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Advisors: Raphaël Gavazzi - Institut d’Astrophysique de Paris, France

Christophe Pichon - Institut d’Astrophysique de Paris, France

President: Michael Joyce - LPNHE, Paris, France

Examinators: Massimo Meneghetti - Université de Bologne, Italie
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précieuse qu’ils m’ont apportées tout au long de cette thèse. Je remercie tout particulièrement
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Abstract

Upcoming weak lensing surveys such as Euclid, LSST and WFIRST will provide an unprece-
dented opportunity to investigate the dark Universe from the entire extragalactic sky down to
very small scales. Through these large scale surveys, gravitational lensing is an indispensable
cosmological probe to investigate the dark energy and the dark matter. Indeed, one can use it to
reconstruct the matter distribution by measuring the distortions of background galaxies induced
by mass inhomogeneities along the line-of-sight. It thus constitutes an unbiased tracer the matter
distribution in the Universe. Due to the new level of accuracy in observations, we must perform
cosmological predictions in state-of-art simulations, and to precisely quantify its variances, noises,
potential biases and potential degeneracies coming from the late non-linear evolution and baryonic
physics. In this context, my thesis focuses on the construction of accurate lensing observables.

The first part of my PhD work characterises the geometry of large-scale structure through weak
lensing (Gouin et al. 2017). I relied on multipolar decomposition of weak lensing signal to quantify
the azimuthal distribution of dark matter at different scales, centred on galaxy clusters. The
statistical properties of these multipolar moments are estimated on a mock catalogue of clusters,
extracted from a large N-body cosmological simulation. I built a novel statistical estimator, the
multipolar power spectrum while stacking the modulus of aperture multipole moments. This
method allowed me to quantify the angular distribution of matter in central and external regions
of cosmic nodes. The harmonic distortions computed in the vicinity of clusters, appear to trace
the non-linear sharpening of the filamentary structure. Larger number of filaments seem to be
connected to high-mass clusters. The angular shape of cluster core is also investigated, and more
massive DM halos appears more elliptical. The detection level of multipolar moment of WL with
current and the upcoming Euclid lensing data sets is estimated. In a follow up paper, led by S.
Codis, we derived the multipolar statistics of the field in a shell around a central peak from the
linear and weakly non-linear regimes (Codis et al. 2017). It provides theoretical support for the
results presented in the first paper.

In the last part of my thesis, I mock the weak gravitational lensing signal in the light-cone
of the Horizon-AGN simulation (Dubois et al. 2014). To do so, I propagate light-rays along the
light-cone in the multiple-lens-plane approximation. Two different algorithms are developed to
construct the deflection field on each lens plane: the first one accurately integrates the acceleration
along the path of light rays on each cell of the AMR simulation, while the second method
adaptively smooths particles depending of the total local density. The latter allowed me to
distinguish the lensing contribution of dark and baryonic matter. This numerically intensive
work, is validated using various analysis software that I developed (ray tracing, extraction and
interpretation of two-point statistics,. . . ). The impact of baryons is significant in cosmic shear
statistics for angular scales below a few arcmins. In addition, the galaxy-galaxy lensing signal is
compared to current observational measurements (Leauthaud et al. 2017), and seems in good
agreement. I also present my ongoing effort of producing mock observations fully derived from
the Horizon-AGN simulation (light emission, lensing,..), with the underlying goal of mimicking a
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complete end-to-end lensing pipeline, including all the relevant effects (magnification, photometric
redshifts, intrinsic alignments,...). This could potentially help understanding systematic effects
that may be play in a survey like Euclid.

Keywords: cosmology, large-scale structure of the Universe, dark matter halos, galaxy
clusters, galaxy, weak gravitational lensing, Methods: statistical and numerical.



Résumé

Les relevés à venir comme Euclid, LSST et WFIRST vont nous ouvrir la perspective d’étudier
l’univers profond, de l’ensemble de la voûte céleste extragalactique jusqu’aux toutes petites
échelles. Pour ces grands relevés, l’astigmatisme cosmique correspond à une sonde indispensable
pour étudier la nature de l’énergie noire et la matière noire. De fait, nous pouvons l’utiliser
pour reconstruire la distribution de matière en mesurant les distorsions que subissent les galaxies
d’arrière plan en raison des inhomogénéités de la distribution sur la ligne de visée. Cette méthode
constitue donc un traceur non biaisé de la distribution de matière dans l’univers. Compte tenu de
la précision des mesures dans les observations, nous devons faire des prédictions cosmiques en
nous reposant sur des simulations correspondant à l’état de l’art afin de quantifier avec précision
la variance, le bruit, les biais et les dégénérescences potentielles provenant de l’évolution non
linéaire de la gravitation et les effets liés aux baryons. Dans ce contexte, ma thèse se focalise sur
la construction d’estimateurs précis basés sur les observables de lentillage.

La première partie de ma thèse a pour objectif de caractériser la géométrie des grandes
structures par astigmatisme cosmique (Gouin et al. 2017). Je me suis reposée sur une décomposition
multipolaire du signal afin de quantifier la distribution azimutale de la matière noire à différentes
échelles, centrée sur les amas de galaxies. Les propriétés statistiques de ces moments multipolaires
sont estimées à partir de catalogues synthétiques d’amas, extraits d’une simulation cosmologique
N-corps de grande taille. J’ai construit un nouvel estimateur statistique, le spectre de puissance
multipolaire, qui consiste à empiler le module d’ouverture des moments multipolaires. Cette
méthode m’a permis de quantifier la distribution angulaire de la matière dans la région centrale
et périphérique des noeuds de la toile cosmique. Les distorsions harmoniques calculées dans
le voisinage des amas semblent tracer le renforcement non linéaire de la structure filamentaire.
Un plus grand nombre de filaments semblent connectés aux amas de forte masse. La géométrie
angulaire des amas est aussi sondée et semble plus elliptique pour les amas les plus massifs. Je
quantifie aussi le niveau de détection des moments multipolaires par astigmatisme par les relevés
actuels et à venir (Euclid). Dans un second article, porté par S. Codis, nous avons estimé la
statistique multipolaire dans le champ au voisinage d’un pic central dans le régime linéaire et
faiblement non linéaire (Codis et al. 2017). Cette étude complémente théoriquement le premier
article.

Dans la dernière partie de ma thèse, je synthétise le signal d’astigmatisme cosmique dans le
cône de lumière de la simulation Horizon AGN (Dubois et al. 2014). Pour ce faire, je propage les
rayons de lumière le long du cône dans l’approximation des plans de lentillage multiples. Deux
algorithmes distincts sont utilisés pour quantifier la déflection de chaque plan: le premier estime
avec précision l’accélération le long du chemin en utilisant les cellules de la simulation AMR,
alors que le second algorithme lisse de manière adaptative les particules en fonction de la densité
locale totale. Cette seconde méthode m’a permis de distinguer la construction du lentillage de la
matière noire et de la matière baryonique respectivement. Ce travail numérique intensif est validé
sur différents outils d’analyse que j’ai développés (tracé de rayon, extraction et interprétation
de statistiques à deux points, etc). L’effet des baryons est significatif dans la statistique du
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cisaillement aux échelles angulaires inférieures à l’arc-minute. Le signal de cisaillement galaxie
-galaxie est comparée aux observations récentes de Leauthaud et al. (2017), et semble être en
bon accord. Je présente enfin mes travaux récents pour produire des observations synthétiques
déduites entièrement de la simulation (émission et lentillage) avec pour objectif de modéliser
la synthèse d’image ‘end-to-end’ en prenant en compte tous les effets (magnification, redshift
photométrique, alignements intrinsèques). Ces travaux permettront de mieux comprendre les
effets systématiques auxquels un relevé comme Euclid sera confronté.



Introduction

Even if the current cosmological model largely explains the history and structure of the Universe,
dark energy and dark matter, two key components remain a mystery. In this context, the
gravitational lensing signal is a promising way to investigate both of these components. Indeed,
regardless of its nature or dynamical state, the matter along the light-of-sight can be probed with
the distortions of background galaxies via gravitational lensing. As light deflection is directly
induced by the gravitational potential, one can reconstruct the projected density of the lens by
measuring the deformation of background galaxies. The lensing signal can thus be used as an
unbiased tracer to map the total mass content on the Universe. Characterising the distribution
of matter on large scale is a unique cosmological probe of the concordance model of cosmology.
Gravitational lensing can also potentially shed some light on the behaviour of dark matter on
galactic scales, which is the locus of a complex dynamical interplay between dark matter and
baryons.

Upcoming cosmological experiments, like the Euclid mission, intend to measure the gravita-
tional lensing signals (both weak and strong) with unprecedented sensitivity on a broad range of
scales. In order to maximise the scientific returns from these future data sets, we require accurate
theoretical predictions of cosmological observables such as the lensing signal. A new generation
of numerical simulations was developed in the recent years to fulfil this requirement. Numerical
simulations are a powerful tool to investigate the evolution of the cosmic density field predicted
for the ΛCDM model. Indeed, they are the only way to accurately describe non-linear matter
clustering at all times and on a large range of scales (going from conventional large scales to the
less-known smaller scales via hydrodynamical simulation).

With the advent of high performance computing, cosmological simulations can provide a
precise description of the matter distribution on both large and small scales. By focusing on the
impact of baryons on the total matter density field, hydrodynamical simulations provide a way
to investigate galaxy formation and evolution, and the key processes involved. By performing
post-processing analyses of such cosmological simulations, we can construct estimators of cos-
mological observables in order to guide our interpretations of observational results. The output
of a simulation can be used to test the validity of observational pipelines (e.g. source detection
pipelines).

In this framework, my doctoral thesis work is focused on the construction of accurate estimators
of the lensing signal via numerical simulations (both N-body and hydrodynamical simulations).
For this purpose, I have developed numerical methods to post-process cosmological simulations,
and build realistic mock lensing observables. In particular, I focused on the characterisation of
the dark matter filamentary structure on large scales, and on the impact of baryons on lensing
statistics on small scales. This doctoral thesis is organized as follows:

• I begin with an overview of the cosmological concordance model in Chapter 1. I describe
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both its success in explaining the large scale structure observed in the Universe and its
shortcomings on intermediate and smaller scales. I also give a brief theoretical outline of
the theory of structure formation from the linear to the non-linear regime. I will show
that numerical simulations are required to probe the non-linear evolution of the density
field. As a result, I also give an overview of the basics of numerical methods. Finally, I
discuss the impact of baryonic matter on the underlying density field as investigated with
hydrodynamical simulations.

• I follow with a review of gravitational lensing theory in Chapter 2. Standard lensing
observables are also reviewed in the weak regime. Numerical methods to predict the lensing
signal from both N-body and hydrodynamical simulations, are finally presented.

• In Chapter 3, I present a first attempt to characterise the statistics of dark matter filaments
at the outskirts of galaxy clusters with lensing shear signal (Gouin et al. 2017). As the
filamentary structures have a low density contrast compared to massive clusters, detecting
dark filaments via weak lensing is challenging (it is currently limited massive bridge of
matter between two galaxy clusters). In this study I develop a statistical estimator, based
on the multipolar decomposition of the projected density, and use it to probe the azimuthal
shape of galaxy clusters in both internal and external regions. By using a pure dark matter
N-body simulation, I calculate and average multipolar moments over a large number of mock
galaxy clusters as a function of mass and redshift bins. This numerical result is compared
to theoretical predictions performed in a companion paper (Codis et al. 2017). Finally, the
prospects of measuring this signal are estimated for current and future lensing data sets.

• Chapter 4 is devoted to the prediction of weak lensing statistics extracted from the Horizon-
AGN hydrodynamical cosmological simulation (Gouin et al, 2018, in preparation). I present
the ray-tracing algorithm, the construction of the deflection field, and the resulting mock
lensing observables. Standard weak lensing statistics such as the convergence power spectrum,
the two-point shear correlation and the galaxy-galaxy lensing are predicted up to highly
non-linear scales (few arcsec).These lensing signal predictions have the advantage of taking
into account the full baryonic physics, all the matter along the line of sight, and the coupling
of lens planes into account. Common lensing assumptions, such as Born approximation and
reduced shear, are also investigated.

• The thesis concludes with a summary and an outlook



Chapter 1

The concordance model of cosmology

In the past decade, major observational discoveries and theoretical advances have led the commu-
nity to converge towards a common model to describe our Universe: the ”concordance” model.
One of the most important observational evidence is the measurement of the cosmic microwave
background, the oldest observed light emission of our Universe, i.e. an imprint of its primordial
stage. This observation is a strong argument in favour of an isotropic and homogeneous Universe
which is expanding and evolving with cosmic time. Complementary, the formalism of General
Relativity provides a coherent description of Universe evolution, i.e. its thermal history and
the growth of primordial density anisotropies. Nevertheless, the ΛCDM model relies on two
components as yet undetected directly: non-baryonic matter (which only interacts gravitationally)
and an supposed energy component which is responsible of the acceleration of the expansion of
the Universe. The main cosmological challenge of the 21th century is therefore to improve our
knowledge of these two ”dark ingredients”.

In section 1.1, I review the cosmological model in order to set the scene of this PhD work. In
particular, as this thesis focuses on the characterisation of the density field at non-linear scales,
we resume theoretical models of structure formation for both linear and non-linear regimes in
section 1.2. Section 1.3 presents the observational evidence in support of the ΛCDM model on
large scale, and lists some points of contention on smaller scales. Finally, I present in section 1.4
an overview of numerical simulations and the associated numerical methods as a powerful tool
to study the structure formation in the fully non-linear case. I then discuss when simulations
are necessary to improve our understanding of structure formation and to constrain cosmological
observables.

1.1 A homogeneous and isotropic Universe

The concordance cosmological model is based on two fundamental principles: isotropy and
homogeneity of the Universe. In other word, it supposes that there are no special directions or
places in the Universe. While the initial motivation for these assumptions was purely philosophical,
we show in section 1.3 that the detection of the Cosmic Microwave Background in 1992 by COBE
has provided empirical support for these cosmological principles (Smoot et al. 1992).

1.1.1 The General Relativity

Proposed by Einstein (1905), the Special Relativity is based on two postulates: the principle of
relativity1 and the invariance of the speed of light.

1The laws of physics are identical in all inertial frames of reference

1



2 1.1. A homogeneous and isotropic Universe

With these assumptions, the concept of a four-dimensional description of the Universe (three
of space and one of time) relative to a reference frame has emerged and led to the notion of
space-time. In addition, Special relativity induces a large number of consequences like length
contraction, time dilation, and mass–energy equivalence.

The general theory of relativity, developed by Einstein (1916), extends the relativity principle
to all frames of reference. The equivalence principle of gravitational and inertial mass follows.
Therefore, General Relativity offers a rigorous mathematical formalism to describe the gravity as
a geometrical phenomenon: space-time is locally curved by the presence of matter and energy.

One can link the mass-energy content to the geometrical properties of the space-time from
the Einstein’s field equations:

Gµν + Λgµν = 8πG
c4 Tµν , (1.1)

where Tµν is the energy-momentum tensor which describes the mass and energy contained in the
Universe. This is the compact form of a tensor equation which connects a set of symmetric 4× 4
tensors. The Einstein tensor Gµν is related to the symmetric metric tensor gµν which accounts
for the geometrical properties of the space-time. Finally, the cosmological constant Λ was first
introduced by Einstein to allow a stationary Universe. After being suppressed by the evidence
of an expanding Universe, it has been added back to permit an accelerated expansion in order
to agree with the observations (see section 1.3). According to General Relativity, energy and
momentum are conserved. In addition, in the weak-field approximation, Einstein’s theory can be
reduced to Newtonian mechanics.

1.1.2 Friedmann equations

The cosmological principle supposes a high level of symmetry in the geometry of space-time.
Therefore, considering an homogeneous and isotropic Universe in expansion, the Einstein field
equations can be solved by an exact solution of the metric tensor: the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric. Historically, this solution is first introduced by Friedmann
(1922, 1924), as a cosmological model assuming the cosmological principles. Then, Lemâıtre
(1931) extended this model to an expending Universe, with its observational evidence provided by
Hubble (1929). Finally, Robertson and Walker independently proved that this solution is the only
metric consistent with the assumption of homogeneity and isotropy of space (Robertson 1935;
Walker 1937). Following this metric, the line element ds, i.e. the space-time interval between
events, can be expressed as:

ds2 = c2dt2 − a(t)
(

dr2

1− kr2 + r2dΩ2
)
, (1.2)

where (r, θ, φ) denote the polar spatial coordinates, t is the time coordinate (called the cosmic
time), and the solid angle element dΩ2 = dθ2 + sin2 θdφ2. The constant k characterises the
curvature of space, and can take three different values, such as k = 0,±1. These correspond to a
flat, spherical or hyperbolic curvature, respectively. The function a(t) is called the scale factor: it
describes the dilation or contraction of space scales over the evolution of cosmic time.

Taking the scale reference at the current time, we define a(t0) = 1. From the field equation
1.1 and the metric 1.2, one can assume Tµν has the form of a stress tensor for a prefect fluid2. In

2It has be demonstrated by Weinberg (1972) that isotropy and homogeneity involve a tensor with a perfect
fluid form, such as T 00 = ρc2, T νν = −p, where ρ is the density and p is the pressure.
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so doing, we can infer the Friedmann equations:(
ȧ

a

)2
= 8πGρ

3 − Kc2

a2 + Λc2

3 , (1.3)

ä

a
= −4πG

3

(
ρ+ 3p

c2

)
+ Λc2

3 . (1.4)

These two independent equations imply that the evolution of the scale factor a(t) depends on
the density ρ(t) and the pressure p(t) of the matter contained in the universe. It is useful to
introduce, at this juncture, the Hubble parameter which describes the rate of cosmic expansion:
H(t) = ȧ(t)/a(t).

These equations can be solved by taking an equation of state for the matter component of the
form p = ωρ c2 with constant parameter ω. We obtain an expression for the density as a function
of the scale factor a:

ρ(a) = ρ0a
−3(ω+1) . (1.5)

Here, let us take a moment to distinguish the various components of matter. Specifically, we
have radiation, with ω = 1/3 (relativistic particles), and non-relativistic matter, with ω = 0 (dust
matter). In fact, dust can be described like an ideal gas, so that the parameter of state equation
can be approximated as ωm ≈ v2/3c2 ≈ 0, with v the velocity of matter particle3. It follows that
matter is diluted in an expending Universe as ρm ∝ a−3. Considering ultra-relativistic matter,
one can demonstrate that the pressure exerted by electromagnetic radiation is equal to one third
of the average energy density4. By considering the expression of effective mass of radiation as
m = E/c2 (Einstein 1907), it follows that p = ρc2/3. Therefore the density of relativistic particles
decreases more rapidly than the volume expansion, such as ρ ∝ a−4.

The cosmological constant Λ can be identified as a perfect fluid in the first Friedmann
equation5 with a density ρΛ = Λc2/(8πG). Following this density formulation, the second
Friedmann equation6 leads to ωΛ = −1.

Similarly, the curvature can be expressed as a fluid with a density ρK = 3Kc2/(8πGa2) (from
the first Friedmann equation), and it leads to an equation of state such as ωK = −1/3 (from the
second Friedmann equation). The density of this hypothetical fluid decreases with the expansion
of the Universe like ρK ∝ a−2. Applying all the above simplifications, we can then re-write the
Friedmann equations as a direct sum of the i components:

H2(t) =
(
ȧ

a

)2
= 8πG

3
∑
i

ρi , (1.6)

ä

a
= −4πG

3
∑
i

(
ρi + 3pi

c2

)
. (1.7)

Therefore it becomes natural to define the total density of Universe - the ”critical density” -
as function of the cosmic time:

ρc(t) = 3H2(t)
8πG . (1.8)

3Following ideal gas law, the pressure is p = kbTρ/µ, where µ is the mean particle mass, T is the temperature of
the gas, and kb is the Boltzmann constant. According to the kinetic theory of gases, one can find that kbT = µv2/3.
It leads to p = ρ× v2/3c2.

4For an isotropic radiation, the pressure is averaged over all solid angles, and leads to p = ε/3, with ε the energy
per unit volume (Boltzmann 1884).

5we solve the equation: 8πGρΛ
3 = Λc2

3
6we solve the equation: 4πG

3

(
ρΛ + 3pΛ

c2

)
= Λc2

3 , with PΛ = ωΛρΛc
2



4 1.1. A homogeneous and isotropic Universe

Figure 1.1 – The density evolution of the
different components: radiation, matter
and dark energy. Image credit: Pearson
Education.

It is usual to rewrite the density of each species i as function of this reference density ρc, by
considering the density parameters:

Ωi(t) = ρi(t)
ρcrit(t)

. (1.9)

The first Friedmann equation becomes Ωr + Ωm + ΩΛ + ΩK = 1, thus it supposes a conservation
of the matter-energy content in an expending Universe. The Universe should be denser in the
past, and its content should be dilluted with space-time expansion. One can finally rewrite the
Friedmann equation in terms of the density parameters at the present time t0:(

H(t)
H0

)2
= Ωr,0
a(t)4 + Ωm,0

a(t)3 + ΩK,0
a(t)2 + ΩΛ,0 , (1.10)

where H0 ≡ H(t0) and Ωi,0 = ρi(t0)/ρcrit(t0) are respectively the Hubble parameter and the
density parameters at current time. Following this formulation, it becomes easy to describe the
density evolution of the different components over the cosmic time, as it is illustrated in figure
1.1. Additional definitions, such as the notion of redshift, the various cosmological distances and
the horizon concept, are provided in Appendix A.

1.1.3 Overview of the different epochs

First, we note that this model requires a singularity at the initial time t = 0 with a(0) = 0 -
this corresponds to the Big Bang7. Shortly after the Big Bang, the Universe has exponentially
expended - via the so-called inflation phase (detailed in section 1.2.1). From the equation 1.10, one
can fully describe the expansion of the Universe as a function of the dominant matter component
for a given era.

For a flat Universe (k = 0), the scale factor can be expressed as a function of the time:

a(t) = a0t
2

3(ω+1) . (1.11)

In the early stage of the Universe, after inflation, radiation is expected to dominate over
other components, and as we saw, it density decreases with Universe expansion in a−4 (see figure

7There is no currently available physical theory to describe the Universe for times smaller than the Planck time
(t ∼ 10−43 seconds).



Chapter 1. The concordance model of cosmology 5

1.1). When radiation dominated, the typical scale factor evolution is thus a(t) ∝ t1/2. At this
epoch, baryonic matter and radiation are coupled and form a hot plasma of photons, electrons,
and protons. As cosmic time evolves, space slowly expands, leading to a decline in the radiation
density.

Eventually, the radiation and matter components are expected to be found in the same
proportions. This occurs when the scale factor is equal to a(teq) = Ωr/Ωm.

At this time, photons become free to travel across the Universe, and baryons start to form the
first primordial neutral elements: this is the beginning of the matter-dominated epoch. Assuming
an Einstein-de-Sitter (EdS) model with Ωm = 1 and Ωk = ΩΛ = 0, the Universe expands as
a(t) ∝ t2/3.

Finally, at present time, we enter an epoch dominated by dark energy, i.e. the cosmological
constant Λ. Assuming ΩΛ = 1, the expansion of the Universe grows exponentially as a(t) ∝ eHt.

1.1.4 Overview of the matter-energy components

Considering the concordance model of cosmology briefly described above, we have seen that
the Universe is composed of radiation, non-relativistic matter, and dark energy. Their relative
proportion has evolved with cosmic time until the present values (as detailed in section 1.3). Let
me introduce in more detail the different components:

• Radiation gathers light and relativistic particles (v ∼ c), principally photons and neutrinos,
which interact via electromagnetism. Its energy density is now extremely low Ωr,0 < 10−4.

• The matter component has a significant proportion in the energy-mass budget of the
Universe today, with Ωm,0 ∼ 0.3. One can distinguish two different types of matter:

– The ”baryonic” matter (Ωb,0 ∼ 4%) which is the well-known constituent of ordinary
matter (baryons and electrons included). This is the only component which participates
in the four fundamental interactions: weak (leptons), strong (hadrons), electromagnetic,
and gravitation. Baryonic matter is mainly in the form of gas and stars, and can be
directly observed through their emission/absorption of electromagnetic radiations.

– The dark matter (DM) is dominant compared to the baryons (ΩDM,0 ∼ 27%). This
unknown type of matter is required to explain the invisible mass content in the
Universe (as detailed in sub-sections 1.3.1.5 afterwards). One can separate dark matter
model into three different categories depending on the free streaming length of dark
matter particles: cold (non-relativistic speed), warm, and hot (relativistic speed).
Observational results are strongly in favour of cold collisionless dark matter particles8.
The weakly interacting massive particles (WIMPs), are hypothetical particles which are
the leading DM candidates for the non-baryonic dark matter9 (Spergel & Steinhardt
2000a). Such particles are supposed to interact by gravitation and possibly by weak
forces, and are thus difficult to detect (for more details see the recent review of
Roszkowski et al. 2018).

• Finally the dark energy is an unknown form of energy which dominates today other
Universe components, with ΩDE,0 ∼ 69%. This mysterious energy is characterised by a

8Large scale structure of the Universe, such as galaxy clusters, can be used to constrain the possible self-
interaction of dark matter particles (Randall et al. 2008). Recently, the upper limit of the self-interaction cross
section of dark matter is estimated to be σDM/m < 3.7h−1cm2g−1 (Ueda et al. 2018).

9Baryonic dark matter is also considered, named MAssive Compact Halo Objects (MACHOs). They constitute
massive baryonic objects which we cannot directly observed due to their lower level luminosity such as neutron
stars, black holes, and white dwarfs. it is now admitted that MACHOs can not account for all the missing matter
(Brandt 2016).
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negative pressure: ωDE < −1/3 (repulsive action), necessary to initiate cosmic acceleration
(as detailed in sub-sections 1.3.1.3 .and 1.3.1.4 afterwards). The cosmological constant
introduced into the field equations of General Relativity is the leading dark energy model,
which mimics a homogeneous fluid with a fixed energy density over the cosmic time such
as pΛ = −ρΛ. Other alternative theories of dark energy have been proposed, including a
cosmic field associated with inflation and quintessence models, with a low-energy scalar
field. In fact, there is no reason to expect ωΛ is constant and precisely equal to −1. For a
review of the different dark energy cosmologies, see for example Bamba et al. (2012).

1.2 Cosmological structure formation

In the formalism developed above, we have made the approximation that the Universe is ho-
mogeneous. This is only valid for extremely large scales, i.e. > 100 Mpc. For smaller scales,
observations show a non-homogeneous matter distribution, as highlighted by mapping galaxies in
the local Universe (see Figure 1.15). Galaxies are clearly not distributed uniformly in space, but
rather spread in networks composed of voids, filaments and nodes. This raises the question: what
cosmological model can explain the cosmic web observed today? In an attempt to answer this
question, I will first explain where these primordial density fluctuations come from. Then, I will
describe how the standard model of structure formation accounts for the growth of inhomogeneities.
I will focus specifically on the growth of dark matter density fluctuations. This section is based
on the lecture by Bernardeau (1998).

1.2.1 The origin of anisotropy in the density field - An inflationary scenario

The small anisotropies in the density field are expected to be generated during a phase of
exponential expansion before the radiation dominated epoch, known as the Inflation (for more
details see the review of Linde 2014). The inflationary scenario suggests that, shortly after the
Big Bang, the Universe underwent an exponential expansion as supposed to be governed by
a hypothetical scalar field. The inflation phase should lead to wash out any inhomogeneities.
Indeed, it is a possible explanation of the cosmological principles, because all inhomogeneities
were exponentially stretched during inflation. The apparent flatness of the Universe could also be
explained with this scenario.

