
HAL Id: tel-02354530
https://theses.hal.science/tel-02354530v1

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to the Engineering of User Interfaces
Arnaud Blouin

To cite this version:
Arnaud Blouin. Contribution to the Engineering of User Interfaces. Software Engineering [cs.SE].
Université de Rennes 1 [UR1], 2019. �tel-02354530�

https://theses.hal.science/tel-02354530v1
https://hal.archives-ouvertes.fr

Habilitation à diriger

des recherches de

L’INSA RENNES
Comue Université Bretagne Loire

Ecole Doctorale n
◦ 601

Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Arnaud Blouin

Contribution to the Engineering of User Interfaces

Habilitation présentée et soutenue à Rennes, le 29.08.2019
Unité de recherche : IRISA – UMR6074
Thèse N◦ :

Composition du Jury :
Rapporteurs
Gaëlle CALVARY Professor

Grenoble INP
Philippe PALANQUE Professor

Toulouse 3 University
Richard PAIGE Professor

McMaster University, Canada

Examinateurs

Yann-Gaël GUÉHÉNEUC Professor
Concordia University, Canada

Jean-Marc JÉZÉQUEL Professor
Rennes University

Jean VANDERDONCKT Professor
Louvain University, Belgium

2

Contents

1 Contribution to the Engineering of User Interfaces 5
1.1 Context . 5
1.2 Challenges and Objectives . 7
1.3 Scientific Contributions . 9

1.3.1 Software engineering user interfaces: new user interface development
abstractions . 9

1.3.2 Improving the interactivity and usability of domain-specific languages 11
1.4 Research Methods . 13

1.4.1 From insights to empirical evidences: the example of a study on UI
listeners . 14

1.4.2 Validating approaches empirically: the example of the UI listener re-
factoring tool . 18

1.5 Projects and Supervision . 22
1.6 Software Development . 26

2 Research Perspectives 29
2.1 DevOps and user interfaces . 31

2.1.1 Research Context . 31
2.1.2 Scientific Challenges . 31
2.1.3 Approach . 33

2.2 Engineering domain-specific user interfaces . 37
2.2.1 Research Context . 37
2.2.2 Scientific Challenges . 37
2.2.3 Approach . 39

2.3 User interactions as a first-class programming concept 42
2.3.1 Research Context . 42
2.3.2 Scientific Challenges . 42
2.3.3 Approach . 45

Selected Publications 49

Bibliography 53

3

4 CONTENTS

Chapter 1

Contribution to the Engineering of
User Interfaces

Contents
1.1 Context . 5

1.2 Challenges and Objectives . 7

1.3 Scientific Contributions . 9

1.3.1 Software engineering user interfaces: new user interface development
abstractions . 9

1.3.2 Improving the interactivity and usability of domain-specific languages 11

1.4 Research Methods . 13

1.4.1 From insights to empirical evidences: the example of a study on UI
listeners . 14

1.4.2 Validating approaches empirically: the example of the UI listener re-
factoring tool . 18

1.5 Projects and Supervision . 22

1.6 Software Development . 26

1.1 Context

‘Anytime you turn on a computer, you’re dealing with a user interface’ [91]. User interfaces (UI)
pervade our daily lives. To do office tasks, to pilot an airliner, to write programs, UIs are
the tangible vectors that enable users to interact with software systems. The development
of UIs involves multiple roles. Designers and ergonomists are in charge of the design and
evaluation of UIs from a strict human factor viewpoint. They use concepts and theories
established by the Human-Computer Interaction (HCI) community. Software engineers de-
velop, validate, maintain UIs using software engineering techniques. UI engineering is an
interdisciplinary field that cross-cuts these two roles and their underlying domains, HCI and
software engineering. In the 80s Draper and Norman motivated the UI engineering field as
follows:

5

6 CHAPTER 1. CONTRIBUTION TO THE ENGINEERING OF USER INTERFACES

The discipline of software engineering can be extended in a natural way to deal with the
issues raised in a systematic approach to the design of human-machine interfaces. To a
larger extent all that is needed is to take the problem of engineering the user interface as
seriously as any other part of software engineering and to apply to it the same kind of
techniques, appropriately adapted. [47]

The IFIP Working Group on UI engineering proposes a more technical definition of UI en-
gineering:

UI engineering addresses all aspects related to methods, processes, tools, technologies, and
empirical studies involved in the invention, design and construction of interactive systems
[. . .] with a particular focus on principled, methodological engineering approaches. [65]

These definitions agree on one point: UIs are complex pieces of software that require spe-
cific development approaches. Indeed, UI engineering is not the crossroads of the HCI and
software engineering domains, i.e., a domain that sounds hollow without underlying theories
where concepts from the HCI and software engineering domains are simply assembled. UI
engineering springs from and is backed with HCI and software engineering. Yet, UI engineer-
ing also relies on specific UI engineering theories. We can group the existing UI engineering
approaches that develop these theories into two categories.

Approaches #1: Adapting software engineering techniques for engineering UIs

The first group of approaches adapts software engineering techniques for the specific
purpose of engineering UIs. These approaches are numerous, such as: UI testing aims at
adapting software testing techniques to test UIs [131, 85, 34]; software dynamic adaptation
techniques were adapted to UIs [3, 29]; more generally, the UI engineering community widely
studies model-driven engineering to overcome UI-related issues [128, 80, 32, 99].

Approaches #2: Injecting HCI concepts into software engineering processes, tools, methods

The second group of approaches integrates HCI concerns within software engineering
processes. Several examples of topics are: HCI methods for designing and evaluating APIs [94]
(Application Programming Interface) and languages [13]; rapid prototyping, that consists of pro-
posing new engineering techniques to quickly develop UI prototypes [38].

The next Section 1.2 explains the scientific UI engineering challenges I focus on. Sec-
tion 1.3 details the contributions I, with the essential help of the persons I work(ed) with,
propose. These contributions are situated in the context of UI engineering, with a strong
focus on software engineering. More precisely, the contributions focus on model-driven en-
gineering, software validation and verification, and software variability, for engineering UIs.

1.2. CHALLENGES AND OBJECTIVES 7

1.2 Challenges and Objectives

UI engineering involves the software engineering and HCI communities that should work
together, but as explained by Palanque:

Innovation and creativity are the main research drivers of the HCI community, which is
currently investing a vast amount of resource in the design and evaluation of ’new’ user
interfaces and interaction techniques, leaving the correct functioning of these interfaces at
the discretion of the helpless developers. [108]

HCI researchers, such as Beaudouin-Lafon, also discuss this problem of interactions between
these two communities:

HCI researchers have created a variety of novel [user] interaction techniques and shown
their effectiveness in the lab, such ’point designs’ are insufficient. Software developers
need models, methods, and tools that allow them to transfer these techniques to commercial
applications. [15]

A gap thus exists between how the HCI community envisions a UI and how software
engineers can implement it. This concerns the two groups of approaches described in the
previous section:

Limits and challenges of using software engineering techniques for engineering UIs –
Software engineers mostly rely on general-purpose languages (GPL) to develop software
systems and UIs. GPLs, such as Java or JavaScript, aim at providing engineers with pro-
gramming constructs (e.g., object-oriented constructs) to solve a large variety of problems.
One issue is that UI engineering involves specific problems and thus specific constructs. En-
gineers and researchers progressively propose and use constructs specifically designed for
engineering UIs. The definition of a UI structure typifies such new constructs. With old UI
toolkits, such as Java Swing, engineers had to define the structure of a UI by programming
it. To better match the declarative definition of a UI structure engineers and researchers have
proposed UIDLs (User Interface Description Language) [80, 122, 126]. UIDLs describe the struc-
ture of a UI with adapted abstractions, languages and tools. Most of the current mainstream
UI toolkits rely on a UIDL, such as XAML for WPF [121], FXML for JavaFX [43], or DOM for
Web frameworks [60, 51, 93]. Researchers also worked on the role of UIDLs and how they
can overcome other UI challenges such as dynamic adaptive UIs or multi-platform UIs [80,
32].

UI engineering has other major concerns that require dedicated constructs. This is the case
of:

- UI testing – As any software artefact, UIs need to be tested;

- UI analysis – As any software artefact, UIs need to be analysed to find issues or for
maintenance or testing operations;

- UI variability – Because of the large panel of devices and usages, UIs are no more
monolithic but a product line.

8 CHAPTER 1. CONTRIBUTION TO THE ENGINEERING OF USER INTERFACES

Limits and challenges in injecting HCI concepts into software engineering processes,
tools, methods – DSLs are interfaces that stand between domain experts and their engineer-
ing problems [89, 36]. For domain experts, the visible part of a DSL is its concrete syntax.
Concrete syntaxes can take various forms, such as graphical, textual or tabular. These experts
handle DSLs through dedicated editors that share similarities with standard IDEs (Integrated
Development Environment) of GPLs: auto-completion, templating, error checking, or naviga-
tion, are standard interactive and usability features that IDEs of both GPLs and DSLs support.

However, the gist of a DSL is to focus on one specific problem. DSLs can thus have major
conceptual and technical differences each other. This has impacts on how domain experts
interact DSL. Specific interactive features may be adequate for one DSL, but not for other
ones. Basic generic support is currently provided to DSL designers, such as auto-completion
and error checking for textual DSLs. For the rest, DSL designers have to craft by hand
supplementary interactive features for each DSL they develop. One goal of the software-
language community is to ease the development of DSLs. To follow this trend, I defend
that DSL development processes and tools should provide DSL designers with features to
customise, improve the interactivity and usability of DSLs. Two intertwined sub-objectives
composes this research line:

- DSL interactivity – Supplying DSL editors with time-honoured yet customisable inter-
active features to help domain experts;

- DSL development – Providing language designers with techniques, processes, tools to
ease the development of DSLs.

In this habilitation I thus defend the following thesis as a global objective:

UI engineering research has to provide software engineers with theories and
techniques at a correct level of abstraction and assessed empirically to help
them in coding, testing, documenting usable modern UIs.

1.3. SCIENTIFIC CONTRIBUTIONS 9

1.3 Scientific Contributions

All the contributions I develop in this section could not be have been done without the help,
the inspiration, the complementarity of the DiverSE research group in which I work since my
PhD viva in December 2009 (research group called Triskell at this time).

1.3.1 Software engineering user interfaces: new user interface develop-
ment abstractions

As for any software artefact, software engineers develop, test and maintain UIs. The develop-
ment of UIs relies on graphical toolkits while testing UIs relies on UI testing libraries. These
toolkits and libraries are built on top of HCI and software engineering concepts. The first
scientific contributions I detail in the next paragraphs propose new UI engineering concepts.
I detail how I turn them into concrete engineering tools and how I evaluated their impacts
in situ. These concepts follow the same leitmotiv: engineering UIs is a specific problem that
requires specific abstractions. These abstractions thus go beyond the classical object-oriented
abstractions provided by the current programming languages to provide abstractions that
focus on UI concerns.

UI testing [76, 77] – The first new abstraction is related to UI testing. As any code artefact,
developers must validate UI code to provide users with high quality (from a strict software
engineering viewpoint) UIs. So, software testers have paid special attention to UI testing
in the last decade [11]. They have devised techniques that are effective in finding several
kinds of UI errors. However, the introduction of new types of user interactions presents
new kinds of errors that are not targeted by current testing techniques. We believe that to
advance UI testing, the community needs a comprehensive and high level UI fault model,
which incorporates all types of interactions. This contribution proposes a UI fault model
designed to identify and classify UI faults. We designed this model empirically by analysing
bug reports of real UIs. For each fault proposed in the model, we develop a mutant of a highly
interactive software system that introduces an instance of the fault. The goal is to provide
UI testers with examples of UI errors to find and to train UI testing tools. The proposed UI
fault model aims at guiding software testers in building UI testing tools and writing UI tests
based on the characterised UI faults. For example, we used the fault model to develop a tool
in an industrial context to find UI errors in UIs of French power plant [77].

UI code analysis [26, 78] – Code analysing techniques extract information from the code
or from the execution of the code to, for example, identify bad coding practices or help in
generating tests. The second abstraction follows the same idea as for the proposed UI fault
model: similarly to software testing that requires fault models, identifying UI bad coding
practices requires to reason on UI information extracted from the code. The next contribution
I present focuses on the analysis of object-oriented code that controls a UI to extract UI
abstractions. UIs intensively rely on event-driven programming: interactive objects send UI
events, which capture users’ interactions, to dedicated objects called controllers. Controllers
use several UI listeners that handle these events to produce UI commands. An empirical
study we conducted revealed the presence of a design smell in the code that describes and
controls UIs. This new design smell, called Blob listener, characterises UI listeners that can
produce more than two UI commands. Because of the coupling of the identified design
smell and the rest of the code, we proposed a systematic static code analysis procedure that

10 CHAPTER 1. CONTRIBUTION TO THE ENGINEERING OF USER INTERFACES

searches for Blob listeners. The technique permits to precisely identify UI commands and
the widgets that produce these commands using the code of these UI elements. We then
developed a semi-automatically and behaviour-preserving refactoring process to remove Blob
listeners. We empirically validated the developed techniques by applying them on large open-
source software systems. Developers of the studied systems accepted and merged patches
we produced. Discussions with these developers assessed the relevance of the Blob listener.

UI product line [29, 72] – ‘The traditional focus of software engineering is to develop indi-
vidual software systems, i.e., one software system at a time. [. . .] The result obtained is a single
software product. In contrast, Software Product Line engineering (SPL) [101, 14, 113] focuses on
the development of multiple similar software systems from a common codebase’ [2]. SPL eases the
development of similar software systems or different versions of a same software system by
promoting software reuse. This eases the static (i.e., at design time) or dynamic (i.e., at run
time) adaptations of a software system to a change of configuration. As any software artefact,
SPL concerns UIs [112]. In particular for statically or dynamically adapting UIs to a change
of context [80, 32, 37]. The next contribution a present focuses both on static or dynamic UI
product line.

First, UIs can adapt dynamically to context changes (platform, user, environment). Com-
plex user interfaces and contexts can lead to the combinatorial explosion of the number of
possible adaptations. Thus, dynamic adaptations come across the issue of adapting user
interfaces in a reasonable time-slot with limited resources. We proposed to combine aspect-
oriented modelling (AOM) with property-based reasoning to tame complex and dynamic
user interfaces [29]. AOM approaches provide advanced mechanisms for encapsulating cross-
cutting features and for composing them to form models [92]. Property-based reasoning con-
sists in tagging objects that compose the system with characterising properties [53]. At run
time, a reasoner uses these properties to perform adaptations based on the current context.
Reasoning on a limited number of aspects combined with the use of properties overcomes
the combinatorial explosion issue.

Second, development practices in virtual reality (VR) hardly follow the software engin-
eering practices. In many cases, engineers develop each VR application from scratch without,
for example, any code reuse from related VR applications. VR applications, however, share
various specific artefacts such as scenarios, i.e., the ‘story’ of the VR applications [33, 35]. We
propose methods to automate the development and evaluation of VR applications with the
use of SPL techniques [72, 73]. We implemented these approaches inside tools that have been
tried on examples and evaluated by their target users. The results promote the use of these
frameworks for producing scenario-based software.

Note that I based most of the contributions of this first part on concepts I promoted during
my PhD thesis with the Malai design pattern [22, 23]: Decomposing an interactive system into
three blocks – the model, views and controllers [69] (or presenters [114], view models [121],
etc.) – is not precise enough regarding the increasing interactivity of modern UIs. These
architectures consider other well-established UI concepts, in particular the concepts of user
interaction, UI command and undo/redo.

1.3. SCIENTIFIC CONTRIBUTIONS 11

1.3.2 Improving the interactivity and usability of domain-specific languages

As for any user interface, engineering DSLs must make use of HCI concepts at different
levels. First, as any user interface, DSL editors must be usable. Engineers must supply
DSL editors with adapted interactive features to help their domain experts in using the DSL.
Second, developing DSL is a complex engineering job that involves various tasks, such as
developing, testing, maintaining editors, documentation, syntaxes [36]. Language designers
must be helped during these tasks to propose to domain experts usable DSL editors. The
second scientific contributions I detail in the next paragraphs follow these two lines.

Model slicing [25, 24] – I based most of the contributions of this part on the concept of
model slicing I first present. Model slicing is a model comprehension technique inspired by
program slicing [125]. The process of model slicing involves extracting from an input model
a subset of model elements that represent a model slice. Model slicing provides a mechanism
to isolate and focus on specific parts of a given model using input model elements called
slicing criteria. For example, when seeking to understand a large class diagram, it may help
to extract the sub-part of the diagram that includes only the dependencies of a particular
class [27, 28]. Another slicing example is the extraction of the footprint of a model operation
(i.e., identifying the model elements handled by the operation) [66] to do type checking [45]
or improve model operation performance [129, 124]. In this work, we precisely define the
theory of the model slicing operator. Based on this theory, we then designed a DSL, called
Kompren, to model model slicers for a particular domain (captured in a metamodel). The
primary objective of Kompren is the selection of classes and properties in an input metamodel.
Kompren promotes the definition of slicers that slice all necessary elements to make the slice a
valid instance of the input metamodel. We used Kompren on different use cases, as discussed
in the following paragraphs.

Interactivity of DSL editors [27, 28, 19] – The second contribution of this part focuses on
improving the interactivity of DSL editors. We worked on DSLs having graphical or tabular
syntax with two different contributions. First, graphical syntaxes are widely used by language
designers. Representative examples are Ecore [123] and the different UML languages [103]
for software engineers, and ScratchJr [52] for kids. One issue with graphical syntaxes is the
space on screens a model can take when opened, hindering the comprehension of the studied
model. We propose a technique to improve the interactivity, more precisely the navigation
through models, of graphical DSL editors [27, 28]. We based this technique on model slicing
to slice the current model using filtering data. Model slicing serves as a dynamic filtering
feature, where elements not related to the current concern of the user are hidden. We show
that the proposed technique eases the navigation through large models and improve the
understandability that users have of their models.

Second, Product Comparison Matrices (PCM) are a specific case of tabular DSLs. PCMs
form a rich source of data for comparing a set of related and competing products over nu-
merous features. Despite their apparent simplicity, PCMs contain heterogeneous, ambiguous,
uncontrolled, and partial information that hinders their efficient exploitations. These DSLs
are, for example, intensively used on Wikipedia to compare objects using their characterist-
ics. The contribution we proposed aims at easing the use of PCMs by automatically analysing
raw data to produce formalised PCMs with interactive features adapted to their content. The
goal of this proposal is to improve the current practice of editing, maintaining and exploiting
PCMs.

12 CHAPTER 1. CONTRIBUTION TO THE ENGINEERING OF USER INTERFACES

Easing the development of DSLs [45, 46, 86, 88, 87, 74] – Software engineers are users
too [96]. This third contribution focuses on proposing to language designers new techniques
to improve the development of DSLs. These contributions are not user interface engineer-
ing contributions per se; they are software engineering, more precisely language engineering,
contributions. However, the goal of the these contributions is to ease the work of language de-
signers so that I consider these contributions as improving the usability of software language
development tools and methods. I classify these contributions into three parts.

