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régional CRIANN 2 d’avoir accordé des heures de calculs, indispensables notamment pour

les calculs tri-dimensionnels.
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Chapter 1 Introduction

since it generates high temperatures and pressures. Storing thermal energy is hence an efficient and

fundamental way to store the energy. This can be realised by rising a substance’s temperature (sensible

heat energy storage) or by changing a substance’s phase (latent heat energy storage).

To this end, research on passive heat storage systems has generated many studies lastly, namely on

latent heat energy storage like Phase Change Material (PCM). PCMs are used to store heat during the

melting of the material and release later the stored energy during the solidification process. At the

present time, the latent heat storage technologies are proven as an effective solution to decrease the use

of fossil fuel and in the same time to increase the efficiency of energy usage.

Aside from energy storage technologies, PCMs are also widely used in building applications, to

decrease temperature fluctuations. The latest announcement of the French ministry of ecological tran-

sition, detailing the repartition of the energy consumption in different domains, indicates that more

than 35% of the total energy is consumed by residential and commercial buildings. Details about en-

ergy consumptions in 2017, reported by the French ministry of ecological transition are shown in Tab.

1.1.

Agriculture Buildings Industry Transportation Other

4.5 41.8 26 43.8 4.5

Table 1.1: Energy consumed by different domains in France in 2017, in million tonnes of

oil equivalent. French ministry of ecological transition (Ministère de la transition

écologique et solidaire, 2018).

More than 60% of the total energy consumption in the residential sector is used to space heating (see

Fig. 1.1b). Research towards an energy-efficient building to reduce heating and cooling demands is

of principal interest nowadays. Taking advantage of the high value of the latent heat of solid-liquid

transformations, PCMs are extensively encountered in building’s thermal regulation to reduce over-

heating. In summer, PCMs are used to absorb the excessive solar radiation heat and maintain a bracing

indoor ambience. PCM with a temperature of fusion close to the ambient temperature is generally used

to ensure melting during the daytime and solidification during the night-time. During winter however,

PCMs can be used to store heat generated by electrical heating system during the night and then release

it in the daytime.

PCMs are also encountered in other applications ranging from metal casting and passive temperature

control devices for modern portable electronics, to food freezing and cryosurgery. In many of these

applications, the choice of an appropriate material for a specific end depends of many criteria, such as

the operating temperature range, the thermal conductivity, the cost, etc. They are generally classified

into three classes: organic, inorganic and eutectic. A target application area for some PCMs is drawn in

Tab. 1.2. The main operating temperature range can be assorted in three groups of melting temperature

range. First, 0 to 65oC for thermal storage used in domestic heating/cooling or for thermal storage of

solar energy. Paraffins and water are used for such applications. Second, 80 to 120oC for the cooling

of systems with temperature of fusion less than 120oC. Finally, temperatures greater than 150oC for

the heat storage in solar power plants based on parabolic trough collectors and direct steam generation.

For more details about these applications, see the review by Agyenim et al. (2010).

Melting and solidification are also fundamental processes in geophysical problem such as Earth’s

mantle formations, lava lakes (Davaille and Jaupart, 1993), thermal convection in magma chambers

(Brandeis and Marsh, 1989) or ice-melt lakes (Polashenski et al., 2012). Ice-melt ponds that form

during the summer season in the Arctic are known for example to display natural convection coupled

2



1.2 Theoretical and experimental studies of phase-change systems

Temperature range PCM Target application area

0 - 65 oC Paraffins (-3 to 64 oC), water / ice

(0 oC), stearic acide (41 - 43 oC),

n-octadecane (27.7 oC)

Storage for domestic heating/-

cooling. Passive storage in

bio-climatic building/architec-

ture. Thermal storage of solar

energy. Application in off-peak

electricity for cooling and heat-

ing. Protection of electrical

devices.

80 - 120 oC Erythritol (117.7 oC), RT100 (99
oC), MgCl2 6H2O (116.7 oC)

Storage for the hot-side of

LiBr/H2O absorption cooling

system with generator temper-

ature requirements of less than

120 oC

> 150 oC NaNO3 (310 oC), KNO3 (330
oC), NaOH (318 oC), KOH
(380 oC), ZnCl2 (280 oC)

Storage for solar power plants

based on parabolic trough collec-

tors and direct steam generation.

Table 1.2: Target application area for some PCMs studied in the literature (Agyenim et al.,

2010).

to a phase-change process on the bottom side (Polashenski et al., 2012; Esfahani et al., 2018). In this

case, Rayleigh-Bénard like convection cells are observed in the liquid phase.

The solid-liquid phase-change phenomenon is known to involve complex processes. It couples the

natural convection in the liquid phase induced by the buoyancy force to the non-linear evolution of the

phase-change interface and the heat transfer process, which could be different from one configuration

to another. The coupling of all these physical phenomena induces a strong non-linear process in the

solid-liquid problems, difficult to analyse, excepting for simple and ideal test cases. As an example,

Fig. 1.2 shows the experimental investigation of the melting of n-octadecane inside a transparent

brick, used as a smart material to control the indoor environment of a building (Gong et al., 2015). The

investigated material is heated from the right and melts consequently from the right to the left. Figs.

1.2a and 1.2b display the evolution of the liquid fraction and the vector field in the fluid obtained by

particle image velocimetry (PIV) method. Capturing accurately the non-linear evolution of the solid-

liquid interface and the strong convection in the melting PCM is clearly a challenging numerical task.

Furthermore, the existence of boundary layers near the walls and the interface suggests that the mesh

resolution should adapt to capture these structures.

1.2 Theoretical and experimental studies of

phase-change systems

Solid-liquid phase-change problems have attracted attention since the study of crust formation of earth

by Lamé and Clapeyron (1831) or the ice formation problem by Stefan (1889). From a mathematical

point of view, the phase transition is referred to a moving boundary problem. The Stefan problem

considers a linear evolution of the interface by assuming only conductive heat transfer. Under this as-

3



Chapter 1 Introduction

Figure 1.2: Experimental observation of the melting of n-octadecane within a transparent

brick of plexiglas heated vertically from the right: (a) melted fraction (b) velocity

field in the liquid region obtained by particle image velocimetry (PIV) method

(Gong et al., 2015).

sumption, the existence and the uniqueness of the solution for the one-dimensional problem was proven

by Rubinstein (1947) using constant properties. For a historical review detailing the evolution of the

Stefan problem and the progressive consideration of convection in the liquid, one can refer to Yao and

Prusa (1989). Over the past 30 years, solid-liquid phase-change involving natural convection has been

widely studied. Rectangular and cylindrical geometries were the most investigated configurations.

Okada (1984); Gau et al. (1983); Gong et al. (2015) have investigated experimentally the melting of n-

octadecane and gallium PCMs inside rectangular containers. Ho and Viskanta (1984); Liu and Groulx

(2014); Omojaro and Breitkopf (2017) have studied experimentally the melting of different paraffins,

within cylindrical enclosures. These experimental investigations have been extensively used for numer-

ical validations (see Bertrand et al. (1999); Gobin and Le Quéré (2000); Wang et al. (2010b); Danaila

et al. (2014); Rakotondrandisa et al. (2019)) and have permitted a better comprehension of the physical

phenomena that occur during melting and solidification, mainly the heat transfer process. The experi-

mental work of Okada (1984) has permitted for example to formulate correlations for the variation of

dimensionless thermal energy stored as latent heat. Later, Ho and Viskanta (1984) have analyzed the

solid-liquid interface position for different configurations and Jany and Bejan (1988) have suggested

Nu-Ra correlations through a scaling analysis. Bejan (1989) gathered the previous observations and

described analytically the solid-liquid melting process in the case of a vertical heating. Le Quéré and

Gobin (1999) have performed instability analysis during the melting of low and large Prandtl numbers.

Gallium and n-octadecane were the most investigated materials. Besides, their physical properties are

equal in both liquid and solid phases (differences less than 3%). Gallium and n-octadecane melt near

the room temperature, making them the preferred materials for experimentally investigating melting

and solidification of low or high Prandtl-number PCMs.

The previously mentioned works were mostly focused on studying separately melting or solidifica-

tion and only recently alternate melting and solidification cycles were addressed (Wang et al., 2010b;

Rakotondrandisa et al., 2019). Prior to these studies on complete cycles, periodic melting and solidi-

4



1.3 Physical models for phase-change materials

fication problems were the most studied in the literature. Ho and Chu (1993) and Voller et al. (1996)

studied numerically periodic melting in square enclosures. Recently, Hosseini et al. (2014) studied

melting and solidification of a cylindrical PCM during charging and discharging processes and Chabot

and Gosselin (2017) studied analytically the effect of an alternate heating and cooling in a cylindrical

PCM, with periodical boundary conditions. We have also contributed recently to the understanding

of the governing mechanism during the melting and the solidification process in the paper Rakoton-

drandisa et al. (2019). We analysed in detail the difference between solidification occuring after a

partial melting or a complete melting by providing temporal evolutions of solid-liquid interface, liquid

fraction, Nusselt number and accumulated heat input.

While the literature about melting and solidification of PCM heated from the side is very abundant,

research on melting of PCM heated from below is quite rare. Diaz and Viskanta (1984); Hale and

Viskanta (1980) have studied experimentally the solid-liquid interface morphology of the PCM during

basal heating. Gong and Mujumdar (1998) studied numerically the flow and heat transfer during the

melting of pure n-octadecane in a rectangular cavity heated from below. Recent numerical simulations

have investigated different boundary conditions, such as periodic configurations along the horizontal

axis (Esfahani et al., 2018; Madruga and Curbelo, 2018; Favier et al., 2019) or wavy surface in a

rectangular cavity heated from below (Kousksou et al., 2014). Concerning theoretical works, Vasil

and Proctor (2011); Favier et al. (2019) have studied the hydrodynamic instabilities at the onset of

convection and compared their observations with the classical Rayleigh-Bénard instability mechanism

(Chandrasekhar, 2013). Favier et al. (2019) have focused on the effect of the non-planar topography of

the interface on the convection flow. On the other hand, Gong and Mujumdar (1998); Esfahani et al.

(2018); Madruga and Curbelo (2018) mostly focused on global quantities, such as the heat flux and

statistical properties of the interface.

1.3 Physical models for phase-change materials

Temperature gradients induce buoyancy forces in the liquid (melted) phase and generate a significant

convective flow. The appropriate mathematical description of the liquid phase is thus the usual model

for the natural convection flow: the incompressible Navier-Stokes system of equations with Boussi-

nesq approximation for thermal (buoyancy) effects (e. g. Viskanta (1985)). In this model, the energy

conservation equation is written as a convection-diffusion equation for the temperature. In the solid

phase, conduction is the main phenomenon and the appropriate model is the classical heat equation.

The main modelling difficulty is to link these two models by taking into account the separation of the

two phases by a sharp interface, across which thermodynamic properties are discontinuous.

We offer in this section a description of the two main approaches suggested in the literature to deal

with solid-liquid phase change problem. For a comprehensive review of models for phase-change

problems with convection, see Kowalewski and Gobin (2004). Note that a different category of models

was recently suggested in the literature, based on the Lattice Boltzmann Method (Luo et al., 2015; Gong

et al., 2015) or meshless methods Atluri and Shen (2002). Such methods based on non-deterministic

models are not discussed in this introduction.

A first modelling approach, usually referred to as the multi-domain (or deforming-grid) method,

is based on the classical Stefan two-phase model. Solid and liquid domains are separated and the

corresponding conservation equations are solved in each domain. Boundary conditions at the interface

between domains are obtained by imposing the Stefan condition (balance of heat fluxes at the interface).

The position of the solid-liquid interface is tracked and moved explicitly using either front tracking or

front fixing methods. The former method uses deforming grids to reconstruct the interface, while

5



Chapter 1 Introduction

the latter is based on a time-depending coordinate transform, mapping the physical domain into a

fixed computational domain. For a detailed description of these methods, see e. g. Sparrow et al.

(1977); Unverdi and Tryggvason (1992); Gupta (2000); Tenchev et al. (2005). The main drawback of

deforming-grid methods is their algorithmic complexity, which makes difficult to accurately capture

solid-liquid interfaces of complicated shape or structure (e. g. with mushy regions between solid and

liquid phases). Configurations with multiple interacting interfaces are also difficult to simulate with

these methods (see also Stella and Giangi (2004)).

The second modelling approach avoids to impose explicitly the Stefan condition at the solid-liquid

interface and therefore uses a single-domain (or fixed-grid) model. The same system of equations is

solved in both liquid and solid phases. The energy balance at the interface is implicitly taken into

account by the model. Consequently, the position of the interface is obtained a posteriori by post-

processing the computed temperature field. Phase-field methods (Fabbri and Voller, 1997) and enthalpy

methods (Voller and Prakash, 1987; Cao et al., 1989) are the most commonly used single-domain

models. In phase-field methods, a supplementary partial differential equation for the evolution of the

order parameter (a continuous variable taking the value 0 in the solid and 1 in the liquid) has to be

solved, coupled with the conservation laws (Shyy et al., 1996). This new equation is model dependent

and its numerical solution could lead to diffuse solid-liquid interfaces. For recent contributions in

this area, see Boettinger et al. (2002); Singer-Loginova and Singer (2008); Favier et al. (2019). We

focus below on enthalpy methods, which are the most widely used single-domain models due to their

algorithmic simplicity.

The main idea behind enthalpy models is to formulate the energy conservation law in terms of enthalpy

and temperature, and include latent heat effects in the definition of the enthalpy. The obtained equation

applies to both liquid and solid phases and implicitly takes into account the separation of the phases.

Another advantage of enthalpy methods, when compared to previously described models, is to remove

the limitation of the phase-change occurring at a fixed temperature. The presence of mushy regions

can be easily modelled with these methods. Two types of formulations of enthalpy methods exist in the

literature, depending on the main variable used to solve the energy equation: enthalpy or temperature-

based methods.

In enthalpy-based formulations the main variable is the enthalpy (Eyres et al., 1946; Rose, 1960; Bhat-

tacharya et al., 2014). Temperature is computed from the temperature-enthalpy coupling model. An

iterative loop is necessary to solve the energy equation, formulated with both enthalpy and tempera-

ture variables. For a review of different iterative techniques to solve the energy equation, see Voller

(1996). A second variety of enthalpy-based formulations consists in rewriting the energy equation with

enthalpy terms only (Rady and Mohanty, 1996; Hannoun et al., 2003).

In temperature-based formulations, the energy equation is formulated in terms of temperature only.

The latent heat is treated either by deriving an apparent heat capacity coefficient to define the total

enthalpy (Morgan et al., 1978; Chiesa and Guthrie, 1974; Gau and Viskanta, 1984) or by introducing

a source term in the energy equation (Voller, 1996; Swaminathan and Voller, 1997). Advantages and

drawbacks of each approach are discussed in detail in König-Haagen et al. (2017).

1.4 Numerical approaches

Single-domain methods are very appealing for numerical implementations. The same system of equa-

tions is solved in the entire computational domain, making possible algorithmic or computer-architecture

optimisations. If enthalpy models offer an elegant solution to deal with the same energy conservation

6



1.4 Numerical approaches

equation in both phases, a last modelling problem has to be solved. It concerns the extension of the

Navier-Stokes-Boussinesq equations from the liquid to the solid phase. Different techniques to bring

the velocity to zero in the solid region were suggested.

The most straightforward is the switch-off technique, which decouples solid and liquid computational

points and overwrites the value of the velocity by setting it to zero in the solid region. Different

implementations of this technique with finite-volume methods are presented in Ma and Zhang (2006);

Wang et al. (2010a).

In variable viscosity techniques (Gartling, 1980; Voller et al., 1987; Cao and Faghri, 1990), the fluid

viscosity depends on the temperature and is artificially increased to huge values in the solid regions

through a regularisation or mushy zone. To avoid blow-up or numerical inconsistencies, the large

gradients of viscosity must be correctly resolved in the mushy region. This is naturally achieved in

finite-element methods with dynamical mesh adaptivity (Danaila et al., 2014), while in finite-volume

methods with fixed grids, the time step has to be adapted to the space resolution (Ma and Zhang,

2006). Versions of the variable viscosity approach suggested in Danaila et al. (2014) were further

studied by Aldbaissy et al. (2018); Woodfield et al. (2019) and implemented in a different finite-element

framework (FEniCS) by Zimmerman and Kowalski (2018).

A third technique used to ensure a zero velocity field in the solid phase is the so-called enthalpy-

porosity model (Brent et al., 1988). A penalisation source term is introduced in the momentum equation

to allow the switch from the full Navier-Stokes equations in the liquid phase to a Darcy equation for

porous media. The mushy region is thus regarded as a very dense porous medium that sharply brings

the velocity to zero in the solid region. The expression of the penalisation source term generally follows

the Carman-Kozeny model for the permeability of a porous medium (Hannoun et al., 2003, 2005;

Belhamadia et al., 2012), but other mathematically equivalent expressions were suggested (Angot et al.,

1999; Favier et al., 2019). Different formulations and implementations of the enthalpy-porosity model

are presented in Kowalewski and Rebow (1999); Giangi et al. (2000); Stella and Giangi (2004).

Concerning the space discretization of these models, finite difference (FD) or finite volume (FV)

methods are generally used in the literature. When single-mesh models are used, the general strategy to

capture the solid-liquid interface is to dramatically increase the mesh resolution in the whole domain.

This results in a considerable increase of the computational time, even for two dimensional cases.

Hannoun et al. (2003) have reported that the simulation of the melting of tin with a 200 × 200 fixed

grid required 2, 400 CPU hours, 111 runs (restarts), and 3 months of calculation. Dynamical mesh

adaptivity becomes in this context a valuable tool to concentrate the grid refinement effort only in

regions displaying high gradients of the computed variables (melting-solidification fronts, thermal or

viscous boundary layers, recirculation zones).

Finite element (FE) methods offer the possibility to dynamically refine the mesh only in specific regions

of the domain. Different FE approaches were suggested, from enthalpy-type methods (e. g. Elliott

(1987)) to front-tracking methods (e. g. Li (1983)). Recently, adaptive FE methods were proposed for

classical two-phase Stefan problem (Belhamadia et al., 2004a) using an anisotropic mesh adaptation

algorithm based on solution-dependent metrics. The authors extended their algorithm for the three-

dimensional simulation of the same problem (Belhamadia et al., 2004b) and showed that the use of

locally adapted meshes with strong anisotropy proved to be very effective in reducing the number of

computational nodes for such phase-change systems without convection.

To simulate melting or solidification problems with convection, Danaila et al. (2014) recently suggested

a dynamical mesh adaptation algorithm based on metrics control and implemented with the FreeFem++

software (Hecht et al., 2007; Hecht, 2012). The advantage of this adaptive finite-element method,

which will be also used in the present study, is to make possible, with reasonable computational cost,

7



Chapter 1 Introduction

the re-meshing of the computational domain at each time step. A very refined discretization of the

regularization zone between solid and liquid phases is thus obtained, while regions with low gradients

are coarsened in order to balance the overall computational effort.

1.5 Present numerical approach

The present study is based on a single-domain enthalpy-porosity model for solid-liquid phase change

problems with convection. For the energy conservation equation, a temperature-based formulation

takes into account the latent heat by introducing a discontinuous source term. For the mass and mo-

mentum conservation equations, we solve in the entire domain the incompressible Navier-Stokes equa-

tions with Boussinesq approximation for buoyancy effects. To bring the velocity to zero in the solid

phase, we introduce in the momentum equation a penalty term following the Carman-Kozeny model.

The coupled system of momentum and energy equations is integrated in time using a second-order

Gear scheme. All the terms are treated implicitly and the resulting discretized equations are solved

using a Newton method (Danaila et al., 2014).

The advantage of this formulation is to permit a straightforward implementation of different types

of non-linearities. For the space discretization we use Taylor-Hood triangular finite elements, i. e.

P2 for the velocity and P1 for the pressure. Temperature is discretized using P2 or P1 finite elements.

Discontinuous variables (latent heat, thermal diffusivity, etc) at the solid-liquid interface are regularized

through an intermediate artificial mushy region.

Single domain methods require a refined mesh near the interface, where large enthalpy gradients have

to be correctly resolved. An optimized dynamical mesh adaptivity algorithm allows us to adapt the

mesh every time step and thus accurately capture the evolution of the interface. Mesh adaptivity,

a feature of the current method, offers the possibility to deal with complicated phase-change cases,

involving multiple solid-liquid interfaces.

There are three main novelties in the present numerical approach, when compared to Danaila et al.

(2014):

(i) we use the Carman-Kozeny model to bring the velocity to zero inside the solid phase, instead of

a viscosity penalty method (imposing a large value of the viscosity in the solid),

(ii) we increase the time accuracy of the algorithm by replacing the first-order Euler scheme with

the second-order Gear (BDF2) scheme (see also Belhamadia et al. (2012)),

(iii) we improve the metric calculation procedure for the mesh adaptivity.

The programs were built and organized as a toolbox for FreeFem++ (Hecht, 2012; Hecht et al., 2007),

which is a free software (under LGPL license). FreeFem++ 1 offers a large variety of triangular finite

elements (linear and quadratic Lagrangian elements, discontinuous P1, Raviart-Thomas elements, etc.)

to solve partial differential equations. It is an integrated product with its own high level programming

language and a syntax close to mathematical formulations, making the implementation of numerical

algorithms very easy. Among the features making FreeFem++ an easy-to-use and highly adaptive

software we recall the advanced automatic mesh generator, mesh adaptation, problem description by

its variational formulation, automatic interpolation of data, colour display on line, postscript printouts,

etc. The FreeFem++ programming framework offers the advantage to hide all technical issues related

to the implementation of the finite element method. It becomes then easy to use the present toolbox to

1FreeFem++ for different OS can be downloaded from http://www3.freefem.org/.
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1.6 Purpose of the thesis

code new numerical algorithms for similar problems with phase-change.

1.6 Purpose of the thesis

The purpose of the present work was to investigate numerically solid-liquid phase-change systems.

The investigation tool used in this thesis is the open-source software FreeFem++ (Hecht et al., 2007;

Hecht, 2012). A high accuracy numerical model using a Newton method with adaptive finite elements

is used to simulate phase-change problems with natural convection.

A first numerical investigation of convective phase-change problems using an adaptive finite ele-

ment method has been carried out by Danaila et al. (2014). Their method solved the Navier-Stokes-

Boussinesq equations by the mean of a single domain approach using first order scheme in time. The

technique of variable viscosity approach was applied to bring to zero the velocity in the solid phase.

The study was focused on two-dimensional square cavity configurations.

A first objective of this thesis was to improve the existing code, developed by the Numerical methods

and applications group of the LMRS Laboratory 2, and to organize the program as a toolbox for the

software FreeFem++. To this end, the following objectives were addressed:

(i) increase the accuracy by using a second order scheme for the time discretization and P2 finite

elements for the temperature,

(ii) implement a Carman-Kozeny model, in addition to the viscosity-based approach, to bring to

zero the velocity in the solid region,

(iii) investigate challenging cases by simulating complex geometries (highly distorted meshes, cylin-

drical PCM with inner heated tubes) and computationally demanding cases (high Rayleigh num-

bers),

(iv) simulate a complete melting-solidification cycle of a PCM.

A second objective was to extend the program to three-dimensional configurations. The two dimen-

sional assumption is indeed not valid for high Rayleigh problems, especially for basal melting cases.

Moreover, three dimensional adaptive finite element methods for convective melting problems are less

present in the literature.

A third objective was to provide a thorough analysis of both melting and solidification processes and

compare with numerical results.

1.7 Thesis plan

Chapter 2 sets the mathematical and physical basis of the numerical system used to simulate phase-

change problems involving natural convection. We present in detail the incompressible Navier-Stokes-

Boussinesq equation and the single-domain approach to solve the same system of equations in the

whole domain. The enthalpy method, modeling the phase-change phenomenon, is presented first. The

Navier-Stokes equation with Boussinesq approximation to simulate the natural convection in the liquid

flow is then recalled. Finally, the non-dimensional system of equations is described in detail, with a

discussion on the Carman-Kozeny penalty term in the momentum equation.

2http://lmrs-num.math.cnrs.fr
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Chapter 3 is devoted to the numerical algorithm for solving the numerical system presented previ-

ously. The finite element algorithm that we have developed in this work is first presented: the time

integration scheme, the finite element discretization and the Newton method. Then, we describe the

mesh adaptivity by metric control, which is a standard function offered by FreeFem++. Some the-

oretical tests to assess for the accuracy of our numerical method are also presented. The space and

time convergence orders are demonstrated using the Burggraf flow and a manufactured solution de-

signed for the incompressible Navier-Stokes equation. The structure of the new finite-element toolbox

for the simulation of PCMs is also described. The program architecture and the parameter details are

presented. Finally, the domain decomposition method used for large simulations is described.

A first validation of our numerical method is presented in Chapter 4. The capability of the code to

deal with linear and non-linear forms of the buoyancy force in the Boussinesq approximation is first

tested. Test cases are presented by increasing progressively the difficulty. We simulate first the natural

convection of air in square enclosures, differentially heated from the vertical walls. Then, a heated

obstacle is added in the center of the domain. Finally, we add the non-linearity in the Boussinesq force

to simulate the natural convection of water.

Once the capability of our algorithm to deal with natural convection problems was demonstrated,

much more attentions to phase-change problems is paid in Chapter 5. Numerical simulations of melting

and solidification of PCM are presented. The melting processes for octadecane and Gallium inside

rectangular enclosures are investigated first since they were extensively used for numerical method

validations. Their physical properties are approximately equal in both solid and liquid phases. Finally,

several PCM container geometries are simulated to prove the robustness of our numerical method. In

particular, cylindrical and irregular domains are computed.

A scale correlation analysis is presented in Chapter 6. We compare the behavior of the PCM for

lateral and basal heating. The melting of n-octadecane heated from the side is carried out first. Then,

numerical results for the melting from below are presented. For both cases, we provide a comprehen-

sive description of the melting process through a scale analysis for a better understanding of the heat

transfer mechanism. The time evolution of some physical parameters, such as the Nusselt number,

the liquid fraction, the accumulated heat input and the time evolution of the melting are discussed and

analysed.

Chapter 7 presents the numerical simulation of a full melting/solidification cycle of a PCM. Two

solidification fronts have to be tracked, which makes the case very challenging. A differentially heated

cavity case and a circular PCM with inner cooled tube are studied. The influence of the Rayleigh

number during the melting and the solidification processes is emphasized, since both cycles are not

driven by the same mechanism.

Chapter 8 is devoted to three-dimensional configurations simulated using parallel algorithms. 3D

simulations of PCMs are indeed less investigated in the literature.

Finally, Chapter 9 draws the conclusion of this study and some ideas for future developments.
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2 Navier-Stokes-Boussinesq and

enthalpy-porosity models

We consider a solid-liquid system placed in a 2D or 3D domain Ω of characteristic length Lref . In the

following, subscripts s and l will refer to the solid and liquid phases, respectively.

The single domain approach, using the same system of equations in both phases, is described first

in detail. The model is based on the Navier-Stokes equations with Boussinesq approximation, which

is the natural description of the fluid flow with natural convection. A penalty term is added to the

momentum equations to bring the velocity to zero inside the solid region. For the energy conservation

equation, an enthalpy-porosity method is used to model the phase change process.

2.1 Enthalpy-porosity model

The phase change process is modeled using an enthalpy method with temperature-based formulation

(Voller et al., 1987; Cao et al., 1989; Cao and Faghri, 1990). We start from the classical energy equa-

tion:
∂(ρh)

∂tϕ
+∇ · (ρhU)−∇ · (k∇T ) = 0, (2.1)

where tϕ is the physical time, h the enthalpy, ρ the density, U the velocity vector, T the temperature

and k the thermal conductivity. The total enthalpy h is transformed as the sum of the sensible heat and

the latent heat:

h = hsen + hlat = c(T + s(T )), (2.2)

with c the local specific heat. The function s is introduced to model the jump of the enthalpy during

the solid-liquid transition. For pure materials, s is theoretically a Heaviside step function depending

on the temperature: it takes the zero value in the solid region and a large value in the liquid, equal to

hsl/cl, with hsl the latent heat of fusion.

If the phase-change is assumed to occur within a mushy zone defined by a small temperature interval

T ∈ [Tf − Tε, Tf + Tε] around the temperature of fusion Tf , a model for s(T ) is necessary. Linear

(Voller et al., 1987; Wang et al., 2010a) or more smooth functions (Danaila et al., 2014) can be used

to regularize s(T ) and thus model the jump of material properties from solid to liquid. In the current

work we use a regularization of all step-functions (latent heat source, specific heat, thermal diffusivity

or conductivity) by a continuous and differentiable hyperbolic-tangent function suggested by Danaila

et al. (2014).