Only quantum fluctuations in the inflaton field would have survived to the Inflation. A
visualisation of these primordial quantum anisotropies is available thanks to CMB observations,
cf. figure 1.14. We will proceed to explain how these initial inflationary perturbations could have
grown under the effect of gravity, leading to the large scale structure observed today.

1.2.2 The growth of inhomogeneities in the linear theory

First, let us start by explaining the growth of density inhomogeneity in the linear theory. The
Newtonian approximation of a single flow is sufficient to describe the behaviour of structure
formation, to the first order. This approximation only remains valid at the first stage of matter
evolution, caused by gravitational instability. Over time, several flows with different velocities
emerge and begin to mix (”shell crossing”): this occurs during the formation of non-linear
structures. For a single flow, the time evolution following in a Newtonian approach is simply
governed by fluid’s dynamics equations:
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
Mass conservation

∂ρ

∂t
+ ~∇ (ρ ~v) = 0 ,

Euler’s equation
∂~v

∂t
+ (~v.~∇)~v = −~∇φ ,

Poisson’s equation ∆φ = 4πGρ .

(1.12)

1.2.2.1 Linear perturbation theory

We now perturb this system of equations by a small density fluctuation δ, such that ρ = ρ0(1 + δ)
where δ � 1. The matter flow must be described in term of comoving quantities, such that our
considered fluctuations evolve through an expanding Universe. We defined both its comoving
coordinates ~x(t) = ~r(t)/a(t) and its peculiar comoving velocity u(x, t); the latter is the difference
between the total velocity and the Hubble flow (the global expanding flow of the Universe). The
fluid’s dynamics equations then become:

∂δ

∂t
+ 1
a
~∇ ((1 + δ) ~u) = 0 ,

∂~u

∂t
+ ȧ

a
~u+ 1

a
(~u.~∇)~u = −1

a
~∇φ ,

∆φ = 4πGρ0a
2δ ,

(1.13)

where ρ0 is the mean matter density, defined such that ρ0 = Ωmρcrit. By conserving only first
order terms on this perturbative system, we obtain:

δ̇ + 1
a
~∇.~u = 0 ,

δ̈ + 2 ȧ
a
δ̇ = 4πGρ0δ .

(1.14)

The second equation, which describes the evolution of the density contrast, can be re-written as a
function of the Hubble parameter:

δ̈ + 2Hδ̇ − 3
2H

2Ωm(t)δ = 0 . (1.15)

The solutions of this differential equation can be decomposed into two independent modes: one
growing and one decreasing. The general solution is the sum of these modes:

δ(~x, t) = D+(t)δ+(~x, 0) +D−(t)δ−(~x, 0) . (1.16)

I will focus on the D+ solution, as any perturbations on decaying mode tend to vanish and are
therefore irrelevant to structure formation The space and time dependence can be separated
here. Because D± is only time-dependant, the shape of perturbations does not change: only the
amplitude of the density contrast changes. Therefore, in the linear regime of structure formation,
density perturbations grow homogeneously. The evolution equation of density fluctuations 1.15,
can be solved for any cosmological model, as the time evolution is governed by cosmological
parameters and the scale factor. As demonstrated in Peebles (1980), the two modes can be
expressed as depending on the Hubble parameter and the scale factor:

D+(a) = H(a)
∫ a

0

da′

(a′H(a′))3 , D−(t) = H(a) . (1.17)

The structure growth factor D+ can thus approximately be determined at each different epoch of
the Universe:
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• Radiation dominated epoch
Before the equivalence between matter and radiation, one might distinguish two types of
fluctuations which can be larger or smaller scales than the horizon size at the radiation
dominated epoch, in which the horizon size grows as Dh ∝ a. When perturbations enter the
horizon, their wavelength is λ ∼ Dh(aenter). For λ > Dh(aeq), the fluctuations do not enter
into the horizon before the matter-radiation equivalence, and therefore grow continuously
during this period. In contrast, smaller fluctuations which enter the horizon before the
recombination have to be frozen until the matter dominated epoch. Indeed, it can be
inferred from equation 1.17, that sub-horizon dark matter density fluctuations grow like
D+ ∝ a/aeq.

• Matter dominated epoch
This epoch can be approximated by considering as an Einstein-de-Sitter Universe in which
the density fluctuations grow as D+ ∝ a ∝ t3/2.

1.2.2.2 Validity of the linear theory

The linear perturbation theory is valid to describe the structure formation on scales larger than a
few Mpc. For structure below this scale, a non-linear description of fluid evolution is required.
In addition, only perturbations smaller than the horizon size can be described in Newtonian
approximation. For perturbations with super-horizon scales, the perturbative theory must be
carried out in a fully-relativistic framework.

In the above mathematical development, we did not assume a pressure term in Euler’s equation.
Taking this additional term into account allows us to define the Jeans length, i.e. the minimal
scale for perturbation where gravitation dominates over radiative pressure, and thus lead to
gravitational instability. From these new considerations, one can show that prior to the decoupling
between photons and baryons, the radiative pressure drives the evolution of the photon-baryons
fluid. Thus, baryonic matter has to wait until recombination to collapse.

1.2.3 The growth of inhomogeneities in the non-linear theory

We now move on to density fluctuation with an higher amplitude δ ∼ 1, for which the linearisation
of fluid dynamics equations no longer holds. To understand the global behaviour of the density
field beyond the linear regime, the gravitational dynamics can be studied with different approaches
- we now aim to review them.

1.2.3.1 The Zel’dovich approximation

An approximation of the non-linear growth of density fluctuations has been developed by Y.
Zel’dovich (1970) (see also Shandarin & Zeldovich 1989). Let us begin by describing the dark
matter fluid with a Lagrangian approach. The position of a particle at time t (Eulerian coordinates
~x) can be given as a function of its initial positions (Lagrangian coordinates ~q) and the displacement
field ~ψ:

~x(t) = ~q + ~ψ(~q, t) . (1.18)

The Jacobian of this transformation is given as

J =
∣∣∣∣d~xd~q

∣∣∣∣ =
∣∣∣∣δij + ∂ψi

∂qj

∣∣∣∣ , (1.19)

and can be approximated to the first linear order as J(~q, t) ∼ 1 + ~∇q. ~ψ(~q, t). By applying
conservation of mass, one can relate the evolution of an infinitesimal volume element d~q with a
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density ρ, to its evolved values d~x and ρ:∣∣∣∣d~xd~q
∣∣∣∣ = ρ

ρ
⇒ 1 + δ(~q, t) =

∣∣∣∣d~xd~q
∣∣∣∣−1 . (1.20)

The Zel’dovich approximation assumes that the particle’s motion is imposed by the initial
acceleration field. Thus, particle trajectories are linear, and follow the direction of the initial
force field. By re-writing the fluid’s equation in terms of ~ψ, we find that the displacement field in
Zel’dovich approximation is:

ψZA(~q, t) = D+(t)ψ+(~q) ⇒ J =
∣∣∣∣δij +D+

∂ψi
∂qj

∣∣∣∣ , (1.21)

where D+(t) is the linear growth factor as described in the linear regime. One can express
∂ψ+

i /∂qj as a diagonal matrix with eigenvalues as λ1 > λ2 > λ3. Therefore, the density contrast
should evolve as:

1 + δ = ((1− λ1D+)(1− λ2D+)(1− λ3D+))−1 . (1.22)

It appears that the growth of the density contrast follows preferential directions (assuming
λ1, λ2, λ3 > 0). As D+ increase with the cosmic time, we have λ1D+ → 1 meaning that the
collapse is faster along one direction. Critical lines will form, and this first dense structure
(walls), is known as the Zel’dovich pancake. The density contrast then starts to increase along
the second preferential direction, characterised by λ2. This two-dimensional contraction leads to
the formation of filaments. Finally, as λ3D+ → 1, we end up with the formation of 3-D density
peaks, the nodes of the cosmic web. As such, that the Zel’dovich approximation can roughly
explain the filamentary structure observed in the Universe. The main limitation appears in these
denser regions when shell crossing starts to occur, because the Zel’dovich approximation assumes
non-interacting matter. Extensions of the Zel’dovich dynamics have been proposed, for example,
by adding an artificial viscosity. We reach the so-called adhesion model (Gurbatov et al. 1989;
Kofman et al. 1992; Bernardeau & Valageas 2010; Gurbatov et al. 2012).

1.2.3.2 The spherical collapse

Considering a unique, spherically-symmetric density excess allows some exact solutions of pertur-
bation growth in the non-linear regime. This approximation constitutes a first description of the
global behaviour of hierarchical structure formation, and describes the virialisation of massive
objects (galaxies and galaxy clusters).

Let us consider a local spherical region with a physical radius r(t), a density ρ and the mass
contained in the sphere of radius r is M(< r). The physical equation of motion is then simply:

d2r

dt2
= −GM(< r)

r2 . (1.23)

In a closed Universe, this differential equation can be solved by the following parametric equations:

r

rta
= 1

2(1− cos θ) , t

tta
= 1
π

(θ − sin θ) . (1.24)

As this perturbation is over-dense, it will expand until some maximum physical radius rta reached
at time tta, and then turn-around, by collapsing due to its self-gravity. The total energy of the
system is conserved and can be written as:

E = 1
2

(
dr

dt

)2
− GM

r
. (1.25)
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When the kinetic energy becomes zero, the over-density starts to collapse at r = rta and t = tta:

θ = π , rta = GM

E
, tta = πGM

(−2E)3/2 . (1.26)

Following the evolution of this system, we find that the sphere collapses into a singularity at
r = 0. In practice, the dark matter perturbation relaxes into a state of virial equilibrium when
the total energy equals half the potential energy. In this case, r and t become:

θ = 2π , rvir = rta
2 , tvir = 2tta . (1.27)

This collapsed object is in fact what we refer to as a dark matter halo.

For θ � 1, the mean density inside the radius r can be Taylor-expanded:

ρ(< r, t) = M(< r)
4/3πr3 ∼

1
6πGt2

(
1 + 3

20

(6πt
tta

)2/3
+ ...

)
. (1.28)

Thus, it can be compared to the linear density perturbation in an Einstein-de-Sitter universe
(EdS) as ρ = ρ0(1 + δ). By identification we find that:

δlin ≡ δ(tvir) = 3
20(12π)2/3 = 1.686 . (1.29)

This means that an overdense sphere is considered collapsed when, in the linear theory, the
density contrast δ reaches the value of 1.686. Therefore, when the density contrast of a fluctuation
become higher than this limit, one should describe its evolution in the non-linear regime.

One can also define ∆ as the density ratio between the mean density inside a specific region
and the background density, both at a given time. An over-density is then virialised when
ρ(t) > ∆virρ(t):

∆vir = ρ(< rvir, tvir)
ρ(tvir)

= 18π2 ∼ 178 . (1.30)

This is a good criterion to characterise collapsed objects. Even if these conclusions suppose an
EdS Universe, these values do not change drastically for other cosmological parameters. The exact
solution of the spherical collapse, given the density contrast as a function of time is developed in
Appendix A.2 for the EdS model. It shows that the evolution of a perturbation is governed by
the initial overdensity.

1.2.3.3 The Press-Schechter mass function

Having defined haloes as collapsed spherical objects, we now determine the abundance of dark
matter haloes in our Universe. To do so, we present a simple approach known as the Press-
Schechter formalism (Press & Schechter 1974). It is a combination of the spherical collapse model
and the linear theory of structure formation. First, let us assign a length scale to a mass scale in
spherical approximation, as:

R(M) =
( 3M

4πρ0

)1/3
. (1.31)

We can consider a smoothed density contrast δR at some mass or length scale by filtering density
fluctuations with a window function WR, such that:

δR(~x) =
∫
δ(~x′)WR(|~x− ~x′|) d~x′ . (1.32)
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Assuming that the smoothed density field is a Gaussian random field, its probability distribution
function can be written as:

p (δR) = 1√
2πσ2

R

exp
[
δR

2

2σ2
R

]
, (1.33)

where σR ≡ σM is the variance of the smoothed field. Previously, we have seen that a region
collapses if its density contrast is δlin > δc. We therefore assume that the fraction of objects which
have a mass larger than M is equal to the probability of having a point with a density larger
than the linear critical density. The fraction of mass in objects larger than M is then:

f(> M) =
∫ ∞
δc

p (δR) dδ , (1.34)

= 1
2 −

1
2erf

(
δc

σR
√

2

)
. (1.35)

We can finally derive the number density of objects of a given mass M as:

d2n

dMdV
= 2ρ0

M

∣∣∣∣ ∂f∂M
∣∣∣∣ , (1.36)

=
√

2
π

δcρ0
M

∣∣∣∣d ln σM
dM

∣∣∣∣ exp
(
− δ2

c

2σ2
M

)
. (1.37)

This is the Press-Schechter mass function, an estimation of the number of collapsed dark matter
haloes per unit of mass and comoving volume. Note that we have added an ad hoc factor of 2 to
obtain the correct normalisation. It is due to a failure of Press-Schechter formalism: only half of
the mass is accounted for (Mo & White 2002).

What of the evolution of the halo mass function over the cosmic time? The answer is not trivial
because the time dependance is hidden in σR and δc. Nevertheless,using the linear perturbation
theory, one can assume that the variance of the density contrast evolves as σR(z) ∝ σR(z =
0)D+(z). Following this assumption, the mass function evolves as a power law dn/dM ∝M−2

for low mass objects. It is congruent with a hierarchical structure formation scenario, as low-mass
haloes tend to merge in higher massive object. Finally, an more realistic formulation of the
halo mass function is provided by Sheth & Tormen (2002), who consider an ellipsoidal collapse.
Figure 1.2 shows the typical behaviour of the halo mass function, and compares results from the
Press-Schechter and the Sheth-Tormen formulations, with N-body simulations (cf section 1.4).

1.2.3.4 The highly non-linear regime

At later times, for density perturbations with δ > 1, two paths can be considered to model
structure formation. The first, fully analytical, uses cosmological perturbation theory in order to
go beyond linear approximation and explain mode couplings. This approach succeeds at describing
the density field statistics (Bernardeau et al. 2002; Bernardeau 2013). The second method to
compute the non-linear gravitational dynamics is to use numerical simulations. As explained in
detail in section 1.4, N-body codes discretise the density field into a large number of particles. By
this method, they can reproduce structure formation from initial conditions to the present time,
and provide robust predictions which can in turn to be compared with observational results.

1.2.4 The structure of dark matter haloes

Dark matter haloes can be defined as highly non-linear self-gravitating systems formed by the
collapse of primordial density fluctuations. Nevertheless, the properties of such objects are still
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Figure 1.2 – The halo mass function in
numerical simulations of the Virgo collabo-
ration. The Press-Schechter halo mass func-
tion (dashed line) is compared to a fitting for-
mula similar to Sheth-Tormen (dotted line).
This figure is from Jenkins et al. (2001).

not well understood in detail. As the nature of dark matter remains unknown, we lack information
to correctly describe in detail dark haloes. I will present here a few broadly admitted features of
dark haloes in accordance with the ΛCDM model. Their properties are mainly predicted and/or
validated via N-body simulations (as described section 1.4), and might change by changing the
nature of the dark matter.

1.2.4.1 Halo density profile

The properties of dark matter haloes have been extensively explored and calibrated with high-
resolution N-body simulations. One of the main feature is their radial density profile. Because the
spherically-averaged density profile present a strong similar shape for all the haloes, independently
of their mass and the redshift, one can talk about a universal profile.

One of the most famous radial density models is the Navarro-Frenk-White (NFW) profile
Navarro et al. (1996b, 1997):

ρ(r)
ρcrit

= δc
(r/rs)(1 + r/rs)2 . (1.38)

There are two free parameters in the function above: the first one is the characteristic dimensionless
density δc and the second is the characteristic radius rs. Here, ρcrit is the critical density of the
Universe.

In the NFW profile, the scale radius rs delimits the slope change: the central part of the halo
(r � rs) appears peaked with ρ(r) ∝ r−1, whereas the density profile in external regions (r � rs)
decreases as ρ(r) ∝ r−3. Because the observational evidence of dark matter haloes is revealed by
the dynamics of satellites or stars (cf section 1.3), it is common to relate the radial density profile
to it circular velocity:

vrot =
(
GM(< r)

r

)1/2
⇒

 ρ(r) ∝ r−1 vrot ∝ r1/2 Cusp profile ,

ρ(r) ∝ r−2 vrot ∝ ct Isothermal profile .
(1.39)

These two different mean velocity profiles are shown in figure 1.20 and compared to observational
measurements. We introduce here a simplest model: the isothermal profile10. We see that the
different slopes of the density profile strongly affect the velocity profile in the central regions.

10The density distribution for a singular isothermal sphere profile (SIS) is ρ(r) = σ2
V

2πGr2 , where σV is the velocity
dispersion
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Let us now introduce the notion of virial radius, which serves as the demarcation line between
a halo’s interior (where it is roughly in dynamical equilibrium) and regions external to it, where
accretion occurs. Mathematically, one can define the virial radius as the radius of a sphere centred
on the halo, where the spherical density inside equals ∆virρcrit:

∆virρcrit = M(< rvir)
4/3πr3

vir
. (1.40)

As explained in section 1.2.3.2, for a spherical collapse, ∆vir = 178 is the theoretical value for an
Einstein-de-Sitter model. An exact formulation of ∆vir, expressed as a function of the cosmological
parameters, is presented by Bryan & Norman (1998). Note that, the overdensity parameter ∆vir
is typically approximated at the value 200, under which approximation the halo mass and virial
radius become M200, r200.

Plotting the density profiles of a large sample of simulated haloes highlights the fact that
low-mass haloes tend to be more peaked in central region compared to massive haloes. It is for this
reason that scale parameter rs is compared to the virial radius to characterise the concentration
of the halo: c = rvir/rs. Finally, one can link the characteristic density δc to the concentration
c by examining ρ/ρcrit as a function of r/rvir. In so doing, we see that the halo mass density
profile can be described with a single free parameter c, which depends on the halo mass. The halo
concentration distributions are well-known through N-body simulations (Bullock et al. 2001; Neto
et al. 2007; Duffy et al. 2008; Giocoli et al. 2012; Ludlow et al. 2013; Klypin et al. 2016). With
such simulations, an anti-correlation between c and M was found: this is an expected result in the
hierarchical clustering scenario. As illustrated figure 1.3, this relation is quite well-described by a
power law: c ∝M−0.1 (Neto et al. 2007). Comparing this prediction and observational results
is crucial if we are to improve our understanding of the hierarchical build-up of virialised dark
matter structures.

In addition to the NFW profile, other models of the radial density profile have been proposed
in the literature (Hernquist 1990; Cole & Lacey 1996; Moore 1999; Jing & Suto 2002; Merritt
et al. 2006). Considering the logarithmic slope of the density profile γ = d ln ρ/dr one can write
the Einasto profile (Einasto 1965; Einasto et al. 1984) as a radial power law: γ ∝ rα. Indeed,
with advances in high-resolution simulations, the internal slope and its dependence to the halo
mass are still debated (Jing & Suto 2000; Ricotti 2003; Navarro et al. 2004; Diemand et al. 2005;
Graham et al. 2006). As for the external regions, the outer density profiles seems to be strongly
influenced by the accretion history of haloes and their environment (Diemer & Kravtsov 2014).

Finally, alternative models of dark matter, such as the warm dark matter (Bode et al. 2001) or
the self-interacting dark matter (Spergel & Steinhardt 2000b), tend to predict a shallower slope of
the density profile in the halo’s center, and even produce a constant density core, whose size might
depend on the self interaction cross-section or temperature, for instance. For example, figure 1.4
shows the impact of warm dark matter (WDM) on the density profile (and thus on concentration
parameter) for low mass DM haloes (Bose et al. 2016; Ludlow et al. 2016). The WDM haloes
present lower central densities than their CDM counterparts, and it difference increases as halo
mass decreases.

1.2.4.2 Halo Shape

An other important feature of dark matter haloes is their 3-dimensional shape, which ought to
be triaxial according to the CDM model (Frenk et al. 1988). Indeed, the hierarchical formation
scenario supposes that low-mass haloes were first formed by anisotropic collapse, and have
since grown by accreting the surrounding matter in preferential directions and via halo mergers
(Kauffmann & White 1993).
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Figure 1.3 – Typical numerical prediction for
the mass-concentration relation for DM haloes at
z = 0 (Neto et al. 2007). The statistics of halo
concentrations is computed from the Millennium
Simulation. The average halo concentration ap-
prears to decrease monotonically with mass such
as it is well fitted by a power law. The DM halo
model from Bullock et al. (2001) is in disagree-
ment with the simulation results presented here,
which agree better with NFW predictions.

Figure 1.4 – Stacked spherically-averaged den-
sity profiles for simulated CDM (blue) and WDM
(red) haloes (Bose et al. 2016). The concentra-
tions of WDM haloes are lower than those of
CDM haloes for a same halo mass bin.
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The triaxiality of haloes have been characterised using N-body simulations, and its evolution
as a function of other halo properties such as the halo mass, redshift, and the time of formation
(Dubinski & Carlberg 1991; Warren et al. 1992; Jing & Suto 2002; Allgood et al. 2006; Hayashi
et al. 2007; Faltenbacher & White 2010; Schneider et al. 2012; Despali et al. 2014) has been
explored.

To do so, we model the halo’s inertia tensor and the triaxial halo axis lengths a ≤ b ≤ c. The
ellipsoidal shape can be characterised by different parameters: by the ratio of the minor to the
major axis s ≡ a/c and the ratio of the intermediate to the major q ≡ b/c, by the triaxiality
parameter T ≡ (a2 − b2)/(a2 − c2), or either by the ellipticity e and the prolateness p. Studying
the distribution of these shape parameters highlights the averaged triaxial shape of haloes. They
appear to be correlated with the halo mass (at a given redshift), such that massive haloes are less
spherical than smaller ones. As well, considering the same halo mass range over the cosmic time,
halo shape tends to be more elliptical at higher redshift.

To correctly quantify the evolution of halo properties, we must consider the merger history of
haloes. In other words, comparing haloes at different times without considering the evolution
of our halo sample can induce what is known as progenitor bias (e.g. Croton et al. 2007). Since
haloes grow by successive mergers, it is possible to reconstruct their merger history (merger tree)
and examine the main progenitor of a final system at a given time - this main progenitor is the
halo which provides the largest mass contribution.

Morphological evolution is explored by calibrating the relation between halo shape and the
halo formation time. Despali et al. (2014) found that older collapsed systems are more spherical
than the ones who collapsed more recently. Indeed, massive systems formed at later times -
usually through major mergers of smaller systems - still grow via anisotropic matter accretion
along the filamentary structure. Their residual shapes are thus elongated and influenced by their
initial environment. In contrast, small haloes, formed at earlier times, have relaxed, and thus
appear rounder and more concentrated. This phenomenon is illustrated in figure 1.5.

The characterisation of asymmetries in the mass distribution, is also important to investigate
the dark matter nature and to refine our understanding on the growth of the dark structures
embedded in the cosmic web. Indeed, its nature influences the shape of dark haloes: weakly
self-interacting dark matter tend to provide rounder shape (Yoshida et al. 2000; Peter et al. 2013).
As shown figure 1.6, we observe that self-interacting dark matter haloes are rounder than CDM
haloes (Vogelsberger et al. 2012).

1.2.4.3 Halo substructure

Zooming into N-body simulation reveals a large amount of dark matter substructure within dark
matter haloes. This is shown in figure 1.6. These structures, which lie within the virial radius of
the parent halo, are sub-haloes.

In theoretical terms, these small-scale structures are understood as small clumps of dark
matter which have been accreted into a larger one. Thus, they became small structures orbiting
within the potential well of their host. Tidal forces from the larger halo and dynamical friction,
can destroy these self-bound entities over time: they do so by dissipating their mass, their energy
and their angular momentum.

In order to improve our understanding of subhalo populations and validate a more global
picture, their properties have been modeled into dark matter simulations (Tormen et al. 1998;
Moore et al. 1999a; Klypin et al. 1999; Ghigna et al. 2000; Stoehr et al. 2002; Hayashi et al. 2003;
Gao et al. 2004; Zentner et al. 2005; Diemand et al. 2008; Springel et al. 2008a; Giocoli et al.
2010; Klypin et al. 2011; Gao et al. 2011). Such studies require a very high level of resolution
to properly distinguish and model sub-structures in dark matter haloes. However, numerical
predictions of sub-halo properties are still under debate (e.g. possibility of bias introduced by
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Figure 1.5 – Relation between the ellipticity
of haloes at z = 0, and the formation redshift
zf . One can define the formation redshift such
as the redshift where the main halo progenitor
assembles a fraction f of its mass. It apprears
that haloes formed at earlier cosmic time (or with
a larger zf) are now less elliptical, than haloes
formed at later time. Credit to Despali et al.
(2014).

numerical artefacts van den Bosch et al. 2018). A list of structures obtained from numerical
simulations which are generally agreed upon to be sub-halo features is listed below:

• The dark matter clumps appear to constitute about 5%− 15% of the total mass of the host
halo.

• The subhalo mass function for an individual halo converges quite well to a power-law,
dnsub/dmsub ∝ m−αsub with α ∼ 1.8, independent of the host halo’s mass or redshift.

• The concentration of haloes is anti-correlated with it fraction of substructures, meaning
that for a given mass, denser haloes have lesser substructures.

• Subhaloes with masses greater than a few percent relative to the host halo’s mass tend to
merge rapidly, as opposed to low-mass satellites which tend to survive longer. This is a
consequence of dynamical friction.

• The sub-structure density profiles appear to have softer cores than both their host and
independent haloes with the same mass.

• The radial distribution of sub-haloes within the parent halo roughly follows the radial
density profile of the host halo, but is significantly less concentrated at the center.

Note that warm dark matter drastically reduces the abundance of low-mass sub-haloes (Lovell
et al. 2014). As for self-interacting dark matter, it tends to produce less sub-haloes and with a
constant density cores (Burkert 2000; Vogelsberger et al. 2012; Rocha et al. 2013). As shown
in figure1.6, the self-interacting dark matter significantly affect the structure and abundance of
subhaloes.

Because sub-haloes can be the host of galactic systems embedded in large structures (such as
a galaxy cluster), the properties of its dark satellites are essential for the field of galaxy formation
and evolution. Indeed, the evolution of a satellite galaxy is directly influenced by their host dark
matter sub-haloes (impact on parameters such as their orbit, velocity, mass, etc). The impact of
galaxies on sub-halo structure formation and evolution is beyond the scope of this introduction,
however, and will be discussed when relevant to hydrodynamical numerical simulations.
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Figure 1.6 – The projected DM density around a massive system. On the left is the CDM
model applied in numerical simulation; on the right, an alternative DM model (Self-Interacting
Dark Matter). We observe that changing the dark matter nature can drastically influence the
abundance of dark matter clumps and the halo shape. Image credit: Vogelsberger et al. (2012).

1.2.5 Galaxies within dark matter haloes

At the center on the density peaks, the dark matter has collapsed into non-linear objects (DM
haloes), which enable galaxy formation. Baryons has sunk into gravitational potential wells of
dark matter after the recombination, and cooled to form the first stars (White & Rees 1978).
Therefore, the formation of galaxies has occurred through highly non-linear processes which
include both hierachical clustering of the dark matter, and the dissipative physics of baryons
(cooling and fragmentation of the gas). One can define a galaxy as a gravitationally bound system
composed of stars, gas, dust and surrounded by a DM halo. Our understanding of structure
formation and evolution at this scale remains incomplete, and poses significant challenges in the
modern cosmology.

1.2.5.1 Galaxy formation and evolution: accretion flow and merger events

Observations of galaxies provide a wide variety of galaxies in terms of color, size and shape
at all times in the Universe. One natural first approach is to classify them depending of their
morphology: this is the so-called Hubble sequence (Hubble 1936), as illustrated in figure 1.7. It
segregates morphological types from the ellipticals to spirals and irregular galaxies.

