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Résumé : Ce travail se place dans le cadre de l’assimilation de données en mécanique des structures. Il
vise à développer de nouveaux outils numériques pour l’assimilation de données robuste et en temps réel
afin d’être utilisés dans diverses activités d’ingénierie. Une activité cible est la mise en œuvre d’applications
DDDAS (Dynamic Data Driven Application System) dans lesquelles un échange continu entre les outils de
simulation et les mesures expérimentales est requis dans le but de créer une boucle de contrôle rétroactive
sur des systèmes mécaniques connectés. Dans ce contexte, et afin de prendre en compte les différentes
sources d’incertitude (erreur de modélisation, bruit de mesure,...), une méthodologie stochastique puis-
sante est considérée dans le cadre général de l’inférence bayésienne. Cependant, un inconvénient bien
connu d’une telle approche est la complexité informatique qu’elle engendre et qui rend les simulations en
temps réel et l’assimilation séquentielle des données difficiles. Le travail de thèse propose donc de coupler
l’inférence bayésienne avec des techniques numériques attrayantes et avancées afin d’envisager l’assimila-
tion stochastique de données de façon séquentielle et en temps réel. Premièrement, la réduction de modèle
PGD est introduite pour faciliter le calcul de la fonction de vraisemblance, la propagation des incertitudes
dans des modèles complexes et l’échantillonnage de la densité a posteriori. Ensuite, l’échantillonnage par
la méthode des Transport Maps est étudiée comme un substitut aux procédures classiques MCMC pour
l’échantillonnage de la densité a posteriori. Il est démontré que cette technique conduit à des calculs dé-
terministes, avec des critères de convergence clairs, et qu’elle est particulièrement adaptée à l’assimilation
séquentielle de données. Là encore, l’utilisation de la réduction de modèle PGD facilite grandement le pro-
cessus en utilisant les informations des gradients et hessiens d’une manière simple. Enfin, et pour accroître
la robustesse, la correction à la volée du biais du modèle est abordée à l’aide de termes d’enrichissement
fondés sur les données. Aussi, la sélection des données les plus pertinentes pour l’objectif d’assimilation est
abordée. Cette méthodologie globale est appliquée et illustrée sur plusieurs applications académiques et
réelles, comprenant par exemple le recalage en temps réel de modèles pour le contrôle des procédés de sou-
dage, ou l’étude d’essais mécaniques impliquant des structures endommageables en béton instrumentées
par mesures de champs.

Université Paris–Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France





Title: Development of innovative numerical strategies for Bayesian data assimilation

Keywords: numerical simulation, model reduction, Bayesian inference, uncertainty quantifica-
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Abstract: The work is placed into the framework of data assimilation in structural mechanics. It aims at
developing new numerical tools in order to permit real-time and robust data assimilation that could then
be used in various engineering activities. A specific targeted activity is the implementation of DDDAS (Dy-
namic Data Driven Application System) applications in which a continuous exchange between simulation
tools and experimental measurements is envisioned to the end of creating retroactive control loops on
mechanical systems. In this context, and in order to take various uncertainty sources (modeling error, mea-
surement noise,..) into account, a powerful and general stochastic methodology with Bayesian inference is
considered. However, a well-known drawback of such an approach is the computational complexity which
makes real-time simulations and sequential assimilation some difficult tasks. The PhD work thus proposes
to couple Bayesian inference with attractive and advanced numerical techniques so that real-time and
sequential assimilation can be envisioned. First, PGD model reduction is introduced to facilitate the com-
putation of the likelihood function, uncertainty propagation through complex models, and the sampling
of the posterior density. Then, Transport Map sampling is investigated as a substitute to classical MCMC
procedures for posterior sampling. It is shown that this technique leads to deterministic computations, with
clear convergence criteria, and that it is particularly suited to sequential data assimilation. Here again, the
use of PGD model reduction highly facilitates the process by recovering gradient and Hessian information
in a straightforward manner. Eventually, and to increase robustness, on-the-fly correction of model bias is
addressed using data-based enrichment terms. The overall cost-effective methodology is applied and illus-
trated on several academic and real-life test cases, including for instance the real-time updating of models
for the control of welding processes, or that of mechanical tests involving damageable concrete structures
with full-field measurements.
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Introduction

Context and applications of data assimilation

Due to the constant advances in the development of numerical models, they are increasingly
used to study physical systems. These numerical models are based on physical principles
that are often derived into systems of partial differential equations. The efficient com-
putation tools provided through the years allow to use them to predict the behavior of
physical systems. However, models always depend on parameters that can vary for each
application case. Thus, they need to be calibrated with data collected from the studied
physical system in order to take the most of their accuracy. This data assimilation has for
objective to fit at best models with observed physics.

Data assimilation has many applications in mechanical engineering with different time
constraints. The first application which is worth mentioning is the identification of mechan-
ical material properties. This classical application aims to fit the material parameters of a
postulated constitutive law (e.g. elastic isotropic behavior) and fit the material properties
(e.g. Young Modulus and Poisson ratio) using classical tests and associated measurements
(e.g. tensile test of Figure 1). In this case, there is no real-time constraint, data can be
collected prior to the identification procedure and post-processed when the test is over.
Another application of data assimilation is health monitoring, particularly for civil engi-
neering structures [18, 25]. In this application, in situ measurements are collected in order
to predict the evolution of damage and certify the good health of the structure. Figure
2 shows the monitoring of crack opening in a historical construction thanks to a linear
variable differential transformer sensor. In this framework, measurements are treated on
the fly during the lifetime of the structure. Thus, data assimilation has to be performed
with quite large real-time constraints with respect to the time scale of the observations.

However, applications of data assimilation with the strongest real-time constraints are
the ones involved in the Dynamic Data Driven Application Systems framework [39]. In
this context, the numerical model is used to control a physical system, which can only be
performed if the model precisely and constantly describes the evolving system. In order
to do so, in situ measurements have to be sequentially assimilated in order to dynamically
update parameters of the model in real-time (see Figure 3). This challenging framework
with many applications (see http://www.dddas.org for examples) requires the elaboration
of fast and robust data assimilation techniques.

These applications are only possible if useful data are available. In the industrial con-
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Figure 1: Tensile test on steel in order to characterize mechanical properties after heat
treatment

Figure 2: Monitoring of crack opening at Basilica Papale di Santa Maria Maggiore (Photo
credit: T. Heitz)
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Figure 3: DDDAS principle

text, due to cost and accessibility constraints, data can be limited with a poor sensitivity
with respect to the parameters of interest that makes data assimilation even more difficult.
However, in mechanical engineering an appealing measurement method is given by Digi-
tal Image Correlation (DIC)[60, 141] and Digital Volume Correlation (DVC) [19]. These
techniques allow one to determine the full-field displacement of a structure from successive
pictures or 3D scans. Then, the measured field can be used for parameter estimation [6].
This remote measurement can also be used in the context of health monitoring [42, 96]
and can even be envisioned in the DDDAS framework as in [64].

Data assimilation: an inverse problem

In the presented applications, the purpose is to use measurements in order to update the
knowledge on model parameters. In most cases, these parameters cannot be measured
directly their estimation from indirect measurements leads to the solution of a so-called
inverse problem. Figure 4 represents the considered model environment for studied systems.

Figure 4: Model environment

The physical system is assumed to be governed by a mathematical model M. This
model is the result of some physical assumptions and, in the most common case, leads to a
system of partial differential equations (PDEs). The variables s 2 S are the entries of the
system. The values assigned to those entries are supposed to be known (in a deterministic
way) and provide for outputs d 2 D that can be compared with the observed data. For
example, s may correspond to loadings or boundary conditions, whereas outputs d may
be local displacements, temperatures or stresses. The model is assumed to have two kinds
of parameter dependency.

• First, the parameters p 2 P which are the parameters of interest. From the obser-
vations, the purpose of the study is to update the knowledge on those parameters.
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• Second, the stochastic parameters i 2 I which are parameters considered as random
variables with known probability density function. These latter parameters can be
identified from another stochastic inference process or given as data with a tolerance
range.

With those definitions, the forward direct problem where the output is searched from
the input and depending on all other parameters reads:

Find d 2 D/d = M(s,p, i) , (s 2 S,p 2 P, i 2 I) (1)

Conversely, the inverse problem where the parameters of interest are searched from the
input, the other parameters and the observed data dobs, reads:

Find p 2 P/dobs
= M(s,p, i) , (s 2 S,dobs

2 D, i 2 I) (2)

However, the determination of parameters from indirect noisy observations often leads
to ill-posed inverse problems [143] in the Hadamard sense [6]. In other terms, the solution
can not verify one or more of those properties:

1. a solution exists

2. the solution is unique

3. the solution changes continuously with problem inputs

The ill-posedness of the problem depends on the quality of the information that is given by
the observed data. A high noise level and few discretized observations of the system output
will lead to an ill-posed problem. Moreover, engineering applications are plagued with
multiple sources of uncertainties (e.g. modeling error, unknown variation of environment
parameters or corrupted sensors) that need to be accounted for in order to perform data
assimilation.

Consequently, solving inverse problems is a challenging numerical task especially in the
extremely demanding DDDAS framework. It entails the use of systems that deliver relevant
data in (near) real-time to computational models of the evolution of physical phenomena
of interest, so as to predict and control outputs and meet a set of objectives [40]. To that
end, efficient numerical methods have to be developed in order to construct an advanced
(fast, robust, effective) strategy for the numerical processing of a large collection of noisy
data, obtained from continuous updates and being assimilated sequentially in time. This
calls for real-time and robust computational strategies that will be addressed in this thesis.

Thesis contributions

The framework of this thesis deals with data assimilation in order to update numeri-
cal models. The purpose is to convert noisy and indirect observational data into useful
characterizations of the unknown parameters of a numerical model, in order to be able
to precisely describe the state of a physical system with the updated numerical model.
Thus, degrees of freedom of the physical system state are assumed to be restricted to a
few number of stationary parameters. The objective of this work is to provide a robust
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and fast data assimilation framework based on Bayesian inference and advanced numerical
techniques (model reduction, fast sampling, automatic correction of model bias,. . . ) that
is able to take into account all uncertainties which may be encountered. After this brief
introduction, the manuscript is organized as follows:

• Chapter 1 is a state-of-the-art on inverse problems and model order reduction meth-
ods. A particular attention is paid and developments are made for the Bayesian
formulation of inverse problems and the Proper Generalized Decomposition (PGD)
method.

• In Chapter 2, a first coupling is performed between the PGD model reduction method
and Bayesian inference. This study focuses on fast computation of the posterior den-
sity when different types of uncertainties occur such as measurement error, model
error and uncertain parameters. Here, few parameters are considered and the pos-
terior densities are characterized with sampling on a regular grid. Interests and
performance of such a method are highlighted on several numerical examples.

• In Chapter 3, the context is the sequential inference of numerical models. The pur-
pose is to improve the knowledge on model parameters in real-time. An algorithm
coupling Transport Map and PGD model reduction methods is proposed in order to
efficiently compute the solution of sequential Bayesian inference problems. Perfor-
mance of the algorithm is shown in a numerical example in the context of real-time
simulation of a welding process.

• In the first part of Chapter 4, the experimental campaign performed during this PhD
is presented. This study aims to characterize the damage in a notched concrete beam
during a three points bending test. In the second part of this chapter, the algorithm
developed in Chapter 3 is applied in the context of the experimental campaign in
order to sequentially update the parameters of a PGD damage model. Then, the
updated model is used to predict the crack propagation in the beam.

• In Chapter 5, developments are made in order to learn model bias from data. A
method to build and identify the model bias is proposed in order to improve accu-
racy of sequential Bayesian inference solutions. This method is applied to numerical
examples for behavior and PGD truncation errors.

• The objective of Chapter 6 is to optimize the use of the Digital Image Correlation in
Bayesian inference with PGD models. First, a method is presented in order to select
only the most relevant information based on sensitivity with respect to the variation
of parameters and with respect to noise. Second, a method to improve the sensitivity
of the field measurement itself is proposed by optimization of the speckle pattern.
The methods are applied to the measurements obtained during the bending tests on
the concrete beams.

• Eventually, general conclusions and limits of this work are drawn. Prospects and
future works with different complexities are also mentioned.
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General computational tools settings This work aims to compare the computation
cost of different methods. Unless otherwise specified, the computations are performed with
the following settings:

• A medium effort has been done in order to optimize an in-house software developed
in Matlab or Python.

• The seed of the random generator number is fixed for each code run.

• The computations are performed using a laptop computer with 2.7 GHz Intel Core
i5 without parallelization.



Chapter 1
State-of-the-art

This chapter aims to present the classical methods to solve inverse problems and their
couplings with reduced order modeling. Robustness and computational cost of such ap-
proaches will be discussed.

1.1 Classical methods to solve inverse problems

In this section, the focus is on the classical methods to regularize and solve inverse problems.

1.1.1 Deterministic methods

In the deterministic framework, inverse problems are formulated in terms of functional
minimization. The solution of the inverse problem is a deterministic vector pest. This
solution is found by the minimization of a functional J :

pest
= argmin

p2P
J (p) (1.1)

Once the functional J is determined, classical minimization algorithms can be used to
solve the inverse problem. Thus, in this framework, the main technicity of inverse problems
is focused on the development of a functional that can produce in a robust way a good
estimation of the parameters of interest. In the most common cases, the functional will be
based on the discrepancy between the model output for a given value of p and the observed
data.

1.1.1.1 Least-squares formulation

The most usual and easiest way to compute the discrepancy model prediction and the
observed data is to use the euclidian norm (L2 norm when data are functions instead of
samples). In that case, the functional reads:

JLS(p) = ||M(p)� dobs
||
2
2 (1.2)

Following the notations of the introduction, M is the model of interest, with d = M(p) the
output that can be compared to dobs. In that case, the parameter estimation is the value

7
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of parameters which provides the minimal residual estimation in the least-squares sense.
This objective function is the most common choice as it can be applied without considering
the physics of the problem and can be used in any situation, for any kind of parameters.
This method is also interesting for practical reasons as it only requires the evaluation
of the model in a non-intrusive way. However, the general framework provided by this
formulation has its counterparts. This method can have low performance depending on
the problem nature. For example, this formulation is not robust when data are corrupted
with a non-uniformly distributed noise [133].

In order to improve the lack of robustness of the classical least-squares formulation,
regularizing terms can be added. First, when statistical information is available concerning
the noise level, a weighted least-squares functional can be introduced under the form:

JWLS(p) =
�
M(p)� dobs

�T
C
�1
�
M(p)� dobs

�
(1.3)

where C is the covariance matrix of the measurement noise. Thus, in this formulation the
contribution of each observation to the final result is weighted by its corresponding noise
level. This approach can be determined by uncertainty quantification of the noise level
before data assimilation. If no information about noise is known a priori, C is taken as
the identity matrix leading to the classical formulation (1.2).

Another issue with this least-square formulation is that the ill-posedness of the inverse
problem can be preserved. If the number of experimental data is not sufficient, the solution
provided by the least-squares minimization can be sensitive to the initial conditions. The
functional JWLS can also have several local minima and the solution can be not unique.
Thus, the minimization can be very difficult and costly. A method that can help the
minimization of a least-squares functional is the introduction of a regularization term
R(p) known as Tikhonov regularization [12]:

JWLS-R(p) = JWLS(p) + ↵R(p) (1.4)

where ↵ is a weighting term associated to the regularization. The most common choice
for the regularization term is R(p) = ||p � p0

||
2
2. This regularization imposes that the

solution is close to the prior knowledge on parameter p0. Another choice of regularization
term when dealing with parameter field estimation is R(p) = ||rp||22. Here, the spatial
smoothness of the parameter field is enforced. In order to find the best weight ↵ between
the prior knowledge and the least-squares functional, the L-curve method can be used (see
[59] for details). The graphical interpretation is that in the plan (JWLS,R(p)), the plot of
the functional (1.4) with respect to ↵ has a L-shape and the optimal choice of ↵ is given
by the corner of this shape.

1.1.1.2 Constitutive relation error

Adding prior knowledge linked to the specificity of the problem helps to regularize the least-
squares formulation. In that sense, some functionals are directly based on the physics of the
problem. It is the case of the approach based on the Constitutive Relation Error (CRE).
This notion as been first introduced to certify the quality of finite element computations
[78]. This method is based on the idea that among the equations of the problem, the
constitutive relation is usually the one which is less reliable. The constitutive equation
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is the relation that links the primal quantity u (displacement field in mechanics) and the
dual quantity �. In the linear case, the constitutive equation reads:

� = C : ✏(u) (1.5)

Then, the constitutive relation error e is defined as:

e = ||� � C : ✏(u)||C�1 (1.6)

with ||X||C�1 the energy norm defined such that ||X||
2
C�1 =

Z

⌦
X : C�1

: Xdx.

This error formulation was widely used for the verification of numerical simulations [81,
77, 76]. A first approach to deal with inverse problems is to directly use the measurements
in formulation of the field admissibility [78]. Another approach is to add a measurement
error term to the CRE [47] that leads to the definition of the modified constitutive relation
error (mCRE):

E
2
(u,�,p) = ||� � C : ✏(u)||2C�1,⌦ + �||⇧u � dobs

||
2
2 (1.7)

where ⇧ is an operator projection that allows to compare the system state u to the obser-
vations dobs. The scalar � is a parameter that weights the influence of the measurement
error term. Thus, in this two-step iterative approach, the unknown fields (�,u) is found
by the minimization of (1.7) with fixed p:

(�ad,uad) = argmin
(�,u)2Uad⇥Sad

E
2
(u,�,p) (1.8)

where Uad and Sad are the kinematically and statically admissible spaces, respectively
defined by:

Uad = {u(x)/u(x) = ud 8x 2 @u⌦} (1.9)
Sad = {�(x)/�(x).n = fd 8x 2 @f⌦, div(�(x)) = 0 8x 2 ⌦} (1.10)

with @⌦ = @u⌦ [ @f⌦ and @u⌦ \ @f⌦ = ;.
Then, the modified constitutive relation error functional can be written as:

JmCRE = E
2
(�ad,uad,p) (1.11)

and the identification problem comes down to the minimization of JmCRE with respect to
p. Therefore, the inverse problem is solved using a double minimization: the first aims to
find the optimal admissible fields of the problem, depending on data, and the second aims
to find the best parameter fit in the sense of the modified constitutive equation.

This method was applied in a very wide range of applications involving inverse prob-
lems: in [9] for the identification of material properties, for nonlinear mechanics in
[108, 41, 100], for dynamical problems in [16, 47, 80], with in-situ measurements in [24],etc.
In those applications, the method has proven to be particularly robust with respect to
highly corrupted data. However, this method can be very costly as it requires a double
minimization to find the admissible fields and perform the parameters estimation.
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1.1.1.3 Methods using full-field measurements

With the development of full-field measurements with the Digital Image Correlation (2D)
and Digital Volume Correlation (3D), specific methods have been developed to use them
in order to identify material properties. Those measurements give a very large amount of
data that improve the regularity of the inverse problems. Among those methods, we can
cite:

• The Finite Element Model Updating (FEMU) [70] and Integrated FEMU [85, 106]
which use a weighted least-squares formulation to identify material properties from
DIC measurements.

• The equilibrium gap method introduced in [32] that aims to find parameters that
minimize the equilibrium residual.

• The reciprocity gap method used for crack detection [4, 48] that only requires data
on the domain boundary.

• The virtual field method [55] where the inverse problem is solved in a straightforward
manner thanks to the principle of virtual work and appropriate choice of virtual fields
[6].

1.1.2 Methods based on the Bayesian inference

Another approach to solve inference problems is to use a stochastic framework within
the Bayesian inference. This framework leads to an automatic regularization of inverse
problems [143, 67, 140] and is a natural way to consider uncertainties as measurement
errors, modeling errors or naturally stochastic parameters. This approach has been used in
many engineering fields such as monitoring and control of structures [8, 66, 150], structural
reliability analysis [139, 114], or identification of material properties [38, 51].

1.1.2.1 General formulation

The Bayesian framework is based on the Bayes theorem [7] which leans on the definition
of conditional probabilities. Let A and B be two events. The relation between conditional
probabilities reads:

P (A|B)P (B) = P (A \B) = P (B|A)P (A) (1.12)

with P (A \ B) the joint probability that both events A and B occur. P (A) and P (B)

are marginal probabilities on A and B, respectively, and P (A|B) and P (B|A) are the
conditional probabilities. Dividing (1.12) by P (B) 6= 0 leads to the Bayes theorem:

P (A|B) =
P (B|A)P (A)

P (B)
(1.13)

Thus, if marginal probabilities are known, this relation enables one to invert the conditional
knowledge between A and B. It is this property that is exploited to solve inverse problems.
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In the Bayesian formulation of inverse problems, the random variables of interest are
the observations dobs and the parameters p. That way, the Bayes formulation of inverse
problems in terms of densities reads:

⇡(p|dobs
) =

⇡(dobs
|p).⇡(p)

⇡(dobs)
(1.14)

The posterior density ⇡(p|dobs
) is the result of the Bayesian inversion; it gives de probabil-

ity density function (pdf) on the parameters knowing the measurements. The prior density
⇡(p) is the prior knowledge on the parameter coming from another estimation, expertise
or maximum entropy study. The term ⇡(dobs

), called model evidence, is a normalization

constant that ensures that
Z
⇡(p|dobs

)dp = 1. The density ⇡(dobs
|p) is the likelihood

function; it is the probability that the model produces the observation dobs for a given
value of p. Its computation requires some efforts that will be explained in the following
developments.

The model governing the studied physical system, denoted M, is assumed to be explicit,
so that it provides the observation prediction d as:

d = M(p) (1.15)

The link between the model prediction and the observation can be made by taking into
account a noise model B:

dobs
= B (M(p), e) (1.16)

where e is the random variable of noise. When p and e are fixed, dobs is completely
specified, that is, dobs

= B (M(p), e), so:

⇡(dobs
|p, e) = �

�
dobs

� B (M(p), e)
�

(1.17)

where � is the Dirac function. Therefore, the likelihood function can be computed as:

⇡(dobs
|p) =

Z
�(dobs

� B (M(p), e)).⇡err(e|p)de (1.18)

where ⇡err(e|p) is the pdf of measurement error conditionally to parameters p. The model
of an additive noise is usually chosen such that the likelihood function reads:

⇡(dobs
|p) = ⇡err(d

obs
�M(p)|p) (1.19)

If, in addition, the noise is independent of the parameters p, the even more classical
expression of the likelihood function reads:

⇡(dobs
|p) = ⇡err(d

obs
�M(p)) (1.20)

In this case, the likelihood function is the distance between the model prediction and the
observation weighted by the measurement error. Then, the posterior density reads:

⇡(p|dobs
) / ⇡err(d

obs
�M(p)).⇡(p) (1.21)
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It is worth noticing that if the prior is taken as a Gaussian distribution with mean p0

and covariance matrix Cp, and the measurement noise is also Gaussian with zero mean
and covariance matrix Cd, the posterior density reads:

⇡(p|dobs
) / exp

✓
�
1

2

h�
M(p)� dobs

�T
C
�1
d

�
M(p)� dobs

�
+
�
p � p0

�T
C
�1
p

�
p � p0

�i◆

(1.22)
Finding the maximum of this density (maximum a posteriori (MAP)) gives an esti-

mation of the parameters pMAP. Finding this maximum is equivalent to minimizing the
functional:

JMAP(p) =
�
M(p)� dobs

�T
C
�1
d

�
M(p)� dobs

�
+
�
p � p0

�T
C
�1
p

�
p � p0

�
(1.23)

Thus, in this case the Bayesian solution of the inverse problem is equivalent to mini-
mizing a weighted least-squares functional with the prior density acting as a regularization
term.

1.1.2.2 Sequential inference

When the observations dobs are not available simultaneously during a time-dependent
problem, the formulation of the sequential Bayesian inference problem can be easily derived
from the classical formulation. In such a case, for each new set of assimilated measurements,
the prior density of the formulation (1.14) for the current assimilation step is taken as the
posterior of the previous assimilation step. Let us consider a physical system to be studied
through Nt assimilation time steps ti, i 2 {1, ..., Nt}. The model M(p, t) governing the
physical system is assumed to be time-dependent in addition to its parameters dependency.

Then, at the considered assimilation time step ti, i 2 {1, ..., Nt}, the posterior density
function for having the parameters knowing the sets of measurements {dobs

1 , ...,dobs

i } reads:

⇡(p|dobs

1 , ...,dobs

i ) /

iY

j=1

⇡tj (d
obs

j |p).⇡(p) (1.24)

For a given set of measurements dobs

j , with independent additive measurement noise, the
likelihood function ⇡tj (d

obs

j |p) reads:

⇡tj (d
obs

j |p) = ⇡meas

�
dobs

j �M (p, tj)
�

(1.25)

1.1.2.3 Quantity of interest over the posterior density

In such classical Bayesian formulations of inverse problem with noisy measurements, the
posterior density directly depends on the output of the forward model. However, know-
ing the probability density function of the unknown parameters is not directly useful to
characterize those parameters. In parameter inference one wishes to compute estimators
such as the maximum a posteriori, the mean, the variance etc. These estimators require
multi-dimensional integration over the posterior density as well as the computation of the
normalization constant itself. The inference problem thus becomes post-processing and
integration numerical issues.

Integration over the posterior density can be difficult due to the dimension (number of
parameters) and the fact that the support of the integrals is unknown. A way to avoid the
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increasing computation cost of the integrals with respect to the dimension of the parametric
space is to use Monte-Carlo integration. Let us consider the multi-dimensional probability
density function ⇡(p) with p 2 R

d, as well as the quantity of interest (1.26) involving ⇡(p)
and a squared-integrable function h(p).

E[h] =

Z

P
h(p)⇡(p)dp (1.26)

This scalar quantity is the mathematical expectation of h, but it could also correspond to
any moment of another random variable. Considering the samples (pi)i2{1,...,Nmc} drawn
according to the density ⇡ and using Monte-Carlo quadrature, the integral (1.26) can be
approximated by the mean estimator:

E[h] ⇡ h̄ =
1

Nmc

NmcX

i=1

h(pi) (1.27)

However, generating samples directly from ⇡ is very difficult in the general case where
⇡ does not belong to a classical family of distributions (normal, uniform,...). Consequently,
in the context of Bayesian inference with non-linearity assumptions on the models and non-
Gaussian densities, specific sampling methods are required to perform integration over the
posterior density.

1.1.2.4 Markov Chain Monte-Carlo sampling

The idea of sampling methods is to use sample generators of reference densities (normal,
uniform) to build samples distributed according to the target density. A classical sam-
pling method consists in generating a Markov chain which has the target distribution as
equilibrium distribution [121]. The most common algorithm to build Markov chains is
the Metropolis-Hastings algorithm. This algorithm is well-suited to Bayesian inference as
only the evaluation of the target density up to a multiplicative constant is necessary, and
therefore the computation of the normalization constant is not necessary.

The idea of this algorithm is to generate samples from a classical density (proposal den-
sity q) then accept or reject each sample according to the comparison with the probability
of the previous accepted sample. If the proposed sample has a higher probability than the
previous sample of the chain, it is accepted. Otherwise, it is accepted with a probability
depending on the probability ratio between its probability and the probability of the pre-
vious sample. If the proposed sample is rejected, the chain proceeds by duplicating the
previous sample.

However, the proposal distribution has to be set a priori and can be difficult to calibrate
with respect to the target density. Figure 1.1 shows the first 200 samples generated with
the Metropolis-Hastings with "small" and "large" proposals. Here the target density is
a two-dimensional banana-shaped density. It can be observed that a large proposal will
lead to often rejected samples while a small proposal will lead to often accepted samples.
Both extreme cases will lead to a poor diversity of the chain and correlated samples either
by having lots of duplicated samples or samples stagnating in the same region for a long
time [67]. Furthermore, the beginning of the chains corresponds to a "burn-in" phases
when the samples are not yet distributed according to the target density. This phase can
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Figure 1.1: First 200 samples generated by MCMC algorithm with small and large pro-
posals

be very long depending on initialization and which proposal density is used. Samples of
this phase must be discarded which slows down the convergence of the algorithm.

A way to set the proposal distribution automatically is to use the concept of adaptive
MCMC [58]. The idea is to use theoretical results on optimal proposal distribution for high-
dimensional normal distributions [122]. The optimal distribution for a normal distribution
of dimension d with covariance matrix ⌃ is:

q(pk) = N

✓
pk�1,

(2.38)
2

d
⌃

◆
(1.28)

As the covariance matrix ⌃ of the target distribution is not known a priori, the idea of
adaptive MCMC is to use the approximation of the chain covariance matrix ⌃k known at
iteration k. The initial covariance matrix is given as a function of the target distribution
dimension d. To avoid the covariance matrix collapsing to zero, a regularizing coefficient
0 < � < 1 may be added [123] to compose the approximation of the optimal distribution
with a fixed proposal distribution (see Algorithm 1).