We assume moreover that the undercooling phenomenon is negligible during the solidification stage

(see also Wang et al. (2010b); Kowalewski and Gobin (2004)). The solid-liquid interface is identified

by the isoline T = Tf , while the Gibbs-Thomson effect due to the surface energy of the solid-liquid

interface is assumed to be negligible.
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Chapter 2 Navier-Stokes-Boussinesq and enthalpy-porosity models

Equation (2.1) can be further simplified by considering the following assumptions:

(i) The density difference between solid and liquid phases is negligible, i. e. ρl = ρs = ρ is

constant. We note however that this is not strictly true for all substances, but it serves here as a

convenient simplification.

(ii) The regularization zone is narrow and the velocity inside this zone is negligible.

Consequently, the final form of the energy equation is obtained by combining Eqs. (2.2) and (2.1) and

neglecting the convection term ∇ · (csU)1:

∂ (cT )

∂tϕ
+∇ · (cTU)−∇ ·

(
k

ρ
∇T

)

+
∂ (cs)

∂tϕ
= 0. (2.3)

2.2 Navier-Stokes equations with Boussinesq

approximation

The natural convection in the liquid part of the system is modeled using the incompressible Navier-

Stokes equations, with Boussinesq approximation for buoyancy effects. To make this model valid for

both liquid and solid phases, the momentum equation is modified as following:

∂U

∂tϕ
+ (U · ∇)U +

1

ρ
∇P − µl

ρ
∇2

U + ρgey = A(T )U , (2.4)

where P denotes the pressure, µl the dynamic viscosity of the liquid (assumed to be constant), and g
the gravitational acceleration.

The penalty term A(T )U is artificially introduced in Eq. (2.4) to extend this equation in the solid

phase, where the velocity, pressure, viscosity and Boussinesq force are meaningless. Consequently,

A(T ) is modelled to vanish in the liquid, where the Navier-Stokes-Boussinesq momentum equation

is recovered. A large value of A(T ) is imposed in the solid, reducing the momentum Eq. (2.4) to

A(T )U = 0, equivalent to U = 0. The exact expression for A will be given in the next section.

The density is assumed to be constant everywhere except for the body force term ρgey in Eq. (2.4).

Under the assumption of a small variations of density and temperature, the Boussinesq approximation

allows to linearize the density as follows:

ρ = ρref (1− β(T − Tref )), (2.5)

with β = −(1/ρref )(∂ρ/∂T )ρref the thermal expansion coefficient and (ρref , Tref ) a reference state.

It is worth noting that this approximation is valid for β(T − Tref ) considerably smaller than the unity.

Therefore, the momentum Eq. (2.4) can be written as

∂U

∂tϕ
+ (U · ∇)U +∇p− νl∇2

U − fB(T )ey = A(T )U , (2.6)

where νl = µl/ρ is the kinematic viscosity, p = (P + ρrefgy)/ρref includes the hydrostatic pressure

ρrefgy and fB(T ) = gβ(T − Tref ) denotes the buoyancy force.

1In the liquid phase, ∇· (csU) = hsl∇·U = 0; in the solid phase, s = 0; in the regularization (mushy) region,

it is assumed that U = 0.
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2.3 Dimensionless system of equations for the single-domain approach

Finally, the conservation of mass in the liquid phase is expressed by the continuity equation in the

frame of incompressible fluids:

∇ ·U = 0. (2.7)

The final system of equations for the single-domain approach is thus:

∇ ·U = 0, (2.8)

∂U

∂tϕ
+ (U · ∇)U +∇p− νl∇2

U − fB(T )ey −A(T )U = 0, (2.9)

∂ (cT )

∂tϕ
+∇ · (cTU)−∇ ·

(
k

ρ
∇T

)

+
∂ (cs)

∂tϕ
= 0. (2.10)

2.3 Dimensionless system of equations for the

single-domain approach

It is convenient to numerically solve a dimensionless form of the previous equations. After choosing a

reference length Lref (usually the height of the cavity when a rectangular domain is considered) and a

reference state (ρ, Vref , Tref ), we can define the following scaling for the space, velocity, temperature

and time variables:

x =
X

Lref
, u =

U

Vref
, θ =

T − Tref

δT
, t =

Vref

Lref
tϕ. (2.11)

Tref is the reference temperature and in most cases Tref = Tf (the temperature of fusion), unless

otherwise specified. Consequently, the non-dimensional temperature of fusion is set to θf = 0. The

temperature difference δT , defines a temperature scale, that will be set differently for melting and

solidification cases. δT is considered as the representative temperature scale for the natural convection

onset in the liquid region. For the classical natural convection problem without phase-change, δT is

generally defined as δT = Th − Tc since the flow in the fluid is driven by the temperature difference

between the ”hot” and the ”cold” temperature. However, for the melting PCM, the convection is

driven by the temperature difference δT = Th − Tf , with Tf the temperature of fusion. As far as the

solidification process is concerned, a distinct discussion will be provided in Chapter 7.

The dimensionless system of equations to be solved in both liquid and solid regions can be finally

written as:

∇ · u = 0, (2.12)

∂u

∂t
+ (u · ∇)u+∇p− 1

Re
∇2

u− fB(θ) ey −A(θ)u = 0, (2.13)

∂ (Cθ)

∂t
+∇ · (Cθu)−∇ ·

(
K

RePr
∇θ

)

+
∂ (CS)

∂t
= 0. (2.14)

fB is the linearised Boussinesq buoyancy force, Re is the Reynolds number relating the inertia forces

to the viscous forces, and Pr the Prandtl number expressing the ratio of the molecular momentum and

thermal diffusivities:

fB(θ) =
Ra

PrRe2
θ, Re =

ρVrefLref

µl
=

VrefLref

νl
, Pr =

νl
αl

, (2.15)
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Chapter 2 Navier-Stokes-Boussinesq and enthalpy-porosity models

with α = k/(ρc) the thermal diffusivity. In the expression of fB , the Rayleigh number of the flow,

which indicates the relative importance of the buoyancy term with respect to viscous effects, is defined

as

Ra =
gβL3

refδT

νlαl
. (2.16)

If previous non-dimensional numbers are pertinent only in the liquid phase, the non-dimensional con-

ductivity and specific heat are defined in both phases

K(θ) =
k

kl
=

{
1, θ ≥ θf ,

ks/kl, θ < θf .
, C(θ) =

c

cl
=

{
1, θ ≥ θf ,

cs/cl, θ < θf .
(2.17)

The non-dimensional function S = s/sl in the energy Eq. (2.14) takes a similar non-dimensional

form:

S(θ) =
s

sl
=







hsl/cl
δT

=
1

Ste
, θ ≥ θf ,

0, θ < θf ,

(2.18)

with Ste the Stefan number.

Discontinuous step-functions defined in Eqs. (2.17) and (2.18) are replaced by continuous and dif-

ferentiable hyperbolic-tangent functions, generically defined for all θ by the formula (Danaila et al.,

2014)

F (θ; ar, θr, Rr) = fl +
fs − fl

2

{

1 + tanh

(

ar

(
θr − θ

Rr

))}

, (2.19)

where fl, fs are the imposed values in the liquid and solid phases, ar a smoothing parameter, θr the

central value (around which we regularize), and Rr the smoothing radius. For example, we use for the

non-dimensional source term in Eq. (2.14) the following regularisation over the artificial mushy region

θ ∈ [−ε, ε]:

S(θ) =
1

Ste − 1

2Ste

{

1 + tanh

(
θs − θ

Rs

)}

, (2.20)

with θs = θf = 0 and Rs = ε for the melting case.

Finally, the penalty term in the momentum Eq. (2.13) is derived from the Darcy’s law, by modeling

the fluid flow within the mushy region as a flow through a porous medium. In fact, the Darcy’s law

states that the velocity of flow in porous medium is proportional to the pressure gradient:

u = −ζ∗

µ
∇p. (2.21)

where ζ∗ is the permeability, which is a function of the porosity. As the porosity decreases, the per-

meability (and the velocity) also decreases, down to the limiting value of zero when the mushy zone

becomes completely solid. This behavior can be accounted in a numerical model by adding a source

term Au in the momentum equation. The well-known equation derived from the Darcy law is the

Carman-Kozeny model:

∇p = −CCK(1− λ)2

λ3
u. (2.22)
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2.4 Boundary layer approximation and scale analysis

Consequently, A takes the form (Belhamadia et al., 2012; Kheirabadi and Groulx, 2015)

A(θ) = −CCK(1− Lf (θ))
2

Lf (θ)3 + b
, (2.23)

where Lf (θ) is the local liquid fraction, which is 1 in the fluid region and 0 in the solid. Lf is

regularized inside the artificial mushy-region using a hyperbolic-tangent similar to Eq. (2.20). The

Carman-Kozeny constant CCK is set to a large value (as discussed below) and the constant b = 10−6 is

introduced to avoid divisions by zero.

2.4 Boundary layer approximation and scale analysis

Regardless to the practical use of PCM (energy storage, building insulation, or for other purposes), one

would necessarily assess the heat transfer during the phase-change process. It was extensively proven

that the convective heat transfer plays a significant role during the melting stage. Therefore, before

solving numerically Eqs. (2.12) - (2.14), we first rely on a scale analysis to predict theoretically the

fluid flow and heat transfer patterns that can develop in the fluid part. The idea behind the scaling

analysis is to identify the proper scales of the phenomenon, in order to understand the evolution of

the heat transfer and the melting rate. We consider only the liquid phase without phase-change, inside

a two-dimensional enclosure of height H filled with Newtonian fluid, differentially heated from the

vertical walls and insulated at the horizontal walls. A homogeneous Dirichlet boundary condition is

prescribed for the velocity. One may refer to the book by Bejan (2013) for a more detailed presentation.

Since no external force is applied to our system, the fluid flow is mainly driven by natural convection,

induced by the temperature difference from the vertical walls. The heat transfer through the fluid layer

immediately adjacent to the wall is assumed to be driven by pure conduction. We therefore define the

average Nusselt number to quantify the heat transfer rate at the hot wall (placed at x = 0):

Nu = −
∫ 1

0

∂θ

∂x

∣
∣
∣
∣
x=0

dy. (2.24)

When a steady state could be reached, the fluid near each sidewall is characterized by two boundary

layers: a thermal boundary layer of thickness δθ and a viscous boundary layer of thickness δν . The

boundary layer approximation assumes that the flow and the energy transfer are restricted predomi-

nantly to the boundary layer region. The main consequences of the boundary layer approximation are

that:

(i) the normal part of the momentum has a negligible importance,

(ii) the downstream diffusion terms in the momentum and energy equations are neglected in com-

parison with the normal diffusion terms,

(iii) the pressure distribution is purely hydrostatic,

(iv) the thermal and the viscous boundary layer thickness are related by following expression: δν/δθ =
o
(
Pr1/2

)
.

The scaling laws suggested by Bejan (2013) are presented in Fig. 2.1, and rely on boundary layer

approximation:

δT ∼
{

HRa−1/4 if Pr ≫ 1,

HPr−1/4Ra−1/4 if Pr ≪ 1.
(2.25)
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3 A finite element method for the

Navier-Stokes-Boussinesq

equations using a Newton

algorithm

This chapter sets the numerical algorithm for solving the system of equations described previously

in Chapter 2 for both two and three-dimensional configurations. The finite element method and the

Newton algorithm are presented first in detail. Then, the domain decomposition method for the three-

dimensional configuration is discussed.

3.1 Motivation for the choice of the numerical method

In many in-house or commercial codes used to simulate phase-change problems (ANSYS CFX, Fluent,

etc.), finite difference (FD) or finite volume (FV) methods are used most of the time with a fixed-mesh

approach. Accurate simulations are therefore carried out by refining considerably the mesh resolution

in the whole domain, and thus increasing dramatically the computational time. In the example of

Voller et al. (1996) who used insufficient grid resolution to compute the melting of Gallium, Wang

et al. (2010b) had to consider thinner meshes, resulting in a strong increase, of a factor of three, of the

total mesh nodes to capture correctly the boundary layer structure.

Our choice for the finite element (FE) method is motivated by its capability to adapt dynamically

the mesh and to deal with several geometrical domains. The adaptive capabilities of the FE discretiza-

tion to use finer meshes where sharp phenomena take place (solid-liquid interfaces, boundary layers,

recirculation zones) and coarser meshes elsewhere (in the solid, in the bulk of the fluid region where

the gradient are lower than in the boundary layer region) is helpful to reduce the degrees of freedom

involved in the numerical resolution and thus reduce the computational time. We use a finite-element

method that was implemented using the open-source software FreeFem++ (Hecht et al., 2007; Hecht,

2012).

In this study, the use of mesh adaptivity proved mandatory to obtain accurate results within reasonable

computational time. The numerical code was optimized to afford the mesh refinement every time step:

the mesh density was increased around the phase change interfaces, offering an optimal resolution of

the large gradients of all regularized functions (S,K,Lf ), while the mesh was de-refined (larger trian-

gles) in the solid part, where a coarser mesh could be used. A simulation using a globally refined mesh

would require a prohibitive computational time for an equivalent accuracy of the melting front reso-

lution. Similar algorithms based on FreeFem++ were successfully used for solving different systems

of equations with locally sharp variation of the solution, such as Gross-Pitaevskii equation (Danaila

and Hecht, 2010; Vergez et al., 2016) or Laplace equations with nonlinear source terms (Zhang and

Danaila, 2013).
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Chapter 3 A finite element method

The space discretization is based on Taylor-Hood finite elements, approximating the velocity with

P2 Lagrange finite elements (piecewise quadratic), and the the pressure with the P1 finite elements

(piecewise linear). The temperature and the enthalpy are discretized using P2 finite elements. This

discretization is second order accurate in space. We also use a second order accurate discretization in

time. A fully implicit backward second order scheme (BDF2 or GEAR) is employed in the present

study. The time derivative of a variable φ is approximated by:

dφ

dt
≃ 3φn+1 − 4φn + φn−1

2δt
, (3.1)

computing the solution φn+1 at time tn+1 = (n + 1)δt by using two previous states (φn, φn−1). We

use this scheme to advance in time both velocity (φ = u) and temperature fields (φ = θ). The other

terms in Eqs. (2.12) - (2.14) are treated implicitly (i. e. taken at time tn+1). The resulting non-linear

equations are solved using a Newton algorithm.

Some authors used a Richardson extrapolation (Belhamadia et al., 2012; Wang et al., 2010b) in the

momentum equation by extrapolating U from previous time steps. We have tested this approach, but

the results exhibited less accurate solutions and the computations requested small δt. In addition, a

projection algorithm with an explicit discretization of the Navier-Stokes-Boussinesq equations was

also investigated, using the Adams-Bashforth and Crank-Nicolson second order schemes. The main

drawback is the very small δt (∼ 10−6) needed to ensure convergence at each time steps. A last alter-

native we tested for the treatment of non-linear terms in the momentum equation is the characteristics

Galerkin method (Pironneau et al., 1992), but this method is not convenient for high Ra simulations

and requires very small time steps.

Finally, a supplementary difficulty comes from the one-domain method which needs techniques to

bring the velocity to zero in the solid region. The switch-off technique, the variable viscosity approach

and the Carman-Kozeny penalty term are the most used in the literature. We note that the physical

meaning of the variable viscosity formulation and the Carman-Kozeny penalty term is fundamentally

different. The Carman-Kozeny approach considers the mushy zone as a porous media, i. e. the solid

is stationary and the liquid flows through the porous structure, while the variable viscosity formulation

treats the mushy zone as a mixture of solid crystals and liquid, permitting thus a movement of both

the solid and the liquid. The viscosity-based method was investigated by Danaila et al. (2014) and the

Carman-Kozeny penalty method is investigated in the present work. We note however that techniques

in FV methods based on the modification of the numerical algorithm to switch-off the velocity in the

solid by a relaxation scheme also exist.

3.2 Finite element algorithm

To solve the system of Eqs. (2.12) - (2.14) we use a finite-element method. Finite-element methods for

solving Navier-Stokes type systems of equations are generally based on a separate discretization of the

temporal derivative (using finite difference, splitting or characteristics methods) and the generalization

of the Stokes problem for the resulting system (Temam, 1983; Girault and Raviart, 1986; Quarteroni

and Valli, 1994). We use the second-order implicit finite-difference discretization (3.1) of the temporal

derivative and obtain the time semi-discretization of the single-domain model (2.12) - (2.14):
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3.2 Finite element algorithm

∇ · un+1 + γpn+1 = 0, (3.2)

3

2

u
n+1

δt
+ (un+1 · ∇)un+1 +∇pn+1 − 1

Re
∇2

u
n+1 (3.3)

−A(θn+1)un+1 − fB(θ
n+1) ey =

2
u
n

δt
− u

n−1

2δt
,

3

2

θn+1 + S(θn+1)

δt
+∇ ·

(
u
n+1θn+1

)
−∇ ·

(
K

RePr
∇θn+1

)

= (3.4)

2
θn + S(θn)

δt
− θn−1 + S(θn−1)

2δt
.

The penalty parameter γ is introduced to fill the diagonal of the pressure term at the algebraic level,

when a Dirichlet boundary condition is applied for the velocity. The average value of the pressure field

and the divergence-free velocity field, computed for different values of the penalty parameter γ, for the

case of the natural convection of air, are given in Tab. 3.1.

γ 0.1 10−3 10−7 10−10

∫

Ω
∇ · u 1.27 · 10−17 6.70 · 10−18 5.61 · 10−18 3.54 · 10−18
∫

Ω
p 1.15 · 10−16 5.40 · 10−14 4.61 · 10−10 4.37 · 10−7

Table 3.1: Average values of the pressure field and of the divergence of the velocity field,

computed for different values of the penalty parameter γ.

One can observe a decreasing values of
∫

Ω∇ · u for very low values of γ. However, larger values of
∫

Ω p are observed for decreasing values of the penalty parameter. To ensure a good approximation of

the pressure field with zero average, a value of γ = 10−7 is set for all simulations. This system of

non-linear equations is solved at time tn+1 = (n+ 1)δt, using two previous states at tn and tn−1.

The space discretization of variables over the domain Ω uses a finite-element method based on a

weak formulation of the system of Eqs. (3.2) - (3.4). We consider homogeneous Dirichlet boundary

conditions for the velocity, i. e. u = 0 on ∂Ω, and set the classical Hilbert spaces for the velocity and

pressure:

V = V × V, V = H1
0 (Ω), Q =

{

q ∈ L2(Ω)

∣
∣
∣
∣

∫

Ω
q = 0

}

. (3.5)

Following the generalization of the Stokes problem (Temam, 1983; Girault and Raviart, 1986; Quar-

teroni and Valli, 1994), the variational formulation of the system of Eqs. (3.2) - (3.4) can be written as:

find (un+1, pn+1, θn+1) ∈ V ×Q× V , such that

b
(
u
n+1, q

)
− γ(pn+1, q) = 0, ∀ q ∈ Q (3.6)

3

2δt

(
u
n+1,v

)
+ c

(
u
n+1;un+1,v

)
+

1

Re
a
(
u
n+1,v

)

−(A(θn+1)un+1,v) + b
(
v, pn+1

)
−
(
fB(θ

n+1) ey,v
)

(3.7)

=
2

δt
(un,v)− 1

2δt

(
u
n−1,v

)
, ∀v ∈ V

3

2δt

(
θn+1 + S(θn+1), φ

)
+
(
u
n+1 · ∇θn+1, φ

)
+

(
K(θn+1)

RePr
∇θn+1,∇φ

)

(3.8)

=
2

δt
(θn + S(θn), φ)− 1

2δt

(
θn−1 + S(θn−1), φ

)
, ∀φ ∈ V,
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Chapter 3 A finite element method

where (u, v) =
∫

Ω u · v denotes the scalar product in L2(Ω) or
(
L2(Ω)

)2
; the bilinear forms a, b and

trilinear form c are defined as (Girault and Raviart, 1986; Quarteroni and Valli, 1994):

a : V × V → R, a(u,v) =

∫

Ω
∇

t
u : ∇v =

2∑

i,j=1

∫

Ω
∂juj · ∂jvi,

b : V ×Q → R, b(u, q) = −
∫

Ω
∇ · u q = −

2∑

i=1

∫

Ω
∂iui · q,

c : V × V × V → R, c(w; z,v) =

∫

Ω
[(w · ∇) z] · v =

2∑

i,j=1

∫

Ω
wj(∂jzi)vi.

The system of non-linear Eqs. (3.6) - (3.8), regarded as a general equation F(w) = 0, with w =
(un+1, pn+1, θn+1), is solved using a Newton method. To advance the solution from time tn to tn+1,

we start from an initial guess w0 = (un, pn, θn) (which is the solution at tn), and construct the Newton

sequence wk = (uk, pk, θk) by solving for each inner iteration k:

DwF(wk)wk+1 = DwF(wk)wk −F(wk). (3.9)

DwF is the linear operator representing the differential of F . Equation (3.9) can be rewritten as

follows:

b (uk+1, q)− γ(pk+1, q) = 0, (3.10)

3

2δt
(uk+1,v) + c (uk+1;uk,v) + c (uk;uk+1,v) (3.11)

+
1

Re
a (uk+1,v)−

(
dA

dθ
(θk) θk+1 uk,v

)

− (A(θk)uk+1,v) + b (v, pk+1)

−
(
dfB
dθ

(θk) θk+1 ey,v

)

=
1

δt

(

2un − 1

2
u
n−1,v

)

+c (uk;uk,v)−
(
dA

dθ
(θk) θk uk,v

)

−
((

dfB
dθ

(θk) θk − fB(θk)

)

ey,v

)

,

3

2δt

(

θk+1 +
dS

dθ
(θk) θk+1, φ

)

+ (uk · ∇θk+1, φ) + (uk+1 · ∇θk, φ) (3.12)

+

(
K(θk)

RePr
∇θk+1,∇φ

)

+

(
dK

dθ
(θk)

θk+1

RePr
∇θk,∇φ

)

=
2

δt
(θn + S(θn), φ) + (uk · ∇θk, φ)

+
3

2δt

(
dS

dθ
(θk) θk − S(θk), φ

)

− 1

2δt

(
θn−1 + S(θn−1), φ

)
+

(
dK

dθ
(θk)

θk
RePr

∇θk,∇φ

)

.

Note that the last term of Eq. (3.11) cancels in the case of a linear Boussinesq force fB (see Eq. (2.15));

this is not the case when non-linear variations of the density of the liquid are considered (convection or

solidification of water). Note also that the previous system of Eqs. (3.10) - (3.12) depends only on u
n,

u
n−1, θn and θn−1 and is independent of pn, the pressure being in this approach a Lagrange multiplier

for the divergence free constraint. We underline the fact that the Newton loop (following k) has to be
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3.3 Mesh adaptivity

iterated until convergence for each time step δt following the algorithm

Navier-Stokes time loop following n
set w0 = (un, pn, θn)

Newton iterations following k
solve Eqs. (3.10) - (3.12) to get wk+1

stop when ‖wk+1 −wk‖ < ξN
actualize (un+1, pn+1, θn+1) = wk+1.

(3.13)

In some cases, it is more relevant to solve directly the steady equation corresponding to Eqs. (3.6) -

(3.8) (i. e. without the temporal derivatives), when a steady state could be achieved. It is, for example,

the case for the natural convection of air or water in differentially heated configurations and low Ra
numbers. In the stationary case, the weak formulation of the problem becomes:

b
(
u
n+1, q

)
− γ(pn+1, q) = 0, (3.14)

(
u
n+1,v

)
+ c

(
u
n+1;un+1,v

)
+ a

(
u
n+1,v

)
(3.15)

−(A(θn+1)un+1,v) + b
(
v, pn+1

)
− α

(
fB(θ

n+1) ey,v
)

= 0,

(
u
n+1 · ∇θn+1, φ

)
+

(
K

RePr
∇θn+1,∇φ

)

= 0. (3.16)

The parameter α is introduced in front of the buoyancy force term fB as a continuation parameter of

the value of the Ra number. The idea is to solve successively steady problems by increasing α from 0
to 1. At each stage, the previously computed solution is used as initial condition. These steps could be

assimilated to a smooth increase of the Ra number:

Loops for m = 1 : N steps

set w0 = (un, pn, θn)
Newton iterations following k

solve (3.14) - (3.16) with α =
(
m
N

)4

stop when ‖wk+1 −wk‖ < ξN
actualize (un+1, pn+1, θn+1) = wk+1,

(3.17)

with N the number of steps of the continuation algorithm.

This approach allows to compute the steady natural convection of air in 6 iterations for Ra = 106

instead of 150 iterations when the unsteady system of equations is solved until a steady state is reached.

3.3 Mesh adaptivity

We use the standard mesh adaptivity function (adaptmesh) offered by FreeFem++ (Hecht, 2012).

The key idea implemented in this function (see also Borouchaki et al. (1996); Castro-Diaz et al. (2000);

Hecht and Mohammadi (1997); George and Borouchaki (1998); Frey and George (1999); Mohammadi

and Pironneau (2000)) is to modify the scalar product used in the automatic mesh generator to evaluate

distance and volume. Equilateral elements are thus constructed, accordingly to the new metric. The

21



Chapter 3 A finite element method

scalar product is based on the evaluation of the Hessian H of the variables of the problem. For example,

for a P1 discretization of a variable χ, the interpolation error is bounded by:

E = |χ−Πhχ|0 ≤ c sup
T∈Th

sup
x,y,z∈T

|H(x)|(y − z, y − z), (3.18)

where Πhχ is the P1 interpolate of χ, |H(x)| is the Hessian of χ at point x after being made positive

definite. Using the Delaunay algorithm (e. g. George and Borouchaki (1998)) to generate a triangular

mesh with edges close to the unit length in the metric M = |H|
(cE) will result in a equally distributed

interpolation error E over the edges ai of the mesh. More precisely, we get

1

cE a
T
i Mai ≤ 1. (3.19)

The previous approach could be generalized for a vector variable χ = [χ1, χ2]. After computing the

metrics M1 and M2 for each variable, we define a metric intersection M = M1 ∩M2, such that the

unit ball of M is included in the intersection of the two unit balls of metrics M2 and M1. For details,

see the procedure defined in Frey and George (1999).

The adaptmesh function offers the possibility to take into account several metrics computed from

different variables monitoring the evolution of the phase-change systems. For natural convection sys-

tems, the mesh will be adapted using the values of the two velocity components and the temperature.

For phase-change systems, to accurately track the solid-liquid interface we add the variation of the

enthalphy source term in the adaptivity criterion. For water systems (convection or freezing), we also

add an extra function tracking the anomalous change of density around 4oC. To reduce the impact of

the interpolation on the global accuracy for time-depending problems, we consider, for each variable

used for adaptivity, the metrics computed at actual (tn+1) and previous (tn) time instants (see also

Belhamadia et al. (2004a)). The anisotropy of the mesh is a parameter of the algorithm and it was set

to values close to 1. This is an inevitable limitation since we also impose the minimum edge-length of

triangles to avoid too large meshes. The capabilities of the mesh adaptivity algorithm are illustrated in

Chapter 5.

3.4 A finite-element toolbox for the simulation of

phase-change systems with natural convection

The methods described previously were implemented in a 2D toolbox based on FreeFem++ . The syn-

tax to implement the Newton algorithm is very close to the mathematical formulation given above.

After defining a vectorial finite-element space fespace Wh(Th,[P2,P2,P1,P1]);, associated

to the mesh Th, we define the velocity, pressure and temperature variables in a compact manner by Wh

[u1,u2,p,T];. Corresponding test functions are defined similarly. It is then very easy to define a

problem formulation in FreeFem++ and include all the terms of the algorithm (3.10) - (3.12). This

makes the reading of the programs very intuitive by comparing each term to its mathematical expres-

sion. New terms could be added to the variational formulation expressed in the problem structure,

without affecting other parts of the program. Consequently, the implementation of new models or

numerical methods for this problem is greatly facilitated by this modular structure of programs.

In this section we first describe the architecture of the programs and the organisation of files. Then

we focus on the list of input parameters and the structure of output files.
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3.4 A finite-element toolbox for the simulation of phase-change systems with natural convection

3.4.1 Program architecture

Figure 3.1 gives a schematic overview of the content of the toolbox. All files are provided in a directory

called PCM-Toolbox. Many detailed comments are included in the programs, with direct link to the

mathematical expressions used in this chapter. The FreeFem++ syntax was intentionally kept at a low

level of technicality and supplemented with detailed comments when specific more technical syntax

was used.

