
HAL Id: tel-02354592
https://theses.hal.science/tel-02354592

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feuilletage isopériodique de l’espace de modules des
surfaces de translation

Florent Ygouf

To cite this version:
Florent Ygouf. Feuilletage isopériodique de l’espace de modules des surfaces de translation. Géométrie
algorithmique [cs.CG]. Université Grenoble Alpes, 2019. Français. �NNT : 2019GREAM025�. �tel-
02354592�

https://theses.hal.science/tel-02354592
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE LA 
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques
Arrêté ministériel : 25 mai 2016

Présentée par

Florent YGOUF

Thèse dirigée par Erwan LANNEAU

préparée au sein du Laboratoire Institut Fourier
dans l'École Doctorale Mathématiques, Sciences et 
technologies de l'information, Informatique

Feuilletage isopériodique de l'espace de 
modules des surfaces de translation

Isoperiodic foliation on moduli space of 
translation surfaces

Thèse soutenue publiquement le 27 juin 2019,
devant le jury composé de :

Monsieur ERWAN LANNEAU
PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Directeur de thèse
Monsieur LOUIS FUNAR
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES, 
Examinateur
Monsieur BARAK WEISS
PROFESSEUR, UNIVERSITE DE TEL AVIV - ISRAËL, Rapporteur
Monsieur BERTRAND DEROIN 
DIRECTEUR DE RECHERCHE - CNRS DELEGATION ILE-DE-
FRANCE MEUDON 
Madame CHRISTINE LESCOP
DIRECTRICE DE RECHERCHE, CNRS DELEGATION ALPES, 
Examinateur
Monsieur PASCAL HUBERT
PROFESSEUR, UNIVERSITE AIX-MARSEILLE, Président
Monsieur CARLOS MATHEUS SILVA SANTOS
DIRECTEUR DE RECHERCHE, CNRS ILE-DE-FRANCE GIF-SUR-
YVETTE, Examinateur
Madame CORINNA ULCIGRAI
PROFESSEUR, UNIVERSITE DE BRISTOL - ROYAUME-UNI, 
Examinateur



2



3

Résumé

Les strates de l’espace de modules des différentielles abéliennes sont naturellement
munies d’un feuilletage holomorphe, appelé feuilletage isopériodique (ou feuilletages
des périodes aboslues, ou encore feuilletage du noyau). Celui-ci a été introduit il y a
25 ans, d’abord par A. Eskin et M. Kontsevitch, puis par K. Calta et C. McMullen
avant de devenir un objet important en dynamique de Teichmüller. La question
générale abordée dans ce texte est la suivante :

Comment les feuilles du feuilletage isopériodique se répartissent-elles
dans l’espace de module ?

McMullen a démontré l’ergodicité du feuilletage dans les strates principales (où toutes
les singularités sont simples) en genre 2 et 3 en utilisant des techniques issue de
la dynamique homogène. Calsamiglia, Deroin & Francaviglia ont ensuite étendu
ce resulat et obtenu une classification à la Ratner des ensembles fermés saturés
par le feuilletage. Simultanément, Hamenstädt a fourni une preuve alternative de
l’ergodicité, toujours dans la strate principale. De façon étonnante, le seul résulat
connu pour les autres strates est dû à P. Hooper et B. Weiss : les feuilles des surfaces
de Arnoux-Yoccoz sont denses dans les strates qui les contiennent.

La question de la dynamique du feuilletage isopériodique peut être formulée dans
le contexte plus général des sous variétés affines. Avila, Eskin et Möller ont prouvé
que la codimension des feuilles est alors paire. Le cas de la codimension 2, ou rang
1, est déjà riche. Nous établissons un criète de densité des feuilles et l’appliquons
à différentes familles de variétés affines de rang 1. Parmi celles-la, les lieux Prym
occupent une place importante. Nous démontrons dans ce cadre que les feuilles sont
soit fermées, soit denses, en fonction de l’artithméticité du lieu. Dans le cas non
arithmétique, nous prouvons que le feuilletage est ergodique pour la mesure affine
associée. Cela aboutit à la découverte de nouvelles feuilles denses dans des strates à
singularités multiples. Ces résultats suggèrent une connection entre la géometrie des
variétés affines et la dynamique isopériodique. L’exploitation de cette connection en
genre 3 aboutit à la classification des variétés affines non arithmétiques ne provenant
pas d’orbites fermées dans les strates à deux singularités.



Abstract

The strata of the moduli space of abelian differentials are endowed with a natural
holomorphic foliation, known as the isoperiodic foliation (or absolute period foliation
or kernel foliation). It has been introduced 25 years ago by A. Eskin and M. Kont-
sevich and later by K. Calta and C. McMullen before it became a central object in
Teichmüller dynamics. The general question addressed in this text is the following:

How do the leaves of the isoperiodic foliation wander around in the
moduli space ?

McMullen proved the ergodicity of the foliation in the principal stratum (where the
singularities of the abelian differentials are all simple) in genus 2 and 3 using re-
sults from group actions on homogeneous space. Calsamiglia, Deroin & Francaviglia
generalized this result in higher genera and obtained a Ratner-like classification of
the closed saturated subsets. Simultaneously, Hamenstädt gave an alternative proof
of the ergodicity. Surprisingly enough, for the strata where at least one zero is
not simple, the only result available was due to Hooper and Weiss: the leaf of the
Arnoux-Yoccoz surface is dense in the stratum in which it belongs.

The question of the dynamics of the isoperiodic foliation can be rephrased in the more
general context of affine manifolds. Avila, Eskin, Môller proved that the codimension
of the leaves is even. The codimension 2 case, also known as rank 1, already displays
a rich and contrasted picture. We give a criterion for density of the leaves, and apply
it to different families of rank one affine manifolds. Among those, special attention is
dedicated to the Prym eigenform loci. We prove that the leaves are either compact
or dense, depending on the arithmeticity of the locus. In the non arithmetic case, we
prove that the foliation is ergodic with respect to the affine measure. In turn, this
gives new examples of dense leaves in strata where at least one of the singularity is
not simple. The aforementioned results suggest a connection between the dynamics
of the isoperiodic foliation and the geometry of affine manifolds. This connection is
analyzed in genus 3 and results in a classification of the proper non arithmetic affine
manifolds in strata with 2 singularities.
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1.3.4 The work of U. Hamenstädt . . . . . . . . . . . . . . . . . . . 17

1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1 Preliminary work . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Isoperiodic dynamic in rank one affine manifolds . . . . . . . . 19
1.4.3 Connection between isoperiodic dynamics and geometry of affine

manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Isoperiodic dynamics in genus 3 Prym eigenform loci 22

3 Non arithmetic affine manifolds in H(2, 2) & H(3, 1) 53

5



Chapter 1

Introduction

1.1 Framework

For a beautiful introduction to the subjects mentionned here and more, see for in-
stance [Zor06] and [FM13] and the references therein.

1.1.1 Moduli space and strata

A stratum Hg(κ) of the moduli space of translation surfaces is the set isomorphism
classes of pairs (X,ω) where X is a genus g Riemann surface and ω is a non vanishing
holomorphic 1-form onX whose zeroes have multiplicities given by κ. This set admits
a complex orbifoldic structure defined as follows. The Teichmüller space of abelian
differentials H̃(κ) is the set of isomorphism classes of triplets (X,ω, f), where X is
a Riemann surface, ω is holomorphic 1-form non identically zero with singularities
prescribed by κ, and f : S → X is an orientation preserving homeomorphism from
fixed genus g topological surface such that the preimage of the singularities of ω
are a given subset Σ ⊂ S. Two triplets (Xi, ωi, fi)i∈{1,2} are isomorphic if there is
biholomorphism ϕ : X1 → X2 such that ϕ∗ω2 = ω1 and f−12 ◦ϕ ◦ f1 is isotopic to the
identity of S. Define:

Φ :
H̃(κ) → H1(S,Σ,C)

(X,ω, f) 7→ (γ 7→
∫
f◦γ ω)

This map, known as the period map, is a local homeomorphism, and the Teichmüller
space H̃(κ) is endowed with the initial complex structure associated. The mapping
class group of S acts by biholomorphisms on the Teichmüller space by:

6



CHAPTER 1. INTRODUCTION 7

∀ϕ ∈ Γg, ϕ · (X,ω, f) = (X,ω, f ◦ ϕ−1)

Proposition 1.1.1. The action of Γg on H̃(κ) is properly discontinuous, and there
is a finite index subgroup that acts freely.

A proof of that result can be found in [FM11]. The quotient H̃(κ)/Γg is in bijection
with Hg(κ). This remark, together with proposition 1.1.1, allows to define a complex
orbifold structure on Hg(κ) that turns the canonical projection π : H̃(κ) → Hg(κ)
into a local biholomorphism.

1.1.2 The Masur-Veech measure

There is a natural measure λ̃ on H̃(κ) obtained by pulling back the Lebesgue measure
on H1(S,Σ,C) by the period map Φ. Since this map is Γg-equavariant and that Γg
acts as elements of Sp2g(Z), the measure λ̃ descends to a measure λ on Hg(κ).It
turns out that this measure is note finite. This is essentially due to the fact that it
is invariant by homothetic transformation. This is problematic in the perspective of
ergodic theory. To bypass this difficulty one can restrain to the subset of area one
surfaces. More precisely, the area map α : Hg(κ)→ R>0 is defined as follows:

α(X,ω) =
i

2

∫

X

ω ∧ ω

Disintegration of the measure λ along the level sets of α yields a family of measures
(λx)x∈R>0 , such that for any Borel set B ∈ Hg(κ):

λ(A) =

∫

R>0

λx(A)dx.

Masur and Veech proved independently in a famed result that the measure λ1 defined
on H1

g(κ) := α−1(1) is finite. See [Mas82] and [Vee82].

1.1.3 The action of GL+
2 (R)

Any stratum Hg(κ) is endowed with a natural action of GL+
2 (R). This action is a

generalization of the action GL+
2 (R) on the space of translation tori GL+

2 (R)/SL2(Z),
and is defined as follows. Let g ∈ GL+

2 (R) and let (X,ω, f) ∈ H̃(κ). The form
ω′ = g · ω is an harmonic 1-form, thus there is a unique complex structure on X
for which ω′ is a holomorphic 1-form. This yields a new Riemann surface X ′, and



CHAPTER 1. INTRODUCTION 8

g · (X,ω, f) is defined to be the surface (X ′, g · ω, f). This action is linear in period
coordinates:

∀g ∈ GL+
2 (R), ∀γ ∈ H1(S,Σ), Φ(g · (X,ω, f))(γ) = g · Φ(X,ω, f)(γ)

The moduli space Hg(κ) is endowed with the quotient action and the canonical
projection π : H̃(κ) → Hg(κ) is GL+

2 (R)-equivariant. Two subgroups will be of
particular importance to us:

H = {
(

1 t
0 1

)
, t ∈ R}

and

G = {
(
et 0
0 e−t

)
, t ∈ R}

The action of H is known as the horocycle flow, while the action of G is known as the
Teichmüler geodesic flow. Masur and Veech proved that those groups act ergodically
on H1

g(κ) with respect to the measure λ1. The classification of the orbit closures and
ergodic measures for this action is a challenging problem in Teichmmüller dynamic.
A great leap has been made by Eskin, Mirzakhani and Mohammadi by describing the
geometry of the closed GL+

2 (R) invariant sets and the invariant measures associated.
We will need the following definitions:

Definition 1.1.1 (Affine manifolds). An affine manifold is a properly immersed
closed connected GL+

2 (R)-invariant manifold f : M → Hg(κ) such that for any
X ∈M, there is a neighborhood U of X in M, a neighborhood V of f(X) in Hg(κ),
a section s of π defined on a neighborhood V and a subspace V ∈ H1(S,Σ,R) such
that Φ ◦ s ◦ f(U) = Φ ◦ s (V)∩ V ⊗C. Such a V is called a local model of M around
X.

Most of the time, we shall forget that M is only immersed and will consider it is
embedded in Hg(κ). This statement can be made rigorous by passing to a finite
cover of the moduli space.

Definition 1.1.2 (Affine measures). A GL+
2 (R)-invariant measure µ on Hg(κ) is

said to be affine if its support is an affine manifold M such that for any local model
V of M associated to a section s, the measure (Φ ◦ s)∗µ is the lebesgue measure on
V .
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Eskin, Mirzakhani and Mohammadi proved that any ergodic GL+
2 (R)-invariant mea-

sure is an affine measure. See [EMM15]. If µ is an affine measure, the disintegration
of µ along the level sets of the area map α yields a SL2(R)-invariant ergodic mea-
sure µ1 on H1

g(κ). Any measure obtained by this construction will also called affine
measure. There is a important definition associated to any affine manifold, that we
shall use later in this text:

Definition 1.1.3. Let M be a affine manifold. The field of definition of M is
the smallest subfield k(M) of R such that any local model of M can be written as
V = V0 ⊗k(M) R, where V0 is a k(M)-vector space.

1.1.4 Prym eigenforms

In this section, we recall a construction giving an infinite family of rank one proper
affine manifolds discovered by McMullen. Let (X,ω) be a translation surface endowed
with a holomorphic involution τ . We denote by Ω(X) the set of holomorphic 1-forms,
and by Ω−(X) the set of τ -anti invariant holomorphic 1-forms. We say that (X,ω) is
a Prym form if ω ∈ Ω−(X), that is τ ∗ω = −ω, and dimΩ−(X) = 2. The Prym variety
Prym(X,ω, τ) is defined as the 2-dimensional abelian variety (Ω−(X))∗/H−1 (X,Z)
endowed with the polarization coming from the intersection form on H1(X,Z). It is
a factor of the jacobian of X.

Definition 1.1.4. A Prym eigenform is a Prym form (X,ω) endowed with an invo-
lution τ such that there is a λ ∈ R, D ∈ N and a faithful representation:

ρ : Q(
√
D)→ End(Prym(X,ω, τ))⊗Q

Such that for any x ∈ Q(
√
D), ρ(x) is self-adjoint for the induced symplectic form

on H1(X,Z)− ⊗ Q and ρ(x) · ω = λ · ω. We say that Prym(X,ω, tau) has real
multiplication by the field Q(

√
D)

We will denote by ΩED the Prym eigenform locus with multiplication by Q(
√
D) in

Hg, and by ΩED(κ) its intersection with the strata Hg(κ). Notice that a Riemman
surface X can be a Prym eigenform in more than one way. For more details, see
[McM07b]. It is a beautiful theorem of McMullen theorem that ΩED is closed and
GL+

2 (R)-invariant. Furthermore, we have the following:

Proposition 1.1.2. The GL+
2 (R)-orbit closure of any Prym eigenform is a rank one

affine manifold.
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The Prym eigenform play a crucial role in McMullen’s classification of affine man-
ifolds in genus 2. It is proved in [McM07a] that if the orbit of a surface is neither
closed nor dense in the stratum in wich it belongs, then it is a Prym eigenform, the
Prym involution being given by the hyperelliptic involution. In [McM07b], infinite
families of Prym eigenform are constructed in genus up to 5, and it is a consequence
Of Riemann Hurewitz formula that Prym eigenforms cannot exist for genus bigger
than 5.

1.2 Isoperiodic foliations

In this section we define the isoperiodic foliation. We treat first the case of the strata,
then extends the construction to arbitrary non absolute affine manifolds.

1.2.1 Foliation of the strata

Let ρ : H1(S,Σ,C) → H1(S,C) be the canonical restriction map. We shall first
define a foliation F̃ on H̃(κ), and define the isoperiodic foliation as the quotient of
the foliation. Recall that if M is any manifold, a p-distribution of TM is a section
s of Gp(TM), the grassmanian of rank p of TM . Such a distribution is said to be
integrable if there is a foliation F(s), such that at any point x ∈M , TxFx(s) = s(x).

Proposition 1.2.1. The |κ| − 1-distribution (X,ω, f) 7→ Ker dX(ρ ◦ Φ) of T H̃(κ)
is integrable, and the action of Γg preserves the leaves of the associated foliation.

We denote by F̃ the foliation given by the previous proposition. Since the action
of Γg preserves the leaves there is an associated foliation F on Hg(κ). This is not
senso strictu a foliation as Hg(κ) is not a manifold, but every issue arising through
orbifoldic points can be resolved up to passing to a finite covering. The foliation is
characterized by the following property:

Proposition 1.2.2. Two surfaces (X1, ω1) and (X1, ω2) in Hg(κ) lie in the same
leaf if, and only if, there is path γ in H̃(κ) such that:

1. π ◦ γ(0) = (X1, ω1) and π ◦ γ(1) = (X2, ω2)

2. ρ ◦ Φ ◦ γ is constant.

It is this characterization that we shall use later in this text.
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1.2.2 Foliation of affine manifolds

We begin this section with an important definition for the remainder of this text.

Definition 1.2.1. An affine manifold M is said to be non absolute if for every
X ∈ M, any local model around X intersects ker ρ non trivially. Otherwise, it is
said to be absolute.

For instance, an absolute rank 1 affine manifold is the same thing as a closed or-
bit. Example of absolute rank 2 affine manifolds are constructed in [MMW17]. For
connectedness reason, the dimension of the intersection in 1.2.1 is constant and the
same construction as in the case of strata can be performed to obtain a foliation FM
on M. This foliation is characterized by the following property:

Proposition 1.2.3. LetM be a non aboslute affine manifold. Two surfaces (X1, ω1)
and (X1, ω2) in M lie in the same leaf of FM if, and only if, there is path γ in H̃(κ)
such that:

1. π ◦ γ(0) = (X1, ω1) and π ◦ γ(1) = (X2, ω2)

2. ρ ◦ Φ ◦ γ is constant.

3. ∀t π ◦ γ(t) ∈M

For a given non absolute affine manifold M, deformations along the foliation FM
preserve the absolute periods of the surfaces inM as well as the symmetries defining
M. For example if M is a locus of covering construction, moving along the leaf
of FM preserves the symmetries of the covering. The isoperiodic foliation behaves
nicely with respect to the action of GL+

2 (R) :

Proposition 1.2.4. Let M be a non absolute affine invariant manifold, let X be a
translation surface in M and let g ∈ GL+

2 (R). The following formula holds :

g · FMX = FMg·X

1.2.3 Rel flow

The fact that Γg acts by permutation on Σ means that it generally does not exist
integrable flows on the leaves. However, if (X,ω) is a translation surface in Hg(κ)
one can still defined an action of TXFX × R on the leaf FX . It is defined as follow:
Consider Ĥg(κ) to the intermediate covering of Hg(κ) associated to the kernel of
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the action by permutation of Γg on Σ, and denote by π̂ the canonical projection

associated. One can define on this space a foliation F̂ in the same way we did on
Hg(κ). But now, the transition functions of Ĥg(κ) acts by translation on ker(ρ), and

this implies that the leaves F̂ are canonically endowed with a flat structure and there
is an associated geodesic flow. Then, let (u, t) ∈ TXFX×R, and chose a lift of (X,ω)
in Ĥg(κ) associated to a section s of π̂ defined around (X,ω). We define Reltu(X,ω)

to be the image by π̂ of the surface in Ĥ(κ) obtained by flowing for a time t along
the geodesic flow in direction dXs(u). This surface is canonically defined is does not
depend on the choice of the section we made. Notice that by construction Reltu(X,ω)
belongs to FX . This action is usually referred to as the Rel flow, even if it is not
sensu stricto a flow, as we have already mentioned. Note that this action might not
be defined for all t: this is due to the fact that singularities might collide along the
orbits of this ”flow”. This discussion is summarized in the following commutative
diagram.