Spiral galaxies (with or without a bar) contained a central bulge, a stellar disk and an inter-
stellar medium (gas and dust). In the ΛCDM paradigm, disc galaxies (late-type galaxies11) are
supposed to be formed, and to growth by cosmic gas accretion. Anisotropic accretion of cosmic
cold gas stream leads to build up gas disc structure at the center of DM haloes12, which induced
in situ star formation (see e.g., Kereš et al. 2005; Dekel et al. 2009). In this rotation-dominated

11This nomenclature of “early-type” and “late-type” galaxies comes from the past wrong understanding of galaxy
evolution on the Hubble sequence: from elliptical to spiral galaxies (Hubble 1936).

12The gas infalls along preferential direction form a gas disc (galactic spin) around the spheroidal galaxy
previously created by monolithic collapse of merging gas clouds (Fall & Efstathiou 1980; Mo et al. 1998).
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system, a small fraction (around 2%13) of the gas is converted into stars. Cosmic gas inflow forms
a corona of hot gas in the halo (Birnboim & Dekel 2003), and as gas cooling, it supplies the cold
gas reservoir of the galaxy. Young massive stars are thus formed on the spirals arms, which in
result appear mainly blue.

In contrast, elliptical (early-type) galaxies have smooth ellipsoidal shape. They are supposed to
be predominantly formed by hierarchical clustering, i.e. through repeated galaxy merging events
(Toomre 1977; White & Frenk 1991; Cole et al. 2000; De Lucia et al. 2006). From violent major
merger14 (or repeated minor events), the discs of galaxies are destroyed15 and form a spheroidal
slowly-rotating remnant. During merging process, the star formation can first be triggered, and
rapidly consume the gas reservoir(Mihos & Hernquist 1996; Hopkins et al. 2006). Finally, without
inflowing materials (strangulation) or cooling of the gas, a reddening of the merged galaxy is
induced by increasing the age and metallicity of stars (see., e.g. Faber et al. 1992; Ferreras et al.
1999). Note that the spheroidal remnant can re-build a disc if the merger is wet or more gas is
acquired later (Baugh et al. 1996; Moster et al. 2010a).

Below, we draw the global picture of the bimodality observed in galaxy properties: from
disc-dominated galaxies formed by cosmic gas accretion (predominantly blue and star-forming) to
spheroid-dominated galaxies formed by merger events (largely red with old stellar populations)
(e.g. (Baldry et al. 2004; Dekel & Birnboim 2006). This bimodality is shown in figure 1.8, in the
color-mass diagram of observed galaxies, and by separating the early- and late- type galaxies
Schawinski et al. (2014). This bimodality is not perfect: galaxies in transition phase from spirals
to spheroids, from star-forming to passive, are identified in the “green valley”. In fact, red spirals
and blue ellipticals are present (in small minority) in the sky. Galaxy evolution is still debated
through the crucial question: What physical mechanisms regulate star formation over the cosmic
time? How well are galaxy formation models able to reproduce the observed galaxy properties16

and scaling relations17?

1.2.5.2 Galaxy-halo connection

By comparing the mass function of dark matter halo and the galaxy stellar mass function, we
observed that low- and high- massive haloes present a deficit in stellar mass (see e.g. Cole et al.
2001; Yang et al. 2003; Behroozi et al. 2010a; Moster et al. 2010b). This corresponds to an
inefficient star formation at these two mass ranges, as illustrated figure 1.9. The regulation of
star formation efficiency in galaxies is not fully understood, but can be explained by considering
complex outflow processes.

The feedback of supernovae and strong stellar-driven winds seem to be the dominant processes
for switching off the star formation in low-mass galaxies (Dekel & Silk 1986; Larson 1974). In
fact, supernovae explosions heat the interstellar medium by incorporating thermal and kinetic
energy, which reduce further the creation of stars. In addition, this mechanism tend to remove a

13the Schmidt-Kennicutt law establishes an empirical relation between gas surface density and star formation
rate per unit surface such as the ΣSFR ∝ (Σgas)n (Schmidt 1959). Focus on nearby spiral galaxies, Kennicutt
(1998) estimated that n = 1.4± 0.15.

14We distinguish major merger in which the two merger galaxies have similar size, to minor merger in which the
smaller galaxy is accreted onto the larger one.

15Merger event is a natural dissipative phenomenon which transform a rotation-dominated to dispersion-
dominated system.

16such as distribution function of the stellar mass, star formation rate of galaxies and the proportion of
disk-dominated and spheroid-dominated galaxies.

17such as radial size, density, internal velocity,.. of galaxies
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Figure 1.7 – The Hubble Sequence. Spiral galaxies are denoted S and spiral with a bar are
indicated by SB. The second notation a, b, c refer respectively to tightly, less tightly, and loosely
wound spiral arms. Denoted by the letter E, we have the elliptical galaxies. The following number
represents the degree of ellipticity, such as E6 denotes a ellipsoidal galaxy with e = 0.6. Credit to
Cui Y. et al (2016).

Figure 1.8 – The colour-mass diagram of galaxies, split by shape: on the right all the galaxies,
at the middle the ellipticals (or early-types), and at the left the spirals (or late-types). Credit to
Schawinski et al. (2014).
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Figure 1.9 – Schematic view of the galaxy lumi-
nosity function (an histogram of the luminosity
of galaxies), a proxy of the mass function. The
dark matter halo mass function expect from the
ΛCDM model is presented in blue, whereas obser-
vational results lead to the galaxy mass function
shows in red. For low and high massive galaxies
two different mechanisms (SN and AGN feed-
backs) are proposed to explain this discrepancy
between these two mass functions. Credit to (Silk
& Mamon 2012).

consistent fraction of the gas, preferentially in small massive galaxies.

At high masses, the inefficient star formation in galaxies can be explained by considering the
feedback from Active Galactic Nuclei (AGN) (Silk & Rees 1998; Croton et al. 2006a). Massive
galaxies may contain a central supermassive black hole (for observational evidence, see e.g.
Kormendy & Ho 2013), which may eject a gas fraction of the inter-stellar medium, and heat the
halo gas (see Fabian 2012; Heckman & Best 2014, for recent reviews). The efficiency of AGN
feedback in suppressing the in situ star formation in the galaxy remains nevertheless uncertain.
To improve our understanding on the small-scale physical processes acting inside dark matter
haloes, the physics of galaxy formation is now explored by using high resolution hydrodynamical
cosmological simulations (as discussed in section 1.4).

Investigating on the galaxy-dark halo connection is fundamental to refine our understanding
on the link between the luminous properties of galaxies and the dark matter haloes in which
they reside. To explore this relation, two different parametric models are currently used: either
sub-halo abundance matching (SHAM) models (Conroy et al. 2006; Behroozi et al. 2010b, 2013;
Moster et al. 2010b, 2013, 2018), or Halo Occupation Distribution (HOD) models (Berlind &
Weinberg 2002; Zheng et al. 2005; Leauthaud et al. 2011).

According to the ΛCDM model, all galaxies are assumed to be formed and to live in dark
matter haloes and sub-haloes. The SHAM models connect galaxies to sub-haloes, by assuming
that there is only one galaxy per dark matter halo. In fact, one halo can contain more than one
galaxy: a central and few satellites (those hosted by sub-haloes). This distinction is considered
by HOD models which assign at each halo the expected number of central and satellite galaxies.
Therefore, it contains additional free parameters, and requires information on the galaxy clustering
(Coupon et al. 2015).

Both techniques assume that the statistical properties of the galaxies (such as the luminosity
or stellar mass function) are fully determined by the dark matter (sub)halo mass. Notice that it
assumes that the above discussed physical processes are not modelled here.

As illustrated in figure 1.10, HOD and SHAM models are used to estimate the stellar-to-halo
mass relationship (SHMR) and its evolution in redshift (see e.g. Behroozi et al. 2010a; Leauthaud
et al. 2012). These phenomenological models provide a powerful tool to inform galaxy evolution
models, by determining, for example, the characteristic halo mass where the star formation is the
most efficient (i.e. where M∗/Mh is maximized).
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Figure 1.10 – The figure comes from Behroozi et al. (2010a). The ratio between stellar mass
and halo mass M∗/Mh is presented as a function of the halo mass. Observational results and
different semi-analytical models are represented.

1.2.5.3 Large scale environment and galaxy clusters

In addition, as galaxies form and evolve in the cosmic web, one might ask if their properties are
shaped by their host halo’s environment (i.e. their location in the cosmic web). This relation
between large scale environment and galaxy properties is currently being extensively investigated
through hydrodynamical cosmological simulations, theoretical models and galaxy surveys.

I will begin with a brief overview of galaxy clusters, which are massive gravitationally-bound
structures with a typical size of few Mpc and a mass range of ∼ 1014 − 1015M�. Galaxy clusters
are located at the nodes of the cosmic web, and grow by accreting matter along cosmic filaments.
They gather from hundreds to thousands of galaxies, and contain hot diffuse gas and large amounts
of dark matter. The hot, nearly fully-ionized plasma is in fact the main baryonic material in
galaxy clusters. It is called the Intra-Cluster Medium (ICM) and emits in X-ray band via thermal
Bremsstrahlung (typically T ∼ 107 − 108 K18). For a review on X-ray emission of galaxy clusters
see e.g. Peterson & Fabian (2006).

Early observations show that cluster galaxies evolve differently from isolated galaxies (Gunn
& Gott 1972; Oemler 1974; Dressler 1980). Blue galaxies are relatively dominant in low density
environments, whereas dense environments are mostly populated with red galaxies(Hogg et al.
2003; Baldry et al. 2006; Peng et al. 2010; Tomczak et al. 2017). Different physical processes
exist in the literature to explain the quenching of star-forming galaxies inside cluster’s dense
environment, and this is a topic still under debate: Ram pressure stripping by the intra-cluster
medium (Gunn & Gott 1972; Abadi et al. 1999), tidal stripping by the main cluster potential
(Byrd & Valtonen 1990), galaxy harassment (Moore et al. 1996)... Finally, one can ask if the
proportion of passive galaxies already dominates the infalling material accretion? What is the
fraction of red galaxies depending of the cluster distance?

Currently, the question of the environment’s impact has been extended to the LSS by studying

18The high temperature is created by the deep dark matter gravitational potential.
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Figure 1.11 – The evolution of the one-
point distribution function, P (δ), cal-
culated from second-order perturbation
theory. Image credit: Taylor & Watts
(2000).

the variations of galaxy properties (color, mass, and type) as a function of their distance to
filaments and to cosmic nodes. From observations and hydrodynamical simulations, it appears
that massive (and/or passive) galaxies are on average located closer to cosmic filaments and
walls, compare to the less massive (and/or star-forming) ones (see e.g. Laigle et al. 2018; Kraljic
et al. 2018a). It can be explained by considering the anisotropic tides of the cosmic web which
influence the assembly history of galaxies, and hence, their properties (Codis et al. 2012a; Kraljic
et al. 2018b). It appears that galaxies keep a memory of the cosmic flows from which they are
formed and evolved. Nevertheless, the relative importance of major/minor mergers, large-scale
environment, and baryonic physics in galaxy evolution over the cosmic time remain still debated.

1.2.6 The statistics of the density field

Statistics of the density field have been a fertile area of study over the last decades, because they
encode crucial information about initial conditions and their dynamical evolution. We now show
how non-linear structure formation affects the statistics of the density field.

1.2.6.1 The probability distribution of the density contrast

The one-point statistics of the density field are fully encoded in its probability distribution
function by definition. According to the ΛCDM model, the primordial density contrast is
expected to be a Gaussian random field. As cosmic time increases, the probability distribution
function of the density will be affected by the emergence of non-linear structures. Indeed, in
the linear regime of structure formation, we expect an homogeneous growth of the structure
as: δ(~x, a) = D+(a)δi(~x). As well, the decoupling between time and space is also verified in
the Fourier space δ̂(~k, a) = D+(a)δ̂i(~k). Following these homogeneous and linear properties,
gaussianity is conserved in the linear regime. Nevertheless, the separation fails in non-linear
structure formation, because the growth of density fluctuation becomes scale-dependant. Thus, a
coupling of k-modes is expected in Fourier space, i.e. δ̂(~k, a) = D+(a,~k)δ̂i(~k). As modes are not
longer independent, they can be superposed: the statistics of the density contrast thus become
non-Gaussian (Bernardeau & Kofman 1995; Scoccimarro & Frieman 1996; Bernardeau et al. 2002,
2014). This effect is illustrated in figure 1.11, where the initial density contrast is Gaussian, but by
making it evolve in the non-linear regime the non-Gaussianities increase with time. These results
are analytical (Taylor & Watts 2000), and the same behaviour can be observed with N-body
simulations. As cosmic time evolves, the probability distribution function becomes asymmetric,
reflecting the voids expanding and peaks contracting.



Chapter 1. The concordance model of cosmology 23

1.2.6.2 The two-point statistics

The non-linear evolution of the density field is not only encoded in the one-point statistic but
also in higher order correlation functions. Since density fluctuations have a zero mean, it may be
more interesting to study the two-point correlation function of the density contrast ξ(~r), or its
Fourier counterpart, the power spectrum Pδ(~k), which are defined by:

ξ(~r) = 〈δ(~x)δ(~x+ ~r)〉 , 〈δ̃(~k)δ̃∗(~k′)〉 = (2π)3δD(~k + ~k′)Pδ(|~k|) . (1.41)

In the ΛCDM model, the initial power spectrum is assumed to be a simple power law as
Pδ(k, ti) ∝ kns . Furthermore, according to the inflationary scenario, the primordial scale-invariant
power spectrum should be defined with a spectral index at ns ∼ 1. As the power spectrum
is supposed to grow like D2

+(t) in the linear theory, one can approximate the evolution of the
spectrum as:

Pδ(k, t) ∝ T 2(k)
(
D+(t)
D+(ti)

)2
kns . (1.42)

The transfer function T (k) encodes the scale-dependent effects due to the micro-physics at the
epoch of matter-radiation equivalence. To fully understand the behaviour of the linear matter
power spectrum, one can strongly simplify the transfer function. We have seen that prior to the
matter-radiation equivalence, one can distinguish sub- and super- horizon dark matter density
perturbations, which have evolved differently at the radiation epoch. The smaller modes (k � keq)
have been suppressed relatively to the larger modes (k � keq) by a factor (a/aeq)2. We can thus
write a rough estimate of the transfer function and the matter power spectrum for ns ∼ 1:

T (k) ∝

 1 (k � keq)

k−2 (k � keq)
Pδ(k) ∝

 k (k � keq)

k−3 (k � keq)
. (1.43)

Accurate expressions of the transfer function exist in the literature (Bardeen et al. 1986; Eisenstein
& Hu 1998). As illustrated in figure 1.12, one can distinguish between the different behaviours
of linear and non-linear matter power spectra. We see that the non-linear structure formation
increases the spectral amplitude at small scales. The theoretical predictions presented here are
computed with Cosmic Linear Anisotropy Solving System code (Blas et al. 2011; Lesgourgues
2011). This is a Boltzmann code which numerically perturbs and solves the fluid equations for
given initial conditions to provide theoretical predictions of cosmological observables (see also
CAMB code, Seljak & Zaldarriaga 1996). In practice, it numerically integrates the linear theory
of cosmological perturbations, from the radiation dominated epoch until the present time. In
addition, non-linear evolution of the density field can also be considered by using HALOFIT, a
fitting formula for the non-linear matter power spectrum, where fitting parameters are determined
from accurate N-body simulations (Smith et al. 2003; Takahashi et al. 2012) (cf. section 1.2.6.4.).

1.2.6.3 The Halo and galaxy biases

The total density field can be well-described as a function of the dark matter halo distribution, as
illustrated in figure 1.13. However, the statistics computed from halo distributions differ from
the statistics extracted from the complete density field: this difference can be modelled as a
bias parameter (Kaiser 1984; Bardeen et al. 1986; Bond et al. 1991). To understand this bias
parameter, let us introduce the distribution of dark matter halo δH , which can be related to the
”background” over-density δ as:

δH(~r,MH , z) = bH δ(~r, z) , (1.44)
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Figure 1.12 – The matter power
spectra for z=0 and z=2, computed
using the CLASS code (Blas et al.
2011). The dotted lines represent Pδ
in linear perturbation theory, whereas
solid lines show the non-linear power
spectra.

where the halo bias is a function of the halo mass MH , of the time z, the scale, and the environment,
such that bH = f(~r,MH , δ, z). Theoretical demonstrations based on the halo mass function have
led to models of the halo bias as a function of the halo mass: these models are scale-independent
on large scales (Sheth & Tormen 1999; Kravtsov & Klypin 1999). More complex bias models have
been proposed in the literature, e.g. stochastic (Matsubara 1999), non-linear (Mo & White 1996),
or scale-dependant (Smith et al. 2007; Desjacques et al. 2010) bias models. These bias models
attempt to preserve the non-linear evolution of matter density field. Complementary, studying
the clustering of dark matter haloes in N-body simulations (Hamana et al. 2001; Cen et al. 2004;
Tinker et al. 2010; Jose et al. 2016; Hoffmann et al. 2017), has led to calibrated halo bias in linear
and non-linear approximations, as function of the smoothing scale of the density contrast and the
halo peak height ν(M, z).

In practice, the large-scale structure are traced by the galaxy distribution. This encourages
the study of the bias between galaxies and dark matter halo distribution (Scoccimarro et al. 2001;
Peacock & Smith 2000; Croton et al. 2007). It appears that the galaxy-halo connection depends
on the complex physics within galaxies (cf section 1.4). The galaxy bias may thus change based
on the galaxy population under consideration (i.e. its distribution of magnitude, color, type,...).

The galaxy clustering is affected by the considered galaxy sample (Madgwick et al. 2003;
Zehavi et al. 2005; Li et al. 2006a; Zehavi et al. 2011). Moreover, because the halo-galaxy mass
relation is non-linear, the link between the galaxy distribution and the underlying total matter
density is non-trivial and scale-dependent. The galaxy bias can be treated, to first order, as a
linear constant b1:

δg = b1δdm . (1.45)

Note that this approximation seems to fail in regions of high density (Kaiser 1984): this would
indicate that the bias is strongly influenced by the complexity of galaxy formation on smaller
scales. Recently, time-dependent models of the galaxy bias have been calibrated into observations
and simulations (Marinoni et al. 2005; Clerkin et al. 2015; Chang et al. 2016). Understanding bias
tracers remain a crucial issue to properly extract cosmological information from galaxy clustering.

1.2.6.4 The two-point correlation function with the halo model

An approximate and effective description of matter clustering is the halo model (Seljak 2000;
Berlind & Weinberg 2002; Cooray & Sheth 2002). This formalism assumes that all the matter in
the Universe can be found in dark matter haloes, as illustrated figure in 1.13. It is also based
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Figure 1.13 – This figure comes from Cooray & Sheth (2002). One the left is drawn the total
matter density field as predicted from N-body simulation, one the right only dark matter virialised
structures (haloes) are represented.

on a few previous mathematical developments: the NFW density profile, the halo mass function
n(M, z), the halo bias b(M), and the linear power spectrum Plin(k). Specifically, it distinguishes
between the 1-halo term, which refers to the contributions at small scales (correlations within the
same halo), and the 2-halo term, which encodes the contributions at large scales (correlations
between the two separate haloes) such that ξDM (~r) = ξ1h(~r) + ξ2h(~r). Based on the halo model
of structure formation, one can derive fitting formula of the matter power spectrum, the so-called
Halofit model (Smith et al. 2003; Takahashi et al. 2012).

1.3 The observational foundations of the ΛCDM model

In this section, we will review the main observational evidences, acquired over of the last century,
which have led to the construction of our current concordance model. As mentioned in 1.1 and
1.2, the ΛCDM model is based on a few assumptions:

• The Universe is expanding, flat (k = 0), homogeneous and isotropic at large scales.

• Inflationary scenarios predict adiabatic primordial anisotropies that can be described with
a Gaussian random field with a power spectrum P ∝ kns , with ns ∼ 1.

• The mass-energy budget of the Universe is as follows: ∼ 5% of ordinary matter (baryons),
∼ 26% of dark matter (cold and collisonless), and ∼ 69% of dark energy (with a state
parameter w ∼ −1).

• The Universe’s history is as follows (after the inflation): a radiation-dominated era, a phase
of radiation-matter equivalence, a recombination period in which matter decouples from the
photons and starts to form the first elements, a matter-dominated epoch, and finally, an
accelerated expansion phase driven by dark energy.

Let us describe the observational evidence for these widely admitted properties.
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1.3.1 The success of the cosmological model on large scale

1.3.1.1 The cosmic microwave background

Perhaps the greatest piece of evidence in favour of the ΛCDM model is the direct observation
of the oldest electromagnetic radiation in the Universe, the Cosmic Microwave Background
(CMB). This emission constitutes the first light emission in the history of the Universe, emitted
at the recombination epoch (known as last scattering surface). Indeed, in the radiation epoch,
when baryons and photons were strongly coupled into a relativistic plasma in thermodynamic
equilibrium, acoustic waves were generated by the balance between gravitational collapse and
radiation pressure around over-dense regions. These acoustic oscillations propagated at the sound
speed. When the matter became neutral during recombination, the sound speed and the radiative
pressure drastically decreased (drag epoch). As light and matter decoupled, neutral atoms first
formed and photons become free to travel through space (free-stream), the Universe became
transparent at zrec ∼ 1089. Thus this emission supports the model of an no-static Universe, which
is supposed to have experienced an initial hot plasma phase.

The first observation of the CMB in 1964 by radio astronomers was accidental (Penzias and
Wilson). It was followed by space missions dedicated to provide an accurate characterisation of
this signal, such as the COBE (Smoot et al. 1992), the Wilkinson Microwave Anisotropy Probe
(Spergel et al. 2003), and Planck missions (Planck Collaboration et al. 2016a). It appears as a
perfect black body emission with a mean temperature T ∼ 2.73K, because it has been redshifted
to low temperature by the expension of the Universe.

This apparent isotropy is a strong argument in favour of cosmological principles, as tiny thermal
inhomogeneities are only visible at the relative order ∆T/T ∼ 10−5. Its residual temperature
fluctuations support structures formation scenario based of the growth of primordial inflationary
anisotropies by gravitational instability.

To extract further information, one might study the angular power spectrum of temperature
fluctuations, as illustrated figure 1.14. Angular correlations in the CMB contain information on
the curvature of the Universe and on the abundances of the different components (dark matter,
baryons and dark energy) at the first stage of the Universe. In particular, one can demonstrate
that the first peak at l ∼ 200 (or θ ∼ 1◦) indicate a (nearly) flat space-time Universe. Moreover,
the relative peak heights between even and odd peak can constrain Ωbh

2. Constraints on Ωm,
ΩΛ and σ8 are also extracted from this crucial observation. Here, the parameter σ8 characterises
the amplitude of density contrast fluctuations. It is defined as the effective variance of density
fluctuations within spheres of 8 h−1Mpc.

1.3.1.2 Galaxy clustering

A global picture of the galaxy distribution on large scales was first drawn by the CfA catalogue
(de Lapparent et al. 1986), and was later refined by large redshift surveys such as the 2-degree
Field (Peacock et al. 2001) and the Sloan Digital Sky Survey (York et al. 2000). They emphasise
the filamentary structure of matter distribution in the local Universe, as concentrated along
filaments, walls, and nodes. As shown figure 1.15, the observed cosmic web confirms a non-linear
evolution of density fluctuations.

Probing the statistics of the matter density field constitutes another important test of the
ΛCDM model. The matter power spectrum is therefore measured via large galaxy surveys, and
completed by other observables such as Lyman Alpha forest measurements and gravitational
lensing, as illustrated in figure 1.16 (Tegmark et al. 2004).

As previously explained, the global slope change in the matter power spectrum is induced
by the matter-radiation equivalence, i.e. dark matter fluctuations should not evolve similarly
depending of their size relative to the horizon before the equivalence. The characterisation of the
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Figure 1.14 – Power spectrum of temperature fluctuations in the Cosmic Microwave Background,
compared to the best fit ΛCDM model Planck Collaboration et al. (2016b). Right figure:
The anisotropies of the Cosmic Microwave Background (CMB) as observed by Planck (Credit:
ESA/Planck Collaboration)
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Figure 1.15 – Large scale structures as
observed by the common large galaxy cata-
log CfA, 2dFGRS, and SDSS, and its com-
parision with mock simulated DM density
field constructed from Millennium Simula-
tion, a N-body simulation.
Credit to Springel et al. (2006).

scale keq can thus be directly related to the matter-radiation equality, and constitutes a constraint
on the density parameter Ωmh (Pope et al. 2004; Tegmark et al. 2006).

1.3.1.3 The evidence for dark energy - The Baryon Acoustic Oscillations

Large galaxy spectroscopic surveys reveal the expected peak of Baryonic Acoustic Oscillations
(BAO) in the matter correlation function ξ(~r) (Eisenstein et al. 2005; Glazebrook & Blake 2005;
Cole et al. 2005; Beutler et al. 2011; Anderson et al. 2014; Gil-Maŕın et al. 2016).

As illustrated in figure 1.16, the BAO peak was first detected with sufficient significance in
the correlation function of the luminous red galaxy sample of the SDSS, by Eisenstein et al.
(2005). It appears that baryons remains over-dense in a spherical shell with a comoving radius
100h−1 Mpc, as an imprint of the acoustic oscillation of the photon-baryon fluid at the epoch of
equivalence. Note that the overall shape of the correlation function ξ(~r), is used to constrain the
matter density Ωmh

−2.

Because the comoving position of the peak is unchanged from recombinaison to the present
day, its measurement at any redshift is used to infer angular distances in the Universe. Thus, the
BAO measurements provide an incredible improvement on the characterisation of dark energy by
strongly constrain ΩΛ (Blake & Glazebrook 2003; Nunes et al. 2016). Its measurement confirms a
few features of the standard cosmological theory: the presence of dark matter, the gravitational
clustering theory, the expansion of the Universe.

1.3.1.4 The evidence for dark energy - The SNe type Ia

Type Ia supernovae (SNe) are a powerful tool to measure extragalactic distances. Indeed, this type
of supernovae results from a binary system: a carbon-oxygen white dwarf stars grows by accreting
the matter of its binary companion, until its mass reaches the Chandrasekhar limit19. At this
critical mass, white dwarfs are subject to thermo-nuclear explosion, which yields a constant peak
luminosity (due to the uniform mass limit). As all of the SNe Type-Ia have the same intrinsic

19The maximum mass of a stable white dwarf star (∼ 1.4M�): for higher mass, the electron degeneracy pressure
becomes unable to prevent catastrophic collapse.
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Figure 1.16 – Left panel: The matter power spectrum Pδ(k) constructed from observational
results, as presented by Tegmark et al. (2004).
Right panel: the galaxy correlation function ξ(~r). This result is computed by using SDSS DR3
and Luminous Red Galaxy sample, as described in Eisenstein et al. (2005).

luminosity, it becomes easy to calculate their corresponding luminosity distance (they thus act as
standard candles). Moreover, being very bright, they can be used to probe distances beyond the
local Universe.

By studying the relations between SNe Type-Ia luminosity and its light curves, one can
determine the luminosity distances of these events. They provide a clear evidence of the accelerating
expansion of the Universe (Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999; Aldering
et al. 2004; Riess et al. 2009; Choudhury & Padmanabhan 2005; Hicken et al. 2009; Suzuki et al.
2012; Betoule et al. 2014). As illustrated in figure 1.17, the determination of distance-redshift
relation of SNe-Ia is used to probe the cosmological parameters Ωm and ΩΛ.

