to hide such inconsistencies by forging the expected responses—i.e., providing a
fingerprint that could come from a vanilla browser, and thus not be detected as a crawler.
To do so, one solution is to intercept the outgoing requests containing the fingerprint
to modify them on the fly, however, this cannot always be easily done when scripts are
carefully obfuscated and randomized. Another solution is to use JavaScript to override
the functions and getters used to collect the fingerprint attributes. However, when doing



5.2 Analyzing Fingerprinting Scripts 149

this, the developer should be careful to hide the fact she is overriding native functions
and attributes. If not, checking the string representation of the functions will reveal
that a native function has been intentionally overridden. While a standard execution
of functionName.toString() returns a string containing native code in the case of a
native function, it returns the code of the new function if it has been overridden.

We observe that all the scripts check fingerprinting functions, such as getImageData
used to obtain a canvas value or the WebRTC class constructor, have been overridden.
In particular, they verify functions, such as setTimeout, requestAnimationFrame and
bind. Beyond native functions, one of the scripts also checks if native objects, such as
navigator.geolocation, have been overridden. By default, the toString representation
of the geolocation object is "[object Geolocation]". Nevertheless, if a developer
overrides the function that returns a geolocation object, its string representation will be
similar to any other object: "[object Object]".

Detection using side effects. Besides looking at the string representation of native
functions and objects, one script goes further by verifying the value returned by a native
function. It verifies that the getImageData function used to collect the value of a canvas
has been overridden by looking at the value of specific pixels.

5.2.6 Other Non-fingerprinting Attributes

Events. Crawlers may programmatically generate fake mouse movements and fake
clicks to simulate human behavior and fool behavioral analysis detection systems. To
detect such events, two of the fingerprinting scripts check that events originate from
human actions. If an event has been generated programmatically, the browser sets its
isTrusted property to false. Nevertheless, this approach does not help in detecting
crawlers automated using Selenium or the Chrome DevTools protocol, since the events
they generate are considered trusted.

Crawler trap. One script creates a crawler trap using an invisible link with the
"nofollow" property and appends a unique random identifier to the URL pointed to
by the link. Thus, if a user selects the link or loads the URL, it can be identified as a
crawler that does not respect the nofollow policy.

Red pill. One script collects a red pill similar to the one presented by Ho et al. [70] to
test if a browser is running in a virtual machine or an emulated device. The red pill
exploits performance differences caused by caching and virtual hardware.
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WebRTC. WebRTC is an API that enables Real Time Communication in the browser.
One of the scripts uses the WebRTC API to collect the IP address of the user. Indeed, it
can be used to obtain the public IP address of a user, even when she is behind a proxy
or a VPN [6].

Other fingerprinting techniques. Beyond the features reported in this section, all
the scripts collect common attributes identified in the browser fingerprinting literature,
such as WebGL, canvas and audio fingerprinting. Fingerprinters only collect a hash of
these values to save the cost of storing raw values. Besides one of the scripts that tests the
value of a given pixel in a canvas to verify if it has been altered, none of the other scripts
extract any features that could be used to assess some sort of consistency. In the next
section, we show that these attributes do not influence the detection of crawlers. Our
main hypothesis is that these attributes may be used for short-term tracking purposes in
order to identify crawlers that may change their IP address [134].

In this section, we showed that 291 sites from the Alexa Top 10K block crawlers using
the user agent. Among these, 93 websites (31.96%) that use fingerprinting for crawler
detection. They use different techniques that leverage attributes added by automated
browsers or fingerprint inconsistencies to detect crawlers.

5.3 Detecting Crawler Fingerprints

In this section, we first evaluate the effectiveness of browser fingerprinting to detect
crawlers. Then, we study the resilience of browser fingerprinting against an adversary
who alters its fingerprint to escape detection.

5.3.1 Experimental Protocol

Ground truth challenge. The main challenge to evaluate crawler detection approaches
is to obtain ground truth labels to assess the evaluation. The typical approach to obtain
labels is to request experts from the field who check raw data, such as fingerprints and
HTTP logs, and use their knowledge to label these samples. The main problem of this
approach is that labels assigned by the experts are as good as the current knowledge
of the experts labeling the data. Similarly to machine learning models that struggle to
generalize to new data, these experts may be good at labeling old crawlers they have
already encountered, but not at labeling new kinds of crawlers they are unaware of,
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which may artificially increase or decrease the performance of the approach evaluated. To
address this issue, we decide to use ourselves different kinds of crawlers on websites that
have been identified as blocking crawlers. Thus, no matter how the crawler tries to alter
its fingerprint, we can always assert that it is a crawler because it is under our control.
Then, in order to measure the effectiveness of fingerprinting for crawler detection, we
rely on the fact that the crawled websites have been identified as websites that block
crawlers. We consider that, whenever they detect a crawler, they will block it. We use
this blocking information as an oracle for the evaluation. We discuss the limits of this
hypothesis in Section 5.4.3. A solution to obtain the ground truth would have been to
subscribe to the different bot detection services. Nevertheless, besides the significant
cost, bot detection companies verify the identity of their customers to ensure it is not
used by competitors trying to reverse engineer their solution or by bot creators trying to
obtain an oracle to maximize their ad-fraud incomes for example.

5.3.1.1 Crawler Family

In order to evaluate the resilience of fingerprinting, we send 7 different crawlers that
incrementally modify their fingerprints to become increasingly more difficult to detect.
Table 5.4 presents the crawlers and the attributes they modify. The first six crawlers are
based on Chrome headless for the following reasons:

1. It has become a popular headless browser for crawling. Since its first release, the
once popular PhantomJS stopped being maintained [? ];

2. It implements the majority of features present in popular non-headless browsers,
making therefore its detection more challenging compare to older headless browsers;

3. Had we use older headless browsers such as PhantomJS (not maintained since March
2018) and SlimerJS (works only with Firefox version < 59 released in 2017), crawlers
would have been easily detected because of the lack of modern web features [120].

The last crawler is based on a vanilla Chrome browser. We use this crawler to better
understand why blocking occurs, and to assess that crawlers are blocked because of their
fingerprint. Indeed, since this crawler is based on a vanilla Chrome, the only difference
in its fingerprint is the navigator.webdriver attribute. Once this attribute is removed,
it can no longer be detected through fingerprinting.

We restrict the evaluation to 7 different crawlers. Ideally, a perfect protocol would
randomly mutate fingerprint attributes to provide a fine-grained understanding. However,
this was not feasible in practice, as our evaluation requires residential IP addresses of
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Table 5.4 List of crawlers and altered attributes.