Ĥg(κ)

Hg(κ)

Ĥg(κ)

Hg(κ)

f tu

Reltdπ̂(u)
π̂ π̂

1.3 State of the art

1.3.1 The work of McMullen

To our knowledge, the first investigation on the dynamics of the isoperiodic folia-
tion dates back to 2014 and appears in the article of C. McMullen ”Moduli spaces
of isoperiodic forms on Riemann surfaces”. In this paper, the author studies the
following space:

A(L) = {(X,ω) ∈ Hg | Per(X,ω) = L as a polarized module}
Where L is a given polarized module contained in L and Per(X,ω) is the polarized
module generated by the

∫
γ
ω for γ ∈ H1(X). The canonical projection π : A(L)→

Hg is related to the isoperiodic foliation in the sense that each leaf is swept out by
a connected component of a A(L).
To continue.
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1.3.2 The work of P. Hooper & B. Weiss

In their article [HW15], P. Hooper and B. Weiss study in details the topological
dynamics of the leaves of the Arnoux-Yoccoz surfaces. The result that has been of
particular interest to us is the following :

Theorem 1.3.1. For any g ≥ 3, the leaf of the genus g Arnoux Yoccoz surface is
dense in Hodd(g − 1, g − 1).

In this article, the authors prove that two usually mutually excluding phenomena
coexist on the leaves of those surfaces. Indeed, the Arnoux-Yoccoz surfaces are
periodic under the Teichmüller flow, ie endowed with a pseudo-Anosov, and thus the
associated horizontal foliation is uniquely ergodic. Nonetheless, the authors noticed
that an arbitrary small deformation of those surfaces in F produces a surface whose
associated horizontal foliation is periodic. It is this coexistence that results in density
of the leaves. More precisely, let (X,ω) be one the Arnoux-Yoccoz surfaces, and let:

g =

(
et 0
0 e−t

)
such that g · (X,ω) = (X,ω)

We outline the proof:

1. There is a surface (X1, ω1) ∈ FX that is horizontally periodic.

2. Comparison of the horocyle orbit of (X1, ω1) and its orbit under Relt(1,0).

3. The horocycle orbit of (X,ω) is contained in the closure of FX .

4. The leaf of (X,ω) contains its SL2(R)-orbit.

5. The SL2(R)-orbit of (X,ω) is dense.

Step 1. The first step is a consequence of a careful analysis of the horizontal foliation
on a suitable polygonal representation of the Arnoux Yoccoz surfaces.

Step 2. For the horizontally periodic surface (X1, ω1), the horocycle and Rel flows in
the horizontal direction amount to twisting the cylinders, the only difference being
the speed of the twist. If (X1, ω1) has m cylinders, a vector in Rm correspond
to a deformation of the surface, each coordinate specifying the amount of twisting
performed on the corresponding cylinder. Since twisting a cylinder by an amount
of its circumference is the same as applying a Dehn twist and surfaces are regarded
up to isomorphism, this factors through a torus. Therefore, the horocycle orbit
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and the Rel flow read as linear flows on a torus of dimension m. For the surface
(X1, ω1) it is proved that the subtorus corresponding the closure of the Rel orbit is
big and almost contains the horocycle orbit. We remained voluntarily allusive here
but precise statements will be given in chapter 3.

Step 3. Let pn = gn · (X1, ω1). The surface (X1, ω1) is constructed so that it lies
on the same strong stable leaf of the Teichmüller flow as (X,ω), and thus the pn
converge to (X,ω). Since g preserves the horizontal and vertical directions, the pn
are also horizontally periodic and Step 2 also applies to those surfaces. It is then
proved that along this sequence, the closure of the Rel orbits get closer and closer
to horocycle orbits. At the limit, this implies that the horocycle orbit of (X,ω) is
contained in the closure of its leaf.
Step 4. Using results of Eskin, Mirzakani and Mohammadi on affine measures, the
authors prove that periodicity under the Teichmüller flow implies that the horocycle
orbit of (X,ω) coincides with its SL2(R) orbit.
Step 5. This last step uses results on the field of definition of affine manifold proved
by Wright in [Wri14]. It uses the fact that the holonomy field of (X,ω) has degree 2g
over Q where g is the genus of X, and that the only totally real subfield it contains
Q. This last step can also be deduced in genus 3 from results of Hubert, Lanneau
and Möller in [HLM12]. Their proof does not rely on the structural results of Eskin,
Mirzakhanni and Mohammadi.

1.3.3 The work of G. Calsamiglia, B. Deroin & S. Francav-
iglia

In their article [CDF15]; the authors extend McMullen’s aforementioned result in
[McM14] to genus g ≥ 3.

Theorem 1.3.2. Let (X,ω) ∈ H(12g−2) be a translation surface of volume V . Denote
by Λ(ω) ∈ C the closure of the group generated by the periods of ω. Then, up the the
action of SL2(R):

1. if g > 2, the leaf FX is either closed (Λ(ω) is discrete), dense in the set of
translation surfaces of volume V with primitive imaginary part (Λ(ω) = R⊕iZ)
or dense in the set of translation surfaces with volume V (Λ = C).

2. if g = 2, then either the leaf FX falls in one of the three cases above or it is
dense in a prym eigenform locus ΩED(1, 1).

Moreover, the restriction of the foliation to any of those loci is ergodic.
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Their theorem is actually stated in the whole moduli space Hg, without restricting to
the principal stratum H(12g−2). However, the version mentioned above is equivalent
as H(12g−2) is dense in Hg and the natural measure on Hg is supported on H(12g−2).
To prove this result, the authors establish a transfer principle that allows them
to recover the dynamical behaviour of the isoperiodic foliation from the action of
Sp2g(Z) on C2g. The significant advantage of this approach is that the study of the
closed invariants sets for this action had already been carried out by Kapovitch using
Ratner’s theory. To state their transfer principle, let us introduce some notations :
let Γ0

g be the Torelli group, that is the subgroup of Γg that acts trivially at the level

of the homology and let ΩSg(12g−2) be the quotient of H̃(12g−2) by Γ0
g, and denote

by π0 the canonical projection from ΩSg(12g−2) to Hg(κ). Finally, define:

Φ0 :
ΩSg(12g−2) → H1(S,C)
(X,ω, f) 7→ (γ 7→

∫
f◦γ ω)

Notice the difference with the period map defined in 1.1.1: here the range of the map
is the absolute cohomology. In other words, this is the map induced by ρ ◦ Φ after
passing to the quotient by the action of Γ0

g. The group Γg also acts on the homology
of S in this usual way, and for this action the map Φ0 is Γg-invariant. For any
translation surface (X,ω), the set Φ0(π

−1
0 (FX)) is invariant by Γg. Reciprocally, any

invariant set A ∈ H1(S,C) produces a F -saturated subset of H(12g−2) if the level
sets of Φ0 are connected. This connectedness property is the core of the transfer
principle. In this perspective, the study of the dynamical behavior of the isoperiodic
foliation is reduced to proving the connectedness of the level sets of Φ0, and this is
actually the hard part of the paper of Calsamiglia, Deroin & Francaviglia.

Unfortunately, this line of logic cannot be reproduced without adaptation for other
strata of the moduli space. The reason is that there exists in higher genera proper
non arithmetic affine manifolds that are saturated by the isoperiodic foliation: Any
surface (X,ω) in one of these loci verifies Λ(ω) = C, and should fall in the last case
of theorem 1.3.2. The loci ΩED(κ) for |κ| ≥ 2 provide example of such loci. Other
examples are given by covering constructions over non arithmetic Veech surfaces in
the minimal stratum H(2g−2) and ramification at the zero and non periodic points.
This indicates that not all the fibers of the period map defined on other strata are
connected. See Chapter 2 for more details.

We now sketch the proof of the connectedness of the level sets of the period map, as it
appears in [CDF15]. Let p ∈ H1(S,C), and denote by S(p) the preimage of p by Φ0,
and denote by ΩSg(12g−2) the compactification of ΩSg(12g−2) obtained by adding the
stable forms over stable curves. A stable form over a stable curve is a form which is
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holomorphic, except for possibly simple poles at the nodes, such that the two residues
at a single node are opposite. The period map Φ0 can be extended to ΩSg(12g−2)
and the preimage of p yields a compactification S(p) of S(p). The authors actually
only allow the underlying surfaces to have at most one simple node to deal only with
mild singularities. A key observation is that the boundary components of S(p) yield
isoperiodic loci in strata of smaller genera. Therefore, it is natural to proceed to an
induction, the base cases being given by [McM14]. The proof can be decomposed
into 4 steps:

1. The boundary of any component of S(p) is not empty.

2. The set S(p) is connected if, and only if, S(p) is connected.

3. The boundary components of S(p) are connected.

4. There is a path in S(p) connecting any pair of boundary components of S(p).

Step 1. The first step is easily proved when S(p) contains a surface (X,ω) that
has a twin: a pair of saddle connections (σ1, σ2) joining the same pair of simple
singularities and such that:

∫

σ1

ω =

∫

σ2

ω.

Pinching the curve σ1 ? σ
−1
2 yield a path that goes from (X,ω) to the boundary of

S(p). To conclude it remains to prove that any component of S(p) contains such a
surface.

Step 2. The second step follows from a careful analysis of the foliation near a
surface (X,ω) in the boundary of S(p). For instance, if this boundary component
is comprised of pairs of surfaces of smaller genera attached at one point, then, a
neighborhood of (X,ω) in S(p) is made of surfaces glued along a slit, and moving in
S(p) is the same as changing the slit. The singular locus is attained when the slit is
reduced to a point: its codimension is 2. Therefore S(p) is not disconnected when
the singular locus is removed.

Step 3. Follows by induction.

Step 4 This step is the most delicate. Notice that the construction of step 1 can
be reversed. There is thus two reciprocal operations called smoothing a node and
pinching a twin, and those operations allow to move inside S(p). When a nodal
surface with period p has several simple nodes, one can smooth them to get to a
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surface (X,ω) in S(p). Pinching back exactly one of the twins created gives a path
from (X,ω) to a boundary component of S(p). Applying this to the other twins of
(X,ω) connects different boundary components. This idea drives the proof of step
4.

1.3.4 The work of U. Hamenstädt

In her paper [Ham18], U. Hamenstädt proved the following:

Theorem 1.3.3. The isoperiodic foliation in H(12g−2) is ergodic with respect to the
Masur-Veech measure.

For notational simplicity, we shall denote by H(a)
g the locus of area a translation

surfaces in the principal stratum H(12g−2). The approach used to prove the theorem
is, by many aspects, very similar to the one of the previous section. The author
takes advantage of the existence of twins in almost every leaf to reduce the study of
the isoperiodic foliation on H(a)

g to the study of the product the of the isoperiodic

foliations on H(a1)
g1 ×H(a2)

g2 with g1 + g2 = g and a1 + a2 = a. This opens ways for an
induction, the base case for genus 2 and 3 being given by [McM14]. This last set is
related to a component of the boundary of the principal stratum. More precisely, let
H(a)
g,1 be the moduli space of area a translation surfaces with a regular marked point.

This last assertion means that if (X,ω, p) ∈ H(a)
g,1, then ωp 6= 0. The set H(a1)

g2,1
×H(a2)

g2,1

is a boundary component of the stratum H(a)
g , eventually after taking the quotient

by the map that exchanges the two factors if g1 = g2, but we will omit this technical
difficulty. The period map Φ can be extended to this boundary component, and thus
the isoperiodic foliation on H(a)

g extends to a foliation on this boundary component.
Define:

∂g1,g2H(a)
g = ∪

a1+a1=a
H(a1)
g1,1
×H(a2)

g2,1

Before sketching the proof, one needs to define measures on those spaces. The set
Hg1,p1 × Hg2,p2 is naturally endowed with the product ν of the Lebesgue measures
on each of factor. Denote by A the continuous function that assigns to any pair of
marked translation surface their area. Disintegration of ν on the level sets of A yields
a measure νa1,a2 on H(a1)

g1,1
×H(a2)

g2,1
as well as a measure νa on ∂g1,g2Hg(a) defined for

any measurable set A by:

νa(A) =

∫ 1

0

νx,a−x(A)dx
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Notice that the pushforward of νa1,a2 by the node forgetting map is juste the product

measure on H(a1)
g1,1
×H(a2)

g2,1
. Now, if A ∈ Hg(a), denote by ∂g1,g2A the set of all limit

points of A in ∂g1,g2Hg(a).

To prove that the isoperiodic foliation on Hg(a) is ergodic, one needs to show that
any F -saturated Borel set is measurably trivial. Let A be such a set. The proof can
be decomposed into 4 steps:

1. If A has positive measure, then ∂g1,g2A has positive measure and is saturated
by the isoperiodic foliation on ∂g1, g2Hg(a).

2. By induction, the isoperiodic foliation on H(a1)
g1,1
×H(a2)

g2,1
is ergodic.

3. If ∂g1,g2A has positive measure, then there exists a Borel set C in [0, 1] of
positive measure such that ∂g1,g1A = ∪

b∈C
Hg1,1(b)×Hg2,1(1− b).

4. The set A has full measure.

The subset S(g1, g2) ofHg comprised of surfaces whose leaf accumulates on ∂g1,g2Hg is
of full measure: smoothing the node of surfaces in ∂g1,g2H produces an open SL2(R)-
invariant set contained in S(g1, g2). The ergodicity of the action of SL2(R) on Hg

shows that this set has full measure. Therefore, up to replacing A by A ∩ S(g1, g2),
it can be assumed futher that the leaf of any element in A accumulates on ∂g1,g2Hg.

Step 1. The first claim follows from the fact that any point in ∂g1,g2A is obtained
by pinching twins on elements of A.

Step 2. Notice that if the isoperiodic foliation on Hgi is ergodic, then the product

foliation on H(a1)
g1 ×H(a2)

g2 is ergodic for the product measure. Denote by p : H(a1)
g1,1
×

H(a2)
g2,1
→ H(a1)

g1 ×H(a2)
g2 the node forgetting map. As we mentioned earlier p∗νa1,a2 is

exactly the product measure on H(a1)
g1 × H(a2)

g2 . The important fact here is that if

B ∈ H(a1)
g1,1
×H(a2)

g2,1
is a Borel set saturated by the foliation, then p(B) is measurable

and p−1p(B) = B. Step 2 then follows: if B has positive measure, then p(B) has
positive measure. By ergodicity of the product foliation the measure of p(B) is 1.
By definition of p∗νa1,a2 , it implies that B = p−1p(B) also has measure one.

Step 3. By step 1, the set ∂g1,g2A has positive measure. By definition of ν1, there
exists of Borel set C in [0, 1] such that νx,1−x(A) > 0 for any x ∈ C. For such a x,
since ∂g1,g2A is saturated by the isoperiodic foliation, step 2 implies that up to a set

of measure 0, ∂g1,g2A ∩ (H(x)
g1,1
×H(1−x)

g2,1
) = H(x)

g1,1
×H(1−x)

g2,1
. Step 3 follows.

Step 4. This last step is obtained by applying the previous steps for various values
of g1 and g2 and further measure theoretic considerations.
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1.4 Results

In this section we present the main results of this thesis.

1.4.1 Preliminary work

The article of P. Hooper and B. Weiss was the starting point of our work. On
the one hand, their proof of the density of the leaf of the Arnoux-Yoccoz surfaces
needs two essential ingredients: cylinder decomposition and periodicity under the
Teichmüller flow. This coexistence implies the vanishing of a certain invariant of the
horizontal foliation of the Arnoux-Yoccoz surfaces known as the SAF. This invariant
measures the homological drift of the horizontal foliation. Strener proved in [Str16]
that the SAF of pseudo-Anosov homeomorphism coming from lift of pseudo-Anosov
on non orientable surfaces vanishes. This contains the case of the Arnoux-Yoccoz
surfaces. On the other hand, Do and Schmidt describe in [DS16] an infinite family
of translation surfaces endowed with a vanishing SAF pseudo-Anosov. It was thus
natural to try and adapt the proof of P. Hooper and B. Weiss to this family. The
description of these surfaces is concrete enough so that cylinder decomposition can
be easily found. We prove:

Theorem A. The leaves of the Do-Schmidt surfaces are dense in the stratum in
which they belong.

This result is actually consequence of a more general criterion that we establish. This
criterion can be used to fix a minor issue arising in proposition 6.1 of [HW15].

1.4.2 Isoperiodic dynamic in rank one affine manifolds

The second part of our work concerns the more general problem of understanding the
behavior of the isoperiodic leaves in affine manifolds. The advantage of this approach
is twofold. Firstly, the leaves of the isoperiodic foliation have a symmetry under the
action of SL2(R). This is 1.2.4. Working in the setting of affine manifolds takes
better account of those symmetries, especially for the leaf of surfaces whose SL2(R)-
orbit does not fill the strata in which it belongs. Secondly, because the rank is a
natural measure of the complexity of the problem, as the codimension of the leaves
gets bigger with the rank. Indeed, we recall that by definition 2rk(M) + dimFM =
dimM. In this work we address the case of rank one affine manifolds. Here again,
cylinder decomposition and periodicity under Teichmüller flow are very important.
The first is provided by the complete periodicity property that prevails in rank 1 by
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results of Wright in [Wri15], while the other is a consequence of a closing lemma for
the Teichmmüller flow that is stated, for example, in [Wri14], together with small
codimension of the leaves. Particularly interesting rank one affine manifolds where
to study the dynamics of the foliation are the Prym eigenform loci ΩED(κ). We
prove :

Theorem B. Let M be a connected component of a genus 3 prym eigenform loci
ΩED(κ), with D not a square. Then, the leaves of FM are either closed or dense in
M, depending on whether D is a square or not. In the latter case, the foliation is
ergodic with respect to the affine invariant measure on M.

The density part in Theorem B is a consequence of a more general criterion that we
establish in this thesis that holds in non arithmetic affine manifolds. The ergodicity
part is obtained by adapting the transfer principle of Calsamiglia, Deroin and Fran-
caviglia. We actually prove that the foliation is ergodic whenever at least one leaf
is dense, without restriction on the genus. This result corroborates an assertion of
U. Hamenstädt in [Ham18] that density of a leaf of the isoperidoic foliation in strata
should imply ergodicity of the foliation.

Returning to the original problem of understing the behavior of the leaves in strata,
we prove:

Theorem C. Let (X,ω) be a Prym eigenform in ΩED(2, 1, 1) or ΩED(14) with D
not a square. Then, the isoperiodic leaf FX is dense in the stratum in which it
belongs.

We emphasize that Theorem C is not a direct consequence of Theorem B, as FMX has
codimension 1 in FX . This expresses the fact that deformation along FM preserves
both the periods and the Prym involution while deformations along FX can break
those symmetries. Notice that the case ΩEodd

D (2, 2) is already included in Theorem
B as in this case FMX = FX . The contrast between the strata with two singularities
and the other is worth noticing, and should be linked with the extra cases occurring
in genus 2 in the classification of Calsamiglia, Deroin, Francaviglia. See Theorem
1.3.2 above. The proof of Theorem C relies heavily on the classification of higher
rank affine manifold in genus 3 provided by Aulicino and Ngyuen for rank 2 and by
Mirzakhani and Wright for rank 3. This explains why we couldn’t establish the same
result in genera 4 and 5 where Prym eigenform loci still exist, and emphasizes the
statement made at the beginning of this section that the behavior of the leaves is
better understood in the light of the geometry of SL2(R)-orbits.
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1.4.3 Connection between isoperiodic dynamics and geome-
try of affine manifolds

The last part of our work is a contribution to the classification of affine manifolds
in genus 3. The results presented in the previous section show how the geometry of
affine manifolds dictate the behavior of the leaves. We explore the converse direction
of this connection and investigate how the the dynamics of the isoperiodic folaition
shapes affines manifolds. We prove:

Theorem D. LetM be a proper non arithmetic affine manifold in Hodd(2, 2). Then
k(M) is a totally real quadratic number field of discriminant D andM is a connected
component of ΩED(2, 2).

