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Abstract

Nowadays, a wide range of devices can browse the web, ranging from smartphones,
desktop computers, to connected TVs. To increase their browsing experience, users
also customize settings in their browser, such as displaying the bookmark bar or their
preferred languages. Customization and the diversity of devices are at the root of browser
fingerprinting. Indeed, to manage this diversity, websites can access attributes about
the device using JavaScript APIs, without asking for user consent. The combination of
such attributes is called a browser fingerprint and has been shown to be highly unique,
making of fingerprinting a suitable tracking technique. Its stateless nature makes it also
suitable for enhancing authentication or detecting bots. In this thesis, I report three

contributions to the browser fingerprinting field:

1. T collect 122K fingerprints from 2,346 browsers and study their stability over more
than 2 years. I show that, despite frequent changes in the fingerprints, a significant

fraction of browsers can be tracked over a long period;

2. T design a test suite to evaluate fingerprinting countermeasures. I apply our test suite
to 7 countermeasures, some of them claiming to generate consistent fingerprints,
and show that all of them can be identified, which can make their users more
identifiable;

3. I explore the use of browser fingerprinting for crawler detection. I measure its
use in the wild, as well as the main detection techniques. Since fingerprints are
collected on the client-side, I also evaluate its resilience against an adversarial
crawler developer that tries to modify its crawler fingerprints to bypass security
checks.






Résumé

De nos jours, une grande diversité d’appareils tels que des smartphones, des ordinateurs ou

des télévisions connectées peuvent naviguer sur le web. Afin d’adapter leur expérience de

navigation, les utilisateurs modifient également diverses options telles que I'affichage de la

barre des favoris ou leurs langues préférées. Cette diversité d’appareils et de configurations

sont a 'origine du suivi par empreintes de navigateurs. En effet, pour gérer cette diversité,

les sites web peuvent accéder a des informations relatives a la configuration de 'appareil

grace aux interfaces du langage JavaScript, sans obtenir l’accord préalable de I'utilisateur.

La combinaison de ces informations est appelée empreinte de navigateur, et est bien

souvent unique, pouvant donc servir a des fins de suivi marketing. Néanmoins, le fait

que les empreintes ne soient pas stockées sur la machine rend cette technique également

intéressante pour des applications relatives a la sécurité sur le web. A travers cette these,

je propose 3 contributions relatives aux domaines des empreintes de navigateurs :

1. Je collecte 122,000 empreintes de 2,346 navigateurs et analysons leur stabilité

pendant plus de 2 ans. Je montre qu’en dépit de changements fréquents dans
leur empreinte, une part significative des navigateurs peut étre suivie pendant de

longues périodes;

. Je congois une suite de tests afin d’évaluer la résistance des outils de protection
contre le suivi par empreinte de navigateurs. Je l'applique a 7 outils de protection,
et montre que tous peuvent étre détectés, ce qui peut rendre leur utilisateurs plus

facilement identifiables, et donc vulnérables au suivi;

. Enfin, j'explore I'utilisation des empreintes de navigateurs pour la détection de
crawlers. Apres avoir mesuré 1'usage de cette technique sur le web, je présente
les différents attributs et tests permettant la détection. Comme les empreintes de
navigateurs sont collectées coté client, j'évalue également la résilience de cette forme
de détection contre un adversaire développant des crawlers dont les empreintes ont

été modifiées.
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Chapter 1

Introduction

1.1 Motivations

As users, we all have our own way to browse the web. Some users browse the web using
a smartphone, while others prefer to use a laptop, sometimes with an external monitor.
Some users decide to have the bookmark bar visible in their browser, while others prefer
to increase the default font size because they usually sit far from their monitor. This
diversity of devices, browsers, and operating systems, as well as their customization,
is at the root of browser fingerprinting. In his thesis, Mayer [2] showed that browsers
could be uniquely identified because of their configuration. Indeed, to adapt websites’
behavior based on the user device, browsers enable scripts to access information about the
user device and its configuration using JavaScript APIs. The combination of attributes
collected from these APIs is called a browser fingerprint and can be collected by tracking

scripts without obtaining the user consent.

In 2010, Eckersley [3] studied browser fingerprints uniqueness. He created the Panopticlick
website and collected more 470K browser fingerprints, among which 83.6% were unique.
He also showed that more than 94.2% of the fingerprints when Flash or Java plugins
were activated. Because of this uniqueness, he argued browser fingerprints can be used
for tracking. In particular, it can be used in addition to cookies, to respawn them when
they have been deleted by the user. Indeed, while cookies are stored in the browser and
can, therefore, be erased, browser fingerprints are collected in the browser but are then

stored on a remote server the user has no control over.
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After Eckersley’s study, several studies [4-6] have measured the use of fingerprinting in
the wild. These studies all showed that fingerprinting was used by a significant fraction
of the most popular websites. They also showed that commercial fingerprinters adapt
their behavior to leverage new APIs. Indeed, while Eckersley showed that both Flash and
Java could be used to obtain the list of fonts, in their 2013 study, Nikiforakis et al. [4]
showed that none of the commercial fingerprinters they studied were still using Java.
They also noticed that since Flash was getting less popular due to its deprecation, one of
the fingerprinters was using a new approach to obtain the list of fonts using JavaScript.
More recently, Englehardt et al. [6] showed that fingerprinters had found new approaches
to exploit APIs introduced by HTML5, such as the canvas, WebGL and audio APIs.

To protect against fingerprinting, several countermeasures have been proposed, ranging
from simple browser extensions that lie about the device nature to forked browsers
that lie about the list of fonts available [7-9]. Niforakis [4] and Acar [10] evaluated
the effectiveness of fingerprinting countermeasures, such as simple user agent spoofers,
or Fireglove, a browser extension that randomly lies about attributes constituting a
fingerprint. Their evaluations showed that countermeasures could be detected because
they generated inconsistent fingerprints. Thus, they argued that using these kinds of

countermeasures could be counterproductive for a user since she could become identifiable.

Besides tracking, browser fingerprinting can also be used to improve web security. The
main use-case studied in the literature is to enhance authentication [11-14] by using the
fingerprint as a second factor. Burztein et al. [15] showed that browser fingerprinting can
also be used to detect crawlers. They proposed a dynamic challenge-response protocol
that leverages the unpredictability and yet stable nature of canvas rendering to detect
devices that lie about their nature—e.g. emulated devices or devices that modify the

browser and OS contained in their user agent.

In this thesis, I aim at improving the understanding of browser fingerprinting both
concerning its impact on privacy, as well as its applications to improve web security.
Concerning its impact on privacy, this thesis aims to answer the following research

questions:
1. Are fingerprints stable enough to be used for tracking?
2. How long can browsers be tracked using only their fingerprint?

3. What is the overhead of using browser fingerprinting tracking algorithms at scale?
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4. Are fingerprinting countermeasures effective and what are the privacy implications

of using these countermeasures?

Regarding the adoption of browser fingerprinting in a security context, this thesis aims

to answer the following research questions:

1. How widespread is the use of fingerprinting for crawler detection among popular

websites?
2. What fingerprinting techniques are used specifically to detect crawlers?

3. How resilient is browser fingerprinting against an adversary that alters its fingerprint

to escape detection?

1.2 Contributions

1.2.1 Tracking Browser Fingerprint Evolutions

While browser fingerprints need to be both unique and stable for tracking, studies tend
to focus only on uniqueness at the expense stability. Nevertheless, browser fingerprints
can change frequently for several reasons ranging from a browser or a driver update
to a change in the browser settings. Thus, I argue that it is essential to accurately
measure browser fingerprint stability, in particular, the stability of the different attributes
constituting it, and whether or it varies across browsers. Moreover, to better understand
how effective browser fingerprinting is as a tracking mechanism, there is a need to measure

how long can browsers be tracked using only their fingerprints.

To address the study of the stability and the tracking duration, I analyze more than 122K
browser fingerprints from 2,346 distinct browsers collected over a two year period using the
AMIUNIQUE browser extensions. My results confirm Eckersley findings that fingerprints
change frequently. I show that half of the browser instances display at least one change
in their fingerprint in less than five days. Nevertheless, we observe discrepancies across
browsers, with some browsers having frequent changes in their fingerprints and others
with more stable fingerprints. I also study the stability of fingerprinting techniques
that were not available when Eckersley’s study was conducted. In particular, I show
that—in addition to having a high entropy—canvas fingerprint is one of the most stable
attributes in a fingerprint. For half of the browsers, its value remains stable more than

300 days. Then, I study how long browsers can be tracked using only their fingerprints. I
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propose two linking algorithms, one based on rules, and another hybrid one, that leverage
both rules and machine learning to link fingerprint evolutions over time. I show that
while a significant fraction of browsers is immune against fingerprinting, mostly because
their fingerprints are not unique or are too close from other fingerprints, around 32% of
browsers can be tracked for more than 100 days. Moreover, I show that these linking
algorithms can be easily parallelized to run on cheap public cloud instances, making of

fingerprinting a threat to privacy.

1.2.2 Studying The Privacy Implications of Browser Finger-

printing Countermeasures

Different defense strategies and countermeasures have been proposed to protect against
browser fingerprinting. With new APIs being added frequently to browsers, it is difficult to
always have up-to-date countermeasures that protect against new forms of fingerprinting.
Moreover, studies [4, 10] revealed the risk of becoming more identifiable when using
fingerprinting countermeasures. Thus, I plan to study the privacy implications of using
fingerprinting countermeasures, and whether or not they are counterproductive. I propose
FP-SCANNER, a test suite that detects inconsistent fingerprints created by fingerprinting
countermeasures. [ apply FP-SCANNER to 7 different countermeasures, ranging from
simple browser extensions to peer-reviewed forked browsers, and I show that even when
countermeasures claim to generate consistent fingerprints, their presence can be revealed.
Beyond spotting fingerprinting countermeasures, I demonstrate that FP-SCANNER can
also recover original values, such as the browser or the operating system. I leverage
my findings to discuss different strategies for building more effective fingerprinting

countermeasures that do not degrade user privacy.