Crawler Attributes modified

Chrome headless based
Crawler 1 User agent
Crawler 2 Crawler 1 + webdriver

Crawler 3 Crawler 2 + accept-language

Crawler 4 Crawler 3 + window.chrome

Crawler 5 Crawler 4 + permissions

Crawler 6 Crawler 5 + screen resolution +
codecs + touch screen

Vanilla Chrome based
Crawler 7 webdriver

which we have a limited supply, as well as the exponential complexity resulting from
testing all attribute permutations on the set of evaluated websites. While we could have
used residential proxy services to acquire more residential IP addresses, this approach
still has several drawbacks:

1. Ethical issues. Mi et al. [135] showed that a majority of the devices proposed
by residential proxy services, such as Luminati, did not give their consent, which
raises ethical issue since we may pollute the reputation of their IP address;

2. Inconsistencies. Since these residential proxy services do not provide mechanisms
to ensure the nature of the device that will act as a proxy, there can be inconsistencies
between the browser fingerprint of our crawlers and the TCP, TLS, and HTTP
fingerprints of the proxy, making it more difficult to understand why a crawler was
blocked.

Details of the modified attributes. Crawlers 2 to 6 build on the previous one, adding
new modifications each time to increase the difficulty of detection. For example, crawler 4
implements the changes made by crawlers 1, 2 and 3.

1. Crawler 1 is based on Chrome headless with a modified user agent to look like a
vanilla Chrome user agent;

2. In the case of Crawler 2, we delete the navigator. webdriver property;
3. By default, Chrome headless does not add an accept-language header to its

requests. Thus, for Crawler 3, we add an accept-language header whose value is
set to "en-US" for all the requests sent by the crawler;

4. Crawler 4 injects a chrome property to the window object;
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5. For Crawler 5, we override the management of the permissions for the notifications
to hide the inconsistency exposed by Chrome headless [123]. Since we override
the behavior of native functions, we also override their toString method, as well
as Function.prototype.toString—i.e., the toString of the Function type in
order to hide our changes;

6. For Crawler 6, we apply modifications related to the size of the screen, the
availability of touch support and the codecs supported by the browser. First,
we override the following properties of the window object: innerWidth/Height,
outerWidth/Height and window.screenX/Y. We also modify properties of the
screen object: availWidth/Height and width/height. By default, Chrome
headless simulates touch screen support even when Chrome headless is running
on a device that does not support it. To emulate a desktop computer with-
out touch support, we override the document.createEvent function so that it
throws an exception when trying to create a TouchEvent. We also override
navigator.maxTouchPoints to return 0 and we delete the ontouchstart property
of the window object. We also lie about the codecs supported to return the same
value as a vanilla Chrome, by overriding the canPlayType function for both the
HTMLAudioElement and HTMLVideoElement. In order to hide changes made to
native functions, we override their toString;

7. Contrary to the first six crawlers, Crawler 7 is based on a vanilla Chrome—i.e.,
non-headless. Thus, we only remove the webdriver attribute from the navigator
object.

5.3.1.2 Evaluation Dataset

We present how we select websites used for the evaluation.

Cross-domain detection. Since we want to evaluate fingerprinting for crawler detection,
we try to eliminate other detection factors that could interfere with our evaluation. One
such factor is cross-domain detection. This occurs when a company provides a crawler
detection service that is present on multiple domains being crawled. In this situation,
the company can leverage metrics collected on different domains, such as the number
of requests, to classify traffic no matter the website. In order to minimize the risk that
cross-domain detection interferes with our evaluation, we need to decrease the number
of websites that belong to the same company in the evaluation dataset. Thus, there is
a tradeoff between the number of websites in the evaluation dataset and the capacity
to eliminate other factors, such as cross-domain detection. While to our knowledge, no
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research has been published on cross-domain detection, we encountered this phenomenon
during the different crawls we conducted. Moreover, during informal discussions with a
crawler detection company, engineers also mentioned this practice.

Selection of websites. We group websites identified as blocking crawlers and using
fingerprinting (as defined in Section 5.1) based on the combination of fingerprinting
attributes they access. We obtain 20 groups of fingerprinting scripts and, for each of
the groups, we randomly select one website. We argue this selection is a good tradeoff.
Even though it does not totally eliminate cross-domain detection since, as shown in
Section 5.2, fingerprinters can have different scripts, it still enables to evaluate all the
different fingerprinting scripts present in the dataset. Then, we randomly select 20
websites that block crawlers without using fingerprinting to compare fingerprinting-based
detection against other approaches.

Crawling protocol. For each of the 7 crawlers, we run 5 crawls on the previously
selected websites. Each crawl is run from a machine with a residential IP address that
has not been used for crawling for at least 2 days in order to limit the risk of being
blocked because of a bad IP address reputation. Studying how long crawler detection
systems block crawlers and how/if the previous history of the IP address has an impact
on the duration of the blocking is out of the scope of this study and is left as future work.
A crawl consists of the following steps:

a) We randomly shuffle the order of the websites in the evaluation dataset. It enables
to minimize and measure the side effects that can occur because of cross-domain
detection;

b) For each website, the crawler visits the home page and then visits up to 10 randomly-
selected pages from the same domain. As explained later in this section, we crawl only
10 links to ensure we evaluate the effectiveness of browser fingerprinting detection
and not the effectiveness of other state-of-the-art detection approaches;

c) Once a page is loaded, the crawler takes a screenshot and stores the HTML of the
page for further analysis;

d) Between two consecutive crawled pages, the crawler waits for 15 seconds plus a random
time between 1 and 5 seconds.

5.3.1.3 Crawler behaviors

In the previous subsection, we explain how we select websites in a way that minimizes
cross-domain detection. Here, we present how we adapt the behavior of the 7 crawlers
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so that other approaches, such as rate limiting techniques or behavioral analysis do not
interfere with our evaluation. Thus, the crawlers should not be detected by state-of-the-art
techniques presented in Section 2.4.2 that rely on the following features:

1. Number of HTTP requests,
2. Number of bytes requested from the server,
3. Number and percentage of HTML requests,
4. Percentage of PDF requests,
5. Percentage of image requests,
6. Duration of a session,
7. Percentage of 4xx error requests,
8. Robots.txt file request,
9. Page popularity index,