In particular, we prove in our setting by a completely different approach that the
field of definition is a totally real number field. The situation in the stratum H(3, 1)
is different and we prove:

Theorem E. There are no proper and non arithmetic affine manifolds in H(3, 1).

This connection was also used by P. Apisa in [Api17] to establish his classification of
rank one manifolds in hyperelliptic components.

1.5 Organization of the thesis

Our work lead to the submission of two articles. Chapter 2 is a reproduction of
our first article ”Isoperiodic dynamics in genus 3 prym eigenforms” and contains the
proof of Theorems B and C. Chapter 3 is a reproduction of our second article ”Non
arithmetic affine manifolds in H(2, 2) & H(3, 1)” and contains the proof of Theorems
D and E.
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Florent Ygouf

April 29, 2019

Abstract

We study the isoperiodic foliation in any genus 3 prym eigenform locus ΩED and
prove that the leaves are either closed or dense, depending on the discriminant of
Q(
√
D). In the latter case, we show that the foliation is ergodic with respect to any

affine invariant measure on ΩED. As a corollary, we give new examples of isoperiodic
leaves that are dense in strata with at least one non simple singularity.
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1 Introduction

1.1 Context and results

A stratum Hg(κ) of the moduli space of translation surfaces is the set isomorphism classes
of pairs (X,ω) where X is a genus g Riemann surface and ω is a non vanishing holomorphic
1-form on X whose zeroes have multiplicities given by κ. This space admits a natural action
by the group GL+

2 (R), which is a generalization of the action of GL+
2 (R) on the space of flat

tori GL+
2 (R)/SL(2,Z). The classification of the closed invariant sets is a central problem

in Teichmüller dynamics. Recently, a deep theorem by Eskin, Mirzakhani and Mohammadi
has shed light on the structure of such sets: they are immersed manifolds cut out by linear
equations in period coordinates. See [6].

Transverse to the GL+
2 (R)-action, there is a local action by C|κ|−1 that fits into a natural

holomorphic foliation of the (strata of the) moduli space. It is usually referred to as the
isoperiodic foliation, or the kernel foliation. The leaf FX of a translation surface (X,ω) is
locally described by modifying the periods of ω. This foliation has been introduced in the
90’s by Kontsevich and Eskin, and later by McMullen and Calta before it became a central
object in Teichmüller dynamics. See for example how it is involved in the classfication of
horocycle orbits of Prym eigenforms in H(1, 1) obtained by M. Bainbridge, J. Smillie and
B. Weiss in [14].

Several papers have been devoted to understanding the dynamics of its leaves. McMullen
showed that the foliation is ergodic in the principal stratum in genus 2 and 3 using Ratner’s
theory. Hooper and Weiss gave the first examples outside the principal stratum of dense
leaves. Shorlty after Calsamiglia, Deroin and Francaviglia have obtained a Ratner-like
classification of the minimal sets in the principal stratum. Simultaneously, Hamenstädt
proved the ergodicity for the Masur-Veech measure in the same setting, using a different
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approach. Both this last two results used McMullen’s result as a base case for an induc-
tion. Very surprinsingly, apart from the serie of Hooper and Weiss, nothing is known for
the dynamics of the isoperiodic foliation in strata where at least one zero is not simple.
Understanding the behaviour of new examples was our original motivation.

To any affine manifold M, there is natural subfoliation FM of the isoperiodic foliation
associated, obtained by intersecting the isoperiodic leaves with the affine manifold: FMX =
FX ∩M. For instance if M is a locus of branch covering constructions, the foliation FM
consists of all the isoperiodic deformations that preserve the symmetries of the covering.
A more elaborated example is given by the foliation in the prym eigenform loci ΩED(κ).
See section 2 for more details. Studying the dynamics of those subfoliations is a refined
version of the aforementioned problem. In this paper, we prove:

Theorem A. Let (X,ω) ∈ ΩED(κ) be a prym eigenform of genus 3, and let M be a
connected component of ΩED(κ). Then, the leaf of FMX is either closed or projectively
dense in M. The latter case occurs if, and only if, D is not a square.

Here, projectively dense means that the leaf of any surface (X,ω) is dense in the locus of
surfaces in M that have the same area as (X,ω). Equivalently, the projection of FMX in
PM is dense. See definition 2.4 for more details. We also prove a similar result for the
rank one affine manifolds in the hyperelliptic strata, and prove the same statement in the
the genus 2 case. This was already known, for example as part of the transfer principle of
Calsamiglia, Derion, Francaviglia but we provide an alternative proof. The techniques we
use rely strongly on the flat geometry of translation surfaces, cylinder deformations and
the geometry of affine manifolds. In particular, we do not make use of degenerations of
translation surfaces to a partial compactification of the strata. In an effort to describe as
precisely as possible the dynamical behavior of the isoperiodic leaves, we prove:

Theorem B. Let M be a connected component of a prym eigenform locus ΩED(κ) in
genus 3 with D not a square. Then, the isoperiodic foliation FM is ergodic with respect to
any affine invariant measure on M.

Here, the foliation FM is said to be ergodic if any FM-saturated measurable subset is
measurably trivial. The theorem B is, in fact, the consequence of a more general result
that holds in all the prym eigenform loci, without restriction on the genus. We prove:

Theorem C. LetM be a connected component of ΩED(κ). If FM is projectively minimal,
then it is ergodic with respect to any affine invariant measure on M.

Here, projectively minimal means that any leaf is projectively dense. Theorem C is proved
by adapting the transfer principle of Calsamiglia, Deroin and Francaviglia [10]. We defined
the equivalent of their period map and a result on the connectedness of its level sets is
also required. This connectedness result is a consequence of the minimality. Surprisingly
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enough, the ergodicity it thus a consequence of the minimality, and Theorem B is a conse-
quence of Theorems A and C. In rank one affine manifolds, having a projectively dense leaf
is equivalent to projective minimiality. See proposition 2.5. Theorem C corroborates in our
setting an assertion of U. Hamenstädt in [20] that projective density of a leaf should imply
ergodicity of the foliation. Returning to our original motivation, we prove the following
two:

Theorem D. Let (X,ω) be a prym eigenform in Hodd(2, 2), then the leaf FX is either
closed or projectively dense in the connected component of ΩEoddD (2, 2) in which it belongs.
The last case occurs if, and only if, D is not a square.

Theorem E. Let (X,ω) be a prym eigenform in H3(κ) with |κ| > 2, then the leaf FX is
either closed or projectively dense. The last case occurs if, and only if, D is not a square.

It is interesting to note the dichotomy arising with the number of singularities. In particu-
lar, we emphasize that if the transfer principle of [10] were to exist in strata, its conclusion
would be in contradiction with theorem D, as ΩED(2, 2) is saturated by the isoperiodic
foliation and made of surfaces whose periods span a dense subgroup of C.

1.2 Outline of the paper

In section 2, we collect relevant definitions and properties. We review the structures of the
strata and of the closed GL+

2 (R)-invariant sets, recall the definitions of the prym eigenform
loci, and define the isoperiodic folation and the subleaves associated. In section 3, we give
a common framework for cylinder and isoperiodic deformations. In section 4, we establish
a criterion for density of the leaves of subfoliations that preserves a rank one invariant
manifold, and isolate a property, denoted by P, required for this criterion. This result is
key to prove the announced results. We also deduce structural results on the closure of
those subleaves. In section 5, we provide a list of affine manifolds that have property P,
and deduce Theorem A. In section 6 we establish a variant of the transfer principle of [10]
for ΩED and proceed to prove Theorem B and C. In section 7, we use the structural result
established in section 4 to prove theorem D and E.

2 Framework

2.1 Period coordinates & the action of GL+
2 (R)

The Teichmüller space of translation surfaces H̃(κ) is the set of isomorphism classes of
marked translation surfaces (X,ω, f), where f : S → X is a homeomorphism from a fixed
genus g surface S such that the preimage of the singularities of ω by f is a subset Σ. The
following map is known as the period map :
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Φ :
H̃(κ) → H1(S,Σ,C)

(X,ω, f) 7→ (γ 7→
∫
f◦γ ω)

There is a complex structure on H̃(κ) that turns Φ into a local biholomorphism, and
if Γg denotes the mapping class group of S, then Γg acts on H̃(κ) by precomposition:
ϕ · (X,ω, f) = (X,ω, f ◦ ϕ−1). The quotient set is isomorphic to H(κ) and the latter
is endowed with the complex orbifold structure that turns the canonical projection π :
H̃(κ)→ H(κ) into a local biholomorphism. Most of the issues arising through the orbifoldic
points can be resolved by passing to a finite cover of the moduli space and we will implicitly
do so in the remainder of this text. H̃(κ) is endowed with a group action by GL+

2 (R) defined
by :

∀g ∈ GL+
2 (R) Φ(g · (X,ω, f)) = g · Φ(X,ω, f)

That action descends to an action on H(κ) in a way that the canonical projection π is
GL+

2 (R)-equivariant. The action of the subgroup of diagonal matrices with determinant 1
is known as the Teichmüller geodesic flow, while the action of subgroup of the unipotent
matrices of determinant 1 is known as the horocycle flow. More details on the structures
of theses spaces can be found in [13] or [15].

Definition 2.1 (affine manifold). A closed connected subset M of H(κ) is said to be an
affine manifold if for any X ∈M, there is a section s of π defined on a neighborhood U of
X, and a subspace V ∈ H1(S,Σ,R) such that Φ ◦ s (U ∩M) = Φ ◦ s (U) ∩ V ⊗C. Such a
V is called a local model of M around X.

Affine manifolds are invariant under the action of GL+
2 (R) and Eskin, Mirzakhani and

Mohammadi proved in a celebrated result that the converse is true. More details can be
found in [6]. An important numerical invariant associated to these loci is the rank, defined
as follows: define ρ : H1(S,Σ,C)→ H1(S,C) to be the canonical restriction map, and for
any X inM, take a local model V ofM. Avila, Eskin and Möller proved in [16] that ρ(V )
is a symplectic subspace of H1(S,C). The rank of M, denoted rk(M), is then defined as
half the dimension of this space. More details can be found in [1]. The following definition
will be important for the remainder of this text :

Definition 2.2. Let M be a affine manifold. The field of definition of M is the smallest
subfield k(M) of R such that any local model of M can be written as V = V0 ⊗k(M) R,
where V0 is a k(M)-vector space.

Wright proved the following useful result in [1]:

Proposition 2.1. Let M be an affine manifold, and let (X,ω) be a periodic surface in M
with m cylinders. Then, k(M) is contained in Q[c2c

−1
1 , · · · , cmc−1

1 ] where the ci are the
circumferences of the cylinders.

Wright actually proved a stronger result and showed that reciprocal inclusion, provided
one restrains to a subclass of cylinders. See [1] for more details.
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2.2 The isoperiodic foliation

Definition 2.3. An affine manifold M is said to be non absolute if for every X ∈M, any
local model around X intersects ker ρ non trivially.

Notice that for a rank 1 affine manifolds M, non absolute is equivalent to dimC(M) ≥ 3.
Since invariant manifolds are connected, it can easily be checked that the dimension of this
intersection is constant, and since two sections differ by the action of Γg which preserves
the Kernel of ρ, we can define a foliation onM, called the isoperiodic foliation. If X ∈M,
the leaf of X will be denoted by FMX . Intuitively, an invariant manifold is non absolute if
deformations of surfaces that locally preserve the periods (the integral of ω along absolute
cycles) can be performed insideM. We say locally because the notion of periods is defined
only up the choice of a local model ofM, and an other choice would produce different sets
of periods. The two are related by the action of Γg on the homology of S. The following
proposition characterizes the isoperiodic foliation FM.

Proposition 2.2. Let M be a non aboslute affine manifold. Two surfaces (X1, ω1) and
(X1, ω2) in M lie in the same leaf of FM if, and only if, there is path γ in H̃(κ) such that:

1. π ◦ γ(0) = (X1, ω1) and π ◦ γ(1) = (X2, ω2)

2. ρ ◦ Φ ◦ γ is constant.

3. ∀t π ◦ γ(t) ∈M

The isoperiodic foliation behaves nicely with respect to the action of GL+
2 (R) :

Proposition 2.3. LetM be a non absolute affine invariant manifold, let X be a translation
surface in M and let g ∈ GL+

2 (R). The following formula holds :

g · FMX = FMg·X
Proof. Let g ∈ GL+

2 (R), (X0, ω0) ∈ M, and (X1, ω1) ∈ FM. By 2.2, there is a path γ in
H(κ) such that π ◦ γ(i) = (Xi, ω1) and ρ ◦ Φ ◦ γ is constant. But since ρ ◦ Φ is GL+

2 (R)-
equivariant, the path γg = g · γ is such that π ◦ γg(i) = g · (Xi, ω1), and ρ ◦ Φ ◦ γg is
contant. Consequently, the surfaces g · (Xi, ωi) belong to the same leaf. This proves the fist
inclusioin. The prove the other, notice that FMg·X = g · g−1FMg·X and the latter is contained

in g · FMX by the first inclusion.

Recall that the area of a surface (X,ω) ∈ H(κ) is defined as the integral of i
2 · ω ∧ ω over

X.

Definition 2.4. Let M be a non absolute affine manifold, and let (X,ω) be a surface in
M. The leaf FMX is said to be projectively minimal if it is dense in the set of surfaces in
M that have the same area as (X,ω). The foliation is said to be projectively minimal is
any leaf is projectively dense.

6



We conclude this section with a useful lemma that describes the topology of rank one affine
manifolds. Let M be a non absolute rank one affine manifold, and let (X,ω) be a surface
inM. Let V be a local model ofM associated to a section s defined on a neighborhood U
of (X,ω). If g ∈ GL+

2 (R) and v ∈ Ker(ρ)∩ V ⊗C are small enough, we define g(X,ω) + v
to be the surface (Φ ◦ s)−1(g · p+ v), where p = Φ(s(X,ω)).

Proposition 2.4. The map (g, v) 7→ g · (X,ω) + v is a homeomorphism onto its range.

Notice that by proposition 2.3, we have g · ((X,ω) + v) = g · (X,ω) + g · v whenever these
expressions make sense.

Proposition 2.5. Let M be a non absolute rank one affine manifold. The foliation FM
is projectively minimal if, and only if, there is a projectively dense leaf.

Proof. Suppose (X,ω) is a surface in M whose leaf FMX is projectively dense, and let
(X1, ω1) be a surface in M . By ergodicity of the action of GL+

2 (R) on M and proposition
2.4, there is a matrix g ∈ GL+

2 (R) such that g · FMX = FMX1
. Since the action of GL+

2 (R) is
continuous, and g sends the locus of surfaces whose area is the same as the one of (X,ω)
to the one whose area is the same as the one of (X1, ω1), this proves that the leaf FMX1

is projectively dense. Since the surface (X1, ω1) was chosen arbitrarily, this proves the
claim.

2.3 Prym eigenform loci

We recall here the definition of the prym eigenforms. More information on those objects
can be found in [7]. Let (X,ω) be a translation surface endowed with a holomorphic
involution τ . We denote by Ω(X) the set of holomorphic 1-forms, and by Ω−(X) the set
of τ -anti invariant holomorphic 1-forms. We say that (X,ω) is a Prym form if ω ∈ Ω−(X),
that is τ∗ω = −ω, and dimΩ−(X) = 2. The Prym variety Prym(X,ω, τ) is defined as
the 2-dimensional abelian variety Ω−(X)/H−1 (X,Z) endowed with the polarization coming
from the intersection form. We recall that a quadratic order of discriminant D is a ring
OD isomorphic to Z[X]/(X2 + bX + c), with D2 = b2 − 4c.

Definition 2.5. A Prym eigenform is a Prym form such that Prym(X,ω, τ) has real
multiplication by OD for which ω is an eigenform, ie End(Prym(X,ω, τ) contains a copy
of OD acting by self adjoint endomorphisms, such that OD · ω = λ · ω, for a λ ∈ OD.

3 Modifying the twist parameters

In this section, we establish a number of common results and tools to deform translation
surfaces.
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X fX(c1, 0,−c3/2)

=

fX(0, 0,−c3/2)

Figure 1: Twisting cylinders

3.1 The twist map

There is a particular class of translation surfaces for which deformations are easily seen :
those are the periodic surfaces (also known as Jenkin-Strebel differentials). If (X,ω) is a
translation surface, the quadratic form ω ⊗ ω induces a flat metric on X, away from the
singularities of ω. We say that a surface is periodic in direction θ if the geodesic rays in
direction θ are either periodic, or saddle connections (they start and end at singularities
of ω). It is well known that if a translation surface is periodic in a given direction, it is
decomposed as a union a cylinders (those are subsets isometric to [0, h] × R/cZ) whose
boundary components are union of saddle connections in direction θ. We will denote by hC
the height of the cylinder C, cC its circumferences and by γC the inverse of cC . A classic and
useful construction to navigate inside the moduli space is as follows : given a horizontally
periodic surface X with m cylinders, one can cut open the surface along the core curve
of any cylinder and glue back after having performed a twist. This construction yields
a smooth embedding from the m-dimensional torus to H(κ). This embedding, called the
twist map, is of particular interest as it allows to see specifics deformations of surfaces as
linear flows, of which we have a detailed understanding.

More precisely, let (X0, ω0, f0) be a representative ofX in H̃(κ). Denote by γC the homology
class of the core curve of the cylinder C of X0, denote by ηC the Poincaré dual of f−1(γC),
by E the linear subspace of H1(S,Σ,C) spanned by the ηC , and finally set C(X0) to be the
arc-wise component of X0 of {Y ∈ H̃(κ) | Φ(Y ) ∈ Φ(X0) + E}.
Proposition 3.1. The period map induces a diffeomorphism from C(X0) to Φ(X0) + E.

Proof. Firstly, we shall prove that the the imaginary part of any two abelian differentials
in C(X0) are isotopic. More precisely, if (X1, ω1, f1) is a surface in C(X0), we are going
to construct a diffeomorphism (for the smooth structures induced by the complex atlases)
from X0 to X1 that pulls back the imaginary part of ω2 to the one of ω1, and such that
f0 ◦ ϕ ◦ f−1

1 is isotopic to the identity of S. A particularly interesting consequence is
that all the surfaces in C(X0) will be horizontally periodic, as X0 is. As C(X0) is path-wise
connected, there is a path γ going from X0 to X1, and we chose a representative (Xt, ωt, ft)
of γ(t). Once we have chosen a smooth structure on S, this path can be chosen so that the
ft are smooth diffeomorphisms. Denote by αt the pull back of the imaginary part of ωt by
ft. We will use a variant of the Moser’s homotopy trick to find a isotopy ϕt such that :
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ϕ∗tαt = α0

A sufficient condition for this equation to hold is that the time derivative of the left hand
side vanishes. If we denote by Xt the flow associated to the isotopy, this derivative equals
d ◦ ιXt(αt) + ιXt ◦ d(αt) + α̇. Since the αt all have the same periods, the α̇t vanish as an
element of the relative cohomology of X0. Therefore, there is a family of functions Ut whose
derivative is α̇t. Since the αt are closed as they come from imaginary parts of holomorphic
forms, it is enough to solve :

ιXt(αt) = −Ut
Since Ut is defined up to a constant, we can require that it vanishes on Σ, using the fact
that the relative periods are equal. Denote by Vt the pull back by ft of the vertical vector
field on Xt coming from the flat structure. This define a non autonomous vector field on
S − Σ, and set Xt = −Ut · Vt. This vector field can be extended to the whole surface S
by setting Xt(p) = 0 for any p ∈ Σ. By definition, αt(Vt) = 1, and thus Xt is the desired
vector field. The fact that this vector field is well defined at Σ can be checked in local
coordinates using the fact that where the αt vanish up to order k, the functions Ut vanish
up to order k + 1.