1.2.3 Evaluating the Resilience of Browser Fingerprinting to

Block Adversarial Crawlers

Although some studies showed browser fingerprinting can be used in a security context, for
example, to enhance authentication or to detect emulated devices, fingerprinting is often
associated with unwanted tracking. I propose to study the use of browser fingerprinting
in a security context, as a mechanism to detect bots, in particular, crawlers on the web. 1
show that fingerprinting for crawler detection is popular among websites of the Top Alexa

10,000. I study the techniques used by commercial fingerprinting scripts. While these
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scripts use techniques also used for tracking, such as canvas or font enumeration, they
also developed specific techniques that aim at identifying if a fingerprint belongs to known
headless browsers or if a browser is instrumented. I also evaluate the effectiveness and
resilience of such detection techniques. Indeed, using fingerprinting in a security context
is challenging due to the adversarial nature of an attacker. Since browser fingerprints are
collected in the browser, it means a skilled attacker can modify its value to bypass security
checks. Thus, I show that, while crawler detection using fingerprinting provides better
results against simple crawlers with few modifications on their fingerprints compared to
other existing approaches, it fails to detect crawlers with more modifications, as well as
non-headless crawlers. Therefore, my results show that fingerprinting can quickly detect
simple headless crawlers, while its integration in a layered approach, in addition to other

existing detection approaches, can strongly increase its resilience.

1.3 List of Scientific Publications

During the course of this thesis, I published papers in the following conferences and

workshops:

[16] Vastel, A., Laperdrix, P., Rudametkin, W., & Rouvoy, R. (2018, May). FP-
STALKER: Tracking Browser Fingerprint Evolutions. In IEEE S&P 2018-39th
IEEE Symposium on Security and Privacy (pp. 1-14). IEEE: https://hal.inria.fr/
hal-01652021.1

[17] Vastel, A., Laperdrix, P., Rudametkin, W., & Rouvoy, R. (2018). FP-scanner: the
privacy implications of browser fingerprint inconsistencies. In 27th USENIX Security

Symposium (USENIX Security 18) (pp. 135-150): https://hal.inria.fr/hal-01820197.
2

[18] Vastel, A., Rudametkin, W., & Rouvoy, R. (2018, April). FP-TESTER: Automated
Testing of Browser Fingerprint Resilience. In 2018 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW) (pp. 103-107). IEEE: https:
//hal.inria.fr/hal-01717158.2

T am the main author of the paper. I wrote the majority of its contents. I proposed the contributions
and the evaluation protocol and I wrote the experimental framework.

2T am the main author of the paper. I wrote the majority of its contents. I proposed most of the
contributions and the evaluation protocol and I wrote the experimental framework.
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Vastel, A., Blanc, X., Rudametkin, W., & Rouvoy, R. FP-Crawlers: Evaluating

the Resilience of Browser Fingerprinting to Block Adversarial Crawlers (under

submission). !

[19] Vastel, A., Snyder, P., & Livshits, B. Who Filters the Filters: Understanding the
Growth, Usefulness and Efficiency of Crowdsourced Ad Blocking (under submission):
https://arxiv.org/abs/1810.09160. 3

1.4 List of Tools and Prototypes

During the course of this thesis, I developed several algorithms, tools, prototypes, and
libraries to gather data, test different research hypothesis or simply made or research
more accessible. To encourage the reproducibility of my results, I published the entirety
of the code:

o Implementations of Fp-Stalker, our two algorithms to link browser fingerprints over
time [20],

o Implementation of Fp-Scanner, our test suite to detect inconsistencies introduced

by fingerprinting countermeasures [21],

o Code of the crawlers and the labeling interface used in Chapter 5 to explore the

use of browser fingerprinting for crawler detection [22],

« An open-source implementation of Picasso canvas as described in Burztein et al. [15]

paper (23],
« Fp-Collect, a browser fingerprinting library oriented towards bot detection [24],

o Fp-Scanner (bis), a library that leverages Fp-Collect browser fingerprints to detect
bots [25].

1.5 Outline

The thesis is organized as follows.

3] am the main author of the paper. I wrote a significant part of its contents. I proposed some of
the contributions and some of the evaluation protocol. I was the main contributor of the experimental
framework.
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Chapter 2 starts by introducing the context of this thesis. I present how the diversity
of devices and customization are at the root of browser fingerprinting. Then, I define
what is browser fingerprinting, what are the main attributes constituting a fingerprint
and how they are collected. I review the existing literature on browser fingerprinting. I
analyze existing fingerprinting countermeasures along with their main shortcomings. I
also explore existing approaches that use fingerprinting in a security context. Finally, I
present other non-fingerprinting crawler detection approaches, such as time series analysis

and CAPTCHAs, to explain how fingerprinting compare to them.

Chapter 3 presents my study on tracking using fingerprinting. Most large-scale studies
focus on fingerprint uniqueness. In Chapter 3, I fill the gap by studying the stability of
fingerprints over more than 2 years using data collected from the AMIUNIQUE browser
extensions. Moreover, I propose two linking algorithms that aim at linking evolutions of
fingerprints of the same browser over time and show that, despite frequent changes, a
significant fraction of browsers can be tracked for more than 100 days. This chapter is
an extension of the FP-Stalker paper [16] published at S&P 18 and includes 25,000 new

fingerprints than in the original paper.

Chapter 4 investigates the privacy impact of fingerprinting countermeasures. Because
countermeasures may generate inconsistent fingerprints, they can be detected and harm
their user privacy by making them more identifiable. We design a test suite that leverages
inconsistencies to detect the presence of fingerprinting countermeasures and show that
all of the 7 countermeasures I evaluate can be detected. This chapter was originally
published as a conference paper entitled Fp-Scanner: The Privacy Implications of Browser

Fingerprint Inconsistencies [17] published at Usenix Security 18.

Chapter 5 explores the use of fingerprinting in a context of crawler detection. I explore
its popularity among websites of the Top Alexa 10K and describe the main detection
techniques used by commercial fingerprinters to distinguish humans from bots. Because
fingerprints can be modified, I also measure the resilience of this approach against an

adversarial crawler developer.

Finally, Chapter 6 concludes this thesis by summarizing my contributions, proposing

future work and discussing a possible future for browser fingerprinting.
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Chapter 2

State-of-the-art

2.1 Context

2.1.1 Browsers Evolution

The complexity of browsers has continuously increased over time. Before 1995 and the
introduction of the JavaScript language, web pages were only constituted of static content
structured using HTML tags to describe the semantics of the content. Thus, it was not
possible for pages to perform any dynamic tasks on the client-side, such as reacting to
clicks or mouse movements. In 1995, Brendan Eich developed the JavaScript language,
while working at Netscape, the company behind the proprietary Netscape browser. The
introduction of this new language in the browsers started a new era of a more dynamic

web.

An increasing diversity of APIs. Since then, browser vendors have kept on adding
new features to attract users. Applications that were once available only as heavy desktop
clients are now available as web applications that can run in a browser. For example,
advanced text and slides editors, such as Microsoft Word or Open Office Impress were
only available as desktop clients. Nowadays, several online services propose similar
tools running as web applications, such as Google Docs, Slides.com, and Prezi. From
a developer point of view, web applications are supposed to make the development
process more convenient, as it removes the burden of managing device compatibility
issues. Indeed, web applications should be able to run in all browsers that stick to the

web standards. Besides text and slides editors, other complex applications, such as
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video games and real-time video chats, can now efficiently run in browsers. For these
applications to work in browsers, it required browser vendors to add several APIs, like the
canvas and the WebGL APIs, to efficiently generate 2D and 3D shapes or the WebRTC

API that enables real-time communication.

An increasing diversity of devices. In addition to the increasing number of APIs and
features available in browsers, the diversity of devices capable of browsing the web has
also increased drastically. While a few years ago only desktop computers could browse
the web, now, a wide range of devices ranging from mobile devices, desktop computers,
to connected TV that embeds a browser can browse the web. To help websites to manage
this diversity of devices, for example, to better display the content or adapt the website
to the performance of the device, browser vendors provide several JavaScript APIs that
enable websites to access information about the device, which as we show in this thesis,

is at the root of browser fingerprinting.

Evolution of browsers market share and its consequences. While during the two
browser wars,! there was a race between the different browser vendors to continuously
add more features, often at the expense of a proper evaluation of their impact on privacy,
nowadays, the situation has stabilized, with fewer browser vendors left. Google, with its
Chrome browser, represents more than 62% of the browser market share,? followed by
Safari with 15% and Firefox, with less than 5% of the market share. Browser vendors and
the World Wide Web Consortium (W3C) tend to better take into account the privacy
aspects before introducing new APIs, in particular, how the API could be used for to
fingerprint a browser. For example, in the case of the new navigator.deviceMemory
attribute introduced in December 2017, the W3C recommended to round the value
returned to reduce the fingerprinting risk.* Moreover, privacy and security have become
strong commercial arguments.® Thus, major browser vendors, such as Mozilla and Apple,
added more user-friendly mechanisms to manage privacy preferences and countermeasures
in their browser, such as the anti browser fingerprinting protection in Firefox,% or the

Inteligent Tracking Prevention (ITP) in Safari.” New privacy-friendly browsers, such

Thttps://en.wikipedia.org/wiki/Browser _wars
2http://gs.statcounter.com /browser-market-share#monthly-201812-201812-map
3https://developer.mozilla.org/en-US/docs/Web/API/Navigator /deviceMemory
4https://w3c.github.io/device-memory / #sec-security-considerations
Shttps://www.theverge.com/2019/3/14/18266276 /apple-iphone-ad-privacy-
facetime-bug
Shttps://blog.mozilla.org/futurereleases/2019/04/09/protections-against-
fingerprinting-and-cryptocurrency-mining-available-in-firefox-nightly-and-beta/
"https://webkit.org/blog/7675/intelligent-tracking-prevention/
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as Brave and Cliqz, have also emerged. Browser vendors are also more willing to take
measure for fixing security issues, even though it can impact the user experience by adding
significant performance overhead. For example, Google Chrome added site isolation®
to enhance security, in particular against side-channel attacks, such as Spectre and
Meltdown, even though this can lead to a memory increase of 10%. Similarly, browser
vendors deprecated browser plugins because of the security issues they engendered, even
though some of them—e.g. the Adobe Flash plugin—were used on popular websites,
like YouTube.? Instead, they favored browser extensions that have fewer privileges
than plugins and that use a system of permissions similar to the one used for mobile

applications.