10. Hidden links.

To address points (1) to (6), crawlers request few pages so that it looks like the requests
originate from a human. Moreover, we do not block any resources, such as images or
PDFs, nor do we ask for these resources in particular. The crawlers visit only up to 10
pages for a given website. Since the attributes used in fingerprinting are constant on
short time periods, such as a crawling session, a fingerprinter does not need multiple
pages to detect if a fingerprint belongs to a crawler, which means that this criterion
should not affect our evaluation. Moreover, the navigation delay between 2 pages is
15 seconds plus a random delay between 1 and 5 seconds. We chose a mean value of
15 seconds since it has been observed that a majority of users do not stay more than
15 seconds on a page on average [136]. We add some randomness so that if a website
measures the time between two requested pages, it does not look deterministic. Points
(7) and (9) are addressed by only following internal links exposed from the home page or
pages directly linked by the home page, which is more likely to point to both popular
and existing pages. To address point (8), the crawlers never request the Robots.txt
file, which means that we do not take into account the policy of the website concerning
crawlers. Nevertheless, since we crawl only a few pages, it should have little impact. We
discuss this point in more detail in Section 5.4.3 about ethical considerations.
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5.3.2 Experimental Results

5.3.2.1 Presentation of the dataset

In total, we crawl 40 different websites, randomly selected from the list of websites
blocking crawlers between December 2018 and January 2019. 22 of them use browser
fingerprinting and 18 do not use fingerprinting. Initially, we selected two equal sets of
20 websites using and not using fingerprinting. Nevertheless, we noticed that 2 of the
websites had been misclassified. We did not detect fingerprinting on these websites but
we observed the side-effects of cross-domains fingerprinters. Since the crawler used for
fingerprinting detection had been detected on some other websites, its IP address was
blacklisted. Thus, when the crawler visited other websites with the fingerprinter that
blocked it earlier, it was blocked at the first request because of its IP address, without
having the possibility to load and execute the JavaScript present on the page. In total,
we run 35 crawls—i.e., 5 per crawler—each with a residential IP address that has not
been used for at least two days for crawling.

5.3.2.2 Blocking results

Figure 5.2 reports on the results of the crawls for the 7 crawlers. The results have been
obtained by labeling the data using the same web interface we used in Section 5.1. For
each crawler, we present the average number of times per crawl it is blocked by websites
that use fingerprinting and websites that do not use fingerprinting.

Influence of fingerprint modifications. We see that the more changes are applied
to the crawler’s fingerprint, the less it gets blocked. While Crawler 1 gets blocked 11.8
times on average, the detection falls to 1.0 time for Crawler 6 that applies more extensive
modifications to its fingerprint. We also observe an important decrease in the number of
times crawlers are blocked between crawlers 1 and 2. It goes from 11.8 for Crawler 1 to
3.6 for Crawler 2. The only difference being the removal of the webdriver attribute from
the navigator object, which means that fingerprinters heavily rely on this attribute to
detect crawlers.

Blocking speed. We also analyze the speed at which crawlers get blocked—i.e., after
how many pages crawled on a given website a crawler is blocked. Except for Crawler 5
that gets blocked after 3.1 pages crawled on average, crawlers are blocked after they have
crawled less than 3 pages of a website on average.
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Figure 5.2 For each kind of crawler, we report on the average number of times per crawl
it is blocked by websites that use and that do not use fingerprinting.

Fingerprinters detect more crawlers. We also observe that, on average, websites
using fingerprinting block more crawlers than websites without fingerprinting. For
example, on average, 93.2% (11.0) of websites blocking Crawler 1 use fingerprinting. The
only exception is Crawler 7, where 75% of the time it gets blocked, it is by a website
not using fingerprinting. This is the expected result since Crawler 7 is based on a vanilla
Chrome, which means that its fingerprint is not different from the one of a standard
browser.

Analysis of other detection factors. The fact that Crawler 7 still gets blocked despite
the fact it has a normal fingerprint raises the question of other detection factors used
in addition to fingerprinting. Even though we take care to adapt the behavior of the
crawlers to minimize the chance they get detected by other techniques, we cannot exclude
that it occurs. Thus, we verify if crawlers are detected because of their fingerprint or
because of other state-of-the-art detection techniques.

First, we investigate if some of the crawlers have been blocked because of cross-domain
detection. To do so, we manually label, for each fingerprinting script in the evaluation
dataset, the company it belongs to. Whenever we cannot identify the company, we
assign a random identifier. We identify 4 fingerprinters present on more than 2 websites
in the evaluation dataset and that could use their presence on multiple domains to do
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cross-domain detection. We focus only on websites that blocked Crawlers 4, 5 and 6.
Indeed, only one fingerprinting company succeeds to detect Crawlers 4, 5 and 6. Thus,
we argue that Crawlers 1, 2 and 3 detected by websites using fingerprinting, are indeed
detected because of their fingerprint. If their detection had relied on other techniques,
then some of the Crawlers 4, 5, 6 and 7 would have also been blocked by these websites.
Moreover, the analysis of the fingerprinting scripts we conduct in Section 5.2 shows that
some of these fingerprinters have the information needed to detect Crawlers 1, 2 and 3,
but not to detect more advanced crawlers using fingerprinting.

We analyze in more details the only fingerprinter that detected Crawlers 4, 5 and 6. At
each crawl, the order of the websites is randomized. Thus, for each crawler and each
crawl, we extract the rank of each of the websites that have a fingerprinting script from
this company. Then, we test if the order in which websites from this fingerprinter are
crawled impact the chance of a crawler to be detected. We observe that crawlers get
blocked on websites independently of their rank. For example, Crawler 4 is blocked on
the first website crawled where the fingerprinter is present and Crawler 6 on the second
one.

Non-stable blocking behavior. We also notice that websites that use the fingerprint-
ing scripts provided by the only fingerprinter that blocked crawlers 4, 5 and 6 do not all
behave the same way. Indeed, depending on the website, some of the advanced crawlers
have never been blocked. It can occur for several reasons: 1. The websites have different
versions of the scripts that collect different attributes; 2. On its website, the fingerprinter
proposes different service plans. While some of them are oriented towards blocking
crawlers, others only aim at detecting crawlers to improve the quality of the analytics
data.

Even on the same website, the blocking behavior is not always stable over time. Indeed,
some of the websites do not always block a given crawler. Moreover, some of the websites
able to block advanced crawlers do not block crawlers easier to detect. For example, the
only website that is able to block both crawlers 5 and 6, only blocked 13 times over the
35 crawls made by all the crawlers. It means that 37.1% of the time, this website did
not block crawlers, even though it could have done so. In particular, this website never
blocked Crawlers 1 and 2 even though they are easier to detect than Crawlers 5 and 6.

Undetected crawlers. We also observe that some websites could have detected
Crawlers 3 and 4 using the information they collected. Indeed, these websites ver-
ify the consistency of the notification permission, which as we show in Section ??, enables
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to detect crawlers based on Chrome headless. A possible explanation to why the fin-
gerprinter present on these websites was blocking Crawlers 1, 2, but not Crawlers 3 and
4 is because the first two crawlers can be detected solely using information contained
in the HTTP headers (lack of accept-language header). However, Crawlers 3 and 4
require information collected in the browser, which may be handled differently by the
fingerprinter.

