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Abstract
Wireless Sensor Networks (WSNs) technology is one of the building blocks of

the Internet of Things (IoT). Due to their features of easy deployment and flexibil-
ity, they are used in many application domains. Low-Power and Lossy Networks
(LLNs) are a special type of WSNs in which nodes are largely resources constrained.
For LLNs, convergecast is one of the basic traffic modes, where all traffic in the net-
work is destined to a predefined destination called the sink. While considering the
IoT application domains, convergecast is not the only traffic mode in the network.
The sink needs to send commands to certain sensors to perform actions. In this ap-
plication, anycast is another basic traffic mode. In anycast, the traffic from the sink
is destined to any member of a group of potential receivers in the network.

Traditionally LLNs are formed by static sensor nodes and rarely change posi-
tions. Due to the strict resource constraints in computation, energy and memory of
LLNs, most routing protocols only support static network. However, mobility has
become an important requirement for many emerging applications. In these appli-
cations, certain nodes are free to move and organize themselves into a connected
network. The topology would continuously change due to the movement of nodes
and radio links instability. This is a hard task for most routing protocols of LLNs to
adapt rapidly to the movement and to reconstruct topology in a timely manner.

The goal of this thesis is to propose an efficient mobility support for routing
protocols in LLNs. We focus on convergecast and anycast, which are the most used
traffic modes in LLNs, in mobile network scenarios.

We propose an enhancement mechanism, named RL (RSSI and Level), to support
routing protocols in convergecast LLNs in mobility. This mechanism helps routing
protocol make faster decisions for detecting mobility and updating next-hop neigh-
bors but suffers from high overhead. We propose a dynamic control message man-
agement to enhance the overhead performance of RL and implement it on top of
Routing Protocol for Low-power and Lossy network (RPL) and we named it RRD
(RSSI, Rank and Dynamic). After taking into account hysteresis of the coverage
zone of the transmission range of nodes, we optimized RRD. This enhanced ver-
sion is called RRD+. Based on RRD+, we proposed MRRD+ (Multiple, RSSI, Rank
and Dynamic) to support multiple sinks in convergecast LLNs in mobility. ADUP
(Adaptive Downward/Upward Protocol) is a routing solution that supports both
convergecast and anycast in LLNs concurrently.

We evaluated the performance of our contributions in both simulation using
Cooja simulator and experiment (only for ADUP) on TelosB motes. The results
obtained in both simulation and experiment confirm the efficiency of our routing
protocols.

Keywords: wireless sensor networks, low-power and lossy networks, converge-
cast, anycast, mobility, multiple sinks.





Résumé
La technologie des réseaux de capteurs sans fil (RCSF) est l’un des éléments

constitutifs de l’Internet des objets (IoT). En raison de leurs caractéristiques de dé-
ploiement facile et de leur flexibilité, ils sont utilisés dans de nombreux domaines
d’application. Les réseaux à faible consommation et à perte (LLN) sont un type
spécial de WSN dans lequel les nœuds sont largement limités en ressources. Con-
vergecast est l’un des modes de communication de base, dans lequel tout le trafic du
réseau est destiné à une destination prédéfinie appelée collecteur. Tout en prenant
en compte les domaines d’applications IoT, convergecast n’est pas le seul mode de
communication sur le réseau. Le récepteur doit envoyer des commandes à certains
capteurs pour effectuer des actions. Dans cette application, anycast est un autre
mode de communication de base. Dans anycast, le trafic provenant du récepteur est
destiné à tout membre d’un groupe de récepteurs potentiels du réseau.

Les LLN sont formés de nœuds de capteurs statiques et changent rarement de
position. En raison des contraintes de ressources strictes imposées au calcul, à l’énergie
et à la mémoire des LLN, la plupart des protocoles de routage ne prennent en charge
que les réseaux statiques. Cependant, la mobilité est devenue une exigence impor-
tante pour de nombreuses applications émergentes. Dans ces applications, certains
nœuds sont libres de se déplacer et de s’organiser dans un réseau connecté. La
topologie changerait continuellement en raison du mouvement des nœuds et de
l’instabilité des liaisons radio. Il s’agit d’une tâche difficile pour la plupart des pro-
tocoles de routage des réseaux LLN afin de s’adapter rapidement au mouvement et
de reconstruire la topologie en temps voulu.

Le but de cette thèse est de proposer un support de mobilité efficace pour les pro-
tocoles de routage dans les réseaux LLN. Nous nous concentrons sur convergecast
et anycast, qui sont les modes de communication les plus utilisés dans les réseaux
LLN, dans les scénarios de réseau mobile.

Nous proposons un mécanisme d’amélioration, nommé RL (RSSI and Level),
pour prendre en charge les protocoles de routage dans les réseaux LLN convergecast
en mobilité. Ce mécanisme aide le protocole de routage à prendre des décisions plus
rapides pour la détection de la mobilité et la mise à jour des voisins du saut suivant,
mais souffre d’une surcharge importante. Nous proposons une gestion dynamique
des messages de contrôle pour améliorer les performances de RL et l’implémentons
en plus du protocole de routage pour réseau à faible consommation (RPL) et nous
l’avons nommé RRD (RSSI, Rank and Dynamic). Après une prise en compte de
l’hystérésis de la zone de couverture de la plage de transmission des nœuds, nous
avons optimisé RRD. Cette version améliorée s’appelle RRD +. Sur la base de RRD
+, nous avons proposé MRRD + (Multiple, RSSI, Rank et Dynamic) pour prendre
en charge plusieurs puits dans les réseaux LLN convergecast en mobilité. ADUP
(Adaptive Downward / Upward Protocol) est une solution de routage prenant en
charge simultanément convergecast et anycast dans les réseaux LLN.

Nous avons évalué les performances de nos contributions à la fois en simulation
avec le simulateur Cooja et en expérience (uniquement pour ADUP) sur des motos
TelosB. Les résultats obtenus en simulation et en expérience confirment l’efficacité
de nos protocoles de routage.

Mot-clés: réseaux de capteurs sans fil, les réseaux à faible consommation et à
perte, convergecast, anycast, mobilité, plusieurs puits.
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Chapter 1

Introduction

1.1 Wireless sensor networks

Wireless Sensor Networks (WSNs) technology is attracting more attention with the
emergence of the Internet of Things (IoT). Compared with wired networks, WSNs
have the feature of easier deployment and better flexibility. With the rapid develop-
ment of sensors, WSNs will become the key technology for IoT. A WSN consists a
number of low-cost sensor nodes, which act as data generators or data relays. Each
node is equipped with four main components: a sensor unit for data sensing, a mi-
croprocessor used to process data, a transceiver for data transmission, and finally
a battery unit with limited capacity for power supply. These sensor nodes are ca-
pable of sensing the physical environment, collecting and processing sensed data,
and communicating with each other in order to accomplish certain tasks. Due to the
fact that sensor nodes have limited communication coverage, data needs to be sent
in a hop by hop manner to reach the destination. This operation is managed by the
routing protocol that is based on a certain routing metric.

WSNs have been widely developed in the last decade, and new applications are
emerging rapidly. Most of these applications are used for surveillance and record-
ing of environmental or physical conditions [1]. In these applications, multipoint-to-
point (MP2P), usually called convergecast, is the basic traffic mode, where all traffic
in the network is destined to a predefined destination called the sink node in a multi-
hop manner. Figure 1.1 presents an example of convergecast WSN. The transmission
direction of packets is upward from sensor nodes to the sink.
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FIGURE 1.1: An example of convergecast WSN.

However, if we consider the Internet of Things (IoT) application domains, MP2P
is not the only traffic mode in the network. The sink node needs to send commands
to certain sensors or actuator nodes to perform actions according to received infor-
mation. In these applications, point-to-multipoint (P2MP) and point-to-point (P2P)
are two basic traffic modes. P2MP refers to traffic pattern that is accomplished by
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(A) An example of broadcast WSN.
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(B) An example of multicast WSN.

FIGURE 1.2: Examples of P2MP WSNs.
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(B) An example of anycast WSN.

FIGURE 1.3: Examples of P2P WSNs.

broadcast or multicast, offering multiple paths from a single location to multiple lo-
cations. Figure 1.2 presents an comparison between broadcast WSN and multicast
WSN. Unlike broadcast, multicast is group communication where data transmission
is downward to a group of destination nodes.

P2P refers to a communication between two nodes; one node needs to transmit
data to another. In this traffic mode, unicast and anycast are the two main network
addressing methodologies. Unicast is communication between a single sender and a
single receiver over a network, while anycast refers to communication between a sin-
gle sender and any single member of a group of potential receivers in the network.
Figure 1.3 presents a comparison between unicast and anycast communication. The
transmission direction of packets is downward from the sink to a certain node.

1.2 Mobility in WSNs

Traditionally WSNs are formed by static sensor nodes that rarely change positions.
However, with emergence of new applications, mobility has become an important
requirement. In some scenarios, the monitoring nodes are mobile such as disaster
response applications where a forest keeper should be able to request event related
data from sensor nodes while moving inside a forest [2]. In other scenarios, objects
being monitored need to be mobile, like animal monitoring applications. Sensor
nodes attached to cows moving inside a field send information towards sink nodes
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[2]. The degree of mobility varies in various applications. In some applications, only
part of the network nodes need to be mobile, such as farming equipment monitor-
ing [3]. In a farm, some equipment are installed in fixed points and some equip-
ment are mobile like a plough. Whereas in some applications it is required that all
nodes are mobile, such as health-care monitoring. Figure 1.4 shows an example of
health-care monitoring system. In this example all patients are equipped with sen-
sor nodes to transmit data to two deployed sinks and free to move inside a hospital
[4]. The sinks are connected to the Internet and the doctor can get access to the pa-
tients data through a computer. In this example, there is more than one sink used to
collect information. This is due to the fact that having one sink in the network will
make paths from nodes to the sink longer as they move further away from the sink.
Adding more sinks in the network would reduce the overall delay and path lengths
to reach the destination.

Doctor

Patient

Interne

Sink
Patient

Patient
Patient

Patient

PatientPatient

Patient

Patient

Patient
Patient

Patient

Patient
Patient

Sink

FIGURE 1.4: An example of health-care monitoring system.

In mobile scenarios nodes are free to move and organize themselves into a con-
nected network. Hence, the topology is continuously changing due to the movement
of nodes and radio links instability. This is a challenging factor for routing protocols.
Every time the topology changes, the routing protocol needs to update the path to
reach the destination. However, most routing protocols of WSN cannot be able to
adapt rapidly to the topological changes and reconstruct routes in a timely manner.
This will result in packet loss during transmission.

1.3 Routing protocols for low power and lossy networks

In recent years, Low-Power and Lossy Networks (LLNs) applications are gaining an
interest from both research and industry. LLNs are a special type of WSNs in which
nodes are largely resources constrained [5]. These nodes have limited processing
power, memory and energy. They communicate over unstable links with low data
rates and their state is usually unstable with low packet delivery rates. To cope with
the resource limitation, the Institute of Electrical and Electronics Engineers (IEEE)
created a new Medium Access Control (MAC) protocol, IEEE 802.15.4., with low
MTU (Maximum transmission unit) size (127 bytes) and low data rate (250 kbps) [6].
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A number of routing protocols have been proposed to provide the routing sup-
port for LLNs. Some of them are based on the ad hoc on-demand distance vector
routing (AODV) [7]. These protocols are AODVjr [8], LoWPAN-AODV [9], NST-
AODV [10], etc. These routing protocols make simplification on AODV to be suit-
able for the resource constraint and dynamic network environment. Collection Tree
Protocol (CTP) [11], Hydro [12], and Routing Protocol for Low Power and Lossy
Networks (RPL) [13] are also routing protocols for LLNs. Among these protocols,
RPL is considered as the most promising routing protocol for LLNs because of its
comprehensive features and great flexibility.

RPL is designed by Internet Engineering Task Force Routing Over Low power
and Lossy networks (IETF ROLL) working group for LLNs. RPL adapts IPv6 (Inter-
net Protocol version 6) and runs on top of IEEE 802.15.4 standard. RPL is designed
to meet the requirements of many applications, which are mainly suitable for static
networks. Supported traffic flows by RPL include MP2P, P2MP and P2P.

1.4 Motivation

Mobility support has become more and more important in various emerging IoT
applications. The problem of mobility has been extensively studied in Mobile Ad-
hoc Networks (MANETs). However, these solutions are often too complex to be
adequate for LLNs. Since LLNs are strict resource restrained networks that consist
largely of constrained nodes. The nodes have limited processing power, memory,
and sometimes energy; and interconnection are lossy links, typically only support-
ing low data rates. Movement of nodes in LLNs would make the link more lossy
and unstable that results in relatively low packet delivery ratio.

Although different mobility extensions for data convergecast in LLNs have been
proposed, most of them can only support a few number of nodes in the network to be
mobile. When only few nodes are mobile in a highly connected static network, there
will not be a great impact on the topology. Indeed, when only few nodes change
positions, most nodes do not need to rebuild the routes to reach the destination. It
is a challenge to propose a mechanism that can support LLNs routing protocols in
highly mobile convergecast scenarios in a confined space.

In contrast, the communication in the opposite direction also called anycast (sink
to any leaf node) is more difficult to maintain. Indeed, as the mobile node moves
from one position to another, downward routes established through control mes-
sages become out-of-date much more quickly. As a result, downward communica-
tions are highly unreliable due to inaccurate route information. Indeed, mobility
support for anycast is also less studied than convergecast in LLNs.

In addition, more and more applications require multiple sinks rather than one
sink. This is due to the fact that in a convergecast WSN only one sink easily leads to a
faster energy depletion, more packet loss, higher latency and smaller network range.
Deploying multiple sinks in the network can help solve these problems. However,
there are very few research work on supporting both mobility and multiple sinks at
the same time. Multi-sink support will be a critical topic in mobile LLNs.

The goal of this thesis is to propose an efficient mobility support for routing pro-
tocols in LLNs. We mainly focus on scenarios where the links are unstable and prone
to failure. This is typically the case of mobile networks deployed in confined spaces.
In these cases, a small change in the position of nodes might create a significant
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change in the link quality. We also focus on convergecast and anycast mobile net-
work scenarios, since they are the most used traffic modes in IoT. Besides, multi-sink
support in mobility is another goal in this thesis.

1.5 Main contributions

This thesis focuses on the mobility support of routing protocols in Low power and
Lossy networks (LLNs) and our main contributions are related to the network layer.

The key contributions are summarized as follows:

• Contribution 1: Mobility enhancement mechanism RL for convergecast WSNs.

We propose an enhancement mechanism, called RL (RSSI and Level), to rout-
ing protocols to support mobility in convergecast WSNs. RL is based on two
methods, Received Signal Strength Indicator (RSSI) monitoring and level (See
section 3.1.1 in Chapter 3) updating. This mechanism helps routing protocol
make faster decisions for detecting mobility and updating next-hop neighbors
but suffer from high overhead.

• Contribution 2: Mobility enhancement RRD for RPL.

RRD (RSSI, Rank and Dynamic) is an updated version for RL to be used on
top of RPL. It is based on three methods: RSSI value monitoring, Rank (See
figure 2.1 in Chapter 2) updating and dynamic control message management.
Compared to RL, RRD not only enhances the network performance, but also
reduces the network overhead.

• Contribution 3: Mobility enhancement RRD+ for RPL.

RRD+ is an enhanced version for RRD that take into account hysteresis of the
coverage zone of the transmission range of nodes. Indeed, when nodes are
close to the edge of transmission range, they will suffer from frequent Rank
updating, which may cause parent nodes loss. When applied to RPL and com-
pared with other existing RPL mobility supports, results show that RRD+ en-
hances the ability of RPL to better cope with mobility scenarios.

• Contribution 4: Mobility enhancement MRRD+ for RPL with multiple sinks.

MRRD+ (Multiple, RSSI, Rank and Dynamic), which is an enhancement over
RRD+ takes into account multiple sinks. MRRD+ improves dynamic control
message management in order to inform Rank updates as soon as possible in
the case where a node is moving out of its parent node range.

• Contribution 5: Mobility enhancement mechanism ADUP for anycast WSNs.

We proposed a routing protocol called ADUP (Adaptive Downward/Upward
Protocol) that supports both convergecast and anycast in WSNs concurrently.
Mobility support of convergecast is achieved according to RRD+, while mo-
bility support of anycast is done by the sink node. ADUP can help the sink
adapt to mobility quickly and build route paths to any node in the network in
a timely manner.

1.6 Structure of the thesis

The manuscript is organized in five chapters. The first chapter presents an intro-
duction to WSN, mobility in WSNs, routing protocols for LLNs, the motivations
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and contributions of this thesis. The second chapter presents a mobility support in
convergecast and anycast routing protocols, as well as muti-sink support in LLNs.
The third chapter presents the contributions of this thesis. We begin with mobil-
ity enhancement mechanisms for data collection and data dissemination. Then we
present RRD and its enhanced version RRD+. In succession multi-sink mobility en-
hancement MRRD+ will be presented. Convergecast and anycast mobility support
ADUP will be presented at last. In Chapter 4, we present the performance evalua-
tion in both simulation and experiment (only for ADUP) of our contributions where
we compare obtained results with some existing protocols in the literature. Finally,
Chapter 5 concludes this thesis by summarizing our contributions and opening up
some perspectives to forward this work.
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Chapter 2

Related works

This chapter focuses on different techniques that support mobility for the routing
protocols in LLNs. These techniques can be classified into three groups, mobility
support in convergecast routing protocols, mobility support in anycast routing pro-
tocols and multi-sink support in LLNs. Firstly we present the overview of RPL in
section 2.1. Since most mobility support is proposed to be used on top RPL, it is nec-
essary to realize the work process of RPL in advance. In section 2.2, we introduce
mobility support in convergecast routing protocols. One recapitulative table is used
to compare different techniques. Section 2.3 presents mobility support in anycast
routing protocols and the other recapitulative table is used for comparison. In sec-
tion 2.4, we introduce multi-sink support in LLNs. At last we conclude this chapter
in the section 2.5.

2.1 RPL protocol overview

RPL is a distance vector routing protocol for networks with constraints on process-
ing power, memory, and energy. During network construction phase, RPL builds a
Directed Acyclic Graph (DAG) topology. All edges of the DAG are oriented in such
a way that no cycles exist. This graph is partitioned into one or more Destination
Oriented DAGs (DODAGs) and RPL calls these destination nodes as DODAG roots.
To maintain the topology and exchange routing information, RPL defines four types
of control messages: DIO, DAO, DAO-ACK, and DIS. A DIO (DODAG Information
Object) message is used to carry information that allows a node to discover its neigh-
bors. A DAO (Destination Advertisement Object) message is used to propagate des-
tination information by a child node to a selected parent node. A DAO-ACK (Desti-
nation Advertisement Acknowledgement) message is sent in response to a DAO. A
DIS (DODAG Information Solicitation) message is mainly used to probe its vicinity
by soliciting a DIO message from a neighbor node. Within a DODAG, RPL uses an
Objective Function (OF) to select and optimize routes according to different metrics.