Figure 1.17 – Hubble diagram of Type Ia super-
novae for two different cosmologies. The distance
estimator µB is plotted as a function of the su-
pernovae redshift z. This result comes from the
measurements to 71 high redshift SNe Ia discov-
ered during the first year of the 5-year Supernova
Legacy Survey (SNLS) and nearby SNe Ia (Astier
et al. 2005).
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1.3.1.5 The evidence for dark matter

The presence of ”dark matter” was first proposed by Zwicky (1933) to explain ”missing mass” in
the Coma cluster (Peebles 1970; Rood et al. 1972). It was revealed by estimating the masses of
galaxy cluster by two different methods: first, through the kinematics of cluster galaxies, and
secondly, by summing the mass of galaxies. The mass inferred from the velocities of galaxies (via
the virial theorem) is about 400 times higher than the luminous mass.

Galaxy clusters, as the largest collapsed objects in the Universe, have been extensively studied
to refine our understanding on this apparent ”missing mass”. Different observables are used to
determine the mass of clusters: such as galaxy kinematics (see e.g. recently, Balestra et al.
2016), X-ray surface brightness20, or gravitational lensing21 (Parker et al. 2005; Mandelbaum et al.
2006a). By averaging over a large cluster sample, the total baryon mass (the stellar and hot gas
components) within a radius r500 appears to represent only ∼ 13− 14% of the total gravitational
mass (Gonzalez et al. 2007).

At the scale of a galaxy, the rotational velocity of stars as function of their distance to the
galactic center, called rotation curves, can be used to evaluated the dynamic mass of galaxies
(Ostriker & Mark 1968; Rubin et al. 1980, 1985; Begeman et al. 1991; Kravtsov et al. 1998; Moore
et al. 1999b; Evans & Wilkinson 2000; Sofue & Rubin 2001). The velocity of stars is expected to
decrease with the distance to the center of the galaxy, if considering the baryonic contribution
alone. Indeed, by assuming a centrally dominated mass, the rotational velocity should decline
with the distance to the center, as following a Keplerian dynamics22. Measurements of rotation
curves of galaxies, reveal that the velocities of stars far from the center are not decreased, but
are constant, as it is illustrated in figure 1.18 (by considering the Miky Way). To explain this
particular shape of rotation curves, one might introduce an extra mass in the outer region of the
galaxy, the halo of dark matter. In detail, the velocity profile on spiral galaxies appear to be
well-modelled by a universal profile which consists of an exponential thin disk and a spherical
halo (Salucci & Burkert 2000; Klypin et al. 2002; Salucci et al. 2007).

Finally, observations of the CMB give further evidence of the presence of dark matter: here,
the anisotropies created by the collapse of dark matter, which are not affected by photon radiative
pressure. Large-scale structure measurements provide further arguments in favour of a type of
matter which interacts with other matter through gravitational force alone (i.e. dark matter).
Taken as a whole, these elements indicative of a discrepancy between the mass estimated from
object luminosities and their mass deduced by gravitational considerations, which hold for galaxies,
galaxy groups, and galaxy clusters, have become a matter of fact at the beginning of the 20th
century.

To explain this discrepancy, an invisible matter complement is admitted on the cosmological
model, which corresponds to ”dark matter”. This unknown matter does not interact with ordinary
matter and cannot therefore be detected directly: only through its gravitational effect can it
be ”seen”. There is a wealth of dark matter description in the literature, for example the self-
interacting dark matter (Spergel & Steinhardt 2000a) or the warm dark matter (Bode et al. 2001).
For an overview of dark matter candidates, one might refer to Bertone et al. (2005). Scientific
consensus has fallen on weakly interacting massive particles (WIMPs), as described by Jungman

20By considering the intra-cluster medium in hydrostatic equilibrium (balance between pressure and gravity),
one can estimate cluster masses from their X-rays emissions (see e.g. Carlberg et al. 1996; Evrard et al. 1996; Mohr
et al. 1999).

21As detailed in chapter 2, the gravitational lensing is a unique probe to estimate the total mass distribution of
a massive foreground object (the lens) without making any assumptions of the nature or dynamical state of the
matter.

22For a test mass in circular orbit around a massive object with a mass M , its equation of motion is GM
r2 = V 2

r
,

where r and V are respectively the radius of the circular orbit, and the tangential velocity of this mass test (Kepler’s
laws).
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Figure 1.18 – The rotational velocity of
stars within the Wilky Way have been model
contributions from a bulge, disk, and dark
matter halo. This figure comes from Klypin
et al. (2002).

et al. (1996), which have a small cross section of interaction. Detecting dark matter annihilations
and characterising the cross-section of dark matter interaction would provide decisive evidence and
drastically reduce the large range of possible explanations. Characterizing dark matter behaviour
on small scales23 is therefore a key problem in the field of dark matter studies.

1.3.1.6 The combination of probes to constrain cosmological parameters

A combination of various cosmological probes allows to accurately constrain parameters of the
ΛCDM model, as illustrated in figure1.19. As discussed above, the CMB, the BAO and the Type
Ia SNe constitute main cosmological probes to constrain the dark energy (ωΛ), and the density
parameters of the baryons and dark matter (ΩDM ,Ωb). In addition, other cosmological probes
such as cluster counts, and lensing (detail in chapter 2) are used to provide independent test of
the cosmological model, and to break degeneracy in parameter characterisation. This is illustrated
in figure 1.19.

1.3.2 Discrepancies on cluster and galactic scales

As cosmological measurements start to become accurate down to small scales (< 10 Mpc h−1),
the ΛCDM is tested at both galaxy and cluster scales. At these smaller scales, matter clustering
becomes highly non-linear and is sensitive to possible interactions between dark and luminous
matter. In addition, collisions and/or annihilation of dark matter particles could be revealed
at these scales. In fact, characterising the different features of dark matter systems through
observations at cluster and galactic scales leads to potential discrepancies with CDM predictions.
We now discuss two main dark matter halo model properties, which seems to disagree with
observations.

1.3.2.1 The cusp/core problem

We have seen that taking the dark matter component into account allows us to explain the global
dynamics of galaxies within galaxy clusters and the stellar velocity distribution within galaxies.
Focusing on the central region of dark matter haloes, the CDM model predicts a peaked internal
density. Observational results, however, seem to favour a nearly isothermal profile with a constant
density core (de Blok et al. 2001; Borriello & Salucci 2001; de Blok & Bosma 2002). Note that

23Many features of dark matter behaviour can best be seen at these scales.



32 1.3. The observational foundations of the ΛCDM model

Cosmological parameter Planck results

Hubble constant H0 67.74± 0.46

Matter density parameter Ωm 0.3089± 0.0062

Dark energy density parameter ΩΛ 0.6911± 0.0062

Fluctuation amplitude σ8 0.8159± 0.0086

Spectral index ns 0.9667± 0.0040

Figure 1.19 – Right: Cosmological parameters for the ΛCDM model as determined by Planck
CMB power spectra, in combination with lensing reconstruction and external data (Planck
Collaboration et al. 2016b)
Left: Combined constraints to cosmological densities Ωm and ΩΛ by using supernovae (SNIa),
CMB and cluster abundance data. Credit to Supernovae Cosmology Project.

this is not the case for all galaxies: some studies are consistent with CDM predictions (van den
Bosch et al. 2000).

Dwarf spheroids and low surface-brightness galaxies are expected to be ideal systems for
testing the structure of dark matter haloes, because their baryonic fractions are supposed to be
low in their internal regions (Burkert 1995). As illustrated in the left panel of figure 1.20, it
appears that CDM models (via the NFW profile) over-predict the rotational velocity of stars in
the internal region of galaxies (Moore 1994). In fact, spheroidal galaxies present, on average, a
flatter slope in their core (α > −0.5 for ρ ∝ rα), than the expected steep power-law behaviour
predicted by NFW or Einasto model (see e.g., Palunas & Williams 2000; Swaters et al. 2003;
Gentile et al. 2004; de Blok et al. 2008). Recently, Oh et al. (2011) have estimated that the mean
density slope in dwarf galaxies is around α ∼ −0.29, which strongly differs from the expected
value of α ∼ −1 inferred form dark matter simulations (see also, Walker & Peñarrubia 2011).
Moreover, Oman et al. (2015) highlight the complexity of the problem due to the diversity of
rotation curves of dwarf galaxies.

There are different possible explanations for this unsolved “cusp vs core” controversy.

First, one can consider alternative dark matter nature such as self-interacting dark matter
particles, thus changing the mass profile (closer to an isothermal core) and providing a better
agreement with observations (Vogelsberger et al. 2012; Rocha et al. 2013; Weinberg et al. 2015).
This approach remains controversial, as alternative dark matter studies do not always converge
to the same conclusions (Zavala et al. 2013; Elbert et al. 2015).

Secondly, there is still room for debate over the method for measuring the slopes of mass
profiles as inferred from kinematic data. Complex systematic effects can bias the mass profile
estimation: non-circular motions, anisotropy velocity, galaxy inclination, projection effects, and
asymmetry of the mass distribution can all contribute to such a bias (Swaters et al. 2003; Hayashi
et al. 2004; Rhee et al. 2004).

Finally, properly modelling the impact of baryonic matter on the central mass profile may be
the solution to reconcile the observed rotation curves of dwarf irregulars with the density profiles
of haloes formed in the standard CDM scenario (Navarro et al. 1996a; Gnedin & Zhao 2002; Read
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& Gilmore 2005; Mashchenko et al. 2006; Governato et al. 2012; Teyssier et al. 2013; Madau et al.
2014). These conclusion are strongly dependant of the efficiency on various baryonic processes,
which are poorly-understood.

1.3.2.2 The missing satellite problem

The abundance of substructure within a dark matter halo has been estimated through N-body
simulation (see 1.2.4.3). These predictions have been compared with the abundance of satellite
galaxy in the Local Group (Moore et al. 1999a; Klypin et al. 1999) As illustrated in figure 1.20, it
appears that the number of detected satellites around the Milky Way is much smaller than the
number of dark matter clumps from CDM model (Klypin et al. 1999). We see that the abundance
of massive satellite (Vcirc > 50 km/s) seems to agree with the CDM prediction, whereas the
number of low-mass satellites appears over-predicted by about 1-2 orders of magnitude. This
discrepancy became known as the “missing satellites” problem.

It was reduced with improvements in sensitivity leading to more satellite detections, which
lead to the discovery of ultra-faint dwarf satellite galaxies (Belokurov et al. 2006; Irwin et al.
2007; Belokurov et al. 2009, 2010; Koposov et al. 2015; Drlica-Wagner et al. 2015). Indeed, the
smaller number of directly observable satellites, could be due to the ultra-faint luminosity of
these low-mass satellites. Physical processes taking place in these satellites, can potentially yield
to extremely inefficient star formation rates, and thus reduce their expected luminosity (from
the mass luminosity relation). For example, the reduction of star formation in low mass systems
can be explained by gas heated via photo-ionization (Somerville 2002; Benson et al. 2002). By
including models of the physics taking place in low-mass galaxies, Muñoz et al. (2009) estimated
a lower number of expected luminous satellites. Improved models for the formation and evolution
of dwarf spheroidal galaxies are crucial to investigate this science case.

In order to improve our understanding of their physics, the satellite galaxy luminosity function
was measured via large galaxy survey such as SDSS (Koposov et al. 2008; Tollerud et al. 2008).
These observations were then compared to numerical simulations with construct semi-analytical
models to describe the galaxy satellite population and their properties (Guo et al. 2011; Starkenburg
et al. 2013).

Taking into account both the detection limit of ultra faint galaxies and model formation
rates of low-mass galaxies within CDM substructures can roughly reconcile the abundance of
luminous satellites (Kravtsov 2009; Macciò et al. 2010; Kim et al. 2017). Note that changing
the dark matter nature by self-interacting can also lead to solve the missing satellite problem
(Zavala et al. 2013). Finally, the kinematics of the dwarf spheroidals appears also inconsistent
with the properties of the dark satellites from numerical simulation (the too big to fail problem;
Boylan-Kolchin et al. 2011).

1.3.2.3 Resolving these tensions

The comparison between theoretical predictions and current observational results at dark matter
halo scales seems to show flaws in our understanding of dark matter. One might ask if this
apparent small-scale crisis is related to baryonic physics, or if it is a real failure in the concordance
model. Indeed, as gravitational force no longer dominates structure formation at these non-linear
scales, full baryonic processes on galaxy formation and evolution must play a significant role. Pure
dark matter prescriptions can therefore be one reason for these discrepancies between concordance
model predictions and observational results. One might further ask if dark matter is in fact
capable of self-interacting, or whether baryonic processes shape the physics of inner haloes? Can
the over-prediction of dark matter clumps be reduced by baryonic physics, is it a question of
detecting small massive objects, or is the very nature of dark matter itself in question? To answer
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Figure 1.20 – Right: The rotation curve of a dwarf spiral galaxy. The dotted lines are the two
types of fit: from a isothermal density profile (ρ ∝ r−2) and from the Hernquist profile (ρ ∝ r−1).
This Figure is taken from (Moore 1994).
Left: The cumulative circular velocity distribution of satellites within 400kpc/h from the center
of the host halo. Figure is taken from (Klypin et al. 1999).

these fundamental questions, we review the basics of numerical simulations as a crucial tool to
describe the dark matter density field on both large and small scales.

1.4 Numerical simulations

As mentioned in section 1.2, numerical simulations are a necessary tools to compute the evolution
of density fluctuations in the highly non-linear regime where δ � 1. By considering initial
conditions of a Gaussian primordial density field, one can numerically compute this evolution via
gravitation dynamics in an expanding Universe.

1.4.1 Pure dark matter N-body simulations

Let us first describe the N-body approach as the discretisation of gravitational dynamical equations
with a Newtonian approximation in an expanding space-time. Because dark matter is collisionless,
we ignore here the pressure term. The Poisson-Vlasov system of equation for N-particles can be
written as:

For each dark matter particle i


~̈xi = −~∇Φ(~xi) ,

Φ(~x) = −G
N∑
j=1

mj

|~x− ~xj |
.

(1.46)

where ~xi is the comoving position of the particle with a mass mi. It appears as non-linear
differential equations of second order, which are hardly difficult to solve, even numerically. The
natural first approach is to compute the gravitational force for each pair of particles, this is
the particle-particle method (PP). This method needs large computational resources for a large
particle number N, since the number of operation is N2 at each time step. This direct N-body
summation was used in the first simulation codes in the seventies. With the development of
sophisticated numerical computation methods, more efficient approaches have emerged.
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1.4.1.1 The PM and P3M methods

The first optimisation, developed in the eighties, was to spread the particles distribution onto a 3-D
regular grid (Hockney & Eastwood 1981; Efstathiou et al. 1985; Villumsen 1989; Bertschinger 1998).
This approach allows us to smooth particle mass by using interpolation schemes (as described
in Appendix A.3). The grid cells are defined by their density values, and the Poisson equation
is solved on the grid by using Fourier Transform or via Multigrid solvers. The gravitational
force field ~Fg is then inferred by derivation (finite difference), and is interpolated at each particle
position. To move particles, we loop to the next time step. For example, by using leapfrog
integration (Hut et al. 1995; Mikkola & Aarseth 2002), the updated velocity and position at the
step i for each particles can be expressed as:

~v(ti+1/2) = ~v(ti−1/2) + ∆t ~Fg(ti) , ~x(ti+1) = ~x(ti) + ∆t ~v(ti+1/2) , (1.47)

where ∆t is time value between two consecutive time steps. The velocity and position field are ~v
and ~x respectively. This particle-mesh method (PM) is more efficient than PP method in terms
of computational time, which is now proportional to Ng log Ng, with Ng number of grid cells in
one direction. Nevertheless, PM method tend to fail at small scales, e.g. structures smaller than
cell size are smoothed out. It therefore necessitates a high spatial resolution. The accuracy of
this N-body system evolution mainly depends of the used Poisson equation integrator, time-step
and smoothing schema.

The hybrid code P3M method - as a mix of PP and PM method - is based on the separation
of the short- and long- range contribution of the gravitational force applied to a particle, such
that φ(~x) = φl(~x) + φs(~x) (Hockney & Eastwood 1981; Couchman 1991). The short-range part
φs(~x) is computed by directly summed the contributions of neighbour particles, as described in
the PP method. The long-range contribution of the gravitational field φl(~x) is supposed to be
smooth and smaller, thus it can be well approximated by the PM method (computed on a grid).
This way, we conserve the information on small scales and we are efficient on large scales.

1.4.1.2 Tree code

As non-linear clustering begins to take place, structures become denser and thus a direct compu-
tation of the short-range gravitational contribution become inefficient (summation over a large
number of particles). To solve this problem, a tree code can be used (Barnes & Hut 1986).

The particles are organised following a tree structures over a hierarchy of cells. The first
cell, which defines the main branch of the tree, is a large cube which incorporate all particles.
Space is then split in order to obtain the same particle number in each sub-regions (or cells). The
sub-division procedure occurs recursively (branch creation), until a threshold particle number is
reached in each final cell (the leaves).

After building the tree, one can compute the gravitational force for each particle by going
down the tree depending of an opening angle limit (free parameter). For cells which have an
opening angle larger that the angle limit, we descend the tree (opening branches), to sum the
individual contribution of nearby particles. In contrast, for distant cells where the opening angle
is smaller than the threshold, all particles contained in a branch are regrouped into single massive
particle.

This method yields an optimal computational time such that the gravitational force on a
single particle needs Np logNp iterations. It should be noted that evaluating the forces by tree
algorithm remains an approximation, where the error is controlled by the opening angle criterion.
Furthermore, hybrid model have been created to speed up the computation, the Tree-PM model,
where the short-range force is computed by the tree algorithm and the distant contribution via
PM method (Springel 2005)
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1.4.1.3 The successes and limits of N-body simulations

The main success of N-body simulations is to draw the global picture of the matter distribution
on large scales, i.e. the cosmic web observed in the local Universe. Indeed, with the advent
of high performance computing, cosmological simulations have been run in large volumes and
with high DM mass resolution: as HORIZON 4π (Teyssier et al. 2009), Millenium I, II & XXL
(Springel 2005; Boylan-Kolchin et al. 2009; Angulo et al. 2012), Horizon Run 3 (Kim et al. 2011),
MultiDark (Klypin et al. 2016), or more recently, the Flagship simulation (Potter et al. 2017).

As presented in table 1.1, these simulations have different features in term of (length and
mass) resolutions, box sizes, and computation codes24. For example, Horizon Run 3 has 20%
more particles than Millenium-XXL, but 40 times poorer mass resolution. In addition, other char-
acteristics have to be taken into account such as the force resolution, the initial redshift (redshift
at which the simulation started), the simulation time step and the cosmological parametrisation.
They all present different advantages, and are used to probe either larger scale, smaller objects, or
local (old) Universe. With the advance of high performance computing, simulation box becomes
larger, and Poisson solvers and integration methods becomes more accurate.

These large cosmological simulations are used to describe non-linear matter clustering, as
shown figure 1.21. For example, in figure 1.15 we illustrate the large scale dark matter distribution
from the Millenium simulation (in red), and see a good correspondence with the large galaxy
surveys like the 2dF (in blue). As well, the statistics of the density field on large scales are
predicted by N-body simulations such that the matter power spectrum (and the two-point matter
correlation function) seem to match observations (e.g. Angulo et al. 2012). Moreover, we have
seen that the properties of dark matter structure have been described through N-body simulations
some of these properties include: the halo mass function, the density profile of DM haloes, and
the concentration-mass relation (More et al. 2011; Prada et al. 2012; Watson et al. 2013; Ludlow
et al. 2014; Sánchez-Conde & Prada 2014; Klypin et al. 2016).

To accurately characterise matter clustering at small scales, zoom-in N-body simulations have
also been performed: Via Lactea (Kuhlen et al. 2008), Aquarius project (Springel et al. 2008b),
Ghalo (Stadel et al. 2009), Phoenix (Gao et al. 2012). They have been used to predict the inner
structure of Dark Matter haloes, the substructure mass function and the substructure spatial
distribution.

Since baryons are expected to linearly follow the dark matter at large scales, the prediction of
cosmological observables via N-body simulation seems to give a good match by a direct comparison
with observational results, for typical scales larger than a few Mpc. Nevertheless, pure dark
matter simulations cannot describe the impact of the baryonic physics on the underlying dark
matter density field, which cannot be neglected on small-to-intermediate scales. Moreover, dark
matter simulations do not reproduce the galaxy luminosity function which differs from the CDM
halo mass function (Moster et al. 2010b). The simple prescription of a linear halo-galaxy mass
relation fails, especially for low and high massive galaxies. Therefore, galaxy observables have
to be predicted over simulations which consider the baryonic physics in addition to the DM
clustering.

1.4.1.4 Populating the DM haloes with mock galaxies into N-body simulations

An alternative approach is to extend the results from DM-only N-body simulations by populating
the DM haloes with mock galaxies. Indeed, it offers the opportunity to construct direct baryonic
observables, which could be directly compared with observational results.

24Codes define how gravitational force will be computed, either on a grid (PM), or in particle approach (Tree
code). Hybrid codes are usual for recent large N-body simulations. Different codes have very different Poisson
solvers and integration methods.
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Figure 1.21 – The matter distribution at various scales from the Millennium-II Simulation, a
very large N-body simulation. A zoom is realised around a massive dark matter halo at z = 0.
Image credits: Boylan-Kolchin et al. (2009)

!1

Horizon Run 3

Code PublicationBox size Mass resolution
DM particles

Millenium-XXL
Tree-PM code 
(GADGET-3) 3

10.8

Angulo et al., 2012

Kim et al., 2011
hybrid scheme 

(PM and Barnes-Hut 
octtree algorithm)

MultiDark

Flagsphip

1 ∼ 1.5 × 109

∼ 2.4 × 1011

∼ 5.9 × 109 67203

72103

38403 Kyplin et al., 2016
GADGET-2 and 

Adaptive 
Refinement Tree

∼ 1 × 1094 158703Pkdgrav3
GPU Hybrid

Potter et al., 2017

(h−1Gpc) (h−1M⊙)

Table 1.1 – Comparison of recent pure DM N-body cosmological simulations.
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To perform this mock galaxy catalogue, one must first select the dark matter haloes in the
DM density field of the simulation, by using standard halo finding algorithms such as the friends-
of-friends algorithm, SUBFIND algorithm, and subclump finder ADAPTAHOP (e.g. Aubert et al.
2004; More et al. 2011; Muldrew et al. 2011). One can cite Knebe et al. (2011), for a review
of the different halo finders. The halo catalogues can then populated by the expected galaxy
population via semi-analytic models (SAM) (White & Frenk 1991; Cole et al. 2000; Berlind &
Weinberg 2002; Kravtsov et al. 2004; Bower et al. 2006; Croton et al. 2006b; De Lucia et al. 2006;
Guo et al. 2011; Henriques et al. 2015). These SAMs assign the expected number of central and
satellite galaxies to each halo, based on CDM prescriptions. They can finally assign as well galaxy
properties (see e.g. Hearin et al. 2013; Shankar et al. 2014). Such modes have been calibrated
over the observations such as the galaxy luminosities or stellar mass functions (see e.g. Coupon
et al. 2015).

Current high-resolution cosmological simulations have used this method to provide coherent
simulated galaxy catalogues (Angulo et al. 2012; Smith et al. 2017). Currently, in the perspective
of the Euclid mission, complex SAM pipelines have been used on FLAGSHIP simulation and yield
large mock galaxy data sets by accurately simulating galaxy properties such as color, luminosity,
and shape. This large simulated galaxy catalogue is conceived of as a virtual universe, used to
develop data processing and science analysis pipelines.

1.4.2 Hydrodynamical simulations

Hydrodynamical cosmological simulations attempt to give a comprehensive picture of galaxy
formation and evolution over statistically representative volumes. This type of simulation is
crucial to improve our understanding of the complex interplay between baryonic and dark matter
components. Indeed, galaxy formation involves both dissipative gas physics and gravitational
dynamics, e.g. stripping of gas by tidal fields. As it simultaneously treats the dark and luminous
matter evolution, the computational resources required are much higher than N-body simulations
(for the same volume and particle number). Thus, hydrodynamical cosmological simulations have
to find a good balance between high resolution required to accurately model the galactic physics,
and the large cosmological volume necessary to provide large statistics and describe galaxies in a
cosmological framework.

1.4.2.1 The baryonic physics

Baryonic matter is treated as a collisional perfect fluid. The motion of the gas can be described
by the standard hydrodynamical equations, the Navier–Stokes equations, which can be written as:

∂ρ

∂t
+ ~∇.(ρ~u) = 0 conservation of mass ,

∂ρ~u

∂t
+ ~∇.(ρ~u× ~u) +∇P = −ρ~∇φ conservation of momentum ,

∂ρE

∂t
+ ~∇.(~u(ρE + P )) = −ρ~u.~∇φ conservation of energy ,

(1.48)

where ρ is the density, E is the internal energy per unit of mass, P is the pressure and ~u is the
velocity of the gas. An equation of state is often imposed for the gas such as P ∝ ργ , such that
the adiabatic index is γ = 3/5 for a ideal mono-atomic gas.

To jointly solve the dissipative gas physics and gravitational dynamics, numerical simulation
codes often solve the gravitation on a grid, whereas the gas dynamics can be solved with a
different approach. Indeed, current hydrodynamical cosmological codes threat the gas dynamics
following either a Lagrangian approach by a discretization in mass, or a Eulerian approach by a
discretization in space.
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Based on a Lagrangian description, the smoothed particle hydrodynamics method (SPH,
Monaghan 1992) codes discretize the gas in particles, and follows the particles over the com-
putational times. The fluid dynamics are evaluated on a set of particles, a fluid element. The
gas characteristics, e.g. the thermal energy or density, are modelled as continuous fields by
interpolating over the fluid particle distribution. The main advantage of SPH codes is the high
resolution induced naturally by this approach. Nevertheless, a significant drawback of these
methods is that discontinuities are not accurately described (e.g gas shocks, (Evrard 1988; Agertz
et al. 2007)). Famous SPH cosmological codes include GADGET code (Springel 2005), and
GASOLINE (Wadsley et al. 2004).

In the Eulerian description, one can also solve the hydrodynamical equations on a grid. Gas
properties (density, thermal pressure, internal energy) are discretized, and the thermodynamic
equations are solved by imposing flux conservation on cells: conserved fluxes are those of mass,
momentum and energy. Conservative numerical schemes are proposed in the literature to solve
the differential equations on cells while accounting for the inter-cell boundary: these include the
Godunov scheme (Gardiner & Stone 2005; Komissarov 1999). An important improvement on the
computation of the gas physics on grid is to use an adaptively-refined grid: this is known as an
adaptive mesh refinement (AMR). The mesh is refined according to a given criterion, usually the
density or the mass within a cell. Therefore, when the density in a cell exceeds a given threshold,
the cell is refined. This allows us to describe the denser regions at higher resolution, without
extensively increasing the required computational resources. Nevertheless, AMR simulations
remain limited by the maximum resolution of the grid. The main AMR codes available in the
literature are: RAMSES (Teyssier 2002), AREPO (Springel 2010), ENZO Bryan et al. (2014)
codes. Their differences result in various numerical approximations, which include the AMR grid
geometry, the refined criteria, or the fluid conservation model (see e.g. Agertz et al. 2007, for a
comparison of different codes).

1.4.2.2 Subgrid models

Because one cannot numerically resolve both the small scale baryonic structures (e.g. stars, black
holes), and the cosmological structure (e.g. galaxy cluster formation), hydrodynamical cosmology
simulations usually make a few assumptions on galactic baryonic physics. These are rolled into
the so-called subgrid models. To achieve reasonable computational time, we have to select or
roughly average some processes that are difficult to follow over the computational time, e.g. the
radiative transfer. Therefore, phenomenological subgrid models are viewed as effective laws for
unresolved scales to mimic astrophysical baryonic processes. The main subgrid models that are
relevant for modelling the galaxy formation and evolution are described here:

• Gas heating and cooling:
Heating and cooling source terms are added to the equation of energy conservation. In
a plasma, radiative emissions are induced by atomic and metal collisions, and induce a
loss of internal energy. To model this process, simulations use tables of cooling rate Λ(ρ, z)
available in the literature, which is a function of the gas density, and its thermal energy
(see e.g. Sutherland & Dopita 1993). This subgrid model is necessary to provide the
fragmentation of the gas, and thus the creation of stars. In addition, the heating of gas
induced by the re-ionization is usually imposed by a homogeneous UV background after the
re-ionisation z ∼ 10 (see e.g. Haardt & Madau 1996).