A huge drawback when using MCMC methods is the difficulty to assess when the
number of samples of the chain is sufficient. First, the burn-in phase has to be identified. In
practice, an arbitrary large number of samples is discarded to only keep samples distributed
according to the density. This phase slows down the convergence of the chain and can not
be controlled on the fly during the MCMC algorithm. Besides that, setting a stopping
criterion is also a difficult task [136]. In the literature, most used convergence criteria are
based on convergence of averages [49]. However, such criteria can be difficult to set and
often lead to a high number of samples to generate [121].
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Algorithm 1 Adaptative Metropolis
1: Initialize: p0

2: ⌃0 =
(0.1)

2

d
Id

3: for k = 1...Nmc do
4: p⇤

k ⇠ (1� �)N (pk�1,⌃k�1) + �N (pk�1,⌃0)

5: ↵ = min
✓
1,

⇡(p⇤
k)

⇡(pk�1)

◆

6: r ⇠ U [0, 1]

7: if r  ↵ then
8: pk = p⇤

k

9: else
10: pk = pk�1

11: end if
12: ⌃k =

(2.38)
2

d
cov(p0, ...,pk)

13: end for

1.1.2.5 Kalman and particle filters

In the case of sequential data assimilation, Kalman filters are widely used [68, 149, 34,
45]. The purpose of this method is to estimate and predict the states of a system with
the sequential data assimilation of noisy data. This method allows to take into account
uncertainties associated to measurements and model errors. This method can in fact be
presented as a particularization of the sequential Bayesian inference when all uncertainties
are considered as Gaussian, with independence assumptions and the posterior density is
post-processed by computing the maximum a posteriori [99, 98]. This method is very fast
as the problem is reduced to the solution of a linear system. Similar to this method, we can
also cite the deterministic variational 4D-Var approach widely used for weather forecasting
[109, 142, 83] which leans on a functional minimization. However, this method may lack of
robustness as only an error on the initial state can be considered. Kalman filters may also
lack of robustness due to the simplification made in form of the uncertainties and the model.
That is why it was coupled to the modified constitutive relation error method in some
recent works [99, 1]. To avoid the lack of robustness, particle filters/sequential Monte-Carlo
methods are widely used to deal with sequential inference problems [132, 5]. The purpose
of those methods is to represent the posterior density with samples distributed according
to the posterior density. At each assimilation step, the samples are re-weighted (sequential
importance sampling) and can be coupled with MCMC algorithms [69]. However, as
presented in Section 1.1.2.4, the cost associated to the generation of the samples and
the slow convergence can lead to high computational costs.

1.1.3 Limitations of current approaches for real-time simulation

In the DDDAS framework, the use of a Bayesian method was already applied in [118, 119].
This work addressed sequential data assimilation aspects alone (no feedback control loop)
and focused on uncertainty quantification and the dynamical selection of models. The au-
thors used a full stochastic Bayesian framework for inverse analysis and dynamical model
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updating in order to take experimental uncertainties and modeling errors [111] into account
in a straightforward manner. Nevertheless, it appears that this probabilistic framework
(involving the costly computation of a likelihood function as well as multiple samplings
of the forward model using MCMC techniques) remains much too heavy for considering
real-time applications on large scale structures. Concurrent methods for the stochastic
calibration of models are provided by means of nonlinear extensions of Kalman filtering
and for example, investigated in [34, 87, 102, 101, 151]. Even though Kalman filtering has
been used for a long time for structural identification [63], it is not really suited when con-
sidering complex structures with a large number of degrees of freedom and identification
of distributed model parameters. Indeed, in addition to expensive algorithms due to the
large number of sought parameters, modeling errors are generally a priori poorly known in
this case. Consequently, the identification problem becomes an ill-conditioned problem and
may lead to divergence or unstable solutions. The statement is similar when performing
model updating from deterministic least-square methodologies and Tikhonov regulariza-
tion, due to non-convex cost functions and the lack of continuity producing instabilities.
In the application where full-field measurements are available, alternative variational data
assimilation methods (Equilibrium Gap, Modified Constitutive Relation Error) are more
robust. However, these approaches are not considered for real-time applications due to
their computational costs.

Consequently, the robustness and real-time constraint that appear in data assimilation
motivate the joint use of Bayesian inference and reduced order models that permit a low
cost during data assimilation processes.

1.2 Model reduction methods serving inverse problems

In the majority of inverse methods, the prediction of the forward model is computed in order
to compare model outputs to observations. This prediction is obtained by interrogating
the model for a given value of the parameter set. In order to find the values of parameters
that give the minimum of discrepancy between the model prediction and the observations,
iterative methods are used. Consequently, the output ot the forward model needs to be
computed for a large amount of parameters values. This is emphasized in the context of
Bayesian inference where Monte-Carlo methods are used, which requires a large amount
of samples.

In the targeted engineering applications, numerical models are based on the solution
of complex Partial Differential Equations (PDE). In this context, parameterized PDEs
have to be solved in a multi-query and computationally intensive manner along the inver-
sion process. Hence, inverse problems have become more and more coupled with model
order reduction techniques. These techniques do not simplify models but rather decrease
their computational complexity by using specific mathematical techniques that generate an
adequate numerical approximate solution from a low-dimensional basis (manifold). Conse-
quently, model order reduction techniques have the potential to dramatically reduce CPU
costs and memory resources without sacrificing too much of the solution accuracy.

The purpose of model reduction methods is to approximate a field u depending on d

variables (p1, ..., pd) by a low rank approximation. Using the canonical decomposition, this
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approximation reads:

u(p1, ..., pd) ⇡ um(p1, ..., pd) =

mX

k=1

dY

i=1

↵ik(pi) (1.29)

Thus, a relevant reduced order model is a model um that gives a good approximation of
u with a few number of modes m. Model reduction methods are very useful to speed-up
the computation of the solution of inverse problems as the parameters can be chosen as
spatial coordinates, time and parameters to be identified. In this context, the solution um

can be computed in the offline phase, before performing data assimilation and evaluated
during the inverse problem solution when data are assimilated.

1.2.1 The Proper Orthogonal Decomposition

Maybe the most common model order reduction method is the Proper Orthogonal Decom-
position [91] which shares similar ideas with the Karhunen-Loeve decomposition [88] and
the Principal Component Analysis (PCA) [116]. The common idea is to use an approxi-
mation of a matrix U by its truncated Singular Value Decomposition (SVD). Applied to
time-dependent problems, the matrix U is built with snapshots of the model solution:

U = [u(x, t1), ...,u(x, tNt)] (1.30)

where u(x, ti), i 2 {1, ..., Nt} are vectors of size the number of discretized spatial coordi-
nates Ns. In practice, when the considered problem is governed by a time-dependent PDE,
the vector u(x, ti) represents the numerical solution of the PDE at time step ti. This leads
to a matrix U of size Ns ⇥Nt and its SVD reads:

U = ZSVT (1.31)

The matrix S is a diagonal matrix composed by the singular values arranged in descending
order. The orthogonal matrices Z 2 R

Ns⇥Ns and V 2 R
Nt⇥Nt are composed with spatial

and time modes respectively. Thus, the reduced order model reads:

U ⇡

mX

k=1

�izi ⌦ vi (1.32)

where zi and vi are the basis column vectors of Z and V, respectively. Here, the truncation
order m  min(Ns, Nt) can be chosen by studying how the singular values decrease and
quantifying the truncation error. Consequently, the discretized field U can be represented
only with m vectors of size Ns and m vector of size Nt. That way, the solution of a time
dependent PDE can be computed in an offline phase and the POD basis of the spatial
modes is kept to evaluate the solution in the online phase.

This method can be applied for any matrix associated to the snapshots of any parame-
ters. However, in inverse problems the models of interest have more than two parameters.
Thus classical POD can be limited to solve inverse problems. To take into account a para-
metric dependency of the model of interest to d parameters, the reduced model (1.29) can
be computed with snapshots and enrichment methods such as the High-Order Singular



18 CHAPTER 1. STATE-OF-THE-ART

Value Decomposition (HOSVD) [11]. This approach can be associated to the decompo-
sition of high-order tensors like the Canonical Polyadic (CP) decomposition [62] and its
variants [33].

In the context of inverse problems, POD was used in [15] for the identification of
material properties, in the context of sequential data assimilation with time-dependent
problem [37, 46], or in the context of Bayesian inference in [86].

Nevertheless, all these methods based on snapshots are very costly as they require the
evaluation of the model for a large number of parameter sets. Even if in the context of
inverse problems this cost is offline, such computations can be difficult to perform.

1.2.2 The Reduced Basis method

An improvement of the generation of reduced order models with snapshots is given by the
Reduced Basis (RB) method [126, 95]. The principle of this method is a greedy algorithm
which selects the best snapshots to enrich the reduced order model. That way, only the
most relevant computations are performed. To build the reduced order model, a first
parameter set p1

= (p
1
1, ..., p

1
2) 2 Sp is chosen with a prior knowledge or in a random

way. At this stage, the reduced basis is {u(p1
)}. Then, each new best snapshot pk,

k 2 {2, ..,m}, is defined as the one for which the associated error is the largest:

pk
= argmax

p2Sp

||u(p)�⇧k�1u(p)||2 = �k�1(p) (1.33)

where ⇧k�1 is the orthogonal projection on the space Uk�1 = span
n
u(p1

), ...,u(pk�1
)

o

is stopped when �k(p) achieves a suitably small tolerance. Once the reduced basis is
computed, the evaluation of the solution for an arbitrary value of the parameters p requires
a Galerkin projection.

The RB method was used in many applications to solve inverse problems. In [93],
it was coupled with the Genearalized Empirical Interpolation Method, and in [82] it was
applied in a biomedical context. The RB method was also coupled with Bayesian inference
in [36] where the snapshots required to compute the basis were optimized with respect
to the posterior density. In [97], Bayesian inference was coupled with reduced basis and
model error estimation.

1.2.3 Polynomial chaos expansion

Coupled with Bayesian inference, the polynomial chaos expansion is also widely used [104,
105]. The purpose is to replace the forward model in the expression of the likelihood
function by a truncated polynomial chaos approximation. In this case, the polynomial
basis is chosen according to the prior density ⇡(p). First, a polynomial basis �↵(p),
↵ = (↵1, ...,↵d) (↵i 2 N) is chosen as the product of univariate polynomials:

�↵(p) =
dY

i=1

H↵i(pi) (1.34)

where {H↵i , i 2 {1, ..., d}} are a polynomial orthogonal basis (Hermite, Legendre, ...). cho-
sen according to the prior density ⇡(p. Then, the mth-order polynomial expansion of the
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model M is defined by:
Mm(p) =

X

↵2Nm

a↵�↵(p) (1.35)

The coefficients a↵ are found solving:

a↵ = E[M(p)�↵(p)] =

Z
M(p)�↵(p)⇡(p)dp (1.36)

In the case where the model M found by solving a partial differential equation, stochastic
finite element method can also be used to found the coefficients a↵.

This method has two main limitations [90]. First, the polynomial chaos expansion is
based on the prior density of the Bayesian formulation. Then, when the posterior is strongly
shifted from the prior (case when the data are highly informative), the approximation can
become inaccurate. Second, when dealing with highly non-linear models, the number m of
modes needed to accurately represent the solution is very large.

1.2.4 The Proper Generalized Decomposition method

The Proper Generalized Decomposition is a model order reduction technique used in a
wide range of applications [28]. It constructs an a priori modal approximate solution of a
PDE using the separation of variables on a low number of modes. The classical approach
called progressive Galerkin PGD [110] is based on the Galerkin orthogonality built from
the global weak form of the PDE. This PDE is here assumed to be defined on a spatial
domain ⌦ and time domain I = [0, Tf ]. Considering for instance a Laplacian operator and
transient regime, we introduce the Sobolev space S = H

1
0 (⌦) (space of H1 functions on

⌦ verifying homogeneous Dirichlet boundary conditions), as well as the Lebesgue space
T = L

2
(I) and the Bochner space V = L

2
(I;S) ' S⌦T . We thus consider the space-time

weak formulation of the PDE defined as follows:

Find u 2 V, such that a(u,v) = l(v), 8v 2 V (1.37)

In the context of parameter inference, the PDE is assumed to be dependent on model
parameters p 2 P = P1 ⇥ ...⇥ Pd. The idea of the PGD method is to find the solution of
the problem globally in terms of space, time, and parameters under the canonical tensor
format:

um(x, t,p) =
mX

k=1

⇤k(x)�k(t)
dY

i=1

↵ik(pi) (1.38)

After introducing functional spaces Pi = L
2
(Pi), i 2 {1, ..., d}, the global bilinear form

A(., .) and linear form L(.) are defined as:

A(u,v) =

Z

P
a(u,v)dp, L(v) =

Z

P
l(v)dp (1.39)

In the progressive approach, modes are computed sequentially; the decomposition at order
m � 1 being known, the mode m (i.e. functions ⇤m,�m,↵im, i 2 {1, ..., d}) is searched
such that:

um(x, t,p) = um�1(x, t,p) + ⇤m(x)�m(t)

dY

i=1

↵im(pi) (1.40)
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Using the Galerkin orthogonality on the tangent space, the problem reads:
Find ⇤m 2 S, �m 2 T , ↵im 2 Pi, i 2 {1, ..., d} such that:

A

 
um�1 + ⇤m�m

dY

i=1

↵im,v⇤

!
= L(v⇤

) (1.41)

with v⇤
= ⇤

⇤
�

dY

i=1

↵im + ⇤�
⇤

dY

i=1

↵im + ⇤�

dX

j=1

↵
⇤
jm

dY

i=1
i 6=j

↵im

8⇤
⇤
m 2 S,�

⇤
m 2 T ,↵

⇤
jm 2 Pj , j 2 {1, ..., d}

This leads to the solution of d+ 2 coupled equations:

A

 
um�1 + ⇤m�m

dY

i=1

↵im,⇤
⇤
�

dY

i=1

↵im

!
= L

 
⇤
⇤
�

dY

i=1

↵im

!
, 8⇤⇤

m 2 S (1.42a)

A

 
um�1 + ⇤m�m

dY

i=1

↵im,⇤�
⇤

dY

i=1

↵im

!
= L

 
⇤�

⇤
dY

i=1

↵im

!
, 8�⇤m 2 T (1.42b)

A

0

B@um�1 + ⇤m�m

dY

i=1

↵im,⇤�↵
⇤
jm

dY

i=1
i 6=j

↵im

1

CA = L

0

B@⇤�↵
⇤
jm

dY

i=1
i 6=j

↵im

1

CA , 8↵⇤
im 2 Pi, i 2 {1, ..., d}

(1.42c)
Once spaces Pi, i 2 {1, ..., d}, T and S are discretized, sub-problems (1.42a), (1.42c) are

linear problems solved using the finite element method and sub-problem (1.42b) is an ordi-
nary differential equation solved using a time scheme. As the equations of the global system
(1.42) are coupled, they are in practice solved by means of a fixed-point algorithm (alter-
nated directions strategy). At the difference of aforementioned model reduction methods,
the PGD model is computed while solving the PDE. Consequently, the model output can
directly be evaluated for any parameter value by evaluating finite element functions.

The PGD technique was widely applied to the solution of inverse problems as in [135]
in a geophysical context, or in the DDDAS framework [54, 50]. It was coupled to Kalman
filtering in [53] and in [99] where the modified constitutive relation error was also used. In
[17], PGD was coupled to modified constitutive relation in the context of real-time control
of a machining process. In [10], a first use of the PGD with Bayesian inference and MCMC
sampling was proposed to identify thermal conductivity in a time-dependent problem.

1.3 Conclusions

In the literature, many developments were dedicated to the solution of inverse problems.
While the deterministic methods consist in minimizing a functional, stochastic approaches
based on the Bayesian inference aim to find the posterior densities on the parameters of
interest. In this context, all the uncertainties are considered as random variables and can
be propagated to estimate the parameters of interest. The Bayesian inference method has
proven to be robust and can give better results than the classical least-squares formulation
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[51]. In the context of health monitoring of civil engineering structures, regularized least-
squares, modified constitutive error and Bayesian approaches were compared [148]. In this
application these methods seem to provide equivalent accurate estimations of parameters.
However, the computation of those approaches may not be compatible with real-time data
assimilation. It is especially the case in the Bayesian framework where the posterior density
needs to be characterized with many Monte-Carlo samples.

To circumvent this issue, reduced order models are commonly used. Among the a pos-
teriori techniques, the Proper Orthogonal Decomposition and Reduced Basis are the most
used techniques. In those approaches, particular solutions of the problem (snapshots) are
used to build the reduced order model. Another approach often described as a priori is the
Proper Generalized Decomposition. In this method, the multi-parametric solution of the
studied problem is obtained directly by solving the governing PDE and assuming the sep-
arated structure of the solution. This approach is well suited for real-time applications as
it gives a quasi-analytical formulation of the model solution depending on all the variables
(space, time, parameters).

As a result, the approach to solve inverse considered here is placed in the Bayesian
inference framework. This choice is motivated by the robustness of the method and the
stochastic framework that allows to propagate all uncertainties in the estimation of the
parameters. In order to reduce the computation time required to compute Bayesian solu-
tions, the starting idea will be to use a PGD model computed in an offline phase (time
before the physical system is observed) and evaluated with a low cost in the online phase
(during the assimilation of data). This is the topic of Chapter 2.
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Chapter 2
Fast Bayesian inference with PGD model
order reduction

In this chapter, the purpose is to couple a Bayesian formulation of inverse problems to
the PGD model reduction method. Different types of uncertainties will be considered as
measurement error, model error and stochastic parameters. This chapter is adapted from
the published paper [129].

2.1 Bayesian updating

2.1.1 Building the likelihood function

In this chapter, where all forms of uncertainties are considered, the purpose is to propagate
uncertainties through the model to obtain the probability density functions needed to build
the likelihood function ⇡(dobs

|p). This function represents the probability to have the
model output equal to the measurements knowing parameters p. Measurements being
known, the likelihood function is seen as a function of p. This probability is directly
linked with with intrinsic uncertainties (stochastic parameters i) considered in the model
environment (see Figure 4), model and measurements errors. Here, few parameters are
considered so that the likelihood function will be built by sampling directly the discretized
parametric space. Other sampling alternatives will be discussed in Section 2.4.

2.1.2 Management of measurement error

Considering an additive (and independent of p and i) measurement noise e, the output of
the model is given by:

dobs
= d + e , with d = M(p, i) (2.1)

Considering ⇡err(e) the probability density function of the measurement error, and by a
convolution product, the likelihood function reads:

⇡(dobs
|p) =

Z
⇡(d|p).⇡err(d

obs
� d)dd (2.2)

The probability density function ⇡(d|p) represents the probability of having an output
d for a given value of p. This probability is directly linked to the model. If there is no

23
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uncertainty in the model (no stochastic parameter i and no model error) the probability
density function reads:

⇡(d|p) = �(d �M(p)) (2.3)

with � the Dirac function. Then the computation of the integral (2.2) is explicit and the
likelihood function is given by:

⇡(dobs
|p) = ⇡err(d

obs
�M(p)) (2.4)

2.1.3 Management of uncertain parameters/modeling error

When uncertainties are considered in the model, the output becomes a random variable
and the probability density function ⇡(d|p) needs to be computed. Then, the probability
density function of this random variable is obtained propagating those uncertainties in the
model.

To determine this probability density function, a Monte-Carlo sampling can be per-
formed using samples made with deterministic computations. The Monte-Carlo samples
dmc are evaluated in the model with values of the uncertainties imc drawn according to the
probability density function assumed in the modeling:

dmc = M(p, imc) (2.5)

With the samples dmc, the probability density function ⇡(d|p) is built thanks to a
kernel density estimation defined as follows:

⇡(d|p) ⇡
1

Nmch

NmcX

mc=1

K

✓
d � dmc

h

◆
(2.6)

K is a kernel function and h is a smoothing parameter called the bandwidth. For example,
K can be chosen as a Gaussian function of a normal centered probability density function.

The output can also become a random variable if model error is considered. In this
case ⇡(d|p) = ⇡mod(d), with ⇡mod(d) the model error probability density function. Those
computations are made for each value of the discretized space of p in order to sample the
likelihood function.

2.1.4 Post-processing

Once the likelihood function is computed, the product of the likelihood function by the
prior probability density function gives the posterior probability density function. The
Bayesian framework gives substantial information on the parameter identified as a proba-
bility density function. The post-processing of this density can be performed by means of
different estimators:

• Maximum a posteriori : pMAP = arg max
p
⇡(p|dobs

)

• Mean a posteriori : pM =

Z
p.⇡(p|dobs

)dp
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• Standard deviation: � =

sZ
p2.⇡(p|dobs)dp� p

2
M

When the parameter space dimension is m > 1 (p = (p1, ..., pm)), the Bayesian identifi-
cation result is a joint probability density function ⇡joint(p1, ..., pm). To obtain the marginal
probability density function of a parameter pk, k 2 {1, ...,m}, the following quantity has
to be evaluated:

⇡k(pk|d
obs

) =

Z
m
⌦
l=1
l 6=k

Il

⇡joint

 
(pl)l2{1,..,m}

l 6=k

|dobs

!
d

 
(pl)l2{1,..,m}

l 6=k

!
(2.7)

When a model updating process is considered from successive measurements (e.g. at
some time steps), the Bayesian inference naturally allows one to take successive pieces
of information into account and keep an history of the previous identification steps by
taking the prior probability density function at the current step as the posterior probability
density function of the previous step. Finally, the global algorithm of the general Bayesian
framework for a given model M is summed up in the Algorithm 2.

The Bayesian procedure applied to model updating coupled with Monte-Carlo sampling
can handle with all forms of uncertainties. However, it leads to a huge amount of calls to the
model. Indeed, in Algorithm 2 the model M needs to be evaluated N⇥dim(I

h
)⇥Nmc times.

Furthermore, once the posterior probability density function is built, a post-processing
needs to be done and this adds another computation cost. In basic cases, the model of the
system can be analytical, but in the DDDAS framework complex systems are considered.
If the system is represented by a finite element model, in a purpose of identification in
real-time, a direct solving cannot be done for all values of the parameters. That is why a
surrogate lighter model is needed to perform the Bayesian inference.

2.2 The coupled Bayesian-PGD inference

An attractive model order reduction technique is given by the Proper Generalized De-
composition (PGD). The PGD method was introduced in [74] as "radial approximation"
to solve nonlinear problems in structural mechanics. Since [29], this method was used in
many fields: model verification and validation [22], virtual charts for the engineering [146]
[35] etc. PGD was also used for identification problems in a deterministic framework [99]
[17] [89] and the great possible number of parameters types that can be considered [28]
seems to be well suited for Bayesian inference. A first PGD-Bayesian inference approach
is given in [10] where a PGD model is used in a Monte Carlo Markov Chain (MCMC)
framework. In this chapter, we consider stochastic parameters which lead to additional
sources of uncertainties. Those uncertainties are considered with the PGD model.

2.2.1 Progressive Galerkin PGD

We consider the general case where the problem is modelled by a system of partial dif-
ferential equations. This problem is supposed to be formulated with its equivalent global
weak formulation:

Find u 2 U/8v 2 V : A(u, v) = L(v) (2.8)
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Algorithm 2 Bayesian identification - Monte-Carlo
Require: Measurements: dobs

= {dobs

j }j2{1,..,N}, model M, stochastic parameter pdf
⇡(i), prior density ⇡prior

1 (p).
1: for j=1 to N do
2: for p 2 I

h do . Discretized parameter space
3: Monte-Carlo sampling :
4: for mc = 1 to Nmc do
5: imc ⇠ ⇡(i)

6: dmc = M(imc,p)

7: end for
8: end
9:

10: Uncertainty propagation with kernel density estimation :
11:

⇡(d|p) ⇡
1

Nmch

NmcX

mc=1

K

✓
d � dmc

h

◆

12:

13: Computation of the current likelihood function point pfixed:

⇡(dobs

j |p) =

Z
⇡(d|p).⇡err(d

obs
� d)dd

14: end for
15: end
16: ⇡(p|dobs

) = ⇡(dobs

j |p).⇡prior

j (p)

17: ⇡
prior

j+1
(p) = ⇡(p|dobs

)

18: end for
19: end
20: Post-processing for the multi-parametric case:
21: for k=1 to m do

⇡k(pk|d
obs

) =

Z
m
⌦
l=1
l 6=k

Il

⇡joint

 
(pl)l2{1,..,m}

l 6=k

|dobs

!
d

 
(pl)l2{1,..,m}

l 6=k

!

22: end for
23: end
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where A is a bilinear form, L a linear form, u is the unknown field, and v the test field.
l variables p1, ..., pl are considered. Those variables can be space variables, time, loads
parameters, material properties, etc. The following separated solution of the problem (2.8)
is searched (tensorized representation with canonical format):

u(p1, ...pl) ⇡ uPGD(p1, ...pl) =

mX

n=1

lY

k=1

�kn(pk) (2.9)

m is the number of modes and u 2 U = ⌦
l
1Uk. The computation of modes is performed

incrementally, so that the order m PGD decomposition reads:

uPGD(p1, ...pl) =

m�1X

n=1

lY

k=1

�kn(xk) +

lY

k=1

�km(pk) (2.10)

The unknowns are then �km 2 Uk, k 2 {1, ..., l}. The test field is taken in the separated
form:

v =

lX

k=1

�
⇤
km

lY

j=1
j 6=k

�jm , �⇤km 2 Uk , k 2 {1, ..., l} (2.11)

Verifying (2.8) thus leads to n coupled equations:

�km = Sk((�jm)j2{1,...,l}
j 6=k

) , k 2 {1, ..., l} (2.12)

This system of equations is solved by a fixed-point algorithm. This way, the PGD is an a
priori method where modes are generated while the problem is solved in the offline phase.
Once the separated solution is computed in the offline phase, it can be reused in the online
phase with a low computation cost since the solution is explicit regarding all coordinates
pk, k 2 {1, ..., l}.

2.2.2 PGD model reduction for Monte-Carlo sampling

The PGD model order reduction method allows one to have the response of a system
modelled with partial differential equations for all values of parameters. The goal is to
build such a PGD model to speed up the Bayesian process described in Algorithm 2.
According to the model environment set in previous sections (Figure 4), the following
PGD representation is searched:

M(p,x, i) = d ⇡

mX

n=1

⇤n(x)↵1n(p)↵2n(i) (2.13)

The model is built by separation of each parameter/variable in the loop of Algorithm
2. Thereby, the online computation cost is reduced to the summation of modes (array) for
each loop instead of a full resolution at each iteration. The smooth PGD framework for
the separation of distinct types of parameters is well suited to generate the Monte-Carlo
sampling then to build the likelihood function point by point as presented before.

Finally, the computation cost of the Bayesian identification process is due to the eval-
uation of the PGD model (which is explicit) for each Monte-Carlo draw, to each iteration
on the parameter to identify, and to each integral computation (for model/measurement
errors, or post-processing).
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2.2.3 PGD for analytical uncertainty quantification

The PGD model reduction is also a very interesting approach as it provides an analytical
form of the solution for all parameters. In this part, the purpose is to use this analytical
form to propagate the uncertainties directly without Monte-Carlo sampling. Here, the
study is restricted when the dimension of stochastic parameters i is one.

In this case, the uncertainty propagation in the model can be found by a change of
variables. A probability density function as any integrand verifies the variable change
theorem.

Let ⇡X(x) be the probability density function of the real random variable X and Y =

f(X) the variable change. If the function f is strictly monotonic and differentiable with
a never zero derivative, then the probability density function ⇡Y (y) of the variable change
is given by:

⇡Y (y) =

����
1

f 0(f�1(y))

���� .⇡X(f
�1

(y)) (2.14)

The previous case is generalized for the non-monotonic case as:

⇡Y (y) =

NyX

k=1

�����
1

f 0(f�1
k (y))

����� .⇡X(f
�1
k (y)) (2.15)

where Ny is the number of the xk = f
�1
k (y) solutions of the equation f(x) = y. f has

to verify the inverse function theorem: the set where the derivative is zero has to be
zero-measured.

This theorem can be applied with the PGD function:

f : i !

mX

n=1

⇤n(x)↵1n(p)↵2n(i) (2.16)

The probability density function estimated by Monte-Carlo sampling and kernel density
estimation is thus replaced with the change of variables:

⇡(d|p) = ⇡f(p,x,i)(d) (2.17)

However, this change of variables is presented for the one dimension case on the pa-
rameter i. It seems to be more difficult to study the multidimensional function in order
to build the Jacobian matrix and the inverse. Eventually, the Bayesian inference method
with analytical-PGD uncertainty propagation is summed up in Algorithm 3.

Avoiding the Monte-Carlo sampling seems to be very promising as it is the main source
of computation cost once the full order model is replaced by a reduced order model. In the
next sections, the goal is to apply this methodology of coupled Bayesian-PGD inference in
model updating examples.