PCM Tool  

Box

Common 

Macros

Test 

Cases

PCM 

Melting 

Natural 

Convection

Water 

Freezing 

Cycle 

Melting 

Solidification  

- Macro_operator 
- Macro_restart 
- Macro_output 
- Macro_problem 
- Macro_system

Figure 3.1: Folder tree structure of the FreeFem++ toolbox to solve phase change problems.

Test cases and common macros are separated into two folders.

This directory is organized as follows:

1. The directory Common-Macros contains five files:

• Macro operator.idp includes macros and functions defining mathematical operators,

• Macro problem.idp: macros defining the variational formulation of the problem,

• Macro restart.idp: macros used to start a new simulation from a saved field,

• Macro output.idp: macros used to save the solution with different formats,

• Macro system.idp: macros identifying the OS and defining specific OS-commands.

2. The directory Test-Cases contains four subdirectories, each of them defining one of the

following applications:

• natural convection of air or water in a differentially heated square cavity,

• melting of a PCM stored in containers of different shapes,

• melting followed by solidification of a rectangular PCM,

• freezing of pure water in a square cavity.

Each subdirectory contains three files: NEWTON $case.edp is the main FreeFem++ script file,

param phys.inc defines the physical parameters and param num.inc the numerical parame-

ters. For example, to run the natural convection case of air in a square cavity, one can use the

following command in a terminal window:

FreeFem++ NEWTON stat natconv . edp
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Chapter 3 A finite element method

The folder structure of each test case is illustrated in Fig. 3.2. The obtained solutions are saved

in the folder OUTPUT/Data. Depending on the output format selected by the user, data files

are generated in specific folders for being visualized with: Tecplot, Paraview, Gnuplot or Medit.

We also provide in the folder Figures ready-made layouts for these visualisation softwares.

The user can thus obtain the figures from the current work using newly generated data. More

details about the output structure are given below.

OUTPUT

Case 

Folder

Figures

INIT 

RUN 

PARAM

Data

Gnuplot 

Tecplot 

Medit 

RST 

Figure 3.2: Structure of each Test-case folder.

3.4.2 Input parameters

Physical parameters and parameters related to the run are separated into two files.

(1) The file param phys.inc contains the physical descriptions of the problem:

• typeT: is the finite-element type for the temperature, with possible values P2 or P1,

• Torder: is the accuracy order of the time integration scheme, with possible values 1 (Euler

scheme) or 2 (Gear scheme),

• scalAdim: defines the characteristic scales of the problem, see Eq. (2.11). Possible values 1, 2

or 3 correspond to the following choice of the characteristic scales (Danaila et al., 2014):

(1) : V
(1)
ref =

νl
H

=⇒ t
(1)
ref =

H2

νl
=⇒ Re = 1, (3.20)

(2) : V
(2)
ref =

α

H
=⇒ t

(2)
ref = t

(1)
refPr =⇒ Re = 1/Pr, (3.21)

(3) : V
(3)
ref =

νl
H

√

Ra

Pr
=⇒ t

(3)
ref = t

(1)
ref

√

Pr

Ra
=⇒ Re =

√

Ra

Pr
, (3.22)
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3.4 A finite-element toolbox for the simulation of phase-change systems with natural convection

• xl, xr, yl, yr: are the values defining the dimensions of the cavity [xl, xr]× [yl, yr],

• Pr, Ra, Ste: are the Prandtl, Rayleigh and Stefan numbers, see Eq. (2.16) and (2.15),

• Thot, Tcold: are dimensionless temperatures according to Eq. (2.11),

• bcu1, bcu2, bcT: are macros defining the velocity (u) and the temperature (T ) boundary con-

ditions.

• epsi: is the half width ε of the mushy region. Default value = 0.01,

• dt: is the dimensionless time step,

• tmax: is the dimensionless final time,

• Parameters for regularization functions:

The parameters of the hyperbolic-tangent function in Eq. (2.19), used to regularize discontinu-

ous functions are set by default as follows:

fs fl as θs Rs CCK b

Enthalpy 0 1/Ste 1 0.01 0.01 - -

Carman - Kozeny 0 1 1 0.01 0.01 106 10−7

Conductivity (water) 1 2.26/0.578 1 θf 0.015 - -

• rho(T) and Drho(T): (water cases only) define the density and its derivative as functions of the

temperature, following the model (Gebhart and Mollendorf, 1977):

ρ(T ) = ρm(1− ω|T − Tm|q),
ρm [kg/m3] ω [oC−q] q Tm [oC]

999.972 9.2793 · 10−6 1.894816 4.0293

• fB(T), dfB(T): define the buoyancy force and its derivative.

(2) The file param num.inc contains the parameters controlling the run.

Restart parameters:

• Nsave: the solution is saved every Nsave time steps in the Data folder (see Fig. 3.2). The

temperature and the velocity fields are saved in Tecplot and Medit folders, while the liquid

fraction, the Nusselt number, and the accumulated heat input are saved in the Gnuplot folder.

• Nrestart: restart files (mesh and solution) are saved every Nrestart time steps. Solutions at

current and previous iterations, the CPU time, the accumulated heat input Q0, and the time step

dt are saved in the folder RST.

• Ncondt: allows the user to stop the run and save the solution properly.

The file OUTPUT/zz.condt is read every Ncondt time steps: if the user replaces the value

”0” in this file by ”1” the run is stopped. This is a simple solution for a clean stop of the job by

the user. Default value = 20.

• Nremesh: the mesh is adapted every Nremesh iterations. If this parameter is set to ”1” the

mesh is adapted every time step.
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Chapter 3 A finite element method

• IFrestart: is a boolean controlling the set up of the initial field.

IFrestart = 0, the initial condition is built in the code for each test case. For the PCM melting

cases, the PCM is initially motionless at isothermal temperature. To set-up a smooth initial field,

a few time steps (with very small δt) are computed by increasing progressively the boundary

temperature at the hot wall and the Rayleigh number (by continuation). Outputs are saved in

OUTPUT/Data-RST-0.

IFrestart > 0, (positive integer values) the solution field previously computed at iteration

IFrestart is loaded from the folder OUTPUT/Data-RST-filenameRST/RST,

with filenameRST a variable selecting the restart folder.

IFrestart < 0, (negative integer values), the same principle for loading a solution is used,

but from the folder INIT (see Fig. 3.2). The solution fields stored in this folder could come

from different previous calculations (e. g. a steady state solution or, for the water, the natural

convection field before freezing).

Newton parameters:

• epsconv: is the value of the stopping criterion for steady cases,

• gamma: is the penalty parameter in Eq. (3.2). Default value = 10−7,

• tolNewton: is the Newton tolerance ξN (see Eq. (3.13)). Default value = 10−6,

• newtonMax: limits the maximum number of iterations in the Newton algorithm (3.13).

Default value = 50,

Mesh parameters:

• nbseg: is the number of segments for the discretisation along the x and y directions,

• errh: is the interpolation error level. Default value = 0.02,

• hmin, hmax: are the minimum and maximum edge size, respectively,

• adaptratio: is the ratio for a prescribed smoothing of the metric. For a value less than 1.1 no

smoothing is done. Default value = 1.5,

• nbvx: is the maximum number of vertices allowed in the mesh generator. Default value =

50000.

Output parameters:

• dircase: is the name of the output folder,

• fcase: is the prefix-name for ouput files.

• Tecplot, Medit, Gnu: correspond to the name of the visualisation software to be used; the

format of the outputs written in OUTPUT/Data (see Fig. 3.2) is accordingly set. The files from

the Tecplot folder can be easily read also with Paraview.

3.4.3 Outputs

When a computation starts, the OUTPUT directory is created (see Fig. 3.2). It contains two folders

storing the output data and the echo of the run parameters. The folder Data contains four subdirecto-

ries with different output format files of the computed solution. File names are created using the prefix

defined by the parameter fcase, the current iteration and the current dimensionless time t. Solution
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files can be visualized using either Tecplot or any other CFD Visualization tools (Paraview, Visit, etc.).

Moreover, .gmsh (mesh) and .rst (fields) files are generated in the folder RST to enable restarts of the

computation. Note that the folder FFglut contains FreeFem++ scripts that re-read and visualize the

RST-files to facilitate the selection of a restart field. An .echo file with a summary of the main pa-

rameters, informations on the run and the names of the output files is saved in the folder RUNPARAM.

This directory additionally contains a copy of the .inc parameter files, allowing an easy identification

of each case and preparing an eventual rerun of the same case.

3.5 Numerical tests of the accuracy of the numerical

method

We start by presenting tests of the accuracy of our numerical method. We used the technique of

manufactured solutions (e. g. Roache (1998)) which has the advantage of providing an exact solution

to a modified problem, related to the initial one. The general idea is to modify the original system of

equations by introducing an extra source term, such that the new system admits an exact solution given

by a convenient analytic expression. Even though in most cases exact solutions constructed in this way

are not physically realistic, this approach allows one to rigorously verify computations.

We tested the space and time accuracy using manufactured solutions for the system of Eqs. (2.12) -

(2.14) for a stationary case (Burggraf flow) and a time-dependent one (Nourgaliev et al., 2016). For

both cases, we computed the global error ε for different norms in space:

ε = ‖Φe − φh‖, (3.23)

with Φe the exact solution and φh the numerical solution. Computations were performed for the con-

vection of air (C = K = 1, A(θ) = S(θ) = 0), with a Rayleigh number Ra = 104 and a Prandtl

number Pr = 0.71.

3.5.1 Space accuracy: Burggraf stationary flow with thermal

effects

The Burggraf manufactured solution is a time-independent recirculating flow inside a square cavity

[0, 1]× [0, 1]. It is similar to the well-known entrained cavity flow, with the difference that the velocity

singularity at the top corners of the cavity is avoided. We added to the classical Burggraf flow (Shih

et al., 1989; Laizet and Lamballais, 2009) a manufactured solution for the temperature, with constant

temperature imposed at the top and the bottom walls. Vertical walls are assumed to be adiabatic. The

exact solution of the new flow with thermal effects is

u1(x, y) = σg′(x)h′(y), (3.24)

u2(x, y) = −σg′′(x)h(y),

p(x, y) =
σ

Re

(

h(3)(y)g(x) + g′′(x)h′(y)
)

+
σ2

2
g′(x)2

(
h(y)h′′(y)− h′(y)2

)
,

T (x, y) = Tc + (Th − Tc)y + a(x)b(y),
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Figure 3.3: Burggraf stationary flow with thermal effects used to test the space accuracy of

the numerical scheme. Streamlines (a) and temperature contours (b) of the flow

field.

with σ > 0 a scaling parameter and functions

g(x) =
x5

5
− x4

2
+

x3

3
, (3.25)

h(y) = y4 − y2,

a(x) = cos(πx),

b(y) = y(1− y).

Note that the velocity at the top border of the cavity is

u1(0, 1) = 2σ(x4 − 2x3 + x2), u2(x, 1) = 0, (3.26)

which ensures the continuity of the velocity at corners (u(0, 1) = u(1, 1) = 0), since no-slip walls are

imposed for the other borders: u(x, 0) = u(0, y) = u(1, y) = 0.

The forcing terms that have to be added to the momentum and energy (temperature) equation are

derived by injecting the exact solution (3.24) into the system of Eqs. (2.12) - (2.14):

fu1
= 0, (3.27)

fu2
= σ2h(y)h′(y)

(

g′′(x)2 − g′(x)g(3)(x)
)

+
σ

Re

(

g(4)(x)h(y) + 2g′′(x)h′′(y) + g(x)h(4)(y)
)

+
σ2

2
g′(x)2

(

h(y)h(3)(y)− h′(y)h′′(y)
)

− Ra

PrRe2
T (x, y),

fT = u1(x, y)a
′(x)b(y) + u2(x, y)

(
Th − Tc + a(x)b′(y)

)

− K

RePr

(
a′′(x)b(y) + a(x)b′′(y)

)
.
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3.5 Numerical tests of the accuracy of the numerical method

We used the Taylor-Hood finite element (P2 for the velocity and P1 for the pressure) and tested P1 or P2

finite elements for the temperature. Figures 3.3a and 3.3b illustrate the streamlines and the temperature

field, respectively.

Figure 3.4 plots the discretization error ε as a function of the grid size h = δx = δy for the temperature

and the velocity. Both L2 and L∞ norms are displayed. The expected second order accuracy in L2-

norm is obtained with P1 finite elements (Figs. 3.4a and 3.4b), while an order exceeding three is

observed when P2 finite elements are used (Fig. 3.4c and 3.4d).

The optimal convergence for the velocity, the pressure and the temperature is shown in Fig. 3.5, for

their natural norms: H1 norms for the velocity and the temperature, and L2 norm for the pressure.

A seconder order convergence is observed for the velocity and the pressure, whatever P1 or P2 finite

elements are considered for the temperature (Figs. 3.5a - 3.5c), consistent with the Taylor-Hood finite

elements employed. Moreover, as expected, a first order accuracy is obtained for the temperature using

P1 finite elements (Fig. 3.5b) and a second order using P2 finite elements (Fig. 3.5d).

3.5.2 Time accuracy: manufactured unsteady solution

To test the time accuracy of the Gear (BDF2) scheme, we used the manufactured time-dependent

solution suggested in Nourgaliev et al. (2016):

u1(x, y, t) = (δU0 + αu sin(t)) cos(x+ γ1t) sin(y + γ2t), (3.28)

u2(x, y, t) = − (δU0 + αu sin(t)) sin(x+ γ1t) cos(y + γ2t),

T (x, y, t) = T̄ + (δT0 + αt sin(t)) cos(x+ γ1t) sin(y + γ2t),

p(x, y, t) = P̄ + (δP0 + αp sin(t)) sin(x+ γ1t) cos(y + γ2t),

The values of the constants are reported in Table 3.2.

γ1 γ2 P̄ T̄ δP0 δT0 δU0 αp αu αt

0.1 0.1 0 1.0 0.1 1.0 1.0 0.05 0.4 0.1

Table 3.2: Parameter for the time-dependent manufactured solution (3.28).

The corresponding forcing source terms are

fu1
= αu cos(t) cos(a) sin(b)− Uc γ1 sin(a) sin(b) + Uc γ2 cos(a) cos(b) (3.29)

−Uc u1(x, y, t) sin(a) sin(b) + Uc u2(x, y, t) cos(a) cos(b) + Pc cos(a) cos(b)

+
2

Re
u1(x, y, t),

fu2
= −αu cos(t) sin(a) cos(b)− Uc γ1 cos(a) cos(b) + Uc γ2 sin(a) sin(b)

−Uc u1(x, y, t) cos(a) cos(b) + Uc u2(x, y, t) sin(a) sin(b)− Pc sin(a) sin(b)

+
2

Re
u2(x, y, t)−

Ra

PrRe2
T (x, y, t),

fT = αt cos(t) cos(a) sin(b)− Tc γ1 sin(a) sin(b) + Tc γ2 cos(a) cos(b)

−Tc u1(x, y, t) sin(a) sin(b) + Tc u2(x, y, t) cos(a) cos(b) +
2K

RePr
Tc cos(a) sin(b),
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Figure 3.4: Burggraf stationary flow with thermal effects used to test the space accuracy of

the numerical scheme. Global error ε (3.23) for the temperature θ and velocity u.

Numerical scheme using P1 finite elements for the temperature (panels a and b)

or P2 for the temperature (panels c and d).
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Figure 3.5: Burggraf stationary flow with thermal effects used to test the space accuracy of the

numerical scheme. Global errors ε (3.23) for the pressure p, the velocity u, and

the temperature θ. Numerical scheme using P1 finite elements for the temperature

(panels a and b) or P2 finite elements (panels c and d).
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Chapter 3 A finite element method

where a = (x + γ1t), b = (y + γ2t) and Uc = (δU0 + αu sin(t)), Tc = (δT0 + αu sin(t)), Pc =
(δP0 + αu sin(t)).

Guided by the results obtained in Sec. 3.5.1 for the space accuracy, we fixed the grid size to h =
dx = 0.01 and we applied P2 discretization for the temperature, to ensure small spatial discretization

errors. For diminishing values of the time step δt, the solution was evolved in time up to the time

instant tmax = π at which the error (3.23) was computed. The time convergence is displayed in Fig.

3.6 for the temperature (panel a) and the velocity (panel b) variables, for which the expected second

order convergence in time is obtained.
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Figure 3.6: Time accuracy of the numerical scheme tested using the time-dependent manufac-

tured solution of Nourgaliev et al. (2016). Discretization using P2 finite elements

for the temperature. Evolution of the global error ε (3.23) for the temperature (a)

and the velocity (b) measured at tmax = π.

3.6 Domain decomposition method with FreeFem++:

FFDDM

Solving the Navier-Stokes-Boussinesq systems of Eqs. (3.6) - (3.8) in three-dimensional configurations

could generate large-size problems. The natural convection of air in a cube of dimensions [0, 1]3 with

40 × 40 × 40 uniform grid involves 3 millions of unknowns (d.o.f.) in the linear system, when a P1

finite element is considered for the temperature. For such a large-size problem, memory limitation can

rapidly arise with sequential algorithms. It is thus essential to distribute data among several processors.

A natural approach is the domain decomposition method (DDM). DDM aims at dividing the com-

putational domain in many subdomains on which we solve local problems with adequate interface

conditions. Two families of DDM exists: non-overlapping methods and overlapping methods such as

the Schwarz method.

We use in this work a domain decomposition Schwarz method, enhanced by coarse space corrections
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3.6 Domain decomposition method with FreeFem++: FFDDM

through the FreeFem++ library ffddm. This enrichment with a coarse space is mandatory in the

present study to avoid the lack of robustness related to the one-level method. The main drawback

of one-level methods is their convergence rate that depends on the number of subdomains, resulting

in a poor scaling for large problems. This is mostly due to a lack of global communication between

subdomains that exchange informations with their direct neighbors only. The additional coarse space

has consequently the task to spread the information to all subdomains at each iteration.

The data distribution among processors is done via an overlapping domain decomposition and in-

volves a related linear algebra. To enable parallel computing, the mesh is first split into subdomains

using Scotch or Metis libraries. Figure 3.7 illustrates the domain decomposition of a cube of

dimension [0, 1]3 into 8 subdomains with Metis graph partitioner. Mesh adaptivity using metrics

control makes possible the optimisation of the distribution of mesh elements.

Figure 3.7: Partition of Ω = [0, 1]3 into 8 subdomains with Metis partitioner.

The final linear system of Eqs. (3.10) - (3.12) is solved in parallel using a GMRES Krylov method,

with an Optimized Restricted Additive Schwarz (ORAS) preconditioner. To solve the linear equation

Ax = b, the ORAS preconditionner reads

M−1
RAS =

N∑

j=1

RT
j Dj(RjAR

T
j )

−1Rj , (3.30)

Rj denote the restriction operators and Dj are square diagonal matrices. Local matrices are defined

as:

Aj = RjAR
T
j . (3.31)

The duplicated unknowns due to the overlap between subdomains are coupled via a partition of unity

I =

N∑

i=1

RT
i DiRi. (3.32)

Thus, the global solution U is defined as:

U =
N∑

i=1

RT
i DiRiU =

N∑

i=1

RT
i DiUi. (3.33)
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4 Numerical simulation of natural

convection flow in a 2D square

cavity

We first focus on the capability of our code to deal with natural convection flows in square enclosures.

The convection flow is a relevant case to validate rigorously the Navier-Stokes-Boussinesq solver. A

large number of benchmarks on natural convection problems induced by temperature difference could

be found in the literature, with connection to engineering (air circulation in buildings, double-wall

insulations, solar collectors, etc.) and geophysical systems.

In this chapter, we are interested on the natural convection of fluids in a square cavity differentially

heated from the vertical walls. The fluid temperature rises and its density decreases along the heated

wall, convecting the fluid up to the point where it reaches the cold wall, along which the reverse process

occurs. These two simultaneous opposed effects create a recirculation cell within a stationary zone in

the center.

We solve the system of Eqs. (2.12) - (2.14), with A(θ) = 0 in the momentum equation and S(θ) = 0
in the energy equation. Linear and non-linear expressions of the buoyancy force fB(T ) are inves-

tigated, by simulating the natural convection of air and water, respectively. Natural convection of

water exhibits a non-linear variation of the density with a maximum value around T = 4oC. A linear

variation with temperature is generally assumed for the natural convection of air in the Boussinesq

approximation. We consider a square enclosure of height H . Physical properties of air and water used

in our simulations are listed in Tab. 4.1. Isothermal boundary conditions are applied at the vertical

ρ µ cp k α β
kg/m3 kg/(m s) J/(kg K) W/(m K) m2/s 1/K

Air 1.177 1.85 ·10−5 1006 0.0262 2.22 · 10−5 3.4 · 10−3

Water 999.84 1.003 ·10−3 4182 0.578 1.33 · 10−7 6.91 · 10−5

Table 4.1: Physical parameters of air and water at T = 300K used in our simulations. Pr =
0.71 (for air) and Pr = 6.99 (for water).

walls and adiabatic boundary conditions to the upper and lower walls. Quantitative and qualitative

validations are carried out as following. (i) The velocity profile along symmetry lines, the maximum

value of u at mid-domain (x = 0.5 and y = 0.5), locations xmax and ymax of this maximum and the

Nusselt number are compared with the spectral-accurate simulations by Le Queré (1991) and de Vahl

Davis (1983) in Sec. 4.1.1 for natural convection of air within a square cavity. (ii) A heated obstacle is

included in the center of the domain and the transversal velocity profile along the horizontal symmetry

lines is compared with numerical results of Moglan (2013) in Sec. 4.1.2. (iii) The temperature profile

along the horizontal symmetry line is compared with numerical results of Michalek and Kowalewski

(2003) in Sec. 4.2 for the natural convection of water.
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Chapter 4 Numerical simulation of natural convection flow in a 2D square cavity

4.1 Natural convection of air

We start by testing the Newton algorithm (3.10) with linear expression of fB(θ) (see Eq. (2.15)).

The classical problem of the thermally driven square cavity with adiabatic top and bottom walls is

simulated. We consider a cavity of height H = 0.1 m, initially filled with motionless air and a linear

distribution of the temperature. The dimensionless parameters describing the investigated configuration

are based on the fluid properties presented in Tab. 4.1. Pr = 0.71 and Rayleigh number ranges from

Ra = 104 to 108. The characteristic scales of the problem are:

Lref = H, Tref =
Th + Tc

2
, (4.1)

and,

Vref =
νl
H

√

Ra

Pr
=⇒ tref =

H2

νl

√

Pr

Ra
=⇒ Re =

√

Ra

Pr
. (4.2)

The left wall is heated with dimensionless hot temperature θh = 0.5 and the right wall is cooled

with θc = −0.5 (resulting from Eq. (4.1)). A homogenous Dirichlet boundary condition (u = 0) is

applied for the velocity. It has been shown by Le Quéré and Behnia (1998) that the solution of the

2-D Boussinesq equation in this configuration becomes unsteady at critical Rayleigh number Ra =
1.82 ·108 due to the instability mode that breaks the usual central-symmetry of the solution. Therefore,

a steady state can be achieved for the chosen Rayleigh numbers.

We solve the unsteady and steady Navier-Stokes-Boussinesq equations, related to algorithms (3.13)

and (3.17), respectively. The unsteady case is computed until the steady state with a single convection

cell is reached, with a numerical tolerance of 10−9. In parallel, the steady case is performed using a

Rayleigh number continuation: a smaller value of the Rayleigh number is set initially and increased

smoothly until reaching the correct value. At each stage, the computation starts from the solution

obtained from the previous Rayleigh number simulation.

Two cases are simulated: i) a differentially heated square cavity and ii) a differentially heated cavity

with an inner heated obstacle. For each of them, the horizontal and the vertical velocity profiles u(y)
and v(x) at mid-domain (y = 0.5 and x = 0.5, respectively) are plotted and compared with numerical

results by Le Queré (1991) and Moglan (2013). Moreover, for i), we compare with the benchmark

solutions by de Vahl Davis (1983) and Le Queré (1991): the maximum value umax and vmax with their

location ymax and xmax, the Nusselt number at the heated (left) wall and at the mid-domain, and the

maximum and the minimum value of the local Nusselt number at x = 0 with their y-locations.

4.1.1 Differentially heated square cavity

Figure 4.1 offers a comparison of the current simulation with the numerical results of Wakashima and

Saitoh (2004), who used a fourth-order finite difference method for the spatial discretization and a

third-order backward finite difference scheme for the time integration, for Ra ranging from 104 to 106.

The temperature distribution and the streamlines at the steady state display a good agreement with the

benchmark solution. The higher the Ra number, the stronger is the natural convection flow in the

cavity. A single convection cell is observed in the center of the cavity for Ra = 104 (Fig. 4.1d) during

which the heat transfer is merely bulk heat transfer. Figures 4.1e and 4.1f however exhibit stronger

convection with more rolls, when the boundary layer heat transfer dominates.

A more accurate validation is performed with respect to the spectral-accurate results of Le Queré

(1991). We plot in Fig. 4.2 the horizontal (panel a) and the vertical (panel b) profiles of the velocity
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4.1 Natural convection of air

Figure 4.1: Natural convection of air for Ra ranging from 104 to 106 (from left to right) and

Pr = 0.71. Temperature fields and streamlines at the steady state. Panels (a) to

(c) correspond to the benchmark solution of Wakashima and Saitoh (2004). Panels

(d) to (f) display our numerical results.

and compare the current simulation with data extracted from Le Queré (1991) for each of the three

computed Ra numbers. Results from Le Queré (1991) are represented by solid lines and the current

simulation by symbols. A very good agreement can be noticed for each case. The thickness of the

boundary layer is decreasing with increasing value of the temperature difference δT . Following the

correlation of Bejan (2013), a viscous boundary layer with a dimensionless thickness of order of δν ∼
0.02 should be present close to the vertical walls for Ra = 106. Accordingly, the mesh resolution

should allow to capture these structures. We assess on the influence of the mesh resolution on the

solution in Tab. 4.2. We report the L2 and L∞ norms of εV = |V − VLQ| (along x−direction) and

nbseg ||εU ||2 ||εU ||∞ ||εV ||2 ||εV ||∞
40 1.777477 · 10−4 5.617468 · 10−4 2.418556 · 10−4 7.203805 · 10−4

80 1.961756 · 10−5 5.463075 · 10−5 3.153492 · 10−5 9.160633 · 10−5

120 4.478622 · 10−6 1.518429 · 10−5 9.539112 · 10−6 2.891752 · 10−5

160 2.186721 · 10−6 6.181043 · 10−6 2.802694 · 10−6 9.789997 · 10−6

200 1.20101 · 10−6 3.666731 · 10−6 2.282512 · 10−6 5.690341 · 10−6

Table 4.2: Error associated to the spatial discretization. Comparison with Le Queré (1991).

εU = |U − ULQ| (along y−direction) for different values of nbseg, from 40 to 200. The present
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Figure 4.2: Natural convection of air in a differentially heated cavity for Ra ranging from

104 to 106 and Pr = 0.71. (a) Transversal velocity profile along the horizontal

symmetry line. (b) Longitudinal velocity profile along the vertical symmetry line.

Numerical results obtained using the present Newton method (symbols) with a

mesh resolution of nbseg = 80; comparison with the spectral-accurate simulations

by Le Queré (1991) (solid lines).

simulation is compared with the accurate solutions, VLQ and ULQ, of Le Queré (1991). Differences

decrease when the mesh resolution is increased. We observe that errors of order of 10−5 are obtained

for the 80× 80 grid resolution, with a reasonable computational time of 14 seconds. All computations

in this section are performed with a fixed triangular mesh, generated by the Delaunay algorithm starting

with nbseg = 80 points on each side of the square.
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Figure 4.3: Natural convection of air. Temperature isolines at the steady state for (a) Ra =
107, (b) Ra = 4 · 107, (c) and Ra = 108.