• Star formation:
Stars are obviously too small to resolve on the scale of cosmological simulations. Stellar
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populations are thus treated as a particle which represents a single stellar population,
i.e. typically one star particle is around ∼ 106 M�. Star formation is often modelled
via the Kennicutt–Schmidt law (Kennicutt 1998). It relates the star formation rate ρ̇∗ to
the gas density ρ, such that: ρ̇∗ = ερ/τff , where ε is the star formation efficiency (often
approximated as 2%) and τff is the free-fall time of the gas. Moreover, because stars form
in regions with high densities of cold gas, the star formation is allowed in regions which
exceed a given Hydrogen density threshold, typically 0.1H.cm−3. Note that the gas mass,
that is converted into star particle, is removed from the parent gas cells.

• Stellar evolution and feedback:
The evolution of star particles can be modelled by considering an initial stellar mass function.
One must also model the stellar feedback to account for chemical enrichment, along with the
thermal and kinetic energy transferred by the stars onto their ambient gas. The main stellar
feedbacks which are commonly modelled are the stellar winds, type-Ia supernovae (Type
Ia SNe) and type-II supernovae (Type II SNe). The physical feedback of stars remains
complex to model and insufficiently understood. Thus various synthetic models are available
to mimic stellar feedbacks by injecting momentum, mechanical energy and metals in the
gas environment (such as starburst99 Leitherer et al. 1999).

• Active Galactic Nuclei:
The formation of Black Holes (BH), treated as particles, generally require a density of gas
and stars above a given threshold. The growth of the BH can be considered both by the
Bondi-Hoyle-Lyttleton accretion rate and by the effective Eddington accretion rate. One
can consider two different types of black halo feedback depending on the value of the gas
accretion rate: the quasar and the radio modes. Low-accretion BH impact their surrounding
environment by a bipolar outflow of matter (Omma et al. 2004), whereas high-accretion
BH isotropically inject thermal energy into the gas. Details can be found in Dubois et al.
(2012). Finally, black hole merging can occur when two BH particles are closer than a given
threshold distance.

1.4.2.3 The production of a realistic galaxy population

The current main cosmological hydrodynamical simulations are: The Horizon AGN simulation
(Dubois et al. 2014), The Eagle Project (Schaye et al. 2015), Massive Black II (Khandai et al.
2015), and Illustris TNG (Springel et al. 2018). These simulations give good descriptions of the
formation and evolution of stellar systems and provide an estimation of the physical properties of
galaxies, in the large scale environment and over the cosmic time.

In figure 1.2, I list the main cosmological hydrodynamical simulations and their different
characteristics. First, one can separate hydrodynamical simulations depending of their type of
code: either by a Lagrangian approach (SPH) as Eagle and Massive Black II (GADGET), or
either by an Eulerian approach (adaptive mesh) such as Horizon-AGN (RAMSES) and Illustris
(AREPO). Grid codes better reproduce discontinuities in gas (chocks, turbulences), whereas gas
particle codes are unlimited in term of length resolution and require less computational resources
in general. Obviously, depending of the box size, mass resolution and implemented physical
processes, these different simulations are adapted to different cosmological investigations. Large
hydrodynamical simulations with a reasonable mass resolution, such as Magneticum, are useful to
study massive objects (large number of galaxy clusters) and to predict the properties of baryons
at large scales25. In contrast, hydrodynamical simulations with box size around 100 Mpc are
more accurate at galactic scales and are thus extensively used to investigate galaxy formation and

25For example, the gas density, metallicity, and temperature can be mapped over the LSS
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evolution in LSS environment. In addition, the complex baryonic mechanisms (as SNe and AGN
feedback) are simulated by different algorithms with different efficiencies from one simulation
to an other. It leads to variant predictions of the density field statistics at intermediate and
small scales (as detail below, see figure 1.24), and can also change the statistics of mock galaxy
properties (e.g. figure 1.23 illustrates the impact of AGN feedback on galaxy mass function).

In general terms, hydrodynamical simulations provides a realistic mixture of galaxy morphology
such as elliptical, irregular, and disc galaxies (Agertz et al. 2011; Vogelsberger et al. 2014; Genel
et al. 2014; Sijacki et al. 2015; Kaviraj et al. 2017; Dubois et al. 2016). As illustrated in figure
1.22 26, the simulated galaxy population tends to be similar in appearance to those observed in
the Universe, with a large variety in colors, sizes, and morphologies.

In details, these large mock galaxy sample well reproduce observed galaxy properties, such as
the bi-modality between passive and active galaxies, or the cosmic star formation history (Dubois
et al. 2013; Vogelsberger et al. 2014; Furlong et al. 2015; Kaviraj et al. 2017). Indeed, the AGN
feedback allows us to simulate a population of red massive elliptical galaxies. Without the BH
activity, massive galaxies formed by merging tend to form a disc and to be highly star-forming
(Dubois et al. 2013; Kaviraj et al. 2017). Inefficient star formation in low-mass galaxies, as
introduced with the missing satellite problem, can be explained by stellar feedback (Hopkins et al.
2014).

As a result, galaxy stellar mass and luminosity functions predicted from hydrodynamical
simulations can be considered a success. As illustrated in figure 1.23, the match of stellar mass
function between simulations and observational results is strongly consistent (especially at low
redshifts). The standard features of galaxy formation physics are more or less well-reproduced
over the cosmic time, but some issues arise as depending on hydrodynamical simulation. For
example, the Horizon-AGN simulation tends to over-predict the number of low-mass galaxies,
and to produce too low galaxy stellar masses at high redshift (Kaviraj et al. 2017). These small
disagreements can come from the accuracy limits of subgrid models, our ability to resolve smaller
haloes, and our incomplete understanding of the galaxy formation and evolution.

Finally, the impact of the cosmic web environment on galaxy properties (morphology, lumi-
nosity, star forming) is accurately studied through these simulations (see also section 1.2.5.3). For
example, it has been established that there is a correlation between the spin of a galaxy and its
location in the filamentary structure (Navarro et al. 2004; Hahn et al. 2010; Dubois et al. 2014;
Codis et al. 2015b). The intrinsic alignment of galaxies, i.e. the aligned of galaxies with the local
density field, have been studied with hydrodynamical simulations (Codis et al. 2012b; Tenneti
et al. 2014; Codis et al. 2015a; Chisari et al. 2017).

1.4.2.4 The impact of baryons on the underlying density field

Recently, it was shown that baryons have a non-negligible effect on the total matter clustering
(Rudd et al. 2008; van Daalen et al. 2011; Vogelsberger et al. 2014; Hellwing et al. 2016; Springel
et al. 2018). In figure 1.24, we present the deviation of the matter power spectrum predicted from
hydrodynamical simulations, relative to collisionless results (DM only). Baryons tend to reduce
the matter power spectra at intermediate scales (k ∼ 1hMpc−1) due to the baryonic pressure
and AGN-driven outflows, and enhance the power amplitude at small scales (k ∼ 100hMpc−1),
reflecting the baryonic collapse and star formation. We can also see that the resulting matter
clustering depends on the considered hydrodynamical simulations, even if the global behaviour
of the matter power spectrum remains similar. The upcoming EUCLID cosmological mission
will measure the power spectrum on 0.1hMpc−1 < k < 10hMpc−1 scales, with a level of ∼ 1%

26the catalogue of mock galaxies from the Horizon AGN simulation is available here:
http://www2.iap.fr/users/pichon/horizon-agn-galaxy-calalogue/index.html
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Table 1.2 – Comparison of recent cosmological hydrodynamical simulations.

Figure 1.22 – Stellar emission of a sample of galaxies in the Horizon-AGN simulation at z = 1.3
observed through rest-frame u, g and i filters. Credit to Dubois et al. (2014).
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Figure 1.23 – The stellar mass function predicted from the Horizon-AGN as shown in the
grey shaded regions, and the prediction from Horizon-noAGN are the pink curves. The various
observational results are overlapping in colors. The figure comes from Kaviraj et al. (2017).

accuracy (Laureijs et al. 2011). The baryonic impact must thus be carefully investigated to
provide accurate prediction of the matter clustering statistics at these relevant scales.

Focusing on the cluster and galactic scales, we find that baryonic physics significantly impact
dark matter halo properties. In fact, supernova feedback can change the density profile of the
dark matter halo from cusp into core (Pontzen & Governato 2012; Duffy et al. 2010; Teyssier
et al. 2013; Di Cintio et al. 2014; Oñorbe et al. 2015; Schaller et al. 2015). The stellar feedback
remains significant for low-mass galaxies. For massive galaxies, the AGN feedback noticeably
reduces the slope of the density profiles in the inner regions (Peirani et al. 2017). The impact of
baryonic processes on the underlying shape of dark matter also appears subtantial. As shown
in figure 1.25 from Suto et al. (2017), the ellipticity of galaxy clusters seems to be significantly
affected by the AGN feedback beyond the central region.

At smaller scales, the presence of baryons also impacts the small dark matter clumps which
reside in halo. As shown in figure 1.26, the number of sub-haloes are reduced in the center of
the hosting halo by the baryonic physics (Despali & Vegetti 2017). However, we see that these
results differ depending on the specific baryonic physics being modelled (comparing EAGLE and
Illustris simulation). In addition Dolag et al. (2009) shows that hot gas in galaxy clusters tends
to decrease the sub-halo mass function relative to a corresponding dark-matter-only simulation.

Conclusion

The concordance model provides an accurate picture of the evolution of the matter density field
over the cosmic time. It is verified through numerical simulations, which accurately account for
non-linear matter clustering. This model agrees with the observations, especially at large scales.
Nevertheless, some discrepancies are still present at cluster and galactic scales. Are these apparent
gap between ΛCDM prediction and astronomical observations due to our lack of information on
the nature the dark matter, or is it the result of complex baryonic physics relevant at these scales?

Baryonic components have a significant impact on the underlying matter at scales below a
few Mpc. To better answer these questions, mock cosmological observable are constructed on
state-of-art of cosmological simulations to provide a point of comparison for observations. In this
thesis, I focus on gravitational lensing observables. Therefore, in the next chapter I will present
in detail lensing theory and weak lensing observables.
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Figure 1.24 – Figure from Chisari et al.
(2018): The impact of baryons and bary-
onic processes on the matter power spec-
trum at z = 0 by considering different
hydrodynamical simulations.

Figure 1.25 – Figure from Suto et al. (2017): The impact of AGN feedback on the projected
dark matter distribution centered on haloes. These results came from the Horizon-AGN and
Horizon-noAGN simulations.

Figure 1.26 – The radial distribution of
subhaloes as a function of their distance to
the center of the parent halo. Comparison
of these results for different numerical sim-
ulations are shown in (Pure dark matter,
Eagles, Illustris). The figure comes from
Despali & Vegetti (2017).
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Gravitational lensing

As predicted by General Relativity (Einstein 1916), light rays follow null-geodesic lines in space-
time. The local matter-energy content curves the space-time metric, and massive bodies behave
as gravitational deflectors. Light emitted from background sources is deflected by all the matter
contained along their line-of-sight. Their resulting images appear to us displaced in the sky, and
their shape is distorted. The first evidence of gravitational light bending occurred during a solar
eclipse, when the light of sources behind the sun were observed (Dyson et al. 1920).

Major gravitational mirages can happen for efficient lenses, and for a strong alignment between
the source, the lens and the observer, it is referred to as strong lensing. Such phenomena provide
multiple images of the distant light source, or an intense stretching of an extended emitting source,
giving rise to Einstein rings, or gravitational arcs. We had to wait until the eighties to detect
the first extra-galactic strong lensing events. For exemple, in 1979, a double image of a lensed
quasar by a galaxy was detected by Walsh et al. (1979). Shortly after, the strong distortions
of background galaxies by galaxy clusters started to be characterised through observations. In
particular, Soucail et al. (1987) identified a giant arc around the cluster Abell 370.

Conversely, when light bundles pass at the periphery of the lens, the gravitational potential
weakly affects the photons path, resulting in a small deformation of the emitting sources. This
so-called weak lensing effect cannot be observed directly, but can be seen after averaging over a
large number of source shapes around the lens. By measuring the mean ellipticity of background
galaxies, one can identify the underlying shear signal and then relate it to the projected density
field. Because lensing equations make no assumption about the nature or the dynamical state of
the lens, gravitational lensing constitutes a powerful tool to probe the total mass content of the
Universe.

In addition, by cross-correlating the ellipticities of background galaxies, one can infer the
lensing distortions induced by the large scale structure of the Universe (Wittman et al. 2000; Van
Waerbeke et al. 2000a). This cosmic shear measurement is a important cosmological observable,
as it encodes cosmological parameter values (for theoretical demonstration, see for examples
Bernardeau et al. 1997; Jain & Seljak 1997a).

Due to the large potential of gravitational lensing in current cosmological investigations, large
lensing data sets are planned for the future (Laureijs et al. 2012; Spergel et al. 2015). In particular,
one can refer to the upcoming Euclid mission which will provide measurement of more than 1
billion of weak lensing sources (Laureijs et al. 2012).

In section 2.1 I will quickly review the theory of gravitational lensing, and its main assumptions.
The section 2.2 presents the different lensing observables in the weak lensing regime.

These two first sections are inspired by: Bartelmann & Schneider (2001), Schneider et al.
(1992), and Kilbinger (2015). The section 2.3 is centred on the existing numerical methods for
the post-processing of cosmological simulations in order to simulate lensing signals.

45
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2.1 The gravitational lensing formalism

Following the FLRW metric, the time of photon propagation is linked to the travel path, as
follows:

c dt =
(

1− 2φ
c2

)
dr , (2.1)

where φ is the 3-D Newtonian gravitational potential, such as φ� c2 in the weak gravitational
field approximation. Analogously to the geometrical optics, one can identify in this relation the
gravitational potential as a refraction medium with index n = 1− 2φ/c2. It is this comparison
which has led to the name of gravitational lensing. One can demonstrate (by using the Fermat’s
principle and Euler’s equation), that the path of a light ray is continuously affected by the
gravitational potential, so that the emission direction differs from the observed direction by a
deflection angle:

α̂ = 2
c2

∫
~∇⊥φ dl . (2.2)

Light deflection is thus proportional to the integral of the potential gradient along the ray path
dl.

2.1.1 The lens equation

Let me now link the ”true” angular coordinates of a source β = (β1, β2) with the ”apparent angular
position θ = (θ1, θ2) of its image after being deflected by gravitational lensing. As illustrated in
figure 2.1, one can consider the single thin lens model such that a source is located at distance DS

from the observer (which corresponds to the angular diameter distance), and the lens is located
at angular distance DL.

In the thin lens approximation, the light ray is deflected when it intersects the lens plane, i.e.
the plane orthogonal to the line-of-sight which contains the lens. The 2-D physical coordinates η
and ξ denote the position of the source in the source plane, and the position of the light ray in
the lens plane, respectively. Obviously, we can relate the physical lengths to the angular positions,
such as ~η = Ds

~β and ~ξ = DL
~θ.

One can easily demonstrate by geometrical considerations that the lensing equation can be
written in the small angle approximation as:

~η = DS

DL

~ξ −DLSα̂(~ξ) . (2.3)

Or equivalently, by writing this equation in angular coordinates:

~β = ~θ − DLS

DS

~̂α(~θ) = ~θ − ~α(~θ) , (2.4)

where I introduced the reduced deflection α = DLS
DS

α̂. I can re-write the deflection angle from Eq.
2.2 as:

~α = 2
c2
DLS

DS

∫
~∇⊥φ dl . (2.5)

I thus define the lensing potential in the thin lens approximation:

ψ = 2
c2

DLS

DSDL

∫
φ dl , (2.6)

and the reduced deflection field takes the convenient form:

~α = ~∇θψ . (2.7)

I have replaced the perpendicular gradient, according to ~∇⊥ = ~∇θ/DL. The lensing equation is
non-linear: one source position ~β can lead to multiple images ~θ.
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Figure 2.1 – Schematic view of the a gravita-
tional lensing system in the thin lens approxima-
tion. Light ray emitted from the source at the
coordinates ~β, converges to the observer with the
’apparent’ angular coordinates ~θ. At the inter-
section of the light ray and the lens plane, it is
deviated by an 2-D angular vector ~̂α. The angu-
lar distances between the observer, the lens and
the source are represented. The figure is inspired
by Bartelmann & Schneider (2001). Note that in
expending Universe, we have: DS 6= DL +DLS .

2.1.2 Linearisation of the lens mapping

Having derived the lens equation 2.4, I can write the Jacobian of the transformation from the
image to the source plane θ → β(θ) as:

Aij = ∂βi
∂θj

, (2.8)

= δij −
∂αi
∂θj

, (2.9)

= δij −
∂2ψ

∂θi∂θj
. (2.10)

The convergence and shear are introduced as function of the tidal field ∂2ψ/∂θi∂θj :

κ = 1
2

(
∂2ψ

∂θ2
1

+ ∂2ψ

∂θ2
2

)
, γ1 = 1

2

(
∂2ψ

∂θ2
1
− ∂2ψ

∂θ2
2

)
, γ2 = ∂2ψ

∂θ1 ∂θ2
. (2.11)

Following these definitions, the magnification tensor can be rewritten as:

A =

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 . (2.12)

The diagonal part of the Jacobian, corresponding to the convergence κ, illustrates an isotropic
deformation, i.e. by increasing or decreasing the size of the source.

In contrast, the traceless part of the matrix denotes an anisotropic stretching of source shape,
and depends on the the shear components (γ1, γ2). Mathematically, the shear is a complex number
which can be written as γ = γ1 + iγ2 = |γ|e2iϕ, where ϕ is the polar angle between the two shear
components. The shear field is therefore a spin-2 quantity, due to the factor 2 in the exponential.
It is invariant under a rotation by π, i.e. an ellipse rotated by π is transformed into itself. The
behaviour of a circular source as sheared by γ1, γ2 components is illustrated in figure 2.2. One
can re-express the shear relative to the peculiar center ~θr. Thus, one can define the tangential
and the cross components of the shear (γt, γ×) as:

γt(~θ; ~θr) = −Re
[
γe2iφ

]
and γ×(~θ; ~θr) = −Im

[
γe2iφ

]
, (2.13)
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Figure 2.2 – Schematic view of a constant
shear field γ deforming a circular source.
The orientation of the deformation is given
in the Cartesian coordinates of the shear
γ1, γ2. The ellipse rotation is invariant by π,
thus the shear is a 2-spin field as γ = eiϕ.

where φ is the polar angle between ~θ and ~θr. Taking the center of the lens as a point of reference,
we find that shear is purely tangential for a perfectly circular lens, whereas any departure from
the circular symmetry in the mass distribution of the lens induces a cross-shear component.

I finally introduce the notion of the reduced shear g = γ/(1 − κ), which constitutes the
measurement extracted form the ellipticity of galaxies. Indeed, one can rewrite the Jacobian
matrix such as:

A = (1− κ)

1− g1 −g2

−g2 1 + g1

 , (2.14)

where (1−κ) is a multiplicative factor. The actual distortion measured in the background galaxies
is thus the reduced shear.

The convergence, which is the Laplacian of the lensing potential, can be related to the surface
density Σ by considering the Poisson equation:

∆φ2D = 4πGΣ

∆ψ = 2κ

κ = 4πG
c2

DS

DL DLS
Σ = Σ

Σcrit
. (2.15)

The convergence is a dimensionless surface density, where the critical surface density is:

Σcrit = c2
4πG

DL DLS

DS
. (2.16)

For a mass distribution close to the critical density, we are in the strong lensing regime.

Finally, notice that the equations 2.11 can be re-written in Fourier space (Kaiser & Squires
1993):

ψ̂ = κ̂

|l|2



γ̂1 = (l21 − l22)ψ̂ ,

γ̂2 = 2i l1 l2 ψ̂ ,

α̂1 = il1 ψ̂ ,

α̂2 = il2 ψ̂ ,

(2.17)

where ~l = (l1, l2) represent the 2-D Fourier vector, and X̂ denotes the Fourier transform of X.
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2.1.3 The conservation of surface brightness

An important feature of gravitational lensing is the conservation of surface brightness (Etherington
1933). The luminosity per unit solid angle in the source plane of an extended source is equal to
the surface brightness observed in the image. Mathematically, it can be translated as:

I(~θ) = Is
[
~β(~θ)

]
, (2.18)

where I(~θ) and Is
[
~β(~θ)

]
are the brightness distributions in the lens and source planes, respectively.

Locally, for a point ~θ0 in an extended image, which corresponds to ~β0 = ~β(~θ0) in the source plane,
we have:

I(~θ) = Is
[
~β0 +A(~θ0)(~θ − ~θ0)

]
. (2.19)

This translates the fact that a circular source may become an ellipse in the lens plane.

2.1.4 Magnification

Magnification µ is defined as the ratio between the flux of the image and flux of the source.
Mathematically, in the limit of a point source, the local magnification is given by the inverse of
the determinant of the matrix A:

µ−1 = detA = (1− κ)2 − γ2 . (2.20)

The eigenvalues of the magnification tensor are then the amplification in the tangential and in
the radial direction:

µt = 1
λt

= 1
1− κ− γ , (2.21)

µr = 1
λr

= 1
1− κ+ γ

. (2.22)

When the determinant of the Hessian matrix vanishes, the magnification becomes infinite. This
is not possible in practice, because sources have a finite size. The set of coordinates in the lens
plane ~θ where λt → 0 (or λr → 0) defines the tangential (or the radial) critical line (Blandford &
Narayan 1986). Translating these curves in the source plane leads to the definition of the caustics:
any sources close to the caustic will be extremely magnified and distorted. Only sources inside a
caustic presents multiple images.

2.1.5 The mass-sheet degeneracy

Another important concept is the mass-sheet degeneracy (MSD) (Falco et al. 1985). By considering
a shift of source location by a factor β → λβ in equation 2.4, one can preserve the image positions
and shapes, and magnification ratios, by considering a different lens characterised by deflection
angle α′, such as:

λβ = λθ − Dls

Ds
λθ = θ − Dls

Ds

(
λα+ Ds

Dls
(1 + λ)θ

)
≡ θ − Dls

Ds
α′ , (2.23)

Thus, this degeneracy in the lens equation can be seen as a additional sheet of constant convergence
(1− λ):

κ→ κ′ = λκ+ (1− λ) , (2.24)

The so-called mass-sheet degeneracy appears as a limitation in mass determination by weak
gravitational lensing. This degenerate relation is also present in the strong lensing regime, and
can impact for example the determination of the Hubble constant (Schneider & Sluse 2013).
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2.2 The variety of weak lensing observables

In this section, I give a brief overview of commonly-used lensing estimators along with the scale
and the objects that we probe.

By using the weak lensing signal, one can investigate matter distribution on large scales. In
particular, one can probe the statistics of the projected total density field of large scale structure
by considering the cosmic shear. Moreover, by focusing on individual lenses (like galaxies and
galaxy clusters), one can determine their density profile by measuring the tangential shear signal.
The weak lensing regime is characterised by κ, γ � 1. The associate shear signal must therefore
be statistically extracted by averaging over a large number of galaxy ellipticities.

2.2.1 Estimating the shear from background galaxies

In the weak gravitational lensing regime, the image of an elliptical source is also an ellipse. One
can define the tensor of second moments of the surface brightness of an image:

Qij =
∫
d2θ I(θ) (θi − θi) (θj − θj)∫

d2θ I(θ) , (2.25)

where (θi, θj) is the barycentre of the image. From the surface brightness conservation equation
eq. 2.19, it becomes that the moments of the image Q can be expressed as a function of the
moments of the source QS such as:

QS = AQAT . (2.26)

The shape of an image can be described by the complex polarisation χ, or the complex ellipticity
parameter ε:

χ = Q11 −Q22 + 2Q12
Q11 +Q22

, ε = χ

1 +
√

1− |χ|2
. (2.27)

Therefore, from the 2.26, the complex ellipticity of an background galaxy χ can be related to the
complex ellipticity of the source χS (Schneider & Seitz 1995; Seitz & Schneider 1995, 1997), by
the following relation:

χ = χS − 2g + g2χ∗s
1 + |g|2 − 2R(gχ∗S) , (2.28)

where ∗ denotes the conjugation of a complex number. From this transformation, one can also
find the transformation between the ellipticity of an image and it intrinsic ellipticity (the unlensed
galaxy shape), for |g| < 1 :

ε = εS + g

1 + g∗εS
. (2.29)

In addition, galaxies are supposed to be randomly orientated in the sky, meaning that 〈εS〉 = 0.
Therefore, the shape of image galaxies is seen as an unbiased estimator of the reduced shear
〈ε〉 = g (Schneider & Seitz 1995). In the weak lensing regime, with κ� 1, one can approximate
〈ε〉 = γ . The rms dispersion of the intrinsic ellipticity distribution is of the order σε ∼ 0.3. The
noise induced by intrinsic galaxy shapes must be taken into account, and the shear signal to noise
ratio is simply: (

S

N

)
shear

= γ
√
N/σε , (2.30)

where N is the number of background galaxies. Averaging over a large number of background
galaxies is essential, so as to reduce the shape noise. For example, for a shear value of γ ∼ 0.03,
we need to average over 100 galaxies to get an estimate of the shear with S/N ∼ 1. This source
of uncertainty is a fundamental limitation in the accuracy of weak lensing measurements. Future
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Table 2.1 – The features of CFHLenS, KiDS, DES and HSC-SSP

surveys will reduce this noise term by providing a larger number of detected sources, such as
the density number of galaxy will be ng ∼ 30 galaxies/arcmin2; this can be contrasted to current
ground based data sets with ng ∼ 5/20 galaxies/arcmin2.

2.2.2 Current and ongoing weak lensing galaxy surveys

In order to perform accurate weak lensing analyses, a large number of background galaxy shapes
and redshift measurements is required to reduce the statistical uncertainties. In fact, large
(photometric) weak lensing survey is often chosen to overlap with (spectroscopic) galaxy surveys
which map the foreground galaxy distribution. I will briefly review the common current and
upcoming weak lensing galaxy surveys, before presenting results on lensing observables in the
next sections.

Shape measurement of background galaxies has been carried out in the past by different
surveys such as the CFHTLenS (Heymans et al. 2012b; Erben et al. 2013). This survey is a 154
square degree multi-colour optical survey in ugriz bands, and based on the Canada France Hawaii
Telescope Legacy Survey (CFHTLS) and optimised for weak lensing analysis1.

At the present time, ongoing wide-area weak lensing surveys from ground-based experiments,
such as Kilo-Degree Survey (KiDS, Kuijken et al. 2015), Dark Energy Survey (DES, The Dark
Energy Survey Collaboration 2005), and the Hyper Suprime-Cam Subaru Strategic Program
(HSC-SSP, Aihara et al. 2018a), start to provide their first data releases to the community (for
example DES-Y1, HSC-DR1, DES Collaboration et al. 2017; Aihara et al. 2018b). The larger
fraction of observed sky dramatically increases the number of galaxy shape measurements, and
therefore reduces the shape noise on WL signal. The different features of these weak lensing
surveys are gathered in table 2.1.

1in terms of data reduction (Erben & CFHTLenS Collaboration 2012), shape measurement (Miller & CFHTLenS
Collaboration 2012), photometric redshifts (Hildebrandt et al. 2012), and systematic error analyses (Heymans et al.
2012a).
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2.2.3 2-D mass map reconstruction from the ellipticity of background galaxies

Mapping the density field with weak lensing is a primordial tool as it allows to map the underlying
dark matter distribution at various scales.