2.3 Numerical examples

2.3.1 Welding control quality example

In the industrial context, the welding process control is a practical issue and a process con-
trolled by a numerical model through DDDAS framework can be an interesting approach.
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Algorithm 3 Bayesian identification - Analytical PGD
Require: Measurements: dobs

= {dobs

j }j2{1,..,N}, PGD modes {⇤n,↵1n,↵2n}, stochastic
parameter pdf ⇡(i), prior density ⇡prior

1 (p).
1: for j=1 to N do
2: for pfixed 2 I

h do . Discretized parameter space
3: Change of variable function:

f(i) =

mX

n=1

⇤n(x)↵1n(p)↵2n(i)

4: Computation of the derivative f
0 to define the intervals Ny where the function

is monotonic and computation of corresponding function inverses f
�1
k .

5: Uncertainty propagation by analytical change of variables:

⇡(d|p) =

NyX

k=1

�����
1

f 0(f�1
k (d))

����� .⇡(f
�1
k (d))

6: Computation of the current likelihood function point p:

⇡(dobs

j |p) =

Z
⇡(d|p).⇡err(d

obs
� d)dd

7: end for
8: end
9: ⇡(p|dobs

) = ⇡(dobs

j |p).⇡prior

j (p)

10: ⇡
prior

j+1
(p) = ⇡(p|dobs

)

11: end for
12: end
13: Post-processing for the multi-parametric case:
14: for k=1 to m do

⇡k(pk|d
obs

) =

Z
m
⌦
l=1
l 6=k

Il

⇡joint

 
(pl)l2{1,..,m}

l 6=k

|dobs

!
d

 
(pl)l2{1,..,m}

l 6=k

!

15: end for
16: end
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The aim of this example is to test the coupled Bayesian-PGD framework in the situation
of a welding process controlled in real-time. The studied problem is an academic example
initially proposed in [57]. Even if the industrial problem has been simplified, it is still
sufficiently complex to evaluate the performance of the presented methodology.

2.3.1.1 Definition of the problem

The welding control quality problem is described in Figure 2.1. Two metal plates are
welded by a heat source whose center is moving along the geometry. The welding quality
is directly linked to the welding depth dw and the welding process is assumed to have a
sufficient quality when the welded depth is above 0.5.

Figure 2.1: Joint-section view of the welding process

We assume the welding depth cannot be measured directly. Thus, we propose to
estimate it using a numerical model. Since some parameters of the model are not well
known, an updating process based on in situ measurements needs to be performed. Once
the numerical model is fully determined, the welding depth can be computed.

A minimum welding depth specifies the good quality of the process. If the computed
welding depth does not verify this minimum, command parameters (intensity, heat source
speed, etc.) can be numerically and dynamically modified to improve the quality of the
process.

This study focuses only on the real-time model updating part where unknown param-
eters of the model are identified from the measurements.

• A 2D unsteady convection-diffusion problem is considered with geometry described
in Figure 2.1. A homogeneous isotropic material is assumed.

The following non-dimensionalization of the temperature field is made:

T (x, y; t) ⌘
T (x, y; t)� T1

T f � T1
(2.18)

with T1 the ambient temperature and T f the melting temperature of the material.
The welding depth is then defined by the isotherm T = 1.

• The torch velocity is v. The coordinate system is moving at the same speed as the
torch. Thereby, a convective term is added to compensate the referential change.
Then the non-dimensional unsteady convection-diffusion equation is obtained:

@T

@t
+ v.gradT � �T = s (2.19)
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with s the volume heat input, v = [Pe; 0], and Pe =
v.Lc


the Peclet number. Lc

is the characteristic length of the problem and  is the thermal diffusivity of the
material.

• The other radiation and diffusive phenomena are neglected.

• The spatial distribution of the heat input is assumed to be Gaussian centered at
point C = (xc; yc) = (3.5; 1):

s(x, y;�) =
u

2⇡�2
exp

 
�
(x� xc)

2
+ (y � yc)

2

2�2

!
(2.20)

u is the non-dimensional heat input that is supposed to be known and � is the
distribution parameter that is supposed to be unknown and needs to be identified.
To that end, we compare the model output to the temperature measurements taken
at the measurement point Pm = (x1, y1) (Figure 2.1). Then, the model output is
defined as T1 = T (x1, y1).

• Boundaries conditions: on �D the temperature is assumed to be equal to the room
temperature and the remaining boundaries are assumed insulated. Eventually, the
initial condition is T (x, y; t = 0) = 0.

2.3.1.2 Finite element solution

In this part, the purpose is to set up the finite element solution. The results will be
compared to the PGD results and the solution given by other models will be compared
to this reference. The weak form is formulated from (2.19). The kinematically admissible
temperature field space is defined as follows:

T = {T 2 H
1
(⌦ =]0; 5[⇥]0; 1[), T = 0 on �D} (2.21)

The equation (2.19) is equivalent to finding T 2 T such that 8T
⇤
2 T :

a(T, T
⇤
) = l(T

⇤
) (2.22)

with:

a(T, T
⇤
) =

Z

⌦

✓
@T

@t
+ v.gradT

◆
.T

⇤
+ .gradT.gradT ⇤

d⌦ (2.23)

l(T
⇤
) =

Z

⌦
s.T

⇤
d⌦ (2.24)

This formulation is discretized by the triangulation of the domain ⌦, and the semi-
discretized finite element problem reads:

Find {T} 2 Th such that:

[M ]{Ṫ}+ [CH ]{T} = {S} (2.25)

The temperature field is then interpolated at the nodes by the matrix [N ] which contains
the finite element shapes functions: T = [N ]{T}.
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The finite element matrices read:

[M ] =

Z

⌦h

[N ]
T
[N ]d⌦ (2.26)

[H] =

Z

⌦h

{V }
T
[dN ]

T
[N ]d⌦ (2.27)

[C] = .

Z

⌦h

[N ]
T
[N ]d⌦ (2.28)

[CH ] = [C] + [H] (2.29)

The equation (2.25) is solved owing to a time discretization coupled with an implicit first-
order time scheme.

The previous solution scheme is implemented in a MATLAB code. The temperature
field obtained at different time steps is shown in Figure 2.2.

(a) Mesh

0 0.1 0.2 0.3 0.4 0.5

(b) Temperature t=0.02 s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c) Temperature t=0.15 s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(d) Temperature t=0.3 s

Figure 2.2: Finite element solution

With the current set of parameters, the stationarity is reached at t = 0.3 s. Isotherms
of the solution are shifted to the left from the torch position because of the convective
term.

2.3.1.3 PGD solution

In order to apply the Bayesian identification described in the previous sections, this section
presents how the PGD reduced order model is built in order to reduce the computation
cost of the likelihood function. As the parameter to identify is the width of the Gaussian
heat source, the decomposition will be a variable separation of space/time/parameter �:

T (x, y, t;�) ⇡ Tm(x, y, t;�) =

mX

n=1

⇤n(x, y)�n(t)↵n(�) (2.30)

In the Bayesian-DDDAS framework, the model needs to be evaluated at each time step,
and for all values of the parameter � as explained in Algorithm 2. Instead of solving a
finite element problem for each of those different values, a more general problem is solved
by the PGD problem for all values of the different variables and parameters.

The PGD method presented in Section 2.2.1 is applied to the global weak form of the
problem, obtained from the integration of (2.22) over the parametric domain. The PGD



2.3. NUMERICAL EXAMPLES 33

modes are given by the fixed-point Algorithm 4. In Appendix A, the details of the PGD
solution are explained.

Algorithm 4 Fixed point algorithm for PGD solution
Require: I = [0, Tf ], ⌃ = [�min,�max].
1: for p = 1 to m do . Number of modes
2: � =

1p
Tf

.{1}I

3: ↵ =
1

p
�max � �min

.{1}⌃

4: for k = 1 to kmax do
5: ⇤ = Sm(�,↵)

6: � = Tm(⇤,↵)

7: ↵ = Pm(⇤,�)

8: end for
9: end

10: ⇤p = ⇤

11: ↵p =
↵qR

⌃ ↵
2d�

. Normalization of parametric modes

12: �p =
�qR
I �

2d�

. Normalization of time modes

13: end for
14: end

In Algorithm 4, the stopping criterion is kmax. In practice, a coarse criterion (kmax = 4)
is sufficient to obtain a good convergence. In the Progressive Galerkin approach, next PGD
modes correct previous PGD modes regularizing the convergence. Parametric and time
modes are normalized to improve the numerical stability of the solution scheme. After
a finite element discretization, a linear system is solved to obtain spatial and parametric
modes at each step of the fixed-point algorithm. Time modes, which are solution of an
ordinary differential equation, are computed using a Runge Kutta 4-5 time integration
scheme.

The first four spatial modes are represented in Figure 2.3. In comparison with the finite
element simulation in Figure 2.2, the first mode is representative of the steady-state and
the other modes are contributing to the transient state. The second mode is very similar
to the finite element solution in the beginning of the transient state. The other modes
improve the solution near the geometry edges and around the heat input. As the time
modes and parametric modes are normalized, the energy norm of spatial modes gives the
contribution of each mode to the global solution. This quantity is represented in Figure2.4.
We observe that the six first modes are contributing for the most of the solution.

The normalized time modes are plotted in Figure 2.5. We observe that the modes have
a strong gradient at the beginning which requires a fine time discretization.

Eventually, in Figure 2.6 normalized parametric modes are represented. This figure
shows that the 4th mode has a higher dependency on � than the others. This result
seems conform to the corresponding spatial mode 4 (Figure 3.4(d)) which exhibits a strong
gradient near the torch center.
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(a) Spatial mode 1 (b) Spatial mode 2

(c) Spatial mode 3 (d) Spatial mode 4

Figure 2.3: The four first spatial modes
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Figure 2.4: Energy norm of the spatial modes

2.3.1.4 Error quantification

The quality of the PGD model is studied and error quantification is performed in this
section in order to use it in the Bayesian identification. Functions TFE and TPGD are the
temperature fields computed with the direct finite element model and the PGD model,
respectively. The direct problem is solved for each value of the parameter � in order to
obtain the function TFE(x, y, t,�). The T1 functions are the temperatures at the measure-
ment point. Here, the discretization error made by the finite element method itself is not
considered.

The following errors are defined :

• Local error integrated in space:

✏(t,�) =
kTPGD(x, y, t,�)� TFE(x, y, t,�)kL2(⌦)

kTFE(x, y, t,�)kL2(⌦)
(2.31)

• Local error on the output T1:

✏1(t,�) =
|T1PGD(t,�)� T1FE(t,�)|

|T1FE(t,�)|
(2.32)
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Figure 2.5: Time modes �i(t), i 2 {1, ..., 4}
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Figure 2.6: Parametric modes ↵i(�), i 2 {1, ..., 4}

• Global error on the output T1:

✏ =
kT1PGD(t,�)� T1FE(t,�)kL2(⌃,I)

kT1FE(t,�)kL2(⌃,I)
(2.33)

Figure 2.7 shows the error ✏ depending on the number of modes in the PGD solution.
The finite element and PGD problems are discretized the same way so that a convergence
of the PGD solution to the finite element solution is expected with a few number of modes.
For this problem, the minimum of the error is reached with a few number of modes (around
11 modes). Figure 2.8 shows the local errors ✏(t,�) and ✏1(t,�) on a discretized map of
parametric space and time. We observe that the error is high for the first time steps.
Then, it strongly decreases during the transient phase up to a very low value during the
steady-state phase.

Those error quantifications can be partially justified with [110, 2, 28] in which it is
explained that the progressive Galerkin PGD method can encounter some difficulties to
solve transient problems with convection. Indeed, to address problems where the bilinear
form of the weak formulation is not symmetric, it would be better to use a Petrov-Galerkin
formulation. Furthermore, in this type of problem, instabilities can also be encountered for
some values of the Peclet number. The studied case is far from those instabilities but some
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Figure 2.7: Error ✏ depending on the number of modes

(a) Relative error integrated on the geometry (b) Relative error on the output T1

Figure 2.8: Relative local errors ✏ and ✏1 on ⌃⇥ I

other formulations (SUPGD [28, 92]) can be used to improve the stability of the solution
on the opposite case.

2.3.1.5 Bayesian inference with measurement error

In this section, the model is supposed to be fully deterministic (no stochastic parameters
i are considered). The only uncertainty source which is considered is a measurement error
on the output. This output thus becomes randomized by adding a white noise.

The probability density function of the measurement noise ⇡err(e) is modelled by a
normal distribution with a zero mean and a 2% standard deviation (equal to the standard
deviation used to simulate noise in the measurements).

According to the Bayesian identification process presented in Section 2.1, for a given
value of the parameter � the corresponding likelihood function value is given by (2.34):

⇡(T
obs

1 |�) =

Z
⇡(T1|�).⇡err(T

obs

1 � T1)dT1 (2.34)
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As the model is deterministic, we get:

⇡(T1|�) = �(T1 �M(x1, y1, t;�)) (2.35)

with � the Dirac delta function and M the considered model (Finite Element or PGD).
In this case, the computation of the integral (2.34) reads:

L
meas

(�) ⌘

Z
⇡(T1|�).⇡meas(T

obs

1 � T1)dT1 (2.36)

= ⇡err(T
obs

1 �M(x1, y1, t;�)) (2.37)

Figure 2.9 shows the likelihood functions obtained with the finite element model (Lmeas

FE )
and the PGD model (Lmeas

PGD). The PGD model used is built with 20 modes. The compu-
tation is made at two different time steps for comparison.
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(a) Measurement at t = 0.032 s
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(b) Measurement at t = 0.142 s

Figure 2.9: Likelihood functions Lmeas for a single measurement at two different time steps.
Functions built with PGD and Finite Element models are compared

The likelihood maximum should be obtained for � = 0.4 (value used to simulate the
measurements from the finite element model). For both models, this maximum is shifted
due to the measurement error. At t = 0.142 s, the likelihood functions are very similar but
quite different at t = 0.032 s. These results are directly linked to the error quantification
analyzed before: the error is higher in the first time steps and nearly zero in the steady-
state.

In the case of a model updating process in real-time, a new measurement is available at
each time step. According to Section 2.1, the posterior probability function at a given time
step is improved considering the previous posterior as the current prior. In Figure 2.10,
a 25 measurements set process is considered. At each iteration, the likelihood function
L

meas is multiplied by the prior probability density function taken as the posterior of the
previous iteration. A uniform density is considered as first prior. The posterior probability
density function given by the first measurement is plotted with a thick discontinuous line
and the final posterior with a thick continuous line. The intermediate posteriors appear
lighter during the iterations. We observe that the final posterior density functions given
by the finite element and PGD models are nearly equal with a maximum a posteriori for
� = 0.4. Furthermore, those densities have a lower variance giving more trust to the
maximum value. Thus, in comparison to a single measurement, successive measurements
can reduce the influence of both measurement and model errors.
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(a) Inference made with PGD model
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(b) Inference made with finite element model

Figure 2.10: Posterior probability density functions after each measurement. The first
posterior is represented with a thick discontinuous line and the final posterior with a thick
continuous line. The intermediate posterior densities appear lighter during the iterations.

2.3.1.6 Uncertain parameter

In the previous test cases, the interest of using a PGD model was to avoid solving a finite
element problem for each value of the parameter � during the iterations of the Bayesian
identification process (and having an analytical form of this solution). However, considering
no uncertain parameter, the use of a pre-computed finite element meta-model (as the one
used to compare with the PGD results) can still be used. Now, a source of uncertainty is
considered in order to apply the methods of uncertainty propagation (Algorithms 2 and
3). In this case, the response needs to be evaluated for all values of the parameter � and
the uncertain parameter.

First, the amplitude of the heat input u (Equation (2.20)) is considered as an uncertain
parameter (parameter i in Figure 4). The amplitude u is then a random variable which
is supposed to have a normal probability density function centered on the value used to
simulate the measurements with a 3 % standard deviation.

Knowing the probability density function of the uncertain parameter i (here i = u)
the change of variable can be done as shown in Section 2.2.3. As the parameter u has a
proportional influence on the output, the change of variable function f is linear:

f(i) = i.T1u (2.38)

with T1u the temperature value at the measurement point given by the PGD model for
a unit amplitude. As the uncertain parameter is obviously decoupled from the other
parameters and variables, the same PGD decomposition is kept:

Tm(x, y, t,�, u) = u ⇤

mX

n=1

⇤n(x, y)�n(t)↵n(�) (2.39)

As the change of variable is strictly monotonic, the change of variable theorem (2.14) is
applied.

Figure 2.11 shows the probability density ⇡(T1|� = 0.345) built with the Monte-Carlo
sampling (40,000 samples) and the analytical change of variable. The two methods lead
to the same density, providing at the end the same likelihood functions and posterior
distributions.



2.3. NUMERICAL EXAMPLES 39

0.7 0.75 0.8 0.85 0.9 0.95 1
T1

Analytical
Monte-Carlo

Figure 2.11: Probability density function ⇡(T1|� = 0.345)

The probability density functions are known analytically so that the integration (2.34)
to compute one point of the likelihood function with measurement error is still performed
numerically.

In a second time, we consider the Peclet number (Pe) as an additional uncertain pa-
rameter. The influence of the Peclet number on the output being no longer proportional,
a new PGD model (2.40) is computed:

Tm(x, t,�, P e) =

mX

n=1

⇤n(x)�n(t)↵1n(�)↵2n(Pe) (2.40)

The approach to build this new PGD model is the same as in Algorithm 4. The modes of
this new PGD model are nearly the same as the previous model in terms of time, space
and parameter �. In Figure 2.12, the modes associated with the parameter Pe are plotted.
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Figure 2.12: Parametric modes related to the Peclet number

To perform the Bayesian identification, the uncertainty parameter Pe is assumed to
have a normal distribution centered on the value used to simulate measurements with a 3

% standard deviation.
Considering this new model, the change of variable f is:

f : i !

mX

n=1

⇤n(x1, y1)�n(t)↵1n(�)↵2n(i) (2.41)

However, this function is not necessarily monotonic. In Figure 2.13 the f functions
are plotted at the same time step t = 0.034 , with the parameter values � = 0.3 (Figure
2.13(a)) and � = 0.35 (Figure 2.13(b)).
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(a) Monotonic change of variable f for � = 0.3
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(b) Nonmonotonic change of variable f for � = 0.35

Figure 2.13: Change of variable function f given by two values of parameter � at t = 0.034

s

Therefore, to compute the likelihood function for a given time step, the function f has
to be studied in order to determine in which part it is monotonic and to verify that it is not

piecewise constant. To do so, the sign of
df

di
is studied for each value of �. In each interval

where
df

di
keeps a constant sign, the inverses f

�1
k (y) are computed. Then, the generalized

form (2.15) is used to compute the probability density function given by the propagation
of the uncertainty i through the model.

Figure 2.14 shows the probability density function ⇡(T1|�) computed with the same set
of parameters as in Figure 2.13(b). As seen before, the densities given by both analytical
and Monte-Carlo uncertainty propagation are very similar leading to the same likelihood
functions.

0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7
T1
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Figure 2.14: Probability density function ⇡(T1|� = 0.35) at t = 0.034 s

Eventually, in Figure 2.15 the posterior density functions obtained with both methods
are plotted for a given time step t = 0.034 s. The prior is still chosen uniform and both
methods give similar results.

With the change of variable method, studying the function f is costly especially if the
function is not monotonic. Table 2.1 shows the results of the computation time required
to compute one point of the likelihood function with Finite Element model/Monte-Carlo
method (40,000 samples), PGD model/Monte-Carlo method (40,000 samples) and PGD
model/analytical method.

For the sampling of one point of the likelihood function, the analytical approach leads
to a factor 10 speed-up. Furthermore, this gain is multiplied by the number of likelihood
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Figure 2.15: Final posterior built with analytical and Monte-Carlo methods with a single
measurement at t = 0.034 s

Table 2.1: Comparison of the computational cost to build one point of the likelihood
function

Average computation time
Analytical PGD Monte-Carlo PGD Monte-Carlo FE

0.2678 s 2.5579 s ⇠ 4 h

function points to compute, and the number of measurements. As a comparison, the
Monte-Carlo method coupled with the direct Finite Element model gives a computation
time which is larger than 4 hours. In the context of DDDAS, using the direct model is
impossible and those results show the potential of the PGD model order reduction in the
Bayesian framework.

2.3.2 Glued assembly example: application to the estimation of hyper-

parameters

2.3.2.1 Definition of the problem

The considered problem is a glued assembly adapted from [89]. The three structures ⌦1,
⌦2 and ⌦3 are glued by means of two elastic joints J12 and J23. A force density p = �50

MPa is applied on the top of ⌦3 (Figure 2.16).
The purpose of this study is to identify the variability of the assembly process leading

to the structure presented in Figure 2.16. We assume that the glue joints can have random
imperfections which lead to a variability of their stiffnesses. Then, the Young modulus
of the joints is defined as E = e.E0 where e is a dimensionless random variable with a
probability density function ⇡(e) and E0 is known (here E0 = 1 GPa). For each structure
made by the assembly process, a simple test is performed: a load p is applied at the top
of the structure and the vertical displacement of the point A is measured. Based on tests
with different assemblies, the purpose is to identify the probability density function of the
random variable e.

Unlike the previous example, the parameter to identify is no longer deterministic. How-
ever, the probability density function of the random variable e is assumed to be a normal
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Figure 2.16: The geometry of the glued assembly

distribution with mean µe and standard deviation �e as unknown parameters:

⇡(e) =
1

�e

p
2⇡

exp

 
�
1

2

✓
e� µe

�e

◆2
!

(2.42)

Hence, the identification of the stochastic parameter leads to the identification of two
deterministic parameters (µe,�e) called "hyper-parameters".

2.3.2.2 PGD solution

First, the PGD model of the problem is built in order to perform the Bayesian inference
detailed in Algorithm 2. The identification can be formulated as follows:

• Parameters to identify: �e and µe (defining the stochastic parameter e)

• System output: U , the vertical displacement of point A

• Uncertain parameter: e

In order to drive the Bayesian inference, the PGD model is searched as:

Um(xA, yA, e) =

mX

n=1

⇤n(xA, yA).↵n(e) (2.43)

where (xA, yA) are coordinates of Point A. The reduced model is found thanks to the
fixed-point Algorithm 4. In Figure 2.17, the first four parametric modes are plotted.

The PGD model is compared to a direct finite element solution for a given value of the
Young modulus amplitude e = 0.8 (Figure 2.18). With only one mode, the relative error
is 10

�3.75 and the minimum error is 10
�5.5. Consequently, the PGD model for this static

problem is very efficient.
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Figure 2.18: Relative error with respect to the number of modes

2.3.2.3 Bayesian inference

The main difference between this example and the previous one is that the parameter e to
identify directly leads to uncertainties in the model. In order to estimate the probability
density function of the random variable e, the Bayesian inference method described in
Algorithm 4 is applied to the deterministic parameters to identify µe and �e. The Bayes
formulation reads:

⇡(µe,�e|u
obs

) =
1

C
.⇡(u

obs
|µe,�e).⇡(µe,�e) (2.44)

First, to compute the likelihood function, and at each point (µe,�e) 2 [0.9, 1.1]⇥ [0.01, 0.1]

of the parameter domains, the uncertainties are propagated to the model assuming that
the parameter e has a normal probability density function with mean µe and standard
deviation �e. Here also, both analytical and Monte-Carlo uncertainty propagation methods
give the same density ⇡(u|µe,�e). The corresponding point of the likelihood function is
given by this probability density function evaluated at the measurement point u

obs. The
measurements are simulated taking samples according to the probability density function
with mean µe = 1 and standard deviation �e = 0.05. An example of a 2D likelihood
function given for a single measurement is plotted in Figure 2.19.

By multiplying this likelihood function by a prior probability density function (a uni-
form density function is chosen) the posterior probability density function is obtained. To
obtain a separated posterior estimation of parameters, the marginal densities have to be



44 CHAPTER 2. FAST BAYESIAN INFERENCE WITH PGD

σ
e

µ
e

0
0.9

200

0.95 0.1

400

0.08

600

1 0.06

800

1.05 0.04
0.02

Figure 2.19: Likelihood function ⇡(uobs
|µe,�e) for a single measurement

computed:

⇡(µe|u
obs

) =

Z 0.1

0.01
⇡(µe,�e|u

obs
)d�e (2.45)

⇡(�e|u
obs

) =

Z 1.1

0.9
⇡(µe,�e|u

obs
)dµe (2.46)
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Figure 2.20: Marginal densities given by a single measurement

The marginal densities given by the Bayesian inference from one measurement are
shown in Figure 2.20. We observe that the marginal density for the mean parameter is
maximum for µe = 1 which is the value used to simulate the measurements. In addition, the
marginal density for the standard deviation is much wider and the maximum is obtained
in the interval [0.01, 0.025].

As in the welding example, the process can be improved doing the inference consecu-
tively with several measurements and taking at each iteration the posterior of the previous
step as the prior of the current step. In Figure 2.21, the resulting posterior densities with
consecutive simulated measurements are plotted. The first marginal density is plotted
with a thick discontinuous line, the final posterior (after 20 measurements) with a thick
continuous line, and the intermediate densities appear lighter during the iterations.
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Figure 2.21: Successive posterior marginal densities of a 20 successive measurements set

The marginal posterior probability density functions are more accurate during the it-
erations and the posterior marginal for the mean parameter seems to be converging much
faster than the standard deviation parameter. The final result after 20 iterations gives an
a posteriori maximum of 0.98 for the mean parameter and 0.045 for the standard deviation
parameter (the values used to simulate measurements were (µe,�e) = (1, 0.05)). In this
case, the parameters estimation is very close to the true value. However, contrary to the
estimation of a true deterministic parameter, this estimation highly depends on the mea-
surement sampled in the probability density function. Indeed, here only 20 measurements
are considered (i.e. 20 draws on the normal distribution of e) which cannot be repre-
sentative of the random variable e. Hence, the posterior marginals can be very different
according to the sets of 20 successive measurements.

Figure 2.22 shows the variability of the identification regarding the measurements
(with 20 successive measurements). Figures 2.22(a) and 2.22(b) represent respectively
25 marginal posterior densities of the mean and the standard deviation parameters with
20 successive measurements. Those figures show the distributions of the final posterior
marginal densities after 20 successive measurements (only 25 posteriors are represented).
To have a more quantitative information in those distributions, in Figures 2.22(c) and
2.22(d) are plotted the densities of the Maximum A Posteriori (MAP) of 200 posterior
marginal densities (always with sets of 20 measurements). Those densities are represent-
ing the variance of the identification process with the MAP estimator.

µ
MAP

e = max
µe

⇡(µe|u
obs

) (2.47)

�
MAP

e = max
�e

⇡(�e|u
obs

) (2.48)

The coefficient of variation for a probability density function ⇡(x) is also defined as:

cV =
stdd(⇡(x))
mean(⇡(x))

(2.49)

where stdd represents the standard deviation of the density.
The most likely estimation values with MAP estimator are µ

MAP

e = 1 with cV =

1.0⇥10
�2, and �MAP

e = 0.046 with cV = 1.7⇥10
�1. The estimations of the parameter with
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Figure 2.22: Results of the identification process with 20 successive measurements

the MAP estimator are close to the values used to simulate the measurements. However,
according to the coefficients of variation, the estimation of the parameter �e is much less
accurate than the estimation of the parameter µe.

In order to show the influence of the size of the measurements sets, the same densities
are plotted in Figure 2.23 with sets of 60 successive measurements.

The results are significantly improved with coefficients of variation of 6.7 ⇥ 10
�3 for

the estimation of µe and 8.8 ⇥ 10
�2 for the estimation of �e. Once again the estimation

of the mean parameter offers less variability than the estimation of the standard deviation
parameter.

Consequently, the estimation of hyper-parameters from a stochastic parameter is very
difficult and the result highly depends on the quantity of information (measurements)
available. However, this is related to the a huge advantage of Bayesian identification,
with a low amount of information (60 measurements), a large amount of information (a
stochastic parameter) can be estimated correctly. A compromise has to be found between
the knowledge needed on the parameter and the cost of additional measurements.

Similarly, to the welding example, the model reduction error is studied. In Figure 2.24,
the relative error between the PGD models defined (2.43) with 10 modes and 1 mode is
plotted:

err =
|U10 � U1|

|U1|
(2.50)
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Figure 2.23: Results of the identification process with 60 successive measurements

The relative error between the two reduced order models is very low and this error
seems to be even more regularized after the Bayesian inference process done. Indeed, in
Figure 2.25 the relative error between the posterior marginals found with 10 modes and
1 mode model is presented. In this example, the PGD reduction is so efficient that the
Bayesian process can be done with only one mode.

From now on, the measurements are simulated from the direct model with a Young
modulus amplitude sampled under a normal distribution with a mean µe = 1 and a stan-
dard deviation �e = 0.05. Here, a Gaussian centered noise is added on the output with a
�err = 0.003 standard deviation.

The same computation as before is done except that the probability to have the mea-
surements is no more direct but evaluated with the integration:

⇡(u
obs

|µe,�e) =

Z
⇡(u|µe,�e).⇡err(u

obs
� u)du (2.51)

with ⇡err(e) the Gaussian probability density function with standard deviation of �err and
zero mean. In Figure 2.26, three likelihood functions are plotted. First, in Figure 2.26(a)
the likelihood function is built from a noisy measurement without considering the measure-
ment error. In Figure 2.26(b) the likelihood function built from the simulated measurement
without the noise is represented. Finally, in Figure 2.26(c) the likelihood function is built
from the same noisy measurement but taking into account the measurement error.