First, we focused on flexibility and reuse while creating DSLs [45, 46]. The theory behinds
the current DSL tools faces several flaws that prevent language designers to freely create
and maintain DSLs and their models. We worked on two of these flaws. Regarding the
first flaw, we conducted and empirical study with UML models publicly available on Github.
This study shows up to 93 % of compatibility opportunities to load the models according to
different versions of UML. However, the current DSL theory prevents such compatibility by
being based on nominal typing: a model is conformed to a unique named language. We
proposed a new model typing theory based on structural typing to overcome this flaw [46].
With this theory a language can load any model which structure is compatible with the
language. The second flaw concerns language reuse and customizations. When engineering
new DSLs, it is likely that efforts spent on the development of prior languages could be
leveraged, especially when their domains overlap. The current language workbenches [56],
i.e., ‘a unified environment to assist both language designers and users in, respectively, engineering
new DSLs and using them’ [44], lack an explicit support for language customizations and reuse.
We proposed a new language workbench, called Melange [45]. Based on the model typing
theory we also proposed, Melange allows language designers in building DSLs by safely
assembling and customising legacy DSLs artefacts.

We also proposed an approach to manage DSL variants easier, i.e., different versions of
a DSL adapted to specific purposes but that still share commonalities [86, 87]. When facing
DSL variants, the challenge for language designers is to reuse, as much as possible, existing
language constructs to narrow implementation from scratch. We thus proposed a reverse-
engineering technique that analyses a set of DSL variants to identify language modules and
their relations. A language product line can then be derived to customise and build new DSL
variants.

Finally, we worked on easing the production and maintenance of DSL documentation [74].
Documenting DSLs and maintaining documentation over changes is a tedious task for soft-
ware engineers. We propose a slicing-based technique to semi-automatically generate end-
user documentation for a given DSL. The process uses as input data, the grammar, several
model examples and the metamodel of the DSL. Then, each concept of the language is auto-
matically documented by extracting relevant information from these different input data.

1.4. RESEARCH METHODS 13

1.4 Research Methods

The research method I followed to develop the contributions summarised in the previous
section is deductive and analytical. Deductive in the sense that I started from the thesis
of this habilitation to adapt HCI and software engineering theories, develop engineering
techniques, and conduct analytical studies to discuss the thesis. Analytical in the sense that
my research aims at understanding the current UI and software engineering practices to
then help software engineers with new theories and techniques. I thus conducted various
empirical studies.

The research method I followed is also based on scientific collaborations. In 2017 I co-
funded the GL-IHM French working group that aims at easing the collaborations between
HCI researchers (resp. SE researchers) that have an interest in SE (resp. in HCI). CNRS is
funding most of the actions of this group. An example of work we are conducting in 2019 in
this group is the presentation of early-drafted UI experiments by researchers to get feedback.

Table 1.1: Details of the main empirical studies we conducted

Articles Description Quantitative Qualitative

[74] Exercises with 17 subjects Time, correctness Anonymous feedback
on two tools

[74] Interviews of tool developers Feedback

[26] Empirical study on UI listener code Fault- change-proneness

[26] Tool evaluation Recall, precision, Interviews
patch acceptance

[46] Empirical study on UML models Model conformance checking

[76] Empirical study on Bug classification
existing GUI bugs

[28] Exercises with 32 subjects Time, correctness
on two tools

[19] Experiments on 75 Precision
product matrices from Wikipedia

Over the years, the papers I wrote increasingly detail empirical studies for various pur-
poses:

- evaluate the theories and techniques I proposed;

- get information about the current engineering practices;

- identify limits and then characterise scientific problems.

Table 1.1 summarises the main empirical studies I (co-)conducted. For each paper, I now
follow the same schema that I adapt according to the research context:

14 CHAPTER 1. CONTRIBUTION TO THE ENGINEERING OF USER INTERFACES

1. From personal insights, I try to find empirical evidences that motivate a research
problem. I think that researchers should not propose a scientific solution of a problem
they just invented. The goal of such empirical evidences is to overcome this issue by:
explaining, illustrating and assessing the existence of a research problem empirically.
This threefold process gives credits to a scientific problem and allows me to update my
initial vision of a problem.

2. Evaluate empirically an approach I propose. Researcher papers (vision papers ex-
cluded) have to describe a validation that assesses a proposed approach. Depending
on the nature of the contribution, a validation can be a relevant use case or an empir-
ical study. Both should be based on empirical artefacts (e.g., a use case provided by
industrial partners or a comparison of tools on representative data). Researchers wrote
insightful guides for helping other researchers conducting SE empirical studies [120].

To illustrate this schema, I detail in the next sub-sections a reduced version of the em-
pirical studies I conducted for one of my representative papers: ‘User Interface Design Smell:
Automatic Detection and Refactoring of Blob Listeners’ [26]. This paper studies UI listeners (aka.
UI handlers/callbacks): a method automatically called when the user triggers an event while
interacting with a UI. A UI listener usually registers with a single widget to produce one UI
command. UI toolkits provide predefined sets of listener interfaces or classes that developers
can used to listen specific UI events such as clicks or key pressures.

1.4.1 From insights to empirical evidences: the example of a study on UI
listeners

1 public void actionPerformed(ActionEvent e) {
2 Object src = e.getSource();
3 if(src==b1){
4 // Command 1
5 }else if(src==b2){
6 // Command 2
7 }else if(src instanceof AbstractButton &&
8 ((AbstractButton)src).getActionCommand().equals(
9 m3.getActionCommand())){

10 // Command 3
11 }}

Listing 1.1: Code example of a UI listener that manages three buttons.

I develop UIs using various programming languages and UI toolkits (mainly Angular
and JavaFX). I observed in existing code that some developers may use a UI listener to
manage several UI commands. Listing 1.1 illustrates this practice where the UI listener
actionPerformed manages three widgets to produce three UI commands. I consider this
coding practice as a bad one.

From this insight, I wanted to objectively state whether the number of UI commands that UI
listeners can produce has an effect on the code quality of these listeners.

1.4. RESEARCH METHODS 15

Research Questions. I thus conducted the following empirical study that relies on three
research questions:

RQ1 To what extent the number of UI commands per UI listeners has an impact on fault-
proneness of the UI listener code?

RQ2 To what extent the number of UI commands per UI listeners has an impact on change-
proneness of the UI listener code?

RQ3 Do developers agree that a threshold value, i.e., a specific number of UI commands per
UI listener, that can characterize a UI design smell exist?

To answer these three research questions, we measured the following independent and de-
pendent variables. We implemented the UI code analysing algorithms in InspectorGuidget,
an open-source Eclipse plug-in that analyses Java Swing, SWT and JavaFX software systems.
All the material of the experiments is freely available.1

Independent Variables. The independent variable of the study is the Number of UI Com-
mands (CMD). This variable measures the number of UI commands a UI listener can produce.
InspectorGuidget will compute this variable.
Dependent Variables. Average Commits (COMMIT). This variable measures the average num-
ber of commits of UI listeners. This variable will permit to evaluate the change-proneness
of UI listeners. To measure this variable, we automatically count the number of the commits
that concern each UI listener.
Average fault Fixes (FIX). This variable measures the average number of fault fixes of UI listen-
ers. This variable will permit to evaluate the fault-proneness of UI listeners. To measure
this variable, we manually analyse the log of the commits that concern each UI listener. We
manually count the commits which log refers to a fault fix, i.e., logs that point to a bug report
of an issue-tracking system (using a bug ID or a URL) or that contain the term ‘fix’ (or a
synonymous). We use the following list of terms to identify a first list of commits: fix, bug,
error, problem, work, issue, ticket, close, reopen, exception, crash, NPE, IAE, correct, patch, repair, rip,
maintain, warning. We then manually scrutinised each of these commits.

Both COMMIT and FIX rely on the ability to get the commits that concern a given UI
listener. For each software system, we use all the commits of their history as the time-frame
of the analysis. We ignore the first commit as it corresponds to the creation of the project.

The size, i.e., the number of lines of code (LoC), of UI listeners may have an impact on the
number of commits and fault fixes. So, we need to compare UI listeners that have a similar
size by computing the four quartiles of the size distribution of the UI listeners [1]. We kept
the fourth quartile (Q4) as the single quartile that contains enough listeners with different
numbers of commands to conduct the study. This quartile Q4 contains 297 UI listeners that
have more than 10 LoCs. For the study the code has been formatted and the blank lines and
comments have been removed.

Commits may change the position of UI listeners in the code (by adding or removing
LoCs). To get the exact position of a UI listener while studying its change history, we use the
Git tool git-log.2 We then manually check the logs for errors.

1https://github.com/diverse-project/InspectorGuidget
2https://git-scm.com/docs/git-log

https://github.com/diverse-project/InspectorGuidget
https://git-scm.com/docs/git-log

16 CHAPTER 1. CONTRIBUTION TO THE ENGINEERING OF USER INTERFACES

Table 1.2: The four selected software systems and their characteristics

Software Version Toolkit kLoCs # commits # UI listeners Source repository link

platform.ui
.workbench

4.7 SWT 143 10 049 259 git.eclipse.org/c/gerrit/platform/eclipse.
platform.git

JabRef 3.8.0 Swing 95 8567 486 github.com/JabRef/jabref

ArgoUML 0.35.1 Swing 101 10 098 214 github.com/rastaman/argouml-maven

argouml.tigris.org/source/browse/argouml

FreeCol 0.11.6 Swing 118 12 330 223 sourceforge.net/p/freecol/git/ci/master/tree

Objects. The objects of this study are open-source software systems. The dependent variables
impose several constraints on the selection of these software systems. The systems must
use an issue-tracking system and the Git version control system. We focused on software
systems that have more than 5000 commits in their change history to let the analysis of the
commits relevant. In this work, we focused on Java Swing and SWT UIs because of the
popularity and the large quantity of Java Swing and SWT legacy code available on code
repositories such as Github and Sourceforge. We thus selected four Java Swing and SWT
software systems, namely ArgoUML, JabRef, Eclipse (more precisely the platform.ui.workbench
plug-in) and Freecol. Table 1.2 lists these software systems, the version used, their UI toolkit,
their number of Java line of codes, commits and UI listeners, and the link the their source
code. The number of UI listeners excludes empty listeners.
Results. We used the quartile Q4 to compare listeners with similar sizes. Q4 has the following
distribution. 69.36 % (i.e., 206) of the listeners can produce one command (we will call them
one-command listeners). 30.64 % of the listeners can be produce two or more commands: 47
listeners can produce two commands; 16 listeners can produce three commands; 28 listeners
can produce at least four commands. To obtain representative data results, we considered in
the following analyses three categories of listeners: one-command listener (CMD=1 in Table 1.3),
two-command listener (CMD=2), three+-command listener (CMD>=3).

Table 1.3: Means, correlations and Cohen’s d of the results
Dependent Mean Mean Mean Correlation Cohen’s d Cohen’s d Cohen’s d
variables CMD=1 CMD=2 CMD>=3 (significance) CMD=1 vs CMD=2 vs CMD=1 vs

CMD=2 CMD>=3 CMD>=3
(significance) (significance) (significance)

FIX 1.107 1.149 2.864 0.4281 0.0301 0.5751 0.8148
(***) (no) (no) (***)

COMMIT 5.854 6.872 10.273 0.3491 0.1746 0.3096 0.5323
(***) (no) (no) (no)

We computed the means of FIX and COMMIT for each of these three categories. To
compare the effect size of the means (i.e., CMD=1 vs. CMD=2, CMD=1 vs CMD=2, and CMD=1
vs. CMD>=3) we used the Cohen’s d index [119]. Because we compared multiple means, we
used the Bonferroni-Dunn test [119] to adapt the confidence level we initially defined at 95 %
(i.e., α = 0.05): we divided this α level by the number of comparisons (3), leading to α = 0.017.
We used the following code scheme to report the significance of the computed p-value: No

https://git.eclipse.org/c/gerrit/platform/eclipse.platform.git
https://git.eclipse.org/c/gerrit/platform/eclipse.platform.git
https://github.com/JabRef/jabref
https://github.com/rastaman/argouml-maven
https://argouml.tigris.org/source/browse/argouml
https://sourceforge.net/p/freecol/git/ci/master/tree

1.4. RESEARCH METHODS 17

significance= p > 0.017, ∗ = p ≤ .0017, **= p ≤ .005, ∗ ∗ ∗ = p ≤ .001. Because FIX (resp.
COMMIT) and CMD follow a linear relationship, we used the Pearson’s correlation coefficient
to assess the correlation between the number of fault fixes (resp. number of changes) and the
number of UI commands in UI listeners [119]. The correlation is computed on the quartile
Q4. The results of the analysis are detailed in Table 1.3.

Figure 1.1 depicts the evolution of FIX over CMD. We observe a significant increase of the
fault fixes when CMD ≥ 3. According to the Cohen’s d test, this increase is large (0.8148).
FIX increases over CMD with a moderate correlation (0.4281, if in [0.3, 0.7[, a correlation is
considered to be moderate [119]).

Figure 1.1: Number of fault fixes of UI listen-
ers

Figure 1.2: Number of commits of UI listen-
ers

Regarding RQ1, on the basis of these results we can conclude that managing several UI
commands per UI listener has a negative impact on the fault-proneness of the UI listener code:
a significant increase appears at three commands per listener, compared to one-command
listeners. There is a moderate correlation between the number of commands per UI listener
and the fault-proneness.

Figure 1.2 depicts the evolution of COMMIT over CMD. The mean value of COMMIT in-
creases over CMD with a weak correlation (0.3491, using the Pearson’s correlation coefficient).
A medium (Cohen’s d of 0.5323) but not significant (p-value of 0.0564) increase of COMMIT
can be observed between one-command and three+-command listeners. COMMIT increases
over CMD with a moderate correlation (0.3491). Regarding RQ2, on the basis of these results
we can conclude that managing several UI commands per UI listener has a small but not sig-
nificant negative impact on the change-proneness of the UI listener code. There is a moderate
correlation between the number of commands per UI listener and the change-proneness.

Regarding RQ3, we observe a significant increase of the fault fixes for three+-command
listeners against one-command listeners. We also observe an increase of the commits for
three+-command listeners against one-command listeners. We thus state that a threshold
value, i.e., a specific number of UI commands per UI listener, that characterizes a UI design

18 CHAPTER 1. CONTRIBUTION TO THE ENGINEERING OF USER INTERFACES

smell exists. Note that since the COMMIT metrics counts all the commits, bug-fix commits
included, the increase of the commits may be correlated to the increase of the fault fixes for
three+-command listeners. We contacted developers of the analysed software systems to get
feedback about a threshold value. Beyond the ‘sounds good’ for three commands per listener,
one developer explained that ‘strictly speaking I would say, more than one or two are definitely an
indicator. However, setting the threshold to low [lower than three commands per listener] could
lead to many false positives’. Another developer said ‘more than one [command per listener] could
be used as threshold, but generalizing this is probably not possible’. We agree and define the threshold
to three UI commands per UI listener. Of course, this threshold value is an indication and as
any design smell it may vary depending on the context.

Conclusion. Based on the results of the empirical study previously detailed, we showed that
a significant increase of the fault fixes and changes for two- and three+-command listeners
is observed. Considering the feedback from developers of the analysed software systems,
we define at three commands per listener the threshold value from which a design smell,
we called Blob listener, appears. We define the Blob listener as follows. A Blob listener is a UI
listener that can produce several UI commands. Blob listeners can produce several commands
because of the multiple interactive objects they have to manage. In such a case, Blob listeners’
methods (such as actionPerformed) may be composed of a succession of conditional statements
that: 1) identify the interactive object that produced the UI event to treat; 2) execute the
corresponding UI command. The threats to validity are summarised at the end of the next
section.

1.4.2 Validating approaches empirically: the example of the UI listener
refactoring tool

Research Questions. We implemented in InspectorGuidget features for detecting and
refactoring Blob listeners. To evaluate the efficiency of our detection and refactoring process,
we addressed the four following research questions:

RQ4 To what extent is the detection algorithm able to detect UI commands in UI listeners
correctly?

RQ5 To what extent is the detection algorithm able to detect Blob listeners correctly?

RQ6 To what extent does the refactoring process propose correct refactoring solutions?

RQ7 To what extent the concept of Blob listener and the refactoring solution we propose are
relevant?

Objects. The objects we used in this evaluation are the four large open-source software
systems we used in the previous study.

Methodology. The accuracy of the static analyses that compose the detection algorithm is
measured by the recall and precision metrics. We ran InspectorGuidget on each software
system to detect UI listeners, commands and Blob listeners. We assumed as a precondition
that only UI listeners are correctly identified by our tool. Thus, to measure the precision
and recall of our automated approach, we manually analysed all the UI listeners detected by
InspectorGuidget to:

1.4. RESEARCH METHODS 19

Check commands. We manually analysed each UI listeners to state whether the UI commands
they contain are correctly identified. The recall measures the percentage of correct UI com-
mands that are detected (Equation (1.1)). The precision measures the percentage of detected
UI commands that are correct (Equation (1.2)). For 39 listeners, we were not able to identify
the commands of UI listeners. We removed these listeners from the data set.

recallcmd(%) = |{correctCmds}∩{detectedCmds}|
|{correctCmds}| × 100 (1.1)

precisioncmd(%) = |{correctCmds}∩{detectedCmds}|
|{detectedCmds}| × 100 (1.2)

The correctCmds variable corresponds to all the commands defined in UI listeners, i.e.,
the commands that should be detected by InspectorGuidget. The recall and precision are
calculated over the number of false positives (FP) and false negatives (FN). A UI command
incorrectly detected by InspectorGuidget is classified as false positive. A false negative is
a UI command not detected by InspectorGuidget.

Check Blob Listeners. This analysis directly stems from the UI command one since we manu-
ally checked whether the detected Blob listeners are correct with the threshold value of three
commands per UI listener. We used the same metrics used for the UI command detection to
measure the accuracy of the Blob listeners detection:

recallblob(%) = |{correctBlobs}∩{detectedBlobs}|
|{correctBlobs}| × 100 (1.3)

precisionblob(%) = |{correctBlobs}∩{detectedBlobs}|
|{detectedBlobs}| × 100 (1.4)

Results. RQ4: Command Detection Accuracy. Table 1.4 shows the number of commands suc-
cessfully detected per software system. InspectorGuidget detected 1392 of the 1400 UI
commands (eight false negatives), leading to a recall of 99.43 %. InspectorGuidget also
detected 62 irrelevant commands, leading to a precision of 95.73 %. The FP instances are de-
tailed in the original paper [26]. To conclude on RQ4, our approach is efficient for detecting
UI commands that compose UI listener, even if improvements still possible.

Table 1.4: Command detection results
Software Successfully Detected FN FP Recallcmd Precisioncmd
System Commands (#) (#) (#) (%) (%)

Eclipse 330 0 5 100 98.51
JabRef 510 5 7 99.03 98.65
ArgoUML 264 3 3 98.88 98.88
FreeCol 288 0 47 100 85.93

OVERALL 1392 8 62 99.43 95.73

RQ5: Blob Listeners Detection Accuracy. To validate that the refactoring is behaviour-preserving,
the refactored software systems have been manually tested by their developers we contacted
and ourselves. Test suites of each system have also been used. Table 1.5 gives an overview
of the results of the Blob listeners detection per software system. 12 false positives and one
false negative have been identified against 52 Blob listeners correctly detected (true positive
– TP). The average recall is 98.11 % and the average precision is 81.25 %. The average time

20 CHAPTER 1. CONTRIBUTION TO THE ENGINEERING OF USER INTERFACES

(computed on five executions for each software system) spent to analyse the software systems
is 5.9 s. It excludes the time that Spoon takes to load all the classes, that is an average of 22.4 s
per software system. We did not consider the time that Spoon takes since it is independent of
our approach.