Technically, one can construct the shear map by detecting the observed galaxy shapes centred
on a given structure (galaxy, galaxy cluster, or larger aperture). At this stage, one must keep
in mind possible contaminations of the shear signal, which could be caused by effects such as
atmospheric variations and instrumental biases. Methods to correct these biases can be found in
the literature, such as the Kaiser, Squires & Broadhurst method (Kaiser et al. 1995; Luppino &
Kaiser 1997; Hoekstra et al. 1998). Complementary information on weak lensing shear reduction
can be found in Heymans et al. (2006).

The measured shear signal can be transformed into a convergence map by inverting the shear
in Fourier-space, following equations 2.17:

κ̂ = l21 − l22
|l|2

γ̂1 + 2l1l2
|l|2

γ̂1 . (2.31)

The convergence field reconstruction is complex, as we have to use inversion algorithms (Kaiser &
Squires 1993; Seitz & Schneider 1995). 2-D mass mapping algorithms have been proposed in the
literature to resolve this inverse problem accurately and efficiently (Bartelmann 1995; Bradač
et al. 2005; Starck et al. 2006; Pires et al. 2009). The noise of convergence maps can be estimated
by considering the number density of background galaxies (van Waerbeke 2000).

Using advances in the field of mass reconstruction techniques (Kaiser & Squires 1993; Kaiser
et al. 1995; Lombardi & Bertin 1998), mapping the projected matter density field by using
gravitational lensing has become commonplace in observational cosmology (Clowe et al. 1998;
Hoekstra et al. 1998, 2000; Clowe & Schneider 2001). Indeed, the total mass distribution of galaxy
clusters reflects the properties and the nature of dark matter. Figure 2.3 illustrates a typical
density map of a merging cluster (Clowe et al. 2006). We clearly observe that the total mass
distribution from weak lensing differs from the hot gas mapping. This observation constitutes a
direct evidence of the collisionless nature of the dark matter. Indeed, as we see, stars and dark
matter are not affected by the past collision, whereas the gas (highly collisional) is chocked and
slowed by the collision.

Projected density maps of galaxy clusters made through weak lensing observations can be
completed with baryonic observables such as X-rays and galaxy mapping (Clowe et al. 2004;
Markevitch et al. 2004; Clowe et al. 2006; Randall et al. 2008; Merten et al. 2011). These joint
analyses of galaxy clusters are used to investigate the relationship between the astrophysical
properties of clusters and their surrounding dark matter halos, such as the scaling relations
between X-ray properties and the cluster masses.

In detail, cluster mass estimation is obtained by averaging the shear signal into radial shells
centred on the cluster. Then, the tangential distortion profile can be fitted by spherical mass
profile models (like the Navarro-Frenk-White, or singular isothermal sphere profile), to estimate
the cluster mass, and cluster concentration, as defined in section 1.2.4.1 (Okabe et al. 2010;
Bhattacharya et al. 2013). From these type of weak lensing analyses, the estimation of the
mass-to-light ratios of clusters has been derived and calibrated (Parker et al. 2005; Mandelbaum
et al. 2006a; Johnston et al. 2007). The inferred mean halo mass -richness (number of galaxies)
and -luminosity relations appear to be well fit by a power-law relations. As expected rich clusters
are more massive, and more luminous. In order to exploit clusters as cosmological probes2, such
cluster mass-observable relations have to be precisely calibrated in the first instance.

2The DM halos mass function is strongly influenced by the considered cosmological model.
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Figure 2.3 – Composite image of the famous merging cluster of galaxies, named as the Bullet
Cluster. The hot diffuse gas is draw in pink (detected by X-ray emission), the total mass
distribution (reconstructed by weak lensing measurements) is in blue, and galaxy distribution is
illustrated in background (optical bands). Credit to Markevitch (2006) and Clowe et al. (2006).

2.2.4 Galaxy-galaxy lensing

Galaxy-galaxy lensing (GGL) consists in the weak lensing effect induced by a massive foreground
galaxy, on the distant galaxies. It probes the projected density of the lens, i.e. the radial density
profile of foreground galaxies.

This approach consists in azimuthally averaging galaxy ellipticities in concentric annuli centred
on the lens, to estimate the tangential shear γT (|~θ|) as a function of the angular separation to
the lens. Because individual galaxies are not massive enough to produce a significant GGL effect
(distortions of order 0.1%), one must stack the shear signal around a large number of foreground
lens galaxies.

If the spectroscopic redshifts of foreground galaxies are available, one can then compute the
excess of surface mass density ∆Σ. Indeed, one can demonstrate that the mean tangential shear
can be related to the mean surface density inside a circle and the mean density on the circle
(Schneider et al. 1992):

γt(R) = Σ(< R)− Σ(R)
Σcrit

≡ ∆Σ Σ−1
crit . (2.32)

A common observational technique is to jointly analyse two overlapping galaxy surveys by
considering the foreground lens galaxies from the spectroscopic one. The ellipticities of distant
galaxies are given by a (photometric) survey. For example, GAMA (Driver et al. 2011) and KiDS
(de Jong et al. 2013) surveys were cross-correlated to improve the accuracy of tangential shear
measurement around galaxies (Velliscig et al. 2017; van Uitert et al. 2018) and galaxy groups
(Viola et al. 2015).

As illustrated in figure 2.4, we show the GGL shear profile, averaged over a large sample
of lens galaxies (Parker et al. 2007). Background galaxies appear tangentially aligned with the
lens, whereas by symmetry the cross component is null on average. Fitting the mean tangential
shear measurements with a parametric profile (like NFW or Einasto) allows us to estimate the
mean halo mass and concentration of the lens sample (Kleinheinrich et al. 2006; Hoekstra et al.
2005; Mandelbaum et al. 2008). The ellipticity of dark matter haloes can also be investigated by
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Figure 2.4 – The averaged tangential and cross shear as a function of radius around a sample
of CFHTLS galaxies (Parker et al. 2007). The median lens redshift is 0.4 and the median source
redshift is 0.9. The dashed and solid lines represents the fits by the Navarro-Frenk-White and
isothermal profile, respectively. The best NFW fit corresponds to a halo with a scale radius
r200 = 150 h−1kpc and virial mass M200 = 7.6 1011 h−1M�.

galaxy-galaxy weak lensing (Mandelbaum et al. 2006a; Parker et al. 2007). The GGL signal is
thus used to characterise the properties of dark matter halos at galactic scales.

One can further sub-divide the foreground lens galaxy samples depending of their properties:
galaxy type, luminosity, stellar mass, morphology, satellite or central galaxies. This allows to
probe the relationship between galaxy properties and their host dark matter halo. Such work was
performed by Sheldon et al. (2004) using the SDSS: ∆Σ was evaluated for early and later type
galaxies, separately. The correlation between galaxies and the tangential distortion of background
sources was also explored by Mandelbaum et al. (2006b), who studied satellite fractions for late-
and early- type galaxies. In this vein, the galaxy-mass correlation function was investigated by
GGL to constrain the evolution of the galaxy population over cosmic time (Guzik & Seljak 2001;
Mandelbaum et al. 2006b; Leauthaud et al. 2012; Velander et al. 2014; Hudson et al. 2015; Coupon
et al. 2015). By studying the evolution of stellar-halo mass ratio M∗/Mh depending of the halo

mass, it appears a characteristic halo mass Mpeak
h for which star formation is most efficient. For

lower and higher halo masses, complex physical mechanisms are responsible in quenching star
formation (see section 1.2.5.2 galaxy-halo connection).

2.2.5 Two-point cosmic shear statistics

Besides the direct characterisation of mass distribution properties with shear measurement, we can
consider the statistics of the shear signal. Indeed, since the first detections of weak gravitational
lensing by large-scale structure (Van Waerbeke et al. 2000b; Bacon et al. 2000; Wittman et al.
2000), the statistics of the shear signal are widely used to probe the underlying cosmological
model to constrain cosmological parameters. Here, I will mostly focus on the two-point statistics
of the lensing signal.

The weak lensing power spectrum

The two-point correlation function (2PCF) of the convergence is written as 〈κ(~ϑ)κ(~ϑ+ ~θ)〉,
where ~θ is the angular separation vector between two lines of sight. Assuming that the density field
is homogeneous and isotropic (cosmological principle) and that the convergence is the projection
of the density field along the line-of-sight, we deduce that the convergence correlation function is
invariant under rotation and translation. 〈κ(~ϑ)κ(~ϑ+ ~θ)〉 is therefore a function of the modulus of
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the separation vector. It can be written in the Fourier space:

〈κ̂(~l)κ̂∗(~l′)〉 = (2π)2δ(~l − ~l′)Pκ(l) , (2.33)

where Pκ(l) is the convergence power spectrum, and l is the 2-D Fourier vector such as ~l = 2π/~θ.
Note that we have assumed a flat sky, and did not use spherical harmonics.

One can relate the shear and the convergence in Fourier space by using the complex form of
the shear:

γ̃ =
(

(l21 − l22)
|l|2

+ (2il1l2)
|l|2

)
κ̃ = e2iφl κ̃ , (2.34)

where φl is the polar angle of the Fourier vector ~l. Following this formula, it becomes evident
that the shear and the convergence have the same power spectrum: Pκ = Pγ .

The cosmic shear power spectrum can be written as an integral of the 3-D matter power
spectrum along the line-of-sight (Miralda-Escude 1991; Blandford et al. 1991; Kaiser 1992):

Pκ(l, zs) =
(

3ΩmH
2
0

2c2

)2 ∫ χs

0
dχ
(
χ(χs − χ)
χsa(χ)

)2
Pδ

(
l

χ
, χ

)
, (2.35)

where χs is the comoving distance between the source plane and the observer. The small-angle and

flat-sky approximations are assumed in this formulation. It also supposed that ~k = ~l
χ , meaning

that only modes perpendicular to the line-of-sight are relevant. This is the so-called ”Limber”
approximation (Limber 1953).

Following this formulation, I predict the lensing power spectra for different source redshifts:
the result is shown in figure 2.5. The matter power spectrum Pδ, in linear and non-linear regimes,
have been predicted with the Cosmic Linear Anisotropy Solving System (CLASS) code (Blas
et al. 2011; Lesgourgues 2011). This Boltzmann code numerically resolves the linear perturbation
theory, and non-linear corrections, to provide an accurate estimation of cosmological observables,
as depending of the cosmological parameters given in input. Then, I integrated matter power
spectra under the Limber approximation. Note that equation (2.35) assumes all lensed galaxies
are at the same redshift. One can also take into account the observed galaxy distribution in
redshift p(z), which is commonly expressed as a Gamma PDF of the form:

p(z) ∝
(
z

z0

)a−1
e−z/z0 , (2.36)

where a, z0 are free parameters estimated from galaxy observations. Recently, Laigle et al. (2016)
estimated photometric redshift distributions with a ' 2.1 and z0 ' 0.51 using the COSMOS2015
catalogue. The effective convergence power spectrum is therefore computed by weighting the
contributions of the different source planes:

Pκ(l) =
∫
Pκ(l, zs) p(zs) dzs . (2.37)

Commonly, the measurement of lensing power spectrum is used to jointly constrain the
matter density parameter Ωm and the amplitude of the matter power spectrum σ8. Recently, its
characterisation at different source redshift, the so-called cosmic shear tomography, has also been
used to probe the dark energy equation of state. The weak lensing power spectra have thus been
extensively measured in large galaxy surveys (Brown et al. 2003; Heymans et al. 2005; Kitching
et al. 2007; Lin et al. 2012; Kitching et al. 2014; Köhlinger et al. 2016; Abbott et al. 2016; Alsing
et al. 2017; Köhlinger et al. 2017) .
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Figure 2.5 – The predicted lensing power spec-
tra in linear and non-linear regimes.Prediction
done by integrating Pδ from CLASS code in the
the Limber approximation (Gouin et al. 2017)

The angular correlation of pairs of galaxy ellipticities

In addition to the lensing power spectrum, an even more direct observable quantity of weak
lensing statistics is the two-point shear correlation function (2PSCF). The angular shear correlation
is simpler to measure because it can directly be computed in real space. The correlation of
the shear at two-points yields four quantities: 〈γtγt〉, 〈γ×γ×〉, 〈γtγ×〉 and 〈γ×γt〉. By parity
conservation, one can show that 〈γtγ×〉 = 〈γ×γt〉 = 0.

Two-point correlation functions can be defined (Miralda-Escude 1991):

ξ±(θ) = 〈γt(~ϑ)γt(~ϑ+ ~θ)〉 ± 〈γ×(~ϑ)γ×(~ϑ+ ~θ)〉 , (2.38)

where isotropy and homogeneity considerations tell us that ξ± are only functions of the modulus
of the separation vector ~θ. The shear correlation functions ξ± are related to the lensing power
spectrum by the Hankel transform:

ξ±(θ) = 1
2π

∫ ∞
0

dl l J0/4(lθ)Pκ(l) , (2.39)

where Jν is the Bessel function of order ν. This formulation allows us to predict the two-point
correlation function via a numerical integration of the convergence power spectrum.

Observationally, one can estimate the shear correlation function by cross correlating the
ellipticity of galaxy pairs, binning by separation angle between the pairs (Schneider et al. 2002):

ξ̂±(θ) =
∑
ij ωiωj(εitε

j
t ± εixεjx)∑

ij ωiωj
. (2.40)

To each galaxy ellipticity εi can be assigned a weight depending on the accuracy of measurement
ωi. Galaxy pairs (i, j) located at angular positions (~ϑi, ~ϑj), are collected in bins of angular

distance |~θ| = |~ϑi − ~ϑj |.
The shear correlation function has been measured on large galaxy surveys, such as in

CFHTLenS (Heymans et al. 2013; Kilbinger et al. 2013), Deep Lens Survey (Jee et al. 2013),
KiDS (Hildebrandt et al. 2017), and in DES (Troxel et al. 2017). The measurement made from
CFHTLenS data sets is presented in figure 2.6 as an example (Kilbinger et al. 2013).

Recently, Hildebrandt et al. (2017) have constrained cosmological parameters from cosmic
shear measurements made in the KiDS survey. This study used accurate theoretical models
which take into account the intrinsic alignment of galaxies and the impact of baryon feedback.
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Figure 2.6 – The two-point shear correla-
tion functions ξ± measured in CFHTLens.
The dotted lines presented the non-linear
model prediction. This figure comes from
Kilbinger et al. (2013). Copyright 2013
Oxford University Press.

Indeed, cosmic shear tomography analyses constitute an important probe of the cosmological
model, and leads to potential inconsistencies with the CMB results, as described in (MacCrann
et al. 2015). Therefore, this analysis was made with a high level of accuracy (comparable to
photo-z calibration) and a precise treatment of systematic errors (like measurement errors, sample
variance, and covariance estimation).

2.2.6 The future Euclid weak lensing survey

Future large galaxy surveys such as Euclid (Laureijs et al. 2011), Large Synoptic Survey Telescope
(LSST, Chang et al. 2013) and Wide-Field Infrared Survey Telescope (WFIRST, Spergel et al.
2015) will provide the unprecedented opportunity to improve our constrains on cosmological
parameters by measuring the cosmic shear, and to better characterise the dark matter density
field properties from large to galactic scales by using galaxy-galaxy lensing and mass mapping. In
particular, my thesis project fits into the framework of the future Euclid mission with the ultimate
goal to predict weak lensing observables with its expected level of precision. This mission aims to
investigate the nature of dark energy and dark matter, by using two complementary cosmological
probes: weak lensing and galaxy clustering.

The Euclid space mission will be launched around 2022, and will observe the sky far 6 years.
Two main instruments will perform the Euclid galaxy catalogue: the VIS (optical imager), the
Near Infrared Spectrometer Photometer (NISP). The VIS instrument will offer a high image
quality (with a pixel size of 0.1 arcsec on the focal plane) and a very stable point-spread function
(PSF)3. It will thus considerably improve galaxy shape measurements. The NISP instrument
has a pixel size of 0.3 arcsec (on the focal plane), and will provide a Deep NIR photometry (3
near infrared band filters Y J and H). The near infrared spectrometer (NIS) will measure galaxy
spectra with 4 different near infrared grisms (from 920 to 1850 nm).

The Euclid mission will perform two galaxy surveys: a wide survey which covers 15 000 square
degrees of the sky, and a deep one (with 2 magnitude deeper) by covering around 40 deg2. The
wide survey will contain around 1.5 billion of galaxy shape measurements (> 30 galaxies per
arcmin2) with an unprecedented sensitivity, as it is illustrated in figure 2.7. Moreover, Euclid
wide galaxy survey will be completed by ground base data sets to obtain photometric redshifts4

3This is an effect of the imaging system due to the instrument and the atmosphere. Anisotropic PSF induces
artificial correlations of galaxy shapes. This contamination can be estimated by calibrating the PSF on a sample of
stars, for example.

4Different of ground-based-imaging data, such as DES, are currently considered, and to complete the photometry
measurements performed by Euclid, in order to improve the photometric redshift estimation of galaxies.
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Figure 2.7 – Simulation of Euclid resolution for the observation of M51, compared to SDSS
observations, from J. Brinchmann.

with ∆z = 0.05(1 + z) accuracy out to redshift of ∼ 2. In addition, the NIS will measure 35
million spectroscopic redshifts with 0.001 accuracy. The Deep Euclid survey will contain 1.5
million galaxies with shape and photo-z measurements, and 150 000 galaxies with spectroscopic
redshifts.

In fact, Euclid mission is optimised for lensing surveys (knowledge of source redshift distribution
and accurate source shape measurements) and will allow to address different gravitational lensing
aspects (cosmic shear, galaxy-galaxy lensing, strong lensing events, microlensing...). In particular,
with this wide field cosmic shear survey, the distribution of dark matter will be explored across
the cosmic time, by weak lensing tomography over 10 redshift slices (in redshift range: 0 < z < 2).
Cosmic shear measurements will be used to probe the expansion history of the Universe, at the
DM-dominated/DE-dominated transition period. Euclid aims to measure the cosmic expansion
rate to better than 10% (for redshift 0.7 < z < 2) (Laureijs et al. 2011).

In addition, considering the expected selection function of cluster photometric survey, Sartoris
et al. (2016) estimated that Euclid will detect around 2 × 105 galaxy clusters at 0.2 ≤ z ≤ 2.
This large cluster number density will lead to drastically improve constraints on dark energy)5,
by using cluster number counts, cluster power spectrum, and cluster scaling relation. Forecast
results with Euclid clusters of galaxies is presented figure 2.8.

2.3 Numerical methods to predict the lensing signal

We have seen that Euclid mission will precisely probe the matter distribution until small scales
(k ∼ 1h.Mpc−1) via weak lensing and galaxy clustering. Therefore accurate predictions of these
observables are required down to non-linear scales. As shown in chapter 1, an accurate description
of the matter density field in this highly non linear regime requires numerical simulations.
Therefore, substantial efforts are underway to accurately estimate lensing observables. Such
predictions are essential to interpret observational results and to correctly extract cosmological
information.

5A dynamical evolution of the dark energy can be described by a equation-of-state parameter ω such as
ω(a) = ω0 + (1− a)ωa.
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Figure 2.8 – Forecast results with the Euclid Galaxy Cluster Survey. Constraints at the 68%
confidence level on the cosmological parameters Ωm and σ8 (left panel) and ω0 and ωa (right
panel) realised by Sartoris et al. (2016). The cosmological probes are the cluster number count
(NC), and the cluster power spectrum (PS), with/without a perfect knowledge of cluster scaling
relation (SR).

Propagating light rays through dark matter simulations can be done to reproduce the deflection
and distortions of light bundles and thereby other lensing observables such as convergence maps,
1-point PDFs, 2-point shear correlation functions, along with characteristics like peaks and voids
was done early in the history of the field (eg Jain et al. 2000; Hamana & Mellier 2001; Vale &
White 2003; Hennawi & Spergel 2005; Hilbert et al. 2007, 2009; Sato et al. 2009). Much progress
has been made since on large and mildly non linear scales with the production of full sky maps
with resolutions of a few arc minutes (eg Fosalba et al. 2015; Giocoli et al. 2016a; Takahashi et al.
2017a).

More recently, the impact of baryons and baryonic processes on the lensing signal was
investigated through hydrodynamical simulations. Focusing on weak lensing statistics, Semboloni
et al. (2011) showed that the 2-point shear correlation function can significantly be affected by
the baryonic physics at scales below 10 arcmin. Even the number of convergence peaks is altered
by the baryons, to a lesser extent than the power-spectrum (Yang et al. 2013).

Let me now give an overview of the current numerical methods used to implement gravitational
lensing through cosmological simulations.

2.3.1 The propagation of light-rays

Light-cone simulation

Numerical predictions of the lensing signal can be done by propagating light-rays through a
light-cone. We define a light-cone as a cut in the simulation box over different time steps in order
to mimic the matter distribution along a line-of-sight (l.o.s). It is characterised by its opening
angle and its direction on the simulation box. The periodic boundary conditions of the simulation
box are used to construct coherent structures along the l.o.s. Various efficient methods have been
developed to maximise the number of independent light cone realisations which can be made
from a unique simulation (see eg. Carlson & White 2010). As an example, the light-cone of the
Horizon-AGN simulation, over which I have propagated light-rays, is illustrated in figure 2.9.

Light-cones are registered into a series of slices, which can be extracted either on-the-fly
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Figure 2.9 – The light-cone of the Horizon-AGN simulation, extracted on-the-fly. The opening
angle of the cone is 2.25 deg out to redshift z = 1 and 1 deg all the way to z = 8.

Figure 2.10 – Schematic view of the boundary between two light-cone slices k and k + 1. Halos
located near a slice boundary are identified in a given slice based on the positions of their centres
(a). They can cross the slice boundary between two time steps (b), and so halos included in slice
k need to be excluded from the slice k + 1. Credit to Hilbert et al. (2009)

(during the run of the simulation), or from simulation outputs at different time step. The slice
boundaries have to be carefully treated to avoid truncating structures, as illustrated in figure 2.10.
In fact, for two given neighbouring slabs at two consecutive time steps, structures can be counted
twice (or not at all) if the inclusion (or exclusion) of structures with large proper motions is not
properly accounted for. In Chapter 4, I will go into more details on slice boundaries problems in
the light-cone of the Horizon-AGN simulation.

The theory of light-ray propagation in a continuous matter distribution

Before discussing numerical approximations of the theory of light-ray propagation in a continuous
matter distribution, let us spend some time by examining the theory. On cosmological scales, the
path of a photon is continuously deflected by the gravitational potential φ along the line-of-sight,
as light rays cross many over/under-dense regions at different locations. Therefore, the thin lens
approximation does not hold, and one needs to fully integrate the trajectory of rays along their
path.

For a given source plane at comoving distance χs, the source plane position of a ray, initially
observed at position ~θ is given by the continuous implicit (Voltera) integral equation (Jain &
Seljak 1997b):

~β(~θ, χs) = ~θ − 2
c2

∫ χs

0
dχ χs − χ

χs χ
~∇βφ

(
~β(~θ, χ), χ

)
. (2.41)

To first order, one can evaluate the gravitational potential along an unperturbed path becomes:

~β(~θ, χs) = ~θ − 2
c2

∫ χs

0
dχ χs − χ

χs χ
~∇θφ

(
~θ, χ

)
. (2.42)

This is known as the Born approximation, which is common to many diffusion problems of
physics. It neglects the continuous deviation of light rays. It is generally an excellent approximation
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for small deviations, ie in the weak lensing regime. Note that the Born approximation prevents
any possible coupling between two deflectors at different redshift, which can occur when a far lens
is already lensed by a nearby structure, and hence becomes more (or less) efficient at deflecting
even more distant sources than it would be in the absence of the near source. An interesting
property of the Born Approximation is that the relation between ~β and ~α can be reduced to an
effective thin lens identical to the eq. (2.1), allowing the definition of an effective convergence.

When the approximation does not hold, the relation between ~β and ~α can no longer be
reduced to a unique effective potential. Some curl-component may be generated, implying that
the magnification tensor is no longer symmetric but requires the addition of a rotation term and
so-called B-modes in the shear field. In this more general framework, the magnification tensor
should be rewritten:

Aij(~θ) =

 1− κ− γ1 −γ2 − ω

−γ2 + ω 1− κ+ γ1

 . (2.43)

The image plane positions where ω 6= 0 are closely related to the lines of sight along which some
substantial lens-lens coupling may have occurred.

The multiple-lens plane approximation

One common way to propagate light rays through a matter distribution is to sub-divide the
line-of-sight into a series of lens planes with a small redshift interval. Thus, the light deflection
occurs at each intersection of a light ray with a lens plane. Light rays are then deflected plane by
plane from the observer to a fiducial source plane, as illustrated in figure 2.11. Hence, we ensure
that all light rays converge to the observer, i.e. light rays are shot back. Between lens planes,
light-rays follow straight lines.

We assume here that the lens planes are parallel to one another. This means that sky curvature
is assumed to be negligible. This approximation is valid for small angular opening of the light
cone (on the order of a few degrees). Instead of lens plane, spherical lens must be considered for
large sky lensing predictions, on which spherical geometry is applied to compute lensing quantities
(Fosalba et al. 2008; Das & Bode 2008; Teyssier et al. 2009; Becker 2013; Takahashi et al. 2017b;
Kilbinger et al. 2017).

The formalism of the multiple lens plane approximation is well defined in the literature (Bland-
ford & Narayan 1986; Schneider et al. 1992; Jain et al. 2000; Hilbert et al. 2009). Mathematically,
one can re-write the integral of the light-ray deflection Eq. 2.41, by a direct summation of each
small deflection induced by each lens plane:

~βk = ~θ −
k−1∑
n

Dnk

Dk
~αn(~βn) , (2.44)

where ~θ is the angular position of a light-ray on the first lens plane, and ~βk is it position on the
lens plane k. The angular diameter distance from the observer to the k-th lens plane is noted Dk,
and Dnk represents the angular diameter distance between the n-th and k-th planes. The initial
conditions are defined as ~β0 = ~β1 = ~θ, and light rays started from the observer plane without
initial deflection. This equation is recursive, and can be simplified by accounting only for the last
two lens planes, such that:

~βk =
(

1− Dk−1 Dk−2;k
Dk Dk−2;k−1

)
~βk−2 + Dk−1 Dk−2;k

Dk Dk−2;k−1
~βk−1 − Dk−1;k

Dk
~αk−1(~βk−1) . (2.45)
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.

Figure 2.11 – Schematic view of the light
ray propagation through multiple lens planes
where Dij is the angular diameter distance be-
tween the i- and j- lens planes. As illustrated,
light rays are shooting back from the observer,
with the first coordinates ~θ, to the source. For
each i-lens plane, we compute the deflection
field ~αi at the true position of the light ~βi, and
therefore light rays are recursively deflected
plane-by-plane.

Likewise, the magnification tensor can be re-expressed as a propagation of lens quantities (shear
and convergence) by conserving the information of the last two planes.

Akij =
(

1− Dk−1 Dk−2;k
Dk Dk−2;k−1

)
Ak−2
ij + Dk−1 Dk−2;k

Dk Dk−2;k−1
Ak−1
ij − Dk−1;k

Dk
Uk−1
ik Ak−1

kj . (2.46)

where Ukij is the shear tensor evaluated on the plane k, such that:

Ukij = ∂2ψk(~βk)
∂βki ∂β

k
j

= ∂αki (~βk)
∂βkj

. (2.47)

This recursive form is numerically more tractable than a direct summation, because we do not
have to store all the lensing information along the light-of-sight.