In this section, we showed that fingerprinting helps to detect more crawlers than non-
fingerprinting techniques. For example, 93.2% (11 websites) of the websites that have
detected crawler 1 use fingerprinting. Nevertheless, the important decrease in the average
number of times crawlers are blocked between crawlers 1 and 2, from 11.8 websites to 3.6,
indicates that websites rely on simple features such as the presence of the webdriver
attribute to block crawlers. Finally, we show that only 2.5% of the websites detect crawler
6 that applied heavier modifications to its fingerprint to escape the detection, which
shows one of the main flaws of fingerprinting for crawler detection: its lack of resilience
against adversarial crawlers.

5.4 Discussion

5.4.1 Limits of Browser Fingerprinting

The analysis of the major fingerprinting scripts shows that it is heavily used to detect
older generations of headless browsers or automation frameworks, such as PhantomJS.
These browsers and frameworks used to be easily identifiable because of the attributes
they injected in the window or document objects. In addition to these attributes, older
headless browsers lacked basic features that were present by default in mainstream
browsers, making them easily detectable using feature detection. Since 2017, Chrome
headless has proposed a more realistic headless browser that implements most of the
features available in a vanilla Chrome. Even though we show that fingerprinters use
differences between vanilla Chrome and headless Chrome for detection, it is much harder
to find such differences compared to older headless browsers. One of the implications
is that, since there are fewer differences, it makes it easier for an adversarial crawler
developer to escape detection by altering the fingerprint of her crawlers. Indeed, these
changes require few lines of code (less than 300 lines in the case of Crawler 6) and can
be done directly using JavaScript without the need to modify and compile a whole
Chromium browser.
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Unsurprisingly, we also show that fingerprinting-based approaches are totally ineffective
against non-headless automated browsers (like Crawler 7), since the fingerprint of such
crawlers is the same as the one of a vanilla browser (modulo the navigator.webdriver
attribute which is easy to remove).

5.4.2 Threats to Validity

While the goal of our study is to evaluate the effectiveness of browser fingerprinting
for crawler detection, a threat lies in the possibility that we may have missed external
techniques, other than browser fingerprinting and the techniques presented in Section 2.4.2,
that could have contributed to the detection of crawlers. A second threat lies in the
choice of our oracle—i.e., being blocked by a website when a crawler is detected. While
we ensured that all the websites used in the evaluation block crawlers upon detection, it
may have been caused by some user agent blacklisting. Thus, we make the hypothesis
that, if fingerprinting was also used for crawler detection, then the website would be
consistent in its strategy against the crawlers. However, it is possible that a website
adopts fingerprinting not against crawlers, but against credit card fraudsters or to label
crawlers in its analytics reports, and thus does not focus on blocking crawlers. Finally,
a possible threat lies in our experimental framework. We did extensive testing of our
code, and we manually verified the data from our experiments. However, as for any
experimental infrastructure, there may be bugs. We hope that they only change marginal
quantitative results and not the quality of our findings.

5.4.3 Ethical Considerations

Concerning the crawled websites, we asked for permission from our IRB to conduct
our study, and we used the data collected only for research purposes—i.e., verifying if
we were blocked. Even though we may not have respected the policy of the robots.txt
file, since we did not read it to avoid triggering crawler detection techniques that could
have interfered with our research, we visited only a few pages of each website ranked
in the Alexa Top 10K. Thus, we consider it had a negligible impact on their resources.
Moreover, we decided not to disclose the name of the websites, as well as the name of the
fingerprinters, since we think the benefits to the reader do not outweigh the fact that our
findings could be used specifically against these domains in order to bypass their crawler
detection.
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5.5 Conclusion

Crawler detection has become widespread among popular websites to protect their data.
While existing approaches, such as CAPTCHAs or trafic shape analysis, have been shown
to be effective, they either require the user to solve a difficult problem, or they require
enough data to accurately classify the traffic.

In this chapter, we show that, beyond its adoption for tracking, browser fingerprinting
is also used as a crawler detection mechanism. Browser fingerprinting exploits the lack
of basic features in some headless browsers or the inconsistencies introduced by crawler
developers to detect if a fingerprint belongs to a crawler. We analyze the scripts from
the main fingerprinters present in the Alexa Top 10K and show that they exploit the
lack of browser features, errors or overridden native functions to detect crawlers. Then,
using 7 crawlers that apply different modifications to their fingerprint, we show that
websites with fingerprinting are better and faster at detecting crawlers compared to
websites that use other state-of-the-art detection techniques. Nevertheless, while 29.5%
of the evaluated websites are able to detect our most naive crawler that applies only one
change to its fingerprint, this rate decreases to 2.5% for the most advanced crawler that
applies more extensive modifications to its fingerprint. We also show that fingerprinting
does not help detecting crawlers based on standard browsers since they do not expose
inconsistent fingerprints.

These findings demonstrate the strengths and the limits of fingerprinting for crawler
detection. While fingerprinting can help to quickly detect crawlers based on headless
or non-standard browsers, it remains unable to detect standard automated browsers.
Moreover, we also showed it requires few efforts to develop crawlers with modified
fingerprints capable to escape detection. Thus, we argue that fingerprinting provides
clear benefits for crawler detection but it should be used in a layered approach, in addition
to other crawler detection techniques, such as crawler traps or rate limiting techniques.





Part IV

Final Remarks





Chapter 6

Conclusion

Browsers have become increasingly more complex. Applications that were once possible
only as desktop clients can now be accessed from a browser. Moreover, the diversity of
devices capable of browsing the web has also steadily increased. While browsers used
to run only on computers, they can now run on a wide range of devices ranging from
smartphones to connected TVs. This diversity of devices associated with the possibility
for browsers to obtain information about it using JavaScript APIs made it possible to
identify devices based on their characteristics.

Building a browser fingerprint consists in gathering a set of attributes that can be accessed
by any website when a user visits it. Thus, fixing browser fingerprinting tracking is
challenging since contrary to cookies that can be simply blocked or deleted, fingerprints
rely on APIs that are also used genuinely by websites. Browser fingerprinting is also a
constantly evolving field. As new APIs are added to the browser, there is a risk they get
used by commercial fingerprinters to create more robust, unique and stable fingerprints.
On the other hand, when browser vendors take actions, such as decreasing the precision
of an API or blocking its access, this can render certain forms of fingerprinting unusable.