Figure 2.27 shows the results of the same computations in terms of marginal densi-
ties. The ideal likelihood function which could be obtained from the given measurement is
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represented in Figure 2.26(b) (respectively the "meas" graph in Figure 2.27). The compar-
ison between this likelihood and the likelihood function in Figure 2.26(a) (respectively the
"meas+noise" graph in Figure 2.27) represents the error made if the measurement noise
is not modeled. In this case, the likelihood maximum is shifted and as the density is very
"sharp" the probability of having the true values of parameters is very low.

Figure 2.26(c) (respectively the "meas+noise+meas err" graph in Figure 2.27) repre-
sents the likelihood function built from the noisy measurement but considering the mea-
surement error. We observe that to consider measurement error allows to have a much
wider density. Thus, less trust is given to the likelihood maximum. In addition, we can
observe that this maximum is closer to the likelihood maximum obtained with the true
measurement.

2.4 Conclusions

Through the examples studied, this chapter showed the benefits of using a PGD model
reduction formulation of the system studied for Bayesian inference in the context of fast
model updating. The Bayesian inference has the advantage to result in well-posed prob-
lems. However, the most difficult point is to build the likelihood function in order to have
the posterior probability density function of the parameters to identify. In the general
case without any assumption on the form of uncertainties, the likelihood function needs
to be sampled with the Monte-Carlo method. In considered problems, with a few number
of parameters (1-2), the idea was to propagate the uncertainties through the model for
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Figure 2.26: Likelihood functions regarding measurement error

all discretized values of parameters. This way, the likelihood function is built "point by
point". In order to reduce the uncertainty propagation cost, a PGD reduced model was
used to obtain explicitly the problem solution for all values of Monte-Carlo draws. How-
ever, a more efficient method consists in using the PGD analytical expression to directly
compute the probability density functions after uncertainty propagation. This method
shows a greater speed-up and seems to be well-suited for low dimensional model updating
problems (with only one stochastic parameter). The explicit formulation given by the PGD
showed great benefits for Bayesian updating leading to analytical computation of integrals,
or uncertainty propagation at a very low cost (summation of modes).

Nevertheless, when the dimension of the parameters p is high, the integrations over
the parametric space, which are needed to compute estimator and marginalization, will
lead to a high computation cost. To that end, samples from the posterior are needed to
perform Monte-Carlo integration. A good framework to sample the posterior density in the
Bayesian framework is to use Markov Chain Monte Carlo (MCMC) methods [67, 36, 56].
For comparison, the MCMC method (with Metropolis-Hastings algorithm) is applied to
the previous numerical examples. The length of the Markov Chain was set to 50,000 which
is a lower bound on the values found in the literature [10]. The computation times to build
posterior marginal densities are compared between the "grid" and the MCMC methods
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Figure 2.27: Likelihood marginal densities regarding measurement error. "meas" represents
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noise" to Figure 2.26(a) and "meas+noise+meas err" to Figure 2.26(c).

in Table 2.2. For each method the PGD model is used with the "PGD-analytic" method
presented in Section 2.2 to propagate uncertainties. For the grid method, the number of
elements in the grid is specified. In the studied cases (low dimension), the MCMC method
is obviously costlier than the grid method. Despite the fact that additional numerical
integration is required in the grid method, the number of points in the grid (i.e. number
of model evaluations) is lower than 50,000 (length of the chain). The welding example is
more costly than the glued assembly example because of the number of modes, the form
of uncertainties and the change of variable function study.

Table 2.2: Comparison of the computational cost to build marginal posterior densities
Mean computation time

Welding Glued assembly
Grid (41) MCMC Grid (37⇥ 29) MCMC
10.56 s ⇠ 12, 000 s 6.63 s ⇠ 1300 s

However, the "grid sampling" is limited when the number of parameters is larger than
one due to the exponential growth of the computational cost of integrals required to derive
useful characterization of the posterior densities. Furthermore, the support of the integrals
can be difficult to know a priori which makes sequential inference difficult. To palliate
these limitations, the next chapter deals with the characterization of the posterior densities
by means of sampling method adapted to the sequential inference of larger number of
parameters.



Chapter 3
Transport Map sampling with PGD model
reduction for fast dynamical Bayesian data
assimilation

For full Bayesian inference (sequential or not), and as an alternative to the MCMC frame-
work, a promising sampling technique is the so-called Transport Map method [44, 103, 138].
This recent approach aims at defining a deterministic map between a reference probability
measure and the posterior measure resulting from the Bayesian inference. That way, all
integrals with respect to the posterior measure are "transported" to integrals with respect
to the reference measure. The map can itself characterize the posterior density, or sam-
ples can be drawn according to the posterior density by transporting samples drawn from
a reference density. In another framework, full Bayesian inference problems was solved
by characterizing the posterior density by means of polynomial chaos expansion and con-
ditional expectation [113, 124, 107]. Another alternative is also presented in [43] where
a hierarchical tensor representation is used to solve the forward problem. This chapter
aims to couple the Transport Map method with PGD model reduction to solve sequential
Bayesian inference problems. Its content is adapted from the published paper [131].

3.1 Concept of Transport Map sampling

The main idea of the Transport Map strategy is to build a deterministic coupling (using a
map M) between a reference probability measure ⌫⇢ and a target probability measure ⌫⇡.
The purpose is to implement the change of variables such that:

Z
gd⌫⇡ =

Z
g �Md⌫⇢

In this framework, it is possible to transport samples drawn according to a reference density
for them to become samples drawn according to the target density (Figure 3.1). This
idea can be compared to the isoparametric finite element formulation, where all integral
computations are performed with respect to a reference element by means of the Jacobian
transformation.

51
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Figure 3.1: Transport Map principle

A preliminary work on optimal transports was developed in [145]. Recently, this
work was adapted to Bayesian inference [138] with effective computation tools (see
http://transportmaps.mit.edu). In this framework, the target density is the posterior
density and the reference density is taken as a classical density which is easy to sample
(e.g. standard normal Gaussian).

3.1.1 Laplace approximation

A first approach to build a map is to use the Laplace approximation described below. The
analytical expression of the non-normalized density ⇡̃(p) of ⇡(p) with p 2 R

d is assumed
to be known:

⇡(p) =
1

C
.⇡̃(p) (3.1)

The stationary point p0 is defined as the solution of the minimization problem:

p0 = min
p

(�log(⇡̃(p))) (3.2)

Then, a second-order Taylor expansion of the function log(⇡̃(p)) at point p0 gives:

log (⇡̃(p)) ⇡ log (⇡̃(p0)) +
1

2
(p � p0)

T
H(p0)(p � p0)

where the matrix H(p0) represents the Hessian matrix of log(⇡̃(p)) at point p0. An
approximation of ⇡̃(p) is thus given by:

⇡̃(p) ⇡ ⇡̃(p0)exp
⇢
1

2
(p � p0)

T
H(p0)(p � p0)

�

http://transportmaps.mit.edu
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As a result, the normalization constant C of (3.1) is given by the integration of the Gauss
function:

C =

Z

P
⇡̃(p)dp

⇡

Z

P
⇡̃(p0)exp

⇢
1

2
(p � p0)

T
H(p0)(p � p0)

�
dp

= ⇡̃(p0)
(2⇡)

d
2

|H(p0)|
1
2

Finally, an approximation of the density ⇡(p) is:

⇡(p) ⇡
(2⇡)

d
2

|H|
1
2

exp
⇢
1

2
(p � p0)

T
H(p0)(p � p0)

�

= N
�
p0,�H(p0)

�1
�

The Laplace approximation method thus finds the best Gaussian approximation of
⇡(p) with mean corresponding to the density mode p0. It is defined by the linear map
L(p) = p0 � H

� 1
2p. To build H

1
2 , eigenvectors P and diagonal matrix D are computed

from H such that H = PDP�1. Then, H
1
2 = PD

1
2P�1 with D

1
2 the diagonal matrix built

from the square roots of eigenvalues.
Once the map L is computed, if samples pi are drawn from the standard normal

distribution N (0, Id), then the samples L(pi) are drawn according to N (p0,�H
�1

) which
is an approximation of ⇡. This method is a first approach to transform samples drawn from
a reference density (here standard normal Gaussian) to samples which are approximately
distributed according to the target density. The method is fully deterministic and only
requires the solution of the minimization problem (3.2) and the computation of the second-
order derivatives of density ⇡̃(p) to compute the Hessian matrix H.

3.1.2 Computation of transport maps

In a general framework, the posterior densities of interest are not necessarily Gaussian. A
way to build more accurate transport maps from a reference distribution ⌫⇢ to the target
distribution ⌫⇡ is to use the methodology presented in [138]. In this section, we highlight
the principles of this methodology. From the standard normal reference density ⇢, the
purpose (see Figure 3.1) is to build the invertible map M : R

d
! R

d such that:

⌫⇡ ⇡ M]⌫⇢ = ⇢ �M
�1

|detrM
�1

| (3.3)

To quantify the difference between the two distributions ⌫⇡ and M]⌫⇢, the Kullback-Leibler
divergence DKL is used:

DKL(M]⌫⇢||⌫⇡) = DKL(⌫⇢||M
�1
] ⌫⇡) (3.4)

= E⇢

"
log

⌫⇢

M
�1
] ⌫⇡

#
(3.5)

=

Z

P
[log(⇢(p))� log([⇡ �M ](p))� log(| detrM(p)|)] ⇢(p)dp (3.6)
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Maps M are sought among Knothe-Rosenblatt rearrangements (i.e lower triangular and
monotonic maps). This particular choice of structure is motivated by the properties of
unique minimizer of (3.6), optimality regarding the weighted quadratic cost, and compu-
tational feasibility. Detailed motivations are further described in [103, 138] and references
within. Then, maps M are parameterized as:

M(p) =

2

66664

M
1
(a1

c ,a
1
e, p1)

M
2
(a2

c ,a
2
e, p1, p2)

...
M

d
(ad

c ,a
d
e , p1, p2, ..., pd)

3

77775
(3.7)

with:
M

k
(ak

c ,a
k
e ,p) = �c(p)a

k
c +

Z pk

0
(�e(p1, ..., pk�1, ✓)a

k
e)

2d✓ (3.8)

Functions �c and �e are the Hermite polynomials with coefficients ac and ae. The order
of the map is defined by the maximum order of the Hermite polynomials.

Finally, with the parametrization described in (3.7) and (3.8), the map M is constructed
from the minimization of the functional (3.8) with respect to the coefficients ak

e and ak
c . The

integral in (3.6) can be approximated by a Gaussian quadrature rule (with sets (!i,pi)
N
i=1)

such that the minimization problem to solve reads:

min

a1,...,d
c ,a1,...,d

e

NX

i=1

!i

h
�log(⇡̃ �M(a1,...,d

c ,a1,...,d
e ,pi)� log(| detrM(a1,...,d

c ,a1,...,d
e ,pi))|)

i

(3.9)
In (3.9), the target density ⇡ can be replaced by its non-normalized version as the problem
to solve consists in a minimization. This method allows to find a deterministic coupling
between a reference density ⇢ and a target density ⇡. Once the map M is found, it can
be used for sampling purposes by transporting samples drawn from ⇢ to samples drawn
from ⇡. Similarly, Gaussian quadrature (!i,pi)

N
i=1 for ⇢ can be transported to quadrature

(!i,M(pi))
N
i=1 for ⇡.

3.1.3 Sequential Bayesian inference using transport maps

Another interesting advantage of the Transport Map sampling is that it can exploit the
Markov structure of the target density by building the transport map by composition
of low-order maps [138] (see Figure 3.2). This is particularly adapted to the sequential
updating of stationary parameters. Indeed, at each assimilation of a new measurement
dobs

i , the previous posterior is multiplied by the likelihood function ⇡ti involving the new
measurement:

⇡(p|dobs

1 , ...,dobs

i ) /

iY

j=1

⇡tj (d
obs

j |p).⇡(p) (3.10)

Instead of computing at each assimilation step a full map from reference ⇢ to target
⇡(p|dobs

1 , ...,dobs

i ), the idea is to compute the coupling between ⇡(p|dobs

1 , ...,dobs

i�1) and
⇡(p|dobs

1 , ...,dobs

i ). Then, the coupling between the reference ⇢ and the posterior density
at assimilation step ti will read:

(M1 � .... �Mi)] ⇢(p) = (Mi)] ⇢(p) ⇡ ⇡(p|dobs

1 , ...,dobs

i )
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The map M1 is the map coupling the reference density ⇢(p) to the first posterior
⇡(p|dobs

1 ) / ⇡t1(d
obs

1 |p).⇡(p). Each map Mi, i 2 {2, ..., Nt}, is found by computing the
transport map between the reference ⇢ and the target ⇡⇤i defined as:

⇡
⇤
i (p) = ⇡ti(d

obs

i |Mi�1(p)).⇢(p) (3.11)

The advantage of this formulation is that the theoretical computation complexity of each
assimilation step is constant.

3.1.4 Convergence criteria

Once a map M is computed, the Transport Map method allows one to assess the quality
of the approximation by defining a clear convergence criterion. In [44, 138], the variance
diagnostic ✏� is defined as:

✏� =
1

2
Var⇢

"
log

⌫⇢

M
�1
] ⌫⇡

#
(3.12)

The integration involved in the variance diagnostic is performed with respect to the den-
sity ⇢ such that the same quadrature rule as in the computation of the Kullback-Liebler
divergence is used. In that sense the computation cost of the variance diagnostic is very
low. Thanks to the convergence criterion based on variance diagnostic, an automatic algo-
rithm can be proposed to deal with sequential parameter inference problems (Algorithm
5). The schematic principle of the sequential maps computation is presented in Figure 3.2.
For the assimilation of the first measurement dobs

1 , a linear map L is computed thanks to
the Laplace approximation described in Section 3.1.1. Then, this map is applied to build
an intermediate density which is closer to the reference density with approximately a zero
mean and a unit covariance matrix. This step acts as a normalization over the parametric
space. Then, the map M1 is computed between the reference and this intermediate den-
sity. The linear transformation step helps the convergence as the target density becomes
closer to the standard normal density. For the sequential assimilation of the other mea-
surements, the maps are computed between the reference density (standard normal) and
the target densities ⇡⇤i (see (3.11)) which are the posterior densities affected by the inverse
transformation of maps already computed for all previous assimilation steps.

The computations for each assimilation step are described in Algorithm 5. The adap-
tivity of the maps is performed thanks to the variance diagnostic. While the tolerance
on the diagnostic is not fulfilled, a higher-order map is computed and composed with the
previous computed map. The purpose here is to initialize the computation of the new
increased order map by the previous lower-order map computed. As the target density is
pulled-back by an approximated map, the new map should be less complex to compute.

In Algorithm 5, the number of minimization steps (and therefore the computational
cost) increases with the iterations on the maps order. In the next sections, the algorithms
used to solve the minimization problem will be discussed.

3.2 Transport Map sampling with PGD models

Here, as in Chapter 2, a PGD formulation of the forward model is used. The model output
is assumed to be a field u (temperature, displacement,...) related to the solution of a
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Figure 3.2: Sequential inference with transport maps

PDE. This model is supposed to be time-dependent in addition to a dependency on some
parameters p 2 R

d . Then, the PGD approximation um of the field u reads:

um(x, t,p) =
mX

k=1

⇤k(x)�k(t)
dY

i=1

↵ik(pi) (3.13)

This decomposition can be computed with the progressive-Galerking PGD method
presented in Chapter 1.

3.2.1 Use of PGD models to compute transport maps

Once the PGD approximation um(x, t,p) is built, an explicit formulation of the inference
non-normalized posterior density can be derived. By the observation operator O, the
output d(p, t) = O (um(x, t,p)) is extracted from the field um(x, t,p). If the observed
data are N local sensors of the field u on the space coordinates xk, k 2 {1, ..., No}, the
output model reads:

dm(p, t) = (um(x1,p, t), ..., um(xNo ,p, t)) (3.14)
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with explicit dependency on p. In the end, the non-normalized posterior density ⇡̄ reads:

⇡̄
�
p|dobs

1 , ...,dobs

i

�
=

iY

j=1

⇡meas

�
dobs

j � d (p, tj)
�
.⇡(p) (3.15)

This leads to cost effective evaluations of the non-normalized posterior as highlighted in
Chapter 2. Moreover, PGD is highly beneficial in the sampling procedure using transport
maps. Indeed, as presented in Section 3.1, transport maps are deterministic couplings
between probability densities computed by solving the minimization problem (3.9). This
problem can be addressed using function information alone (Simplex method [117], or
Simulated Annealing [72]). However, with PGD models, first- and second-order derivatives
can also be exploited as the partial derivatives of the model with respect to parameters
can be directly computed as:

@
num

@p
n
j

(x, t,p) =
mX

k=1

⇤k(x)�k(t)
@
n
↵jk

@p
n
j

(pj)

dY

i=1
i 6=j

↵ik(pi) (3.16)

The parametric modes being finite element functions, the derivations are easily performed
on one-dimensional shape functions:

@
n
↵jk

@p
n
j

(pj) =
@
n

@p
n
j

[N(pj)] {↵jk} (3.17)

with [N(pj)] the shape functions matrix for the parametric space Pj and {↵jk} the nodal
values vector for mode k. To compute gradient and Hessian quantities, the first- and
second-order derivatives of the parametric modes are computed and stored in the offline
phase. Thanks to the separated representation of the PGD, cross-derivatives can also be
computed by combinations of univariate modes derivatives.

As a result, the problem (3.9) can be effectively solved by means of minimization al-
gorithms using gradient information (such as BFGS [21]) or Hessian information (such as
trust-region algorithms [73]), which speeds up the transport maps and Laplace approxi-
mation computations.

3.2.2 Uncertainty quantification with PGD models

A quantity of interest (QoI) q is introduced by applying the operator Q on the PGD model:

q(p, t) = Q (um(x, t,p)) (3.18)

This QoI is defined over the whole parametric and time-space domains. Once the measure-
ments are assimilated with Bayesian inference, the Transport Map method returns samples
pk (k 2 {1, ..., NMC}) drawn from the posterior density. Since the QoI is derived from the
PGD model, samples qk (k 2 {1, ..., NMC}) of the probability density of the QoI ⇡(q) can
be easily computed as:

qk = q(pk, t), k 2 {1, ..., NMC} (3.19)

Then, the pdf of q can be approximated with the kernel density estimation (KDE). This
pdf can be evaluated for all time steps of the PGD model. In real-time application com-
putations, it would be computed for time steps posterior to the assimilation time step so



58 CHAPTER 3. TRANSPORT MAP SAMPLING

that a prediction of the QoI with uncertainties is given for control purposes (see Section
3.3.2.3).

3.3 Numerical examples

In this section, the goal is to characterize posterior densities in practical examples with
the general method presented in previous sections. The implementation and cost of such
approaches will be discussed. All transport maps are computed thanks to the Python
package available at: http://transportmaps.mit.edu.

3.3.1 3-bar truss example

3.3.1.1 Formulation of the inference problem

This example is a 3-bar truss presented in [89] with the geometry described in Figure 3.3.
This is an illustrative example where the analytical formulation of the model is known.
Bars (1) and (3) are assumed to have the same Young modulus e1, the bar (2) has a
Young modulus denoted e2. The truss is loaded with force F = Fxex + Fyey. From the
measurement of the vertical displacement u

obs

y of point D, the objective is to infer the
values of Young moduli e1 and e2.

Figure 3.3: 3-bar truss geometry

For this example, the Bayes formulation reads:

⇡(e1, e2|u
obs

y ) / ⇡meas(u
obs

y � uy(e1, e2)).⇡(e1, e2) (3.20)

The function uy(e1, e2) represents the vertical displacement of the truss at point D
under the load F, depending on the Young moduli e1 and e2. The analytical static solution
reads:

uy(e1, e2) =
20FyLe1(16

p
5e

2
1 + 25e1e2)

S(5
p
5e1e2 + 32e21 + 50e1e2)

2
(3.21)

The measurement error and the prior density are chosen to be Gaussian:

⇡err(u
obs

y � uy(e1, e2)) =
1

�meas

p
2⇡

exp

 
�
(uy(e1, e2)� u

obs
y )

2

2�2meas

!
(3.22)

http://transportmaps.mit.edu
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Variables �meas, �1, and �2 represent standard deviations of the measurement error, prior
density on parameter e1, and prior density on parameter e2, respectively. Variables µ1 and
µ2 represent the mean of prior densities on parameter e1 and e2, respectively.

⇡(e1, e2|u
obs

y ) =
1

�1

p
2⇡

exp

✓
�
(e1 � µ1)

2

2�21

◆
.

1

�2

p
2⇡

exp

✓
�
(e2 � µ2)

2

2�22

◆
(3.23)

This way, we can define the log-gradient and the log-Hessian of the posterior density:

r log ⇡(e1, e2|u
obs

y ) = �
1

�2meas

0
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y )
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(3.24)
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In Table 3.1 are given all the parameter values used for this example.

L Fy S µ1 �1 µ2 �2 �meas u
obs

y

500 �500 100 11 9 11 4 10 �105

Table 3.1: Values used in the 3-bars truss example

3.3.1.2 Influence of derivative information on transport map computations

A transport map is computed in order to sample the posterior density (3.20). In Table 3.2,
we detail the computation times depending on the information provided to the Transport
Map solver. With 0-order information, only the log-pdf function is used to solve the
minimization problem. With first-order information, the minimization algorithm exploits
the log-pdf function (3.23) and its gradient denoted log-gradient (3.24). Finally, with
second-order information, it exploits the function, its gradient and its Hessian denoted
log-Hessian (3.25). With zero- and first-order information, a BFGS algorithm [21] is used.
With zero order information, the functional gradient is computed numerically while with
first order information, it is explicitly given. With second-order information, a conjugate-
gradient algorithm [73] is used. All calculations are performed with a third-order map. The
Gauss-Hermite quadrature with a grid of 10 points on each dimension (giving 100 points
overall) is chosen to solve (3.9). The convergence criterion of the minimization algorithm
(which is the norm of the gradient) is fixed at 10

�3.
The number of function evaluations is much higher with zero-order information than

with first-order information as the function is also used to numerically evaluate the gradi-
ent. Overall, we observe that adding derivatives information speeds-up the computation
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Order information: 0 1 2

Iterations 33 33 11

Function evaluations 743 41 12

Gradient evaluations - 39 22

Hessian evaluations - - 11

Computation time 0.90 s 0.128 s 0.111 s

Table 3.2: Computation times of the transport map using an analytical model

of the map. Adding the gradient provides for a speed-up of 7 compared with the use of
the pdf alone, while the use of Hessian gives a speed-up of 1.15 compared with the use of
the gradient. The poor speed-up obtained from the use of the Hessian can be explained by
the low dimensionality of the problem (2 parameters) and the low evaluation cost of the
analytical model.

However, in complex engineering problems, the relation between the physical output
of interest and the parameters to infer is not explicit. Here, we propose to build a PGD
model of the output uy depending on the parameters e1 and e2:

u
PGD

y (e1, e2) =

mX

n=1

⇤n↵1n(e1)↵2n(e2) (3.26)

The computation of functions ⇤n, ↵1n and ↵2n is detailed in [89]. Hence, the derivations
needed to compute the gradient and the Hessian can be performed by deriving the func-
tions ↵1n and ↵2n. As those functions are computed by the Finite Element method, the
derivations are performed on the Finite Element shape functions.

In Table 3.3 are given the computation times to build the transport maps with the
PGD model. The gradient information gives a 4.9 speed-up and the Hessian a 1.25 addi-
tional speed-up compared with the use of the function information alone. The numbers
of necessary iterations are very close between Tables 3.2 and 3.3 as PGD and analytical
models are quite similar. However, using the PGD model is more expensive in terms of
computation time; indeed, the number of operations is much higher in the latter case due
to the summations and products of modes. The computation cost is also increased due to
the finite element structure of the parametric modes which requires interpolations. Com-
putation times given in Tables 3.2 and 3.3 are taking into account the computation of the
variance diagnostic presented in Section 3.1.4.

Order information: 0 1 2

Iterations 33 33 10

Function evaluations 703 37 11

Gradient evaluations - 37 20

Hessian evaluations - - 10

Computation time 4.18 s 0.85 s 0.68 s

Table 3.3: Computation times of the transport map using PGD model
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3.3.1.3 Influence of maps order

The impact of the order and of the value of the variance diagnostic on the Transport Map
approximation of the posterior density is shown in Figure 3.4. Contours with continuous
lines represent the non-normalized posterior density with the explicit formulation given
in (3.20). Contours with dashed lines represent the posterior density given by Transport
Map approximation. The comparison of dashed and continuous lines gives an idea of the
approximation as the normalization constant is not involved in the contour representa-
tion. As mentioned in Section 3.1.4, transport maps allow the transport of quadrature
rules. In Figure 3.4, we can also compare the quadrature Transport Map approximation.
The level 3 reference Gauss-Hermite quadrature points are computed with an order 9 map
and a variance diagnostic of 10�5; they are represented with square marks. Approximate
quadrature points are represented with circle marks. The size of the marks is proportional
to the weight of the quadrature points. Subfigures 3.4(a), 3.4(b), 3.4(c) and 3.4(d) rep-
resent approximations made with maps of order 1, 2, 3 and 4, respectively. The variance
diagnostic varies from 1.45 ⇥ 10

�2 to 5.62 ⇥ 10
�4. The first-order approximation with a

variance diagnostic of 1.45 ⇥ 10
�2 gives the general shape of the density but the approx-

imated quadrature points (circle marks), especially the smallest ones, are quite far from
their reference positions (square marks). With a variance diagnostic smaller than 10

�3

(order 3 and 4 maps), the approximation is very close to the reference in terms of contours
and quadrature points.

Figure 3.5 represents the evolution of the variance diagnostic with respect to the order
of the map. The computations involving the PGD model are represented with dashed
lines and continuous lines represent computations performed with the analytical model.
In Figure 3.5(b), the approximation of (3.9) is performed by the level 10 Gauss-Hermite
quadrature (overall 100 points). Increasing the order of the transport maps permits to
reduce the variance diagnostic to a certain limit imposed by the number of quadrature
points chosen to compute the functional to minimize. Indeed, the higher is the order of the
map, the more quadrature points are needed to compute the functional in (3.9) accurately.
Figure 3.5(a) shows that with a level 5 quadrature the variance diagnostic can be decreased
from 1.45 ⇥ 10

�2 to 1.32 ⇥ 10
�4 by increasing the map order from 1 to 5. After the 5th-

order, the variance diagnostic increases due to the lack of accuracy of the quadrature. With
a level 10 quadrature, Figure 3.5(b) shows that the variance diagnostic can be decreased
to 10

�5. We can observe in both figures that the variance diagnostic is smaller by using a
conjugate-gradient algorithm with Hessian information than using a BFGS algorithm with
gradient information.

3.3.1.4 Computation times

For fast computation purposes, it seems preferable to use the smallest possible order as the
computation cost of the map increases with the order. Furthermore, the use of high-order
maps leads to costly transports of samples. In Figure 3.6, we represent the computation cost
of the map added to the computation of the transport of 20,000 samples drawn according to
the reference distribution (normal standard). With both PGD and analytical models, and
with both gradient and Hessian information, the computation cost grows exponentially.

Another aspect of the efficiency of Transport Map sampling compared with MCMC
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(b) Map order: 2, ✏� = 3.90⇥ 10�3
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(c) Map order: 3, ✏� = 6.61⇥ 10�4
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(d) Map order: 4, ✏� = 5.62⇥ 10�4

Figure 3.4: Comparison between contours of the true pdf (dashed lines) and Transport Map
approximation (solid lines), and comparison between estimated quadrature points (circles)
and reference quadrature points (squares). Subfigures 3.4(a), 3.4(b), 3.4(c) and 3.4(d)
represent the approximations with order 1, 2, 3 and 4, respectively

sampling is the independence of generated samples presented in [44]. In Figure 3.7, the
auto-correlation functions for samples generated by MCMC (dashed line) and transport
maps (continuous line) are plotted. MCMC samples are generated by the Adaptative
Metropolis method described in Algorithm 1. Transport Map samples are computed by
the transport of samples generated from the standard normal distribution by means of a
3rd-order map. The autocorrelation function ⇢(s) at lag s for samples {Xn}

Ns
n=0 is defined

as:
⇢(s) =

cov(Xn, Xn+s)

cov(X0, Xs)
(3.27)

The quantity cov(Xn, Xn+s) represents the covariance between the values of two random
variables Xn and Xn+s in the chain separated by lag s.