2.1.2 Monetizing Content on the Web: Advertising and Track-

ing

Evolution of online advertisting. Advertising is the most popular way to monetize
content on the web [26]. Nevertheless, since the first online advertising banners in 1995,
to the advanced ad-targeting platforms, advertising has gone through multiple stages.
At the beginning of online advertising, websites charged advertisers an upfront cost to
occupy some space with a banner on their website. Because of the popularity of these
banners, advertisers started to help their customers choose the most adapted audience
to display their banners depending on the demography of the users they were trying to
target. To help companies to measure how their advertising campaigns were performing in
real-time, Doubleclick introduced a service, called DART (Dynamic Advertising Reporting
and Targeting) that aimed at helping companies to measure the number of times their
ads had been viewed and clicked on the different websites their ads were present on.
This new feature was game-changing and lead to the creation of a new pricing model.
While advertisers used to pay websites to host their banner, no matter the amount of
traffic, views, and clicks, after the introduction of DART, the price started to depend
on the number of times ads were viewed (cost per impression). Around 2000, search
engines became increasingly more important in the web ecosystem, providing users
a convenient way to find relevant content on an ever-growing web. Search engines

monetized their popularity by enabling advertisers to target users based on the keywords

8https:/ /security.googleblog.com /2018 /07 /mitigating-spectre-with-site-isolation.
html

%https://youtube-eng.googleblog.com/2015/01/youtube-now-defaults-to-html5_ 27.
html
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they were searching for. This also created a new shift in the advertising pricing model,
with the introduction of pay per click instead of pay per impression. Finally, around
2005, advertisers have started to gather data to make advertising more relevant to users
and therefore maximize their incomes. This technique, called behavioral advertising or
targeted advertising, consists in gathering data about the users, such as their IP address,
the pages they have visited and the products they bought online, to build user profiles of
interests that are later used to provide more relevant ads. Since users only see ads they
are more interested in, there is more chance they click on it, which, therefore, increases

the advertiser revenues.

The tracking industry. To build these user profiles, the advertising industry heavily
relies on trackers. Trackers are scripts or images used to gather and transmit data to
the tracking company servers. To increase the amount of data collected, trackers are
placed on several websites, most of the time not owned by the tracking company, as
third-party resources. To incentivize websites to use trackers on their pages, trackers
tend to provide a useful service. For example, trackers may take the form social media
widgets, such as the Facebook Like button or the Twitter retweet button that aim at
increasing the website visibility by making it more easily shareable on social media.
Trackers can also take the form of analytic services, e.g. Google Analytics, to help
websites better understand their audience. To keep track of users over time and across
different websites, trackers generate a unique user identifier (UUID) that they store
in the browser using cookies or other storage APIs, such as local and session storage,
as well as indexed database. Trackers also misuse the ETag cache header to store and
retrieve user identifiers. The idea behind multiplying the number of storage mechanisms
is that, if a user deletes only one of its stored identifiers, the other identifiers can still be

regenerated using the other storage mechanisms.

Data protection laws. Because of the invasive nature of trackers, policymakers have
proposed laws to protect users data. One of the most recent and important law is
the European General Data Protection Regulation (GDPR) that requires websites and
trackers to obtain user consent before they gather data. Moreover, websites are required
to specify the purpose of the data collection, as well as the list of companies they will
share the data with. While previous laws used to specifically targets cookies,' GDPR is
more general. Thus, when they refer to the notion of user identifier, it does not refer
only to explicit identifiers stored in cookies, but to any forms of data that could be used

as an identifier, for example, a browser fingerprint.

Ohttps: / /www.cookielaw.org/the-cookie-law /
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Conclusion. To gather information about users, the online advertising industry heavily
relies on trackers that take different forms, ranging from social media widgets to analytics
services. To keep track of user identities along time and across different websites, trackers
store a unique user identifier in the browser using cookies or other storages mechanisms.
Nevertheless, by using a single storage mechanism, trackers run the risk that when a
user deletes her cookies, they lose track of her valuable information. Thus, some trackers
have come up with a more invasive tracking technique: browser fingerprinting. This
technique consists in gathering attributes about the user device and configuration using
APIs provided by the browsers. Due to the high diversity of devices and configurations,
the combination of these attributes, called a browser fingerprint, is often unique, and
can, therefore, be used for tracking. Contrary to cookies that can be erased by the user,
fingerprints cannot be deleted since they are not stored on the user device, making it

more difficult for users to protect themselves against it.

2.2 Browser Fingerprinting

2.2.1 Definition

A Browser fingerprint is a set of attributes that can be used to identify a browser. The
analogy with a digital fingerprint arises from the fact that this combination of attributes
is often unique [3, 27]. Browser fingerprints are used for tracking purposes, as well as
for security purposes, such as bot detection or to enhance authentication. One of the
main differences between browser fingerprinting and cookies lies in the stateless nature
of browser fingerprints. While cookies used for tracking rely on storing an identifier in
the browser, browser fingerprints are totally stateless, which means they are not stored

on the user device, making its detection more difficult and its deletion impossible.

In this thesis, the words fingerprint and browser fingerprint, as well as the words
fingerprinting and browser fingerprinting are used interchangeably. Moreover, we consider
only permissionless browser fingerprinting—i.e., attributes that can be accessed without
requesting any permission to the user. Thus, it excludes several attributes, such as the
precise geolocation using the navigator.geolocation API or advanced forms of WebRTC
fingerprinting [6] that can obtain the name of multimedia peripherals connected to a
device. While this definition of fingerprinting is widely accepted in the literature, the
different analyses of fingerprinting scripts conducted during this thesis also show that

commercial fingerprinters do not use attributes that require permissions. Nevertheless,
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in the case where fingerprinting is used for more legitimate purposes, such as enhancing
authentication, we consider these attributes could be part of the fingerprints as users
would probably have more incentives to grant their authorization to the fingerprinting

script.

Attributes constituting a browser fingerprint can be either collected in the browser using
JavaScript or plugins, such as Flash, as well as attributes sent by the browser, such as
HTTP headers. Typically, the IP address or the geolocation that can be derived from it
are not considered as part of a browser fingerprint [3, 27, 28|. This definition also excludes
other forms of fingerprinting techniques, such as TCP fingerprinting [29], a technique
that leverages lower-level information from the TCP stack, such as the order of the TCP
options. While our definition of browser fingerprinting allows fingerprints collected both
on computers and mobiles, the only constraint is that it must bcollected using a browser.
Thus, it excludes all forms of fingerprinting conducted using applications, whether or not

they require permissions, such as presented by Kurtz et al. [30] and Wu et al. [31].

Collecting browser fingerprints. Figure 2.1 provides an overview of the process to
collect a browser fingerprint. When a user visits a website with her browser, it sends
a GET request to the server to retrieve a page. Upon receiving the request, the server
sends a response containing the content of the page. Fingerprinting scripts are included
as JavaScript files in the HTML returned. These scripts may be served as first-party
scripts by the domain visited, or by third-party domains to track users across different
websites. Once the script was loaded, the fingerprinting script can execute to collect the
different attributes. In practice, most of the fingerprinting scripts wait for the Document
Object Model (DOM) to be also loaded since the script may need to interact with it
to collect some fingerprinting attributes, such as the list of fonts. After the JavaScript
fingerprinting script completes to execute, it needs to transmit the fingerprint collected
to a server. Some fingerprinting script etransmit the whole list of attributes, while others
simply compute a hash that is transmitted. Different fingerprints can be used to transmit
the fingerprint to a remote server. If only a hash is transmitted or if the fingerprint
collected is small, the fingerprint can be sent using an image pixel where the value of
the fingerprint is added as a GET parameter of the image URL. When fingerprints are
too big to be sent as images, some can trigger a POST request using the XMLHttpRequest

Ill 1.12

request API* or the navigator.sendBeacon API."* The sendBeacon function has the

advantage of being asynchronous, which means that data can be transmitted when a

Uhttps://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
2https://developer.mozilla.org/en-US/docs/Web /API/Navigator /send Beacon
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Server

2. The server sends the
requested page along
with additional
JavaScript and CSS stylesheets

4. The fingerprinting script
transmits the fingerprint
to a remote server

—,s'

3. JavaScript Fingerprinting
script executes in the browser
and collects a fingerprint

1. The browser
requests a page

Browser running
on a device

Figure 2.1 Schema representing the process to collect a browser fingerprint. To make the
schema more comprehensive, we consider that all resources, including the fingerprinting
script, are delivered by the first party.

user closes a tab without blocking it. It is particularly useful when fingerprinters also
collect dynamic information, such as clicks and mouse movements in addition to the
fingerprinting attributes. Thus, they besides its fingerprint, they can also monitor all
her activity on the page. While this feature is also interesting for security purposes, one
should be careful since the beforeunload event used to signal that a user is closing the

page is often badly implemented in headless browsers.!?

