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Co-Directrice de thèse : Mme Ayse AKBALIK, Université de Lorraine
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General Introduction

Since globalization of economies, new technologies and rapid market development lead to in-
creased competition between industries, companies �nd themselves under pressure to establish
strategies for continuously improving their productivity and cost management by responding to
ever faster changes in demand. Employing �exible procurement contracts emerges as a recent
powerful strategy to attain these goals. Since 1990, there has been a rapid growth in the use of
capacity reservation contracts. As a consequence, the supplier allows the buyer, at the contract
time, to reserve a certain capacity in advance. At the time of delivery, the buyer decides the
number of products to purchase up to the number reserved for an advantageous cost. However, if
he requires an amount exceeding the reserved capacity to meet its additional demand, he can get
it at a higher cost. Thus, this guarantees �exibility and e�cient risk sharing between the supply
chain members, in di�erent industries. There are various types of contractual agreements with ca-
pacity reservation in the real world: buyback, deductible reservation, take-or-pay, pay-to-delay,
quantity �exibility, backup agreement, minimum commitment, and revenue-sharing contracts.
In this thesis, we address the capacity reservation contracts, particularly, the buyback contract
under several forms and return policies, coupled with batch ordering and inventory management.

The inventory management is a quite old and important area that includes optimal inventory
control strategies practiced by several industrial sectors to enhance the product availability and
delivery speed, as well as to lead to signi�cant cost reductions, which are crucial elements for
the competitiveness. Since decades, the industries have sought to plan either simultaneously or
independently the procurement, production, transportation activities over a planning horizon by
balancing the costs arising from the storage of products with those of these di�erent activities.
According to the US Census Bureau (2013), the inventory value represents huge amounts of
money, of about $ 1.6 trillion in the US. Therefore, managing inventories o�ers an enormous
potential to individual companies and to the entire economy. The aim of lot sizing problem is to
avoid the excessive inventory build-up in companies and to consist in determining the optimal
quantities to order from the supplier (and/or to produce, and/or to transport to the customer)
and to store, per product type and per period in order to satisfy the demand with a lowest cost.
In our study, we are interested in optimizing the deterministic single-item procurement decision
of a retailer over a �nite horizon. Traditionally, the ordering policies in inventory management
mainly focus on a continuous order size. However, in practical operations, purchased products
are delivered in batches, pallets, containers, etc., to the retailer. Another feature of our lot
sizing problem is that we consider more general procurement cost patterns: the Full-Truck-Load
(FTL) in which the products are replenished in full and fractional batches and the Only-Full-
Batch (OFB) in which the supplier only delivers in full batches.

In this thesis, there are four chapters. In Chapter 1, we present the literature of procurement
contracts and the lot sizing problems with a detailed state of the art by positioning our research
within the previous closest studies. In Chapters 2 and 3, di�erent forms of buyback contract are
studied with additional concepts.
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General Introduction

In Chapter 2, we study the lot sizing problem with batch replenishment integrating a periodic
buyback contract in which all the unused units are returned to the supplier at the end of every w
periods with a unit buyback revenue. The parameter w is �xed in this contract (w, 2w, . . . , Nw
are the cyclic return periods with N being the number of return periods). We consider two
return policies: w = 1 by assuming time-dependent batch sizes, and w > 1 by assuming a
constant batch size over the planning horizon. This problem is investigated with FTL and OFB
procurement costs in addition to the classical lot sizing costs. Besides, the concept of lost sales
can be allowed in some cases with a cost incurred for each unit of demand not satis�ed. The
general aim is to determine the procurement, storage and buyback decisions for each extension
of this problem. If the lost sales are authorized, we add the lost sales decision. We propose a
mixed integer linear program (MILP) for the general case and polynomial time algorithms for
the eight extensions considered in this chapter, and we compare the performance of the following
resolution methods: MILP and dynamic programming algorithms.

Chapter 3 deals with the procurement planning problem in which the quantity to purchase by
a speci�c form of buyback contract is restricted to a multiple of a constant batch size (OFB). In
this chapter, we study three forms of the buyback contract. The �rst form is the one considered
in Chapter 2 but with more general return policies that take into account di�erent periodicity
of return periods determined by the two parties (w1, w2, . . . , wN are acyclic return periods with
N being the number of returns) and a maximum return percentage �xed by the supplier. The
second form only allows returns of units in the �rst j periods. In the third form, the return
periods have to coincide with the ordering periods. For each form, we associate a maximum
return percentage ρ. For the case ρ = 1, all the unsold units can be returned. For the case
ρ < 1, only a limited number of unsold units can be returned to the supplier. The values of
wi, ∀i = 1, . . . , N (form no1), ρ (all the forms) and j (form no2) are contract parameters. All
these lot sizing problems are studied with the disposal concept for two reasons: the �rst one is
that the retailer can have the case ρ < 1, so he gets rid of the units which cannot be returned,
and the second one is that he can have high inventory costs, so he disposes of the units that
are not pro�table to store and return. Three MILP are proposed for each buyback form. For
the three forms with ρ = 1, and the �rst one with ρ < 1, four polynomial time algorithms
are developed and are compared with MILP in terms of their execution time. For the second
and third forms with ρ < 1, we can apply the algorithm proposed for the resource constrained
shortest path problem with double sided inequality constraints (Beasley and Christo�des, 1989).

In Chapter 4, we model the other types of the capacity reservation contract integrated into the
lot sizing problem with batch ordering by proposing pseudo-polynomial time algorithms for some
problems and leaving the other ones open. We �nalize this manuscript with a conclusion and some
perspectives in which we give a summary table of all the studied problems under di�erent forms
of buyback contract with the hypothesis assumed, complexity results and resolution methods,
and, we discuss some possible directions for future research.
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Chapter 1

Literature review and problem
positioning

The problem studied in this thesis concerns the replenishment planning with batch ordering under
a capacity reservation contract in a system with one retailer and one supplier. Indeed, there
are several types of capacity reservation contract. We study one of them: the buyback contract,
integrated into the single-item lot sizing problem under various hypotheses : lost sales option, pos-
sibility of disposal, variable or �xed return periods, etc. Therefore, we can position our research
within two existing axes in the literature: supply chain contracts and the lot sizing problem (LSP).

In this chapter, we begin by giving general concepts on di�erent types of procurement contracts,
followed by a state of the art of the capacity reservation contract, detailing the buyback contract.
Making an exhaustive review of all the research work on the lot sizing problem is far too hard.
We give an overview of the LSP to show the huge amount of research work done on the basic
lot sizing problem as well as its multiple extensions. After that, we focus on the relevant studies
related to the di�erent concepts considered in our problem: LSP with stepwise cost function, LSP
with capacity reservation contract, LSP with lost sales and LSP with disposal concept. Finally,
we compare our work with the closest studies in the literature to better state our contributions.
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1.1 Introduction

A recent trend for many production and distribution systems has been the increase of purchas-
ing volume as a percentage of the company's total sales, which generates a lot of interest in
its associated decisions. The purchasing problem is not new. In fact, the National Bureau of
Standards in USA recorded the �rst work addressing this issue dating back to the 1950s before
supply chain management became a buzzword and when applications of linear programming were
in their beginnings (Stanley et al., 1954). In this context, the buyer-seller relationship receives
more importance in order to make products available by following six major purchasing decision
processes: make or buy, supplier selection without order quantity allocation, contract negotia-
tion, design collaboration, procurement, and sourcing analysis. In this study, we focus on the
procurement process of raw materials and products to be used in a manufacturing environment.
Procurement function ensures the purchase of goods, services or works, which are necessary for
the activity of the company, from various sources. The role of this function is to optimize the
following three components: customer satisfaction (demand, quality, delivery lead time, etc.),
the level of inventory and logistics costs. This process requires on the one hand a procurement
contract between at least two supply chain members, and on the other hand a replenishment
planning model.

We are interested in solving the procurement process at the retailer level considering a special
type of capacity reservation contract signed with a supplier to provide quantities in batches. This
subject is particularly important to the retail company, as the idea of retail is often associated
with the purchase of products which may be transported in containers from suppliers and/or
typically arrive at retailing stores in casepacks. The goal of our study is to �nd optimal planning
strategies for this procurement problem under various assumptions by asking various questions.
The �rst one is: What is the type of capacity reservation contract chosen? This question prompted
us to give a brief overview of supply chain contracts in Section 1.2, and a detailed literature
of the capacity reservation contract and the buyback contract in Section 1.3 and Section 1.4,
respectively. The questions related to the procurement planning are: Under which assumptions
does the planning problem become harder to solve? If a problem is solved in polynomial time,
what is the in�uence of the di�erent parameters on its complexity? Which methods of resolution
can be proposed? What are the most e�cient algorithms? These questions allowed us to present
in Section 1.5 a general literature review related to the lot sizing problem and in Section 1.6
relevant studies on LSP with di�erent extensions considered in this thesis (piecewise cost function,
capacity reservation contract, lost sales and disposal concept). The last question is: What is the
di�erence between our work and the other studies from the literature? This issue incited us to
highlight our contributions in Section 1.7.

1.2 Procurement contracts

Retailer-supplier collaboration can be de�ned as a form of cooperation between two non-competing
companies. This relationship is nevertheless tense, because each member of the supply chain
seeks to optimize its own objective, which can negatively a�ect the chain and can result in poor
performances. However, to obtain a global performance, such a collaboration requires behav-
ioral changes in order to ensure the transparency of relationships, the breakdown of the barriers
between company functions, the implementation of methods of management or of control and
anticipation of con�icts. The procurement contract plays this role of an anticipatory regulator of
the retailer-supplier collaboration in a spirit of sharing risks, resources and gains, and increasing
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the competitiveness of the partners. In this section, we de�ne the procurement contract, present
the contracting motivations and �nally give a quick overview of the literature on supply chain
contracts.

1.2.1 De�nition of procurement contracts

A contract aims at protecting both contracting parties against any abusive behavior by estab-
lishing the obligations of charge and bene�t for each one. Thus, a customer engages on demand
plans, and cannot derogate from it without paying an additional price to the supplier for each
extra unit purchased. Conversely, a supplier may apply rate variations only if these ones are
speci�ed in the contract, and agrees on delivery times (Amrani, 2009).

An e�ective procurement strategy must reduce both the risk of inventory by which we refer
to stock shortage or excess, and the risk of price which can be uncertain. The traditional
procurement strategy was to use only the long-term contracts which eliminates price risk. In
these contracts, the manufacturer and the supplier specify a �xed supply quantity delivered at
some time in the future, and, agree on the price. Therefore, this strategy does not present a price
risk while it takes a huge risk of inventory because of the impossibility of adjusting the order
quantities. Then, the manufacturer takes all the risk. The most recent strategy used in practice
to reduce inventory risk is through other types of contracts, for example option contracts or
quantity �exibility contracts, which provide the manufacturer with the possibility to adjust the
quantities ordered according to the realized demand. Obviously, the unit purchase price paid by
the manufacturer in these contracts is typically higher than the price of a long-term contract.
The supplier and the manufacturer share the risks.

1.2.2 Contracting motivations

There are three large families of reasons that lead partners to engage in a collaborative relation-
ship under contract that we call contracting motivations (Amrani, 2009):

• Uncertainty reduction: The negotiation process initiated during the contractualization aims
to conclude an agreement where each of the actors will �nd a consensual solution to reduce
the potential risks: the supplier has a more precise knowledge of the volume of activity
associated with his customers and can better adjust its production capacity to exactly their
needs; the customer reduces the risk of exposure to an unstable market by negotiating a
capacity adaptation with the supplier, and avoids the risk of late delivery.

• Cost control: Often the purchase commitment over a given horizon provides an advantage
to both the customer and the supplier. The customer bene�ts from discounts o�ered for the
purchase of large volumes. He also bene�ts from the reduction of the renegotiation costs
inherent to each punctual purchase and thus ensures a certain stability of purchasing costs
over the duration of the contract. The supplier, on his side, has a purchase commitment on
a horizon guaranteeing a stable revenue by ensuring the sale of a large volume of products.

• Allocation of responsibility: In a partnership where each party is held to its own obligations,
it is important to divide the tasks to be shared and allocate appropriately the responsibility
for each party. Each type of responsibility is assigned to the party being the best placed to
manage it. The con�icts and litigation situations in the event of non-compliance are thus
addressed by pre-determining penalties and �nancial compensations.
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These motivations shed the light on the success of the partnership relations and justify
the supply commitments within a contract. The interview of the head of the Rhodia Group's
Purchasing Department, in charge of a portfolio of some thirty suppliers in the �eld of automation
instrumentation and electrical equipment, reveals that the use of procurement procedures under
a framework of contract simpli�es the work�ow. The renegotiations of cost on each order are
avoided and this simpli�cation frees up time for buyers to work on speci�c high value-added
actions. On the other hand, considerable economies are realized on the purchase price of grouped
volumes. For pressure sensors, for example, a negotiation allows a drop of almost 20% compared
to non-contract prices (Moussay, 2002).

1.2.3 Research papers on procurement contracts

The academic literature on supply chain contracts is recent and it can be classi�ed into two cat-
egories. The �rst determines the procurement policies and parameters of a particular contract.
The objective of this �rst category is to optimize the buyer's procurement strategy without ana-
lyzing the impact of the decision on the seller. Examples that fall within this class include Brown
and Lee (1997), Anupindi and Bassok (1999), Kleinknecht and Akella (2002), and Yazlali and
Erhun (2006). The second category focuses on adjustment of the terms of the contract in order to
improve the supply chain coordination and the system-wide e�ciency. The channel coordination
may be achieved by modifying contractually the structure of the relationships between the supply
chain members. Unlike the �rst category, the objective of this second category is to characterize
contracts in such a way as to optimize the pro�t of each party by leading to an optimized supply
chain. For instance, see Pasternack (1985), Tsay (1999), and Cachon and Lariviere (2005).

Various forms of contracts between customers and suppliers have been developed to cope
with supply chain risks. The best known contracts include long-term contracts (Goldberg and
Erickson, 1987), quantity �exibility contracts (Tsay and Lovejoy, 1999), sales rebate contracts
(Krishnan et al., 2004), quantity discount contracts (Corbett and Croote, 2000), option contracts
(Burnetas and Ritchken, 2002), revenue sharing contracts (Cachon and Lariviere, 2005) and
capacity reservation contracts (Serel et al., 2001). For an excellent review on supply chain
coordination with contracts see Cachon (2002) and Lariviere (1999) considering several contract
types in the supply chain by identifying their bene�ts and drawbacks, and focusing on single
period problems due to their variety and complexity.

1.3 Capacity reservation contract

In this thesis, we focus on a capacity reservation contract, between two members of the sup-
ply chain, which provides �exibility for a buyer during the replenishment season in order to
get additional products from his seller in response to changing market needs. Such contracts
are frequently used in toy, apparel, electric power, and high-tech industries (Kleindorfer and
Wu, 2003). These industries are characterized by increased product variety which causes short
product lifecycles, forcing companies to shorten lead times in procurement, manufacturing and
distribution. Besides, they are confronted to highly unpredictable demands especially in high-
tech industries such as semiconductors, telecommunications, electronics, and pharmaceuticals.
Jin and Wu (2001) reported that the demand volatility can reach 80% of the average sales dur-
ing a particular quarter in the case of a telecommunications component manufacturer. Hence,
these industries seek to control the risks associated with their characteristics by securing future
demands through capacity reservation contracts. For example, Apple's major chip suppliers had
reserved a great capacity for the second and third quarters of 2016 for iPhone 7 production
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(Appleinsider, 2017). In the bio-tech sector, many pharmaceutical and biotechnology customers
have begun to work with their drug manufacturers to guarantee the needed capacity (Wu et
al., 2005). In the following, the capacity reservation contract will be de�ned by presenting its
bene�ts for the buyer and the supplier. Then, we will provide a considerable literature on this
form of supply chain contracting.

1.3.1 Description and bene�ts of the capacity reservation contract

In the general form of the capacity reservation contract, a member X (buyer) of the supply chain
�rst pays a reservation fee to have the right to receive the delivery of the goods from the member
Y (supplier) at a speci�ed date and at a predetermined procurement cost. He receives from the
member Y his ordered quantity, in period t, at a price lower than the spot market price, up to
a certain capacity. When the ordered quantity exceeds the reserved capacity, the member X has
to replenish the excess amount, but, at a higher cost. Suppose that the �xed cost of the order
in period t is ft, the capacity is Rt, the cost to pay for the quantity being less than Rt is at, the
cost to pay for the quantity being greater than Rt is bt and the quantity to order is xt. So, to
ful�ll all the demand of member X, the ordering cost to pay by the member X is the following one:

ft + atxt if 0 < xt ≤ Rt
ft + atRt + bt(xt −Rt) if Rt ≤ xt

Both parties have bene�ts. This type of contract provides member X a �exibility to manage
uncertain demand and improve capacity planning in the long run, and deliveries without inter-
ruption with very advantageous prices for the desired quantity of the reserved capacity (Serel et
al., 2001). In addition, it contributes to mitigate the bullwhip e�ect of the supply chain (Lee et
al., 1997) which can be explained as follows: the �nal customer places an order, thereafter, the
point of sale orders a larger quantity than the �nal customer demand, to have security stock or
to o�er discounts on the purchase volume, this creates an increase of quantity to produce at the
manufacturer, thus exaggerated �uctuations of orders. Figure 1.1 illustrates this phenomenon in
which the orders in the downstream of the supply chain develop to be higher in the upstream
of the supply chain. Thus, a small �uctuation of consumer demand can cause greater variations
throughout the supply chain.

Figure 1.1: Bullwhip e�ect

For example, the toy maker Mattel reports a $500 million sales shortfall in the last weeks of
1998, because it had expected to ship a lot of products to its retailer Toys'R'Us after the 1998
Thanksgiving weekend, but this latter stopped ordering from Mattel because it feared excess in-
ventory based on consumer demands (Kravetz, 1999). The member Y derives bene�ts from this
contractual agreement by establishing a long-term business relationship, reducing transaction
costs and o�ering several pro�table prices for the quantities exceeding the capacity.
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According to Park and Kim (2014), the capacity reservation contracts can be classi�ed into
two groups: on the one hand, the general contracts which are frequently used in retail and
manufacturing industries, and on the other hand, the specialized contracts, which are employed in
capital intensive industries. The general contracts include quantity �exibility, backup agreement,
buyback, minimum commitment, and revenue-sharing contracts. And the specialized contracts
include take-or-pay, pay-to-delay, and deductible reservation contracts. All these contracts will
be explained in details in the next chapters.

1.3.2 Research papers on capacity reservation contracts

There is a rich body of literature dealing with di�erent procurement problems under capacity
reservation contracts. First, there are several research papers which focus on deriving the optimal
contract parameters in order to minimize the total supply chain cost. Silver and Jain (1994) and
later Jain and Sliver (1995) study the problem in which the buyer pays a capacity reservation
cost to the supplier by considering uncertainties in the requirements and supplier capacities.
They present conceptual approaches in order to determine the capacities to reserve, period by
period, and the periodic replenishment quantities. Costa and Silver (1996) extend these two
above mentioned papers to the case where the demand and the supplier capacity are discrete
random variables with known probability distributions. In the semiconductor industry, Brown
and Lee (1997) study the pay-to-delay capacity reservation (the buyer purchases a minimum
quantity at a given price and pays a fee to reserve additional units up to a desired level) with
known demand and make the reservation decision for wafer capacity. Kaiser and Tumma (2004)
evaluate the take-or-pay contract (the buyer does not pay the reservation fee but he is penalized if
he buys a smaller quantity than the reserved capacity) in chemical manufacturing. A synthesis of
earlier literature to explain the structure of contracting according to capacity options in capital-
intensive industries like chemicals and steel is provided by Kleindorfer and Wu (2003). Wu
et al. (2005) claim that with the capacity reservation contracts, the electric power generation
company, Gencos, and the distribution company, Discos, will share the risks and also the bene�ts
by appropriately choosing the good contract parameters.

Second, there are various works addressing the design of capacity reservation contracts to
achieve channel coordination. Eppen and Iyer (1997) analyze the backup agreements (the buyer
commits to purchase a number of units, and the seller agrees to reserve a certain percentage
of these units and delivers the remaining) for fashion merchandise between a catalog company
(Catco) and manufacturers (Anne Klein, Finity, DKNY, and Liz Claiborne) by proposing a
stochastic dynamic programming model. They show that the use of these agreements can lead
to pro�t increase for both parties. Tsay and Lovejoy (1999) model the performance of quantity
�exibility contract in supply chains, and show that various contract settings could coordinate
the channel when the whole-sale price is adjusted according to �exibility percentages with dif-
ferent pro�t splits. In the context of high-tech manufacturing, Erkoc and Wu (2005) propose
two channel coordination contracts with capacity reservation in a single-period setting: partial
payment deduction (a portion of the reservation fee is deductible from the �nal order payment
when the buyer uses the reserved capacity) and reservation with cost sharing (the buyer pays
for a part of the capacity ordering cost associated with his reservation and he either receives a
refund, or makes additional payment for the capacity utilized according to demand realization).
In a similar model setting, Jin and Wu (2007) compare the deductible reservation contract with
another capacity reservation contract called take-or-pay to reach channel coordination.

Third, the research on production planning optimization with capacity reservation arised in
recent years. Serel et al. (2001) investigate the multi-period sourcing decisions with a stationary
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demand of a company in the presence of a capacity reservation contract that this company signs
with its supplier in addition to the spot market alternative. They propose analytic models to
study the buyer-supplier relations from the points of view of both parties. Serel (2007) extends
the work of Serel et al. (2001) to the case of uncertainties about the quantity of an input item
available in the spot market and demand. The author examines the impact of changes in various
model parameters on optimal capacity reservation and price decisions made by both buyer and
supplier. Inderfurth and Kelle (2013) consider spot price uncertainty without capacity restriction
instead of random capacity of spot market at a given price considered by Serel (2007). They
develop a stochastic dynamic programming approach for analyzing and solving the structure of
the optimal combined purchasing policy. Park and Kim (2014) propose a linear programming
model for a capacity reservation contract with multi-period and single/multi-supplier settings.
The authors suggest a rolling-horizon implementation strategy in order to handle the real life
contracts. These papers mainly assume a linear reserved capacity cost. Very limited literature
focuses on the production planning problem with nonlinear capacity costs; we cite for example the
work of Huang et al. (2018). In these research papers which address the multi-period production
planning problem, the authors characterize the optimal production strategies for a given capacity
reservation level, and then, determine the buyer's optimal reserved capacity. In this work, we
study a lot-sizing problem with a capacity reservation contract. After the explanation of the
lot-sizing problem in Section 1.5, we will give the related references explored in the literature.

1.4 Buyback contract

This work is concerned with a special type of capacity reservation contract: buyback contract
in which the buyer has the possibility to return a certain percentage of the unused items to the
supplier for a revenue that is less than or equal to the procurement cost. In such a contract, the
buyer procures Q units for a fee p, and receives a revenue, pb, for each unit not utilized. This is
analogous to a capacity reservation contract with a reservation and procurement of Q units at a
cost p− pb, and a procurement of Q−N units of excess quantity for a fee, pb (N is the unused
capacity). In the following section, we will present some applications of the buyback contracts
and relevant research from the literature.

1.4.1 Buyback contract applications

The buyback contract arises in many industrial settings: any product with a limited life time due
to physical decay (dairy products, baked goods, pharmaceuticals, cosmetics), products with a risk
of obsolescence (fashion apparel, computer hardware and software, greeting cards, magazines,
newspapers), and products with high carrying costs or products with rapidly saturated demands
(books and recorded music). The form of buyback contract varies in and across industries
(Pasternack, 1985; Hou et al., 2010). The following are some real life examples of buyback
contracts, found in the literature:

• IBM implements the buyback contract to help distributors better manage their personal
computer inventories (Shi and Xiao, 2008).

• McKesson, a major distributor of health and beauty products, o�ers retailers a return
program trading o� more generous return policies at higher purchase prices (Padmanabhan
and Png, 1995).
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• Wahmpreneur Books which sells books to retailers and wholesalers which may return them
for full credit within a 30 day timeline (Bose and Anand, 2007).

• The booksellers return between 30 and 35% of new hardcover books to the publisher (Ca-
chon and Terwiesch, 2006). This form of buyback contract comes with partial return.

• In book distribution, Prentice Hall gives retailers a refund that can be applied to subsequent
purchases (Padmanabhan and Png, 1997).

• Kids Wholesale Wearhouse sells children's clothes to retail outlets and allows for returns
with a refund which is worth 25% of restocking fee (Bose and Anand, 2007). This form
presents a partial refund.

• Procter & Gamble pays back its retailers the unsold inventory value of the product "Bain-
de-soleil" at the end of summer (Padmanabhan and Png, 1997).

• Big State, an independent distributor of recorded music, allows retailers to return up to
15% of the quantity purchased within 40 days following the purchase month, thereafter,
no returns are accepted (Padmanabhan and Png, 1995).

1.4.2 Description of the buyback contract

A buyback contract involves three parameters (p, pb, ρ), with p being the procurement cost per
unit, pb being a pay back revenue (0 < pb ≤ p), and ρ being the maximum return percentage
(0 < ρ ≤ 1). Under such a mechanism, the supplier sells x units to a buyer at a cost p per
unit and allows the customer to return a maximum of ρx at the end of the selling season with
a revenue pb per unit. The manufacturer encourages retailers to order more to satisfy uncertain
demand. If pb = p, the contract is said to be full refund, otherwise it is called partial refund.
If ρ = 1, the retailer can return all the unsold units so the contract is said to be full return.
Otherwise (ρ < 1), the retailer can only return a limited number of unsold units to the supplier,
so the contract is said to be partial return.

1.4.3 Literature review on the buyback contract

In the literature, the buyback contract is mostly used in the context of single period planning.
According to Hou et al. (2010), there are three factors that lead to use this type of contract:
properties of the product (perishability, single or multi-item patterns, risk attitude of the supply
chain members, etc.), demand pattern (uncertainty, price dependence, etc.), and supply chain
structure (single or multi-level, type of channel, etc.).
The representative articles of the �rst factor are numerous. Pasternack (1985) is the seminal work
regarding buyback contracts for a coordination perspective between a manufacturer and retailers.
The author considers a setting in which a manufacturer produces a perishable commodity in a
single period. He shows that the supply chain can be coordinated either by partial returns
with full buyback revenue or by full returns with partial buyback revenue. For multi-item
buyback policy, we �nd the work of Brown et al. (2008) in which the distributor can return any
combination of the products up to a certain proportion of the total procurement of all products.
The authors analyze the distributor's optimal pro�t, and compare it to the case of a single-item
returns policy. Choi et al. (2008) address the issues of channel coordination and risk aversion
of single-supplier and single-retailer. The authors formulate a mean-variance model for a supply
chain with a single product in a single time period, and they show that a buyback contract can
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help channel coordination and control risk. Xiong et al. (2011) study a composite contract based
on risk aversion for a two-stage supply chain by combining two contracts: a buyback contract
and a quantity �exibility contract. They show that this contract has advantages over supply
chain coordination, pro�t allocation, and risk allocation. See also Luo et al. (2018) who address
the operational decisions and coordination of the supply chain in the presence of risk aversion.
The problem under returns policy with demand uncertainty has been investigated by Marvel
and Peck (1995) who a�rm that the manufacturer's decision to accept returns depends on the
nature of the demand uncertainty. Emmons and Gilbert (1998) show that the supplier can
improve channel pro�ts if demand variability follows a uniform distribution. Hou et al. (2010)
study a buyback contract between a buyer and a backup supplier under supply disruption.
They investigate the di�erences of the contract parameters under backup supply uncertainty and
demand uncertainty. Yao et al. (2005) study the impact of the factor of demand information
sharing on a return policy and the pro�ts of both parties under di�erent scenarios, and analyze
the e�ects of key parameters on their pro�ts. The price-sensitive demand factor in a return
policy contract is analyzed by Yao et al. (2008) in a single-period supply chain. The authors
present an analytical model to identify the contract properties. A group of scholars have also
examined return policies under this factor (Marvel and Peck, 1995; Emmons and Gilbert, 1998;
Lee, 2001; Arcelus et al., 2008).
The third category of the buyback literature focuses on the supply chain structure. Song et
al. (2008) analyze a buyback contract, in a two-echelon Stackelberg framework, between a
manufacturer and a price setting newsvendor retailer. Cachon and Lariviere (2005) study the
supply chain coordination with revenue-sharing contracts by comparing them to the buyback
contract. Bose and Anand (2007) study properties of return policies in the framework of a single
period stochastic model either with an exogenously �xed wholesale price or unilaterally declared
price by one dominant party. Ding and Chen (2008) investigate the coordination of a three
level supply chain with �exible return policies selling short life cycle products in a single period
model. Yao et al. (2005) examine the design of the returns in a manufacture-retail supply chain
consisting of a mix of a traditional retail channel and a direct channel.

In a large number of papers (above papers; Krishnan et al., 2004; Wang and Zipkin, 2009;
Wu, 2013; etc), the buyback contract has been studied for its design and implementation in
di�erent supply chain con�gurations. To the best of our knowledge, there has been no research
that studies a production planning problem under a buyback contract. In this work, we will
integrate the buyback contract with di�erent return policies between a retailer and a supplier in
a multi-period LSP.

1.5 Overview of lot sizing problems

The lot sizing problem (LSP) is encountered in procurement, production, and transportation
planning. Its purpose is to determine the quantities to produce (to order or to transport) for
each item over a given �nite horizon in order to satisfy the demand at a lowest cost. Apart
from a �xed setup cost (or �xed ordering cost), there are also unit production (replenishment)
and unit storage costs incurred. The amounts of product are called "lot" and calculated to
regroup the demands of di�erent periods in order to be produced (procured or transported), in
advance, if this reduces the total production costs, especially the �xed setup cost. However, early
production generates inventories and, if inventory costs are high, it may be more interesting to
allocate production over several periods which induces more setups but less storage. The LSP is
therefore often equivalent to �nding the best compromise between the setup costs and inventory
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costs.
One of the ancestors of the LSP models is the economic order quantity (EOQ) model proposed

by Harris in 1913. Its objective is to minimize the total replenishment and inventory carrying
costs for an in�nite planning horizon. The model considers a single item, deterministic static
demand, continuous time, and uncapacitated case. Unlike this continuous problem, Manne
(1958) and Wagner and Whitin (1958) are the �rst works on the discrete LSP which assumes
that the planning horizon is �nite and divided into discrete periods for which the demand is
given and may be dynamic. Following these �rst studies, the number of LSP papers published
in the academic literature grew very strongly under di�erent extensions.

In this section, we give, �rst, the basic model of the lot sizing problem along with its classical
formulation as a mixed integer linear program (MILP). Second, we present the characteristics
of the lot sizing problem such as: stochastic demand, bounded inventories, production capacity,
lost sales, batch production, etc. Third, we identify review papers, and �nally, we cite the used
solution methods.

1.5.1 Modeling the basic problem

The problem we present is the single item, single level uncapacitated lot sizing problem, known
as Wagner and Whitin (WW) problem which aims to determine the production planning over
a horizon that is discretized into T periods. The goal is to decide how much to produce in
each period t and how many units to store from period t to period t + 1 in order to satisfy the
known demand dt by minimizing the total production and holding costs. The production cost
is composed of two terms: a �xed setup cost ft independent of the quantity produced, and a
unit cost pt incurred for each produced unit. The inventory holding costs are classically modeled
by unit costs ht for each unit stored at the end of each period t. All these costs can be time-
dependent, stationary, or can have arbitrary patterns under various assumptions. The demand
for each period must be entirely satis�ed without backlogging through the production or the
stocks. The decision variables are: xt, the quantity to produce in period t, yt = 1 if a setup
occurs in period t (xt > 0) and zero otherwise, and st, the inventory level at the end of period t
(t = 1, . . . , T ). This problem can be used to plan the procurement or transportation activity.

The WW problem can be formulated as follow:

min
∑T

t=1(ftyt + ptxt + htst) (1.1)
subject to xt + st−1 = dt + st ∀t = 1, . . . , T (1.2)

subject to xt ≤ (
∑T

j=t dj)yt ∀t = 1, . . . , T (1.3)

subject to xt, st ∈ R+, yt ∈ {0, 1} ∀t = 1, . . . , T (1.4)

The objective function (1.1) is to minimize the total production and inventory costs over the
horizon of T periods. Constraints (1.2) represent the �ow conservation, that is, the entering stock
of the period t (st−1) added to the amount produced in t (xt) are used to satisfy the demand
(dt), and what remains is kept in stock at the end of the same period (st). Constraints (1.3)
indicate a relation between the production quantity and the setup variable in which a production
at period t incurs a setup cost. Constraints (1.4) de�ne the feasibility domain of the continuous
variables xt and st and the binary variables yt.

This formulation is called aggregate because the production is only de�ned by a period of pro-
duction, in contrast with disaggregated formulations such as facility location-based formulation
in which the production is de�ned by a period of production and a period of consumption.

The well known ZIO (Zero-Inventory Ordering) policy is developed by Wagner and Whitin
(1958) for non-speculative cost structure (pt + ht ≥ pt+1 for any period t ∈ {1, . . . , T − 1},
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which means that producing one unit in t and storing it till the following period costs more than
producing it in t + 1), and based on the principle that it is not optimal to produce during a
period t if the stock at the end of period t − 1 is non-zero (st−1xt = 0, ∀t = 1, . . . , T ). This
property allows to solve the WW problem by a dynamic programming algorithm in O(T 2) time
for linear variable ordering and holding costs. This algorithm has been improved by Wagelmans
et al.(1992), Federgruen and Tzur (1991), and Aggarwal and Park (1993), independently to
an O(T log(T )) time algorithm in the general case and to an O(T ) time algorithm under non-
speculative costs. In these models, several criteria are not inserted, which means that these
solutions are not, in many cases, feasible at the operational level. To model several real-life
situations, di�erent extensions of the WW problem have been studied in the literature.

1.5.2 Characteristics of the lot sizing problem

Various extensions of the basic LSP have been developed over the years according to di�er-
ent parameters. We present the most used characteristics in the literature, by relying on the
classi�cations of LSP proposed by Haase (1994) and Brahimi (2004).

Planning horizon

This attribute represents the time interval for planning the production. It may be either in�nite
or �nite. It considers changes in model parameters over time: an in�nite horizon is usually
accompanied by stationary parameters (e.g. Papachristos and Ganas, 1998). However, a �nite
horizon is coupled by dynamic parameters. In our models, almost all the parameters are assumed
to be dynamic which means that they vary over time.

Information degree

This attribute describes whether uncertainty is considered or not in the model, then we have:
the deterministic case (all parameters are known in advance) vs. the stochastic case (some or
all parameters are not exactly known and are based on some probabilities). See Tarim and
Kingsman (2004) and Guan et al. (2006) for more details on stochastic problems. In our models,
we assume that all the parameters are deterministic.

Time scale

The time scale is another important characteristic that a�ects the lot sizing decisions. It can be
either discrete or continuous. For the discrete-type system, the LSP falls into the categories of
either small time bucket (Drexl and Kimms, 1997) or big time bucket problems (Van Hoesel et
al., 1994). The small time bucket problems are characterized by the fact that the time period
is so short and that only one item can be produced in each time period (hour, day). While,
for the big time bucket problems, the time period is long enough, so that multiple items can be
produced in the same time period. The continuous time models are addressed by Hanssmann
(1962), Lopez and Kingsmans (1991), and, Yao and Elmaghraby (2001).

Number of items

There are two types of LSP in terms of number of items: single item or multi-item LSP. For
example, van Hoesel and Wagelmans (2001) develop theoretical results for fully polynomial ap-
proximation schemes for single item capacitated LSP, and Hindi et al. (2001) propose Lagrangian
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relaxation with subgradient optimization combined with a smoothing heuristic and local search
in order to solve multi-item capacitated LSP with setup times.

Number of levels

The LSP may be single level or multi-level. In the single level LSP (Stadtler, 2000), the �nal
product is directly processed from raw materials by a single operation (e.g. forging or casting).
The demand of this product is named independent demand. In multi-level systems (Lee et al.,
2003; Zhang et al., 2012), there is a parent-component relationship de�ned in the bill of material
of products. Raw materials go through several operations to become �nal products. The demand
at one level is known as dependent demand. The complexity of multi-level LSP is higher than
the one of single level LSP.

Relevant costs

In addition to the unit production cost, there are other costs to take into account in the LSP
model. First, there is the startup cost which is incurred when the producer switches from one
item to another and prepares the resource for the new one. They di�er from the setup cost
which is generated whenever the resource is enabled for production. Wolsey (1989) and van
Hoesel et al. (1994) study the uncapacitated single item LSP with startup costs by proposing
di�erent classes of valid inequalities. Second, there are costs of reservation which are incurred
in the case where the resource is kept in a given state even if it remains vacant during several
periods. Toy and Berk (2006) develop an O(T 3) algorithm for the capacitated single item LSP
in a warm/cold process in which the process can be kept warm from period t to period t+ 1 by
paying a reservation cost. Third, there are the inventory holding costs which correspond to the
costs of blocked capital, risk of loss or obsolescence, taxes, insurance and warehouse maintenance
operations. Fourth, there are the backorder (stockout) costs. The backlogging aims to satisfy
the demand, but later than the initially required period. This extension was �rst studied by
Zangwill (1969) to solve the uncapacitated single item LSP by proposing an O(T 2) algorithm
reduced to O(T logT ) algorithm. Fifth, there are lost sales costs, which will be detailed in the
next section since some of the LSP models that we address in the present work are based on this
concept. Sixth, there are costs related to capacity: costs of regular capacity (regular hours) or
costs of additional capacity (additional hours, subcontracting). See Özdamar and Bozyel (2000)
for LSP overtime decisions. There are also transportation costs related to batches, trucks, etc.,
which are stepwise. For more details on these costs, refer to Section 1.6. Into lot sizing problems,
we can integrate many other costs to model many other extensions.

Resource constraints and their nature

In the literature there are many papers on LSP with an in�nite amount of available resources
(manpower, machines, inventory, lot sizes, budget, etc.) to simplify its resolution, while this
assumption is not realistic in many practical situations. Hence, the extension to the resource
constraint case needs to be integrated into LSP in which the resource can be single or multiple,
and constant or variable. The resource constraints can be: production capacity constraint (Van
Hoesel and Wagelmans, 1996), bounded storage constraint (Akbalik et al., 2015), perishable in-
ventory constraint (Hsu, 2000), minimum order quantities constraint (Okhrin and Richter, 2011),
and, constant batch sizes constraint (Akbalik and Pochet, 2009). The complete and/or incom-
plete batch ordering assumptions are the resource constraints of this study. These extensions
will be discussed in Section 1.6.
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Service Policy

In order to avoid problems a�ecting the quality of customer service, a safety stock can be used as
protection against uncertainties of demand, lead time, and procurement. Subcontracting (buying
some goods from outside), backlogging (satisfy late demands in relation to delivery time), time
windows, and lost sales are possible solutions added to the LSP in the event of out of stock.

Time consuming activities

These include for instance, the setup time, processing time (zero, constant, variable), lead time,
and transportation time.

Objectives

The goal of the LSP is either to minimize the total cost, or to maximize the service level, or to
smooth the production load, or to maximize the pro�t.

The literature contains a plethora of classi�cation of the LSP extensions proposed by several
review papers cited below.

1.5.3 Surveys of lot sizing problems

Reviewing the literature of the LSP has become increasingly popular over the last 15 years.
Readers can refer to Glock et al. (2014) who show the increase in the number of review papers
published per year between 1974 and 2012. The work of Glock et al. (2014) is a tertiary study
which identi�es and analyzes literature reviews of LSP till 2012. The authors categorize the
reviews of works on LSP along two aspects: aspect of technical structures and content-related
aspect (see Table B1 in Glock et al., 2014). In relation to technical structure, we �nd stationary
models vs. dynamic models, and deterministic models vs. stochastic models. For the content-
related aspect, there are classical models whose objective is to �nd the optimal order, production
and shipment quantities and extended models which consider other types of decisions, in addition
to the ones of LSP (such as scheduling, worker learning, perishable inventory, etc.).

Since di�erent cases we study in this manuscript are dynamic deterministic single level LSP,
we cite some reviews addressing this �eld. Karimi et al. (2003) consider single and multiple
item and production capacity constraint, and study all the solution approaches. Brahimi et al.
(2006) consider the single item, uncapacitated version without and with extensions (backlogging,
perishable inventory, remanufacturing, time windows, etc.) and the capacitated version, present
their di�erent mathematical programming formulations and review the solution techniques for the
capacitated version. Jans and Degraeve (2008) focus on the modeling of various LSP industrial
extensions organized around two aspects: operational aspects (setups, production, inventory,
and demand) and, tactical and strategic aspects (for example, integrated production-distribution
planning, supplier selection, etc.).

Although the literature is abundant in reviews on LSP, more surveys are continuously ap-
pearing in the literature, to bring more updates in this �eld and to address new extensions. Pahl
and Voÿ (2014) consider deterioration and lifetime constraints in production and supply chain
planning models. Biel and Glock (2016) discuss the articles studying the energy-e�cient LSP in
order to respect the new environmental standards and energy consumption. Copil et al. (2017)
present the literature on dynamic simultaneous lot sizing and scheduling problems. Brahimi et
al. (2017) focus on publications of single item dynamic LSP with all the possible extensions from
2004 to 2016 by surveying their complexity and solution procedures.
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1.5.4 Resolution methods

Based on the literature, there are two types of the LSP solution approaches for the deterministic
case. On the one hand, we �nd exact methods which aim at determining the optimal solution
of the problem. On the other hand, there are heuristic or approximation methods which aim at
obtaining the best possible solution, without guarantee of optimality.

The exact methods include dynamic programming, valid inequalities and Branch and Cut ap-
proaches, Branch and Bound algorithms, and strong formulations (formulation without inventory
variables, facility location-based formulation, shortest path formulation). For the uncapacitated
single item LSP with demand time windows and backlogging, Hwang (2007) proposes an O(T 3)
dynamic programming algorithm by considering a non-speculative cost structure. The e�ec-
tiveness of this method is based on the optimality principle of Bellman (1957): any optimal
policy is composed of optimal sub-policies. Leung et al. (1989) use Branch and Cut algorithm
in which they study the polyhedral structure of the single item and constant capacity LSP by
developing several valid inequalities. They obtain a good description of the convex hull of fea-
sible solutions to this problem. Chung et al. (1994) propose an exact algorithm that combines
dynamic programming with Branch and Bound to solve the capacitated single item LSP with
linear production and holding costs and non-speculative costs. This combined method consists
in determining an optimal solution through a tree of enumeration by progressive separation and
evaluation. Fatemi Ghomi and Hashemin (2002) consider the single item resource constrained
production problem with constant setup cost and develop an analytical method based on refor-
mulating it as a shortest path problem. Under certain assumptions, their algorithm presents
optimal solutions. Wagelmans et al. (1992) use the facility location-based formulation for the
WW problem to derive their dynamic programming algorithm whose idea is to identify the op-
timal non-production periods. It is noted that dynamic programming is the most used method
to solve the LSP.

For more complex lot sizing problems (NP-hard problems) in which extensions like multi-
item, multi-level, production capacity, etc., are included, heuristic methods have been developed
either because researchers did not �nd exact methods, or to obtain a reduced calculation e�ort
than that of the exact approaches. These approaches can be classi�ed into Period-by-period
heuristics, improvement heuristics, meta-heuristics (tabu search, simulated annealing, genetic
algorithms), mathematical programming-based heuristics and Lagrangian heuristics.