The network is waken up by a certain node in the network. DIS is broadcast
by this node to explicitly solicit the DIO messages from the neighbor nodes. Once
the sink node begins to broadcast DIOs, the construction of the initial topology of
the network starts. Each node that receives these messages builds a list of potential
next-hops that we call parents set. The Rank of a node is a value that defines the
position of the node with respect to the sink in terms of metrics in DIO messages.
During the routing process, a Rank metric is used to avoid loops in addition to the
routing metric. The Rank of the sink node is ROOT_RANK that contains a value of
MinHopRankIncrease, which is the minimum increase of the Rank between a node
and any of its parent nodes. The Rank value is proportional to the increase of the
metric, therefore we get Rank computation of the node itself, which is shown in
Equation 2.1.
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Rank = ROOT_RANK + a ∗MinHopRankIncrease (2.1)

Where a is another metric value in DIO messages that comes from a node with a
lower Rank.

By Equation 2.1 a node computes the Rank value and then broadcasts the Rank
value using a DIO message. If the Rank of the receiver node is higher, it means this
control message is from a potential next-hop. Note that the receiver node adds all
senders with lower Ranks to its parents set. Figure 2.1 shows an example of RPL
topology with different Rank values. Note that the nodes that are closer to the sink
node have smaller Rank values and the sink node has the smallest Rank value.

S

S Sink node

Connectivity

Rank(1)

Rank(2)

Rank(3)

Rank(4)

Rank(1)<Rank(2)<Rank(3)<Rank(4)

FIGURE 2.1: An example of RPL topology with Rank value.

RPL uses a trickle algorithm to disseminate DIOs over the network [14]. The aim
of this algorithm is to reduce number of DIOs. Indeed, the rate of sending DIOs
is reduced when there are no changes detected in the topology. Trickle algorithm
contains three main parameters Imin, Imax and k. At the beginning, a variable I will be
set to a value in the range of [Imin, Imax], where Imin is the minimum duration and Imax
is the maximum duration separating two consecutive DIOs. The first DIO interval
IDio will be randomly taken from the range [I/2, I]. In order to avoid depleting the
energy of nodes in a low-power network, the redundancy constant parameter k has
been defined. Nodes can retransmit a packet to the same node a maximum of k times.
Whenever nodes receive a transmission, a counter c is used to record the number of
transmissions. If IDio expires and counter c is less than k, nodes will transmit DIOs.
After this transmission, nodes double the interval for the next transmission until I
reaches Imax. If the transmission is inconsistent or c is larger than k, nodes reset IDio
to Imin, c to zero and start a new interval.

2.2 Mobility support in convergecast routing protocols

RPL is mainly designed to meet the requirements of static networks. In a mobile
network, RPL adapts to mobility through the propagation of DIOs. In fact, to up-
date the topology change, RPL requires waiting the reception of a new DIO message
which is sent following a trickle algorithm. This algorithm is used in static networks
in order to reduce overhead. Indeed, it reduces control traffic generation rate when
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the topology is stable. However, in mobility scenarios, trickle algorithm cannot dis-
seminate information in a timely manner and fails to cope with the changes of the
topology. Moreover, RPL is reactive against mobility. Within two consecutive DIOs,
RPL only uses OF to select and optimize next-hops according to link metrics; while
the update of link metrics comes from packet loss. Besides, RPL specifications do
not offer methods to update the Rank in a timely manner. This causes loops when a
parent node becomes a descendant node.

In [15], authors propose a mobility support layer (MoMoRo) that can be applied
to existing data collection protocols. MoMoRo helps nodes gather neighborhood
information and pass this information through a fuzzy logic estimator. MoMoRo
examines link quality by a fuzzy-logic-based estimator. Furthermore, MoMoRo in-
cludes an active destination search scheme that allows disconnected mobile nodes
to quickly reconnect. After a packet transmission failure to mobile nodes, MoMoRo
transmits one more packet to the destination. If it fails, MoMoRo starts building a
new route to the mobile node by broadcasting beacons and collecting replies from
neighbors.

The authors implemented MoMoRo in RPL and evaluated the performance in
an indoor testbed environment consisting of 30 Tmote Sky devices [16]. The re-
sults show that MoMoRo can help improve the performance of packet delivery ratio
but suffers from a high number of overhead packets compared with standard RPL.
Moreover, in MoMoRo mobility detection only depends on the packet transmission
failure. This makes the network very passive to react to topology change.

In [17], authors proposed a handoff mechanism called smart-HOP, a handoff
mechanism tailored for mobile WSN applications. In smart-HOP mechanism, mo-
bile nodes monitor the link quality by receiving reply packets from the serving Ac-
cess Point (AP) during data transmission phase. The reply packets contain the aver-
age RSSI, or signal to noise ratio (SNR), of the n packets received by the AP. A mobile
node starts the discovery phase when the link quality goes below a certain threshold
until it finds out an AP that is above a reliable threshold. Furthermore, they use 3
beacons to validate the stability of the AP that is selected. Smart-HOP relies on the
availability of data traffic to switch APs which means that it is very dependent on
the application scenario for timely switching. Although smart-HOP is proposed for
WSN, a large number of fixed APs are required, which is resource waste in many
WSN applications.

In [18], authors integrate a proactive hand-off mechanism smart-HOP [17] in RPL
and called it mRPL. mRPL aims to provide the mobile nodes with a lower hand-off
delay and higher reliability. Additional timers are used to increase parent switching
efficiency and reliability. Figure 2.2 shows the timing diagram of the smart-HOP
mechanism. During data transmission phase, a mobile node is assumed to have a
reliable link with an access point (AP). The mobile node monitors the link quality
through the receiving packets from the serving AP. In the case that the average RSSI
value is smaller than a threshold T or no packets are received, the mobile node will
change to discovery phase. A burst of DIS message will be broadcast to solicit DIO
messages from neighbor APs, and the mobile node would select the best AP and go
to data transmission phase.

Simulation results using Cooja simulator show that mRPL outperforms standard
RPL on packet deliver ratio and overhead. Although they succeeded in avoiding
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centralized hand-off decision in APs, they still rely on a large number of fixed APs.
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FIGURE 2.2: Timing diagram of the smart-HOP mechanism.

Hossein et al. [19] propose a mobility management framework named as mRPL+,
which is an enhanced version of mRPL. Compared with mRPL with only hard hand-
off mechanism, mRPL+ supports both soft and hard hand-off mechanism. In a hard
hand-off process, a mobile node has to break a link before finding a new link, while
in a soft hand-off process a mobile node select before disconnecting from the current
one. mRPL+ runs soft hand-off as default and the hard hand-off is used once on
response is received from the serving AP.

Performance evaluation using Cooja showed that mRPL+ is able to provide good
reliability with lower hand-off delay compared with mRPL. However, the main
drawback of mRPL+ is the same as mRPL that it relies on a large number of fixed
APs to cope with mobility.

In [20], authors proposed a new cross-layer protocol called Mobility-Triggered
RPL (MT-RPL). This protocol benefits from the X-Machiavel MAC protocol [21],
which is an extension of the X-MAC protocol [22]. In MT-RPL a mobile node is
known before and sets a flag for data packets that is used to prioritize transmissions
from mobile nodes. According to X-Machiavel, on a busy channel mobile nodes can
steal the medium of an ongoing transmission to send their packets first, and on an
idle channel packets sent by mobile nodes can be opportunistically forwarded by
static nodes.

Authors used WSNet [23] a discrete event simulator to evaluate their work. The
results show that MT-RPL reduces the disconnection time and increases the packet
delivery ratio. However, the main drawback is that MT-RPL increases the number
of re-connections, and increases the number of DAO to report each parent change.
This causes huge overheads compared with standard RPL, which is shown in results
analysis in this paper.

Sneha et al. [24] proposed a mobility enabled RPL protocol to enhance hand-
off process, optimize control messages and improve best parent selection scheme.
In their context, they considered that mobile nodes and static nodes co-exist within
the network. In order to make reliable transmissions, they use different timers to
manage the Neighborhood Discovery (ND) process and apply average RSSI value
to identify link quality. Within certain duration, if a robust link is found by a mobile
node, best transmission route will be constructed, otherwise ND will be initiated.
When mobile nodes detect no packet received within certain duration, DIS will be
broadcast to call responses of neighbor nodes. Based on the average RSSI value of
received DIO, mobile nodes detect a best route, otherwise ND will be initiated. In
order to avoid loops, they set the Rank of mobile nodes as infinity Rank in order to
solve the Rank problem when nodes move far away from the sink.
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Performance evaluation using Cooja showed that the proposed mobility enhances
RPL on packet delivery ratio and end-to-end delay. However, infinity Rank means
this mobile cannot be selected by other nodes as a next-hop, which will packet loss
and disconnected nodes when there are many mobile nodes in the network.

Gara et al. [25] proposed an adaptive timer algorithm in RPL called modified
RPL (mod-RPL) to enhance the trickle timer to fit with mobility requirements. It
takes into consideration the random trajectory of mobile nodes, pause time and the
velocity of nodes. Each mobile node knows its own position and based on the posi-
tion information the minimum Time to Leave (TL), which represents the minimum
time to move out the radio range of its preferred parent, can be computed. Based
on TL, if an inconsistency is detected, mobile nodes will reset the trickle timer. If a
mobile node is suspected to be disconnected its parent nodes, an immediate DIS will
be broadcast to solicit DIO from neighbor nodes.

The results evaluated by Cooja showed that mod-RPL outperforms RPL in cer-
tain scenarios. However, position information is only accessible without Global Po-
sitioning System (GPS) system which consumes much energy in LLNs. Mobility
support with GPS is out of our research. Moreover, if the preferred parent of the
mobile node is mobile as well, this algorithm cannot calculate an accurate TL due to
unknown movement direction of the mobile preferred parent.

Somaa et al. [26] proposed Bayesian model Mobility Prediction RPL (BMP-RPL)
aiming to adapt native RPL to mobile scenarios. They used a Bayesian model for mo-
bility prediction, which is proposed in [27], to estimate the nodes connecting period
according to a velocity probability distributions. This model estimates link duration
between two nodes and introduces it as a new link quality metric. They proposed
a new control message Hello protocol to broadcast link information. However, the
degree of accuracy of prediction depends on the velocity distribution. Being able to
predict the movement of all nodes in the network is something very rare and only
few applications would be able to provide this information. In addition, BMP does
not consider signal attenuation, which is another influence factor on connecting du-
ration, in its model. Furthermore, it is challenging to implement Bayesian model for
mobility prediction in LLNs considering sensor node constraints in terms of central
processing unit (CPU) and energy.

Authors in [28] introduced a routing strategy called Kalman Positioning RPL
(KP-RPL) for WSNs with both static and mobile nodes. This mechanism is based on
location estimation using RSSI measurements. This approach improves the reliabil-
ity and robustness of the network according to simulation results.

The performance of KP-RPL evaluated using Matlab [29] showed that the relia-
bility and the robustness of the network in environments with harsh channel condi-
tions are enhanced compared with geographical routing. However, the accuracy of
KP-RPL relies on the path loss model, which is difficult to estimate in changing and
real life deployments.

Cobarzan et al. [30] proposed a new version of the trickle algorithm (reverse
trickle timer) in order to allow nodes to move seamlessly into a routing topology
and limit overhead at the same time. They modified DAO by introducing a Mobility
Flag (MF) in order to help other nodes identify mobile nodes. Compared with the
standard trickle algorithm, reverse trickle timer starts from the maximum interval
between two consecutive DIOs. They argue that the more the mobile nodes spend
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time connected to the same parent, the more it is likely to move outside the coverage
of the parent. Therefore, after each DIO, reverse trickle timer is divided by two until
the minimum interval is reached. However, reverse trickle timer only makes sense
when the mobile connects to a new parent and remains connected to this parent for a
long time. When nodes move away from this parent, reverse trickle timer will cause
a delay on updating information. In order to avoid congestion, standard RPL sets a
delay for DAO before sending it. However, the authors did not take this delay into
account. This delay will cause DAO messages loss when a node moves out the range
of its parent node during this delay period.

El Korbi et al. [31] proposed a mobility support called Mobility Enhanced RPL
(ME-RPL). ME-RPL is mainly based on identification of mobile nodes and dynamic
control message management. They modified DIO messages by adding mobile iden-
tifier in order to help nodes identify mobile nodes. A node is more likely to choose a
fixed node as its preferred parent by checking the identifier in DIO even if the Rank
of mobile nodes is lower than the static nodes. Moreover a dynamic DIS manage-
ment is proposed in order to update topology information according to nodes move-
ment. Authors argue that if the preferred parent changes frequently, the node is in
an unstable environment and the next DIS period should be shorter than the previ-
ous period in order to quickly obtain topology information. If the preferred parent
stays the same, the next DIS period should increase. However, frequent changing of
parent node will broadcast many DIS messages in a short period and causes a large
number of DIO messages, which results in large overhead and network congestion.

In table 2.1 we used an array to summarize the mobility supports in convergecast
routing protocols, where each protocol is presented by its acronym or its reference
number. We compared the following 6 characteristics of all presented protocols:

• The method of mobility detection (Mobility detection) helps to know that by
which way the protocol detects the movement.

• The method coping with mobility (Mobility solution) helps to know the solu-
tion used by the protocol coping with mobility.

• The mobility degree (Mobi. degr.) of scenarios shows the percentage of mobile
nodes in the network that protocols cope with. High degree of mobility (High)
means that most nodes in the network are mobile. Medium degree of mobility
(Med.) means that more than one third nodes in the network are mobile. With
low degree of mobility (Low) only a few nodes are mobile in the network.

• The number of control messages (Overh.) shows the cost of overhead and it
can be classified in three grades: high (High), medium (Med.) and low (Low).

• The responsiveness to mobility (Resp.) helps to show the efficiency of routing
protocol in mobile scenarios. If the protocol can detect mobility in advance and
proactively helps nodes cope with mobility, its responsiveness to the mobility
is high (High). In the case that the protocols is delayed to detect and cope with
mobility, its responsiveness to mobility is medium (Med.). If mobility detection
is delayed to the movement and mobility solution comes after a number of
packets loss, the responsiveness to mobility is low (Low).
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• The type of routing protocols (Type) for mobility can be classified in reactive
(Reac.) and proactive (Proac.). Reactive means that a routing protocol is re-
active to prevent packet loss in mobility, while proactive means that a routing
protocol is proactive to detect mobility and avoid packet loss in advance.

Observing table 2.1, we notice that except standard RPL, MoMoRo and [30], all
other protocols are proactive to detect mobility before packet loss. Indeed, detecting
mobility in advance can avoid the large number of packet loss and reduce the num-
ber of retransmissions. Most proactive protocols detect mobility through the prop-
agation of control messages. These protocols modified trickle algorithm in order to
response the topology change quickly. However, the protocols with high respon-
siveness to mobility requires frequent control messages, which would cause high
overhead in the network.

The comparative study reveals that none of these protocols can support highly
mobile scenarios; only few nodes are free to move in their scenarios. When only few
nodes are mobile in a highly connected network, there will not be a great impact on
the topology. Indeed, when only few nodes change positions, most nodes do not
need to rebuild the routes to reach the destination. In the case of high degree of
mobility, the changes in the topology have greater impact on routes.

In our contribution, we concentrate on highly mobile scenarios where a signifi-
cant part of the network or all nodes are free to move. The sink node that is fixed
and does not change its position. Our work is based on signal strength monitoring
and depth updating. It helps routing protocols to cope better with topology changes
and makes proactive decisions on updating next-hop neighbors. Beside, a dynamic
management of control messages is proposed in order to reduce the overhead in the
network.

2.3 Mobility support in anycast routing protocols

Downward routing is less studied than upward routing in WSNs. It can be mainly
classified into three categories: unicast based, broadcast based, and broadcast and
unicast based. Most of these protocols are proposed for static scenarios and only few
of them can cope with mobile scenarios.

RPL is a unicast based routing protocol that supports upward and downward
traffic patterns. RPL supports two modes of downward traffic: Non-Storing mode
and Storing mode. DAO messages are used to propagate destination information
by a child node to the sink or a selected parent node. In Non-Storing mode, DAO
messages are directly sent to the DODAG root along a default route as shown in
figure 2.3. The root should establish source routing table entries for destinations
learned from DAOs. Before sending a data packet, the root will use source routing
to completely specify the route of the packet. In Storing mode, DAO message is uni-
cast by the child node to the selected parents except the sink node to inform them
of the existence of a child node as shown in figure 2.4. Nodes received DAO store
downward routing tables for their sub-DODAG. All non-root and non-leaf nodes
must store routing table entries for destinations learned from DAOs. Once a data
packet is sent by the DODAG root, it must be sent to all one-hop neighbors first.
Afterwards, the data packet will be sent hop by hop until it reaches its destination or
hop limit. However, it is hard for RPL to support downward routing well in mobil-
ity. Due to topology changes in mobility, parent nodes will change frequently. This
requires RPL to send DAOs timely in order to keep the downward routing table up-
to-date, which will cost too much overhead. Otherwise, packets will be lost due to
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TABLE 2.1: Summary of proposed mobility supports for convergecast
routing protocols.

Protocols Mobility Mobility Mobi. Overh. Resp. Type
detection Solution degr.

RPL[13] Packet Trickle Low Low Low Reac.
loss algorithm

MoMoRo[15] Packet Link Med. High Med. Reac.
loss estimation

mRPL[18] Control Immediate Low Med. High Proac.
messages DISs and DIOs

with hard
hand-off

mRPL+[19] Control Immediate Low Med. High Proac.
messages DISs and DIOs

with hard
and soft
hand-off

MT-RPL[20] Mobile Taking Med. High High Proac.
flags possession
in data of a
packets reserved

medium
[24] Control Link Med. Med. High Proac.

messages estimation
mod-RPL[25] TL Immediate Med. High Med. Proac.

adaptive DISs
timer

BMP-RPL[26] Mobility Immediate Med. Low Med. Proac.
prediction Hello
using messages
Bayesian
mode

KP-RPL[28] Localization Kalman Med. Med. Med. Proac.
prediction positioning

[30] Control Reverse Low Low Low Reac.
messages trickle

algorithm
ME-RPL[31] Control Dynamic Med. High High Proac.

messages DIS
management
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FIGURE 2.3: RPL Non-Storing mode.