Secondly, we will prove that the restriction of Φ to C(X0) is injective. Suppose (X1, ω1, f1)
and (X2, ω2, f2) have the same image. By what has been previously proved, there is a
diffeomorpsim ϕ from X1 to X2 that pulls back the imaginary part of ω2 to the one of
ω1, and such that f2 ◦ ϕ ◦ f−1

1 is isotopic the the identity of S. Such a diffeomorphism
maps cylinders of X1 to cylinders of X2. The assumptions on the periods of X1 and X2

implies the cylinders paired have same height, circumference and twist parameters. Since
the mapping class group of the cylinders is generated by Dehn twists along the core curve of
the cylinder, we get that the restriction to a cylinder of the map f2◦ϕ◦f−1

1 is isotopic to the
identity. Consequently, there is a vector field defined on each cylinder and the associated
isotopy deforms ϕ into the identity of the cylinders. Those vector fields adds up to form a
vector field on X1, and the resulting map from X1 to X2 is a diffeomorphism that maps the
real and imaginary parts of ω1 to the ones of ω2, while being isotopic to ϕ. It thus induces
a biholomorphism ψ from X1 to X2 taking abelian differential to abelian differential, and
such that f−1

2 ◦ ψ ◦ f1 is isotopic to the identity of S. Therefore, the surfaces X1 and X2

represent the same point in H̃(κ), and this proves the injectivity.

It remains to prove the surjectivity. Let u =
∑
uiηi ∈ E. Let γ(t) be the surface obtained

by cutting open the cylinder i of X0 along its core curve and gluing back by performing a
twist of amount t ·ui. This defines a path from X0 to a surface in C(X0) whose periods are
exactly Φ(X0) + u.
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Rm

Rm/Zm

H̃(κ)

H(κ)

f̃X

fX

p π

Figure 2: The twist map

Now, define a map f̃ from Rm to H̃(κ) that sends (x1, · · · , xm) to the surface of C(X0)
whose image by the period map is Φ(X)+

∑
cixiηCi . The action of Zm on Rm by translation

is intertwined by f̃ with the action of the subgroup of Γg spanned the Dehn twists about
the core curves of the cylinders. Consequently, there is a map f : Rm/Zm to H(κ) that fits
into the commutative diagram depicted in figure 2. We shall refer to the map fX as the
twists map associated to X. Notice that by construction Φ ◦ f̃ is affine, and its constant
part is Φ(X0). If x ∈ Rm, any section s of π can be chosen to map f ◦ p(x) to f̃(x). In the
sequel we will say that such a section is adapted to f̃X(x).

3.2 Navigating inside affine manifolds with twists

From now on, M is a non absolute affine manifold that contains X. We denote by k the
rank of M and by r the dimension of the foliation FM. This last quantity is also known
as the Rel of M.

Definition 3.1. The cylinder decomposition of X is said to be FM-stable if every hori-
zontal saddle connections of X vanishes as an element of T ∗XFMX .

The condition of FM-stability means that there are no saddle connections joining different
singularities along a boundary of a cylinder, or if there is it has to remain so along any
isoperiodic deformation inside M that preserves the cylinder decomposition. The stable
decomposition is relevant in our context as they allow to recognize isoperiodic deformation
as deformation in the twist space. The following Figure shows an example of isoperiodic
deformation that is not expressed as a twist deformation :

× • ×
× • ×

×•
•
•

× •×
× •×

×•
•
•

Lemma 3.1. There are two linear subspaces of Rm denoted VM and KM such that
f−1(M) = p(VM) and f−1(FMX ) = p(KM). The space VM is rational and its dimen-
sion is at most k + r, the dimension of KM is exactly r.
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Proof. Let V0 be the local model of M around X associated to a section adapted to X0.
By definition, it means that s(X) = f̃(0) = X0.

1. We define VM to be the preimage of V0 +Φ(X0) by the affine map Φ◦ f̃ . This is a linear
subspace since it contains 0 as the preimage of Φ(X0). Set Z = {x ∈ Rm, f ◦ p(x) ∈ M}.
The image of this set by p is exactly f−1(M). Thus, it is enough to prove that Z coincides
with VM to get the equality between f−1(M) and p(VM). In that extent, we will prove
first that Z contains all the line it intersects. Let x be in Z and define Ax = {a ≥ 0 | ∀ t ∈
B(1, a) t · x ∈ Z}. Let us prove that this set is open. Let a be in Ax and take a local
model Va of M around f ◦ p(a · x) associated to a section s adapted to a. For any ε small
enough, a+ε belongs to Z if and only if Φ◦ f̃(a+ε ·x) belongs to Va, and the latter equals
Φ◦ f̃(a ·x)+ε

∑
xiciηi. By assumption, if ε is negative a+ε belongs to Ax and that implies

that the vector
∑
xiciηi is contained in Va. By linearity, we deduce that Φ◦ f̃(a+ε ·x) is in

Va. Using the same argument for −a we get that a+ ε is contained in Ax, hence this set is
open. It is also closed and it is not empty since it contains 1. As a consequence, we deduce
that Z contains the line spanned by x. Now, notice that there is a neighborhood V of the
0 in Rm such that Z ∩ V = VM ∩ V. This follows from the fact that V0 is a local model
of M around X, and the commutativity of the diagram of figure 2. On the one hand, this
remark, together with the previous claim, implies that the whole VM is contained in V .
Secondly, if x ∈ Z, there is a t > 0 so that t · x ∈ V ∩ Z and thus t · x is contained in
VM. Since VM is a linear space, we get that x is contained in VM as well. We have prove
the equality f−1(M) = p(VM). Notice that this implies that p(VM) is closed and thus
that VM is rational, see for example prop 1.4.1 of [9]. The bound on the dimension of VM
comes from the fact ρ(E) is an isotropic subspace of H1(S,C). Indeed, the linear part of
Φ ◦ f̃ maps injectively VM to E ∩ V0 and the image of the latter by ρ is isotropic. Since
V0 is symplectic, this gives that the dimension of E ∩ V0 is at most k. By definition, the
dimension of the kernel of ρ restricted to V0 is r, hence the bound for the dimension of VM.

2. Similarly, we define KM to be the preimage of V0 ∩Kerρ + Φ(X0) by the map Φ ◦ f̃ .
As before, this is a linear subspace of Rm, and we prove in the same fashion that the
sets f−1(FMX ) and p(KM) are equal. Let us compute the dimension of KM. We shall
prove that the linear part of Φ ◦ f̃ is onto V0 ∩ Kerρ. Let u be in V0 ∩ Kerρ. Since
the cylinder decomposition of X is stable, it implies that u vanishes on the cycle forming
the boundaries of the cylinders. It also vanishes on the core curves of the cylinders as
they are absolute cycles. Consequently, the only cycles on which it may not vanish are
the cross curves of the cylinders. Consequently, we get that u =

∑
u(σi)ηCi , and thus

u = Φ ◦ f̃(u(σ1)c−1
i , · · · , u(σm)c−1

m ) − Φ(X0). As the dimension of V0 ∩ Kerρ is r by
definition and Φ ◦ f̃ is injective, we get that the dimension of KM is r.

In the sequel, we shall denote the two linear spaces of lemma 3.1 by VM(X) and KM(X)
to emphasize they are associated to the surface X. The case of equality for the dimen-
sion of VM(X) in the previous proposition is obtained precisely when the two subspaces
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Pres(X,M) and Twist(X,M) defined in [1] are equal. Reciprocally, if we do not require
the decomposition of X to be FM-stable, the dimension of KM(X) is only bounded above
by r. This expresses the fact that some isoperiodic deformation will not be recognized as
twist deformations.

Definition 3.2. The support of u ∈ KM(X) is the collection of indices i so that ui 6= 0.

The support records the information of which cylinders have been twisted on X to get to
the surface f(u).

Definition 3.3. A minimal isoperiodic deformation is a vector u ∈ KM whose support is
minimal among vectors in K. Its degree deg(u) is defined as dim SpanQ〈ui〉 − 1. Finally,
two minimal isoperiodic deformations are said to be transverse if their supports are disjoint.

4 Property P and density of the leaves

4.1 A criterion in rank 1

Proposition 4.1. LetM be a rank one non absolute affine manifold and X ∈M, a surface
having a horizontal FM-stable cylinder decomposition. If KM(X) contains a minimal
deformation of positive degree, then the closure of FM contains the horocycle orbit of X.

Proof. Let u ∈ KM be a minimal deformation of positive degree. There is a subspace
Vu ⊂ Rm of dimension 1 + deg(u) so that p(Vu) is the closure of {p(t · u), t ∈ R}. Since
M is closed, Vu is actually contained in VM. However, it is not contained in KM. Indeed,
the support of any vector in Vu is contained in the one of u, but since the degree of u is
at least 2, there is a vector for which this inclusion is strict. By definition, such a vector
can not be in KM. Now, the subpspace KM+Vu contains KM and this inclusion is strict.
Consequently, its dimension is at least k+ 1. But, sinceM is rank 1, the dimension of VM
is at most k+1. Hence, VM = K+Vu and the dimension of VM is k+1. As a consequence
of this equality, we deduce that f ◦ p(VM) is contained in the closure of FMX . Indeed, let
w = k + v ∈ VM, with v ∈ Vu. Then there is a growing sequence tn > 0 so that p(tn · u)
converges to v. But then, by continuity, f ◦ p(k + tn · v) is a sequence of points in FMX
converging to f ◦ p(w). To conclude, notice that the horocycle orbit of X is contained in
f(VM).

Proposition 4.2. LetM be a non absolute rank 1 affine invariant manifold, and X ∈M.
If the horocycle orbit of X is contained in its isoperiodic leaf, then so is it SL2(R)-orbit

Proof. We will need the following lemma :

Lemma 4.1. The leaf of X contains a surface periodic under Teichmüller flow (in some
direction). This surface can be chosen arbitrarily close to X.
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proof of the lemma. Pick a neighborhood U of X. Up to choosing a smaller open set
contained in this neighborhood, we can suppose by proposition 2.4 U = D(0, η)×B(Id, ε).
Set U0 = D(0, (1−ε)η)×B(Id, ε). Using a version of the closing lemma for the Teichmüller
flow of [2], pick a surface Z = g · X + v ∈ U0 which is periodic for the Teichmüller flow.
Set Y = g−1 · Z = X + u where g(u) = v. Since v ∈ D(0, η

1−ε) and g ∈ B(Id, ε), we have
that u ∈ D(0, η). (recall that the inverse of a matrix M close to the identity is invertible
with inverse

∑
(Id−M)n. Thus if M is ε-close to the identity, the norm of M−1 is at most

1
1−ε .)

Now, pick a surface Y as in the previous lemma, with g · Y = Y If Y is close to X enough,
the commutation relation between isoperiodic deformations and the GL+

2 (R)-action (see
proposition 2.3) shows that the horocycle orbit of Y is also contained in the closure of the
leaf of X. Let θn be the angle between gn[1 : 0] ∈ RP 1 and the horizontal line. Denote by
H(θn) the subgroup {rθnhtr−1

θn
, t ∈ R}. If H(θn) · X is contained in the closure of FMX ,

using proposition 2.3, one gets that g · H(θn)·X is also contained in the closure of FMX .
But since g ·H(θn) = H(θn+1) · g the latter is exactly H(θn+1) · g ·X. As g ·X = X, this
gives that for all n > 0 H(θn) ·X ⊂ FMX . By continuity, this implies that hθt ·X is also in
the closure of the leaf. To conclude, use proposition 5.2 in [5] to deduce that the closure
of FMX contains the SL2(R)-orbit of Y . Once again, we use proposition 2.3 to deduce that
the SL2(R) orbit of X is also contained in the closure of the leaf of X.

We introduce a useful notion :

Definition 4.1. A non absolute rank one affine manifold M is said to have property P if
for any X ∈ M , there is a surface Y ∈ FMX that has a FM-stable cylinder decomposition
such that KM(Y ) contains a minimal isoperiodic deformation of positive degree.

This property P can actually be checked only on a single surface, as shows the following
proposition.

Proposition 4.3. A non absolute rank one affine manifold M has property P if, and only
if, it contains a surface X which has a FM-stable cylinder decomposition such that KM(X)
contains a minimal isoperiodic deformation of positive degree.

Proof. If (X,ω) has a decomposition as in property P, note that this is also the case of any
surface in a small enough neighborhood U . This follows from proposition 2.4 together with
the fact that this property is both invariant by small deformations along FM and by the
action of GL+

2 (R). Now, let X ′ be a surface in M, and chose a neighborhood U ′ around
X ′. By ergodicity of the action of GL+

2 (R) onM, there is a matrix g ∈ GL+
2 (R) such that

g · U ∩ U ′ 6= ∅. It thus contains a surface of the form g′ ·X ′ + u that is as in property P.
Up to shrinking again U ′, this implies that g′ · (X ′ + g′−1u) also is as in property P, and
thus so is X ′ + g′−1u ∈ FMX′ .
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Theorem 4.1 (Criterion for density). Let M be a non absolute rank one affine manifold
having property P. Then, for any surface X in M, the leaf FMX is projectively dense in
M.

Proof. Let (X,ω) be a surface in M, and chose a surface (X0, ω0) in FMX that is as in
property P. Proposition 4.1 implies that the closure of FMX0

contains its horocycle orbit. By

the commutation property of proposition 2.3, this implies that FMX0
contains its horocycle

orbit. By proposition 4.2, it implies that the closure of FMX now contains the whole SL2(R)-
orbit of (X,ω). We conclude using the ergodicity of the action of SL2(R) on the subset of
M of surfaces whose area is the same as the one of (X,ω) and proposition 2.4.

4.2 Structure of the closure of the leaves

The criterion 4.1 allows us to prove structural result on the closure of the leaves.

Theorem 4.2. Let (X,ω) be a translation surface whose GL+
2 (R)-orbit closure is a non

absolute rank one affine manifold with property P, and let N be an affine manifold that
contains (X,ω). Then the leaf FNX is projectively dense in an affine manifold N0. Further-
more, if KN (X) contains m transverse isoperiodic deformations of degree (di)i≤m, then
:

rk(N0) ≥
∑

di

Proof. Denote by M the GL+
2 (R)-orbit closure of (X,ω). We shall prove first that the

closure of FNX is saturated by FN : Let Y ∈ FNX , and set A = {Z ∈ FNY , Z ∈ FNX }. This

set is both closed and open as a subset of FNY , its completementary being FNY −FNX ∩FNY
and since FNY is connected, the claim is proved. Now, let Y ∈ FNX , and let g ∈ SL2(R).
By proposition 2.3, g ·Y is contained in FNg·X , and by Theorem 4.1 g ·X is contained in the

closure of FMX , which in turn in contained in the closure of FNX . Since the latter is saturated
by FN , we deduce FNg·X is contained in the closure of FNX , and therefore gY belongs to

the closure of FNX . This proves that FNX is projectively dense in a affine manifold N0. To
prove the last claim of the statement, notice that KN0(X) = KN (X), and denote by ui be
the family of transverse minimal deformations. Denote also by Vi the associated subspace
of VN0 that gives the closure of {p(t · ui), t > 0} , and by p0 the canonical projection from
VN0 to VN0/KN0 . We claim that the pO(Vi) form a direct sum. Indeed, let vi ∈ Vi so that∑
p0(vi) = 0. Then, there is a k ∈ KN0 so that

∑
vi = k. Let ki ∈ KN0 ∩ Vi so that

k =
∑
ki. We then have

∑
(vi − ki) = 0. Notice that since the ui are transverse, if two

vectors belong to different Vi, their support are disjoint. this implies that vi = ki, and
thus p0(vi) = 0. We are thus left with proving that the dimension of p0(Vi) is mi. First,
proposition 1.4.1 of [9] implies that there is a family vi,j of mi + 1 deformations such that
vi,0 = vi and the support of vi,j+1 is strictly contained in the one of vi,j . By definition of
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being minimal, this implies that the vi,j are not contained in KN0 , for every j ≥ 1. This
gives that the dimension of KN0/VN0 is bounded below by

∑
di, and since by lemma 3.1

the dimension of KN0/VN0 is bounded above by rk(N0).

5 Examples of rank 1 affine manifolds with property P
5.1 The genus 2 case

Proposition 5.1. Let M be a non arithmetic rank one affine manifold contained in
H(1, 1). Then M has property P.

Proof. Let (X,ω) be a horizontally periodic surface in M, and up to flowing along the
isoperiodic foliation, we can assume that this decomposition is FM-stable. That means
that (X,ω) is cylinder equivalent (meaning up to adjusting height and twist parameter of
the cylinders) to the following surface:

• •

• • •
× × ×

× ×

1

2

3

fig. The only stable cylinder decomposition in genus 2

This affirmation can be checked very easily as there are only two possibilities for the
diagram of separatrices in this case, and they are isomorphic. See Appendix A for more
details. Then the vector (γ1,−γ2, γ3) belongs to KM(X), and it is necessarily of positive
degree or else proposition would imply that M is arithmetic.

We recall that the non aboslute rank one affine manifolds have been classified by McMullen
in [8], and they are all given by prym eigenfom loci. This remark, together with the criterion
4.1, then implies:

Theorem 5.1. Let (X,ω) be a prym eigenform in ΩED(1, 1), then the leaf FX is either
closed or projectively dense in ΩED(1, 1). The latter case occurs if, and only if, D is not
a square.

This result was already known prior to that work. It is for instance part of the classification
established in [10]. However it was interesting to obtain an elementary proof of this result
that does not make use of degeneration of translation surfaces as it is the case in the
aforementioned paper.
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5.2 Prym eigenform loci in genus 3

Proposition 5.2. Let M be a rank 1 non arithmetic affine manifold contained in a Prym
eigenform locus of genus three surfaces ΩED. If dimM≥ 3, then M has property P.

Proof. Notice that the non arithmeticity assumption is equivalent to the fact that D is not
a square, as k(M) = Q(

√
D). We treat separately the different strata:

• The affine manifold M cannot be contained in ΩEhypD (2, 2) as this locus is a union a
closed GL+

2 (R)-orbits. This is proposition 2.3 of [11].

• If M is contained in ΩEoddD (2, 2), theorem B of [11] states that M contains a trans-
lation surface that cylinder equivalent to the following surface:

× × × ×

× × × ×

• •

• • • •

1

2

3 4

A

A

B

B

Clearly, the vector v = (γ1,−γ2, γ3, γ4) ∈ KM(X), and it is minimal. If its degree is
0, that means that all the cylinders have a commensurable circumferences and thus
that M is arithmetic by 2.1, which is not. Then the degree of v is at least one, and
M has property P.