1.6 Relevant references related to our study

In our study, we focus on the single item LSP under a capacity reservation contract with batch
ordering by proposing exact methods such as dynamic programming. We consider a piecewise
cost structure for the batch cost. We decide to integrate the buyback contract into an LSP. In
some problems, we add the possibility of lost sales where demand is not satis�ed and in others,
the option of disposals of unsold and unreturned units. In the following, we give the important
articles being the closest to our topic along four axes, which position this work within the LSP
literature. The �rst is constituted by the studies on the LSP with a stepwise cost function. The
second axis consists of the LSP with capacity reservation contract. The third examines the works
on LSP with lost sales. Finally, we present the references dealing with the LSP with disposals.
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1.6.1 Lot sizing problem with stepwise cost function

A stepwise or piecewise concave function is composed of a sequence of concave functions in
the m subintervals

[
V 0, V 1

]
,
[
V 1, V 2

]
, . . . ,

[
V m−1, V m

]
with V j for j = 0, . . . ,m being the

price breakpoints of the global function and V 0 < V 1 < · · · < V m. It can be continuous
or discontinuous. The piecewise procurement (or production or transportation) cost functions
can be used to represent quantity discounts, capacity acquisition, subcontracting, overloading,
minimum quantity requirements and capacities, batch ordering/production/delivery as well as
a combination of these latters (Koca et al., 2014). We cite some examples of stepwise costs
considered in the literature (see Figure 1.2).

Figure 1.2: Some examples of stepwise concave functions

In the LSP with quantity discounts, we �nd two popular types of piecewise cost functions
used to present discount pricing schemes. The �rst one is the all-units discount cost function
(see Figure 1.2, brown curve) under which di�erent discount rates are applied to all units of
di�erent purchased quantities. Li et al. (2012) study the uncapacitated single item LSP with
all-units discount and resales over a planning horizon of T periods under the assumption that the
breakpoints of the cost function are stationary. The authors show that this problem, with the
number of discount price breakpoints being arbitrary, is NP-hard. For the case where the number
of breakpoints, m, is �xed, they develop a polynomial algorithm with an O(Tm+3) running time.
The second type is the incremental discount cost function (see Figure 1.2, green curve) under
which di�erent discount rates are applied to incremental ranges of the ordered quantity. Archetti
et al. (2014) consider the single item LSP with incremental discount (an increasing piecewise
linear function with no �at sections) without capacity constraints. The authors propose an O(T 2)
time algorithm knowing that the number of breakpoints is bounded.

In the LSP with subcontracting, the overall production & subcontracting cost (presented
in Figure 1.2, blue curve) follows a discontinuous piecewise concave function composed of two
pieces: the �rst piece of the function corresponds to regular production with unitary low cost
and a capacity V 1, and the second piece corresponds to subcontracting with unitary high cost
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and without capacity. Atamturk and Hochbaum (2001) study the LSP with subcontracting and
capacity acquisition in order to satisfy deterministic non-stationary demand over a �nite horizon
knowing that the inventory holding cost is a linear function. The authors suppose that the
capacity is stationary whether being deterministic or being a decision variable. The capacity
cost only depends on the capacity. For the case with concave production and subcontracting
costs, they develop O(T 5) and O(T 8) time algorithms for the case with known capacity and for
the case with the capacity being a decision variable with a concave capacity cost, respectively.

In the LSP with batch ordering (or production or delivery), the products must be ordered
in batches (pallets, containers, vehicle or trucks). Then, in addition to �xed and variable pro-
curement costs, there is a piecewise replenishment cost related to batches. This cost has the
Truck-Load (TL) cost structure (see Figure 1.3, Figure 1.4, and Figure 1.5) under which a
Less-Truck-Load (LTL) rate (positive slope) is paid until the buyer pays for the cost of a Full-
Truck-Load (FTL) of V units (�at section), which is less than the cost of delivering V units at
an LTL rate (dotted positive slope). Once the �rst truck is full, the LTL cost is paid until the
second truck is full, and so on.
The generalized TL cost function in which the LTL cost follows a non-linear concave function
is shown in Figure 1.3. It is also called Lippman piecewise cost function being discontinuous.
Indeed, Lippman (1969) is the �rst researcher to consider a single item uncapacitated LSP with
batch ordering without setup cost nor backlogging where the transportation, procurement and
holding costs depend on time and the batch size is constant. The author proposes an O(T 5)
time algorithm.

Figure 1.3: Generalized TL cost function

Let α be a real number, so dαe denotes the smallest integer that is greater than or equal to
α and bαc indicate the largest integer that is smaller than or equal to α.
Under this structure, products must be ordered at period t in batches of Vt units and the buyer
pays the LTL cost ct for the units being in an incomplete batch and the FTL cost at for a full
batch. The overall procurement cost qt(xt) for a positive amount xt of products ordered in period
t which is composed of a �xed setup cost ft, a purchase cost pt, an LTL cost ct, and an FTL cost
at, is given as follows:

qt(xt) = ft + pt(xt) + at

⌊
xt
Vt

⌋
+ min

{
ct(xt −

⌊
xt
Vt

⌋
Vt), at

}
, q(0) = 0

In the literature, there are two special cases of the generalized TL cost structure according
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to the nature of LTL and FTL costs. The �rst one is the linear TL cost function in which
the LTL cost follows a non-decreasing linear function as shown in Figure 1.4. Li et al. (2004)
address two uncapacitated LSP with batch ordering, setup cost, time varying cost parameters
and backlogging. In the �rst problem, the authors assume that the procurement quantities
are limited to multiples of a constant batch size and they develop an algorithm in O(T 2) time
improved to O(T log(T )) time through the use of Monge matrices. In the second problem which
is more general than the �rst one, they include the transportation costs which have the linear
TL cost structure which means that the replenishment quantities may not be a multiple of the
constant batch size. An O(T 3 log(T )) time algorithm is developed to solve this problem. Besides,
they extend these two problems in order to take into account non-decreasing concave holding,
backordering, and LTL freight cost functions (generalized TL cost function) and they prove that
the �rst two proposed algorithms can also be applied to solve these extended problems. Hence,
the authors improve the Lippman's algorithm.

Figure 1.4: Linear TL cost function

The second one is the TL cost structure with in�nite LTL cost (Figure 1.5), called FTL cost
structure which is considered in this study. Under the FTL cost structure, the buyer pays a �xed
cost per batch replenished (or produced or transported) even if the batch is not complete. The
total procurement cost for a positive quantity xt is equal to:

qt(xt) = ft + pt(xt) + at

⌈
xt
Vt

⌉
, q(0) = 0

Figure 1.5 illustrates the stepwise cost structure for null unit cost and Figure 1.6 shows the total
procurement cost function considered in this study.

In order to mention the works on LSP with FTL cost structure, we need to use the notation
(ft, pt, ht, at, Vt) which designates the assumptions adopted in this problem knowing that ft:
setup cost in period t, pt: unit procurement cost in period t, ht: unit holding cost in period t,
at: �xed cost per batch replenished in period t and Vt: batch size in period t. If a parameter β
along these is null, then we assign to it the value '-', if it is assumed constant, then we write it
without subscript t, β, and if it is time-dependent, we keep the period t in its notation and in
this case, if it is allowed to be linear, we write βt and if it is concave, then we write βt(). For
example, the notation (−, pt(), ht, at, V ) corresponds to an LSP without setup cost, with concave
unit procurement cost, linear holding cost, linear �xed cost per batch and stationary batch size.
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Figure 1.5: FTL cost function Figure 1.6: Total procurement cost function

The O(T 5) time algorithm developed by Lippman (1969) can solve the LSP with FTL cost
structure in which the author assumes (−, pt, ht, at, V ). After that, Lee (1989) proposes an O(T 4)
time algorithm for the case (f, p, h, a, V ). Pochet and Wolsey (1993) study the LSP of Lippman
with FTL cost structure by improving the algorithm complexity to O(T 2 min(T, V )) time. For
more general assumptions (ft, pt, ht(), at, V ), the O(T 3 log(T )) time algorithm proposed by Li et
al. (2004) can be used to solve the LSP with FTL cost structure being also a special case of the
linear TL cost function, knowing that the authors add concave backlogging costs. Hwang (2010)
provides for the problem with (ft, pt(), ht(), at, V ) an O(T 5) time algorithm and with backlogging
an O(T 6) time algorithm. Hwang and Kang (2016) develop a two phase algorithm running in
O(T 2 log(T )) time for the case (ft, pt, ht, at, V ) with no-speculative-motives in production and
backlogging. Akbalik and Rapine (2018) study the LSP with multi-mode replenishment (multiple
suppliers) and a stationary batch size. The same �xed cost is paid for whatever the number of
units replenished in a batch. The authors prove that the general problem is NP-hard and they
propose an O(T 4) time algorithm for the case (ft, pt(), ht, at, V ) with a single mode.

Notice that all of those studies assume a stationary batch size. Akbalik and Rapine (2013)
address the uncapacitated LSP with time-dependent batch sizes Vt. The authors study the
complexity of this problem according to the behavior in time of the cost parameters (setup cost,
unit procurement cost, unit holding cost, and �xed cost per batch). Therefore, they prove that
the LSP with FTL cost structure for the case of time-varying batch sizes is NP-hard if one of
the cost parameters is time-dependent. Under the assumption (f,−,−, a, Vt), they show that
the problem is polynomially solvable in time O(T 3).

Researchers have extended the LSP with FTL cost structure in various settings by making
some simpli�cations to propose polynomial time algorithms. Anily and Tzur (2006) consider the
problem of shipping multi-items by identical capacitated vehicles (Vt = V ) with a stationary
setup cost per vehicle dispatched. The unit shipping and inventory holding costs are item-
dependent but they are constant over time. The authors develop two algorithms for solving
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the problem optimally, based on a dynamic programming approach and an exponential search
method. Jaruphongsa et al. (2007) consider a two echelon dynamic LSP with two outbound
delivery modes where the �rst mode has a �xed setup cost structure while the second has an
FTL cost structure. The aim of this problem is to minimize the system-wide cost of replen-
ishment, inventory holding, and transportation with alternative shipment modes between the
upper (warehouse) and lower (distribution center) echelon. All the cost parameters are station-
ary except the unit holding cost at the warehouse and at the distribution center. The authors
provide an O(T 5) time algorithm based on a dynamic programming approach. Van Vyve (2007)
addresses the capacitated LSP with batch delivery and develops an O(T 3) time algorithm for
the case (−, pt, ht, at, V ) with non-speculative costs, time-dependent production capacity and
allowing backlog. Without backlogging, the algorithm time complexity reduces to O(T 2 log(T )).
Akbalik and Rapine (2012) study a similar problem, but with a non null setup cost, namely
(ft, pt, ht, at, V ), and with stationary production capacity and without backlogging. The authors
propose two polynomial time algorithms: an O(T 4) time algorithm for the case with production
capacity being a multiple of the batch size and an O(T 6) time algorithm for the case of an
arbitrary capacity. Akbalik and Penz (2011) study the single item capacitated LSP with time
window deliveries, two echelon and FTL cost of transportation. The authors show that this
problem is NP-hard even by assuming the same time window value for all time periods. Ou and
Feng (2019) consider an LSP with backlogging and capacity adjustment. The authors assume
that, in each period, there are m di�erent production capacity levels available to be acquired.
Each production capacity level is assumed to be a multiple of a base capacity unit V (FTL cost
structure withm breakpoints, wherem represents the maximum number of batches to replenish).
In this problem, the production costs are dependent on the capacity acquired in each period, and
there is a capacity adjustment cost if the capacity acquired for period t di�ers from the one of
period t− 1. They develop an O(m4T 4) time algorithm for the general case (ft, pt(), ht(), at, V ).
In addition to the extensions of production capacity, time window, etc., there are works which
address the problem with FTL cost structure, where the buyer signs a capacity reservation con-
tract with the supplier that allows him to reserve a certain capacity in advance and to buy it for
an advantageous price.

1.6.2 Lot sizing problem with capacity reservation contract

Consider a lot sizing problem where the retailer places orders to satisfy a deterministic demand
over a planning horizon of T periods following a capacity reservation contract. In the general
setting of this contract, the retailer reserves a capacity Rt in each period t from the supplier with
a reservation fee rt, t = 1, . . . , T . In return, the supplier o�ers the retailer in period t quantities
up to the reserved capacity Rt at a unit replenishment cost at. x1,t is the number of regular units
ordered in period t being less than Rt. In the same period t, if the retailer desires to procure
a quantity which exceeds the reservation capacity Rt, then he gets the excess quantity x2,t at a
unit price bt from the same supplier. The cost bt can also be considered as a price of the spot
market. It is assumed to be higher than the reservation fee rt plus the regular procurement cost
at, then we have rt + at < bt. If rt + at ≥ bt, then the reserved capacity Rt is zero and the
procurement of period t is insured with the cost bt. This situation does not coincide with the
practical applications of capacity reservation contracts.
For any positive amount ordered x1,t+x2,t, a setup cost ft is paid. There is an inventory holding
cost ht incurred for each unit of the inventory level st at the end of time period t. Hence, the
demand in period t, dt, can be satis�ed from procurement with at cost, with/without procurement
with bt cost in that period and/or from inventory. The LSP with capacity reservation contract
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(LSP-CRC) can be either a tactical problem or an operational problem. In the tactical model,
the reserved capacity is a decision variable (general model), while in the operational model, it
is given. We present the general formulation of LSP-CRC whose objective is to minimize the
capacity reservation, purchasing and inventory costs by �nding in each period t the optimal
values of Rt, x1,t, x2,t, yt and st.

min
∑T

t=1(rtRt + ftyt + atx1,t + btx2,t + htst)
subject to x1,t + x2,t + st−1 = dt + st ∀t = 1, . . . , T (1.5)
subject to x1,t ≤ Rt ∀t = 1, . . . , T (1.6)

subject to x1,t + x2,t ≤ (
∑T

j=t dj)yt ∀t = 1, . . . , T (1.7)

subject to x1,t, x2,t, st ∈ R+, Rt ∈ N, yt ∈ {0, 1} ∀t = 1, . . . , T (1.8)

Constraints (1.5) represent the balance of inventory. Constraints (1.6) ensure that the total
quantity replenished at a cost at is limited by the reserved capacity. Constraints (1.7) force the
variables yt to take the value of 1 if the retailer procures a positive quantity from the supplier.
This capacity reservation model can also be adapted to the production planning model with
capacity acquisition and subcontracting or overtime options. The cost rt is equivalent to the
capacity acquisition cost. The cost at corresponds to the regular production cost. The extra
cost bt is incurred due to an overtime production or a quantity outsourced without any �xed
cost. Therefore, the capacity reservation contract procurement cost structure corresponds to
an overall production & subcontracting linear cost structure (see Figure 1.7 in which at < bt
because rt + at < bt), which means that it is a piecewise function. Then, the LSP-CRC belongs
to the lot sizing problems with piecewise production cost functions.

Figure 1.7: Capacity reservation cost structure

Atamturk and Hochbaum (2001) consider a single item LSP to study the stationary capacity
expansion, uncapacitated subcontracting, production and holding inventory decisions for a �nite-
horizon demand satisfaction problem. The production capacity Rt = R needs to be determined
in some problems and it is �xed (given) in others. The authors assume di�erent cost structures
for at and bt (non-speculative linear, non-speculative �xed-charge, and concave cost structures)
and without any relationship between them. The capacity cost is stationary, rt = r, but it
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can follow a concave function (r(R)) which depends on R. For non-speculative production and
subcontracting costs, they propose an O(T 2) time algorithm for the operational LSP-CRC (R
is given, ft is positive, production at and subcontracting bt costs are linear) and an O(T 5) time
algorithm for the tactical LSP-CRC (R is a decision variable, ft is positive, capacity, production
and subcontracting costs are linear).

In the previous formulation of LSP-CRC with given reserved capacities, we consider the case
where, in each period t, the unit cost of extra procurement bt is relatively higher than the one
of the regular procurement at. Thus, in this contract, extra procurement happens only if the
regular procurement is already at full reserved capacity.

Lee and Li (2013) consider the single-item dynamic LSP-CRC where the reserved capacity Rt
is a given parameter for all the periods t from 1 till T , the reservation cost is stationary (rt = r),
and with at < bt,∀t ∈ {1, . . . , T}. The authors a�rm that the LSP-CRC is a more general
problem than the classical capacitated LSP (CLSP) which is obtained by setting, in LSP-CRC,
the extra costs bt = +∞, ∀t ∈ {1, . . . , T} and by ensuring that

∑T
j=1 dj ≤

∑T
j=1Rj to have a

feasible solution.
In a CLSP, the quantity to be produced (procured, distributed or sold) of single or multiple
items at each period of the horizon is limited by a certain capacity. It seems that the �rst
work on these problems started with the article of Manne (1958) which studies the production
scheduling problem faced by a machine shop required to produce many di�erent items. The
papers of Florian et al. (1980), and Bitran and Yanasse (1982) prove that the complexity of the
single item CLSP depends primarily on the structure of setup, inventory and production costs
and capacities. These problems are generally NP-hard, thus many heuristics and relaxations
are designed in the literature. However, some cases of the CLSP can be solved in polynomial
time such as Chung and Lin (1988) developing an O(T 2) time algorithm for the CLSP with non-
increasing ft and at costs, general ht costs and non-decreasing capacities Rt, over the horizon.
Besides, van Hoesel and Wagelmans (1996) propose an O(T 3) time algorithm, for the case where
costs (ft, ht, at) are arbitrary and the production capacity is stationary (R). Literature reviews
of CLSP can be found in Karimi et al. (2003) and Buschkühl et al. (2010) for multiple items
and in Brahimi et al. (2006) for the single item case.

Despite the NP-hardness of the LSP-CRC, Lee and Li (2013) focus on the two previous
models which are known to have polynomial time algorithms in the classic CLSP, by adding the
spot price bt for all periods of the horizon. They propose O(T 3) and O(T 4) time algorithms
for the LSP-CRC with Chung and Lin (1988)'s assumptions and non-increasing bt costs and
for the LSP-CRC with Van Hoesel and Wagelmans (1996)'s assumptions and general bt costs,
respectively.

Zhang (2015) studies the same LSP-CRC under a constant reservation capacity R considered
in Lee and Li (2013) but with positive �xed extra procurement (or outsourcing) costs f

′
t , for

all periods t = 1, . . . , T . The author proposes an O(T 5) time dynamic programming algorithm.
The same problem under non-speculative costs is solved in Atamturk and Hochbaum (2001) by
an O(T 3) time algorithm but no relationship between unit regular and extra procurement costs
is assumed. Phouratsamay (2017) addresses the two-level LSP-CRC with inventory bounds in
a supply chain composed of one supplier and one retailer. The author proposes a complexity
analysis and dynamic programming algorithms for di�erent assumptions considered.

All the above studies assume unitary costs in the capacity reservation contract instead of
�xed costs per batch (FTL cost structure). In the LSP with batch production under capacity
reservation contract, denoted by LSP-B-CRC, the retailer reserves, in each period t, Rt batches
from the supplier with a cost of rt per batch. In each period t, the number of regular batches
ordered, denoted by At, at a cost of at per batch is less than the reservation capacity Rt.
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The number of extra batches ordered, denoted by Bt, is at a cost of bt for each excess batch
replenished. The total number of batches replenished contains xt units, knowing that the batch
size is Vt. For any positive quantity ordered, xt > 0, the retailer has to pay a setup cost ft in
addition to a unit replenishment cost pt for each unit ordered. In period t, the overall ordering
cost qt(xt) (see Figure 1.8) for xt units ordered in At+Bt batches with a reservation of Rt batches
is presented as follows:

qt(xt) = ft + ptxt + atAt + btBt, with xt ≤ Vt(At +Bt) andAt ≤ Rt, q(0) = 0

Figure 1.8: Capacity reservation contract cost function

The di�erent formulations of the LSP-B-CRC are detailed in the last chapter. A few papers
study this problem.

Van Norden and van de Velde (2005) are the pioneer who investigate the LSP-B-CRC. They
study the multi-item transportation problem with dynamic setup costs fi,t which are item-
dependent, dynamic holding costs ht, null unit procurement costs pt = 0,∀t = 1, . . . , T , sta-
tionary transportation costs per batch composed of the low freight cost a and the high shipping
cost b, a constant batch size V and a de�ned reservation capacity R. A batch can contain
di�erent items. They propose a Lagrangian heuristic to solve this strongly NP-hard problem.

Molina et al. (2009) develop a method consisting of a Lagrangian/surrogate heuristic to solve
the problem presented in van Norden and van de Velde (2005) with backlogging and production
time capacity constraints. Refer to Molina et al. (2016) for extensions of the model originally
proposed in van Norden and van de Velde (2005).
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Akbalik et al. (2017) study di�erent classes of LSP-B-CRC by generalizing the total procure-
ment cost in which the authors do not assume a relationship between the exceeding batch costs
and the regular batch costs. According to the assumptions adopted on the given parameters
ft, pt, ht, at, bt, Rt and Vt, they identify NP-hard cases and propose a pseudo-polynomial time
dynamic programming algorithm and several polynomial time algorithms for other cases.

1.6.3 Lot sizing problem with lost sales

Lost sales mean unsatis�ed demands where the retailer has to decide whether or not to satisfy
the entire demand or only a portion within a period. It is possible to serve only one part of
the demand, if this is more bene�cial. Companies having low demand for certain products with
low pro�t in a certain period can �nd it more pro�table to lose this demand. Besides, in many
practical situations, �rms allow the backlogging of demand (postponed demand) for a given
number of periods, but if the delivery date is too late, the order can be canceled. The lost sales
incur a direct cost to the �rm, as well as an indirect cost. The direct cost corresponds to the lost
revenue of the canceled demand. The indirect cost is a penalty related to the loss of customer
goodwill at a later time, which may be explained by a decline in future demand. It represents
the unknown impact of poor service. Hence, the cost of lost sales is greater than the selling price.

In lot sizing, the classical decision of how much and when to order is extended to the decision
of when and which fraction of demand to lose over the horizon. To obtain the formulation of
LSP with lost sales (LSP-LS), we have to add in the basic model of WW, a non-negative decision
variable of the unmet demand at the end of each period t, Lt, and a unitary lost sales cost lt at
period t, knowing that we have lt ≥ pt, ∀t = 1, . . . , T . The uncapacitated LSP-LS problem can
be formulated as follow:

min
∑T

t=1(ftyt + ptxt + ltLt + htst) (1.9)
subject to xt + Lt + st−1 = dt + st ∀t = 1, . . . , T (1.10)
subject to Lt ≤ dt ∀t = 1, . . . , T (1.11)

subject to xt ≤
∑T

j=t djyt ∀t = 1, . . . , T (1.3)

subject to xt, Lt, st ∈ R+, yt ∈ {0, 1} ∀t = 1, . . . , T (1.12)

In the objective function (1.9), we have to minimize the total lost sales costs over the T periods
in addition to the costs depicted in the objective function (1.1). Constraints (1.10) take into
account the lost sales quantity in the inventory balance. Constraints (1.11) ensure that any
canceled demand Lt in period t cannot exceed the demand dt of that period.

The model of LSP-LS is equivalent to the one of production LSP with bounded outsourcing.
In each period, the level of outsourcing is limited by the demand. In these models, the overall
in-house production & outsourcing cost is not piecewise. Its cost function is neither concave nor
convex. The retailer can outsource with the cost lt in such a period without producing with the
regular procurement costs, ft and pt (see periods 1 and 3 in Figure 1.9). If regular production
and holding inventory for a number of time periods are cheaper than outsourcing, then it is
reasonable to produce (see period 2 in Figure 1.9). In period 4, the demand is satis�ed by the
inventory of the previous period 3. Thus, this problem di�ers from the operational LSP-CRC
detailed in Subsection 1.6.2.

A few papers on lot sizing problems with lost sales or with outsourcing modeled as lost sales
are published in the literature. Sandbothe and Thompson (1990) study a problem that is related
to the case of lost demand in LSP: a capacitated LSP-LS without limited lost sales quantity. All
cost parameters and production capacity are assumed to be constant. They propose an O(T 3)
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Figure 1.9: Optimal solution of an example of LSP-LS

time forward dynamic programming algorithm to solve it optimally. Aksen et al. (2003) con-
sider an uncapacitated single item LSP-LS and propose an O(T 2) time dynamic programming
algorithm for the time-varying costs. Aksen (2007) considers an LSP-LS in which the unsatis�ed
demand in a given period causes the demand in the next period to shrink due to the loss of cus-
tomer goodwill. The author develops a neighborhood search and restoration heuristic. Chu and
Chu (2007) develop an O(T 2) algorithm to solve the LSP with entirely or partially outsourcing
of the demand with linear holding and outsourcing cost functions, and linear production cost
functions with �xed charges.

In Absi et al. (2011), an uncapacitated LSP-LS with production time windows and early
production is studied. The early production means that the demand is satis�ed from a production
that is processed before the release period of the demand. They propose an algorithm running
in O(T 2) time. The LSP-LS has also been studied by Absi et al. (2013) for the multi-item
capacitated case with setup times and lost sales. The authors propose a Lagrangian heuristic
based on a probing strategy and a re�ning procedure to �nd feasible solutions. And they also
develop a metaheuristic based on the adaptive large neighborhood search to improve solutions.
Hwang et al. (2013) provide an O(T 4) dynamic programming algorithm for the uncapacitated
LSP-LS with upper bounds on stocks for time-varying storage capacities, and production, holding
and lost sales costs. Chu et al. (2013) consider the single item uncapacitated LSP with bounded
outsourcing, backlogging and limited inventory capacity. The backlogging level at each period
cannot exceed a certain upper limit. The authors propose an O(T 4) for the case with linear
production cost functions, a �xed cost, and linear holding, backlogging and outsourcing cost
functions.

1.6.4 Lot sizing problem with disposals

In several application areas, the retailer can dispose of the unsold quantity in a variety of ways,
such as discounts, outlet stores, donation to charities, throw in the trash, returning to the supplier
through a buyback contract, etc. In this case, the disposal represents a pro�t for a retailer. The
case with non-negative disposal revenue per unit is considered as the resale in the literature.
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However, in some situations, disposal can represent a cost rather than a revenue because it may
incur costs associated with transportation, disassembly and separation of hazardous materials,
etc.

In the literature, there are two major categories of lot sizing problems into which the disposal
option is integrated. The �rst category includes the LSP with manufacturing and remanufactur-
ing planning. Since 1990, there is a growing body of literature addressing this issue. Remanufac-
turing can be de�ned as the recovery of returned items (a given parameter) from the customer
to the retailer. These products can be reused, either directly or after this reverse logistics op-
eration. The main di�erence between this problem and the classical LSP is that the demand of
each period at the retailer can be satis�ed either by newly produced items and/or by used items
being remanufactured. The disposal concept considered in these problems concerns the excess
inventory of returned products.

To the best of our knowledge, Richter and Weber (2001) were the �rst to extend the Wagner-
Whitin problem to consider the remanufacturing with disposal option of some of the returned
products. The same problem with less restrictive assumptions was addressed by Golany et al.
(2001). The authors prove that the general problem with concave cost functions is NP-hard and
they also provide an exact algorithm of O(T 3) time complexity for the case of linear costs. For
more details on the LSP with remanufacturing and disposal, refer to Piñeyro and Viera (2009,
2010).

The second category consists in LSP with quantity discount in which the retailer may face a
situation where it is economical to purchase a large quantity in excess of the demand and then
dispose of any leftover inventory at a salvage revenue or even at a cost. The discounted unit
costs of the product (slopes in subintervals

[
V j−1, V j

]
, j = 1, . . . ,m with m being the number

of price breakpoints, as shown on Figure 1.2, brown and green curves) decrease as a function
of the price breakpoints V j . In this model, the retailer has to make a relationship between the
procurement cost and the non-negative disposal revenue because he can purchase an unlimited
quantity in some period t, carry it, and resell it after this period to obtain an unlimited pro�t,
and the problem has an unbounded optimum.

The LSP with quantity discount and disposal is obtained from the WW problem in which
the non-negative quantity xt is purchased in period t with a product cost that has an all-units
discount or incremental discount structure pt(xt), in addition to the �xed ordering cost ft. The
retailer may choose to dispose of part of the inventory, denoted by et and receive a revenue of
pet per unit which can be positive, zero, or negative, ∀t = 1, . . . , T . The uncapacitated LSP with
quantity discount and disposal can be formulated as the following mathematical program, in
which we add the component of disposal revenues over T periods and introduce the amount of
disposed products et in the constraints of inventory balance:

min
∑T

t=1(ftyt + pt(xt) + htst − petet) (1.13)
subject to xt + st−1 = dt + st + et ∀t = 1, . . . , T (1.14)

subject to xt ≤
∑T

j=t djyt ∀t = 1, . . . , T (1.3)

subject to xt, st, et ∈ R+, yt ∈ {0, 1} ∀t = 1, . . . , T (1.15)

This problem has received very little attention in the academic literature. Sethi (1984)
considers the LSP with all-units discounts with a single price breakpoint (V 0 = 0 and V 1 > 0)
and allows the possibility of disposal at a �nite unit cost with a constant demand rate. The
case with negative disposal cost (resale revenue) per unit is modeled by Sohn and Hwang (1987).
These authors study a similar problem with time-varying setup, regular unit cost (�rst slope),
holding costs, resale revenues and stationary discount rate (second slope). They develop a

25



CHAPTER 1. LITERATURE REVIEW AND PROBLEM POSITIONING

pseudo-polynomial algorithm and show that their algorithm can be generalized to solve the
multiple breakpoint problem. Mirmohammadi and Eshghi (2012) reduce the time complexity of
the algorithm proposed by Sohn and Hwang (1987) by developing an algorithm with an O(T 4)
running time. Li et al. (2012) study the LSP with all-units discount and resales with a fairly
general setting. The authors assume dynamic unit discount cost rates with stationary price
breakpoints. The disposal revenue can be positive, zero, or negative. They propose an O(T 2)
algorithm for the case of a single price breakpoint and an O(Tm+3) algorithm for the case of m
�xed price breakpoints.

1.7 Our contributions

The contributions of this thesis to the literature are shown in Figure 1.10. Our �rst contribution
is to solve a deterministic LSP under a buyback contract, which is, to the best of our knowledge,
not yet explored in the literature. However, there are a few papers on the LSP under the capacity
reservation contract (CRC), which consists in a general form of the buyback contract (Atamturk
and Hochbaum, 2001; van Norden and van de Velde, 2005; Lee and Li, 2013; Akbalik et al.,
2017; Phouratsamay, 2017). We consider a Full-Truck-Load procurement cost structure which is
studied by many papers in the literature (e.g. Li et al., 2004; Akbalik and Rapine, 2013, 2018).
These papers consider neither the buyback contract nor the lost sales.

Figure 1.10: The buyback contract contributions in this study

In addition, we consider three forms of the buyback contract taken from di�erent real-life
applications. The �rst one is with �xed return periods (R1). In the form R1, we have cyclic
or acyclic return periods. The second is with a time limit on returns (R2), and the third form
is with return possibility permitted only in procurement periods (R3). For each type, we study
two return policies depending on the value of the maximum return percentage ρ: a full return
policy (ρ = 1) in which the retailer has the possibility to return all the unsold items, and, a
partial return policy (ρ < 1) in which the retailer can only return a limited quantity of the
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unsold items. Hence, we add the disposal concept (the second contribution) to get rid of the
units which cannot be stored nor returned to the supplier. Our problem is di�erent from the
LSP with remanufacturing, because there are no returned products from the customer to the
retailer. We are interested in a buyback contract in which the retailer returns unsold goods to
the supplier (disposal 1) and the remaining ones are discarded (disposal 2). Thus, at the retailer
level, in a period t, the returned quantity is an outgoing �ow and not an incoming �ow as in
the reverse LSP with remanufacturing. The disposal option is integrated because the products
are ordered in batches. Our work looks like the LSP with all-units discount and resales of Li et
al. (2012) but we cannot apply their algorithm whose running time is O(Tm+3) because we can
have a big number of breakpoints m = +∞, and buyback contract constraints.

To the best of our knowledge, the batch ordering problem that is integrated with lost sales
has never been addressed in the literature. There are a few papers making lost sales assumption
for LSP (Aksen et al., 2003; Absi et al., 2011; Hwang et al., 2013) but without batch ordering.
Thus, the third particularity of our problem is to solve this LSP both with batch ordering and
non-increasing lost sales costs.

We also consider the LSP under a capacity reservation contract. So, the fourth contribution is
to study this problem with time-dependent batch sizes considering three cases of reserved capac-
ity: �xed, and (constant or time-dependent) decision variable. We propose pseudo-polynomial
algorithms for some cases. The �fth contribution is to model the LSP-B under the specialized
and general contracts of CRC. We prove that the LSP-B (B for Batch) under deductible reser-
vation contract, and the LSP-B under take-or-pay contract are similar to the LSP-B under a
general CRC.

1.8 Conclusion

In this chapter we have positioned our study in the literature by presenting the existing works
in both areas: the supply chain contracts and the lot sizing problem. These two axes constitute
the state of the art of our problematic. In the chapters that follow, we describe various LSP
with batch ordering under the buyback contract that we have studied, modeled and solved using
di�erent approaches. We begin, in Chapter 2, by integrating the �rst type of buyback contract
R1 with full returns and cyclic return periods (w, 2w, . . . , Nw) into the procurement planning
with the lost sales option.
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Chapter 2

Lot sizing problem with batch ordering
under periodic buyback contract

(LSP-BR1 with w ≥ 1) and lost sales

In this chapter, we study the deterministic single-item lot sizing problem with batch ordering un-
der the buyback contract R1 with cyclic returns in a system with one retailer and one supplier.
We consider a �xed cost per batch replenished in addition to the classical lot sizing costs, making
the procurement cost structure stepwise. We also consider lost sales option with a lost sales cost
incurred for each unit of demand not satis�ed. The buyback contract considered here consists in
returning unused units at the end of every w periods (�xed and cyclic returns), with a buyback
revenue for each unit returned back. This problem is denoted by LSP-BR1 with w ≥ 1. We study
this problem under both FTL (full truck load) cost structure and only full batch (OFB) replen-
ishment assumption.

We �rst describe the general problem studied by introducing a mixed integer linear program
(MILP). After that, we give dominance properties and we propose e�cient and exact polynomial
time algorithm for each simpli�ed case of LSP-BR1 with w ≥ 1 which is known to be NP-hard
in the general case. We present the test results carried out to compare the e�ectiveness of these
resolution methods proposed for LSP-BR1 with w > 1. By concluding this chapter, we summarize
in Table 2.8 all the algorithms that we proposed for the LSP-BR1 with cyclic returns, with the
assumptions made and the associated complexities.

The work described in this chapter is published in di�erent conferences: ROADEF Metz
(2017), see Farhat et al. (2017a), and IFAC Toulouse (2017), see Farhat et al. (2017b), for
the case where we have w = 1 with OFB/FTL cost functions and with/without lost sales, and,
INCOM Bergamo (2018), see Farhat et al. (2018a), for the case where we have w > 1 with OFB
cost function. The results of this chapter are submitted to the International Journal of Production
Economics and the paper is accepted, see Farhat et al. (2018b).
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2.1 Introduction

We are interested in a procurement problem where a retailer signs a buyback contract with a
supplier who provides him the quantities in batches (e.g. pallets, containers or trucks). The
buyback contract is a commitment in which the buyer has the possibility to return a certain
percentage of the unused items at the end of the selling season to the supplier for a revenue less
than or equal to the procurement cost. In the literature, the buyback contract is mostly used in
single period planning problems occurring in the supply chains under stochastic demand. In our
problem, we consider the multi-period deterministic setting and we suppose that the retailer has
to return all the unused products (also called full return) to the supplier at the end of every w
periods. For instance, a period can represent a day, and returns can be operated only at the end
of each week (w = 7).

This problem concerns especially the obsolete or perishable products. The shorter the product
lifetime and the higher the inventory costs, the more the LSP-BR1 with a �xed w becomes
interesting to solve. The determination of the parameter w depends on the life of the product
and the cost of carrying inventory, so it can vary over the planning horizon.

This chapter also presents two important variants of the batch replenishment: the �rst one
is that the ordered quantity in each period t is restricted to a multiple of a certain batch size
Vt (called only full batch - OFB) and the other is that the replenished batch can be incomplete
(stepwise cost structure, FTL cost). We consider a general form of procurement cost structure
that includes a �xed cost for each order (classical setup cost), a variable unit purchase cost, and
a �xed cost per batch replenished that re�ects a stepwise cost function composed of �at sections
of size Vt (see Figures 1.5 and 1.6).

Furthermore, our study adds an important dimension where the retailer allows for lost sales
on some periods over the horizon. Demand of such periods can be entirely or partially lost.
According to Bijvank and Vis (2011), in case of stock-out of a speci�c product, the majority of
the customers will not wait and will rather buy a di�erent product or visit another store. Thus,
in practical settings, the original demand can be considered to be lost, even if it is quite common
to consider the backlogging of the excess demand in the classical inventory literature. Hence,
the present work establishes e�cient algorithms to solve an LSP with both batch ordering and
lost sales, under the buyback contract, not yet addressed in the literature.

The rest of the chapter is organized as follows. Section 2.2 is dedicated to the description of
the LSP-BR1 with w ≥ 1, and proposes a mathematical formulation by a mixed integer linear
program. Section 2.3 presents LSP-BR1 with w ≥ 1 without lost sales, under OFB or FTL
patterns. Exact polynomial time algorithms are proposed for the case with w = 1, and followed
by the general case with w > 1. Section 2.4 deals with the LSP-BR1 with w ≥ 1 under lost
sales, and presents respective dynamic programming (DP) algorithms for di�erent extensions. In
Section 2.5, the computational performance of each dynamic programming algorithm is compared
to that of MILP. Section 2.6 summarizes the chapter.

2.2 Description of the LSP-BR1 with w ≥ 1, hypotheses and
mathematical formulation in MILP

In the system we consider, a retailer is replenished by batches of a single-item from an external
supplier, where both parties sign a buyback contract. At the beginning of each period t, the
retailer can purchase a certain amount denoted by xt with a known demand dt over a planning
horizon of T periods. In real life applications, the batches can correspond to pallets, containers
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or trucks. Hence, we introduce the variable At which represents the number of batches ordered
in period t. A batch can hold up to Vt units in period t. The retailer accepts to pay a cost of at
for each batch replenished from the supplier in addition to a unit procurement cost pt. If there
is an order in period t, a �xed ordering cost ft is incurred. An inventory holding cost ht is paid
for each unit remaining in stock at the end of period t. We denote by st the stock level at the
end of period t. Without loss of generality, we assume that the initial inventory at the beginning
of period 1 is zero. Otherwise, the positive quantity in stock can be retrieved from the demands
of the �rst periods, till obtaining null entering inventory.

In the buyback contract we consider, the return of unused products is made at the end of
every w periods with w ≥ 1. In classical settings of the literature, the quantity to be returned to
the supplier is at the end of the selling season in a stochastic single-period problem. In general,
under such contracts, the supplier allows the retailer to return a maximum of ρx units, with x
being the quantity purchased at a price p per unit and ρ being the maximum return percentage
(0 ≤ ρ ≤ 1), at a certain return revenue pb with 0 ≤ pb ≤ p. We assume a full return (ρ = 1)
buyback contract with partial refund (pb < p). Our buyback contract involves qt and pbt , with qt
being the returned quantity at the end of period t which is a decision variable and pbt being the
unit return revenue in period t which is a given parameter.

In addition to the quantities and costs mentioned above, we introduce two notations of lost
sales (Lt, lt), with Lt being the lost sales quantity in period t and lt being the unit lost sales
cost in period t. We consider the assumption of Aksen et al. (2003) which asserts that the gross
marginal pro�t (lt − pt) is nonnegative for each t = 1, . . . , T , but at the same time we have to
take into account the batch ordering cost. Hence, we can make the following assumption without
loss of generality: ltVt ≥ ptVt+at, ∀ t = 1, . . . , T , which means that losing an entire batch incurs
a cost greater than or equal to procuring it. If we have ltVt < ptVt + at in a period t, the retailer
never orders in that period. Table 2.1 summarizes the notations that are used.

Table 2.1: Notations for the general model of the LSP-BR1 with w ≥ 1

Parameters

T length of the horizon
w periodicity of the return periods with 1 ≤ w ≤ T
pt unit procurement cost (variable cost) in period t
ft �xed ordering cost (setup cost) in period t
at �xed cost per batch replenished in period t
ht inventory holding cost per unit at the end of period t

pbt unit return revenue in period t
lt unit lost sales cost in period t
dt demand in period t
Vt batch size in period t

Decision variables

xt amount of procurement in period t

yt

{
1 if a procurement takes place in period t
0 otherwise

At number of batches ordered in period t
st stock level (quantity remaining in stock) at the end of period t
qt returned quantity of unused products at the end of period t
Lt lost sales quantity (amount of unmet demand) in period t

In this chapter, we study two main cases: LSP-BR1 with w ≥ 1 without lost sales, which
means that demands are to be entirely satis�ed, and LSP-BR1 with w ≥ 1 and lost sales.
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Thereafter, for each of these two problems, we study the following sub-cases:

• Sub-case 1 noted by LSP-BOFBR1: The supplier delivers the items only in full batches,
which means that the ordered quantity in every period of the planning horizon should be
expressed as a multiple of the batch sizes.

• Sub-case 2 noted by LSP-BFTLR1: Without any restriction on the batch status, which
means an FTL cost structure. In a period t, the batches replenished can be fractional.

For each case and sub-case, we consider two return policies. The �rst one is the LSP-BR1

with w = 1 which means that the product return is made at the end of each period t. For
instance, in the Hungarian market, the retailers return the unsold books (ρ = 1) at the end of
each month without any or with a small charge (Dobos and Wimmer, 2010). The second one is
the LSP-BR1 with w > 1, which means that the return is at the end of every w periods with
w > 1. For example, at the end of summer, Procter & Gamble, an American manufacturer of
hygiene and beauty products, refunds its retailers the unsold inventory value of Bain-de-soleil
(ρ = 1) which is a sun care product line (Padmanabhan and Png, 1997). In total, we study 8
problems, as shown in Table 2.8.

Assumptions

The LSP-BR1 with w ≥ 1, with and without lost sales have one general assumption as follows:

ρ = 1 (full return).-

In addition, the LSP-BR1 with w ≥ 1 and lost sales has the following assumption, without
loss of generality:

ltVt ≥ ptVt + at, ∀ t = 1, . . . , T .-

Moreover, for the LSP-BR1 with w = 1, we consider the following assumptions:

Batches with time-dependent sizes (Vt).-

pbt < pt, ∀ t = 1, . . . , T , this is a criterion of the buyback contract.-

In contrast, for LSP-BR1 with w > 1, we assume:

Constant batch size (V ).-

pbiw < pt, ∀t ∈ {(i− 1)w + 1, . . . , iw} and ∀i ∈ {1, . . . , Tw} with i ∈ N∗.-

Non-increasing (NI) lost sales costs are considered to �t the realistic conditions of perishable
or obsolete products.

-

Indeed, in general, the lost sales incur a cost corresponding to the lost revenue (selling price)
and another related to the loss of customer goodwill at a later time. In our work, we assume
that the lost sales cost is equal to the selling price, as the case of most research papers because
estimating the future impact on customers is typically hard. Usually, solving the LSP with the
goodwill loss concept in addition to revenue loss is achieved using heuristic methods, whereas in
the present work, our objective is to propose exact methods. The reader can refer to Chen and
Zhang (2017) to see that the lost demand due to the cost of customer goodwill has not received
much attention in the academic literature.
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2.2. DESCRIPTION OF THE LSP-BR1 WITH W ≥ 1, HYPOTHESES AND

MATHEMATICAL FORMULATION IN MILP

It is well known that the obsolete product loses its value through time because of rapid changes
of technology, and this usually results in a decrease in their selling price. For example, the mobile
phone loses a part of its primary selling price when there is an introduction of a new product.
For a perishable product, the retailer can o�er selling price discount over time (Goyal and Giri,
2001). All those observations allow us to consider NI lost sales costs in our assumptions.