S

Connectivity

DAO

Routing Table

S Sink node

FIGURE 2.4: RPL Storing mode.

Carels et al. [32] proposed a new mechanism to improve RPL downward route
updating of storing mode in mobility. In RPL a child node would unicast a No-path
DAO to its parent node once the path lifetime expires. However, a No-path DAO
would be lost when the mobile node is beyond reachable. Instead of sending a No-
path DAO to a mobile parent node, authors propose that a child node sends a DAO
containing No-path information to a static parent node to reach the sink first. The
mobile parent node will be noticed the unreachable of connectivity with its child
node from the sink later. By this way, the No-path information can be received by
the mobile node successfully.

The work is implemented and evaluated using both simulation and experiment.
The results show that it improves the end-to-end packet delivery ratio to mobile
nodes from 20–30 % up to 80 % in grid topology with one mobile node. However,
the main drawback is the mobility detection is based on packets loss and path life-
time, which is delayed and easily results in huge packets loss before finding new
path. Moreover, it relies on the presence of fixed nodes. This means that this method
cannot operate in a scenario where all nodes are mobile.
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Due to inefficiency of DAOs in downward routing, Duquennoy et al. [33] pro-
posed an opportunistic routing protocol called Opportunistic RPL (ORPL) which is
built on-top of RPL. ORPL deactivates DAO and simply uses broadcasting of DIO.
Each node owns a routing set that is a set of nodes with lower Ranks. This set will be
propagated inside DIO messages. Routing set allows nodes to know whether a node
is on a path to the destination or not. ORPL uses anycast instead of unicast to prop-
agate a data packet. Nodes that receive the packet decide whether to forward it or
not. If the destination of a packet is in the routing set, this packet will continue to be
relayed, otherwise the packet will be dropped. ORPL is proposed for static scenarios
only. When considering mobility, Rank and routing sets need to be updated timely
according to the movement of nodes. Moreover, due to the fact that the updating
of routing sets depends on the propagation of DIOs, timely updating will cost too
much overhead and will not be practical.

DSR (Dynamic Source Routing) [34] and AODV (Ad hoc On-Demand Distance
Vector) [7] are unicast based downward routing protocols. They both employ flood-
ing methods to support route discovery and route maintenance. Compared with
DSR, AODV further supports periodic advertisements and distance vector routing,
which is more adaptive to dynamic scenarios. However, both DSR and AODV, need
to run route discovery and route maintenance very often in order to update routing
tables in a timely manner in mobile scenarios. In this process flooding of requests
will cause congestion in the network and route discovery and maintenance cannot
run well.

Improving AODV based on restricted broadcasting is a common method pro-
posed in [35] for mobile scenarios. However, this method use geographic positions
to assist the broadcasting to reduce the number of retransmissions, and thus require
each node to be equipped with a Global Positioning System transceiver which is dif-
ficult to achieve in LLNs.

Ferrari et al. [36] proposed a flooding and time synchronized protocol for WSNs
called Glossy. Glossy exploits the flooding mechanism to implicitly synchronize the
network. According to clock values embedded in flooding packets, all receivers
synchronize relatively to the clock of the source nodes. Each packet also embeds a
relay counter value, which represents how many times a packet has been relayed.
Nodes always transmit packets with the same relay counter concurrently.

Figure 2.5 illustrates an example of Gloosy transmission process. Benefiting from
concurrent transmission and synchronization, Gloosy could avoid constructive in-
terference, in which two waves (of the same wavelength) interact in such a way
that they are aligned, leading to a new wave that is bigger than the original wave.
However, Gloosy highly relies on concurrent transmissions and actuation of source
nodes, and this results in Gloosy not supporting data collection scenarios. Since too
many source nodes will cause too much concurrent transmissions simultaneously,
which would cause serious congestion in the network; and congestion will induce
inaccurate synchronization. Besides, in order to get precise synchronization, Gloosy
has very strict packet size limit during transmission and this makes the propagation
of variable-sized packets within a strict time control.

LWB (Low-Power Wireless Bus) [37] is an updated version of Gloosy, which
supports one-to-many, many-to-one and many-to-many traffic concurrently. Unlike
Gloosy that is simply driven by the events of source nodes, LWB appoints a node in
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FIGURE 2.5: An example of Gloosy transmission process.

the network to work as a controller and it will send schedules of each source node.
Although LWB reduces congestion using a central control method, it still meets the
same problems of limited number of source nodes and packet sizes as Gloosy. In
addition, both Glossy and LWB do not support mobility.

OSR (Opportunistic source routing) [38] is a broadcast and unicast based down-
ward routing protocol which introduces opportunistic routing into traditional source
routing. OSR uses a bloom filter mechanism a space-efficient probabilistic data struc-
ture to encode downward source route, which enables a reduction of the length of
packet header while processing source routing. OSR uses multiple traffic flow pat-
terns unicast, multicast, and broadcast. Unicast and multicast are the main ways to
propagate information. In the case of failure of unicast and multicast, broadcast will
be used. OSR achieves a reduction in transmission count and a gain in reliability
compared to standard RPL.

Authors evaluated the performance of OSR via both simulations and real-world
testbed experiments, in comparison with the standard RPL ( both storing mode and
non-storing mode). The results show that OSR significantly outperforms RPL and
in scalability and reliability. However, OSR also needs route discovery and mainte-
nance to deal with mobile scenarios, which will meet congestion problem similarly
to DSR and AODV.

In table 2.2 we summarize the mobility supports in anycast routing protocols,
where each protocol is presented by its acronym or its reference number. We com-
pared the following 6 characteristics of all presented protocols:

• The type of routing protocols (Type) for mobility can be classified in Unicast,
Broadcast and Broadcast and Unicast.

• The methods used to build downward route (Downward route building) show
the way of protocols to build route path in mobility.

• The methods used to maintain downward route (Downward route reparation)
help to know if the protocols can repair the downward route timely according
to the topology change.

• The mobility degree (Mobi. degr.) of scenarios shows the percentage of mobile
nodes in the network that protocols cope with. High degree of mobility (High)
means that most nodes in the network are mobile. Medium degree of mobil-
ity (Med.) means that more than one third nodes in the network are mobile.
Low degree of mobility (Low) signifies that only a few nodes are mobile in the
network.
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• The number of control messages (Overh.) shows the cost to build downward
route and it can be classified in three grades: high (High), medium (Med.) and
low (Low).

• The responsiveness to mobility (Resp.) helps to show the efficiency of routing
protocol in mobile scenarios. If the sink proactively copes with mobility and
builds the downward route in advance, the responsiveness to the mobility is
high (High). In the case that the sink is delayed to cope with mobility, the re-
sponsiveness to mobility is medium (Med.). If the downward route building is
delayed to the movement and numbers of packets are lost before this process,
the responsiveness to mobility is low (Low).

Observing table 2.2, we notice that it is hard for a unicast based routing proto-
col to achieve high responsiveness to mobility. This is mainly due to the fact that
unicast based routing protocols take much time on updating topology and building
route path. Some protocols like [32] or ORPL modified DAO messages to reduce
time cost on updating topology. The comparative study reveals that route discov-
ery and route maintenance would cost much overhead with slow responsiveness to
mobility. This is mainly due to the fact that source routing would propagate con-
trol messages to the entire network which costs a lot of resources. Furthermore, in
mobility the topology changes fast, source routing needs frequent route discovery
and maintenance to maintain the topology, which is hysteresis to build route path
in mobile scenarios. Although [35] achieves high responsiveness to mobility, this is
mainly because this method use geographic positions to assist updating topology;
geographic information could help node quick detect movement and proactively
build a new path to the destination.

We also notice that broadcast based routing protocols or broadcast and unicast
based routing protocol achieve high responsiveness to mobility. The reason is that
broadcasting is insensitive to mobility and routing protocols do not need to update
topology according to movement. The flooding method broadcasts the packets to
the entire network, which is easily to reach the destination. However, since flooding
method takes much network resource, it is hard for a broadcast based method to
support concurrent transmissions or large number nodes.

In our contribution, we propose an adaptive routing protocol that integrates
point-to-point traffic and data collection traffic together and supports highly mo-
bile scenarios. This protocol reacts quickly to the movement of nodes to make faster
decisions for the next-hop selection in data collection and dynamically build routes
for point-to-point traffic.

2.4 Multi-sink support in LLNs

Mobility support has become an important requirement in LLNs. Multi-sink sup-
port is already a well-known topic, but most studies are based on the MAC layer of
IEEE 802.11, such as in [39] and [40]. In these studies position information of nodes
is offered by GPS system, which is out research in this thesis. In addition, multiple
mobile sinks are also used as data mobile data collectors to balance traffic load in
order to prolong the network lifetime, like [41] and [42]. However, in this paper we
only consider static sink nodes. There are very few research work on supporting
both mobility and multi-sinks at the same time. According to our knowledge, only
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TABLE 2.2: Summary of proposed mobility supports in anycast rout-
ing protocols.

Protocols Type Downward Downward Mobi. Overh. Resp.
route route degr.
building reparation

RPL[13] Unicast DAO No-path Low Low Low
messages DAOs

and route
lifetime

[32] Unicast DAO Modified Low Low Med.
messages No-path

DAOs and
route
lifetime

ORPL[33] Unicast Modified Route Low High Med.
DIOs and lifetime
deactivated
DAOs

DSR[34] Unicast Route Route Low High Low
discovery maintenance

AODV[7] Unicast Route Route Low High Med.
discovery maintenance

[35] Unicast Route Route Low Med. High
discovery maintenance
with with
restricted restricted
broadcasting broadcasting

Gloosy[36] Broadcast Flooding Concurrent Med. Low High
mechanism transmission

LWB[37] Broadcast Flooding Concurrent Med. Low High
mechanism transmission

with a
central
controller

OSR[38] Broadcast Modified Modified Med. Med. High
and route route
unicast discovery maintenance
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[43] has dealt with both issues simultaneously. Therefore, we only introduce multi-
sink support mainly in static LLNs in this section.

Current support for multiple sinks of RPL is limited to a short description in the
specification of RFC 6550 [13]. RPL supports two types of multi-sink scenarios as
shown below.

• Multiple sinks with different DODAGIDs (Destination Oriented DAG IDs).

– Different DODAGs with no connectivity to coordinate with each other
(Nodes belonging to one DODAG cannot join another DODAG and they
cannot coordinate with the nodes belonging to another DODAG.).

– Multiple DODAGs acting as a means to partition the network (Nodes be-
longing to one DODAG cannot coordinate with the nodes belonging to
another DODAG, but they are possible to join another DODAG.).

• Multiple sinks sharing the same DODAGID.

The first type is mainly considered for networks where there is no need to ex-
change data between different DODAGs. In the second type, the whole network
shares only one DODAG, and all the nodes in the topology have the possibility to
connect with each other. A virtual root is supposed to be connected to these mul-
tiple sinks over a reliable transit link. In this paper we only consider the second type.

In [44], authors proposed a method to support usage of multiple sinks for RPL.
Multiple sinks share the same DODAGID and all of them are coordinated by a
virtual root. The results tested by Cooja show that the maximal energy usage of
the nodes decreased with about 45 % and the average energy consumption de-
crease with more than 30 %. In this paper, authors considered sinks with the same
DODAGID as one sink. Therefore, when supporting many-to-one scenarios in RPL,
their method did not support sink selection. However, even with the same DODAGID,
a better sink selection method can help manage the residual energy of sinks and re-
duce collisions with a load balancing technique.

In [45], authors proposed a method for RPL to support multi-sink scenarios. This
method uses the available bandwidth, delay, MAC layer queue occupancy and ex-
pected transmission count (ETX) as a union metric in conjunction with the shortest
hop-count metric. In the network there are multiple DODAGs and each DODAG is
identified with a different DODAGID. When a node receives a DIO message, it will
use hop-count metric (Rank) to choose a sink first. If this DIO is from a lower Rank
node, this node will be treated as a potential next-hop. In the case that DIO receiver
has multiple parent nodes with the same Rank, tie-breaking metrics will be used
to determine the best next-hop. The node will then join the DODAG of the chosen
parent node.

The simulation results performed using Cooja demonstrate that their work in-
creased the packet delivery ratio by up to 25 % and decreased the number of re-
transmissions by up to 65 % compared standard RPL protocol that only uses the
hop-count metric. However, simple comparison of tie-breaking metrics will cause
frequent changing of parent nodes. This changing may also cause the changing of
DODAG and packets are likely to be lost during handover of different DODAGs.
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In [46], authors proposed two routing algorithms that are based on a Logical En-
ergy Tree (LET): one with centralized sink node called LETCSN and the other with
centralized sink node and secondary sink nodes called LETSSN. The basic idea of
LETCSN is that residual energy of sensor nodes is used as an additional parameter
for making routing decisions. According to residual energy and distance to the sink,
all nodes are divided into three levels. The sink node is set on Level 0. A threshold
value of energy is used to fix sensor nodes at different levels. Nodes with energy
more than the threshold value are set on Level 1 and nodes with energy less than the
threshold value will be set on Level 2. Level 1 nodes have bidirectional links with
sink node and Level 2 nodes, while Level 2 nodes have only unidirectional links
with Level 1 nodes. Authors argue that this way, energy will be saved. However,
it is likely for the sink node to be a bottleneck if the bandwidth of data increases.
Therefore, they proposed using multiple sinks called secondary sink nodes, placed
at fixed locations. However, these two algorithms will increase the average number
of hops of a packet. Nodes that are close to the sinks will consume more energy
than other nodes. After a period, these close nodes will be changed from Level 1
to Level 2 due to energy consumption. Because of unidirectional links constraints,
these nodes need more hops to reach the sinks. Even with multiple sinks, this prob-
lem cannot be solved when the size of the network is large.

In [47], a genetic algorithm is proposed to solve the problem of load balancing
amongst sinks in a multi-sink WSN. This algorithm works in two steps. In the first
step, a chromosome, which is an array of sink selection for each node, will be gener-
ated. A fitness function by analyzing the load on each sink will be used to analyze
the quality of each chromosome. In the second step, half of the population with the
best chromosomes will be selected to construct parent pairs (A parent pair is a pair
of chromosomes.). These parent pairs will apply crossover or mutation and get the
feasible sink node in the end. This approach takes a lot of time and calculation to
converge. In the first step, in order to get the sink selection information the node that
is far away from the sink must recursively repeat the binding procedure until it gets
this information. In the second step, if the size of population is big, it will take many
iterations to get the best solution. This method may balance the energy consumption
of each sink, but will increase energy consumption due to control traffic and delay
in convergence.

Co-RPL is an extension to RPL based on the Corona mechanism to support mo-
bility [43]. Co-RPL allows the DODAG root to generate DIO messages periodically
instead of using a trickle timer. Authors modified DIO messages by adding a corona
ID (C_ID), which is used as a relative coordinate to localize mobile nodes according
to the DAG root. Nodes select a parent that has the smallest C_ID and then incre-
ment C_ID by one before broadcasting this value. Corona mechanism is similar to
Rank mechanism using the hop-count metric, and C_ID is just like the Rank value in
Rank mechanism. However, the same with Rank value, the updating of C_ID is not
proactive. In Co-RPL DIOs are generated periodically. Therefore, C_ID updating
frequency depends on DIOs interval. Thus, if nodes broadcast DIOs frequently, the
network will suffer from high overhead. If there is no suitable connectivity between
different DODAGs, packets can never reach to the next-hop nodes in case the next-
hop nodes change their DODAG due to movement.
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Aimed at maximizing the network lifetime, authors [48] proposed an energy op-
timized routing algorithm for multi-sink wireless sensor networks based on a com-
bination of the number of hops and the residual energy of nodes. Avoid strategy
for low-energy nodes and load balancing strategy for multiple sinks were applied
to dynamically prolong the lifetime and achieve balanced energy consumption of
nodes. If a source node has a data packet to transmit, it selects the sink to which it
has the smallest link metric a hybid of number of hops and residual energy of nodes.
Nodes less than 10 % of the initial energy should be reduced the opportunity to be
selected as the relay node.

Simulation results show that the routing algorithm balances the energy con-
sumption of nodes effectively and extends the network lifetime, compared with sim-
ilar algorithms. However, the main drawback is that without considering congestion
of network this algorithm is not optimal on end-to-end delay. Retransmissions result
in a higher delay and extra energy consumption.

In a mobile single-sink scenario all nodes except the sink are free to move and
transmit data to the sink in a continuous manner. Having one sink in the network
will make paths from nodes to the sink longer as they move further away from the
sink. Adding more sinks in the network would reduce the path lengths and reduce
overall delay and traffic. However, most researches related to multi-sink concen-
trate on deployment strategy of sinks or optimizing sink hand-over process. There
are very few research works on supporting multi-sinks in mobile scenarios. In our
contribution, we propose an enhancement based on signal strength monitoring and
Rank updating in order to improve the network performance in mobile multi-sink
scenarios. This enhancement helps RPL to better cope with mobility scenarios and
to make faster decisions on updating next-hop neighbors.

2.5 Summary

Dealing with mobility in LLNs is a challenging task for a compromise between ef-
ficiency and complexity. However, most routing protocols designed for LLNs were
originally specified without any special support for mobility, like RPL. More and
more researchers are attracted to design mobility supports for routing protocols to
achieve specific applications.

Mobility support in convergecast scenarios is well researched and many works
have been proposed to enhance the performance of RPL in mobility. However, none
of these works supports highly mobile scenarios. Indeed, when only few nodes are
free to move in the network, there is not a great impact on the topology. Moreover,
the works with high responsiveness to mobility requires large number of control
messages to update topology change, which cause high overhead in the network.

Mobility support in anycast scenarios is less studied. The same as mobility sup-
port in convergecast scenarios, none of these works supports highly mobile scenar-
ios. Some works use route discovery and route maintenance to build route path.
Source routing process is hysteresis to the movement of nodes and takes much time
on updating topology. Some works using flooding method to achieve high respon-
siveness to mobility. However, it is hard to support concurrent transmissions. Since
broadcasting takes much network resource.

Most multi-sink support methods for mobility use GPS system to get position
information. GPS is out of research in this thesis. However, without geographical
positions informations, these methods are hard to achieve in LLNs. According to
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our knowledge, there are very few research works on supporting both mobility and
multi-sinks at the same time.