Because of its stateless nature, detecting fingerprinting is also challenging. While
detecting stateful tracking mechanisms that rely on cookies or other storage APIs is
more straightforward since the tracking identifier is stored in the browser, detecting if a
website fingerprints users is more complicated:

• First, there is no formal definition of browser fingerprinting. Does simple analytics
become fingerprinting after more than 5, 6, 7 or more attributes have been accessed?
While some techniques, such as font enumeration or canvas fingerprinting, are clear
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markers of fingerprinting, there is a blurry line where it is unclear if a script collects
data such as the user agent, the screen resolution and the number of cores of the
device for analytical purposes, or if it is for fingerprinting;

• Secondly, while monitoring the use of known fingerprinting techniques at scale has
become easier with modern crawling tools, detecting new and unknown techniques
is more challenging as any API or any data obtained from a sensor can be used to
create a fingerprint.

Fortunately, browser vendors have started to take privacy issues more into account when
creating new features. Saying that it has been only caused thanks to the research on
web privacy may be overemphasized. It is also likely the results of other factors, such as
the increasing number of data breaches1 and important privacy scandals like Facebook
and Cambridge analytica. These scandals have made of privacy a strong commercial
argument for browser vendors and tech companies in general 2. Nevertheless, studies
on privacy and browser fingerprint also played a role in the way browsers have evolved.
For example, two days after Acar et al. [5] published that a popular social widget was
using canvas fingerprinting for tracking, the company behind it decided to stop using
canvas fingerprinting.3 When browser vendors design new APIs, their privacy impact,
in particular, the way they could be used for fingerprinting, is also more taken into
account. Even though browser vendors take more into account the privacy impact of
new APIs, this does not mean new fingerprintable APIs are not added anymore to
browsers. For example, in 2017, Chrome and other Chromium-based browser added
a new property, deviceMemory, to the navigator object that provides the memory of
the device. Nevertheless, evaluating how a new API could be used for fingerprinting
is challenging. Indeed, even APIs that do not explicitly return information about the
device can be misused to extract information because of side-effects, as it is the case with
the canvas, the audio, and the WebGL APIs. Even increasing the accuracy of timing
measurement or adding thread support can be used for fingerprinting:

1. Timers can be used to conduct timing attacks that extract information about the
device.,

2. Threads can be used to use run costly operations, such as 3D scenes rendering,
without blocking the main thread and, therefore, extract more unique fingerprints.

1https://breachlevelindex.com/
2https://www.theverge.com/2019/3/14/18266276/apple-iphone-ad-privacy-

facetime-bug
3https://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-canvas-

element-in-our-recent-rd-test/#.XLcfbpPRZQI

https://breachlevelindex.com/
https://www.theverge.com/2019/3/14/18266276/apple-iphone-ad-privacy-facetime-bug
https://www.theverge.com/2019/3/14/18266276/apple-iphone-ad-privacy-facetime-bug
https://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-canvas-element-in-our-recent-rd-test/#.XLcfbpPRZQI
https://www.addthis.com/blog/2014/07/23/the-facts-about-our-use-of-a-canvas-element-in-our-recent-rd-test/#.XLcfbpPRZQI
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The state of browser fingerprinting has evolved these past years, from techniques heavily
relying on plugins such as Flash and Java to techniques that leverage HTML5 APIs and
exploit their side effects, such as canvas and audio fingerprinting. In this thesis, I tried
to provide an up-to-date picture of browser fingerprinting, both in terms of its impact on
privacy, as well as its application to detect crawlers.

6.1 Contributions

6.1.1 FP-Stalker: Tracking Browser Fingerprint Evolutions

I collected a dataset of more than 120K browser fingerprints from 2,346 distinct browsers
over two years using the AmIUnique browser extensions. First, I analyzed the stability
of browser fingerprints and the different attributes constituting it. My results confirm
Eckersley’s findings, the majority of fingerprints change frequently. More than half of
the browsers in our dataset displayed at least one change in their fingerprint after five
days. Nevertheless, I also showed that not all browser fingerprints change at the same
pace. Through a two-year study, I also measured the stability of attributes that did not
exist at the time Eckersley’s study was conducted. In particular, I showed that besides
being highly unique, canvas fingerprints are also highly stable. For half of the browsers
in our dataset, the canvas remained stable for more than 300 days.

I also evaluated how long could browsers be tracked using only their fingerprint. I
proposed two linking algorithms and showed that while a significant fraction of browsers
are immune to fingerprinting, either because their fingerprint is not unique or is too
similar with fingerprints of other browsers, more than 32% of the browsers can be tracked
more than 100 days.

6.1.2 FP-Scanner: The Privacy Implications of Browser Fin-
gerprint Inconsistencies

Several fingerprinting countermeasures claim to generate consistent browser fingerprints,
i.e., fingerprints that could be found in the wild. The reason countermeasures aim at
generating consistent fingerprints is to avoid being detected, which would make their
users more unique and trackable. In Chapter 4, I proposed Fp-Scanner, a test suite
that aims at detecting the presence of fingerprinting countermeasures because of the
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inconsistencies they introduce. I used it to evaluate 7 countermeasures, ranging from
browser extensions that lie about the user device, to more complex peer-reviewed forked
browsers that modify the value of canvas and audio fingerprints. Fp-Scanner was able to
spot inconsistencies for all the countermeasures, even those claiming to generate consistent
fingerprints, making, therefore, their presence detectable. Moreover, since different APIs
or techniques can be used to obtain certain attributes, I showed we can correlate them
to infer the real OS and browser, even though it has been modified by a countermeasure.
Thus, my findings show the difficulty of designing effective countermeasures that do not
end up being counterproductive. I argue that while it may not be possible to design
undetectable countermeasures, countermeasures’ defense strategies should avoid leaking
unnecessary information. In particular, the defense strategy should not be tuned since
then, the defense strategy could be used as a fingerprinting feature. Moreover, I argue
that for countermeasures to be effective, they should be used by enough users, so that
knowing that a user has a countermeasure installed does is not discriminatory in itself.
Thus, a possible way to make a countermeasure available to many users is to integrate
it natively into a browser, the software used to access websites. Since my paper on
fingerprinting countermeasures has been published in 2018, several browser vendors, such
as Brave, Firefox and Safari, have either added fingerprinting countermeasures natively
in their browser or made them more easily available to their users.