We model LSP-BR1 with w ≥ 1 and lost sales, FTL cost structure (LSP-BLS,FTLR1 with
w ≥ 1) as a mixed integer linear program (MILP) taking into account all the features of the
problem. The latter is the most general case of our problem. The number of w-time intervals in
the planning horizon 1..T is denoted by N , with N =

⌊
T
w

⌋
and 1 ≤ N ≤ T

2 . The problem with
the fractional Tw is solved as the one with the integer T

w . The only di�erence with the fractional
T
w is the last interval being smaller than the others. We consider that at the end of each period
iw with 1 ≤ i ≤ N , the retailer returns the quantity qiw to the supplier. The total cost of the
related problem depends on the decision of when and how much quantities to order, to return
to the supplier, to lose and to store. The MILP for the LSP-BLS,FTLR1 with w ≥ 1, de�ned by
(2.1)-(2.10) and denoted as PBR1 is given below, whose objective is to minimize the total cost C
of setup, procurement, inventory and shortage taking into account return revenues.

PBR1



min C =
∑T
t=1(ftyt + (ptxt + atAt) + htst + ltLt − pbtqt) (2.1)

s.t. xt + st−1 = dt − Lt + st + qt ∀t = 1, . . . , T (2.2)

qt = 0 ∀t = 1, . . . , T (2.3)

t 6= iw with

i = 1, . . . , N

siw = 0 ∀i = 1, . . . , N (2.4)

s0 = 0 (2.5)

Lt ≤ dt ∀t = 1, . . . , T (2.6)

xt ≤ d
∑T

j=t dj

Vt
eVtyt ∀t = 1, . . . , T (2.7)

xt ≤ AtVt ∀t = 1, . . . , T (2.8)

xt, st, qt, Lt ∈ R+ ∀t = 1, . . . , T (2.9)

At ∈ N, yt ∈ {0, 1} ∀t = 1, . . . , T (2.10)

Constraints (2.2) are the balancing constraints linking inventory, ordering quantity, returned
quantity, demand and lost sales quantities for all periods. In Constraints (2.3), no returns of
unsold goods are permitted for the periods di�erent from iw. In every w periods, we do not talk
about stored goods but rather about returned goods, that's why Constraints (2.4) ensure that
the stock levels are equal to zero for those periods. Therefore, our problem is decomposed into N
independent problems with these constraints. Constraint (2.5) provides the initial inventory value
as zero owing to problem simpli�cation. Constraints (2.6) make sure that any amount of unmet
demand Lt in period t cannot exceed the demand dt of that period. Constraints (2.7) ensure
the setup variable generation in which the procurement variable cannot exceed the maximum
quantity purchased from that period till T . Constraints (2.8) are for the batch replenishment
which means that there are su�cient pallets containing the product quantity in each period. The
remaining constraints (2.9) and (2.10) are nonnegativity, integrality and binary constraints on
the decision variables.
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CHAPTER 2. LSP-BR1 WITH W ≥ 1 AND LOST SALES

2.3 LSP-BR1 without lost sales

The unused items are returned to the supplier, without lost sales, at the end of each period iw
with i = 1, . . . , N , N = T

w , and 1 ≤ w ≤ T . We suppose, without loss of generality that N
is integer, because if it is not, this problem is solved in the same way as the one with T

w ∈ N.
Therefore, there areN independent problems to solve related to each subproblem J(i−1)w+1, iwK
∀i = 1, . . . , N (see Figure 2.1). We optimize each subproblem as J1, wK. The total cost of the
initial problem is computed as the sum of these N independent problems' costs.

Figure 2.1: The N intervals of our problem (illustration for w = 5)

For the return policy w = 1, the left-over items are sold to the supplier at the end of each
period t, thus, there is no remaining stock at retailer level over the whole horizon (st = 0, t =
1, . . . , T ). Note that without any stock linking the periods, we can no more call this problem as
"lot sizing". Indeed, there are T independent problems to solve, one separate problem for each
period t, t = 1, . . . , T to optimize. Thus, in the following, we denote this latter as single period
problem, SP -BR1, instead of LSP-BR1 with w = 1. Furthermore, we consider in this return
policy that we have a full return with time-dependent batch sizes, and a unit return revenue
lower than a unit procurement cost in every period.

For the return policy w > 1, we have N independent problems to solve with 1 ≤ N ≤ T
2 .

Besides, we restrict ourselves to the case with stationary batch size in order to propose exact
polynomial time algorithms. Note that Akbalik and Rapine (2013) show that the uncapacitated
batch lot sizing problem with time-dependent batch sizes is NP-hard if any one of the cost
parameters (setup, �xed cost per batch, unit procurement cost or unit inventory holding cost)
is allowed to be time-dependent. Thus, our problem is also NP-hard for the case with time-
dependent batch sizes. Besides, in practical cases, the batch sizes do not really vary from one
period to another. In the subproblem J1, wK, we also consider that the return revenue pbw in
period w is strictly less than all the procurement costs pt ∀t ∈ {1, . . . , w} to protect the supplier.
We also consider the full return.

We study the four sub-cases, namely: SP -BR1 with only full batches, LSP-BR1 with only
full batches and w > 1, SP -BR1 with FTL cost structure and �nally LSP-BR1 with FTL cost
structure and w > 1.

2.3.1 Single Period problem-BR1 with only full batches (SP-BOFBR1)

In PBR1 , we set w = 1, lt = +∞, ∀t = 1, . . . , T . Thus, we have to return unused products at the
end of each ordering period. Besides, we replace Constraints (2.3) with qt ≥ 0,∀t = 1, . . . , T ,
Constraints (2.4) with st = 0,∀t = 1, . . . , T and Constraints (2.8) with xt = AtVt,∀t = 1, . . . , T .
Consequently, we obtain the SP -BOFBR1. We state an important dominance property of this
problem.
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2.3. LSP-BR1 WITHOUT LOST SALES

Property 2.1. An optimal plan π∗ orders the positive quantity x∗t = d dtVt eVt in every period
t ∈ {1, . . . , T}.

Proof. The procurement quantity in period t is provided in only full batches in a feasible plan
to satisfy the demand dt. By our model assumption, the gross marginal procurement cost after
returning the unused products (pt− pbt) is positive for each period. Hence, all these features give
an optimal procurement quantity of d dtVt eVt.

In the SP -BOFBR1, the retailer returns the surplus qt = d dtVt eVt − dt to the supplier at the
end of t. It is then easy to compute the total ordering cost without any optimization process as
follows:

C ∗BR1,OFB,w=1 =

T∑
t=1

(ftd
dt

dt + 1
e+ ptd

dt
Vt
eVt + atd

dt
Vt
e − pbt(d

dt
Vt
eVt − dt))

This cost is constant since it depends only on known cost parameters and dt, Vt values. It
is easy to see that a linear time algorithm in O(T ) solves this planning problem to optimality.
This consists in determining x∗t by scanning each t in {1, . . . , T} to have x∗t = d dtVt eVt.

2.3.2 LSP-BR1 with only full batches and w > 1 (LSP-BOFBR1 with w > 1)

In PBR1 , we assume lt = ∞, Vt = V , ∀t = 1, . . . , T , and we modify Constraints (2.8) by
xt = AtV,∀t = 1, . . . , T to obtain the LSP-BOFBR1 with w > 1. Recall that the N independent
problems are separately solved in order to compute the total optimal cost of LSP-BOFBR1 with
w > 1 by summing up individual costs of subproblems J(i − 1)w + 1, iwK, i = 1, . . . , N . In
what follows, we only consider how to solve the subproblem J1, wK which can be applied to all
subproblems. Li et al. (2004) study the LSP with batch ordering, time varying cost parameters
and backlogging where the production quantity in each period is limited to a multiple of constant
batch size V . The authors propose an algorithm that runs in O(T 2) time which is then lowered
to O(T log(T )) time through Monge matrices. In LSP-BOFBR1 with w > 1, the backlog is not
allowed and the buyback contract is considered. Notice that we use a solution algorithm very
close to that proposed by Li et al. (2004) with additional return quantities.

The idea of the algorithm is to detect the replenishment periods for determining the optimal
total cost of J1, wK. Between two replenishment periods i and j, we have to satisfy the demands
without backlogging nor lost sales taking into consideration the stock levels at the beginning of
period i and at the end of period j. We de�ne the following notations, similar to the ones in Li
et al. (2004) which will be used in our approach:

Di,j : Cumulative demand from period i to period j if i ≤ j.

Di,j =

{ ∑j
k=i dk i ≤ j ∀i,∀j ∈ {1, . . . , w}

0 i > j

Rj : Minimum ending inventory level of period j if we order in period 1 the minimal number of

batches dD1,j

V e to cover the demand from period 1 to period j. For every j, we have 0 ≤ Rj ≤ V .

R0 = 0

Rj = dD1,j

V eV −D1,j ∀j ∈ {1, . . . , w}
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CHAPTER 2. LSP-BR1 WITH W ≥ 1 AND LOST SALES

For j = 1, 2, . . . , w−1, the ending inventory level of period j has the following form: sj = Rj+αjV
with αj ∈ N.

We now cite two suitable dominance properties for this problem.

Property 2.2. There exists an optimal solution such that, for any replenishment period j,
the ending inventory value of period j − 1 is equal to Rj−1 with sj−1 = Rj−1 and αj−1 = 0,
∀j = 1, . . . , T .
Property 2.2. is a special case of Property 2 stated in Li et al. (2004).

Proof. If j is a replenishment period, then the procurement cost of one batch at j (pjV +aj) is less
than the one at a previous ordering period t (ptV +at) plus the inventory cost of one batch from
the beginning of period t to the beginning of period j (

∑j−1
k=t hkV ). Hence, the retailer should not

procure extra batches before period j (for example period t) in order to satisfy the demands after
j (j included). The quantity

∑j−1
t=1 xt is ordered in only full batches to satisfy only the demands

d1, d2, . . . , dj−1 without backlogging nor lost sales. Thus, we obtain
∑j−1

t=1 xt = dD1,j−1

V eV and

sj−1 = dD1,j−1

V eV −D1,j−1 = Rj−1.

aaa
Property 2.3. In any optimal policy, the returned quantity of unused products at the end of
period w to the supplier is qw = Rw.

Proof. The objective of LSP-BOFBR1 with w > 1 is the minimization of the total cost of setup,
procurement, inventory and shortage taking into account return revenues such as pbw < pt,
∀t ∈ {1, . . . , w}. Therefore, we must acquire a minimum number of batches to satisfy the
demand from period 1 to the last period w. It means that

∑w
j=1 xj = dD1w

V eV . The returned
quantity is obtained as follows: qw =

∑w
j=1 xj −D1w, so we have qw = Rw.

We will propose an algorithm which solves the LSP-BOFBR1 with w > 1 by using Proper-
ties 2.2 and 2.3. The idea is to compute the optimal cost Cj satisfying the demand of periods
1, 2, . . . , j, given that period j + 1 is a replenishment period with 1 ≤ j ≤ w − 1 (sj = Rj), and
j is a return period with j = w (sw = 0 and qw = Rw). An O(w2) time dynamic programming
algorithm (see Figure 2.2) is presented as follows in order to compute the optimal total cost Cw
of the subproblem J1, wK:

Recurrence relation. For j = 1, 2, . . . , w,

Cj = min
0≤i<j

{
Ci + fi+1 + (pi+1 +

ai+1

V
)(Rj +Di+1,j −Ri) +Hi+1,j+1

}

Boundary condition. C0 = 0
Objective. Cw

In this relation, the periods i+ 1 and j + 1 are consecutive ordering periods. The number of
batches acquired between periods i+1 and j can be easily computed because we know the ending
inventory level of period i which is equal to Ri, and the one of period j which is maintained at
Rj . We add to the ordering cost at period i+ 1, the total holding cost Hi+1,j+1 from the end of
period i+ 1 up to the beginning of period j + 1 knowing that there is no replenishment between
period i+ 2 and period j, and for 0 ≤ i < j ≤ w− 1 we have sj = Rj and sw = 0, and for j = w
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2.3. LSP-BR1 WITHOUT LOST SALES

Figure 2.2: Recurrence relation of LSP-BOFBR1 with w > 1

we have qw = Rw. All Hi+1,j+1 values can be obtained recursively in O(w2) time as follows with
|Hw+1,w+1| representing the return revenues in period w:

Hi+1,j+1 = Hi+2,j+1 + hi+1(Di+2,j +Rj) if 0 ≤ i < j ≤ w
Hj+1,j+1 = 0 if 1 ≤ j ≤ w − 1
Hw+1,w+1 = −pbwRw if j = w

Since there are T
w independent problems, the complexity of the whole LSP-BOFBR1 with

w > 1 is computed in O(Tw) time with 2 ≤ w ≤ T which is less than the O(T 2) time algorithm
of Li et al. (2004) because of the integration of buyback contract into LSP. Now, if we use
the Monge matrices proposed by Li et al. (2004), which is very hard to apply, we can solve
LSP-BOFBR1 with w > 1 in O(T logw) time.

2.3.3 SP-BR1 with FTL cost structure (SP-BFTLR1)

Compared to the SP -BOFBR1, we only omit the OFB assumption. We present an important
optimality property of this problem.

Property 2.4. The optimal ordered quantity x∗t is exactly the demand dt in every period
t.

Proof. The demand dt should be entirely satis�ed and we have the buyback assumption pt > pbt
which means that, in an optimal policy one will not order a unit uselessly to turn it back again
to the supplier. Then, the solution x∗t can only be the demand dt.

In the SP -BFTLR1, there is, thus, never a surplus at the end of return periods, which means
that qt = 0, ∀t = 1, . . . , T . The total ordering cost of the SP -BFTLR1 (C ∗BR1,FTL,w=1) is a
constant, which is given as follows:

C ∗BR1,FTL,w=1 =
T∑
t=1

(ftd
dt

dt + 1
e+ ptdt + atd

dt
Vt
e)

One can obtain the optimal plan using a linear time algorithm by assigning to x∗t for each t
in {1, . . . , T} the demand dt.
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2.3.4 LSP-BR1 with FTL cost structure and w > 1 (LSP-BFTLR1 with w > 1)

The LSP-BFTLR1 with w > 1 is the general model of PBR1 with constant batch size and without
lost sales. We again solve each subproblem J(i−1)w+1, iwK, for all i ∈ {1, . . . , N} as previously.
We assume a linear full-truck-load (FTL) cost function with linear variable procurement costs.
Li et al. (2004) develop an O(T 3 log T ) time algorithm for the dynamic lot sizing with fractional
batch ordering (LSP-B) and backlogging. The authors assume non-decreasing concave holding,
backlogging, and Truck-Load (TL) freight cost functions and linear variable procurement costs.
Akbalik and Rapine (2018) study a similar LSP-B but without backlogging. They consider
linear holding costs, but a TL cost function with concave variable costs. Thereafter, the authors
propose an O(T 4) time algorithm for LSP-B without backlogging, but with concave procurement
costs being more general than that considered that of Li et al. (2004).

We decided to adapt the idea of the Akbalik and Rapine's (2018) algorithm to our subproblem
J1, wK with buyback contract, because it is much simpler to implement and to understand. It
will also be used in Section 2.4.4 as one of the solutions of our problem with lost sales and batch
ordering. As de�ned in the literature, a period i is a regeneration period if it has a null entering
stock level (si−1 = 0). Furthermore, (u, v) is called a subplan if periods u and v are consecutive
regeneration periods such that u < v and for each period t = u, . . . , v − 2, we have st > 0. The
idea of the algorithm is to compute the optimal cost C (u, v) of each possible subplan (u, v) to
satisfy the demand in periods u, u + 1, . . . , v − 1, such that 1 ≤ u < v ≤ w + 1 and �nally to
compute the total optimal cost using a Shortest Path (SP) algorithm. De�ne Cv−1 as the optimal
total cost to satisfy the demand in periods 1, 2, . . . , v − 1 given that period v is a regeneration
period (1 ≤ v ≤ w + 1). The following SP algorithm computes the total cost Cw:

For v = 2, 3, . . . , w + 1, Cv−1 = min1≤u<v {Cu−1 + C (u, v)} such that C0 = 0 (2.11)

The running time of the above SP algorithm is O(w2) if all the C (u, v) values have been
predetermined. Akbalik and Rapine (2018) show that �nding the minimal cost value of a subplan
(u, v) is performed in time complexity O(w2). This implies that the subproblem J1, wK is solvable
in O(w4) time and LSP-BFTLR1 with w > 1 in O(Tw3) time.

In each subplan (u, v), t and r are two ordering periods such that u ≤ t < r ≤ v. If there
is at most one ordering period between t and r, then the set {t, t+ 1, . . . , r − 1} is called a
replenishment cycle. We denote by [t, r]u,v such a cycle. The calculation of C (u, v) requires
to decompose the subplan (u, v) into di�erent forms of replenishment cycles [t, r]u,v. Akbalik
and Rapine (2018) (pages 9�11, Appendix A) describe how the optimal cost L [t, r]u,v of each
replenishment cycle [t, r]u,v such that t and r are full batch ordering periods can be computed
in constant time. In our study, we explain how to compute the following costs by presenting a
numerical example:

• The optimal cost L [u, t]u,v such that u is a fractional batch ordering period with 0 <
xu < V , t is a full batch ordering period and u and t are consecutive replenishment periods
which means that no other ordering period exists between u and t.

• The optimal cost L [t, r]u,v such that t is a fractional batch ordering period with xt ≥ V ,
r is a full batch ordering period and t and r are consecutive replenishment periods.

• The optimal cost C (u, v).
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2.3. LSP-BR1 WITHOUT LOST SALES

De�nitions and properties

For the LSP-BFTLR1 with w > 1, before de�ning the dominance properties related to batch
ordering, we present the major property related to the buyback contract.

Property 2.5. The quantity returned to the supplier at the end of period w is null (q∗w = 0).

Proof. Suppose we have an optimal policy π
′
in which we return a positive quantity q

′
w > 0

in period w. In the subproblem J1, wK, we consider that there are n replenishment periods
t1, t2, . . . , tn−1, tn with 1 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn ≤ w.
We de�ne x

′
tn any positive quantity purchased in the last ordering period tn. Let χ(tn) =

min{x′tn , q
′
w}.

In order to obtain another feasible policy, we will make some modi�cations from period tn
till period w. We decrease x

′
tn to x

′
tn − χ(tn) and A

′
tn to A

′
tn − m(tn) with m(tn) ∈ N and

m(tn) = dx
′
tn
V e − d

x
′
tn
−χ(tn)

V e. We also decrease the inventory levels s
′
g to s

′
g −χ(tn) of the periods

g = tn, . . . , w − 1, and the returned quantity q
′
w to q

′
w − χ(tn). This modi�ed solution remains

feasible, because, in π
′
, the initial inventory levels of the periods g between tn and w − 1 are all

greater than or equal to χ(tn). After the modi�cation, they all remain positive or null.
This change decreases the total cost of the policy π

′
by an amount of (ptn−pbw)χ(tn) +m(tn)atn +∑w−1

g=tn
hgχ

(tn), because of the buyback assumption (pt > pbw ∀t ∈ {1, . . . , w}). We obtain a

modi�ed solution with a return quantity q
′
w−χ(tn). If χ(tn) = q

′
w, then the new (modi�ed) policy

has a null return verifying Property 2.5. Otherwise (χ(tn) = x
′
tn), in the new policy, the return

quantity is positive but less than q
′
w and the period tn−1 becomes the last ordering period. In

this case, we repeat the same procedure above in order to obtain a new policy with a zero return
quantity and having a lower cost.

aaa
Property 2.6. (Lee et al., 2003 ) There is an optimal policy π∗, in which, there exists at most
one fractional batch ordered in any of its subplans. It means that, for a subplan (u, v), there
is at most one fractional batch replenished among periods u, u+ 1, . . . , v − 1. In Figure 2.3, we
suppose that Du,v−1 − bDu,v−1

V cV > 0. The fractional batch is procured either with other full
batches or alone.

Figure 2.3: Possibilities of optimal planning of (u, v) in LSP-BFTLR1 with w > 1

Note that Lee et al. (2003) are the pioneer having stated the same property for their model.
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Property 2.6 can be proven by using the proof of Property 4, in Li et al. (2004). In the following,
we introduce the de�nition of a large ordering period which is proposed by Akbalik and Rapine
(2018) that will be used in Property 2.7.

De�nition 2.1. (Akbalik and Rapine, 2018, page 9) An ordering period t is called a large
period if the retailer procures at least one full batch (i.e. xt ≥ V ), and is called small (xt < V )
otherwise (see Figure 2.3).

By Property 2.6 and De�nition 2.1, there is at most one small ordering period over the sub-
plan (u, v), which corresponds to the ordering of a fractional batch. Nevertheless, the period of
fractional batch ordering can be also large if this fractional batch is ordered in addition to full
batches. We have the following property which is used to solve the LSP-B �rst stated in Akbalik
and Rapine (2018).

Property 2.7. (Akbalik and Rapine, 2018, page 10) Consider that the periods t and r are two
consecutive ordering periods. In an optimal policy π∗, if both periods are large, then sr−1 < V .
In other words, if sr−1 ≥ V then either the period t is large and r is small, or vice versa.
We present a di�erent way to prove Property 2.7 than the one proposed by Akbalik and Rapine
(2018) knowing that we consider unit procurement costs.

Proof. Consider an optimal policy π
′
in which for two consecutive and large ordering periods t

and r, we have s
′
r−1 ≥ V . The policy π

′
involves, for any period k between t and r − 1, a large

stock level which means that s
′
k ≥ V .

If we increase x
′
t by V and decrease x

′
r by V without changing the procurement quantities of the

other periods, the modi�ed solution remains feasible because the period r in policy π
′
is large.

The �rst new total cost will be increased by an amount of

∆(′′) = (pt +

r−1∑
k=t

hk +
at
V
− pr −

ar
V

)V

If we decrease x
′
t by V and increase x

′
r by V, the modi�ed solution keeps its feasibility because

we only anticipate the production of V units from the large period t to r with inventory levels
s
′
k being greater than or equal to V for k = t, . . . , r− 1. However, the second new total cost will
be increased by an amount of

∆(′′′) = (pr +
ar
V
− pt −

r−1∑
k=t

hk −
at
V

)V

By optimality of the policy π
′
, we have ∆(′′) ≥ 0 and ∆(′′′) ≥ 0. Note that ∆(′′) = −∆(′′′),

therefore, ∆(′′) = ∆(′′′) = ptV +
∑r−1

k=t hkV +at−prV −ar = 0 which means that buying a batch
in period t and storing it until the period r have the same cost as purchasing it in period r. Now,
we distinguish two cases based on the quantity ordered in period r:

Case 1. x
′
r = bx

′
r
V cV = dx

′
r
V eV , then increasing x

′
t to x

′
t + x

′
r and decreasing x

′
r to 0, maintain

the feasibility of the solution and lower the total cost C (π
′
) by fr. Hence, the solution of the

policy π
′
cannot be optimal - a contradiction.

Case 2. x
′
r = bx

′
r
V cV + ε, with ε < V then x

′
t = bx

′
t
V cV = dx

′
t
V eV according to Property 2.6. At

�rst, we consider the alternate policy π(1) ordering bx
′
r
V cV + ε additional units in period t, and
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nothing in period r, that is, x(1)
t = x

′
t + bx

′
r
V cV + ε and x(1)

r = 0. Policy π(1) is clearly feasible.
The total cost C (π(1)) is computed as a function of the total cost C (π

′
), as follows:

C (π(1)) = C (π
′
)− (fr − (1− ε

V
)(at − ar))

If fr > (1 − ε
V )(at − ar), then C (π(1)) < C (π

′
) and the solutions x

′
t and x

′
r of the policy π

′

cannot be optimal - a contradiction.
If fr = (1 − ε

V )(at − ar), then at ≥ ar and C (π(1)) = C (π
′
), thus there is an another optimal

policy (π(1)) that satis�es the property.
If fr < (1 − ε

V )(at − ar), then at > ar, and the policy π(1) can not be optimal. Secondly, we

consider the alternate policy π(2), in which bx
′
r
V cV additional units are ordered in period t, and

bx
′
r
V c batches less in period r, that is, x

(2)
t = x

′
t+b

x
′
r
V cV and x(2)

r = ε. Policy π(2) remains feasible.
The total cost C (π(2)) is equal to the total cost C (π

′
), C (π(2)) = C (π

′
). The optimal solution

of π
′
can be modi�ed in such a way that the period t remains large but the period r becomes

small.
aaa

Property 2.8. If there is a small ordering period t̄ between two large consecutive ordering
periods t and r (t < t̄ < r), then sr−1 < 2V .

Proof. The same analysis of the proof of (Property 2.7, case 1) is carried out, knowing that by
considering s

′
r−1 ≥ 2V , we obtain s

′
i > V for i = t, . . . , t̄−1 and s

′
j ≥ 2V for j = t̄, . . . , r−1, and

that the quantities ordered in periods t and r are multiples of V according to Property 2.6.

aaahddddddddddh
How to compute L [t, r]u,v in the subplan (u, v)

In a given subplan (u, v), we need to compute the cost L [t, r]u,v to satisfy the demands
dt, dt+1, . . . , dr−1 of the replenishment cycle [t, r]u,v in di�erent situations. Recall that, there is
at most one fractional batch occurring over the time horizon u, . . . , v − 1, so we denote by x̄u,v
the fractional quantity ordered in the incomplete batch such that x̄u,v = Du,v−1 − bDu,v−1

V cV
and by t̄u,v the fractional ordering period such that u ≤ t̄u,v < v. The period t̄u,v can be a large
or a small ordering period. Thereafter, we distinguish 3 cases according to the criterion and
the position of t̄u,v in (u, v). In the �rst case, the subplan (u, v) has a small period t̄u,v such
that t̄u,v > u. In the second case, t̄u,v remains small but we have t̄u,v = u. In the last case,
t̄u,v is large. In each case, there are di�erent situations. Finally, we can have 8 possible values

of the cost L [t, r]u,v (i) with i = 1, . . . , 8 according to di�erent cases (see Table 2.2). Refer to
Figure 2.4 in order to view the di�erent situations of [t, r]u,v and (u, v).

All the ending inventory levels must be calculated for the periods u, u+ 1, . . . , v− 2 because
we have su,vu−1 = su,vv−1 = 0. In order to calculate all the values of L [t, r]u,v (i), for 1 ≤ u ≤ t <
r ≤ v ≤ w + 1 and i = 1, . . . , 8, we discern three cases composed of sub-cases depending on the
nature and the place of the fractional ordering period t̄u,v. All these values can be computed in
O(w4) time.

Case 1: t̄u,v is small and t̄u,v > u (Akbalik and Rapine, 2018 )
In this case, the periods t and r are large consecutive ordering periods with t < r. We describe
how the optimal cost L [t, r]u,v can be determined by positioning t̄u,v before, inside or after the
cycle [t, r]u,v. We do not rewrite the explicit equations presented in Akbalik and Rapine (2018).
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Table 2.2: Costs L [t, r]u,v in di�erent situations

Cases of

(u, v)
Di�erent situations of [t, r]u,v

Possible

costs of

[t, r]u,v

t̄u,v is small

t̄u,v > u

t̄u,v < t < r with t and r are large and

consecutive ordering periods

su,vt−1 < V L [t, r]u,v (1)

V ≤ su,vt−1 < 2V L [t, r]u,v (2)

t < t̄u,v < r with t and r are large

consecutive ordering periods

su,vr−1 < V L [t, r]u,v (3)

V ≤ su,vr−1 < 2V L [t, r]u,v (4)

t < r < t̄u,v with t and r are large and consecutive ordering periods L [t, r]u,v (5)

t̄u,v is small

t̄u,v = u
u < t with 2 consecutive ordering periods u and t, and t is large L [u, t]u,v (6)

t and r are large and consecutive ordering periods with u < t < r L [t, r]u,v (7)

t̄u,v is large t = t̄u,v and, t and r are large and consecutive ordering periods with t < r. L [t, r]u,v (8)

Figure 2.4: Di�erent situations of [t, r]u,v and (u, v)

Sub-case 1.1: t̄u,v < t
In this sub-case, the large ordering periods t and r are consecutive. Using Property 2.7 and the
fact that the quantity x̄u,v is ordered before t, the ending inventory level su,vr−1 can be written as:

su,vr−1 =

{
dDu,r−1−x̄u,v

V eV − (Du,r−1 − x̄u,v) if Du,r−1 − x̄u,v > 0 (2.12)
0 otherwise

The stock level su,vt−1 depends on the nature of the preceding ordering period k just before t.

If k is large, then the Equation (2.12) can be used for su,v (1)
t−1 after replacing r with t.

If k is small (k = t̄u,v), then there is at least a large ordering period between u and k − 1 and

we obtain s
u,v (2)
t−1 < 2V by using Property 2.8. In this case, the stock level su,v (2)

t−1 takes two
possible values. If the quantity x̄u,v ordered in period k is not used to satisfy a part of demands

dk, dk+1, . . . , dt−1, then we obtain the �rst value su,v (2 ′)
t−1 ≥ V :

s
u,v (2 ′)
t−1 =

{
V + dDu,t−1−x̄u,v

V eV − (Du,t−1 − x̄u,v) if Du,t−1 − x̄u,v > 0
+∞ otherwise

Otherwise, if the quantity x̄u,v is ordered to avoid the shortage between the periods k, k+1, . . . , t−
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1 and subsequently to satisfy a demand before t, then we obtain the second value su,v (2 ′′)
t−1 < V

and su,v (2 ′′)
t−1 = s

u,v (1)
t−1 . We suppose that su,v (2)

t−1 = s
u,v (2 ′)
t−1 .

If t̄u,v is placed before the replenishment cycle [t, r]u,v such that t and r are large and con-
secutive ordering periods, then we have two possible values for the cost L [t, r]u,v according to
the two values of su,vt−1. We de�ne H [t, r]u,v as the total holding cost from the end of t until
the beginning of r if the entering stock level in period r is su,vr−1, and assuming that there is no
acquisition taking place in periods t + 1, . . . , r − 1, with t < r. Hence, all H [t, r]u,v values can
be obtained recursively in O(w4) time by the following equations:{

H [t, r]u,v = H [t+ 1, r]u,v + ht(Dt+1,r−1 + su,vr−1) if t < r
H [t, t]u,v = 0

Thereafter, we give the formula of L [t, r]u,v (i) which is de�ned as the cost of the replenishment
cycle [t, r]u,v (i) with two large and consecutive ordering periods t and r and t̄u,v < t, for i ∈ {1, 2},
u ≤ t < r ≤ v and evaluated in O(w4) time as follows:

L [t, r]u,v (i) =


ft + pt(Dt,r−1 + su,vr−1 − s

u,v (i)
t−1 ) if Dt,r−1 + su,vr−1 − s

u,v (i)
t−1 ≥ V (2.13)

+atd
Dt,r−1+s

u,v
r−1−s

u,v (i)
t−1

V
e+H [t, r]u,v

+∞ otherwise

Sub-case 1.2: t < t̄u,v < r
There is a small ordering period between t and r, so t < r − 1. In this sub-case, all the ordering
periods before t are large that is why there is only one value of su,vt−1 obtained by the �ow
conservation of Constraints (2.2) as follows:

su,vt−1 = dDu,t−1

V
eV −Du,t−1 (2.14)

However, the stock level at the beginning of period r, su,vr−1 can take two values because the small
period t̄u,v is just before r. Thus, we obtain either su,vr−1 < V or V ≤ su,vr−1 < 2V , as discussed
before.

If su,vr−1 < V , then the number of full batches ordered in period t, xu,v (1)
t and the stock su,vt−1

cannot satisfy the sum of the demands dt, dt+1, ..., dr−1 (with x
u,v (1)
t +su,vt−1 < Dt,r−1). Therefore,

the fractional batch ordered in period t̄u,v is used to complete the demand satisfaction in the
replenishment cycle [t, r]u,v. Therefore, we obtain:

x
u,v (1)
t =

⌊
Dt,r−1 − su,vt−1

V

⌋
V

Hence, we must, on the one hand, search for the possible positions of t̄u,v in the cycle [t, r]u,v

by computing the �rst period λ [t, r]u,v where a shortage occurs if the fractional quantity is not
ordered, and, on the other hand, determine the position of t̄u,v among its possible positions
{t+ 1, . . . , λ [t, r]u,v} by seeking the minimal ordering cost W (t+ 1, λ [t, r]u,v) to order x̄u,v. For
the expressions of λ [t, r]u,vand W (t+ 1, λ [t, r]u,v), refer to Akbalik and Rapine (2018), page 10.
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Let H
′
[t, r]u,v denote the total holding cost from the end of period t until the beginning of

period r if the total acquisition quantity in [t, r]u,v is ordered in t and equal to xu,v (1)
t expressed

above. Then,{
H
′
[t, r]u,v = H

′
[t+ 1, r]u,v + ht(x

u,v (1)
t − (dt − su,vt−1)) if t < r − 1 (2.15)

H
′
[t, t]u,v = 0

The values ofH
′
[t, r]u,v can be obtained in O(w4) time. This implies that the cost L [t, r]u,v (3) of

the replenishment cycle [t, r]u,v (3) with two large consecutive ordering periods t and r, t < t̄u,v < r
and su,vr−1 < V , for u ≤ t < r − 1 ≤ v − 1 is as follows:

L [t, r]u,v (3) =


(ft + (pt + at

V
)x
u,v (1)
t +H

′
[t, r]u,v ifDt,r−1 − su,vt−1 ≥ V

+W (t+ 1, λ [t, r]u,v)) & x
u,v (1)
t + su,vt−1 + x̄u,v ≥ Dt,r−1

+∞ otherwise

The time required to precompute those costs is bounded by O(w4) for the subproblem J1, wK.

If V ≤ su,vr−1 < 2V , then the number of full batches ordered in period t satis�es all the de-

mands dt, dt+1, ..., dr−1 (xu,v (2)
t + su,vt−1 ≥ Dt,r−1), so we have:

x
u,v (2)
t =

⌈
Dt,r−1 − su,vt−1

V

⌉
V

The fractional batch ordered in period t̄u,v is used to satisfy a demand after period r. Besides,
it is among the set {t+ 1, . . . , r − 1}. Its position is determined by computing the minimum
ordering cost W (t+ 1, r − 1) to order the fractional batch x̄u,v over the set cited before.

aaa
In Equation (2.15) of H

′
[t, r]u,v, we change the quantity xu,v (1)

t to xu,v (2)
t and we obtain another

total holding cost H
′′

[t, r]u,v which can be predetermined in O(w4).aaa
We denote by L [t, r]u,v (4) the minimum cost of the replenishment cycle [t, r]u,v (4) in the case
where t and r are two large consecutive ordering periods, t < t̄u,v < r and V ≤ su,vr−1 < 2V , for
u ≤ t < r − 1 ≤ v − 1:

L [t, r]u,v (4) =

{
ft + (pt + at

V
)x
u,v (2)
t +H

′′
[t, r]u,v +W (t+ 1, r − 1) if Dt,r−1 − su,vt−1 ≥ V

+∞ otherwise

We can compute all L [t, r]u,v (4) in O(w4) time.

Sub-case 1.3: r < t̄u,v
The small ordering period is placed after period r, thus the ordering periods before r are all large
in which the ordered batches are all full. That is why we can easily compute the values of the
entering stock levels su,vt−1 and su,vr−1 using Equation (2.14).

Let L [t, r]u,v (5) be the minimum total cost to satisfy the demands dt, dt+1, ..., dr−1 knowing that
the periods t and r are large, and consecutive ordering periods and r < t̄u,v. Then, L [t, r]u,v (5)

is obtained in the same way as L [t, r]u,v (1) using Equation (2.13) and switching the values of
su,vt−1 and su,vr−1.

Case 2: t̄u,v is small and u = t̄u,v
The subplan (u, v) is composed, at the beginning of one replenishment cycle [u, t]u,v (6), of two

44



2.3. LSP-BR1 WITHOUT LOST SALES

consecutive ordering periods u and t such that u is small and t is large. The quantity x̄u,v ordered
in period u is used to satisfy the demands du, du+1, ..., dt−1, if we have x̄u,v ≥ Du,t−1.

Hence, we must �rstly compute the minimum cost L [u, t]u,v (6) of replenishment cycle [u, t]u,v (6)

for u < t ≤ v:

L [u, t]u,v (6) =

{
fu + pux̄u,v + au +

∑t−1
k=u hk(x̄u,v −Du,k) if x̄u,v ≥ Du,t−1

+∞ otherwise

Secondly, we have the cost L [t, r]u,v (7) of replenishment cycle [t, r]u,v (7) situated just after
[u, t]u,v (6) such that t and r are large, and also are consecutive ordering periods, and the entering
stock level in period t is as follows:

su,vt−1 =

{
x̄u,v −Du,t−1 if x̄u,v −Du,t−1 ≥ 0
+∞ otherwise

Besides, the entering stock level in period r is determined by Equation (2.12). The equation of
L [t, r]u,v (7) is the same as Equation (2.13) by replacing the value of su,vt−1 with u+1 ≤ t < r ≤ v.
Thirdly, we have several costs of type L [k, i]u,v (1) of replenishment cycles [k, i]u,v (1) that are
computed directly by Equation (2.13) with r ≤ k < i ≤ v.

Case 3: t̄u,v is large
If t̄u,v = u, then the subplan (u, v) is composed of large ordering periods and the fractional

quantity is ordered at the beginning. For this reason, we just use the optimal costs L [t, r]u,v (1)

determined by Equation (2.13) with t = u, . . . , v − 1 and r = t+ 1, . . . , v.

If t̄u,v is the last ordering period in the subplan (u, v), then the fractional quantity is ordered

at the end of this subplan. Thus, we only need the optimal costs L [t, r]u,v (5) (see Sub-case 1.3)
with t = u, . . . , v − 1 and r = t+ 1, . . . , v.

If u < t̄u,v < b, with b being the last ordering period in (u, v), then the latter is composed
of three types of replenishment cycles. Firstly, we �nd several replenishment cycles of type
[k, i]u,v (5) explained in Sub-case 1.3 in which the fractional quantity is ordered after all the pos-
sible values of i. We use the costs L [k, i]u,v (5) with u ≤ k < i ≤ t ≤ v − 2. Secondly, we have
one replenishment cycle of type [t, r]u,v (8) such that t is a large fractional ordering period and r is
a large full batch ordering period with t < r ≤ v− 1. We need to compute the cost L [t, r]u,v (8)

expressed as Equation (2.13) such that the value of su,vt−1 is stated in Equation (2.14) and the one
of su,vr−1 is computed in Equation (2.12). Thirdly, there are many replenishment cycles of type

[l, j]u,v (1) cited in Sub-case 1.1 knowing that x̄u,v is ordered before r, where r ≤ l. We use the

costs L [l, j]u,v (1) with r ≤ l ≤ b < j ≤ v.

How to compute C (u, v)

We show the computation of C (u, v) with 1 ≤ u < v ≤ w + 1. After the calculation of all
the possible costs L [t, r]u,v (i) in the subplan (u, v) with i = 1, . . . , 8, we can now compute 6
possible values of the cost of subplan (u, v) according to di�erent situations (see Table 2.3 and
Figure 2.4).
We have 6 situations of the subplan (u, v):
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Table 2.3: Costs C (u, v) in di�erent situations

Di�erent situations of (u, v)
Possible

costs of

(u, v)

t̄u,v is small

u ≤ t < t̄u,v < r, t and r are 2

large consecutive ordering

periods

t̄u,v avoids a shortage between t and r
with r ≤ v C1(u, v)

t̄u,v ensures a part of demand for peri-

ods r and thereafter with r < v
C2(u, v)

t̄u,v = u C3(u, v)

t̄u,v is large

t̄u,v = u C4(u, v)
t̄u,v is the last ordering period in (u, v) C5(u, v)
u < t̄u,v < last ordering period in (u, v) C6(u, v)

Situation 1: We begin to de�ne C1(u, v) as the optimal total cost to satisfy the demand
in periods u, u + 1, . . . , v − 1, given that there is a small ordering period t̄u,v between two
large consecutive ordering periods t and r, and the quantity ordered in t̄u,v is consumed in

the replenishment cycle of type [t, r]u,v (3) with u ≤ t < r ≤ v. The subplan (u, v) in this
situation is composed of di�erent replenishment cycles. At the beginning, there are either several
replenishment cycles of type [t, r]u,v (5) or nothing. Afterwards, there is one replenishment cycle
of type [t, r]u,v (3). And next, there are either many replenishment cycles of type [t, r]u,v (1) or
nothing.

To determine the total cost, we de�ne Bu,v
j as the optimal cost to satisfy the demands du,

du+1, . . . , dj , such that u, j + 1 and the ordering periods between them are large. In addition,
the fractional period t̄u,v is situated after j + 1. The following dynamic programming algorithm
determines the cost Bu,v

j :

Recurrence relation. For j = u, u+ 1, . . . , v − 1,

Bu,v
j = min

u−1≤i<j

{
Bu,v
i + L [i+ 1, j + 1]u,v (5)

}
Boundary condition. Bu,v

u−1 = 0
Objective. Bu,v

j

We also indicate Au,vt,k as the optimal cost to satisfy the demands dt, dt+1, ..., dk−1, such that
t and k are large ordering periods, t̄u,v (small) < t, the ordering period just before t is either
large or small with su,vt−1 < V , and the ones after t are large. The objective is to compute the
cost Au,vt,v which is obtained by the following dynamic program:

Recurrence relation. For t = u, . . . , v − 1 and for k = t+ 1, . . . , v,

Au,vt,k = min
t≤i<k

{
Au,vt,i + L [i, k]u,v (1)

}
Boundary condition. Au,vt,t = 0
Objective. Au,vt,v

Hence,

C1(u, v) = minu−1≤i<v−2{Bu,vi + min{L [i+ 1, v]
u,v (3)

; mini+3≤l≤v−1{L [i+ 1, l]
u,v (3)

+Au,vl,v }}}
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Situation 2: De�ne C2(u, v) as the optimal total cost to satisfy the cumulative demand
Du,v−1, knowing that t̄u,v is between two large consecutive ordering periods t and r, and x̄u,v
is ordered to meet a part of demand situated after the replenishment cycle of type [t, r]u,v (4)

(V ≤ su,vr−1 < 2V ) with u ≤ t < r < v.
The subplan (u, v) in Situation 2 is composed of many replenishment cycles. At �rst, there are

either replenishment cycles of type [t, r]u,v (5) or nothing. After that, there is one replenishment
cycle of type [t, r]u,v (4). Then, there is one replenishment cycle of type [t, r]u,v (2), and eventually,
there are either replenishment cycles of type [t, r]u,v (1) or nothing. Thus,

C2(u, v) = minu−1≤i<v−2{Bu,vi + mini+3≤l≤v−1{L [i+ 1, l]
u,v (4)

+ minl+1≤t≤v{L [l, t]
u,v (2)

+Au,vt,v }}}

Situation 3: For a given subplan (u, v) such that t̄u,v = u is small, we de�ne C3(u, v) as the

optimal total cost of subplan (u, v). One replenishment cycle of type [u, t]u,v (6) is the beginning
of (u, v) with t ≤ v. After that we can �nd one replenishment cycle of type [t, r]u,v (7). Finally,
there are either replenishment cycles of type [t, r]u,v (1) or nothing. The total cost of Situation 3
is presented as follows:

C3(u, v) = min{L [u, v]
u,v (6)

; minu+1≤k≤v−1{L [u, k]
u,v (6)

+ mink+1≤t≤v{L [k, t]
u,v (7)

+Au,vt,v }}}

Situation 4: De�ne C4(u, v) as the total optimal cost of (u, v) given that t̄u,v = u is large.

In this subplan, we �nd only the replenishment cycles of type [t, r]u,v (1). Therefore,

C4(u, v) = Au,vu,v

Situation 5: In a subplan (u, v) with the last and large ordering period t̄u,v, there are just

replenishment cycles of type [t, r]u,v (5). Hence, the cost C5(u, v) is obtained as follows:

C5(u, v) = Bu,v
v−1

Situation 6: De�ne C6(u, v) as the optimal total cost of (u, v) with a large fractional
ordering period, u < t̄u,v and t̄u,v is prior to the last ordering period. There are replenishment

cycles of type [t, r]u,v (5), one replenishment cycle of type [t, r]u,v (8) and replenishment cycles of
type [t, r]u,v (1). Then,

C6(u, v) = min
u≤i<v−2

{
Bu,v
i + min

i+2≤l≤v−1

{
L [i+ 1, l]u,v (8) +Au,vl,v

}}
After the calculation of all possible values of C (u, v) which can be computed in O(w4), the

latter is obtained as follows:
C (u, v) = min

1≤i≤6
{Ci(u, v)}

The aim is to compute the optimal cost Cw using the SP algorithm as mentioned in Equation
(2.11). Thus, it solves the subproblem J1, wK in O(w4) time and the LSP-BFTLR1 with w > 1
in O(Tw3).