In addition to that, the Integrated AutoCorrelation Time (IACT) is defined as:

⌧ = 1 + 2

1X

s=1

⇢(s) (3.28)
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Figure 3.5: Evolution of the variance diagnostic of the maps computed with PGD and
analytical model with respect to the approximation order. Continuous lines correspond to
the use of gradient information and dashed lines to the use of both gradient and Hessian
information. Square marks correspond to computations with an analytical model and
triangle marks to computations with a PGD model. In Figure 3.5(a), computations are
performed with a level 10 quadrature and in Figure 3.5(b) with a level 5 quadrature

The IACT can be interpreted as the number of necessary updates of the chain to give one
effective independent sample. Here the sum involved in (3.27) is truncated at s = 200 to
compute the IACT. The MCMC sampling gives an IACT of 8.49 and the Transport Map
sampling an IACT of 1.12. On the one hand, and as expected, Transport Map sampling
gives independent samples (with a theoretical IACT of 1) as it transports independent sam-
ples drawn with a random number generator. On the other hand, despite the good mixing
provided by the Adaptative Metropolis algorithm, the chain produces approximately 8.49

times less independent samples. In order to have an idea of the cost efficiency of the Trans-
port Map sampling, we compare the computation cost for generating 20,000 independent
samples drawn according to the posterior density (3.20) with both Transport Map and
MCMC samplings. For the MCMC sampling, we consider the time to generate 169, 800

samples which is the number of independent samples wanted (20, 000) times the IACT of
8.49. The transport map sampling is implemented with a t3rd-order map computed with
Hessian information. The value given in Table 3.4 takes into account the computation of
the map and the transport of 20, 000 samples. The computation times for both MCMC
and Transport Map sampling with analytical and PGD models are also detailed.

Transport Maps MCMC
Analytic model 0.21 s 41.65 s

PGD model 0.83 s 42.75 s

Table 3.4: Comparison of computation times between MCMC and Transport Maps to
generate 20, 000 independent posterior samples

The speed-up obtained between MCMC and Transport samplings is about 195 using
the posterior density with analytical model. With the PGD model, the speed-up is about



64 CHAPTER 3. TRANSPORT MAP SAMPLING

2 4 6 8 10 12
0

20

40

60

Map order

Co
m

pu
at

io
n

tim
e

(s
)

PGD 1
PGD 2
Analytic 1
Analytic 2

Figure 3.6: Computation time to build the transport map and to use it to transport
20,000 samples depending on the map order. Continuous lines correspond to the use of
gradient information and dashed lines to the use of both gradient and Hessian information.
Square marks correspond to computations with an analytical model and triangle marks to
computations with a PGD model
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Figure 3.7: Auto-correlation functions

51. Due to the fact that the PGD model is defined with finite element functions, the com-
putation cost is concentrated on finding and evaluating the shape functions corresponding
to the points where the model output needs to be evaluated. Using transport maps, this
cost appears in the evaluation of the function, its gradient and its Hessian whereas it ap-
pears only in the function evaluation using MCMC. Despite this, the computation of the
map still involves less model evaluations than in MCMC sampling and the transport of
the 20, 000 samples drawn according to the standard normal distribution by a third-order
polynomial is still cost effective. It is worth noting that the computed transport map is
numerically approximated. Consequently, transported samples are not exactly distributed
according to the target density. However, by reaching a small variance diagnostic, this bias
is assumed to be negligible.

Finally, we observe that marginals computed with MCMC (dashed lines) and Transport
Map sampling (continuous lines) are very similar in this example as shown in Figure 3.8.
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Figure 3.8: Marginals on each parameter with 20, 000 samples from MCMC and Transport
Map samplings

3.3.2 Welding control example

3.3.2.1 Formulation of the inference problem

In this example, the purpose is to illustrate the use of the PGD-Transport Map algorithm
and to compare it with a PGD-MCMC approach. The considered example is a welding
control example already treated in Chapter 2. This application was also addressed in
[127, 130]. The geometry of the problem is described in Figure 3.9.

3

Figure 3.9: Welding control problem

The parametric PGD solution of the conduction-convection problem detailed in Chapter
2 and Appendix A reads:

Tk(xk, yk, t,�, P e) =

mX

n=1

⇤n(xk, yk)�n(t)↵
1
n(�)↵

2
n(Pe) (3.29)

In the considered inference context, the output of interest is the temperature T3 (see
Figure 3.9) which is inaccessible by direct measurement. The knowledge of this temperature
gives information about the welding depth and consequently on the welding quality in the
Region of Interest (RoI). We consider the Peclet number Pe and the standard deviation of
the Gaussian heat source input � as unknown parameters of the model. From successive
measurements of temperatures T1 and T2, we want to predict the temperature T3 in order
to know if the welding quality will be sufficient. The parameters � and Pe are assumed
to be constant over the time domain. At each time step, the temperatures T1 and T2 are
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assimilated to refine the knowledge on those parameters. We denote ⌧i, i 2 {1, ..., N⌧},
the time steps related to the discretization of the physical time used for the numerical
solution. The assimilation time steps are denoted ti, i 2 {1, ..., Nt}, which correspond to
the times when a measurement is acquired. In this example, physical time steps coincide
with assimilation steps. The prior knowledge is modeled by independent Gaussian random
variables with means (µ� = 0.4, µPe = �60) and variances (�

2
� = 0.003,�

2
Pe = 7).

At the considered assimilation time step ti, i 2 {1, ..., Nt}, the posterior pdf of having
the parameters knowing the measurements reads:

⇡(�, P e|T
obs,1:i
1 , T

obs,1:i
2 ) =

iY

j=1

⇡tj (T
obs,j
1 , T

obs,j
2 |�, P e).⇡(�, P e) (3.30)

The measurements are simulated using the PGD model with reference values (� =

0.4, P e = �60). Then, independent random normal noises are added with zero means and
standard deviations �meas

1 = 0.01925 and �
meas

2 = 0.01245. Figure 3.10 shows the model
output for each time step and the perturbed output which gives the measurements used
for the considered example.
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Figure 3.10: Measurements simulated with the numerical model

3.3.2.2 Solution of the sequential inverse problem

Algorithm 5 is used to find the successive maps M1, ...,MNt . In Figure 3.11, two compu-
tation costs over the time steps are shown. Figure 3.11(a) shows the computation time to
build each map Mi, i 2 {1, ..., Nt}. Figure 3.11(b) shows the cost in terms of model eval-
uations to compute each map. Computations of the transport maps are performed using
order 2 information (gradient and Hessian given explicitly to the minimization algorithm)
with a level 10 Gauss-Hermite quadrature. The first step is the more costly because the
order required to meet the variance diagnostic criteria is 4. After the first, step a 1st-order
map is sufficient to satisfy the stopping criterion. Indeed, the first map transports the ref-
erence measure (standard normal) to the first posterior which requires the most complex
map as the reference and target densities are the most unlikely. The other maps are built
between intermediate posteriors which slightly differ at each step. From the second step
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to the final step, we observe that the computation time slowly increases (Figure 3.11(a))
while the evaluation cost slowly decreases (Figure 3.11(b)). This is due to the fact that
the evaluation of the composition of maps grows with the number of steps. One way to
circumvent this issue would be to perform regression on the map composition if the number
of time steps tends to be large [138]. Another issue that the method could encounter is
due to the fact that the computed maps are not exact. In the sequential inference using
Algorithm 5, the target density for the current time step ti is given by (3.11) as the map
Mi�1 is exact. This leads to effective computations as all likelihood functions of previous
times steps do not need to be computed. The counterpart is that the errors could accumu-
late with the number of assimilation time steps growing. One way to fix this issue would
be to add a map computed between the reference density and the true posterior density
given by (1.24) pulled-back by the current approximated map Mi�1. This operation can
be performed from time to time in order to recover the error accumulation. In the current
example where the maps are low-order and computed with a small variance diagnostic, the
accumulated error is neglected.

0 10 20 30 40

1

2

3

4

Time steps (assimilation)

Co
mp

uta
tio

nt
im

e(
s)

(a) Computation time for each time step

0 10 20 30 40
0

5

10

15

20

25

Time steps (assimilation)

Nu
mb

er
of

iter
atio

ns

(b) Number of iterations of the minimization algo-

rithm for each time step

Figure 3.11: Costs of the transport maps computations performed with Hessian information
for each assimilation time step

In Table 3.5, we illustrate the influence of the order information given to the minimiza-
tion algorithm on computation costs of the transport maps. The computation costs of the
first time step is detailed as it requires an order 4 map. For the other time steps, mean
computation costs are indicated. The speed-up for the first iteration is about 5.5 between
0th-order information and 1st-order information. Between the 1st-order information and
the 2nd-order information, the speed-up is about 1.34. As for the other time steps, the
computed map is very simple, the speed-up is very small.

In the computation costs presented in Figure 3.11 and Table 3.5, successive transports
of samples for Monte-Carlo integration are included. First, 20,000 samples are drawn
according to the 2D standard normal distribution (reference measure), then successive
transports of those samples are computed through the successive maps. A KDE on each
coordinate separately gives an estimation of the posterior marginals. Figure 3.12 represents
all the marginals for each time step. The X-axis represents the time steps and Y-axis the
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Order information: 0 1 2

Number of iterations for step 1 107 33 10

Computation time for step 1 33.85 s 6.18 s 4.60 s
Average number of iterations for steps {2, .., 45} 4.2 4.16 4.13

Average computation time for steps {2, .., 45} 1.24 s 0.92 s 0.90 s

Table 3.5: Computation costs of the transport maps depending on the order information
given in the minimization algorithm

parameter values. The color map gives the information on the probability density function
values.

(a) Marginals on � (b) Marginals on Pe

Figure 3.12: Marginals computed with 20,000 samples and KDE for each assimilation time
step

During the iterations over the time steps, marginals become thinner with higher pdf
values giving more confidence on the parameter estimation. We can also observe that the
parameter � (Figure 3.12(a)) is less sensitive than the parameter Pe regarding the inference
process.

After the 45 assimilation time steps, the algorithm gives a maximum estimator
[0.394,�60.193] and a mean estimator [0.392,�59.949]. These values are very close to
the reference values [0.40,�60] used to simulate the measurements.

3.3.2.3 Post-processing: uncertainty quantification

In addition to the mean and maximum a posteriori estimates, another post-processing
application may be the temperature prediction in the RoI. Once the parameters are inferred
in a probabilistic way, a post-process can be the propagation of uncertainties a posteriori
in order to know the impact of the uncertainties on a Quantity of Interest (QoI) (here the
temperature T3 in Figure 3.9). The idea is to know the uncertainties on the value of the
QoI during the process in order to assess the welding depth and consequently the welding
quality. For that purpose, samples of the last posterior density taken from the Transport
Map sampling are used (after the assimilation of the Nt measurements). As the PGD model
gives the temperature field globally as a function of time and parameters over the whole
space domain, we compute the output T3 for all values of the parameters samples at each
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physical time step ⌧i, i 2 {1, .., N⌧}. For a given physical time step ⌧i, the set of outputs T3

is used to build the KDE of the pdf ⇡(T3|�, P e, ⌧i) of having the temperature T3 knowing
the uncertainties on the parameters � and Pe. Figure 3.13 represents the uncertainty map
on the output T3 depending on the physical time. The X-axis represents time so that each
vertical slice represents the pdf ⇡(T3|�, P e, ⌧i). The Y-axis represents temperature values
and the color map gives pdf values. The discontinuous line represents the evolution of
the temperature T3 with no uncertainty on the parameters (i.e. output of the PGD with
the reference values (� = 0.4, P e = �60), which is unavailable in real application without
simulated measurements). This computation can be used to determine at which time the
plates are correctly welded (i.e: T3 > 1) and with which confidence. With this knowledge,
a stochastic computation of the structural stiffness can be obtained in real-time.

Figure 3.13: Inference of temperature T3 computed a posteriori after the last assimilation
step

Uncertainty propagation can also be performed in real-time in a purpose of temperature
prediction in the RoI. Knowing the uncertainties on the parameters, the purpose is to
predict at each assimilation time step the evolution of the temperature T3 for the next
physical time steps. Similarly to the previous example, this can be done thanks to the
PGD model as the temperature field is known globally in time. Thus, at each time step,
samples of the posterior density are available from the Transport Map sampling. Evaluating
the output of the PGD on these parameter samples at the spatial coordinates of the
temperature T3 and for a given time step provides for output samples. A KDE on these
samples provides for the pdf of having the output T3 knowing the uncertainties on the
inferred parameters. This computation is performed after each assimilation time step for
all the physical time steps after the considered assimilation time step.

Figure 3.14(a) shows the result of prediction with uncertainty propagation after the
first assimilation step t1 for all the physical steps ⌧i, i > 1. To that end, samples are drawn
according to the first posterior: ⇡(�, P e|T

obs,1
1 , T

obs,1
2 ) = ⇡t1(T

obs,1
1 , T

obs,1
2 |�, P e).⇡(�, P e).

The slice [⌧0, ⌧1] represents the guess on the temperature T3 knowing the uncertainties on
the parameters (�, P e) after the first assimilation step t1. For ⌧i > ⌧1 the graph repre-
sents the prediction of the output T3 considering the current knowledge on the parameters
uncertainty (i.e. with the assimilation of the first set of measurements T

obs,1
1 and T

obs,1
2

only). The discontinuous line represents the evolution of the temperature T3 with the true
value of parameters (� = 0.4, P e = �60).
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Other graphs (3.14(b),3.14(c),3.14(d)) show the refinement of the prediction with the
refinement of the parameters uncertainty knowledge. The current measurement assimila-
tion step is indicated by the vertical cursor. On the right of the cursor ⌧ = ⌧i, the graphs
represent the prediction of the temperature T3 after the assimilation of the measurements
T

obs,1:i
1 and T

obs,1:i
2 .

If the temperature prediction on the RoI is not satisfying in terms of uncertainties,
a control procedure on input parameters (for example the heat source intensity) can be
made with on-the-fly modification of control variables. On the left of the cursor graphs,
each slice [tj�1, tj ] (j < i) represents the prediction made at the assimilation time tj (the
predictions of the temperature T3 for physical time steps anterior to the assimilation time
step ti are not updated). This procedure performed online can be used in the context of
welding control.

(a) Assimilation step t1 (b) Assimilation step t15

(c) Assimilation step t30 (d) Assimilation step t45

Figure 3.14: Prediction of the output T3 for all time steps after the considered assimilation
step

Figure 3.15 shows the convergence of the prediction of temperature T3 in the steady
state regime (⌧ = 45) with respect to the assimilation steps. We observe that, as foreseen,
more confidence is given to the output of interest (evaluated at final time) along the real-
time data assimilation process.

3.4 Conclusions

In this work, we presented a data-assimilation procedure in the full Bayesian inference
context. In order to perform fast computations, the Bayesian approach was coupled with
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Figure 3.15: Prediction of temperature T3 at physical time step ⌧ = 45 after each assimi-
lation time step ti, i 2 {1, ..., 45}

PGD model reduction and Transport Map sampling. The computation of transport maps
permits a fast sampling from the posterior. This latter technique is particularly suited
for sequential inference as it exploits the Markov structure of the posterior to build low-
order maps. Owing to PGD models, large-scale multi-parameter engineering problems can
be effectively addressed and information on derivatives can be straightforwardly added
to speed-up the computation of the transport maps. Eventually, the global time-space
definition of the PGD models allows one to post-process the posterior density and predict
quantities of interest with uncertainty propagation included.

The proposed approach seems to be suited to real-time applications and is an appealing
candidate for data assimilation in the general stochastic Bayesian context as the sampling
method leans on deterministic computations alone (which do not vary with respect to the
random number generator seed), with a clear convergence criterion. Moreover, a trade-off
between speed-up and quality can be obtained using order adaptivity of the maps knowing
the error by the variance diagnostic criterion.

This chapter paves the way for future works dealing with improvements of the data
assimilation algorithm. In particular, the growing computation cost of the maps composi-
tion for sequential updating could be improved as mentioned in [138]. Consideration of the
modeling error in the Bayesian formulation could also be investigated following the works
on PGD error estimation [75, 23]. Correcting the model bias will be the topic of Chapter
5
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Algorithm 5 Procedure for sequential inference with transport maps
1: ⇡1(p|d

obs

1 ) = ⇡t1(d
obs

1 |p).⇡(p): Assimilation of first measurement
2: L = LaplaceApproximation(⇡1) (see 3.1.1)
3: M̂1 = Id

4: order = 0

5: while ✏� > tolerance do
6: order = order + 1

7: M=IntegratedSquaredMap(order): Parametrization defined in (3.8)
8: M1 = minDKL

M
(⇢, (L � M̂1 � M)

�1
] ⇡1): Minimization with gradient and Hessian

information
9: M̂1 = M̂1 �M1

10: ✏� =
1

2
Var⇢

"
⇢

(L � M̂1)
�1
] ⇡1

#
: computation of variance diagnostic

11: end while
12: M1 = L � M̂1

13: X = randn(Nmc) : Samples from ⇢

14: Y1 = M1(X) : Samples from ⇡1

15: for k = 2...Nt do
16: ⇡

⇤
k(p) = ⇡(dobs

k |Mk�1(p)).⇢(p): Assimilation of k-th measurement
17: M̂k = Id

18: order = 0

19: while ✏� > tolerance do
20: order = order + 1

21: M=IntegratedSquaredMap(order): Parametrization defined in (3.8)
22: Mk = minDKL

M
(⇢, (M̂k �M)

�1
] ⇡

⇤
k)

23: M̂k = M̂k �Mk

24: ✏� =
1

2
Var⇢

"
⇢

(M̂k)
�1
] ⇡

⇤
k

#
: computation of variance diagnostic

25: end while
26: Mk = Mk�1 � M̂k

27: Yk = Mk(X) : Samples from ⇡k

28: end for



Chapter 4
Realistic application to the experimental
characterization of damage in a concrete
beam

In this chapter, the objective is to illustrate the methodology presented in the previous
chapter on a real test-case. The considered experimental test is a three-points bending
test on a notched concrete beam. The experimental campaign is a joint work with Dr.
François Soleilhet, post-doctoral student at LMT. The overall objective of the campaign
was to characterize the influence of the drying on the concrete properties through different
experimental tests. Here, the focus is only made on the numerical study of the bending tests
where parameters of the damage law are inferred from measurements of the displacement
field in order to predict the crack propagation into the beams, and possibly the collapse of
the structure.

4.1 Experimental campaign

4.1.1 Manufacturing of the specimens

Specimens used in this campaign are prismatic 840 mm⇥100 mm⇥100 mm beams notched
at mid-span on 20% of their height (Figure 4.1). The beam are supported by two supports
on the bottom side and the displacement uimp is imposed on the top side. This geometry

400 mm

4 mm

1
0
0
 m

m

8
0
 m

m

420 mm 420 mm

400 mm

uimp

Figure 4.1: Geometry and boundary conditions of the reference test

73
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(a) Manufacturing of the formworks (b) Casting of the beams

(c) Uncasting of the beams (d) Storage of the beams in controlled

environment

Figure 4.2: Preparation stages of the beams

and boundary conditions follow the recommendation of [61] for the characterization of
fracture energy. First, eight wood formworks are built with the shape of a 840 mm ⇥

100 mm⇥ 100 mm prism (Figure 4.2(a)). Second, the concrete is cast on these formworks
(Figure 4.2(b)). After one week, the beams are stripped of their formworks (Figure 4.2(c)).
Then, specimens are separated in two equal groups. The first group of beams is stored
under water while the other group is stored in a controlled climate environment (Figure
4.2(d)) with temperature set to 25

� C and a relative humidity of 30%.

4.1.2 Designing the experimental protocol

After a drying time of 70 days, beams are notched with a circular saw according to the
geometry described in Figure 4.1. The experimental settings are shown in Figure 4.3. A
tensile test machine with a capacity of 100 kN is used to apply the imposed boundary
conditions described in Figure 4.1. At the bottom of the structure, the supports are made
with steel rollers positioned according to the geometry described in Figure 4.1. Steel plates
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(a) Front view of the experimental settings

(b) Back view of the experimental settings

Figure 4.3: Experimental settings
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Figure 4.4: Example of an image post-processed with DIC

are inserted between the cylinders and the beam to prevent the indentation of the concrete
due the concentrated stresses. The displacement is imposed with an hydraulic cylinder at
the bottom side of the beam. The upper support is fixed and the load cell measures the
reaction force in this support. The test is controlled by the displacement prescribed to
the hydraulic cylinder. Adjustment cycles are carried out in order to fill all gaps related
to positioning. After three cycles, a monotonic increasing displacement is imposed at the
rate of 3 ⇥ 10

�3 mm/s until the complete fracture of the specimen is observed. During
the test, unloading/loading cycles are performed in order to observe the evolution of the
fracture dissipated energy. This study is beyond the framework of this thesis so that only
the monotonic part will be considered (no further damage appears in the unloading phase).

In addition to the load measurement from the testing machine, the test is instrumented
with a displacement sensor (Linear Variable Differential Transformer (LVDT)) to precisely
measure the bending of the beam. In order to do so, a measurement beam is installed
on two supports at the mid-span height of the specimen corresponding to its neutral axis.
Thus, one side of the LVDT sensor is fixed on the measurement beam, the other side is in
contact with a bracket glued at the center of the specimen. This measurement is performed
on one side of the specimen (see Figure 4.3(b)). On the other side (Figure 4.3(a)), Digital
Image Correlation is performed on the central part of the specimen. For this purpose, a
painted speckle pattern is sprayed on the considered surface of the concrete beam. LED
panels are added in order to adjust the exposition and contrast of the picture. Pictures for
DIC are taken with a camera linked to the acquisition computer. Then, during the test,
the camera is triggered to take one picture every 5 s. An example of a picture taken with
the right settings is given in Figure 4.4.

A prism including a 45 degree-oriented mirror is placed under the notch in order to be
able to use DIC on the bottom side with the same camera. That way, the reflection of the
bottom of the beam is in the camera axis and the crack opening is visible.
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(b) Results with monotonic part of the loading alone

Figure 4.5: Experimental results

4.1.3 Experimental results

Tests are performed on the eight specimens named Bi, i 2 {1, ..., 8} with the settings
presented in the previous section. Figure 4.5 shows the result of the test for the specimen
B5 in terms of the load/displacement curve. The load is measured by the load cell of the
test machine, and the displacement is the one measured by the LVDT sensor. Data are
post-processed in order to set all initial zeros, especially all the setting cycles are removed.
The curve in Figure 4.5(a) is plotted with the raw data, while the curve in Figure 4.5(b)
is plotted by only keeping the monotonic part of the test.

Figure 4.6 shows the monotonic curves for all the specimens except specimen B8. For
unexplained reasons the curve for this specimen is not consistent with the other curves.
The specimens Bi, i  4, are specimens stored in wet conditions (under water). The other
specimen Bi, i > 4, are stored under drying conditions during 70 days. We can observe
that curves show two different behaviors; wet specimens have less resistance and have a
softer post-peak behavior than dry beams. Inside a group of beams with the same drying
condition, the post-peak behavior seems to be quite similar.

For the DIC measurements, we use the Corelli software [84] developed at the LMT lab
by the Eikology research team. This software permits to select a reference image and build
a finite element mesh (here with linear triangular elements) on the zone of interest. The
code then computes the displacement of each node of the mesh between each picture taken
during the test and the reference image. Specific details of the DIC method will be discussed
in the next sections/chapters. Figure 4.7 shows an example of the DIC displacement field
along the horizontal coordinate computed for the test of specimen B5 in an advanced
damaging time. The discontinuity of the displacement field induces the presence of a crack
in the specimen. However, the zone of interest of the DIC does not include the translation
of the bottom supports. Yet, the displacement is imposed by the test machine by means of
the bottom supports. As a result, the vertical displacement field obtained by DIC has to
be shifted by the displacement measured by the LVDT sensor in order to have the vertical
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Figure 4.6: Monotonic part of experimental results for all specimens

Figure 4.7: Example of a DIC result



4.2. MATHEMATICAL AND NUMERICAL MODELS 79

displacement of the beam according to its global initial configuration.

4.2 Mathematical and numerical models

The model used to predict the behavior of the structure is adapted from [120] in [147]. We
highlight here the main equations of the behavior and the formulation of the corresponding
PGD solution.

4.2.1 Damage law

The behavior of the crack closing is not considered here. Thus, the material behavior is
supposed to follow the constitutive equation:

� = (1� d)C : ✏ (4.1)

where � and ✏ are stress and strain respectively and C is the hook tensor. The scalar d is
the isotropic damage variable that follows the evolution law:

d(Y,Ad, Y0) = 1�
1

1 +Ad(Y � Y0)
(4.2)

where Y is the part of energy rate released due to damage defined as:

Y =
1

2
< ✏ >+: C :< ✏ >+ (4.3)

< ✏ >+ denoting the positive part of ✏. Thus, the damage law depends on two parame-
ters Y0 and Ad: Y0 represents the initial threshold, while Ad is a parameter driving the
brittleness of the post-peak. In order to see their influence, Figure 4.8 shows the model
behavior �t = f(✏t) for different values of (Y0, Ad). The variables �t and ✏t represent the
scalar stress and strain values of one element submitted to traction.

In Figure 4.8(a), the solutions of the model are computed for two values of Y0 around
a reference value Y

ref

0 and for a reference value A
ref

d . Conversely, Figure 4.8(b) shows the
model solutions for two values of Ad with a value of Y0 fixed at Y

ref

0 .

4.2.2 PGD formulation

In our application, the parameters of interest are the damage parameters Y0 and Ad. In
order to perform dynamical Bayesian inference of those parameters in real-time during
the bending test, the model behavior of the structure has to be known with respect to
space coordinates x, time t, and parameters (Y0, Ad). Following the works [147, 146]
on the formulation of multi-parametric nonlinear PGD models, the solution in terms of
displacement u

PGD of the structure can be found by summation of univariate functions:

u
PGD

(x, t, Y0, Ad) =

mX

n=1

⇤n(x)�n(t)↵
1
n(Y0)↵

2
n(Ad) (4.4)

This solution is computed thanks to the LMT in-house code ROMlab in a black-box
way. The 3D mesh geometry represented in Figure 4.9 is given to the input file as well
as the boundary conditions. The geometry considered is a half beam as the problem is
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Figure 4.8: Influence of the damage law parameters on the behavior of an element under
tension

symmetrical with respect to the (z = 0) plane. Thus, displacement in the z direction is
fixed to zero for all nodes in the plane (z = 0). The displacements in both x and y directions
are imposed to zero for all the nodes with coordinates (x = 0.02, y = 0, z) corresponding
to the left support. For the right support, the nodes with coordinates (x = 0.82, y = 0, z)

have their displacements imposed to zero only in the y direction. Finally, the prescribed
displacement in the y direction is imposed to the nodes at the top center of the beam. The
geometry is discretized with linear cubic elements (Q8).

Prescribed displacement in the y direction

Null displacement in the x and y directions

Null displacement in the z direction

Null displacement in the y direction

Figure 4.9: Mesh and boundary conditions used for the computation of the PGD model

The reference material properties for this simulation are summarized in Table 4.1. All
values come from educated guess thanks to previous experimental campaigns on similar
materials in [137]. The imposed displacement uimp increases linearly from 0 to 4 ⇥ 10

�4

Poisson ratio Young modulus (GPa) Y
ref

0 (J.m�3) A
ref

d (J�1
.m3)

0.23 30 216 2.25⇥ 10
�3

Table 4.1: Material coefficients used to build the PGD model
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m. The loading is discretized in 100 steps. The computation of the PGD solution is based
on a LATIN-PGD algorithm [74]. The PGD solution is also computed with a variabil-
ity of the damage parameters. The variation is chosen to be centered at the reference
values (Y

ref

0 , A
ref

d ) with an amplitude of variation of 50%. We define the variables normal-
ized quantities Ȳ0 = Y0/Y

ref

0 and Ād = Ad/A
ref

d for comparison purposes. Both intervals
of variation of the parameters are discretized with 26 values. The number of iterations
of the LATIN-PGD algorithm is fixed to 11. An update stage is used to improve the
convergence of the algorithm. After 11 hours of computation on the Fusion cluster with
35⇥ Intel Xeon CPUs at 2.4 GHz and 450 Go of RAM, the ROMlab code produces 6 PGD
modes. Figure 4.10 shows the parametric modes, Figure 4.11 the time modes, and 4.12
the first four spatial modes. All modes except time modes are normalized. That is why
the amplitude of time modes rapidly decreases with m as the contribution of each becomes
smaller. We can notice that the first mode is a full elastic mode as the corresponding
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Figure 4.10: PGD modes associated to the damage law parameters

parameter modes are null. Further discussions about the shape of the modes will be given
in Chapter 6.

4.3 Dynamical inference of the damage law parameters

4.3.1 Formulation of the inference problem

Here, the parameters to be updated are the initial damage threshold Y0 and the brittleness
coefficient Ad which drives the post-peak behavior. Although the experimental tests are all
performed at the same time without real-time post-processing due to practical constraints,
the purpose here is to sequentially update the knowledge on the parameters Y0 and Ad

from in-situ DIC measurements within the Bayesian framework. One could think of also
using the available load measurement. However, only the displacement field is formulated
in the PGD format. Building a meta-model of the reaction forces depending of the damage
law parameters can be conceivable but we choose here to restrict the identification problem
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Figure 4.11: PGD modes for time dependency

to displacement measurement, which seems to be the most likely available information in
the monitoring of real structures. This numerical example was also treated in [128].