Upon reception of the fingerprint, the server can also collect the HT'TP headers associated
with the GET or the POST request used to send the fingerprint, add these attributes to

fingerprint and then store the fingerprint in a database.

2.2.2 Building a Browser Fingerprint

In this subsection, we present the different attributes constituting a browser fingerprint.

While fingerprinting can be used for security purposes, we focus on attributes used

Bhttps://github.com/GoogleChrome/puppeteer /issues/2386
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for tracking. We provide more details about fingerprinting attributes used for security
at the end of this chapter, as well as in Chapter 5 where we explain how commercial
fingerprinters detect crawlers based on their fingerprint. Fingerprint attributes require

two properties when used for tracking:

1. Uniqueness. While not each attribute need to be unique individually, their
combination—i.e., the browser fingerprint—should be unique in order to distinguish
between different browsers. Indeed, if different browsers have the same fingerprint,

they cannot be tracked using browser fingerprinting.

2. Stability. Even in the case where a browser fingerprint is unique, tracking requires
a certain stability of the fingerprinting. Indeed, if we consider an extension that
randomizes the value of a canvas at each visit, then the browser fingerprint keeps
on being unique solely because the canvas is unique. Nevertheless, since the canvas
keeps on changing, it becomes challenging for a fingerprinter to keep track of the

fingerprint over time.

We distinguish three main families of attributes constituting a fingerprint: HTTP
headers, attributes collected using JavaScript and attributes collected using Flash. For
each category, we present the different attributes of this category. We explain how these
attributes are collected and we also provide examples, as well as information about the

attribute such as its uniqueness.

2.2.2.1 HTTP Headers

When a browser sends an HT'TP request to obtain a page or to transmit data using
the XMLHttpRequest API for example, it attaches headers to its request that provide
information to the server receiving this request. The role of these headers has been
defined in different Request For Comments (RFC), in particular in the RFC 7231 [32]
where they define the semantics and the contents of header. They also explain how some
of the headers leak information about the user or the device, and the risk it can be used
for fingerprinting (Section 9.7 of the RFC)!4.

We present four different HT'TP headers, as well as a fifth attribute, the order of the
headers, that leak information about the device and its user and that can therefore be

used for fingerprinting.

M Pingerprinting risks related to HTTP headers: https://tools.ietf.org/html/rfc7231#section-
9.7
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User-Agent. This header provides information about the device and the software, a
browser in our case, sending the request. The semantic and the content of this header
are defined in the section 5.5.3 of the RFC 7231 [33]. It can be used by servers to gather
analytics data or for compatibility purposes when an application is only available on
certain kinds of devices. The User-Agent header provides several information useful
for fingerprinting, such as the browser and its version, as well as the Operating System
(OS). To protect against fingerprinting, the RFC advises developers not to include fine-
grained details about the device. Nevertheless, it does not specify any format for the
User-Agent header. Thus, as we show in the table presenting examples of user agents,
some applications on mobile devices with an embedded browser may indicate sensitive

information, such as the name of the carrier.

User-Agent Description

Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_14_3)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/72.0.3626.121 Safari/537.36

Chrome browser version 72 on

MacOS

Opera/9.30 (Nintendo Wii; U; ; 3642; en) Opera browser on a Wii

Mozilla/5.0 (iPhone; CPU iPhone 0S 12_1 like Mac 0S X)

AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/16B92
[FBAN/MessengerFori0S;FBAV/ 192.0.0.46.101; Browser integrated in the
FBBV/131204877; FBDV/iPhone8,4; FBMD/iPhone;FBSN/i0S; Messenger app on iPhone
FBSV/12.1;FBSS/2;FBCR/Play;

FBID/phone;FBLC/pl_PL;FBOP/5]

Accept-Language. This header is sent by the browser to indicate the languages the
user prefers [34]. The user can declare multiple languages, each one associated with a
preference value. This preference value, also called quality value, is specified using a q
parameter. Thus, both the list of languages and their associated quality values chosen
by the user can be collected to be part of a fingerprint. Contrary to the majority of
the fingerprinting attributes that reflect the nature of the device or the browser, this

attribute reflects the user preferences.

Accept-Encoding. This header is sent by the browser to indicate the accepted encodings
for the response. Similarly to the Accept-Language header, the browser can indicate
multiple encodings, each with a quality value. Nevertheless, quality values are not

commonly used with this header in the main browsers.
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Accept-Language Comments

Russian in priority, then
ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7 American english then any form
of English.

American English or any form or
English in priority. Then
German, French, Polish,
Ukrainian, Russian, Swedish,

en,en-US; g=0.9,de-DE; g=0.8,de; gq=0.7,fr; gq=0.6,pl;
q=0.5,uk; g=0.4,ru; g=0.3,sv; gq=0.2,nb;q=0.1

Norwegian.
zh-CN,zh;q=0.9,en;q=0.8 Chinese then English.
Accept-Encoding Comments

br, gzip, deflate Encoding header sent by Safari

gzip , deflate, br Encoding header sent Chrome and Firefox

Accept. The Accept header specifies the response media types accepted by the browser.
Similarly to the Accept-Language header, the browser can indicate multiple types, each

with a quality value to indicate its preferences.

Accept Description
text/html,application/xhtml+xml, application/xml; Accept header when requesting a
g=0.9,image/webp, image/apng,*/*;q=0.8 page on Chrome version 72.
text/html,application/xhtml+xml, application/xml; Accept header when requesting a
g=0.9,image/webp, */*;9=0.8 page on Firefox version 65

Order of the HTTP headers. Besides the headers values, different studies [11, 3, 35]
also showed that the order of the HI'TP headers depend on the browser and can be used
to identify a browser. While the type of browser is already specified in the User-Agent

header, this can be used for verification.



2.2 Browser Fingerprinting 23

2.2.2.2 JavaScript Attributes

Attributes collected using JavaScript are the main source of entropy for browser finger-
prints. In order to help developers adapt their websites to their user device—for example,
to change the style depending on the size of the screen—browsers expose different APIs
that leak information about the device. We present how different JavaScript APIs
accessible without any permission, such as the canvas or the audio API, are used by

fingerprinters to gather highly unique fingerprinting attributes.

We first introduce several attributes that can be accessed using the navigator object,
a special object exposed by default in all main browsers, which provides information
about the browser and the OS.

navigator.userAgent. The user agent value can also be accessed in JavaScript trough
the navigator.userAgent property. In normal conditions—i.e., in the absence of any

user agent spoofers, this property returns the same value as the user agent contained in
the HT'TP headers.

navigator.plugins. This attribute returns the list of plugins installed in the browser.
For each plugin, it provides information about its name, the associated filename, a
description as well as a version of the plugin. Due to the deprecation of the Netscape
Plug-in API (NPAPI),'6 mostly because of security reasons, the entropy of this entropy
has decreased over time.

15Navigator object: https://developer.mozilla.org/en-US/docs/Web/API/Navigator
6https://blog.chromium.org/2013/09 /saying-goodbye-to-our-old-friend-npapi.html
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Plugins Description

Chromium PDF Plugin:: Portable Document
Format::internal-pdf-viewer::

. ] P Plugins on a Chrome browser
__application/x-google-chrome-pdf pdf Portable

Document Format

Shockwave Flash:: Shockwave Flash 31.0 rO::
NPSWF32_31_0_0_108.d11::
31.0.0.108__application/x-shockwave-flash swf Adobe

Browser with the Flash plugin.
The .d11 file extension indicates
that they browser is running on

Flash movie,application/futuresplash spl .
Windows.

FutureSplash movie

Edge PDF Viewer::Portable Document .
) ) i Plugins on an Edge browser.
Format::::__application/pdf pdf Edge PDF Viewer

navigator.mimeTypes. The mimeTypes property returns an array containing the list
of MIME types supported by the browser. Each MIME type object provides information
about the type supported, a description and the filename:

« Type: 'Portable Document Format’, description: ’application/x-google-chrome-

pdf” and filename: "pdf’

o Type: "Widevine Content Decryption Module’, description: ’application/x-ppapi-

widevine-cdm’

navigator.platform. It returns the platform the browser is running on. While this
information is redundant with the OS that contained in the User-Agent header, it can
be used to verify if the OS claimed has been modified.
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Platform Comments
Linux x86_64, Linux armv7l, Linux armv8l, Linux i686, Possible values for browsers
Linux aarch64 running on Linux.

Value for browsers running on

MacIntel
MacOS.

) ] Possible values for browsers
iPad, iPhone . .
running on iOS.

Possible values for browsers
Win64, Win32 ] .
running on Windows.

navigator.hardwareConcurrency. This property returns an integer representing the

number of logical processors available to the browser.

navigator.oscpu. The oscpu property returns a string corresponding to the operating
system of the device. Similarly to the platform attribute, it is also redundant with
the OS contained in the User-Agent header. Contrary to navigator.platform that is

available in all the main browsers, this attribute is only available in Firefox.

oscpu Comments
Linux x86_64, Linux armv7l, Linux armv8l, Linux i686, Possible values for browsers
Linux aarch64 running on Linux.