Numerical example for LSP-BFTLR1 with w > 1

We present an illustrative example of the algorithm of LSP-BFTLR1 with w > 1. We consider
a time horizon of 4 periods in which the demands have to be satis�ed in full and/or fractional
batches of size V = 12. Table 2.4 contains the data on the demand, cost and revenue. In the
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Table 2.4: Demand, di�erent costs and revenue data

Period

t
dt ft pt at ht pbt

1 75 100 13 23 1 -
2 9 250 10 23 1 -
3 50 0 21 4 1 -
4 23 0 13 3 1 9

buyback contract considered in this example, we suppose that the unused items can be returned
to the supplier only at the end of period 4.
Although return is allowed for the unused products at the end of period 4, using Property 2.5, we
know that there is no return throughout the horizon under FTL cost structure. Table 3.1 shows
the optimal plan of our example indicating that there is one independent subproblem J1, 4K to
optimize. It is interesting to note that there are two subplans (1, 4) and (4, 5). In (1, 4), there
are a large ordering period (full) placed in period 1 and a small ordering period (fractional)
situated in period 3. Therefore, this subplan belongs to the Case 1 (especially the Sub-case 1.2)
by considering that the period 4 is a dummy large ordering period. We have s1,4

3 = 0 < V , thus
the optimal cost of the subplan (1, 4) is L [1, 4]1,4 (3). Concerning the subplan (4, 5), there is one
ordering period placed in period 4 which is large and fractional. Hence, we take into account the
Case 3 by considering that the periods 4 and 5 are large and consecutive ordering periods. The
optimal cost of the subplan (4, 5) is L [4, 5]4,5 (1).

Table 2.5: The optimal quantities of LSP-BFTLR1 with w > 1

Period

t
xt st qt At

1 132 57 0 11
2 0 48 0 0
3 2 0 0 1
4 23 0 0 2

2.4 LSP-BR1 with lost sales

In LSP-BR1 with w ≥ 1 and lost sales, demands can be partially or totally lost. More accurately,
lost sales involve allowing some orders not to be delivered if the total cost of ordering this demand
is prohibitively large. We also study the four sub-cases listed in Section 2.3 under the concept
of lost sales: SP -BR1 with lost sales and only full batches; LSP-BR1 with lost sales, only full
batches and w > 1; SP -BR1 with lost sales and FTL cost structure; and �nally LSP-BR1

with lost sales, FTL cost structure and w > 1. For these four sub-cases, we consider the same
assumptions mentioned in Section 2.3, and we add the lost sales assumption wlog: ltVt ≥ ptVt+at,
∀ t = 1, . . . , T . For the return policy w > 1, we consider non-increasing lost sales costs over time.
We recall that for w = 1, we solve T independent problems, each problem corresponding to one
period. For w > 1, there are N independent problems to address. Each problem is expressed as
J(i− 1)w + 1, iwK, ∀i = 1, . . . , N .
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2.4.1 SP-BR1 with lost sales and only full batches (SP-BLS,OFBR1)

The SP -BLS,OFBR1 is a special case of PBR1 . We �x w to 1 and we modify Constraints (2.3)
by qt ≥ 0,∀t = 1, . . . , T , Constraints (2.4) by st = 0, ∀t = 1, . . . , T and Constraints (2.8) by
xt = AtVt,∀t = 1, . . . , T . We demonstrate two important dominance properties for this problem.

Property 2.9. There is an optimal solution such that a non-negative quantity is returned
to the supplier in period t ∈ {1..T} if and only if the lost sales amount drops to zero in that
period. In our model, it is prohibited to have both (L∗t = 0 and q∗t = 0 if dtmod Vt 6= 0) or both
(L∗t > 0 and q∗t > 0).

Proof. Consider an optimal plan π
′
with either (L

′
t > 0 and q

′
t > 0) or (L

′
t = 0 and q

′
t = 0) in a

period t.

Case 1. If (L
′
t > 0 and q

′
t > 0), then, one can reduce L

′
t to L

′
t − min

{
L
′
t, q
′
t

}
and q

′
t to

q
′
t −min

{
L
′
t, q
′
t

}
, by retaining the solution's feasibility. This marks a decrease of the total cost

C
′
of the plan π

′
by (lt − pbt) min

{
L
′
t, q
′
t

}
. By the assumptions of buyback contract and lost

sales, we have lt > pbt . Therefore, the solution with L
′
t > 0 and q

′
t > 0 cannot be optimal - a

contradiction.
Case 2. If L

′
t = 0 and q

′
t = 0, then, x

′
t = dt according to Constraints (2.2). However, we have

a batch ordering problem, and hence this case is impossible when dt mod Vt 6= 0.

aaa
Property 2.10. The optimal policy π∗ orders a quantity x∗t which can take, in every period t,

one of the three following values: x∗(1)
t = 0, or x∗(2)

t = b dtVt cVt, or x
∗(3)
t = d dtVt eVt.

Proof. Suppose that there is an optimal policy π
′
with the optimal ordering quantity x

′
t such

that 0 < x
′
t < b dtVt cVt, or b

dt
Vt
cVt < x

′
t < d dtVt eVt or x

′
t > d dtVt eVt in a period t. In each interval, we

demonstrate the non optimality compared to x∗(1)
t , x∗(2)

t and x∗(3)
t .

Case 1. If 0 < x
′
t <

⌊
dt
Vt

⌋
Vt, then x

′
t = (

⌊
dt
Vt

⌋
−λ)Vt, A

′
t =

⌊
dt
Vt

⌋
−λ, q′t = 0 by using Property

2.9 and Constraints (2.2), and L
′
t = dt − b dtVt cVt + λVt with λ ∈ N∗ and 0 < λ < b dtVt c. Hence,

the total cost C
′
in which x

′
t ∈ ]0 ; b dtVt cVt[ is ordered in period t depends on the total cost C ∗(1)

where 0 is ordered in period t, and is computed as follows:

C
′

= C ∗(1) + ft − (

⌊
dt
Vt

⌋
− λ)(Vt(lt − pt)− at)

If ft > (
⌊
dt
Vt

⌋
− λ)(Vt(lt − pt)− at), then the solution x

′
t cannot be optimal - a contradiction.

If ft = (
⌊
dt
Vt

⌋
− λ)(Vt(lt − pt)− at) for a value of λ such as 1 ≤ λ ≤ b dtVt c − 1, then we still have

an alternative optimal solution that can satisfy the property.
If ft < (b dtVt c − λ)(Vt(lt− pt)− at), then we proceed to compare the cost C

′
versus the total cost

C ∗(2) where b dtVt cVt is ordered in period t as follows:

C
′

= C ∗(2) + λ(Vt(lt − pt)− at)

With the assumption on the lost sales cost lt ≥ pt + at
Vt
, the current solution 0 < x

′
t < b dtVt cVt
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cannot be optimal when lt > pt + at
Vt
. For lt = pt + at

Vt
, there is a new optimal solution (x∗(2)

t =

b dtVt cVt) that satis�es the property.
Case 2. If b dtVt cVt < x

′
t < d dtVt eVt, then x

′
t cannot be expressed as a multiple of the batch size

Vt which gives an infeasible solution - contradiction.
Case 3. If x

′
t > d dtVt eVt, then L

′
t = 0. However, we showed that in SP -BOFBR1 without lost

sales, the optimal procurement quantity in a period t can only be d dtVt eVt. Hence, we cannot

obtain the optimality with x
′
t > d dtVt eVt.

Properties 2.9 and 2.10 allow us to develop an e�cient algorithm in order to �nd the optimal
plan for the SP -BLS,OFBR1. The key idea is to divide the time horizon into T independent
stages. Each stage corresponds to a period t, in which, by Property 2.10, the retailer procures
either 0 or b dtVt cVt or d

dt
Vt
eVt. Then, by Property 2.9 and following the constraints of our problem,

we can compute y∗t , A
∗
t , L

∗
t and q

∗
t related to each possible optimal ordered quantity x∗t in every

period t. For example, if x∗t = 0, then by using Constraints (2.2), we obtain dt − L∗t + q∗t = 0.
Using Property 2.9, if L∗t = 0 then q∗t = −dt which contradicts the feasibility constraint of qt,
and if q∗t = 0 then L∗t = dt which is trivial. After that, we calculate the total cost of each possible
optimal ordered quantity x∗t in every period t. Hence, in each period t, we have three total costs

C
(1)
t , C

(2)
t and C(3)

t which correspond to the three possible optimal procurement quantities x∗(1)
t ,

x
∗(2)
t and x∗(3)

t respectively.

C
(1)
t := ltdt (2.16)

C
(2)
t := ft + ptb dtVt cVt + atb dtVt c+ lt(dt − b dtVt cVt) (2.17)

C
(3)
t := ft + ptd dtVt eVt + atd dtVt e − p

b
t(d dtVt eVt − dt) (2.18)

Besides, we must choose the minimum cost. We de�ne Cmin(t) as the minimum cost among

C
(1)
t , C

(2)
t and C(3)

t in every period t.

Cmin(t) := min
{
C

(1)
t , C

(2)
t , C

(3)
t

}
(2.19)

C ∗ =
∑T

t=1C
min(t) (2.20)

We present C ∗ as the sum of Cmin(t) from period 1 to period T . Consequently, C ∗ represents
the optimal objective value of the SP -BLS,OFBR1. C ∗ is computed by an O(T ) time algorithm.

2.4.2 LSP-BR1 with lost sales, only full batches and w > 1 (LSP-BLS,OFBR1

with w > 1)

To obtain LSP-BLS,OFBR1 with w > 1, we replace in PBR1 Constraints (2.8) with xt = AtV,
where Vt = V,∀t = 1, . . . , T . In this problem, we take into account the aspect of lost sales and
we assume non-increasing lost sales costs over time. We note that the single-item LSP with
immediate lost sales is studied by Aksen et al. (2003), which constitutes a special case of our
problem with w = T and Vt = 1. They provide a dynamic programming algorithm with a
complexity in O(T 2) time.

In our algorithm for LSP-BLS,OFBR1 with w > 1, we use the same decomposition scheme into
subplans (u, v) as previously. Therefore, we must determine the minimum costs C (u, v) of all
subplans (u, v) to decide how much of demand to satisfy and to lose for periods u, u+1, . . . , v−1,
with 1 ≤ u < v ≤ w+1. Then, we can obtain the total optimal cost Cw of the subproblem J1, wK,
in which each demand can be either totally satis�ed, or partially lost, or totally lost with w + 1
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being a regeneration period, by using the same SP algorithm proposed for LSP-BFTLR1 with
w > 1 in Section 2.3.4. In the following, we will prove that all the C (u, v) values can be obtained
recursively in O(w4) time for the subproblem J1, wK. Therefore, the overall complexity of the
LSP-BLS,OFBR1 with w > 1 algorithm is O(Tw3) time. At the end, we present an illustrative
example for this algorithm.

The key idea behind computing the cost C (u, v) is to decompose the subplan (u, v) into
di�erent cycles. At the beginning, we can �nd the replenishment cycles of type [t, r]u,v (5) such
that t and r are two consecutive ordering periods without lost sales for u ≤ t < r ≤ v (see
Sub-case 1.3 of Section 2.3.4). After that, if v < w + 1, then there is what we call a loss
and replenishment cycle denoted by 〈k, v〉u,v such that k is the last ordering period in (u, v)
and v − 1 is the loss period in which the amount of unmet demand is strictly greater than
0, for u ≤ k < v < w + 1. If v = w + 1, then there is either one loss and replenishment
cycle 〈k,w + 1〉u,w+1 for u ≤ k < w + 1, or one return and replenishment cycle denoted by
‖k,w + 1‖u,w+1 such that k is the last ordering period in (u,w + 1) and w is the return period
for u ≤ k < w + 1.

Properties and corollaries

We will �rst establish some optimality properties for our subproblem J1, wK in order to propose
an O(w4) time algorithm.

We use Property 2.9 which a�rms that Lwqw = 0. In other words, the retailer cannot re-
turn and lose at the same time. We give some other properties in the following:

Property 2.11. In any optimal solution, the starting inventory level sr−1 of an ordering period
r is less than V units (sr−1 < V ), for r = 1, . . . , w + 1.

Proof. We suppose for the sake of contradiction that sr−1 ≥ V . This latter implies that we have
an ordering period t, which is just before r, with at least V units in stock between the end of
period t and the beginning of period r. Since the retailer only orders in full batches, we have
xt ≥ V and xr ≥ V . The proof of this contradiction is the same given in the proof of Property
2.7, case 1. In the calculation of the optimal and non-optimal cost di�erence, we keep the same
lost sales quantity in each period and we just change the ordered quantities in period t and r
and the ending inventory levels between periods t and r − 1.

aaa
Property 2.12. In any optimal solution, for a null ordering period i (xi = 0), if si−1 ≥ V then
Li < V .

Proof. Let us consider an optimal policy π
′
with a null ordering period i (x

′
i = 0) having an

entering stock level s
′
i−1 ≥ V and a lost sales quantity of L

′
i ≥ V . Let us consider L

′
i = nV + ε

with ε ≥ 0 and n ∈ N∗. Since i is a null ordering period and s
′
i−1 ≥ V , then, on the one hand

there is an ordering period t before i (t ≤ i − 1), and on the other hand s
′
k ≥ V such that k

represents any period between t and i− 1. We can consider two other policies:

• Policy π(1) orders V additional units in period t, and loses one batch less in period i, that
is, x(1)

t = x
′
t + V and L(1)

i = L
′
i − V . This �rst new policy is feasible because L

′
i ≥ V in

the optimal policy π
′
.
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• Policy π(2) orders one fewer batch in period t, and loses V additional units in period i,
that is, x(2)

t = x
′
t − V and L(2)

i = L
′
i + V . This policy remains feasible because x(2)

t ≥ 0

and s(2)
k ≥ 0 for any period k between t and i− 1.

Now, we compute the cost of each policy based on the cost of the policy π
′
. We have:

C (π(1)) = C (π
′
) + V (pt +

at
V

+
i−1∑
k=t

hk − li)

C (π(2)) = C (π
′
)− V (pt +

at
V

+
i−1∑
k=t

hk − li)

Since π
′
is an optimal policy, we must have li = pt + at

V +
∑i−1

k=t hk. Thereafter, we propose a
policy π(3) which orders nV additional units in period t, and loses n batches in period i, that
is, x(3)

t = x
′
t + nV and L(3)

i = L
′
i − nV and we obtain C (π(3)) = C (π

′
). Therefore, the optimal

policy π
′
can be modi�ed in such a way that the lost sales quantity in period i is less than V

units.

aaa
Property 2.13. There exists an optimal policy such that Ltst = 0 for each t = 1, 2, . . . , w. If
we decide not to satisfy a positive amount of demand in period t, the stock level will drop to
zero at the end of that period. This also means that if we have a positive stock at the end of a
period, the latter cannot be a lost sales period.
This property implies that in each subplan (u, v), there is at most one loss period which is v− 1,
because this is the only period with a null outgoing stock level. Any possible lost sales quantity

in the subplan (u, v) must be of the form: Lu,vv−1 = Du,v−1 −
⌊
Du,v−1

V

⌋
V + nV such that n ∈ N

and n ≤
⌊
Du,v−1

V

⌋
.

Proof. Let us consider an optimal policy π
′
with a subplan (u, v) having at the same time s

′
i > 0

and L
′
i > 0, for u ≤ i < v − 1. Let τ = min

{
L
′
i,mint=i,...,v−2 s

′
t

}
.

If we decrease L
′
i and s

′
t for t = i, . . . , v−2 by τ and increase L

′
v−1 by τ , we obtain another policy

π∗ in which the modi�ed solution remains feasible because we always have L
′
v−1 + s

′
v−2 ≤ dv−1

obtained by the balancing constraints. Furthermore, the total cost of π∗ can be computed as
follows:

C (π∗) = C (π
′
) + τ(lv−1 − li −

v−2∑
t=i

ht)

Since, we have lv−1 ≤ ... ≤ li ≤ ... ≤ lu (due to the assumption of non-increasing lost sales
costs), then it is easy to see that C (π∗) ≤ C (π

′
). If τ = L

′
i, then the policy π∗ can be optimal

in which there is one loss period situated in v − 1. Now, if τ = mint=i,...,v−2{s
′
t} = s

′
b, with

b ∈ {i, . . . , v − 2}, then the subplan (u, v) is divided into at least two subplans (u, b + 1) and
(b+ 1, v). The case where there are several periods b is easy to discuss in the same way.
In the subplan (u, b + 1), there is one loss period situated in i with u ≤ i ≤ b. In this case we
have L∗i s

∗
i > 0. Whereas, in the subplan (b+ 1, v) there is one loss period placed in v − 1. Now,

we will prove that if we have a loss period in the subplan (u, b+ 1), then it must be b which has
a null ending stock level. To get this, de�ne L∗i = L

′
i − s

′
b, for k = i, . . . , b, s∗k = s

′
k − s

′
b and

L∗b = 0 obtained by π∗. Let τ1 = min {L∗i ,mink=i,...,b−1 s
∗
k}.
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If we decrease L∗i and s
∗
k by τ1 such that k = i, . . . , b − 1, and increase L∗b by τ1, we obtain the

policy π∗∗ by maintaining the feasibility of the solution because we always have L∗b + s∗b−1 ≤ db.
Hence, the total cost of π∗∗ is as follows:

C (π∗∗) = C (π
′
) + s∗b(lv−1 − li −

v−2∑
t=i

ht) + τ1(lb − li −
b−1∑
k=i

hk)

Under non-increasing lost sales costs, we have C (π∗∗) ≤ C (π
′
).

If τ1 = L∗i , then b is the only loss period in the subplan (u, b+1). And if τ1 = mink=i,...,b−1{s
′
k} =

s
′
j , then we repeat the same procedure above until having the optimality.
By de�nition of τ , the above optimal solution can be modi�ed in such a way that either the
number of loss periods among periods u, u+ 1, . . . , v − 1 is reduced to 1 and the latter is placed
in v − 1, or (u, v) is divided into several subplans because there are new regeneration periods
among periods i+ 1, . . . , v − 1. The result follows.

We have the following corollary which will be used to compute the total optimal cost of the
subplan (u, v):

Corollary 2.1. If v − 1 is an ordering period and there is a positive lost sales quantity, then

Lu,vv−1 = Du,v−1 −
⌊
Du,v−1

V

⌋
V due to the lost sales assumption lv−1V ≥ pv−1V + av−1 (Section

2.2). In addition, if v − 1 is a non ordering period and Lv−1 > 0, then Lu,vv−1 = dv−1 − sv−2.
Corollary 2.1 is a result of all the LSP-BLS,OFBR1 with w > 1 properties. The Figure 2.5 shows
the 3 possibilities of optimal planning of (u, v) in LSP-BLS,OFBR1 with w > 1: Lu,vv−1 < V ,
Lu,vv−1 ≥ V , and if v − 1 = w, qw > 0.

Figure 2.5: Possibilities of optimal planning of (u, v) in LSP-BLS,OFBR1 with w > 1

How to compute C (u, v)

Recall that inside the subplan (u, v) such that 1 ≤ u < v ≤ w + 1, there is at most one loss
period which is the period v− 1 and for any ordering period t, su,vt−1 = dDu,t−1

V eV −Du,t−1, based
on the fact that there is no lost sales between the periods u and v − 2, and on Property 2.11.
Furthermore, in each subplan (u,w+ 1), the demand in period w will be partially or fully lost if
and only if the return is not made in that period, and if Du,w mod V 6= 0. Otherwise, we have
Lu,w+1
w ≥ 0 if and only if qw = 0.
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To �nd the optimal cost of the subplan (u, v), we need to compute, �rst, the minimum total
cost Gu,vr to satisfy the demands du, du+1, ..., dr−1, for 1 ≤ u < r ≤ v ≤ w + 1, such that r must
be the last ordering period and/or the loss or return period of (u, v). Then, the period r can
be either the last ordering period if r < v − 1 ≤ w, or a loss period which can also be the last
ordering period if r = v−1 < w, or a loss or a return period in which the retailer can order some
quantity if r = v − 1 = w, or the last ordering period if r = v = w + 1.
To �nd the values of Gu,vr , we need to compute the cost of each possible replenishment cycle of
type [t, r]u,v (5) for the values of the entering stocks in periods t and r. In LSP-BLS,OFBR1 with
w > 1, all ordering periods are large with only full batches. Thus, the optimal total cost to satisfy
the demands dt, dt+1, ..., dr−1 with t and r being 2 consecutive ordering periods is L [t, r]u,v (5),
which is detailed in Section 2.3.4. Hence, the dynamic programming formulation of Gu,vr is given
as follows:

Recurrence relation. For r = u+ 1, . . . , v,

Gu,vr = min
u≤t<r

{
Gu,vt + L [t, r]u,v (5)

}
Boundary condition. Gu,vu = 0
Objective. Gu,vr

All Gu,vr values can be computed in time O(w4). De�ne the indicator functions 1a and 1iai ,
as follows:

1a =

{
1 if a is true,
+∞ otherwise

1iai =

{
1 if ai is true,
+∞ otherwise

In the case where r is the last ordering period in the subplan (u, v) and v − 1 is the loss
period with Lu,vv−1 < V , we have to compute, second, the total holding cost Hu,v

r from the end
of period r until the beginning of v − 1 to satisfy the demand of periods r, r + 1, . . . , v − 2, for

u ≤ r < v − 1. Hence, the quantity ordered in period r in (u, v) is equal to
⌊
Dr,v−1−su,vr−1

V

⌋
V ,

and the quantity stored in each period i between r and v − 2 is denoted by ai such that ai =⌊
Dr,v−1−su,vr−1

V

⌋
V − (Dr,i − su,vr−1). Then,{

Hu,v
r = Hu,v

r+1 + 1rar>0 hrar if u ≤ r < v − 1
Hu,v
v−1 = 0

The time required to precompute all Hu,v
r values is bounded by O(w3).

After that, we can compute the possible values of C (u, v) in O(w4) time. Thus, for 1 ≤ u <
v ≤ w + 1:

C (u, v) = min { minu≤r≤v−1≤w { Gu,vr + min { 1Dr,v−1−s
u,v
r−1≥L

u,v
v−1

fr + (pr + ar
V

)

⌊
Dr,v−1−s

u,v
r−1

V

⌋
V

+Hu,v
r + lv−1L

u,v
v−1 ;

1r=v−1 1dv−1−s
u,v
v−2≥L

u,v
v−1

lv−1

∣∣dv−1 − su,vv−2

∣∣ }} ;

1v=w+1 G
u,v
w+1 − pbw(

⌈
Du,w

V

⌉
V −Du,w) }

To see how the above relation is constructed, we consider in each subplan (u, v) with u < v,
that u is the �rst ordering period and all the demands du, du+1, ..., dr−1 must be satis�ed with
the minimum cost Gu,vr in which the period r can be the last ordering period and/or the loss or
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return period, for 1 ≤ u ≤ r ≤ v ≤ w + 1. We have 3 situations of (u, v). In the �rst situation,
the subplan has a lost sales quantity less than the batch size V . Then, the retailer orders in

period r a quantity of
⌊
Dr,v−1−su,vr−1

V

⌋
V to satisfy the demands dr, dr+1, ..., dv−2 and loses in v−1

a quantity of Lu,vv−1 = Du,v−1 −
⌊
Du,v−1

V

⌋
V . In this case, the position of the period r belongs to

{u, . . . , v − 1} with v− 1 ≤ w. In the second situation, the lost sales quantity in v− 1 is greater
than or equal to V . Then, v−1 is a null ordering period and there is a loss of dv−1−su,vv−2. In this
case, we have r = v − 1 ≤ w. In the third situation, the subplan (u, v) possesses a procurement

surplus and a return of
⌈
Du,w
V

⌉
V −Du,w. Then, we have r = v = w + 1.

After predetermining all the possible C (u, v) values, we can compute the optimal total cost
Cw to satisfy or to lose each demand in the subproblem J1, wK with only full batch, expressed
in Formula (2.11), in O(w4) time. Therefore, the running time of the dynamic programming
algorithm proposed for LSP-BLS,OFBR1 with w > 1 is O(Tw3).

Numerical example for LSP-BLS,OFBR1 with w > 1

We use the same example presented for the algorithm of LSP-BFTLR1 with w > 1 (see Section
2.3.4) by adding four lost sales costs, l1 = 23.5, l2 = 22.3, l3 = 21.8 and l4 = 21.5. In this
problem, the demands can be partially or fully satis�ed in full batches, or can be fully lost.

Table 2.6 shows the optimal solutions of this problem. We have the same decomposition of
subplans (1, 4) and (4, 5). In (1, 4), the period 1 is the only ordering period which is large and
full, and the period 3 is the only loss period in which the quantity of unmet demand is lower than
the batch size 12. The optimal cost of the subplan (1, 4) is the cost of the loss and replenishment
cycle 〈1, 4〉1,4. In (4, 5), the period 4 is at the same time a large and full ordering period and a
return period. The optimal cost of this subplan is the cost of the return and replenishment cycle
‖4, 5‖4,5.

Table 2.6: The optimal quantities of LSP-BLS,OFBR1 with w > 1

Period

t
xt st Lt qt At

1 132 57 0 0 11
2 0 48 0 0 0
3 0 0 2 0 0
4 24 0 0 1 2

2.4.3 SP-BR1 with lost sales and FTL cost structure (SP-BLS,FTLR1)

Compared to the case SP -BLS,OFBR1, we do not consider any speci�c assumption on the batches.
The ordered quantities can now be in fractional batches. Two important dominance properties
are given as follows:

Property 2.14. In any optimal solution, there is no returned quantity, i.e. q∗t = 0,∀t = 1, . . . , T .

Proof. With the assumption of pt > pbt , the solution with qt = 0 is optimal.

aaa
Property 2.15. The optimal plan π∗ orders either 0 or b dtVt cVt or dt in every period t. We
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indicate the three possible optimal ordered quantities as follows: x∗(1)
t = 0, x∗(2)

t = b dtVt cVt and
x
∗(3)
t = dt.

Proof. Suppose that there is an optimal plan π
′
ordering a quantity x

′
t in a period t such that

0 < x
′
t < b dtVt cVt, or b

dt
Vt
cVt < x

′
t < dt or x

′
t > dt.

Case 1. If 0 < x
′
t < b dtVt cVt, then x

′
t = b dtVt cVt − ϕ, A

′
t = b dtVt c − k, q

′
t = 0 by using Property

2.14 and L
′
t = dt − b dtVt cVt + ϕ with 0 < ϕ < b dtVt cVt, k ∈ N and k = b dtVt c − db

dt
Vt
c − ϕ

Vt
e. The

total cost C
′
where x

′
t ∈ ]0 ; b dtVt cVt[ is ordered in period t can be calculated as a function of the

total cost C ∗(1) where 0 is ordered in period t and is shown as follows:

C
′

= C ∗(1) + ft − (bdt
Vt
cVt − ϕ)(lt − pt) + at(b

dt
Vt
c − k)

If ft > (b dtVt cVt − ϕ)(lt − pt) − at(b dtVt c − k), knowing that 1 ≤ ϕ ≤ b dtVt cVt − 1, the solution x
′
t

cannot be optimal - a contradiction.
If ft = (b dtVt cVt−ϕ)(lt− pt)− at(b dtVt c − k), then there is another optimal solution that can meet
the property.
If ft < (b dtVt cVt−ϕ)(lt− pt)− at(b dtVt c− k), then the total cost C

′
can be computed as a function

of the total cost C ∗(2) in which b dtVt cVt is ordered in period t, as follows:

C
′

= C ∗(2) + ϕ(lt − pt)− kat

We can detect that ϕ ≥ kVt. Thus, we have ϕ(lt − pt) − kat ≥ 0 because our problem has to
respect the assumption of lost sales. As a result, if ϕ(lt − pt) > kat then the solution x

′
t is not

optimal - a contradiction. And if ϕ(lt − pt) = kat then there is an alternate optimal solution
that satis�es the property.

Case 2. If b dtVt cVt < x
′
t < dt, then x

′
t = b dtVt cVt+γ, A

′
t = b dtVt c+1, q

′
t = 0 and L

′
t = dt−b dtVt cVt−γ

with 0 < γ < dt − b dtVt cVt. One can evaluate the total cost C
′
where x

′
t ∈ ]b dtVt cVt ; dt[ is ordered

in period t as a function of the total cost C ∗(2) where b dtVt cVt is ordered in period t, as follows:

C
′

= C ∗(2) + at − γ(lt − pt)

The cost C
′
is less than the cost C ∗(2) if at < γ(lt − pt). Otherwise, we can express the total

cost C
′
as a function of the total cost C ∗(3) where dt is ordered in period t as follows:

C
′

= C ∗(3) + (dt − b
dt
Vt
cVt − γ)(lt − pt)

By the assumption of lost sales, if lt > pt, then the solution with b dtVt cVt < x
′
t < dt cannot be

optimal - a contradiction, and if lt = pt, then, another optimal solution satisfying the property
can still be built.

Case 3. If x
′
t > dt, then L

′
t < 0 which contradicts Constraints (2.9) (Lt ∈ R+). Thus, x∗3t = dt

can be an optimal ordered quantity in period t.

We develop an e�cient algorithm for the SP -BLS,FTLR1 that is based on Properties 2.14 and
2.15. The key idea of this problem is the same for the SP -BLS,OFBR1. We have the following

costs: C(1)
t , C(2)

t , C(3)
t , Cmin(t) and C ∗ already de�ned in Section 2.4.1. We refer to Formulas

(2.16)-(2.20) by just changing the quantity x∗(3)
t from d dtVt eVt to dt and subsequently the cost

C
(3)
t from ft + ptd dtVt eVt + atd dtVt e − p

b
t(d dtVt eVt − dt) to ft + ptdt + atd dtVt e.
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2.4.4 LSP-BR1 with lost sales, FTL cost structure and w > 1 (LSP-BLS,FTLR1

with w > 1)

The LSP-BLS,FTLR1 with w > 1 is the most general problem with non-increasing lost sales
costs and a constant batch size. We will solve independently, in the same way as before, the
subproblems J1, wK, Jw + 1, 2wK, ..., JT − w + 1, T K to obtain LSP-BLS,FTLR1 with w > 1. Our
problem will be decomposed into subplans which start and end with zero stock. The optimal
cost Cw of the subproblem J1, wK with ordering of full/fractional batches and lost sales can be
computed in O(w4) by a shortest-path like dynamic programming algorithm used in Section
2.3.4, given that all the possible subplan costs can be obtained in O(w4) time. Thus, we can
compute the total optimal cost of LSP-BLS,FTLR1 with w > 1 with a complexity in O(Tw3)
time. The computation of the optimum cost of a subplan relies on the decomposition of (u, v)

into di�erent types of cycles. We can �nd the di�erent forms of replenishment cycles [t, r]u,v (i) for
i = 1, . . . , 8 and 1 ≤ u ≤ t < r ≤ v ≤ w+1 (see Section 2.3.4) and/or the loss and replenishment
cycle 〈k, v〉u,v for 1 ≤ u ≤ k < v ≤ w + 1 (see Section 2.4.2).

Properties

The subproblem J1, wK possesses several optimality properties presented below. Properties 2.5,
2.6, 2.7, 2.8 (see Section 2.3.4), and 2.13 (see Section 2.4.2) remain valid for the general problem
LSP-BLS,FTLR1 with w > 1.

Property 2.16. There exists an optimal solution, in which, for any subplan (u, v) with
1 ≤ u < v ≤ w + 1, there is at most either one fractional batch ordered in one of its peri-
ods, or one loss period being the period v − 1.

Proof. Suppose there exists an optimal policy π
′
such that in a subplan (u, v), there is both a frac-

tional batch ordered in period i with u ≤ i ≤ v−1 and a loss period located at v−1 (L
′
v−1 > 0).

De�ne ξi as the fractional order quantity in period i (0 < ξi < V ) with ξi = x
′
i − b

x
′
i
V cV . Let

ε1 = min
{
V − ξi, L

′
v−1

}
and ε2 = min

{
ξi,mink=i,...,v−2 s

′
k

}
.

We have ε1 > 0 and ε2 > 0, then we can consider 2 other policies:

• policy π
′′
orders x

′
i+ε1 in period i, and loses L

′
v−1−ε1 in period v−1. Policy π

′′
is feasible.

• policy π
′′′
orders x

′
i− ε2 in period i, and loses L

′
v−1 + ε2 in period v−1. Policy π

′′′
remains

feasible because ε2 ≤ mink=i,...,v−2 s
′
k and L

′
v−1 + s

′
v−2 ≤ dv−1.

Let us compute the total cost of each policy:

C (π
′′
) = C (π

′
)− ε1(lv−1 − pi −

v−2∑
k=i

hk)

C (π
′′′

) = C (π
′
) + ε2(lv−1 − pi −

v−2∑
k=i

hk)− ai(d
x
′
i

V
e − dx

′
i − ε2
V
e)

Since the policy π
′
is optimal, we must have lv−1− pi−

∑v−2
k=i hk ≤ 0 and lv−1− pi−

∑v−2
k=i hk ≥

ai
ε2

(dx
′
i
V e − d

x
′
i−ε2
V e).
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Note that the value of dx
′
i
V e − d

x
′
i−ε2
V e is either 0 or 1. If it is equal to 0, then we get lv−1 −

pi −
∑v−2

k=i hk ≥ 0. As a consequence, it implies that lv−1 − pi −
∑v−2

k=i hk = 0, and therefore
C (π

′
) = C (π

′′
) = C (π

′′′
). Thus, both policies are also optimal, verifying Property 2.16. If the

value of dx
′
i
V e − d

x
′
i−ε2
V e is 1, then we obtain lv−1 − pi −

∑v−2
k=i hk > 0. This is a contradiction to

the optimality of π
′
and the policy π

′′
becomes optimal (C (π

′′
) < C (π

′
)).

Hence, if there is a positive lost sales quantity, then all ordering periods are large. Now, we
can directly use Property 2.12 and Corollary 2.1.

How to compute C (u, v)

All these properties imply that the cost of the subplan (u, v) for 1 ≤ u < v ≤ w + 1 in LSP-

BLS,FTLR1 with w > 1 is the minimum between the cost C (u, v) in LSP-BFTLR1 with w > 1,

and the cost C (u, v) in LSP-BLS,OFBR1 with w > 1, but without taking into account the return

revenue since the retailer can order fractional batches. Hence, the running time to compute all

the values of C (u, v) is bounded by O(w4). They are obtained as follows:

C (u, v) = min {min1≤i≤6 {Ci(u, v)} ;

minu≤t≤v−1≤w{ Gu,vt + min { 1Dt,v−1−s
u,v
t−1≥L

u,v
v−1

ft + (pt + at
V

)

⌊
Dt,v−1−s

u,v
t−1

V

⌋
V

+Hu,v
t + lv−1L

u,v
v−1 ;

1t=v−1 1dv−1−s
u,v
v−2≥L

u,v
v−1

lv−1

∣∣dv−1 − su,vv−2

∣∣ }}}
Once all these values are predetermined, the value of Cw can be obtained in O(w4) time by

using (2.11). Hence, the LSP-BLS,FTLR1 with w > 1 is solved in O(Tw3) time.

Numerical example for LSP-BLS,FTLR1 with w > 1

We consider the same example presented for the algorithm of LSP-BLS,OFBR1 with w > 1
(see Section 2.4.2) by ordering in full and/or fractional batches. The optimal decomposition of
subplans is (1, 4) and (4, 5). The optimal cost of (1, 4) is the cost of the cycle 〈1, 4〉1,4 as in the
example of Section 2.4.2. In (4, 5), there is no return and the period 4 is a large and fractional
ordering period. Its optimal cost is the cost of the cycle L [4, 5]4,5 (1) as in the example of Section
2.3.4.

2.5 Computational experiments

In this section, for each problem of LSP-BR1 with w > 1, we coded the MILP in Xpress Mosel
version 3.10 with default parameters for cut strategy and presolving, and we implemented the
dynamic programming algorithm (DP) in Java in order to compare the computational time of
both resolution methods under di�erent parameters. For the MILP, we used for all problems,
aggregate formulations. All the tests were executed on an Intel Core 2.40 GHz, 8 GB RAM. The
resolution time of the two methods that appears in Table 2.7 for the problems with w > 1 is the
average of 10 instances generated in the corresponding intervals.

The execution time of MILP depends on all the problem parameters: length of the horizon,
periodicity of the return periods, demand, batch size, and cost and revenue parameters. Hence,
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its computational time is unpredictable. In contrast, the complexity of DP is only dependent on
the length of the horizon, thus its execution time can be easily predictable.

We consider six di�erent types of instances. We performed the tests for T = 20, T = 50 and
T = 100. The periodicity of the return periods is �xed to T , which means that there is one return
over the planning horizon. We chose two con�gurations for the demands which follow a Uniform
distribution with a stationary batch size: D1 = U(5, 20) with V 1 = 4 and D2 = U(30, 100) with
V 2 = 10.

Concerning the cost and revenue parameters, we consider the setup cost uniformly distributed
in the interval U(50, 100)in each period. The unit procurement costs and the �xed costs per batch
replenished are calculated as a function of the setup cost, pt = 0.01ft, and at = 0.1ft. We have
only one return revenue since we have considered w = T , it is computed as a function of the
maximum of all the unit procurement costs, pbw = 0.4 maxt=1,...,T {pt}, in order to respect the
assumption of the form R1. The inventory holding costs follow the Uniform distribution with the
minimum value 0.05 and the maximum value 2. For the LSP-BR1 with lost sales, we consider a
stationary lost sales cost, lt = l = 1.7 maxt=1,...,T {pt + at

V } to satisfy the lost sales assumption.

We analyze the performance of the proposed methods in terms of resolution time. The test
results are reported in Table 2.7 for the four cases of LSP-BR1 with w > 1 knowing that we
limit the running time of Xpress to 300 seconds and we give its gap if we do not �nd the optimal
solution after 300 seconds. Note that the gap provided by Xpress is computed according to the
best integer solution and the best lower bound found until 300 seconds.

Table 2.7: Computational results for DP and MILP of LSP-BR1 with w = T (w > 1)

T = 20 T = 50 T = 100
D1 D2 D1 D2 D1 D2

DP time (seconds)

LSP-BOFBR1 with w > 1 0 0 0 0 0.01 0.01
LSP-BFTLR1 with w > 1 0.01 0.07 2.58 2.13 208.74 208.08
LSP-BLS,OFBR1 with w > 1 0.02 0.01 0.25 0.17 1.56 1.56
LSP-BLS,FTLR1 with w > 1 0.12 0.09 2.36 2.04 243.20 251.61

MILP time (seconds)

LSP-BOFBR1 with w > 1 0.21 0.43 4.84 96.11 >300 >300
LSP-BFTLR1 with w > 1 0.15 0.08 0.47 0.32 2.81 4.07
LSP-BLS,OFBR1 with w > 1 0.10 0.07 0.16 0.30 0.62 1.16
LSP-BLS,FTLR1 with w > 1 0.23 0.07 0.32 0.30 2.65 2.34

MILP gap after 300
seconds (percent)

LSP-BOFBR1 with w > 1 0 0 0 0 0.23% 1.48%
LSP-BFTLR1 with w > 1 0 0 0 0 0 0
LSP-BLS,OFBR1 with w > 1 0 0 0 0 0 0
LSP-BLS,FTLR1 with w > 1 0 0 0 0 0 0

When the number of periods is less than 50, DP can be advantageous to use for the four
problems, because it does not depend on problem parameters. For T = 100, the execution
times of LSP-BFTLR1 and LSP-BLS,FTLR1 remain almost 4 minutes. Using MILP, the optimal
solution in each problem, in most tested instances, is obtained quite instantaneously, except for
the following instances: T = 50 and D2, T = 100 and D1, and T = 100 and D2 in LSP-BOFBR1.
The behavior of MILP remains unpredictable and depends on many parameters because, for
example, the instance T = 100 and D1 in LSP-BOFBR1 could not provide the optimal solution
in 5 minutes, whereas the same instance in LSP-BLS,OFBR1 only lasts 0.62 seconds. For lower
values of demands, most of the MILP time provides the optimal solution very quickly in all
problems.
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2.6 Conclusion

In this chapter, we considered the single-item lot sizing problem with batch ordering under the
buyback contract. In our model, we merged the buyback contract into the LSP by considering
that the retailer returns the unused units to the supplier either at the end of each period t,
denoted by w = 1 or at the end of every w periods w > 1 with full return and partial refund.
Another option we studied is the possibility to not satisfy all the demands, knowing that losing a
batch costs more than purchasing it. Therefore, for both LSP-BR1 with cyclic returns, without
and with lost sales, we tackled four problems by assuming di�erent hypotheses. In the �rst
problem, we only consider full batches with w = 1. The second problem is with OFB and w > 1.
To obtain the two problems that remain, we changed the OFB cost structure in the �rst two
problems to the FTL cost structure.

We used some dominance properties existing in the literature , we introduced others, in order
to propose exact resolution methods for di�erent extensions of LSP-BR1 with cyclic returns, and
we performed computational tests by varying di�erent parameters, to compare the performance
of the resolution methods. We detected LSP under buyback contract with batch ordering and
lost sales not studied in the literature and we proposed polynomial time algorithms to solve
them. The buyback assumption of form R1 does not make the problem di�cult because the
return periods are known. On the contrary, it allows for decomposing the problem into smaller
subproblems. However, the lost sales assumption can increase the overall complexity of the
problem by increasing the possible production plans. Table 2.8 shows di�erent cases studied in
this chapter with the respective computational complexities.

Table 2.8: Complexities of the algorithms for di�erent cases studied in Chapter 2

Hypotheses

Without lost sales With lost sales
OFB FTL OFB FTL

w = 1
with Vt

w > 1
with V

w = 1
with Vt

w > 1
with V

w = 1
with Vt

w > 1
with V

w = 1
with Vt

w > 1
with V

ddddd

Complexity

ddd
O(T )

ddd
O(Tw)

ddd
O(T )

ddd
O(Tw3)

ddd
O(T )

ddd
O(Tw3)

ddd
O(T )

ddd
O(Tw3)

In the next chapter of this thesis, we extend this problem by adding a percentage ρ of return
and the concept of disposal. Besides, we study other forms of the buyback contract: R2 which
imposes a time limit on returns and R3 which �xes returns in procurement periods. For all the
problems with ρ = 1, we propose polynomial algorithms but for the case ρ < 1, we develop a
polynomial algorithm for the form R1 and concerning the types R2 and R3 we prove that these
problems could be solved using the algorithm proposed for the resource constrained shortest path
problem with lower and upper limits (Beasley and Christo�des, 1989).
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Chapter 3

Full batch replenishment with buyback
and disposal options

In this chapter, we study several extensions of the single-item lot sizing problem with only full
batch replenishment under the buyback contract. We consider three forms of the buyback contract
in a system with one retailer and one supplier. In the �rst form, the return periods are �xed. In
the second form, the retailer can only return units to the supplier in the �rst j periods. Finally,
in the third form, the retailer may return products only in replenishment periods. Each contract
is characterized by the maximum return percentage which can be either 100% (full return) or less
than 100% (partial return). We also consider the disposal concept to get rid of the units which
cannot be stored nor returned to the supplier because of the trade-o� between low return revenues
and high holding costs.

For each extension of LSP-B with buyback and disposal options, we propose a mathematical
model and dominance properties. We develop e�cient polynomial time algorithms for some of
the above problems, followed by experimental results, and show that the remaining ones can be
solved by the algorithm based upon a Lagrangian relaxation, proposed for the resource constrained
shortest path problem with double sided inequality constraints.