Higher Ra number simulations were performed to test the robustness of our algorithm. We depict

the temperature isolines at the steady state for Ra = 107, 4 · 107, and 108 in Fig. 4.3. One can observe

the onset of detached regions along the upper and lower adiabatic walls for Ra = 4 · 107, which is

in agreement with observations of Le Quéré and De Roquefortt (1985). According to Le Quéré and
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4.1 Natural convection of air

De Roquefortt (1985), this phenomenon is in part induced by the Neumann boundary conditions at the

horizontal (top and bottom) walls. To assess for the steadiness of the solution, we plot in Fig. 4.4 the

time evolution of the Nusselt number Nu0 at the heated wall (x = 0) and Nu1/2 at the mid-domain

(x = 0.5). The Nusselt number in the center region of the cavity is defined as

Nu1/2 =
√
PrRa

∫ 1

0

(

uθ − ∂θ

∂x

)∣
∣
∣
∣
x=0.5

dy. (4.3)

The Nusselt at the hot wall becomes constant very soon when compared to Nu1/2, which oscillates

during a longer period and tends to the constant value of Nu0 = 16.5237.
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Figure 4.4: Natural convection of air. Time evolution of the Nusselt number at x = 0 and

x = 1/2 for Ra = 1 · 107.

Table 4.3 offers a more quantitative assessment of the accuracy of the present Newton method. The

values of (umax, ymax), (vmax, xmax) are compared to reference values from de Vahl Davis (1983)

and Le Queré (1991) for Ra ranging from 104 to 108. The Newton method gives results identical to

reference values. Relative errors lower than 0.01% are obtained for Ra = 105 and 106. A relative

difference of 0.43% is observed for Ra = 106 with respect to the reference solution of de Vahl Davis

(1983), and a relative difference of 0.003% with the spectral accurate solution of Le Queré (1991).

The highest discrepancy is noted for Ra = 108, but still offers reasonable agreement with benchmark

values, within 0.52% error for umax 5.57% for vmax. We compare moreover the average Nusselt

number at the left vertical wall (the mean, the max, and the min) and at the mid-domain, since the

Nusselt number will be largely used to compare the optimized configuration of a PCM, either for

melting or solidification cycles in the next chapters. It is thus essential to ensure the accuracy of the

computed value of this parameter. Excellent agreement with de Vahl Davis (1983) and Le Queré (1991)

is obtained for all simulated Ra numbers, with a relative error lower than 0.038%.

39



Chapter 4 Numerical simulation of natural convection flow in a 2D square cavity

umax vmax Nu0 Nu1/2
Numax Numin

y x y y

Ra = 104
1.61782 1.96272

2.24487 2.24403
3.53218 0.58497

0.826772 0.11811 0.141732 1

de Vahl Davis (1983)
1.6178 1.9617 2.238 2.243 3.528 0.586
0.823 0.119 0.149 1

Ra = 105
3.47218 6.85436

4.52172 4.52176
7.72 0.72797

0.858268 0.0629921 0.0787402 1

de Vahl Davis (1983)
3.473 6.859

4.519 4.519
7.717 0.729

0.855 0.066 0.085 1

Ra = 106
6.48369 22.0306

8.82521 8.82513
17.5344 0.979543

0.850394 0.0393701 0.0393701 1

de Vahl Davis (1983)
6.463 21.936

8.817 8.799
17.925 0.989

0.850 0.0379 0.0378 1

Le Queré (1991)
6.48344 22.0559

8.8252 8.8252
17.5360 0.97946

0.850 0.038 0.039 1

Ra = 107
4.69349 2.19517

16.5237 16.5194
39.3455 1.36675

0.88189 0.023622 0.015748 1

Le Queré (1991)
4.69862 2.21118

16.523 16.523
39.3947 1.36635

0.879 0.021 0.018 1

Ra = 108
3.20182 2.09841

30.2353 30.1604
87.3469 1.92085

0.929134 0.015748 0.00787402 1

Le Queré (1991)
3.21875 2.22239

30.225 30.225
87.2355 1.91907

0.928 0.012 0.008 1

Table 4.3: Natural convection of air in a square cavity. Comparison with the results by de

Vahl Davis (1983) and Le Queré (1991) for Ra = 104 to 108.

4.1.2 Differentially heated cavity with an inner heated square

Thermally driven cavity including a heated square obstacle is computed in this section. We consider the

same configuration presented in Sec. 4.1.1 and a square domain with isothermal boundary conditions

is added in the initial set-up. This kind of basic configuration could be representative of telecommu-

nication outdoor cabinet applications, in which the use of passive cooling solutions have begun to be

more and more investigated. Indeed, inside an outdoor cabinet, electronic equipments generate heat

when active. The study of the flow structures within the enclosure with obstacles was studied experi-

mentally and numerically by Moglan (2013). The simplified model of cavity with rectangular heated

obstacles investigated by Moglan (2013) will be reproduced in this section to test the robustness of our

numerical algorithm.

A linear distribution of the temperature is imposed initially in the motionless air inside the cavity.

The obstacle is maintained at a dimensionless hot temperature θh = 0.8, with a no-slip boundary

condition for the velocity. The solutions for Ra = 104, 105, 106 and Pr = 0.71 are compared with

the result obtained by Moglan (2013), who used an immersed boundary method with a FD code using

high order schemes for time and spatial discretization.
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4.1 Natural convection of air

The temperature distribution in the cavity when the steady-state is reached, for each of the three

computed Ra numbers, are reported in panels (a) to (c) of Fig. 4.5. The temperature gradient gives rise

to a clockwise circulation and when Ra is increased, vertical thermal boundary layers form distinctly

along the differentially heated sidewalls and the obstacle. Consequently, higher is the Rayleigh number,

the hot temperature in the center of the domain is more rapidly advected by the natural convection flow

into the cold part of the cavity. It is worth noting that for Ra = 106 in panels (c) and (f), a stagnant

fluid with a stratified temperature forms in a small portion of the fluid between the cold wall and the

obstacle.

We present a more accurate validation in panels (d) to (f) of Fig. 4.5. The transversal velocity profiles

along the x−axis are plotted and compared with the numerical data of Moglan (2013) for each cases.

A good agreement can be observed, with a relatively small difference between the extremum of the

velocity, while the shape of the velocity profile match well.

Figure 4.5: Natural convection of air in a differentially heated cavity with an inner heated

square for Ra ranging from 104 to 106. Temperature field and streamlines (top)

and transversal velocity profile along the horizontal symmetry lines (bottom). Re-

sults obtained using the present Newton method (red solid line), with mesh reso-

lution nbseg = 80; comparison with the finite difference code of Moglan (2013).
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Chapter 4 Numerical simulation of natural convection flow in a 2D square cavity

4.2 Natural convection of water inside a square cavity

We simulate in this section the natural convection of water in a differentially heated cavity. A further

difficulty is introduced compared to the previous validations by taking into account the non-linear

variation of the density in the buoyancy force. Pure water exhibits a non-linear density variation for

T < 10.2 ◦C with a maximum at Tm = 4.0293 ◦C. We use below the following density-temperature

relationship suggested in Gebhart and Mollendorf (1977):

ρ(T ) = ρm (1− w |T − Tm|q) , (4.4)

with ρm = 999.972 [kg/m3], w = 9.2793 · 10−6 [(◦C)−q], and q = 1.894816. The bouyancy term

fB = g(ρref − ρ)/ρref in Eq. (2.6) becomes after scaling:

fB(θ) =
Ra

PrRe2
1

βδT

ρ(θf )− ρ(θ)

ρ(θf )
, (4.5)

where β = (1/ρm) (dρ/dT ) is the thermal expansion coefficient with the value β = 6.91 · 10−5

[(K)−1] (Scanlon and Stickland, 2004).

We consider a cavity of height H = 0.38 m filled with liquid pure distilled water. This problem was

investigated experimentally and numerically by Giangi et al. (2000); Kowalewski and Rebow (1999);

Michalek and Kowalewski (2003). The height H of the cavity is considered as a the length scale of the

problem, Lref = H . We choose Tref = Th − Tc = 10K in order to compare our simulation with the

numerical results of Michalek and Kowalewski (2003), and define the following scaling:

Vref =
νl
H

=⇒ tref =
H2

νl
=⇒ Re = 1. (4.6)

The non-dimensional parameters describing the problem result from the physical properties of water

given in Tab. 4.1: Ra = 2.518084 · 106 and Pr = 6.99.

The initial temperature is linearly distributed with a hot (non-dimensional) temperature θh = 1 at the

left wall and a cold temperature θc = 0 at the right wall. The top and the bottom of the cavity are

adiabatic and no-slip boundary condition u = 0 is applied for the velocity.

The temperature field of the steady state is presented in Fig. 4.6a. Unlike the natural convection

of air, in which two distinct boundary layers along the vertical walls and a stagnant and thermally

stratified fluid in the core of the fluid flow were observed, an anomalous variation of the temperature is

pointed out around the iso-line θ = θm = 0.40293 for the natural convection of water. This anomalous

thermal variation of water density, is clearly discernible in the streamlines of the steady flow in Fig.

4.6b. Two recirculating zones are formed in the flow: a lower (abnormal) recirculation in the vicinity of

the cold wall where θ < θm and an upper (normal) one where the density decreases with temperature

(θ > θm).

Following the above observations, a higher mesh resolution should be applied around θm. We thus

define a P1 function Φ(θ) by the following hyperbolic-tangent function similar to Eq. (2.20):

Φ(θ) =
1

2

{

1 + tanh

(
θm − θ

RΦ

)}

, (4.7)

with RΦ = 0.02. The function Φ(θ) and the two components of the velocity are used to compute the

metric for the mesh adaptivity. Φ(θ) is used to track θm. The velocity allows to refine the boundary
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4.2 Natural convection of water inside a square cavity
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Figure 4.6: Natural convection of water in a differentially heated cavity with non-dimensional

parameters: Ra = 2.518084 · 106 and Pr = 6.99. (a) Iso-lines of the temper-

ature at the steady state. (b) Streamline of the steady flow. (c) Illustration of

the mesh adaptivity. The mesh is refined along the dimensionless temperature

iso-line θ = θm, due to the density variation. (d) Temperature profile along the

horizontal symmetry line. Comparison with the numerical results of Michalek and

Kowalewski (2003).

layer regions. To reduce the impact of the interpolation on the global accuracy, since our algorithm

is optimized to afford the mesh refinement every time step, we use both Φ(θn) and Φ(θn+1) in the

adaptivity procedure.

The final mesh is displayed in Fig. 4.6c. The mesh is clearly refined along the line θ = θm, where the

structure and the extent of the two recirculating zones should be captured, and along the vertical walls
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Chapter 4 Numerical simulation of natural convection flow in a 2D square cavity

where the heat transfer is dominated by the boundary layer transfer. Furthermore, as expected in the

relatively stagnant fluid region, a coarser mesh is applied.

A more accurate comparison is given in Fig. 4.6d. The temperature profile θ(x) along the hori-

zontal symmetry line of the cavity is in good agreement with the numerical results of Michalek and

Kowalewski (2003) obtained with FV and FD codes (FLUENT and FRECONV3V), commonly used

in the heat transfer community. Differences are visible in the vicinity of the maximum density line, re-

gion where our mesh is well refined to capture the separation line between the two recirculation zones.

It should be noted that the FLUENT simulations in Michalek and Kowalewski (2003) are performed

with a fixed uniform grid with 380× 380 nodes, while our adapted grid has only 3422 triangles.

4.3 Concluding remarks

We can conclude from sections. 4.1 and 4.2 that our Newton method is able to deal efficiently with the

two-dimensional Navier-Stokes-Boussinesq problem, either with linear or non-linear buoyancy forces.

Our simulations of natural convection of air including or not obstacles are in good agreement with the

numerical solutions of Le Queré (1991) and Moglan (2013). Excellent agreement with de Vahl Davis

(1983) and Le Queré (1991) has also been observed for the value of the average Nusselt number at the

heated wall.

The challenging case of the natural convection of water was used to demonstrate the robustness of the

2D code. Good agreement with the numerical simulations of Michalek and Kowalewski (2003) was

noticed. The advantage of the mesh adaptivity was clearly shown by using a total number of grid points

40 times lower than in the simulation of Michalek and Kowalewski (2003). The refined mesh along the

line θm have permitted to solve more accurately the structures and the extent of the two recirculating

zones.

The properties of the run presented in this chapter are summarized in Tab. 4.4 for the highest value

of the Ra number, Ra = 106. The interest of solving the steady equation, when steady state could

be reached, is clearly emphasised when regarding the number of iterations and the CPU time. 1, 164
iterations and 3162.86 CPU seconds are necessary to achieve the steady state with a tolerance of 10−6

for the natural convection of water by solving the unsteady equation, while only 20 iterations and

51.1662 CPU seconds are needed with the steady algorithm.

Case Nb of iterations Nb of triangles Nb of d.o.f. CPU time (s)

Air
unsteady 164 2, 413 16, 133 338.527
steady 6 2, 312 15, 558 14.0465

Air with obstacle
unsteady 157 3, 489 23, 354 436.405

steady 6 2, 967 19, 933 15.9369

Water
unsteady 1, 164 3, 422 22, 639 3162.86
unsteady 20 2, 960 19, 629 51.1662

Table 4.4: Description of the runs for natural convection cases with Ra = 106.

We simulate in the next chapter the melting and the solidification of a PCM. Aside from the non-

linear convection terms in the momentum and the energy Eqs. (2.12) - (2.14), a further difficulty will

arise from the non-linearity introduced by the source term ∂(CS)/∂t in Eq. (2.14).

44



5 Numerical simulations of phase

change materials in 2D

configurations

The purpose of this chapter is to validate our numerical method by simulating convective phase-change

problems. A discussion on numerical parameters is given first, followed by a sequence of validations

computing different physical and geometrical configurations.

The Newton algorithm (3.10) is now solved throughout the whole domain containing liquid and

solid phases. When compared to the previous validation, two new non-linearities are now added: the

Carman-Kozeny penalty term in the momentum equation and the enthalpy source term in the energy

equation. The Carman-Kozeny penalty term is used to ensure zero velocity in the solid region and

the enthalpy non-linear source term is included to model the phase-change in the energy equation.

Following the same idea as in the natural convection validation cases in Chapter 4, the non-linearity

in the body force is gradually added. We consider first the linear form of fB(θ) by investigating

the melting of various PCMs within several shapes of the containers. Then, the challenging case of

water freezing, characterized by a non-linear variation of the density (see Eq. (4.4) in Chapter 4), is

simulated.

Details about the parameter settings are first given in Sec. 5.1: the characteristics of the mushy-

zone, the mesh adaptivity and the initial condition are discussed in detail. Second, the melting of

n-octadecane and Gallium are presented in Secs. 5.2 and 5.3. The physical properties of n-octadecane

and Gallium used in our simulations are reported in Tab. 5.1.

ρ µ hSL cp k Tf β
kg/m3 kg/(m s) kJ/kg J/(kg K) W/(m K) K 1/K

Octadecane 774 3.9 ·10−3 244 2180 0.152 301 8.5 ·10−4

Gallium 6093 1.81 ·10−3 80.16 381.5 32 301 1.2 ·10−4

Table 5.1: Physical properties of n-octadecane and Gallium PCM.

Then, in Secs. 5.4 and 5.5 we demonstrate the capability of our code to deal with different shapes of

the domain. The melting of a cylindrical PCM with inner heated tubes is presented in Sec. 5.4 and the

solid crust formation in a highly distorted mesh is simulated in Sec. 5.5. Finally, the water freezing

case is performed in Sec. 5.6. Besides the non-linear definition of the body force, the striking feature

of the water freezing simulation is the tracking of several interfaces, namely the solidification front and

the anomalous thermal variation of density. Our result is qualitatively compared with the experimental

results of Kowalewski and Rebow (1999).
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Chapter 5 Numerical simulations of phase change material

5.1 Parameter settings

We present in this section the setting of the main numerical parameters. The influence of the penalty

term A(θ) in the momentum equation is discussed first, namely the value of the Carman-Kozeny con-

stant CCK. Second, details about the mesh adaptivity parameters are given. Finally, the initialization

process is described.

5.1.1 The Carman-Kozeny model

When a single domain method is applied, the Carman-Kozeny penalty term is used to bring to zero the

velocity in the solid region, through an intermediate mushy zone. In the mushy zone, at the leading

term, the momentum Eq. (2.13) becomes

∂u

∂t
= Au. (5.1)

with solution

u = u0 exp(At). (5.2)

Since A < 0, see Eq. (2.23), we infer that limA→∞ u = 0. It is thus expected that, when CCK is

large enough, the value of the velocity in the solid region will tend to zero. The effect of this constant

on the melting and the solidification processes has attracted some attention in the literature.

The influence of CCK in the location of the solid-liquid front was investigated by Kheirabadi and Groulx

(2015). They have concluded that high CCK values induce a slower melting rates, and conversely small

values result in unphysical predictions of the melting front evolution. They also noticed that CCK and

the melting temperature range ∆Tε = Tε2−Tε1 are dependent of one another: different values of ∆Tε

require different values of CCK to obtain the same melting front location.

Mathura and Krishna (2017) studied the effect of the mushy zone constant and its influence on the

melt fraction, vortex strength and the amount of heat storage. They have shown that increasing CCK

leads to a decrease of the convection strength and consequently to a decrease of the heat transfer rate.

These studies show the necessity of choosing an appropriate value of this parameter. Because of the

semi-solid state and porous nature of the mushy zone, the choice of the value of this constant is still an

open problem.

To assess on the influence of the Carman-Kozeny constant, we simulate the melting of a n-octadecane

PCM within a square enclosure with the following dimensionless parameters: Ra = 3.27 · 105,

Pr = 56.2 and Ste = 0.045. See Sec. 5.2 for a detailed description. Different values of CCK are

used ranging from 106 to 1020. The local liquid fraction function Lf (θ) in Eq. (2.23), is regularized

as:

Lf (θ) = 1− 1

2

{

1 + tanh

(
θf − θ

Rck

)}

. (5.3)

The value of θck is set in order to have the sharp variation of the derivative of dLf/dθ near the new

phase appearing in the system, i. e. liquid for melting (θck = ε), and solid for freezing (θck = θf )

(see also Danaila et al. (2014)). This is to ensure that the velocity in the solid region is correctly set to

u = 0.
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5.1 Parameter settings

The computed velocity in the solid phase is reported in Tab. 5.2 for different values of CCK, ranging

from 106 to 1020. Increasing the constant CCK leads to lower values of the velocity in the solid, as it

was expected. However, even though it is generally assumed that a large value for CCK must be set, the

exact value of this constant could influence the accuracy of the results.

CCK Amax usolid vsolid

106 1.62935 · 1011 −9.8058 · 10−14 −3.20216 · 10−10

1010 1.62937 · 1015 1.09832 · 10−17 −3.23176 · 10−14

1020 1.62935 · 1025 2.7011 · 10−26 −3.18493 · 10−24

Table 5.2: The influence of the constant of Carman-Kozeny on the values of the velocity in

the solid region.

We compare the location of the melting front with the experimental data of Okada (1984). Figure

5.1a displays the location of the phase-change interface for four values of CCK: 106, 1010, 1015, and

1020. Very good agreement with the experimental result of Okada (1984) is obtained for CCK = 106.

Increasing the constant CCK, results in artificially slowing the propagation of the melting front. This

behavior could be explained by the profile of the velocity U =
√

Σiu2i , plotted as a function of

temperature θ following the line y = 0.9 (Fig. 5.1b). For a value of CCK = 106, the velocity is

zero in the expected temperature interval [−0.01, 0.01], corresponding to the characteristic length of

the regularization zone Rck = ε = 0.01. However, imposing too large values of CCK, induces a larger

temperature interval in which the velocity is forced to be zero. For CCK = 1020, the velocity is canceled

up to θ = 0.1, i. e. an artificial mushy zone 10 times larger than the initial case CCK = 106.

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
ck

 = 10
6

C
ck

 = 10
10

C
ck

 = 10
15

C
ck

 = 10
20

R
ck

 = 0.01 

Okada

(a)

U

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2
(b)

Figure 5.1: Location of the interface at t = 78.7 for the melting of the PCM. (a) Computa-

tions using different values of CCK ranging from 106 to 1020 and comparison with

experimental data of Okada (1984). (b) Velocity profile following the line y = 0.9
with respect to the temperature.
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Chapter 5 Numerical simulations of phase change material

To obtain the same location of the melting front using different values of CCK, one should thus

decrease the smoothing radius parameter Rck. Several values of Rck ranging from ε to ε/4 were tested

and the results are plotted in Fig. 5.2. Decreasing Rck by a factor of 2 (Fig. 5.2 a) and 4 (Fig. 5.2

b), results in a merging of the location of the solid-liquid interface for different values of Rck. It is

however worth noting that decreasing the regularization interval Rck implies a greater mesh resolution

to solve accurately the strong gradient induced by discontinuities at the solid-liquid interface. We thus

set for all subsequent simulations CCK = 106 and Rck = ε, which corresponds to the best fit with the

experimental result of Okada (1984) and the less time-consuming configuration.
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Figure 5.2: Location of the interface at t = 78.7 for the melting of the PCM. Computations

using different values of CCK ranging from 106 to 1020 and different values of the

smoothing radius Rck: (a) Rck = ε/2, (b) Rck = ε/4.

5.1.2 Mesh adaptativity

The use of mesh adaptation proved mandatory in the present simulation of PCM melting to obtain

accurate results within reasonable computational time. For the melting case, we used five metrics

intersection to adapt the mesh, based on Sn+1, Sn, Tn+1, Tn, and u
n+1. To reduce the impact of the

interpolation on the global accuracy for time-depending problems, we consider the metrics computed

from actual (at tn+1) and previous (at tn) values, for the same variable used for adaptivity (see also

Belhamadia et al. (2004a)).

The mesh adaptation strategy requires to set the interpolation error level errh, the minimum and the

maximum edge sizes, hmin and hmax, and the adaptratio parameter, which defines the ratio for a

prescribed smoothing of the metrics. The minimum size of triangles and the interpolation error level

are set in order to capture the smaller length scale, mainly the boundary layer structure close to the

wall, and to solve accurately the large gradient at the solid-liquid interfaces. The error level is adapted

for each variable on which the metrics are computed. A default value errh = 0.02 is defined for T
and u, and errh = 0.2 for S. The scale for boundary layers in natural convection flow along a vertical

wall is given by Eq. (2.25). For high-Prandtl simulations, the thermal boundary layer is thinner than
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Figure 5.3: Adapted mesh during simulation of PCM melting. (a) 4, 211 triangles: the mesh

is refined around the melting front θ = 0 and in the fluid where velocity gradients

exist. (b) zoom showing the variation of the mesh size around the temperature

isoline θ = 0.

the viscous boundary layer, and conversely for low-Prandtl fluids the viscous boundary layer is thinner

than the thermal one. In our simulations, the values of the Rayleigh number, in the range 106 to 108,

and the Prandtl number of order of 50, lead to a dimensionless thickness of the thermal boundary layer

of order of δθ ∼ 10−3. For the same range of Rayleigh numbers and Prandtl number of order of

0.1, we obtain a dimensionless thickness of the viscous boundary layer of δν ∼ 10−2. The minimum

edge-length is therefore set to hmin = 10−3. Moreover, we fix the maximum triangle size to avoid

generating too large triangles. Mesh adaptivity is performed at each time step and offers a refined

discretization of the regularization region where sharp gradients have to be accurately captured. Figure

5.3 shows the adapted mesh during the melting of Gallium PCM in a square cavity. The mesh is

remarkably refined around the melting front (Fig 5.3b), localized by the temperature isoline θ = 0.

This is also the case in the fluid region around the convection cells, while a coarser mesh is applied

in the solid. The typical number of triangles of the generated adaptive mesh is 4, 000. Non-adapted

grids offering the same spatial resolution everywhere inside the computational domain would have

resulted in Nt = 9.94 · 1010 triangles. Consequently, mesh adaptivity greatly helps in reducing the

computational time. The mesh adaptivity capability to capture several interfaces is the striking feature

of our method. Its capability to track efficiently two solidification fronts during PCM solidification or

the density inversion interface during the water freezing will be discussed in Sec. 5.6.

5.1.3 Initialization

For the melting process, the PCM is initially solid and the temperature is set to a cold temperature θc,
below the temperature of fusion θf . However, increasing abruptly the boundary temperature to a hot

temperature θh, above the temperature of fusion, in order to initiate the melting process is numerically

complicated because of the strong temperature gradient between the wall and the PCM. A first usual

approach consists of setting a very thin fluid layer of thickness δx ∼ 0.01 with isothermal temperature
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Chapter 5 Numerical simulations of phase change material

in the vicinity of the hot wall (see Danaila et al. (2014); Belhamadia et al. (2004a)). A different

approach, is applied in the current work. The temperature at the hot wall and the Rayleigh number are

increased smoothly over a small time interval to reach the correct values of θh and Ra. This approach

has a physical significance and is more robust when high Rayleigh number simulations are performed.

Concerning the solidification stage, mainly the water freezing case, a ’hot’ and a ’cold’ restarts are

used. The first approach consists of establishing a steady state regime by solving first the steady Eq.

(3.14) and dropping then smoothly the temperature of the cold wall below the temperature of fusion.

The second approach sets directly θc below the temperature of fusion and considers initial motionless

fluid, thus inducing huge gradients near the wall, which requires very small triangles therein.

5.2 Melting of a n-octadecane PCM in a square cavity

We start the validation of our algorithm for phase-change systems by simulating the melting of n-

octadecane PCM within a differentially heated square cavity. Three cases are investigated:

• Benchmark #1: Experimental investigation by Okada (1984) of the melting of n-octadecane PCM.

• Benchmark #2: Experimental and numerical investigations by Gong et al. (2015) of the melting of a

PCM inside a transparent building brick.

• Benchmark #3: Numerical comparison with various numerical methods, presented by Bertrand et al.

(1999), for the melting of a PCM at high Ra.

The physical parameters used in our simulations are given in Tab. 5.3.

Ra Pr Ste δt Vref

n-octadecane

Bench #1 3.27 · 105 56.2 0.045 10−1

νl
H

Bench #2 2.48 · 108 50 0.072 10−3

Bench #3 108 50 0.1 10−5

Gallium 7 · 105 0.0216 0.046 10−3 νl
H

Table 5.3: Dimensionless parameters for the simulation of melting of a n-octadecane PCM.

The experimental investigation of Okada (1984) in Benchmark #1 consists of a differentially heated

square cavity of dimensions 1.5 cm × 1.5 cm. The left and the right walls are isothermal and the top

and the bottom walls are adiabatic. No-slip boundary conditions are prescribed on the velocity over

the whole ∂Ω.

To ensure that we obtain a grid-converged solution, we first perform simulations with different mesh

resolutions for Benchmark #1 by keeping the minimum edge length constant and increasing hmax from

10−2 to 10−1. A snapshot of the adapted mesh at t = 78.7 is reported in Fig. 5.4.

– Mesh #1 (Panel a): Nt = 48, 247 triangles and 314, 203 degree of freedom (d.o.f),

– Mesh #2 (Panel b): Nt = 21, 093 triangles and 143, 202 d.o.f,

– Mesh #3 (Panel c): Nt = 2, 870 triangles and 318, 974 d.o.f,

– Mesh #4 (Panel d): Nt = 820 triangles and 5, 544 d.o.f.

For all considered meshes, one can observe the refined grid at the boundary layer region near the walls,

due to the high velocity gradients, and along the interface θ = 0. Coarser mesh is applied in the

solid region. We note however that a ratio of 10 is set for hmax between Mesh #1 and Mesh #4,
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Figure 5.4: Benchmark #1. Influence of the mesh resolution on the numerical solution at

dimensionless time t = 78.7. The mesh is refined around the melting front θ = 0
and in the fluid where velocity gradients exist. Solid lines denote the solid-liquid

interface. Number of triangles: (a) 48, 247, (b) 21, 093, (c) 2, 870, (d) 820. The

location of the interface (e) and the time evolution of the Nusselt number (f) are

compared.
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Chapter 5 Numerical simulations of phase change material

resulting into a ratio of 50 for the number of d.o.f. using a P2 discretization for θ. Simulations are

performed using δt = 10−2 to ensure small time discretization errors. The location of the solid-liquid

interface and the time evolution of the Nusselt number related to each of the four adapted meshes are

compared in Figs. 5.4e and 5.4f. The maximum difference for the location of the melting front occurs

at the top of the cavity since the highest velocity is reached in this region because of the clockwise

recirculation of the flow. We also compare the position of the solid-liquid interface along x-direction

at y = 1. The coarser grid (Mesh #4) exhibits the highest gap with respect to the most refined Mesh

#1, with a relative error of 2.14% for the location of the melting front at the top of the cavity and by

overestimating the heat transfer of an order of 3.83%. For Mesh #3, in which the mesh resolution is

increased by a factor of 3 compared to the coarse mesh, differences of 0.042% and 0.039% are noticed

for both Nu and the interface position. Finally, for Mesh #2, variations lower than 0.01% are obtained.