Intel Mac 0S X 10.12, Intel Mac 0S X 10.9, Intel Mac 0S Value for browsers running on

X 10.11 MacOS.
Windows NT 6.1; Win64; x64, Windows NT 10.0; WOW64, Possible values for browsers
Windows NT 5.2; WOW64 running on Windows.

navigator.languages. It returns an array containing the user’s preferred languages.
The array is ordered by preference with the most preferred language first. The value
returned is based on the same value as the Accept-Language header, the main difference

is that it does not include the quality values represented by the letter "q" in the header.
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Date.getTimezoneOffset. The getTimezoneOffset method of the Date class returns
the difference in minutes between the user timezone and UTC timezone. As pointed out
by Gomez et al. citegomez2018hiding, the entropy of this attribute mostly depends on the

distribution of the location of the users visiting the website that collect the fingerprints.

navigator.enumerateDevices. The enumerateDevices function returns the list of
input and output media devices, such as microphones or webcams. When no permission
is granted, it can simply be used to count the distinct number of speakers, microphones,
and webcams. Nevertheless, in the case a media permission has been granted to access a
webcam, for example, then enumerateDevices can provide more fine-grained information

about the peripherals, such as their name or whether or not it is built-in.

navigator.cookieEnabled. This property returns a boolean indicating whether or not
cookies are enabled by the browser. Since it has only two possible values, true or false,
this attribute has a low entropy [27].

navigator.doNotTrack. The doNotTrack property aims at indicating whether or not
a user accepts to be tracked. Depending on the browser, it returns "0" if the users refuses
to be tracked, "1" if she accepts to be tracked. Some browsers do not specify its value
and decide to return null instead. Nevertheless, starting from version 12, Apple decided
to remove the doNotTrack property from the navigator object because they consider it
misleading.!” Indeed, users tend to believe it protects them from tracking even though

there are no proofs that advertisers and trackers in general respect its value.

navigator.getBattery. The function getBattery returns an object containing infor-
mation about the device’s battery that can be used for tracking [36]. The returned object

contains the following information:
o charging: a property that represents whether or not the battery is charging,

o chargingTime: a property that represents the time before the battery is fully
charged,

o level: a property that represents the charging level of the battery.

navigator.deviceMemory. The deviceMemory property returns the amount of memory
of the device in gigabytes. It is only available on Chromium-based browsers, such as

Chrome and Opera, since December 2017 (Chrome version 63).%

17https: / /developer.apple.com /safari/technology-preview /release-notes/
18https://developer.mozilla.org/en-US /docs/Web /API/Navigator /deviceMemory
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Navigator prototype. Acar et al. [10] showed that the order of the properties of the
navigator object, as well as the presence or absence of certain properties, can be used to
fingerprint a browser and its version. For example, on Chrome 68 the navigator prototype
has 58 properties, while the Samsung browser version 7 has only 56 properties, and
Safari mobile 12 has between 33 and 39 properties. More generally, besides the special
case of the navigator object, Mulazzani et al. [37] and Nikiforakis et al. [4] showed that
the presence or absence of features could be used to accurately identify the version of a
browser. While this feature does not bring any information not already contained in the
User-Agent header, it can be used to verify if the browser claimed has been modified by

a spoofer.

Canvas fingerprinting. Mowery et al. [38] showed that the HTML canvas APT could be
used to generate images whose rendering depends on the browser and the device. These
canvas use different techniques that, when combined, generate an image whose rendering
is highly unique. For example, Acar et al. [5] showed that commercial fingerprinters used
strings that are pangrams—i.e., strings constituted of all the letters of the alphabet—or
use emojis since their rendering depends on the OS and the kinds of device. Figure 2.2

presents the canvas generated by Akamai and PerimeterX fingerprinting scripts.

!H?leaPL# 1@#

(a) Canvas fingerprint generated by Akamai Bot Manager fin-
gerprinting script.

C xt quiz, @

(b) Canvas fingerprint generated by PerimeterX fingerprinting
script.

Figure 2.2 Example of two canvas fingerprints used by commercial fingerprinting scripts.

Window and screen size. The browser exposes different properties, through the

screen and the window objects, that reflect the size of the screen and the window.
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Table 2.1 presents and defines these different attributes. Figure 2.3 presents a screenshot

of a browser on MacOS that shows how these attributes relate to each other.

Table 2.1 Definition of different attributes that provide information about the size of
the screen and the window. For each attribute we present a possible value for of the
attribute. All the possible values shown in the table come from the same user.

Attribute Possible value Description

Width of the web-exposed screen area in
pixels. In there case where there are multiple

screen, it should return the value of the screen

screen.width 1280
where the browser window is located. The
value is not influenced by the size of the
browser window.
. Height of the web-exposed screen area in
screen.height 1024 . L. . .
pixels. Similar definition as screen.width.
Amount of horizontal space in pixels available
screen.availWidth 1280 .
to the browser window.
) ) Amount of vertical space in pixels available to
screen.availHeight 1024 )
the browser window.
) ) ) Width of the browser window in pixels,
window.innerWidth 1050 . ] .
including the size of the scroll bar.
height of the viewport, i.e. the part of the
window.innerHeight 1050 webpage a user can see, in pixels, including
the size of the scroll bar.
) } . height of the viewport in pixels, including the
window.innerHeight 932 )
size of the scroll bar.
window.outerWidth 1050 Width in pixels of the whole browser window.
window.outerHeight 1004 Height in pixels of the whole browser window.
screen.colorDepth 24 Color depth of the screen.

Audio fingerprinting. Similarly to canvas fingerprinting that uses the HTML canvas
API to generate highly unique images, audio fingerprinting leverages the Web Audio
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A

5L © 00 |% Extensions % | ) Example Domain x"\ + -
$ < © Not Secure | example.com Q@ f @ @ |
@ ES autres |[E5 fingerprinting E5 security ES fp-bot ES mooc [M Mes applications-.. — Home (@ TheLuminatiMon.. [ Index [J selenium-webdriv... » 3 Other Bodkmarks
& screen.availWidth T
& screen.width
= window.innerWidth
- ® :
F Example Domain
77
..c, This domain is established to be used for illustrative examples injdocuments. You 7
— may use this domain in examples without prior coordination or agking for
permission. =
L} =
- More information...
- window.innerHeight window.outerHeight
-
g
screen.height and screen.availHeight

Figure 2.3 Presentation of the different attributes related to the size of the screen and
the window.
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API to generate sound signals with high entropy. Englehardt et al. [6] showed that one
popular fingerprinting script relied on a OscillatorNode object to generate and process
an audio signal. Due to hardware and software differences, the resulting signal is slightly

different depending on the device.

WebGL.vendor/renderer. The WebGL API enables to draw 3D shapes in the browser.
Although it works in the majority of the browsers and devices—even devices without a
GPU thanks to technologies, such as SwiftSchader!® that enables to have a compatible
API on a CPU—the WebGL API keeps exposing information about the user device to
help developers to tailor their code to the user device. In particular, two attributes
exposed by the WebGL API can be used for fingerprinting. The first attribute is the
WebGL vendor and returns the name of the GPU vendor:

e Apple Inc.

Intel Open Source Technology Center2
e Qualcomm
e ATI Technologies Inc
The second attribute, WebGL renderer, returns the name of the GPU:
e Adreno (TM) 405
e AMD PITCAIRN (DRM 2.50.0 / 4.15.0-43-generic, LLVM 6.0.0)
e ANGLE (AMD Radeon HD 7310 Graphics Direct3D9Ex vs_3_0 ps_3_0)

e NVIDIA Quadro K4000 OpenGL Engine

WebGL canvas. Besides static attributes, the WebGL API can also be used to generate
a 3D canvas fingerprint. Laperdrix et al. [27] used the WebGL API to generate 3D shapes.
Nevertheless, they did not succeed in crafting a stable and unique WebGL canvas. More
recently, Cao et al. [1] contradicted Laperdrix et al. findings and showed the WebGL APIT
could be used to generate canvas that are both unique and stable, even across different
browsers of the same machine. They carefully selected different parameters, such as the
texture, the anti-aliasing or the light intensity to render more than 20 different tasks. To
create unique 3D scenes, the tasks exploit different mechanisms, such as the fact that

interpolation algorithms used by fragment shaders vary depending on the graphic card.

Yhttps://developers.google.com/web/updates/2012/02/SwiftShader-brings-software-
3D-rendering-to-Chrome


https://developers.google.com/web/updates/2012/02/SwiftShader-brings-software-3D-rendering-to-Chrome
https://developers.google.com/web/updates/2012/02/SwiftShader-brings-software-3D-rendering-to-Chrome

2.2 Browser Fingerprinting 31

Figure 2.4 Examples of two 3D scenes generated with WebGL using Cao et al. ’s [1]
approach.

The tasks generate fingerprints that are also resilient when the screen or the window
size changes, or when the zoom level is altered. Figure 2.4 presents two examples of 3D
scenes they generate. They also showed that even when WebGL was not using GPU,
e.g. when the device has no GPU or a blacklisted GPU, and uses the SwiftSchader
library to run the computation on the CPU, the 3D scenes still have entropy.

Touch screen. The presence of a touch screen, as well as its characteristics, can be
used for fingerprinting. In order to test the presence of touch support on the device,
one can create a TouchEvent and observe if it succeeds or look at the presence of the
ontouchstart property in the window object. In case the device has touch support, one
can use the navigator.maxTouchPoints or the navigator.msMaxTouchPoints prop-
erties to obtain the number of simultaneous touch contact points supported by the
device.

Audio and video codecs. Audio and video codecs support depends on the browser
and the 0S.?Y During the analyses conducted in this thesis, we observed some of the
commercial fingerprinting scripts testing the presence of audio and video codecs using
the function HTMLMediaElement.canPlayType. Given an audio or a video type, this
function return three possible values:

1. "probably", which means that the media type appears to be playable,
2. "maybe" indicates that it is not possible to tell if the type can be played without
playing it,

Dhttps://developer.mozilla.org/en-US/docs/Web/HTML/Supported _media__
formats
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3. "" an empty string indicating that the type cannot be played.