A part of this work is presented in ROADEF Lorient (2018), see Farhat et al. (2018c).

63
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3.1 Introduction

This work presents the single item uncapacitated LSP considering a buyback contract over a
planning horizon of T periods. The system considered is composed of a retailer replenishing one
type of product from a supplier. At a given period, purchased units are delivered to the retailer
by only full batches of a constant size from the supplier, in order to satisfy the deterministic
demand without backlogging nor lost sales. At some periods, indicated by the buyback contract
type, the retailer can return a certain amount of the unused items to the supplier with a revenue
and can dispose of the remaining ones with no cost nor revenue. We denote the general problem
by LSP-BD-R (B for batch ordering, D for disposal option and R for return).

We study three types of buyback contracts: one with �xed return periods (R1), the other
one with a time limit on the return periods (R2) and the last one with returns allowed only in
procurement periods (R3). Refer to Chapter 1, Subsection 1.4.1 in order to see the di�erent
forms of the buyback contract. Each type represents many features. The �rst feature depends
on the nature of return: �xed, which means that there are known return periods, or variable,
with unknown return periods. The second feature is the constraint of buyback contract which
links cumulatively the purchased quantity x and the returned quantity q. The third feature is
the return percentage ρ. There is either a generous policy which allows for a full return (ρ = 1),
or an avaricious policy which o�ers a partial return (ρ < 1). We allow the refund amount pb to be
strictly less than the procurement cost p (partial refund). The di�erence p− pb for the supplier
can be interpreted as a restocking fee or a nonrefundable charge. The proposed algorithms in
this study can also be applied to solve the problems under a contract with full buyback refund.

Another consideration of this study is the assumption of disposals. In a general setting, the
disposal represents either a revenue or a cost for a retailer. In our work, we assume that the
disposal has neither a revenue nor a cost because we consider that the retailer decides to give
the unused and unreturned quantities to charities by asking these organizations to come and to
get them, especially when the batch size is signi�cantly large.

Therefore, the objective is to determine the optimal procurement planning strategy in order
to satisfy the retailer demand while minimizing the total ordering and storage costs taking
into account the return revenues, and respecting buyback constraints and disposals. For these
di�erent extensions of the LSP with only full batch ordering and disposals under di�erent types of
buyback contract, we establish e�cient algorithms for certain extensions and prove the similarity
between the other extensions and the resource constrained shortest path problem (RCSPP).

The structure of Chapter 3 is organized as follows. Section 3.2 provides a description of
the general LSP-BD-R studied in this work. Section 3.3 is dedicated to the di�erent cases of
LSP-BD-R1 with �xed return periods in which we formulate the general problem as a mixed
integer linear program and we propose exact polynomial time algorithms for two extensions.
Section 3.4 presents a mathematical formulation for the LSP-BD-R2 with time limit on returns
by constructing a dynamic programming algorithm for the case with ρ = 1 and, by proving that
the case with ρ < 1 is similar to RCSPP. Section 3.5 develops dominance properties and a solution
method for the LSP-BD-R3 with return possibility allowed only in procurement periods. Section
3.6 presents the numerical results performed in this chapter. Section 3.7 draws a conclusion of
the chapter.
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3.2 Problem description

The problem consists in planning a single-item procurement of a retailer having signed a buyback
contract with a supplier, which can take several forms. The aim is to satisfy the deterministic
demand dt using only full batch replenishment over a �nite time horizon 1, . . . , T . The quantity
xt ordered from the supplier is shipped in At batches in period t, and incurs a �xed setup cost
ft and a �xed cost per batch at, in addition to a unit procurement cost pt. The binary setup

variable yt is �xed to 1 when a positive quantity is ordered in t, then we have xt ≤ d
∑T
j=t dj
V eV yt,

for all t ∈ {1, . . . , T}. We denote by V the size of the replenished batches. Notice that in order
to derive polynomial time algorithms, we consider the batch size to be stationary over time.
Moreover, we assume xt = AtV to purchase a multiple of the batch size V . No fractional batches
are accepted.

The inventory level at the retailer from period t to t+ 1 is denoted by st. Keeping one unit
of item in stock incurs a holding cost of ht. We assume, without loss of generality, a null stock
level at the beginning of the planning horizon. Otherwise, this quantity can be retrieved from
the demand of the �rst periods, till obtaining null entering inventory.

With the general buyback contract, we consider that the supplier can buy back, at the end
of each period t, an unsold inventory quantity qt with a maximum return percentage of ρ such
that 0 ≤ ρ ≤ 1, by paying the retailer a pay-back price of pbt per unit. In order to avoid the
speculation for the retailer, we assume that this revenue pbt is less than all the unit procurement
costs p1, p2, . . . , pT . We consider �xed or variable return periods denoted by wi for i ∈ N∗ and
1 ≤ i ≤ T depending on the type of the contract considered.

This contract owns di�erent structures used in real life to cope with the demand supply
problem over a �nite horizon of T periods. We consider three types of the buyback contract in
which we study the full and partial return policies.

Type R1: a buyback contract with �xed return periods between two members of the supply
chain. They can be cyclic (with w being the periodicity of return) or acyclic (with wi being
the return periods).

(i)

Type R2: a contract with a time limit on returns in which the supplier allows the retailer

to return, just over the �rst j periods, a maximum of ρ
∑j

t=1 xt units. In the remaining
periods, no returns are accepted. The return periods are thus decision variables.

(ii)

Type R3: the retailer can return units only in a procurement period t. The return periods
are thus decision variables.

(iii)

For the two types R1 and R2, a return period may not coincide with an ordering period in
which the supplier replenishes the retailer. Thus, we suppose that the transportation cost of
the returned quantity qt from the retailer to the supplier at the end of period t is deduced from
the initial return revenue. We get a reduced return revenue that we assume to be positive in
order to encourage the retailer to sign with the supplier a buyback contract, otherwise, it entails
additional costs. For the last type R3, we use the initial return revenue because the supplier
takes charge of the transportation cost of the returned quantity in the same procurement period.

In this study, we also consider the disposal option. In certain cases where the supplier o�ers
the retailer a full return but with very low buyback revenues compared to higher inventory costs,
or when the supplier requires the retailer to return a limited number of the unsold items, we
assume that the retailer can decide to get rid of the remaining items. This is due to the fact that
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the unsold and unreturned inventory can be quite costly. Thus, we introduce et designating the
discarded quantity in period t with null disposal costs nor revenues.

In the next sections, we will study di�erent extensions of this problem formulated as a
mixed integer linear program (MILP) dealing with di�erent buyback constraints according to
three return policies. The objective is to propose an optimal procurement plan with only full
batches which satis�es demand without backlogging nor lost sales, while minimizing the total
procurement and inventory costs, taking into account total return revenues and the disposal
option.

Parameters

T : number of periods in the planning horizon,
ft : setup cost in period t,
pt : unit procurement cost in period t,
at : �xed cost per batch in period t,
V : batch size,
ht : unit holding cost at the end of period t,
ρ: maximum return percentage,
pb
t : unit return revenue in period t,

dt : demand in period t.

aaa
wi : period of ith return, and N : total number of returns over the horizon 1..T (wi becomes a
decision variable in LSP-BD-R2 and LSP-BD-R3).

Other de�nitions

Di ,j : cumulative demand from period i to period j.

(u, v): a subplan with 1 ≤ u < v ≤ T + 1, the periods u and v are consecutive periods
having null entering stock levels (su−1 = sv−1 = 0), and, in each period in the subplan, we have
st > 0 for t = u, . . . , v − 2.

Ru,j (Li et al. (2004)): ending inventory level of period j in a subplan (u, v) if we acquire

the minimal number of batches dDu,jV e satisfying the demands du, d2, . . . , dj without return nor
disposal.
Ru,j = dDu,jV eV −Du,j ∀j ∈ {u, . . . , v − 1} withRu,u−1 = 0

Decision variables

xt : procurement quantity in period t,
yt : binary setup variable in period t,
At : number of batches replenished in period t,
st : inventory level at the end of period t,
qt : returned quantity of unsold items at the end of period t,
et : discarded quantity of unused items at the end of period t.

qu,v
t : returned quantity at the end of period t in a subplan (u, v), eu,v

t : discarded quantity
at the end of period t in a subplan (u, v).
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3.3 LSP with batch ordering, disposal and �xed return periods
(LSP-BD-R1)

The structure of the buyback contract considered in this section mainly concerns the perishable
products (pharmaceuticals, baked products) and products with short-term life (computer hard-
ware and software). We consider that the unused products can be returned back to the supplier
at the end of given periods wi with 1 ≤ wi ≤ T , i = 1, . . . , N , with N being the total number of
return periods in the planning horizon. We assume, without loss of generality, that wN = T . The
parameters wi and N are determined by both the supplier and the retailer, within the contract
in accordance with the lifetime of the products and the costs of carrying inventory in both sides.
The return periods wi may or may not be cyclic. At the end of known return periods wi, the
retailer has always zero stock: the unused products are returned to the supplier and/or they are
discarded. Hence, there are N independent problems to optimize related to each subproblem
Jwi−1 + 1, wiK knowing that i = 1, . . . , N and w0 = 0 (See Figure 3.1). The total cost of the
LSP-BD-R1 is computed as the sum of the costs of these independent subproblems.

Figure 3.1: N independent subproblems of the general LSP-BD-R1

At the end of a given period wi, the supplier allows the retailer to return the quantity qwi
which is limited by a percentage of the total quantity replenished within the interval Jwi−1+1, wiK,
thus it is equivalent to ρ

∑wi
k=wi−1+1 xk units. For each returned unit, a unit return revenue pbwi

is earned, for all i = 1, . . . , N . We consider pbt = 0, ∀t ∈ {wi−1 + 1, . . . , wi − 1} given that
no returns are allowed between the periods wi−1 + 1 and wi − 1. We also consider pbwi < pt,
∀t ∈ {wi−1 + 1, . . . , wi}, ∀i ∈ {1, . . . , N} to protect the supplier from the speculation. In the
case where ρ = 1, the retailer has the possibility to return all the unsold units if it is pro�table.
Otherwise, in case of (ρ < 1), the latter can only return a limited quantity to the supplier de-
pending on the value of ρ. In these two cases, the retailer can dispose of the quantity et in each
period t. Note that at the end of each period wi, the stock level drops to 0.
The objective is to minimize the total cost over the whole planning horizon while respecting all
the given constraints:

min
∑T

t=1(ftyt + ptxt + atAt + htst − pbtqt)

Material balance equations:
xt + st−1 = dt + st + qt + et ∀t = 1, . . . , T
s0 = 0
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Conditions of the buyback contract type R1 :
qt = 0 ∀t = 1, . . . , T such that t 6= wi, i = 1, . . . , N
swi = 0 ∀i = 1, . . . , N
qwi ≤ ρ

∑wi
k=wi−1+1 xk 0 ≤ ρ ≤ 1,∀i = 1, . . . , N

Setup variable generation constraints:

xt ≤ d
∑T
j=t dj
Vt
eV yt ∀t = 1, . . . , T

Only full batch replenishment constraints:
xt = AtV ∀t = 1, . . . , T

Nonnegativity and binary constraints:
xt, st, qt, et ∈ R+ ∀t = 1, . . . , T
At ∈ N, yt ∈ {0, 1} ∀t = 1, . . . , T

In the following, we solve each of the N subproblems as J1,WiK for i = 1, . . . , N , with
Wi = wi − wi−1 . The total cost will be constituted of the individual cost of each subproblem.
We study the two sub-cases, namely: LSP-BD-R1, ρ=1 with full return and LSP-BD-R1, ρ<1 with
partial return.

3.3.1 LSP-BD-R1 with full return (LSP-BD-R1, ρ=1)

The LSP-BD-R1, ρ=1 is composed of N independent problems (J1,WiK for i ∈ {1, . . . , N}) to be
separately solved. Throughout J1,WiK, the retailer can get rid of the unreturned and unsold
quantity in each period and the supplier allows only one return of all the left-over items (ρ = 1)
at the end of period Wi, without lost sales. We �rst state optimality properties and algorithms
for the general case with linear holding costs, and at the end we present the idea of complexity
reduction for the special case with pbWi

≥
∑Wi−1

k=1 hk since there is one return placed in the last
period of J1,WiK.

LSP-BD-R1, ρ=1 for the general case

The main idea of the algorithm is to detect the periods and quantities of return and of dis-
posal in each possible subplan (u, v) in order to satisfy the demand in periods u, . . . , v − 1, for
1 ≤ u < v ≤ Wi + 1 at minimum cost, and thereafter, to compute the total optimal cost over
1..T using a shortest path algorithm. The use of a shortest path algorithm to compute the total
cost is a quite common technique once the cost of individual subplan (u, v) are all precomputed.
The interesting part remains the e�cient computation of the cost of each subplan.

Some preliminaries and properties:
aaa

Property 3.1. There is an optimal solution, in which, for any subplan (u, v) with 1 ≤ u < v ≤
Wi + 1, there exists at most one disposal period situated in the �rst period of (u, v), i.e., period
u. In other words, in an optimal policy, we have st−1et = 0, ∀t = 1, . . . ,Wi.

Proof. First, let us prove that there is at most one disposal period in a subplan. We suppose,
that in a subplan (u, v) such that 1 ≤ u < v ≤ Wi + 1, we have two disposal periods i and j

(eu,vi > 0 and eu,vj > 0) with u ≤ i < j ≤ v − 1. Let αi,j = min
{
eu,vj ,mink=i,...,j−1 sk

}
> 0.
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Increasing eu,vi by αi,j and decreasing both eu,vj and the inventory levels sk (k = i, . . . , j − 1) by
αi,j , we obtain another feasible solution. With this modi�cation, if αi,j = eu,vj , then the period
i becomes the only disposal period in (u, v). If αi,j = mink=i,...,j−1 sk, then, we obtain two
subplans with each having one disposal period: in the �rst one, the disposal period corresponds
to i and in the second one to j. Moreover, it is easy to verify that the total cost of this new
solution will be decreased by the amount of αi,j

∑j−1
k=i hk. Hence, we obtain an optimal solution

satisfying the fact that there is at most one disposal period in a subplan.

Second, let us prove that, if it exists, the disposal period is the �rst period u of the subplan
(u, v). We consider now an optimal policy π

′
in which there is a subplan (u, v) whose disposal

period is j with j > u.
We will modify the policy π

′
in the same way as above (we change period i by period u knowing

that in π
′
, eu,vu = 0). Thus, in the modi�ed policy, we decide to get rid of αu,j units at the period

u, to store sk−αu,j units from u to j−1 by leaving the inventory quantities on the other periods
(j, . . . , v − 1) unchanged, and to dispose of eu,vj − αu,j units in period j. The total cost of this

new policy is lower than the one of π
′
.

If αu,j = eu,vj , then (u, v) is a subplan in which u is the only disposal period.
If αu,j = mink=u,...,j−1 sk = sb with u ≤ b ≤ j − 1, then the new stock in period b drops to 0
and therefore (u, v) is divided into at least 2 subplans: (u, b + 1) and (b + 1, v). The subplan
(u, b + 1) has one disposal period situated in period u. However, in the subplan (b + 1, v), the
disposal period is placed in j.
Now, we will prove that either (b+1, v) is the unique subplan in which b+1 is the disposal period
or (b + 1, v) is divided into several subplans such that the disposal period of each subplan can
only be the �rst period. We apply iteratively the same procedure performed in the second part
of this proof. We take into account the updated quantities of (b+ 1, v) during the modi�cation
of the (u, v) solution.
The more the disposal period j is placed at the beginning of the optimal subplan, the lower will
be the inventory costs.

aaa
Property 3.2. In an optimal policy, for a subplan (u, v) with 1 ≤ u < v ≤ Wi, there is at
most one disposal period and no return. Returns are only allowed for the subplans (u,Wi + 1)

in period Wi. We can easily compute the disposal quantity eu,vu with eu,vu = dDu,v−1

V eV −Du,v−1.
Note that eu,vu < V .

Proof. If 1 ≤ u < v ≤ Wi, then, the retailer cannot return between u and v − 1 and according
to Property 3.1, there is at most one disposal in (u, v). The retailer has to buy only dDu,v−1

V e
batches which totally satisfy the demand of the subplan (u, v) because it is not pro�table for
him to procure extra batches just to throw away them with a zero disposal revenue. Hence, the
remaining units dDu,v−1

V eV −Du,v−1 are disposed of in period u to have a lower total cost.
aaa

Property 3.3. There exists an optimal policy such that, in a subplan (u,Wi + 1), there is at
most either one disposal period being the period u, or one return period being the period Wi.
Thus, we have qu,Wi+1

Wi
eu,Wi+1
u = 0. If such a disposal period exists, then, we can compute the

quantity disposed by eu,Wi+1
u = dDu,WiV eV −Du,Wi . Otherwise, the return quantity is computed

as qu,Wi+1
Wi

= dDu,WiV eV −Du,Wi .

Proof. For the subplans (u, v) with 1 ≤ u < v = Wi + 1, suppose that there exists, in an optimal
solution, a subplan (u,Wi + 1) with eu,Wi+1

u > 0 and qu,Wi+1
Wi

> 0. In this subplan, the retailer

69



CHAPTER 3. FULL BATCH REPLENISHMENT WITH BUYBACK AND DISPOSAL

procures a number of batches which only satis�es du, du+1, . . . , dWi , on the one hand because he
has a null disposal revenue, and on the other hand, he has a non-negative return revenue pbWi

being less than all the unit procurement costs pt, for all t = 1, . . . ,Wi. Without this relationship
between the procurement cost and the non-negative return revenue, the retailer can buy an
unlimited quantity in (u,Wi + 1) and resell it to the supplier to obtain an unbounded pro�t,

which is an unfeasible case. Hence, we have eu,Wi+1
u + qu,Wi+1

Wi
= dDu,WiV eV −Du,Wi < V .

First, we decrease eu,Wi+1
u by eu,Wi+1

u and we increase both the quantities remaining in stock sk
(u ≤ k ≤Wi−1) and qu,Wi+1

Wi
by eu,Wi+1

u , we obtain a new feasible policy having a return only in

the periodWi. The total cost of this latter will be modi�ed by an amount of e
u,Wi+1
u (

∑Wi−1
k=u hk−

pbWi
).

Second, we increase eu,Wi+1
u by ε with ε = min

{
qu,Wi+1
Wi

,mink=u,...,Wi−1 sk

}
< V and we decrease

both the sk values (k = u, . . . ,Wi− 1) and qu,Wi+1
Wi

by ε. Hence, in this modi�ed policy, we have
either one subplan (u,Wi + 1) having a disposal, or a division of (u,Wi + 1) into at least two
subplans knowing that in the �rst one we only have a disposal and in the last one there is only
one return. Thus, the total cost will be modi�ed by a quantity of ε(pbWi

−
∑Wi−1

k=u hk).

In the case where pbWi
−
∑Wi−1

k=u hk =
∑Wi−1

k=u hk − pbWi
= 0, the solution remains optimal after

the modi�cations of the current policy. In the case where pbWi
−
∑Wi−1

k=u hk 6= 0, the optimality
is reached either by the �rst or the second modi�ed policy which satis�es the property.

aaa
De�ne 1β as an indicator function, used in the next property:

1β =

{
1 if β is true
0 otherwise

Property 3.4. Let (u, v) be a subplan with eu,vu ≥ 0 and let j be a replenishment period in
(u, v). There exists an optimal policy such that, the ending inventory value of period j − 1 is
equal to Ru,j−1 − eu,vu + 1Ru,j−1<e

u,v
u
V , ∀j = u+ 1, . . . , v.

Proof. According to Property 3.1, there is an optimal solution such that the subplan (u, v) has at
most one disposal period placed at period u. In the case with eu,vu > 0, if the retailer decides to
order full batches in period j, then, the procurement of one batch at j costs less than buying it in
a previous period t and storing it from t to j−1. Thus, it is more expensive for the retailer to buy
from period u to j− 1 a number of batches which satis�es both the demands of u, . . . , j− 1 with

the disposed quantity eu,vu and those after the periods j (for example dDu,j+e
u,v
u

V e or dDu,j+1+eu,vu
V e,

etc.). Consequently , the quantity ordered in only full batches from period u to period j − 1

must be equal to dDu,j−1+eu,vu
V e. Then, the number of batches replenished is either dDu,j−1

V eV or

(dDu,j−1

V e+ 1)V . Thus, what is left in period j − 1 is either Ru,j−1 − eu,vu or Ru,j−1 − eu,vu + V .
It depends on the sign of Ru,j−1 − eu,vu . In the case where eu,vu = 0, it is easy to see that if j is a
replenishment period, then sj−1 = Ru,j−1.

aaa
Dynamic programming recursion to compute the optimal cost of J1,WiK:

To reduce the search space of the optimal solution of J1,WiK, we use dominance properties
in each subplan. De�ne Cv−1 as the optimal cost to satisfy the demand in periods 1, 2, . . . , v−1,
such that the entering inventory level of period v is null (sv−1 = 0). De�ne C (u, v) as the
optimal cost of each subplan (u, v) satisfying the demand in periods u, u + 1, . . . , v − 1, where
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1 ≤ u < v ≤Wi+1. The following dynamic programming algorithm calculates the optimal total
cost CWi and thus solves the subproblem J1,WiK:

Recurrence relation. For v = 2, 3, . . . ,Wi + 1,

Cv−1 = min1≤u<v {Cu−1 + C (u, v)} (3.1)

Boundary condition. C0 = 0
Objective. CWi

For the given subproblem J1,WiK, the running time of the above dynamic programming al-
gorithm is in O(W 2

i ) if all the C (u, v) values have been predetermined. We will show that
�nding all the C (u, v) values is bounded by time complexity O(W 4

i ). This implies that the
subproblem J1,WiK is solvable in O(W 4

i ) time. The complexity of the general LSP-BD-R1, ρ=1 is
O(
∑N

i=1 (Wi)
4) time. f(x) = x4 is a super-additive function for non-negative real numbers, which

means that we have f(x)+f(y) ≤ f(x+y). Therefore, we obtain
∑N

i=1 (Wi)
4 ≤ (

∑N
i=1Wi)

4 = T 4.
Then, the general LSP-BD-R1, ρ=1 is solvable in O(T 4) time. This e�ciency can be improved
through the use of Monge matrices proposed by Li et al. (2004) to be O(W 3

i logWi) time for the
subproblem J1,WiK and O(T 3 log T ) time for the whole problem.

Computation of C (u, v):

To determine the cost C (u, v), we need to use Properties 3.1, 3.2, 3.3 and 3.4. In (u, v) with
1 ≤ u < v ≤ Wi, there exists an optimal solution such that there is at most one disposal and
no return. The optimal cost of this subplan is denoted by C

(1)
v (u, v) explained below. However,

in (u,Wi + 1) with 1 ≤ u < Wi + 1, there is at most, either one disposal and no return with an

optimal cost of C
(1)
v (u,Wi + 1), or, one return and no disposal with an optimal cost denoted by

C
(2)
v (u,Wi + 1). In the above two cases, the idea of determining the cost of the subplan (u, v)

is to work on consecutive replenishment periods.
Let us de�ne C

(1)
v (u, j + 1) as the minimum cost to satisfy du, du+1, . . . , dj , such that in the

subplan (u, v) there is a disposal in period u and period j + 1 is a replenishment period with a
known beginning inventory value (see Property 3.4), 1 ≤ u ≤ j ≤ v − 1 ≤ Wi. The dynamic

programming formulation of C
(1)
v (u, j + 1) is given as follows:

Recurrence relation. For j = u, . . . , v − 1,

C (1)
v (u, j + 1) = min

u−1≤k<j
{C (1)

v (u, k + 1) + fk+1+

(pk+1 +
ak+1

V
)((Ru,j − eu,vu + 1Ru,j<e

u,v
u
V ) +Dk+1,j + 1k+1=ue

u,v
u −

1k+1>u(Ru,k − eu,vu + 1Ru,k<e
u,v
u
V )) +H(1)

u,v(k + 1, j + 1)}

Boundary condition. C
(1)
v (u, u) = 0

Objective. C
(1)
v (u, v)

aaa
To get the C

(1)
v (u, j + 1) value, we have to compute �rst all the minimum values of C (1)

v (u, k + 1)
such that the periods k + 1 and j + 1 are two consecutive replenishment periods. Second, we
compute the procurement cost at the beginning of the period k+ 1 by calculating the number of
batches acquired for the periods k+1, k+2, . . . , j which is obtained by the known ending inventory

71



CHAPTER 3. FULL BATCH REPLENISHMENT WITH BUYBACK AND DISPOSAL

levels of periods k and j. And third, we compute the total holding cost H(1)
u,v(k+1, j+1) from the

end of period k+1 up to the beginning of period j+1 knowing that xk+2 = xk+3 = · · · = xj = 0,
and sj = Ru,j − eu,vu + 1Ru,j<e

u,v
u
V for j ≤ v − 1.

All the values of H(1)
u,v(k + 1, j + 1) can be obtained recursively in O(W 4

i ) time as follows:
H

(1)
u,v(k + 1, j + 1) = (H

(1)
u,v(k + 2, j + 1)+ if u− 1 ≤ k < j ≤ v − 1 ≤Wi

hk+1(Dk+2,j + (Ru,j − eu,vu + 1Ru,j<e
u,v
u
V ))) and 1j 6=v−1 or k 6=v−2 = 1

H
(1)
u,v(j + 1, j + 1) = 0 if u ≤ j ≤ v − 1 ≤Wi

H
(1)
u,v(v − 1, v) = 0 if 2 ≤ v ≤Wi + 1

De�ne C
(2)
v (u, j + 1) as the minimum cost to meet du, du+1, . . . , dj , such that in the sub-

plan (u, v) there is a return in period Wi and period j + 1 is a replenishment period with

1 ≤ u ≤ j ≤ v − 1 = Wi. The dynamic programming formulation of C
(2)
v (u, j + 1) is given as

follows:

Recurrence relation. For j = u, . . . , v − 1 and v = Wi + 1,

C (2)
v (u, j + 1) = min

u−1≤k<j
{C (2)

v (u, k + 1) +

fk+1 + (pk+1 +
ak+1

V
)(Ru,j +Dk+1,j −Ru,k) +H(2)

u,v(k + 1, j + 1)−

1j=Wi
pbWi

Ru,Wi
}

Boundary condition. C
(2)
v (u, u) = 0

Objective. C
(2)
v (u,Wi + 1)

aaa
To get the C

(2)
v (u, j + 1) value, we follow the same procedure as calculating C

(1)
v (u, j + 1) by

modifying the disposal possibility by the return option, and thereafter, the ending inventory
levels of periods k and j to su,vk = Ru,k, s

u,v
j = Ru,j for j < Wi, and for j = Wi, s

u,v
Wi

= 0 and

qu,Wi+1
Wi

= Ru,Wi . All the values of H
(2)
u,v(k+ 1, j + 1) can be solved in O(W 4

i ) time knowing that

they have the same equations of H(1)
u,v(k + 1, j + 1) with the only di�erence being (Ru,j) instead

of (Ru,j − eu,vu + 1Ru,j<e
u,v
u
V ).

Now, we can compute the possible values of C (u, v) in an O(W 4
i ) time according to the

values of (u, v) :{
C (u, v) = C

(1)
v (u, v) if 1 ≤ u < v ≤Wi

C (u,Wi + 1) = min{C (1)
v (u,Wi + 1) ,C

(2)
v (u,Wi + 1)} if 1 ≤ u < v = Wi + 1

All the possible C (u, v) values are predetermined. Now, we can compute the optimal cost
CWi to satisfy the demands of the subproblem J1,WiK in only full batch with the disposal and
return options in O(W 4

i ) time and the minimum total cost of LSP-BD-R1, ρ=1 in O(T 4) time.

LSP-BD-R1, ρ=1 for the special case with pbWi
≥
∑Wi−1

k=1 hk

In this case, we suppose that the cumulative holding cost from period 1 to period Wi − 1 is
lower than the return revenue at period Wi. We show that the problem can be solved without
decomposing it into subplans, which reduces its computational complexity. Hence, the key idea
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of this algorithm is to detect the ordering periods in order to compute the optimal total cost of
J1,WiK.

Property 3.5. For the subproblem J1,WiK with pbWi
≥
∑Wi−1

k=1 hk, there exists an optimal
policy such that et = 0 for each t = 1, 2, . . . ,Wi.

Proof. We consider a policy π
′
in which we have et > 0 in J1,WiK. We follow the same procedure

of the �rst part of the proof of Property 3.3 by modifying eu,Wi+1
u by et. The policy π

′
cannot

be optimal because of the hypothesis pbWi
−
∑Wi−1

k=t hk ≥ 0, ∀t ∈ {1, . . . ,Wi}.

This property implies that there is no discarded quantities at the retailer level over J1,WiK,
thus, all the left-over items are sold to the supplier at the end of periodWi. This special problem
is already studied in Chapter 2 (see Subsections 2.3.1 and 2.3.2). We have proposed an O(W 2

i )
time dynamic programming algorithm for the given interval 1, . . . ,Wi. If all the subproblems
have their holding cost structure such that

∑Wi−1
k=1 hk ≤ pbWi

for all i ∈ {1, . . . , N}, then, LSP-
BD-R1, ρ=1 can be solved in O(T 2) time.

3.3.2 LSP-BD-R1 with partial return policy (LSP-BD-R1, ρ<1)

In this problem, the returned quantity in period Wi is limited by ρ
∑Wi

k=1 xk with ρ < 1. As
previously, we solve each subproblem Jwi−1 + 1, wiK for all i = 1, . . . , N as J1,WiK. Properties
and algorithms are established for the general case with linear holding costs and for the special
case with pbWi

≥
∑Wi−1

k=1 hk.

LSP-BD-R1, ρ<1 for the general case

The only constraint changing between LSP-BD-R1, ρ<1 and LSP-BD-R1, ρ=1 is: qWi ≤ ρ
∑Wi

k=1 xk
with ρ being less than 1. The idea of the algorithm is the same as that of LSP-BD-R1, ρ=1, but we
add the fact that the retailer can increase his purchases to return as many products as possible.
We present two examples for LSP-BD-R1 in order to show the di�erence between the optimal
plans of the two cases: ρ = 1 and ρ < 1.

aaa
Example 3.1. Consider a time horizon of 3 periods in which the demands (1, 1, 1) have to be
satis�ed in full batches of size V = 2 units. Unit procurement and holding costs are set to 3 and
6 per product and per unit of time, respectively. A �xed cost per batch of 1 is paid per period.
Setup costs are null. The unsold items can be returned to the supplier only at the end of period
3 for a revenue of 2.

Table 3.1 shows the optimal plans of LSP-BD-R1, ρ=1 and LSP-BD-R1, ρ= 1
6
indicating that there

is one independent subproblem J1, 3K to optimize. It is interesting to note that, in the case where
ρ = 1

6 , the retailer purchases one additional batch at period 2 compared to the case where ρ = 1,
in which dd1+d2

V e batches are replenished for periods 1 and 2. The purchased quantities are thus
increased to return the maximum possible value for ρ < 1.

aaa
Example 3.2. We consider the same data given in Example 3.1 by changing the value of the
batch size by 4 units and we choose ρ = 1

9 in order to see the di�erence between the cases ρ = 1
and ρ < 1.
We note that in the case where we have ρ = 1

9 , the retailer purchases one less batch at period 3
compared to the case where we have ρ = 1 in which dd1+d2+d3

V e + V batches are purchased for
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Table 3.1: The optimal quantities of LSP-BD-R1, ρ=1 and LSP-BD-R1, ρ= 1
6
for V = 2

V = 2 LSP-BD-R1, ρ=1 LSP-BD-R1, ρ= 1
6

Period t dt xt st qt et xt st qt et
1 1 2 1 0 0 2 0 0 1
2 1 0 0 0 0 2 0 0 1
3 1 2 0 1 0 2 0 1 0

Table 3.2: The optimal quantities of LSP-BD-R1, ρ=1 and LSP-BD-R1, ρ= 1
9
for V = 4

V = 4 LSP-BD-R1, ρ=1 LSP-BD-R1, ρ= 1
9

Period t dt xt st qt et xt st qt et
1 1 4 1 0 2 4 2 0 1
2 1 0 0 0 0 0 1 0 0
3 1 4 0 3 0 0 0 0 0

periods 1, 2 and 3.
We observe that the purchased quantities throughout a subproblem in the case where ρ < 1 can
be more or less than the ones in the case where we have ρ = 1. However, they must be equal to

or greater than the number of batches satisfying all the demands (dd1+···+dWi
V eV ).

aaa
Some preliminaries and properties:

aaa
Properties 3.1 and 3.2 introduced in the previous section for the case with full return remain
valid for LSP-BD-R1, ρ<1. Recall that, for any optimal subplan (u, v) such that 1 ≤ u < v ≤Wi,
there is at most one disposal period placed in period u without return and we can easily compute
its quantity.

Property 3.6. For the subplan (u, v) such that 1 ≤ u < v = Wi + 1, there exists, in an
optimal planning strategy, at most either one disposal in period u if returning is less pro�table
than disposing, or one disposal in u and one return in period Wi at the same time. Therefore, in

the second possibility, we have eu,Wi+1
u + qu,Wi+1

Wi
= dDu,WiV eV −Du,Wi , then we can have either

one disposal, or one return, or both, or nothing.
Property 3.6 is a modi�cation of Property 3.3, because in this problem the returned quantity de-
pends on the buyback percentage ρ. The fact that there is at most one disposal period is proved
by Property 3.1. Besides, in the subplan (u,Wi+1), there is at most one return period beingWi.

In the calculation of the optimal cost of a subplan with only one disposal, we use Property
3.4 in which in any optimal solution, the starting inventory level of a replenishment period j
for 2 ≤ j ≤ Wi + 1 is Ru,j−1 − eu,vu + 1Ru,j−1<e

u,v
u
V by replacing the value of eu,vu according to

each subplan. For a subplan with one disposal and one return, we also apply Property 3.4 for
2 ≤ j ≤Wi, and, for j = Wi + 1 we have sWi = 0.

Property 3.7. The optimal number of batches replenished from period 1 to period k with
sk = 0 is equal to dD1,k

V e+∆, with ∆ taking its value from the set {0, . . . , k − 1}, ∀k = 1, . . . ,Wi.
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Proof. It is easy to see that the minimum number of batches to replenish is dD1,k

V e in order to only
satisfy the total demand d1+· · ·+dk to be feasible. The maximum number of batches to replenish
is
∑k

l=1d
dl
V e because the maximum number of subplans is k: (1, 2), (2, 3), . . . , (k, k + 1). In each

of those k subplans, we have to meet the demands. In each period l, the retailer orders batches to
satisfy only dl and disposes and/or returns what is left. It is easy to see that the value

∑k
l=1d

dl
V e

can be at most dD1,k

V e+(k−1) (based on the fact that for a, b ∈ R+, dae+dbe ≤ da+ be+1).

aaa
Dynamic programming recursion to compute the optimal cost of J1,WiK:

The idea is �rst to decompose the subproblem J1,WiK as before into subplans (u, v). Then,
we compute all the optimal costs Cρ(v,∆) for v = 2, 3, . . . ,Wi + 1 and ∆ = 0, . . . , v − 2 which
corresponds to the total cost to satisfy the demand D1,v−1 knowing that we have sv−1 = 0 and
∆ is the number of additional batch replenished from period 1 to period v− 1. Once this cost is
computed for all the values of v, we obtain the costs Cρ(Wi + 1,∆) for all possible values of ∆.
At the end, we compute the optimal total cost of J1,WiK which is the minimum of Cρ(Wi+1,∆),
among the ∆ values.

To obtain these costs, the time horizon 1, . . . , v − 1 with a total number of batches to buy
being (dD1,v−1

V e + ∆) is divided into the time horizon 1, . . . , u − 1 with su−1 = 0 and the sub-
plan (u, v), (see Figure 3.2). Throughout the time horizon 1, . . . , u − 1, we know the number
of batches purchased, which is dD1,u−1

V e + ∆
′
with ∆

′
being the extra batches replenished from

period 1 to period u − 1. Besides, in the subplan (u, v), the number of batches purchased
from period u till v − 1 is equal to dDu,v−1

V e. Hence, we can easily compute the value of ∆
′
:

∆
′

= ∆ + dD1,v−1

V e − dD1,u−1

V e − dDu,v−1

V e. For a given value of ∆, the value of ∆
′
is thus known.

Figure 3.2: How to compute the optimal costs Cρ(v,∆)

The costs Cρ(v,∆) are computed by the following algorithm:

Recurrence relation. For v = 2, 3, . . . ,Wi + 1 and ∆ = 0, . . . , v − 2,

Cρ(v,∆) = min
1≤u<v

{
Cρ(u,∆

′
) + C (u, v)

}
Boundary condition. Cρ(1, 0) = 0, Cρ(v,∆) = +∞ with ∆ ≥ v − 1, or ∆ < 0
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Objective. Cρ(Wi + 1,∆)

The time complexity of this shortest path algorithm is O(W 4
i ) knowing that all the optimal

subplan costs C (u, v) will be computed in time complexity O(W 4
i ). The total optimal cost of

the subproblem J1,WiK with ρ < 1 is denoted by Costmin(Wi + 1) and is computed in O(W 5
i )

time as follows:

Costmin(Wi + 1) = min
0≤∆≤Wi−1

{Cρ(Wi + 1,∆)}

Therefore, the complexity of the whole LSP-BD-R1, ρ<1 in the general case is solvable in
O(T 5) time.

aaa
Computation of C (u, v):

We have to calculate the optimal cost of all subplans. There are two possibilities in a given
suplan (u, v): we have either a subplan with at most one disposal period, or, a subplan with
at most one disposal period and one return period (the disposal and return quantities will be
subsequently calculated in terms of ρ, in order to �nd out if there is a disposal, or a return, or
both, or nothing). Thus, there are two possible values of C (u, v).

For 1 ≤ u < v ≤Wi, the optimal cost is computed as previously C (u, v) = C
(1)
v (u, v).

For 1 ≤ u < v = Wi + 1, the optimal cost of the last subplan (u,Wi + 1) is computed as follows:

C (u,Wi + 1) = min{C (1)
Wi+1 (u,Wi + 1) ,C ∆ (u,Wi + 1)}}

The �rst possible cost C
(1)
v (u, v) is addressed in the previous section and C ∆ (u,Wi + 1) is the

minimum cost of the subplan (u,Wi+1) having at most a disposal and a return such thatWi+1 is
a replenishment period and ∆ is the total additional batches replenished from period 1 to period
Wi. To determine C ∆ (u,Wi + 1), we have to compute the returned quantity which depends on
∆ (denoted by qu,Wi+1

Wi
(∆)) and the disposed quantity denoted by eu,Wi+1

u (∆). We know that the

quantity purchased throughout the overall planning horizon is equal to dD1,Wi
V eV + ∆V . Hence,

we obtain qu,Wi+1
Wi

(∆) ≤ BS(u,Wi,∆) with BS(u,Wi,∆) corresponding to the upper limit of

qu,Wi+1
Wi

(∆), BS(u,Wi,∆) =
⌊
ρ(dD1,Wi

V eV + ∆V )
⌋
. For each u such that u = 1, . . . ,Wi, in the

subplan (u,Wi + 1), we compare between the remaining quantity dDu,WiV eV −Du,Wi and the one
of BS(u,Wi,∆):

If dDu,WiV eV −Du,Wi ≤ BS(u,Wi,∆), then the retailer returns all the remaining quantity of

(u,Wi + 1), qu,Wi+1
Wi

(∆) = dDu,WiV eV −Du,Wi , and makes no disposal, i.e., eu,Wi+1
u (∆) = 0.

In this case, the optimal cost of the subplan (u,Wi + 1) is equal to C
(2)
Wi+1 (u,Wi + 1).

-

Otherwise, the retailer only returns the maximum amount, that can be returned, depending

on the value of ρ, qu,Wi+1
Wi

(∆) = BS(u,Wi,∆), and gets rid of what is left after returning,

eu,Wi+1
u (∆) = dDu,WiV eV −Du,Wi −BS(u,Wi,∆). The dynamic programming formulation

used to obtain C ∆ (u,Wi + 1) is the same as that of C
(1)
Wi+1 (u,Wi + 1), with the additional

consideration of the return revenue at period Wi.

-
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LSP-BD-R1, ρ<1 for the special case with pbWi
≥
∑Wi−1

k=1 hk

To solve the special case of LSP-BD-R1, ρ<1 with pbWi
≥
∑Wi−1

k=1 hk, we keep the same properties
as LSP-BD-R1, ρ<1, except Property 3.7. Instead, we propose Property 3.8.

Property 3.8. In an optimal plan, the retailer acquires a minimum number of batches to satisfy
the demand from period 1 to period w. Hence, the number of optimal batches replenished in
this duration is equal to dD1,w

V e, which means that, we always have ∆ = 0.

Proof. We suppose that there is an optimal policy π
′
in which the retailer orders the quantity

dD1,w

V eV + V for the periods 1, . . . , w. We can consider another policy π∗ which only orders

dD1,w

V e. Since π
′
is optimal, the total cost of π

′
is less than the one of π∗ (C (π

′
) ≤ C (π∗)).

In order to obtain the policy π∗, we have to modify the policy π
′
and calculate the di�erence

between C (π
′
) and C (π∗). We choose all the periods of π

′
in the planning horizon with e

′
t > 0,

let us take two periods: t1, t2 with t1 < t2. We will reduce the quantity
∑Wi

k=1 x
′
k = dD1,Wi

V eV +V

purchased in policy π
′
by a batch size V by decreasing the disposed and returned quantities by

V . Indeed, let V = α1 + α2 + β such that α1 ≤ e
′
t1 , α2 ≤ e

′
t2 , q

′
Wi
− ρdD1,Wi

V eV ≤ β ≤ q
′
Wi

and
α1, α2, β ∈ N.

We only modify the following variables by leaving the others unchanged.
- e∗t1 = e

′
t1 − α1,

- s∗c = s
′
c + α1, ∀c ∈ {t1, . . . , t2 − 1},

- e∗t2 = e
′
t2 − α2,

- s∗c = s
′
c + α1 + α2, ∀c ∈ {t2, . . . , t3 − 1}, with t3 being the last ordering period in π

′
.

- x∗t3 = x
′
t3 − V ,

- s∗c = s
′
c − β, ∀c ∈ {t3, . . . ,Wi − 1}, we have absolutely β ≤ q′Wi

≤ minc=t3,...,Wi−1 s
′
c

- q∗Wi
= q

′
Wi
− β.

We obtain the following relation between the costs C (π∗) and C (π
′
):

C (π∗) = C (π
′
)−

(
V (pt3 +

at3
V

)− α1

t2−1∑
c=t1

hc − (α1 + α2)

t3−1∑
c=t2

hc − βpbWi

)
− β

Wi−1∑
c=t3

hc

Since the gross marginal procurement cost after returning the unused products (pbWi
< pt3)

is positive for each period, then, we obtain (V − β)pt3 < V pt3 − βpbWi
. Under the latter

buyback contract assumption and the special case of this problem (pbWi
≥
∑Wi−1

k=1 hk), we get

pt3 >
∑t2−1

c=t1
hc +

∑t3−1
c=t2

hc. Hence, we obtain (V − β)pt3 > α1
∑t2−1

c=t1
hc + (α1 + α2)

∑t3−1
c=t2

hc,
because we have V − β ≥ α1 and V − β = α1 +α2. Therefore, we have 0 < (V − β)(pt3 +

at3
V )−

α1
∑t2−1

c=t1
hc − (α1 + α2)

∑t3−1
c=t2

hc < V (pt3 +
at3
V )− α1

∑t2−1
c=t1

hc − (α1 + α2)
∑t3−1

c=t2
hc − βpbWi

. It

means that C (π
′
) > C (π∗), which contradicts the optimality of π

′
.