6.1.3 FP-Crawlers: Evaluating the Resilience of Browser Fin-
gerprinting to Block Adversarial Crawlers

The use of browser fingerprinting in a security context has often been overlooked. I focus
on crawler detection and show that among the 3% of websites of the Alexa Top 10K that
block crawlers, around 30% of them use browser fingerprinting. I analyze the detection
techniques of the most popular scripts encountered during my crawls and show that
while some of the techniques, such as canvas or font enumeration, are similar to the
ones used for tracking, these scripts rely on techniques specifically developed for crawler
detection. In particular, crawler detection scripts look for traces left by instrumentation
frameworks such as Selenium, as well as for inconsistent fingerprints that could reflect
the use of a headless browser. To evaluate the effectiveness of fingerprinting for crawler
detection, I developed multiple crawlers, each gradually more difficult to detect and show
that browser fingerprinting can quickly detect crawlers.
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An important challenge of using browser fingerprinting for security lies in the fact that
fingerprints are collected on the client-side and that they can, therefore, be modified by an
attacker. Thus, I evaluate the resilience of fingerprinting against an adversarial attacker
that tries to hide its presence by lying about its fingerprint. My results show that while
fingerprinting can detect crawlers with few modifications applied to their fingerprints, it
cannot detect crawlers that apply more changes to their fingerprint or crawlers based on
non-headless browsers, hence the need of using fingerprinting in addition to other crawler
detection approaches.

6.2 Future work

6.2.1 Automating Crawler Detection Rules Learning

Detecting crawlers and bots can benefit several applications ranging from website content
protection to ad-fraud detection. In particular, improving fingerprinting-based detection
could help to protect against certain forms of attacks that cannot be fully addressed
using only other existing detection techniques:

• Traffic-shape approaches. In a context of ad-fraud, one cannot wait for bots to
visualize many ads from the same IP address before they get blacklisted. Indeed,
bots may use residential proxies to frequently change their IP addresses [135];

• CAPTCHAs. In a context of ad-fraud, it is also unrealistic to require users to
solve CAPTCHAs for them to see ads.

While fingerprinting can help to detect bots, there is a continuous arms race between
bot developers trying to make their bots look more human and the fingerprinters that
try to detect them. I argue that automating the learning of detection rules could help
fingerprinters win the arms race. Indeed, whenever new features are added to a browser,
there may a short time window during which the behavior differs between the normal
browser and its headless counterpart. During this time window, bot developers may not
be aware of these new detection rules and are less likely to have modified the fingerprints
of their bots to lie consistently. Thus, I propose to extend the approach proposed by
Schwarz et al. [72] to automatically learn rules capable of distinguishing non-headless
browsers from headless browsers. In particular, I plan to address one of the main
challenges they identified: exploring properties hidden behind function calls. To call
JavaScript functions with correct parameters, I propose the following two strategies:
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1. Use fuzzing techniques to generate valid parameters [137],

2. Crawl specialized programming websites, such as GitHub and StackOverflow, to
gather code snippets that use specific APIs, or crawl any websites to monitor the
execution of several functions and obtain the value of their arguments at runtime.

6.2.2 Investigate New Fingerprinting Attributes

Due to the difficulty of collecting unbiased fingerprints over a long period, it is challenging
to accurately measure the entropy and the stability of browser fingerprints. The latest
large scale study was conducted in 2016 [28] on more than 2 million browser fingerprints
collected on a French popular website, and focuses only on fingerprint uniqueness. As
I explained in the state-of-the-art, the study did not examine several fingerprinting
techniques, such as audio fingerprinting and navigator.enumerateDevices, that were
available at the time the study was conducted. More recently, new APIs that can be used
for fingerprinting, such as navigator.deviceMemory, have also been added to browsers.
Moreover, approaches that did not apply to real-world traffic because of performance
issues may have become applicable. For example, Cao et al. [1] proposed to generate
complex 3D scenes to create stable fingerprints, even across different browsers of the
same device. While a few years ago, the rendering of the 3D scenes was blocking the
main JavaScript execution threads for more than 10 seconds, now it could leverage the
offscreenCanvas API 4 to generate the scenes in web workers. 5 Therefore, evaluating
the entropy and the stability of these different fingerprinting techniques on real-world
traffic would provide valuable information on the current state of browser fingerprinting.

6.2.3 Studying Fingerprinting for Authentication

With an ever-increasing number of data breaches6, there is a need for additional mecha-
nisms to protect against credential stuffing.7 Different studies proposed to use browser
fingerprinting as a semi-transparent second authentication factor. While the guarantees
it provides are not as strong as the one provided by traditional second factors such as

4OffscreenCanvas API: https://developer.mozilla.org/en-US/docs/Web/API/
OffscreenCanvas

5Web Workers API: https://developer.mozilla.org/en-US/docs/Web/API/Web_
Workers_API

6https://breachlevelindex.com/
7https://www.owasp.org/index.php/Credential_stuffing

https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas
https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://breachlevelindex.com/
https://www.owasp.org/index.php/Credential_stuffing
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U2F,8 it can still be used to enhance security in a relatively transparent manner for the
user. Moreover, fingerprinting is also convenient for companies since it does not require
to install authentication applications on the employees’ mobiles, or to buy external
devices, such as Yubikeys that can be costly at the scale of a company. Nevertheless,
studies on browser fingerprinting for authentication are limited. While they propose
several approaches ranging from the use of the accelerometer sensor to the generation
of dynamic canvas, none of them has been evaluated against real-world authentication
traffic. Besides providing a more accurate estimation of the security gain provided by
browser fingerprinting, evaluating it in a more realistic context would also enable to
better understand its usability for end-users, which as shown by several studies [138],
often impacts the security.

6.2.4 Developing Web Red Pills

Crawler detection approaches can act at different levels:

1. Behavioral. Approaches such as traffic shape analysis and CAPTCHAs analyze a
user behavior to determine if it is a human or a bot;

2. Execution environment. Detection using device and browser fingerprinting
targets the browser or the system the bot is running on to distinguish between
humans and bots.

I propose to investigate red pills, sequences of instructions that aim at detecting if a
browser is running in a virtualized environment, for bot detection. Indeed, since crawling
at scale requires a large infrastructure, a significant fraction of crawlers likely runs on
virtual machines from public cloud providers. Ho et al. [70] proposed several red pills
capable of detecting if the host system is a virtual machine from within the browser.
Nevertheless, the paper has been published in 2014 and has not been evaluated on popular
public cloud providers. Moreover, the underlying implementations of some of the APIs
used in the red pills may have evolved, which can impact the accuracy of the red pills.
Thus, I argue there is a need for evaluating these red pills on the main public cloud
providers and developing new red pills techniques.