However, since a balance between the accuracy and the computational time is sought, the subsequent

simulation are performed using the parameters of Mesh #3, summarized in Tab. 5.4. Solutions using

Mesh #3 were performed with only 2876.39 CPU seconds, while 12 CPU hours were needed for Mesh

#1.

hmin hmax adaptratio errh nbvx

10−3 0.1 1.5 0.01 50, 000

Table 5.4: Mesh adaptivity parameters used for Mesh #3.

Figure 5.5: Benchmark #1. (a) Temperature isoline at t = 78.8. (b) Location of the interface.

Comparison with experimental data of Okada (1984) and numerical solutions of

Danaila et al. (2014) and Wang et al. (2010a) for two time instants (t = 39.9 and

78.8).

We present in Fig. 5.5 the computed solution for Benchmark #1 case using Mesh #3. Panel (a)

displays the temperature distribution of the PCM at dimensionless time t = 78.7. The enclosure is

heated from the left and the melting PCM expands from the left to the right (the blue color denotes the

solid region). A non-planar shape of the phase-change interface could be observed due to effect of the

natural convection in the liquid phase. Further comprehensive descriptions of the influence of the liquid

flow on the interface will be discussed in Chapter 6. Panel (b) compares the location of the solid-liquid
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5.2 Melting of a n-octadecane PCM in a square cavity

interface with experimental investigation of Okada (1984). For two particular time instants, t = 39.9
and t = 78.7, we could compare our results to available experimental (Okada, 1984) and numerical

(Okada, 1984; Wang et al., 2010a; Danaila et al., 2014) data. In the experimental set-up, the author

reported that the top of the PCM was not perfectly insulated and consequently the growth of the upper

part of melting front was delayed. The current work agrees well with the experimental results of Okada

(1984) at the bottom part of the melting front. However, our results overestimate the location of the

front in the top part of the cavity, which could be related to the experimental heat loss mentioned by

the author. Moreover, our results are qualitatively in a better agreement with experimental data than

previously published numerical results. This is a direct consequence of the precise tracking of the

melting front achieved by the mesh adaptivity performed at each time step. Wang et al. (2010a) used

a FV code with a fixed mesh of resolution [60× 60], and Danaila et al. (2014) used a FE method with

viscosity penalty.

Figure 5.6: Benchmark #2. (a) Temperature distribution, streamlines, and solid-liquid in-

terface at dimensionless time t = 1.759. (b) Comparison of the location of the

solid-liquid interface, with both experimental and simulation results of Gong et al.

(2015), for five time instants (t = 0.153, 0.347, 0.465, 0.869, and 1.759).

Numerical results for Benchmark #2 are depicted in Fig. 5.6. Gong et al. (2015) investigated

the melting of octadecane PCM inside a transparent building brick of dimensions 15.2 cm × 3 cm.

The numerical simulation is performed using δt = 10−3 and a total runtime of 19, 231 CPU seconds

using 4, 198 triangles. Figure 5.6a illustrates the temperature distribution in the melting PCM, the

streamlines, and the phase-change interface obtained by the present finite element simulation. Panel

(b) compares the location of the melting front for five particular time instants: t = 0.153, 0.347, 0.465,

0.869, and 1.759, with numerical and experimental data by Gong et al. (2015). Their numerical simu-

lations were based on the thermal lattice Boltzmann method (TLBM), in which the natural convection

was solved by LBM and the temperature equation was solved by a finite difference scheme using the

enthalpy method. The difficulty here, compared to the first validation case, is the presence of a stronger
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Chapter 5 Numerical simulations of phase change material

natural convection flow in the fluid due to the higher value of the Rayleigh number. We notice a very

good agreement with both numerical and experimental data of Gong et al. (2015).

A last validation case for the n-octadecane PCM is also investigated to test the robustness of the

method. Bertrand et al. (1999) compiled results provided by five different authors (Lacroix, Le Quéré,

Gobin-Vieira, Delannoy and Binnet-Lacroix). Results provided by these authors will be hereafter re-

ferred to as (say) ’Lacroix, from Bertrand et al. (1999)’. They attempted a first comparison by taking

several numerical methods to compute the basic configuration presented in this section. Two investi-

gators among the five failed to predict the process and showed unrealistic behaviors (see Figs. 5.7 and

5.8): Lacroix and Delannoy seem to be insufficiently converged (Fig. 5.7), and Binet-Lacroix over-

estimates the average Nusselt number by more than 30% (Fig. 5.8). Hence, this collection of results

allows us to compare our numerical method and check whether or not realistic results are obtained for

complex physical configurations.
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Figure 5.7: Benchmark #3. Location of the solid-liquid interface at dimensionless time (pan-

els a to d) t = 0.25, t = 1, t = 3, and t = 5, compared with five simulations

presented by Bertrand et al. (1999).

We inspect the melting front position (Fig. 5.7), the temporal evolution of the liquid fraction Lf and

the Nusselt number Nu at the left wall (x = 0) (Fig. 5.8), for each of the five results presented by

Bertrand et al. (1999). For the liquid fraction, the initial solid state corresponds to Lf = 0, while

54



5.3 Melting of Gallium in a rectangular cavity

Lf = 1 indicates the complete melting of the PCM. The phase-change interface position for four time

steps, t = 0.25, t = 1, t = 3 and t = 5 is represented in Fig. 5.7. Our results are for each case in fairly

good agreement with those of Gobin and those of Le Quéré. Gobin used a front-tracking method using

a coordinate transformation with a finite volume method with a 62× 42 grid. Le Quéré solved a single

domain model using a second order scheme with a finite volume method with a 192× 192 grid (Gobin

and Le Quéré (2000)). The time evolution of the liquid fraction and the Nusselt number are plotted

in Fig. 5.8. A very good agreement is obtained with Gobin and Le Quéré. A relative difference, less

than 2% is noticed for the Nusselt number, and a dispersion, smaller than 4%, for the melted fraction.

The high value of the Rayleigh number, Ra = 108, results in a very demanding numerical test. The

high velocity, inducing a very narrow thermal boundary layer can lead to unrealistic results and some

numerical methods have failed. The interest of the mesh adaptation is clearly evidenced since a typical

number of triangles of Nt = 7, 000 was used during the simulation, which required 40, 522 CPU

seconds.

t

L
f

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5 Our Simulation
Binet-Lacroix
Lacroix
Le Quéré
Gobin - Vieira
Delannoy

(a)

t

N
u

1 2 3 4 5
20

25

30

35

40

45

50
(b)

Figure 5.8: Benchmark #3: Ra = 2 · 108, Pr = 50 and Ste = 0.1. Time evolution of the

liquid fraction (a) and the Nusselt number (b). Comparison with five simulations

presented by Bertrand et al. (1999).

5.3 Melting of Gallium in a rectangular cavity

The melting of tin or Gallium in a rectangular cavity, which corresponds to low-Prandtl fluids, was

a controversial case since Dantzig (1989) raised the question whether the convection in the fluid is

mono-cellular or multi-cellular. The experimental result exhibits indeed a mono-cellular structure,

while many researchers claim this observation to be incorrect. Prior to Dantzig (1989) note, both

experimental and numerical results supported a single cell solution in the fluid phase. Later, simulations

provided solutions with multicellular flow. During the comparison exercise investigated by Bertrand

et al. (1999), Le Quéré and Couturier-Sadat have predicted a different shape of the front corresponding

to low-Prandtl simulation, induced by the multi-cellular structures of the flow in the melted PCM.

Le Quéré and Gobin (1999) showed that the multi-cellular structures result from the hydrodynamic

instabilities during the conduction regime before the onset of convection. Moreover, the numerical

investigation of Hannoun et al. (2003), testing the influence of the mesh resolution and the numerical

method’s order, indicates clearly that mono-cellular observation is caused by a problem of convergence

of the numerical solution. It can be due to the grid size or inconsistencies in the mathematical model.
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Therefore, this test case simulating the melting of Gallium is a relevant exercice to test the consistency

of our method. To capture the very small cell during the first step of the melting, Hannoun et al. (2003)

used a 800× 1, 120 fixed grid in a rectangular domain of dimensions 6.35 cm × 8.89 cm. The authors

have reported that the melting solution up to 32 s required about 980 CPU hours on a Compaq Alpha

(667 MHz, ev67) processor. A maximum of 4, 820 triangles were necessary with our adaptive method,

and only 4 CPU hours were spent to reproduce the numerical result of Hannoun et al. (2003) up to the

final time 280s, on an Intel (2.8 GHz, Core i7) processor.

The time evolution of the flow is presented in Fig. 5.9. The enclosure is heated from the left

(vertical) wall and the horizontal walls are adiabatic and no-slip. Dimensionless parameters of the run

and properties of Gallium are given in Tabs. 5.1 and 5.3. Temperature field, streamlines and position

of the melting front are displayed for several time instants: t = 0.0015, 0.006, 0.01, and 0.019. These

values were chosen to visualize the merging of convection cells in the fluid flow and correspond to

physical times 20s, 85s, 155s, 280s in Hannoun et al. (2003). The number of rolls was considered as a

validation criterion by several authors (Hannoun et al., 2003; Cerimele et al., 2002; Giangi and Stella,

2000). Three cells are observed at t = 0.006 (Fig. 5.9). The number of cells decreases later through

a process of roll merging, as it was also reported by Le Quéré and Gobin (1999) and Hannoun et al.

(2003). Our numerical results are in good agreement with the observations of Hannoun et al. (2003),

Cerimele et al. (2002) and Giangi and Stella (2000). The adapted mesh corresponding to t = 0.019
is illustrated in Fig. 5.9e. The mesh is well refined along the isoline θ = 0 denoting the solid-liquid

interface, and around the convective cells.

The time evolution of the Nusselt number at the heated vertical wall is plotted in Fig. 5.9f. One can

note that the quasi-steady evolution of Nu, observed in Fig. 5.8 for high-Prandtl fluid simulations, is

not recovered. This is in agreement with the stability analysis of Le Quéré and Gobin (1999), showing

that the Nusselt number becomes unsteady starting from a critical time, for Rayleigh numbers greater

than 105 and low-Prandtl numbers, while no instability could be found whatever the value of Ra for

high-Pr cases. The first slight oscillation at the earlier time steps corresponds to the onset of the

convective flow induced by the first instability of the conductive regime. It is followed by a nearly

constant evolution of Nu from t = 0.01 to t = 0.02 during the cell-merging process. High oscillations

of the heat transfer are then observed, which is a feature of the onset of the second oscillatory instability.

A zoom on the periodic evolution of the Nusselt number is displayed in Panel (f). Finally, the amount

of heat transfer decreases starting with t = 0.13, when the front reaches the cold (right) vertical wall.

5.4 Melting of a cylindrical PCM with inner heated

tubes

Cases presented in Secs. 5.3 and 5.2 considered phase change problems evolving in a simple geometry,

a rectangular box. A more complex geometry, suggested by Luo et al. (2015), is simulated in this

section. It consists of a cylindrical PCM of radius R = 1 with tube inclusions of different arrangements.

The interest in studying this case is not solely the challenge of the complex configuration, but also the

possibility to compare our results with those of Luo et al. (2015), obtained using a completely different

model based on the Lattice Boltzmann Method. This configuration is also interesting from a practical

point of view. Agyenim et al. (2010) pointed out that more than 70% of the PCM containers used for

heat storage are using shell-tube systems.

We simulate three cases with one heated tube, four heated tubes, and nine heated tubes with the

same total tube area. For the one heated tube case, the radius Ri of the inner tube is one-quarter of
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Figure 5.9: Melting of Gallium: temperature field, streamlines, and melting front for dimen-

sionless time instants (panels a to d): t = 0.0015, 0.006, 0.01, and 0.019. Adapted

mesh corresponding to t = 0.019 (e). Time evolution of the Nusselt number (f).

For a better view of the convection cells, a ratio 2 : 1 was used for the axes.
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the outer radius (Ri = R/4), for four heated tubes Ri = R/8 and for nine heated tubes Ri = R/12.

A Dirichlet boundary condition is applied to inner tubes θ = θh, and a Neumann boundary condition
∂θ
∂n = 0 is used at the outers. Homogenous Dirichlet boundary conditions (u = 0) are prescribed on

the velocity throughout all ∂Ω. The physical parameters of the simulation are: Ra = 5 ·104, Pr = 0.2
and Ste = 0.02. Only the half of the domain is simulated since the problem is axisymmetric for the

investigated Ra number. At t = 0, the PCM is completely solid with isothermal temperature θ0 lower

than the temperature of fusion. Immediately after the pipe placed on the center of the enclosure is

heated, the melted layer expands in the radial direction. The mesh is refined initially around inner

tubes, and is dynamically adapted at each time step around the melting front and the thermal boundary

layer area.

Figure 5.10: Temperature fields for the melting of a cylindrical PCM with inner heated tubes.

Time instants corresponding to the same liquid fraction Lf = 80%. Configura-

tions with (a) one tube (t = 2.5), (b) four tubes (t = 0.99) and (c) nine tubes

(t = 0.4). Melting fronts are represented with black lines (only half of the do-

main is simulated).

Figure 5.10 shows the temperature field and the position of the solid-liquid interface (black line)

related to the three configurations for time instants corresponding to the same liquid fraction Lf =
80%. The distribution of the inner tubes in the liquid phase influences directly the fluid motion and the

shape of the melting front. The more the number of inner tubes, the stronger the natural convection is

in the melted PCM. The shape of the solid-liquid interface displays complex patterns, depending on

the space arrangement of the inner tubes. This is linked to the effect of the fluid motion in the presence

of obstacles, as it was also noticed in Sec. 4.2. The mesh is adapted following the evolution of the

melting interface, even after its separation in several distinct fronts touching the outer boundary (see

Figs. 5.10b, c).

To estimate the efficiency of each configuration, we plot in Fig. 5.11 the time evolution of the

liquid fraction Lf . By including more heated tubes, the heat transfer is enhanced, inducing a faster
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5.5 Solid crust formation in a highly distorted mesh

melting time. The nine-tube configuration melts 5 times faster than the reference configuration with

one tube. A reasonably close match with numerical results of Luo et al. (2015) is confirmed in Fig.

5.11a. We also assess on the effect of tubes arrangements for a fixed number of tubes. Three arrange-

ments are simulated with 9 tubes and reported in Fig. 5.11b: central symmetry, inline, and staggered

arrangements. The arrangement with central symmetry appears to provide a better heat transfer com-

pared to the others. The inline and the staggered arrangements exhibit similar trends, with a slightly

faster melting rate than the inline arrangement. The difference is explained by Luo et al. (2015) by the

contribution of conductive heat transfer induced by the arrangements.

t

L
f

0 0.5 1 1.5 2 2.5 3
0

0.3

0.6

0.9

One Tube

One tube - Luo

Four Tubes

Four tubes - Luo

Nine Tubes

Nine Tubes - Luo

(a)

t

L
f

0.2 0.4 0.6

0.2

0.4

0.6

0.8

1

Centrosymmetric

Staggered

Inline

(b)

Figure 5.11: Time evolution of the liquid fraction for one, four, and nine heated tubes. (a)

Comparison with numerical results of Luo et al. (2015) (b) comparison of differ-

ent arrangements: central symmetry, inline, and staggered.

5.5 Solid crust formation in a highly distorted mesh

The solid crust formation inside a highly distorted domain, simulated by Nourgaliev et al. (2016) is

considered in this section. Our emphasis here is on the ability of our method to tackle also solidification

problems, especially in irregular domain (see Fig. 5.12).

The fluid is initially motionless with an initial dimensionless temperature θ0 = 2, above the tem-

perature of fusion. The temperature of fusion is set to θf = 1.4, according to Nourgaliev et al. (2016)

parameters. It is worth noting that Nourgaliev et al. (2016) used Tref 6= Tf thus θf 6= 0. The left side

is set at cold temperature θc = 1.39 in the initial stage while the right wall was kept constant at a hot

temperature θh = 2, so that a steady-state natural circulation should be established. The cold temper-

ature at the left wall is then dropped smoothly to θc = 1, below the temperature of fusion, starting the

formation of a solid crust layer. The top and bottom walls are adiabatic.

The dimensionless parameters of the simulation are: Ra = 1 ·106, Pr = 0.1 and Ste = 4.854. The

scaling (4.2), which was also used by Nourgaliev et al. (2016), is used in the current simulation.
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The temperature distribution, the streamlines, and the melting front position are reported in Fig.

5.12a and compared with the numerical results of Nourgaliev et al. (2016). These authors used a

second-order discontinuous Galerkin finite element method and a viscosity-based technique to bring

the velocity to zero in the solid region. We are qualitatively in good agreement with Nourgaliev et al.

(2016). As expected, the high Ra and Ste dimensionless numbers, combined with the distorted do-

main, generate a complex vortical flow pattern in the melted PCM. Nourgaliev et al. (2016) presented

a mesh convergence analysis and concluded that a 512 × 256 mesh resolution is needed to get a full

resolution of the five vortical structures in Fig. 5.12b. Only 2, 769 triangles are used in the present

simulation. This case illustrates again the capabilities of our mesh adaptivity algorithm.

Figure 5.12: Solid crust formation in a distorted mesh. Temperature field and streamlines in

our simulation (a) and Nourgaliev et al. (2016) (b).

5.6 Water freezing

We finally consider the difficult case of water freezing in a square cavity. After achieving the convection

steady pattern in the cavity (see Fig. 4.6), freezing starts by dropping progressively the temperature of

the cold (right) wall from Tc = 0 ◦C to Tc = −10 ◦C. The dimensionless parameters describing the

problem are: Ra = 2.518084 · 106, Pr = 6.99 and Ste = 0.125.

Besides the complex fluid flow and the non-linear time evolution of the solid-liquid interface, the

code have to handle the non-linear variation of the density presented in Eq. (4.4). Moreover, one can

note that in addition to the non-linear formulation of fB(θ) in Eq. (4.5), the coefficient Ra× 1/(βδT )
is very large since the Boussinesq approximation imposes a value of βδT ≪ 1. Since the assumption

of constant conductivity is not accurate in the frame of water phase-change, K(θ) is regularized as:

K(T ) = 1 +
1

2

(
ks
kl

− 1

){

1 + tanh

(
Tf − T

Rk

)}

, (5.4)

with ks = 2.26 and kl = 0.578 and Rk = 0.0075. We also define ε1 = 0 and ε2 = 0.0075, to ensure a

very thin mushy zone (see also Danaila et al. (2014)).
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Figure 5.13a superimposes the experimental image from Kowalewski and Rebow (1999) with our

numerical results for the same physical time tϕ = 2340[s]. The flow pattern in the liquid phase also

corresponds very well qualitatively to the experimental image. Since a good agreement with the experi-

ment was sought, the simulation was performed with very small time steps (δt = 10−5 ≈ 0.014[s]), but

still reasonable grids (2, 500 triangles) were generated due to the efficiency of the adaptivity algorithm.

The discrepancy between the experimental interface and the current simulation comes principally from

the model, which neglects the three-dimensional effects, the supercooling of water and realistic bound-

ary conditions (see Giangi et al. (2000); Kowalewski and Rebow (1999); Michalek and Kowalewski

(2003)).

Figure 5.13: Freezing of pure water. Configuration at physical time tϕ = 2340[s] (t = 1.61):

(a) experimental image from Kowalewski and Rebow (1999); the thick red line

represents the solid-liquid interface computed with the present method, (b) com-

puted streamlines showing the two recirculating zones in the fluid phase, (c)

finite-element mesh refined along the solid-liquid interface (T = 0oC) and also

along the line of maximum water density (T = 4oC) (d) location of the solidifi-

cation front for several time instants: from t = 0.05 (corresponding to physical

time tϕ = 70[s]) to t = 1.61 (2340[s])
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The source term S(θ) is added to the metrics calculation presented in Sec. 4.2 to track the solid-

ification front. The mesh is thus refined along the line θm through the function Φ(θ) defined in Eq.

(4.7), the solid-liquid interface defined by θ = 0 and in the boundary layer regions. We use both

Φ(θn) and Φ(θn+1) and S(θn) and S(θn+1) in the adaptivity procedure. The final mesh is displayed

in Fig. 5.13c, clearly showing that the mesh is refined along the line θ = θm and the solid-liquid

interface (θ = 0). This allows to accurately capture the structure and the extent of the two recirculating

zones, features that are difficult to obtain with fixed meshes (see discrepancies described in Giangi

et al. (2000); Kowalewski and Rebow (1999); Michalek and Kowalewski (2003)).

The time evolution of the solid-liquid interface is depicted in Fig. 5.13d for several time instants

from t = 0.05 (tϕ = 70[s]) to final time t = 1.61 (2340[s]). We observe first a straight shape of the

front from t = 0 to t = 0.05. Then, the top and bottom of the freezing front move at different rates

from t = 0.3 due to the competing effects of positive and negative buoyancy forces in the liquid water.

The upper clockwise circulation has indeed the task to transport the hot liquid to the top wall and back

along the extremum of the density variation (localized at the temperature isoline θ = θm), and slows

down consequently the growth of the solid layer. In the same time, the abnormal recirculation traps the

cold liquid water at the bottom part of the cavity, enhancing thus the solidification rate at this region as

one can note in Fig. 5.13d.

5.7 Concluding remarks

In this chapter, we demonstrated the capability of our numerical method to produce highly accurate

solutions of difficult multiphysics problems on several geometrical configurations. The complexity of

the problem comes from the non-linear time evolution of the solid-liquid interface that could be highly

deformed by the strong convection flow in the fluid phase. Linear and non-linear expressions of the

buoyancy force were investigated.

For a linear Boussinesq force fB , melting of pure paraffin (n-octadecane) and metal (Gallium) were

simulated in a rectangular cavity heated from the side. The choice of these materials is motivated by

their physical properties relatively equal in both solid and liquid phases, and the existence of many nu-

merical and experimental investigations in the literature. Differences between the time evolution of the

heat transfer for high and low Pr configurations were investigated. Comparisons with existing bench-

marks showed for each case a very good agreement. The unsteadiness of the flow for the Gallium was

observed in our simulations by showing multi-cellular structure of the liquid flow and the high oscil-

lating time evolution of the Nusselt number. The performance of the sequential code was also proven

by simulating complex geometrical configurations. The melting of a cylindrical PCM including inner

heated pipes and the solidification of a liquid PCM inside a distorted cavity showed good agreement

with existing numerical data.
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5.7 Concluding remarks

The total CPU time and the typical number of triangles corresponding to each PCM cases are sum-

marized in Tab. 5.5. Noticeable is the fact that less than 2 CPU hours are necessary for most of the

simulations, even when a sequential algorithm is used. The interest and the power of mesh adaptivity

was highlighted by the simulation of the melting of the Gallium, since only 4 CPU hours are necessary

to perform this case, while 980 CPU hours were reported by Hannoun et al. (2003) using a fixed-grid

algorithm.

Case CPU time (s) Number of triangles

N-octadecane

Bench #1 2876.39 2, 900
Bench #2 19231 4, 198
Bench #3 40522.7 7, 000

Gallium 14621.2 4, 820
Cylindrical PCM 2060.42 3, 076

Highly distorted PCM 6657.58 2, 769

Table 5.5: Summary of simulations for the melting PCM: number of triangles and CPU times.

A non-linear expression of fB was considered for the solidification of pure water. Besides the high Ra
and Ste considered in our simulations, the efficiency of the mesh adaptivity was demonstrated by its

capability to track simultaneously the interface θ = θf and the line θ = θm separating the two recircu-

lating liquid regions. Qualitative comparison with the experimental image exhibited good agreement.

The vortical structures in the liquid water were accurately captured and the density inversion interface

was precisely solved.

A more comprehensive description of the melting process will be presented in the next chapter. Nu-

merical and analytical tools will be developped to analyse and compare the melting of PCM heated

either from the side or from below.
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6 Numerical comparison of basal and

lateral melting of a phase change

material
We performed extensive validations of our numerical method in Chapters 4 and 5. Very good agree-

ments were obtained for all validation tests against well-known benchmark cases. The robustness of

the algorithm was proven by simulating challenging configurations. We now use the code as an in-

vestigation tool to analyse the phase-change process during the melting stage. We consider a square

cavity of height H filled with n-octadecane PCM and pay a closer attention to the temporal evolution of

different physical parameters of the system. Two classes of convective melting systems are of interest

in this chapter: (i) lateral melting (LM) or (ii) basal melting (BM). As far as (i) is concerned, the PCM

is subject to heating from the left side of the cavity, whereas for BM case the PCM is heated from

the bottom generating a top melting boundary. The comparison of both cases is interesting since the

dynamics of the melting is known to be fundamentally different for each of the two cases. The investi-

gated configuration, the shape of the interface and the streamlines in the liquid phase are illustrated in

Fig. 6.1. LM case (top) exhibits a mono cellular pattern while Rayleigh-Bénard-like convection cells

are observed in the BM case (bottom).
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Figure 6.1: Comparison between lateral (LM) and basal melting (BM). Sketch of the compu-

tational domain and boundary conditions for LM (top) and BM (bottom) cases.

Streamlines (panels b and d) and solid-liquid interfaces (solid red lines).
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Chapter 6 Numerical comparison of basal and lateral melting of a phase change material

LM case could be representative for building applications, solar collectors or other thermal energy

storage systems. In the frame of building applications, bricks made of PCM melt because of differences

between outdoor and indoor temperatures and store the energy in the form of latent heat. Barreneche

et al. (2016) showed that a wall made of PCMs reduces the temperature peak of about 20%. With regard

to LM configurations, analytical investigation of Bejan (1989) and scaling analysis of Jany and Bejan

(1988) permitted to describe the heat transfer during the melting by the mean of Nu-Ra correlation.

Their approach will be used in the present work. The BM case refers to passive temperature control for

electronic devices or for a long list of geophysical problems, such as lava lakes, thermal convection in

magma chambers, or ice-melt lakes. In contrast with LM case, notwithstanding linear and weakly non-

linear instability analysis based on a vanishingly small Stefan number assumption (Vasil and Proctor,

2011), exact theoretical expressions of Nu and Lf are not available during the convective regime

because of the important non-linearities in the dynamics. Some comparisons with theory (Malkus,

1954; Grossmann and Lohse, 2000) made in the frame of Rayleigh-Bénard convection flow have been

however carried out (Esfahani et al., 2018; Madruga and Curbelo, 2018; Favier et al., 2019). In this

work, we develop a scale analysis for the so-called ’linear regime’, which occurs between the onset of

convective and oscillating flows.

In this chapter, we offer a comprehensive comparison between LM and BM configurations. We

analyse first the time evolution of the LM process through a scale analysis in Sec. 6.1. Second, the BM

case is studied in Sec. 6.2 with theoretical descriptions of the heat transfer involved during the melting.

Finally, a comparison between the two cases is presented in Sec. 6.3 where we suggest some practical

applications based on our analysis.

6.1 Lateral melting of n-octadecane PCM. Case LM.

We consider the physical properties of n-octadecane given in Tab. 5.1 and investigate different heights

H of the cavity and different values of δT , to assess on the influence of the Ra number. The numerical

configuration is sketched in Fig. 6.1a. Ra numbers ranging from 3.27·105 to 3.27·106 are investigated.

We note that for the range of interest for Ra and Ste numbers, the assumption that (β × δT ) ≪ 0.01
for the Boussinesq approximation is satisfied. A second dimensionless time τ related to the analytical

correlation of Jany and Bejan (1988) is introduced:

τ = Ste×Fo = Ste× αtϕ
H2

=
Ste
Pr

× t, (6.1)

where Fo is the Fourier number.

6.1.1 Analysis of the time evolution of the melting process

We start by describing the time evolution of the melting process for the lowest value of the Stefan and

Rayleigh numbers, i. e. Ste = 0.045 and Ra = 3.27 · 105. We are interested in a slow melting of the

PCM to capture the transitions between the regimes described by Jany and Bejan (1988), mainly the

onset of the convective regime.

At τ = 0, the material is solid and the initial temperature is set to θ0 = −0.01 everywhere inside the

cavity. Then, the temperature of the left wall is progressively increased to θh = 1, while the right wall

is maintained at the same cold temperature θc = −0.01. The material starts to melt, with a melting

front (identified by the iso-line θ = θf = 0) propagating from the left to the right side of the domain.