According to Property 3.8, we do not take into account the extra number of batches ∆ to
replenish from period 1 to period k with sk = 0. Thus, the complexity of the subproblem J1,WiK
with pbWi

≥
∑Wi−1

k=1 hk is reduced to O(W 4
i ) time. Thereafter, the running time of the overall

problem reduces to O(T 4) time.
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We note that the algorithm proposed for the LSP-BD-R1, ρ<1 can solve the LSP-BD-R1, ρ=1

but with a higher complexity.

3.4 LSP-BD-R with time limit for returns (LSP-BD-R2)

In this section, return periods become decision variables. The supplier also imposes some restric-
tions on the returns. These include on the one hand the strict time limit on returns, and, on
the other hand the returned quantity limit. This type of contract presents the way of controlling
excessive return to the supplier. Such a policy is common in the industries of home-electronics,
computers, etc. The return periods and the total number of return over the planning horizon
are unknown (decision variables) and they will be optimized in the model.

Over the �rst j periods (with j a given period �xed in the contract, j ≤ T ), the supplier allows
returns any time until j (with j included). After the period j, the returns are forbidden. The
total quantity to return over 1..j is limited to ρ

∑j
i=1 xi units (

∑j
i=1 qi ≤ ρ

∑j
i=1 xi). For one unit

returned in period i (with i ≤ j), we have a return revenue pbi , and we assume maxi=1,...,j{pbi} <
pt, ∀t ∈ {1, . . . , j} in order to avoid the speculation.

Below, we give an MILP formulation without inventory variables whose objective is to mini-
mize all the costs over the planning horizon. Note that such a transformation is possible for the
case of linear holding cost. In this section, we need to transform the aggregate formulation of
this problem into the following one in order to facilitate the understanding of some dominance
properties. The proof of the equivalence between the two formulations is explained in Appendix.
Let p̃t be the modi�ed unit procurement cost in period t coupled with cumulative holding costs
of periods t, . . . , T , p̃t = pt +

∑T
k=t hk, let p̃

b
t be the modi�ed return revenue in period t after

integrating the cumulative holding cost, p̃bt = pbt +
∑T

k=t hk, and let p̃et be the modi�ed dis-
posal revenue or cost taking into account the inventory holding costs from period t to period T ,
p̃et = pet +

∑T
k=t hk with p

e
t = 0.

min
∑T

t=1(ftyt + p̃txt + atAt − p̃btqt − p̃etet − ht
∑t

i=1 di)

Constraints without inventory variables:∑t
k=1 xk ≥

∑t
k=1(dk + qk + ek) ∀t = 1, . . . , T

Conditions of the buyback contract type R2 :∑j
i=1 qi ≤ ρ

∑j
i=1 xi j is a given parameter∑T

i=j+1 qi = 0

Setup variable generation constraints:

xt ≤ d
∑T
j=t dj
Vt
eV yt ∀t = 1, . . . , T

Only full batch replenishment constraints:
xt = AtV ∀t = 1, . . . , T

Nonnegativity and binary constraints:
xt, qt, et ∈ R+ ∀t = 1, . . . , T

At ∈ N, yt ∈ {0, 1} ∀t = 1, . . . , T
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We note that the last expression in the objective function is constant and thus, can be omitted.
We study LSP-BD-R2 in the case of full and partial returns (ρ = 1 and ρ < 1), respectively.

3.4.1 LSP-BD-R2 with full return policy (LSP-BD-R2, ρ=1)

In this section, the total returned quantity over the �rst j periods is limited by the total ordered
quantity over the same periods. To solve our LSP-BD-R2, ρ=1, we proceed to decompose this
problem into subplans (u, v) as in Section 3.3. Note that, here we tackle one problem over the
entire horizon 1..T . We will compute the minimum cost C (u, v) of each subplan (u, v) with
1 ≤ u < v ≤ T + 1 according to the properties proposed in the following for LSP-BD-R2, ρ=1. By
using Equation (3.1), we obtain the total optimal cost CT to satisfy the demands d1, d2, . . . , dT
in which we decide how much to order, to return and to dispose of over periods 1, . . . , T . We
present an example to show the results of LSP-BD-R2, ρ=1 for di�erent values of j and compare
them with the ones of LSP-BD-R1, ρ=1.aaa
Example 3.3. We use the same data given in Example 3.2 to compare the results of LSP-BD-
R2, ρ=1 for di�erent return limits j ∈ {1, 2, 3}, with those of LSP-BD-R1, ρ=1 (see Table 3.3). We
consider pb1 = pb2 = 1, pb3 = 2. Notice that for LSP-BD-R2, ρ=1, ∀j ∈ {1, 2, 3}, there is at most one
return in each subplan in which the buyback is allowed. We note that, if we increase the value of
j, then the cost of LSP-BD-R2, ρ=1 decreases. Besides, we note that the cost of LSP-BD-R2, ρ=1

with j = 3 is less than the one of LSP-BD-R1, ρ=1. In LSP-BD-R2, ρ=1 with j = T = 3, there
are no restrictions on the return throughout the planning horizon, but in LSP-BD-R1, ρ=1, the
returns are forced to be in speci�c periods.

Table 3.3: The optimal quantities of LSP-BD-R2, ρ=1 for j = 1, 2, 3 and LSP-BD-R1, ρ=1: V = 4

V = 4 LSP-BD-R2, ρ=1 j = 1 LSP-BD-R2, ρ=1 j = 2 LSP-BD-R2, ρ=1 j = 3 LSP-BD-R1, ρ=1

Period t xt st qt et xt st qt et xt st qt et xt st qt et
1 4 0 3 0 4 0 3 0 4 1 2 0 4 1 0 2
2 4 1 0 2 4 1 2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 4 0 3 0 4 0 3 0

Costs 29 27 24 26

In what follows, we give a polynomial time algorithm running in O(T 5) time for LSP-BD-
R2, ρ=1. We �rst present several optimality properties.

aaa
Some preliminaries and properties:

aaa
Property 3.9. If there exists an optimal schedule in which the periods t1, t2, . . . , tn are n
ordering periods such that t1 < t2 < · · · < tn, then, the total unit costs at these periods verify
p̃t1 +

at1
V ≥ p̃t2 +

at2
V ≥ · · · ≥ p̃tn + atn

V .
This property is used in the proof of Property 3.11.

Proof. We will show that in a policy with two periods t1 and t2 such that t1 < t2 and p̃t1 +
at1
V <

p̃t2 +
at2
V , periods t1 and t2 cannot be both ordering periods.

We consider an optimal policy π
′
in which t1 and t2 are two ordering periods (x

′
t1 > 0 and

x
′
t2 > 0) with p̃t1 +

at1
V < p̃t2 +

at2
V . We modify the policy π

′
to obtain a policy π∗ with a feasible

solution as follows: x∗t1 = x
′
t1 + x

′
t2 , s

∗
k = s

′
k + x

′
t2 , ∀k ∈ {t1, . . . , t2 − 1} and x∗t2 = 0. Now, we

compare the costs of these two policies: C (π∗) = C (π
′
)−x′t2((p̃t2 +

at2
V )− (p̃t1 +

at1
V ))− ft2 . The
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change of policy π
′
decreases the cost of policy π∗ in which period t1 is an ordering period but

period t2 is a null ordering period. Thus, this contradicts the fact that π
′
is optimal.

aaa
Property 3.10. In an optimal plan, for a subplan (u, v) in which the returns are allowed, there
is at most one return period and no disposal period. If t is the return period, then, the quantity
returned is qu,vt = dDu,v−1

V eV −Du,v−1.

Proof. First, let us prove that there is at most one return period in a subplan in which the
returns are allowed. We follow the same �rst part of the proof of Property 3.1 by changing the
quantities eu,vi and eu,vj of disposal in periods i and j (see Section 3.3.1) by the quantities qu,vi
and qu,v

j ′
of return in periods i and j

′
.

aaa
Second, let us prove that there is no disposal period in a subplan containing authorized returns.
We suppose, in an optimal policy π, a positive disposed quantity at period t (eu,vt > 0). We
decrease eu,vt by eu,vt and increase qt by e

u,v
t by obtaining a new feasible solution. We notice that

the total cost of this new solution will decrease by an amount of (p̃bt − p̃et )e
u,v
t because we have

in every period k, p̃bk ≥ p̃ek. This is a contradiction of the optimality of π.
aaa

Since there is at most one return and no disposal in (u, v), then the retailer returns all the
remaining quantity to the supplier.

There are two possibilities of a subplan (u, v), in which the returns are allowed, according to
the position of the return limit j: it can be either with 1 ≤ u < v ≤ j + 1 or with 1 ≤ u ≤ j <
v ≤ T + 1. Let g be the last period permitted for returns in the subplan (u, v):

g =

{
v − 1 if 1 ≤ u < v ≤ j + 1, �rst possibility
j if 1 ≤ u ≤ j < v ≤ T + 1, second possibility

Property 3.11. For a subplan (u, v) in which the returns are allowed (u ≤ g < v), the return

period coincides with the period having maxi=u,...,g{p̃bi}. If the latter expression is veri�ed for
several periods, then the return will be made in the closest period to period g.

Proof. First, let us prove that the return period belongs to the set of periods having maxi=u,...,g{p̃bi}.
Consider an optimal policy π

′
with a return period t between u and g such that q

′
t > 0 and

t 6= tmax in which p̃btmax = maxi=u,...,g{p̃bi} (see Figures 3.3 and 3.4).

Figure 3.3: A subplan (u, v) having one return
in period t < tmax

Figure 3.4: A subplan (u, v) having one return
in period t > tmax

The period tmax can be either before t or after t. Two cases may arise:
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If t < tmax (Figure 3.3), then we consider a feasible policy π
′′
which returns q

′
t units less

in period t, stores q
′
t additional units from period t to period tmax − 1, and returns q

′
t

items more in period tmax, that is, q
′′
t = 0, s

′′
k = s

′
k + q

′
k, ∀k ∈ {t, . . . , tmax − 1} and

q
′′
tmax = q

′
t. The cost of this new policy is: C (π

′′
) = C (π

′
) − q′t(p̃btmax − p̃bt). Since π

′

is an optimal policy, we must have p̃btmax ≤ p̃bt , but it is not the case because we have

p̃btmax = maxi=u,...,t,...,g{p̃bi} and t 6= tmax - a contradiction of π
′
.

-

If t > tmax (Figure 3.4), then we de�ne λ = min
{
q
′
t,mink=tmax,...,t−1 s

′
k

}
and we consider an

alternative policy π
′′′
in which we have q

′′′
tmax = λ, s

′′′
k = s

′
k − λ, ∀k ∈ {tmax, . . . , t− 1} and

q
′′′
t = q

′
t−λ. The cost of a policy π

′′′
is computed as follows: C (π

′′′
) = C (π

′
)−λ(p̃btmax−p̃bt).

A policy π
′
is no longer optimal because C (π

′′′
) < C (π

′
). We will prove that, in a policy

π
′′′
, the return period is chosen among the periods having maxi=u,...,g{p̃bi} according to the

value of λ. There are two values for λ:

• If λ = qt, then there is one subplan (u, v) and the return is placed in period tmax -
optimality of π

′′′
.

• If λ = mink=tmax,...,t−1 s
′
k = s

′
i with i ∈ {tmax, . . . , t− 1}, then the subplan (u, v) is

divided into two subplans: (u, i+ 1) and (i+ 1, v). In (u, i+ 1), there is one return in
period tmax - the optimality is achieved. For the subplan (i+ 1, v), we have a return
in period t. We search for a period being between the periods i+ 1 and g and having
the maximum of p̃bi with i ∈ {i+ 1, . . . , g}. After that, we perform on (i + 1, v) the
same procedure of the (u, v) optimality proof till obtaining the (i+ 1, v) optimality.

-

If there are several periods having the same maximum of revenue p̃bi with i ∈ {u, . . . , g}, then,
we have to prove that the return period is the last one in the set of possible return periods.
Suppose that, in an optimal policy π(1), we have in a subplan (u, v) a return period tmax1
(q(1)
tmax1

> 0) having p̃btmax1 = maxi=u,...,g{p̃bi}. Now, we consider that we have a period tmax2

having p̃btmax2 = maxi=u,...,g{p̃bi} with tmax1 < tmax2 . Clearly, there is a replenishment period t1
before period tmax1 , but between tmax1 and tmax2 , we may or may not have some replenishment
periods.
In the case where there are no ordering periods, returning units at period tmax1 or at period tmax2
incurs the same cost for the retailer because they have the same p̃b. For the case where there are
ordering periods, we choose one, for example, period t2 such that t1 ≤ tmax1 < t2 ≤ tmax2 (see

Figure 3.5). According to Property 3.9, we have p̃t1 +
at1
V ≥ p̃t2 +

at2
V because we have x(1)

t1
> 0,

x
(1)
t2

> 0 and t1 < t2.

Let δ1 = min
{
V,mini=t1,...,tmax1−1 s

(1)
i

}
. We have two cases:

If δ1 = V , then we de�ne δ2 = min
{
V − q(1)

tmax1
,mini=tmax1 ,...,t2−1 s

(1)
i

}
and we obtain two

sub-cases:

-
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Figure 3.5: A subplan (u, v) having one return in period tmax1 in policy π(1)

• If δ2 = V − q(1)
tmax1

, then, we propose a feasible policy π(2) in which we obtain the

following quantities by changing the ones of policy π(1): x(2)
t1

= x
(1)
t1
−V , s(2)

i = s
(1)
i −δ1,

∀i ∈ {t1, . . . , tmax1 − 1}, q(2)
tmax1

= 0, s(2)
i = s

(1)
i − δ2, ∀i ∈ {tmax1 , . . . , t2 − 1}, x(2)

t2
=

x
(1)
t2

+ V , s(2)
i = s

(1)
i + q

(1)
tmax1

, ∀i ∈ {t2, . . . , tmax2 − 1} and q(2)
tmax2

= q
(1)
tmax1

. The total

cost C (π(2)) is computed as a function of the total cost C (π(1)) as follows: C (π(2)) =
C (π(1)) − V ((p̃t1 +

at1
V ) − (p̃t2 +

at2
V )). Hence, we observe that C (π(2)) ≤ C (π(1)) -

this proves the non-optimality of policy π(1) if we have δ1 = V and δ2 = V − q(1)
tmax1

.

• If δ2 = mini=tmax1 ,...,t2−1 s
(1)
i , then the retailer has the possibility to return either in

period tmax1 or in period tmax2 , since the cost of these two policies are equal.

-

If δ1 = mini=t1,...,tmax1−1 s
(1)
i , then the returning in period tmax2 is optimal as the returning

in period tmax1 of policy π
(1).

-

aaa
Property 3.12. In an optimal solution, for the subplan (u, v) with j < u < v ≤ T + 1, there is
at most one disposal period, situated in period u with eu,vu = dDu,v−1

V eV −Du,v−1 and no return
period.
After period j, the returns are not allowed, refer to the proof of Property 3.1 and 3.2.

aaa
An optimal subplan (u, v) with j < u < v ≤ T + 1 veri�es Property 3.4 in which we can identify
the ending inventory value of each ordering period k.

aaa
Property 3.13. For a subplan (u, v) in which the return is placed in period t (qu,vt ≥ 0), there
exists an optimal schedule which veri�es for each ordering period k:
∀k ∈ {u, . . . , t}, sk−1 = Ru,k−1

∀k ∈ {t+ 1, . . . , v}, sk−1 = Ru,k−1 − qu,vt + 1Ru,k−1<q
u,v
t
V .

The proof of Property 3.13 is the same as that of Property 3.4.
aaa

Computation of C (u, v):

As it was noticed in the properties, there are two types of suplan (u, v) whose optimal costs
are computed as follows:
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In (u, v) with j < u < v ≤ T + 1, by using Properties 3.4 and 3.12, the optimal cost C (u, v) is

equal to C
(1)
v (u, v) as explained in Section 3.3.1.

In (u, v) with either 1 ≤ u < v ≤ j+1 or 1 ≤ u ≤ j < v ≤ T+1, by using Properties 3.10, 3.11 and

3.13, the optimal cost C (u, v) is equal to C
(3)
v (u, v) (see the following). The cost C

(3)
v (u, l + 1)

is the minimum cost of satisfaction of du, du+1, . . . , dl, knowing that the subplan (u, v) contains
one return in period t, and period l + 1 is a replenishment period with 1 ≤ u ≤ l ≤ v − 1 ≤ T .
The dynamic programming formulation of C

(3)
v (u, l + 1) is as follows:

Recurrence relation. For l = u, . . . , v − 1,

C (3)
v (u, l + 1) = min

u−1≤k<l
{C (3)

v (u, k + 1) +

fk+1 + (pk+1 +
ak+1

V
)(sl +Dk+1,l + 1k+1≤t<l+1q

u,v
t − sk)+

H(3)
u,v(k + 1, l + 1)− 1k+1≤t<l+1p

b
tq
u,v
t }

Boundary condition. C
(3)
v (u, u) = 0

Objective. C
(3)
v (u, v)

To compute the cost C
(3)
v (u, l + 1), we have to ensure that all the periods k+1 are replenish-

ment periods just before period l+ 1. The number of batches purchased in period k+ 1 satis�es
the demands of periods k+ 1, k+ 2, . . . , l and also the returned quantity qu,vt if k+ 1 ≤ t < l+ 1
by taking into account the ending inventory levels of periods k and l given in Property 3.13
according to the position of period t. In addition to the ordering cost, we have the total holding
cost H(3)

u,v(k+1, l+1) from the end of period k+1 up to the beginning of period l+1 knowing that
there are no orders between k + 2 and l, we can compute the value of sl and if k + 1 < t < l+ 1

we also have to store qu,vt . All the values of H(3)
u,v(k + 1, l + 1) can be calculated recursively in

O(T 5) time, knowing that the complexity for �nding the maximum of p̃bi in order to obtain the
return period t is O(T ),

H
(3)
u,v(k + 1, l + 1) = (H

(3)
u,v(k + 2, l + 1)+ if u− 1 ≤ k < l ≤ v − 1 ≤ T

hk+1(Dk+2,l + sl + 1k+1<t<l+1q
u,v
t )) and 1l 6=v−1 or k 6=v−2 = 1

H
(3)
u,v(l + 1, l + 1) = 0 if u ≤ l ≤ v − 1 ≤ T

H
(3)
u,v(v − 1, v) = 0 if 2 ≤ v ≤ T + 1

In the relation of C
(3)
v (u, l + 1), we deduce all the costs mentioned above by the return revenues

in period t if k + 1 ≤ t < l + 1. One can compute all the values of C
(3)
v (u, v) with a complexity

of O(T 5).

3.4.2 LSP-BD-R2 with partial return policy (LSP-BD-R2, ρ<1)

For this case with ρ < 1, we assume that the quantities returned over the �rst j periods are
restricted by the quantity ρ

∑j
i=1 xi. We will prove that a special case of our problem with

j = T and maxi=1,...,j{p̃bi} ≤ p̃t, ∀t ∈ {1, . . . , j} can be solved using Weight Constrained Shortest
Path Problem (WCSPP). After that, we show that the general problem is like the Resource
Constrained Shortest Path Problem (RCSPP).
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LSP-BD-R2, ρ<1 for the special case with j = T and maxi=1,...,j{p̃bi} ≤ p̃t, ∀t ∈ {1, . . . , j}

The assumption of j = T means that the retailer can return units in every period of the planning
horizon. We �rst identify some optimality properties of this case to calculate all the possible
costs of the subplan (u, v).

aaa
Some preliminaries and properties:

aaa
Property 3.14. There exists an optimal solution in which for any subplan (u, v) such that
1 ≤ u < v ≤ T + 1, there is at most one disposal in u and one return situated in the last period
t having maxi=u,...,v−1{p̃bi}. We have eu,vu + qu,vt = dDu,v−1

V eV −Du,v−1.

Proof. The fact that there is just one return period in a (u, v) is proved in Property 3.10. How-
ever, we can have either only one disposal period, or, one disposal period and one return period,
because, all the optimal subplans must verify the buyback constraint (

∑T
i=1 qi ≤ ρ

∑T
i=1 xi). All

the quantities one may want to return can be limited by this latter upper bound. In a subplan
with a null remaining quantity (dDu,v−1

V eV − Du,v−1 = 0), there is neither return nor disposal.
See the proof of Property 3.11 in order to �nd the optimal return period and the one of Property
3.1 in order to �nd the disposal period.

aaa
Property 3.15. For any subplan (u, v) with eu,vu ≥ 0, qu,vt ≥ 0 and t being the optimal return
period, there exists an optimal schedule which veri�es for each replenishment period k:
∀k ∈ {u+ 1, . . . , t}, sk−1 = Ru,k−1 − eu,vu + 1Ru,k−1<e

u,v
u
V

∀k ∈ {t+ 1, . . . , v}, sk−1 = Ru,k−1 − qu,vt − e
u,v
u + 1Ru,k−1<q

u,v
t +eu,vu

V .
It is a consequence of Property 3.14.

aaa
Property 3.16. The optimal purchased quantity, throughout the planning horizon, is equal to
dD1,T

V eV .
Therefore, the retailer has to meet only the demands d1, d2, . . . , dT . By satisfying the buyback
constraint on the total quantity returned, we obtain

∑T
i=1 qi ≤ ρdD1,T

V eV and subsequently∑T
i=1 qi ≤W with W =

⌊
ρdD1,T

V eV
⌋
.

Proof. The proof of this property is similar to that of Property 3.8 but with some modi�cations,
because the returns are allowed in every period. We suppose an optimal policy π

′
with a total

number of batches replenished being dD1,T

V eV + V . To obtain an alternative policy π∗ in which

the retailer only purchases dD1,T

V eV items, we decrease the disposal quantity and the quantity
returned of the policy π

′
by the batch size V . We detect the periods where we have e

′
t > 0,

for example t1 and t2, and the ones with q
′
t > 0, for example t3 and t4. We suppose �rst that

we have t1 < t2 < t3 < t4, knowing that our procedure works with any compositions of these
periods, and, second that t5 is an ordering period placed after t1, t2, t3 and t4. We choose four
integers: α1, α2, β3 and β4 such that α1 ≤ e

′
t1 , α2 ≤ e

′
t2 , β3 ≤ q

′
t3 , β4 ≤ q

′
t4 , V = α1 +α2 +β3 +β4,∑T

t=1 q
′
t − ρd

D1,T

V eV ≤ β3 + β4 and α1, α2, β3, β4 ∈ N.
aaa

The policy π∗ gets rid of e
′
ti − αi in period ti, for i = 1, 2. Besides, it returns q

′
tk
− βk in period

tk, for k = 3, 4. In addition, it stores s
′
c + α1 from period t1 till t2 − 1, s

′
c + α1 + α2 from period

t2 till t3− 1, s
′
c +α1 +α2 + β3 from period t3 till t4− 1, and, s

′
c +α1 +α2 + β3 + β4 from period

t4 till t5 − 1. Finally, it orders x
′
t5 − V in t5. Then, we obtain:

C (π∗) = C (π
′
)−

(
V (p̃t5 +

at5
V

)− α1p̃et1 − α2p̃et2 − β3p̃bt3 − β4p̃bt4

)
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Since we have maxi=1,...,T {p̃bi} ≤ p̃t, p̃et ≤ p̃bt , ∀t ∈ {1, . . . , T}, and, V = α1 + α2 + β3 + β4,
thus we note that the cost of policy π∗ is lower than the one of policy π

′
- contradiction of the

optimality of the policy π
′
.

The optimal cost of LSP-BD-R2, ρ<1 for the special case with j = T and maxi=1,...,j{p̃bi} ≤ p̃t,
∀t ∈ {1, . . . , j} will match with

∑T
i=1 xi = dD1,T

V eV .
aaa

Computation of the possible costs of the subplan (u, v):

According to Property 3.14, the value of ρ in�uences the costs of all the possible subplans.
We cannot independently compute the optimal cost C (u, v) for a subplan (u, v) (see Example
3.4). The reason is that, even if in each subplan (u, v), we know the value of the remaining
units which will be divided into a returned quantity and a disposed amount, we cannot easily
determine those latters because of the buyback constraint

∑T
i=1 qi ≤W linking all the subplans

of a feasible plan. A decision already made on a return quantity in a previous subplan will
heavily impact the return quantities in the next subplans. In the following, we will show that
this problem is similar to WCSPP.

aaa
Example 3.4. We take Example 3.3 for j = T = 3 and we change the unit procurement cost
to be 13 in every period in order to verify maxi=1,...,3{p̃bi} ≤ p̃t, ∀t ∈ {1, . . . , 3}. In Table 3.4,
we see the results of LSP-BD-R2, ρ= 1

5
and LSP-BD-R2, ρ= 1

10
. We note that for the case where we

have ρ = 1
5 , the cost of the subplan (1, 4) in the optimal plan coincides with the optimal cost

C
(3)
4 (1, 4). However, for the case where we have ρ = 1

10 , the cost of the subplan (1, 4) in the
optimal plan will be higher because of the buyback constraint to respect.

Table 3.4: The optimal quantities of LSP-BD-R2, ρ= 1
5
and LSP-BD-R2, ρ= 1

10
for j = 3

V = 4 LSP-BD-R2, ρ= 1
5
j = 3 LSP-BD-R2, ρ= 1

10
j = 3

Period t xt st qt et xt st qt et
1 4 2 1 0 4 2 0 1
2 0 1 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0

Costs 70 71

We have Ru,v−1 + 1 possible costs of a subplan (u, v), denoted by F
(v)
φ (u, v) for φ =

0, 1, . . . , Ru,v−1. Note that the quantity Ru,v−1 represents the unused items in a subplan (u, v)

with Ru,v−1 = dDu,v−1

V eV −Du,v−1. In order to �nd the cost F
(v)
φ (u, v), we satisfy Du,v−1, we

get rid of Ru,v−1−φ units at period u and we return φ units at the optimal return period t. For

φ = 0, the �rst possible cost F
(v)
0 (u, v) is equal to the cost C

(1)
v (u, v) in which there is only one

disposal of Ru,v−1 units. For 1 ≤ φ ≤ Ru,v−1 − 1, there are Ru,v−1 − 1 possible costs with both

one return and one disposal. In this case, the dynamic programming formulation of F
(v)
φ (u, v)

is the combination of the ones of C
(1)
v (u, v) and C

(3)
v (u, v). For φ = Ru,v−1, the last possible

cost coincides with the cost C
(3)
v (u, v) with one return of Ru,v−1 units and zero disposal. For

each subplan (u, v) with 1 ≤ u < v ≤ T + 1, we can compute at most V possible costs because
the remaining units are less than V (Ru,v−1 ≤ V − 1).
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aaa
Modeling LSP-BD-R2, ρ<1 for the special case with j = T and maxi=1,...,j{p̃bi} ≤ p̃t, ∀t ∈
{1, . . . , j} as WCSPP:

We consider a network G = (I, E) where I represents the set of nodes {1, . . . , T + 1} and
E the set of arcs {(u, v)φ|u ∈ I, v ∈ I, φ = 0, . . . , Ru,v−1, u < v}. For each arc (u, v)φ ∈ I, we

associate two non-negative weights, F
(v)
φ (u, v) and φ, being respectively, the cost and the return

quantity incurred by traversing the arc. Our problem consists in �nding a path in G from node
1 to node T + 1 that minimizes the total cost, subject to not exceeding the given upper bound
W ∈ N representing the total returned quantity (see Property 3.16). In G, between two nodes u
and v, there are Ru,v−1 + 1 arcs.

Now, we will transform the graph G into another one having only one arc between any two
given nodes. First, we replace each node u such that u ∈ I\ {T + 1} by a number of nodes
denoted by nbru in the new network G

′
with nbru = maxv∈I,u<v{Ru,v−1 + 1}. The node T + 1

is replaced with one node. Therefore, in G
′
, we have

∑T
t=1 nbru + 1 nodes. We consider the

new set of nodes I
′
with I

′
=
{

1, . . . ,
∑T

t=1 nbru + 1
}
. In G, for u ∈ I, v ∈ I with u < v,

there exist several arcs between these two nodes. We suppose that the node u is replaced with
k nodes in G

′
: u1, u2, . . . , uk and the node v is replaced with i nodes in G

′
: v1, v2, . . . , vi with

u1 < u2 < · · · < uk < v1 < v2 < · · · < vi. We consider in G
′
the set of arcs E

′
with

E
′

=
{

(u
′
, v
′
)|u′ ∈ I ′ , v′ ∈ I ′ , u′ < v

′
}
. We will compute two non-negative weights for each link

(u
′
, v
′
): F (u

′
, v
′
) being its associated cost and qu

′
,v
′
being its associated return quantity:

(F(u
′
, v
′
); qu

′
,v
′
) =



(0; 0) if u
′

= ul , v
′

= ul+1 ∀l = 1, . . . , k − 1

(F (v)
Ru,v−1+1−l (u, v) ; Ru,v−1 + 1− l) if u

′
= ul , v

′
= v1 ∀l = 1, . . . , Ru,v−1 + 1

(+∞; +∞) if u
′

= ul , v
′

= v1 ∀l = Ru,v−1 + 2, . . . , k

withRu,v−1 + 2 ≤ k
(+∞; +∞) if u

′
= ul , v

′
= ul+m ∀l = 1, . . . , k − 2;

m = 2, . . . , k − 1

with l +m ≤ k
(+∞; +∞) if u

′
= ul , v

′
= vo ∀l = 1, . . . , k ; o = 2, . . . , i

We give the graph G for the Example 3.4, where we have 4 nodes: 1, 2, 3 and 4 representing
the periods of the planning horizon 1..3 and the dummy period 4 (see Figure 3.6). For instance,
between node 1 and node 2, there are 4 arcs: (1, 2)0, (1, 2)1, (1, 2)2 and (1, 2)3 because the
remaining items R1,1 of the subplan (1, 2) is equal to 3. For each arc, we compute the values of
the cost and the return quantity.

Now, we will draw the transformed graph G
′
stated in Appendix. The node 1 is replaced

with 4 nodes in the network G
′
: 1
′
, 2
′
, 3
′
, 4
′
, since nbr1 = 4. The same transformation is made

for nodes 2 and 3. The last node 4 is replaced with one node being 13
′
. Therefore, in G

′
, we have

13 nodes. To understand how to put the values of F (u
′
, v
′
) and qu

′
,v
′
in each arc of the network

G
′
, we take, for example, node u = 1 in G being replaced in G

′
with u1 = 1

′
, u2 = 2

′
, u3 = 3

′

and u4 = 4
′
(k = 4) and node v = 2 being replaced in G

′
with v1 = 5

′
, v2 = 6

′
, v3 = 7

′
and

v4 = 8
′
(i = 4). By replacing k with 4 in the �rst equation of (F (u

′
, v
′
); qu

′
,v
′
), we �nd null

values of cost and return quantity for the following arcs: (1
′
, 2
′
), (2

′
, 3
′
), (3

′
, 4
′
). For l = 1, . . . , 4,

the arc (ul, 5
′
) has the cost F

(2)
4−l (1, 2) and the quantity returned 4− l. For l = 1, 2 and m = 2, 3
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with l+m ≤ 4, we obtain the arcs (ul, ul+m) having in�nite costs and return quantities: (1
′
, 3
′
),

(1
′
, 4
′
) and (2

′
, 4
′
). For l = 1, . . . , 4 and o = 2, . . . , 4, we �nd in�nite costs and return quantities

in the arcs (ul, vo): (1
′
, 6
′
), (1

′
, 7
′
), (1

′
, 8
′
), (2

′
, 6
′
), (2

′
, 7
′
), (2

′
, 8
′
), (3

′
, 6
′
), (3

′
, 7
′
), (3

′
, 8
′
), (4

′
, 6
′
),

(4
′
, 7
′
), (4

′
, 8
′
). We did not draw the arcs having in�nite costs to avoid having a congested graph.

Thus, if there is no arc between two nodes in Figure 7.1, then its cost and its return quantity
are in�nite.

Figure 3.6: Graph G of Example 3.4

After showing that the graph G of our problem having at most V arcs between two nodes
can be represented by an equivalent network G

′
having one arc between two nodes, we present

our problem as �nding a minimum cost feasible path from node 1 to node
∑T

t=1 nbru + 1 in G
′
.

A path is feasible if and only if the total cumulated quantity returned along the path is at most
W . Our problem can be formulated as the following integer linear program:

min
∑

(u
′
,v
′
)∈E′

F (u
′
, v
′
)Xu′ ,v′

s.t. ∑
v
′ |(u′ ,v′ )∈E′

Xu
′
,v
′ −

∑
v
′ |(v′ ,u′ )∈E′

Xv
′
,u
′ =


1 u

′
= 1

−1 u
′

=
∑T

t=1 nbru + 1
0 otherwise

∀u′ ∈ I ′

∑
(u
′
,v
′
)∈E′

qu
′
,v
′
Xu′ ,v′ ≤W

Xu′ ,v′ ∈ {0, 1} ∀(v′ , u′) ∈ E′
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The above formulation shows that the LSP-BD-R2, ρ<1 with j = T and maxi=1,...,T {p̃bi} ≤ p̃t,
∀t ∈ {1, . . . , T} is a Weight-Constrained Shortest Path Problem (WCSPP) which consists in
searching the least cost path from a start node to a �nal node, such that the total weight of one
resource is limited by a speci�ed integer. This problem has been shown to be NP-hard even for
acyclic networks (Garey and Johnson, 1979). If there is a directed graph with non-negative cost
cycles (like the graph of our problem), then the WCSPP becomes NP-hard in the weak sense
and it can be solved by pseudo-polynomial time algorithms. There are two categories of methods
developed to solve the WCSPP. There are exact approaches based on k shortest paths (Eppstein,
1997), node labeling methods derived from dynamic programming equations (Zhu and Wilhelm,
2012), and Lagrangian relaxation (Carlyle et al., 2008). Besides, we also �nd approximation
algorithms based on scaling and rounding of data (Lorenz and Raz, 2001).

LSP-BD-R2, ρ<1 for the general case

In the general case, we cannot identify the optimal total quantity purchased
∑j

i=1 xi from period
1 to period j, but we can determine its lower and upper bounds by using the following property.

aaa
Property 3.17. In an optimal policy, the quantity ordered in periods 1, 2, . . . , j can be either
dD1,j

V eV , or (dD1,j

V e + 1)V , or . . . , or (dD1,T

V e + j − 1)V , which means that we have dD1,j

V eV ≤∑j
i=1 xi ≤ (dD1,T

V e + j − 1)V . For each possible value of
∑j

i=1 xi, we can determine the upper

limit of
∑j

i=1 qi.

Proof. The lower bound is obtained by the minimum quantity satisfying only the demands from
period 1 to period j, dD1,j

V eV . However, to calculate the upper bound, we have to consider,
on the one hand, the path from node 1 to node j with the maximum number of subplans:
(1, 2), (2, 3), , (j − 1, j), and on the other hand, the possible maximum procurement at period j
to cover the demands of periods j, . . . , T . Hence, the upper limit is equal to (

∑j−1
i=1 d

di
V e+d

Dj,T
V e)V

which is less than (dD1,T

V e+ j − 1)V .

Now, we will show that we can construct a graph for the general LSP-BD-R2, ρ<1 which is

the same graph G of the LSP-BD-R2, ρ<1 with j = T and maxi=1,...,T {p̃bi} ≤ p̃t, ∀t ∈ {1, . . . , T},
by adding a third non-negative weight for each arc (u, v)φ in addition to the cost F

(v)
φ (u, v) and

the returned quantity φ which are easily recalculated for the general case according to Properties
3.11, 3.12 and 3.15. We recall that if we have j < u < v ≤ T + 1, then there is no return in
the subplan (u, v) and then φ receives a zero value. The third weight, denoted by ψφ(u, v), of
the subplan (u, v) with φ units of returned quantity, is the optimal total quantity purchased in
periods in which returns are allowed. We can obtain this quantity after the calculation of the
cost F

(v)
φ (u, v) by which we get the optimal planning of the subplan (u, v) with φ units of return,

then we get:

ψφ(u, v) =


(
∑v−1

i=u xi)(u,v)φ 1 ≤ u < v ≤ j + 1

(
∑j

i=u xi)(u,v)φ 1 ≤ u ≤ j < v ≤ T + 1

0 j < u < v ≤ T + 1

The transformation procedure of the graph of this general problem is the same one of the

special case, explained in the previous section, by associating for each link (u
′
, v
′
), ψu

′
,v
′
being its

total quantity purchased during periods when returns are allowed in addition to the cost F (u
′
, v
′
)
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and the return quantity qu
′
,v
′
. The quantity ψu

′
,v
′
can take the following values according to

the positions of nodes u
′
and v

′
detailed in the equations of (F (u

′
, v
′
), qu

′
,v
′
) in the previous

subsection: 0, ψRu,v−1+1−l(u, v),+∞,+∞,+∞.

For a possible value of
∑j

i=1 xi, denoted byM for example, we present the problem as �nding
the minimum cost of a path from node 1 to the last node of the transformed network G

′
such

that the total quantity purchased from period 1 to period j is equal to M and the total return
amount along the path is at most ρM(= W

′
). The LSP-BD-R2, ρ<1 with M ordering amount

throughout the periods 1, 2, . . . , j can be formulated as the following integer linear program:

min
∑

(u
′
,v
′
)∈E′

F (u
′
, v
′
)Xu′ ,v′

s.t. ∑
v
′ |(u′ ,v′ )∈E′

Xu′ ,v′ −
∑

v
′ |(v′ ,u′ )∈E′

Xv′ ,u′ =


1 u

′
= 1

−1 u
′

=
∑T

t=1 nbru + 1
0 otherwise

∀u′ ∈ I ′

∑
(u
′
,v
′
)∈E′

ψu
′
,v
′
Xu′ ,v′ = M

∑
(u
′
,v
′
)∈E′

qu
′
,v
′
Xu′ ,v′ ≤W

′

Xu′ ,v′ ∈ {0, 1} ∀(v′ , u′) ∈ E′

Hence, this problem is similar to a resource constrained shortest path problem (RCSPP) in
which we have two resources: ordering quantity and return quantity. The RCSPP is a general-
ization of the WCSPP because there is a �nite set of resources. The consumption of the resource
'ordering quantity' is expressed by an equality constraint, while the consumption of the resource
'return quantity' is expressed by an inequality constraint. This problem can also be modeled as an

RCSPP with the following double sided inequality constraints (M ≤
∑

(u
′
,v
′
)∈E′

ψu
′
,v
′
Xu′ ,v′ ≤M ,

and 0 ≤
∑

(u
′
,v
′
)∈E′

qu
′
,v
′
Xu′ ,v′ ≤W

′
).

There are several variants of RCSPP: with upper bound resource limitations (RCSPPI), with
equality resource limitations (RCSPPE), with a window for each of several types of resources at
each node, with a window for one type of resource (e.g., time) at each node, a combination of these
latter, etc. The RCSPPI with a �xed number of resources and an acyclic graph without negative
costs is weakly NP-hard and it is widely studied in the literature. For detailed monographs on
these problems, refer to Ziegelmann (2001), Zhu (2005) and Garcia (2009). In contrast, there
are only few research papers on the RCSPPE (see for example Zhu and Wilhelm, 2007; Turner,
2011). Besides, the RCSPP with lower and upper resource limits was not addressed so much in
the literature. It is studied by Ribeiro and Minoux (1985) for a single resource, and by Beasley
and Christo�des (1989) for multiple resources.

Hence, we can apply for the LSP-BD-R2, ρ<1 with a possible ordering amount throughout the
periods 1, 2, . . . , j the method proposed by Beasley and Christo�des (1989), which is based on
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Lagrangian relaxation. The authors use the subgradient optimization which approximately solves
the Lagrangian dual to get lower and upper bounds for the optimal solution of this problem and
resolve it using a tree search procedure. Finally, the optimal cost of the general LSP-BD-R2, ρ<1

is the minimum cost over all the possible values of ordering amount throughout the periods
1, 2, . . . , j.

3.5 LSP-BD-R with return possibility only in procurement peri-
ods (LSP-BD-R3)

This section focuses on solving the LSP-BD-R with another type of the buyback contract in
which the return periods must coincide with procurement periods. This type of contract mainly
concerns the products with a transportation cost from the retailer to the supplier being higher
than the return revenue. Then, the retailer signs the contract R3 in order to avoid taking over
the freight of returned quantities.

In every period t of the planning horizon 1..T , the retailer can return a quantity qt lower
than the ordered quantity xt. If xt = 0, then the return in period t is prohibited, otherwise, it is
allowed. Besides, the total returned quantity across the horizon is restricted to ρ

∑T
t=1 xt units.

The general assumption we made for this contract is maxt=1,...,T {pbt} < pt, ∀t ∈ {1, . . . , T}.
The mathematical formulations with or without inventory variables of LSP-BD-R3 are the

same ones as the LSP-BD-R2 for j = T , but, with the additional constraint qt ≤ xt, ∀t ∈
{1, . . . , T}. The question that we address is the following: Given that a retailer seeks to mini-
mize his costs when ordering an item, when and how much to order, to return and to dispose
throughout the horizon? We will study �rst the case with ρ = 1 and second with ρ < 1.

3.5.1 LSP-BD-R3 with full return policy (LSP-BD-R3, ρ=1)

In the same way as before, we will decompose the LSP-BD-R3, ρ=1 into subplans which start and
end with zero stock. We will determine the minimum costs C (u, v) of all subplans (u, v) for
1 ≤ u < v ≤ T + 1 in which we have to satisfy the demands du, . . . , dv−1, return in procurement
periods and dispose the remaining quantity after the buyback. After that, we can compute the
total optimal cost CT of the LSP-BD-R3, ρ=1 by using the same shortest path algorithm (3.1)
used in Section 3.3.1. Using Example 3.5, we compare the optimal schedules of LSP-BD-R3, ρ=1

and LSP-BD-R2, ρ=1 for j = T .
aaa

Example 3.5. The same data of Example 3.4 is used, but modifying the return revenues as
pb1 = 2, pb2 = 10 and pb3 = 13. Table 3.5 shows that the total cost of LSP-BD-R2, ρ=1 for j = 3 is
less than the one of LSP-BD-R3, ρ=1, because the latter has more restrictions on return periods.
In addition, we note that, in LSP-BD-R3, ρ=1, the optimal return period of the subplan (1, 4)

does not coincide with period 2 having maxi=1,...,3{p̃bi} = 22, since period 2 is not a procurement
period.

We will develop an algorithm of O(T 5) time complexity for LSP-BD-R3, ρ=1 by using the
following optimality properties.

aaa
Some preliminaries and properties:

aaa
We use Property 3.10 which a�rms that there is at most one return period and no disposal in a
subplan (u, v), and, the returned quantity is equal to its remaining units (Ru,v−1). The proof of
this property is composed of two parts. We use the �rst part to prove that there is at most one
return in a subplan. In order to prove that there is no disposal, we can refer to the second part
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(LSP-BD-R3)

Table 3.5: The optimal quantities of LSP-BD-R2, ρ=1 for j = 3 and LSP-BD-R3, ρ=1, V = 4

V = 4 LSP-BD-R2, ρ=1 j = 3 LSP-BD-R3, ρ=1

Period t p̃bt xt st qt et xt st qt et
1 20 4 3 0 0 4 2 1 0
2 22 0 0 2 0 0 1 0 0
3 19 4 0 3 0 0 0 0 0

Costs 65 69

of the proof if the period t in which we have et > 0 is an ordering period. Otherwise, we choose
the ordering period i just before period t (i < t), decrease et by et, sk by et for k = i, . . . , t− 1
(we have si ≥ si+1 ≥ · · · ≥ st−1 ≥ et because xi+1 = xi+2 = · · · = xt = 0), and increase qi
by et. Thus, we obtain a new feasible solution with a lower cost, decreasing by an amount of
(p̃bi − p̃et )et. We have p̃bi ≥ p̃ei and p̃ei ≥ p̃et because i < t.

aaa
Property 3.13 remains valid for this problem whereby we can compute the entering inventory
level value in each ordering period.

aaa
Computation of C (u, v):

For a given subplan (u, v), we can compute the quantity returned but we do not know the
position of the return period. We have to �nd the optimal return period. Hence, we suppose
that the return period can be the period t such that t ∈ {u, . . . , v − 1}. The optimal cost of
(u, v) is as follows:

C (u, v) = min
t∈{u,...,v−1}

{
C

(4)
v,t (u, v)

}
knowing that the cost C

(4)
v,t (u, l + 1) is the minimum cost to satisfy Du,l with period t being both

a period of return and period of ordering in (u, v), and period l+ 1 being a replenishment period
with 1 ≤ u ≤ l ≤ v − 1 ≤ T .