• If M is contained in ΩED(2, 1, 1), then once again theorem B of [11] states that M
contains a translation surface that cylinder equivalent to the following surface:

• •

• • •
× × ×

× ×

⊗ ⊗⊗

⊗ ⊗ ⊗

A

A B

B

1

2

3

4

5

In this case the vector v = (γ1,−γ2, 2γ3,−γ4, γ5) lies in KM(X), and it is minimal.
Note that the Prym involution exchanges 1 with 5 and 2 with 4. For the same reason
as in the previous case, the degree of this deformation is at least one.

• IfM is contained in ΩED(14), let (X,ω) be a horizontally periodic surface inM. It is
well known that those surfaces always exists in affine manifolds, without any assump-
tion on the rank. See for instance [SW]. Up to applying the Rel flow to (X,ω), we
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can assume that the corresponding cylinder decomposition is FM-stable. Appendix
A, provides a list of such decompositions and thus (X,ω) is cylinder equivalent to
one of the following surfaces:
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C

C
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We provide a minimal deformation of positive degree for each of those decompositions.

1. (γ1, 0,−γ3,−γ4, 0, γ6)

2. (γ1,−γ2, 0, γ4,−2γ5,−γ6)

3. (γ1, 0, γ3, γ4,−2γ5, γ6)

4. (0, γ2,−γ3, 0, γ5, γ6)

5. (γ1, 0,−γ3, 0, γ5, γ6)

Proposition 5.2 together with the criterion for density 4.1 imply the following:

Corollary 5.1 (Theorem A). LetM be an affine manifold contained in a Prym eigenform
loci of genus three surfaces ΩED, and let (X,ω) ∈ M. Then, FMX is either closed or
projectively dense in M. The latter case occurs if, and only if, D is not a square.
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5.3 The hyperelliptic case

Proposition 5.3. Let M be a non absolute rank one affine manifold in H(g − 12)hyp.
Then M has property P.

Proof. Let (X,ω) be a translation surface inM, and chose a periodic direction on X. Those
directions always exist as rank 1 affine manifold have the complete periodicity property. Up
to a small isoperiodic deformation, we can ensure that the direction is FM-stable (which
is equivalent to F-stable here as they are only two singularities). Note that the singularity
present on a boundary component of a cylinder is different from the singularity present on
the other boundary component. This is due to the fact that the hyperelliptic involution
exchanges the singularities of ω while fixing all the cylinders. A consequence of that is
that a minimal isoperiodic deformation is supported on all the cylinders, and is of the form
(δ1c

−1
1 , · · · , δmc−1

m ) with the δi belonging to {1,−1}. The fact thatM is non arithmetic is
equivalent to the fact that this deformation has non vanishing degree. Therefore M has
property P.

Theorem 5.2. Let M be a non absolute rank 1 affine manifold contained in H(g−12)hyp,
and let (X,ω) be a surface in M. Then the leaf of FMX is either closed or projectively
dense in M. The latter case occurs if, and only if M is non arithmetic.

Paul Apisa classified the rank one affine manifolds in the hyperelliptic stratum and showed
that if M is a non arithmetic rank 1 affine manifold, then it is a translation cover of a
surface in ΩED(1, 1). See [17].

5.4 A counterexample to property P
Proposition 5.4. Let p : (X,ω) → (X ′, ω′) a translation covering where (X ′, ω′) is a
Veech surface in H(2g − 2) and p ramifies over the singularity and a non periodic point.
Then, the GL+

2 (R)-orbit closure M of (X,ω) has dimension 3 but does not have property
P.

6 Ergodic theory of the isoperiodic foliation

6.1 Torelli covering of the Prym loci

let (X0, ω0) be a genus g Prym eigenform endowed with a marking f0, and denote by τ0

the Prym involution. Define P be the set of isomorphism classes of tuples (X,ω, f, τ),
where X is a genus g Riemann surface, ω is a non vanishing holomorphic 1-form on X, f
a homeomorphism from S to X, and τ is a holomorphic involution of X. τ∗(ω) = −ω. We
require that the map induced on homology by f−1 ◦ τ ◦ f is the same as the one induced
by f−1

0 ◦ τ0 ◦ f0. We say that (X1, ω1, f1, τ1) and (X1, ω2, f2, τ2) are isomorphic if there is
a biholomorphism ϕ : X1 → X2 such that:
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1. ϕ∗ω2 = ω1

2. f−1
2 ◦ ϕ ◦ f1 is isotopic to the identity of S.

3. (ϕ ◦ τ1)∗ = (τ1 ◦ ϕ)∗

Denote by p : P → H(κ) the canonical projection, by ΓP the subgroup of the mapping
class group that commutes to f−1

0 ◦ τ0 ◦ f0 at the level of the homology, and by Γ0
P the

subgroup of ΓP the subgroup that acts as the identity on H−1 (S), where H−1 (S) is defined
as the the subspace of H1(S) that is f−1

0 ◦ τ0 ◦ f0 anti invariant. Notice that the range of
p is contained in Prym(κ). As the canonical projection from H̃(κ) to H(κ), the map p is
a local homeomorphism, and it has the path lifting property. Finally, define the following
map:

Ψ :
P/Γ0

P → H1(S,C)−

(X,ω, f, τ) 7→ (γ 7→
∫
f◦γ ω)

6.2 Transfer Principle for Prym eigenform loci

Let M ⊂ ΩED(κ) be the affine manifolds generated by (X0, ω0) as in the previous sub-
section, where D is the discrimant of k(M). Let σ ∈ Gal(k(M)/Q), the non trivial
element of the galois group of k(M)/Q. Chose a symplectic basis B of H1(S) and define
KM = {p ∈ H1(S,C)−, W σ

p ⊂W⊥p } where Wp is the k(M)-vector space generated by the
entries of Re(p) and Im(p). Notice that Ψ(p−1M) = KM. Denote by ΨM the restriction
of Ψ to p−1M. This map is an analog of the Period map of Calsamiglia, Deroin and
Francaviglia in [10].

Proposition 6.1. Two surfaces (X1, ω1) and (X1, ω2) lie in the same leaf of FM if and
only if, there is path γ in P/Γ0

P such that:

1. ∀ t p ◦ γ(t) belongs to M.

2. p ◦ γ(0) = (X1, ω1) and p ◦ γ(1) = (X2, ω2)

3. ΨM ◦ γ is constant.

Lemma 6.1. The following formula holds: p(Φ−1
M(KM)) =M.

Proof. The proof is decomposed in three steps.

1. p(Ψ−1
M(KM)) is saturated by the isoperiodic foliation.

2. p(Ψ−1
M(KM)) is GL+

2 (R) invariant

3. p(Ψ−1
M(KM)) is closed.
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The first claim is a direct consequence of proposition 6.1, while the second and the third
claim are given by Theorem 3.2 of [7]. By definition, p(Φ−1

MKM) is contained inM. Claims
1 and 2 together with 2.4 show that it is open in M. Since it is non empty, this is M, as
a non empty closed and open subset.

Lemma 6.2. If FM is projectively minimal, then the fibers of ΦM are connected.

Proof. Let p ∈ KM be the periods of (X,ω, f, τ), and chose (X1, ω1, f1, τ1) in Ψ−1
M(p).

Since the foliation FM is projectively minimal and that the surface (X,ω) and (X1, ω1)
have same area, there is a path in FMX that starts at (X,ω) and ends arbitrarily close to
(X1, ω1). This path can be lifted to a path γ̃ on P starting from (X,ω, f, τ), and it ends
a surface close to ϕ · (X1, ω1, f1, τ1), for a ϕ ∈ ΓP. By construction ΦM ◦ γ̃(1) = p and
ΦM(ϕ · (X1, ω1, f1, τ1) = ϕ · p. As these two are arbitrarily close, this is not possible unless
ϕ · p = p. This implies that ϕ acts as the identity on Wp, and since it commutes with
the action of the Galois group, it also acts as the identity of W σ

p . But, by construction
Wp⊕W σ

p is exactly the τ anti-invariant subspace of R2g, and thus ϕ acts as the identity of
H1(S,C)−, that is ϕ ∈ Γ0

P. In particular (X1, ω1, f1, τ1) and ϕ ·(X1, ω1, f1, τ1) are the same

point in P/Γ0
P, and γ̃ is a path in Ψ−1

M(p) that connects (X,ω, f, τ) to (X1, ω1, f1, τ1).

Corollary 6.1 (Theorem C). If FM is projectively minimal, then it is λM-ergodic.

Proof. Lemma 6.1 together with lemma 6.2 imply that there is a bijection between FM-
saturated borel subsets ofM and ΓP-invariant borel subsets ofKM given by B 7→ ΨM(p−1B).
Up to the choice of a base, the invariant sets of the action of ΓP on the area 1 locus of
H1(X,C)− is in correspondence with the action of Sp4(Z) on Sp4(R)/Sp2(R), via p 7→Mp

where Mp is the matrix that maps (1, 0, 0, 0) to Re(p) and (0, 1, 0, 0) to Im(p). This ma-
trix is well defined only up to the stabilizer of ((1, 0, 0, 0), (0, 1, 0, 0)) which is isomorphic
to Sp2(R). Note that Re(p) and Im(p) are seen as elements of the dimension 4 subspace
H1(X,C)−. The study of these invariant sets has been carried out by Calsamiglia, Deroin
and Francaviglia after Kapovitch in [10]. We deduce our result from their classification.

We conclude this section by noticing that Theorem B is implied by theorem A together
with C.

7 Behavior of the full isoperiodic leaves

In this section we compute the closure of the leaves or Prym eigenforms of genus 3

7.1 The case Hodd(2, 2)

Theorem 7.1. Let (X,ω) be a prym eigenform in Hodd(2, 2), then the leaf FX either closed
or projectively dense in the connected component of ΩEoddD (2, 2) in which it belongs. The
last case occurs if, and only if, D is not a square.
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Proof. Notice that in this case FX = FMX where M is the connected component of
ΩEoddD (2, 2) that contains (X,ω). Therefore, the result is just a consequence of criterion
4.1.

7.2 The case H3(κ), |κ| > 2

Theorem 7.2. Let (X,ω) be a prym eigenform in H3(κ) with |κ| > 2, then the leaf FX is
either closed or projectively dense. The last case occurs if, and only if, D is not a square.

Proof. To prove this result, we are going to use theorem 4.2 and additional computations
to prove that if the leaf of (X,ω) is not closed, it has to be projectively dense in an affine
manifoldM of rank at least 2. However, the classification of Aulicino and Nguyen of rank
2 affine manifolds ([3]) shows that if an affine manifold is F-saturated, as is M, it cannot
be rank 2. Thus the rank is 3, and by [19], it has to be the whole stratum, since the
hyperelliptic locus is not saturated by F neihter.

If M is contained in H(2, 1, 1), then we saw in the course of the proof of proposition
5.2, that we can assume that (X,ω) is horitonally periodic with 5 cylinders, and that
u = (γ1,−γ2, γ3, 0, 0) and v = (0, 0, γ3,−γ4, γ5) belong to KM(X) and have a positive
degree, with γ1 = γ5, and γ2 = γ4. The projection of KM(X) on the two first coordinates
is a 2-dimensional space, or c1 and c2 would be Q-dependant, and the relation c2 = c1 + c3

would imply that the degree of u vanishes. Similarly, the projection of KM(X) on the two
last factors is also a 2-dimensional space. In particular, the dimension of KM(X) is at
least 4. By lemma 3.1, we have r + 2 ≥ 4, and thus the rank of M is at least 2.

IfM is contained in H(14), we saw that (X,ω) is cylinder equivalent to one of the following
surfaces:
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We provide a pair of transverse deformations for each of the first four decomposition:

1. (γ1, 0, 0, 0,−γ5, γ6) and (0, γ2,−γ3,−γ4, 0, 0)

2. (γ1,−γ2, 0, 0,−γ5, 0) and (0, 0, γ3,−γ4, 0, γ6)

3. (γ1, 0, 0, 0,−γ5, γ6) and (0, γ2,−γ3,−γ4, 0, 0)

4. (γ1, 0, 0, 0,−γ5,−γ6) and (0, γ2,−γ3, γ4, 0, 0)

Now, if (X,ω) is cylinder equivalent two the fifth surface, then KM(X) contains the fol-
lowing three vectors (γ1, 0, 0 − γ4, 0, γ6), (0, γ2, 0,−γ4,−γ5, γ6) and (0, 0, γ3,−γ4,−γ5, 0),
and each of them is of positive degree. Using the same argument as in the case where
M⊂ H(2, 1, 1), we concle that k + 3 ≥ 5, and thus the rank of M has to be at least 2.
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A Stable cylinder decompositions in Prym(1, 1, 1, 1)

A.1 diagram of separatrices

We recall from [12] the common framework for enumeration of cylinder decomposition.

Definition A.1. A prediagram of separatrices is a quadruplet Γ = (E, σ, τ, θ), where τ is
a fixed point free involution of E, σ is a permutation of E and θ is a map from E/τ → E
such that p ◦ θ = id, where p : E → E/τ is the canonical projection.

The elements of E are called edges. An edge γ in E is said to be positively oriented if
θ ◦ p(γ) = γ and negatively oriented if θ ◦ p(γ) = τ(γ). The set of positively oriented
edges will be denoted by E+ and the set of negatively oriented edges will be denoted
by E−. A cylinder component is defined as an orbit of σ∞ := σ ◦ τ . Such a cylinder
component is said to be positively oriented if it corresponds to a positively oriented edge,
and negatively oriented otherwise. We denote by C+ and C− the set of positively and
negatively oriented cylinder components. A pairing of cylinder components is a bijection
from C+ to C−. Finally, we define a metric on Γ as a strictly positive τ -invariant function l
on E, and we consider its natural extension l̂ to the set of cylinder components defined by
l̂(c) :

∑
n l(σ

n
∞(γ)), where c is the cylinder component associated to γ. Such an object can

be encoded by a directed graph with additional information. Its set of vertices is the set of
orbits of σ, and its set of edges is E/τ . Set p0 : E → E/σ to be the canonical projection.
The beginning of an edge is p0 ◦θ(e), and its end is p0 ◦ τ ◦θ(e). There is an cyclic ordering
on the star of each vertex define by σ.

Definition A.2. A diagram of separatrices (Γ,m, l) is the data of an alternating predia-
gram of separatrices Γ, together with a matching of its cylinder components and a metric
l on Γ that is invariant by m, that is l̂ ◦m = l̂.

To any translation surface (X,ω) ∈ H(κ), there is a canonical diagram of separatrices
Γ(X,ω) associated. It is defined as follows : The set E is the collection of all geodesics rays
γ : [0, 1]→ X, such that γ−1(Σ) = {0, 1}, and γ∗(Im(ω)) = 0, taken up to reparametriza-
tion. We define τ to be the orientation reversing map : τ(γ)(t) : τ(γ)(1 − t). For any
γ ∈ E, there is a chart around γ(0) that takes ω to zkdz; where k is the order of the sin-
gularity. The germs of geodesic ray that begins at γ(0) is thus invariant by multiplication

by e
2iπ
k+1 , and the germ of a geodesic ray at its beginning completely determines it. We

thus define σ(γ) to be the geodesic ray whose germ at its beginning is the one of e
2iπ
k+1γ.

Finally, to define θ we need to define a map that is τ -invariant. If γ is in E, we define
θ(γ) = γ if γ∗(Re(ω)) > 0, and θ(γ) = τ(γ) otherwise. The metric on Γ(X,ω) is given
by l(γ) = |

∫
γ ω|. Note that the orbits of σ∞ are in correspondence with oriented core

curves of cylinders. The matching m is then defined to map the orbit that corresponds to
the positively oriented core curve to the one that corresponds to the negatively oriented
core curves of the same cylinder. In the reverse direction, to any diagram of separatrices
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Γ there is horizontally periodic translation surface (XΓ, ωΓ). It is defined in the following
way: Replace any γ ∈ θ(E/τ) by a strip of length l(γ), and replace any element in E/σ
by a disk. The permutation σ defines a cyclic ordering on any orbit. Using this ordering,
one can glue the strips to the disks. We get a topological surface with boundary, and the
boundary components correspond to orbits of σ∞. Since by requirement, the paired com-
ponents have same length (defined by l̂) we can glue those components using the pairing,
and we get a horizontally periodic flat surface in H(κ), where |κ| is the cardinal of E/σ
and ki is half the cardinal of the orbit i minus 1. The fact that the cardinal of an orbit is
even comes from the alternating condition.

Two prediagrams of separatrices Γ1 = (E1, τ1, σ1, θ1) and Γ2 = (E2, τ2, σ2, θ2) are isomor-
phic if there is a map ϕ : E1 → E2 such that ϕ ◦ σ1 = σ2 ◦ ϕ, ϕ ◦ τ1 = τ2 ◦ ϕ, and
ϕ(E1

+) = E2
+, or equivalently ϕ ◦ θ1 = θ2. Finally, two diagrams of separatrices (Γ1, l1,m1)

and (Γ2, l2,m2) are isomorphic if there is an isomorphism of prediagram of separatrices ϕ
between the two such that l2 ◦ ϕ = l1, and if two cylinders components on Γ1 associted to
the orbits of γ1 and γ2 are paired by m1, then the cylinder components of Γ2 associated to
ϕ(γ1 and ϕ(γ2) are paired by m2.

Proposition A.1. Two horizontally periodic translation surfaces (X1, ω1) and (X2, ω2) in
H(κ) are isomorphic to cylinder equivalents surfaces if, and only if, the associated diagrams
of separatrices are isomorphic.

We refer to [18] for a proof of that result.

Definition A.3. A connected component of a prediagram of separatrices of Γ = (E, σ, τ, θ)
is a subset E′ of E that is preserved by both σ and τ .

If E′ is a connected component of Γ, there is an induced prediagram of separatrices
(E′, σ|E′ , τ|E′ , θ|p(E′)).

Definition A.4. A prediagram of separatrices (E, τ, σ, θ) is said to be stable if τ preserves
the orbits of σ.

In this setting a minimal connected component is said to be minimal if σ acts transitively on
E. We can define the type a minimal connected component as follows : Let x be a positively
oriented edge of the minimal component. Thus any positively oriented edges can be written
as σ2k(x), and any negatively oriented edge can be written as σcn(2l)(x). Since τ reverses
the orientation, there is a map f ∈ Sn such that for any k : τ ◦ σ2k(x) = σcn(2f(k))(x).
The group H = 〈cn〉 acts by conjugation on Sn and the type of the component is defined
as the orbit of f under this action. The fact that we defined f up to conjugation by H
comes from the fact we could have chosen any other even iteration of x as a generator of
the orbit. More generally, we say that Γ is of type (fi) if the type of the minimal connected
components are given by the fi.
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Proposition A.2. Two stable alternating prediagrams are isomorphic if, and only if, they
have the same type.