Font enumeration. At the end of this section, we present how the whole list of fonts
installed on the system can be obtained using Flash. Nevertheless, with the decrease of
the popularity of the Flash plugin caused by its deprecation,?! fingerprinters have come
up with new approaches to obtain the list of fonts installed on the system [4]. The idea
to test if a font is installed is to compare the size of two HTML elements, one that uses
the system fallback font and the other element that uses the font whom the fingerprinter

wants to test the presence. It can be done the following way:
1. The script creates a div element containing a span element,

2. The script sets a predefined text with a fixed size. Moreover, it sets a font-family

that does not exist. Thus, the browser will use the fallback font of the system,

3. The script measure and save the size of the span element using its offsetWidth

and offsetHeight properties,

4. For each font whom the script wants to test the presence on the user system, it
creates a span element inside a div. Then, it sets the text of the span element
using the same string and size as in step 2 and it specifies that the text should be
rendered using the font that it wants to test. Finally, the script measures the size

of the span element,

5. If the span element has the same dimensions as the span element that use the
fallback font, then it means the font is not present on the device. Otherwise, it

means the font is installed.

To be sure to decrease the chance of false negatives—i.e., fonts that would not be
detected—the font-size should be large enough, so that even small differences in the
font rendering are amplified and can be detected by offsetWidth and offsetHeight
properties. Gomez et al. [28] collected fonts on more than 2M users using this approach

and showed that the list of fonts provided more than 6.9 bits of entropy.

Fifield et al. [39] showed that simply measuring how different Unicode glyphs are rendered
can provide a stable and unique identifier. Indeed, the rendering of the font depends on
different factors, such as the fonts or anti-aliasing. They measured the size of the glyph
bounding boxes for different Unicode characters and found that across the 1,016 different

devices in their experiment, 349 could be identified solely using the font metrics.

2https: //www.bleepingcomputer.com /news/security /google-chrome-flash-usage-
declines-from-80-percent-in-2014-to-under-8-percent-today /
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Performance fingerprinting. Mowery et al. [40] used the SunSpider and the V8
benchmarks to build a fingerprint. In total, they run 39 performance tests, each five times
and measured the time each test takes to execute. Using these timing information, they
create different heuristics to predict the OS, the browser, as well as the CPU architecture.
While the test sample is relatively small, less than 1,000 different configurations, they
are still able to achieve a browser classification accuracy of more than 80%. In the
case of CPU architecture, they achieve an accuracy of 45.3%, which is still interesting
considering that a random choice would have resulted in an accuracy of 6.7%. While
the CPU architecture can be used as an additional attribute in a fingerprint, being able
to properly classify the OS and the browser enables to verify if the values displayed
in the user agent have been spoofed. More recently, Sanchez et al. [41] proposed an
approach that measures the time to execute sequences of cryptographic functions to

generate fingerprints capable of distinguishing similar devices.

Extension probing. Similarly to the list of plugins, the list of extensions can be used
as a fingerprinting attribute. Nevertheless, the main difference between plugins and
extensions is that there is no API to retrieve the list of extensions installed by a user.
Thus, the different techniques we present to obtain the list of extensions either rely on
bugs or side effects caused by the usage of these extensions, Mowery et al. [40] showed
that it was possible to infer the list of websites whitelisted by the NoScript extension
by observing whether or not scripts from a certain domain could be executed or they
were blocked. Since these whitelists are often unique, they argued it could be used as an
additional fingerprinting technique. Starov et al. [42] showed that browser extensions
could be identified because of the way they interact with the DOM. Among the 10,000
most popular extensions of the Chrome store, around 15% had a unique way to interact
with the DOM, making their presence detectable. They also showed that among 854
users, 14.1% had a unique set of browser extensions. Sjosten et al. [43] proposed an
approach that leverages Web Accessible Resources (WAR) to test the presence of browser
extensions. Their approach is able to detect more than 50% of the top 1,000 Chrome
extensions. Even though Firefox protected against this kind of attacks by randomizing
each extension identifier,>? Sjosten et al. [44] showed it was still possible to test the
presence of extensions using a revelation attack. Their strategy is to convince the
extension to inject content in the DOM using a WAR URL, making, therefore, the

extension reveal its unique randomized identifier that can be used for tracking. Thus,

22Protecting against extension probing: https://developer.mozilla.org/en-US/docs/Mozilla/
Add-ons/WebExtensions/manifest.json/web__accessible_resources
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with this approach, they can reveal the presence of an extension and also obtain a unique
and stable identifier.

2.2.2.3 List of Fonts Using Flash

Flash usage went from 80% in 2014 to 8% in 2018.>* Flash, and plugins, in general, have
been deprecated by browser vendors?? mainly because of the security risk they represent
and are now being replaced by browser extensions that have fewer rights as plugins used
to have. In particular, plugins are able to access more information than JavaScript. We
only present the Flash attribute with the most entropy, the list of fonts. As we show in
the oldest contribution of this thesis presented in Chapter 3, FP-Stalker, where we use
fingerprinting to track browser over time, the only Flash attribute still worth considering
was the list of fonts. Nevertheless, we show that even on fingerprints collected around
2017, it does not bring significant information since most of the users had already Flash
disabled. The Font.enumerateFonts enables to collect the complete list of fonts using
Flash. Contrary to JavaScript font enumeration that needs to test the presence of each
font, this method is straightforward and provides a simple mechanism to obtain the list
of all the fonts installed on the system, even the most uncommon fonts. Thus, when
Flash’s use was still high, it was one of the attributes with the highest entropy [3, 27].
Eckersley [3] also showed that the order of the fonts depended on the system.

Even though the Flash plugin can be used to obtain other attributes, such as the platform,
the preferred languages or the screen resolution, we decide not to present these attributes
because of the decline of Flash usage, and the fact that these attributes do not provide
significantly more entropy than their JavaScript counterpart. Moreover, other plugins,
such as Java or Silverlight were also used by fingerprinters to obtain more fine-grained
information as the one provided in JavaScript. Nevertheless, in a 2013 study conducted by
Nikiforakis et al. [4], they showed that none of the three popular commercial fingerprinters

they studied were still using Java.

2.2.3 Studying Browser Fingerprints Diversity

Mayer [2] brought to light the privacy problems that arise from browser diversity and

customization. Since there are different OS, browsers, screen resolutions or plugins,

Bhttps: //www.bleepingcomputer.com /news/security /google-chrome-flash-usage-
declines-from-80-percent-in-2014-to-under-8-percent-today /
24https:/ /blog.chromium.org/2013/09 /saying-goodbye-to-our-old-friend-npapi.html
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this diversity could be exploited to uniquely identify browsers. At the time the thesis
was written in 2009, the situation was even worse due to the widespread use of Java
applets and Flash Action scripts that had access to even more attributes than JavaScript
programs. Over two weeks, Mayer collected fingerprints from 1,328 different browsers,

among which 1,278 (96.23%) were unique.

Mayer’s work motivated the first large-scale study on browser fingerprinting uniqueness
conducted by Eckersley [3], with the collaboration of the Electronic Frontier Fondation
(EFF).25 They created a website, Panopticlick,?® on which they collected 470,161 finger-
prints between 27th January and 15th January 2010. Their results confirm Mayer’s initial
findings: 83.6% of the browsers had a unique fingerprint. Uniqueness was even higher,
94.2%, for browsers with either Flash or Java activated. Indeed, among Flash and Java
users, only 1% of the browsers had an anonymity set larger than two. They showed that
that the list of plugins and the list of fonts were the two attributes with the most entropy.
With this proportion of unique browser fingerprints, they argue that this technique can
be used for tracking, in particular as a mechanism to regenerate supercookies or deleted
cookies. To support this claim, they proposed a simple heuristic that aims at linking
multiple fingerprints of the same browser. First, they studied the stability of browser
fingerprints over time and showed that among the 8,833 users that had accepted a cookie
and that had visited the websites multiple times, more than 37% displayed at least one
change (besides activating or deactivating JavaScript) in their fingerprint. Nevertheless,
they are aware this number may be overestimated because of the nature of their website
that tends to make people change their fingerprint on purpose, e.g. by changing the list
languages they prefer or by deactivating a plugin. Nevertheless, they showed that despite
these frequent changes in the fingerprint, browser fingerprinting could still be used for
tracking. Their heuristic was able to make correct predictions 65% of the time, incorrect

predictions 0.56% of the times. Otherwise, 35% of the time, it made no prediction.

Laperdrix et al. [27] also created a website, AmIUnique, to study the diversity of
fingerprints. Between 2014 and 2015, they collected more than 118,000 fingerprints finger-
printing. In addition to the attributes collected in the study conducted by Eckerlsey [3],
they also collect new attributes, such as canvas [38] and WebGL fingerprinting. They use
the normalized Shannon’s entropy to compare their dataset with Panopticlick dataset.
They found similar results, except for the list of plugins and the list of fonts where they

obtained a lower entropy. This difference can be explained by the decrease of Flash usage,

Bhttps://www.eff.org/
Z6https://panopticlick.eff.org/
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which means that the list of fonts was not collected for all the fingerprints, therefore
decreasing its entropy. The difference can also be explained by the rise of mobile usage,
on which there are no plugins, which also includes Flash. Besides attributes also collected
on Panopticlick, they analyzed the entropy of seven new attributes, such as canvas and
WebGL fingerprinting or the presence of an ad-blocker. They found that canvas was
among the five most discriminating attributes, with a normalized entropy close to the
entropy of the list of plugins. Among the 118,934 fingerprints they collected, there
obtained 8,375 distinct canvas values, among which 5,533 were unique. They also studied
the differences between computer, either desktop or laptops, and mobile fingerprints.
While 90% of desktop fingerprints were unique, only 81% of mobile fingerprints were
unique. This difference was mostly explained by the low entropy of the list of fonts
and the list of plugins on mobile. Nevertheless, mobile fingerprints still achieve a high
uniqueness because of attributes such as the user agent or the canvas that are more
unique on mobile. Indeed, in the case of the user agent, they noticed that some phone
manufacturers were adding sensitive information to this header, such as the precise
version of the model or the version of the Android firmware. In the case of the canvas,
they noticed that the emoji included in it was also a great source of entropy since its

rendering depends on the phone OS version as well as the phone manufacturer.