Table 1.5: Blob listener detection results
Software TP FN FP Recall Precision Time
System (#) (#) (#) blob (%) blob(%) (ms)

Eclipse 16 0 2 100 88.89 4
JabRef 8 0 3 100 72.73 5.6
ArgoUML 13 1 2 92.86 86.7 8.6
FreeCol 15 0 5 100 75 5.5

OVERALL 52 1 12 98.11 81.25 5.9

Table 1.6: Blob listener refactoring results

Software Success Failure Precision Time
System (#) (#) refact(%) (s)

Eclipse 4 12 25 133
JabRef 4 4 50 236
ArgoUML 11 3 78.57 116
FreeCol 7 8 46.7 135

OVERALL 26 27 49.06 155

The FP and FN Blob listeners is directly linked to the FP and FN of the commands detection.
For example, FP commands increased the number of commands in their listener to two or
more so that such a listener is wrongly considered as a Blob listener. This is the case for FreeCol
where 47 FP commands led to 5 FP Blob listeners.

To conclude on RQ5, regarding the recall and the precision, our approach is efficient for
detecting Blob listeners.

RQ6: Blob Listeners Refactoring Accuracy. This research question aims to provide quantitative
results regarding the refactoring of Blob listeners. The results of InspectorGuidget on
the four software systems are described in Table 1.6. The average refactoring time (i.e., five
executions for each software system) is 155 s. The average rate of Blob listeners successfully
refactored is 55.1 %. 27 of the 49 Blob listeners have been refactored. Two main reasons
explain this result: 1/ There exists in fact two types of Blob listeners and our refactoring
solution supports one of them; 2/ The second type of Blob listeners may not be refactorable
because of limitations of the Java GUI toolkits. To conclude on RQ6, the refactoring solution
we propose is efficient for one of the two types of Blob listeners. Refactoring the second type
of Blob listeners may not be possible and depends on the targeted GUI toolkit.
RQ7: Relevance of the Blob listener. This last research question aims to provide qualitative
results regarding the refactoring of Blob listeners. We submitted patches that remove the
found and refactorable Blob listeners from the analysed software systems. We then asked
their developers for feedback regarding the patches and the concept of Blob listener. The bug
reports that contain the patches, the commits that remove Blob listeners, and the discussions
are listed in Table 1.7. The patches submitted to Jabref and FreeCol have accepted and merged.
The patches for Eclipse are not yet merged but were positively commented. We did not
receive any comment regarding the patches for ArgoUML. We noticed that ArgoUML is no
more actively maintained.

We asked developers whether they consider that coding UI listeners that manage several
interactive objects is a bad coding practice. The developers that responded globally agree
that Blob listener is a design smell. ‘It does not strictly violate the MVC pattern. [...] Overall, I like
your solution’. ‘Probably yes, it depends, and in examples you’ve patched this was definitely a mess’.
An Eclipse developer suggest to complete the Eclipse UI development documentation to add
information related to UI design smells and Blob listener.

1.4. RESEARCH METHODS 21

Table 1.7: Commits and discussions
Software System Bug reports, commits and discussions

Eclipse (platform.ui) bugs.eclipse.org/bugs/show_bug.cgi?id=510745

dev.eclipse.org/mhonarc/lists/platform-ui-dev/msg07651.html

JabRef github.com/JabRef/jabref/pull/2369

github.com/JabRef/jabref/commit/021f094e64a6393a7490ee680d73ef26b3128625

ArgoUML http://argouml.tigris.org/issues/show_bug.cgi?id=6524

FreeCol sourceforge.net/p/freecol/mailman/message/35566820

sourceforge.net/p/freecol/git/ci/669cf9c74b208c141cea27ee254292b3422d5718

sourceforge.net/p/freecol/git/ci/2865215d3712a8d4d4bd958c1b397c90460192da

sourceforge.net/p/freecol/git/ci/cdc689c7ae4bbac9fcc729477d5cc7e40ac4a90b

sourceforge.net/p/freecol/git/ci/0eedd71b269b6cf20ec00f0fc5a7da932ceaab4f

sourceforge.net/p/freecol/git/ci/973422623b52289481f328b27f12543a4b383f38

sourceforge.net/p/freecol/git/ci/985adc4de11ccd33648e99294e5d91319cb23aa0

sourceforge.net/p/freecol/git/ci/4fe44e747cb30a161d8657750aa75b6c57ea30ab

Regarding the relevance of the refactoring solution: ‘I like it when the code for defining a UI
element and the code for interacting with it are close together. So hauling code out of the action listener
routine and into a lambda next to the point a button is defined is an obvious win for me.’ A developer,
however, explained that ‘there might be situations where this can not be achieved fully, e.g. due to
limiting implementations provided by the framework.’ ‘It depends, if you refactor it by introducing
duplicated code, then this is not suitable and even worse as before’.

To conclude on RQ7, the concept of Blob listener and the refactoring solution we propose is
accepted by the developers we interviewed. The refactoring has a positive impact on the code
quality. The interviews did not permit the identification of how Blob listener are introduced
in the code.

Threats to validity. External validity threats concern the possibility to generalise our find-
ings. We designed the experiments using multiple Java Swing and SWT open-source software
systems to diversify the observations. These unrelated software systems are developed by dif-
ferent persons and cover various user interactions. We provide on the companion web page
examples of Blob listeners in other Java UI toolkits, namely GWT and JavaFX.

Construct validity threats relate to the perceived overall validity of the experiments. We
used InspectorGuidget to find UI commands in the code. InspectorGuidget might
not have detected all the UI commands. We showed that its precision (95.7) and recall (99.49)
limit this threat. Regarding the validation of InspectorGuidget, the detection of FNs and
FPs have required a manual analysis of all the UI listeners of the software systems. To limit
errors during this manual analysis, we added a debugging feature in InspectorGuidget
for highlighting UI listeners in the code. We used this feature to browse all the UI listen-
ers and identify their commands to state whether these listeners are Blob listeners. We also
manually determined whether a listener is a Blob listener. To reduce this threat, we carefully
inspected each UI command highlighted by our tool.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=510745
https://dev.eclipse.org/mhonarc/lists/platform-ui-dev/msg07651.html
https://github.com/JabRef/jabref/pull/2369
https://github.com/JabRef/jabref/commit/021f094e64a6393a7490ee680d73ef26b3128625
http://argouml.tigris.org/issues/show_bug.cgi?id=6524
https://sourceforge.net/p/freecol/mailman/message/35566820
https://sourceforge.net/p/freecol/git/ci/669cf9c74b208c141cea27ee254292b3422d5718
https://sourceforge.net/p/freecol/git/ci/2865215d3712a8d4d4bd958c1b397c90460192da
https://sourceforge.net/p/freecol/git/ci/cdc689c7ae4bbac9fcc729477d5cc7e40ac4a90b
https://sourceforge.net/p/freecol/git/ci/0eedd71b269b6cf20ec00f0fc5a7da932ceaab4f
https://sourceforge.net/p/freecol/git/ci/973422623b52289481f328b27f12543a4b383f38
https://sourceforge.net/p/freecol/git/ci/985adc4de11ccd33648e99294e5d91319cb23aa0
https://sourceforge.net/p/freecol/git/ci/4fe44e747cb30a161d8657750aa75b6c57ea30ab

22 CHAPTER 1. CONTRIBUTION TO THE ENGINEERING OF USER INTERFACES

1.5 Projects and Supervision

We – all the permanent staff of the DiverSE research group and I – consider doctoral studies
as a corner-stone of the DiverSE team and of research in general. Thinking about tomorrows
research requires thinking about how to train PhD students to be top-level researchers and
teachers. This is not an easy task, in particular because of the short duration of the doctoral
studies in France (three years) that does not help in publishing in flagship conferences and
journals.

Doctoral studies do not always lead to research positions. Software engineer is nowadays
a highly prized resource. A consequent part of the PhD students of the team goes to industry
as software or research engineers. We think that having PhD in the industry is crucial as
doctoral studies develop specific working facets as the ability to step back and see the bigger
picture, open-mindedness, pugnacity or resilience.

The work presented in this habilitation and the research lines I envision result from col-
laborations I have had with PhD students, post-docs and researcher colleagues. Table 1.8
gives the list of PhD I co-supervised. I co-supervised the PhD students with nine different
researchers, two of them come from industry. This table provides the amount and type of
supervision work I took care of, the co-supervisors, the period, the viva date, the funding
and the topic.

Table 1.8: PhD co-supervisions from 2012 to 2019

Name Rate
(%)

Role With Period Viva Funding Topic

Valéria
Lelli [75]

80 co-
supervisor

Baudry 2012-15 15-11-19 BGLE2
Connexion

UI testing

Thomas
Degueule
[44]

33 co-
supervisor

Barais
Combemale

2013-16 16-12-12 ITEA2
MERgE

DSL
engineering

Gwendal
Le Moulec
[72]

33 co-
supervisor

Arnaldi
Gouranton

2015-18 18-09-26 MESR
grant

Virtual reality
engineering

Youssou
Ndiaye

25 co-
supervisor

Barais
Bouabdallah
Aillery

2016-19 CIFRE
Orange

Web
engineering

Romain
Lebouc

33 main
supervisor

Plouzeau
Ribault

2019-22 CIFRE
KEREVAL

UI testing

The funding of these PhD studies are heterogeneous. BGLE2 is a industry-driven national
call. The BGLE2 Connexion project investigated methods and tools to: automatically analyse
and compare regulatory requirements evolutions and geographical differences; automatically
generate test cases for interactive systems in variable environments. I worked on this last
point with different French industrial partners on the test of their GUIs. I assisted Baudry in
writing the proposal that concerned Inria Rennes.

1.5. PROJECTS AND SUPERVISION 23

MESR is a national research grant. Arnaldi, Gouranton and I decided to work together
through this project on the intersection between software engineering and virtual reality.

CIFRE is a French industrial program for conducting a research program with a given
company on an innovative topic. We are working with the French company Orange with this
program on the topic of Web engineering. I co-wrote the proposal with my co-supervisors.

Through this program we are also working with KEREVAL, a French company that de-
velops software testing services. I wrote most of the proposal. I am the main supervisor of
this thesis.

Writing project proposals is an ungrateful, time-consuming yet necessary job to get fund-
ing. The projects detailed above are the tip of the iceberg. In the DiverSE team, we monitor
project calls and write various proposals that are not accepted and hardly recyclable.

The next sub-sections detail the research work of the PhD students that defended and
their current position.

Valéria Lelli – Testing and maintenance of graphical user interfaces

I supervised Lelli at 80 %. We worked on testing and maintaining UIs in the context of the
CONNEXION project. Researchers develop software testing techniques to find errors in code.
They also assess software quality criteria and measurement techniques to detect error-prone
code. In this thesis, we argued that researchers must pay the same attention on the quality
and reliability of UIs, from a software engineering point of view.

We specifically made two contributions on this topic. First, UIs can be affected by errors
that stem from development mistakes. The first contribution of this thesis is a fault model
that identifies and classifies GUI faults. We have shown that GUI faults are diverse and imply
different testing techniques to be detected. As for the second contribution, we focus on design
smells that can affect UIs specifically. Like any code artefact GUI code developers should use
static code analyses to detect implementation defects and design smells. We identify and
characterise a new type of design smell, called Blob listener. It occurs when a UI listener,
that gathers and process UI events, can produce more than one command. We propose a
systematic static code analysis procedure that searches for Blob listener instances that we im-
plement in a tool called InspectorGuidget. Experiments we conducted exhibited positive
results regarding the ability of InspectorGuidget in detecting Blob listeners. To counteract
the use of Blob listeners, we propose good coding practices regarding the development of UI
listeners.

This PhD is the first work I conducted on UI testing. With Baudry we had the feeling that
UIs were under-tested. At this time, UI testing was not trendy as it is the case now. This PhD
allowed me to envision how UIs should be tested and what are the current limits. The PhD
thesis with Lebouc that started this year stems from this vision.

Lelli holds an associate professor position at the Federal Universty of Ceará, Brazil.

24 CHAPTER 1. CONTRIBUTION TO THE ENGINEERING OF USER INTERFACES

Thomas Degueule – Composition and interoperability for external domain-
specific language engineering

This PhD is the single one not directly related to UI engineering. It focuses on software
language engineering (SLE). Development and evolution of DSLs is becoming recurrent in
the development of complex software systems. However, despite many advances in the soft-
ware language engineering domain, DSLs and their tooling still suffer from substantial de-
velopment costs which hamper their successful adoption in the industry. In this thesis we
addressed two main challenges. First, the proliferation of independently developed and con-
stantly evolving DSLs raises the problem of interoperability between similar languages and
environments. Second, since DSLs and their environments suffer from high development
costs, tools and methods must be provided to assist language designers and mitigate devel-
opment costs. To address these challenges, we first propose the notion of language interface.
Using language interfaces, one can vary or evolve the implementation of a DSL while retain-
ing the compatibility with the services and environments defined on its interface. Then, we
present a mechanism, named model polymorphism, for manipulating models through differ-
ent language interfaces. Finally, we propose a meta-language that enables language designers
to reuse legacy DSLs, compose them, extend them, and customize them to meet new require-
ments. We implement all our contributions in a new language workbench named Melange
that supports the modular definition of DSLs and the interoperability of their tooling. We
evaluate the ability of Melange to solve challenging SLE scenarios.

Since I joined the DiverSE group in 2009 (called Triskell at this period), I devoted a con-
sequent part of my research time to SE and SLE. I consider that working on UI engineering
requires in certain cases to step back and improve underlying SE principles: it is not possible
to adapt limited SE techniques for engineering UIs. This was the case during this PhD. We
proposed new fundamental principles (e.g., language interface, model polymorphism) that
should improve the usability of SLE development processes. Based on these new principles
we can envision new ways of engineering DSL UIs.

In late 2019, Degueule will hold a full time researcher position at CNRS, France. He is
currently a postdoctoral researcher at CWI, Netherlands.

Gwendal Le Moulec – Model-driven synthesis of virtual reality applica-
tions

This third PhD was co-supervised with local colleagues from the Virtual Reality (VR) domain.
VR applications have a specific and complex kind of post-WIMP UI that thus requires specific
engineering techniques. Development practices in VR, however, are far to follow SE good
practices. This dearth of SE practices may hinder the industrial advent of VR in the next
years. For example, each company uses their own development methods and code reuse is
not a concern that VR engineers consider [48]. Those lacks of reuse and abstraction are known
problems in MDE, which proposes the Software Product Line (SPL) concept to automate
the production of software belonging to the same family, by reusing common components.
However, this approach is not adapted to software based on a scenario, like in VR.

1.5. PROJECTS AND SUPERVISION 25

This PhD thesis focused on the automated development and evaluation of VR software
systems with the use of MDE and SPL techniques. We propose two frameworks that respect-
ively address the lacks in MDE and VR: SOSPL (scenario-oriented software product line) and
VRSPL (VR SPL). SOSPL is based on a scenario model that handles a software variability
model (feature model, FM). Each scenario step matches a configuration of the FM. VRSPL
is based on SOSPL. The scenario manages virtual objects manipulation, the objects being
generated automatically from a model.

We implemented these frameworks inside tools we tested and evaluated on use cases. The
results promote the use of these frameworks for producing scenario-based software.

This PhD was crucial for me: it tackled the engineering of a next generation of UIs that will
be widespread in several years with the advent of VR. The benefit of this PhD is twofold. First,
we adapted SE techniques to another domain. We can consider this point as an assessment of
the adapted techniques. Second, we proposed techniques to engineer modern and complex
UIs, which is in line with the UI engineering definition.

Le Moulec holds a software engineer position in a French company.

26 CHAPTER 1. CONTRIBUTION TO THE ENGINEERING OF USER INTERFACES

1.6 Software Development

Following the research methods I follow and detailed in Section 1.4, I (co-)developed several
software systems. The development of open-source and freely available engineering tools is
a crucial point in my research. Table 1.9 summarises the main tools I (co-)developed, their
topics, implementation and website. I then describe the main ones.

Table 1.9: The main tools I (co-developed).

Topic Sub-topic Implementation Website

UI testing Model-based
testing

Java github.com/arnobl/Malai/tree/master/malai-
mde

UI code
quality

Code analysis
and refactoring

Java github.com/diverse-project/InspectorGuidget

MDE Model slicing Java, Scala, XText github.com/arnobl/kompren

SLE model slicing,
visualisation,
interactivity

Java github.com/arnobl/kompren/tree/master/explen

SLE language work-
bench

Java, Xtend,
Xtext, Eclipse
tools

http://melange.inria.fr

SLE documentation
generation

Java github.com/arnobl/comlanDocywood

Model slicing with Kompren

Kompren is a DSL that implements the model slicing technique detailed in Section 1.3.
Kompren has an Eclipse editor that provides auto-completion, error detection and an on-
the-fly compilation of the model slicer into a Java library. I developed all the Java and Scala
code of Kompren (around 22 kLoCs). We used Kompren in international collaborations on
different topics [28, 124] and is now used within the Melange tool.

Figure 1.3: The buttons of this pie menu call the slicer with different parameters for filtering-
out metamodel elements.

https://github.com/arnobl/Malai/tree/master/malai-mde
https://github.com/arnobl/Malai/tree/master/malai-mde
https://github.com/diverse-project/InspectorGuidget
https://github.com/arnobl/kompren
https://github.com/arnobl/kompren/tree/master/explen
http://melange.inria.fr
https://github.com/arnobl/comlanDocywood

1.6. SOFTWARE DEVELOPMENT 27

I illustrate Kompren with the use case of metamodel visualisation [28]. When seeking
to understand a large model, model slicing can help in extracting the sub-part of interest
from the model. For instance, language designers can use model slicers to build interactive
visualisation features for large metamodels. Such features are dynamic filters that show
on demand the inheritance or the composition tree of a targeted class by hiding the other
elements. Figure 1.3 depicts such features where the buttons of the pie menu call this slicer
with different parameters. Listing 1.2 specifies the model slicer used in Figure 1.3. The
principle of the metamodel viewer of Figure 1.3 is that a user can click on a class of the
visualised metamodel to then select a filter. The slicer of Listing 1.2 defines three different
filters: a filter for slicing the super inheritance tree of a class; another one for the lower
inheritance tree of a class; a last one for pruning the metamodel to show only the classes
and relations linked to the targeted class. A Java library is generated from the model slicer.
Language designers can then integrate this library into a tool, such as a metamodel viewer.

1 slicer MetamodelVisualizationSlicer {
2 domain: "platform:/plugin/org.eclipse.emf.ecore/model/Ecore.genmodel"
3 input: ecore.EClass
4 radius: ecore.EClass
5 slicedClass: ecore.ENamedElement
6 slicedClass: ecore.EStructuralFeature feat
7 constraint: card1 [[feat.lowerBound>0]]
8 slicedProperty: ecore.EClass.eSuperTypes option
9 slicedProperty: ecore.EClass.eSuperTypes option opposite(lowerTypes)

10 slicedProperty: ecore.EReference.containment
11 slicedProperty: ecore.ETypedElement.lowerBound option
12 slicedProperty: ecore.ETypedElement.upperBound option
13 }

Listing 1.2: A Kompren model slicer used for defining interactive visualization features

Assembling new DSLs with Melange

Melange is a language workbench that provides a modular approach for customising, assem-
bling and integrating multiple DSL specifications and implementations. Melange helps to
manage variability within language specifications (syntactic and semantic variation points),
and reuse pieces of syntax and semantics from one DSL to another. The language work-
bench embeds a model-oriented type system that provides model polymorphism and lan-
guage substitutability, i.e., the possibility to: manipulate a model through different interfaces;
define generic transformations that can be invoked on models written using different DSLs.
Melange also provides a dedicated meta-language where models are first-class citizens and
languages are used to instantiate and manipulate them. By analogy with the class-based,
object-oriented paradigm, we can classify Melange as a language-based, model-oriented lan-
guage.