Then, at each time step ti, we consider the knowledge of the measurements uobs,i which
represent the displacements of the degrees of freedom of the DIC mesh. In this context,
the posterior density function at time ti reads:

⇡(Y0, Ad|u
obs,1:i

) /

iY

j=1

⇡(uobs,j
|Y0, Ad).⇡(Y0, Ad) (4.5)

4.3.2 Application with simulated measurements

In this section, the problem is solved with simulated measurements from the PGD model.
We choose 30 random nodes on the central part of the beam as measurements points
(see Figure 4.13). Then the measurements used are the displacements of those nodes
given by the PGD model with parameters set to Y0 = 1 ⇥ Y

ref

0 and Ad = 1 ⇥ A
ref

d . A
Gaussian white noise with a standard deviation of 10�6 m is added to those displacements
in order to simulate the DIC noise. Further discussions about actual DIC measurement
noise will be addressed in Chapter 6. The dynamical Bayesian inference with transport
maps is performed with Algorithm 5 presented in Chapter 3. Then, the likelihood function
⇡(uobs,j

|Y0, Ad) in the formulation of the posterior density in Equation (4.5) reads:

⇡(uobs,j
|Y0, Ad) =

NmeasY

k=1

⇡err(u
obs,j
k � u

PGD
(xk, tj , Y0, Ad)) (4.6)

The pdf ⇡err is Gaussian with zero mean and standard deviation of 10
�6 , and the

xk, k 2 {1, ..., Nmeas}, are the coordinates of the measurements nodes (here Nmeas = 30).
The prior density ⇡(Ȳ0, Ād) is chosen as a Gaussian distribution with mean (0.9, 1.1) and
covariance matrix:

⌃prior =

 
0.2 0

0 0.2

!
(4.7)
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(a) Spatial mode 1 in the x direction (b) Spatial mode 1 in the y direction

(c) Spatial mode 2 in the x direction (d) Spatial mode 2 in the y direction

(e) Spatial mode 3 in the x direction (f) Spatial mode 3 in the y direction

(g) Spatial mode 4 in the x direction (h) Spatial mode 4 in the y direction

Figure 4.12: First four PGD spatial modes

Figure 4.13: Position of the nodes considered as measurement points

The results in terms of marginals are shown in Figure 4.14. During the first time steps, the
posterior densities are very wide due to the fact that the structure is in the elastic domain
so that the displacement gives poor information on the damage parameters. However,
at the final time step, maxima of the marginals give an estimation of the parameters of
(Ȳ0, Ād) = (1.04, 1.00) which is very close to the reference value (1, 1) despite the relative
wrong first estimation (0.9, 1.1) given by the prior. We can also see that the estimation of
the parameter Ȳ0 is slower than the estimation of the parameter Ād. At the final time step,
the standard deviation of the marginal on the parameter Ȳ0 is 0.041 while the standard
deviation of the marginal on the parameter Ād is equal to 0.022. The computation costs of
the inference algorithm are shown in Figure 4.15. The dashed line shows the time required
to compute each map using only the explicit formulation of the functional in the solution
of the minimization problem (order derivative equal to 0). The solid line represents the
time required to compute the maps by using an explicit formulation of both functional
and its gradient (order derivative equal to 1) computed thanks to the derivatives of the
PGD modes. As shown in the examples of Chapter 3, the use of the functional gradient
strongly speed up the computation of the transport maps especially when the maps order
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(a) Marginals on Ȳ0 (b) Marginals on Ād

Figure 4.14: Successive posterior marginals obtained after each time step of measurement
assimilation

becomes large. Indeed, the bar chart represents the final order of the maps computed in
order to achieve the given tolerance of the variance diagnostic (10�3). We can see that the
highest computation costs correspond to the highest order of map and the highest speed-up
obtained by using the transport map algorithm with 1st-order derivatives.
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Figure 4.15: Computation cost of each map for each time step. The dashed line represents
the computation time using order 0 derivatives and the continuous line represents the
computation time using order 1 derivatives. The bar chart represents the order of each
computed transport map

We can also explain the change of maps order for time steps 32, 36, 38 and 39. For the
first time step, the structure is in the elastic domains so that the measured displacements
do not provide any knowledge on the parameters. Hence, the posterior densities for the
first time steps are very close to the prior density which is Gaussian. Then, a first order
map is sufficient to represent the map between the reference standard normal density and
the approximately Gaussian posterior density. Between time steps 30 and 40, the change
of the posterior density is the most brutal as the structure follows a nonlinear damage
behavior. Then, higher order maps are necessary to represent the coupling between two
consecutive posterior densities. After this critical domain, as the time steps are quite small,
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the evolution of the posterior densities is smooth and consequently easily representable by
1st-order maps.

4.4 On-the-fly estimation of the crack length

As seen in Chapter 3, once the posterior density on parameters is known at a given time
step, uncertainties can be propagated trough the PGD model to predict the behavior of
the system for the other time steps. Here, the PGD model gives the displacement field of
the structure. The idea of this part is to post-process the displacement field obtained after
uncertainty propagation in order to derive an estimation of the cracking state of the beam
and predict the potential collapse of the specimen.

4.4.1 Simple meta-model of crack opening

In order to do the link between the PGD damage model formulated in terms of displace-
ments, and the collapse of the structure, we propose here to build a kinematic bridge
between the PGD model and the elastic solution of the beam under the same boundary
conditions and including a crack. In the following, we assume that the crack is initiated
in the right corner of the notch and that the crack propagates straightly in the vertical
direction. Then, different meshes are created corresponding to different discretized values
of crack lengths. The elastic solutions on those meshes are computed with the same bound-
ary conditions as the reference problem and a unit imposed displacement. The interval of
crack lengths varies from 0 to 80 mm. This space is discretized in 80 values so that 80
elastic solutions are computed. Figure 4.16 shows the elastic solutions for four particular
crack lengths.

To efficiently estimate the crack length in the beam in real-time after the inference
of the parameters from successive in-situ measurements, a meta-model is computed from
those 80 snapshots computed in the offline phase. Therefore, all the 80 elastic solutions are
stored in a matrix Y = {y1, ...,y80} with yj 2 R

ndof the displacement vectors computed
on the finite element mesh composed of ndof degrees of freedom. Then, the Singular Value
Decomposition (SVD) of the matrix Y is computed such that:

Y = U⌃VT (4.8)

where U = {U1, ..., Undof} is a ndof ⇥ ndof matrix, V = {V1, ..., V80} is a 80 ⇥ 80 matrix,
and ⌃ the ndof ⇥ 80 diagonal matrix containing the singular values �j , j 2 {1, ..., 80}. By
truncating the SVD decomposition to NSVD modes, the displacement uSVD(x, l) of the
structure submitted to a unitary displacement can be approximated as a function of the
crack length l as

uSVD(x, l) =
NSVDX

k=1

�kUk(x)Vk(l) (4.9)

The functions Uk(x) and Vk(l) are built from the linear interpolation of the corresponding
vectors Uk and Vk verifying Uk(xi) = Uki and Vk(lj) = Vkj . Figure 4.17 shows the first
six modes Vk(l) and Figure 4.18 the corresponding horizontal displacement modes Uk(x).
The first two spatial modes represent the displacement with the full opening of the crack

and the other modes can be seen as localized "stitching" patches along the crack.



86 CHAPTER 4. REALISTIC APPLICATION

(a) Elastic solution for l = 0 (b) Elastic solution for l = 0.25

(c) Elastic solution for l = 0.50 (d) Elastic solution for l = 0.75

Figure 4.16: Elastic solution in terms of displacement in the x direction for different crack
openings
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Figure 4.17: Spatial SVD modes associated to the parameter l
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(a) Spatial mode 1 (b) Spatial mode 2 (c) Spatial mode 3

(d) Spatial mode 4 (e) Spatial mode 5 (f) Spatial mode 6

Figure 4.18: Spatial SVD modes in terms of displacements in the x direction

4.4.2 Estimation of the crack length with uncertainty propagation

Once the damage model is updated, several quantities of interest can be defined thanks to
the global formulation of the PGD model. Here the quantities of interest will be the crack
length at the final time step tf of the simulation. An associated application can be the
monitoring of the structure at this time step in order to assess whether the structure will
collapse or not. Of course, this study could be done for another specific time step or for
all time steps to study the behavior of the crack propagation along time.

From the knowledge of the displacement field u
PGD

(x, tf , Y0, Ad), the crack length
parameter l can be identified by comparison with the displacement field coming from
the SVD model uSVD

(l). As the displacement of the damage PGD model depends on the
uncertainties on the parameters Y0 and Ad, the Bayesian inference is well suited to perform
the stochastic identification of the parameter l. Thus, the random displacement field u

PGD

needs to be compared with the SVD model u
SVD. To be consistent with the Bayesian

formulation of Chapter 1 with additive noise measurement, we can write the equality:

0 = �u
SVD

(l) + u
PGD (4.10)

with u
PGD seen as the random variable of "noise" with density ⇡u(u

PGD
) and 0 the real-

ization of the "measurement" random variable. The likelihood function then reads:

⇡(l) = ⇡u(u
SVD

(l)) (4.11)

The pdf ⇡u(u
PGD

) is obtained by the propagation of the uncertainties on the parameters
Y0 and Ad through the PGD model evaluated at time tf and at the considered space
coordinates. Here the purpose is to perform this second inference in real-time so the
uncertainty propagation has to be as fast as possible.

If we consider one measurement point, for example the point with space coordinates
x1 = (x1, y1) = (0.4, 0), the propagation of the uncertainties through the PGD model gives
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a random variable u1. Samples u
k
1 of this random variable can be computed as:

u
k
1 = u

PGD
(x1, tf , Y

k
0 , A

k
d) (4.12)

with (Y
k
0 , A

k
d) samples drawn according to the posterior density ⇡(Y0, Ad|u

obs,1:j
) resulting

from the Bayesian inference on damage parameters at time step tj .
However, in order to know explicitly the likelihood function (4.11), the pdf ⇡u1 should

also be known explicitly. To compute the pdf ⇡u1 , the fastest way seems to approximate it
with the two first moments and the maximum entropy principle (i.e. approximation by a
Gaussian). Indeed, after one step tj of data assimilation, the solution of the first inference
problem gives a transport map Mj between the standard normal distribution ⌫⇢ and the
posterior distribution with density ⇡(Y0, Ad|u

obs,1:j
). Then, from the Gaussian-Hermite

quadrature (wk,pk), k 2 {1, ..., Nq}, and for the density ⇢, the n first moments of the
random variable u1 can be computed as:

m
n
u1

= E⇡u1
[u

n
1 ] =

NqX

k=1

wk

�
u

PGD
(x1, tf ,Mt(pk))

�n (4.13)

Then we can deduce that u1 is approximately distributed according to the normal
distribution N (µu1 ,�u1) with µu1 = m

1
u1

and �2u1
= m

2
u1
�
�
m

1
u1

�2. This method is effective
as it only requires the evaluation of the PGD model Nq times (typically 100 times for a
level 10 Gauss quadrature). However, this method can be a coarse approximation of the
pdf and we want to compare it with a more accurate method based on finding a transport
map S that pushes forward the reference distribution ⌫⇢ to the unknown distribution ⌫⇡u1

of the random variable u1. This topic called inverse transport is presented in [115] with
the application to build non-Gaussian proposal distributions for MCMC algorithms. The
main idea is the same as the one presented in Chapter 3, and the map S is found by solving
the problem:

S = argmin
M

DKL
�
⌫⇡u1

||M]⌫⇢
�

(4.14)

= argmin
M

E⇡u1


log

✓
⇡u1

M]⇢

◆�
(4.15)

= argmin
M

E⇡u1
[� log (M]⇢)] (4.16)

Thus, the function to minimize does not involve the pdf of ⇡u1 and the expectation with
respect ⇡u1 can be computed by Monte-Carlo with the available samples (Equation (4.12)).
Furthermore, this expectation can also be computed using a Gauss quadrature. Knowing
the Gauss quadrature (wk,Mj(pk)), k 2 {1, ..., Nq} for ⇡(Y0, Ad|u

obs,1:j
) the quadrature

points for ⇡u1 are (wk, u
PGD

(x1, tf ,Mt(pk))). Consequently, the computation of the trans-
port map S can be done in a cost effective way. Once the map S is computed, the pdf of
the random variable u1 reads by definition:

⇡u1(u1) =
⇥
⇢ � S

�1
⇤
(u1)|detrS

�1
(u1)| (4.17)

In Table 4.2, the computation times for each uncertainty propagation method is pre-
sented: first the Gaussian method is used; second the transport map method for density
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estimation (with a 3d-order map); and third, as a reference method, a kernel density
estimation computed with a Gaussian kernel and 20, 000 Monte-Carlo samples u

k
1. All

computations times also take into account the evaluation of 100 points by the estimated
pdf. Figure 4.19 shows the corresponding pdfs. The Gaussian estimation is in this case
quite far from the reference pdf computed with the kernel density estimation. However the
approximation by Transport Map sampling is quite good, leading to a speed-up of 25.7 by
comparison with the kernel density estimation and trading a speed-up of 3.8 for accuracy
by comparison with the Gaussian approximation.

Gaussian estimation Kernel density estimation Transport map
0.014 s 1.39 s 0.054 s

Table 4.2: Computation times for different density estimation techniques
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Figure 4.19: Comparison between the different density estimation techniques

Finally, the Bayesian inference problem for the identification of the crack length reads:

⇡(l) = ⇡u1(u
SVD

(l)).⇡pr(l) (4.18)

The prior density ⇡pr is chosen to be Gaussian with a mean of 0.04 and standard deviation of
0.013. The inference of the crack length l is done at each time step tj of the simulation, after
each determination of the posterior density ⇡(Y0, Ad|u

obs,1:j
). The results of all successive

posterior densities ⇡(l) are represented in Figure 4.20. Thanks to the formulation of the
second Bayesian inference problem, the uncertainties on the parameters Ad and Y0 are
propagated in the identification of the length of an equivalent straight crack. During the
first time steps, the estimation of the crack length is very coarse with a large variance then
it becomes better and converges at the final time step to the mean estimation of 0.0372
and a maximum a posteriori estimation of 0.0376.

Finally, Figure 4.21 shows the cumulative computation time required to perform the
successive inferences for each time step. We can notice that all iterations can be done in
less than 5 s which is the duration between two successive picture acquisitions. Therefore,
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Figure 4.20: Successive posterior densities on parameter l
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Figure 4.21: Total computation cost for each time step. The red part represents the
computation time relative to the estimation of the parameter l, and the blue part to the
estimation of the damage law parameters (Y0, Ad)

in this context this approach could be considered in real-time. However, in this example
the computation time required to perform live-DIC is not discussed. This time has to be
added to the total computation time. Although we have no reason to believe that this
computation time will not be particularly high (see [85] for an online use of DIC), in the
case where the computation time for an assimilation time step is higher than the acquisi-
tion time, measurements can be stored in order to catch up the delay by simultaneously
assimilating two or more sets of measurements.

4.4.3 Other model of crack propagation

The model of a straight planar crack propagation initiated from a specific region is quite
restrictive. Indeed, Figure 4.22 shows the results of the computation of the DIC residuals
for all the beams of this experimental campaign at the final time step. As the DIC meshes
are continuous, they do not take into account the crack opening kinematics. Then, around
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the crack the DIC algorithm cannot converge properly and the residual is quite high.
Therefore, the crack path in the plane of the DIC can be estimated by looking for the
highest values of the residual.

(a) B1 (b) B2 (c) B3 (d) B4

(e) B5 (f) B6

‘
(g) B7 (h) B8

Figure 4.22: DIC residual at the final step of the experiment of all specimens of the
campaign

We can see that the straight hypothesis of the crack is quite valid for specimens B2 and
B3 but questionable for the other specimens. A first improvement can be made by enrich-
ing the characterization of the crack by adding more kinematic parameters. For example,
in addition to the crack length, an angle of propagation could be considered. Then, the
meta-model could be computed by HO-SVD with all the parameters and spatial coordi-
nates. Another perspective would be to consider a database of DIC residual results and do
manifold learning on this database in order to extract the relevant kinematic parameters
of any crack geometry. A preliminary work has been done by using the same methodology
as in [52] with disappointing results probably due to the small size of the data base (only
8 specimens).

4.4.4 Application with real measurements

So far, the inference problems are considered with measurements directly simulated from
the PGD model. The PGD model is computed with nominal damage parameter values
with the same boundary conditions as in the real test-case. However, the PGD model
presented in this chapter is not able to represent the real displacements observed in the
tests. Indeed, we can see that in the application of the crack length estimation, at the final
time step, the crack is barely at mid-span of the beam height while in the real test-case the
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beam is collapsed. This discrepancy can be explained by the fact that the nominal values
of the damage parameters give less damage than in the reality. However, when modifying
the damage law to have more damage in the beam, the PGD code seems to no longer
converge. This can be due to the strong localization of the damage in this example. To
circumvent this problem, both spatial and time discretizations can be refined. However, in
this application, it leads to intractable computations due to high RAM capacity which is
required.

4.5 Conclusions

In the first part of this chapter, the experimental campaigns carried out in this thesis
were presented. The experimental tests aim to study the cracking behavior of a concrete
beam. To that end, interesting experimental sets have been used with in-situ measurements
performed with DIC. In the second part of this chapter, the Bayesian inference with PGD
model reduction and Transport Map sampling was applied. The purpose is to update the
knowledge on the damage law parameters in order to predict the crack propagation in
the concrete beams. In order to do so, the PGD model output was compared with an
elastic meta-model with a crack length dependency. As the model output is considered
as a random field due to the uncertainties on the damage law parameters, the link with
the meta-model was performed with the formulation of a second inference problem. This
second inference problem was built with a non-Gaussian likelihood function obtained by
fast uncertainty propagation with transport maps. Hence, the approximated crack length
can be estimated in real-time at different time steps thanks to the assimilation of the
displacement fields.

However, in this work the assimilation of measurements coming from the experimental
test has not been possible due to a convergence issue of the PGD code. An immediate
prospect will be to solve this issue in order to fully use experimental tests. A short term
prospect will be to improve the convergence of the code or the storage of the operators
required to compute the PGD solution. Another prospect will be to enrich the model by
a model correction in order to compensate all the experimental uncertainties that can be
encountered. This latter prospect is addressed in the next chapter.



Chapter 5
Data assimilation with on-the-fly
correction of model bias

In this chapter, the purpose is to study the influence a model bias on the solution of
a sequential Bayesian inference problem. Moreover, a method to dynamically identify
and correct this model bias is proposed in order to improve the solution of the Bayesian
inference problem. The proposed approach is applied to two numerical examples.

5.1 Computation of the model bias

5.1.1 Context and definition of the model bias

In the classical Bayesian inversion formulation, the forward model that is evaluated in the
likelihood function is supposed to be exact. This model is supposed to be able to generate
the observations without bias. However, the inaccuracy of the model can have strong effects
on the accuracy of the posterior density [71]. Then, introducing a modeling error term in
the Bayesian formulation of inverse problem can improve its solution [134]. For example, in
the recent work [20], the model error between low and high fidelity models known a priori
is introduced to improve the Bayesian formulation computed with importance sampling.

However, this model error can be difficult to know a priori (when a high-fidelity model
is unknown) and an appealing idea is to learn the model correction term directly from the
data. This "hybrid" approach consists of performing data assimilation in order to estimate
the best values of the model parameters that fit the physics, then compute the data-based
model correction as the residual discrepancy between the model and the observed physics
.

In the litterature, integration of a model correction can be found in the developments of
the PBDW method where a reduced order model is enriched with orthogonal modes which
represent the discrepancy between the model prediction and the data [94]. In another
recent work [27], a parametric model M(p) is updated in a deterministic way thanks to
the data dobs to find the best parameters fit pest, then the model correction B is computed
as the estimation residual:

B(xobs
, ti) = dobs

�M(xobs
, ti,p

est
) (5.1)

93
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where xobs represents the spatial coordinates of the measurements points and ti the assim-
ilation time steps. In Bayesian inference, the result of the parameter estimation at time
ti is the posterior pdf ⇡(p|dobs

1 , ...,dobs

i ). Thus, the model correction can be computed as
presented in (5.1) by computing the estimation pest with post-processing of the posterior
pdf (i.e. mean or maximum a posteriori).

However, we consider here the estimation residual as a random variable due to the
uncertainties on the parameters p and the measurement noise e:

B(xobs
, ti) = dobs

i � e �M(xobs
, ti,p) (5.2)

Then, the pdf of the random variable B is computed by uncertainty propagation and
sum of independent random variables. This estimation residual is computed after data
assimilation at time ti; it represents the discrepancy between the data and the model. In
the case of sequential inference, this discrepancy can be taken into account in the data
assimilation at time ti+1 by writing:

dobs

i+1 = M(xobs
,p, ti+1) +B(xobs

, ti+1) (5.3)

The model bias B(xobs
, ti+1) is taken as the extrapolation of the estimation residual com-

puted at time ti. Thus, the likelihood function at time ti+1 reads:

⇡(dobs

i+1|p) = ⇡B(d
obs

i+1 �M(xobs
,p, ti+1)) (5.4)

where ⇡B is the pdf of the random variable of the model bias B.

5.1.2 Extrapolation

There are several methods to extrapolate the model bias. The first idea is to perform a
constant extrapolation and keep the pdf ⇡B equal to the pdf of the random variable of the
residual computed at time ti+1. Another idea is to linearly extrapolate mean and standard
deviation of the random variable B and approximate the pdf ⇡B by a Gaussian. In any case,
this extrapolation can be extremely wrong as it relies only on the data without considering
physics. However, in the targeted application the model is supposed to represent the
studied physics quite accurately so the bias remains small or at least evolves slowly. The
more the model is accurate to represent the physics, the less the contribution of the data-
based bias and the error committed in the extrapolation will be important. In the case
where lots of measurements are assimilated at once for a given time step (for example in
DIC context), the model bias is a random vector with size the number of the discretized
displacement field that is measured. Then, at each assimilation time step, we can compute
the mean vector and the standard deviation vector of the model bias. The extrapolation
can be computed on those deterministic quantities, coordinate by coordinate but the chosen
approach here is to perform extrapolation on the SVD modes of the mean and standard
deviation. The purpose here is to extrapolate the displacement in a global manner in order
to bring more physics and to filter the noise. To compute these extrapolations, at time
step ti, we build the matrices of mean and standard deviation:

Bmean =
⇥
mean

�
B(xobs

, t1)
�
, ...,mean

�
B(xobs

, ti)
�⇤

(5.5)
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Bstd =
⇥
std
�
B(xobs

, t1)
�
, ..., std

�
B(xobs

, ti)
�⇤

(5.6)

with mean(.) and std(.) the functions that compute the mean and the standard deviation
of a random variable with a quadrature rule. The SVD of those matrices are computed
such that:

Bmean = UmeanSmeanV
T
mean (5.7)

Bstd = UstdSstdV
T
std (5.8)

The matrices Vmean and Vstd represent the time dependency of the model bias. Thus,
the extrapolated mean and standard deviation vectors for time ti+1 are computed with the
linear extrapolation V̂mean and V̂std of the matrices Vmean and Vstd. The linear extrapolation
of the matrices is performed column by column such that an additional line is added to
the matrices Vmean and Vstd.

Finally, the pdf of the bias at time ti+1 is the multidimensional Gaussian distribution
with mean B̂

i+1
mean computed with the extrapolated matrix V̂mean and a diagonal covariance

matrix filled with the values of the standard deviation vector B̂
i+1
std

computed with the
extrapolated matrix V̂std. Consequently, truncation can be applied and only the first SVD
modes may be used to build the mean and standard deviation vectors of the model bias.

In this approach, the computation and storage costs of the model bias increase during
the assimilation with the number of assimilated time steps. To circumvent this problem,
the idea is to use the so-called Sequential Karhunen-Loeve (SKL) algorithm [125]. This al-
gorithm allows to compute a SVD of a matrix piece-wisely. This is particularly useful when
dealing with a large set of data or, in our case, when the data are acquired sequentially.
The purpose of the algorithm is to compute the SVD of [C D], which is the horizontal
concatenation of the matrices C and D, knowing the SVD of C. The main idea of the
algorithm is to do a QR decomposition in order to retrieve the span of the SVD modes
already computed. Then the SVD is computed on a matrix of size Ntrunc+m where Ntrunc

is the number of modes kept in the SVD of C and m the size of D. Here, the matrix C

is either the mean or the standard deviation of the bias at time ti and D is either the
mean or the standard deviation computed at time ti+1. That way, here m is equal to 1
and Ntrunc is in practice very small if the model is quite close to the data. The sequential
computation of the bias moments with the SKL method is presented in Algorithm 6.

The advantage of doing the extrapolation with respect to the SVD modes is that the
truncation allows to filter the SVD noise modes (with small singular values). Moreover,
thanks to the SKL method, this operation is compatible with the constraint of real-time
simulation.

5.1.3 Detection of the model bias with model evidence

In Bayesian inference, the model evidence can be seen as an indicator of the quality of the
model; this is another advantage of this stochastic framework. Therefore, this quantity
can be used for model selection [31] in order to determine which model among a class of
models is the most likely to have generated the data.
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Algorithm 6 Computation of the model bias moments with the SKL method
Require: Moment B1 after the first assimilation time step. B1 represents either the mean

or standard deviation of the model bias.
1: C = B1

2: [U, S, V ] = svd(C) . SVD computation
3: for t = 2 to Nt do . Assimilation time steps
4: D = Bt . Computation of the model bias moment for time t

5: [U D̃]R = qr([US D]) . QR decomposition
6: [Ũ , S̃, Ṽ ] = svd(R) . SVD computation
7: U

0
= [U D̃]Ũ

8: S
0
= S̃

9: V
0
= [U D̃]Ũ

10: U = U
0
(:, 1 : Ntrunc) . Truncation of the modes

11: S = S
0
(1 : Ntrunc, 1 : Ntrunc)

12: V = V
0
(:, 1 : Ntrunc)

13: B̂ = USV̂
T

. Extrapolated moment
14: end for

In the case of Bayesian updating of a model M depending on parameters p, the pos-
terior pdf reads again:

⇡(p|dobs
) =

1

c
⇡(dobs

|p).⇡(p) (5.9)

In this formulation where a single model is considered, the model dependency of the pos-
terior pdf is hidden in the formulation of likelihood function. The model evidence c is then
computed as:

c = ⇡(dobs
) =

Z
⇡(dobs

|p).⇡(p)dp (5.10)

If now, N models {M1, ...,MN} depending on the parameters pk are considered, the
posterior probability that Mk generated the data dobs is:

⇡(Mk|d
obs

) =
⇡(dobs

|Mk).⇡(Mk)PN
k=1 ⇡(d

obs|Mk).⇡(Mk)
(5.11)

where ⇡(Mk) is the prior probability on the model and ⇡(dobs
|Mk) is the integrated

likelihood of Mk. This pdf is computed by marginalization:

⇡(dobs
|Mk) =

Z
⇡(dobs

,pk|Mk)dpk (5.12)

=

Z
⇡(dobs

|pk,Mk).⇡(pk|Mk)dpk (5.13)

= ck (5.14)

where ck is the model evidence associated to the Bayesian inference performed with the
model Mk.

That way, in the case where the prior pdfs ⇡(Mk), k 2 {1, ..., N} are equal, the Bayes
factor bij between two models Mi and Mj reads:

bij =
⇡(Mi|dobs

)

⇡(Mj |dobs)
=

ci

cj
(5.15)
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The interpretation of this factor is that when bij > 1 the model Mi is more likely than the
model Mj to produce the considered data dobs. The Jeffreys scale of evidence [65] gives
an empirical interpretation of the Bayes factor (see Table 5.1.3).

bij Strength of evidence
< 10

0 negative (supports Mj)
10

0 to 10
1/2 barely worth mentioning

10
1/2 to 10

1 substantial
10

1 to 10
3/2 strong

10
3/2 to 10

2 very strong
> 10

2 decisive

Table 5.1: Jeffreys’ scale of evidence for Bayes factor

The purpose of this study being to identify when a model becomes less reliable, the
idea here is to monitor the evolution of the model evidence during the sequential inference
problem. In the case where the model evidence drops drastically within a certain range,
the addition of a model correction can be considered. However, comparing the model
evidence with two successive measurements can be difficult because the observations are
not affected with the same noise. Consequently, the model evidence monitoring is a rough
idea to assess the quality of the model as the Bayes factor will be polluted by measurement
noise.