For l = u, . . . , t − 1, the dynamic programming formulation of C
(4)
v,t (u, l + 1) is the same

as C
(3)
v (u, l + 1) and we obtain C

(4)
v,t (u, t) = C

(3)
v (u, t). To ensure that period t is an ordering

period, we compute the minimum cost C
(5)
v,t (u, l + 1) for t ≤ l ≤ v − 1 in which we meet the

demands of periods u, . . . , l and we make sure that the periods t and l + 1 are two consecutive
ordering periods. Then, we have:

C
(5)
v,t (u, l + 1) = C

(4)
v,t (u, t) + ft + (pt +

at
V

)(sl +Dt,l + qu,vt − st−1) +H(3)
u,v(t, l + 1)− pbtq

u,v
t

The values of inventory levels sl and st−1 are determined by Property 3.13 according to the

position of the return period t. Moreover, the values of inventory cost H(3)
u,v(t, l+1) are calculated

in Section 3.4.1.
For l = t+1, . . . , v−1, we formulate the costs C

(4)
v,t (u, l + 1) as an e�cient dynamic program:

aaa
Recurrence relation. For l = t+ 1, . . . , v − 1,

C
(4)
v,t (u, l + 1) = min{ min

t≤k<l
{C (4)

v,t (u, k + 1) + fk+1 + (pk+1 +
ak+1

V
)(sl +Dk+1,l − sk) +H(3)

u,v(k + 1, l + 1)};

C (5)
v,t (u, l + 1)}
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Boundary condition. C
(4)
v,t (u, t+ 1) = C

(5)
v,t (u, t+ 1)

Objective. C
(4)
v,t (u, v)

In order to obtain the cost C
(4)
v,t (u, l + 1), for l = t+1, . . . , v−1, we suppose that there is either

an ordering period k+1 such that there is no acquisition taking place in periods k+2, k+3, . . . , l,
where t < k + 1 < l + 1, or, there is an ordering period t such that the periods t and l + 1 are
two consecutive ordering periods. The values of these costs can be obtained recursively in O(T 4)
time. Therefore, the overall complexity of the computation of the cost C (u, v) is O(T 5).

3.5.2 LSP-BD-R3 with partial return policy (LSP-BD-R3, ρ<1)

In this section, we add the fact that the total quantity returned over the planning horizon
(1..T ) is limited by ρ

∑T
t=1 xt knowing that the returns are only allowed in procurement periods.

We will prove that this problem is also similar to RCSPP. After that, we will add a comment
in which we prove that the LSP-BD-R3, ρ<1 and the LSP-BD-R2, ρ<1 with decreasing modi�ed
return revenues are equivalent.

The LSP-BD-R3, ρ<1 veri�es Property 3.7 for k = T which is equivalent to Property 3.17 for
j = T because we have a null stock level in period T , sT = 0. These two equivalent properties
show that the quantity purchased throughout the planning horizon is bounded on both sides as
follows:

∑T
t=1 xt = (dD1,T

V e+ ∆)V with 0 ≤ ∆ ≤ T − 1.
The graph of the LSP-BD-R3, ρ<1 is built in the same way as the graph of the general LSP-

BD-R2, ρ<1. The only di�erences are the values of the optimal cost F
(v)
φ (u, v) and the optimal

total quantity purchased ψφ(u, v) =
∑v−1

i=u xi(u,v)φ = dDu,v−1

V eV in each arc (u, v)φ, being the
subplan (u, v) with φ units of returned quantity. Now the question that we have to ask is: how

to calculate the cost F
(v)
φ (u, v) for the problem with the buyback contract R3, ρ<1? To answer

this question, we proceed in the same way as the computation of the cost C (u, v) in Subsection
3.5.1 (ρ = 1). In the case with ρ = 1, all the remaining quantity in the subplan (u, v) is returned
to the supplier. However, in the case with ρ < 1, the optimal returned quantity of each subplan
(u, v) depends on the ones of other subplans. The optimal cost of the arc (u, v)φ is as follows:

F
(v)
φ (u, v) = min

t∈{u,...,v−1}

{
C

(4)
v,t (u, v)φ

}
The cost C

(4)
v,t (u, l + 1)φ is the minimum cost to satisfy Du,l with period t being a period

of ordering and return in the subplan (u, v) with φ units of return, and period l + 1 being a
replenishment period with 1 ≤ u ≤ l ≤ v−1 ≤ T . For this cost, there are dDu,v−1

V eV −Du,v−1−φ
units of disposal.

For l = u, . . . , t−1, the dynamic programming formulation of C
(4)
v,t (u, l + 1)φ is the same one

of C
(1)
v (u, l + 1) with eu,vu = dDu,v−1

V eV −Du,v−1 − φ (C
(1)
v (u, t)φ) and we obtain C

(4)
v,t (u, t)φ =

C
(1)
v (u, t)φ. For l = t, . . . , v−1, refer to Subsection 3.5.1 to compute C

(4)
v,t (u, l + 1)φ by changing

the value of qu,vt by φ.
Now, we can transform the graph G of LSP-BD-R3, ρ<1 into the graph G

′
having only one

arc between each pair of nodes. Then, for each possible value of
∑T

i=1 xi, which means for ∆, the
LSP-BD-R3, ρ<1 can be formulated as a RCSPP whose objective is to �nd the minimum cost of
a path from node 1 to the last node of the transformed network G

′
such that the total quantity

purchased in this path is equal to (dD1,T

V e+ ∆)V and the total return amount along the path is

at most ρ(dD1,T

V e+ ∆)V . We apply the method of Beasley and Christo�des (1989) to solve it as
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the LSP-BD-R2, ρ<1 with M ordering amount throughout the periods 1, 2, . . . , j. The optimal

cost of the LSP-BD-R3, ρ<1 is the minimum cost of the LSP-BD-R3, ρ<1 with (dD1,T

V e+∆)V total
order units over all the possible values of ∆.

aaa
Comment

We consider LSP-BD-R3, ρ<1 with decreasing modi�ed return revenues (p̃b1 < p̃b2 < · · · < p̃bT )
which helps to easily identify the return period in each possible subplan (u, v). We will show
that this special case is equivalent to the LSP-BD-R2, ρ<1 for j = T .

Now, we prove the equivalence between the LSP-BD-R3, ρ<1 and the LSP-BD-R2, ρ<1 for
j = T , by considering decreasing modi�ed return revenues. We have to ensure that both problems
have the same return and disposal periods in a subplan (u, v). The LSP-BD-R2, ρ<1 with j = T
and decreasing modi�ed return revenues veri�es Property 3.14 in which for any subplan (u, v),

there is at most one disposal in u and one return in u because p̃bu = maxi=u,...,v−1{p̃bi} and period
u is the only period having the maximum of modi�ed return revenues. Therefore, we obtain
eu,vu + qu,vu = dDu,v−1

V eV −Du,v−1.
The LSP-BD-R3, ρ<1 with decreasing modi�ed return revenues also veri�es Property 3.14.

In order to prove the existence of at most one disposal and one return in a given subplan
(u, v), we follow the same proof of Property 3.14. In addition, for this special case, if there
is a disposal, then it must be in period u, which is proved in the second part of the proof of
Property 3.1. Furthermore, the optimal return period is placed in period u by also applying
the second part of the proof of Property 3.1 in which we make the following modi�cation: we
consider an optimal policy π

′
in which there is a subplan (u, v) with qj > 0 and j > u. Thus,

the quantity αi,j depends on the quantity returned and not on the quantity disposed of, so
α
′
i,j = min {qj ,mink=i,...,j−1 sk} > 0. We carry out the same modi�cation performed in the proof

of Property 3.1 to obtain a new policy π∗ having either one subplan (u, v) with u being the
return period, or, a division of (u, v) into several subplans whose return periods are placed in
the beginning. The total cost of π∗ is computed as a function of the total cost of π

′
, as follows:

C (π∗) = C (π
′
)− α′i,j(p̃bu − p̃bj)

Since the modi�ed return revenues are decreasing, then we obtain C (π∗) < C (π
′
) which means

that the solution of the policy π
′
cannot be optimal - a contradiction.

We also note that the special case of this section veri�es Property 3.15 in which we can
determine the values of the entering inventory levels in each ordering period k of subplan (u, v)
having one disposal in u and one return in u.

In a given subplan, the only di�erence between the LSP-BD-R2 and LSP-BD-R3 is the po-
sition and the nature of the return period. By assuming the constraint of decreasing modi�ed
return revenues in the two problems, we get the same return periods in each possible subplan.
Hence, these two problems are equivalent.

3.6 Computational experiments

In this section, for each problem solved by a polynomial time dynamic programming algorithm
(DP), we compare the resolution time of its MILP and its DP under di�erent parameters. The
tests are performed with the same procedure as those of LSP-BR1 with w ≥ 1 (see Section 2.6):
execution on an Intel Core 2.40 GHz, 8 GB RAM, implementation of the MILP in Xpress Mosel
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version 3.10, and the DP in Java, the use of aggregate formulations, and the generation of 10
instances to obtain the average for each con�guration.

We proposed a DP with polynomial time complexity for each of the four following problems:
LSP-BD-R1, ρ=1, LSP-BD-R1, ρ<1, LSP-BD-R2, ρ=1, and LSP-BD-R3, ρ=1. The common parame-
ters that a�ect the resolution time of their MILP are: length of the horizon, demand, batch size,
and cost and revenue parameters for which we consider the same con�gurations as in Chapter 2:
- Length of the horizon: T = 20, T = 50 and T = 100,
- Demand and batch sizes: D1 = U(5, 20) with V 1 = 4 and D2 = U(30, 100) with V 2 = 10,
- Setup costs: ft = U(50, 100),
- Unit procurement costs: pt = 0.01ft,
- Fixed costs per batch replenished: at = 0.1ft,
- Inventory holding costs: ht = U(0.05, 2),
- One unit return revenue: pbw = 0.4 maxt=1,...,T {pt} for LSP-BD-R1, ρ=1 and LSP-BD-R1, ρ<1,
and unit return revenues: pbt = 0.4pt for LSP-BD-R2, ρ=1 and LSP-BD-R3, ρ=1.

In the MILP of LSP-BD-R1, ρ=1, we have one supplementary parameter which is the peri-
odicity of the return periods which is considered equal to T . For LSP-BD-R1, ρ<1, we have two
additional parameters: the periodicity of the return periods, w1 = T , and the maximum return
percentage that we consider ρ = 0.02. For LSP-BD-R2, ρ=1, we have one more parameter: a time
limit on returns with j = 15.

In Table 3.6, we provide the performance of the proposed methods for the four problems. The
optimal solutions of LSP-BD-R1, ρ=1, LSP-BD-R1, ρ<1, LSP-BD-R2, ρ=1 and LSP-BD-R3, ρ=1, in
all tested instances T = 20 and T = 50, are obtained quite instantaneously whether by MILP
or by DP. For the instances with T = 100, the execution time of DP is greater than the one
of MILP. We note for example, that the time of DP proposed for LSP-BD-R3, ρ=1 is about 1
minute, whereas the one of MILP is about 3 seconds.

Table 3.6: Computational results for DP and MILP of the problems with disposal concept

T = 20 T = 50 T = 100
D1 D2 D1 D2 D1 D2

DP time (seconds)

LSP-BD-R1, ρ=1 0.03 0.02 0.62 0.33 5.76 5.56
LSP-BD-R1, ρ<1 0.01 0.01 0.42 0.21 3.30 4.66
LSP-BD-R2, ρ=1 0.03 0.01 0.32 0.18 3.67 4.10
LSP-BD-R3, ρ=1 0.04 0.03 1.34 1.22 48.13 53.08

MILP time (seconds)

LSP-BD-R1, ρ=1 0.22 0.16 0.58 0.53 1.89 1.75
LSP-BD-R1, ρ<1 0.14 0.14 0.65 0.59 1.12 3.05
LSP-BD-R2, ρ=1 0.19 0.05 0.40 0.43 1.71 2.24
LSP-BD-R3, ρ=1 0.17 0.10 0.44 0.48 2.91 3.06

3.7 Conclusion

In this chapter, we studied the single-item uncapacitated LSP under a buyback contract with
batch ordering and disposal concept (LSP-BD-R). We considered three types of buyback contract:
the type R1 with �xed return periods, the type R2 with a time limit for returns and the type R3

with returns only in procurement periods. These problems are addressed either with full return
(ρ = 1), or, with partial return (ρ < 1). We present in Figure 3.7 the di�erent cases studied in
this chapter with the complexity results.
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Figure 3.7: Di�erent cases studied in Chapter 3
(*: additional assumption on the trade-o� between return revenue and holding cost)

(**: Resource Constrained Shortest Path Problem)

In our problems, we assume null disposal costs. However, the LSP-BD-R with non-negative
and non-positive disposal costs are not di�cult to solve. We have just to make some modi�cations
on the proposed algorithms. In these problems we have to ensure this following assumption:
maxi=1,...,T {pei} < pt, ∀t ∈ {1, . . . , T} in order to avoid the speculation. The resolution method
for each buyback form Ri, ∀i = 1, 2, 3 looks like the ones proposed for our problem. We have to
consider in each subplan (u, v) the values of p̃et = pet +

∑T
k=t hk with p

e
t ∈ R, ∀t = u, . . . , v−1 and

to compare maxi=u,...,v−1{p̃bi} and maxi=u,...,v−1{p̃ei}, for 1 ≤ u < v ≤ T + 1 in order to decide
if the return or the disposal is more pro�table for the retailer. Therefore, we can say that the
buyback contracts considered in this study can represent disposal concepts with non-negative
disposal revenues and disposal constraints depending on the value of the maximum return ρ.

In the next Chapter, we model �rst the LSP-B with capacity reservation contract. Second,
we de�ne and give the mathematical formulations of the di�erent types of CRC integrated with
the single-item LSP.
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Chapter 4

Modeling lot sizing problems with
batch ordering (LSP-B) under di�erent
capacity reservation contracts (CRC)

We consider in this chapter that there is a capacity reservation contract signed between two mem-
bers of a supply chain who need to plan the batch procurement activity. In this LSP with batch
ordering (LSP-B), the products are ordered in batches with FTL cost structure. We �rst model
this LSP under the general capacity reservation contract (LSP-B-CRC) and we address di�erent
scenarios that the company can have: the reserved capacity being either �xed or decision variable
(stationary or time-dependent).

There are other contractual forms for representing the capacity reservation: deductible reser-
vation, take-or-pay, pay-to-delay, quantity �exibility, backup agreement, minimum commitment,
and revenue-sharing contracts. Second, we integrate all these contracts into the multi-period lot
sizing problem with batch ordering by proposing mixed integer linear programs.
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4.1 Introduction

In the capacity reservation contract (CRC) considered in this chapter, the supplier and the
retailer decide, in each period t, a certain level of capacity Rt to reserve at the supplier over T
periods, where Rt is the number of batches reserved at a cost rt. In return, the supplier provides
the retailer a number of batches being less than Rt for a lower �xed cost at (regular cost) per
batch replenished. The supplier also allows the retailer to procure more batches exceeding the
initial capacity Rt, but at a higher cost bt (particular cost). The supplier ensures that, in each
period t, the costs of reservation and regular procurement of one batch is less than the particular
procurement cost, rt + at ≤ bt. In addition to the costs related to batches, the CRC may
incur other costs: a setup cost ft paid for any positive amount ordered per period, and a unit
procurement cost pt for each unit ordered per period. This contract provides a risk-sharing
mechanism and o�ers the buyer the �exibility to deal with uncertain demand and guarantee a
capacity before receiving orders; and provides a security to the supplier.

The CRC has several variations existing in the literature. In this work, we consider, on the
one hand, di�erent assumptions on the reserved capacity (time-dependent decision variable, or
constant decision variable, or �xed) and on the other hand, numerous forms being equivalent
to CRC. Park and Kim (2014) state that capacity reservation contracts proposed in previous
studies can be divided into two groups: general contracts that are used in retail and man-
ufacturing industries, and specialized contracts which are frequently used in capital-intensive
industries. General contracts include: quantity �exibility, backup agreement, minimum commit-
ment, revenue-sharing and buyback contracts. The latter is addressed in Chapters 2 and 3. And
specialized contracts include: deductible reservation, take-or-pay and pay-to-delay contracts. In
the literature, the main focus of published studies dealing with these di�erent contracts, as with
the newsvendor problem, has been on single-period models in the stochastic case taking into
account only the unit price. This chapter deals with mathematical models for those contracts
integrated into the LSP with batch ordering, so we add the �xed cost per batch.

In Section 4.2, we elaborate a general model of LSP-B-CRC with appropriate algorithms for
di�erent assumptions on capacity. The goal is to determine the capacity to reserve in batches
if it is a decision variable and the optimal quantities to procure by minimizing the total cost.
In Section 4.3, we discuss mathematical models that solve LSP under specialized contracts and
thereafter under general contracts, for the deterministic, multi-period, single-item, and single-
contract case taking into account batch ordering. Section 4.4 summarizes this chapter.

4.2 Modeling the LSP-B-CRC

We consider that a retailer signs a capacity reservation contract over a horizon of T periods
with a supplier to reserve for each period t a capacity Rt expressed in number of batches at a
reservation price rt. At the beginning of each period t, the retailer orders a quantity xt at a
unit price pt in order to satisfy its deterministic demand dt. If the desired quantity is ordered in
period t, then a binary setup variable yt receives the value of 1 and a setup cost ft is incurred,
otherwise it is zero.

The supplier delivers the purchased quantity in batches of size Vt. When the number of
ordered batches is smaller than Rt, denoted by At, then the retailer pays a cost at per batch
(which does not contain the unit cost pt). If he requires more than this capacity Rt to meet
its additional demand, then he procures the excess batches, denoted by Bt at a price bt with
rt + at ≤ bt. Otherwise (rt + at > bt), the retailer does not need to sign such a contract with the
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supplier, because it is not pro�table for him, then he will resort for example to the spot market.

At the end of period t, a quantity st is stored incurring a unit inventory cost ht. We assume,
without loss of generality, that the stock at the beginning of the planning horizon is null.

There are two di�erent instants of decisions. In the �rst instant, the retailer and the supplier
determine the optimal values of capacity to reserve in each period over the horizon, and in the
second instant, they determine the optimal values of quantity to procure in batches from supplier.
Traditionally, in several companies, capacity reservation, procurement and inventory decisions
are decided separately in a hierarchical process. However, Bradley and Arntzen (1999) a�rm
that simultaneous consideration of capacity, procurement, and inventory decisions maximizes the
�nancial results, because, it leads to balance the trade-o� between having insu�cient capacity in
some periods and excess capacity in others. Thus, we give a general model of the LSP-B-CRC in
which the reserved capacity is a decision variable in addition to the procurement and inventory
decision variables. In the second instant of decision, the reserved capacity becomes �xed in the
model.
In Table 4.1, we �nd all the notations that are used in the general model of LSP-B-CRC.

Table 4.1: Notations for the general model of the LSP-B-CRC

Parameters

T length of the horizon
pt unit procurement cost in period t
ft setup cost in period t
rt reservation cost per batch in period t
at �xed cost per batch replenished under the reserved capacity in

period t
bt �xed cost per batch replenished exceeding the reserved capacity

in period t
ht inventory holding cost per unit at the end of period t
dt demand in period t
Vt batch size in period t
Rt number of batches reserved for period t (2nd decision instant)

Decision variables

xt amount of procurement in period t

yt

{
1 if a procurement takes place in period t
0 otherwise

Rt number of batches reserved for period t (1st decision instant)
At number of batches ordered with the cost at in period t
Bt number of batches ordered with the cost bt in period t
st stock level at the end of period t

The aim of the general model of LSP-B-CRC is to appropriately decide the number of batches
Rt to reserve in each period t at the �rst decision instant, and At and Bt to replenish in each
period t at the second decision instant, respecting the capacity limits and batch ordering, meeting
the demands without backlogging, and minimizing the total cost. The two decision levels of CRC
are illustrated in Figure 4.4.

We present the aggregate formulation of LSP-B-CRC as MILP as following:
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Figure 4.1: Illustration of the principle of CRC at a given period t at the 1st and 2nd decision
levels

min
∑T

t=1(rtRt + ftyt + ptxt + atAt + btBt + htst) (4.1)

s.t. xt + st−1 = dt + st ∀t = 1, . . . , T (4.2)

xt ≤ d
∑T
j=t dj
Vt
eVtyt ∀t = 1, . . . , T (4.3)

xt ≤ (At +Bt)Vt ∀t = 1, . . . , T (4.4)

0 ≤ At ≤ Rt ∀t = 1, . . . , T (4.5)

s0 = 0 (4.6)

xt, st ∈ R+ ∀t = 1, . . . , T (4.7)

At, Bt, Rt,∈ N ∀t = 1, . . . , T (4.8)

yt ∈ {0, 1} ∀t = 1, . . . , T (4.9)

The objective function (4.1) is to minimize the costs of capacity reservation, setup, procure-
ment (unit and batch) and inventory over the planning periods. Constraints (4.2) represent the
satisfaction of the demand at period t by the procurement of period t and/or from the stock of
period t − 1. The remainder is put in the stock at the end of period t. Constraints (4.3) link
the quantity to be ordered with the binary variable of setup. Constraints (4.4) ensure that the
number of batches replenished (At + Bt) is su�cient for the quantity ordered xt at each period
t. Constraints (4.5) ensure that the number of batches replenished at a cost at must be less than
the number of reserved batches. Constraint (4.6) sets the stock at the beginning of the planning
horizon to zero. Constraints (4.7) to (4.9) are sign constraints. In instant 1, Rt is a decision
variable, but no more in instant 2. The same model is used for both decision instants.

In the �rst instant of decision in LSP-B-CRC, the reserved capacity Rt is a decision variable
which is computed by using the �rst demand forecasts. Therefore, this problem is at tactical
level. In the second instant of decision in LSP-B-CRC, the reserved capacity Rt is �xed and the
retailer places orders by using the revised demand forecasts. This problem is at operational level.
Now, we discuss the di�erent cases of LSP-B-CRC in this sequence: �xed (studied in literature),
stationary decision variable, time-dependent decision variable reserved capacities. We show that
the resolution method proposed for the operational LSP-B-CRC (�xed Rt) can be adapted to
solve the tactical LSP-B-CRC (decision variable Rt).
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4.2.1 LSP-B-CRC with �xed reserved capacity

In this problem, we assume that Rt is known (decision instant 2). Thus,
∑T

t=1 rtRt becomes a
constant, this one does not impact the optimization, then we will delete it from the objective
function (4.1). In Figure 4.2 (see periods 1 and 7), we show that, in CRC with �xed reserved
capacity, the retailer may procure extra batches Bt only if the regular batches At are already at
full reserved capacity Rt. In period 3, the retailer purchases all the reserved batches R3 with a
unit cost a3. We can also have periods in which the value of At is less than the reserved capacity
Rt (see period 5).

Figure 4.2: Possible values of At and Bt in LSP-B-CRC with �xed reserved capacity, a
stationary batch size V and T = 7

The LSP-B-CRC with �xed reserved capacity is studied by Akbalik et al. (2017). The authors
a�rm that this problem is NP-hard in the ordinary sense. They adapt the pseudo-polynomial
time dynamic programming algorithm proposed by Florian et al. (1980) to solve the LSP-B-CRC
with �xed Rt. The complexity of the recursive formulation is O(T (D1,T )2) time with D1,T being
the cumulative demand from period 1 to period T . They also classify di�erent NP-hard cases
and propose polynomial time algorithms to solve several special cases of this problem.

4.2.2 LSP-B-CRC with stationary reserved capacity being a decision variable

In this problem, Rt = R is a stationary decision variable (decision instant 1). The LSP-B-CRC
with stationary reserved capacity being a decision variable is NP-hard due to the time-varying
batch sizes and cost parameters considered. In Akbalik and Rapine (2013), the authors show
that if any one of the cost parameters is allowed to be time-dependent in the uncapacitated
LSP-B with time-dependent batch sizes, the problem becomes NP-hard. To solve this problem,
we either use the MILP, or, we compile for each possible value of R the pseudo-polynomial time
dynamic programming algorithm proposed by Akbalik et al. (2017) and then we �nd the value
R minimizing the total cost. First, we use the formulation without inventory variables to model
the LSP-B-CRC with variable R, by replacing in the �rst formulation, the inventory variable
st with

∑t
i=1(xi − di), ∀t = 1, . . . , T . We obtain the following alternative formulation where

we have a new unit procurement cost p̃t which accounts for the unit procurement cost pt and
holding costs

∑T
i=t hi, p̃t = pt +

∑T
i=t hi, ∀t = 1, . . . , T .
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min
∑T

t=1(rtR+ ftyt + p̃txt + atAt + btBt − ht
∑t

i=1 di) (4.10)

s.t.
∑t

i=1 xi ≥
∑t

i=1 di ∀t = 1, . . . , T (4.11)

(4.3) − (4.5)

(4.7) − (4.9)

We obtain a new objective function in which
∑T

t=1 ht
∑t

i=1 di is a constant. Thus, we can
eliminate the latter from the objective function (4.10). Constraints (4.2) and (4.7) of st domain
(st ≥ 0, ∀t = 1, . . . , T ) are replaced with Constraints (4.11). Now, we will describe the idea
of the dynamic programming formulation of this problem, noting that Dk,j is the cumulative
demand from period k to period j and 1β is an indicator function, de�ned as follows:

1β =

{
1 if β is true
0 otherwise

Stages

t: period.
State variables

it: Inventory level at the beginning of period t, where it ∈ [0, Dt,T ]
⋂
N. It is easy to see that

the maximum quantity that can be stored at the beginning of t can not exceed
∑T

k=t dk.
Decision variables

xt: Quantity to procure during period t, where xt ∈ [max {0, dt − it} , Dt,T − it]
⋂
N. It is clear

that the lower bound of xt for a given state it is dt − it if it is positive, otherwise, it is null. The
upper bound of xt for a given state it is Dt,T − it to satisfy the demands from period t to the
last period T .
Objective function

φt(it, R): optimal cost of satisfying the demand over periods t, . . . , T if the inventory level at the

beginning of period t is it and R is the reserved capacity, with R ∈
[
0,maxt=1,...,T

{⌈
Dt,T
Vt

⌉}]⋂
N.

The maximum value of R is equivalent to the greatest number of batches to replenish periodically.
The backward recursive formulation would be:

For R = 0, . . . ,maxt=1,...,T

{⌈
Dt,T
Vt

⌉}
For it = 0, . . . , Dt,T

φt(it, R) = minxt{rtR+ ft1xt>0 + p̃txt + at

⌈
xt
Vt

⌉
1⌈

xt
Vt

⌉
≤R + atR 1⌈

xt
Vt

⌉
>R

+

bt(
⌈
xt
Vt

⌉
−R) 1⌈

xt
Vt

⌉
>R
− ht

∑t
i=1 di + φt+1(it + xt − dt, R)}

Boundary conditions: φT+1(iT+1, R) = 0, where iT+1 = 0
Objective: min

R=0,...,maxt=1,...,T

{⌈
Dt,T
Vt

⌉} {φ1(0, R)}

The total minimum cost of the LSP-B-CRC with variable R over the entire planning horizon
is min

R=0,...,maxt=1,...,T

{⌈
Dt,T
Vt

⌉} {φ1(0, R)} considering that, at the beginning of period 1, the stock

level is i1 = 0. The complexity of this algorithm is in O(T (D1,T )3) time.

102



4.2. MODELING THE LSP-B-CRC

4.2.3 LSP-B-CRC with time-dependent reserved capacity being decision vari-
able

In this problem, Rt is a time-dependent decision variable (decision instant 1). In practical
applications, this model is undesirable to use especially by the supplier, because, in some periods
he can have big numbers of capacity to reserve, and in some others the retailer may not reserve
any capacity, then the supplier, in this case, cannot manage the production of variable capacities.
This model is desirable by the retailer because it speci�es the reserved capacity he needs each
period at a lower cost. We have two dominance properties.
Property 4.1. There exists an optimal solution such that, for any period t, the number of extra
batches is null in the �rst instant of decision, Bt = 0,∀t = 1, . . . , T .
Having rt + at ≤ bt, ∀t = 1, . . . , T , the retailer does not use batches ordered at a cost bt to
determine the reserved capacity.
Property 4.2. There exists an optimal solution such that, for any period t, the reserved capacity
is equal to the number of regular batches in the �rst instant of decision, Rt = At,∀t = 1, . . . , T .
The fact that we have in some periods positive reservation costs, rt > 0, requires not to reserve
more than the number of batches replenished at a cost at.
We note that the values of At and Bt in the second instant of decision will be updated by
respecting the values of Rt decided in this stage and using the resolution method of LSP-B-CRC
with �xed reserved capacity. These two properties are illustrated in Figure 4.3.

Figure 4.3: Possible values of At and Rt in LSP-B-CRC with time-dependent reserved capacity
being a decision variable, V = 4 and T = 7

Thus, the model of LSP-B-CRC with time-dependent reserved capacity being a decision
variable is simpli�ed as follows:

min
∑T

t=1(ftyt + ptxt + (at + rt)Rt + htst) (4.12)

s.t. (4.2) − (4.3)

xt ≤ RtVt ∀t = 1, . . . , T (4.13)

(4.6) − (4.9)

This problem becomes the uncapacitated LSP with FTL cost structure. For time-dependent
batch sizes, the problem is NP-hard and we can use the pseudo-polynomial algorithm of the
previous problem without taking into account R neither bt. For a constant batch size, e�cient
algorithms from Li et al. (2004) and Akbalik and Rapine (2018) can be used to solve it (refer to
Section 1.6.1).
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4.3 LSP-B with several forms of CRC

The specialized and general contracts of CRC have been proposed and developed in the litera-
ture, to assist supply chains in achieving better coordination and performance by aligning the
objectives of supply chain members. In this section, these contracts will be integrated into the
LSP with batch ordering. We identify the common parameters and decision variables of all types
of CRC, and then we specify for each type a speci�c notation. Therefore, we consider the case
where a retailer signs such a type of capacity reservation contract with a supplier to meet its
deterministic demand dt of period t, over a planning horizon of T periods. Therefore, the retailer
orders, in batches of size Vt, a quantity xt at a unit purchase cost pt. Recall that yt is the binary
�xed ordering variable associated with the setup cost ft, and st is the stock level at the end of
period t with a holding cost ht. We assume that the initial stock of the horizon is zero.

4.3.1 LSP-B with deductible reservation contract

The deductible reservation contract (DRC) is particularly attractive in high-tech industries such
as semiconductors, electronics, and telecommunication equipments where the demand is volatile
and the capacity is capital intensive (Jin and Wu, 2007; Erkoc and Wu, 2005).

In a DRC, the retailer reserves, for each period t, a future capacity Rt (in terms of the total
number of batches), with an upfront fee rt that will be deducted from the regular purchasing
cost at for each batch replenished when the retailer places an order with at > rt. Thus, before or
at the beginning of the planning horizon (�rst instant of decision), the retailer pays in advance
the amount of

∑T
t=1 rtRt. During the horizon (second instant of decision), in each period t,

he orders At batches being less than the capacity Rt at a cost at − rt (unique feature of the
DRC) and if the number of batches replenished exceeds this capacity, then he procures Bt excess
batches at a cost at. When the retailer purchases all the reserved batches, the reservation fee is
deducted from the regular order cost. However, if the reserved batches are not fully purchased,
the reservation fee associated with unused capacity is not refundable. The batch quantities of
reservation and ordering in the DRC are illustrated in Figure 4.4.

Figure 4.4: Illustration of the principle of DRC at a given period t at the 2nd decision level

The ordering cost qt(xt) that the retailer pays in period t for xt units replenished is considered
as follows (see Figure 4.4 to compute the values of At and Bt):

qt(xt) =

{
ft + ptxt + (at − rt)

⌈
xt

Vt

⌉
+ rtRt if 0 <

⌈
xt

Vt

⌉
≤ Rt At =

⌈
xt

Vt

⌉
ft + ptxt + at

⌈
xt

Vt

⌉
ifRt ≤

⌈
xt

Vt

⌉
Bt =

⌈
xt

Vt

⌉
−Rt

First, the retailer solves the LSP-B under deductible reservation contract (LSP-B-DRC) at
the tactical level in which he determines the optimal numbers of Rt over the horizon of T periods
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using the �rst demand forecasts. Second, he solves the LSP-B-DRC at the operational level in
which he determines the optimal numbers of At and Bt by using the revised (or second) forecasts
of demand.

We model the LSP-B-DRC at the tactical level because it considers the capacity reservation
decision in addition to the procurement and inventory decisions. At operational level, the reserved
capacity becomes a known parameter. The general formulation of LSP-B-DRC as an MILP is
the same one proposed for LSP-B-CRC (4.1)-(4.9) by replacing at with at − rt and bt with at,
∀t = 1, . . . , T . Therefore, the objective function of LSP-B-DRC is min

∑T
t=1(rtRt + ftyt + ptxt +

(at − rt)At + atBt + htst).
The tactical LSP-B-DRC under time-varying or stationary reserved capacity being decision

variable aims to minimize
∑T

t=1(ftyt + ptxt + atRt + htst). We note that instead of explicitly
using the reservation fee rt in the objective function, we use the regular procurement cost at.
The reason is because we have at > rt, which means that we have at = rt + λt with λt > 0.
Hence, procurement decisions are intimately related to capacity reservation decisions, because,
if we only use the reservation fee rt, we can reserve, in period t, a large capacity Rt which is
rendered idle because the procurement cost at is very expensive. Thus, the cost of capacity
reservation must be balanced with the costs of procurements and inventories. This problem is
equivalent to the tactical LSP-B-CRC presented in Sections 4.2.2 and 4.2.3. The complexity and
the resolution method for the operational LSP-B-DRC are mentioned in Section 4.2.1.

4.3.2 LSP-B with take-or-pay contract

The Take-or-pay contract (TOPC) is prevalent in natural gas industries (Brooke, 1992; Marple
and Roland, 1989), electric utility coal market (Joskow, 1987), companies producing aluminum
from petroleum coke (Goldberg and Erickson, 1987) and municipalities and waste incineration
facilities (Brooke, 1992).

In a TOPC, the retailer reserves, for each period t, a capacity Rt relying on the �rst demand
forecasts, but, makes no payment to the supplier upfront. In the next step, when its demand is
revised, the supplier requires the retailer to either purchase a number of batches more than the
capacity threshold, R

′
t = d(1− ψt)Rte batches at a cost at ('take'), or pay a penalty cost pnt for

each unused threshold batch if the number of batches replenished falls below R
′
t ('pay'). This

contract speci�es in each period t both the penalty cost being lower than the regular procurement
cost at (pnt < at) and the �exibility rate ψt with 0 ≤ ψt ≤ 1, in other words, 1−ψt is the threshold
rate. Let At be the number of batches ordered in period t below the threshold R

′
t, and Bt be

the number of additional batches ordered above the same threshold (see Figure 4.5). Therefore,
there is no obligation to purchase a minimum number of batches.

Figure 4.5: Illustration of the principle of TOPC at a given period t at the 2nd decision level

The retailer orders, in period t, a positive quantity of xt units in At + Bt batches and pays
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the following cost qt(xt) (refer to Figure 4.5):

qt(xt) =

{
ft + ptxt + at

⌈
xt

Vt

⌉
+ pnt (R

′

t −
⌈
xt

Vt

⌉
) if 0 <

⌈
xt

Vt

⌉
≤ R′t At =

⌈
xt

Vt

⌉
ft + ptxt + at

⌈
xt

Vt

⌉
ifR

′

t ≤
⌈
xt

Vt

⌉
Bt =

⌈
xt

Vt

⌉
−R′t

The TOPC with ψt = 0 can be implemented as a DRC. We formulate the LSP-B-TOPC as
an MILP knowing that it can be used at either tactical level or operational level with �xed R

′
t:

min
∑T

t=1(pnt R
′
t + ftyt + ptxt + (at − pnt )At + atBt + htst) (4.14)

s.t. (4.2) − (4.4)

(1− ψt)Rt ≤ R
′
t ∀t = 1, . . . , T (4.15)

At ≤ R
′
t ∀t = 1, . . . , T (4.16)

(4.6) − (4.9)

R
′
t ∈ N ∀t = 1, . . . , T (4.17)

The objective function (4.14) is obtained by minimizing the procurement, penalty and inven-
tory costs as follows:

∑T
t=1(ftyt + ptxt + atAt + pnt (R

′
t − At) + atBt + htst). Constraints (4.15)

determine the values of reserved capacity Rt after �nding the optimal values of the capacity
threshold R

′
t. Constraints (4.16) limit the number of batches At by the threshold. Constraints

(4.17) are the feasibility domain of the decision variable R
′
t.

We note that the LSP-B-TOPC is a LSP-B-CRC with a reservation fee pnt , a reservation
capacity R

′
t, a regular procurement cost at − pnt and a particular procurement cost of an excess

batch at.

4.3.3 LSP-B with pay-to-delay contract

A pay-to-delay contract (PTDC) is used in the semiconductor industries (Brown and Lee, 1997).
It has been o�ered by the Taiwanese Semiconductor Manufacturing Company, a semiconductor
fabrication foundry company.

Under a PTDC, the retailer makes two procurement decisions. Before the selling season
begins, the retailer should decide, in each period t, to purchase the minimum commitment Kt

at an upfront cost κt per batch, and reserve additional batches representing the option capacity
Rt = Zt −Kt with an upfront cost rt per batch knowing that Zt is the capacity of commitment
and options. Later, At additional batches (number of options exercised) up to the option capacity
Rt may be purchased at an extra cost at with at + rt > κt. The retailer can also purchase Bt
additional unreserved batches at a cost bt with bt > at + rt (see Figure 4.6). Then, he makes his
�nal decision to compute, in each period t, the number of batches ordered at a cost at and bt.

The retailer pays the cost qt(xt) in a PTDC with xt being the positive purchased units (see
Figure 4.6):

qt(xt) =

{
rtRt + ft + ptxt + κtKt + at(

⌈
xt

Vt

⌉
−Kt) ifKt ≤

⌈
xt

Vt

⌉
≤ Zt At =

⌈
xt

Vt

⌉
−Kt

rtRt + ft + ptxt + κtKt + atRt + bt(
⌈
xt

Vt

⌉
− Zt) if Zt ≤

⌈
xt

Vt

⌉
Bt =

⌈
xt

Vt

⌉
− Zt

The formulation of the LSP-B-PTDC at tactical level is stated below knowing that it can be
used for the operational problem with �xed Rt and Kt values:

min
∑T

t=1(rtRt + ftyt + ptxt + κtKt + atAt + btBt + htst) (4.18)
s.t. (4.2) − (4.3)

KtVt ≤ xt ≤ (Kt +At +Bt)Vt ∀t = 1, . . . , T (4.19)
(4.5) − (4.9)

Kt ∈ N ∀t = 1, . . . , T (4.20)
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Figure 4.6: Illustration of the principle of PTDC at a given period t at the 2nd decision level

The objective function (4.18) aims to minimize the procurement of commitments with di�er-
ent costs, reservation of options and inventory costs. Constraints (4.19) precise the lower bound
of quantities purchased in batches. Constraints (4.20) are the feasibility domain of the decision
variable Kt. The LSP-B-PTDC is a LSP-B-CRC with minimum commitments. LSP-B-PTDC
with Kt = 0,∀t = 1, . . . , T is equivalent to LSP-B-CRC.

4.3.4 LSP-B with quantity �exibility contract

The quantity �exibility contract (QFC) has appeared in various industries where demand un-
certainties and price �uctuations are frequent. It was adopted by IBM, Sun Microsystems,
Solectron, Hewlett Packard, Toyota, Nippon Otis (Tsay, 1999; Tsay and Lovejoy, 1999), and
Wistron Corporation, one of world's largest personal computer contract manufacturers (Chung
et al., 2010).

In the QFC, the retailer decides to order at two distinct time instants, one when he uses
demand forecasts, and another when he revises its demand forecasts. At the �rst instant, the
retailer orders, for each period t from the supplier, Rt initial commitment batches at a price at.
Thus, the �rst decision concerns the variables Rt, ∀t = 1, . . . , T in addition to the variables cited
in Section 4.3. The �rst problem is at the tactical level.

In the second instant, after observing the demand for a period t, the retailer commits to
purchase a number of batches no less than a certain percentage βt below the initial commitment
batches Rt, namely d(1− βt)Rte batches, and the supplier guarantees to deliver a number of
batches up to a certain percentage αt above the initial commitment Rt, thus d(1 + αt)Rte batches.
When the number of batches ordered in period t is less than Rt, the retailer pays a cost of at
per batch. Otherwise, a cost bt is paid for each excess batch with bt > at. Therefore, in the
second decision, the retailer determines the number of batches to replenish from the minimum
commitment batch level, d(1− βt)Rte, until Rt, denoted by At, and the number of batches Bt
between Rt and the maximum commitment batch level d(1 + αt)Rte. The second problem arises
at the operational level (see Figure 4.7).

The ordering cost qt(xt) of LSP-B-QFC, in period t, for xt units replenished in d(1− βt)Rte+
At +Bt batches is considered as follows (see Figure 4.8):

qt(xt) =

{
ft + ptxt + at

⌈
xt

Vt

⌉
if d(1− βt)Rte ≤

⌈
xt

Vt

⌉
≤ Rt At =

⌈
xt

Vt

⌉
− d(1− βt)Rte

ft + ptxt + atRt + bt(
⌈
xt

Vt

⌉
−Rt) ifRt ≤

⌈
xt

Vt

⌉
≤ d(1 + αt)Rte Bt =

⌈
xt

Vt

⌉
−Rt

The QFC cost structure in the second decision (see Figure 4.8) is similar to the one of the
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Figure 4.7: Illustration of the principle of QFC at a given period t at the 2nd decision level

capacity reservation contract with �xed reserved capacity (see Figure 1.8 depicted in Chapter 1)
but with minimum and maximum commitments of batches replenished.

Figure 4.8: QFC cost structure at the 2nd decision level

A MILP formulation of the LSP-B-QFC is stated as follows:

min
∑T

t=1(ftyt + ptxt + atR
′
t + atAt + btBt + htst) (4.21)

s.t. (4.2) − (4.3)

(1− βt)Rt ≤ R
′
t ∀t = 1, . . . , T (4.22)

R
′
tVt ≤ xt ≤ (R

′
t +At +Bt)Vt ∀t = 1, . . . , T (4.23)

At ≤ Rt −R
′
t ∀t = 1, . . . , T (4.24)
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(1 + αt)Rt ≤ R
′′
t ∀t = 1, . . . , T (4.25)

Bt ≤ R
′′
t −Rt ∀t = 1, . . . , T (4.26)

(4.6) − (4.9)

R
′
t, R

′′
t ∈ N ∀t = 1, . . . , T (4.27)

Constraints (4.22) determine the number of batches of minimum commitment. Constraints (4.23)
respect the minimum commitment and specify the batch replenishment of both costs. Constraints
(4.24) are for limiting the number of batches At. Constraints (4.25) determine the number of
batches of maximum commitment. Constraints (4.26) are for limiting the number of batches Bt.

We note that the LSP-B-QFC with βt = 1 and αt = +∞, ∀t = 1, . . . , T , coincides with the
LSP-B-CRC with null reservation costs.

4.3.5 LSP-B with backup agreement

The backup agreements (BA) are common in the apparel catalog industries. Eppen and Iyer
(1997) reported that the catalog company Catco had adopted such contracts with its manufac-
turers named Anne Klein, Finity, DKNY, and Liz Claiborne to deal with demand uncertainty
by providing �exibility to Catco during the season of replenishment.