Melange is tightly integrated within the Eclipse Modeling Framework ecosystem. I parti-
cipated in the development and design of Melange that is mainly developed by Degueule.

Listing 1.3 is a Melange model. It imports the abstract syntax (the metamodel) of two
DSLs, defined as languages L1 and L2 (Lines 1 and 4). This model then uses these two
languages to build abstract syntaxes of new DSLs. Line 7 defines a new language L3 by
merging L1 and L2. Line 10 defines a new language L4 by slicing L1 using the attribute A.a.

28 CHAPTER 1. CONTRIBUTION TO THE ENGINEERING OF USER INTERFACES

1 language L1 {
2 syntax "MM1.ecore"
3 }
4 language L2 {
5 syntax "MM2.ecore"
6 }
7 language L3 inherits L1 {
8 merge L2
9 }

10 language L4 {
11 slice+ L1 using [MM1.A.a]
12 }

Listing 1.3: A simple Melange model.

Analysing UI code with InspectorGuidget

InspectorGuidget is an open-source tool composed of 12 kLoCs (Java) I developed with
Lelli to analyse UI code. InspectorGuidget can analyse UI Java code (JavaFX, SWT, Swing,
Android). It first extracts UI information from code. This step is complex as UI code is usually
intertwined with the rest of the application code. InspectorGuidget extracts information
related to the widgets, UI listeners, UI commands to build a high-level model. We can view
this step as reverse engineering.

Then, from the extracted data we developed a UI code analysis and refactoring tool that
spots and fixes bad smells [26]. We aim at developing new tools based on InspectorGuidget,
such a UI code coverage tool or a UI test generator. Figure 1.4 is an example of UI code refact-
ored with InspectorGuidget. The code on the left is affected by the Blob listener code smell
as discussed in Sections 1.3 and 1.4. InspectorGuidget refactored this code to produce
the new code on the right.

Figure 1.4: An example of automated UI code refactoring with InspectorGuidget.

Chapter 2

Research Perspectives

In this habilitation I detailed how I envision UI engineering: a research domain that has to
provide software engineers with theories and techniques at a correct level of abstraction to
help them in producing usable modern UIs. Researchers must assess these theories and tech-
niques empirically. I then detailed the contributions I, with the essential help of the persons I
work(ed) with, made to this domain between 2010 and 2019.

I classified the detailed contributions into two branches. First, I detailed new dedicated
abstractions for engineering UIs. Second, I detailed new techniques to ease the development
and use of domain-specific languages, that are a specific form of user interfaces.

Research roadmap – Numerous UI engineering challenges still exist. For example: Vander-
donckt detailed in 2008 various challenges, that for most of them still exist, of using MDE
for engineering UIs [128]; Paige motivated challenges of building interactive DSLs [106]. The
next sections focus and detail three future UI engineering challenges I envision and that stem
from the contributions detailed in this habilitation. As an illustration of the large scope of the
UI engineering domain, these three challenges focus on very different topics.

The first perspective focuses on UI testing. UI validation is a long-standing domain [63]
that has to follow and integrate the technological and usage changes that affect UIs. Such
changes are for example the current advent of post-WIMP UIs in the industry such a vir-
tual reality systems. Such systems go beyond the traditional WIMP concepts (window, icon,
menu, pointer) with specific user interactions and interfaces [40]. Testing such UIs is a com-
plex task since multiple UI testing concepts do not match post-WIMP UIs: what does test
coverage mean for such UIs? Which UI oracles? Etc. UI validation is also board topic that
includes human-factor evaluation, such as usability evaluation, and UI testing that focuses
on automatic validation. The perspective I develop on UI testing in this section focuses on a
concept increasingly used by major companies: DevOps, i.e., the ability to reduce the delay
between a change in a software system and the patching of this change in production [49,
115]. One goal of DevOps is not to separate anymore the development process (the Dev)
from the delivery process (the Ops) by promoting continuous delivery of a software system.
Software testing is a corner-stone of DevOps as it assures the quality of the code changes [41].
DevOps from a UI perspective requires new UI testing techniques that I detail in Section 2.1.

29

30 CHAPTER 2. RESEARCH PERSPECTIVES

The second perspective focuses on DSLs. In a near future engineers may create DSLs on
a daily basis, as it is the case with web frameworks. The language engineering community
works at reducing the development costs of DSLs. Engineers release a DSL with a set of as-
sociated tools, such as editors, compilers, simulators or linters. These tools have to be usable,
even if they are developed and maintained on a daily basis. This means that UI engineering
has to focus on DSL engineering: visualisation techniques or relevant user interactions are
topics that researchers should tightly integrate within DSL development processes. I detail
in Section 2.2 two research axes that go in this direction: easing the use of visualisation and
interaction techniques for DSLs; analysing DSL usages.

The third perspective focuses on programming modern UIs. A major concept of pro-
gramming UIs is the UI event processing: by interacting with a user interface, users trigger
UI events that the software then gathers and processes. The current UI toolkits still use
a technique proposed with SmallTalk and the Model-View-Controller (MVC) pattern in the
80s [69]: the UI event processing model, currently implemented using callback methods or
reactive programming [10] libraries. This model considers low-level UI events as the first-
class concept developers use for coding more and more complex user interactions. This
model suffers from several major flaws that prevent the free development of modern user
interactions. I detail in Section 2.3 a roadmap for designing a new user interaction processing
model.

Educational challenges – As an Associate Professor at INSA Rennes, a high-level post-
graduate French public school of engineering, I spend a considerable part of my working
time teaching future engineers and interacting with local companies. I consider that con-
ducting research activities goes beyond publishing articles, writing project proposals and
interacting with other researchers. Having an impact on the education of future software
engineers and thus on the industry is also a challenge I work on. I aim at providing them
with up-to-date software knowledge that would help them in the uptake of the next software
engineering evolution. Related to the perspectives I detail in this chapter, methinks that such
changes may be for example:

- Software engineers cannot restrict their skills to the strict software engineering domain
anymore. Producing software systems now – or in fact since a couple of years now
– spans over multiple other computer science domains such as distributed systems,
security, HCI and UI engineering.

- Software engineers may create computer languages on a daily basis in a near future, as
it is currently the case with web frameworks. Software engineers must learn to learn
languages and how to create usable languages, instead of simply learning programming
languages.

- Software development processes are changing. First, engineers aim at reducing the time
for releasing software systems. This requires engineers to have a strong background
on software validation techniques, including UI validation. Second, software systems
are less and less monolithic. The numerous devices and platforms on which software
systems have to run make their development more and more complex. The term software
product line is now used to characterise such new kinds of software systems;

2.1. DEVOPS AND USER INTERFACES 31

- Software engineering is not an activity reserved to the audience of computer science en-
gineers anymore. For example, electronics engineers have a substantial part of software
engineers in their jobs. They have to: validate the code they embed on small devices;
develop web applications; etc.

2.1 DevOps and user interfaces

2.1.1 Research Context

Modern software systems do not stop for maintenance or evolution any more. Facebook de-
ploys a new version of their software systems every ten seconds without any perceptible stop.
This run towards continuous delivery is possible thanks to the use of project management,
release engineering, and software engineering tools and techniques: version control systems,
dependency tools, building tools, testing frameworks, logging tools, deployment tools, virtu-
alisation, team management techniques, etc. This trend, sometimes called DevOps [49, 115],
aims at reducing the gap between changes in a software system and the deployment of these
changes in production. To do so, the jobs of developer (the Dev) and tester, release engin-
eer (the Ops) are no more separated. Highly automated processes are also deployed to ease
the development and evolution of a software system. One of the benefits of DevOps is a
significant reduction in the software release costs.

In this race for automation, the need to produce and maintain tests is one of the corner-
stones to ensure the quality of continuously deployed software systems. This also concerns
user interface tests that automatically ensure quality criteria of UIs. A recent study has shown
that the success of mobile applications, which make significant use of front-ends, depends
heavily on the quality of their UIs [81]. However, integrating UIs in DevOps processes is
hampered by various technical and scientific obstacles. A UI is a specific software artefact.
Testing UIs requires focusing on different concerns than for object-oriented code, as previ-
ously explained in this habilitation. Automating UI testing is also a challenge. We observed
by discussing with local companies that they do not always script UI tests for automation.
Having a DevOps approach for UIs thus requires new UI testing techniques to reduce human
intervention during the development, maintenance and result analysis of UI tests.

2.1.2 Scientific Challenges

The global scientific challenge of this perspective is the improvement of UI testing techniques
to be used in a devOps context. Achieving this global challenge requires addressing several
scientific issues that concern the state of the art of UI testing practices. In this perspective I
detail the following scientific issues:

- UI coverage is not developed as standard code coverage;

- non-deterministic, aka. flaky, UI tests prevent the automatic process of UI testing in a
DevOps context;

- missing UI code analysing tools to assess the code quality of UIs.

32 CHAPTER 2. RESEARCH PERSPECTIVES

No UI coverage. Code coverage is used to find code elements that are not or only partly
covered by tests. As one of the pillars of the test process, the coverage calculation is used in
DevOps to find weaknesses in the test suite. A UI test is an ordered sequence of user inter-
actions, that can be viewed as a navigation path within the UI. A set of a UI tests correspond
to a set of paths, called event-flow graph (EFG) [84]. The current coverage techniques focus
on object-oriented constructs. However, measuring the coverage of a UI test suite requires
to compute the EFG of a test suite. The goal is to find the relevant navigation paths not
yet covered. This is a complex task as a UI notably consists of interactive elements, user
interactions, UI commands. Measuring the UI test coverage is a complex task. It requires
identifying in the code user interactions and UI commands to compute a fine-grained EFG.
Figure 2.1 is an example of such a classical EFG. Events are considered as interactive objects
(the four menus). The graph describes the transitions between these interactive objects. Such
an EFG ignores major UI concerns, by: mixing interactive objects with the user interactions
they provide; considering simple user interactions only; ignoring the underlying code that
triggers the transition. Note that for this last point, research works started to make use of
static analyses on UI code [7].

Figure 2.1: Example of a basic event-flow graph, from [134]. The UI on the left, composed of
menus. The EFG on the right that describes the possible paths between these menus.

Not considering all these UI details in the computation of the UI coverage is a severe
limit of considering UI testing in DevOps: developers have no detail about the quality of
their UI test suite, while software quality is a corner-stone of DevOps. This also prevents test
amplification [42], i.e., the automatic production of new tests from existing ones.

Flaky UI tests. The execution of UIs is based on multi-threading. One thread runs the UI in
parallel of the application main thread. This raises various concurrency issues. For example,
UI tests affected by bad coding practices that, for example, make use of sleep routines to
deal with concurrency. A UI test, which runs in the main process, may have to wait until
the UI task ends (e.g., the test simulates a user that interacts with the UI) to then executing
the oracles. The following code example shows a UI test that makes use of sleep routines
to wait for the end of a UI task to run the UI oracles.1 A recent study shows that fixing
code smells, such as the use of sleep routines in a test, fix up to 50 % of the spotted flaky
tests [110]. We think that code smells specific to UI testing exist and should be studied in this
purpose, as we did with the Blob Listener UI code smell [26, 78].

1
https://github.com/latexdraw/latexdraw/commit/c3bcb5d19a77a2481b0e5ca521b36abceaea3199#diff-2d13f6456312079bf6b0416d9b0f334aR104

https://github.com/latexdraw/latexdraw/commit/c3bcb5d19a77a2481b0e5ca521b36abceaea3199#diff-2d13f6456312079bf6b0416d9b0f334aR104

2.1. DEVOPS AND USER INTERFACES 33

1 @Test
2 public void testIncludes() {
3 prefs.includesProperty().setValue("");
4 clickOn(setter.latexIncludes).write("fooo").sleep(1000L);
5 assertEquals("fooo", prefs.includesProperty().get());
6 }

Listing 2.1: A flaky UI test, gathered from an open-source project, that makes use of sleep
routines

Other examples are the UI animations that may alter the execution of a UI test, and
graphical drivers of the running platform that may change the results of a UI test oracle.
Such tests are called flaky test [82, 20]: several executions of the same test intermittently
produce different test results. In a DevOps context, it is necessary to have techniques to
automatically find and correct flaky UI tests.

Missing UI code analysing tools. DevOps requires software validation and maintenance
steps. In the previous points I discuss software testing techniques that permit testers to pro-
duce test scripts to be run against the system under test to find bugs. DevOps also makes
use of code analysis tools that permit the detection of bugs or design smells, i.e., code state-
ments that embody poor design and error-prone coding choices. One of the mainstream
open-source Java code analysis tools is FindBugs. FindBugs can detect more than 300 object-
oriented programming mistakes and dubious coding idioms. It has been downloaded more
than a half million times and is used by many major companies [8, 9]. For example, Google
has incorporated FindBugs into their standard testing and code review process, and has fixed
more than 1 000 issues in their internal code base identified by FindBugs [8]. It has been
demonstrated that object-oriented design smells can have a negative impact on maintainabil-
ity [132], understandability [1] and change- or fault-proneness [68]. Identifying design smells
and developing techniques to automatically detect them is thus crucial to assess the quality of
software systems, UIs included. Yet, there is very limited support to ensure the code quality
of UIs. Sparse research work have been conducted for developing tools that detect UI design
smells for both WIMP and post-WIMP UIs. Finding bugs and design smells in UI code is not
a trivial task since the existing object-oriented validation and maintenance techniques and
tools (such as FindBugs) can hardly be seamlessly reused.

2.1.3 Approach

UI coverage. Improving the computation of UI coverage by UI tests requires a detailed
analysis of UI code that is partly coded in XML for describing the UI (i.e., UIDLs), and in
object-oriented. This is mandatory to extract UI information such as UI commands, user
interactions, or data bindings. Most of the UI testing approaches focus on monkey testing: a
robot interacts on the UI using enabled interactive objects to grab information about the UI
behaviour to then produce tests [84]. These approaches are time-consuming as they explore
at run time the EVG of a UI. We think that static analyses of the UI code can be used to initiate
the computation of a fine-grained EVG to be used to compute the UI coverage. Figure 2.2
is an example of such a fine-grained EFG. A user interaction can be viewed as a sub-EFG; a

34 CHAPTER 2. RESEARCH PERSPECTIVES

drag-and-drop interaction, for example, is a suite of press, drag and move events. When a user
interaction is triggered, a UI command that acts on the system is produced. Then, a user can
perform other user interactions that will form a complex EFG. Extracting such detailed EFGs
from the code can be then used to compute UI coverage and test amplification.

Add
Command

Interaction
Button

ChangeMode
Command

Bimanual Interaction

Resize
Command

DnD Interaction

Move
Command

DnD Interaction

Figure 2.2: An example of a fine-grained EFG, adapted from [77]

UI test amplification. Supporting UI coverage has the following benefits. It helps testers in
writing new UI tests to improve the quality of the UI. As DevOps aims at automating as far
as possible the different steps of software delivery, recent research works focus on automatic
test amplification [41, 42]. In a DevOps context, improving UI test coverage requires the
production and amplification, as automatic as possible of UI tests based on:

- The use of the UI coverage to find UI zones to cover. Then use existing UI tests can be
used to derive new UI tests that focus on these uncovered zones. Such a test amplific-
ation technique requires static analysing techniques of UI tests to extract the different
steps and oracles that compose them. Then, new UI tests can be composed by assem-
bling existing steps. For example, Listing 2.2 is a UI test composed of four UI steps:
addRec1, addRec2, clickOnRec1 and ctrlClickOnRec2. Then, the oracle checks the UI state.
By analysing such UI tests, we should be able to infer new relevant sequences of steps
and associated oracles.

2.1. DEVOPS AND USER INTERFACES 35

1@Test
2public void testCtrlClickOnShapeAddsSelection() {
3new CompositeGUIVoidCommand(addRec1, addRec2, clickOnRec1,
4ctrlClickOnRec2).execute();
5assertEquals(2, canvas.getDrawing().getSelection().size());
6assertNotSame(canvas.getSelection().getShapeAt(0).orElseThrow(),
7canvas.getSelection().getShapeAt(1).orElseThrow());
8}

Listing 2.2: A UI test

An important point is that extracting paths from an EFG is infinite (it is a graph).
In a DevOps context, it is not relevant to produce UI tests as much as possible: test
executions take time and may hamper the continuous delivery of software systems.
The technique should also consider the hot spots of the UI: the navigation paths widely
used to users. The UI coverage should then focus on theses hot spots first during the
UI test amplification. Identifying hot spots in a UI can be done by logging anonymous
information while users at interacting with UIs [5].

- The use of UI mutation operators [76, 102]. An example of UI mutation operation
is the removal of view templates. For example, Listing 2.3 is an Angular view tem-
plate [60]. This template contained algorithmic instructions (ngFor for a for loop) and
event processing instructions (mousedown that calls the method cellClicked on a mouse-
down event). Mutations can remove or alter these instructions to check whether tests
cover them. Mutants that survived can be used as the initial starting point to produce
new tests.

1<ng-container *ngFor="let y of [0,1,2,3,4,5,6]">
2<div #cells *ngFor="let x of [0,1,2,3,4,5,6]" class=’cell’
3(mousedown)="cellClicked($event)"
4[attr.data-x]=x [attr.data-y]=y>
5</div>
6</ng-container>

Listing 2.3: An Angular view template extracted from an HTML document

Flaky tests and UI smells detection. Detecting and fixing UI smells, including those that
affect flaky UI tests, requires:

- Identifying and characterizing UI design smells. We have to conduct empirical studies
on representative software systems to both identify UI design smells and evaluate their
potential negative impact on the code. This requires a set of representative software
systems to be the ground truth for large empirical studies. Studying design smells
is empirically-driven since they appear as software engineers code software systems,
UIs included. This also requires the analysis of historical information to evaluate the
change- and error-proneness of UI code. In the design smell literature, the change- and
error-proneness are considered as a negative impact of a design smell on the code [68,
109]. Computing the change- and error-proneness can be done by analysing historical
information of software systems, such as Git or SVN commits. We started applying
this principle on UI code with as results the identification of a UI smells we called Blob
Listener [26, 78].

36 CHAPTER 2. RESEARCH PERSPECTIVES

- Static code analysis to locate UI code and compute UI metrics. Identifying UI code
among all the code of a software system is not an easy task since UI code may be in-
tertwined with the rest of the code. The current code analysis techniques and tools
focus on object-oriented concerns. They thus cannot be directly used to locate UI code.
So, dedicated static code analyses are required to precisely locate UI code. The de-
veloped static code analyses will notably locate UI controllers, UI listener implementa-
tions, widget definitions and configurations, data bindings between data and widgets,
UI commands and their possible undo/redo features.

- Assembling UI metrics and OO metrics to form detection heuristics. This concerns
both UI code smells and UI test smells that may lead to flaky tests. Indeed, a recent
study showed that 50 % of the fragile tests analysed were affected by bad practices [110].
The static UI code analyses will permit the computation of UI metrics and identify UI
elements. The design of a detection heuristics, i.e., the assembly of specific metrics
with specific values, are then necessary to automatically detect the identified UI design
smells in the code. UI metrics will be mainly used, supplemented with object-oriented
metrics to possibly precise the detection. This will be done empirical by both selecting
and adjusting the metrics manually and using the change- and error-proneness results.
The heuristics will be validated on the ground truth of the project.