8https://www.yubico.com/solutions/fido-u2f/

https://www.yubico.com/solutions/fido-u2f/
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6.3 Future of Browser Fingerprinting

Recent privacy scandals have made of privacy a strong commercial argument. Firefox
and Safari, two popular browsers now natively integrate fingerprinting protections. New
privacy-friendly browsers, such as Brave and Cliqz, have also emerged and propose native
fingerprinting countermeasures. As I explained in Chapter 4, having enough users is one
of the conditions required to have more effective fingerprinting countermeasures that do
not make their users more vulnerable to tracking. Thus, this shift from fingerprinting
countermeasures running as browser extensions, to countermeasures natively integrated
into the browser is a positive change from a privacy point of view. Moreover, new
mechanisms, such as the Feature-Policy header,9 also help websites control the APIs
that can be accessed in different frames. However, these features do not help to protect
against websites that willingly allow third-party to track their users. Browser vendors
also tend to more take into account fingerprinting when designing new APIs. Thus,
before releasing new APIs, browser vendors thoroughly evaluate how it could be used for
fingerprinting. As showed by Gomez et al. , these changes helped to decrease the entropy
of fingerprinting techniques used in the past.

Nevertheless, fingerprintable APIs are still added to browsers, e.g. the navigator.
deviceMemory that provides information about the device memory was added to Chrome
in December 2017.10 Moreover, even benign APIs, such as canvas and WebGL, can be
misused to create highly unique and stable fingerprints. I believe this is likely to occur
again as browser vendors keep on adding new features to their browsers.

From static to dynamic fingerprints. For a long time, fingerprinters have built
fingerprints constituted of static attributes such as the user agent, the list of plugins or
canvas whose value is the same between consecutive executions. With recent progress in
machine learning, I argue there is a risk fingerprinters could shift towards more dynamic
and less stable attributes, such as the approach proposed by Sanchez et al. [41] that
measures the performance to execute different cryptographic operations. Due to their
instability, these attributes cannot simply be hashed and transformed into a fingerprint.
Nevertheless, one can extract features that are later integrated into machine learning
models used to link fingerprints of the same browser. This shift also raises challenges
concerning the measure of fingerprint uniqueness. Indeed, while entropy and anonymity

9https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy
10deviceMemory: https://developer.mozilla.org/en-US/docs/Web/API/Navigator/

deviceMemory

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/deviceMemory
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set are meaningful metrics for stable attributes, it is not necessarily the case for attributes
whose value constantly changes.

Fingerprinting for security. Current headless browsers used for crawling will probably
become more and more similar to their non-headless counterparts. For example, until
September 2018, there was no mechanism to manage permissions in Chrome headless
using the Chrome DevTools protocol. It was due to the novelty of Chrome headless rather
than to a deliberate choice of the developers [139]. Thus, these kinds of inconsistencies
will likely be fixed in the future. Nevertheless, I argue that even if headless browsers
become more realistic, there is some space for fingerprinting to be used in addition to
other crawler detection techniques. Indeed, since browser vendors keep on adding new
features, during a certain lapse of time, these new features may not be implemented in
the headless browser or they may be implemented in a different way, which could be
used for detection.
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Appendix A

List of fingerprinting attributes
collected

This appendix presents the list of fingerprinting attributes monitored to detect scripts
that use browser fingerprinting for crawler detection.

A.1 Navigator properties

• userAgent,

• platform,

• plugins,

• mimeTypes,

• doNotTrack,

• languages,

• productSub,

• language,

• vendor,

• oscpu,

• hardwareConcurrency,
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• cpuClass,

• webdriver,

• chrome.

A.2 Screen properties

• width,

• height,

• availWidth,

• availHeight,

• availTop,

• availLeft,

• colorDepth,

• pixelDepth.

A.3 Window properties

• ActiveXObject,

• webdriver,

• domAutomation,

• domAutomationController,

• callPhantom,

• spawn,

• emit,

• Buffer,

• awesomium,

• _Selenium_IDE_Recorder,
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• __webdriver_script_fn,

• _phantom,

• callSelenium,

• _selenium.

A.4 Audio methods

• createAnalyser,

• createOscillator,

• createGain,

• createScriptProcessor,

• createDynamicsCompressor,

• copyFromChannel,

• getChannelData,

• getFloatFrequencyData,

• getByteFrequencyData,

• getFloatTimeDomainData,

• getByteTimeDomainData.

A.5 WebGL methods

• getParameter,

• getSupportedExtensions,

• getContextAttributes,

• getShaderPrecisionFormat,

• getExtension,

• readPixels,
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• getUniformLocation,

• getAttribLocation.

A.6 Canvas methods

• toDataURL,

• toBlob,

• getImageData,

• getLineDash,

• measureText,

• isPointInPath.

A.7 WebRTC methods

• createOffer,

• createAnswer,

• setLocalDescription,

• setRemoteDescription.

A.8 Other methods

• Date.getTimezoneOffset,

• SVGTextContentElement.getComputedTextLength



Appendix B

Overriding crawlers fingerprints

This appendix presents the code used to override the fingerprints of the 7 crawlers used
for the evaluation in Chapter 5. The page variable used in the code snippet refers to an
instance of a Page object of the Puppeteer library.

B.1 Overriding the user agent

The seven crawlers override their user agent to appear like a non-headless Chrome. The
code modifies both the user agent sent in the HTTP headers and the user agent contained
in the navigator object.
await page. setUserAgent ( userAgent );

Listing B.1 Setting the user agent of the crawler to a value contained in a variable
userAgent.

B.2 Deleting the webdriver property

Crawlers 2 to 7 delete the webdriver property of the navigator object. Since the
navigator object is handled differently by the browser, we cannot directly delete it.
Instead, we create a reference to the navigator prototype. Then, we delete the webdriver
property from this reference. Finally, we assign the new prototype reference that does
not contain the webdriver property to the navigator object.
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await page. evaluateOnNewDocument (() => {
const newProto = navigator . __proto__ ;
delete newProto . webdriver ;
navigator . __proto__ = newProto ;

});

Listing B.2 Delete the webdriver property from the navigator object.

B.3 Adding a language header

Crawlers 3 to 6 add an Accept-Language header field to all the HTTP requests they
send.
await page. setExtraHTTPHeaders ({

’Accept - Language ’: ’en -US’
});

Listing B.3 Adding an Accept-Language header field to all the HTTP requests sent by
the crawler.