For comparison, the light rays propagation in the Born approximation can be numerically
made following this formulation:

~βk = ~θ −
k−1∑
n

Dnk

Dk
~αn(~θ) ≡ ~θ − ~αeff(~θ) . (2.48)

In this case, the deflection angle is always evaluated at the unpertubated position θ. This
simplification is equivalent to a single effective lens plane with an effective deflection ~αeff(~θ), as
described above. Likewise, the distortion matrix can also be re-written in the Born approximation
such that:

Akij(~θ) = δij −
k−1∑
n

Dnk

Dk
Unij(~θ) . (2.49)

Properly tracing the light rays propagation has the advantage of taking the lens-lens coupling
into account (the coupling between structures at different distances). This level of precision have
been explored into large N-body simulations (Hilbert et al. 2009; Giocoli et al. 2016b). It results
that the Born approximation is accurate enough (sub-percent) to predict the two-point shear (or
convergence) statistics up to small scales. Note that beyond the plane approximation, ray-tracing
can be also performed by modelling the 3-D gravitational potential (e.g. Couchman et al. 1999;
Barreira et al. 2016).



Chapter 2. Gravitational lensing 63

2.3.2 Building the deflection field by mapping the projected mass

Simulations of weak lensing, either into a single- or multiple- lens plane approximation, requires a
method to build lensing quantities on a plane. There are multiple ways to construct the deflection
field in the lens planes. Depending on the simulation itself, the most basic method is to map the
projected density into a plane, and then to solve the differential equation ~∇.~α = 2κ in Fourier
space.

Particles projected onto a grid

The previous simulations of gravitational lensing from N-body simulations smoothed the projected
particle distribution on a grid using fixed kernels: Nearest-grid-point, Cloud-In-Cell, Triangular
Shape Cloud, polynomial or Gaussian (See Appendix A) (e.g Wambsganss et al. 1998; Vale &
White 2003; White & Vale 2004; Pace et al. 2007).

Any smoothing kernel W has to be normalised, such that:
∫
d~xW (|~x− ~xi|, li) = 1. The size of

the kernel li can be either fixed or adaptive. Adaptive smoothing will be discussed. The smoothed
projected density of Npart particles, is computed such that:

Σ(~x) = mp

A

Npart∑
i=1

W (|~x− ~xi|, li) , (2.50)

where A is the area of the projected mass map.

Note also that Bradač et al. (2004) proposed an alternative technique to compute the surface
density maps based on the Delaunay tessellation method.

Particle Noise

As density is sampled with a limited number of point masses (particles), some shot noise is present.
In fact, this discreteness noise inherent to particle distributions induces an additional small-scale
lensing signal. Depending on the method used to construct the projected density field, one can
estimate the contribution of particle shot noise in the computed lensing quantities (Vale & White
2003; Rau et al. 2013; Angulo et al. 2014). The noise level can be evaluated depending on the
particle number, the particle size and the choice of smoothing algorithm. The particle noise on
the surface mass density can be expressed such that:

σ2
Σ(~x) =

m2
p

A2

Npart∑
i=1

W 2(|~x− ~xi|, li) . (2.51)

Derivation of the lensing quantities

In the grid-based approach, lensing quantities (gravitational potential, shear, deflection) are
derived from the 2-D projected map using Fast Fourier Transforms (equations 2.17), which assume
periodic boundary conditions. In particular, it is crucial to construct the deflection angle field to
deviate light-rays. Knowing the deflection-angle field, we must then interpolate its values into the
grid for each light-ray position. This is usually done with a bi-linear interpolation scheme.

Smooth particle lensing (SPL)

Li et al. (2006b) was one of the first to adapt the smoothing length of particles as a function of
local density in order to improve the contrast of the computed lensing signal. The smooth particle
lensing (SPL) technique, developed by Aubert et al. (2007), efficiently simulates gravitational
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lensing from N-body simulations using a density-dependent particle smoothing. It can thus
efficiently compute lensing quantities from a particle distribution by using a 2D-Tree domain
decomposition.

This method is based on the fact that at a given point ~r (or a light ray position), one
can compute the lensing signal by summing all particle contributions on its point, such as
κ(~r) =

∑
κi(~r) Each mass particle is described by a 2-D Gaussian function in the projected

density, such that:

κ(~r) = mp

2πσ2Σcrit
exp

(
− r2

2σ2

)
, (2.52)

where r is the distance between the light-ray position and the particle, and the width σ is
adaptively assigned. The potential, deflection angle, and shear associated to a single particle
are also expressed by smoothing kernels. For example, the associated deflection angle of a given
particle is:

α(~r) = mp

πΣcrit

exp
(
− r2

2σ2

)
− 1

r
. (2.53)

This method thus computes lensing quantities (convergence, shear, potential, deflection) without
the need for Fast Fourier transforms or any deflection-angle interpolation at each light ray-position.

To efficiently sum all particle contributions on a single position, we use a 2-D Tree of particle
distribution. Going down the 2-D Tree structures, particles away from a given position are
grouped into a single massive particle while closer particle are individually summed. This is
illustrated figure in 2.12. For a given light ray, the smoothing length is constant for all particles:

σ =
(
Nσrsph
Nsph

)
, (2.54)

where rsph is the distance from the light-ray to Nsph-th nearest neighbour particle.

We thus have two free parameters Nsph and Nσ, the latter of which is a control parameter. Note
that the approximation of a constant smoothing length by rays is not properly correct, but seems
to be sufficient and reduces computational time which becomes of the order of Nray log(Npart).
This method remains powerful to avoid FFT and to preserve the small scale features.

Based on this approach, high performance lensing codes have been performed, such as the
GLAMER code (Metcalf & Petkova 2014; Petkova et al. 2014). Weak lensing forecasts were then
proposed by running this type of code on large N-body simulation. For example, Giocoli et al.
(2016b) have performed light-cones on the Big MultiDark simulation and traced light-rays in the
multiple lens plane approximation with GLAMER. Their predictions of cosmic shear 2-points and
3-points statistics and halo-galaxy lensing are consistent with theoretical model. In grid-based
approaches, Hilbert et al. (2009) traced light-rays through the Millennium simulation by using
an adaptive smoothing kernel to quantify the impact of Born corrections in cosmic shear and
galaxy-galaxy lensing.

Such methods remain restricted to Lagrangian simulations. Indeed, by considering different
particle masses in hydrodynamical simulations, the Tree structure becomes hardly tractable. One
must consider a 2-D Tree for each particle types (DM, star, gas, agn) to properly evaluate their
separate contributions. This drastically increases computational costs.

To avoid this problem, I used the resolution level of the simulation to find the correct smoothing
length. As explained in the chapter 4, I performed ray-tracing over an AMR grid. By recovering
the resolution level around a given particle position from the neighbouring gas cells, I can bypass
the time-consuming step of building a tree in the distribution of particles.
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Figure 2.12 – A visual representa-
tion of how the space is splitting by
a 2D-tree over a particle distribution.
The opening angle criterion is also illus-
trated. Close to the region of interest
(light ray position) the cells are opened,
whereas particles distant to it position
are grouped into larger cells. Credit to
Aubert et al. (2007).

2.3.3 The construction of the deflection field by using the acceleration field

An alternative approach used in this thesis is to compute the deflection from the gravitational
acceleration field (as detailed in chapter 4). Indeed, if the gravitational force computed in a
numerical simulation is kept as part of its outputs, one can compute the deflection field by
integrating the transverse component of the acceleration along the light of sight, according to Eq.
(2.5).

I present this method for grid-based numerical simulation (either regular or refined). To do
so, we have to consider, for each light-ray, the cells which intersect the ray, and compute the
intersection length along the line-of-sight li. It is illustrated in figure 2.13.

Knowing the cell size δi and its orientation with respect to the line of sight, li is deduced with
a simple Oriented-Box-Boundary (OBB) algorithm (e.g. Akenine-Möller et al. 2008). Indeed, fast
algorithm are proposed in the literature to compute the intersection between a ray and a box which
are not oriented perpendicularly to the ray, referred as Ray-OBB intersection algorithm. Our case
is simpler because simulation cells are cubic, and are assumed to share the same orientation (flat
sky approximation). In addition, light rays are parallel to the line-of-sight. One can therefore
factorise out dot products between the normals to cell and the line of sight. The Ray-Cube
intersection is illustrated in figure 2.14.

Finally, the deflection angle at a given position ~θ, can by computed by summing the gravita-
tional force on cells weighting by their intersection lengths, such that:

~α(~θ) = 2
c2

∑
i∈V(~θ)

~∇⊥φi(~θ) li , (2.55)

where V(~θ) denotes the projected vicinity of a sky position ~θ.
This method has the advantage of preserving the gravitational force that was used when

evolving the simulation. In particular, the way shot noise is smoothed out in the simulation to
recover the acceleration field from a mixture of Lagrangian particles (and Eulerian gas cells) is
faithfully respected in the raytracing. In other words, the force felt by photons is the very same
force as the one felt by particles in the simulation.

Furthermore, this method has the advantage to not first compute the convergence κ to then
perform Fourier transforms. We do not need to assume periodic boundary conditions at the
edge of the deflection map. Indeed, the force field contains information from regions outside
the aperture considered, and so its boundaries are more valid than a deflection field obtained
by mapping the density. Finally, the convergence and shear fields can be computed from the
deflection field in real space via finite differences.
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Figure 2.13 – Schematic view of an
intersection between a light-ray and
the simulation grid, which have been
recorded in slices of the light-cone.
The intersection length between a ray
and a cell is noted li.

Figure 2.14 – Schematic view of the inter-
section between a ray and an orriented cubic
box. The cube is defined by its orthonormal
basis vectors (~u1,2,3), its center, and its half-
size L. The ray is defined by its origin and
its direction ~d.

2.4 Conclusion

In this chapter, I presented a brief review of gravitational lensing theory, along with classical
lensing observables in the weak regime. I also presented some of the generic numerical methods I
will use to predict the lensing signal from N-body and hydrodynamical simulations, which are
implemented in the next chapters. In fact, we have seen that thanks to future weak lensing
experiments such as the Euclid mission, weak lensing statistics analyses will be possible with an
unprecedented accuracy (1.5 billion galaxies shapes for the Euclid mission) and down to small
non-linear scales. In this context, predictions of cosmic shear and GGL have to be done with
state-of-art hydrodynamical simulations (to quantify the significant impact of baryonic physics
on these observables at intermediate and small scales). This is the research I address in chapter
4. In addition, upcoming wide weak lensing surveys will provide the opportunity to drastically
improve statistics analyses on galaxy clusters and large scales structures. Sartoris et al. (2016)
estimated that Euclid will detect around 2× 105 galaxy clusters with a high detection thresholds
(5σ galaxy overdensity). Therefore, in chapter 3, I present my study of the connection between
the cosmic web and clusters using weak lensing as a probe and quantified on N body simulation
the future detectability of this weak lensing signal in the context of Euclid.



Chapter 3

Multipolar moments of weak lensing
signal around clusters

Weighing filaments in harmonic space

3.1 Context

In this chapter, I investigate the connection of galaxy clusters to the comic web using the weak
lensing signal. Although the global filamentary structure of the Universe is well understood, a
detailed study of its morphology allows us to further probe the underlying cosmology and improve
our understanding of structure formation and evolution (Codis et al. 2018). It is particularly
interesting to characterise cosmic filaments with lensing, an unbiased tracer of mass, because they
are mainly composed of dark matter.

At the vicinity of clusters, the density contrast of filaments is more important; it is therefore
the ideal place to detect them via weak lensing. However, detecting individual filaments with
weak lensing is challenging given the weakness of their corresponding shear field. Only massive
bridges of matter between two clusters have so far been detected by WL with some significance
(see e.g. Dietrich et al. 2012). The WL signal can also be enhanced using various algorithms and
methods described in the literature (see e.g. Maturi & Merten 2013), but its detection remains
difficult on an object by object basis. In addition, the gravitational potential induced by the
cluster has to be carefully modeled, in order not to over-estimate the filaments’ detection. As a
workaround, one can attempt to stack the WL signal induced by cosmic filaments. One possible
avenue is the aperture multipolar moments of WL, as described by Schneider & Bartelmann
(1997). It relies on a multipolar decomposition of the mass distribution to quantify asymmetries
directly from the shear signal. An illustration of the multipolar decomposition is presented in
figure 3.1.

Figure 3.1 – An illustration of the multipolar decomposition as a function of order m. For
example at the order m = 0, the matter distribution is isotropic (monopole), whereas the order
m = 1 is the dipole, m = 2 the quadrupole, etc.

67
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3.2 Paper presentation

I study the prospect of measuring with weak lensing the azimuthal dark matter distribution
around galaxy clusters inside and outside their virial radius. I consider a sample of galaxy clusters,
which I extracted from the PLUS1 DM-only cosmological simulation made available to me by S
Peirani at IAP.

In order to extract the angular symmetries around clusters, we considered the aperture
multipole moments Qm of this convergence field introduced by Schneider & Bartelmann (1997)

Qm =
∫ ∞

0
dr r1+mwm(r)

∫ 2π

0
dϕ eımϕκ(r, ϕ) . (3.1)

where wm(r) is a radial weight function with a compact support so that wm(r) vanishes beyond
some radius Rmax and below some inner radius Rmin. The inner and outer cluster environments
that we chose to analyse are defined as [0.25− 0.5]Rvir and [1− 4]Rvir, respectively.

Because filaments are not very dense and weak lensing signal is generally a low signal-to-noise
measurement, the moments cannot be directly measured on a cluster-by-cluster basis, which
means that stacking many clusters will be needed for the signal to show up. Since clusters are not
particularly aligned with one another, a crude stacking of the moments will completely wash the
information out by symmetry. Instead, we got around this problem by stacking the modulus of
these moments, and so as to obtain an harmonic power spectrum of multipolar moments 〈|Qm|2〉.
This is the main observable that we explored in the paper. In particular, we extensively describe
the amplitude and shape of these spectra as a function of multipolar orders m, as a function of
cluster mass, radius and redshift, as a way to diagnose the shape and connectivity of halos. We
also compare those spectra with similar spectra derived around random locations in the simulation
box instead of the around cluster. The rest of this section summarises our main findings while
Section 3.3 presents the technicals aspects and numerical tools, which I developed for this work
and are not described in the paper.

Multipolar moment spectra computed around clusters present an m-independent boost of
spectral amplitude compared to spectra computed around random locations. This first discrepancy
between multipolar moment predictions from linear and non-linear regimes, is understood as arising
from the non-linear evolution of the density field around density peak. Indeed, as gravitational
clustering builds up, clusters attract matter in their vicinity. This induces an amplification of the
density contrast around cosmic nodes, where the density fluctuations are locally evolving more
rapidly. The overall excess of harmonic power near density peaks is understood and theoretically
quantified by using the Zeld’ovich approximation and the spherical collapse.

Besides the overall boost of amplitude at all multipole orders, the quadrupole (m = 2) prevails
in cluster core relatively to the background density field. This is consistent with recent studies
which use elliptical or triaxial models to describe dark matter haloes shape (Warren et al. 1992;
Jing & Suto 2002; Despali et al. 2014). In fact, more massive haloes present a stronger harmonic
power excess at quadrupole, which tends to indicate a stronger ellipsoidal symmetry on the core
of haloes.

At the outskirts of clusters, harmonic distortions are spread on small angular modes, and thus,
in contrast to the result of of the companion paper, appears to trace the non-linear sharpening of
the filamentary structures. This harmonic power excess shows a mass dependence: more massive
clusters provide stronger harmonic distortions, spread on larger angular scales. Theoretically,
massive haloes are supposed to be connected to a larger number of filaments, as found by Pichon
et al. (2010); Aragón-Calvo et al. (2010) and Codis et al. (2018). Ours results are in agreement
with this global picture of cluster evolution: massive haloes are more likely to be in their early

1http://www2.iap.fr/users/peirani/PLUS/plus.htm

http://www2.iap.fr/users/peirani/PLUS/plus.htm
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formation phase, and their shape is typically distorted by major mergers or accretion along the
preferred direction set by their connecting filaments. Conversely, lower-mass haloes are formed
at higher redshift and have had more time to relax. They typically lost the memory on their
accretion history, and therefore the preferential directions induced by recent merging events.

To explore the evolution of cluster shape in the cosmic history, the statistics of 〈|Qm|2〉 are
investigated for cluster progenitors over the cosmic time. I assume that the most massive clusters
at different redshifts are progenitors. Their multipolar moments spectra are not significantly
changed from z = 0.9 to z = 0. This suggests that the shape of the most massive haloes is fixed
at early times, and keeps the memory of its initial conditions during its formation collapse (Bond
et al. 1996). One might ask if the shape of lower massive clusters are changing with cosmic time.
In fact, the disconnection of the halo from the cosmic web, induced by dark energy, should occur
for less massive clusters (Pichon et al. 2010). As expected, we observe a decrease of the harmonic
excess with the time, for lower massive haloes in both internal and external regions.

Finally, we also investigate the correlation of angular shape of galaxy clusters at small and
large scales. To do so, I cross-correlated the multipolar moments for the two different annuli:
〈Qm(R1)Q∗n(R4)〉. It appears that only orders m = n = 1, 2, 4 present a significant correlation.
This is probably because, typically, two branches of filaments are connected to a node of the
cosmic web on small scales (Pogosyan et al. 2009). Further away from the nodes, bifurcation
points appear and therefore increase the number of filaments.

In the last section of the article, I estimate the overall detectability of multipolar moment
spectra as a function of the number of stacked clusters, cluster redshift and cluster mass. The
main noise sources in the measurement of multipolar moments from shear data are: the noise
induced by the intrinsic ellipticity of galaxy (shape noise), the additional lensing signal induced
by the Large Scale Structure along the line of sight (LSS noise), and the variance of the harmonic
power spectra due to the finite number of clusters.

Finally I model the detection of 〈|Qm|2〉 statistics for the upcoming Euclid survey (Laureijs
et al. 2011; Sartoris et al. 2016). By estimating the number of detected clusters for a given range
of redshift and mass, I estimated the expected signal-to-noise ratio on multipolar moments for
both internal and external regions of galaxy clusters. Due to their abundance, lower mass clusters
presented an higher signal-to-noise ratio. In addition, measurement of multipolar spectra on
closest clusters is better due to the lowest noise contamination induced by the matter on the
line-of-sight. The Euclid mission should provide all the necessary information for studying the
cosmic evolution of the connectivity of the cosmic web around lensing clusters, and the azimuthal
shape of cluster core, by using multipolar moment up to m ∼ 8 and z ∼ 0.75.

This study is compared with a companion paper (Codis et al. 2017), presented in Appendix
B, in which the aperture multipolar moments are investigated in the linear and weakly non-
linear regimes, assuming that clusters are simply the peaks of a 2D Gaussian Random Field. In
particular, this complementary study shows that the amplitude of the harmonic spectra (with
and without the condition to be centred on the peak) appears to be robust w.r.t. the linear
growth of the structures. In addition, the harmonic distortions are robust with respect to the
peak condition in linear regime for m > 3.

3.3 Details on the preliminary numerical work

I detail now different numerical processes and verifications that I developed, and which are not
given in the paper.



70 3.3. Details on the preliminary numerical work

3.3.1 The cluster sample

The cluster sample was first detected in the simulation box by S Peirani via a Friend-of-Friend
(FoF) algorithm, which computes the mass of linked particles and the position of the center of
mass of this collection of particles.

I extracted clusters from the simulation box by considering all the DM particles within a sphere
centred on density peaks defined by the FoF catalogue. I performed numerical optimisations to
improve on the estimate of the clusters’ centre using the shrinking sphere method: starting with
a large sphere centred on the FoF halo, I re-define the halo center as the center of mass and I
reduced the radius of the sphere by 5%. This process is recursively repeated until convergence
of the center’s location. This step is necessary because the center derived by FoF algorithm is
sensitive to the presence of massive substructures inside dark matter halos, and thus, it is not
located at the density peak which is a better choice for the center 2. As illustrated in figure 3.2,
the FOF center (cyan point) differs from the one obtained of applying the shrinking sphere center
refinement (magenta point).

In details, I have explored the impact of shrinking sphere parameters (the starting radius
and the rate of sphere diminution) on the final center location, to ensure the convergence of
this method. I tested the robustness of the shrinking sphere center by performing the radial
density profile of some individual galaxy clusters. It produces a coherent radial density profile, in
agreement with the NFW profile presented in figure 3.2.

By fitting an NFW profile, I obtained the concentration and the scale radius of clusters. This
step is a validation of my mock cluster sample. I finally estimates the Virial mass and radius for
each cluster. As an example, a typical 2-D density (or convergence) map of a cluster-mass dark
matter halo in the PLUS simulation, is presented in the top left panel of figure 3.3, which also
shows the different annuli considered, R1 and R4. One can also see maps of the corresponding
lensing quantities for this cluster: the two shear components, the lensing potential and the
deflection components. They are computed with Fast Fourier Transforms of the converge

3.3.2 Multipolar moments for test mass distributions

After extracting the cluster sample at different redshifts, I computed the multipolar moments by
a direct summation of the dark matter particle contribution of each cluster. This step requires
parallelisation, implemented in openmp.

In addition, I modelled and subtracted off the shot noise induced by the DM particles.
An example of the shot noise particle and its impact on the multipolar moments are illustrated

figure 3.4 (left panel). In this example, I consider a typical matter distribution with an m = 3
angular symmetry, so that the surface density obeys Σ(R, θ) = Σ0 cos(3θ). I also compute the
multipolar moments for an elliptical mass distribution whose radial profile obeys:

Σ(R) = Σ0
2G

R2
cut

R2
cut −R2

core

 1√
R2
core +R2 −

1√
R2
cut +R2

 ,

where Rcut and Rcore are two scale radii, in order to model the smoothly truncated Pseudo
Isothermal Elliptical Mass Distribution (Kassiola & Kovner 1993, Kneib et al., 1996). As expected
and illustrated in figure 3.4 (right panel), an elliptical mass distribution only generates even
modes, especially Similarly, one can consider a mass distribution of the form

κ = κ0
(1 + s2(1 + ε cos(2θ)))ν ,

2Note that identifying the center of galaxy clusters is by itself a complex problem as it can be measured
observationally as the Brightest Cluster Galaxy, the peak of X-ray emission, or the weak lensing convergence map
or SZ emission. Typical offsets . 10% of the virial radius are commonly found between those observational choices
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Figure 3.2 – Left panel: Example of the two different centres: FoF center in cyan and the
shrinking sphere center in magenta for a massive cluster at z = 0. The cumulative mean density
profile of this cluster is shown on the right panel.
The NFW profile is also fitted on the density profile of the halo. As illustrated, the Virial radius
is defined as the distance at which ρ(< rvir) = δvirρcrit.

which has been extensively studied by Schneider & Weiss (1991), since it can easily be Taylor
expanded around small values of the ellipticity ε. Here s = r/rc, is the radius expressed in units
of a particular core radius scale rc. These authors show that the expansion generates terms

κ = κ0
(1 + s2)ν

[
1 +

∞∑
m=1

kν
m!

(
ε

s2

1 + s2 cos(2θ)
)m]

,

where the expression for kν can be found in Schneider & Weiss (1991). We readily see the 1/m!
fall off of modes and the prevalence of the quadrupole, characteristic of elliptical symmetries.
More precisely, on scales r � rc, it can be shown that Q2 = ενQ0, with ν ' 1/2 for nearly
isothermal mass distributions.

The impact of any mis-centering on the multipolar moments is another important effect
that I quantified. Indeed, it produces odd multipolar moments, and in particular, increases the
amplitude at the order m = 1. To do so, I apply random shifts to the center with respect to the
reference fiducial shrinking sphere location and computed the corresponding multipolar moments.
These offsets were uniformly drawn in various ranges depending on Rvir. figure 3.5 shows the
resulting multipolar moment spectra for various amplitudes of mis-centering, in the two annuli
considered in the paper (left and right panel). Mis-centering affects the shape of the multipolar
moments at small scales, in the internal region of clusters (R ∈ [0.25− 0.5]Rvir). For a sensible
range ±0.1 Rvir of offsets, even modes are not affected, but the deficit of power for odd orders is
suppressed. This means that multipole moments could in principle be used to quantify the quality
of the centering procedure. If we further increase this mis-centering, the complete shape of the
power spectrum is distorted at all orders. Considering the external annulus (R ∈ [1.0− 4.0]Rvir),
any realistic offset (. 0.1 Rvir), does not significantly impact the multipolar spectrum. I only
show the distortions produced by large offsets. Again, even order are less affected.

I observe a substantial amplitude for m = n = 1 for the cross-correlation between the internal
and external annuli (i.e. 〈Qm(R1)Q∗n(R4)〉). This is directly due to the condition to be centred
on a density peak: this correlation is affected by any mis-centering of clusters. As expected,
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Figure 3.3 – The different lensing quantities of a massive simulated cluster are presented
here. The convergence, the shear tangential and rotational, the 2-D potential and the deflection
tangential and rotational are noted κ, γt, γ×, ψ, αt, α×, respectively.

by computing this cross-correlation with various mis-centering, I observe that the amplitude of
〈Q1(R1)Q∗1(R4)〉 reduces as the mis-centering increases.

3.4 Overview of my different contribution

I carried out the post-processing of the simulation from the cluster sample extraction to the
resulting harmonic spectra, including all numerical aspects described above. I also made the
preliminary investigation of 〈|Qm|2〉 statistics in section 2.2.1, by integrating the linear and
non-linear power spectra of the density contrast from the Boltzmann CLASS code (Blas et al.
2011; Lesgourgues 2011). The theoretical modelling of the power spectral amplitude boost α
(section 2.3 and Appendix A) were performed by Sandrine Codis and Raphael Gavazzi. The
introduction, discussion and interpretation of the results are carried by all of the authors. In
section 4, the covariance matrix of the multipolar moments (equation 40, and the detail of the
calculation given in Appendix C) the theoretical development were initiated by Raphael Gavazzi
and validated by the other co-authors. I numerically performed the estimation of the different
noise sources, and of the expected number of observed clusters by the Euclid mission (as function
of mass and redshift). My implication on the companion paper was minor: it is the result of
interaction with Sandrine Codis about the difference behaviour of 〈|Qm|2〉 statistics in linear and
non-linear regimes, by comparing and discussing our results. I improved my theoretical skills and
my comprehension of density field statistics thanks to this collaboration in this second paper.

3.5 Perspectives

In this paper, I present a new statistical estimator based on harmonic decomposition of the WL
signal around clusters. I propose to use this estimator to probe the filamentary structures around
clusters at large scales, along with the azimuthal shape of cluster core. I find that shear lensing
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Figure 3.4 – Left panel: The multipolar moments |Qm|2 computed for a toy particle distribution
(illustrated in the top). The angular symmetry on the projected density induces a high multipolar
amplitude at m = 3. In addition, the particle shot noise also creates multipolar moments spread
over all m order. As shown in the paper below, the particle noise corresponds to a constant
projected density power spectrum and thus can be estimated and subtracted off.
Right panel: The multipolar moments |Qm|2 computed for an elliptical mass distribution (illus-
trated in the top insert). In this case, the shot noise is already subtracted. One can see the
prevalence of the quadrupole m = 2 and that only even modes are non-null, with a fast ∼ 1/m!
fall-off.
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Figure 3.5 – Multipolar moment spectra of clusters for the mass bin M1 at the two scales in
the annuli R ∈ [0.25− 0.5]Rvir (left panel) and R ∈ [1.0− 4.0]Rvir (right panel). The two panels
show the difference between a measurement of the spectrum with a good centering, compared
to a measurement on clusters with a random offset of the center position. We observe the same
effects for the other mass bins.
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surveys can be used to measure the angular distribution of the convergence field around clusters of
galaxies, to constrain their connectivity to the cosmic web. Indeed, Codis et al. (2018) has shown
that the number of filaments connected to a given cluster is a natural probe for the growth of
structure and the nature of dark energy in particular. The disconnection of filaments with cosmic
time is driven by both gravitational clustering and dark energy, the latter of which stretches and
disconnects neighbouring filaments through the increased expansion of voids. The multipolar
moments of the shear signal therefore have to be predicted with different cosmologies, and with
models involving different type of Dark Matter, in order to be measured with future lensing data
sets, such as Euclid photometric survey.