2.2. ENGINEERING DOMAIN-SPECIFIC USER INTERFACES 37

2.2 Engineering domain-specific user interfaces

2.2.1 Research Context

I view modelling as the art of being at the correct level of abstraction when working on a
specific problem. With this definition, modelling is not in opposition with programming,
and this separation is far from being Manichean.

There is a tendency in many papers that we read to put a brick wall between modelling and
programming — to treat them as conceptually different things that can only be bridged via
transformations (created by these magical wizards, or transformation engineers). [107]

For example, when I code an API I both program using a GPL and design a model. I aim
at providing the users of this API with a set of types and services, in fact a sub language,
to help them in addressing a very specific problem. Under certain conditions APIs are even
considered as a specific case of DSLs called internal DSLs [55]. Another example with the R
programming language dedicated to data processing and analysis. When I write an R script
to do statistics, I feel like I am programming, i.e., writing a receipt than can be understood and
executed by a computer. Yet, R is a domain-specific language, a textual language specifically
designed to do statistics on data. As explained by Rumpe and France: ‘modelling languages
that support the building of executable models can be viewed as approximate forms of very high-level
programming languages’ [116].

The concept of abstraction is not limited to software modelling but is also a corner-stone
of software engineering and programming. The time-honoured separation of concerns [111] is
a perfect illustration of this: each concern, i.e., problem, that composes a software system
should be confined from the rest of the concerns. Software maintenance and evolution, or
the fact that different concerns may involve different specific stakeholders (that may not be
software engineers) are reasons of such a separation. Regarding this last point, when working
on a specific concern a stakeholder may want specific tools, namely DSLs:

It is common to develop DSLs for narrow, well-understood domains. In contrast to per-
ceived wisdom – that significant effort should be employed in developing models that cover
broad domains and capture knowledge in that domain – practical application of domain
modelling is ‘quick and dirty’, where DSLs (and accompanying generators) can be de-
veloped sometimes in as little as two weeks. [130]

2.2.2 Scientific Challenges

Modelling and DSLs are not limited to software engineering [36], and DSLs were not inven-
ted for software engineers. Figure 2.3 is an example of modelling and DSLs in the textile
industry. First, a stylist focuses on the global look, the style, the materials of a cloth. Second,
a sewing pattern maker transforms the stylist’s model into another model that focuses on the
dimensions of the cloth. Such a model is called a sewing pattern. Finally, a dressmaker takes
this sewing pattern as input with materials and ‘compiles’ them as a real cloth. This chain
typifies a model-driven process that uses different DSLs to match the problem of the different
involved stakeholders.

38 CHAPTER 2. RESEARCH PERSPECTIVES

Figure 2.3: Model-driven engineering and DSLs in the textile industry. One the left, a model
of a cloth sketched by a stylist. On the right, a model (a sewing pattern) of the same cloth
from the viewpoint of a sewing pattern maker.

To face this diversity of potential stakeholders, DSLs can take many forms, such as graph-
ical, tabular, or textual. The most widespread [64] yet criticised [130, 64] graphical DSL in soft-
ware engineering is certainly UML (that is in fact a set of DSLs) [103]. The current perceived
gap between programming and modelling may be partly due to UML: many people think
that modelling means using UML, drawing boxes and arrows and generating code [107].
DSLs are in fact used for various purposes [116, 130, 64] (by order of importance and not
limited to): understanding a problem at an abstract level; team communication; capture and
document designs; code generation; simulation and execution.

To achieve these goals, DSLs rely on a large panel of tools: editors, linters, simulators,
compilers, etc. Because DSLs can be created on a daily basis, the development of these
tools is a critical point. These tools must be quickly developed, maintained and tested, while
being usable. To do so, the current language engineering community mainly regroups people
from the model-driven engineering and programming language communities. The language
engineering community should strongly rely on the UI engineering community as well: the
development of DSLs implies the development of IDEs and the lack of usability of such
IDEs hinders the adoption of DSLs [57, 95]. Approaches have been proposed to evaluate
the usability of a DSL [4, 12]. Other approaches focus on improving the interactivity or the
understandability of specific DSLs [58, 79]. Yet, language engineering requires techniques
to ease the development of usable tools, in particular IDEs, for any DSL. This means that
interactivity, usability, visualisation, must be considered during the development process of
any DSL. The current practices consist in producing IDEs to then customise them by hand
by using the potency and facing the limits of the underlying toolkits. I identify two main
challenges.

Visualisation and interactivity of DSLs. In our earlier work, we worked at improving the
navigability within large UML class diagrams [27, 28]. The development of the proposed
interactive features does not scale the fact that DSLs can be built on a daily basis: our devel-
opment was specifically done for the UML class diagram and using the developed features
for another graphical DSL requires the entire re-development of them. The DSL develop-
ment process should help language designers in selecting and customising interactive and
navigation features that can help in using their DSLs.

2.2. ENGINEERING DOMAIN-SPECIFIC USER INTERFACES 39

Analysing DSL usages. In our earlier work, we investigate the automatic production of
documentation for DSLs in a usability purpose [74]. The proposed approach analyses DSL
artefacts (metamodel, models, syntaxes) to extract information and build documentation and
illustrating examples. We think that other kinds of analyses should be developed to study
the usage of DSLs.

First, ‘there is little doubt that examples are generally useful for teaching and learning and un-
derstanding. For instance, well-chosen program samples could help those learning programming (lan-
guages)’ [71]. Lämmel uses the term chrestomathy to refer as a collection of programs/models
that can be used as illustrative examples [71]. In our previous work, the examples produced
from existing models suffer from several limits: they are code examples of textual DSLs only;
these examples lack of context, which hinders their understandability.

Second, in the early stages of the DSL development process domain analysis can help in
identifying the concepts of the DSL and in producing some general documentation [127]. In
complement, DSL must be evaluated empirically based on their real use. This would permit
engineers to improve DSL syntaxes and editors.

2.2.3 Approach

Visualisation and interactivity of DSLs. HCI researchers develop interactive features and
visualisation techniques on a daily basis. DSL development toolkits should integrate such
techniques during the design of the DSL editors. A typical example for graphical editors
is the semantic zooming: a semantic zoom shows different details depending on the zoom
level, contrary or in complement of the physical zoom that scales the displayed information.
Listing 2.4 shows an illustrative example of a possible model that describes the interactive
feature of an editor for the Ecore DSL [123]. An Ecore model is usually represented using a
class diagram graphical syntax. Such syntax can be defined using classical DSL tools such as
Sirius [50]. In complement of the graphical syntax, a model can supplement the development
process by describing the interactive features that the editor should have. In this example, we
defined a semantic zoom. Depending on the zoom level (here: 75 % or 50 %), some details
are masked. For example with the example, at a zoom level of 75 %, class attributes and
operations are hidden. At a zoom level of 50 %, reference cardinalities and labels are hidden.
In the same vein, the default layout, can be defined in such models.

1editor ClassDiagram {
2metamodel:’./Ecore.ecore’
3semanticZoom: {
475: [EClass.attributes, EClass.operations]
550: [EReference.lowerBound, EReference.upperBound, EReference.name]
6}
7layout: hierarchical
8}

Listing 2.4: A model that describes interactive features of a DSL editor.

This principle of designing the interactive features of an editor is the same for other kinds
of syntaxes. The main difference is that the possible interactive features differ. For example,
Listing 2.5 shows another example of such a editor model but for a textual syntax. Xtext is
certainly the widespread textual DSL toolkit in the MDE community [21]. The model of List-
ing 2.5 complements an Xtext model by easing the declaration of interactive or visualisation

40 CHAPTER 2. RESEARCH PERSPECTIVES

features. For example, the principle of code bubbles is an alternative of standards panels
in IDEs [31]. The model also selects the kind of debuggers, for executable DSLs, to employ.
Here we use an omniscient debugger [30], where its tracing process is located in the pack-
age org.kompren.xdsl. The execution traces are visualised using a call-stack visualisation
technique (Gralka) [61]. Zooms are also important for textual DSLs.

1editor KomprenEditor {
2metamodel:’./Kompren.ecore’
3editor: bubbles
4debugger: ominiscient[org.kompren.xdsl] {
5callstack: Gralka
6}
7}

Listing 2.5: A model that describes interactive features of a DSL editor.

Analysing DSL usages. Mining software repositories, such as Github, permits the gathering
of models. In [46], we conducted an empirical study on UML models. After a cleaning
process, we obtained 1651 valid UML2 models. We then used these models, developed by
people from the academy or the industry, to conduct experiments. Researchers can use
models of a DSL gathered from such software repositories for various purposes. One can
analyse the use of a DSL: concepts used in models are compared to the DSL metamodel
to identify the hotspots of the language, or the underused parts. This can be also a source
for: identifying and characterising DSL smells; identifying recurrent patterns; producing
model examples; building search engines. Regarding this last point, we developed in an
unpublished work a search engine for Ecore models. This search engine used the Ecore
models stored on Github. Figure 2.4 depicts a prototype of this search engine. Users provide
keywords (here class, package and operation) and the search engine then displays a list of
Ecore models. For each result, the search engine extracts a sub-model that makes use of the
provided keywords using a model slicing technique.

However, by essence a DSL targets a narrow audience. This can be a major limit of such
an approach that must focus on widespread DSLs (ThingML, Maven POM, OCL, etc.).

2.2. ENGINEERING DOMAIN-SPECIFIC USER INTERFACES 41

Figure 2.4: An example of a search engine for Ecore models.

42 CHAPTER 2. RESEARCH PERSPECTIVES

2.3 User interactions as a first-class programming concept

2.3.1 Research Context

The user interactions provided by a UI form a dialect between a system and its users [62]: a
user interaction can be viewed as a sentence composed of predefined words that correspond
to low-level UI events. For example, the execution of a drag-and-drop interaction can be
viewed as a sentence emitted by a user to the system. This sentence is usually composed
of the words pressure, move and release, that are UI events assembled in a specific order. A
core step while programming UIs is the processing of such sentences. This requires to first
assemble UI events to build a user interaction, to then turn a user interaction execution into
a command that will act on the software. To do so, while the human-computer interaction
community designs novel and complex UIs for highly interactive user interfaces, software de-
velopers still use a technique proposed with SmallTalk and the Model-View-Controller (MVC)
pattern in the 80s [69]: the UI event processing model, currently implemented using callback
methods or reactive programming [10] libraries. This model considers low-level UI events as
the first-class concept developers use for coding more and more complex user interactions.
The reason is that interacting with classical widgets (e.g., buttons, lists, menus) is usually
one-shot: the standard event processing libraries treats a single UI event, such as a mouse
pressure on a button or menu. For more complex user interactions, an abstraction gap exists
leading to several critical flaws that hinder code reuse and affect separation of concerns and
code complexity:

- the concept of user interaction does not exist, so developers have to re-develop user
interactions for each UI using UI events;

- developers have to manually code and maintain the glue code that processes UI events
to produce output commands;

- the code that processes UI events intertwines several concerns, in particular the behavior
of user interactions and the glue code that produce commands;

- the use of event callbacks to process UI events can lead to ‘spaghetti’ code [98, 105] and
relies on the Observer pattern that has several major drawbacks [83, 118, 117, 54], can be
affected by design smells [26].

One may note that this problem was already at the heart of my PhD thesis in 2009 [22].
Ten years after, software engineering still faces this issue more than ever: software systems are
more and more interactive, yet industrial graphical toolkits never evolved on this problem.

2.3.2 Scientific Challenges

We illustrate the current limitations of processing UI events using the following example.
In this example, a user can move a rectangular node displayed by the user interface using
a drag-lock interaction. A drag-lock is a kind of drag-and-drop (DnD) interaction. Using
a standard DnD, the user performs a pressure on a node, drags it, to finally release it. A
drag-lock starts by double-clicking on the node to drag. The user can then move the locked
node until she double-clicks again at the dropping location. The drag-lock interaction is an

2.3. USER INTERACTIONS AS A FIRST-CLASS PROGRAMMING CONCEPT 43

interesting motivating example as it is a standard UI but not provided off-the-shelf by the
current UI toolkits. Figure 2.5 (on the left) depicts using a finite-state machine (FSM) the
assembly of UI events to build a drag-lock interaction. A transition refers to a UI event or
another UI. A UI execution ends when its FSM reaches a terminal state.

Locked Unlocked

double
click

move

double
click

Clicked
Double
Clicked

Cancelled

click

timeout [t ≥ 1s]

click

Figure 2.5: FSMs of the drag-lock (top) and double-click (bottom) user interactions used in
Listing 2.6. The double-click transition of the drag-lock refers to the double-click interaction
on the right.

1let isDragLocked = false;
2const mm_listener = function(evt) {
3draggable.attr({ x: evt.x, y: evt.y });
4};
5const mu_listener = function(evt) {
6removeEventListener("mousemove", mm_listener);
7removeEventListener("mouseup", mu_listener);
8};
9draggable.mousedown(function(evt) {
10if(evt.button == 0) {
11draggable.attr({ x: evt.x, y: evt.y });
12addEventListener("mousemove", mm_listener);
13addEventListener("mouseup", mu_listener);
14}
15});
16draggable.dblclick(function(evt) {
17if(evt.button == 0) {
18if(isDragLocked) {
19draggable.style.cursor = ’’;
20removeEventListener("mousemove", mm_listener);
21} else {
22draggable.style.cursor = ’hand’;
23addEventListener("mousemove", mm_listener);
24}
25isDragLocked = !isDragLocked;
26}
27});

Listing 2.6: A JavaScript code snippet that moves a node using a drag-lock, adapted
from [105]

44 CHAPTER 2. RESEARCH PERSPECTIVES

During the drag-lock of this example, the UI uses a ’hand’ cursor as user feedback. List-
ing 2.6 is a JavaScript implementation of this example. Classical event callbacks, namely
mouse pressure (Line 9), mouse move (Line 2), mouse up (Line 2) and double-click (Line 16),
are used to implement the drag-lock. The main UI concept used to code the example is the
UI event.2

This drag-lock example of Listing 2.6 suffers from the following flaws:

Separation of concerns. Separation of concerns is a core concept in software engineer-
ing [111]. Listing 2.6 illustrates how relying on UI events breaks this concept by intertwining
in the same code:

- The behaviour of the user interaction (the drag-lock). Current UI toolkits and ap-
proaches consider UI events as a first-class concept for coding user interfaces. UI events,
however, are low-level implementation details that developers need to manually assemble
to build user interactions, such as the drag-lock.

- The transformation of user interactions into UI commands. In the same code that as-
sembles UI callbacks to build a user interaction, developers have to define how to pro-
duce output UI commands. Line 3 in Listing 2.6 is the instruction that moves the
dragged node. Note that this instruction is not strictly-speaking a command as it is not
encapsulated in a specific command object [59].

- Conditions that constraint the execution of the UI. Lines 10 and 17 check whether the
user used the drag-lock using the primary button of the mouse.

- Statements that provide feedback to the user. In the example the cursor is changed
during the drag-lock (Lines 19 and 22) to provide the user with feedback about what
she is doing.

Software reuse. Software reuse is also a core and long-standing software engineering concept [70,
67]. Software reuse takes various forms:

- As explained by [70], ‘all approaches to software reuse use some form of abstraction for software
artefacts. Abstraction is the essential feature in any reuse technique’. By still considering UI
events as first-class concerns, current UI event processing approaches suffer from this
exact problem of abstraction that hinders reuse.

- Libraries and frameworks enable software reuse by providing developers with pre-
defined and reusable artefacts [70, 67]. The HCI community designs various user inter-
actions that engineers need to develop and embed in libraries to ease their (re)use.

- User interactions can be classified in different categories. For example, drag-lock is
a kind of DnD interaction. A developer should easily replace a DnD with a drag-
lock as their underlying data are the same: start and end position data. Figure 2.6
depicts another example with alternative behaviours of the drag-lock and double-click
interactions of Figure 2.5. The double-click is now cancelled on a move between the two
clicks. The timeout has changed to 0.5 s. The drag-lock now requires at least one move

2One may note that some UI events are not atomic: if the double-click is a user interaction based on several events
(pressure and release), it is sometimes considered as a UI event since it is one-shot. This is also the case of the mouse
click and the key typing interactions. Figure 2.5 (on the right) depicts using an FSM the assembly of UI events to
build a standard double-click.

2.3. USER INTERACTIONS AS A FIRST-CLASS PROGRAMMING CONCEPT 45

between the two double-clicks, otherwise it is cancelled. A pressure on the key ’ESC’
cancels the UI. A developer should easily replace the standard DnD by this variant. This
can be hardly achieved with the current UI event processing approaches as a developer
has to modify the assembly of UI events. By considering user interactions as objects,
object polymorphism would ease this form of reuse.

Locked Moved Unlocked

Canceled

double
click

move

key press [key=’ESC’]

double
click

key press [key=’ESC’]

move

double
click

Clicked

Double
Clicked

Canceled

click

timeout
[t ≥ 0.5s]

move

click

Figure 2.6: Alternative versions of the drag-lock (left) and the double-click (right) user inter-
actions

- Undo/redo. The code of Listing 2.6 modifies the data directly in the event handlers
(Line 3). So, the changes cannot be stored to be then undone and redone. This would
require glue code manually crafted by developers in the code of Listing 2.6 to sup-
port such a feature. UI processing approaches should provide mechanisms to ease the
support and the reuse of undoable commands. This requires to reify commands as
first-class concepts following the Command design pattern [59].

Complexity. Intertwining in the same code the assembly of UI events to build user interac-
tions, the transformation of UI events into commands makes the code more complex. The
processing of low-level UI events may lead to a code smell named ‘spaghetti’ code [98, 105]
that makes the code more complex.

Researchers proposed different programming models to overcome flaws of the current UI
event processing model [98, 105, 97, 6, 90, 104, 18]. None of them overcome all the above-
mentioned flaws.

2.3.3 Approach

The flaws of the current event processing model require a deep change in the way developers
handle user input events. The new event processing model to develop must provide de-
velopers with constructs at the adequate level of abstraction. This new model must also
permit to reduce the gap between HCI designers and software engineers by employing the
same core concept: user interaction, instead of focusing on atomic input events. This should
ease the transfer of new user interactions, designed by the HCI community, into software
toolkits.

46 CHAPTER 2. RESEARCH PERSPECTIVES

To do so, the new UI processing model to propose3 should take the form of a fluent
API, aka. an internal DSL. The goal is to provide developers with an API in programming
languages they know but supplemented with supplied abstractions.

Consider the example of Listing 2.6: a drag-lock interaction (Figure 2.6 depicts its be-
haviour) moves an object. The following Java code depicts a possible example of the new
model to develop. This code example configures and builds a binding between a DragLock
interaction and a Translate command:

1 nodeBinder(new DragLock(), i -> new Translate(i.getSrc().getUserData()).
2 on(node). // node is an interactive object of the user interface
3 first((i, c) -> i.getSrcObject().setEffect(new DropShadow())).
4 then((i, c) -> c.setCoord(
5 c.getShape().getX() + i.getTgtPt().getX() - i.getSrcPt().getX(),
6 c.getShape().getY() + i.getTgtPt().getY() - i.getSrcPt().getY())).
7 when(i -> i.getButton() == MouseButton.PRIMARY).
8 exec().
9 endOrCancel((i, c) -> i.getSrcObject().setEffect(null)).