Our main contributions in this thesis are proposing efficient mobility supports
for routing protocols in LLNs. The supports can be used in highly mobile converge-
cast and anycast scenarios. Besides, multi-sink support in mobility is another con-
tribution in this thesis.
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Chapter 3

Contributions

In this chapter, we present our contributions. Our main contributions work in con-
vergecast and anycast mobile scenarios. In section 3.1, we present RL mechanism
which is a mobility enhancement is for convergecast WSNs. RL can be used in most
routing protocols to enhance their performance in mobile scenarios. However, RL
suffers from high overhead. In section 3.2 we describe RRD that runs on top of RPL.
RRD is an enhanced version of RL that solves the high overhead problem of RL. Af-
ter considering hysteresis of the coverage zone of the transmission range of node, we
propose RRD+ and present it in section 3.3. In section 3.4, we present our contribu-
tion MRRD+. MRRD+ extends RRD+ to support multiple sinks. Section 3.5 presents
ADUP, which is the mobility enhancement mechanism for convergecast and anycast
WSNs. Mobility support of convergecast is achieved according to RRD+, while mo-
bility support of anycast is done by the sink node. Finally section 3.6 summaries the
chapter.

3.1 RL : mobility enhancement mechanism for convergecast
WSNs

In many-to-one multi-hop wireless sensor networks, data is transmitted by sensor
nodes towards the sink node which is the only destination. Before sending data,
nodes need to select a next-hop based on one or more routing metrics. In mobile sce-
narios, changes in the topology of the network increase the risk of link failures. In
addition, if the routing metrics cannot be updated timely, it is likely to cause loops.
We propose an enhancement mechanism based on a combination of RSSI value mon-
itoring and level updating that we called RL mechanism (RSSI, level). This mecha-
nism makes faster decisions for updating next-hop neighbors. RL is based on level
knowledge, link existence monitoring and movement direction estimation. When
applied to traditional routing protocols, RL allows nodes to anticipate on link fail-
ures by monitoring the change in the RSSI values. RL copes with mobility faster, and
thus, enhances the overall performance of the network.

3.1.1 Level mechanism and calculation

During the routing process, a level metric is used in addition to the routing metric.
The construction of the initial topology of the network starts at the sink node that
begins to broadcast control messages which contain routing metrics. Each node that
receives these messages builds a list of potential next-hops that we call parents set in
what follows. The level of a node is a value that defines the position of the node rela-
tive to the sink in terms of number of hops, with sink node being at level 0. Based on
the hop count obtained from control messages, a node will know the level of sender
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node. If the level of the receiver node is higher, it means this control message is from
a potential next-hop. The level of the receiver node will be equal to the smallest re-
ceived level plus 1. Note that the receiver node adds all senders with lower levels
to its parents set. Our level mechanism is similar with the Rank mechanism of RPL
using the hop count metric.

3.1.2 Metric diffusion

With RL mechanism, control messages have three functions: (i) broadcasting met-
rics, (ii) monitoring link existence, (iii) and monitoring movement direction. Control
messages are sent periodically in order to update routing metrics timely. At the be-
ginning of each period the sink is the first to broadcast a control message. When a
node receives a control message from a node with lower level, it updates the routing
metrics and then broadcasts its level and metrics. Nodes only broadcast control mes-
sages once they receive them from nodes with lower level. This insures broadcast
process to have a downward direction from the sink to the leave nodes.

3.1.3 Link existence and movement direction monitoring

Every node in the network needs to make sure that the link between itself and nodes
in the parents set exists. We use the RSSI values to allow nodes to monitor links [49].
Nodes obtain RSSI values from control messages. A node stores two RSSI values
for each parent, Old RSSI value (OldRSSI) and New RSSI value (NewRSSI). We use
them to monitor movement direction. OldRSSI is obtained from the previous con-
trol message and NewRSSI is obtained from the newest control message. We con-
sider that the node is getting closer to its parent if NewRSSI is bigger than OldRSSI.
In case NewRSSI is smaller than OldRSSI, we consider that the node is getting fur-
ther away from its parent.

In addition, we set a RSSI threshold. We assume that within the threshold the
node has a good link quality with its parent node. When the RSSI value is smaller
than the threshold, the node will consider whether to stop using the link or not. If
the node is getting near to its parent, we consider that this parent node can still be
used as a next-hop; otherwise this parent will be deleted from the parents set.

Each time a node adds a new node into the parents set, a timer is set for this
parent. We call this timer the lifetime of a parent. Nodes are kept in the parents set
for the duration of their lifetime. When the lifetime of a parent expires, this parent
node will be removed from the parents set. While before the lifetime of a parent
expires, if a new control message is received from this parent, the lifetime will be
reset and this parent will be keep in parents set. According to RL mechanism, we set
two sorts of lifetimes: long lifetime and short lifetime.

Long lifetime (Long_Li f etime) is given to nodes that have a RSSI value that is
higher than the threshold, and short lifetime (Short_Li f etime) is given to nodes that
have a RSSI value that is lower than the threshold. Indeed, when the parent node is
in a zone where the radio link is about to fail, a short lifetime will help avoid using
this parent node for a long period in case we do not receive its control messages.

3.1.4 Loop avoidance and level update

A routing loop is a common problem in mobility scenarios. Due to the changes in
the topology, a current next-hop may become a child node, and loops will occur. In
order to avoid this, we set the following three rules. (i) The level of a node must
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be greater than the level of all nodes in its potential parents set. (ii) Nodes cannot
forward data packets to nodes with higher or equal levels. (iii) Nodes must ignore
control messages which are received from higher level nodes.

Monitoring link existence and movement estimation allows nodes to update
their levels. Algorithm 1 depicts the level update process.

Level_r stands for the level of the receiver of the control message and Level_s
stands for the level of the sender of the control message. THRESHOLD stands for
the RSSI threshold.

begin
if received a control message then

if Level_r > Level_s then
if NewRSSI ≤ THRESHOLD then

if NewRSSI ≤ OldRSSI then
Level_r = Level_r + 1;

else
Level_r = Level_s + 1;
Setting Short_Li f etime for this parent node;

end
else

Level_r = Level_s + 1;
Setting Long_Li f etime for this parent node;

end
else

Ignore
end

end
end

Algorithm 1: Level Update.

Figure 3.1 shows a scenario with four nodes A, B, C and P. P is the neighbor of
nodes A, B and C. D is the neighbor of node B. We use a dashed circle to represent the
RSSI threshold of node P and a solid line to represent the transmission range. Note
that due to the nature of wireless signal propagation, in reality both the RSSI thresh-
old and the transmission range are most likely to look like a cloud that changes from
one transmission to another. Indeed, in our simulation model we used a probabilis-
tic propagation model to take into account links instability. A, B and C will execute
algorithm 1 whenever they receive a control message from P.

If the level of receiver node Level_r is bigger than the level of sender nodes
Level_s, case of node A, B and C in figure 3.1, they need to check NewRSSI of con-
trol message. If NewRSSI is smaller than THRESHOLD, case of node B and C, they
compare it to the OldRSSI. If NewRSSI is bigger than the old one, case of node C,
this means that node C is moving forwards node P. Since node C is not within the
THRESHOLD, we only give Short_Li f etime for node P and updates its own level
according to Level_r = Level_s + 1. Otherwise, if NewRSSI is smaller than the old
one, case of node B, this means that node B is getting away from node P. In this case,
node B increments its own level by Level_r = Level_r + 1. In figure 3.1, the RSSI
value of node A is bigger than the THRESHOLD, thus A sets Long_Li f etime for
parent P and updates its level Level_r = Level_s + 1.

By this process, nodes can detect the movement of other nodes. We do this be-
cause based on RSSI values, a node does not know if it is the one that is moving
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away or if it is the sender node that is moving away. In this example, if the sender
node P is moving away, nodes A, B and C will eventually receive new control mes-
sages from other neighbors, which are not shown in the figure 3.1, and update their
level according to these control messages. And in case it is the receiver node that is
moving away (node B), incrementing its own level will help avoid that this node be
selected as a parent by its children nodes case of node D. This way we avoid loops
from occurring.

Finally, in case the Level_r is smaller than the Level_s we ignore the control mes-
sage.

P

A

C

Transmission range of node P
RSSI threshold of node P
Nodes movement direction

B

D

FIGURE 3.1: Possible situations between neighbor nodes.

3.2 RRD : Mobility enhancement for RPL

RPL is one of the most dominant routing protocols for LLNs. However, it is original
specified without any support for mobility. Thus, we proposed RRD to support
covergecast communication of RPL in mobility. RRD is an enhanced version for RL
to be used on top of RPL.

If we only consider RPL in convergecast mobile scenarios, data is transmitted by
sensor nodes towards one destination which is the sink node. According to RPL, be-
fore sending data, nodes need to select a next-hop based on a Rank value and routing
metrics. However, standard RPL does not support timely Rank updates, a current
next-hop may become a descendant due to untimely update of the Rank value, and
loops will occur. Level mechanism of RL is similar with the Rank mechanism of RPL
using the hop count metric. RL could help nodes to update level value in mobile
scenarios. Thus, we propose to implement level update method in Rank mechanism
of RPL and name it as RRD (RSSI, Rank and Dynamic). RRD can help RPL cope
with topology changes when all nodes except the sink are mobile. RRD helps up-
date Rank in a timely manner and allows nodes to have more than one potential
next-hop option.

RPL uses DIO messages to diffuse metrics. The sending interval between con-
tinuous DIO messages is controlled by trickle algorithm. However, the trickle algo-
rithm cannot cope with mobility timely. Besides, when using the trickle algorithm,
DIO interval is common to all nodes and a node cannot adapt it to its own local topol-
ogy changes. Periodical control packets broadcasting is a common method to help
RPL update topology quickly. Indeed, we used periodical control packets broad-
casting in RL. However, this method suffers from high overhead. Thus, in RRD
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we propose a new DIO interval management algorithm, which copes with topology
changes and reduces overhead. This algorithm dynamically modifies the frequency
of DIOs according to Rank updates and allows each node to have its own frequency
for DIO messages. Compared with RL, new method adapts to mobility faster with
less overhead.

3.2.1 Common techniques between RL and RRD

In order to monitor link existence and update Rank, RRD follows approaches used
in RL. In RL nodes obtain RSSI values only from control messages, whereas in RRD
nodes obtain RSSI values from control message DIO and acknowledgement mes-
sages (ACK). At convergence stage, the network is constructed through DIO mes-
sages and RSSI values are obtained from these messages. After network construc-
tion, data packet senders will receive an ACK after each successful packet trans-
mission. This way, senders will get continuous RSSI value updates through ACKs.
When implement algorithm 1 in RPL, we get algorithm 2 shown as follow. Rankr
stands for the Rank of the receiver of the control message and Ranks stands for the
Rank of the sender of the control message. Long_Li f etime stands for the long life-
time and Short_Li f etime represents the short lifetime. MinIncrease stands for the
value of MinHopRankIncrease. Note that Rank update is similar with the level up-
date. Indeed, level mechanism is the Rank mechanism of RPL using the hop-count
metric.

begin
if received a DIO message then

if Rank_r > Rank_s then
if NewRSSI ≤ THRESHOLD then

if NewRSSI ≤ OldRSSI then
Rank_r = Rank_r + MinIncrease;

else
Rank_r = Rank_s + MinIncrease;
Setting Short_Li f etime for this parent node;

end
else

Rank_r = Rank_s + MinIncrease;
Setting Long_Li f etime for this parent node;

end
else

Ignore
end

end
end

Algorithm 2: Rank Update for nodes in mobility.

3.2.2 Ripple control message management

Trickle algorithm is used by RPL in order to reduce overhead in static networks.
Trickle algorithm starts with a short interval between two DIOs in order to construct
network fast. Each time the interval will be increased until it reaches Imax. However,
when the interval increases, trickle algorithm cannot cope with information update
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in a timely manner, which is important in mobility. In RL, we use periodical control
message broadcasting to update topology. However, it costs too much overhead
(See Subsection 4.2.6 in Chapter 4). Besides, when using the trickle algorithm or
periodical control message broadcasting, DIO interval is common to all nodes and a
node cannot adapt it to its own local topology changes. Therefore, we propose a new
DIO interval management called ripple control message management, which copes
with topology changes and reduces overhead. This algorithm dynamically modifies
the frequency of DIOs according to Rank updates and allows each node to have its
own frequency for DIO messages.

DIO messages are used to construct routes towards the sink. In other words, the
main function of DIO messages is to help children nodes find parent nodes. A DIO
message that comes from a smaller Rank is more important than a DIO message
that is received from a higher Rank. This is mainly due to the fact that the diffusion
of path metric is from lower Rank nodes to higher Rank nodes. This means that
information contained in DIO messages coming from lower Rank nodes, will be the
base for higher Rank nodes to update path information. Thus, the rational behind
our algorithm is that if nodes with lower Rank values propagate DIOs timely, they
will make sure path metrics used by higher Rank nodes are up-to-date. Therefore,
nodes that are closer to the sink should send DIO messages more frequently and the
frequency of DIO messages may be reduced for nodes with higher Ranks.

We designed a dynamic DIO interval calculation according to Rank updates. The
DIO interval calculation is shown in equation 3.1.

DIO_interval = Base_interval + Rank ∗ Time_unit (3.1)

Base_interval is the smallest DIO interval, which is the DIO interval of the sink.
Rank stands for the current Rank value of a node. Time_unit is the incremental step
in the DIO frequency. DIO_interval dynamically changes when the Rank of nodes
is updated due to changes in the topology.

3.3 RRD+ : Enhanced version of RRD

In reality according to multipath propagation effects (known as fading effects), the
received power at certain distance follows a random behavior [50]. Nodes that are
close to the edge of transmission range will suffer from frequent Rank updating,
which may cause parent nodes loss in parents set. This phenomena is more likely to
happen in confined areas with the complexity of the environment makes most of the
links instability. Therefore, we proposed RRD+, which is an improvement over RRD
that takes into account hysteresis of the coverage zone of the transmission range of
nodes. In what follows we will describe in details how RRD+ operates.

3.3.1 Link existence and movement direction monitoring

The same as RRD, RRD+ obtains RSSI values from control messages: broadcast DIO
messages and ACK. A node stores two RSSI values for each parent node, Old RSSI
value (OldRSSI) and New RSSI value (NewRSSI). We compare these two values in
order to monitor movement direction. We consider that a node is getting closer to
its parent if NewRSSI is higher than OldRSSI. Whereas, we consider that a node is
getting further away from its parent if NewRSSI is lower than OldRSSI.

Due to unpredictable path attenuations, RSSI values might vary even when both
nodes do not move. In order to take this phenomenon into account, we introduce
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two RSSI thresholds: Safe Threshold (SAFE_THRESHOLD) and Hysteresis Thresh-
old (HYST_THRESHOLD), where SAFE_THRESHOLD > HYST_THRESHOLD
as shown in figure 3.2. We use a dotted line for SAFE_THRESHOLD and a dashed
line for HYST_THRESHOLD. Note that in our simulation model we used a proba-
bilistic propagation model to take into account coverage zones instability.

P

Transmission range of P

SAFE_THRESHOLD of P

HYST_THRESHOLD of P

Safety zone

Hysteresis zone

Danger zone

A

B

C

FIGURE 3.2: Node P is the parent node of nodes A, B and C. A is in
the Safety zone of node P. B is in the Hysteresis zone of node P. C is in

the Danger zone of node P.

When NewRSSI is higher than or equal to SAFE_THRESHOLD, the node is
considered to have a good link quality with its parent node; this is the case of node
A in figure 3.2. Thus, we consider node A to be in its parent (node P) Safety zone.

When HYST_THRESHOLD < NewRSSI ≤ SAFE_THRESHOLD, which is the
case of node B in figure 3.2, we need to detect movement direction first and then
consider whether to stop using the link or not. In order to reduce the coverage zone
variation influence, we add a hysteresis value to OldRSSI when comparing it to
NewRSSI. In this situation, we consider node B to be in the Hysteresis zone.

When NewRSSI is smaller than HYST_THRESHOLD, which is the case of node
C in figure 3.2, only NewRSSI and OldRSSI will be used to estimate direction with-
out using hysteresis. If node C is getting closer to node P, we consider that node P
can still be used as a next-hop. Otherwise, node P should be deleted from the par-
ents set of node C. In this case, we consider node C to be in the Danger zone of node
P.

Each time a node receives a DIO message and adds a new node into its parents
set, a timer is set for this parent. We call this timer a parent lifetime. Nodes are
kept in the parents set and can be selected as next-hops for the lifetime duration.
When the timer expires, nodes need to be deleted from the parents set. However,
before the timer expires, if a new control message is received from this parent, the
lifetime of this parent node will be reset in parents set. According to RRD+ mecha-
nism, we set two sorts of lifetimes: Long Lifetime Long_Li f etime and Short Lifetime
Short_Li f etime.

Long_Li f etime is given to a parent node in case NewRSSI is higher than SAFE_-
THRESHOLD. In case NewRSSI is smaller than SAFE_THRESHOLD, movement
direction will be estimated first and Short_Li f etime is given to parent node when
movement direction is towards parent node, otherwise Rank value will be updated.
Indeed, when the parent node is in Hysteresis or Danger zones where the radio link
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is about to fail, Short_Li f etime will help avoid using this parent node for a long pe-
riod in case we no longer receive its control messages. When Rank value is updated,
the current parent is removed from the parents set.

3.3.2 Loop avoidance and Rank update

Rank updating is an important mechanism in our proposal. RRD simply uses com-
parison between THRESHOLD and received power to decide Rank updating. How-
ever, the received power at certain distance randomly varies due to fading effects in
reality. While using RRD, nodes that are close to the edge of transmission range will
frequently update Rank value. Frequent Rank updating may cause parent nodes
loss in parents set, which easily results in an empty parents set. Therefore, while
updating Rank value we take into account hysteresis of the coverage zone of the
transmission range of nodes in RRD+, which helps nodes at the edge of transmis-
sion range reduce frequency of Rank updating. In what follows we will describe the
Rank updating process of RRD+.

With RRD+, nodes monitor links existence and movement direction to allow
nodes to update their Ranks in a timely manner. Algorithm 3 depicts the Rank up-
date process. In algorithm 3, Rank_r stands for receiver Rank and Rank_s stands for
sender Rank. MinIncrease stands for the value of MinHopRankIncrease.

In figure 3.3, P is the parent node of nodes A, B, C, D and E. Node F is a child node
of node B and C. All these nodes will execute algorithm 3 whenever they receive a
DIO or ACK message from their parent nodes. Algorithm 3 is explained in what
follows and the scenario of figure 3.3 is used as an example to explain Rank updates.