B.4 Forging a fake Chrome object

Crawlers 4 to 6 add a realistic chrome property to the window object.
await page. evaluateOnNewDocument (() => {

window . chrome = {
app: {

isInstalled : false ,
},
webstore : {

onInstallStageChanged : {},
onDownloadProgress : {},

},
runtime : {

PlatformOs : {
MAC: ’mac ’,
WIN: ’win ’,
ANDROID : ’android ’,
CROS: ’cros ’,
LINUX: ’linux ’,
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OPENBSD : ’openbsd ’,
},
PlatformArch : {

ARM: ’arm ’,
X86_32 : ’x86 -32 ’,
X86_64 : ’x86 -64 ’,

},
PlatformNaclArch : {

ARM: ’arm ’,
X86_32 : ’x86 -32 ’,
X86_64 : ’x86 -64 ’,

},
RequestUpdateCheckStatus : {

THROTTLED : ’throttled ’,
NO_UPDATE : ’no_update ’,
UPDATE_AVAILABLE : ’update_available ’,

},
OnInstalledReason : {

INSTALL : ’install ’,
UPDATE : ’update ’,
CHROME_UPDATE : ’chrome_update ’,
SHARED_MODULE_UPDATE : ’shared_module_update ’,

},
OnRestartRequiredReason : {

APP_UPDATE : ’app_update ’,
OS_UPDATE : ’os_update ’,
PERIODIC : ’periodic ’,

},
},

};
});

Listing B.4 Adding a chrome property to the window object.

B.5 Overriding permissions behavior

Crawlers 5 and 6 override the way permissions for notifications are handled.
await page. evaluateOnNewDocument (() => {

const originalQuery = window . navigator . permissions .query;
window . navigator . permissions . __proto__ .query = parameters =>

parameters .name === ’notifications ’



192 Overriding crawlers fingerprints

? Promise . resolve ({ state: Notification . permission })
: originalQuery ( parameters );

});

Listing B.5 Override the ways permissions are handled.

B.6 Overriding window and screen dimensions

Crawler 6 override several attributes related to the size of the screen and the window
using consistent values collected on a non-headless browser.
await page. evaluateOnNewDocument (() => {

Object . defineProperty (window , ’innerWidth ’, {
get: function () { return 1919;}

});

Object . defineProperty (window , ’innerHeight ’, {
get: function () { return 1007;}

});

Object . defineProperty (window , ’outerWidth ’, {
get: function () { return 1919; }

});

Object . defineProperty (window , ’outerHeight ’, {
get: function () { return 1007; }

});

Object . defineProperty (window , ’pageXOffset ’, {
get: function () { return 0; }

});

Object . defineProperty (window , ’pageYOffset ’, {
get: function () { return 0; }

});

Object . defineProperty (window , ’screenX ’, {
get: function () { return 1680; }

});

Object . defineProperty (window , ’screenY ’, {
get: function () { return 0; }
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});

Object . defineProperty (screen , ’availWidth ’, {
get: function () { return 1920; }

});

Object . defineProperty (window , ’availHeight ’, {
get: function () { return 1080; }

});

Object . defineProperty (screen , ’width ’, {
get: function () { return 1920; }

});

Object . defineProperty (screen , ’height ’, {
get: function () { return 1080; }

});

document . addEventListener (" DOMContentLoaded ", () => {
Object . defineProperty ( document .body , ’clientWidth ’, {

get: function () { return 1919; }
});

Object . defineProperty ( document .body , ’clientHeight ’, {
get: function () { return 541; }

});
});

});

Listing B.6 Override properties related to the size of the screen and the window using
real values collected on a non-headless browser.

B.7 Overriding codecs support

Crawler 6 overrides the support for several audio and video codecs.
await page. evaluateOnNewDocument (() => {

HTMLAudioElement . prototype . canPlayType = (t) => {
const tTrimed = t. replace (/[ " ’;]/g, ’’);
if ( tTrimed === ’audio/ oggcodecs = vorbis ’) {

return " probably ";
} else if ( tTrimed === ’audio/mpeg ’) {
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return " probably ";
} else if ( tTrimed === ’audio/ wavcodecs =1’) {

return " probably ";
} else if ( tTrimed === ’audio/x-m4a ’) {

return "maybe";
} else if ( tTrimed === ’audio/aac ’) {

return " probably ";
}
return ’’;

};

HTMLVideoElement . prototype . canPlayType = (t) => {
const tTrimed = t. replace (/[ "’;]/g, ’’);
if ( tTrimed === ’video/ oggcodecs = theora ’) {

return " probably ";
} else if ( tTrimed === ’video/ mp4codecs =avc1 .42 E01E ’) {

return " probably ";
} else if ( tTrimed === ’video/ webmcodecs =vp8 , vorbis ’) {

return " probably ";
} else if ( tTrimed === ’video/ mp4codecs =mp4v .20.8 mp4a .40.2 ’) {

return "";
} else if ( tTrimed === ’video/ mp4codecs =mp4v .20.240 , mp4a .40.2 ’)

{
return "";

} else if ( tTrimed === ’video/x- matroskacodecs =theora , vorbis ’)
{
return "";

}
return ’’;

};
});

Listing B.7 Override the canPlayType function for HTMLAudioElement and
HTMLVideoElement.

B.8 Removing traces of touch support

Crawler 6 removes attributes and events that indicates the presence of touch support on
the device.
await page. evaluateOnNewDocument (() => {

document . createEvent = ( function (orig) {
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return function () {
let args = arguments ;

if (args [0] === ’TouchEvent ’) {
throw ’error ’;

}

return orig.apply(this , args);
};

}( document . createEvent ));

Object . defineProperty (navigator , ’maxTouchPoints ’, { get: () => 0
};

delete window . ontouchstart ;
});

Listing B.8 Remove events and functions related to touch screen.

B.9 Overriding toStrings

Crawlers 5 and 6 override the behavior of native functions. In order to hide their changes,
they both override the toString function of the functions they override. Moreover, they
also override Function.prototype.toString, the toString of the Function class.
await page. evaluateOnNewDocument (() => {

const oldCall = Function . prototype .call;
function call () {

return oldCall .apply(this , arguments );
}
Function . prototype .call = call;

const nativeToStringFunctionString = Error. toString (). replace (/
Error/g, " toString ");

const oldToString = Function . prototype . toString ;

function functionToString () {
if (this === window . navigator . permissions .query) {

return " function query () { [ native code] }";
}

if (this === HTMLVideoElement . prototype . canPlayType ) {
return " function canPlayType () { [ native code] }";
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}

if (this === HTMLAudioElement . prototype . canPlayType ) {
return " function canPlayType () { [ native code] }";

}

if (this === document . createEvent ) {
return " function createEvent () { [ native code] }";

}

if (this === functionToString ) {
return nativeToStringFunctionString ;

}
return oldCall .call( oldToString , this);

}
Function . prototype . toString = functionToString ;

});

Listing B.9 Override toString functions of functions overridden.
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