Proof. It is enough to prove the result for minimal connected components : Let Γi =
(Ei, σi, τi, θi) for i ∈ {1, 2} be two minimal prediagrams of same type. Pick xi in Ei
that is positively oriented and define fi such that τi(σ

2k(xi)) = σ2(fi(k)+1). Saying that the
diagrams have the same type means there is l such that f2 = cln◦f1◦c−ln . Define ϕ such that
for all j ϕ(σj1(x1)) = σ2l+j

2 (x2). We claim that ϕ is an isomorphism of prediagram. Indeed,

let ζ ∈ E1, and pick j such that σj(x1) = ζ. Thus ϕ◦σ1(ζ) = ϕ◦σj+1(x1) = σ2l+j+1
2 (x2) =

σ2(σ2l+j
2 (x2) = σ2 ◦ ϕ(σj1(x1)) = σ2 ◦ ϕ(ζ). Then, τ2 ◦ ϕ(σ2k

1 (x1)) = τ2 ◦ σ2(k+l)
2 (x2) =

σ
2f2(k+l)+1
2 (x2) = σ

2cln◦f1◦c−ln (k+l)+1
2 (x2) = σ

2(f1(k)+l)+1
2 (x2) = ϕ◦σ2f1(k)+1

1 = ϕ◦τ1(σ2k(x1)).
By construction, ϕ(E1

+) = E2
+. Reciprocally, if there is an isomorphism of prediagrams

between Γ1 and Γ2, then ϕ(x1) = σ2l
2 (x1), and then f2 = cln ◦ f1 ◦ c−ln .

We denote by Γ the prediagram (E, σ, τ, τ ◦ θ). if Γ corresonds to a surface (X,ω), then Γ
corresponds to the surface (X,−ω). Note that if (X,ω) is represented by a polygon P, the
surface (X,−ω) is represented by the image of the polygon by the rotation of angle π.

Proposition A.3. Let Γ be a minimal stable alternating prediagram of type f . The type
of Γ is given by (f ◦ cn)−1.

Proof. Let x ∈ E be positively oriented, and such that τ ◦ σ2k(x) = σ2f(k)+1. Then σ(x)

is positively oriented on Γ. And τ ◦ σ2j(σ(x)) = σ2f−1(j)(x) = σ2c−1
n (f−1(j))(σ(x)).

A.2 Combinatorial Prym involution

In this appendix we enumerate the possible cylinder decompositions for a surface in the
Prym locus Prym(1, 1, 1, 1). The following definition is the combinatorial version of the
Prym involution.

Definition A.5. A combinatorial Prym involution on a stable diagram of separatrices Γ
is an isomorphism τ of diagram between Γ and Γ whose square the identity and such that
#Fix(τ) + 2#Fix(τ ◦m) = 10− 2g, where g is the genus of the surface associated to Γ.

Proposition A.4. If a horizontally periodic translation surface with a F-stable decompo-
sition has a Prym involution, then the morphism of diagram of separatrices it induces is
a combinatorial Prym involution. Reciprocally, If a stable diagram of separatrices has a
Prym involution, then the associated surface has a Prym involution.

This proposition enables us to enumerate the cylinder decomposition in Prym loci. In
Prym(14), the Prym involution does not fix any singularity, so it fixes 2 cylinders. We
will say that the diagram associated is of type 1 if both the cylinders are bordered by
the same pair of exchanged singularities, and of type 2 if the cylinders are not bordered
by singularity that are not exchanged by the involution. Here, the type of the diagram is
necessarily (idS2 , idS2 , idS2 , idS2), and the Prym involution forces the following orientation:
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a

b

1

1

2

3

c

2

d

e
4

3

5

6
f

4

The prediagram of separatrices in Prym(14)

We can assume that the involution τ exchanges the two fist singularity and the two last,
that is τ(1) = 2 and τ(3) = 4, and that it maps 2 to a and 4 to f . Other choices would
produce isomorphic diagrams.

A.3 Stable decompositions of the first type in Prym(14)

• The first possible outcome is m(a) = 2 and m(b) = 3. Then m(c) can be 4, 5 or 6.
It cannot be 1 as this would give an extra fixed cylinder in contradiction with the
Prym condition. The case 5 and 6 are isomorphic. So we only need to consider the
case where m(c) is 4 or 5. If it is 4, then, after applying τ0 we get m(f) = 1. m(d) is
either 5 or 6, but the case m(d) = 5 produces one extra fixed cylinder, thus and then
we get m(d) = 6, and then m(e) = 5 This gives that m = (fabced). The other case
is m(c) = 5. Then m(d) = 1. Now m(e) = 4 or 6 but only m(e) = 6 gives a metric
solution, and this gives an extra fixed cylinder so this case is not possible.

A

A

B

B

C

C

c
4

2
b

d
6

e
5

f
1

a
2

• •

• • •

× × ××

× ×

• • •
× × × × ×

the surface (fabced)

• The second possible outcome is m(c) = 1 and m(a) = 2(or m(b) = 3 but this case
is isomorphic. Then m(f) cannot be 5 or 6 for metric reasons, and it cannot be 4
either has this would produce an extra fixed cylinder. This means that m(f) = 3.
Thus by the prym involution, m(b) = 4. Now, m(d) is either 5 or 6 but 5 gives an
extra cylinder. Thus m(d) = 6, and m(e) = 5. The only possibility here is (cafbed).
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the surface (cafbed)

A.4 Stable decompositions of the second type in Prym(14)

• The first case is m(c) = 1 and m(f) = 4. Then m(a) is either 3, 5 or 6. The last two
cases are isomoprhic. Let’s consider first the case where m(a) = 3, then m(2) = b,
and m(d) = 6 and m(e) = 5. So we get m = (cbafed), but this doesn’t give a
connected surface, so this case does not exist. In the case where m(a) = 5. Then
m(d) = 2, and then since there are not more than 2 fixed cylinders, m(e) = 3 and
m(b) = 6. Thus we get m = (cdefab).
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C

C

A

A

• •

• • •
× × ×× × ×

× × ×

× ×

• • •

b
6

f
4

e
3

d
2

c
1

a
5

the surface (cdefab)

• Then m(c) = 1 and m(d) = 5 (the case where it m(e) = 6 instead of m(d) = 5 is
isomorphic. If m(b) = 3 there is one extra fixed cylinder. If m(b) = 2 then m(a) = 3
and the surface is disconnected. Thus m(b) is 4 or 6. In the first case, by applying
the involution m(f) = 3. Likewise m(a) cannot be 2 or there would be too many
fixed cylinders thus m(a) = 6 and thus m(e) = 2. We get m = (cefbda). If m(b) = 6,
then m(e) = 3. m(a) cannot be 2 as this would produce another fixed cylinder. thus
m(a) = 4, and m(f) = 2. We get m = (cfeadb). But this one is isomorphic to
(cefbda) by exchanging 2 with 3 and a with b.
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the surface (cfeadb)

• Then m(a) = 2 and m(d) = 5. The other cases, like m(f) = 4 and m(a) = 2, are
isomoprhic, so we don’t consider them. m(c) cannot be neither 1, 2 nor 3. it is thus
4 or 6. If it is 4, then after applying the involution m(f) = 1. m(b) cannot be 3,
thus m(b) = 6 and m(e) = 3, and m = (faecdb). If m(c) = 6, then m(e) = 1. m(b)
cannot be 3 thus m(b) = 4 and m(f) = 3. We get m = (eafbdc). But this one do
not have a metric solution. Indeed, we should have l(e) = l(1) and l(b) = l(4), but
l(1) > l(b) = l(4) > l(e).
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Non arithmetic affine manifolds in H(2, 2) and H(3, 1)

Florent Ygouf

April 29, 2019

Abstract

We classify the non arithmetic rank one affine manifolds that do not arise from
Veech surfaces in H(3, 1) and Hodd(2, 2). We also give rigidity results on the isoperiodic
leaf of non arithmetic Veech surfaces.

1 Introduction

1.1 Context and results

The moduli space of pairs (X,ω) where X is a genus g ≤ 1 Riemann surface and ω is a
non vanishing holomorphic 1-form on X carries a natural action by GL+

2 (R) which is a
generalization of the action of GL+

2 (R) on the space of flat tori GL+
2 (R)/SL(2,Z). This

action preserves the stratification of the moduli space induced by the combinatorics of the
singularities, and the classification of the closed invariant sets of the strata is a central
problem in Teichmüller dynamics. Such a classfication in genus 2 has been initiated by K.
Calta in [13] and by McMullen in [8]. In particular, the latter proved that the orbit of a
surface (X,ω) is either closed, dense, or contained in a locus of surfaces whose jacobian
have a special property called ”Real multiplication by a quadratic order”, with ω being
an eigenform. See section 2 for more details. McMullen also discovered a generalization
of those objects in higher genera and provided an infinite sequence of non trivial closed
invariant sets ΩED, parametrized by their discriminantD. Those loci will play a central role
in the remainder of this text. The question of the classification of closed orbit in genus 2 has
as been addressed by P. Hubert and S. Lelièvre in [21], then later by E. Duryev in [20], but is
still incomplete. E. Lanneau P. Hubert and M. Möller have contributed to the classification
in genus 3 in [23]. Since, much effort has been made toward a classification in higher genera,
but the question is still wide open. However, Eskin, Mirzakhani and Mohammadi proved a
deep structural result on the closed invariant sets: they are immersed manifolds cut out by
linear equations with real coefficients. Such objects are usually referred to affine manifolds.
This result opened the way to new powerful tools, and has been the starting point of every
classification result obtained so far. Wright strengthened the conclusion of this result and
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proved that the coefficients of equations defining the manifold belongs to a number field
whose degree is bounded above by the genus. This number field will be referred to as
the field of definition. Wright also introduced an important numerical invariant called the
rank rk(M). This is a modified version of the dimension and it measures the size of affine
manifolds up to isoperiodic deformations. See [1] for more details. Mirzhakani conjectured
that arithmetic affine manifolds whose rank is bigger than 2 should arise from covering
construction over quadratic differentials. Arithmetic means here that the field of definition
is Q. This conjecture is now known to be false due to work of A. Eskin, C. T. McMullen, R.
E. Mukamel and A. Wright in [22] but counterexamples are expected to be rare. Mirzakhani
and Wright proved in [18] that the only affine manifolds of maximal rank are the strata
themselves and the hyperelliptic locus of those strata. Then, Apisa proved in a serie of
papers [16] and [17] that the orbits of translation surfaces in the hyperelliptic strata are
either closed, dense, or are contained in loci of branched covers. Finally, a classification of
affine manifolds with rk(M) ≥ 2 in genus 3 has been obtained by Nguyen and Aulicino in
[4] and [3]. In this paper, we pursue the classification in genus 3, and prove :

Theorem A. LetM be a proper non arithmetic affine manifold in Hodd(2, 2). Then k(M)
is a totally real quadratic number field of discriminant D and M is a connected component
of ΩED(2, 2).

Here, an affine manifold is said to be proper if it is either a closed orbit or the whole
statum. The connected components of ΩEoddD (2, 2) have been classified by Lanneau and
Nguyen in [9]. In particular, this gives an alternative proof in this setting of the fact that
k(M) is totally real. In the stratum H(3, 1), the situation is different, and we prove :

Theorem B. There are no proper non arithmetic affine manifold in H(3, 1).

Notice that to establish theorem A and B, we only need to consider rank one affine manifolds
as lemma 6.5 of [2] implies that if M is non arithmetic, then rk(M) = 1.

1.2 Outline of the proof

The techniques we use rely on deformation, known as cylinder deformations, of the flat
geometry of translation surfaces initiated by Wright in [1]. For a horizontally periodic
translation surface (X,ω), the horocycle flow (the action of the one parameter subgroup
of unipotent matrices in SL2(R) and the Rel flow (see section 3 for more details) read as
linear flows on a torus. Their orbit closures are thus given by rational subtori and their
equations are linked to the equations defining the affine manifoldM. The non arithmeticity
of the latter is a necessary condition for non trivial intersection of the subtori. This
non triviality implies that equations defining the two are not independent. In particular,
since the equations given by the Rel flow only involve the circumferences of the cylinders
while the equations induced by the horocycle flow are expressed with the circumferences
and the height of the cylinders, one would expect equations on the height. This is the
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object of proposition 3.2. To implement this strategy, we crucially need the existence of
cylinder decompositions. This is obtained through the complete periodicity property that
prevails in rank 1. More details can be found in section 3. However, this strategy fails
if there are what we call non mixed cylinders: those are cylinders not affected by the
isoperiodic deformations. The circumferences of such cylinders therefore do not intervene
in the equations obtained. In appendix A, we give a list of the cylinder decompositions
in the strata at stakes. This allows us to show that there is always a decomposition with
only mixed cylinders in H(2, 2). We then look at how the equations on the heights given
by proposition 3.2 transpose for the surfaces in this list: they rule out all the surfaces
except one. We repeatedly apply the same argument in different direction keeping in mind
that equations on the heights in one direction give equations on the circumferences in other
directions. After having collected all the equations obtained, we then show that the surface
has a prym involution. We conclude with a criterion given by McMullen to recognizes Prym
eigenforms. For the stratum H(3, 1), the situation is different and we cannot rule out the
existence of non mixed cylinders. We show that this translates in a trivial intersection of
the subtori, which in turn implies the commensurability of the mixed cylinders in a way
that is not compatible with non arithmeticity.

1.3 Organisation of the paper

We start by recalling basic definitions for the moduli space of translation surfaces in Section
2. In section 3 we collect the important results we will use in the course of our proofs.
Section 3.4 is dedicated to the proof of Theorem A. We also draw a corollary on the leaf of
Veech surfaces in Hodd(2, 2). Section 5 is dedicated to the proof Theorem B , and we draw
the same corollary as in the previous section in the stratum H(3, 1). Finally, Apprendix A
provides a list of the possible stable cylinder decompositions in H(2, 2) and H(3, 1).

2 Framework

Let g ≥ 1 and let κ be an integer partition of 2g − 2. We define H(κ) to be the set of
isomorphism classes of pairs (X,ω) where X is a genus g Riemann surface and ω is a non
vanishing holomorphic 1-form on X whose zeroes have multiplicities given by α. We also
define H̃(κ) to be the set of isomorphism classes of marked tranlation surfaces (X,ω, f)
by adding a marking f : S → X, where S is a fixed genus g surface, and such that the
preimage of the singularity of ω by f is a subset Σ Define the following map, called the
period map :

Φ :
H̃(κ) → H1(S,Σ,C)

(X,ω, f) 7→ (γ 7→
∫
f◦γ ω)

There is a complex structure on H̃(κ) that turns Φ into a local biholomorphism. The
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set H(κ) is then endowed with the complex orbifold structure that turns the canonical
projection π : H̃(κ)→ H(κ) into local biholomorphism. Most of the issues arising through
the orbifoldic points can be resolved by passing to a finite cover of the moduli space and
we will implicitely do so in the remainder of this text. H̃(κ) is endowed with an group
action by GL+

2 (R) defined by :

∀g ∈ GL+
2 (R) Φ(g · (X,ω, f)) = g · Φ(X,ω, f)

That action descends to an action on H(κ) in a way that the canonical projection π is
GL+

2 (R)-equivariant. More details on the structures of theses spaces can be found in [12]
or [14].

Definition 2.1 (affine manifold). A closed connected subset M of H(κ) is said to be an
affine manifold if for any X ∈M, there is a section s of π defined on a neighborhood U of
X, and a subspace V ∈ H1(S,Σ,R) such that Φ ◦ s (U ∩M) = Φ ◦ s (U) ∩ V ⊗C. Such a
V is called a local model of M around X.

Affine manifolds are invariant under the action of GL+
2 (R) and Eskin, Mirzakhani and

Mohammadi proved in a celebrated result that the converse is true. More details can be
found in [6]. An important numerical invariant associated to these loci is the rank, defined
as follows: define ρ : H1(S,Σ,C)→ H1(S,C) to be the canonical restriction map, and for
any X inM, take a local model V ofM. Avila, Eskin and Moëller proved in [24] that ρ(V )
is a symplectic subspace of H1(S). The rank ofM, denoted rk(M), is then defined as half
the dimension of this space. More details can be found in [1]. The following definition will
be important for the remainder of this text :

Definition 2.2. Let M be a affine manifold. The field of definition of M is the smallest
subfield k(M) of R such that any local model of M can be written as V = V0 ⊗k(M) R,
where V0 is a k(M)-vector space.

A particularly interesting family of rank 1 affine manifolds has been discovered by Mc-
Mullen in [7]. We recall here the definition. Let (X,ω) be a translation surface endowed
with a holomorphic involution τ . We denote by Ω(X) the set of holomorphic 1-forms,
and by Ω−(X) the set of τ -anti invariant holomorphic 1-forms. We say that (X,ω) is
a Prym form is ω ∈ Ω−(X), that is τ∗ω = −ω, and dimΩ−(X) = 2. The Prym variety
Prym(X,ω, tau) is defined as the 2-dimensional abelian variety Ω−(X)/H−1 (X,Z) endowed
with the polarization coming from the intersection form. We recall that a quadratic order
of discriminant D is a ring OD isomorphic to Z[X]/(X2 + bX + c), with D2 = b2 − 4c.

Definition 2.3. A Prym eigenform is a Prym form such that Prym(X,ω, τ) has real
multiplication by OD for which ω is an eigenform, ie End(Prym(X,ω, τ) contains a copy
of OD action by self adjoint endomorphisms, such that OD · ω = λ · ω, for a λ ∈ OD.
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3 Preparation of a toolkit

In this section, we collect the tools we will use.

3.1 Isoperiodic foliation and Rel flow

The stratum H(κ) is endowed with a foliation wich we describe in this section. It is usually
referred to as the isoperiodic foliation or the kernel foliation. It is defined as follows: let
ρ be the canonical restriction map from the relative cocycles H1(S,Σ,C) to the absolute
cocycles H1(S,C). The action of Γg on H1(S,Σ,C) preserves the kernel of this map and
since the transition functions on the moduli space are given by the action of Γg, the pull
backs of the kernel of ρ by the charts can be pieced together to form of foliation F of
dimension dim(kerρ) = |κ| − 1. The fact that Γg acts by permutation on Σ means that it
generally does not exist integrable flows on the leaves. However, if (X,ω) is a translation
surface in H(κ) one can still defined an action of TXFX×R on the leaf FX . It is defined as
follow: Consider Ĥ(κ) to the intermediate covering of H(κ) associated to the kernel of the
action by permutation of Γg on Σ, and denote by π̂ the canonical projection associated.
One can define on this space a foliation F̂ in the same way we did on H(κ). But now, the
transition functions of Ĥ(κ) acts by translation on ker(ρ), and this implies that the leaves
F̂ are canonically endowed with a flat structure and there is an associated geodesic flow.
Then, let (u, t) ∈ TXFX ×R, and chose a lift of (X,ω) in Ĥ(κ) associated to a section s of
π̂ defined around (X,ω). We define Reltu(X,ω) to be the image by π̂ of the surface in Ĥ(κ)
obtained by flowing for a time t along the geodesic flow in direction dXs(u). This surface
is canonically defined is does not depend on the choice of the section we made. Notice that
by construction Reltu(X,ω) belongs to FX . This action is usually referred to as the Rel
flow, even if it is not sensu stricto a flow, as we have already mentioned. Note that this
action might not be defined for all t: this is due to the fact that singularities might collide
along the orbits of this ”flow”.