More recently, between 2016 and 2017, Gomez et al. [28] collected more than 2 million
fingerprints on a popular french website from the Top 15 Alexa. Since it is a popular
website visited by a wide range of users, it avoids the bias of data collected by Eckersley
and Laperdrix studies. Indeed, as acknowledged by Eckersley, Panopticlick was mostly
visited by users aware of privacy issues on the web. Thus, these users may have a more
customized browser and device configurations than random users. Gomez et al. compared
the diversity of browser fingerprints in their dataset with the ones from Eckersley and
Laperdrix studies. They collected the same set of attributes, at the exception of the
canvas that was modified to obtain a higher uniqueness. They also collected the list of
fonts using JavaScript instead of Flash since Flash usage had already hugely decreased at
the time their study was conducted. They found significantly different results compare
to the two previous studies. While previous studies claimed that more than 80% of the
fingerprints were unique, only 33.6% are unique in their dataset. The difference is even
more important for mobile devices. While 81% of the mobile fingerprints collected on
AMIUNIQUE were unique, only 18.5% of the fingerprints in their dataset are unique.
Despite this uniqueness difference, the attributes with the most entropy are still the

same:
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1. The list of plugins (9.49 bits of entropy),

2. The canvas fingerprint (8.55 bits of entropy),
3. The user agent (7.15 bits of entropy),

4. The list of fonts (6.90 bits of entropy).

Similarly to the AMIUNIQUE study, they also observed a decrease of uniqueness on
mobile for the list of plugins (10.3 bits on computer against 0.2 bits on mobile) and
the lists of fonts (7.0 bits on computer against 2.2 bits on mobile), even when fonts are
obtained using JavaScript. Their study also confirmed that mobile user agents provide
more information compare to computer user agents (6.3 bits on computer against 8.7

bits on mobile).

While their study shows that browser fingerprint uniqueness has probably been overesti-
mated by previous studies, either because of small or biased datasets, it is unclear in
which proportions. It is difficult to measure the variation caused by their use of a more
representative dataset and the variation caused by the fact that attributes that used to
have a high entropy, such as the list of plugins, become less unique over time due to the
deprecation of plugins®” that started being replaced by browser extensions. Indeed, to
compare fingerprint uniqueness and attributes entropy with previous studies, they have
restricted themselves to 17 attributes already collected by Eckersley [3] and Laperdrix et
al. [27]. While they improved the canvas and modified the way fonts are collected,
they did not take into account several attributes available at the time their study was
conducted. Thus, the main critic of this study is that it while it properly evaluates
the entropy of the attributes studied, it underestimates the fingerprint uniqueness by
excluding attributes that were available at the time their study was conducted between
2016 and 2017. In particular, they did not consider the following attributes:

1. navigator.enumerateDevices. This function has been available since Chrome
version 452 (September 2015)?° and provides information about the number of

microphones, speakers and webcams;

2. Audio fingerprinting. This technique relies on the HTML Audio API available

since Chrome version 35 and Firefox version 25. In a crawl conducted in January

2Thttps:/ /blog.chromium.org/2013/09 /saying-goodbye-to-our-old-friend-npapi.html

Bhttps://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/
enumerateDevices

29Google Chrome version history: https://en.wikipedia.org/wiki/Google Chrome version
history
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2016, Englehardt et al. [6] already mentioned the use of audio fingerprinting by
popular websites and estimated it had an entropy of 5.4 bits;

. Screen and window properties. While they collect information about the

screen width and height, as well as the color depth, they did not collect more ad-
vanced information window.innerHeight/Width or window.outerHeight/Width
that enables to infer the presence of a desktop toolbar and its size, or whether or

not a bookmark bar is displayed in the browser;

. Audio and video codecs. The presence of audio and video codecs can be tested

using the HTMLMediaElement.canPlayType function that was already available at

the time their study was conducted 3;

. Touch screen details. In the case of mobile devices, they did not collect any

information about the maximum simultaneous touch points supported by the screen

using the navigator.maxTouchPoints property available since Chrome 35;3!

. Number of cores. The navigator.hardwareConcurrency returns the number

of logical processors available to the browser and has been available since Chrome
37 and Firefox 48.32

Thus, it is unclear how different the fingerprint uniqueness would have been, had they

considered these attributes. In particular, when we consider their second research question

that studied the proportion of almost unique fingerprints—u.e., fingerprints that would

become unique if a slight modification was applied to attributes whom the user can

naturally modify through the browser user interface, such as the value of do not track or

the list of preferred languages—they showed that, for computer fingerprints, applying

small changes on random fingerprints would lead to a uniqueness rate of 80%. Therefore,

we should take care of the real fingerprint uniqueness. Moreover, adding to fingerprints

new attributes presented in Section 2.2, such as navigator.deviceMemory or extensions

probing, would probably also rise fingerprint uniqueness. We consider evaluating the

entropy of these attributes as part of future work.

30https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement /
canPlayType

3thttps://developer.mozilla.org/en-US /docs/Web/API /Navigator /maxTouchPoints

32https://developer.mozilla.org/en-US/docs/Web/API /NavigatorConcurrentHardware /
hardwareConcurrency
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2.2.4 Use of Browser Fingerprinting on the Web

We present multiple large-scale studies that analyzed the use of browser fingerprinting on
the web. We present these studies in a chronological order to better convey the evolution

of fingerprinting use and techniques over time.

The first large-scale studies on browser fingerprinting started in 2013, three years after
Mayer [2] and Eckersley [3] brought to light the privacy risk arising from browser
customization. Nikiforakis et al. [4] analyzed the code of three popular fingerprinters.
They noticed that commercial fingerprinters used more aggressive techniques than those
presented by Eckerlsey [3]. For example, commercial fingerprinters heavily relied on Flash
and ActiveX plugins to obtain information not available in JavaScript, such as whether
or not the browser is behind a proxy. They noticed that even for simple attributes,
such as the platform that can be accessed using navigator.platform or the user agent,
the Flash platform attribute provides more detailed information, such as the exact
version of the Linux kernel, which can be used both for tracking, as well as to exploit
vulnerabilities. They detected that fingerprinters adapted their behavior based on the
nature of the browser and the plugins available. For example, when the script detected
Internet Explorer, it tried to exploit specific APIs available only on Internet Explorer,
such as navigator.systemLanguage. When specific plugins were detected, two of the
fingerprinters even tried to invoke them to obtain sensitive information, such as the hard
disk identifier, the computer’s name, the installation date of Windows as well as the list
of installed system drivers. They also detected a shift in the way fonts were obtained
because of the decline of Flash. Thus, while two of the fingerprinters used Flash to obtain

the list of available fonts, one of the fingerprinters was using JavaScript [39].

They also crawled the Top Alexa 10K to study the adoption of these three fingerprinting
scripts among websites of the Top Alexa 10K. They detected 40 sites (0.4%) of sites
using scripts provided by one of the three commercial fingerprinters. They also used
Wepawet,?? an online platform for the detection of web-based threats, to detect if these
scripts were used by less popular websites and found out that 3,804 domains analyzed by

Wepawet used one of these scripts.

Also in 2013, Acar et al. [10] proposed FPDetective, a crawling framework to detect and
analyze fingerprinting on the web. They applied FPDETECTIVE to the Top Alexa 1M
websites and were able to detect 16 new fingerprinting scripts, as well as new fingerprinting

techniques that had not been documented by previous studies. Instead of relying on lists

33Wepawet: https://wepawet.cs.ucsb.edu
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of URLs to detect fingerprinting scripts, their crawler logs access to properties commonly
used for fingerprinting, such as the properties of the navigator and screen objects, as
well as properties used for JavaScript font enumeration such as offsetWidth/Height.
The crawler also intercepts calls to the getFontData functions used in Flash to obtain
the list of fonts. They consider a script is doing fingerprinting if it loads more than 30
fonts, enumerates plugins or mimeTypes and accesses the screen and navigator properties.
With this methodology, they detected 13 distinct fingerprinting scripts present on 404

websites doing JavaScript font enumeration.

In 2014, Acar et al. [5] conducted a large scale study about stateful and stateless tracking
mechanisms used in the wild. In particular, they were the firsts to measure the use of
canvas fingerprinting at scale. To detect scripts that collect canvas fingerprints, they log
values returned by the toDataURL function used to obtain the value of a canvas. They
also monitor the arguments of the £il1Text and strokeText functions used to draw
text on a canvas. To decrease false positives, they consider a script is using canvas for
fingerprinting if both the toDataURL and £illText or strokeText functions are called.
Moreover, they also define a constraint on the size of the canvas that should be at least
16x16 pixels. Finally, the image should not be requested in a lossy compression formation,
such as JPEG. They observed that 5.5% of the websites in the Top Alexa 100K were
using canvas fingerprinting on their home page. While there were 20 different companies
providing canvas fingerprinting scripts, one of the companies, AddThis, represented more
than 95% of the scripts. Moreover, they noticed that fingerprinters had considerably
improved the canvas fingerprinting techniques since the original study conducted by
Mowery et al. [38]. For example, new canvas fingerprinting scripts draw the same text
twice with different color and trigger the default fallback font. These scripts also use
pangrams—i.e., strings that include all the letters in the alphabet—as well as different
emojis. While Acar et al. argued that emojis were used to check if the browser supported
emojis, Laperdrix et al. [27] later showed that beyond testing emoji support, emojis were

also rich source of entropy since their representation depends on the OS and the device.