P

Transmission range of P

SAFE_THRESHOLD of P

HYST_THRESHOLD of P

B D

E

Nodes movement direction

C

A

F

FIGURE 3.3: The position of node A is within SAFE_THRESHOLD
of node P. Node B and node D are in the Hysteresis zone between
SAFE_THRESHOLD and HYST_THRESHOLD of node P. Node C
and node E are between HYST_THRESHOLD and the transmission
range of node P. Node F is out of the transmission range of node P,

but is neighbor of node B and node C.

When a control message is received, if Rank_r is higher than Rank_s, case of
nodes A, B, C, D and E receiving a control message from P, they need to check
NewRSSI of the control message. If NewRSSI is higher than SAFE_THRESHOLD,
the receiver node sets a Long_Li f etime for this parent and updates its Rank Rank_r =
Rank_s + MinIncrease. This is the case of node A.
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begin
if received a control message then

if Rank_r > Rank_s then
if NewRSSI > SAFE_THRESHOLD then

Rank_r = Rank_s + MinIncrease;
Put this parent node in the parents set;
Set Long_Li f etime for this parent node;

else if HYST_THRESHOLD < NewRSSI ≤ SAFE_THRESHOLD
then

if (NewRSSI −OldRSSI) < HYSTERESIS then
Rank_r = Rank_r + MinIncrease;
Remove this parent node from the parents set;

else
Rank_r = Rank_s + MinIncrease;
Put this parent node in the parents set;
Set Short_Li f etime for this parent node;

end
else if NewRSSI ≤ HYST_THRESHOLD then

if NewRSSI ≤ OldRSSI then
Rank_r = Rank_r + MinIncrease;
Remove this parent node from the parents set;

else
Rank_r = Rank_s + MinIncrease;
Put this parent node in the parents set;
Set Short_Li f etime for this parent node;

end
else

Ignore
end

end
end

Algorithm 3: Rank update for nodes in mobility.



34 Chapter 3. Contributions

If HYST_THRESHOLD < NewRSSI ≤ SAFE_THRESHOLD, case of nodes B
and D, in order to avoid the influence of signal fading we set a hysteresis when esti-
mating movement direction with NewRSSI and OldRSSI. If (NewRSSI−OldRSSI) <
HYSTERESIS, case of node B, this means the receiver and the sender are getting
away from each other. In this case, the receiver updates its own Rank according to
Rank_r = Rank_r + MinIncrease. When Rank value is updated, children nodes of
receiver node will no longer choose it as a parent. This is the case of node F that
will no longer consider node B as a parent node once node B has updated its Rank.
Indeed, this will help avoid using a node, which might lose its current link with its
parent, to be selected as a parent node. In case receiver node moves back towards
sender node, it will receive a new DIO message from the sender node and will up-
date its Rank according to the algorithm.

Otherwise, in case (NewRSSI−OldRSSI) ≥ HYSTERESIS, receiver node gives
a short lifetime for the sender node and updates its own Rank according to Rank_r =
Rank_s + MinIncrease. This way, receiver node is only one level below the sender
node. This is the case of node D. Receiver node D sets the parent P with a Short_Li f -
etime in order to avoid keeping the sender node P as a parent for a long period in
case the receiver node D moves away from the sender node P.

If NewRSSI is smaller than or equal to HYST_THRESHOLD, case of nodes C
and E, the receivers check the difference between NewRSSI and OldRSSI to estimate
movement direction without using hysteresis. In this case the receiver nodes C and
E are at the edge of transmission range of the sender node P, thus, updating infor-
mation fast is imperative, therefore the receivers ignore the hysteresis test. In this
situation, if NewRSSI is higher than the old one, case of node E, this means that the
receiver is at the edge of transmission range but is moving towards node P. In this
case node E gives a Short_Li f etime for node P and updates its own Rank according
to Rank_r = Rank_s + MinIncrease. Otherwise, if NewRSSI is smaller than the old
one, case of node C, this means that receiver node C is getting away from the sender
P. In this case, node C increments its own Rank by Rank_r = Rank_r + MinIncrease.
Finally, in case Rank_r is smaller than Rank_s we ignore the control messages.

3.4 MRRD+ : Mobility enhancement for RPL with multiple
sinks

In a mobile single-sink scenario all nodes except the sink are free to move and trans-
mit data to the sink in a continuous manner. However, only one sink in the network
will make paths from nodes to the sink as they move further away from the sink.
Adding additional sinks in the network would reduce the number of the hops be-
tween source nodes and the destinations. Besides, in a convergecast WSN only one
sink easily leads to a faster energy depletion of the sink, more packet loss, higher la-
tency and smaller network range. Deploying multiple sinks in the network can help
solve these problems. Therefore, we propose MRRD+, which is an enhancement
over RRD+ that takes into account multiple sinks that share the same DODAGID
(See Chapter 2 section 2.4). Besides, we improved dynamic control message man-
agement in order to inform Rank updates as soon as possible in the case where a
node is trying to move out of its parent node range.
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3.4.1 Common techniques between RRD+ and MRRD+

MRRD+ follows approaches used in RRD+ to monitor link existence and update
Rank. Since all the sinks share the same DODAGID, the algorithm 3 is applied with
multiple sinks . Nodes will consider all potential parent nodes with the same Rank
value regardless of the sink nodes, and the Rank update stays the same.

3.4.2 Enhanced ripple control message management

In 3.2.2 we introduce ripple control message management, and it dynamically mod-
ifies the frequency of DIOs according to Rank updates and allows each node to have
its own frequency for DIO messages by the equation DIO_interval = Base_interval +
Rank ∗ Time_unit. However, when considering the coverage zone we defined, if a
node is in Hysteresis zone or Danger zone and moving away from its parent node,
the Rank value will increase according to algorithm 3. It is essential to inform its
neighbors of the updated Rank value. Therefore, in this case DIO should be sent
frequently. If the node is in Safety zone or moving towards its parent node, the Rank
value will not be increased. Frequent DIO messages are not necessary. Therefore, in
this case we need to reduce DIO frequency. Based on this, we propose algorithm 4
to enhance dynamic DIO interval management.

Initialize:
a = 0;
DIO_interval = Base_interval + Rank ∗ Time_unit;
begin

if DIO is received then
if NewRank 6= OldRank then

a = 0;
DIO_interval = Base_interval;

else
a = a + MinIncrease;
DIO_interval = Base_interval + a ∗ Time_unit;
if DIO_interval > DIO_max then

DIO_interval = DIO_max;
end

end
end

end
Algorithm 4: Dynamic DIO interval management.

In algorithm 4, each node would set its DIO interval to Base_interval + Rank ∗
Time_unit during the network construction. Base_interval is the smallest DIO inter-
val, which is the DIO interval of the sink. Rank stands for the current Rank value of
a node. Time_unit is the incremental step in the DIO frequency. NewRank stands for
the Rank value after a Rank update according to algorithm 3 when receiving a con-
trol packet from other nodes. OldRank stands for the previous Rank value. If a node
changes its Rank value (NewRank 6= OldRank), this means that the node is out of
the Safety zone and moving away from its parent node, or the node receives control
messages from a node which has a lower Rank value than its current parent node.
In this case, the node needs to broadcast DIO messages more frequently. There-
fore, the DIO_interval will be set to Base_interval at first, which is the minimum
DIO_interval. After Base_interval, if this node keeps the same Rank value, it sets
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DIO_interval to Base_interval + a ∗ Time_unit, where a increases MinIncrease each
time, in order to reduce the cost of overhead. Assuming that the maximum Rank
value of the network is Max_Rank. According to this equation, we could get the fol-
lowing maximum DIO interval DIO_max = Base_interval + Max_Rank ∗Time_unit.
When DIO_interval is larger than DIO_max, it stops increasing DIO_interval.

3.5 ADUP : Mobility enhancement mechanism for converge-
cast and anycast WSNs

ADUP is an adaptive routing protocol that integrates anycast and convergecast traf-
fic together and supports highly mobile scenarios. All nodes except the sink are free
to move and need to send periodic data to the sink. Simultaneously, the sink needs
to periodically send command packets to randomly selected nodes in the network.
This protocol reacts quickly to the movement of nodes to make faster decisions for
the next-hop selection for convergecast traffic and dynamically build routes for any-
cast traffic. Note that mobility support of convergecast is achieved according to
RRD+.

3.5.1 Building dynamic next-hop table during upward routing

In RRD+, all neighbors with lower Ranks form a set that we call parents set. In a data
collection process, before sending a packet, a node needs to select a next-hop from its
parents set. In ADUP, the ID of this next-hop is included into data packets and sent
to the sink. Instead of storing the entire addresses of next-hop nodes in data packets,
we only use 1 byte to store the ID of the next-hop node of the source node. Due to
the fact that the upper limit value of 1 byte is 255, the maximum number of nodes in
the network cannot exceed 255. Figure 3.4 shows the fields of upward data packets.
When the sink receives data packets, it builds a next-hop table as shown in figure
3.5. The first column of this table stands for the ID of nodes, except the sink, in the
network. We consider that there are n nodes and one sink in the topology. We define
the ID of each node as IDi ∈ {ID0, ID1, ID2, ..., IDn}, where ID0 stands for the ID of
sink. The second column stands for the ID of best next-hop for each node referred to
as N(IDi). Note that N(X) ∈ {ID0, ID1, ID2, ..., IDn} and X ∈ {ID1, ID2, ..., IDn}.
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FIGURE 3.4: The fields of upward data packets.

RRD+ updates the Rank value of each node according to link quality and move-
ment direction. Nodes in a parents set will be automatically removed or added based
on the variation of Rank values. Thus, the next-hop of each node will also dynam-
ically change according to movement. Due to the fact that each node periodically
sends packets to the sink, the next-hop table will adapt to mobility periodically.
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FIGURE 3.5: Dynamic next-hop table of the sink node.

3.5.2 Building downward routing route

In order to reach the destination through multiple hops, the sink needs to build a
route before sending a packet. Algorithm 5 depicts the route building process. We
use IDd to stand for the ID of the destination node which will be put into the route
first. The sink will extract the preferred next-hop of IDd from the dynamic next-hop
table. If N(IDd) equals ID0, this means that the sink can reach node IDd directly
and the building process stops immediately. In case N(IDd) is not ID0, the sink
continues the route building process. For any entry in the first column of dynamic
next-hop table, the entry IDi that equals N(IDd) will be put into the route and its
next-hop N(IDi) needs to be compared to ID0. The building process will stop when
the next-hop of item IDi is ID0. The building process of a route is done from the
destination to the sink, the route we get is in reverse order and it is thus reversed
before it is used as a path.

Input: IDd
Output: Route
begin

Put IDd in the Route;
Nexthop = N(IDd);
while Nexthop does not equal to ID0 do

for each item i in IDi do
if IDi = Nexthop then

Nexthop = N(IDi);
Put IDi in the Route;

end
end

end
Reverse(Route);

end
Algorithm 5: Route building.

Figure 3.6 shows how algorithm 5 works. IDd is put into the route first. During
this process, numbers of IDi will be put in the route until the next-hop of IDx is
found to be ID0. At the end, the route needs to be reversed.

We consider that there are m nodes in the route. Before sending a data packet,
the sink needs to store the IDs of these nodes in the data packet as shown in figure
3.7. Every time the data packet is relayed, the route offset will be increased to help
relay nodes to find the next-hop within m bytes until reaching the destination.
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FIGURE 3.6: Route building process.
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FIGURE 3.7: The fields of downward data packets.

3.6 Summary

Introducing mobility in LLNs is not a straightforward task. The limited resources
of nodes makes it very challenging to find optimized solution. In this chapter, we
present RL, RRD, RRD+ routing protocols to support mobility in highly mobile con-
vergecast scenarios. RL is a mechanism that can be used in most routing protocols to
support mobility. However, due to periodically broadcasting control messages RL
suffers from high overhead. When running RL over RPL, we propose ripple control
message management in RRD to enhance its performance on overhead. RRD+ is an
updated version over RRD that takes into account hysteresis of the coverage zone
of the transmission range of nodes. Evaluation results presented in chapter 4 shown
the efficiency of RRD+ compared to some existing protocols.

MRRD+ is an enhancement over RRD+ that takes into account multiple sinks
that share the same DODAGID. We improve ripple control message management in
order to inform Rank updates as soon as possible in the case where a node is trying
to move out of its parent node range.
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Based on RRD+, we propose ADUP to support mobility in highly mobile con-
vergecast and anycast scenarios. Convergecast part is supported by RRD+. This
protocol reacts quickly to the movement of nodes to make faster decisions for the
next-hop selection in data collection and dynamically build routes for anycast traf-
fic. Results in chapter 4 through simulation show that our work outperforms two
generic ad hoc routing protocols AODV and flooding on different performance met-
rics.
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Chapter 4

Results

In this chapter, we evaluate the performance of our contributions through simu-
lation and experiment (only ADUP is experimented). The simulation is by using
Contiki operating system and its simulator Cooja. This chapter is organized as fol-
lowed. The first section 4.1 introduces simulation system, path loss of propagation,
mobility model used for simulation and performance metrics for evaluation. In the
second section 4.2, we show the efficiency of RL mechanism while using different
link metrics, and evaluate the performance of RL and RRD when they are imple-
mented on top of RPL. In section 4.3, we compare RRD+ with other existing mobility
support methods mentioned in Chapter 2 on different degrees of mobility. Section
4.4 presents the performance of MRRD+ in multi-sink scenarios. In section 4.5 we
present ADUP simulation results and compare it with two routing protocols. In
section 4.6 we present ADUP experimental results and compare it to standard RPL.
Finally section 4.7 summaries this chapter.

4.1 Simulation system

Contiki is a lightweight open source operating system for tiny network devices in-
cluding sensor nodes [51]. It is designed to run on the hardware devices that are
constrained in memory, communication bandwidth and processing power. Contiki
is developed in C, therefore it is highly portable to different architectures like Texas
Instruments MSP430. Contiki is an event-driven system in which processes are im-
plemented as event handlers. Contiki provides three basic network mechanisms: the
µIP (micro IP) TCP/IP (Transmission Control Protocol/Internet Protocol) stack with
IPv4 (Internet Protocol version 4) networking, the µIPv6 stack with IPv6 networking,
and the Rime stack. The IPv6 stack contains RPL routing protocol, the 6LoWPAN
(IPv6 over Low-Power Wireless Personal Area Networks) header compression and
adaptation layer for IEEE 802.15.4. Rime is a set of lightweight networking proto-
cols designed for low-power wireless networks. The Rime stack provides a set of
communication primitives. The primitives can be used on their own or combined to
form different protocols.

4.1.1 Path loss of propagation

The Contiki system includes a network simulator called Cooja. The simulator is
implemented in Java but allows the software of sensor nodes to be written in C.
Compared with many existing network simulators such as NS2, NS3, OMNeT++,
TOSSIM, etc, Cooja is more compatible with real hardware and the simulation code
can be used on real life nodes directly. Besides, we made some modifications on
the default parameters of Cooja in order to make it more realistic, especially when it
comes to emulating signal propagation. There are four propagation models in Cooja
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[52]. One of them is Multi-path Ray-tracer Medium (MRM) which takes reflections
and refractions into account to simulate real environment. The MRM radio model
relies on ray tracing technology and integrates capture effect1.

In order to make it more suitable for unstable environments, such as mobile net-
works deployed in confined spaces, we included a random behavior to path loss
calculation. Indeed, we increase path loss exponent to take into account the pres-
ence of obstacle between two nodes and add Gaussian random variable in the path
loss formula of MRM in order to simulate instability of the radio links. The formula
of the received signal power in decibel (dB) is presented in equation 4.1:

PL(d) = PL(do) + 10αlog10(
d
do
) + Xσ (4.1)

Where PL(d) is the total path loss measured in dB and PL(do) is the path loss at
the reference distance do in dB. d is the length of the path and do is the reference dis-
tance. α is the path loss exponent, which must be measured at the site of the planned
deployment. Existing works show that the path loss exponent value α range be-
tween 2.7 and 3.5 for an urban area [53] and we set it to 3 to simulate transmission
range around 40 meters with−20 dB transmission prower in Cooja. Xσ is a Gaussian
random variable in the interval [−2, 2] with mean value of 0 and a standard devia-
tion σ of 1. The random component with a Gaussian standard deviation makes each
node transmission range change from around 30 meters to 50 meters randomly.

The modified MRM ration propagation model with its new feature is used to
evaluate our contribution.

4.1.2 Mobility model

Mobility models are used for simulation when network protocols are evaluated. In
order to simulate the movement of mobile sensor nodes, it is necessary to select
suitable mobility models for the specific application. There are two types of mo-
bility models: individual mobility and group mobility. In the first type model, the
movement of nodes is independent of each other; the common models are Random
Waypoint, Random Direction and Random Walk [54]. Random Direction and the
Random Walk are two variants of the Random Waypoint. In the second type model,
mobile nodes are divided into different groups and the nodes in one group follow
the same specific movement. This type model is usually used in military environ-
ments, since soldiers move in group [55].

In our work we assume that mobile nodes move randomly and freely without
restrictions. Thus, we select Random Waypoint as our simulation mobility model.
Random Waypoint is a commonly used model in Ad Hoc networks. In this model
each node begins by pausing for a fixed number of seconds. The mobile node then
selects a random destination in the simulation area and a random speed between 0
and maximum speed. The node moves to this destination and again pauses for a
fixed period before another random location and speed. In our simulation all nodes
are randomly deployed in a 200 m * 200 m area at the beginning. The sink is always
located at the center of the area for the duration of the simulation. When the simu-
lation starts, each node makes a random choice to select a location within the area
as a destination. Then, it moves towards this destination. The velocity is randomly
chosen from [1 m/s, 3 m/s] every 5 seconds, which is a simulation of walking speed
of human in a building. We introduce rest time for each node. Whenever a node

1The capture effect is a phenomenon associated with frequency modulation reception in which only
the stronger signals with a certain threshold will be demodulated.
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TABLE 4.1: Mobility model parameters.

Item Parameters

Mobility Model Random Waypoint Model
Minimum speed 1 m/s
Maximum speed 3 m/s
Speed changing interval 5 s
New location rest time 5 s

reaches its destination position, it will rest in new location for 5 seconds and then
selects a new destination for the next movement. We introduce 5 seconds stop in or-
der to simulate human walking stop before selecting the new destination. All nodes,
except the sink, repeat these steps until the simulation stops. Table 4.1 summarizes
mobility model parameters for simulation.

4.1.3 Unslotted CSMA/CA

The IEEE 802.15.4 unslotted CSMA/CA (Carrier Sense Multiple Access with Colli-
sion Avoidance) aims to reduce interferences and collisions by sensing the channel
and waiting for random periods before accessing the medium. The main part of this
algorithm is described in the following paragraph.