Snapshots of the time evolution of the phase-change system are given in Fig. 6.2 for representative
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6.1 Lateral melting of n-octadecane PCM. Case LM.

Figure 6.2: Temperature iso-lines, streamlines in the fluid phase, and phase-change in-

terface. The solid part is represented in blue and corresponds to the re-

gion of temperature θ ≤ θf = 0. Time instants (panels a to f): τ =
0.004; 0.016; 0.032; 0.063; 0.08; 0.2. Ra = 3.27 · 105, Pr = 56.2 and Ste =
0.045.
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Chapter 6 Numerical comparison of basal and lateral melting of a phase change material

time instants. Panels (a) to (f) depict the flow streamline showing the clockwise recirculation of the

fluid, the melting front, and the temperature distribution (the solid phase is denoted by the blue region).

We can easily identify three different regimes describing the time evolution of the melting process.

• From τ = 0 to τ = 0.004 (Fig. 6.2a), we note the vertical shape of the melting front, well

predicted by the classical conduction model of Stefan (1891). This indicates that, at this stage,

heat transfer is dominated solely by conduction.

• Between τ = 0.016 to τ = 0.032 (Fig. 6.2b), the natural convection in the fluid phase starts to

alter the shape of the melting front. A mixed conduction and convection regimes rule the heat

transfer. Convective flow mainly affects the upper part of the fluid motion, while conduction is

still dominating in the lower part. As the volume thermal expansion coefficient β is positive,

we expect a clockwise circulation of the liquid inside the convection cell, as noted by Jany and

Bejan (1988). This also makes the liquid-solid interface to move faster at the top of the cavity,

explaining the deformed shape of the melting front, which is a signature of the convection effects

(see also Kowalewski and Gobin (2004)).

• After τ = 0.032 (Fig. 6.2c-d), natural convection dominates the heat transfer process and im-

pacts radically the solid-liquid interface shape and motion. The melting front line exhibits four

distinct regions characterized by different slopes with respect to the vertical axis. The largest

slope is observed at the top of the cavity and is related to the particular shape of the convection

cell. Note that top and bottom parts of the interface are normal to the cavity boundaries because

of the imposed adiabatic boundary conditions.

• After τ = 0.08 the melting front is nearly touching the right wall of the cavity, firstly at the

top (Fig. 6.2e) of the cavity. The melting process continues and the fluid progressively fills the

cavity, with a melting front deforming to a vertical line. The simulation of the melting process

is stopped at τ = 0.2 (Fig. 6.2f), when it is numerically difficult to separate the melting front

from the right wall boundary. At this time instant, the fluid fraction reaches the value of 0.95
and the melting of the PCM is considered to be complete, even though a small region of solid

PCM remains at the lower right bottom of the cavity. Note from Fig. 6.2f the existence in the

fluid of two recirculating zones instead of a single one observed during previous stages.

6.1.2 Scale analysis of the melting

We further analyse each of the three regimes cited previously and identify the proper scales of the

phenomenon. The (dimensionless) location of the interface will be denoted by Γi. Immediately after

the melting starts (see Fig. 6.2a), the melted PCM occupies a thin enclosure of height H and width Γi.

In this configuration, the temperature varies linearly between the two sidewalls and the heat transfer

is essentially ruled by conduction. The fluid phase is almost motionless and the horizontal heat fluxes

across the incipient melting PCM is balanced by the enthalpy absorbed at the interface. At the solid-

liquid interface, the energy balance condition which takes into account the released latent heat and the

discontinuity of heat fluxes between the solid and the liquid can be expressed by the following Stefan

condition:

θ(x = Γi) = θf = 0, (6.2)

∂Γi

∂t
= −Ste

Pr

∂θ

∂x
.

Since the temperature field during the conduction regime is quasi-steady, Eq. (6.2) which is linear
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6.1 Lateral melting of n-octadecane PCM. Case LM.

could be approximated by

∂Γi

∂t
≈ −Ste

Pr

θf − θh
Γi

≈ Ste
Pr

1

Γi
. (6.3)

The location Γi of the interface is consequently given by

Γi =

√

2× Ste
Pr

t =
√
2τ . (6.4)

Moreover, the Nusselt number can be evaluated using the same assumption:

Nu =

∫ 1

0

∂θ

∂x

∣
∣
∣
∣
x=0

dy =
1

Γi
= (2τ)−1/2. (6.5)

To summarize, during the very first stage of the melting, when the heat transfer is led by conduction,

the time evolution of the liquid fraction (depending on the location of the interface) and the Nusselt

number could be approximated as:

Lf ∼ (2τ)1/2, (6.6)

Nu ∼ (2τ)−1/2. (6.7)

While the melting continues to expand to the right side of the domain, a natural convection flow

emerges from the top of the cavity since we have a clockwise recirculation of the flow in the liquid

phase (see Fig. 6.3). Turning back to the energy Eq. (2.14) in the liquid phase (i. e. C = K = 1), three

distinct effects could be identified:

δθ

t
︸︷︷︸

Inertia

, v
δθ

H
︸︷︷︸

Convection

,
δθ

Γ2
i

︸︷︷︸

Conduction

. (6.8)

As t increases, the inertia decreases while the convection effect increases since it is proportional to v.

The conduction becomes more and more negligible with the increasing value of Γi with time. Jany

and Bejan (1988) described the convective heat transfer contributing during this regime by defining a

Rayleigh number based on y∗ as Ray∗ = Ra × y∗3, with y∗ the height of the melted zone altered by

the convection flow as shown in Fig. 6.3. At the bottom part of the cavity, the interface remains vertical

by the effect of the conductive heat transfer. The total Nusselt number during the mixed conduction-

convection regime could be therefore approximated by (Jany and Bejan, 1988):

Nu ∼ (2τ)−1/2 + (2τ)3/2 ×Ra. (6.9)

Equation (6.9) indicates that the contribution of the conduction
(
∼ 1/

√
2τ

)
decreases with the time

while the convection contribution is increasing.

Finally, when the natural convection flow is fully developed and dominates the heat transfer along

the vertical heated wall, using the correlation of Bejan (2013), the dimensionless thickness of thermal

boundary layer is δθ ∼ Ra1/4 (see also Jany and Bejan (1988)) and therefore the Nusselt number

scales as:

Nu ∼ Ra1/4. (6.10)

69



Chapter 6 Numerical comparison of basal and lateral melting of a phase change material

x

y

0 1

1

i

y
*

SOLID

H

Figure 6.3: Illustration of the mixed regime by Jany and Bejan (1988). Solid red line is the

solid-liquid interface, Γi represents the location of the interface and y∗ denotes the

height of fluid impacted by the emerging convective flow.

Jany and Bejan (1988) have proposed a more general single correlation, combining the regimes de-

scribed previously:

Nu(τ) =
1√
2τ

+

[

c1Ra1/4 − 1√
2τ

] [

1 +
(

c2Ra3/4τ3/2
)n]1/n

. (6.11)

The values of the constants were fitted from numerical data: c1 = 0.27, c2 = 0.0275, and n = −2.

Okada (1984) has also suggested from his experimental data the following correlation for Nu:

Nu =







1√
2τ

, if τ ≤ τt,

1√
2τt

{1 + C(τ − τt)} , if τ > τt,

c1Ra0.266, otherwise,

(6.12)

with the constant c1 = 0.234 and the exponent 0.266 fitted from experimental data, and τt the transition

time from conduction to convection as discussed previously.

Predictions of Eqs. (6.12) and (6.11) are compared with our numerical results in Fig. 6.4 showing

the time evolution of the Nusselt number at the left wall. Our results perfectly fit with the theoretical

prediction of Jany and Bejan (1988) and are also in good agreement with the experimental correlation

of Okada (1984). The gap between the current simulation and the results of Okada (1984) could be ex-

plained by the experimental heat loss mentioned by the author and the uncertainties of the experimental

measurements. The regimes described by the shape of the interface in Sec. 6.1.1 could be followed in

the temporal evolution of Nu:

1. The pure conduction regime (Nu ∼ (2τ)−1/2) for τ & 0 to τ ∼ Ra−1/2 = 0.02 (corre-

sponding to Fig. 6.2a). Since the temperature gradient has initially huge values because of the

increase of the temperature of the left wall, the Nusselt number rapidly decreases during the first
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Figure 6.4: Complete melting of the PCM. Time evolution of the average Nusselt number

defined at the hot (left) wall (cf. Eq. (2.24)) (solid line). Comparison with the

experimental results of Okada (1984) (dashed line) and the predictions using the

correlation in Eq. (6.11) suggested by Jany and Bejan (1988) (dash-dot line).

Ra = 3.27 · 105, Pr = 56.2 and Ste = 0.045.

stage of the flow evolution. The signature of this conduction regime is the slow heat transfer

characterized by a monotonic decrease of the Nusselt number.

2. The mixed conduction-convection regime (Nu ∼ τ−1/2 + Ra τ3/2) for 0.02 ≤ τ ≤ 0.05
(illustrated in Fig. 6.2b).

3. The convection dominated regime (Nu ∼ Ra1/4) for τ > Ra−1/2 (corresponding to Figs.

6.2c-e). The plateau at the value of Ra1/4 corresponds to the pure convective transfer and is

observed in Fig. 6.4 for 0.05 ≤ τ ≤ 0.1. Numerical results show a slight decrease of Nu in

the final stage (τ ≥ 0.1), when the melting front starts to touch the right wall of the cavity (see

Figs. 6.2e-f). The correlation model is not valid for this late evolution of the melting process.

Another important basic quantity describing the melting process is the liquid fraction Lf . The

time evolution of the liquid fraction (Fig. 6.5a) displays three regimes during the melting process.

Lf initially grows as τ1/2, which is a typical law for a conduction-dominated heat transfer. Then, a

linear temporal evolution is observed, until the melting front reaches the right wall. This linear regime

corresponds to the quasi-steady state observed in the evolution of the Nusselt number (Fig. 6.4).

Using the asymptotic limits of Eq. (6.11) for τ → 0 (pure conduction) and τ → ∞ (pure convection),

Jany and Bejan (1988) suggested the following correlation law for the time evolution of the liquid

fraction:

Lf (τ) =

[(√
2τ

)5
+

(

c1Ra1/4τ
)5

]1/5

, (6.13)

where c1 = 0.27 is the same constant as in Eq. (6.11). We compare in Fig. 6.5b our numerical results

with the predictions based on Eq. (6.13) within the validity domain of the analysis, i. e. before the

melting front reaches the right wall of the cavity. A very good agreement is found with theoretical

predictions and also with previously published numerical results (Wang et al., 2010a).
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Figure 6.5: Complete melting of the PCM. (a) Time evolution of the liquid fraction for the

complete melting of the PCM. (b) Comparison of our results (solid line) with the

numerical results of Wang et al. (2010a) (dashed line) and the predictions using

the correlation (6.13) suggested by Jany and Bejan (1988) (dash-dot line).

6.1.3 Influence of the Rayleigh number

To investigate the influence of the Rayleigh number on the evolution of the melting process, we per-

formed different simulations by multiplying the initial value of Ra = 3.27 · 105 by a factor of 5 and

10, respectively. The exact values are: Ra = 1.62 · 106 and Ra = 3.27 · 106. First, we increase the

height H of the cavity by a factor of
3
√
5 and

3
√
10 and consider the same δT . Thus the Ste number is

kept constant. Second, we increase the temperature difference parameter δT by keeping H constant.

It corresponds to an increased value of the Stefan number by a factor of 5 and 10: Ste = 0.223 and

Ste = 0.45.

Figure 6.6: PCM melting at Lf = 0.5. Illustration of the temperature field, streamlines, and

melting front for three Ra numbers: (a) Ra = 3.27 · 105 , (b) Ra = 1.62 · 106,

and (c) Ra = 3.27 · 106. The Pr and Ste numbers are kept constant: Pr = 56.2
and Ste = 0.045.

Snapshots of numerical solutions for Ra = 3.27 · 105, Ra = 1.62 · 106 and Ra = 3.27 · 106 at

constant Ste number are shown in Fig. 6.6. The colours correspond to the temperature distribution,

the black lines correspond to streamlines and the white lines correspond to the solid-liquid interface.
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6.1 Lateral melting of n-octadecane PCM. Case LM.

Panels (a) to (c) depict the dynamics of the convective melting flow when half of the initial solid PCM

(Lf = 0.5) have melted. The top part of the interface moves faster while the bottom one is slowed by

the increasing value of Ra. According to the Stefan interface condition in Eq. (6.2), at constant Ste
and Pr numbers, the interface velocity is proportional to ∂θ/∂n, which is maximum at the top of the

cavity because of the clockwise recirculation of the fluid. This explains the observed trends.

Figures 6.7 and 6.8 plot the temporal evolution of the liquid fraction Lf (panel a), and the average

Nusselt number defined at the hot wall (panel b). The same heat transfer regimes described previously

are observed for each case: conduction, mixed conduction-convection and convection. We note that

results are plotted with respect to physical time tϕ instead of τ , because we compare solutions with

different values of H . This infers with the definition of the non-dimensional times t and τ , making

them not relevant to compare solutions.
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Figure 6.7: Complete melting of the PCM. Influence of the value of the Rayleigh number (Ra)

on the time evolution of the liquid fraction (a) and the average Nusselt number de-

fined at the hot (left) wall (b). The reference case (Ra = 3.27 · 105) is represented

by red continuous lines. The value of the Ra was increased by a factor of 5 and

10, while the Stefan number Ste is kept constant.

Figure 6.7a indicates that increasing the Rayleigh number by keeping δT constant induces a slower

melting rate. This is the expected behaviour since the size of the PCM is increased by a factor of 2,

and the velocity u is decreasing to satisfy the condition Re = 1. We note however a non-monotonic

variation of the time necessary to melt a fixed value of PCM. For instance, to achieve Lf = 0.5 (50%

of the volume is melted), an increase of Ra by a factor of 10 leads to a growth of the time by a factor

of 1.7. Nonetheless, when Ra is 5 times larger, the necessary time only increases by a factory of 2.

This is most likely due to the non-linear intricacies of the problem and requires further investigation.

Furthermore, the Nusselt number reported in Fig. 6.7b shows that the higher the Rayleigh number, the

higher is the Nusselt number. This is consistent, since the temperature gradient is integrated along a

longer heated wall.
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Figure 6.8: Complete melting of the PCM. Influence of the value of the Rayleigh number

(Ra) on the time evolution of the liquid fraction (a) and the average Nusselt num-

ber defined at the hot (left) wall (b). The reference case (Ra = 3.27 · 105) is

represented by red continuous lines. The value of the Ra and Ste were increased

by a factor of 5 and 10.

Figure 6.8a shows that by increasing the value of δT , and consequently increasing the Rayleigh number

and the Stefan number, the PCM melts faster. We note that the height H of the cavity is kept constant,

hence the natural convection flow in the melted PCM is enhanced when the Rayleigh number keep

increasing. As a consequence, the convection-dominated regime is reached earlier, as shown in Fig.

6.8b by the shift of the minimum of the Nu to lower values of tϕ. This evolution is also observed for

the liquid fraction. As expected, an increase of the Rayleigh number and the Stefan number is followed

by an enhancement of the heat transfer during the melting, and consequently an improved efficiency of

the PCM.

6.2 Basal Melting of n-octadecane PCM. Case BM.

We now pay attention to the BM case. We investigate the melting of pure n-octadecane PCM in a

square enclosure subject to heating from the bottom side. When compared to the lateral melting case,

the dynamics of the melting is different for such configuration, in which natural convection develops

Bénard cells. We recall that the physical parameters and the numerical configuration are reported in

Fig. 6.1. We perform two-dimensional numerical simulations, although Gau et al. (1983) and Gong and

Mujumdar (1998) noticed the existence of three-dimensional convection cells during the very first step

of the melting process. These three-dimensional convection cells are usually neglected for relatively

moderate Ra numbers, particularly for Ra ≤ 108. In this case, three-dimensional cells survive over

a very short time compared to the whole melting process. Therefore the two-dimensional model is

realistic. A qualitative description of the dynamics of the natural convection flow and its impact on the

melting front is first addressed in Sec. 6.2.1. Then, a scale analysis is conducted to describe the heat

transfer that occurs during the melting in Sec. 6.2.2. Finally, a comparison between the LM and BM

cases is presented in Sec. 6.3.
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6.2 Basal Melting of n-octadecane PCM. Case BM.

6.2.1 Temporal evolution of the melting process

Figure 6.9 displays the structure of the natural convection flow after the primary instability through a

sequence of panels for temperature isolines and streamlines in the liquid phase, for Rayleigh numbers

ranging from Ra = 3.27 · 105 to Ra = 3.27 · 106. An array of lengthening plumes (panels a to c) and

counter-rotating convective cells (panels d to f) are located in the liquid phase, in which the number

of thermal plumes increases with the Rayleigh number. For Ra = 3.27 · 105, one can observe three

equidistant plumes in Fig. 6.9a and five convective cells in Fig. 6.9d, while four and six plumes are

observed for Ra = 1.635 · 106 in Fig. 6.9b and Ra = 3.27 · 106 in Fig. 6.9c. These observations

agree well with the numerical results of Gong and Mujumdar (1998) and Madruga and Curbelo (2018)

who studied the correlation between the number of thermal plumes and the size of the domain. The

shape of the interface is directly linked to the dynamics of these plumes. The mushroom form of the

plumes results from the two symmetric counter-rotating convective cells surrounding each of them. We

observe an anti-clockwise recirculation of the left convection cell and a clockwise recirculation of the

right one. Thus, the liquid is heated to the highest temperature at the bottom and then floats up, reaches

the phase change interface and splits into opposite directions. The liquid is cooled as it flows through

the phase-change interface. It results a non-planar front with a peak at the center of each couple of

counter-rotating convective cells.

Figure 6.9: Melting of PCM heated from below. Temperature field and solid-liquid interface

(top) and streamlines (bottom) in the liquid phase for different Rayleigh numbers

(a) Ra = 3.27·105 and t = 30, (b) Ra = 1.635·106 and t = 15, (c) Ra = 3.27·106
and t = 10.
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Chapter 6 Numerical comparison of basal and lateral melting of a phase change material

To describe the temporal evolution of the melting, it is useful to introduce the effective Rayleigh and

Nusselt numbers of the fluid layer, based on the height of the melted PCM:

Rae = Ra× δ̄3H , (6.14)

Nue = Nu× δ̄H , (6.15)

with δ̄H the non-dimensional averaged fluid height. Note that δ̄H could be assimilated to the liquid

fraction.

Figure 6.10 depicts in detail the temporal evolution of the melting for Ra = 6.54 ·106, during which

the effective Rayleigh number increases and influences the dynamics of the flow. The temperature field,

the location of the interface, and the streamlines are reported in panels (a) to (l).

Before the first instability arises, the melted layer evolves solely by conduction. There is no noticeable

fluid flow and the melting front remains straight (panel a). The temperature is distributed linearly in the

vertical direction through the incipient liquid layer. The convective regime occurs at Rae ≈ 7 × 103

when the phase-change interface becomes non-planar (panel b). This is in good agreement with the

observation of Esfahani et al. (2018); Favier et al. (2019). It is worth noting that, in the framework of

the classical Rayleigh-Bénard convection flow, the first instability appears at critical Rayleigh number

Rac ≈ 1707.76, in the limit of vanishing Ste number (Chandrasekhar, 2013). This critical value is

however higher for large Ste numbers (Vasil and Proctor, 2011). The onset of convection is marked by

a change in the shape of the interface from straight to a nearly periodic curve.

As the fluid expands upwards, the effective Rayleigh number increases and we observe 10 convective

rolls being stretched vertically (panels c to e). For Rae ≤ 2 · 105, one can note that the number of

rolls is time-independent. Such behaviour could be compared to the steady convection regime after the

onset of primary instability in the Rayleigh-Bénard system (see Chandrasekhar (2013)). This regime

will be referred to linear regime in the present study.

After the rolls are elongated vertically, they start to oscillate laterally and then merge to create greater

rolls, starting with Rae = 2.9 × 105 (panel g). The interface loses periodicity and the structure of

the rolls becomes disordered. At this stage, neither the mushroom form of the plumes nor the periodic

distribution of the convection cells are no longer observed. The main consequence of this observation

is that the melting front is modified. The interface is shaped by the new flow pattern.

6.2.2 Scale analysis

Let us now proceed on a scale analysis for the description of the heat transfer processes during melting.

The dynamics of the BM case is usually classified in the literature into five regimes, defined following a

power law of the Nu−Ra (Esfahani et al., 2018; Madruga and Curbelo, 2018): a conductive regime, a

linear regime, an oscillating regime, a turbulent regime, and finally an ultimate regime. The simulations

performed in this chapter cover the first three regimes. During the conductive regime, the heat transfer

is fully dominated by conduction. The time evolution of the liquid fraction and the Nusselt number

could be approximated by the same scaling obtained in Eq. (6.6). Notwithstanding, after the onset of

the convection, the quasi-steady evolution of the heat transfer observed in the LM case (see Fig. 6.4),

is no longer observed in the BM case because of non-linear instabilities.

When the convective heat transfer is fully developed in the melted PCM, two distinct heat transfer

processes could be identified: a bulk heat transfer for low effective Rayleigh number regime, mainly for

Rae ≤ 105, followed by a boundary layer heat transfer regime, which is predominant when the flow be-

comes oscillatory or turbulent. We develop in this section a scale analysis for the linear regime, during

76



6.2 Basal Melting of n-octadecane PCM. Case BM.

Figure 6.10: Time evolution of the melting of a PCM heated from below at Ra = 6.54 · 106:
temperature field, solid-liquid interface and streamlines. For each time instant,

the effective Rayleigh number is indicated.
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Chapter 6 Numerical comparison of basal and lateral melting of a phase change material

which bulk heat transfer occurs, to approximate the amount of heat transfer. Beyond this regime, due

to the important non-linearities of the dynamics, we rely on theories developed for turbulent Rayleigh-

Bénard convection flows (Malkus, 1954; Grossmann and Lohse, 2000).

During the linear regime, the convective cells are elongated vertically and the number of rolls is

time-independent. In our scale analysis we focus on a single roll convection pattern to assess the

amount of heat transfer through it. A schematic overview of the phenomenon is drawn in Fig. 6.11.

L
r

x

y

Figure 6.11: Natural convection flow emerging from melting heated from below.

Let us define Lr, the (dimensionless) half-thickness of a cell. An appropriate scaling during this regime

is hence

x ∼ Lr, y ∼ δ̄H , (6.16)

with Lr < δ̄H . We consider the dimensionless Navier-Stokes-Boussinesq system (2.12) - (2.14) ap-

plied to a single cell (C = K = 1, and S(θ) = A(θ) = 0), which could be rewritten as follows (with

scaling (4.6), i. e. Re = 1):

∂u

∂x
+

∂v

∂y
= 0, (6.17)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

(
∂2u

∂x2
+

∂2u

∂y2

)

, (6.18)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

(
∂2v

∂x2
+

∂2v

∂y2

)

+
Ra

Pr
θ, (6.19)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

1

Pr

(
∂2θ

∂x2
+

∂2θ

∂y2

)

. (6.20)

The pressure p is first eliminated by deriving Eq. (6.18) with respect to y and deriving Eq. (6.19) with

respect to x. One may refer to the book Bejan (2013) for more details, in the frame of the Rayleigh-

Bénard convection flow. Substracting one from the other, we get
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∂

∂y

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

− ∂

∂x

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

(6.21)

=

[
∂

∂y

(
∂2u

∂x2
+

∂2u

∂y2

)

− ∂

∂x

(
∂2v

∂x2
+

∂2v

∂y2

)]

− Ra

Pr

∂θ

∂x
.

Since we have Lr ≪ δ̄H (consequently ∂2v/∂y2 ≪ ∂2v/∂x2), three terms are dominant in Eq. (6.21):

∼ ∂2v

∂x∂t
︸ ︷︷ ︸

inertia

; ∼ ∂3v

∂x3
︸︷︷︸

friction

; ∼ Ra

Pr

∂θ

∂x
︸ ︷︷ ︸

buoyancy

. (6.22)

In terms of characteristic scales, this reduced momentum balance reads

∼ v

Lrt
︸︷︷︸

inertia

; ∼ v

L3
r

︸︷︷︸

friction

; ∼ Ra

Pr

δθ

Lr
︸ ︷︷ ︸

buoyancy

. (6.23)

Equation (6.23) could be hence simplified by normalising Eq. (6.23) with respect to the friction scale,

leading to

1

Pr
︸︷︷︸

inertia

; 1
︸︷︷︸

friction

;
RaL2

r

vPr
︸ ︷︷ ︸

buoyancy

. (6.24)

For high-Prandtl fluids, the momentum balance is between buoyancy and friction (see e. g. Bejan

(2013); Le Quéré and Gobin (1999)) and we obtain

v ∼ RaL2
r

Pr
. (6.25)

Next, we turn attention back to the energy Eq. (6.20). During the pure conductive regime, the velocity

is very small and negligible. The characteristic scale is therefore:

δθ

t
∼ δθ

PrL2
r

, (6.26)

leading to

Lr ∼
(

t

Pr

)1/2

. (6.27)

At this earlier stage, the thermal layer thickness is of the same order as Lr, i. e. δθ ∼ Lr. When the

convection arises, we can identify three distinct effects

1

t
︸︷︷︸

Inertia

;
v

δ̄H
︸︷︷︸

Convection

;
1

L2
rPr

︸ ︷︷ ︸

Conduction

. (6.28)
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When the melting evolves (i. e. time increases), the inertia decreases in importance. There comes

an effective time te when the energy equation expresses a balance between the convection and the

conduction heat transfer (see Bejan (2013)):

v

δ̄H
∼ 1

δ2θPr
. (6.29)

Equations (6.29) and (6.25) lead to

δ̄H
δ2θPr

∼ Raδ2θ
Pr

. (6.30)

Since δ2θ ∼ t/Pr, we obtain

te ∼
(

δ̄H
Rae

)1/2

× Pr. (6.31)

At this effective time te, during which the inertia becomes negligible and the convection effects in-

crease, the thermal layer thickness is

δθ ∼
(

te
Pr

)1/2

∼
(

δ̄H
Rae

)1/4

∼
(
δ̄H

)−1/2Ra−1/4. (6.32)

Accordingly, before the flow oscillates, the scaling for Nu could be written as:

Nu ∼ δ̄
1/2
H ×Ra1/4. (6.33)

Equation (6.33) highlights that the heat transfer through a single convection cell depends on the height

of the melted PCM layer during the linear regime. Correlations pertaining to basal melting case in the

literature do not distinguish between this contribution of the bulk and the boundary layer heat transfers

after the onset of convection and relies directly on empirical correlations for turbulent Rayleigh-Bénard

flows. It should be noted that Eq. (6.33) rely on only one cell of the system.

Ra linear regime oscillating regime

3.27 · 105 0.286299 -

1.635 · 106 0.274789 0.269158

3.27 · 106 0.279616 0.283658

6.54 · 106 0.274043 0.294528

Table 6.1: Exponent of the power laws of the linear and the oscillating regimes.

The exponents of the power laws obtained by our numerical simulations for four Rayleigh numbers

are given in Tab. 6.1 during the linear and the oscillating regime. An exponent of 0.28 is observed

for the linear regime and decreases with increasing Rayleigh number, which overestimates slightly the

predicted scaling exponent of 1/4. This is mostly due to the number of convection cells in the melted

PCM and the effect of the non-planar solid-liquid interface, not taken into account in our analysis.

However, our numerical results match better with the Grossmann-Lohse theory (Grossmann and Lohse,
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6.2 Basal Melting of n-octadecane PCM. Case BM.

2000), which predicts a scaling exponent of 2/7, within the framework of natural convection flow.

Furthermore, during the oscillating regime the exponent increases with the Rayleigh number and tends

to the empirical value of 1/3.

Concerning the temporal evolution of the liquid fraction Lf , one can introduce the following scaling,

from Favier et al. (2019), obtained by a balance between the total rate of change of the enthalpy in the

system and the heat fluxes entering and leaving the domain:

Lf (t) =
[√

2t
(2−3β)

+ cRaβt
]1/(2−3β)

, (6.34)

with β the exponent in the Nu − Ra power law, c = (2−3β)γ
2+Ste and γ a constant fitted from numerical

data. For the conductive regime, by taking γ = β = 0, the well-known behavior Lf ∼ t1/2 is obtained.

Replacing β by the exponent value 1/4 for the convective regime, we obtain Lf ∼ t4/5.