The computation of the model evidence is not straightforward. In classical sampling
methods that allow the characterization of the posterior density, this quantity is not avail-
able. However, by using the Transport Map sampling method, the model evidence can
be interpreted as the distance between the reference density ⇢ and the posterior density
pulled-back by the transport map M [44]:

c = exp
⇣
E⇢

h
log

⇣
M

�1
] ⇡

⌘
� log(⇢)

i⌘
(5.16)

This quantity is easy to compute as a quadrature rule with respect to ⇢ is supposed to be
known. Another advantage of the Transport Map method as presented in Chapter 3 is that
if the model is found to be inaccurate in a given time range the corresponding maps can
be removed in order to retrieve the error committed in the estimation of the parameters.
Then, missed measurements can be re-assimilated when the model bias is corrected.

5.2 Applications

5.2.1 Error in the description of the material behavior

The first example is an academic problem of structural mechanics. The studied structure
is a rectangular beam with size 0.1 m ⇥ 1 m submitted to bending. The geometry and
boundary conditions are described in Figure 5.1. The structure is submitted to an increas-
ing load at point A and and clamped in its left side. Two behavior models are considered
for the structure. The first one is a homogeneous isotropic elastic model and the second
one is an elasto-plastic model with linear isotropic hardening.
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A
B

Figure 5.1: Mesh and boundary conditions

Figure 5.2(a) shows the load imposed at point A with respect to the time steps. Figure
5.2(b) shows the result of the numerical solution in terms of vertical displacement of the
point A with the two considered models.
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Figure 5.2: Time dependence of the imposed load and models outputs

Both models have the same elastic behavior with a Young modulus set to 200 GPa
and a Poisson ratio to 0.3. That way, the displacement of the structure with both models
coincide at the beginning (until the time step 100 approximately) then the elasto-plastic
model gives larger displacements than the elastic one.

5.2.1.1 Influence of model bias

The first purpose here of is to see the influence of using a wrong model and a correction
to identify a parameter in the context of Bayesian inference. The parameter of interest
is the Young modulus E and we compare the result of the Bayesian inference by using a
parameterized elastic model with simulated measurements from elastic and elasto-plastic
models.

First, Bayesian inference is performed with the elastic model and simulated measure-
ments from the elastic model evaluated with a Young modulus of 200 GPa polluted with
a Gaussian noise with a standard deviation of 10

�4 m. Only one measurement point is
considered (point B in Figure 5.1) which gives two measurements in both x and y direc-
tions. Time steps from 50 to 200 are considered and the acquisition of the measurement is
performed every two time steps so that the amount of assimilation time steps is 75. The
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prior density is Gaussian with a mean of 190 GPa and a standard deviation of 10 GPa.
Figure 5.3(a) shows the result in terms of marginals of the Bayesian inference with

elastic simulated measurements. The marginals are computed with transport of samples
by computing transport maps with the same methodology as in Chapters 3 and 4. The
color map indicates the correspondence with the physical time steps (same reference as in
Figure 5.2). The result is classical: marginals become thinner with the assimilation of the
measurements and the maximum/mean of the density become closer to the reference value
of 200 GPa.

On the other hand, Figure 5.3(b) shows the result of the Bayesian inference with elasto-
plastic simulated measurements. In this case, the marginals for the first time steps follow
the correct measurement as the beam still has an elastic behavior. However, from time
step 100, marginals are shifted from the reference value and the estimation diverges. As
the structure becomes more compliant due to local plasticity, the identified Young modulus
value becomes smaller than the reference. Consequently, the estimation is diverging as the
mean/maximum of each marginals are continuously during the iterations.
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Figure 5.3: Reference solutions without correction (color map indicates the correspondence
with time steps)

5.2.1.2 Dynamical correction of model bias

In order to improve the convergence of the inference process, a correction of the model
bias is performed. Figure 5.4 shows the result of the inference of the Young modulus
from elasto-plastic measurements with the addition of a model bias. Figure 5.4(a) shows
the result with a deterministic correction and Figure 5.4(b) the result with a stochastic
correction. The deterministic bias is computed following (5.1) using the mean estimator.
The stochastic bias is computed following (5.2). Thus, both corrections are computed by
linear extrapolation directly for the deterministic correction and by means of mean and
standard deviation for the stochastic one.

The inference process is highly improved by the addition of the correction of model
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Figure 5.4: Solutions computed with elasto-plastic measurements and model correction
(color map indicates the correspondence with time steps)

bias with maximum of the marginals converging to reference value of 200 GPa. In this
example both corrections lead to similar results due to the low level of noise. In Figure
5.5, the means and standard deviations of the model correction are shown. The mean
of the model correction is null for the first time steps then increases to compensate the
extra-deformation of the structure due to plasticity. The standard deviation of the model
bias decreases with the assimilation due to the fact that the uncertainty on the parameter
decreases at the same time. Then, the standard deviation converges toward the standard
deviation of the measurement noise. However, this variation is very small due to the fact
that the sensitivity of the model with respect to the parameter is negligible when compared
to the level of the measurement noise.
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Figure 5.6(a) shows the evolution of the log-model evidence corresponding to the dif-
ferent types of inference: inference with measurements simulated with the elastic model
(corresponding to Figure 5.3(a)), inference with measurements simulated with the elasto-
plastic model (corresponding to Figure 5.3(b)), and inference with measurements simulated
with the elasto-plastic model and stochastic correction (corresponding to Figure 5.4(b)).
The evolution of the model evidence is noisy due to the fact that the measurements are not
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Figure 5.6: Evolution of model evidences

polluted with the same noise at each time step. Each model evidence is computed for one
realization of the measurement random variable. The model evidence also depends on the
accuracy of the computed transport map even if the same tolerance in terms of variance
diagnostic is imposed for each time step. In Figure 5.6(b), a 10-points moving average
smoothing is applied in order to filter the noise. For the reference inference computation
with elastic measurements, the model evidence is roughly constant. In the case of elasto-
plastic measurements, we can observe that without correction the model evidence drops
off drastically. However, the addition of the model correction seems to have a good impact
on the model evidence even if it is still lower than the reference.

The monitoring of the model evidence quantity can be used to compute the model
correction only when needed. Figure 5.7 shows the result of the inference process performed
with the elastic model and the correction of the model bias while measurements are also
simulated with the elastic model. In this case, the model bias is null and the addition
of the correction induces an artificial bias due to the measurement noise. This leads to
a slight inaccuracy of the computation of the marginals in comparison with the reference
without correction presented in Figure 5.3(a).

5.2.1.3 Extrapolation on quantities of interest with SVD

In this section, the quantity of interest is the global kinematics of the beam. Thus, the
model correction is still computed at the measurement point to improve the convergence of
the inference solution but also on the entire beam boundary in order to be able to describe
the global motion of the beam during time. In this example, one measurement point is
used to perform inference on the Young modulus parameter, then the estimation residual
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Figure 5.7: Posterior marginals computed with simulated elastic measurements and model
correction (color map indicates the correspondence with time steps)

is computed at both boundaries and measurement points then extrapolated to compute
the model correction for the next time step. The number of boundary nodes is 220 and
the extrapolation is performed by extrapolating time SVD modes.

At each time step the elastic posterior pdf on the Young modulus is updated and the
residual estimation is computed at each boundary nodes. Then, this residual is extrapo-
lated to give the model correction for the next time step. Figure 5.8 shows the estimation
of the displacement of the beam for different time steps with the estimation of the model
correction performed at the previous time step. The predicted displacement at each node
is a random vector, for readability reasons only the mean is represented. The black solid
line represents the reference given by the elasto-plastic simulation with a Young modulus of
200 GPa. The blue dashed line represents the mean of the estimated displacement with the
extrapolation of the residual computed on SVD time modes (here only one mode is kept).
As a comparison, the red dotted line represents the mean of the estimated displacement
with point-wise extrapolation.

Overall, the estimations are quite good and the estimated displacement with the up-
dated elastic model coupled with the correction follows the true elasto-plastic displacement
of the beam. However the point-wise correction is much more disturbed. In this applica-
tion, no mechanical regularization or smoothing is applied in the predicted displacement
which could greatly improve the results. However the purpose here is to quantify the
quality of the raw results.

In Figure 5.9, the quantity of interest is the global displacement of the beam at time
step 200. In this case the displacement is computed with the displacement of the updated
elastic model evaluated at time step 200 and the linear extrapolation of the model bias at
this time step.

As in the previous figure, the black solid line represents the reference, the blue dashed
line the prediction with SVD extrapolation and the red dotted line with the point-wise
extrapolation. In this example, the extrapolation of the noise by doing point-wise extrap-
olation is magnified. For all time steps, the SVD extrapolation gives much better results
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Figure 5.8: Prediction of the global displacement of the beam at different time steps

in terms of consistency. However, for time step 102 (Figure 5.9(a)) both results are quite
wrong. The reasons are first that at this time step the extrapolation to be done is the
largest. Second, at this time step the model bias is quite low because the plasticity is
just beginning. Thus, only noise is extrapolated and motivates the use of a monitoring
the model evidence in order to prevent this situation. For the other time steps, the error
between the prediction and the reference is due to the linear approximation of the model
bias between the considered time step and time step 200.

Here, the extrapolation of the model bias is computed on all boundary nodes (220
nodes, 440 degrees of freedom). In Figure 5.10, times to sequentially compute the SVD
of the model bias with the SKL algorithm 6 and the classical SVD are compared. Both
computations are performed with a MATLAB code with the built-in functions of SVD and
QR decomposition. For the SKL algorithm, only one mode is kept at each time step. In
Figure 5.10(a), the SVD of the mean model bias is computed for the 440 degrees of freedom
of the beam boundary; we observe that the classical SVD seems to outperform the SKL
algorithm. However, in the case where the sequential SVD of a larger matrix needs to be
computed, the SKL algorithm seems to be cost efficient (Figure 5.10(b)). Here, the SVD
is computed on all 2222 degrees of freedom of the beam mesh. Overall, the computation
time of the SVD is quite low making the approach suitable for real-time applications.

5.2.2 PGD truncation error

The objective of this second example is to study the influence of the truncation error in
the PGD decomposition and its correction. The test on a concrete beam with damage
presented in Chapter 4 is again considered. The system is studied between time step 40

(where the damage of the structure begins) and the final time step. The reference Bayesian
inference solution is computed with simulated measurements from the PGD model with 6
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Figure 5.9: Prediction of the global displacement of the beam at time step 200 from
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modes and the reference values (Ȳ
ref

0 , Ā
ref

d ) = (1, 1). The prior density is a Gaussian with
mean (Ȳ0, Ād) = (0.9, 1.1) and diagonal covariance matrix with values (0.2, 0.2). The same
30 measurements points as the ones presented in Figure 4.13 are used. The same standard
deviation of the Gaussian noise equal to 10

�6 is also used. The result of this inference
problem in terms of marginals computed with Transport Map sampling is shown in Figure
5.11.

As a comparison, Figure 5.12 shows the result of the Bayesian inference by using the
same measurements but using the PGD model truncated to 3 modes for the formulation
of the likelihood functions. The influence of the truncation error in the computation of
the marginals is low for the first time steps. Indeed, as shown in Figure 4.11, only the
first mode contributes to the PGD solution during the elastic part (corresponding to the
first time steps). Then, when damage begins, the error committed by truncation becomes
larger and the marginals are shifted giving a wrong estimation of the parameters.

In order to overcome this issue, the stochastic correction is added to the formulation of
the Bayesian inference. The model bias is estimated at the 30 measurements points (i.e.
60 degrees of freedom) then the stochastic correction is computed by the extrapolation of
the SVD modes of the mean and variance. In this application, only two modes are kept
to represent the model correction. The result of the Bayesian inference with correction of
the model bias is shown in Figure 5.13. Here also, model correction improves the result of
the inference by withdrawing the error bias in the posterior densities.

In this example, the error committed is known and formulated in terms of PGD modes.
Figure 5.14(a) compares the first SVD time mode of the mean correction with the 4th
PGD time mode which is the first mode of the true truncation error. Here, the Sequential
Karhunen-Loeve algorithm is not used in order to see the influence of high-order modes.
It appears that the mode of the mean correction is a noisy version of the PGD mode. The
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Figure 5.10: Comparison of the computation times between SKL and MATLAB SVD
algorithms for different sizes of matrices

effect of the noise can also be observed in the graph of the singular values of the mean
correction in Figure 5.14(b). Although the theoretical number of non-zero values is 3 as
the number of PGD modes withdrawn from the model is 3, singular values slowly decrease
from the second to the sixtieth. Thus, it is necessary to truncate the SVD in order to limit
the extrapolation of noise when computing the correction from the estimation residual.

However, the computation of the estimation residual depends on the realization of the
random variable of measurement noise as no filtering is performed at this stage. Figure
5.15 shows the same result than Figure 5.13 but using a different random seed, which gives
another set of simulated measurements. This solution is quite different from the first one
and the last marginals maxima are farther to the reference values.

In Figure 5.16, the first SVD time mode of the mean correction is plotted with the SVD
mode of the previous solution and the reference which is the 4th PGD mode. Thus, this
new computation gives another realization of the noisy PGD mode reference. Consequently,
this explain the differences between Figures 5.13 and 5.15.

Figure 5.17 shows the evolution of model evidences for the reference inference with the
6 mode-PGD model, the inference with the 3-mode PGD model without correction, and
the inference with the 3 mode-PGD model and the correction. All evolutions are smoothed
with a moving average filter of span 10. We can see that the model evidence slowly drops
off from the reference when using the 3 mode-PGD model without correction. Adding the
correction, improves the model evidence except in the first time steps when the model bias
is the lowest. This is due to the fact that the correction is introduced from the beginning
of the Bayesian inference procedure.

5.3 Conclusions

In this chapter, the influence of the model bias and its correction on the Bayesian inference
solution have been highlighted. The choice made here was to build a model correction based
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Figure 5.11: Reference solution computed with the full 6 mode-PGD model (color map
indicates the correspondence with time steps)

on the extrapolation of the stochastic estimation residual. This extrapolation gives an
independent random variable of model bias used to improve the Bayesian inference process.
This data-based approach is performed without making any assumptions on the type of
model bias so that all kinds of uncertainty sources can be considered (time-dependent
boundary conditions, geometry defects, etc.).

However, in both treated examples the model bias followed the same pattern, namely
slowly increasing from a null value. In the opposite case, the knowledge of the model bias
from error estimation procedures [3, 75] should be used as prior for the model bias random
variable as done in [97]. Monitoring the model evidence seems also to be an interesting idea
to identify when a model becomes less accurate and a model correction is necessary. This
monitoring has not been included in the presented example and future works will be to set
an automatic procedure to control the model bias. This idea can easily be coupled with the
Transport Map methodology where the inference result is represented by a composition
of maps. In the case where a model bias is detected with the monitoring of the model
evidence, the maps corresponding to the assimilation of data with an inaccurate model
can be removed.

In the presented approach, the model correction is descriptive as it represents the gap
between the model prediction sensitive to noise. Another more robust approach with
respect to the noise would consist in parametrizing the model correction and update those
hyper-parameters along the parameters of interest of the model. This approach however
leads to additional computation cost and complexity as the dimension of the posterior will
be larger.
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Figure 5.12: Solution computed with the 3 mode-PGD model for simulated measurements
from the 6 mode-PGD model (color map indicates the correspondence with time steps)
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Figure 5.13: Solution computed with the 3 mode-PGD model and model correction for
simulated measurements from the 6 mode-PGD model (color map indicates the correspon-
dence with time steps)
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Figure 5.15: Solution with model correction with a different seed of the random number
generator
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Chapter 6
Selection of Digital Image Correlation data
for the Bayesian updating of PGD models

Digital Image Correlation is a measurement method which is widely used in solid mechanics
to identify full-field displacements during mechanical tests on materials and structures
[60, 141]. This method was performed during the experimental campaign presented in
Chapter 4. This measurement technique provides a rich information but can be difficult
to handle in the context of real-time Bayesian data assimilation. Indeed, as measurements
are compared with model outputs, the more measurements are considered, the more model
outputs need to be evaluated leading to additional computational cost and questioning the
real-time constraint. Then, this computation cost can be reduced by only considering the
most relevant information from the full-field measurements. In this chapter, the purpose is
to optimize the use of DIC measurements in the context of the Bayesian updating of PGD
models. Two ways are explored: filtering a large amount of available data, or performing
experimental design to optimize the quality of obtained data.

6.1 The global Digital Image Correlation method

6.1.1 Correlation principles

The purpose of Digital Image Correlation is to identify a displacement field u(x) that links
two pictures f(x) and g(x). The pictures f(x) and g(x) are matrices with the number
of pixels (x represents the pixels coordinates) with gray level values. f is the reference
picture and g is the picture deformed by the displacement field u(x) such that the local
gray level conservation reads:

f(x) = g(x + u(x)) (6.1)

In practical cases, this local conservation is not strictly satisfied due to noise. The
displacement u(x) is then determined by solving a more global problem that consists of
minimizing the following scalar quantity:

||f(x)� g(x + u(x))|| (6.2)

Usually the L
2-norm is chosen for ||.||. The domain where the correlation residual (6.2) is

defined leads to two categories of DIC approaches.
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First, the local DIC approach aims at minimizing the correlation residual on sub-
images or Zones Of Interest (ZOI) treated independently. The local residual to minimize
then reads: X

x2ZOI

(f(x)� g(x + u(x)))2 (6.3)

In this approach, the output of the analysis is the mean displacement at the middle of the
ZOI. This averaging naturally introduces a noise filtering. Large ZOI will lead to small
uncertainties but will be restricted to the identification of smooth displacement fields.

Second, in the global DIC approach used here, the correlation residual is defined in the
whole measurement zone (Region Of Interest or ROI). This ROI contains a large number
Np of pixels, so that a global nonlinear correlation residual is minimized:

1

Np

X

x2ROI

(f(x)� g(x + u(x)))2 (6.4)

In this variational formulation the displacement field is expressed in a chosen basis:

u(x) =
X

n

un n(x) (6.5)

where  n are chosen vector functions and un the corresponding degrees of freedom. This
approach helps to regularize the problem by considering physics knowledge (as the dis-
placement continuity). Usually, the displacement field is described with Finite Element
(FE) functions which is convenient when the measurements are compared with FE mod-
els (e.g with FEMU methods [70, 85, 106]). In this case, un are the nodal values of the
displacement field u(x).

To solve (6.4) a first Taylor expansion is used to linearize g(x + u(x)):

g(x + u(x)) ⇡ g(x) + u(x).rg(x) (6.6)
⇡ g(x) + u(x).rf(x) (6.7)

Then, an iterative sequential construction of the u(x) is performed by minimizing:
X

x2ROI

⇣
f(x)� g̃(x)�rf.du(k)

(x)
⌘2

(6.8)

where g̃(x) = g(x + u(k)
(x)) is the updated deformed image, and du(k)

= u(k+1)
� u(k)

is the correction at iteration k. In order to have sub-pixel resolution a (spline) gray level
interpolation is performed in the construction of g̃.

Finally, by writing the stationary of (6.8), the minimization is equivalent to solve the
linear system:

Mdu(k) = b(k) (6.9)

with
Mmn =

X

x2ROI

rf(x). m(x)rf(x). n(x)

b(k)
m =

X

x2ROI

(f(x)� g̃(x))rf(x). m(x)
(6.10)

The vector b(k) is the residual vector updated at iteration k and M is the symmetric
positive DIC matrix computed once for all as it only depends on the reference image f and
the chosen basis  .
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6.1.2 Measurement error in DIC

When dealing with measurements, a crucial point is the associated uncertainties. This is
particularly the case when using Bayesian inference where the pdf of the measurement is
supposed to be known. In this context, the global DIC method seems to be well suited as
it provides a clear estimation of the measurement noise.

First, a white noise with zero mean variance of 2�2f is supposed to affect the deformed
image g while the reference image f is considered as noiseless (equivalent to assume that
both image are affected by the same noise). This white noise can be identified by com-
puting the variance of f � g with two different reference pictures when no displacement
is prescribed. Then the covariance matrix Cu of the measured degrees of freedom can be
computed from (6.9) and leads to:

Cu = 2�
2
fM

�1 (6.11)

Due to the fact that M
�1 is not diagonal, the displacement noise is spatially correlated.

This correlation depends on the chosen basis  n. For example, using FE functions with
small elements leads to larger measurements uncertainties than when using larger elements.
However, using large elements will compromise the accuracy of displacements with strong
gradients.

Finally, global DIC provides the displacement field over the basis  as well as the
residual map (see Figure 4.22 for example) and noise covariance/sensitivity with the matrix
M.

6.2 Selection of DIC data for Bayesian updating of PGD

models

6.2.1 Computation of sensitivity fields

The DIC provides the full-field measurement of the displacement u. However, this large
amount of data can be difficult to handle and post-process especially in the context of
real-time model updating due to the large number of model queries that the method
requires. Thus, the purpose is to use the most relevant data in order to update the model
of interest. In model updating applications, the relevance of the data is the sensitivity of
the data with respect to the variation of the parameters of interest. For example, in the
application presented in Chapter 4, the model depends on parameters (p1, p2) = (Y0, Ad).
The sensitivity of the model output u (which is the displacement field in the structure)
with respect to the parameter pi reads:

Si(x, p1, p2) =
@u(x, p1, p2)

@pi
i 2 {1, 2} (6.12)

These sensitivity fields can be easily computed as the displacement field of the structure
is known in the PGD form:

uPGD
(x, t, Y0, Ad) =

mX

n=1

⇤n(x)�n(t)↵
1
n(Y0)↵

2
n(Ad) (6.13)
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Thus, the sensitivity fields Sp1 and Sp2 can be computed with the derivation of param-
eter modes as:

S1(x) =

�����

mX

n=1

⇤n(x)�n(t̄)
@↵

1
n

@Y0
(Ȳ0)↵

2
n(Ād)

����� (6.14)

S2(x) =

�����

mX

n=1

⇤n(x)�n(t̄)↵
1
n(Ȳ0)

@↵
2
n

@Ad
(Ād)

����� (6.15)

Here, the mean sensitivity fields are computed with the mean values of time t̄ and param-
eters Ȳ0 and Ād.

In addition to the sensitivities S1 and S2, the cross sensitivity S12 = S1 ⇥ S2 can be
defined in order to have an average sensitivity of the model with respect to both parameters.
Those sensitivities can be computed in the offline phase, once for all, and used to select
the location of the most sensitive measurements for parameters identification. That is
why defining S12 can be useful when dealing with the identification of strictly independent
parameters; in this case, the data selected with respect to the sensitivity of one parameter
may indeed be insensitive to the other parameters.

Considering the practical application addressed in Chapter 4, Figure 6.1 shows the
sensitivity fields in both displacement directions x (horizontal) and y (vertical). Overall,

(a) Sensitivity field S1 along the x direction (b) Sensitivity field S1 along the y direction

(c) Sensitivity field S2 along the x direction (d) Sensitivity field S2 along the y direction

(e) Sensitivity field S12 along the x direction (f) Sensitivity field S12 along the y direction

Figure 6.1: Sensitivity fields

the most sensitive points are the points with the largest displacement (for example around
the notch for the sensitivity in the x direction). However, as in the considered problem the
displacement of the structure is prescribed in the y direction at the mid span and at both
bottom ends of the beam, those regions are quite insensitive to the parameter variation.

6.2.2 Influence of the measured degrees of freedom on the Bayesian

solution

From the computation of sensitivities, the most sensitive degrees of freedom can be selected
to compute the Bayesian solution. Figure 6.2 shows the selection of the best 30 degrees of
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freedom with respect to the chosen sensitivity field. As a comparison, Figure 6.2(a) shows
a random selection of degree of freedom constrained in the central part of the beam.

(a) Random selection in the central part (b) Selection with respect to S1

(c) Selection with respect to S2 (d) Selection with respect to S12

Figure 6.2: Selection of the 30 most sensitive degrees of freedom

The Bayesian inference problem of interest is here the assimilation of the measured
degrees of freedom for only one time step. Thus, the posterior density of interest reads:

⇡(Y0, Ad) / ⇡(uobs,45
|Y0, Ad).⇡(Y0, Ad) (6.16)

where uobs,45 is the set of measured degrees of freedom at time step 45 which is a time
step where the damage of the beam is beginning. Those measurements are simulated
from the numerical PGD model with reference (Ād, Ȳ0) = (1.0, 1.0) and the addition of a
Gaussian white noise with zero mean and standard deviation of 10�6 m. The prior density
⇡(Y0, Ad) is chosen to be Gaussian with mean (0.9, 1.1) and a diagonal covariance matrix
with variances (0.2, 0.2).

The results in terms of marginals for time step 45 with respect to the measured degrees
of freedom are shown in Figure 6.3. For the marginals on parameter Y0, we observe that
the influence is quite low for this simulation as the densities are very similar. However, we
can notice that the maximum of marginals computed with the data selection with respect
to S1 and S2 is closer to the reference Ȳ0 = 1 than the one computed with a random
data selection. For the marginals on parameter Ad, the influence of the data selection
is more visible. The estimation given by the marginal with the random data selection
is quite far with a maximum a posteriori estimation of Ād = 1.3 and large variance.
This estimation is improved by selecting data with the sensitivities S1, S2 and S12. In
terms of variance, the data selection with S2 gives the smaller variance leading to a better
noise filtering. Data selection with S1 gives a larger variance but still better than the
one obtained with the random selection. Data selection with S12 gives an intermediate
result between the data selection with S1 and S2. Overall, data selection with respect to
sensitivity fields greatly improves the Bayesian inference solution compared with a random
selection. Cross-sensitivity can be a good intermediate to select data for the identification
of several parameters. In the considered example, the data selection with sensitivity S12

is equivalent to the selection of half the data with S1 and half the data with S2.
Figure 6.4 shows the comparison of the marginals obtained with different data selections

in the case of sequential inference. Marginals in Figures 6.4(a) and 6.4(b) are computed
with the random data selection. Marginals in Figures 6.4(c) and 6.4(d) are computed with
data selection with respect to sensitivity S12. With sequential inference, the data selection
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(a) Posterior marginals on parameter Y0
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Ād

p
d
f

S1

S2

S12

rand

(b) Posterior marginals on parameter Ad

Figure 6.3: Marginals at time step 45 for the different choices of measured degrees of
freedom

gives a smoother evolution of the marginals and smaller variances especially in the first
time steps where the signal-to-noise ratio is the lowest.

6.2.3 Application to DIC data selection

The selection of data with respect to model sensitivity is useful when the measurements
are subjected to the same spatial distribution of noise. Here, simulations are performed
with a white Gaussian noise with zero mean and standard deviation of 10

�6. However,
matrix M in DIC highlights spatial correlation due to pictures texture and finite element
basis. Then, the sensitivity fields for parameter identification should be weighted by the
measurement sensitivity which represents the signal-to-noise ratio. In global DIC, this
information is available a priori and given by the correlation matrix M of (6.9). Figure 6.5
represents the diagonal of matrix M which is the sensitivity in x and y of all nodes of the
DIC mesh. The picture used to compute this matrix is one of the experimental campaigns
presented in Chapter 4. The FE mesh used to represent the measured displacement is
quite fine and subjected to high measurement uncertainties.

In order to define sensitivity with respect to model identification and measurement
uncertainties, the matrix M is multiplied by the sensitivity S1, S2 and S12:

SDIC

i = MSi i 2 {1, 2, 12} (6.17)

That way the measurement uncertainties are propagated to the sensitivity fields. In order
to compute sensitivity fields SDIC

i , the original sensitivity fields Si are projected in the
DIC mesh then the product of Si by the correlation matrix M is performed. Figure 6.5
shows the sensitivity field SDIC

12 . The most "highlighted" nodes will be the measurements
points with the highest sensitivity with respect to the identification of parameters under
measurement uncertainties. Finally, the most sensitive degrees of freedom can be selected
in order to do the identification procedure. Figure 6.7 shows the 30 most sensitive degrees
of freedom. These degrees of freedom are located on the right side of the notch which is
the area with the larger horizontal displacement. The displacement is not symmetric due
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(a) Posterior marginals for Y0 with random data

selection

(b) Posterior marginals for Ad with random data

selection

(c) Posterior marginals for Y0 with data selection

w.r.t S12

(d) Posterior marginals for Ad with data selection

w.r.t S12

Figure 6.4: Marginals in the case of sequential inference for different choices of measured
degrees of freedom

to the fact that the horizontal displacement on the left side of the beam is prescribed to
zero (see Figure 4.9).

Once the best data are selected, the covariance matrix of measurement error can be
computed thanks to (6.11). First, the standard deviation �f is computed by comparison
of two reference pictures. The difference of gray levels is computed pixel by pixel, then
the variance of this quantity is computed and gives 2�

2
f . The factor 2 is due to the fact

that both reference pictures are assumed to be affected by the same noise. Figure 6.8
shows the histogram of the gray levels difference between two reference pictures of the
considered experimental test. We can see that the noise is approximately Gaussian with
zero mean. Here the standard deviation is about 2.3/255 (gray level). Then the covariance
measurement error matrix restricted to the 30 chosen degrees of freedom is represented in
Figure 6.9.