Each node maintains two variables for each transmission attempt: NB (number
of backoffs) and BE (backoff exponent). NB is the number of times that CSMA/CA
algorithm was required to backoff while attempting the current transmission. NB
is initialized to zero before each new transmission attempt. BE is the backoff expo-
nent, which is the backoff periods that a node shall wait before attempting to assess
the channel. BE shall be initialized to the value macMinBE. Any transmission is
delayed for a random number of backoff periods in the range [0; 2BE − 1]. After
this delay, channel sensing is performed by doing clear channel assessment (CCA).
If the channel is busy, both NB and BE are incremented by one, ensuring that BE
shall be no more than macMaxBE. If NB is less than or equal to macMaxCSMABack-
off, the algorithm shall return to step of setting backoff periods. In case NB reaches
macMaxCSMABackoff, the algorithm shall terminate, which means that the node
does not succeed in accessing the channel. If the channel is assessed to be idle, the
CSMA/CA succeed and the transmission may start.

The MAC layer of Contiki OS provides a version of the CSMA/CA algorithm.
Indeed, the provided version does not respect the backoff procedure and does not
use the backoff periods specified in the standard. To overcome this insufficiency, we
implemented a compliant version of IEEE 802.15.4 unslotted CSMA/CA in Contiki
3.0. We used this compliant version of CSMA/CA to evaluate our contributions.

4.1.4 Performance metrics

We use seven performance metrics to evaluate the efficiency of our work: (i) packet
delivery ratio, (ii) number of dropped packets, (iii) dropped packets ratio, (iv) num-
ber of retransmissions, (v) number of sent packets, (vi) average end-to-end delay
and (vii) number of control packets.

Packet delivery ratio is defined as the ratio of received data packets at the sink
to those generated by the source nodes. The packet delivery ratio metric shows the
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ability of the routing protocol in successfully delivering packets to the final destina-
tion. This evaluation metric is very important in showing how well each variant is
able to cope with mobility.

According to IEEE 802.15.4 MAC layer, nodes keep retransmitting the same frame
until the number of retransmission attempts reaches a fixed maximum value after
which the frame is dropped. The number of maximum retransmissions is 4 accord-
ing to the standard. The number of dropped packets is the number of packets that
are dropped after exceeding the maximum number of retransmission attempts. This
evaluation metric shows how efficient the routing protocol is in finding a new par-
ent when the link with the current parent is lost. Dropped packets ratio is the ratio
between the number of dropped packets and the number of generated packets.

Each node may send the same packet 5 times due to collisions and link failures.
The number of retransmissions gives an idea about the congestion of the network
and efficiency in avoiding to overload the network with retransmissions.

Total number of sent packets refers to the number of packets that are sent over
the medium during the simulation. Nodes in our simulations generate the same
number of packets but each node may send a different number of frames depending
on the retransmission attempts due to collisions and packet loss. This performance
metric gives us the total number of packets that each node sent for the same number
of generated packets. An efficient metric should have fewer sent packets for the
same number of generated and received packets.

The end-to-end delay refers to the duration taken by a packet from a node to the
sink. Measuring the end-to-end delay helps to show the ability of the routing proto-
col in building efficient routes with the fewest number of hops to reach the destina-
tion and its ability to avoid routing loops that will increase this delay. To compute
the average end-to-end delay we measure the delay taken by total received packets
and divide it by the number of successful received packets at the sink. The packet
average end-to-end delay can be computed using the following two equations.

Total Delay =
n

∑
i=1

(RecvTime(i)− SentTime(i)) (4.2)

Average end to end Delay = Total Delay/n (4.3)

Where n stands for the number of successfully received packets.
Lastly, we evaluated the overhead of each enhancement in order to show the

additional work done by the protocol. This gives an idea about the complexity of
the enhancement in terms of number of control messages and in a certain extent, it
gives an idea about the additional energy consumption that it induces.

4.2 RL and RRD performance evaluation

We chose to show the efficiency of our RL and RRD mechanism using three of the
most used metrics: number of hops (HopCount), latency, and expected transmission
count (ETX). HopCount is a metric that is based on the number of hops that sepa-
rates source node from destination (sink node). Nodes select the node that has the
smallest hop count in the neighbors set or parents set as their next-hop. For the la-
tency metric, we calculate the the queuing delay, which is the time spent by a packet
in the packet queue of the MAC layer. The node computes the difference between
the queuing time and dequeuing time of a packet in the queue. We make an average
calculation of the last ten packets as it is done in [56]. If the number of dequeued
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packets is less than ten, the average calculation is only computed over the number
of dequeued packets. Nodes choose the next-hop based on the smallest path delay,
which represents the estimated time needed to reach the sink based on the queu-
ing delay of intermediate nodes. For the ETX, we use an average value of last ten
packets as ETX metric and select the next-hop based on the smallest path ETX in the
neighbors set or parents set in a similar way to what is done in [57].

We applied HopCount, latency and ETX with RL mechanism and we call these
new combinations as RL-HopCount, RL-Latency and RL-ETX. Unlike the latency
and ETX, HopCount is a quantized metric. Normally in the neighbors set or parents
set many nodes have the same smallest number of hops to the sink. Using Hop-
Count metric, we always select the first node in the neighbors set or parents set with
the smallest number of hops. In addition to these 3 metrics, we also introduce a
random variant method which consists on randomly choosing the next-hop from
the nodes that have the same smallest hop count. We call this metric Random and
its implementation with RL mechanism RL-Random. We also applied RL mecha-
nism to RPL. Since the native RPL does not introduce Random as its metric, we only
included RL to RPL-Hopcount, RPL-ETX and RPL-Latency, and we called them RL-
RPL-Hopcount, RL-RPL-ETX and RL-RPL-Latency. RRD is an enhanced version of
RL and proposed for RPL. Thus we only evaluate the performance of RRD when it is
implemented in RPL, and we called them RRD-RPL-Hopcount, RRD-RPL-ETX and
RRD-RPL-Latency.

Simulations are performed using IEEE 802.15.4 MAC. Nodes access the medium
using unslotted CSMA/CA algorithm. We use a packet queue length of 16 pack-
ets with a 30 byte packet size. We disable the duty cycling to keep nodes awake
all the time. In order to test our work in different network densities, we continu-
ously add 20 nodes from 20 to 60 with one sink. According to RPL specification
[13], there are two parameters we need to set for default RPL when using trickle
algorithm. DEFAULT_DIO_INTERVAL_MIN is the default value used to con-
figure I_min in DIO trickle timer. We set this value to 11 which results in I_min
of 2 seconds. The default value used to configure I_max in DIO trickle timer is
DEFAULT_DIO_INTERVAL_DOUBLINGS. We set this value to 1. This configura-
tion results in a maximum interval of 4 seconds. These configurations are decided af-
ter multiple simulation tests with different value combinations of DEFAULT_DIO-
_INTERVAL_MIN and DEFAULT_DIO_INTERVAL_DOUBLINGS. We found out
that RPL copes with mobility fast with DEFAULT_DIO_INTERVAL_MIN equaling
11 and DEFAULT_DIO_INTERVAL_DOUBLINGS equaling 1. Compared to de-
fault settings DEFAULT_DIO_INTERVAL_MIN = 3 (8 millisecond) and DEFAUL-
T_DIO_INT-ERVAL_DOUBLINGS = 20 (2.3 hours) indicated by the specifica-
tions. Our configuration increases I_min, but decreases I_max, which allows nodes
to better cope with topology changes in mobility. Table 4.2 summarizes the rest of
the simulation parameters we used.

We used five performance metrics to evaluate the enhancement of RL and RRD:
(i) packet delivery ratio, (ii) number of sent packets, (iii) number of retransmissions,
(iv) number of dropped packets and (v) average end-to-end delay. For each network
size, we generated 10 different random mobility scenarios. Each performance metric
is averaged over 10 iterations for each network size.



46 Chapter 4. Results

TABLE 4.2: Simulations parameters used to evaluate RL and RRD
performance.

Item Parameters

Network simulator Cooja under contiki OS (3.0)
Radio propagation model MRM with random behavior
Medium access control CSMA/CA
Simulation time 5 minutes
Emulated platform Z1 starter platform
Sensor Nodes Deployment Random Deployment
Data size 30 Bytes
Packet queue size 16
Transmission rate 1 pkt/sec
Transmission power -20 dBm
Transmission range [30 m, 50 m]
Number of nodes 20, 40, 60
Area of deployment 200 m x 200 m
Frequency range 2.4 GHz
Receive Sensitivity -95 dBm
RSSI Threshold THRESHOLD -92 dBm
Long lifetime Long_Li f etime 40 s
Short lifetime Short_Li f etime 25 s
DEFAULT_DIO_INTERVAL_MIN 11
DEFAULT_DIO_INTERVAL_DOUBLINGS 1
Number of iterations 10
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4.2.1 Packet delivery ratio

Figure 4.1 shows that Random, HopCount and ETX outperform Latency, which is
mainly due to the fact that Latency has more loops and collisions during the trans-
mission. All four metrics have better packet delivery ratio when used with RL mech-
anism. RL-Random performs better than the other variants mainly due to the fact
that the random choice in parents set balances the traffic load. Indeed, sending pack-
ets to a different parent node at each transmission increases the probability of success
of packet delivery and decreases the probability of sending packets to a node that
is moving away. Having more nodes in the network increases the traffic load. This
may cause network collisions, however, this also helps the parents set contains more
potential next-hop options to load balance the network. Therefore, RL-Random has
almost the same packet delivery ratio with 40 nodes and 60 nodes.
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FIGURE 4.1: Packet delivery ratio (RL with different link metrics).

Figure 4.2 shows the packet delivery ratio results for RPL, RL-RPL and RRD-RPL.
With RPL, delivery ratio of Latency metric does not decrease much with the increase
of number of nodes compared to the routing based on latency presented in figure
4.1. This is mainly due to the rank mechanism in RPL that can help nodes avoid
some loops compared with the routing protocols that do not have rank mechanism.
The results show that all the three variants with RL and RRD outperform native
RPL. This is mainly due to the fact that Rank update method in RL and RRD helps
nodes quickly find the suitable parent nodes and avoid packet loss. Note that RRD
outperforms RL. RRD enhances RPL more on packet delivery ratio with 60 nodes
compared with RL. This is mainly due to the fact RL uses periodical control messages
broadcasting, which results in high overhead. However, the ripple control message
management helps RRD update topology with less overhead (see subsection 4.2.6
figure 4.11) and further reduce the packets loss.

4.2.2 Number of sent packets

Figure 4.3 shows that Random and HopCount send less packets than ETX and La-
tency. This is mainly due to the fact that ETX and Latency select the next-hop with
best ETX and Latency values, which might lead in some cases to choosing a longer
path. The number of sent packets depends on the length of the path that packets
followed to reach the sink. Results show that all four metrics send less packets when
used with the RL mechanism, because the level setting in RL mechanism helps make



48 Chapter 4. Results

 0

 20

 40

 60

 80

 100

20 40 60

P
ac

k
et

 d
el

iv
er

y
 r

at
io

(%
)

Number of nodes

RPL-Hopcount
RL-RPL-Hopcount

RRD-RPL-Hopcount

RPL-ETX
RL-RPL-ETX

RRD-RPL-ETX

RPL-Latency
RL-RPL-Latency

RRD-RPL-Latency

FIGURE 4.2: Packet delivery ratio (RPL, RL-RPL and RRD-RPL).

sure the data packets being transmitted upwards from leaf nodes to the sink which
in turn helps reduce the number of transmission hops traveled by packets. Ran-
dom and HopCount have almost the same number of sent packets with and without
RL mechanism with 20 nodes and 40 nodes scenarios, this is essentially due to the
fact that they use a metric based on the shortest path and inherently avoid loops.
Whereas we can see that RL mechanism enhances ETX and Latency because it helps
update the next-hop in a timely manner. In four variants, RL-Random outperforms
other variants. This is mainly thanks to the random choices in parents set as ex-
plained in the packet delivery ratio results.
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FIGURE 4.3: Number of sent packets (RL with different link metrics).

Figure 4.4 shows that with 20 and 40 nodes the performances are almost the
same, but when the number of nodes increases to 60, RL and RRD variants in RPL
outperform native RPL. This is mainly due to the fact that in small network the
probability of loops with mobility (We discussed loops problem with mobility in
Chapter 2 section 2.2.) is smaller and the Rank mechanism of RPL can still help to
avoid them. Whereas with 60 nodes the probability of loops with mobility increases
and the Rank mechanism is not able to cope with it. Furthermore, figure 4.2 shows
a 10 % increase in packet delivery ratio. With 60 nodes RPL-Latency sends more
packets compared with RPL-ETX and RPL-Hopcount, which is mainly due to the
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fact that the metric of latency will dramatically increase. This easily causes a longer
path selection, when there are many collisions (See figure 4.6) in the network. Also
note that RL and RRD help reduce the number of sent packets for all metrics in
figures 4.3 and 4.4. This shows the efficiency of RL and RRD in sending data packets
upwards from leaf nodes to the sink and in finding shorter paths.
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FIGURE 4.4: Number of sent packets (RPL, RL-RPL and RRD-RPL).

4.2.3 Number of retransmissions

Figure 4.5 shows RL variants have better performance when it comes to the number
of retransmissions. This is mainly due to the fact that the RL mechanism helps re-
duce loops in a network which we already discussed in subsection 4.2.2. Fewer loops
means fewer transmission hops to the sink, which in turn will reduce the collisions
in the network. The Latency metric sends much more packets than other metrics.
This is mainly due to the time needed for Latency to update its metric value. A node
will wait for new latency values to update its own latency value by doing an aver-
age of the past values. This takes too long before and become outdated very quickly
because the topology keeps changing.
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Figure 4.6 shows that all the RPL metrics and their variants have almost the num-
ber of retransmissions with 20 and 40 nodes. However, when the number of nodes
increases to 60, all the RL and RRD variants in RPL outperform the native RPL met-
rics. Although the native RPL metrics ETX and Latency have almost the same per-
formance in packet delivery ratio with 60 nodes, Latency needs more transmissions
to achieve it due to its slow convergence perspective.
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FIGURE 4.6: Number of retransmissions (RPL, RL-RPL and RRD-
RPL).

4.2.4 Number of dropped packets

Counting the number of dropped packets in the network helps us analyse the net-
work congestion. Figure 4.7 shows RL variants have fewer dropped packets than
the standard routing protocol with different metrics, which means fewer collisions
and loops. With the number of nodes increasing from 20 nodes to 40 nodes, the
number of dropped packets increases as well. This is due to more nodes will cause
more network transmissions. But when the number of nodes increases to 60 nodes,
all routing metrics and RL variants do not have a huge increase in the number of
dropped packets. This is mainly because more number of nodes gives every node
more choices to select next hop and this can efficiently reduce collisions in the net-
work. Latency has a much higher number of dropped packets compared to other
metrics, which is mainly due to the fact that the metric of Latency is very depend on
the stability of the network. With the movement of the nodes, the value of metric
will fluctuate greatly, which makes Latency easily to select a faraway node to be the
next-hop.

Figure 4.8 shows that all the RL and RRD variants in RPL outperform the native
RPL. This is due to the fact that RL and RRD mechanism help node select optimal
path to the sink, which has fewer loops and less collisions.

4.2.5 Average end-to-end delay

Figure 4.9 shows that except Latency, the other metrics with and without RL mecha-
nism have very similar average delay with 20 nodes and 40 nodes. When the number
of nodes increases to 60, RL variants show their enhancement in network delay per-
formance. This is mainly due to the fact that with 20 and 40 nodes there are not
so many and retransmissions. When the number of nodes is 60 and the topology
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rics).
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FIGURE 4.8: Number of dropped packets (RPL, RL-RPL and RRD-
RPL).

of network becomes more complex, the performance of delay will begin to make
difference. Latency shows much higher average end to end delay for all scenarios
mainly because the routing metric of Latency is not being updated fast enough to
cope with the topology changes as explained in subsection 4.2.3. In addition, La-
tency suffers from a high retransmission attempts using CSMA/CA. Indeed, after
each unsuccessful transmission attempt, a packet will wait for a backoff time to be
sent again, which will cause huge delay for a packet. Note that RL-Random outper-
forms other RL variants due to the random choice for the parent with small number
of retransmission attempts.

Figure 4.10 shows that all the metrics with and without RL and RRD mechanism
have very similar average delay with 20 and 40 nodes. RL and RRD variants only
show their improvement when the number of nodes is 60. This is mainly due to the
fact that rank mechanism activates its function with small sized network in mobility.
Note that comparing with RL, RDD increases the performance of average end-to-end
delay when the number of nodes changes from 40 to 60. This is essentially due to the
result of the increase of RL in the number of sent packets, number of retransmissions,
and the number of dropped packets. All these factors contribute to the increase of
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4.2.6 Number of control packets

Since RL uses periodical control messages broadcasting, all the RL variants with dif-
ferent link metrics have the same number of control packets. It dose not make sense
to discuss number of control packets among different RL variants. Thus, we only
discuss the number of control packets of RPL, RL-RPL and RRD-RPL. Control pack-
ets are DIO, DIS, DAO and DAO-ACK. Figure 4.11 shows that all RL-RPL variants
have almost the same number of control message in different size of network. This
is mainly due to the fact that the nodes using RL-RPL periodically broadcast control
messages with same period. The figure also shows that RRD variants outperform
standard RPL with different metrics and highly reduce the number of control pack-
ets for denser networks. This is mainly due to the fact when nodes move away from
the sink, ripple control message management in RRD helps enlarge the sending in-
terval, which can reduce the number of DIOs.
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FIGURE 4.11: Number of control packets.

4.3 RRD+ performance evaluation

In order to assess the efficiency of RRD+ in dealing with mobility we compared
it to other existing methods studied in the related work section. These protocols
are OR-RPL (original RPL), Co-RPL [43], ME-RPL [31], and RT-RPL (Reverse trickle
timer algorithm) [30]. We chose 3 sizes for the network: 20 nodes, 40 nodes, and
60 nodes. In addition, we considered different mobility scenarios where the ratio of
mobile nodes to fixed nodes in the network are 25 %, 50 %, 75 %, 100 %. For RPL,
we set DEFAULT_DIO_INTERVAL_MIN to 13 which results in I_min of 8 sec-
onds and set DEFAULT_DIO_INTERVAL_DOUBLINGS value to 2 which results
in I_max of 32 seconds. These configurations are decided after multiple simula-
tion tests with different value combinations of DEFAULT_DIO_INTERVAL_MIN
and DEFAULT_DIO_INTERVAL_DOUBLINGS. We found out with this configu-
rations RPL would give attention to mobility detection and overhead saving mean-
while. Table 4.2 summarizes the rest of the simulation parameters we used.