10 bind();

Listing 2.7: A binding that transforms a drag-lock interaction into a user command

This example relies on five key concepts:

- User interactions are reusable objects that graphical libraries should provide to developers
instead of low-level UI events. Developers, moreover, rarely develop user interactions:
the HCI community defines state-of-the-art user interactions that graphical libraries
should implement and provide to developers off-the-shelf.

DragLock

DnD �interface�
SrcTgtData

+ getSrcObject() : Node
+ getTgtObject() : Node
+ getSrcPoint(): Point
+ getTgtPoint() : Point
+ getButton() : Button

- A user interaction should be stateful and expose data that a binding can use. The Drag-
Lock class used in Listing 2.7 provides data that binding routines can use (e.g., in map,
first, then, when and endOrCancel). The above class diagram depicts the example of the
drag-lock and DnD interactions. The underlying data of the drag-lock interaction are
defined in the SrcTgtData interface. These data are composed of: the source position
(getSrcPoint); the source picked object (getSrcObject); the target position (getTgtPoint);
the target picked object (getTgtObject); the mouse button (getButton). The interaction
data are updated during the execution of the user interaction. The binding routines,
such as map in Listing 2.7, do not use the running interaction directly. Instead they can
access the interaction data, i.e., the type of i is SrcTgtData. Because the drag-lock and
the DnD interactions are of the same kind they have the same type of data. So, in the

3User interactions form a core concept of this model instead of events. So, we call this model a user interaction
processing model instead of an event processing model.

2.3. USER INTERACTIONS AS A FIRST-CLASS PROGRAMMING CONCEPT 47

code of Listing 2.7 a developer can replace the drag-lock interaction with a DnD with
no other change on the binding. The model to develop should make no assumption on
how user interactions are implemented. This can be, for example, using FSMs [23, 6],
Petri nets [99], or reactive programming [39]. Our examples make use of FSMs.

- UI commands should be reusable and undoable objects defined separately from bindings. UI
commands rely on the Command pattern [59]. The UI command Translate in Listing 2.7
has the following class diagram. The class Translate defines an Undoable Command.
Translate has attributes that correspond to the data required to execute the command.
A binding produces Command objects that can be Undoable. Undoable commands can
be undone and redone. This may require specific Memento [59] data to save the initial
state of the objects modified by the command. The attributes mementoX and mementoY
form the memento of Translate.

Translate

- model : Node
- x : Double
- y: Double
- mementoX : Double
- mementoY : Double

+ execute()
+ canExecute() : Boolean
+ undo()
+ redo()

�interface�
Command

+ execute()
+ canExecute() : Boolean

�interface�
Undoable

+ undo()
+ redo()

- The new model should focus on transforming input user interactions into output commands.
When a user interacts with a user interface, her final goal is to give orders, i.e., com-
mands, to the system. A binding relies on this goal. One UI command can be created,
updated, executed, or cancelled, along one execution of a user interaction. Different
binding routines are called during one execution of the user interaction to create and
configure an output command. The execution of the current command and its registra-
tion if undoable are automatically managed by the binding.

- The new model should provide developers with advanced mechanisms for debugging UIs and
analysing their usages. For example, the new model can embed logging mechanisms to
ease the analysis of user interactions to improve the usability of UIs [5] or to build UI
recommendation systems [133].

To have industrial impact, the proposed model must match the engineering reality of
software engineers and the expressiveness that HCI designers should expect. Researchers
must evaluate the implementations of the proposed new model with a representative panel
of software engineers and using realistic scenarios. Moreover, the proposed model should
be able to express various kinds of modern user interactions designed and prototyped on a
daily basis by the HCI community. Beyond a new model, this perspective requires software
engineering syllabuses to provide students with a strong background on HCI and on UI
engineering.

48 CHAPTER 2. RESEARCH PERSPECTIVES

Selected Publications

I co-authored with 43 different researchers. I worked with five of them through international
collaborations: Montréal University, Canada; UQAM, Canada; Colorado State University,
USA.
I co-authored:

- seven international journal papers;

- one national journal papers;

- 18 international conference papers;

- eight national conference papers;

- eight international demonstration or workshop papers;

- one workshop proceedings.

Selected Journal Papers

A. Blouin, V. Lelli, B. Baudry and F. Coulon, ‘User Interface Design Smell: Automatic
Detection and Refactoring of Blob Listeners’, Information and Software Technology, vol. 102,
pp. 49–64, 2018. https://hal.inria.fr/hal-01499106 (cit. on pp. 9, 13, 14, 19, 28,
32, 35, 42).

G. Le Moulec, A. Blouin, V. Gouranton and B. Arnaldi, ‘Automatic Production of End User
Documentation for DSLs’, Computer Languages, Systems and Structures, vol. 54, pp. 337–357,
2018. https://hal.inria.fr/hal-01549042 (cit. on pp. 12, 13, 39).

D. A. Méndez-Acuña, J. A. Galindo, B. Combemale, A. Blouin and B. Baudry, ‘Reverse
Engineering Language Product Lines from Existing DSL Variants’, Journal of Systems and
Software, vol. 133, pp. 145–158, 2017. https://hal.inria.fr/hal-01524632 (cit. on
p. 12).

T. Degueule, B. Combemale, A. Blouin, O. Barais and J.-M. Jézéquel, ‘Safe Model Poly-
morphism for Flexible Modeling’, Computer Languages, Systems and Structures, vol. 49,
p. 30, 2016. https://hal.inria.fr/hal-01367305 (cit. on pp. 12, 13, 40).

A. Blouin, B. Combemale, B. Baudry and O. Beaudoux, ‘Kompren: Modeling and Gen-
erating Model Slicers’, Software and Systems Modeling, vol. 14, no. 1, pp. 321–337, 2015.
https://hal.inria.fr/hal-00746566 (cit. on p. 11).

49

https://hal.inria.fr/hal-01499106
https://hal.inria.fr/hal-01549042
https://hal.inria.fr/hal-01524632
https://hal.inria.fr/hal-01367305
https://hal.inria.fr/hal-00746566

50 CHAPTER 2. RESEARCH PERSPECTIVES

A. Blouin, N. Moha, B. Baudry, H. Sahraoui and J.-M. Jézéquel, ‘Assessing the Use of
Slicing-based Visualizing Techniques on the Understanding of Large Metamodels’, Inform-
ation and Software Technology, vol. 62, pp. 124–142, 2015. https://hal.inria.fr/hal-
01120558 (cit. on pp. 11, 13, 26, 27, 38).

Selected Conference Papers

G. Le Moulec, F. Argelaguet, V. Gouranton, A. Blouin and B. Arnaldi, ‘AGENT: Auto-
matic Generation of Experimental Protocol Runtime’, in ACM Symposium on Virtual Real-
ity Software and Technology, ser. VRST’17, 2017, pp. 1–10. https://hal.archives-
ouvertes.fr/hal-01613873 (cit. on p. 10).

T. Degueule, B. Combemale, A. Blouin, O. Barais and J.-M. Jézéquel, ‘Melange: A Meta-
language for Modular and Reusable Development of DSLs’, in Proceedings of the 2015
ACM SIGPLAN International Conference on Software Language Engineering, ser. SLE’15, 2015,
pp. 25–36. https://hal.inria.fr/hal-01197038 (cit. on pp. 11, 12).

V. Lelli, A. Blouin and B. Baudry, ‘Classifying and Qualifying GUI Defects’, in 8th IEEE
International Conference on Software Testing, Verification and Validation, ser. ICST’15, 2015,
pp. 1–10. https://hal.inria.fr/hal-01114724 (cit. on pp. 9, 13, 35).

G. Bécan, N. Sannier, M. Acher, O. Barais, A. Blouin and B. Baudry, ‘Automating the
Formalization of Product Comparison Matrices’, in 29th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE’14, 2014. https://hal.inria.fr/hal-
01058440 (cit. on pp. 11, 13).

O. Beaudoux, M. Clavreul, A. Blouin, M. Yang, O. Barais and J.-M. Jézéquel, ‘Specifying
and Running Rich Graphical Components with Loa’, in Proceedings of the 4th ACM SIGCHI
symposium on Engineering interactive computing systems, ser. EICS’12, 2012, pp. 169–178.
https://hal.inria.fr/hal-00684881 (cit. on p. 45).

O. Beaudoux, A. Blouin, O. Barais and J.-M. Jézéquel, ‘Specifying and implementing UI
Data Bindings with Active Operations’, in ACM SIGCHI Symposium on Engineering Inter-
active Computing Systems, ser. EICS’11, 2011, pp. 127–136. https://hal.inria.fr/
inria-00590896.

A. Blouin, B. Combemale, B. Baudry and O. Beaudoux, ‘Modeling Model Slicers’, in
ACM/IEEE 14th International Conference on Model Driven Engineering Languages and Sys-
tems, ser. MODELS’11, 2011, pp. 62–76. https://hal.inria.fr/inria-00609072
(cit. on p. 11).

A. Blouin, B. Morin, O. Beaudoux, G. Nain, P. Albers and J.-M. Jézéquel, ‘Combining
Aspect-Oriented Modeling with Property-Based Reasoning to Improve User Interface
Adaptation’, in ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
ser. EICS’11, 2011, pp. 85–94. https://hal.inria.fr/inria-00590891 (cit. on
pp. 6, 10).

O. Beaudoux, A. Blouin, O. Barais and J.-M. Jézéquel, ‘Active Operations on Collections’,
in ACM/IEEE 13th International Conference on Model Driven Engineering Languages and Sys-
tems, ser. MODELS’10, 2010, pp. 91–105. https://hal.inria.fr/inria-00542763.

https://hal.inria.fr/hal-01120558
https://hal.inria.fr/hal-01120558
https://hal.archives-ouvertes.fr/hal-01613873
https://hal.archives-ouvertes.fr/hal-01613873
https://hal.inria.fr/hal-01197038
https://hal.inria.fr/hal-01114724
https://hal.inria.fr/hal-01058440
https://hal.inria.fr/hal-01058440
https://hal.inria.fr/hal-00684881
https://hal.inria.fr/inria-00590896
https://hal.inria.fr/inria-00590896
https://hal.inria.fr/inria-00609072
https://hal.inria.fr/inria-00590891
https://hal.inria.fr/inria-00542763

PHD MANUSCRIPTS 51

A. Blouin and O. Beaudoux, ‘Improving modularity and usability of interactive systems
with Malai’, in Proceedings of the 2nd ACM SIGCHI symposium on Engineering interactive
computing systems, ser. EICS’10, 2010, pp. 115–124. https://hal.inria.fr/inria-
00477627 (cit. on pp. 10, 47).

PhD Manuscripts

G. Le Moulec, ‘Synthèse d’applications de réalité virtuelle à partir de modèles’, PhD thesis,
INSA de Rennes, 2018. https://tel.archives-ouvertes.fr/tel-01959918 (cit.
on pp. 10, 22).

T. Degueule, ‘Composition and interoperability for external domain-specific language en-
gineering’, PhD thesis, Université Rennes 1, 2016. https://tel.archives-ouvertes.
fr/tel-01488300 (cit. on pp. 12, 22).

V. L. Leitao, ‘Testing and maintenance of graphical user interfaces’, PhD thesis, INSA de
Rennes, 2015. https://tel.archives-ouvertes.fr/tel-01232388 (cit. on p. 22).

A. Blouin, ‘Un modèle pour l’ingénierie des systèmes interactifs dédiés à la manipulation
de données’, PhD thesis, Université d’Angers, Nov. 2009. https://tel.archives-
ouvertes.fr/tel-00446314 (cit. on pp. 10, 42).

https://hal.inria.fr/inria-00477627
https://hal.inria.fr/inria-00477627
https://tel.archives-ouvertes.fr/tel-01959918
https://tel.archives-ouvertes.fr/tel-01488300
https://tel.archives-ouvertes.fr/tel-01488300
https://tel.archives-ouvertes.fr/tel-01232388
https://tel.archives-ouvertes.fr/tel-00446314
https://tel.archives-ouvertes.fr/tel-00446314

52 CHAPTER 2. RESEARCH PERSPECTIVES

Bibliography

[1] M. Abbes, F. Khomh, Y. G. Guéhéneuc and G. Antoniol, ‘An empirical study of the
impact of two antipatterns, Blob and Spaghetti Code, on program comprehension’,
in Proceedings of the European Conference on Software Maintenance and Reengineering,
ser. CSMR’11, 2011, pp. 181–190. doi: 10.1109/CSMR.2011.24 (cit. on pp. 15,
33).

[2] M. Acher, ‘Managing, multiple feature models: Foundations, languages and applica-
tions’, PhD thesis, Nice, 2011. http://www.mathieuacher.com/PhDAcher2011-
revised.pdf (cit. on p. 10).

[3] P. A. Akiki, A. K. Bandara and Y. Yu, ‘Adaptive model-driven user interface develop-
ment systems’, ACM Comput. Surv., vol. 47, no. 1, 9:1–9:33, May 2014. doi: 10.1145/
2597999 (cit. on p. 6).

[4] D. Albuquerque, B. Cafeo, A. Garcia, S. Barbosa, S. Abrahão and A. Ribeiro, ‘Quan-
tifying usability of domain-specific languages: An empirical study on software main-
tenance’, Journal of Systems and Software, vol. 101, pp. 245–259, 2015. doi: 10.1016/j.
jss.2014.11.051 (cit. on p. 38).

[5] A. Apaolaza and M. Vigo, ‘WevQuery: Testing Hypotheses About Web Interaction
Patterns’, Proc. ACM Hum.-Comput. Interact., vol. 1, no. EICS, 4:1–4:17, 2017. doi: 10.
1145/3095806 (cit. on pp. 35, 47).

[6] C. Appert and M. Beaudouin-Lafon, ‘SwingStates: Adding state machines to Java and
the Swing toolkit’, Software: Practice and Experience, vol. 38, no. 11, pp. 1149–1182, 2008.
doi: 10.1002/spe.v38:11 (cit. on pp. 45, 47).

[7] S. Arlt, A. Podelski, C. Bertolini, M. Schäf, I. Banerjee and A. M. Memon, ‘Lightweight
static analysis for GUI testing’, in IEEE 23rd International Symposium on Software Reliab-
ility Engineering, ser. ISSRE’12, IEEE, 2012, pp. 301–310. doi: 10.1109/ISSRE.2012.
25 (cit. on p. 32).

[8] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix and W. Pugh, ‘Using Static
Analysis to Find Bugs’, IEEE Software, vol. 25, no. 5, pp. 22–29, 2008. doi: 10.1109/
MS.2008.130 (cit. on p. 33).

[9] N. Ayewah and W. Pugh, ‘The google findbugs fixit’, in Proceedings of the 19th Inter-
national Symposium on Software Testing and Analysis, ser. ISSTA ’10, 2010, pp. 241–252.
doi: 10.1145/1831708.1831738 (cit. on p. 33).

[10] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx and W. d. Meuter, ‘A
survey on reactive programming’, ACM Computing Surveys (CSUR), vol. 45, no. 4,
p. 52, 2013. doi: 10.1145/2501654.2501666 (cit. on pp. 30, 42).

53

https://doi.org/10.1109/CSMR.2011.24
http://www.mathieuacher.com/PhDAcher2011-revised.pdf
http://www.mathieuacher.com/PhDAcher2011-revised.pdf
https://doi.org/10.1145/2597999
https://doi.org/10.1145/2597999
https://doi.org/10.1016/j.jss.2014.11.051
https://doi.org/10.1016/j.jss.2014.11.051
https://doi.org/10.1145/3095806
https://doi.org/10.1145/3095806
https://doi.org/10.1002/spe.v38:11
https://doi.org/10.1109/ISSRE.2012.25
https://doi.org/10.1109/ISSRE.2012.25
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1145/1831708.1831738
https://doi.org/10.1145/2501654.2501666

54 BIBLIOGRAPHY

[11] I. Banerjee, B. Nguyen, V. Garousi and A. Memon, ‘Graphical user interface (GUI) test-
ing: Systematic mapping and repository’, Information and Software Technology, vol. 55,
no. 10, pp. 1679–1694, 2013. doi: 10.1016/j.infsof.2013.03.004 (cit. on p. 9).

[12] A. Barišić, V. Amaral and M. Goulão, ‘Usability driven DSL development with USE-
ME’, Computer Languages, Systems & Structures, vol. 51, pp. 118–157, 2018. doi: 10.
1016/j.cl.2017.06.005 (cit. on p. 38).

[13] A. Barišić, V. Amaral and M. Goulão, ‘Usability evaluation of domain-specific lan-
guages’, in 2012 Eighth International Conference on the Quality of Information and Commu-
nications Technology, ser. QUATIC’12, IEEE, 2012, pp. 342–347. doi: 10.1109/QUATIC.
2012.63 (cit. on p. 6).

[14] L. Bass, P. Clements and R. Kazman, Software architecture in practice. Addison-Wesley
Professional, 2003 (cit. on p. 10).

[15] M. Beaudouin-Lafon, ‘Designing interaction, not interfaces’, in Proceedings of the work-
ing conference on Advanced visual interfaces, ser. AVI ’04, ACM, 2004, pp. 15–22. doi:
10.1145/989863.989865 (cit. on p. 7).

[16] O. Beaudoux, A. Blouin, O. Barais and J.-M. Jézéquel, ‘Active Operations on Collec-
tions’, in ACM/IEEE 13th International Conference on Model Driven Engineering Languages
and Systems, ser. MODELS’10, 2010, pp. 91–105. https://hal.inria.fr/inria-
00542763.

[17] O. Beaudoux, A. Blouin, O. Barais and J.-M. Jézéquel, ‘Specifying and implementing
UI Data Bindings with Active Operations’, in ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, ser. EICS’11, 2011, pp. 127–136. https://hal.inria.
fr/inria-00590896.

[18] O. Beaudoux, M. Clavreul, A. Blouin, M. Yang, O. Barais and J.-M. Jézéquel, ‘Spe-
cifying and Running Rich Graphical Components with Loa’, in Proceedings of the 4th
ACM SIGCHI symposium on Engineering interactive computing systems, ser. EICS’12, 2012,
pp. 169–178. https://hal.inria.fr/hal-00684881 (cit. on p. 45).

[19] G. Bécan, N. Sannier, M. Acher, O. Barais, A. Blouin and B. Baudry, ‘Automating the
Formalization of Product Comparison Matrices’, in 29th IEEE/ACM International Con-
ference on Automated Software Engineering, ser. ASE’14, 2014. https://hal.inria.
fr/hal-01058440 (cit. on pp. 11, 13).

[20] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung and D. Marinov, ‘DeFlaker : Auto-
matically Detecting Flaky Tests’, in Proceedings of the 40th International Conference on
Software Engineering, ser. ICSE ’18, 2018, pp. 433–444. doi: 10 . 1145 / 3180155 .
318016 (cit. on p. 33).

[21] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend. Packt Publish-
ing Ltd, 2013 (cit. on p. 39).

[22] A. Blouin, ‘Un modèle pour l’ingénierie des systèmes interactifs dédiés à la manip-
ulation de données’, PhD thesis, Université d’Angers, Nov. 2009. https://tel.
archives-ouvertes.fr/tel-00446314 (cit. on pp. 10, 42).