The time evolution of the liquid fraction is illustrated in Fig. 6.12a. As expected, the purely diffusive

stage displays the scaling Lf ∼ t1/2. Our simulations exhibit a power-law evolution of Lf ∼ t0.82

when the convection is fully developed in the fluid, in good agreement with Lf ∼ t4/5.
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Figure 6.12: BM case for three Rayleigh numbers: Ra = 3.27 · 105, 1.62 · 106, and 3.27 · 106.
Time evolution of the liquid fraction (a) and Nusselt number (b).

Figure 6.12b shows the temporal evolution of the heat flux, represented by the Nusselt number, and

the strength of buoyancy, represented by the Rayleigh number, when the melting evolves. The onset

of the convection arises around Rae = 2 × 103, when a sudden jump in the evolution of Nue is

observed. Vasil and Proctor (2011) have investigated a weakly non-linear stability analysis and have

highlighted a super-exponentional amplitude growth when the Rayleigh number becomes close to the

traditional critical value in the limit of vanishing Stefan number. This super-exponential growth is

moreover followed by a rapid pattern readjustment. The trend of Nue at the onset of convection is in

total agreement with the prediction of Vasil and Proctor (2011). The results of Esfahani et al. (2018);

Madruga and Curbelo (2018); Favier et al. (2019) exhibit the same trend despite the different boundary

conditions (periodic lateral boundary conditions, adiabatic boundary conditions at the top of the cavity,

and a low value of Pr for Esfahani et al. (2018) and Favier et al. (2019)). The rapid growth of Nue
is followed by a power law with averaged exponent Nu ∼ Ra0.28, for 103 ≤ Ra ≤ 105. Finally, the

transition from steady pattern of the convective rolls to oscillating pattern, followed by cell merging,

as it is clearly shown in Fig. 6.10(d-f), is also illustrated by a decrease of Nu at Ra ∼ 105, followed
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Chapter 6 Numerical comparison of basal and lateral melting of a phase change material

by high oscillations in the temporal evolution of the heat transfer. The power-law relation Nu−Ra is

bounded in this stage by the average exponent of 2/7.

6.3 Comparison between LM and BM cases

A comparison of the liquid fraction Lf , the Nusselt number Nu, and the accumulated heat input Q0 is

offered in Fig. 6.13. Blue lines denote the LM case and red lines the BM case. Different values of the

Ra number, ranging from Ra = 3.27 · 105 to Ra = 6.54 · 106 are investigated.

The temporal evolution of Lf (left panels) displays a similar trend of both curves up to Lf = 0.6
for all cases. For instance, for Ra = 3.27 · 105 (panel a), LM and BM cases evolve at the same rate

from t = 0 to t = 100, corresponding to 60% of melted PCM. Then, for greater Rayleigh numbers,

the gap keeps increasing, albeit slightly. This result agrees with the scaling analysis that predicts the

same trend of both systems as long as the number of convective cells is close to one. Since the number

of rolls is increasing with the Rayleigh number, an enhancement of the melting rate is thus consistent.

Furthermore, differences are noticeable for Lf ≥ 0.6, when the interface of the LM case reaches the

right (cold) interface. Increasing the Rayleigh number induces a faster advancement of the top of the

LM front, which touches the cold wall earlier, slowing hence the evolution of the melting. One can

observe during this period a decrease of the slope of the blue curve with respect to the vertical axis.

Linear evolution of Lf is however noticed throughout the basal melting time since the interface touches

the top cold wall very late.

Regarding the time evolution of the heat transfer (middle panels), red and blue curves match per-

fectly well during the conductive regime (see for e. g. Fig. 6.13 from t = 0 to t = 18 for Ra =
3.27 · 105). This was expected since the contribution of the convective heat transfer is still negligible at

this stage. Differences occur from the emergence of the natural convection flow. The evolution of Nu
is relatively smooth for the LM case, while the BM case exhibits a sudden increase due to the hydro-

dynamical instabilities. Significant gap between both curves arises during the oscillating regime: Nu
displays a highly oscillating value for the BM case when the liquid layer expands upward, while the

LM case reaches an asymptotic value. Note that for higher and higher Rayleigh numbers, the Nusselt

number increases accordingly.

The evolution of the accumulated heat input Q0 is consistent with the foregoing remarks. Q0 is

defined as follows:

Q0(t) =

∫ t

0
Nu(τ) dτ, (6.35)

The decrease of the heat transfer monitored by the cell merging process in the BM case leads to a lower

accumulated heat input. It follows that a more important thermal energy is stored when compared with

the LM case.

These observations are of particular importance for PCM design for a specific application. If a fast

melting is sought, the BM case is advised. It could be the case for example during quick temperature

peak in electronic components. Conversely, when the PCM is expected to melt in a longer period, the

LM case is more appropriate.
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Figure 6.13: Comparison between LM and BM cases. Rayleigh numbers ranging from Ra =
3.27 · 105 to Ra = 6.54 · 106. Liquid fraction(left), Nusselt number (middle),

and accumulated heat input (right).
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6.4 Concluding remarks

The high accuracy of our numerical method permitted to simulate in this chapter lateral and basal

melting cases. Numerical and theoretical comparisons of both cases were performed and have exhibited

many differences, mainly on the dynamics of the flow and the heat transfer processes. A main question

related to convective melting processes is to predict the temporal evolution of the melting rate, which

is correlated to the heat-flux dynamics determined by the flow in the system. Since the dynamics of the

flow is completely different for LM and BM systems, we have performed simulations for both cases

and compared the evolution of some physical parameters.

We have investigated first the LM case, by simulating the melting of n-octadecane inside a square

enclosure heated from the vertical wall. Three principal regimes were identified to describe the dy-

namics of the melting: conductive regime, mixed regime, and convective regime. The influence of the

Rayleigh and the Stefan parameters on the flow was also assessed and indicated clearly that increasing

Ra, by increasing either H or δT , enhances the heat transfer. Since stronger convection flow occurs in

the liquid region with increasing Rayleigh number, the shape of the phase-change front is altered con-

sequently. The top of the interface moves faster while the bottom part is rather slowed down, resulting

in a curved shape of the melting front.

Concerning the simulations of the BM case, simulations for a large range of Rayleigh numbers,

Ra = 3.27 · 105 to Ra = 6.54 · 106, were carried out for a comprehensive description of the dynamics

of the melting. Effective Rayleigh and Nusselt numbers, depending on the fluid height were introduced

to describe the flow. The melted fluid layer was shown to be thermally unstable. It quickly develops

convective motion of progressively higher intensity as the depth of the melted layer increases. The

onset of these instabilities were observable either on the dynamics of the melting flow or the temporal

evolution of the Nusselt number. The novelty is the theoretical description of the convective heat trans-

fer during the linear regime, i. e. Rae ≤ 105, through a scale analysis by separating the contribution

of the bulk and the boundary layer heat transfers. For higher Rae numbers, we used the knowledge

acquired on turbulent natural convection system to understand convective melting.

We have finally compared the time evolution of the liquid fraction Lf , the heat transfer rate repre-

sented by the Nu number, and the accumulated heat input Q0. We showed that PCM melts faster when

heated from below compared to the lateral melting, since the last case reaches the cold wall earlier,

slowing accordingly the melting rate. However, the lateral oscillation of the convective cells in the BM

case, yielding to cell merging processes, reduces the heat transfer rate. In the following chapter, we

investigate the full melting-solidification cycle for a better understanding of the complete PCM cycle.
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7 Numerical simulation of complete

melting-solidification cycle of a

phase-change material

This chapter presents an accurate numerical description of the alternate melting and solidification of

a PCM. Square and cylindrical PCMs, that were simulated in Chapters 5 and 6 are considered in this

chapter to investigate the solidification process. The fundamental operational mode of latent thermal

energy storage (LTES) systems based on phase-change materials (PCM) is made of alternate melting

and solidification cycles that are not necessarily periodic.

The natural convection occurring in the melting PCM is driven by the temperature difference δT =
Th−Tf . The dimensionless number that depicts the ratio between the forces creating and those refrain-

ing the motion is the Rayleigh number, which appears in the dimensionless form of the Navier-Stokes

equations with Boussinesq approximation (Sec. 2, Eq. (2.16)). The higher is its value, the more in-

tense is the heat transfer. Conversely, during the solidification, the phase-change is handled by the

discharged temperature Tco < Tf , where the subscript ’co’ stands for ’cooling’. For the square geom-

etry discussed first in Sec. 7.1, this represents the temperature of the left wall, and for the cylindrical

geometry presented in Sec. 7.2, it consists of the inner tube temperature. Thus, the relevant tempera-

ture difference in the solid phase of the PCM is δTco = Tf − Tco and the dimensionless temperature

in the solid phase should be defined with respect to this δTco. It is then obvious, from Eqs. (2.15) and

(2.16), that the Rayleigh number should be defined using the same temperature difference. However,

because the Rayleigh number amounts for the motion created by the hot temperature difference, we

choose to keep the same definition for the Rayleigh number as for the melting case. This is still rele-

vant for the melted core of the flow, where the persisting motion acts as a boundary condition for the

solidification process. Under these conditions, in regard with the solidification process, we introduce a

new parameter, rδ = δTco/(Th−Tf ), the normalised temperature with respect to Tf −Tco and the rel-

evant Rayleigh number will be then Raco = rδ ×Ra, where Raco is the pseudo-Rayleigh number for

solidification with a melted boundary. In the following, we will describe the process of solidification

using three different values of rδ. A new scaling is moreover introduced:

Vref =
αl

H
⇒ t = tϕ

νl
H2 Pr

⇒ Re =
1

Pr
. (7.1)

The solidification stage is indeed a slower process compared to the melting, therefore the use of an

adapted scaling is more relevant. This leads to a different time scaling for each part of the cycle.

In Sec. 7.1, we perform two operating cases for the solidification process of melted PCM in a differ-

entially heated square cavity. In the first study case the solidification starts after a complete melting of

the PCM (liquid fraction of 95%), while in the second case after a partial melting (liquid fraction of

50%). Several practical implications for the two operating modes are drawn. In Sec. 7.2, we investi-

gate the solidification of a cylindrical PCM with an inner obstacle. We provide temporal evolution of

solid-liquid interface, liquid fraction, Nusselt number and accumulated heat input.
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Chapter 7 Numerical simulation of complete melting-solidification cycle

7.1 Melting-solidification cycle of a phase-change

material with complete or partial melting in a

square cavity

The sketch of the computational domain and boundary conditions are illustrated in Fig. 7.1a, cor-

responding to the melting of octadecane PCM presented in Sec. 5.2 of Chapter 6. Starting from a

melted PCM (Fig. 7.1b), the simulation of the solidification process starts by imposing at the left-wall

a constant (cold) temperature θco as it is shown in Fig. 7.1c. We consider two cases:

– case CM: solidification after a Complete Melting of the material (Lf = 0.95, Fig. 6.2f) and

– case PM: solidification after a Partial Melting (Lf = 0.5, Fig. 6.2d).
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Figure 7.1: Sketch of the computational domain and boundary conditions. General configu-

ration (panel a) with isothermal (θ = cst.) vertical (x = 0 and x = 1) walls and

adiabatic (∂θ/∂n = 0) top and bottom walls. Configuration for the melting phase

(panel b) with a hot left wall (θ = θh > 0) and a cold right wall (θ = θc < 0),

followed by a solidification phase (panel c), when the temperature of the left wall

is cooled to θ = θco < 0.

The solid phase will propagate into the cavity from both left and right sides (Fig. 7.1c), which makes

this case computationally challenging. The mesh adaptivity capabilities of our numerical code made

possible to accurately track the two solidification fronts identified by the iso-line θ = 0. In the dis-

cussion below, the results will be presented using the physical time tϕ for the same reason mentioned

above (note the influence of the size of the domain, since the scaling in Eq. (7.1) uses the height of the

cavity).

The solidification process starts at physical time tϕ = 185 min (corresponding to t = 250) for the case

CM and at tϕ = 59 min (t = 78.8) for the case PM.
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7.1 Melting-solidification cycle with complete or partial melting in a square cavity

7.1.1 Solidification after a complete melting (case CM)

The solidification follows after a complete melting corresponding to Fig. 6.2 at tϕ = 185 min (t =
250). The dynamics of the PCM during the solidification process is reported in Fig. 7.2, with the

evolution of temperature distribution and solidification fronts.

At tϕ = 185 min (Fig. 7.2a), the liquid fraction is Lf = 0.95 and the melting/solidification front

is close to the right wall of the cavity. Setting smoothly a low temperature θco = −1 at the left wall,

while the right wall is maintained at a constant temperature (θright = −0.01 ≤ θf ), triggers the

formation of a second solidification front, propagating from the left side of the domain. Figures 7.2b

and 7.2c illustrate that the left part of the cavity is solidifying at a faster rate because of the very low

temperature imposed at the left wall, inducing a non symmetric evolution of solid-liquid interfaces.

The solid part is represented in blue and corresponds to the region of temperature θ ≤ 0. The signature

of the conductive heat transfer is characterized by the vertical shape of the left front. Inside the liquid,

the initial convection cells facilitate the heat transfer from the boundaries, resulting in a very rapid

decrease of the fluid temperature. Temperature gradients being smoothed out during this first stage, the

influence of the convection inside the liquid region is considerably reduced. As a result, the velocity

inside the liquid is reduced to very low values.

Starting with tϕ = 430 min (Fig. 7.2d), the shape of both interfaces is almost symmetrical. This is a

signature of a conduction dominated process. At tϕ = 510 min (Fig. 7.2e) the liquid region starts to

shrink at the bottom side of the cavity. This process is accelerated and finally the liquid is trapped in a

thin pocket and finally disappears completely through the top of the cavity (Fig. 7.2e). The complete

solidification ends at tϕ = 530 min, when the liquid fraction is Lf = 0.

The adapted mesh, refined along the two solidification fronts, at tϕ = 300 min is reported in Fig. 7.2f,

illustrating the efficiency of the adaptive mesh tool.

7.1.2 Solidification after a partial melting (case PM)

In this case, the solidification starts from the state corresponding to Fig. 7.3a at tϕ = 59 min (t = 78.8),

when the liquid fraction is Lf = 0.5. The temperature of the left wall is progressively lowered at

θco = −1, as in the previous solidification simulation.

The time evolution of the process is illustrated in Figs. 7.3a-e, while the adapted mesh corresponding

to tϕ = 90 min is plotted in Fig. 7.3f. As in the previous case, a second solidification front starts to

propagate from the left side of the cavity. The straight shape of the left solid front is always observed

while the right solid front is impacted by the convection cell present in the central liquid region (Fig.

7.3b). The stronger convective effect is most likely due to the huge temperature difference that occurs

over a smaller space distance (almost half of the volume is occupied by the solid state). This leads to

stronger temperature gradients in the liquid region, and consequently to a stronger heat transfer. The

two fronts merge to form a pocket of fluid which is connected to the top of the cavity (Fig. 7.3c-e).

It is interesting to note that, as in the previous solidification case, the left part is solidifying at a faster

rate, hence the pocket of melted PCM disappears completely from the right at the top side of the cavity

(Figs. 7.3c-e).
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Chapter 7 Numerical simulation of complete melting-solidification cycle

Figure 7.2: Solidification of the PCM: case CM. Temperature iso-lines in the liquid phase.

The solid part is represented in blue and corresponds to the region of temperature

θco ≤ θf = 0. Time instants (panels a to e): tϕ = 185 min, tϕ = 231 min,

tϕ = 300 min, tϕ = 430 min and tϕ = 510 min. The adapted mesh corresponding

to tϕ = 300 min is plotted in panel (f). Raco = 3.27 · 105.
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7.1 Melting-solidification cycle with complete or partial melting in a square cavity

Figure 7.3: Solidification of the PCM: case PM. Temperature iso-lines in the liquid phase.

The solid part is represented in blue and corresponds to the region of temperature

θco ≤ θf = 0. Time instants (panels a to e): tϕ = 59 min, tϕ = 70 min, tϕ = 90
min, tϕ = 131 min and tϕ = 200 min. The adapted mesh corresponding to

tϕ = 90 min is plotted in panel (f). Raco = 3.27 · 105.
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Chapter 7 Numerical simulation of complete melting-solidification cycle

7.1.3 Analysis of the solidification cycle from two different initial

conditions: complete (case CM) and partial melting (Case

PM)

The aim of this section is to investigate the temporal evolution of some physical properties of the

solidification process, from two different initial conditions: i) completely melted volume (case CM)

and ii) partially melted volume (50% of the fluid is melted, case PM). Figure 7.4 represents the temporal

evolution of the liquid fraction Lf , the Nusselt number Nu, and the accumulated heat input Q0 (Eq.

(6.35)), for the two investigated cases. Note that the average Nusselt number is calculated at the cooled

wall, defined similarly to Eq. (2.24), but it can be negative in this case. Simulations for three values

rδ = 1, rδ = 5 and rδ = 10 were carried out.

Figure 7.4a illustrates the temporal evolution of the liquid fraction Lf for the CM case. Complete

melting occurs for tϕ = 185 min, after which solidification starts, with a continuous decrease of

Lf untill complete solidification is achieved. For the lowest value of rδ, corresponding to Raco =
3.27 · 105, the solidification process ends at tϕ = 530 min. Then, the higher the value of rδ, the

faster the discharge process. Final times for solidification are tϕ = 260 min and tϕ = 230 min for

cases Raco = 1.62 · 106 and Raco = 3.27 · 106. These values of Raco correspond to a drop of the

cold boundary temperature by a factor of 5 and 10, respectively. The solidification speed, quantified

by dLf/dtϕ is nearly constant during almost the whole process for each case. This uniformity of

the process indicates that the natural convection flow vanishes rapidly during the solidification, and

conduction remains the only heat transfer mode. Figure 7.4b plots the temporal evolution of Lf for

the PM case. As previously discussed, 50% of the volume is melted, at time tϕ = 59 min, when

solidification starts. Furthermore, despite that solidification process is started, Lf continues to increase

slightly at the very beginning of the discharge stage. Then it decreases monotonically towards 0 at

tϕ = 240 min. The heat stored in the melted PCM continues to melt the remaining solid PCM until the

convection becomes negligible. It is worth noticing that this behavior is not observed in the complete

melting case because of the imposed temperature at the right wall.

Let us now pay attention to the transfers occurring at the left wall, progressively submitted to a lower

temperature. This is done through the temporal evolution of the Nusselt number and the accumulated

heat input. Panels (c) and (d) of Fig. 7.4 illustrate the Nusselt number for the CM and PM cases. The

three investigated Rayleigh numbers are shown, with clear differences between them. This difference

corroborates with that already reported for the melting case, over shorter times scales. This indicates

that the heat transfer during the solidification process is fundamentally different from the melting one.

For the CM case, for Raco = 3.27 · 105, the Nusselt number first decreases sharply, for tϕ ≤ 18 min,

then it reaches a plateau at Nu = 7 during the complete melting. At tϕ = 185 min, solidification starts

and Nu suddenly decreases over very short times, reaching negative values (Nu ≈ −15). It follows an

increase of Nu with time, up to reaching an asymptotic value close to 0 (zero temperature gradients,

i. e. uniform temperature at the left wall). The same mechanism is observed over a shorter time interval

when Raco is increased. For the PM case, the Nusselt number also decreases sharply to a negative value

when the solidification starts. However, the convection flow remaining in the melted region influences

the heat transfer at the very beginning of the solidification process. The hot fluid in the middle of the

melted PCM is advected by the natural convection flow to the boundaries and induces a temperature

gradient at the left wall, resulting into an oscilating behavior of the Nusselt number before reaching

an asymptotic value. This is in agreement with the previous comment about the melting continuing in

the right part of the cavity, despite that solidification has started, and the slight increase of the liquid

fraction at the very first time steps of the discharging process.

Both charge and discharge cycles are better illustrated by the time evolution of the accumulated heat
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Figure 7.4: Temporal evolution of the liquid fraction (Lf ), the Nusselt number Nu, and the

accumulated heat input Q0 during the entire melting-solidification cycle. Case

CM (left) and case PM (right).
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Chapter 7 Numerical simulation of complete melting-solidification cycle

Q0 defined in Eq. (6.35), as it is shown in panels (e) and (f) of Fig. 7.4. Heat is first stored during

the melting stage, corresponding to tϕ ≤ 185 min for CM (Fig. 7.4d) and tϕ ≤ 59 min for PM (Fig.

7.4e). It is then restored during the solidification stage. The CM case indicates higher value of Q0

(Q0 = 1400, for Raco = 3.27 · 105) compared to the PM case (Q0 = 500), meaning that the PCM

is more efficient in terms of heat storage. However, the PM case exhibits well balanced characteristic

times between the solidification and the melting stages for Raco = 3.27 · 105. Besides, when the

Ra number increases, the stored heat is discharged faster. Moreover, the temperature and the velocity

profiles drop sharply during the first step of the cooling process and become almost equal to zero very

early in the whole domain. This means that conduction dominates the solidification process, and the

convection becomes rapidly negligible. As a consequence, the melting fronts are vertical and have a

symmetric position with respect to the center of the cavity.

7.2 Melting-solidification cycle of a cylindrical PCM

We are focusing in this section on the solidification of cylindrical PCM of radius R = 1 with an inner

cooled tube. This configuration is used for heat storage systems. The simulation of the solidification

process starts by imposing progressively at the inner tube a constant cooling temperature θco = −1.

The outer tube is adiabatic and a no-slip boundary condition is applied for the velocity. The solidifi-

cation part of the cycle occurs at t = 2.5 when 80% of the initial solid PCM is melted. A solid layer

grows around the tube and joins the remaining solid PCM.

Figure 7.5 shows the time evolution of the solidification process for rδ = 1. The simulation re-

sumes from the melting state presented in Fig. 5.10. The low temperature at the inner tube triggers a

second solid-liquid interface, propagating from the center to the outer tube (see panels a and b). Both

solidification fronts merge at t = 4.34 (panel c), followed by a shrinking process of the liquid (panel d

and e) which disappears completely at t = 6.7 (panel d). We note that, as emphasised in Sec. 7.1, the

heat transfer is dominated by conductive transfer during the solidification cycle, explaining the circular

evolution of the solidification front. The adapted mesh corresponding to t = 3.16 is shown in panel

(f), illustrating the refined mesh along the two interfaces θ = 0.

From the scaling analysis (6.4), the radial expansion δr of the solidification front from the center

could be approximated by

δr =

√

Ste
Pr

× t. (7.2)

The solidification time could be thus predicted by

tsol = δ2r
Pr

Ste . (7.3)

In our case, by taking into account the remaining solid located at δr = 0.8, the theoretical solidification

time is tsol = 6.4, which is in relatively good agreement with our numerical results. Increasing the

Stefan number should hence result in a lower value of the solidification time.
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7.2 Melting-solidification cycle of a cylindrical PCM

Figure 7.5: Solidification of a cylindrical PCM. Temperature iso-lines in the liquid phase.

The solid part is represented in blue and corresponds to the region of temperature

θco ≤ θf = 0. Time instants (panels a to e): t = 2.69, t = 3.16, t = 4.34 ,

t = 4.94 and t = 6.66. The adapted mesh corresponding to t = 3.16 is plotted in

panel (f). Raco = 5 · 104.
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Chapter 7 Numerical simulation of complete melting-solidification cycle

7.2.1 Concluding remarks

The choice of simulating the complete cycle melting-solidification of n-octadecane PCM in this chapter

is motivated by the fact that this material is generally used for buildings applications, due to its phase

change temperature of 28oC. Zhu et al. (2009) and Kalnæs and Jelle (2015) listed various applications,

starting from free cooling, peak load shifting, passive building systems and solar energy storage. For

each case, the PCM is assumed to melt during day-time and to solidify during the night-time.

It was noticed that, when the same Rayleigh number is considered to compare the melting and

solidification cycles, meaning that the charge and the discharge modes occur at the same δT , the so-

lidification is always slower than the melting. This behavior is linked to the heat transfer mode leading

each part of the cycle. Convective heat transfer dominates indeed the melting process, enhancing thus

the heat transfer, while conduction is the main heat transfer mode during solidification, resulting into

a slower operating process. However, when the discharge temperature is decreased by a factor of 5, i.e

both Raco and rδ × Ste are increased, the solidification and the melting occur over similar times.

A first issue that has been brought up by Ascione et al. (2014) is the difficulty of the PCM systems

to completely discharge during night-time. Though, if the PCM does not solidify entirely, the effec-

tiveness of the system may be considerably reduced. In this case, to have a shorter cooling period, it is

not advised to melt the PCM completely.

However, for solar energy storage applications, full melting of the PCM is needed to utilize its latent

heat storage capacity. Hence, a partial melting is not optimal. For other applications, when a shorter

discharge time is desired, the use of external cooling techniques is needed to ensure a colder discharge

temperature.
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8 Numerical simulation of 3D

convection and PCM

configurations using domain

decomposition methods

Several sections of this chapter are from the paper [G. Sadaka, A. Rakotondrandisa, F. Luddens, C.

Lothodé, P-H. Tournier, I. Danaila, Parallel finite-element codes for the simulation of solid-liquid

phase-change systems with natural convection, to be submitted, 2019].

We present in this chapter parallel computations of three-dimensional liquid-solid phase-change

systems involving natural convection. We use the recent library ffddm that makes available in

FreeFem++ a state-of-the-art scalable Schwarz domain decomposition method (DDM). Our motivation

to expand our numerical model to 3D configurations is drawn by the lack of publications in the litera-

ture presenting accurate 3D simulations of phase-change materials. Also, experimental investigations

against which we have validated our numerical method in previous chapters involve three-dimensional

effects that we have assumed to be negligible in our comparisons. The latter assumption is however

not valid for high Ra numbers.

The main feature of our numerical approach is the use of 3D adaptive mesh, performed using mmg3d

library. Mmg3d is a 3D software developed by Dobrzynski (2012), which allows to remesh an initial

mesh made of tetrahedra. The metrics for the mesh adaptation are computed using mshmet library,

which provides anisotropic metrics based on solution variations. Since the mesh adaptivity procedure

is based on a sequential algorithm, we compute first the metrics with respect to the coarse mesh.

Then, finer meshes are generated before the mesh decomposition step in order to reach the desired

level of refinement for the subdomains. We use Metis library to split the domain into subdomains.

The number of layers of mesh elements in the overlap region between subdomains is set to 2 for all

subsequent simulations. For three-dimensional applications, direct solvers used in the framework of

2D problems are not appropriate and iterative methods must be employed since memory requirements

for the LU decomposition would rapidly exceed the capacity of available computers. The linear system

of equations resulting from the Newton linearization are thus solved using a parallel GMRES Krylov

method. Since it is well known that iterative methods can suffer from convergence problems, we

adapt the number of subdomain in such a way that each processor could handle 1, 000 tetrahedra. The

Optimized Restricted Additive Schwarz (ORAS) preconditioned GMRES solver proved to be extremely

efficient since around 30 iterations were necessary to get a residual of 10−9 for each Newton iteration.

The remainder of this chapter is as follows. In Sec. 8.1, we validate the 3D convection of air in a

cubic cavity against the numerical benchmark by Wakashima and Saitoh (2004), and compare together

the solutions obtained using the parallel and the sequential algorithms. The convection of water is

investigated in Sec. 8.2. Then, the melting of n-octadecane PCM inside 3D enclosures is addressed in

Sec. 8.3. We finally present in Sec. 8.4 the challenging numerical simulation of water freezing.
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8.1 Numerical simulation of the natural convection of

air in a cubic cavity

Following the same argument of increasing gradually the complexity of computed cases, that was

outlined in Chapters 4 and 5, we start by presenting the natural convection of air. This case involves

a linear buoyancy force fB . The physical parameters are the same that used in the 2D simulations

(Pr = 0.71) and we investigate Rayleigh numbers ranging from Ra = 104 to Ra = 106. The walls

are rigid and impermeable. The vertical walls at x = 0 and x = 1 are isothermal and have different

temperatures θh = 1 and θc = 0, respectively. The other walls are considered adiabatic. The fluid is

initially at rest and the temperature is linearly distributed from the cold to the hot walls. We solve the

steady Eq. (3.14) by increasing smoothly the parameter α in front of the Boussinesq term (which can

be assimilated to a Rayleigh continuation step) with a maximum of 6 steps for Ra = 106.

We first compare the current simulation with the numerical data of Wakashima and Saitoh (2004).