We retained four performance metrics to evaluate the efficiency of RRD+ used on
top of RPL compared to other routing protocols: (i) packet delivery ratio, (ii) number
of dropped packets, (iii) average end-to-end delay, and (iv) number of control pack-
ets. For each network size, we generated 10 different random mobility scenarios.
Each performance metric is averaged over 10 iterations for each network size.

4.3.1 Packet delivery ratio

Figure 4.12 shows Packet delivery ratio of different RPL variants based on different
degrees of mobility. RRD+ outperforms other standard RPL and its enhancement
protocols when the degree of mobility is above 25 %. When the ratio of static nodes
reaches 75 %, RRD+ no longer has an advantage and is even outperformed by MR-
RPL and RT-RPL in 60-node scenarios as shown in figure 4.12d. This is mainly due
to the fact that MR-RPL and RT-RPL have a mechanism to broadcast IDs of mobile
nodes to other nodes in order to avoid being selected as next-hop nodes. Compared
with mobile nodes, static nodes can offer more stable transmission paths. Therefore,
MR-RPL and RT-RPL perform better when there are enough static nodes in the net-
work to offer routes for the sink. On the other hand, MR-RPL and RT-RPL perform
worse when there are not enough static nodes to chose from. Results also show that
CO-RPL has limited contribution in mobility. This is mainly due to the fact that
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TABLE 4.3: Simulations parameters used to evaluate RRD+ perfor-
mance.

Item Parameters

Network simulator Cooja under contiki OS (3.0)
Radio propagation model MRM with random behavior
Medium access control CSMA/CA
Simulation time 5 minutes
Emulated platform Z1 starter platform
Sensor Nodes Deployment Random Deployment
Data size 30 Bytes
Transmission rate 1 pkt/sec
Transmission power -20 dBm
Transmission range [30 m, 50 m]
Number of nodes 20, 40, 60
Area of deployment 200 m * 200 m
Frequency range 2.4 GHz
Receive Sensitivity -95 dBm
RRD+ RSSI SAFE_THRESHOLD -89 dBm
RRD+ RSSI HYST_THRESHOLD -92 dBm
RRD+ RSSI HYSTERESIS -1 dB
Long lifetime Long_Li f etime 30 s
Short lifetime Short_Li f etime 15 s
DEFAULT_DIO_INTERVAL_MIN 13
DEFAULT_DIO_INTERVAL_DOUBLINGS 2
Number of iterations 10
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CO-RPL does not offer a method to update C_ID (Corona ID of Corona mechanism)
value.
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FIGURE 4.12: Packet delivery ratio.

4.3.2 Number of dropped packets

Figure 4.13 shows the number of dropped packets of different RPL variants based
on different degrees of mobility. Results show that RRD+ outperforms all other RPL
variants in all scenarios. This is mainly due to the fact that RRD+ helps RPL to adapt
quickly to mobility and efficient Rank updating can pro-actively help nodes avoid-
ing selecting a next-hop with a bad link quality. Therefore, RRD+ reduces retrans-
mission attempts and the number of dropped packets is reduced as well. CO-RPL
does not have proactive features, thus it suffers from a high number of dropped
packets. With the increasing of the number of static nodes, ME-RPL and RT-RPL be-
gin to show their performance for the reason discussed previously in packet delivery
ratio results.

4.3.3 Average end-to-end delay

Figure 4.14 shows the average end-to-end delay of different RPL variants based on
different degrees of mobility. The delay is computed on the delivered packets, lost
packets do not appear in these results. Results show that RRD+ suffer from high
average end-to-end delay compared to OR-RPL, ME-RPL and RT-RPL. The reason is
that RRD+ cannot distinguish static nodes and mobile nodes. Therefore, compared
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FIGURE 4.13: Number of dropped packets.

with ME-RPL and RT-RP, RRD+ will select more mobile nodes as next-hops. Mobile
nodes will indeed increase the delivery delay. CO-RPL also suffers from the same
problem. The reason for CO-RPL is due to the fact that not updating C_ID would
increase the number of hops during transmission, and hence, increase the delay. In
addition, as we only compute delays for received packets, packets generated from
lower Rank nodes will have a low average end-to-end delay compared to packets
generated from higher Rank nodes. As with RRD+, higher rank nodes are able to
successfully deliver their packets, this makes the average end-to-end delay of RRD+
higher.

4.3.4 Number of control packets

Figure 4.15 shows the number of control packets of different RPL variants based on
different degrees of mobility. Results show that RRD+ outperforms CO-RPL and
ME-RPL in all scenarios. This is mainly due to the fact that ripple control message
management helps reduce overhead according to Rank updating. Since RRD+ does
not have a mechanism to distinguish static nodes and mobile nodes, there is no
significant difference on overhead when the degree of mobility changes. CO-RPL
periodically broadcasts DIO, therefore there is also no significant difference on over-
head for different degrees of mobility. OR-RPL has the fewest overhead cost. This is
mainly due to the fact that trickle algorithm, which is used in static networks, helps
reduce overhead. ME-RPL suffers from a huge overhead cost when all nodes are mo-
bile and gradually decreases the overhead when number of static nodes increases.
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FIGURE 4.14: Average end-to-end delay.

This is mainly due to the fact that ME-RPL introduces a dynamic DIS management
and ME-RPL will suffer from a huge number of DIS messages when there is more
mobile nodes in the network. RT-RPL outperforms RRD+, CO-RPL and ME-RPL.
The reason is that reverse trickle algorithm is a modified trickle algorithm, which
can deal with mobility and reduces overhead at the same time. However, it cannot
deal with random movement, thus compared with RRD+ it reduces overhead but
does not increase packet delivery ratio.

4.4 MRRD+ performance evaluation

We evaluated MRRD+ mechanism performance by comparing it to standard RPL
using Cooja simulator. We tested MRRD+ and RPL in scenarios with 1, 2, 3 and
4 sinks. The deployment of sink(s) is shown in figure 4.16. We place the sinks
in positions that allow a maximum coverage of the deployment area. Except the
sinks, all other nodes are mobile and move within the 200m ∗ 200m area. For RPL,
we set DEFAULT_DIO_INTERVAL_MIN to 12 which results in I_min of 4 sec-
onds and set DEFAULT_DIO_INTERVAL_DOUBLINGS value to 2 which results
in I_max of 16 seconds. These configurations are decided after multiple simula-
tion tests with different value combinations of DEFAULT_DIO_INTERVAL_MIN
and DEFAULT_DIO_INTERVAL_DOUBLINGS. We found out with this configu-
rations RPL would give attention to mobility detection in multi-sink scenarios and
overhead saving meanwhile. Table 4.4 summarizes the rest of simulation settings.
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FIGURE 4.15: Number of control packets.

We retained six performance metrics to evaluate the efficiency of MRRD+ used
on top of RPL compared to standard RPL: (i) packet delivery ratio, (ii) number of
sent packets, (iii) number of retransmissions, (iv) number of dropped packets, (v)
average end-to-end delay and (vi) number of control packets. For each network size,
we generated 50 different mobility scenarios. Each performance metric is averaged
over 50 iterations for each network size.

4.4.1 Packet delivery ratio

Figure 4.17 shows that with more sinks, both standard RPL and MRRD+ have better
performance. This is mainly due to the fact that multiple sinks help reduce the num-
ber of hops, and thus reduces packet loss risk. From 20 nodes to 60 nodes MRRD+
improves packet delivery ratio by almost 15 % compared to standard RPL. This is
mainly due to the fact that MRRD+ detects nodes movement and updates parents
set in a timely manner, and then offers them next-hop selections with better link
qualities.

4.4.2 Number of sent packets

Figure 4.18 shows that both MRRD+ and standard RPL have an improvement on
the number of sent packets when the number of sinks increases. Multiple sinks in
the topology reduces the number of hops for a packet to reach the sink and thus
reduces the sending attempts. MRRD+ outperforms standard RPL in all scenarios.
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TABLE 4.4: Simulations parameters used to evaluate MRRD+ perfor-
mance.

Item Parameters

Network simulator Cooja under contiki OS (3.0)
Radio propagation model MRM with random behavior
Medium access control CSMA/CA
Simulation time 5 minutes
Emulated platform Z1 starter platform
Sensor Nodes Deployment Random Deployment
Data size 30 Bytes
Transmission rate 1 pkt/sec
Transmission power -20 dBm
Transmission range [30 m, 50 m]
Number of nodes 20, 40, 60
Area of deployment 200 m * 200 m
Frequency range 2.4 GHz
Receive Sensitivity -95 dBm
MRRD+ RSSI SAFE_THRESHOLD -89 dBm
MRRD+ RSSI HYST_THRESHOLD -92 dBm
MRRD+ RSSI HYSTERESIS -1 dB
Long lifetime Long_Li f etime 30 s
Short lifetime Short_Li f etime 15 s
DEFAULT_DIO_INTERVAL_MIN 12
DEFAULT_DIO_INTERVAL_DOUBLINGS 2
Number of iterations 50
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Sink node

FIGURE 4.16: The positions of sink nodes in our 4 network scenarios.
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FIGURE 4.17: Packet delivery ratio.

Indeed, when the Rank value is updated timely, loops will be avoided. Thus, this
reduces the number of hops travelled by data packets. The improvement for 40
and 60 nodes is even higher. Since with 40 and 60 nodes the Rank does not update
in a timely manner without using MRRD+, more data packets will be transmitted
through more hops, which causes more congestion and collisions.

4.4.3 Number of retransmissions

Figure 4.19 shows that MRRD+ outperforms RPL on different number of nodes es-
pecially with multiple sinks. Compared to RPL, MRRD+ has an obvious decrease
in number of retransmissions when the number of sinks increases. This is mainly
due to the fact that MRRD+ is able to update the Rank value in a timely manner
and the updating of Rank value keeps the nodes in parents sets up-to-date. Proper
next-hops selection would help reduce the retransmission attempts. Figure 4.19 also
shows that MRRD+ has more retransmission attempts in one sink scenarios with 60
nodes. With 60 nodes, more nodes would update their next-hops in a timely manner
and more packets would be travelling in the network which creates more conges-
tion, and thus, more retransmissions. The problem only occurs for the scenario with
one sink, where all the generated traffic would create high congestion around the
sink node and the nodes near the sink.
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FIGURE 4.18: Number of sent packets.
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FIGURE 4.19: Number of retransmissions.

4.4.4 Number of dropped packets

Standard RPL suffers from a higher number of dropped packets in all the simulated
scenarios compared to MRRD+. This is mainly due to the fact that MRRD+ is able
to avoid using broken links for sending data packets to parent nodes that are out of
reach are more quickly removed from the parents set.

4.4.5 Average end to end delay

Figure 4.21 shows that when the number of sinks increases, both MRRD+ and stan-
dard RPL reduce average end-to-end delay. This is mainly due to the fact that having
more sinks helps reduce the average number of hops traveled by packets to reach the
destination. Results also show that MRRD+ outperforms standard RPL especially in
scenarios with multiple sinks mainly because Rank updating method in MRRD+
helps nodes detect movement and select a more suitable parent node faster. In addi-
tion, loops are avoided as we explained in subsection 4.4.2 when nodes move further
away from the sinks which reduces the number of hops traveled by data packets. In
such a way, data packets will reach the destinations much faster. Figure 4.21 also
shows that MRRD+ has higher average end-to-end delay in one sink scenarios with
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FIGURE 4.20: Number of dropped packets.

60 nodes. As we discussed for the number of retransmissions, in one sink scenar-
ios with 60 nodes there would be more congestion in the network especially around
the sink node which results in higher latency for MRRD+ because it is able to de-
liver more packet to sink and thus creates more congestion around the nodes that
are closer to the sink. Compared to RPL, MRRD+ shows more retransmissions but
fewer dropped packets, and this is the main reason for the higher delay with 60
nodes. The same as number of retransmissions, this problem only occurs for one
sink scenarios with 60 nodes.
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FIGURE 4.21: Average end-to-end delay.

4.4.6 Number of control packets

Figure 4.22 shows that the number of generated control traffic is not linear with
regards to the number of nodes in mobility scenarios. Indeed, when a node moves it
affects all its neighbors and thus these neighbors will generate control traffic. With
more nodes in the network, the number of neighbors is higher and the number of
control messages increases exponentially.

Figure 4.22 shows that MRRD+ have almost the same overhead cost compared
to standard RPL when we set trickle algorithm I_min to 4 seconds and I_max to 16
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seconds. Trickle algorithm is an efficient method originally designed for static net-
works. With the parameters we set, trickle algorithm can better cope with mobility
and save overhead. MRRD+ dynamically manages the DIO interval according to
movement direction and Rank values. According ripple control messages manage-
ment, control messages can be broadcast timely but also dynamically reduced to a
suitable frequency after an urgent sending. In such a way, MRRD+ has much better
packet delivery ratio performance, but has almost the same overhead cost compared
to standard RPL. This means our dynamic DIO interval management method is ef-
ficient in mobility and keeps the overhead within an acceptable cost. Results also
show that even with more sinks, MRRD+ has similar results. Indeed, with lower
Rank values on average, the DIO interval would be smaller according to our formula
(DIO_interval = Base_interval + Rank ∗ Time_unit), but algorithm 2 helps maintain
the same number of DIOs because Rank values change less often with more sinks.
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FIGURE 4.22: Number of control packets.

4.5 ADUP performance evaluation

We evaluated the performance of ADUP by doing simulations using Cooja simula-
tor. At the beginning of the simulation, all nodes are randomly deployed within a
200mx200m area and they are free to move within this area. Every 5 seconds the
velocity is randomly chosen from [1m/s, 3m/s] and the direction of nodes changes
by choosing a random destination position inside the deployment area. Under this
mobility model, we set the minimum control message interval as 2 seconds accord-
ing to the simulation tests, which means the minimum topology update interval is 2
seconds. In order to make sure that ID of next-hop updates can be sent to the sink
timely, the upward transmission interval should be shorter than 2 seconds. The up-
ward transmission rate we set is 1pkt/sec. Every 1 second, all nodes except the sink
generate a data packet to the sink. Meanwhile, the sink generates command packets
to a randomly chosen node in the network every 1 second. Every scenario simulates
5 minutes of network activity. Table 4.5 summarizes the rest of simulation settings.

In order to assess the efficiency of ADUP in dealing with mobility, we compared
it to other two existing protocols that cope with mobility: AODV and Flooding. In
addition, AODV and Flooding are generic protocols that are designed for any ap-
plication scenarios containing upstream and downstream traffic. AODV is a typical
unicast-based routing protocol. It uses route discovery and route maintenance to
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TABLE 4.5: Simulations parameters used to evaluate ADUP perfor-
mance.

Item Parameters

Network simulator Cooja under contiki OS (3.0)
Radio propagation model MRM with random behavior
Medium access control CSMA/CA
Simulation time 5 minutes
Emulated platform Sky starter platform
Sensor Nodes Deployment Random Deployment
Data size 30 Bytes
Packet queue size 16
Upward transmission rate 1 pkt/sec
Downward transmission rate 1 pkt/sec
Transmission power -20 dBm
Transmission range [30 m, 50 m]
Number of nodes 20, 40, 60
Area of deployment 200 m x 200 m
Frequency range 2.4 GHz
Reception threshold -95 dBm
Number of iterations 10

support dynamic topologies. Furthermore, it is based on periodic advertisements
and distance vector routing, which is more adaptive to mobile scenarios compared
to DSR for example. Flooding is a broadcast-based routing protocol which is not
sensitive to mobility. It may support mobile scenarios well with few transmission
events. It is also interesting to estimate the performance of Flooding in mobile sce-
narios with different traffic patterns. In order to limit the number of transmissions
using Flooding routing protocol, nodes only route the same packet once. We used
unique identifiers for packets in order to manage this issue.

We used four performance metrics to evaluate the efficiency of these protocols:
(i) packet delivery ratio, (ii) average end-to-end delay, (iii) dropped packet ratio and
(iv) number of control packets. For each network size, we generated 10 different
random mobility scenarios. Each performance metric is averaged over 10 iterations
for each network size.

4.5.1 Packet delivery ratio

Figure 4.23a shows that ADUP outperforms AODV and Flooding in terms of packet
delivery ratio for upstream traffic. ADUP has about 10 % improvement over AODV.
This is mainly due to the fact that in upward routing ADUP only needs to update
next-hops rather than whole path routes, which helps adapt faster to mobility. More-
over, ADUP and AODV are much better than Flooding. The reason is that Flooding
uses broadcasting as a basic traffic pattern which causes serious network congestion
especially when the number of senders increases.

Figure 4.23b shows that ADUP is much better than AODV and Flooding for
downstream traffic. This is mainly due to the fact that benefiting from upstream
traffic ADUP allows the sink to update the path to reach any node in the network
in a timely manner. Results also show that packet deliver ratio of AODV decreases
when the number of nodes increases. The reason is that with more nodes upstream
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traffic will be higher which causes more congestion and risk of collisions. Affected
by upstream traffic, the downstream traffic of AODV would lose more packets dur-
ing transmission. However, unlike AODV, the packet delivery ratio of Flooding on
downstream traffic increases for 40 nodes first and then decreases for 60 nodes. This
is mainly due to the fact that Flooding uses broadcasting rather than unicasting.
When the number of nodes increases, broadcasting would help the same packet be-
ing relayed more times, which would increase the opportunity of successfully send-
ing a packet to reach the destination. This allows Flooding to increase its packet
deliver ratio of downstream traffic with 40 nodes. However, the downstream traffic
of Flooding is also affected by the upstream traffic. When there is serious network
congestion caused by upstream traffic of 60 nodes, the packet delivery ratio of down-
stream traffic decreases.
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FIGURE 4.23: Packet delivery ratio.

4.5.2 Average end-to-end delay

Figure 4.24a shows that ADUP outperforms AODV on average end-to-end delay
for upstream traffic. This is mainly due to the fact that ADUP can quickly adapt to
mobility and dynamically update parents set according to the movement of nodes,
which reduce time interval before sending a packet. However, AODV needs to build
routes before transmission. This process will be more frequent in mobility, since link
failure happens more often, which results in longer delays before sending a packet
with AODV. Compared with ADUP and AODV, the average end-to-end delay of
Flooding increases exponentially when the number of nodes increases. The reason
is that Flooding broadcasts packets to the entire network which causes network con-
gestion. Congestion causes packets to be delayed at each hop until they reach the
sink. It is worth noticing that although ADUP and AODV achieve similar average
end-to-end, ADUP was able to reach that delay for a higher packet delivery ratio.