[23] A. Blouin and O. Beaudoux, ‘Improving modularity and usability of interactive sys-
tems with Malai’, in Proceedings of the 2nd ACM SIGCHI symposium on Engineering
interactive computing systems, ser. EICS’10, 2010, pp. 115–124. https://hal.inria.
fr/inria-00477627 (cit. on pp. 10, 47).

https://doi.org/10.1016/j.infsof.2013.03.004
https://doi.org/10.1016/j.cl.2017.06.005
https://doi.org/10.1016/j.cl.2017.06.005
https://doi.org/10.1109/QUATIC.2012.63
https://doi.org/10.1109/QUATIC.2012.63
https://doi.org/10.1145/989863.989865
https://hal.inria.fr/inria-00542763
https://hal.inria.fr/inria-00542763
https://hal.inria.fr/inria-00590896
https://hal.inria.fr/inria-00590896
https://hal.inria.fr/hal-00684881
https://hal.inria.fr/hal-01058440
https://hal.inria.fr/hal-01058440
https://doi.org/10.1145/3180155.318016
https://doi.org/10.1145/3180155.318016
https://tel.archives-ouvertes.fr/tel-00446314
https://tel.archives-ouvertes.fr/tel-00446314
https://hal.inria.fr/inria-00477627
https://hal.inria.fr/inria-00477627

BIBLIOGRAPHY 55

[24] A. Blouin, B. Combemale, B. Baudry and O. Beaudoux, ‘Kompren: Modeling and
Generating Model Slicers’, Software and Systems Modeling, vol. 14, no. 1, pp. 321–337,
2015. https://hal.inria.fr/hal-00746566 (cit. on p. 11).

[25] A. Blouin, B. Combemale, B. Baudry and O. Beaudoux, ‘Modeling Model Slicers’,
in ACM/IEEE 14th International Conference on Model Driven Engineering Languages and
Systems, ser. MODELS’11, 2011, pp. 62–76. https://hal.inria.fr/inria-
00609072 (cit. on p. 11).

[26] A. Blouin, V. Lelli, B. Baudry and F. Coulon, ‘User Interface Design Smell: Auto-
matic Detection and Refactoring of Blob Listeners’, Information and Software Technology,
vol. 102, pp. 49–64, 2018. https://hal.inria.fr/hal-01499106 (cit. on pp. 9,
13, 14, 19, 28, 32, 35, 42).

[27] A. Blouin, N. Moha, B. Baudry and H. Sahraoui, ‘Slicing-based Techniques for Visual-
izing Large Metamodels’, in IEEE Working Conference on Software Visualization, ser. VIS-
SOFT 2014, 2014. https://hal.inria.fr/hal-01056217 (cit. on pp. 11, 38).

[28] A. Blouin, N. Moha, B. Baudry, H. Sahraoui and J.-M. Jézéquel, ‘Assessing the Use
of Slicing-based Visualizing Techniques on the Understanding of Large Metamodels’,
Information and Software Technology, vol. 62, pp. 124–142, 2015. https://hal.inria.
fr/hal-01120558 (cit. on pp. 11, 13, 26, 27, 38).

[29] A. Blouin, B. Morin, O. Beaudoux, G. Nain, P. Albers and J.-M. Jézéquel, ‘Combining
Aspect-Oriented Modeling with Property-Based Reasoning to Improve User Interface
Adaptation’, in ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
ser. EICS’11, 2011, pp. 85–94. https://hal.inria.fr/inria-00590891 (cit. on
pp. 6, 10).

[30] E. Bousse, J. Corley, B. Combemale, J. Gray and B. Baudry, ‘Supporting efficient and
advanced omniscient debugging for xDSMLs’, in Proceedings of the 2015 ACM SIG-
PLAN International Conference on Software Language Engineering, ser. SLE 2015, 2015,
pp. 137–148. doi: 10.1145/2814251.2814262 (cit. on p. 40).

[31] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman,
F. Adeputra and J. J. LaViola Jr., ‘Code bubbles: A working set-based interface for
code understanding and maintenance’, in Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, ser. CHI ’10, 2010, pp. 2503–2512. doi: 10.1145/
1753326.1753706 (cit. on p. 40).

[32] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon and J. Vanderdonckt,
‘A unifying reference framework for multi-target user interfaces’, Interacting with com-
puters, vol. 15, no. 3, pp. 289–308, 2003. doi: 10.1016/S0953-5438(03)00010-9
(cit. on pp. 6, 7, 10).

[33] M. Cavazza, F. Charles and S. J. Mead, ‘Character-based interactive storytelling’, IEEE
Intelligent systems, vol. 17, no. 4, pp. 17–24, 2002. http://tees.openrepository.
com/tees/handle/10149/58294 (cit. on p. 10).

[34] W. Choi, K. Sen, G. Necula and W. Wang, ‘DetReduce: Minimizing Android GUI Test
Suites for Regression Testing’, in Proceedings of the 40th International Conference on Soft-
ware Engineering, ser. ICSE ’18, 2018, pp. 445–455. doi: 10.1145/3180155.3180173
(cit. on p. 6).

https://hal.inria.fr/hal-00746566
https://hal.inria.fr/inria-00609072
https://hal.inria.fr/inria-00609072
https://hal.inria.fr/hal-01499106
https://hal.inria.fr/hal-01056217
https://hal.inria.fr/hal-01120558
https://hal.inria.fr/hal-01120558
https://hal.inria.fr/inria-00590891
https://doi.org/10.1145/2814251.2814262
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1016/S0953-5438(03)00010-9
http://tees.openrepository.com/tees/handle/10149/58294
http://tees.openrepository.com/tees/handle/10149/58294
https://doi.org/10.1145/3180155.3180173

56 BIBLIOGRAPHY

[35] G. Claude, V. Gouranton and B. Arnaldi, ‘Versatile Scenario Guidance for Collab-
orative Virtual Environments’, in Proceedings of 10th International Conference on Com-
puter Graphics Theory and Applications, ser. GRAPP’15, 2015. https://hal-univ-
rennes1.archives-ouvertes.fr/hal-01147733 (cit. on p. 10).

[36] B. Combemale, R. France, J.-M. Jézéquel, B. Rumpe, J. Steel and D. Vojtisek, Engineering
modeling languages: Turning domain knowledge into tools. Chapman and Hall/CRC, 2016
(cit. on pp. 8, 11, 37).

[37] J. Coutaz, J. L. Crowley, S. Dobson and D. Garlan, ‘Context is key’, Communications of
the ACM, vol. 48, no. 3, p. 49, Mar. 2005. doi: 10.1145/1047671.1047703 (cit. on
p. 10).

[38] F. Cuenca, K. Coninx, D. Vanacken and K. Luyten, ‘Graphical toolkits for rapid pro-
totyping of multimodal systems: A survey’, Interacting with Computers, vol. 27, no. 4,
pp. 470–488, 2014. doi: 10.1093/iwc/iwu003 (cit. on p. 6).

[39] E. Czaplicki and S. Chong, ‘Asynchronous Functional Reactive Programming for GUIs’,
in Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’13, ACM, 2013, pp. 411–422. doi: 10.1145/2491956.
2462161 (cit. on p. 47).

[40] A. van Dam, ‘Post-WIMP user interfaces’, Commun. ACM, vol. 40, no. 2, pp. 63–67,
1997. doi: 10.1145/253671.253708 (cit. on p. 29).

[41] B. Danglot, O. L. Vera-Pérez, B. Baudry and M. Monperrus, ‘Automatic Test Improve-
ment with DSpot: a Study with Ten Mature Open-Source Projects’, Empirical Software
Engineering, 2018. https://arxiv.org/pdf/1811.08330 (cit. on pp. 29, 34).

[42] B. Danglot, O. Vera-Perez, Z. Yu, M. Monperrus and B. Baudry, ‘A snowballing lit-
erature study on test amplification’, Journal of Systems and Software, 2019. https:
//arxiv.org/abs/1705.10692 (cit. on pp. 32, 34).

[43] C. Dea, M. Heckler, G. Grunwald, J. Pereda and S. Phillips, JavaFX 8: Introduction by
Example. Apress, 2014 (cit. on p. 7).

[44] T. Degueule, ‘Composition and interoperability for external domain-specific language
engineering’, PhD thesis, Université Rennes 1, 2016. https://tel.archives-
ouvertes.fr/tel-01488300 (cit. on pp. 12, 22).

[45] T. Degueule, B. Combemale, A. Blouin, O. Barais and J.-M. Jézéquel, ‘Melange: A Meta-
language for Modular and Reusable Development of DSLs’, in Proceedings of the 2015
ACM SIGPLAN International Conference on Software Language Engineering, ser. SLE’15,
2015, pp. 25–36. https://hal.inria.fr/hal-01197038 (cit. on pp. 11, 12).

[46] T. Degueule, B. Combemale, A. Blouin, O. Barais and J.-M. Jézéquel, ‘Safe Model Poly-
morphism for Flexible Modeling’, Computer Languages, Systems and Structures, vol. 49,
p. 30, 2016. https://hal.inria.fr/hal-01367305 (cit. on pp. 12, 13, 40).

[47] S. W. Draper and D. A. Norman, ‘Software engineering for user interfaces’, IEEE
Transactions on Software Engineering, vol. SE-11, no. 3, pp. 252–258, Mar. 1985. doi:
10.1109/TSE.1985.232208 (cit. on pp. 5, 6).

[48] T. Duval, A. Blouin and J.-M. Jézéquel, ‘When Model Driven Engineering meets Virtual
Reality: Feedback from Application to the Collaviz Framework’, in Software Engineering
and Architectures for Realtime Interactive Systems Working Group, 2014. https://hal.
inria.fr/hal-00969072 (cit. on p. 24).

https://hal-univ-rennes1.archives-ouvertes.fr/hal-01147733
https://hal-univ-rennes1.archives-ouvertes.fr/hal-01147733
https://doi.org/10.1145/1047671.1047703
https://doi.org/10.1093/iwc/iwu003
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/253671.253708
https://arxiv.org/pdf/1811.08330
https://arxiv.org/abs/1705.10692
https://arxiv.org/abs/1705.10692
https://tel.archives-ouvertes.fr/tel-01488300
https://tel.archives-ouvertes.fr/tel-01488300
https://hal.inria.fr/hal-01197038
https://hal.inria.fr/hal-01367305
https://doi.org/10.1109/TSE.1985.232208
https://hal.inria.fr/hal-00969072
https://hal.inria.fr/hal-00969072

BIBLIOGRAPHY 57

[49] C. Ebert, G. Gallardo, J. Hernantes and N. Serrano, ‘DevOps’, IEEE Software, vol. 33,
no. 03, pp. 94–100, May 2016. doi: 10.1109/MS.2016.68 (cit. on pp. 29, 31).

[50] Eclipse, Eclipse Sirius. https://www.eclipse.org/sirius/ (cit. on p. 39).

[51] Facebook, React. https://reactjs.org/ (cit. on p. 7).

[52] L. P. Flannery, B. Silverman, E. R. Kazakoff, M. U. Bers, P. Bontá and M. Resnick,
‘Designing scratchjr: Support for early childhood learning through computer pro-
gramming’, in Proceedings of the 12th International Conference on Interaction Design and
Children, ser. IDC ’13, ACM, 2013, pp. 1–10. doi: 10.1145/2485760.2485785 (cit.
on p. 11).

[53] F. Fleurey and A. Solberg, ‘A domain specific modeling language supporting specific-
ation, simulation and execution of dynamic adaptive systems’, in International Con-
ference on Model Driven Engineering Languages and Systems, ser. MoDELS’09, Springer,
2009, pp. 606–621. doi: 10.1007/978-3-642-04425-0_47 (cit. on p. 10).

[54] G. Foust, J. Järvi and S. Parent, ‘Generating reactive programs for graphical user in-
terfaces from multi-way dataflow constraint systems’, in Proceedings of the 2015 ACM
SIGPLAN International Conference on Generative Programming: Concepts and Experiences,
ser. GPCE 2015, ACM, 2015, pp. 121–130. doi: 10.1145/2814204.2814207 (cit. on
p. 42).

[55] M. Fowler, Domain-specific languages. Pearson Education, 2010 (cit. on p. 37).

[56] M. Fowler, ‘Language workbenches: The killer-app for domain specific languages’,
2005, https://www.martinfowler.com/articles/languageWorkbench.
html (cit. on p. 12).

[57] R. France, B. Rumpe and M. Schindler, ‘Why it is so hard to use models in software
development: Observations’, Software & Systems Modeling, vol. 12, no. 4, pp. 665–668,
Oct. 2013. doi: 10.1007/s10270-013-0383-z (cit. on p. 38).

[58] M. Frisch and R. Dachselt, ‘Off-screen visualization techniques for class diagrams’, in
Proceedings of the 5th International Symposium on Software Visualization, ser. SOFTVIS’10,
2010, pp. 163–172. doi: 10.1145/1879211.1879236 (cit. on p. 38).

[59] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design patterns: elements of reusable
object-oriented software. Addison-Wesley, 1995 (cit. on pp. 44, 45, 47).

[60] Google, Angular. https://angular.io/ (cit. on pp. 7, 35).

[61] P. Gralka, C. Schulz, G. Reina, D. Weiskopf and T. Ertl, ‘Visual exploration of memory
traces and call stacks’, in 2017 IEEE Working Conference on Software Visualization (VIS-
SOFT), 2017, pp. 54–63. doi: 10.1109/VISSOFT.2017.15 (cit. on p. 40).

[62] M. Green, ‘A survey of three dialogue models’, ACM Trans. Graph., vol. 5, no. 3,
pp. 244–275, 1986. doi: 10.1145/24054.24057 (cit. on p. 42).

[63] M. L. Hammontree, J. J. Hendrickson and B. W. Hensley, ‘Integrated data capture and
analysis tools for research and testing on graphical user interfaces’, in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser. CHI ’92, 1992, pp. 431–
432. doi: 10.1145/142750.142886 (cit. on p. 29).

https://doi.org/10.1109/MS.2016.68
https://www.eclipse.org/sirius/
https://reactjs.org/
https://doi.org/10.1145/2485760.2485785
https://doi.org/10.1007/978-3-642-04425-0_47
https://doi.org/10.1145/2814204.2814207
https://www.martinfowler.com/articles/languageWorkbench.html
https://www.martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1007/s10270-013-0383-z
https://doi.org/10.1145/1879211.1879236
https://angular.io/
https://doi.org/10.1109/VISSOFT.2017.15
https://doi.org/10.1145/24054.24057
https://doi.org/10.1145/142750.142886

58 BIBLIOGRAPHY

[64] J. Hutchinson, J. Whittle and M. Rouncefield, ‘Model-driven engineering practices in
industry: Social, organizational and managerial factors that lead to success or failure’,
Science of Computer Programming, vol. 89, pp. 144–161, 2014, Special issue on Success
Stories in Model Driven Engineering. doi: 10.1016/j.scico.2013.03.017 (cit.
on p. 38).

[65] IFIP Working Group 2.7/13.4, http://ui-engineering.org/mission/, 2018
(cit. on p. 6).

[66] C. Jeanneret, M. Glinz and B. Baudry, ‘Estimating Footprints of Model Operations’,
in International Conference on Software Engineering, ser. ICSE’11, 2011, pp. 601–610. doi:
10.1145/1985793.1985875 (cit. on p. 11).

[67] R. E. Johnson, ‘Frameworks = (components + patterns)’, Commun. ACM, vol. 40, no. 10,
pp. 39–42, 1997. doi: 10.1145/262793.262799 (cit. on p. 44).

[68] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc and G. Antoniol, ‘An exploratory study of
the impact of antipatterns on class change- and fault-proneness’, Empirical Software
Engineering, vol. 17, no. 3, pp. 243–275, 2012. doi: 10.1007/s10664-011-9171-y
(cit. on pp. 33, 35).

[69] G. E. Krasner, S. T. Pope et al., ‘A description of the model-view-controller user inter-
face paradigm in the smalltalk-80 system’, Journal of object oriented programming, vol. 1,
no. 3, pp. 26–49, 1988 (cit. on pp. 10, 30, 42).

[70] C. W. Krueger, ‘Software reuse’, ACM Comput. Surv., vol. 24, no. 2, pp. 131–183, 1992.
doi: 10.1145/130844.130856 (cit. on p. 44).

[71] R. Lämmel, ‘Software chrestomathies’, Science of Computer Programming, vol. 97, pp. 98–
104, 2015. doi: https://doi.org/10.1016/j.scico.2013.11.014 (cit. on
p. 39).

[72] G. Le Moulec, ‘Synthèse d’applications de réalité virtuelle à partir de modèles’, PhD
thesis, INSA de Rennes, 2018. https://tel.archives-ouvertes.fr/tel-
01959918 (cit. on pp. 10, 22).

[73] G. Le Moulec, F. Argelaguet, V. Gouranton, A. Blouin and B. Arnaldi, ‘AGENT: Auto-
matic Generation of Experimental Protocol Runtime’, in ACM Symposium on Virtual
Reality Software and Technology, ser. VRST’17, 2017, pp. 1–10. https://hal.archives-
ouvertes.fr/hal-01613873 (cit. on p. 10).

[74] G. Le Moulec, A. Blouin, V. Gouranton and B. Arnaldi, ‘Automatic Production of End
User Documentation for DSLs’, Computer Languages, Systems and Structures, vol. 54,
pp. 337–357, 2018. https://hal.inria.fr/hal-01549042 (cit. on pp. 12, 13, 39).

[75] V. L. Leitao, ‘Testing and maintenance of graphical user interfaces’, PhD thesis, INSA
de Rennes, 2015. https://tel.archives-ouvertes.fr/tel-01232388 (cit. on
p. 22).

[76] V. Lelli, A. Blouin and B. Baudry, ‘Classifying and Qualifying GUI Defects’, in 8th
IEEE International Conference on Software Testing, Verification and Validation, ser. ICST’15,
2015, pp. 1–10. https://hal.inria.fr/hal-01114724 (cit. on pp. 9, 13, 35).

https://doi.org/10.1016/j.scico.2013.03.017
http://ui-engineering.org/mission/
https://doi.org/10.1145/1985793.1985875
https://doi.org/10.1145/262793.262799
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1145/130844.130856
https://doi.org/https://doi.org/10.1016/j.scico.2013.11.014
https://tel.archives-ouvertes.fr/tel-01959918
https://tel.archives-ouvertes.fr/tel-01959918
https://hal.archives-ouvertes.fr/hal-01613873
https://hal.archives-ouvertes.fr/hal-01613873
https://hal.inria.fr/hal-01549042
https://tel.archives-ouvertes.fr/tel-01232388
https://hal.inria.fr/hal-01114724

BIBLIOGRAPHY 59

[77] V. Lelli, A. Blouin, B. Baudry and F. Coulon, ‘On Model-Based Testing Advanced
GUIs’, in 11th Workshop on Advances in Model Based Testing (A-MOST 2015), ser. Soft-
ware Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth Inter-
national Conference on, 2015, pp. 1–10. https://hal.inria.fr/hal-01123647
(cit. on pp. 9, 34).

[78] V. Lelli, A. Blouin, B. Baudry, F. Coulon and O. Beaudoux, ‘Automatic Detection
of GUI Design Smells: The Case of Blob Listener’, in Proceedings of the 8th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, ser. EICS’16, 2016,
pp. 263–274. doi: 10.1145/2933242.2933260. https://hal.inria.fr/hal-
01308625 (cit. on pp. 9, 32, 35).