3.2 Modifying the twist parameters

LetM be an affine manifold, and let (X,ω) be a translation surface inM. Suppose (X,ω)
has a cylinder decomposition into m cylinders. Denote by C1, · · · , Cm the collection of its
cylinders. for a given cylinder Ci, we denote by hi its height and ci its circumference. We
also denote γi = c−1

i , and µi = hiγ1. This last quantity is known as the modulus of the
cylinder. If C is a horizontal cylinder on X, we denote by ηC the element of H1(S,Σ,C)
that is dual to the homology class of the core curve of the cylinder, and denote by E
the subspace spanned by the ηC . Finally, denote by C(X) the connected component of
{Y ∈ H̃(κ)|Φ(Y ) ∈ Φ(X) + E}. It is proved in [19] the following result:

Proposition 3.1. The period map induces a diffeomorphism from C(X) to Φ(X) + E.
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We thus define a map f̃X form Rm to H̃(κ) that takes a tuple (x1, · · · , xm) to the surface of
C(X0) whose periods are given by Φ(X)+

∑
cixiηi. The action of Zm on Rm by translation

is intertwined by f̃ with the action of the subgroup of Γg spanned by the Dehn twists about
the core curves of the cylinders. Consequently, there is a map f : Rm/Zm to H(κ) that fits
into the following commutative diagram :

Rm

Rm/Zm

H̃(κ)

H(κ)

f̃X

fX

p π

We shall refer to the map fX as the twists map associated to X. We will need he following
result. We refer to [19] for a proof.

Lemma 3.1. There is a linear subspace VM(X) of Rm such that f−1(M) = p(VM). The
space VM is rational and its dimension is at most dim(M)− rk(M).

From now on, we assume that H(κ) is a stratum of surfaces with exactly two singularities,
and that the decomposition of X is stable: we mean by that that any component of
the boundaries of cylinders contain only one singularity. A cylinder on X is said to be
mixed if any cross-section is not an absolute cycle. By extension, we shall say that a
decomposition on X is mixed if all the cylinders are mixed. Denote by Cm the collection
of the mixed cylinders of X, and by γi the inverse of the circumference. denote by d the
algebraic degree of the δiγi (we mean the dimension of the Q-vector space spanned by these
numbers). There is an equivalence relation on Cm given by the sign of boundary of cross
sections. More precisely, let C1 and C2 be two mixed cylinder and chose a cross section σ1

and σ2 for each. Denote by ∂ the boundary map from H1(X,Σ) to H1(Σ). The image of
this map is one dimensional. Thus C1 and C2 are equivalent if ∂(σ1) is positively colinear
to ∂(σ2). There are two equivalence classes which we denote by C+ and C−. This relation
does not depend on the choice of representative we chose for (X,ω). Let δi be 1 if i ∈ C+,
−1 if i ∈ C− and 0 if i does not correspond to a mixed cylinder.

Proposition 3.2. The vectors (µ1, · · · , µm) and (δ1γ1, · · · , δmγm) belong to VM(X).

Proof. Set µ = (µ1, · · · , µm) and u = (δ1γ1, · · · , δmγm). The fact that the vector µ belongs
to VM(X) simply traduces the fact that f(t ·µ) = ht · (X,ω). Then, notice that Φ ◦ f̃(u)−
Φ(X0) evaluates to 0 on H1(S). It means that f(u) belongs to FX which is included inM
be assumption.

Remark. Taking the notation of the proof, if we set u0 = d0f(u), then f(t·v) = Reltu0(X).

Proposition 3.3. If d ≥ 2, any rational relation satisfied by the δiγi are also satisfied by
the coordinates of the elements of VM(X).
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Proof. Set u = (δ1γ1, · · · , δmγm). It is a classic result in dynamical systems that there is
a rational subspace V of Rm such that p(u) is the closure of the set {p(t · u) | t ∈ R}, and
V is the smallest rational subset that contains u, and its dimension equals the algebraic
degree of u. See [10] for more details. The assumptions imply that V has dimension at
least two, and is contained in VM(X) since the latter is rational by 3.1. But the dimension
of VM(X) is also bounded above by 2, hence V = VM(X). This implies that any rational
relation satisfied by the δiγi must define VM(X).

Corollary 3.1. If the horizontal decomposition of X is not mixed, then all the mixed
cylinders have commensurable circumference.

Proof. Let Ci be a non mixed cylinder and suppose the circumference were not commen-
surable. Then δiγi = 0 is a rational relation and it must be satisfied by the coordinates of
the vectors of VM(X). This cannot hold as µ is an element of VM(X) by proposition 3.2,
and its i-th coordinate does not vanish.

Proposition 3.4. If d ≥ 2, two non equivalent cylinders can not have commensurable
circumference.

Proof. Suppose to a contradiction that two non equivalent cylinders C1 and C2 have a
commensurable circumference, and say C1 belongs to C+. There is thus a positive rational
number p such that γ1 = qγ2 = −qδ2γ2. By proposition 3.3, it implies that µ1 = −qµ2.
This is a contradiction as moduli are positive numbers.

Corollary 3.2. If d ≥ 2, any pair of mixed cylinders with commensurable circumference
have same height.

Proof. Let C1 and C2 be two mixed cylinders with commensurable circumference. Since
d ≥ 2, proposition 3.4 implies these cylinders are equivalent. Take a rational number q
such that γ1 = qγ2. By 3.3, it implies that µ1 = qµ2 = γ1

γ2
µ2. This equation is exactly

h1 = h2.

Now, we say that two cylinders are adjacent if they share a saddle connection on their
boundaries, and that they are 2-adjacent if they share two saddle connections, one on each
boundary. Finally, denote by C±0 the collection of cylinders whose height is min{hC | C ∈
C±}. Denote by C±1 the complementary of C±0 in C±.

Proposition 3.5. Suppose d ≥ 2. If there is a cylinder in C+
0 that is 2-adjacent to a

cylinder in C−0 , but not adjacent to any cylinder in C+
1 , then the circumferences of the

cylinders in C+
1 are commensurable.

Proof. Suppose C1 and C2 are as in the statement with C1 in C+ and denote by h the height
of the cylinders in C+

0 . Up to replacing the δi by −δi, we can suppose δ1 = 1, and define
X ′ = Relh+ε

iu (X). Notice that on X ′, the cylinders C1 and (Ci)i∈C1+ have persisted, but
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C1 is now in C−, while the cylinders in C+
1 in X stay in C+ on X ′. This comes from the

adjacency conditions. The following picture depicts the deformation of the cylinders 1 and
2.

× × ×

× ×
• • •

A

A

C1

C2

On the surface X

× × ×

×• • •

•
C1

On the surface X ′

Suppose that the circumference of the cylinders in C+
1 are not commensurable. Then, in

particular d ≥ 2, and since the dimension of VM is 2, there are rational numbers pi so that
γ1 =

∑
i∈C+1 piγi. Now, proposition 3.3 implies the follwing two equations :

µ1 =
∑

i∈C+1

piδiµi

−µ′1 =
∑

i∈C+1

piδiµ
′
i

Adding this two equations yields, using the fact µ′i = µi − h+ε
ci

if i ≥ 2, and µ′1 = µ1 + h−ε
c1

:

(ε− h)γ1 = µ1 − µ′1 =
∑

i∈C+1

piδi(µi + µ′i) =
∑

i∈C+1

piδi(2µi − (h+ ε)γi) = 2µ1 − (h+ ε)γ1

This equation simplifies to ε = h1, which is a contradiction.

3.3 The field of definition

In this section we recall a very useful formula for the field of definition of an affine manifold
M. It has been proved by Wright in [2].

Proposition 3.6. Let (X,ω) be a translation surface in M that is decomposed into m
cylinders whose circumferences are denoted by ci. Then, the following formula holds :

k(M) ⊆ Q[c2c
−1
1 , · · · , cmc−1

1 ]

Wright actually proved a stronger version and established the reciprocal inclusion if one
restrain to a subclass of cylinders, but we wont need such generality.
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3.4 Complete periodicity

The last tool we will need is the complete periodicity property. See ?? for more details.

Proposition 3.7. Let M be a rank one affine manifold, and let (X,ω) be a translation
surface in M. If there is a saddle connection on X in direction θ that joins a singularity
to itself, then X is periodic in direction θ.

4 The stratum Hodd(2, 2)

Theorem 4.1. Let M non absolute rank one affine manifold in H(2, 2)odd. If M is
non arithmetic, then k(M) is a totally real quadratic field, and M is a component of
ΩEoddD (2, 2), where D is the discriminant of k(M).

Proof. Appendix A provides a list of the cylinder decomposition in Hodd(2, 2). Notice that
only two of them have only mixed cylinders: the decompositions 3 and 4 in proposition
6.1. It can easily be checked that up to flowing along the leaf of X, we can suppose that
X is cylinder equivalent to one of the following two surfaces :

× × ×

× × ×

××

• • •

• • •
A

A C

C

B

B

1

2

3

4

Decomposition A

× × × ×

× × × ×

• •

• • • •

A

A

B

B

2

1

3 4

Decomposition B

We shall denote by τi, hi and ci respectively the twist, height and circumference of the
cylinder Ci (The twist is the period of a cross section, it is defined only mod ci). Suppose
(X,ω) has a cylinder decomposition as inA, and set γi = c−1

i . By proposition 3.2, the vector
(γ1,−γ2, γ3,−γ4) belongs to VM(X), and proposition 3.4 shows that the circumferences of
the cylinders 1 and 2 are not commensurable. Consequently, the twists of the cylinders 2
and 3 can be chosen independently. More precisely, there is a vector v ∈ VM so that fX(v)
is the following surface :

× × ×

× × ×

××

• • •

• ••
A

A C

C

B

B

1

2

3

4
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On that surface, the saddle connection drawn in red starts and ends at the same singularity.
By proposition 3.7 that implies that the vertical direction is completely periodic. There is
a small ε such that on Relεu(X) the vertical decomposition is stable, and the decomposition
must appear in the list provided in appendix A. On this surface the red saddle connection
borders a cylinders, and notice that the total angle along this cylinder is at least 3π. The
only cylinder decomposition that presents this feature is the decomposition A. That means
we can only consider this decomposition. From now on, (X,ω) is the following surface:

× × × ×

× × × ×

• •

• • • •

A

A

B

B

2

1

3 4

The surface (X,ω)

We shall start by proving that that two of the cylinders among {1, 3, 4} have same height.
By 3.2, u = (γ1,−γ2, γ3, γ4) belongs to VM(X). Its algebraic degree is 2 or else proposition
3.6 would imply thatM is arithmetic. If C+

0 has at least two elements, the claim is proved.
If not, the two remaining cylinders are commensurable by proposition 3.5 and corollary 3.2
implies that h1 = h4. Now, for the same reason as before, γ1 and γ2 are not commensurable,
and thus there is a v ∈ VM(X) such that on fX(v) the twists of the cylinder 1 and 2 equal
to zero.

× × × ×

× ×
× ×

• •

• • • •
2

1

3
4

A

A

C

C

B

B

The surface fX(v)

If the twist of C1 on the surface fX(v) equals 0, that means that v1 = − τ1
c1

. Since γ1 and
γ4 are rationally dependent, proposition 3.3 implies that u4 = γ4

γ1
u1 = c1

c4
u1 = − τ1

c4
, and

the twist of C4 is now τ4 − τ1. Notice that the dark grey part of the surface is crossed by
a vertical geodesic. By proposition 3.7, that implies that the vertical direction is periodic.
This is possible only if τ4− τ1 is a rational multiple of c4: let p, q two coprime integers such
that τ4−τ1 = p

q c4. The vertical cylinder decomposition is thus made out of three cylinders:
the white one, and the two grey ones. The circumference of the dark grey cylinder is h1+h2

and its height is c1, while the circumference of the light grey cylinder is q(h2 + h4) and its
height is c4

q . Applying proposition 3.2 to Relεu(X) gives c1 = c4
q , that is to say τ4−τ1 = pc1.
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Up to applying powers of the Dehn twist about the core curve of the cylinder C1, the twist
of the cylinders 1 and 4 are equal. We can replace (X,ω) with the following surface:

× × × ×

× ×
× ×

• •

• • • •

A

A

B

B

2

1

3
4

The surface (X,ω) now has a vertical cylinder decomposition into 3 cylinders that we have
colored once more in white, dark grey and light grey. The two greys cylinders have the
same circumference given by h1 + h2 = h2 + h4, and their heights are c1 and c4. Applying
proposition 3.2 to Relεu(X) gives that c1 = c4. Consequently, there is an involution that
takes the light grey cylinder to the drak gray one, while fixing the white one. Notice that
τ∗ω = −ω and that the genus of X/τ is 1. That means that τ is a Prym involution. To
conclude, we invoke theorem 3.5 in [7]. This theorem states that if the veech group of a
Prym form contains a hyperbolic element, then it is a Prym eigenform. The fact that any
invariant manifold contains a surface that has a hyperbolic element in its veech group is a
consequence of a closing lemma for the Teichmüller flow that we can find, for instance, in
[2]. This concludes the proof.

Proposition 4.1. If X is a non arithmetic Veech surface in Hodd(2, 2) that is not contained
in the Prym locus, then the subset G · FX is dense in Hodd(2, 2).

Proof. LetM be the closure of G ·FX . This is an affine manifold as it is connected, closed,
and GL+

2 (R) invariant, and it is non absolute. Its rank is at least two, as otherwise theorem
A would imply that X is contained in a Prym locus. The work of Aulicino and Nguyen
(Theorem 1.1 in [4]) implies it can not be rank two either as the Prym locus is the only
non aboslute rank two affine manifold. Its rank is thus 3, and as it is saturated by the
isoperiodic foliation, this is actually the whole stratum Hodd(2, 2).

5 The stratum H(3, 1)
Theorem 5.1. Any non absolute rank one affine manifold in H(3, 1) is arithmetic.

Proof. Let M be a non absolute rank 1 affine manifold, and let (X,ω) be a horizontally
periodic surface in M. Notice that the dimension of KM(X) is one, and the dimension
of VM(X) is two. Appendix A provides a list of all the stable cylinder decompositions in
H(3, 1). We consider the first decomposition of the list. Up to modifying the twists and
height of the cylinder, the surface (X,ω) is as follows :
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× ×

× ×

• • • •
• • •

• •

A

A

C

C

1

2

3

4

Denote by c1 the circumference of the cylinder Ci, and by γi = c−1
i . By proposition 3.2,

u = (γ1, 0,−γ2, γ3) is an element of KM(X). The algebraic degree of this deformation is at
most 2. However, if it were to be 2, then by proposition ??, every vector in VM(X) would
have a vanishing second coordinate, and that is not the case of (µ1, · · · , µ4). Therefore
the circumference of the cylinders 1, 2 and 4 are pairwise rationally dependent. Note that
proposition 3.6 is of no help at this stage to prove thatM is arithmetic as we do not know
anything yet on the circumference of the second cylinder. The remaining of the argument
is to prove that c2 is indeed commensurable to the circumference of the other cylinders.
To do so, consider the surface Y = Relh3+ε

iu (X), where h3 is the height of the cylinder 3
and ε is small enough. The deformation is depicted in the following picture:

× ×

× ×

• • • •
• • •

• •

A

A

C

C

the surface (X,ω)

× ×

× ×• • • •
• • •

• •

•
A

A

C

C

the surface Relh3+ε
iu (X)

For the same reason as previously, on the surface Y the cylinder 1, 2 and 4 are pairwise
commensurable. But notice that the circumferences of the cylinder 2 or 3 are the same on X
and Y . This concludes that all the cylinders of (X,ω) are commensurable. Proposition 3.6
shows that M is thus arithmetic. The scheme of proof can be used for the decomposition
1, 2, 3, 4, 5 and 6. To deal with the other two cases, note that the surface can be deformed
thought the horocycle flow and the Rel flow so that the vertical direction is periodic with
one non mixed cylinder. It means that the vertical decomposition falls in the previous list.
This concludes the proof.

Corollary 5.1. If (X,ω) is a non arithmetic Veech surface in H(3, 1), then the subset
GL+

2 (R) · FX is dense in H(3, 1).

Proof. Let M be the closure of GL+
2 (R) · FX . It is an affine manifold. If its rank were

one, then M would be non arithmetic and this is a contradiction with Theorem B. The
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rank of M is then at least 2, but Nguyen and Aulicino proved that there are no rank 2
affine manifold in H(3, 1). Therefore the rank of M is 3, and M is the whole stratum
H(3, 1).
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6 Appendix : Stable Cylinder decompositions in H(2, 2) and
H(3, 1)

In this appendix, we give the possible stable cylinder decompositions inH(2, 2), andH(3, 1).
More formally, two periodic tanslation surfaces are said to be cylinder equivalent if one is
obtained from the other by modifying the height and twist parameter of the cylinders. We
prove the following three propositions :

Proposition 6.1. If (X,ω) is a horizontally periodic translation surface in Hodd(2, 2),
then it is cylinder equivalent to one of the following translation surfaces:

× ×
× × ×

× × ×

• • •
• • •

C

C

A

A

B

B

1.

• • •
• • •

× × ×
× × ×

× ×

A

A

2.

• • •

• • •

••

× × ×

× × ×
A

A C

C

B

B

3.

× × × ×

× × × ×

• •

• • • •

A

A

B

B

4.

Proposition 6.2. If (X,ω) is a horizontally periodic translation surface in Hhyp(2, 2),
then it is cylinder equivalent to one of the following translation surfaces:

• • •

• • •

× ×

× × × ×

× ×

A

A

B

B

1.

× × × ×

× × × ×

• •

• • • •

B

A

A

B

2.

• • • •

• • ••
× × × × × ×

A

A

B

E

C

C

D

D

B

E

3.

Proposition 6.3. If (X,ω) is a horizontally periodic translation surface in H(3, 1), then
it is cylinder equivalent to one of the following translation surfaces:
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× ×

× × ×

• • • •
• • •

• •

A

A

B

B

C

C

1.

× ×

• • •

• • • •
× × ×

• •

B

A

A

B

C

C

2.

××

• ••

• • • •
× ××

••

B

A

A

B

C

C

3.

• • •
• •

• • •
××
•

×

× ×

A

A

B

B

C

C

4.

• • •

• • •
• • •

× × ×

× ×

A

A

B

B

C

C

4.

× ×

× × ×
• • • • •

• • • •

A

A

B

B

C

CD

D

6.

• • • • •

• • • • • •
× × ×

A

A

B

B

C

C

D

D

7.

We start by giving a common framework to study cylinder decompositions of translation
surfaces.

Definition 6.1. A prediagram of separatrices is a quadruplet Γ = (E, σ, τ, θ), where τ is
a fixed point free involution of E, σ is a permutation of E and θ is a map from E/τ → E
such that p ◦ θ = id, where p : E → E/τ is the canonical projection.

The elements of E are called edges. An edge γ in E is said to be positively oriented if
θ ◦ p(γ) = γ and negatively oriented if θ ◦ p(γ) = τ(γ). The set of positively oriented
edges will be denoted by E+ and the set of negatively oriented edges will be denoted
by E−. A cylinder component is defined as an orbit of σ∞ := σ ◦ τ . Such a cylinder
component is said to be positively oriented if it corresponds to a positively oriented edge,
and negatively oriented otherwise. We denote by C+ and C− the set of positively and
negatively oriented cylinder components. A pairing of cylinder components is a bijection
from C+ to C−. Finally, we define a metric on Γ as a strictly positive τ -invariant function l
on E, and we consider its natural extension l̂ to the set of cylinder components defined by
l̂(c) :

∑
n l(σ

n
∞(γ)), where c is the cylinder component associated to γ. Such an object can

be encoded by a directed graph with additional information. Its set of vertices is the set of
orbits of σ, and its set of edges is E/τ . Set p0 : E → E/σ to be the canonical projection.
The beginning of an edge is p0 ◦θ(e), and its end is p0 ◦ τ ◦θ(e). There is an cyclic ordering
on the star of each vertex define by σ. In figure ? is depicted the graph associated to the
alternating prediagram of separatrices ({1, · · · , 6}, id, (14)(23)(56), θ0), where θ0(i) = i for
any i ∈ {1, 2, 5}.
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1

2
3

4

5
6

The graph associated to ({1, · · · , 6}, id, (14)(23)(56), θ0)

Definition 6.2. A diagram of separatrices (Γ,m, l) is the data of an alternating prediagram
of separatrices Γ, together with a matching of its cylinder components and a metric l on Γ
that is invariant by m, that is l̂ ◦m = l̂.