Figure 4.24b shows that the average end-to-end delay of ADUP outperforms that
of AODV and Flooding for downstream traffic. This is mainly due to the fact that
upstream traffic helps ADUP to quickly update route information. Packets sent by
the sink are relayed to the destination in a timely manner. The same as upstream
traffic, the average end-to-end delay of Flooding on downstream increases as well.
Network congestion caused by upstream traffic is also the reason.
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FIGURE 4.24: Average end-to-end delay.

4.5.3 Dropped packets ratio

Figure 4.25 shows dropped packets ratio for different traffic patterns. Due to the fact
that Flooding directly broadcasts packets, there are no retransmissions, and thus no
dropped packets. Hence, in figure 4.25 we only show comparison between ADUP
and AODV.

Figure 4.25a shows that ADUP outperforms AODV in terms of dropped packets
ratio for upstream traffic. This is mainly due to the fact that link quality monitor-
ing and rank updating helps ADUP detect movement quickly and select next-hop
nodes with good link quality. This increases the success rate of sending a packet and
reduces the number of dropped packets. Results also show that dropped packets
ratio of ADUP and AODV for upstream traffic increases with 40 nodes first and then
decreases with 60 nodes. When the number of nodes increases from 20 to 40, there
would be more upstream traffic, which would cause more collisions and retransmis-
sions. Thus, the dropped packets ratio increases with 40 nodes. However, when
the number of nodes continues to increase, the network density becomes higher. A
node would have more available next-hops to select from. This helps nodes to select
next-hops with better link quality. This results in fewer number of dropped packets.

Figure 4.25b shows that ADUP also outperforms AODV in terms of dropped
packets for downstream traffic and the ratio of ADUP even decreases when the
number of nodes increases. Benefiting from upstream traffic and route building in
downward routing, ADUP helps the sink node to build downward routes to reach
any node in the network. When the number of nodes increases, the density of nodes
increases. Next-hop nodes with better link quality would be used by the sink and
this would enhance the path quality between the sink and the destinations. This
also helps reducing the number of dropped packets. However, unlike ADUP, the
dropped packets ratio of AODV for downstream traffic increases slightly when the
number of nodes increases. This is mainly due to the fact that AODV is a reactive
protocol and it builds routes only when there is data to be transmitted. This pro-
cess delays transmission, which results in AODV not being able to update topology
in a timely manner. This would cause packet loss due to inappropriate next-hop
selection.
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FIGURE 4.25: Dropped packet ratio.

4.5.4 Number of control packets

The number of control packets is the sum of control packets that are sent during
the simulation by the routing protocol. ADUP only contains one type of control
message which is broadcast by the sink node and propagated by other nodes until
it reaches the leaf nodes. AODV generates three types of control messages: Route
Request (RREQ) messages, Route Reply (RREP) messages and Route Error (RERR)
messages. RREQ is used in route discovery process in order to build a route to reach
the destination node. RREP is sent once the destination node receives a RREQ or
an intermediate node has an active route to the destination. RERR is sent whenever
a node detects a link failure or does not have an active route to the destination.
Flooding only uses broadcasting as traffic patten and it does not need any additional
control packets. Thus, in figure 4.26 we only show comparison between ADUP and
AODV without considering the length of control packets.

Figure 4.26 shows that ADUP has very low overhead compared to AODV, es-
pecially when the number of nodes increases. This comes from two reasons. The
first reason is that ADUP uses dynamic control message management to reduce the
number of control packets used by upstream traffic, which helps to save overhead
for upstream traffic. The second reason is that ADUP embeds the information of
next-hop in data packets destined to the sink. This increases the load of data packets
but allows the sink to build routes for downstream traffic without generating addi-
tional control traffic. Moreover AODV broadcasts RREQ to ask for a route, which
adds more overhead to the network especially when the number of nodes increases.

4.6 Experimental evaluation

Evaluating the routing protocol by experiment helps know its behavior and effi-
ciency in the physical work. In this section we present the experimental results of
our contribution ADUP using sensor nodes. Firstly, we describe the experiment en-
vironment, present the testing scenarios and introduce the network set-up. Secondly,
we evaluate ADUP and RPL by packet deliver ratio and number of dropped packets
from both experimentations and simulations.
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FIGURE 4.26: Number of control packets.

4.6.1 Experiment environment and network set-up

Our experiment is conducted indoors in a practical building. Multiple Wi-Fi APs
were active on the 2.4 GHz band in the building. The experiment is done using
TelosB motes communicating on the channel number 26 of IEEE 802.15.4 standard
operating on the unlicensed 2.4 GHz band. This channel is the least exposed channel
to interference from Wi-Fi.

We set up nodes in corridor and a room as shown in figure 4.27 (scenario 1) and
figure 4.28 (scenario 2). Nodes are placed on the ground or tables. The transmission
power is set at the minimum level -25 dBm to ensure a multi-hop topology network.
We design two different scenarios to evaluate our work.

In scenario 1 shown in figure 4.27, we expect to test ADUP in dealing with pro-
cess that a mobile node changes parent nodes with different Rank values during
movement. We deploy 8 static nodes along the two sides of corridor. The distance
between two nearby nodes in one side is 15 meters, which is a suitable distance that
offers stable link between two nodes after testing. One person with a sensor node
on his body moves with a random velocity ranging from 1m/s to 3m/s following
the trajectory of dashed line in figure 4.27. One sink node is placed at the end of
corridor to collect information. When data packet is received at the sink, its number
of hops from the source node is printed. We notice that the topology is stable and
the number of hops from static nodes to the sink keeps the same during testing. The
two nodes that are nearest to the sink are both 1 hop away. The two farthest nodes
from the sink are both 4 hops away. In the network, the 8 static nodes and the mo-
bile node send 1 packet to the sink per second. Meanwhile the sink sends 1 packet,
5 packets or 10 packets per second to the mobile node.

In the scenario 2 shown in figure 4.28, we expect to test the performance of ADUP
in a more compact space with more mobile nodes. We deploy 12 static nodes in the
confined space. 9 static nodes are deployed along the two sides of corridor. The dis-
tance between two nearby nodes in one side is 10 meters. Compared with 15 meters
set for scenario 1, 10 meters offers more stable link. However, collisions are easier
happened due to close distance between two nodes. Under this setting we could test
the perfomance of ADUP in compact space. 3 static nodes are deployed in a room.
One sink node is placed at the corner of the corridor. 3 persons with one sensor node
on their body randomly move within the space. The velocity randomly ranges from
1m/s to 3m/s. Unlike the scenario 1, static nodes in the scenario 2 do not keep the
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same hops during testing, since the density of node is higher. The maximum num-
ber of hops in this scenario changes from 4 to 5. In this network, 12 static nodes and
3 mobile nodes send 1 packet to the sink per second. Meanwhile the sink randomly
selects one mobile node from the three and sends to it by a transmission rate of 1
pkt/sec, 5 pkt/sec or 10 pkt/sec.

We keep the simulation parameter SAFE_THRESHOLD as -89 dBm, HYST_T-
HRESHOLD as -92 dBm and HYSTERESIS as -1 dB. For RPL, we set DEFAULT_D-
IO_INTERVAL_MIN to 11 which results in I_min of 2 seconds and set DEFAULT_-
DIO_INTERVAL_DOUBLINGS value to 3 which results in I_max of 16 seconds.
We set RPL in the storing mode, which is more efficient in downstream traffic com-
pared with non-storing mode. We used two performance metrics to evaluate the effi-
ciency of ADUP compared to standard RPL: (i) packet delivery ratio and (ii) number
of dropped packets. For each scenario, we generated 10 different mobility scenarios.
Each performance metric is averaged over 10 iterations for each network size. Table
4.6 summarizes the rest of experiment settings.
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FIGURE 4.27: Testing scenario 1.
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FIGURE 4.28: Testing scenario 2.
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TABLE 4.6: Experiment parameters used to evaluate ADUP perfor-
mance.

Item Parameters

Medium access control CSMA/CA
Simulation time 5 minutes
Platform TelosB platform
Data size 30 Bytes
Number of motes 10 and 16
Number of mobile motes 1 and 3
Upward transmission rate 1 pkt/sec
Downward transmission rate 1,5,10 pkt/sec
Transmission power -25 dBm
Receive Sensitivity -90 dBm(min) and -95 dBm(max)
RRD+ RSSI SAFE_THRESHOLD -89 dBm
RRD+ RSSI HYST_THRESHOLD -92 dBm
RRD+ RSSI HYSTERESIS -1 dB
Frequency range 2.4 GHz
Number of iterations 10
Mode of RPL Storing mode

4.6.2 Packet delivery ratio for experimental scenarios

Figure 4.29 presents the packet delivery ratio results of scenario 1 for both experi-
ment and simulation. The figure 4.29a presents the experiment results and the figure
4.29b shows the simulation results. We notice that the simulation results outperform
experiment results. Indeed, in physical world, the external environment has a nega-
tive impact on the radio signal. Several Wi-Fi operating on the same frequency band
2.4 GHz are deployed around the experiment area, which increases the probability
of interference. In addition, the link qualities in the experiment are not the same as
those of the simulated topology. The results show that ADUP and RPL have similar
packet delivery ration on upstream traffic. This is mainly due to the fact that there
is only one mobile node in the network and most upstream traffic comes from static
nodes. The enhancement of ADUP for mobility is not obvious with few number of
mobile nodes. The results also show that ADUP outperform RPL on downstream
traffic and there is significant enhancement on packet deliver ratio when the down-
wards packet generation rate increases. This is mainly due to the fact that benefiting
from upstream traffic ADUP allows the sink to update the path to reach any nodes
in the network in a timely manner.

Figure 4.30 presents the packet delivery ratio results of scenario 2 for both ex-
periment and simulation. The figure 4.30a presents the experiment results and the
figure 4.30b shows the simulation results. The same as packet delivery ratio results
of scenario 1, simulation results outperform experiment results, which comes from
the same reason discussed above. We notice that ADUP has obvious enhancement
on upstream traffic comparing with RPL. Indeed, there are more mobile nodes in sce-
nario 2. ADUP could help them cope with mobility and select the next-hop to reach
the sink. With the increasing of downwards packet generation rate, ADUP shows its
efficiency on downstream traffic compared with RPL. Indeed, ADUP could quickly
help the sink build route path to reach the three mobile nodes concurrently.
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FIGURE 4.29: Packet delivery ratio of scenario 1.
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FIGURE 4.30: Packet delivery ratio of scenario 2.

4.6.3 Number of dropped packets for experimental scenarios

Due to the limit of equipment, we do not have enough monitoring devices connected
to each sensor to collect transmission information. We only connect monitoring de-
vices to the sink node and the three mobile nodes. Thus, we can only show the
number of dropped packets from downstream traffic. Figure 4.31 shows that the
number of dropped packets from downstream traffic of scenario 1 for both experi-
ment and simulation. The figure 4.31a presents the experiment results and the figure
4.31b shows the simulation results. The results show that ADUP outperforms RPL
in terms of dropped packets. This is mainly due to the fact that ADUP helps the
sink node build downward routes to reach the mobile node in a timely manner,
which would reduce the number retransmissions due to lossy link. And it will fu-
ture reduce the number of dropped packets. Indeed, with mobility, parent nodes will
change frequently. Compared with ADUP, it is hard for RPL to send DAOs timely
to keep the downward routing table up-to-date and packets will be dropped due to
outdated path information.

Figure 4.32 shows that the number of dropped packets from downstream traffic
of scenario 2 for both experiment and simulation. We noticed that in scenario 2
the sink drops more packets compared with scenario 1. Indeed, with more mobile
nodes, it would be more difficult for the sink to build path routes to all the mobile
nodes concurrently. However, unlike RPL, ADUP does not have much increase on
the number of dropped packet in scenario 2. This is mainly due to the fact that
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FIGURE 4.31: Number of dropped packets of scenario 1.

benefiting from upstream traffic ADUP allows the sink easily build the path to all
the mobile nodes simultaneously.
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FIGURE 4.32: Number of dropped packets of scenario 2.

4.7 Summary

In this chapter, we present the simulation and experiment results for ADUP.
We evaluate RL mechanism while using different link metrics. Simulation results

show that our RL mechanism enhances the network performance on many levels.
We have proven that random selection of parent nodes in parents set has a good ef-
fect on the network performance because it avoids sending packets to the same node
even though it is moving away. We have also proven that using slow convergence
routing metric such as Latency metric is not suitable for mobile scenarios.

We applied RL mechanism in RPL and proved that RL mechanism enhances RPL
performance but suffers from high overhead. RRD is proposed to enhance overhead
performance of RL. The results show that RRD successfully helps nodes send more
packets to the sink with less retransmissions and overhead.

Based on RRD, RRD+ is proposed to enhance the performance of nodes that
are close to the edge of transmission. We compared RRD+ to other existing mo-
bility enhancements for RPL and standard RPL. Simulation results show that RRD+
mechanism enhances RPL on many levels: successfully delivery packets, packet loss,
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number of dropped packets, end-to-end delay and overhead. The results also show
that RRD+ is suited for networks where more than 25 % of nodes are mobile nodes.
When there are less mobile nodes in the network, RRD+ has limited contribution on
network performance.

We compared MRRD+ to standard RPL in multi-sink mobile scenarios. We tested
them in scenarios with 1, 2, 3 and 4 sinks. Simulation results show that our MRRD+
mechanism enhances RPL with multiple sink. Results also show that the efficiency
of MRRD+ increases when the number of sinks in the network increases.

We compared ADUP with two other generic routing protocols AODV and Flood-
ing. Results show that ADUP outperforms AODV and Flooding on different perfor-
mance metrics in mobility scenarios. Results also show that ADUP supportd up-
ward and downward routing simultaneously in dense and highly mobile scenarios.
In the upward routing process, ADUP helps nodes to detect next-hops with good
link quality. In the downward routing process, ADUP helps the sink node to build
routes to reach any node in the network (given that this node is generating traffic
towards the sink).

In order to know the behavior and efficiency of our work in the physical work
we compared the performance of ADUP and standard RPL by experiment. The
experimental shows that ADUP outperforms standard RPL on packet delivery ration
and number of dropped packets.

Obtained results in both simulation and experiment qualify the contribution of
each of our protocol variants.
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Chapter 5

Conclusion and perspectives

In this chapter we conclude the thesis by reminding the addressed problem, sum-
marizing our contributions, and highlighting some perspectives.

5.1 Conclusion

Dealing with mobility in WSNs and LLNs is a challenging task for a compromise
between efficiency and complexity. One of the most dominant routing protocols
designed for LLNs, RPL, was original specified without any special support for mo-
bility. This is the major drawback that prevents many applications with mobility
from using it. The goal of this thesis is to propose an efficient mobility support for
routing protocols (like RPL) in LLNs. We focus on convergecast and anycast, which
are the most used traffic modes in LLNs, in mobile network scenarios.

Firstly we proposed a series of protocols (RL, RRD, RRD+ and MRRD+) to sup-
port mobility in convergecast LLNs. These protocols can easily be applied to RPL
routing protocol. RRD+ and MRRD+ are enhanced versions of RL and RRD, and
MRRD+ is a variant of RRD+ to support multiple sinks in convergecast LLNs. In
these protocols we monitor RSSI values and updates Rank values accordingly in or-
der to avoid loops, and they also dynamically manages the interval of control mes-
sages. We monitor the movement of moving nodes based on the variation of RSSI
values. When a node detects that one of its potential next-hops in the parents set is
moving away, it will anticipate a link failure and try to use another node from the
parents set. This helps nodes update their next-hop choice in a timely manner in
mobile scenarios.

In succession we proposed ADUP, a routing protocol that supports convergecast
and anycast concurrently in mobile scenarios. It is suitable for application where
all nodes are mobile and send periodical data packets to a sink node. In addition,
this sink needs to periodically contact other nodes of the network. The support of
convergecast in mobility is based on RRD+. The support of anycast in mobility is
an extension work on RRD+. Nodes embed the best next-hop of nodes in the packet
headers and send it to the sink inside the periodical data packets. Once the sink
receives the data packets, it will build a next-hop table. Based on this table, the sink
is able to build the route to reach any node in the network. Due to the fact that the
best next-hop is selected from a dynamic parents set periodically, the next-hop table
is also dynamic and could adapt to mobility in a timely manner.

We implemented our work in Cooja and compared them with other routing pro-
tocols. Simulation results show the efficiency of our work on many levels. We also
evaluated ADUP by experiment and compared it to standard RPL. The obtained re-
sults show the ability of ADUP to help mobile nodes increase packet deliver ratio
and reduce number of dropped packets. The experiment is a proof of concept of our
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contributions. However, the number of mobile nodes used in the network scenar-
ios does not put enough emphasis on the addressed problem but these first results
obtained with real sensor nodes remain positive.

5.2 Perspectives

The contributions of this thesis can be extended in several direction. In what follows
we enumerate some of them.

5.2.1 Energy consumption optimization

Energy consumption is a critical problem we need to investigate in the future. Right
now we do not use sleep mode in our work, since topology information updating
relies on information broadcasting and collection in a timely manner and a sleep
mode would delay this process. However, without sleep mode nodes are easily
in the condition of energy depletion. Thus we plan to integrate a dynamic duty
cycle in RRD+ according to different degrees of mobility in order to reduce energy
consumption.

5.2.2 Optimizing length of packet headers

In order to support downstream traffic in ADUP, we put the route path information
in the packets header. However, with the constrained wireless layers IEEE 802.15.4,
the maximum frame size is 127 bytes (including header). The huge size of packet
header would increase network capacities and power consumption. In order to sup-
port large scale networks with hundreds of nodes, it is necessary to introduce a
mechanism in order to encode downward routes in ADUP, which enables a reduc-
tion of the length of packet headers.

5.2.3 Different degrees of mobility support

The simulation results show that RRD+ is suited for the networks where more than
25% of nodes are mobile. Indeed, RRD+ is proposed to support highly mobile sce-
narios. However, in many applications, only some of the network nodes need to be
mobile. In order to cope with the scenarios with only few number of mobile nodes,
we plan to add a mechanism for RRD+ to distinguish static nodes from mobile nodes
in order to improve the performance of RRD+ in different degrees of mobility.

5.2.4 Fault tolerance

Compared with static networks, node failures easily happen in mobile networks.
Most of the time, node failure happens unexpectedly. Our work is unable to detect
that the certain node that is in a fault and then finding a solution to avoid sending
traffic to this node. Moreover, our work cannot decide whether the node is out reach
or in a fault. Thus, in the future we plan to integrate a fault tolerant method [58] with
ADUP to help nodes in the network distinguish whether a node is beyond reachable
of in a fault and then find alternative routes to reach the final destination.
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