We observe that the covariance matrix is approximately diagonal due to the small size
of the finite element mesh and the linear shape functions used. Indeed, in this case only
nodes sharing the same patch are correlated. For the selected points, the mean standard
deviation of noise is about 5⇥10

�7 m. This precision is quite high and justifies the level of
noise used to simulate the measurement with the numerical model and a standard deviation
of 10�6 m.
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(a) Sensitivity along the x direction (b) Sensitivity along the y direction

Figure 6.5: Sensitivity of the displacements at each degree of freedom independently of the
displacement of the other degrees of freedom (diagonal of the sensitivity matrix M)

(a) Sensitivity along the x direction (b) Sensitivity along the y direction

Figure 6.6: Sensitivity to measurement and model identification S
DIC

12

6.3 Speckle optimization for DIC with PGD models

This section presents an on-going joint work with Dr. Clément Jailin, post-doctoral student
at LMT, about speckle optimization for parameter identification. This is an additional way
to reduce the amount of information necessary to effectively update model parameters in
the Bayesian inference context.

6.3.1 Definition of the problem

The prior knowledge of the parametric PGD model allows to identify the most relevant
DIC data for the identification of parameters. This combination of techniques is even
more interesting as DIC offers the possibility to compute the sensitivity matrix a priori
knowing the reference image (the speckle pattern) and the basis over the displacement
field. However, additional preliminary work can be done in order to optimize the speckle
pattern of the reference picture with respect to the identification of parameters.

The idea is to maximize the correlation matrix M and therefore the scalar product
rf(x). (x) with respect to the image f . The basis vector  (x) is here chosen as the
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Figure 6.7: Selection of the 30 most sensitive degrees of freedom w.r.t to measurement and
model identification
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Figure 6.8: Histogram of the gray level difference between two reference pictures

sensitivity field S(x) =
@u

@p
(x, p̄) in order to maximize the sensitivity of the measure with

respect to the variation of the parameter p. Then, the functional Jsens is defined as follows:

Jsens(f) = ||rf(x).S(x)||ROI (6.18)

The functional Jsens needs to be maximized and this maximum is given when the norm of
the picture gradient is large and collinear to the sensitivity field  .

Another constraint of the DIC, especially in the real-time simulation context, is the
computation time required to solve the minimization problem (6.8). This problem is solved
thanks to a Newton-Raphson based on the linear approximation (6.6) g(x + du(x)) ⇡

g(x) + du(x).rg(x). Thus, the more accurate this approximation is, the fewer iterations
will be needed to solve the problem. In this case, the functional Jlin to minimize reads:

Jlin(f) = ||f(x + S(x))� f(x)� S(x).rf(x)||ROI (6.19)
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Figure 6.9: Covariance matrix of measurement noise for the 30 selected degrees of freedom

Simultaneous maximization of Jsens and minimization of Jlin seems to have opposite
effects. A legitimate choice of functional is to consider a weighted functional J↵:

J↵ = (1� ↵)Jlin � ↵Jsens (6.20)

That way, ↵ = 0 gives a functional to minimize in order to have fast DIC computations,
and ↵ = 1 a functional to minimize in order to have high sensitivity of the measure of the
data with respect to the variation of the model parameter.

6.3.2 Application to a 1D picture

The first application is the optimization of a 1D picture with respect to a uniform sensitivity
field (S(x) = 1, 8x 2 ROI). This can occur for example when the parameter of interest is
the Young modulus of a steel plate under tension. In order to minimize J↵, an iterative
algorithm is used. The idea is that at each iteration of the algorithm, the best location
to add an unitary increment of gray level is found. In order to do so, Nr pixel candidates
{xi}i2{1,..,Nr} are drawn randomly in the picture. Then Nr picture candidates fi are built
by incrementing the gray level of the pixel xi by an unitary gray level:

fi(x) = f(x) 8x{x1, ...,xi�1,xi+1, ...,xNp} (6.21)
fi(xi) = f(xi) + �w (6.22)

where �w is the unitary increment of gray level. Then the functional J↵ is computed for
all picture candidates fi and the picture that gives the lowest value of the functional is
kept. In practice, the initial picture is uniformly black and the algorithm finds the best
location of the drop of white paint (quantity �w) that minimizes J↵. The algorithm stops
when a given quantity of paint is used.

In Figure 6.10, the result of the gray level of the final picture after 1000 iterations is
given with different values of ↵. The number of tested candidates at each iteration is 30

and the unitary gray level increment �w is equal to 0.05. Gray level values vary from 0

(black) to 1 (white). When the gray level of the best candidate is already equal to 1, the
gray level stays at 1 (the algorithm stagnates). Figure 6.10(a) shows the result of the 1D
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(c) ↵ = 0.5

Figure 6.10: Optimized pictures for different values of ↵

picture with ↵ = 0. In this case the gray level is quite uniform, which correctly satisfies
the linearity condition as f(x + S(x))� f(x)� S(x).rf(x) if f is uniform. White pixels
at the end of the picture are due to the numerical computation of the image gradient rf .
The opposite case with ↵ = 1 is shown in Figure 6.10(c). In this case, the picture has a
strong gradient with a periodic pattern with the alternation of clear white and black zones
(chessboard pattern). Figure 6.10(b) shows the picture result computed with ↵ = 0.5. In
this case, the patterns are coarser with a smooth variation between white and black zones.
This kind of multiscale pattern seems to be the most efficient as the fine details help the
sensitivity of the measure and coarser patterns help the convergence of the DIC.

6.3.3 Application to a 2D picture

This methodology is now applied to the identification of the damage model parameters.
The sensitivity field used is the sensitivity field S1 corresponding to parameter Y0. The size
of the optimized pictures is 150⇥ 150 pixels that represents a square of 0.1⇥ 0.1 m at the
central part of the beam. In the optimization algorithm, the number of candidates drawn
at each iteration is equal to 150 and the number of total iterations is equal to 69, 000 with
an increment of gray level �w of 0.1. This choice of total number of iterations is made by
comparison with the speckle used in the experimental settings. With 69, 000 iterations,
and with an increment of 0.1, the computed pictures will have the same mean gray level
than real pictures taken during the experimental campaign.

Figure 6.11 shows the result of the pictures computed with different values of ↵. For
small values of ↵, the picture highlights a white pattern where the sensitivity is null (see
Figure 6.1(a) and Figure 6.1(b)). For ↵ = 1, the picture is covered with a chessboard
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Figure 6.11: Optimized pictures w.r.t S1 for different values of ↵

pattern except in the top-central zone where the sensitivity is null. For the intermediate
values of ↵, patterns highlight straight lines orthogonal to the displacement field.

In order to define the optimal value of the parameter ↵, all pictures are represented in
the diagram (Jsens, Jlin). The optimal value of ↵ is the one that gives a minimum value of
Jlin and a maximum of Jsens (bottom right corner). In this representation, it seems that the
optimal value of ↵ is 0.5. As a comparison, the points that represent random pictures and
an example of picture used for the experimental campaign are plotted. Random pictures
are computed with gray levels drawn according to the random uniform distribution. Then,
the point that represents the random speckle in the diagram is the mean point for 10000

random generated pictures. An example of random picture is shown in Figure 6.13(c).
In order to compute the real-test point, the picture of a real-test speckle in a square of
0.1 ⇥ 0.1 m is taken (Figure 6.13(a)) then the resolution is lowered to 150 ⇥ 150 pixels
(Figure 6.13(b)) in order to compute the value of (Jsens, Jlin). Both random and real-test
speckles seem to be much less optimal than the computed picture for ↵ = 0.5. Here the
method is illustrated by considering the sensitivity S1. In order to have optimality with
respect to both parameters, the sensitivity field S12 can be used instead.

6.4 Conclusions

In this chapter, the focus was made on the prior work that could be done to optimize data
assimilation when a large amount of data is available (such as when using DIC or DVC).
This optimization is performed thanks to multi-parametric PGD models that are computed
prior to the Bayesian inference procedure. Thus, sensitivity fields can be easily computed
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Figure 6.13: Comparison of speckles

and the most sensitive spatial coordinates can be selected. Reducing the number of degrees
of freedom is particularly useful in identification procedure such as Bayesian inference in
order to save computation cost. It also improves the robustness of the identification as
measurements with a low signal-to-noise ratio will be discarded. However, the measurement
uncertainties may be not uniformly distributed and the sensitivity field can be perturbed by
the spatial distribution of noise. Thanks to the global DIC method, this spatial distribution
of noise can be determined with two reference pictures and the data selection can be done
with respect to parameter variation and measurement noise. Pictures themselves can be
optimized by building a speckle pattern sensitive with respect to the parameters variation
thanks to sensitivity fields computed with PGD modes. In practical terms, this speckle
can be printed into the studied specimen using a stencil cut according to the computed
speckle and paint spraying or by following the technique described in [26].
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General conclusions and future works

Introducing a dialog between numerical models and in-situ measurement seems to be a
path of the future to precisely predict behaviors of connected physical systems. It is
especially the case in the DDDAS framework where the numerical model is used to control
the physical system in real-time. However, coupling data and models is a challenging task
as the updating of models with indirect corrupted data requires a special computation
care. Indeed, finding useful characterization of model parameters from noisy measurements
leads to inverse problems that often require regularization procedures and costly numerical
techniques. As the result, this thesis proposed innovative computational tools in order to
address real-time data assimilation problems.

Among all the inversion methods, the choice in this thesis was to used Bayesian infer-
ence. This framework has two main advantages. First, the Bayesian formulation of inverse
problem is quite convenient as it leads to an automatic regularized problem. Second, it
is the ideal framework to take into account all the uncertainties surrounding the studied
physical system. Thus, uncertainties can be propagated to the estimation of the model
parameters without assumptions. With this method, the prediction of quantities of inter-
est is performed in an exact manner as random variables. However, the continuous dialog
between model and in-situ measurements require that the Bayesian updating can be done
according to the characteristic time of the physical system. In order to so, the PGD tech-
nique was used to produce a multi-parametric model that can be evaluated in the online
phase with quasi analytical computations. This ROM technique was chosen because it can
be applied to all kinds of parameters, and the online computations are quite inexpensive.
However, at this stage, the Bayesian-PGD can not be envisioned to deal with real-time
sequential data assimilation. Indeed, the exploration of the posterior density which is the
result of Bayesian inference is still very costly using the classical MCMC-based algorithms.
Thus, to address this issue, the Bayesian-PGD framework was enriched with the Trans-
port Map method. This method allows to build a deterministic coupling (map) between a
reference density and the target posterior density. The method is particularly adapted to
sequential inference as the maps are computed by iterative compositions. Hence, this thesis
work highlighted the performance of such an approach to deal with sequential updating of
numerical models and the associated computations difficulties.

Figure 6.14 shows a schematic representation of the computations tasks associated to
the sequential model updating of a numerical model to predict and/or control a physical
system with the approach aforementioned. Those tasks are divided into two categories:
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Figure 6.14: Summary of the computation tasks associated to the DDDAS framework

the offline and online computations. The offline computations are all pre-computations
that can be done without real-time constraints. Conversely, the online computations deal
with the computations that are done in real-time when data are assimilated while the
physical system is evolving. In the offline computations, the first step is to define the
model and the most relevant parameters that will be identified with the data assimilation.
In this work, the choice of relevant parameters was arbitrarily made. In practice, this
choice may be guided by expert knowledge or by a proper sensitivity analysis. Once the
parameters of interest are identified, the PGD model was built with a time, space, and
parameter dependency. The building of PGD reduced order models was addressed in
Chapter 1 where the classical methodology was presented. This methodology was applied
in Chapter 2 in order to model a welding process. It is worth noting that these the tasks of
parameter selection and ROM computation can be coupled with the approach of manifold
learning presented in [52]. In this latter paper, most relevant geometrical parameters of
human livers are computed thanks to a manifold learning technique (the kPCA). Then, the
multi-parametric mechanical response of the livers depending on the identified geometrical
parameters is computed with PGD.

Another task that can be addressed in the offline phase is the optimization of the



127

measurements with respect to the Bayesian identification. This may be very useful when a
large amount of data is available. It is the case when using the Digital Image Correlation.
This method allows to have a large amount of data that can be costly to assimilate.
In Chapter 6, this problematic was addressed by using the sensitivity fields that can be
computed a priori with DIC and PGD models. The measurement errors being known at
the beginning of the DIC computation and constant over the time, this allows to select the
best sensitive degrees of freedom to use in the identification process. In this chapter, it was
shown that using optimally selected measurements improves the accuracy of the Bayesian
inference. Furthermore, it was also shown that the sensitivity of the measures with respect
to the identification of the parameters can be directly improved by the optimization of the
speckle pattern required for DIC measurements. To that end, an optimized functional was
proposed in order to perform the most sensitive and fastest measurements as possible.

Concerning the online phase, the core of the Bayesian inference is to build the like-
lihood function. While in Chapter 1 the classical expression of the likelihood function
was developed, Chapter 2 showed that the use of the PGD allows to have in this case an
explicit formulation of the likelihood function. In this chapter, a formulation of the likeli-
hood function was also developed when stochastic parameters are considered. In this case,
the PGD model is computed with respect of those parameters. Hence, the computation
was performed with uncertainty propagation thanks to Monte-Carlo simulations or in the
one dimensional case analytically. This permitted fast evaluations of the posterior den-
sity in the presence of different sources of uncertainty. In Chapter 4, a particular case of
Bayesian inference was defined in order to couple two different models: the damage PGD
model and a SVD meta-model of crack opening. In this context the likelihood function
is non-Gaussian and computed with uncertainty propagation. Finally, Chapter 5 showed
Bayesian computations with the enrichment by means of a data-based model correction.
In this context, the computation of the likelihood function was performed by considering
a biased Gaussian error that improves the model updating process. Once the likelihood
function is computed, the next step is to sample the posterior density in order to derive
useful characterizations. When the problem of interest involves only one parameter with
no sequential update, the posterior density can be explored on a regular grid (as in Chap-
ter 2). However, when dealing with the identification of many parameters, the integration
with respect to the posterior density become intractable with classical quadrature. That
is why in Chapter 1 the MCMC method was presented as the reference method to sample
the posterior density. Although this method allows to perform Monte-Carlo integration,
it suffers from many drawbacks. Indeed, many parameters have to set a priori and the
convergence can be difficult to estimate. This leads to high computation costs. In order
to address those issues, the promising Transport Map method was introduced in Chapter
3. This method proved to be very efficient and cheap especially owing to its coupling
with the PGD which enables to speed-up the computation of the different optimizations
required to compute the transport maps. This allows to condense the Bayesian inference
solution into a deterministic application (map) that pushes the reference density to the
posterior density. As a result, with this method, uncertainty propagation on quantities
of interest can be easily computed. This was shown in Chapter 3 where the uncertainties
on the model parameters were propagated spatially to a temperature point which is not
reachable by direct measurement and temporally by predicting this temperature for all the



128 GENERAL CONCLUSIONS AND FUTURE WORKS

time steps. In Chapter 4, the uncertainty propagation was performed on the displacement
field in order to compute and predict the crack length in the studied concrete beams.

Finally, the last computation that can be done in the online phase is the control of
the system according to prediction of the quantities of interest aforementioned. This step
requires a specific and has not been addressed in this work.

Overall, using PGD model reduction and Transport Map sampling significantly reduced
the computation cost of the dynamical Bayesian model updating under uncertainties. In
addition to all the advantages of using a PGD model already mentioned, one advantage
of the PGD formulation is that automatic Bayesian procedure can be envisioned. Indeed,
thanks to the modal representation, all the information concerning the model and the
physics is condensed inside modes. Therefore, the Bayesian algorithm only requires entries
on modes, their types (space, time or parameters), the observations and the spatial coordi-
nates concerned by the observation (equivalent to defining an observation operator). Thus,
once the general algorithm is computed, it is very easy to adapt it to each applications.
This was the case in this thesis as the main algorithm was used for each numerical example,
from a linear thermal model to a non-linear damage model. Although the online use of the
PGD model is very convenient, the computation of the PGD model itself can be difficult
due to fact that it is directly computed from a PDE formulation. Thus, commercial codes
are hardly usable to build PGD models in the classical progressive Galerkin approach.
However, some promising developments [52, 152, 144] could be used to build non-intrusive
PGD algorithms and alleviate this difficulty. Another limitation can also be the number
of parameters that can be taken into account as extra coordinates. Here also recent works
[79, 112] could be interesting ideas to use PGD models to identify material property fields.

The presented work has also many other prospects that can be split according to their
estimated complexity:

• The short term prospects deal with some further developments in the studied exam-
ples. In Chapter 4, the prediction of crack length in the concrete beam was identified
thanks to an elastic model of the beam with the inclusion of a linear crack. However,
this is a strong approximation and more complex geometries of the cracks should be
used. An appealing idea would be to use manifold learning on picture cracks and
derive the inherent parameters of the trajectory of the beam in concrete media. The
principle is to follow the method described in [52]. From cracks pictures, the purpose
is to discretize cracks and find the transformation between a reference trajectory and
the other trajectories of the data set. In order to build a large data set, a large num-
ber of experiments has to be available which is possible as this kind of test is quite
common. Then, an automatic procedure has to be elaborated in order to identify the
crack trajectories and the kinematic transformation. This can for example be done
by post-processing the DIC residuals of the experimental tests. Another development
that could be envisioned in the same context is the speckle optimization mentioned
in Chapter 6. Improvements can be done in the formulation of the objective func-
tion and its minimization. Furthermore, an experimental campaign has to be set to
validate the approach.

• The middle term prospects are more focused on the improvement of the sequential
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computation of the transport maps. Indeed, in the presented work transport maps are
computed by iterating on the order until the variance diagnostic is satisfied. However,
this approach can lead to the computation of full high-order maps which can be very
costly. Associated to the previous one, another issue is the computation time scala-
bility of the presented procedure with respect to the number of parameters. Indeed,
the computation of full order maps is intractable when the parametric dimension
increases. A way to circumvent this issue would be to use a composition of low-order
maps in order to recover the possible sparse structure of target densities. One way
to do that is to follow the ideas presented in [44]. In this paper, the composition
of maps is performed by finding a sequence of maps between the reference density
and target densities that smoothly moves from the reference to the target density.
The purpose is that the maps between two close densities can be represented with
low-order polynomials. This property can also be observed in the numerical examples
treated in this thesis. In order to build this sequence of intermediate target densities,
data can be assimilated sequentially even when they are available simultaneously. In
this case an approach such as the one presented in Chapter 6, (where the influence of
the measurements on the Bayesian solution is controlled with selection of the most
relevant data) could be followed. This can be done when many measurements are
obtained simultaneously. Another way to construct the sequence of intermediate
densities is to build the posterior densities with increasing accuracy of the forward
model. This can be well suited with the use of PGD models as the accuracy of the
forward model can simply be controlled with the number of modes used. Otherwise,
an interesting recent method is [14] where the transport maps are computed with
the sequential computation of "lazy maps". Another way to build low-order maps
consists of studying the link between the sparse structure of the forward PGD model
and the sparse structure of the corresponding posterior densities.

• In the longer term, the approach developed in this thesis could be adapted and
improved to deal with real-life engineering applications in the context of DDDAS.
Indeed, the approach presented here is restricted to the prediction of quantities of
interest. Thus, a future work will be to introduce a control loop between the quan-
tities of interest and some entry parameters of the studied framework. Here again,
the PGD model reduction seems to be well suited due to the diversity of parameter
types that can be integrated in the PGD formulation [30, 50]. Furthermore, as in the
framework presented in this thesis the quantities of interest are predicted as random
variables, it will be interesting to use stochastic control [13] coupled with transport
maps and PGD models.
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Appendix A
Computation of the PGD model for the
welding example

In this appendix, details on the PGD solution are given and illustrated on the welding
example of Chapter 2.

A.1 Problem

The same problem as in Section 2.3 is considered with the convection-diffusion equation:

@T

@t
+ v.gradT ��T = s (A.1)

with:

s(x, y;�) =
u

2⇡�2
exp

 
�
(x� xc)

2
+ (y � yc)

2

2�2

!
(A.2)

The purpose is to build a multiparametric reduced order model with separation of
space, time and parameter �.

A.2 Progressive Galerkin PGD

As presented in Section 2.2, the PGD modes are built recursively thanks to the Galerkin
orthogonality. The spaces of variation of each parameter are defined as follows: I = [0, Tf ]

is the time interval and ⌃ = [�min,�max] is the space of variation of �. The admissible field
spaces are defined:

T = {T 2 H
1
(⌦ =]0; 5[⇥]0; 1[), T = 0 on �D} (A.3)

I = {T,

Z

I
kT (x, y, .;�)k

2
H1(⌦) < 1, 8(x, y,�) 2 ⌦⇥ ⌃} (A.4)

E = {T,

Z

⌃
kT (x, y, t; .)k

2
H1(⌦) < 1, 8(x, y, t) 2 ⌦⇥ I} (A.5)

The weak formulation of (A.1) on each space reads:
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Find T 2 T ⌦ I ⌦ E , such that 8T
⇤
2 T ⌦ I ⌦ E :

a(T, T
⇤
) = l(T

⇤
) (A.6)

with:
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+ gradT.gradT ⇤
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l(T
⇤
) =

Z

I⇥⌃⇥⌦
s.T

⇤
dtd�d⌦ (A.8)

The solution is searched in the separated form:

Tm(x, y, t;�) =

mX

n=1

⇤n(x, y)�n(t)↵n(�) (A.9)

The m � 1 first modes are supposed being known, the mode m is searched. Then the
solution reads:

{Tm(x, y, t;�)} =

m�1X

n=1

�n(t)↵n(�)⇤n(x, y) + �(t)↵(�)⇤(x, y) (A.10)

The unknowns are the functions: ⇤, � et ↵.
The test field T

⇤
2 T ⌦ I ⌦ E is taken in the separated form:

T
⇤
= �

⇤
↵⇤+ �↵

⇤
⇤+ �↵⇤

⇤ (A.11)

Using this form, the variational formulation (A.6) leads to coupled problems with the
applications Sm, Tm, Pm such that:

⇤ = Sm(�,↵) (A.12)
� = Tm(↵,⇤) (A.13)
↵ = Pm(�,⇤) (A.14)

A.2.1 Spatial application Sm

The weak formulation for the space problem reads:
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with:
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The use of a P1 discretization on all fields reads:

⇤ = [Nx]{⇤} (A.17)
� = [Nt]{�} (A.18)
↵ = [N�]{�} (A.19)
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where [N•] represents the shape functions matrix and {•} the nodal values of the fields.
Then:
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}
T
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where the following matrices are defined:
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[CH ] = .[Mx] + [Hx] (A.24)

Likewise:
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The right-hand side of the variational formulation can be written as:
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⇤
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⇤
}
T
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However, the integrand is not represented in a separated form. In order to do so, an
asymptotic expansion at the center �0 of the P1 element at order r is used.

The volumic load s is approximated as:
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which leads to:
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In practice r = 1 is sufficient to have a good approximation with the P1 discretization
of the interval ⌃.

The right-hand side reads now:
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Finally, the application Sm leads to a linear system at each iteration of the fixed-point
algorithm with the unknown {⇤}.

A.2.2 Time application Tm

For the time application, a Runge-Kutta algorithm with automatic adjustment of the time
step is used to solve the encountered ordinary differential equation on the unknown �:

a.�̇(t) + b.�(t) = c�

m�1X

n

an.�̇n(t) + bn.�n(t) (A.35)

with:
a =

Z

⌃⇥⌦
↵
2
⇤
2
d�d⌦ =

�
{↵}

T
[M�]{↵}

� �
{⇤}

T
[M ]{⇤}

�
(A.36)

b =

Z

⌃⇥⌦
↵
2
�
v.grad⇤⇤+ grad⇤grad⇤

�
d�d⌦ =

�
{↵}

T
[M�]{↵}

� �
{⇤}

T
[CH ]{⇤}

�
(A.37)

c =

Z

⌃⇥⌦
↵(�)s(x, y;�).⇤(x, y)dtd�d⌦ =

NX

k=1

rX

i=0

Z �k+1

�k

(� � �0k)
i

i!
↵(�)d�{⇤}

T
{Sik}

(A.38)

an =

Z

⌃⇥⌦
↵↵n⇤⇤nd�d⌦ =

�
{↵}

T
[M�]{↵n}

� �
{⇤}

T
[M ]{⇤n}

�
(A.39)

bn =

Z

⌃⇥⌦
↵↵n

�
v.grad⇤⇤n + grad⇤grad⇤n

�
d�d⌦ =

�
{↵}

T
[M�]{↵n}

� �
{⇤}

T
[CH ]{⇤n}

�

(A.40)

A.2.3 Parametric application Pm

Here, the same approach as the one employed in the spatial application is used. The weak
form for the parametric problem reads:
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A P1 discretization leads to:
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with:
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The contribution of the previous modes reads:
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Finally the right-hand side reads:
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At each iteration of the fixed-point algorithm, a linear system is solved with the un-
known {↵}.
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Titre : Stratégies numériques innovantes pour l’assimilation de données par inférence bayésienne

Mots clefs : simulation numérique, réduction de modèle, recalage de modèle, inférence bayésienne, quantification d’incertitudes, temps

réel

Résumé : Ce travail se place dans le cadre de l’assimilation de données en mécanique des structures. Il vise à développer de nouveaux outils

numériques pour l’assimilation de données robuste et en temps réel afin d’être utilisés dans diverses activités d’ingénierie. Une activité cible

est la mise en œuvre d’applications DDDAS (Dynamic Data Driven Application System) dans lesquelles un échange continu entre les outils

de simulation et les mesures expérimentales est requis dans le but de créer une boucle de contrôle rétroactive sur des systèmes mécaniques

connectés. Dans ce contexte, et afin de prendre en compte les différentes sources d’incertitude (erreur de modélisation, bruit de mesure,...),

une méthodologie stochastique puissante est considérée dans le cadre général de l’inférence bayésienne. Cependant, un inconvénient bien

connu d’une telle approche est la complexité informatique qu’elle engendre et qui rend les simulations en temps réel et l’assimilation séquen-

tielle des données difficiles. Le travail de thèse propose donc de coupler l’inférence bayésienne avec des techniques numériques attrayantes

et avancées afin d’envisager l’assimilation stochastique de données de façon séquentielle et en temps réel. Premièrement, la réduction de

modèle PGD est introduite pour faciliter le calcul de la fonction de vraisemblance, la propagation des incertitudes dans des modèles com-

plexes et l’échantillonnage de la densité a posteriori. Ensuite, l’échantillonnage par la méthode des Transport Maps est étudiée comme un

substitut aux procédures classiques MCMC pour l’échantillonnage de la densité a posteriori. Il est démontré que cette technique conduit

à des calculs déterministes, avec des critères de convergence clairs, et qu’elle est particulièrement adaptée à l’assimilation séquentielle de

données. Là encore, l’utilisation de la réduction de modèle PGD facilite grandement le processus en utilisant les informations des gradients et

hessiens d’une manière simple. Enfin, et pour accroître la robustesse, la correction à la volée du biais du modèle est abordée à l’aide de termes

d’enrichissement fondés sur les données. Aussi, la sélection des données les plus pertinentes pour l’objectif d’assimilation est abordée. Cette

méthodologie globale est appliquée et illustrée sur plusieurs applications académiques et réelles, comprenant par exemple le recalage en

temps réel de modèles pour le contrôle des procédés de soudage, ou l’étude d’essais mécaniques impliquant des structures endommageables

en béton instrumentées par mesures de champs.

Title: Development of innovative numerical strategies for Bayesian data assimilation

Keywords: numerical simulation, model reduction, Bayesian inference, uncertainty quantification, real-time simulation

Abstract: The work is placed into the framework of data assimilation in structural mechanics. It aims at developing new numerical tools

in order to permit real-time and robust data assimilation that could then be used in various engineering activities. A specific targeted

activity is the implementation of DDDAS (Dynamic Data Driven Application System) applications in which a continuous exchange between

simulation tools and experimental measurements is envisioned to the end of creating retroactive control loops on mechanical systems. In

this context, and in order to take various uncertainty sources (modeling error, measurement noise,..) into account, a powerful and general

stochastic methodology with Bayesian inference is considered. However, a well-known drawback of such an approach is the computational

complexity which makes real-time simulations and sequential assimilation some difficult tasks. The PhD work thus proposes to couple

Bayesian inference with attractive and advanced numerical techniques so that real-time and sequential assimilation can be envisioned.

First, PGD model reduction is introduced to facilitate the computation of the likelihood function, uncertainty propagation through complex

models, and the sampling of the posterior density. Then, Transport Map sampling is investigated as a substitute to classical MCMC procedures

for posterior sampling. It is shown that this technique leads to deterministic computations, with clear convergence criteria, and that it is

particularly suited to sequential data assimilation. Here again, the use of PGD model reduction highly facilitates the process by recovering

gradient and Hessian information in a straightforward manner. Eventually, and to increase robustness, on-the-fly correction of model bias

is addressed using data-based enrichment terms. The overall cost-effective methodology is applied and illustrated on several academic and

real-life test cases, including for instance the real-time updating of models for the control of welding processes, or that of mechanical tests

involving damageable concrete structures with full-field measurements.
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