These authors used a forth order finite difference method, with a vorticity-stream function formulation

with different uniform meshes of 120×120×120 grid nodes. Our results were obtained using uniform

grids of 40× 40× 40. Since the converged flow pattern and temperature distributions are symmetrical

with respect to the center of the cavity for the investigated Rayleigh number, we display in Fig. 8.1 the

temperature field at the mid section (y = 0.5), for each of the three Rayleigh numbers Ra = 104 (top),

Ra = 105 (middle), Ra = 106(bottom). On the left we display the numerical results of Wakashima

and Saitoh (2004) and on the right the present simulation. The comparison with the benchmark solution

exhibits a good qualitative agreement. The higher the Rayleigh number, the finer the thermal boundary

layer thickness is in the vicinity of the vertical walls. One can also notice the stagnant fluid with

stratified temperature in the center of the domain in both numerical solutions.

A more accurate comparison is presented in Tab. 8.1 between the present simulation and numerical

data from the literature.

umax (zmax) wmax (xmax)

Ra = 104 0.198094 (0.826772) 0.220973 (0.11811)

Wakashima and Saitoh (2004) 0.1984 (0.8250) 0.2216 (0.1177)

Moglan (2013) 0.1859 (0.8230) 0.2234 (0.1172)

Ra = 105 0.140367 (0.850394) 0.245454 (0.0629921)

Wakashima and Saitoh (2004) 0.1416 (0.8500) 0.2464 (0.0677)

Moglan (2013) 0.1461 (0.8540) 0.2459 (0.0703)

Ra = 106 0.0809247 (0.858268) 0.257719 (0.0393701)

Wakashima and Saitoh (2004) 0.08111 (0.8603) 0.2583 (0.0323)

Moglan (2013) 0.0830 (0.8550) 0.2553 (0.03905)

Table 8.1: Natural convection of air in a 3D differentially heated cavity. Maximum values

umax and wmax of the velocity profiles at mid-domain (x = 0.5 and z = 0.5,

respectively) and their locations zmax and xmax. Comparison with benchmark so-

lutions of Wakashima and Saitoh (2004) and numerical data of Moglan (2013) for

Ra = 104, Ra = 105, Ra = 106.

We compare the maximum velocity values and their corresponding location with benchmark solution

of Wakashima and Saitoh (2004) and numerical results of Moglan (2013). Our results show a good
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8.1 Numerical simulation of the natural convection of air in a cubic cavity

Figure 8.1: Natural convection of air in a 3D differentially heated cavity. Temperature con-

tours at the mid-plane of (y = 0.5). Comparison with the results of Wakashima

and Saitoh (2004) (left images).
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Chapter 8 Numerical simulation of 3D convection and PCM

convergence on a mesh 3 times coarser than the one proposed by Wakashima and Saitoh (2004). A

good agreement is found for all values of the Rayleigh number. For Ra = 104 the current simulation

shows a relative difference of 0.15% for umax and 0.28% for vmax. Larger differences of 6.55% is

found with the results reported by Moglan (2013). We recall that Moglan (2013) used a second-order

finite difference scheme on a 64×64×64 grid. For Ra = 105 and 106 the results are in good agreement

with both references.

Further comparison of the parallel solver with the sequential algorithm is offered in Tab. 8.2 for all

cases. We compute L2 and L∞ norms for the velocity and the temperature. The number of subdomains

varies from 28 to 70 for 1.8 millions of unknowns. The difference between the two algorithms is of

order of 10−6 and we do not observe a large variation of the error when the number of subdomains is

increased. The comparison with the sequential algorithm was limited to the 40 × 40 × 40 grid, since

the simulations are highly demanding in CPU time. For the highest value of the Rayleigh number, the

steady state computation required 57 CPU hours and 3 runs (restarts) with 120 Go of memory for the

sequential algorithm. The computational time is considerably reduced using DDM in 3D simulations.

This becomes affordable since only 21 CPU minutes were necessary with 70 processors to compute

the same case with an error of 6.02152 · 10−6 on u and 4.50094 · 10−6 on θ.

Ra nb proc ||u||2 ||u||∞ ||T ||2 ||T ||∞

104

28 1.12496 · 10−6 3.1 · 10−6 3.09966 · 10−6 7 · 10−6

42 1.53698 · 10−6 5.1 · 10−6 3.23352 · 10−6 8 · 10−6

56 1.55576 · 10−6 5.1 · 10−6 3.4342 · 10−6 8 · 10−6

70 1.25622 · 10−6 3.6 · 10−6 3.56048 · 10−6 8 · 10−6

105

28 1.73254 · 10−6 6.1 · 10−6 2.40467 · 10−6 7 · 10−6

42 2.84973 · 10−6 7.78 · 10−6 3.53003 · 10−6 9 · 10−6

56 3.00832 · 10−6 7.39 · 10−6 4.17769 · 10−6 1.1 · 10−5

70 3.68118 · 10−6 9 · 10−6 4.70846 · 10−6 1.2 · 10−5

106

28 6.61804 · 10−6 1.826 · 10−5 3.46504 · 10−6 1.1 · 10−5

42 5.93966 · 10−6 1.5 · 10−5 3.98082 · 10−6 1.2 · 10−5

56 7.05144 · 10−6 1.9247 · 10−5 5.0044 · 10−6 2 · 10−5

70 6.02152 · 10−6 1.68 · 10−5 4.50094 · 10−6 1.8 · 10−5

Table 8.2: Natural convection of air in a 3D differentially heated cavity. Comparison between

sequential and DDM algorithms for uniform grids of 40× 40× 40 points.
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8.2 Numerical simulation of the natural convection of water in a cubic cavity

8.2 Numerical simulation of the natural convection of

water in a cubic cavity

In this section, we simulate the natural convection of water inside a cubic cavity using adaptive 3D

meshes. The dimensionless parameters are the same that used in Chapter 4.2 (Ra = 2.518084 · 106
and Pr = 6.99). We impose cold dimensionless temperature θc = 0 at x = 1 (right wall), hot

temperature θh = 1 at x = 0 (left wall), and a homogeneous Neumann boundary condition at the

other walls. Dirichlet boundary condition u = 0 is prescribed over the whole boundary ∂Ω. In view of

anomalous thermal variation of water density, we adapt the mesh along θ = 0.4 to capture correctly the

flow structure. The main limitation of 3D simulations of water convection in the literature is the size of

the mesh resolution when fixed grid models are used. As an example, Giangi et al. (2000) and Michalek

and Kowalewski (2003) presented a mesh sensitivity analysis, and concluded that even by using 813

grid points, the variation of the velocity was still significant, making the problem computationally

expensive.

The temperature distribution and the corresponding adapted mesh for the steady state computation is

shown in Fig. 8.2a. The blue region denotes the cold water trapped by the abnormal fluid recirculation

and the red region the hot fluid driven by the upper clockwise circulation. A zoom of the mesh at

the mid-plane is also offered in Fig. 8.2b. Smaller tetrahedra are clearly observed in the vicinity of

the walls, where a spiral movement of the fluid occurs along the walls, and between the two counter-

rotating circulation patterns. A minimum edge length hmin = 3.33 · 10−3 is used along the maximum

density variation, and hmax = 0.15 in the stagnant fluid region. The combined mesh adaptation

strategy and the efficient parallel algorithm, allow us to reduce considerably the computational time.

Only 5012.04 CPU seconds were necessary to compute the steady solution with 500, 000 tetrahedra

using 56 processors, while Michalek et al. (2005) needed 3.6×105 CPU seconds to compute the steady

solution with a 813 fixed grid.

In many cases, it is convenient to perform two-dimensional numerical simulations, to reduce the

computational effort and allow many simulations to be achieved in a realistic time. However, Fig. 8.2b

shows that the three-dimensionality of the flow in a cube shape cavity affects the topology of the iso-

surface θ = 0.4. Giangi et al. (2000) assessed on the effect of three-dimensionality in both convection

and freezing of water and they noted that only the flow in the symmetry plane can be considered

as two-dimensional. The no-slip velocity and the adiabatic thermal boundary conditions at the side

walls enhance the three-dimensional effect near the walls. Furthermore, these authors noted that, even

though the temperature profiles at the central cross-section of the cavity match well for both 2D and 3D

simulations, important differences between two and three-dimensional velocity profiles are present.

In Figs. 8.2d-f, we plot the velocity profiles along the vertical line passing through the velocity

saddle point, where normal and abnormal convection streams collide in the vicinity of the cold wall.

For the ez component of the velocity, the profile along the z−direction at x = 0.93, for both two

and three-dimensional simulations is compared with the 3D simulation of Michalek and Kowalewski

(2003). Triangular symbols denote the reference solution, obtained with a 3D finite difference code

using vorticity-vector potential formulation of the Navier-Stokes and energy equations. 3D (red solid

line) profile agrees well with the benchmark solution with a maximum difference of 3%. The 2D

(green dashed line) solution exhibits higher discrepancies in the vicinity of the anomalous density

variation, where the three-dimensional effect is maximum. However, as noted by Giangi et al. (2000)

in their experimental observations, larger differences between 2D and 3D solutions could be observed

at x = 0.1 and x = 0.5. Panels (e) and (f) exhibit discrepancies greater than 10% between both

solutions, in agreement with the foregoing observation.
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Figure 8.2: Natural convection of water in a cube-shape cavity. (a) Temperature distribution

and adapted mesh. (b) Zoom of the 3D adapted mesh at mid-plane. (c) Iso-surface

θ = θm. Comparison of the profile of the vertical velocity along the z−direction

with the numerical benchmark by Kowalewski and Rebow (1999) at the mid-plane

(y = 0.5) and x = 0.93 (d); x = 0.1 (e); x = 0.5 (f).
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8.3 Numerical simulations of melting PCM with convection in a 3D configuration

8.3 Numerical simulations of melting PCM with

convection in a 3D configuration

We now proceed to the 3D simulation of solid-liquid phase-change problems, starting with the melting

of a PCM in a cube-shape domain. The three-dimensionality of the fluid flow can lead to major differ-

ences with the two-dimensional solution in some configurations, as in the example of the melting of

Gallium. Nikrityuk (2012) showed that the controversial multi-cellular flow occurs only at the begin-

ning of the melting process in two-dimensional simulations. Three-dimensional simulations exhibit the

absence of a multi-cellular structure at any time step. They explained these differences by the presence

of walls in the third direction, which suppresses the flow. Also, the occurrence of weak turbulence in

the bulk of the melt prevents the formation of the long-living multicellular flow pattern known from 2D

simulations. The three-dimensional geometry allows the fluid movement in all directions and the fric-

tion effect provided by no-slip walls in the transverse direction influences the flow. Nikrityuk (2012)

highlighted the existence of a secondary flow in the transverse direction, as shown in Fig. 8.3, which

has its maximal intensity near the side walls.

We expand the 2D simulations presented in Chapter 5 to 3D configurations. Solutions obtained

by both configurations are compared to assess on the three-dimensional effects that occur during the

melting process. The configuration of the numerical simulation is sketched in Fig. 8.3. The physical

parameters of the run are: Ra = 3.27 · 105, Pr = 56.2, and Ste = 0.045. The PCM is set ini-

tially solid throughout the whole domain. As the heating progresses, the natural convection intensifies

enough to have a pronounced influence on the shape of the interface. The shape of the phase-change

front at t = 78.7 is displayed in Fig. 8.3, showing a nonuniform melting front receding from the top to

the bottom of the domain.

Figure 8.3: Melting of a phase-change material. Problem definition, shape of the solid-liquid

interface at t = 78.8, and temperature distribution in the symmetry plane (a).

Scheme of 3D convection flow near the side wall by Nikrityuk (2012) (b).
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Figure 8.4: Melting of a phase-change material. Temperature iso-surfaces (a) and the corre-

sponding adapted mesh (b) at t = 78.8.

Iso-surfaces of the temperature at t = 78.8 are offered in panel (a) of Fig. 8.4. The melting front is

influenced by the flow which rises along the hot wall and moves down along the solid-liquid interface,

where it is cooled. The influence of the secondary flow, defined by Nikrityuk (2012), is apparent with

respect to the curved shape of the interface in the vicinity of the side-walls in the transverse direction.

The adapted mesh at t = 78.8, refined along the iso-surface θ = 0, is shown in Fig. 8.4b.

The location of the solid-liquid interface at the mid-plane and the time evolution of the Nusselt

number for two and three-dimensional configurations are plotted in Fig. 8.5. The position of the

interface in panel (a) displays discrepancies between both melting fronts, but the shape remains in

good agreement. These differences are caused by the increase of the velocity in the liquid flow, induced

by the three-dimensional effects, as shown by Nikrityuk (2012), who compared the volume-averaged

velocity Uxyz , defined as follows:

Uxyz =

∫

Ω

√

u21 + u22 + u23 dV. (8.1)

In our simulations, at t = 78.7, we obtained Uxyz = 0.548208 for 3D simulations and Uxy = 0.519576
for 2D. However, the time evolution of the heat transfer in panel (b) matches well for 2D and 3D

simulations, with a maximum difference lower than 1% at the onset of the convection time, and overlap

during all the simulation time. From an engineering point of view, the latter observation means that if

only an assessment of the heat transfer during the phase-change process is sought, a 2D simulation is

enough since it could be performed in a reasonable computational time. The 3D simulation required 2
days of CPU time with 200 processors, while 45 minutes on a personal computer is enough for the 2D

configuration, for the investigated Rayleigh number.
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Figure 8.5: Comparison between 2D and 3D solutions. Location of the interface at t = 78.7
(a) and the Nusselt number at x = 0 (b).

8.4 Numerical simulation of water freezing in a cubic

cavity

In this section, we present a 3D simulation of the challenging case of ice formation inside a differ-

entially heated cubic cavity. Starting from the steady solution shown in Fig. 8.2, we drop the cold

temperature at the right wall from θc = 0 to θc = −1, under the temperature of fusion (which corre-

spond to physical temperatures T = 0 oC and T = −10 oC, respectively). Solid crust arises thus from

the cold wall and expands towards the left wall.

The temperature distribution and the adapted mesh at final time tϕ = 2340 s (t = 1.61) are displayed

in Figs. 8.6a and 8.6b. When compared with the natural convection case in Sec. 8.1, the mesh is

additionally adapted along the solid moving front, localized by the temperature iso-surface θ = 0. For

the visual identification of flow structures during the ice formation, panel (c) plots the snapshots of

velocity vectors, the iso-surface θ = 0.4 along the anomalous density variation, and the phase-change

front at time instant t = 1.61. The effect of the secondary flow, discussed in Sec. 8.3, is also visible on

the curved shape of the iso-surface θ = θm in the transverse y− direction. One can note however, that

the solidification front is almost 2D. The buoyancy-induced fluid motion in the abnormal recirculation

region is too weak to influence the solid front. Finally, the overlay of the experimental image of

Kowalewski and Rebow (1999) and the current simulation exhibits good agreement for the location of

the solid-liquid interface. Differences come mainly from the fact that the undercooling phenomenon

during the solidification stage is not taken into account in our model. However, the global shape of the

interface agrees qualitatively with the experimental observation.
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Figure 8.6: Freezing of pure water in a 3D cubic cavity. (a) Temperature distribution and

adapted mesh at tϕ = 2340[s]. (b) Zoom of the adapted mesh at the mid-plane.

(c) Temperature iso-surfaces θ = 0.4 and θ = 0 with velocity vectors in the liquid

phase. (d) Superimposition of the interface obtained in the present simulation (red

line) on the experimental image of Kowalewski and Rebow (1999).

8.5 Concluding remarks

We developed parallel 3D tools using domain decomposition methods to simulate natural convection

flows involving melting or solidification boundary conditions. The numerical simulations performed

with the recent library ffddm in FreeFem++ showed good agreement with the benchmark solutions

and the sequential algorithm for all simulated cases. The qualitative behavior and the topology of

the interface for phase-change problems were discussed in detail. Three-dimensional effects in the

flow were exhibited by the deformed shape of the interface in the transverse direction. The adaptive

3D mesh procedure proved very efficient to capture several interfaces, as in the example of the water

freezing. Grid refinement effort was concentrated only in regions displaying high gradients of the

computed variables, and 10 times larger tetrahedra were generated elsewhere.

104



9 Conclusion and perspectives

In this thesis, we presented numerical simulations of natural convection with melting boundary. We de-

veloped numerical tools for simulating 2D and 3D configurations of solid-liquid phase-change systems

involving natural convection, using adaptive finite elements method.

The buoyancy-induced fluid motion in the liquid phase was modeled by the incompressible Navier-

Stokes equations with Boussinesq approximation. The phase-change was modeled by an enthalpy-

porosity model using a temperature-based formulation for the energy conservation equation. A single-

domain method, solving the same system of equations in both phases, including a Carman-Kozeny-type

penalty term in the momentum equation, was implemented with the FreeFem++ software.

In the numerical approach, the coupled momentum and energy equations were integrated in time using

a fully implicit second-order GEAR scheme. The space discretization was based on a Taylor-Hood

triangular finite elements, approximating the velocity and the pressure with P2 and P1 finite elements,

respectively. Since we noticed from the literature review that the published numerical simulations re-

quired considerable high computer resources and CPU time, the main feature of our numerical method

was the use of a mesh adaptivity algorithm using metrics control to adapt the mesh every time step.

We concentrated the grid refinement effort only in regions displaying high gradients of the computed

variables, and prescribed coarser meshes in the solid phase and stagnant regions. This reduced consid-

erably the number of degrees of liberty, while keeping high accuracy. The accuracy of the numerical

method was tested using manufactured solutions: the expected second-order accuracy in both space

and time was obtained.

As a first purpose of the study, we organized the programs as a toolbox for the software FreeFem++.
The toolbox was designed to be an easy-to-use tool to handle phase-change problems. All technical

issues related to the implementation of the finite element method were hidden, allowing to focus on

numerical algorithms and their performance. A sequence of validation tests was performed, and pre-

sented by increasing gradually the level of complexity. Using the provided examples, the user could

implement easily similar problems involving phase-change phenomena.

We first tested the capability of the Navier-Stokes solver to deal with natural convection problems,

without enthalpy and porosity terms in the system of equations. We started by simulating the natural

convection of air and water inside differentially heated square enclosures. We validated our results

against classical benchmarks of natural convection. Rayleigh numbers up to 108, at the limit of the

steadiness for the natural convection of air, were considered. Additionally, we investigated the thermal

driven problem including a heated obstacle, to assess for the robustness of the code.

We also computed the natural convection of water, which implies a non-linear variation of the density

in the expression of the buoyancy force. The comparison with existing numerical data in the literature

showed very good agreement. The mesh adaptivity algorithm proved very efficient, allowing to capture

accurately the anomalous variation of the density around T = 4 oC. For all simulations presented in

the framework of natural convection problems, the steady state regimes were reached at most after 50
CPU seconds of computation.

We validated extensively the code by simulating the problem of melting and solidification of a PCM.
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To compare our simulation with available experimental and numerical results in the literature, we first

considered the melting of n-octadecane and Gallium inside vertically heated rectangular enclosures. A

mesh convergence test was performed to ensure the grid-convergence of the solution.

Three Rayleigh numbers ranging from 105 to 108 were considered for the n-octadecane PCM melting.

Our simulations were compared with three different benchmarks. A good agreement was found for the

comparison with existing experimental and numerical results. Concerning the controversial melting

of Gallium in 2D configurations, our simulations showed multi-cellular structures of the melted flow

and highly oscillating values of the Nusselt number, in agreement with many observations from the

literature.

We also simulated complex geometries, such as highly distorted domain or cylindrical PCM including

inner heated pipes. For all considered cases, a variable mesh in the vicinity of the walls and along

the phase-change front ensured a good capture of the boundary layer region and the location of the

interface. The simulation of the melting of Gallium showed that our simulations run 245 times faster

when compared with the simulations of Hannoun et al. (2003).

We finally presented the challenging case of water freezing inside a differentially heated cavity. A

qualitative agreement with the experimental results for the solidification front was obtained. The ef-

ficiency of our numerical algorithm allowed us to perform simulations for melting problems, within

45 minutes for the lowest value of Ra to 5 hours for Ra = 108. After a thorough investigation, we

could conclude that our numerical method was validated for the natural convection of air and water and

for the solid-liquid phase change problems including melting and solidification by providing a good

agreement with the benchmarks presented in the literature.

The second purpose of the study was to provide a thorough analysis of the melting and the solidifi-

cation process and compare with numerical results.

We first compared the behavior of the melting PCM when the latter is subject to heating from the side

or from below (lateral or basal melting). For the lateral melting case, we assessed on the influence of

the Rayleigh number on the heat transfer, by computing several configurations using different values of

H and δT . It was shown that increasing the Rayleigh number by keeping δT constant induces a slower

melting rate and a higher heat transfer. However, increasing both Rayleigh and Stefan numbers induced

an earlier onset of the convection-dominated regime, improving thus the efficiency of the PCM.

For the basal melting case, we developed a scale analysis for the linear regime and provided a com-

prehensive description of the heat transfer processes during the melting process. Differences between

lateral and basal melting were drawn, mainly for the structure of the flow and the time evolution of the

Nusselt number. A mono-cellular flow was observed for the lateral melting case at any investigated

Rayleigh numbers, while natural convection developed in the form of Bénard cells for the basal melt-

ing case. Moreover, the quasi-steady evolution of Nu for the vertical heating is not observed when the

PCM is heated from below, since high oscillating evolutions were exhibited.

Further investigation of the solidification process was done by simulating alternate melting and solidifi-

cation cycles. Solidification after either complete or partial melting was simulated, with an assessment

of the melting rate, the heat transfer and the accumulated heat input. It was observed that the convec-

tive heat transfer dominated the melting process, enhancing thus the heat transfer. Conduction was the

main heat transfer mode during the solidification, resulting into a slower operating process. However,

when the discharge temperature was decreased by a factor of 5, the solidification and the melting occur

over similar time intervals. The challenging task for the mesh adaptivity procedure was to track the

two moving interfaces during the solidification cycle.

The third purpose of the thesis was to expand the numerical simulation to 3D configurations. Parallel
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3D tools for melting or solidification involving natural convection flows, using domain decomposition

methods were presented. Numerical simulations were carried out using the recent library ffddm in

FreeFem++ . The originality of our numerical approach was the use of 3D adaptive meshes, performed

every time step, using mmg3d library. We used Metis library to split the domain into subdomains. The

linear system of equations resulting from the Newton linearization was solved using parallel GMRES

Krylov methods.

We simulated the natural convection of air and water inside cubic enclosures and found good agreement

with classical benchmarks. We also simulated the melting of n-octadecane PCM and the difficult case

of water freezing inside a differentially heated cubic cavity. The influence of the three-dimensional ef-

fects on the flow, that was neglected in 2D simulations, was highlighted by presenting the 3D shape of

the solid-liquid interface. Iso-surfaces of the temperature were also impacted by the secondary flow in

the vicinity of the side walls. The adaptive 3D mesh procedure proved very efficient to capture several

interfaces, as in the case of the water freezing.

Future work

One of the major limitations of the present physical model is that we neglected the undercooling

phenomenon, since we assumed that the temperature of fusion and the temperature of solidification

were the same. Though, the liquid could solidify at a temperature significantly lower than the melting

temperature, because of a problem of nucleation at the microscopic scale. An enthalpy-based formula-

tion of the enthalpy-porosity model should be implemented to this end, since the undercooling problem

can not be implemented in the current temperature-based approach. Additionally, a microsegregation

model and a coupling relation between thermal and solute equations could be implemented in the code,

in order to be able to simulate solidification or melting of binary mixtures. Such models would allow us

to simulate more complex configurations such as dendritic formations during the solidification process.

While the Boussinesq approximation proved to be robust for the considered configuration in this

study, the assumption of constant thermo-physical properties limits the range of materials that could

be simulated by our code. A variable density code could be a valuable tool to investigate a larger type

of PCMs and more industrial configurations.

Concerning the numerical model, the second order GEAR scheme provided accurate solutions for

all the considered simulations. Furthermore, a variable time step scheme would increase the robustness

of the numerical method. The simulation of the melting PCM requires for example a very small time

step during the initialization stage, while larger time steps could be prescribed later in the simulation.

Adapting automatically this procedure will increase considerably the efficiency of the code. For the

solidification problem, new boundary conditions could be further developed by using some models that

take into account realistic boundary conditions.

For the parallel algorithm, other preconditionners and solvers should be investigated. This is not

a difficult task with FreeFem++ , since the software is interfaced with popular MUMPS, PETSc, or

HPDDM solvers.
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la donnée et des études statistiques, 2018.

R. Moglan. Modeling and numerical simulation of flow and heat phenomena in a telecommunication

outdoor cabinet. PhD thesis, Université de Rouen Normandie, 2013.
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Résumé

Nous développons dans ce travail de thèse un outil de simulation numérique pour les matériaux à

changement de phase (MCP), en tenant compte du phénomène de convection naturelle dans la phase

liquide, pour des configurations en deux et trois dimensions. Les équations de Navier-Stokes incom-

pressible avec le modèle de Boussinesq pour la prise en compte des forces de flottabilité liées aux

effets thermiques, couplées avec une formulation de l’équation d’énergie suivant la méthode d’en-

thalpie, sont résolues par une de méthode d’éléments finis adaptatifs. Une approche mono-domaine,

consistant à résoudre les mêmes systèmes d’équations dans les phases solide et liquide, est utilisée.

La vitesse est ramenée à zéro dans la phase solide, en introduisant un terme de pénalisation dans

l’équation de quantité de mouvement, suivant le modèle de Carman-Kozeny, consistant à freiner la vi-

tesse à travers un milieu poreux. Une discrétisation spatiale des équations utilisant des éléments finis de

Taylor-Hood, éléments finis P2 pour la vitesse et éléments finis P1 pour la pression, est appliquée, avec

un schéma d’intégration en temps implicite d’ordre deux (GEAR). Le sytème d’équations non-linéaires

est résolu par un algorithme de Newton. Les méthodes numériques sont implémentées avec le logiciel

libre FreeFem++ (www.freefem.org), disponible pour tout système d’exploitation. Les programmes

sont distribués sous forme de logiciel libre, sous la forme d’une forme de toolbox simple d’utilisa-

tion, permettant à l’utilisateur de rajouter d’autres configurations numériques pour des problèmes avec

changement de phase. Nous présentons dans ce manuscrit des cas de validation du code de calcul, en

simulant des cas tests bien connus, présentés par ordre de difficulté croissant : convection naturelle de

l’air, fusion d’un MCP, le cycle complet fusion-solidification, chauffage par le bas d’un MCP, et enfin,

la solidification de l’eau.

Mots-clefs : Navier-Stokes, Boussinesq, méthode d’enthalpie mono-domaine, Carman-Kozeny, éléments

finis, FreeFem++, maillage adaptatif, matériaux à changement de phase (MCP), convection naturelle,

algorithme de Newton, fusion, cycle complet, solidification de l’eau.

Abstract

In this thesis we develop a numerical simulation tool for computing two and three-dimensional

liquid-solid phase-change systems involving natural convection. It consists of solving the incompress-

ible Navier-Stokes equations with Boussinesq approximation for thermal effects combined with an

enthalpy-porosity method for the phase-change modeling, using a finite elements method with mesh

adaptivity. A single-domain approach is applied by solving the same set of equations over the whole

domain. A Carman-Kozeny-type penalty term is added to the momentum equation to bring to zero

the velocity in the solid phase through an artificial mushy region. Model equations are discretized

using Galerkin triangular finite elements. Piecewise quadratic (P2) finite-elements are used for the

velocity and piecewise linear (P1) for the pressure. The coupled system of equations is integrated in

time using a second-order Gear scheme. Non-linearities are treated implicitly and the resulting discrete

equations are solved using a Newton algorithm. The numerical method is implemented with the finite

elements software FreeFem++ (www.freefem.org), available for all existing operating systems. The

programs are written and distributed as an easy-to-use open-source toolbox, allowing the user to code

new numerical algorithms for similar problems with phase-change. We present several validations, by

simulating classical benchmark cases of increasing difficulty: natural convection of air, melting of a

phase-change material, a melting-solidification cycle, a basal melting of a phase-change material, and

finally, a water freezing case.

Keywords : Navier-Stokes, Boussinesq, enthalpy-porosity method, single-domain method, Carman-

Kozeny, finite-elements, Taylor-Hood, FreeFem++, mesh adaptivity, phase-change materials (PCM),

natural convection, Newton algorithm, GEAR scheme, open-source toolbox, 2D and 3D simulations,

melting, solidification, water freezing.
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