To any translation surface (X,ω) ∈ H(κ), there is a canonical diagram of separatrices
Γ(X,ω) associated. It is defined as follows : The set E is the collection of all geodesics rays
γ : [0, 1]→ X, such that γ−1(Σ) = {0, 1}, and γ∗(Im(ω)) = 0, taken up to reparametriza-
tion. We define τ to be the orientation reversing map : τ(γ)(t) : τ(γ)(1 − t). For any
γ ∈ E, there is a chart around γ(0) that takes ω to zkdz; where k is the order of the sin-
gularity. The germs of geodesic ray that begins at γ(0) is thus invariant by multiplication

by e
2iπ
k+1 , and the germ of a geodesic ray at its beginning completely determines it. We

thus define σ(γ) to be the geodesic ray whose germ at its beginning is the one of e
2iπ
k+1γ.

Finally, to define θ we need to define a map that is τ -invariant. If γ is in E, we define
θ(γ) = γ if γ∗(Re(ω)) > 0, and θ(γ) = τ(γ) otherwise. The metric on Γ(X,ω) is given
by l(γ) = |

∫
γ ω|. Note that the orbits of σ∞ are in correspondence with oriented core

curves of cylinders. The matching m is then defined to map the orbit that corresponds to
the positively oriented core curve to the one that corresponds to the negatively oriented
core curves of the same cylinder. In the reverse direction, to any diagram of separatrices
Γ there is horizontally periodic translation surface (XΓ, ωΓ). It is defined in the following
way: Replace any γ ∈ θ(E/τ) by a strip of length l(γ), and replace any element in E/σ
by a disk. The permutation σ defines a cyclic ordering on any orbit. Using this ordering,
one can glue the strips to the disks. We get a topological surface with boundary, and the
boundary components correspond to orbits of σ∞. Since by requirement, the paired com-
ponents have same length (defined by l̂) we can glue those components using the pairing,
and we get a horizontally periodic flat surface in H(κ), where |κ| is the cardinal of E/σ
and ki is half the cardinal of the orbit i minus 1. The fact that the cardinal of an orbit is
even comes from the alternating condition.

Two prediagrams of separatrices Γ1 = (E1, τ1, σ1, θ1) and Γ2 = (E2, τ2, σ2, θ2) are isomor-
phic if there is a map ϕ : E1 → E2 such that ϕ ◦ σ1 = σ2 ◦ ϕ, ϕ ◦ τ1 = τ2 ◦ ϕ, and
ϕ(E1

+) = E2
+, or equivalently ϕ ◦ θ1 = θ2. Finally, two diagrams of separatrices (Γ1, l1,m1)

and (Γ2, l2,m2) are isomorphic if there is an isomorphism of prediagram of separatrices ϕ
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between the two such that l2 ◦ ϕ = l1, and if two cylinders components on Γ1 associted to
the orbits of γ1 and γ2 are paired by m1, then the cylinder components of Γ2 associated to
ϕ(γ1 and ϕ(γ2) are paired by m2.

Proposition 6.4. Two horizontally periodic translation surfaces (X1, ω1) and (X2, ω2) in
H(κ) are isomorphic to cylinder equivalents surfaces if, and only if, the associated diagrams
of separatrices are isomorphic.

We refer to [15] for a proof of that result.

Definition 6.3. A connected component of a prediagram of separatrices of Γ = (E, σ, τ, θ)
is a subset E′ of E that is preserved by both σ and τ .

If E′ is a connected component of Γ, there is an induced prediagram of separatrices
(E′, σ|E′ , τ|E′ , θ|p(E′)).

Definition 6.4. A prediagram of separatrices (E, τ, σ, θ) is said to be stable if τ preserves
the orbits of σ.

In this setting a minimal connected component is said to be minimal if σ acts transitively on
E. We can define the type a minimal connected component as follows : Let x be a positively
oriented edge of the minimal component. Thus any positively oriented edges can be written
as σ2k(x), and any negatively oriented edge can be written as σcn(2l)(x). Since τ reverses
the orientation, there is a map f ∈ Sn such that for any k : τ ◦ σ2k(x) = σcn(2f(k))(x).
The group H = 〈cn〉 acts by conjugation on Sn and the type of the component is defined
as the orbit of f under this action. The fact that we defined f up to conjugation by H
comes from the fact we could have chosen any other even iteration of x as a generator of
the orbit. More generally, we say that Γ is of type (fi) if the type of the minimal connected
components are given by the fi.

Proposition 6.5. Two stable alternating prediagrams are isomorphic if, and only if, they
have the same type.

Proof. It is enough to prove the result for minimal connected components : Let Γi =
(Ei, σi, τi, θi) for i ∈ {1, 2} be two minimal prediagrams of same type. Pick xi in Ei
that is positively oriented and define fi such that τi(σ

2k(xi)) = σ2(fi(k)+1). Saying that the
diagrams have the same type means there is l such that f2 = cln◦f1◦c−ln . Define ϕ such that
for all j ϕ(σj1(x1)) = σ2l+j

2 (x2). We claim that ϕ is an isomorphism of prediagram. Indeed,

let ζ ∈ E1, and pick j such that σj(x1) = ζ. Thus ϕ◦σ1(ζ) = ϕ◦σj+1(x1) = σ2l+j+1
2 (x2) =

σ2(σ2l+j
2 (x2) = σ2 ◦ ϕ(σj1(x1)) = σ2 ◦ ϕ(ζ). Then, τ2 ◦ ϕ(σ2k

1 (x1)) = τ2 ◦ σ2(k+l)
2 (x2) =

σ
2f2(k+l)+1
2 (x2) = σ

2cln◦f1◦c−ln (k+l)+1
2 (x2) = σ

2(f1(k)+l)+1
2 (x2) = ϕ◦σ2f1(k)+1

1 = ϕ◦τ1(σ2k(x1)).
By construction, ϕ(E1

+) = E2
+. Reciprocally, if there is an isomorphism of prediagrams

between Γ1 and Γ2, then ϕ(x1) = σ2l
2 (x1), and then f2 = cln ◦ f1 ◦ c−ln .
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We denote by Γ the prediagram (E, σ, τ, τ ◦ θ). if Γ corresonds to a surface (X,ω), then Γ
corresponds to the surface (X,−ω). Note that if (X,ω) is represented by a polygon P, the
surface (X,−ω) is represented by the image of the polygon by the rotation of angle π.

Proposition 6.6. Let Γ be a minimal stable alternating prediagram of type f . The type
of Γ is given by (f ◦ cn)−1.

Proof. Let x ∈ E be positively oriented, and such that τ ◦ σ2k(x) = σ2f(k)+1. Then σ(x)

is positively oriented on Γ. And τ ◦ σ2j(σ(x)) = σ2f−1(j)(x) = σ2c−1
n (f−1(j))(σ(x)).

These propositions enable us to enumarate all the possible stable alternating prediagrams
up to isomorphism, we shall represent only the surface associated to Γ or Γ as one is
obtained from the other by a rotation of angle π.

7 Stable cylinder decompositions in Hodd(2, 2)

Let (X,ω) be a stable horizontally periodic translation surface in Hg(2, 2), and denote by
Γ(X,ω) the prediagram associated. The types of the minimal connected components of
Γ(X,ω) are, up to reversing the orientation, either idS3 , (123) or (12)(3).

1

2
3

4

5
6

3. (12)(3)

1

2
3

4

5
6

1. idS3

1

2
3

4

5
6

2. (123)

Fig. The possible types for the components of Γ(X,ω)

Indeed, the permutation given in the previous picture generates the group S3/H3. The
isomorphism class of the prediagram Γ(X,ω) is thus completely determined by the choice
of one of the three types for its two minimal connected components, together with an orien-
tation on those minimal components. This orientation cannot be determined arbitrarily as
there is a pairing on the orbits of σ∞. The components of type 1 and 3 both have 4 cylinder
components, while the type 2 has 2 components. A pairing is possible only if there an even
number of cylinder components, half of them being positively oriented, and the other half
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being negatively oriented. Hence the type of Γ(X,ω) is, up to reversing the orientation on
minimal components, either : (1, 1), (2, 2) or (2, 3). The reason Γ(X,ω) can not be of type
(1, 2) is the fact the type 1 minimal components has the same number of positively and
negatively cylinder components, while the type 2 one has 3 cylinders components with the
same orientation and only one with the opposite orientation.

7.1 Stable cylinder decompositions of type (1, 1)

The two minimal components need to be oppositely oriented so that a pairing is possible.
The associated graph is planar and we can identify cylinder components to connected
components of the plane once the graphs are removed. We have named those orbits by
letters when they are positively oriented, and with a digit when they are negatively oriented.

bc

d

1

23

4

a

The prediagram of Γ(X,ω) in the type (2, 2) case

We will denote a pairing by an ordered quadruple of letters. The cylinder components whose
label appears first is matched with the cylinder components labeled by 1 etc. For instance,
in the pairing labeld by (acbd), the first components a is paired by the components 1, the
component c with the components 2, etc. Here, for metric reason, the cylinder component
denoted by 1 is necessarily paired with a. We can also assume that 2 is paired with b. We
depict the two corresponding surfaces associated:

× × × ×

× × × ×

• •

• • • •

A

A

B

B

c
4 2

d

a
1

b

3

(abcd)

× × × ×

× × × ×

• •

• • • •

B

A

A

B

b
2 4

d

a
1

c

3

(abdc)

7.2 Stable cylinder decomposition of type (2, 2)

Here, any choice of orientation produces isomorphic prediagrams, so we can chose an
arbitrary orientation on each minimal component.
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The prediagram of Γ(X,ω) in the type (2, 2) case

In this case there is only one possible pairing that produces a connected tranlsation surface.
The associated surface is represented in the following picture.

• • • •

• • ••
× × × × × ×

A

A

B

E

C

C

D

D

B

E

7.3 Stable cylinder decomposition of type (3, 3)

Here, Any choice of orientation produces isomorphic prediagrams, so we can chose an arbi-
trary orientation on each minimal connected component. Here again, the graph associated
to the minimal connected components is planar. We use the same notation as in the
previous section.

a

2

b

1

c

4

d

3

The prediagram of Γ(X,ω) in the type (1, 1) case

There are a priori 24 pairing possible. However, the following 4 represent non connected
surfaces : (abcd), (abdc), (bacd), (badc), and on the following 13 there are compatible
metric :

20



1. (acdb). If la = l1, then l2 = lb. But lb must be equal to l4, while l2 must be equal to
lc, and thus lc = l4. However, lc should be strictly greater than l4.

2. (adbc). The pairing would give lc = l4, while we should get that l2 is strictly greater
than l4.

3. (bdca) The pairing would give l1 = lb, while we should get that l1 is strictly greater
than lb.

4. (bcad). The pairing would give l1 = lb, while we should get that l1 is strictly greater
than lb.

5. (cbda). The pairing would give ld = l3, while we should get that l3 is strictly greater
than ld.

6. (cabd). The pairing would give l2 = la, while we should get that la is strictly greater
than l2.

7. (bcda). The pairing would give l1 = lb, while we should get that l1 is strictly greater
than lb.

8. (dabc). The pairing would give lc = l4, while we should get that l2 is strictly greater
than l4.

9. (dbac). The pairing would give lc = l4, while we should get that l2 is strictly greater
than l4.

10. (bdac). The pairing would give l1 = lb, while we should get that l1 is strictly greater
than lb.

11. (cadb). The pairing would give ld = l3, while we should get that l3 is strictly greater
than ld.

12. (dacb). The pairing would give l2 = la, while we should get that la is strictly greater
than l2.

13. (dcba) For metrical reason, we have la is greater than l2, and likewise lc greater than
l4. How ever the pairing requires l2 = lc, thus we get that l4 is greater than la. But
the pairing would imply that l4 equals la.

We depict the surfaces associated to the other diagrams:
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a

1

b

3

(dcab)

Finally, notice that the first two diagrams are isomorphic, as well as the last two. The
isomorphism is, in both case the one that exchanges the two components while commuting
with both σ and τ . Intuitively, the corresponding isomorphism at the level of the surfaces
swap the singularities.

8 Stable cylinder decompositions in H(3, 1)
The types of the minimal connected components of order 3 of Γ(X,ω) are, up to reversing
the orientation, either (1)(243), (1)(3)(24), (1)(234), (13)(24) or idS4 , and the type of the
minimal component of order 1 is, up to reversing the orientation, idS2 .
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3. (1)(234)

1

2
3

4

5
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4. (13)(24)

1

2
3

4

5

6
7

8

5. idS4

1
2

3
4

6. idS2

Fig. The possible types for the components of Γ(X,ω)

The types 1 and 3 both have 3 cylinder components with the same orientation and 2 with
the opposite orientation, while types 3 and 4 have both 2 cylinder components with the
same orientation and only one with the reverse orientation. The type 5 has 4 cylinder
components with one orientation and 1 with the oppposite orientation. The type 6 has two
cylinder component with the same orientation, and one with the reverse orientation. With
the pairing condition, we deduce that Γ(X,ω) can be type (1, 6), (2, 6), (3, 6) or (4, 6).

8.1 Stable cylinder decomposition of type (1, 6)

The following picture depicts the only possible orientation. Here again, the associated
graphs are planar, and we label the components with letters and digits.

a

b
1

2

3

c

d

4

Here as well, we will denote a pairing by an ordered quadruple of letters. There are a priori
24 pairing possible. However, the following 18 cannot be endowed with a positive metric :
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1. (abcd). doeses not have a metric solution since λa > λ1

2. (abdc). does not have a metric solution since λa > λ1

3. (acbd). does not have a metric solution since λa > λ1

4. (acbd). does not have a metric solution since λa > λ1

5. (adbc). does not have a metric solution since λa > λ1

6. (adcb). does not have a metric solution since λa > λ1

7. (bacd). does not have a metric solution since λb − λ2 − λ3 = λ1 − λa and λ2 = λa
together with λ1 = λb imply λ3 = 0.

8. (badc). does not have a metric solution since λb − λ2 − λ3 = λ1 − λa and λ2 = λa
together with λ1 = λb imply λ3 = 0.

9. (bcad). does not have a metric solution since λb − λ2 − λ3 = λ1 − λa and λ3 = λa
together with λ1 = λb imply λ2 = 0.

10. (bdac). does not have a metric solution since λb − λ2 − λ3 = λ1 − λa and λ2 = λa
together with λ1 = λb imply λ3 = 0.

11. (cabd). does not have a metric solution since λ3 < λb

12. (cbad). does not have a metric solution since λ2 < λb.

13. (cbda). does not have a metric solution since λ2 < λb.

14. (cdba). does not have a metric solution since λ3 < λb.

15. (dabc). does not have a metric solution since λ2 < λb.

16. (dbac). does not have a metric solution since λ2 < λb.

17. (dbca). does not have a metric solution since λ2 < λb.

18. (dcba). does not have a metric solution since λ3 < λb.

We depict the surfaces associated to the other diagrams:
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To conclude, notice that the diagrams 1 and 2 are isomorphic, as well as 3 and 5, and 4
and 6.

8.2 Stable cylinder decompositions of type (2, 6)

The following picture depicts the only possible orientation. Here again, the associated
graphs are planar, and we label the components with letters and digits.

a

1
b

2

c

3

4

d

The prediagram of Γ(X,ω) in the type (2, 6) case

We continue to denote a pairing by an ordered quadruple of letters. There are a priori 24
pairing possible. However, the following 18 cannot be endowed with a positive metric :

1. (abcd). Does not have a metric solution as λ1 > λa.

2. (abdc). Does not have a metric solution as λ1 > λa.
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3. (acbd). Does not have a metric solution as λ1 > λa.

4. (acbd).Does not have a metric solution as λ1 > λa.

5. (adbc).Does not have a metric solution as λ1 > λa.

6. (adcb).Does not have a metric solution as λ1 > λa.

7. (bacd). Does not have a metric solution as λd > λ4.

8. (badc). Does not have a metric solution as λd > λ4.

9. (bcad).Does not have a metric solution as λd > λ4.

10. (bcda). Does not have a metric solution as λ2 > λc.

11. (bdac). Does not have a metric solution as λ1 − λa = λb − λ2 together with λb = λ1

imply λa = λ2. But λa = λ3 + λ4; and thus if λa = λ3 then λ4 = 0.

12. (bdca). Does not have a metric solution as λ1 − λa = λb − λ2 together with λb = λ1

imply λa = λ2. But if λ2 = λd then λa = λ3 + λ4; and thus if λa = λ4 then λ3 = 0.

13. (cabd).Does not have a metric solution as λd > λ4.

14. (cadb). Does not have a metric solution as λd > λ4.

15. (cbad). Does not have a metric solution as λd > λ4.

16. (cbda). Does not have a metric solution as λd > λ3.

17. (dcab).Does not have a metric solution as λd > λ4.

18. (dcba).Does not have a metric solution as λd > λ4.

We depict the surfaces associated to the other diagrams:
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To conclude, notice that the four first diagrams are isomorphic, as well as the last two.

8.3 Stable cylinder decomposition of type (3, 6)

In this case, only one choice of orientation is valid. There are two possible diagrams but
one is obtain from the other by rotating the order one singularity and thus the diagrams
are isomorphic.

The prediagram of Γ(X,ω) in the type (2, 6) case

We depict the only surface associated :
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8.4 Stable cylinder decomposition of type (4, 6)

In this case, only one choice of orientation is valid. There are two diagrams but one is
obtained from the other by rotating the order one singularity.

The prediagram of Γ(X,ω) in the type (2, 6) case

We depict the only surface associated:
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[24] A. Avila, A. Eskin, M. Möller, Symplectic and Isometric SL2(R)-invariant subbundles
of the Hodge bundle

30



Bibliography

[Api17] Paul Apisa. Rank one orbit closures in Hhyp(g− 1, g− 1). arXiv preprint
arXiv:1710.05507, 2017.

[CDF15] Gabriel Calsamiglia, Bertrand Deroin, and Stefano Francaviglia. A trans-
fer principle: from periods to isoperiodic foliations. arXiv preprint
arXiv:1511.07635, 2015.

[DS16] Hieu Trung Do and Thomas A Schmidt. New infinite families of pseudo-
anosov maps with vanishing sah-arnoux-fathi invariant. arXiv preprint
arXiv:1603.01665, 2016.

[EMM15] Alex Eskin, Maryam Mirzakhani, and Amir Mohammadi. Isolation,
equidistribution, and orbit closures for the SL2(R action on moduli space.
Annals of Mathematics, pages 673–721, 2015.

[FM11] Benson Farb and Dan Margalit. A primer on mapping class groups.
Princeton University Press, 2011.

[FM13] Giovanni Forni and Carlos Matheus. Introduction to teichmüller theory
and its applications to dynamics of interval exchange transformations,
flows on surfaces and billiards. arXiv preprint arXiv:1311.2758, 2013.
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