[79] K. Lemon, E. B. Allen, J. C. Carver and G. L. Bradshaw, ‘An empirical study of the
effects of gestalt principles on diagram understandability’, in First International Sym-
posium on Empirical Software Engineering and Measurement, ser. ESEM’07, 2007, pp. 156–
165. doi: 10.1109/ESEM.2007.37 (cit. on p. 38).

[80] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon and V. López-Jaquero, ‘USIXML:
a language supporting multi-path development of user interfaces’, in International
Workshop on Design, Specification, and Verification of Interactive Systems, Springer, 2004,
pp. 200–220. doi: 10.1007/11431879_12 (cit. on pp. 6, 7, 10).

[81] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta, R. Oliveto and D.
Poshyvanyk, ‘API change and fault proneness: a threat to the success of Android
apps’, in Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE’13, 2013, p. 477. doi: 10.1145/2491411.2491428 (cit. on p. 31).

[82] Q. Luo, F. Hariri, L. Eloussi and D. Marinov, ‘An empirical analysis of flaky tests’,
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering - FSE 2014, pp. 643–653, 2014. doi: 10.1145/2635868.2635920 (cit. on
p. 33).

[83] I. Maier and M. Odersky, ‘Deprecating the Observer Pattern with Scala.React’, Tech.
Rep., 2012. https://infoscience.epfl.ch/record/176887 (cit. on p. 42).

[84] A. M. Memon, ‘An Event-flow Model of GUI-Based Applications for Testing’, Software
Testing, Verification & Reliability, vol. 17, no. 3, pp. 137–157, 2007. doi: https://doi.
org/10.1002/stvr.364 (cit. on pp. 32, 33).

[85] A. M. Memon, ‘GUI testing: Pitfalls and process’, Computer, no. 8, pp. 87–88, 2002.
https://www.computer.org/csdl/mags/co/2002/08/r8087.pdf (cit. on
p. 6).

[86] D. A. Méndez-Acuña, J. A. Galindo, B. Combemale, A. Blouin and B. Baudry, ‘Reverse
Engineering Language Product Lines from Existing DSL Variants’, Journal of Systems
and Software, vol. 133, pp. 145–158, 2017. https://hal.inria.fr/hal-01524632
(cit. on p. 12).

[87] D. Méndez-Acuña, J. A. Galindo Duarte, B. Combemale, A. Blouin and B. Baudry,
‘Puzzle: A tool for analyzing and extracting specification clones in DSLs’, in the 15th In-
ternational Conference on Software Reuse, ser. ICSR’16, 2016. https://hal.archives-
ouvertes.fr/hal-01284822 (cit. on p. 12).

https://hal.inria.fr/hal-01123647
https://doi.org/10.1145/2933242.2933260
https://hal.inria.fr/hal-01308625
https://hal.inria.fr/hal-01308625
https://doi.org/10.1109/ESEM.2007.37
https://doi.org/10.1007/11431879_12
https://doi.org/10.1145/2491411.2491428
https://doi.org/10.1145/2635868.2635920
https://infoscience.epfl.ch/record/176887
https://doi.org/https://doi.org/10.1002/stvr.364
https://doi.org/https://doi.org/10.1002/stvr.364
https://www.computer.org/csdl/mags/co/2002/08/r8087.pdf
https://hal.inria.fr/hal-01524632
https://hal.archives-ouvertes.fr/hal-01284822
https://hal.archives-ouvertes.fr/hal-01284822

60 BIBLIOGRAPHY

[88] D. Méndez-Acuña, J. A. Galindo Duarte, B. Combemale, A. Blouin, B. Baudry and
G. Le Guernic, ‘Reverse-engineering reusable language modules from legacy domain-
specific languages’, in the 15th International Conference on Software Reuse, ser. ICSR’16,
2016. https://hal.archives-ouvertes.fr/hal-01284816 (cit. on p. 12).

[89] M. Mernik, J. Heering and A. M. Sloane, ‘When and How to Develop Domain-Specific
Languages’, ACM Computing Surveys, vol. 37, pp. 316–344, 2005. doi: 10 . 1145 /
1118890.1118892 (cit. on p. 8).

[90] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg, A. Bromfield and
S. Krishnamurthi, ‘Flapjax: A Programming Language for Ajax Applications’, in Pro-
ceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems
Languages and Applications, ser. OOPSLA ’09, ACM, 2009, pp. 1–20. doi: 10.1145/
1640089.1640091 (cit. on p. 45).

[91] Z. Mijailovic and D. Milicev, ‘A Retrospective on User Interface Development Tech-
nology’, Software, IEEE, vol. 30, pp. 76–83, 2013. doi: 10.1109/MS.2013.45 (cit. on
p. 5).

[92] B. Morin, O. Barais, G. Nain and J.-M. Jezequel, ‘Taming dynamically adaptive systems
using models and aspects’, in Proceedings of the 31st International Conference on Software
Engineering, IEEE Computer Society, 2009, pp. 122–132. https://hal.archives-
ouvertes.fr/inria-00468516/ (cit. on p. 10).

[93] Mozilla, MDN Web Docs. https://developer.mozilla.org (cit. on p. 7).

[94] L. Murphy, M. B. Kery, O. Alliyu, A. Macvean and B. A. Myers, ‘API Designers in
the Field: Design Practices and Challenges for Creating Usable APIs’, in 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing, ser. VL/HCC’18, 2018,
pp. 249–258. doi: 10.1109/VLHCC.2018.8506523 (cit. on p. 6).

[95] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. Cheng, P. Collet, B. Combemale,
R. B. France, R. Heldal, J. Hill et al., ‘The relevance of model-driven engineering thirty
years from now’, in International Conference on Model Driven Engineering Languages and
Systems, ser. MODELS’14, 2014, pp. 183–200. doi: 10.1007/978-3-319-11653-
2_12 (cit. on p. 38).

[96] B. A. Myers, A. J. Ko, T. D. LaToza and Y. Yoon, ‘Programmers are users too: Human-
centered methods for improving programming tools’, Computer, vol. 49, no. 7, pp. 44–
52, Jul. 2016. doi: 10.1109/MC.2016.200 (cit. on p. 12).

[97] B. A. Myers, ‘A new model for handling input’, ACM Trans. Inf. Syst., vol. 8, no. 3,
pp. 289–320, Jul. 1990. doi: 10.1145/98188.98204 (cit. on p. 45).

[98] B. A. Myers, ‘Separating application code from toolkits: Eliminating the spaghetti
of call-backs’, in Proceedings of the 4th Annual ACM Symposium on User Interface Soft-
ware and Technology, ser. UIST ’91, ACM, 1991, pp. 211–220. doi: 10.1145/120782.
120805 (cit. on pp. 42, 45).

[99] D. Navarre, P. Palanque, J.-F. Ladry and E. Barboni, ‘ICOs: A model-based user in-
terface description technique dedicated to interactive systems addressing usability,
reliability and scalability’, ACM Transactions on Computer-Human Interaction (TOCHI),
vol. 16, no. 4, p. 18, 2009. doi: 10.1145/1614390.1614393 (cit. on pp. 6, 47).

https://hal.archives-ouvertes.fr/hal-01284816
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1109/MS.2013.45
https://hal.archives-ouvertes.fr/inria-00468516/
https://hal.archives-ouvertes.fr/inria-00468516/
https://developer.mozilla.org
https://doi.org/10.1109/VLHCC.2018.8506523
https://doi.org/10.1007/978-3-319-11653-2_12
https://doi.org/10.1007/978-3-319-11653-2_12
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1145/98188.98204
https://doi.org/10.1145/120782.120805
https://doi.org/10.1145/120782.120805
https://doi.org/10.1145/1614390.1614393

BIBLIOGRAPHY 61

[100] Y. Ndiaye, O. Barais, A. Blouin, A. Bouabdallah and N. Aillery, ‘Requirements for
preventing logic flaws in the authentication procedure of web applications’, in The
34th ACM/SIGAPP Symposium On Applied Computing, ser. SAC’19, 2019. https://
hal.inria.fr/hal-02087663.

[101] L. Northrop, Software Product Lines: Practices and Patterns. Addison-Wesley, 2002 (cit.
on p. 10).

[102] R. A. P. Oliveira, E. Alégroth, Z. Gao and A. Memon, ‘Definition and evaluation of
mutation operators for GUI-level mutation analysis’, in 2015 IEEE Eighth International
Conference on Software Testing, Verification and Validation Workshops, ser. ICSTW’15, 2015,
pp. 1–10. doi: 10.1109/ICSTW.2015.7107457 (cit. on p. 35).

[103] OMG, UML Specification, 2007. https://www.omg.org/spec/UML/ (cit. on pp. 11,
38).

[104] S. Oney, B. Myers and J. Brandt, ‘ConstraintJS: programming interactive behaviors for
the web by integrating constraints and states’, in Proceedings of the 25th annual ACM
symposium on User interface software and technology, ser. UIST ’12, ACM, 2012, pp. 229–
238. doi: 10.1145/2380116.2380146 (cit. on p. 45).

[105] S. Oney, B. Myers and J. Brandt, ‘Interstate: Interaction-oriented language primitives
for expressing GUI behavior’, in Proceedings of the 27th annual ACM symposium on User
interface software and technology, ser. UIST ’14, ACM, 2014, pp. 10–1145. doi: 10.1145/
2642918.2647358 (cit. on pp. 42, 43, 45).

[106] R. F. Paige, ‘Language engineering: Challenges, opportunities and potential disasters
for interactive systems’, in Proceedings of the 8th ACM SIGCHI Symposium on Engineer-
ing Interactive Computing Systems, ser. EICS ’16, ACM, 2016, pp. 3–3. doi: 10.1145/
2933242.2948132 (cit. on p. 29).

[107] R. F. Paige and L. M. Rose, ‘Lies, Damned Lies and UML2Java’, Journal of Object Tech-
nology, vol. 12, no. 1, 2013. doi: 10.5381/jot.2013.12.1.c1 (cit. on pp. 37,
38).

[108] P. Palanque, Engineering interactive critical systems – ACM lectures, https://speakers.
acm.org/lectures/6824, 2018 (cit. on p. 7).

[109] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk and A. De Lucia,
‘Mining version histories for detecting code smells’, IEEE Transactions on Software En-
gineering, 2014. doi: 10.1109/TSE.2014.2372760 (cit. on p. 35).

[110] F. Palomba and A. Zaidman, ‘Does refactoring of test smells induce fixing flaky tests?’,
in 2017 IEEE International Conference on Software Maintenance and Evolution, ser. IC-
SME’17, 2017, pp. 1–12. doi: 10.1109/ICSME.2017.12 (cit. on pp. 32, 36).

[111] D. L. Parnas, ‘On the criteria to be used in decomposing systems into modules’, Com-
munications of the ACM, vol. 15, no. 12, pp. 1053–1058, 1972. doi: 10.1145/361598.
361623 (cit. on pp. 37, 44).

[112] A. Pleuss, S. Wollny and G. Botterweck, ‘Model-driven development and evolution
of customized user interfaces’, in Proceedings of the 5th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, ser. EICS ’13, ACM, 2013, pp. 13–22. doi:
10.1145/2494603.2480298 (cit. on p. 10).

https://hal.inria.fr/hal-02087663
https://hal.inria.fr/hal-02087663
https://doi.org/10.1109/ICSTW.2015.7107457
https://www.omg.org/spec/UML/
https://doi.org/10.1145/2380116.2380146
https://doi.org/10.1145/2642918.2647358
https://doi.org/10.1145/2642918.2647358
https://doi.org/10.1145/2933242.2948132
https://doi.org/10.1145/2933242.2948132
https://doi.org/10.5381/jot.2013.12.1.c1
https://speakers.acm.org/lectures/6824
https://speakers.acm.org/lectures/6824
https://doi.org/10.1109/TSE.2014.2372760
https://doi.org/10.1109/ICSME.2017.12
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/2494603.2480298

62 BIBLIOGRAPHY

[113] K. Pohl, G. Böckle and F. J. van Der Linden, Software product line engineering: founda-
tions, principles and techniques. Springer Science & Business Media, 2005 (cit. on p. 10).

[114] M. Potel, ‘MVP: Model-View-Presenter the Taligent programming model for C++ and
Java’, Taligent Inc, 1996 (cit. on p. 10).

[115] J. Roche, ‘Adopting DevOps practices in quality assurance’, Commun. ACM, vol. 56,
no. 11, pp. 38–43, 2013. doi: 10.1145/2538031.2540984 (cit. on pp. 29, 31).

[116] B. Rumpe and R. France, ‘On the relationship between modeling and programming
languages’, Software and Systems Modeling, vol. 11, no. 1, pp. 1–2, 2012. http://www.
springerlink.com/index/y1126331504h4612.pdf (cit. on pp. 37, 38).

[117] G. Salvaneschi, S. Amann, S. Proksch and M. Mezini, ‘An empirical study on program
comprehension with reactive programming’, in Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser. FSE 2014, ACM,
2014, pp. 564–575. doi: 10.1145/2635868.2635895 (cit. on p. 42).

[118] G. Salvaneschi and M. Mezini, ‘Towards reactive programming for object-oriented ap-
plications’, Transactions on Aspect-Oriented Software Development XI, vol. 8400, pp. 227–
261, 2014. doi: 10.1007/978-3-642-55099-7_7 (cit. on p. 42).

[119] D. J. Sheskin, Handbook Of Parametric And Nonparametric Statistical Procedures, Fourth
Edition. Chapman & Hall/CRC, Jan. 2007 (cit. on pp. 16, 17).

[120] F. Shull, J. Singer and D. I. Sjøberg, Guide to advanced empirical software engineering.
Springer, 2007 (cit. on p. 14).

[121] J. Smith, ‘WPF Apps With The Model-View-ViewModel Design Pattern’, MSDN Magazine,
Feb. 2009. http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
(cit. on pp. 7, 10).

[122] N. Souchon and J. Vanderdonckt, ‘A Review of XML-compliant User Interface Descrip-
tion Languages’, in Interactive Systems. Design, Specification, and Verification, ser. DSV-
IS’03, Springer Berlin Heidelberg, 2003, pp. 377–391. doi: 10.1007/978-3-540-
39929-2_26 (cit. on p. 7).

[123] D. Steinberg, F. Budinsky, E. Merks and M. Paternostro, EMF: eclipse modeling frame-
work. Pearson Education, 2008 (cit. on pp. 11, 39).

[124] W. Sun, B. Combemale, R. B. France, A. Blouin, B. Baudry and I. Ray, ‘Using Slicing
to Improve the Performance of Model Invariant Checking’, The Journal of Object Tech-
nology, p. 28, 2015. https://hal.inria.fr/hal-01179369 (cit. on pp. 11, 26).

[125] F. Tip, ‘A survey of program slicing techniques’, Journal of Programming Languages,
vol. 3, pp. 121–189, 1995. https://www.franktip.org/pubs/jpl1995.pdf
(cit. on p. 11).

[126] UsiXML-Consortium, ‘UsiXML, USer Interface eXtensible Markup Language’, UsiXML
Consortium, Tech. Rep., 2007. http://www.usixml.org (cit. on p. 7).

[127] A. Van Deursen and P. Klint, ‘Domain-specific language design requires feature de-
scriptions’, CIT. Journal of computing and information technology, vol. 10, no. 1, pp. 1–17,
2002. doi: 10.2498/cit.2002.01.01 (cit. on p. 39).

https://doi.org/10.1145/2538031.2540984
http://www.springerlink.com/index/y1126331504h4612.pdf
http://www.springerlink.com/index/y1126331504h4612.pdf
https://doi.org/10.1145/2635868.2635895
https://doi.org/10.1007/978-3-642-55099-7_7
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
https://doi.org/10.1007/978-3-540-39929-2_26
https://doi.org/10.1007/978-3-540-39929-2_26
https://hal.inria.fr/hal-01179369
https://www.franktip.org/pubs/jpl1995.pdf
http://www.usixml.org
https://doi.org/10.2498/cit.2002.01.01

BIBLIOGRAPHY 63

[128] J. Vanderdonckt, ‘Model-Driven Engineering of User Interfaces: Promises, Successes,
and Failures’, in Proceedings of 5th Annual Romanian Conference on Human-Computer
Interaction, ser. ROCHI’08, 2008. https://dial.uclouvain.be/downloader/
downloader.php?pid=boreal:118090&datastream=PDF_01 (cit. on pp. 6, 29).

[129] R. Wei, D. S. Kolovos, A. Garcia-Dominguez, K. Barmpis and R. F. Paige, ‘Partial
Loading of XMI Models’, in Proceedings of the ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems, ser. MODELS’16, ACM, 2016, pp. 329–
339. doi: 10.1145/2976767.2976787 (cit. on p. 11).

[130] J. Whittle, J. Hutchinson and M. Rouncefield, ‘The state of practice in model-driven
engineering’, IEEE Software, vol. 31, no. 3, pp. 79–85, May 2014. doi: 10.1109/MS.
2013.65 (cit. on pp. 37, 38).

[131] N. Winston, ‘Catching bugs earlier: the unexpected benefits of automating GUI test-
ing’, in Fifth International Software Quality Week, San Fransisco, USA, 1992 (cit. on p. 6).

[132] A. Yamashita and L. Moonen, ‘Do code smells reflect important maintainability as-
pects?’, in IEEE International Conference on Software Maintenance, ser. ICSM’12, 2012,
pp. 306–315. doi: 10.1109/ICSM.2012.6405287 (cit. on p. 33).

[133] W. Yuan, H. H. Nguyen, L. Jiang, Y. Chen, J. Zhao and H. Yu, ‘API recommendation for
event-driven Android application development’, Information and Software Technology,
vol. 107, pp. 30–47, 2019. doi: 10.1016/j.infsof.2018.10.010 (cit. on p. 47).

[134] X. Yuan, M. B. Cohen and A. M. Memon, ‘GUI Interaction Testing: Incorporating Event
Context’, IEEE Transactions on Software Engineering, vol. 37, no. 4, pp. 559–574, Jul. 2011.
doi: 10.1109/TSE.2010.50 (cit. on p. 32).

https://dial.uclouvain.be/downloader/downloader.php?pid=boreal:118090&datastream=PDF_01
https://dial.uclouvain.be/downloader/downloader.php?pid=boreal:118090&datastream=PDF_01
https://doi.org/10.1145/2976767.2976787
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/ICSM.2012.6405287
https://doi.org/10.1016/j.infsof.2018.10.010
https://doi.org/10.1109/TSE.2010.50

	1 Contribution to the Engineering of User Interfaces
	1.1 Context
	1.2 Challenges and Objectives
	1.3 Scientific Contributions
	1.3.1 Software engineering user interfaces: new user interface development abstractions
	1.3.2 Improving the interactivity and usability of domain-specific languages

	1.4 Research Methods
	1.4.1 From insights to empirical evidences: the example of a study on UI listeners
	1.4.2 Validating approaches empirically: the example of the UI listener refactoring tool

	1.5 Projects and Supervision
	1.6 Software Development

	2 Research Perspectives
	2.1 DevOps and user interfaces
	2.1.1 Research Context
	2.1.2 Scientific Challenges
	2.1.3 Approach

	2.2 Engineering domain-specific user interfaces
	2.2.1 Research Context
	2.2.2 Scientific Challenges
	2.2.3 Approach

	2.3 User interactions as a first-class programming concept
	2.3.1 Research Context
	2.3.2 Scientific Challenges
	2.3.3 Approach

	Selected Publications
	Bibliography