In a model of a backup agreement, the retailer makes two decisions in two di�erent times.
In the �rst decision (for example before or at the beginning of the ordering season), he makes a
commitment to purchase Rt batches in every period t at a cost at, ∀t ∈ {1, . . . , T}. The supplier
initially delivers for period t a number of batches containing a certain percentage ωt below Rt
(d(1− ωt)Rte batches), and agrees to reserve Rt − d(1− ωt)Rte batches. The LSP-B with BA,
denoted by LSP-B-BA, in the �rst instant of decision is the LSP-B-CRC at the same level of
decision.

In the second instant of decision (during the ordering season), the retailer may purchase
additional batches up to the number of reserved batches Rt − d(1− ωt)Rte at the same price at.
Let At be the number of excess batches ordered from the minimum commitment d(1− ωt)Rte
until Rt, in period t. If the retailer decides to purchase At batches in period t, where At <
Rt−d(1− ωt)Rte, then he pays a penalty, pnt for any reserved batch not purchased. The principle
of BA in the second decision instant at a given period t is shown in Figure 4.9.

Figure 4.9: Illustration of the principle of BA at a given period t at the 2nd decision level

Replenishing a positive amount xt, in LSP-B-BA, incurs the following ordering cost qt(xt) in
period t:

qt(xt) = ft + ptxt + at

⌈
xt

Vt

⌉
+ pnt (Rt −

⌈
xt

Vt

⌉
) if d(1− ωt)Rte ≤

⌈
xt

Vt

⌉
≤ Rt, At =

⌈
xt

Vt

⌉
− d(1− ωt)Rte

In period t, if we have at ≥ pnt , then the BA procurement cost structure is presented in
Figure 4.10, and, it is equivalent to the one of the CRC with �xed reserved capacity, but with
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minimum commitments of batches replenished and bt = +∞. If we have at < pnt , then the BA
procurement cost structure is depicted in Figure 4.11.

Figure 4.10: BA cost structure if at ≥ pnt Figure 4.11: BA cost structure if at < pnt

The MILP formulation of the LSP-B-BA is stated below. Its objective function aims at
minimizing the procurement and inventory costs of units and batches,

∑T
t=1(ftyt+ptxt+atR

′
t+

atAt + pnt (Rt −R
′
t −At) + htst) with R

′
t = d(1− ωt)Rte to obtain the new one (4.28).

min
∑T

t=1(pnt Rt + ftyt + ptxt + (at − pnt )R
′
t + (at − pnt )At + htst) (4.28)

s.t. (4.2) − (4.3)
(4.22)

R
′
tVt ≤ xt ≤ (R

′
t +At)Vt ∀t = 1, . . . , T (4.29)

(4.24)
(4.6) − (4.9)

Constraints (4.29) are similar to Constraints (4.23) with Bt = 0. The LSP-B-BA with
at ≥ pnt , ∀t = 1, . . . , T , is the LSP-B-CRC with minimum commitment and bt = +∞.

4.3.6 LSP-B with minimum commitment contract

The minimum commitment contracts (MCC) are a common practice in the electronics industry in
which the demands are considered to be random. There exist several works analyzing the MCC,
see for example, Anupindi and Akella (1993), Katz et al. (1994), and Bassok and Anupindi
(1997).

In the MCC, at the beginning of the horizon (�rst decision instant), the retailer speci�es to the
supplier the minimum number of batches Kt to be purchased for each period t, for t = 1, . . . , T .
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The supplier provides, in each period t, a menu of n pairs of discount percentage εi applied on
the regular batch cost at, and minimum commitment batches ki, (εi, ki) ∀i = 1, . . . , N , from
which the retailer chooses the optimal one. In each period t, we associate for each pair i a binary
decision variable zt,i as follows:

zt,i =

{
1 if the ith pair (εi, ki) is chosen in period t
0 otherwise

Thus, the retailer must determine the number of batches At,i to purchase in each period t with
the ith pair (εi, ki) in order to satisfy the �rst demand forecast and to specify the values of Kt

which will be used as given parameters in the second decision instant. The batch procurement
cost in period t has an all-units discount structure, as shown on Figure 4.12 in which as the
minimum commitment ki increases, the reduction percentage εi would rise.

Figure 4.12: Cost of batches at a given period t

In the �rst instant of decision of LSP-B-MCC, if the retailer decides to order a positive
amount xt, then he must pay the following ordering cost qt(xt) in period t:

qt(xt) = ft + ptxt + πt(xt) with

πt(xt) =


at

⌈
xt

Vt

⌉
if 0 ≤

⌈
xt

Vt

⌉
< k2

⌈
xt

Vt

⌉
= At,1 Kt = k1 = 0

(1− ε2)at

⌈
xt

Vt

⌉
if k2 ≤

⌈
xt

Vt

⌉
< k3

⌈
xt

Vt

⌉
= At,2 Kt = k2

. . .

(1− εm)at

⌈
xt

Vt

⌉
if km ≤

⌈
xt

Vt

⌉ ⌈
xt

Vt

⌉
= At,m Kt = km

The MCC cost structure in the �rst decision is presented in Figure 4.13 in which ((1 −
ε2)− k2ε2)at = πt((k2 + 1)Vt)− k2at, which means that this last value is equal to the di�erence
between the procurement cost of k2 + 1 batches with the cost πt and the procurement cost of k2
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batches with the cost at. This value can be either non-negative or non-positive. We consider, in
Figure 4.13, that this latter is positive. In the same way, ((1 − ε3) − k3(ε3 − ε2))at is equal to
πt((k3 + 1)Vt)− k3(1− ε2)at, and is considered to be negative.

Figure 4.13: MCC cost structure at the 1st decision level

The LSP-B-MCC in the �rst instant of decision is formulated as the following MILP:

min
∑T

t=1(ftyt + ptxt + (
∑n

i=1(1− εi)atAt,i) + htst) (4.30)
s.t. (4.2) − (4.3)

kizt,i ≤ At,i ≤ (ki+1 − 1)zt,i ∀t = 1, . . . , T ∀i = 1, . . . , n (4.31)∑n
i=1 zt,i = 1 ∀t = 1, . . . , T (4.32)

xt ≤ (
∑n

i=1At,i)Vt ∀t = 1, . . . , T (4.33)
Kt =

∑n
i=1 kizt,i ∀t = 1, . . . , T (4.34)

s0 = 0 (4.6) − (4.9)
At,i,Kt ∈ N ∀t = 1, . . . , T (4.35)
zt,i ∈ {0, 1} ∀t = 1, . . . , T (4.36)

Constraints (4.31) mean that if zt,i = 0, then At,i = 0, and if zt,i = 1, then the number of batches
replenished in period t with the ith pair (εi, ki) is positive and it does not reach the minimum
commitment of the next pair ki+1. Constraints (4.32) a�rm that there is exactly one pair chosen
in period t. Constraints (4.33) ensure the replenishment of xt in batches. Constraints (4.34)
identify the value of the optimal minimum commitment in each period t.

In the second instant of decision, the retailer has to place in each period t an order of At
batches at a cost a

′
t such that the number of batches At is greater than or equal to the minimum
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purchase agreement Kt, and a
′
t =

∑n
i=1(1 − εi)zt,iat. The values of Kt and zt,i, ∀t = 1, . . . , T

and ∀i = 1, . . . , n are obtained from the �rst decision of LSP-B-MCC. The LSP-B-MCC at the
operational level becomes an LSP-B with lower limits on batches to replenish.

We note that the whole LSP-B-MCC with i = 1 is equivalent to the LSP-B-CRC with null
reservation fees, rt = 0,∀t = 1, . . . , T and bt = at,∀t = 1, . . . , T .

4.3.7 LSP-B with revenue-sharing contract

The revenue-sharing contract (RSC) is prevalent in the videocassette rental industry as shown
by Cachon and Lariviere (2005).

In a RSC, the retailer orders, in each period t, units in At full batches at a low cost at. In
return, the supplier shares a fraction (1− φ) of the retailer's total revenue with 0 ≤ φ ≤ 1. The
retailer sells the demand dt with a unit selling price vt (vt ≥ pt + at

Vt
) and earns a unit revenue

pbt for the salvaged units qt by assuming that the leftover inventory in each period t is salvaged.
Hence, the total revenue of the retailer before sharing it, in each period t, is equal to vtdt + pbtqt.
Therefore, in addition to the total procurement cost of units and batches (ft, xt, and at), the
supplier receives the cost (1− φ)vtdt + (1− φ)pbtqt. The retailer keeps φvtdt + φpbtqt as his new
revenue.

The retailer maximizes his total pro�t in order to �nd the optimal plan over the horizon. The
pro�t is obtained by subtracting the total costs of procurement, inventory holding and revenue
sharing from the total realized revenue. The resulting mixed integer program of LSP-B-RSC is
given below, in which we provide a minimization of − retailer pro�t:

min
∑T

t=1(ftyt + ptxt + atAt + htst − φvtdt − φpbtqt) (4.37)
s.t. xt + st−1 = dt + st + qt ∀t = 1, . . . , T (4.38)

(4.3)
xt = AtVt ∀t = 1, . . . , T (4.39)

(4.6) − (4.9)
qt ∈ R+ ∀t = 1, . . . , T (4.40)

The term −
∑T

t=1 φvtdt is a data-dependent constant and can be dropped from the objective
function (4.37). Constraints (4.38) provide balance for inventory �ow in which we introduce
the salvage quantity qt. Constraints (4.39) ensures replenishment of product units in only full
batches.

We note that if we have maxi=1,...,T {φpbi} ≤ pt, ∀t ∈ {1, . . . , T}, then the LSP-B-RSC is
equivalent to the LSP-BD-R2 (see Chapter 3, Section 3.4) with time dependent batch size Vt,
et = 0 (null disposed quantities), ρ = 1 (maximum return percentage) and j = T (time limit of
returns).

4.4 Conclusion

We brie�y studied the lot sizing problem under di�erent types of capacity reservation contract
(CRC) by considering the single-item case where the procurement cost has a full truckload cost
structure. We started to address the general contract in di�erent cases of capacity. This one
being NP-hard in the general case, we proposed pseudo-polynomial time dynamic programming
algorithms by adapting algorithms developed in the literature. After that, we incorporated
di�erent formats of CRC (the specialized and general contracts) into the lot sizing problem
knowing that we gave the general form of each one. Some of them (LSP-B with deductible
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reservation, and take-or-pay contract) are shown to be equivalent to the LSP-B-CRC, which
allows us to use the same methods already proposed for this latter. The others (LSP-B with pay-
to-delay, quantity �exibility, and backup agreement contracts) have several additional restrictions
compared with the LSP-B-CRC. We show that the LSP-B with revenue-sharing contract can be
considered as LSP-B with buyback contract, but with some additional assumptions.
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Conclusion and perspectives

In this thesis, we have studied several lot sizing problems with batch ordering (LSP-B) under
di�erent types of capacity reservation contract: buyback, deductible reservation, take-or-pay,
pay-to-delay, quantity �exibility, backup agreement, minimum commitment, and revenue-sharing
contracts. Such problems draw signi�cant attention in inventory management because they
optimize the procurement activity over T periods with a �exible contract between a supplier
and a retailer. We have used several operational research tools: mixed integer linear program
(MILP), dynamic programming algorithms, and computational experiments performed in Java
and Xpress Mosel.

The �rst particularity of this dissertation is that we have considered the buyback contract by
integrating it in the lot sizing problems under di�erent return forms and policies. We considered
three forms: R1 with N �xed return periods, w1, w2, . . . , wN , R2 with time limit on returns,
and R3 with return possibility permitted only in procurement periods. For each form, we have
two return policies of the maximum return percentage ρ: ρ = 1 (full return) and ρ < 1 (partial
return). Concerning the form R1, we have considered three return policies of �xed return periods:
acyclic wi with i = 1, . . . , N (w1 < w2 < · · · < wN ≤ T ) and cyclic wi such that wi = iw with
either w = 1 or w > 1.

The second particularity is to address the lot sizing problem with both batch ordering (FTL
or OFB cost structure) and lost sales concept (non-increasing or general lost sales costs). The
third particularity is to study the only full batch ordering with the disposal concept. In Table 5.1,
we recapitulate the resolution methods proposed for each problem studied under the buyback
contract, with the associated assumptions, as well as the computational complexity of the related
algorithms. For all problems, all costs are time-dependent.

For LSP -BR1 with ρ = 1, we have developed four polynomial time algorithms of complexity
O(T ) for the policy w = 1 in order to solve the single period procurement planning with time-
dependent batch sizes. The replenishment is done depending on the nature of the cost structure
(OFB or FTL) and on the lost sales consideration (without or with lost sales). The key idea of
these algorithms is to divide the problem into T independent subproblems.
Second, when the return policy is w > 1, we have proposed four algorithms that solve the
problem with constant batch size using di�erent replenishment strategies. Two algorithms are
developed for the case without lost sales, one for OFB which runs in O(Tw) time, and another
for FTL cost structure running in O(Tw3) time. Two other algorithms are proposed for the
case with non-increasing lost sales costs whose complexities are O(Tw3) time. The general idea
of these algorithms is to divide the entire problem into T

w independent subproblems, to solve
e�ciently each one and to sum up their individual costs to obtain the total replenishment cost.
The algorithm for the LSP -BOFBR1 with ρ = 1 and w > 1 is close to the one proposed by Li et
al. (2004). For the LSP -BFTLR1 with ρ = 1 and w > 1, we have adapted the algorithm given
in Akbalik and Rapine (2018) to each subproblem. For the problems with lost sales, the idea is
to use a decomposition scheme of subproblems into subplans. It will be interesting to study, in

117



Conclusion and perspectives

Table 5.1: Summary table of proposed methods for each problem under buyback contract

[1]: Lagrangian heuristic for RCSPP of Beasley and Christo�des (1989); NI: Non-increasing; NN: Non-negative

Di�erent assumptions

Buyback
forms

Return policies
Batch ordering Batch size

Lost sales
costs

Disposal
quantity Complexity

OFB FTL V Vt NI General NN

LSP-BR1
ρ = 1

w = 1

× × O(T )
× × O(T )

× × × O(T )
× × × O(T )

w > 1

× × O(Tw)
× × O(Tw3)

× × × O(Tw3)
× × × O(Tw3)

wi × × × O(T 4)
ρ < 1 wi × × × O(T 5)

LSP-BR2
ρ = 1 × × × O(T 5)
ρ < 1 × × × [1]

LSP-BR3
ρ = 1 × × × O(T 5)
ρ < 1 × × × [1]

the future, LSP -BR1 with ρ = 1 and w > 1 under general lost sales costs.
Third, concerning the return policy with acyclic wi, we have studied the LSP -BR1 with

ρ = 1 under OFB cost structure, constant batch size and disposal with null costs. The algorithm
that solves this problem runs in O(T 4) time for the general case and in O(T 2) time for the special
case of holding costs. The procedure of the latter is equivalent to the one of the O(Tw) time
algorithm (see the 5th line in Table 5.1).

For the LSP -BR1 with ρ < 1 and acyclic wi, we have developed an algorithm in time
complexity O(T 5) lowered to O(T 4) if a speci�c assumption on the return revenue and holding
costs is satis�ed.

For the LSP -BR2 and LSP -BR3 with ρ = 1 and acyclic wi, we have proposed two di�erent
algorithms whose running times are O(T 5). However, with the return policy ρ < 1, we have
proved that LSP -BR2 and LSP -BR3 are similar to the resource constrained shortest path
problem with equality and inequality resource constraints (with lower and upper resource limits)
and they can be solved by the heuristic method proposed by Beasley and Christo�des (1989).

An extension of these problems with non-negative and non-positive disposal costs can be
easily solved by making some modi�cations on the solution methods proposed, in Chapter 3, to
the problems with null disposal costs. An interesting extension of buyback contract to explore
as perspective, is the LSP-B with another form of buyback contract, in which there are peri-
odic limitations of the returned quantity, being a maximum return percentage of the quantity
purchased: qt ≤ ρxt, ∀t = 1, . . . , T .

Each polynomial time dynamic programming (DP) algorithm proposed in this thesis has been
implemented to validate its optimality and to compare its resolution time to the one of the MILP.
It is fast for small and medium instances. Concerning MILP, we used the aggregate formulation
and we note that the execution time is fast but it remains unpredictable because MILP depends
on all the problem parameters. In order to enhance the results of MILP in the future, it will be
interesting to add valid inequalities to the aggregate formulation to develop strong formulations
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with the original decision variables and to provide a polyhedral description of the convex hull of
the problem.

Other interesting perspectives for the buyback contract integrated into the lot sizing problem
may be the multi-item and/or the multi-level cases. For instance, one can consider a system
with multiple items arriving at a retailer in batches with the possibility of returns to the supplier
in every period of the planning horizon. In each period, the total returned quantity of all the
items may be limited by an amount speci�ed by the supplier. For this problem, we can refer
to two research axes: multi-item LSP with batch ordering and big-bucket LSP with several
items sharing a common capacity in a given period. Given the increasing complexity of the
related problems and the di�culty to propose e�cient algorithms, one can try to develop a
dynamic programming algorithm which is polynomial for a �xed number of items (Anily and
Tzur, 2005), or use polyhedral approaches by proposing valid inequalities (see Doostmohammadi
and Akartunali, 2018), relaxation or decomposition techniques (Fragkos et al., 2016), or heuristics
(Absi et al., 2013) for a large dimension of items. Concerning the multi-level extension, one can
imagine a system with serial suppliers replenishing an item to the upstream levels in some batches,
with di�erent levels of this chain having various buyback options. In this system, one can also
consider intermediate demands occurring in each echelon (direct shipment to local customers),
in addition to the demand of upstream levels. We can extend the work of Zhang et al. (2012)
studying the multi-echelon LSP in series with intermediate demands, by adding the concepts of
batch replenishment and/or return policy. One can try to see if the valid inequalities proposed
by Zhang et al. (2012) can be adapted to our problem under some restrictive assumptions.

Under the general capacity reservation contract (CRC), we have addressed the procurement
LSP-B with time-varying batch sizes. The fourth particularity is that we have studied this prob-
lem in three classes of capacity: �xed, variable and constant, and, variable and time-dependent.
All these problems are NP-hard. The LSP-B-CRC with �xed reserved capacity is studied by Ak-
balik et al. (2017) who propose a pseudo-polynomial algorithm of O(T (D1,T )2) time complexity.
For the LSP-B-CRC with variable and constant reserved capacity, we have developed a pseudo-
polynomial algorithm of O(T (D1,T )3) time complexity. We have proved that the LSP-B-CRC
with variable and time-dependent reserved capacity is equivalent to the LSP-B with FTL cost
structure. An extension for the LSP-B-CRC is to make hypotheses on the batch size, cost and ca-
pacity parameters, for example constant batch size, non-decreasing capacities and non-increasing
costs, in order to �nd polynomial time algorithms. Lee and Li (2013) solved the problem with
the previous example but with unitary batch size (V = 1). Another possible extension is to
generalize these current models to the multi-item case as considered in van Norden and van de
Velde (2005).

The �fth particularity is that we have modeled the specialized and general contracts of CRC
integrated into LSP-B by MILP. We have shown that the LSP-B with deductible reservation
contract, and LSP-B with take-or-pay contract are equivalent to the LSP-B-CRC. The LSP-B
with pay-to-delay, or quantity �exibility, or backup agreement contract are more complicated
than the LSP-B-CRC. These problems remain open. For the LSP-B with revenue-sharing con-
tract, we have found that the latter under cost hypothesis can be viewed as LSP-B with buyback
contract. Therefore, a few research directions remain to be investigated for this problem in the
general case.
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French abstract of the dissertation

Titre de la thèse

Plani�cation d'approvisionnement par batch sous contrat de réservation de capacité

Introduction et description du problème

Dans un marché caractérisé par une forte concurrence, les entreprises cherchent à mettre en
place des stratégies pour améliorer continuellement leur productivité et leur gestion des coûts en
répondant à des changements de plus en plus rapides de la demande. L'utilisation de contrats
�exibles d'approvisionnement est une stratégie récente et puissante pour atteindre ces objectifs.
Depuis 1990, le recours aux contrats de réservation de capacité (CRC) a connu une croissance
rapide. Dans ces contrats, le fournisseur permet à l'acheteur, au moment de la signature du
contrat, de réserver une certaine capacité à l'avance. Au moment de la commande, l'acheteur
décide du nombre de produits à se faire livrer jusqu'à la capacité réservée à un coût avantageux.
Cependant, s'il a besoin d'une quantité supérieure à la capacité réservée, il peut l'obtenir à un
coût plus élevé. Ainsi, cela garantit une �exibilité et un partage e�cace du risque entre les
membres de la chaîne logistique. Il existe di�érents types d'accords contractuels avec réservation
de capacité : les contrats buyback, de réservation déductible, take-or-pay, pay-to-delay, de �exi-
bilité de quantité, backup, minimum commitment et de partage des revenus. Dans cette thèse,
nous abordons les contrats de réservation de capacité, et en particulier le contrat buyback sous
plusieurs formes et politiques de retour, associé à la gestion des stocks dans l'approvisionnement
par batch.

La gestion des stocks est une stratégie importante utilisée dans di�érents secteurs de l'entreprise
pour améliorer la disponibilité des produits et la rapidité des livraisons, ainsi que pour aboutir
à des réductions signi�catives de coûts, qui sont des éléments indispensables à la compétitivité.
Depuis des décennies, les industries cherchent à plani�er simultanément ou indépendamment les
activités d'approvisionnement, de production et de transport sur un horizon de plani�cation, en
équilibrant les coûts résultant du stockage des produits avec ceux de ces di�érentes activités.
Selon le US Census Bureau (2013), la valeur des stocks représente une somme importante, soit
environ 1,6 billion de dollars aux États-Unis. Par conséquent, la gestion des stocks o�re un
énorme potentiel aux entreprises et à l'ensemble de l'économie. L'optimisation du dimension-
nement de lots est un modèle qui permet d'éviter une accumulation excessive de stocks dans les
entreprises et qui consiste à déterminer les quantités optimales à commander auprès des four-
nisseurs (et/ou à produire et/ou à transporter au client) et à stocker par type de produit et par
période a�n de satisfaire la demande au moindre coût. Dans cette étude, nous nous intéressons
à l'optimisation de l'approvisionnement d'un type de produit chez un détaillant sur un horizon
�ni. Traditionnellement, les politiques de commandes considérées dans la gestion des stocks se
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concentrent principalement sur une taille de commande continue. Toutefois, en pratique, les
produits achetés sont livrés au détaillant dans des batches, palettes, conteneurs, etc. Une autre
caractéristique de notre problème de dimensionnement de lots est la considération des structures
de coûts d'approvisionnement plus générales : la structure Full-Truck-Load (FTL) dans laque-
lle les produits sont approvisionnés dans des batches complets et fractionnaires et la structure
Only-Full-Batch (OFB) dans laquelle le fournisseur exige une livraison de batches uniquement
complets.

Cette thèse comprend quatre chapitres. Dans le chapitre 1, nous présentons la littérature sur
les contrats d'approvisionnement et les problèmes de dimensionnement de lots avec un état de
l'art détaillé en positionnant notre étude au sein des travaux précédents. Dans les chapitres 2 et
3, di�érentes formes de contrat buyback sont étudiées avec des di�érents concepts.

Dans le chapitre 2, nous étudions le problème de dimensionnement de lots avec approvision-
nement par batch, sous le contrat buyback périodique dans lequel toutes les unités invendues
sont retournées au fournisseur à la �n de chaque w périodes avec un revenu de retour par unité.
w, 2w, . . . , Nw sont les di�érentes périodes de retour avec N étant le nombre de retours. Les
paramètres w et N sont connus dans ce type de contrat. Nous considérons deux politiques de
retour : w = 1 en supposant des tailles de batch dépendantes du temps et w > 1 en supposant
une taille de batch constante sur l'horizon de plani�cation. Ce problème est étudié avec les
coûts d'approvisionnement FTL et OFB, en plus des coûts classiques de dimensionnement de
lots. En outre, le concept de ventes perdues (lost sales) peut être pris en compte dans certains
cas, en considérant un coût pour chaque unité de demande non satisfaite. L'objectif général
est de déterminer les décisions d'achat, de stockage et de retour pour chaque extension de ce
problème. Nous avons proposé un programme linéaire mixte en nombres entiers (PLNE) pour
modéliser le problème avec les hypothèses les plus générales et également des algorithmes en
temps polynomiaux pour les huit extensions considérées dans ce chapitre.

Le chapitre 3 traite le problème de la plani�cation des approvisionnements dans un cas
particulier de contrats buyback, dans lequel la quantité à acheter est limitée à un multiple d'une
taille de batch constante (OFB). Dans ce chapitre, nous étudions trois formes spéci�ques de
contrat buyback. La première forme est celle examinée au chapitre 2, mais avec des politiques de
retour plus générales qui prennent en compte di�érentes périodicités de retour (w1, w2, . . . , wN
sont les di�érentes périodes de retour et N est le nombre de retours). La seconde forme permet
uniquement des retours dans les j premières périodes. Dans la troisième forme, les périodes de
retour doivent coïncider avec les périodes de commande. Pour chaque forme de buyback, nous
associons un pourcentage de retour maximum ρ. Dans le cas ρ = 1, toutes les unités invendues
peuvent être retournées. Dans le cas ρ < 1, seul un nombre limité d'unités invendues peut être
retourné au fournisseur. Les valeurs de wi ∀i = 1, . . . , N (forme 1), ρ (toutes les formes) et j
(forme 2) sont des paramètres de ces contrats. Tous ces problèmes de dimensionnement de lots
sont étudiés avec le concept de mise au rebut (disposal). En e�et, dans le cas ρ < 1, le détaillant
peut être obligé de jeter les unités qui ne peuvent pas être retournées. De plus, il peut avoir
des coûts d'inventaire très élevés, et c'est plus pro�table pour lui de jeter des unités que de les
stocker et puis les retourner. Trois PLNE ont été proposés pour chaque forme de buyback. Pour
les trois formes avec ρ = 1, et la première avec ρ < 1, quatre algorithmes en temps polynomiaux
ont été développés. Pour la deuxième et la troisième formes avec ρ < 1, nous avons montré que
nous pouvons appliquer le seul algorithme proposé pour le problème du plus court chemin avec
des contraintes de ressources d'inégalité à double face (limites inférieure et supérieure).

Dans le chapitre 4, nous avons modélisé les autres types de contrat de réservation de capacité
intégrés au problème de dimensionnement de lots avec l'approvisionnement par batch et proposé
des algorithmes pseudo-polynomiaux pour certains problèmes, en laissant les autres comme des
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cas ouverts. En�n, nous �nalisons ce manuscrit par une conclusion et des perspectives.

Etat de l'art

Le problème étudié dans cette thèse concerne la plani�cation de l'approvisionnement par batch
sous contrat de réservation de capacité dans un système composé d'un détaillant et d'un four-
nisseur. Il existe plusieurs types de contrat de réservation de capacité, mais nous étudions
particulièrement le contrat buyback, intégré au problème de dimensionnement de lots sous les
hypothèses variées : fonction de coût linéaire par morceaux, perte de ventes, mise au rebut,
périodes de retour qui peuvent être �xes ou des variables de decision, etc. Nous avons donc
positionné notre étude selon deux axes de recherche : les contrats de la chaîne logistique et le
problème de dimensionnement de lots (PDL).

Il existe une littérature abondante traitant des di�érents problèmes d'approvisionnement sous
des contrats de réservation de capacité, mais nous pouvons les classer en trois types de problèmes.
Premièrement, plusieurs articles se concentrent sur la détermination des paramètres optimaux
de ce contrat a�n de minimiser le coût total de la chaîne logistique, voir par exemple Silver
et Jain (1994), Brown et Lee (1997), Jain et Sliver (1995), Wu et al. (2005). Deuxièmement,
d'autres travaux s'intéressent à la conception des contrats de réservation de capacité pour assurer
la coordination des canaux en augmentant les pro�ts des deux parties. Le lecteur peut se référer
à Tsay et Lovejoy (1999), Erkoc et Wu (2005), Jin et Wu (2007). Le dernier type de problème
concerne la recherche sur l'optimisation de la plani�cation d'approvisionnement sur plusieurs
périodes avec la réservation de capacité qui s'est développée au cours des dernières années.
Inderfurth et Kelle (2013) et Park et Kim (2014) ont étudié ce problème sous di�érents paramètres
et ont proposé des approches permettant d'étudier les relations acheteur-fournisseur et de trouver
la structure optimale de la politique d'achat.

Le travail de cette thèse concerne notamment un type particulier de contrat de réservation
de capacité : le contrat buyback dans lequel l'acheteur a la possibilité de retourner un certain
pourcentage des unités non utilisées au fournisseur pour un revenu inférieur ou égal au coût
d'achat. Ce contrat est utilisé dans de nombreux contextes industriels, et en particulier tout
produit dont la durée de vie est limitée par la dégradation physique (produits laitiers, produits
de boulangerie, produits pharmaceutiques et cosmétiques, etc.), les produits présentant un risque
d'obsolescence (vêtements de mode, logiciels, magazines, journaux, etc.) et des produits dont les
coûts de transport sont élevés ou des produits avec des demandes rapidement saturées (livres,
disques, etc.), voir Pasternack (1985) et Hou et al. (2010). Dans la littérature, le contrat buyback
est principalement utilisé dans le cadre de plani�cation sur une seule période. Selon Hou et al.
(2010), il y a trois facteurs qui conduisent à utiliser ce type de contrat. Le premier représente
les propriétés du produit : périssabilité (Pasternack, 1985), mono ou multi-produit (Brown et
al., 2008), et attitude de risque sur les membres de la chaîne logistique (Choi et al., 2008). Le
deuxième facteur est relatif aux caractéristiques de la demande : incertitude (Marvel et Peck,
1995), et dépendance des prix (Yao et al., 2008). Le troisième facteur concerne la structure de
la chaîne logistique : mono ou multi-niveaux (Song et al., 2008), et type de canal (Yao et al.,
2005).

Dans un grand nombre d'articles, le contrat buyback a été étudié pour sa conception et sa
mise en ÷uvre dans di�érentes con�gurations de la chaîne logistique. À notre connaissance,
aucune recherche n'a étudié le problème de la plani�cation d'approvisionnement avec le contrat
buyback.

Dans ce travail, nous intégrerons le contrat buyback avec di�érentes formes et politiques de

123



French abstract of the dissertation

retour entre un détaillant et un fournisseur dans un PDL à multi-périodes avec approvisionnement
par batch.

Le PDL avec approvisionnement par batch a été introduit par Lippman (1969) pour un seul
produit. L'auteur a proposé un algorithme exact de programmation dynamique pour des coûts
nuls de setup, une taille de batch constante et des coûts d'achat, de transport et de stockage
dépendants du temps. Li et al. (2004) ont ensuite proposé une amélioration de ces résultats
avec des hypothèses plus générales (des coûts positifs de setup et demandes avec backlogging).
Akbalik et Rapine (2018) ont également étudié ce PDL sans backlogging mais avec multi-sources
d'approvisionnement (plusieurs fournisseurs).

Quelques articles traitent le PDL avec contrat de réservation de capacité : Atamturk et
Hochbaum (2001), Lee et Li (2013), Zhang (2015), Phouratsamay (2017). Toutes ces études
supposent des coûts unitaires dans le contrat de réservation de capacité au lieu de coûts �xes par
batch. Quelques articles étudient ce dernier problème : Van Norden et van de Velde (2005) ont
proposé une heuristique Lagrangienne pour le cas multi-produits, sans coûts unitaires d'achat et
avec une capacité constante de réservation, et Akbalik et al. (2017) ont developpé un algorithme
de programmation dynamique en temps pseudo-polynomial pour le cas à mono-produit.

Dans certains PDL étudiés dans cette thèse, on prend en compte le concept de ventes perdues
(lost sales). Quelques travaux sur les PDL avec pertes de ventes sont publiés dans la littérature.
Aksen et al. (2003) ont étudié ce problème dans le cas mono-produit, sans capacité de production
et ont proposé un algorithme de programmation dynamique en temps O(T 2) pour le cas avec
des coûts variables dans le temps. Ce problème a été également étudié par Absi et al. (2013)
pour le cas multi-produits. Les auteurs proposent une heuristique Lagrangienne pour trouver des
solutions réalisables et une métaheuristique basée sur la recherche de voisinage pour améliorer
ces solutions.

Nous avons également considéré le concept de mise au rebut (disposal). Dans la littérature,
il existe deux grandes catégories de PDL dans lesquels l'option de mise au rebut est intégrée.
La première catégorie comprend les PDL avec plani�cation de la production et remanufacturing,
voir Richter et Weber (2001), Golany et al. (2001), etc. La deuxième catégorie comprend les PDL
avec des discounts sur la quantité d'achat dans lesquels le détaillant peut se trouver dans une
situation où il est plus économique d'acheter une quantité importante dépassant la demande,
puis de jeter tous les stocks restant avec des coût de mise au rebut positifs ou négatifs. Ce
problème a reçu très peu d'attention dans la littérature. Voir Sethi (1984) pour le cas avec deux
taux de remise, une demande constante, et des coûts positifs de mise au rebut, Mirmohammadi
et Eshghi (2012) pour le cas avec des coûts positifs et/ou negatifs de mise au rebut, et Li et al.
(2012) pour un cas plus général avec plusieurs taux de remise.

Positionnement et contributions par rapport à la littérature

Notre première contribution consiste à résoudre un PDL déterministe sous un contrat buyback
qui n'a pas encore été exploré dans la littérature. Cependant, il existe quelques articles sur le
PDL sous un contrat de réservation de capacité (Atamturk et Hochbaum, 2001; van Norden et
van de Velde, 2005; Lee et Li, 2013; Akbalik et al., 2017; Phouratsamay, 2017).

Nous considérons les structures FTL et OFB des coûts d'approvisionnement. Ces structures
sont étudiées par de nombreux auteurs dans la littérature (Li et al., 2004; Akbalik et Rapine,
2013, 2018), mais sans considérer le contrat buyback ni ventes perdues.

En outre, nous étudions trois formes de contrat buyback utilisées dans des di�érentes in-
dustries. La première consiste à retourner sur des périodes de retour �xes (R1), la seconde est
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avec une limite de temps sur les retours (R2), et dans la troisième forme, le retour est autorisé
uniquement pendant la période d'approvisionnement (R3). Pour chaque type de buyback, nous
étudions deux politiques de retour en fonction de la valeur du pourcentage de retour ρ : une
politique de retour complet (ρ = 1) et une politique de retour partiel (ρ < 1). En ce qui concerne
R1, nous considérons également trois politiques de retour : retour cyclique avec soit w = 1, soit
w > 1 et retour acyclique avec di�érentes périodes de retour autorisées.

La seconde contribution consiste à ajouter le concept de mise au rebut pour éliminer les
unités qui ne peuvent être ni stockées ni retournées au fournisseur. Notre problème est di�érent
des PDL avec remanufacturing car il n'y a pas des produits retournés du client au détaillant.
Nous nous sommes intéressés au contrat buyback dans lequel le détaillant renvoie les produits
non vendus au fournisseur et élimine les produits restants. Ainsi, au niveau du détaillant, dans
une période t, la quantité retournée est un �ux sortant et non pas un �ux entrant comme dans
les PDL inversés avec remanufacturing. L'option de mise au rebut est intégrée car les produits
sont commandés par batches. Notre travail ressemble au PDL avec discount sur les quantités
d'achat, et reventes de Li et al. (2012), mais nous ne pouvons pas appliquer leur algorithme dont
le temps d'exécution dans notre cas tend vers l'in�nie dû au nombre illimité de batch à acheter.

La troisième contribution permet de résoudre le PDL à la fois avec approvisionnement par
batch et avec ventes perdues. A notre connaissance, ce problème n'a jamais été abordé dans la
littérature. Nos contributions dans la littérature pour le contrat buyback sont illustrées dans la
�gure 6.1 en couleur jaune.

Figure 6.1: Nos contributions pour le contrat buyback

Nous étudions aussi le PDL sous un contrat de réservation de capacité. La quatrième con-
tribution est donc d'étudier ce problème avec des tailles de batch dépendantes du temps en
considérant trois classes de capacité réservée : �xe (dépendante du temps) ou variable de deci-
sion (constante ou dépendante du temps). Nous proposons des algorithmes pseudo-polynomiaux
pour certains d'entre eux.

La dernière contribution consiste à modéliser les contrats spéciaux et généraux de CRC
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incorporés dans des PDL. Nous montrons que le PDL-B (B pour Batch) avec le contrat de
réservation déductible, et le PDL-B avec le contrat take-or-pay sont équivalents au PDL-B avec
CRC (PDL-B-CRC).

Résumé des principaux résultats

Nous donnons le tableau 6.1 qui récapitule tous les problèmes étudiés sous les di�érentes formes
de contrat buyback, avec les hypothèses supposées, et les résultats de complexité.

Table 6.1: Tableau récapitulatif des méthodes proposées pour chaque problème étudié sous
contrat buyback

[1]: Heuristique Lagrangienne de Beasley et Christo�des (1989); D : Décroissants; G : Générals; P : Positive

Di�érentes hypothèses

Formes de
Buyback

Politiques
de retour

Structure
de coût

Taille de
batch

Coûts de
lost sales

Quantité
de mise
au rebut

Complexité

OFB FTL V Vt D G P

PDL-BR1
ρ = 1

w = 1

× × O(T )
× × O(T )

× × × O(T )
× × × O(T )

w > 1

× × O(Tw)
× × O(Tw3)

× × × O(Tw3)
× × × O(Tw3)

wi × × × O(T 4)
ρ < 1 wi × × × O(T 5)

PDL-BR2
ρ = 1 × × × O(T 5)
ρ < 1 × × × [1]

PDL-BR3
ρ = 1 × × × O(T 5)
ρ < 1 × × × [1]

Pour résoudre le PDL-B-CRC où une capacité de réservation constante est une variable
de décision, nous avons proposé un algorithme de programmation dynamique de complexité
O(T (D1,T )3) avec D1,T la demande cumulative de la première période 1 jusqu'à la dernière
période T .

Perspectives

En perspectives, nous visons à étudier le PDL-BR1 avec ρ = 1 et w > 1 en considérant des coûts
de ventes perdues généraux. En plus, il sera intéressant d'examiner le PDL-B avec une autre
forme de contrat buyback qui impose des limitations périodiques de la quantité à retourner.
D'autres perspectives intéressantes pour le contrat buyback peuvent être les problèmes avec
multi-produits et/ou multi-niveaux. Par exemple, on peut envisager un système avec plusieurs
produits qui arrivent dans des batches chez un détaillant avec la possibilité de retours au four-
nisseur à chaque période de l'horizon de plani�cation. La quantité totale retournée à la période t
de tous les produits est limitée par une quantité spéci�ée par le fournisseur, ∀t = 1, ..., T . En ce
qui concerne l'extension à multi-niveaux, on peut imaginer un système avec plusieurs fournisseurs
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en série qui réapprovisionnent un type de produit dans des batches des niveaux en amont. Ces
di�érents niveaux disposent de divers contrats buyback.

Les PDL-B avec les contrats pay-to-delay, de �exibilité de quantité, backup, minimum com-
mitment et de partage des revenus sont des problèmes plus complexes que PDL-B-CRC. Ces
problèmes restent ouverts.
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Appendix

An aggregated formulation of the LSP-BD-R2

To obtain the formulation without inventory variables, �rst, we sum up the material balance
equations for the �rst t periods for each t ∈ {1, . . . , T} and we get st =

∑t
k=1 xk −

∑t
k=1 dk −∑t

k=1 qk−
∑t

k=1 ek by using s0 = 0. Second, we use the constraints st ≥ 0,∀t = 1, . . . , T in order
to obtain the constraints without inventory variables

∑t
k=1 xk ≥

∑t
k=1(dk + qk + ek). Third, we

replace st =
∑t

k=1 xk −
∑t

k=1 dk −
∑t

k=1 qk −
∑t

k=1 ek in the aggregated objective function to

obtain the modi�ed objective function
∑T

t=1(ftyt + p̃txt + atAt − p̃btqt − p̃etet − ht
∑t

i=1 di).

min
∑T

t=1(ftyt + ptxt + atAt + htst − pbtqt + 0et)

Material balance equations:
xt + st−1 = dt + st + qt + et ∀t = 1, . . . , T
s0 = 0

Nonnegativity constraints of inventory variables:
st ∈ R+ ∀t = 1, . . . , Taaa

We did not mention the other constraints because they are the same in both formulations.
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Appendix

Transformation of Graph G

Figure 7.1: Graph G
′
of Example 3.4
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Résumé

Nous nous intéressons au Problème de Dimensionnement de Lots mono-produit (PDL) dans une chaîne lo-
gistique composée d'un détaillant et d'un fournisseur en y intégrant le contrat buyback et l'approvisionne-
ment par batch. L'objectif est de déterminer un plan d'approvisionnement pour le détaillant pour satis-
faire ses demandes déterministes sur un horizon �ni, tout en minimisant ses coûts d'approvisionnement et
de stockage. Concernant le coût d'approvisionnement, nous supposons deux structures di�érentes : FTL
(Full Truck Load) et OFB (Only Full Batch). Trois types de contrat buyback sont étudiés : avec des
périodes de retour �xes, avec une limite de temps sur les retours, et avec des retours uniquement dans
les périodes d'approvisionnement. Chaque contrat est caractérisé par un pourcentage de retour maximal
qui peut être égal à 100% (retour total) ou inférieur à 100% (retour partiel). Pour le PDL sous le contrat
buyback avec des périodes de retour �xes, nous supposons le cas de ventes perdues (lost sales). En outre,
un autre concept ajouté dans les PDL sous les trois types de contrat buyback réside dans le fait que
le détaillant peut jeter la quantité invendue et non retournée au fournisseur, appelé mise au rebut (dis-
posal). Nous avons modélisé ces di�érentes extensions du PDL par des Programmes Linéaires en Nombres
Entiers (PLNE). Nous avons ensuite développé des algorithmes exacts polynomiaux de programmation
dynamique pour certaines extensions, et montré la NP-di�culté pour d'autres. Pour chaque problème ré-
solu en temps polynomial, nous avons comparé l'e�cacité et les limites de l'algorithme proposé avec celles
des quatre formulations en PLNE. Nous avons également proposé des modèles mathématiques pour les
PDL sous d'autres types de contrats de réservation de capacité dans le cas déterministe à multi-périodes.

Mots-clés: Problème de dimensionnement de lot, approvisionnement en batch, contrat buyback, ventes
perdues, mise au rebut, PLNE, algorithme polynomial, complexité

Abstract

aaa
We study the single-item Lot Sizing Problem (LSP) in a supply chain composed of a retailer and a supplier
by integrating the buyback contract and the batch ordering. The purpose is to determine a replenishment
planning for the retailer to satisfy his deterministic demands over a �nite horizon, while minimizing the
procurement and inventory costs. Regarding the procurement cost, we assume two di�erent structures:
FTL (Full Truck Load) and OFB (Only Full Batch). We consider three types of buyback contract:
with �xed return periods, with a time limit on returns, and with returns permitted only in procurement
periods. Each contract is characterized by the maximum return percentage being either equal to 100%
(full return) or less than 100% (partial return). For the LSP under the buyback contract with �xed
return periods, we assume the concept of lost sales. Another concept considered in the LSP's under
the three types of buyback contract is the disposal of the unsold and unreturned quantities. We model
these di�erent LSP extensions as a Mixed Integer Linear Program (MILP). Thereafter, we develop exact
polynomial time dynamic programming algorithms for some extensions and show the NP-hardness of
others. For each problem solved in polynomial time, we compare the e�ciency and the limits of the
proposed algorithm with those of four MILP formulations by performing di�erent tests. Finally, we
propose mathematical models for the LSP's under other types of the capacity reservation contract in the
deterministic and multi-period case.

Keywords: Lot sizing problem, batch ordering, buyback contract, lost sales, disposal, MILP, polynomial
time algorithm, complexity
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