More recently, in 2016, Englehardt et al. [6] crawled the top Alexa 1M to study the
use of cookies and multiple fingerprinting techniques. They proposed OPENWPM, an
extensible crawler framework that aims at making privacy studies at scale easier. They
detected more than 81,000 third parties present on at least two first-parties. Moreover,
they showed that four companies, Google, Facebook, Twitter and Adnexus, were present

each on more than 10% of the websites crawled.
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To measure the use of fingerprinting, they monitored access to properties commonly used
for fingerprinting, similarly to the approach proposed by Acar et al. [10]. They detected
that among the Top Alexa 1M websites, canvas fingerprinting was only used by 1.6% of
the websites. Nevertheless, canvas fingerprint was used by 5.1% of the websites in the
Top Alexa 1K. Thus, they showed a decrease of canvas fingerprinting use compare to the
previous study conducted by Acar [5] in 2014. In particular, the popular fingerprinting
script delivered by AddThis was no longer in use in 2016. They also measured the use of
canvas-based font enumeration and showed that it was used by 2.5% of the websites in
the Top Alexa 1M. Finally, they measured the use of audio fingerprinting at scale and
detected 518 websites that compute an audio fingerprint, among which 512 delivered

scripts from the same company.

2.3 Countermeasures Against Fingerprinting

In this section, we present the three main strategies to protect browser against browser

fingerprinting:

1. Blocking the execution of fingerprinting scripts. This strategy can be
achieved by disabling JavaScript or by intercepting requests that load fingerprinting

scripts;

2. Breaking the stability of browser fingerprints. Fingerprint tracking requires
both uniqueness and stability to be effective. This strategy aims at frequently
modifying the attributes constituting a fingerprint in order to break the fingerprint

stability, and thus make tracking impossible or less effective;

3. Breaking the uniqueness of browser fingerprints. This strategy acts on the
uniqueness required for tracking. It aims at increasing the anonymity set of each
fingerprint so that multiple browsers from different users share the same fingerprint

or fingerprints with high similarity.

Countermeasures can achieve these strategies by implementing different mechanisms.
For example, in order to unify the value of fingerprints, one can either lie about the
values returned by fingerprint attributes so that all browsers return the same value or
one can block access to attributes with a high entropy so that browsers converge towards
a similar fingerprint. In the following subsections, we go through the three different

defense strategies. For each of the strategies, we present the different countermeasures
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that use this strategy and the different mechanisms they implement to achieve it. Note
that some countermeasures may implement multiple strategies or hybrid strategies. For
example, FaizKhademi et al. [45] proposed a modified Chromium with two modes, a first
mode that aims at making all fingerprints look the same and a second mode that aims at

breaking the stability of fingerprints by randomizing their values.

We first present countermeasures that protect by blocking the execution of fingerprinting
scripts. Then, we present the countermeasures that aim at breaking the stability of
fingerprints and the countermeasures that unify browser fingerprints to make each browser
less unique. Finally, we present the main weaknesses of the countermeasures presented

in this section.

2.3.1 Blocking Fingerprinting Script Execution

The first strategy we present relies on blocking the execution of fingerprinting scripts.
Blocking the execution of the script makes the collection of the fingerprint impossible.
While the server can still collect a reduced version of the fingerprint using HT'TP headers,
not collecting JavaScript attributes hugely decreases the entropy of the fingerprint.
Countermeasures that aim at blocking script execution are not specifically designed to
counter browser fingerprinting. Nevertheless, they may include rules that block some
fingerprinting scripts. These countermeasures are among the most popular privacy-
enhancing technologies [46]. For example, in March 2019, four out of the ten most
popular browser extensions for Firefox where ad-blockers and tracker-blockers [47]. In
particular, the two most popular extensions, AdblockPlus [48] and uBlock Origin [49]
represent more than 11% of the total browser extensions used on Firefox. The majority
of these script blocking countermeasures relies on crowdsourced filter lists that specify
if a resource should be blocked. There exist different lists that serve different purposes.
One of the most popular, EasyList [50], focuses on blocking advertising content while
EasyPrivacy [51] focuses on blocking trackers, which can include fingerprinting-based
trackers. These lists are used in popular browser extensions, such as AdblockPlus [48],
uBlock origin [49] or Adblock [52], as well as browsers, such as Brave [53] that integrates
a native ad-blocker. Other browser extensions, such as Ghostery [54], rely on proprietary
filter lists to block content. One of the main problems of these lists, whether they are
proprietary or not, is that they need to be manually updated and require a significant
amount of work to be maintained [19]. Thus, other more dynamic approaches have been

proposed to get rid of these lists. For example, Privacy Badger [55], a browser extension



2.3 Countermeasures Against Fingerprinting 43

developed by the EFF, uses heuristics to determine if a request should be blocked. It
keeps track of third-party resources included in the pages visited and observe if their
behavior is similar to the ones of trackers based on their use of cookies, local storage or
even browser fingerprinting techniques. When it observes a suspicious third-party on more
than three domains, Privacy Badger automatically blocks the content. Umar et al. [56]
apply a machine learning-based approach that considers features extracted from HTML
elements, HT'TP requests, and JavaScript to determine if a request should be blocked.
Merzdovnik et al. [57] quantified the effectiveness of ad-blockers and trackers blockers
at scale. They show that rule-based extensions, such as uBlock Origin or Ghostery
outperform learning-based extensions, such as Privacy Badger, even though they took
care of training Privacy Badger’s heuristic on 1,000 websites before applying it during
their evaluation. They show that while the majority of these blocking tools are effective
against stateful third-party trackers, they all failed to block well-known stateless trackers
that use browser fingerprinting. Englehardt et al. [6] also showed that popular filter lists

tend to detect only a fraction of fingerprinting scripts.

Finally, a more radical approach is to block the execution of JavaScript code. The
most popular tool for blocking JavaScript is the NoScript [58] browser extension. Other
browser extensions, such as uBlock Origin [49] and uMatrix [59], as well as other browsers,
such as Brave [53] or Tor browser [60] also propose convenient mechanisms to disable
JavaScript execution. While this approach guarantees to block JavaScript-based browser
fingerprinting, it may also render many websites unusable since the majority of websites
relies on JavaScript to make their site dynamic. Moreover, as shown by Yu et al. [61],
breaking websites and thus decreasing the usability can also lead to a decrease of privacy
as users are more tempted to disable their countermeasures, without understanding the

privacy implications of doing it.

2.3.2 Breaking Fingerprint Stability

Another defense strategy consists in modifying frequently the values of different attributes
of a fingerprint to break the stability property required for tracking fingerprints over time.
The user agent is a key attribute for fingerprinting as its value reflects the browser and the
OS used by the user. For this reason, a wide range of user agent spoofer extensions enables
to lie on the user agent sent by the browser. For example, ULTIMATE USER AGENT [62],
a Chrome extension enables to change the user agent enclosed in the HT'TP requests

as the original purpose of this extension is to access websites that demand a specific
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browser. The main drawbacks of user agent spoofers to protect against fingerprinting
lies in the fact that they create inconsistent browser fingerprints [4]—i.e., combinations

of attributes that cannot be found in the wild.

More advanced extensions, such as RANDOM AGENT SPOOFER [63] aim to address
this inconsistency problem. RANDOM AGENT SPOOFER (RAS) is an extension that
was available until Firefox 57—in version 57, Firefox changed the APIs for browser
extensions so that they become compatible with the Chrome browser—that protects
against fingerprinting by providing a mechanism that enables to switch between different
device profiles, composed of several attributes, such as the user agent, the platform,
and the screen resolution. Even though RAS is not available on modern versions of
Firefox, it has been forked and recently ported to web extensions that are supported
by the most recent versions of Firefox [64]. Since the device profiles used to spoof
fingerprints are extracted from real browser configurations, all of the attributes contained
in a profile are consistent with respect to each other. Besides spoofing attributes, RAS

also enables to block advanced fingerprinting techniques, such as canvas, WebGL or
WebRTC fingerprinting.

Nikiforakis et al. [7] proposed PRIVARICATOR, a modified Chromium browser that
randomizes the list of plugins and the list of fonts. Besides the high entropy of these two
attributes [3, 27, 28], the main reason PRIVARICATOR focuses on these attributes is to
avoid inconsistencies in the fingerprints generated. Indeed, their strategy does not lie
about the browser or its version nor about the platform the browser is running on, making
it more difficult for an adversarial fingerprinter to detect the use of a countermeasure.
To randomize the list of plugins, they define a probability of hiding each individual
entry in the list of plugins. Concerning the list of fonts, they focus on font enumeration
using JavaScript. They override values returned by two properties, offsetHeight and
offsetWidth as well as the getBoundingClientRect function, the three of them being
used for font enumeration [65, 4, 45]. They proposed three font randomization policies
that become active whenever a script accessed one of these properties more than a defined
threshold. They implemented their changes directly into Chromium C++ code for
performance purposes and also because the offsetWidth and offsetHeight properties
are not properties of the HTMLElement prototype, making it more difficult to override
these properties directly in JavaScript in an efficient way. They evaluated their approach

based on three criteria:

1. Performance. They measured the performance overhead using three JavaScript

benchmarks and noticed no statistically significant overhead;
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2. Privacy protection. They also evaluated the privacy gain against four fingerprint-
ers: BlueCava and Coinbase, two c