At cluster core scales, the multipolar moment statistics can be affected by both the nature
of dark matter (e.g. self-interacting dark matter should reduce the quadrupole) and by the
baryonic physics. Complementary to this study, for the aforementioned scales, one must carry out
hydrodynamical simulations to take the impact of baryonic component on the azimuthal shape of
clusters into account. Indeed, connectivity is also paramount to understand galactic assembly at
smaller scales. Cosmic filaments have a baryonic continuation within dark haloes, which connect
closely the cosmic environment to their galaxies. Beyond the number of connected filaments, the
mass load, geometry and advected torques are also worth investigating.

At these scales, the measurement of multipolar moments statistics can be already achieved on
current shear surveys by considering a typical aperture of R = [0.1− 1]Rvir. Such measurements
on ground-based observations will be presented in a future work. For instance, Darragh Ford
et al. (2018, in prep.) found that AGN feedback disconnects filaments, which in turn quenches
bright central galaxies, by studying the star-formation efficiency of these galaxies at fixed group
mass in the COSMOS catalogue.

Finally, this formalism can be applied to derive results for either cosmological observables,
such as the galaxy distribution, or the X-ray emission. By computing the moment on different
galaxy population, one can explore the relative bias of these populations inside filaments and into
cluster haloes. Similarly, the multipolar moment of the X-ray emission can be easier measured
(higher signal amplitude), and can be used to characterise warm-hot ionised baryons at the vicinity
of galaxy clusters.
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ABSTRACT

Context. Upcoming weak lensing surveys such as Euclid will provide an unprecedented opportunity to quantify the geometry and
topology of the cosmic web, in particular in the vicinity of lensing clusters.
Aims. Understanding the connectivity of the cosmic web with unbiased mass tracers, such as weak lensing, is of prime importance to
probe the underlying cosmology, seek dynamical signatures of dark matter, and quantify environmental e↵ects on galaxy formation.
Methods. Mock catalogues of galaxy clusters are extracted from the N-body PLUS simulation. For each cluster, the aperture mul-
tipolar moments of the convergence are calculated in two annuli (inside and outside the virial radius). By stacking their modulus, a
statistical estimator is built to characterise the angular mass distribution around clusters. The moments are compared to predictions
from perturbation theory and spherical collapse.
Results. The main weakly chromatic excess of multipolar power on large scales is understood as arising from the contraction of the
primordial cosmic web driven by the growing potential well of the cluster. Besides this boost, the quadrupole prevails in the cluster
(ellipsoidal) core, while at the outskirts, harmonic distortions are spread on small angular modes, and trace the non-linear sharpening
of the filamentary structures. Predictions for the signal amplitude as a function of the cluster-centric distance, mass, and redshift are
presented. The prospects of measuring this signal are estimated for current and future lensing data sets.
Conclusions. The Euclid mission should provide all the necessary information for studying the cosmic evolution of the connectivity
of the cosmic web around lensing clusters using multipolar moments and probing unique signatures of, for example, baryons and
warm dark matter.

Key words. galaxies: clusters: general – large-scale structure of Universe – gravitational lensing: weak – methods: numerical –
methods: statistical

1. Introduction

The large-scale structures of the Universe (hereafter LSS) have
been observed for more than twenty years, first by the CfA cat-
alogue (de Lapparent et al. 1986), and later by large spectro-
scopic surveys (e.g. the 2dF and SDSS surveys: Colless et al.
2003; Gott et al. 2005). These surveys emphasised a distribution
of galaxies that is not homogeneous, but concentrated along fil-
aments, sheets, and presents large underdense regions (voids).
Structures grow highly anisotropically from primordial density
fluctuations of dark matter under the e↵ect of gravity. Large
N-body simulations reproduce this picture, where dark matter
particles arrange themselves in a network of filaments. Mas-
sive haloes are located at the intersection of filaments, and
grow via successive merging as well as continuous accretion
of surrounding matter following some preferential directions
(Davis et al. 1985; Klypin & Shandarin 1993; Bond et al. 1996;
Bond & Myers 1996).

The detection and study of cosmic filaments through ob-
servations and numerical simulations is a fundamental step in
refining our understanding of structure formation history and
cluster evolution. Indeed, filaments have a significant impact on
the mass budget of the Universe, as they account for ⇠40 per

cent of all mass at z = 0 (Aragón-Calvo et al. 2010). Their dy-
namical evolution probes the underlying cosmological model.
They also play an important environmental role on galaxy for-
mation and galaxy properties (Hahn et al. 2007; Sousbie et al.
2008; Pichon et al. 2011; Codis et al. 2012; Malavasi et al. 2017;
Laigle et al. 2017). However, given the low-density contrast of
filaments, identifying them in observations has remained a chal-
lenge and, in this context, several observables have been devised
to probe their mass distribution.

One of the main observables that has been used to detect
filaments is X-ray emission, induced by the warm hot inter-
galactic medium (WHIM, Cen & Ostriker 1999). Detection re-
mains di�cult because X-rays could either come from the inter-
galactic medium, or past cluster mergers (e.g. Kull & Böhringer
1999; Durret et al. 2003), and often needs to be supported
by other observables (Eckert et al. 2015). Recently, the Planck
satellite has also claimed detection of the Sunyaev-Zeldovich
e↵ect of the WHIM in between pairs of galaxy clusters
(Planck Collaboration Int. VIII 2013). Some studies reported
the detection of filaments in the distribution of galaxies
(Ebeling et al. 2004; Pimbblet et al. 2004). Yet this method is
limited to relatively low redshifts (z < 0.4) and does not
probe the physical properties of filaments, given that its main
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components are the WHIM and dark matter. Zhang et al. (2013)
proposed an algorithm to study the photometric properties of fil-
aments by stacking galaxies’ population in cluster pairs.

Gravitational lensing stands as a powerful complementary
tool to investigate the entire structure of filaments because it
probes dark and luminous matter, regardless of its dynami-
cal state. However, early filament detections by weak lens-
ing (WL) are still controversial. Some attempts have been
made to detect them in between galaxy clusters (Clowe et al.
1998; Kaiser et al. 1998; Gray et al. 2002; Gavazzi et al. 2004;
Dietrich et al. 2004; Heymans et al. 2008), but it is not clear
how robust these results are against residual systematic galaxy
alignments. Progress in mass reconstructions from WL (alone
or in combination with strong lensing) have recently led to de-
tections confirmed by other observables (Dietrich et al. 2012;
Jauzac et al. 2012; Higuchi et al. 2017). Yet, direct measure-
ments from individual (massive) filaments remain sparse due
to the weakness of the corresponding shear field. To compen-
sate, some studies also tried to characterise filaments by stack-
ing WL signal (see e.g. Dietrich et al. 2005; Mead et al. 2010;
Clampitt et al. 2016; Epps & Hudson 2017). Various WL algo-
rithms amplifying filament detection are described in the litera-
ture. Maturi & Merten (2013) developed a WL filter tailored to
their elongated extension. Simon et al. (2008) used higher-order
correlations, like the galaxy-galaxy-shear three-point statis-
tics. Likewise, aperture multipole moments were introduced by
Schneider & Bartelmann (1997) to quantify asymmetries in the
mass distribution directly from the shear signal carried by back-
ground galaxies. Dietrich et al. (2005) and Mead et al. (2010)
studied the quadratic aperture moment of WL signal induced by
cluster pairs.

Beyond the overall radial mass profile, the WL measurement
of the ellipticity of haloes (their quadrupole) has drawn some
attention in recent years. In particular, for galaxy haloes, it is
possible to study the relative alignment and flattening of the host
halo and its central galaxy (Parker et al. 2007; van Uitert et al.
2012; Schrabback et al. 2015; Clampitt & Jain 2016). Some at-
tempts have also been made to measure the projected elliptic-
ity of a few individual clusters of galaxies (Oguri et al. 2010) or
to measure the mean ellipticity of an ensemble of clusters and
groups of galaxies by stacking the signal (Evans & Bridle 2009;
van Uitert et al. 2017). This latter approach requires assumptions
to be made over the relative alignment and elongation between
dark and luminous matter.

A visual inspection of the time evolution of N-body sim-
ulations allows us to anticipate the following: as gravitational
clustering builds up, to first order, the cosmic nodes catastroph-
ically attract matter in their vicinity. This induces an amplifica-
tion of the contrast in the connected cosmic network, which is
locally evolving more rapidly due to the induced density boost
(when compared to typical filaments away from the nodes). At
the level of this spherically contracting description there should
be an excess harmonic power near the peaks. At second or-
der, the filaments themselves induce anisotropic tides which
boost up their own contrast by transversally collecting matter
and substructures. This e↵ect is also reinforced near peaks, as
the radial and transverse tides add up and proto-haloes pass the
collapse threshold more easily. The local cosmic filaments at
the nodes are therefore amplified by non-linear gravity. This
is the cluster-centric counterpart of the process described by
Bond et al. (1996) for the field: the large-scale cosmic web is
de facto already in place in the initial conditions and gravita-
tional clustering amplifies it di↵erentially. A relative harmonic
analysis of the vicinity of clusters should therefore allow us to

capture this gravitationally boosted primordial connectivity. The
purpose of this paper is to quantify this e↵ect via upcoming
WL surveys.

This study will rely on aperture multipole moments at all or-
ders to quantify the azimuthal repartition of matter at di↵erent
scales, centred on galaxy clusters. We will use mock clusters ex-
tracted from a large N-body cosmological simulation to predict
the statistical properties of multipolar moments. A new statistical
estimator, the multipolar power spectrum will be implemented
while stacking the modulus of aperture multipole moments. This
method will allow us to quantify the angular distribution of mat-
ter around cosmic hubs, hence to detect the signature of filaments
in the vicinity of clusters. Stacking power spectra instead of mo-
ments alleviates assumptions about the relative distribution of
dark and luminous matter whose relation seems to depend on
mass and scale (van Uitert et al. 2017).

The structure of this paper is as follows. Section 2 describes
the aperture multipole moments following the formalism of
Schneider & Bartelmann (1997) and relates the statistics of these
moments with those of the underlying convergence fields. In this
section, we also build a model for the expected boost in the
harmonic power spectra. Section 3 then describes the computa-
tion of multipole moments using the dark halo clusters extracted
from the PLUS cosmological constrained dark matter N-body
simulation and explores how the power spectra depend on red-
shift, cluster mass and radius. Section 4 discusses the prospects
of measuring this signal with WL data accounting for sample
variance, shape noise (finite ellipticity of background sources),
and intervening LSS, and then weighs the mass content of fila-
ments near the nodes of the cosmic web. Finally, a summary is
presented in Sect. 5.

2. Multipolar aperture moments

Let us first present the ingredients of cluster-centric weak gravi-
tational lensing and introduce the corresponding expected statis-
tical properties of the convergence field, which is related to the
underlying matter distribution. Specifically, multipolar moments
are introduced to measure the asphericity – which quantifies the
projected departures from circular symmetry – around the nodes
of the cosmic web. Since the focus is on how cluster environ-
ment deviates from random locations, the expected ratios will
be presented in increasing order of theoretical complexity, start-
ing from the assumption of constrained Gaussian random fields
(GRFs) for the convergence. This will guide our understanding
of the actual empirical numerical study discussed in the follow-
ing section.

2.1. Definition of convergence multipoles

The focus of this paper lies in the azimuthal mass distribution at
various scales around massive galaxy clusters. For a thin grav-
itational lens plane, the convergence  at a given position r in
the sky corresponds to the projected excess surface density ex-
pressed in units of the so-called critical density ⌃crit

(r) =
1
⌃crit

Z
dz (⇢(r, z) � ⇢) , (1)

with the convention that the line-of-sight corresponds to the z-
axis and the plane of the sky r vector can be defined by polar
coordinates (r, '). The critical density involves distance ratios
between a fiducial source at an angular diameter distance Ds, the
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distance to the lensing mass Dl and the distance between the lens
and the source Dls

⌃crit =
c2

4⇡G
Ds

DlDls
· (2)

The lensing potential  can also be defined as

 (r) =
2
c2

DlDls

Ds

Z
dz�(r, z), (3)

where� is the three dimensional gravitational potential. One can
then express the two components �1 and �2 of the complex spin-
2 shear � = �1 + ı�2 and the scalar convergence  as derivatives
of the lensing potential

2 =  ,11 +  ,22, (4)
2�1 =  ,11 �  ,22, (5)
�2 =  ,12. (6)

Since the interest lies in convergence and shear patterns around
a particular centre, let us introduce the tangential �t and curl �⇥
shear components1 as

�t = �R(� e�2ı'), �⇥ = �I(� e�2ı'). (7)

Following the formalism of Schneider & Bartelmann (1997), let
us also define the aperture multipole moments Qm of this con-
vergence field as

Qm =

Z 1

0
dr r1+mwm(r)

Z 2⇡

0
d' eım'(r, '). (8)

There is substantial margin in the choice of the radial weight
function. As one may want to have a di↵erent radial shape for
di↵erent multipole orders m and it is desirable to consider a com-
pact support so that wm(r) vanishes beyond some radius Rmax
and, possibly, below some inner radius Rmin ⌘ ⌫Rmax. For later
use, the multipolar moments can be expressed as a function of
the shear field (Schneider & Bartelmann 1997) in a local

Qm =

Z 1

0
dr r1+m

Z 2⇡

0
d' eım'

⇥

wm(r)�t(r, ') + ı

✓
wm(r) +

r
m
w0m(r)

◆
�⇥(r, ')

�
, (9)

and a non-local

Qm =

Z 1

0
dr r1+m

Z 2⇡

0
d' eım'

⇥ ⇥
(2Wm(r) � wm(r)) �t(r, ') � ımWm(r)�⇥(r, ')

⇤
, (10)

way, with the long-range weight function defined by

Wm(r) =
1

rm+2

Z r

0
dx x1+mwm(x), (11)

where the prime denotes d/dr derivation. Any combination of
these two estimators would yield the same answer but, in prac-
tice, a careful account of the various sources of noise and the
range over which data (i.e. ellipticities of background galax-
ies) are available will drive the choice of wm(r). By con-
sidering the main source of noise that is due to the intrin-
sic non-zero ellipticity distribution of background galaxies,

1 In some cases, �⇥ is referred to as a “radial” �r component which can
be misleading for a spin-2 field.

Schneider & Bartelmann (1997) found an optimal weight func-
tion for a mass density profile that can be approximated as a
nearly isothermal mass distribution with ⇢(r) / r�2 or ( / r�1)
and proposed the following form that we use, unless otherwise
stated:

R1+m
max wm(r) =

1
x1+m + ⌫1+m �

1
1 + ⌫1+m +

(1 + m)(x � 1)
(1 + ⌫1+m)2 , (12)

over the range x = r/Rmax 2 [⌫, 1] and zero elsewhere.
It is noteworthy that an elliptical mass distribution will

generate only even moments with a fast decline of modes.
Schneider & Weiss (1991) relate the harmonic expansion terms
of the convergence or surface mass density with the ellipticity ✏.
In practice, for a power law mass distribution  / r�n, one can
easily show that Q2/Q0 = n✏/2.

2.2. The statistics of Qm for a Gaussian random field

In this subsection, let us further assume that the convergence (or
some projected density) field is Gaussian and fully characterised
by its power spectrum P(k) so that the two-point expectation
value for the Fourier modes ̂(k) can be written as

h̂(k)̂⇤(k0)i = (2⇡)2�D(k + k0)P(|k|). (13)

2.2.1. Random locations

The convergence  having zero mean value, the covariance
between multipolar moments centred at random positions
can readily be expressed by following the same method as
Schneider et al. (1998) who explored the statistics of the Map
statistic, which is a particular case of the m = 0 multipolar mo-
ments. Let us write

hQmQ⇤ni =
1
"

0

rdr r0dr0
2⇡
"

0

d'd'0 rmwm(r)r0nwn(r0)

⇥ eı(m'�n'0)h(r, ')(r0, '0)i, (14)

= 2⇡ ım�n
Z

kdk Um(k)Un(k) P(k), (15)

⌘ ım�nA,mn, (16)

where the Hankel transform Un(`) of the radial weight function
is defined by

Um(`) =
Z

rdr rmwm(r)Jm(`r), (17)

and Jm(x) are the first-kind Bessel functions.
Let us now consider a realistic convergence power spec-

trum derived from the non-linearly evolved matter spectrum,
P�(k). The power spectrum of the density contrast is com-
puted at various redshifts, using the Boltzmann code CLASS
toolkit (Blas et al. 2011; Lesgourgues 2011) for the fiducial
Planck Cosmology. For a given source redshift, the conver-
gence power spectrum P(`, zs) can be inferred from the three-
dimensional matter power spectrum, considering the following
integral (Blandford et al. 1991; Miralda-Escudé 1991; Kaiser
1992; Bartelmann & Schneider 2001; Simon 2007)

P(`, zs) =
9
4
⌦2

m

✓H0

c

◆4 Z �s

0
d�

(�s � �)2

�2
s

P� (`/�, �)
a2(�)

· (18)

In addition, instead of using a single-source-plane redshift,
the latest COSMOS2015 photometric redshift distribution
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(Laigle et al. 2016) is used to approximate the redshift distribu-
tion of sources as a Gamma PDF of the form

p(zs) =
e�zs/z0

z0�(a)

 
zs

z0

!a�1

, (19)

with a ' 2.1 and z0 ' 0.51 for sources as faint as an AB magni-
tude i = 25, which is suitable for future experiments like Euclid
or current deep ground-based imaging data. The e↵ective con-
vergence power spectrum is finally computed by weighting the
contributions of the di↵erent source planes

P(`) =
Z

P(`, zs) p(zs) dzs. (20)

For illustration purposes, Fig. 1 shows the convergence power
spectrum and the corresponding multipolar moments for a fidu-
cial choice of Rmax = 100 and ⌫ = 0.5, which should correspond
to the scale of a few virial radii for a massive cluster at redshift
z ⇠ 0.3. In order to highlight the contrast between the linear and
non-linear regime on the convergence power spectrum and on
the associated multipolar moment spectrum, we illustrate these
two cases. As expected, by adopting a non-linear matter power
spectrum, the multipolar moment spectrum is significantly en-
hanced.

2.2.2. The statistics of Qm under peak constraint

Even for a Gaussian random field, the statistics of Qm should
change significantly when centred on a cluster rather than a ran-
dom location. The formalism must be updated to deal with a
particular flavour of three-point statistics that accounts for the
presence of a maximum with a specific height ⌫p of the density
field at the origin of the coordinate system. In brief, the com-
panion paper (Codis et al. 2017) has shown that the e↵ect of the
peak constraint is to

– significantly boost the monopole (we are near a peak);
– significantly remove power from the dipole (we are now well

centred on the peak);
– slightly suppress the power of the quadrupole;
– leave all other m � 3 multipoles unchanged.

These results rely on the assumptions that galaxy clusters can
be mapped to peaks in the initial field smoothed at some scale
R, which themselves can be characterised by their height (large
excursion), gradient (forced to be null at the origin), and Hessian
(two negative eigenvalues).

Our current purpose is to go beyond the Gaussian and peak
approximation and describe the statistical properties of Qm at
late time by measuring them directly in simulations in Sect. 3. In
the following section, we simply describe changes in the statis-
tics of multipolar moments to be expected from simple argu-
ments about the non-linear evolution around galaxy clusters.

2.3. The non-linear statistics of Qm around clusters

Appendix A presents an approximate model based on the
Zeldovich approximation and the spherical collapse, which
shows that the small-scale density fluctuations in a shell at radius
r falling onto a spherically symmetric proto-cluster will experi-
ence a boost of amplitude ↵ with respect to the field. It is due
to the contraction of fluctuations within the original Lagrangian
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Fig. 1. Top panel: cosmological convergence power spectrum P(`) de-
rived from the evolved matter power spectrum averaged over the source
redshift distribution of Eq. (19). The red and blue curves represent the
quantities induced by the linear and non-linear matter power spectrums,
respectively. Bottom panel: corresponding multipolar moment spectra
h|Q2

m|i for the weight function in Eq. (12) and a choice of Rmax = 100
and ⌫ = 0.5.

shell induced by the tidal distortion field of the cluster overden-
sity. It implies for the 3D power spectrum

Pcluster(k) ⌘ ↵ Prandom(k), where ↵ '
 

3M(<r)
4⇡⇢̄r3

!2/3

, (21)

where ⇢̄ is the mean background density. Once projected along
the line-of-sight, fluctuations around a cluster should also pro-
duce a non-linear achromatic (m-independent) boost of multipo-
lar moments spectra as compared to the field. This prediction is
compared to measurements in simulations in Sect. 3.3 and de-
spite a crude treatment of projection e↵ects and the extension of
the model deeply inside the core of the cluster, is shown to give
a quantitative explanation for the boost.

This boost corresponds to the first order change on the multi-
polar moments expected for initial peaks evolving into clusters.
The next step involves understanding any spectral distortion of
|Qm|2cluster with respect to ↵|Qm|2random, as a second-order e↵ect
due to the non-linear coupling of modes involving specifically
the filamentary structure around clusters. Finally, we recall that
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Fig. 2. Halo virial mass function in the PLUS simulation box
(600 cMpc/h on a side) at four di↵erent redshifts (0, 0.3, 0.6 and 0.9)
showing the content of the four mass intervals considered. Only haloes
with a FOF mass greater than 5 ⇥ 1013 h�1 M� are shown here.

the linear power spectrum P(k) should be updated when account-
ing for the peak condition at the origin of the coordinate system
and that, in two dimensions, the multipoles m  2 are impacted.
A more thorough treatment of the asphericity around the cluster
potential could possibly allow us to predict the actual shape of
the |Qm|2cluster spectrum at all m. This is left for future work, and
from now on, we rely on N-body cosmological simulations to
predict these spectra, both near the edge of clusters where our
formalism should hold, but also deep inside the virial radius of
those clusters.

3. Measuring multipolar moments in simulations

3.1. Dark matter haloes in the PLUS cosmological simulation

A cosmological simulation taken from the Paris Local Uni-
verse Simulation (PLUS)2 project was analysed. It corresponds
to a ⇤CDM universe with the following set of cosmologi-
cal parameters, ⌦m = 0.3175, ⌦⇤ = 0.6825, ⌦b = 0.049,
H0 = 67.11 km s�1/Mpc, ns = 0.9624 and �8 = 0.8344
(Planck Collaboration XVI 2014). The simulation was per-
formed with Gadget2 (Springel 2005) in a periodic box of side
600 h�1 Mpc and using 20483 dark matter particles (i.e., with a
mass resolution of ⇠2.2 ⇥ 109 h�1M�). The adopted Plummer-
equivalent force softening was 14.6 h�1 kpc and was kept con-
stant in comoving units. The simulation started at z = 49 and
ended at the present time z = 0. The initial conditions have been
generated using the BORG algorithm (Bayesian Origin Recon-
struction from Galaxies Jasche & Wandelt 2013; Lavaux 2015)
aiming at modelling the local universe.

The dark matter halo catalogue was extracted at redshifts
z = 0, 0.3, 0.6, and 0.9 with a Friend-of-Friend algorithm (FOF)
using a linking length of 0.15 in units of the mean inter-particle
separation and came up, for the z = 0 output, with about
14 000 groups and clusters with mass MFOF > 5 ⇥ 1013 h�1M�.
Then all the particles in the direct vicinity of these haloes are
extracted and projected along a given direction. Hence, each
extracted halo contains a cluster and its outer environment
(Metzler et al. 2001). The additional e↵ect of the uncorrelated
background and foreground matter distribution along the line of

2 http://www2.iap.fr/users/peirani/PLUS/plus.htm

sight to distant gravitationally lensed galaxies will be treated as
an additional Gaussian random field acting as a noise contribu-
tion (see e.g. Hoekstra 2001, 2003).

– MFOF is used as a first guess to define a virial radius MFOF =
4/3⇡�vir⇢critR3

vir.
– The centre of mass of the linked particles was used to extract

all the particles within a comoving radius RH = 4Rvir about it.
This radius is su�ciently large to capture the most relevant
environment of clusters.

– We refine the definition of the centre by seeking the main
peak of the density field with a shrinking sphere method.
Starting from the previous value of Rvir, let us compute the
centre of mass therein. At each iteration, the sphere is shrunk
by 2.5% and we update the center of mass accordingly. The
process is stopped when the final mass is below 1% of the
starting MFOF value.

– By sorting particles in radius about this final centre, one can
easily build the cumulative mean density profile ⇢(<r). The
final virial radius is the distance at which ⇢(<Rvir) = �vir⇢crit.

The above calculations rely on the fitting functions of
Bryan & Norman (1998) to estimate the density contrast �vir
above the critical density ⇢crit for our reference ⇤CDM cos-
mology. Hence, the typical virial mass is on average 1.14 times
greater than MFOF, the mass directly linked by the FOF algo-
rithm. We investigate two di↵erent radial intervals, R/rvir 2
[0.25, 0.5] and R/rvir 2 [1, 4], in order to emphasise di↵erences
between the innermost, presumably relaxed, areas and the ones
undergoing coherent infall motions, where filaments should be
more prominent.

To study the influence of mass in this analysis, the sample of
haloes is divided into four bins of virial mass M1 2 1–2, M2 2 2–
4, M3 2 4–8, and M4 � 8 ⇥ 1014 h�1M� as shown in Fig. 2.

We also study the evolution of multipolar moments with
redshift by considering simulation outputs at redshifts z =
0, 0.3, 0.6, 0.9. In order to follow the evolution of moments of
a given population of haloes, we also consider the 100 most
massive clusters. This selection in mass is a proxy for a popu-
lation of haloes with the same rareness, ⌫p = �/�. Indeed, the
mass of non-linearity M? (i.e. the peak of the Press-Schechter
mass function) evolves with redshift. Picking the most massive
haloes at each redshift therefore allows us to focus on a popu-
lation of haloes which present a similar level of non-linearity3,
which should therefore be at the same stage of their evolution.
As redshift takes values z = 0, 0.3, 0.6, and 0.9, the mean virial
mass of the 100 most massive clusters successively takes values
Mvir ' 10, 7, 5, 3 ⇥ 1014 h�1M�.

3.2. Multipoles from simulated haloes

The projected surface density of a discrete distribution of parti-
cles of mass Mj reads

⌃(r, ') =
X

j

Mj �D(r � r j), (22)

where r and ' are the coordinates in the plane of the sky. Hence,
translating Eq. (8) to a discrete distribution, the multipolar

3 Which amounts to having a constant variance �2(M, z) at redshift z
and scale M.
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Fig. 3. Multipolar moments spectra (top panel) and multipolar moments spectra normalized by random profiles (bottom panel) for the two annuli
�R1 and �R4 (left and right columns respectively) for the z = 0 simulation output. The depletion at m = 1 follows from the centering condition;
the m = 2 excess reflects the ellipticity of DHs, while the weak excess at m = 4 is consistent at larger R with the expected mean degree of 2D
vertices (Pichon et al. 2010).

Comparing small 0.25  R/Rvir < 0.5 and large 1.0 
R/Rvir < 4.0 scales, respectively on the left and right panels of
Fig. 3, we see a rather similar excess suggesting that the small
and large scale shape are correlated. A noticeable di↵erence re-
sides in the quadrupole that is enhanced on small scales, show-
ing the high level of symmetry in the core of virialised structures.
This latter can well be approximated by ellipsoids (with possibly
some amount of m = 4 boxiness). In fact, the quadrupole m = 2
presents a higher amplitude than in outskirts of clusters (right
panel). It is consistent with recent studies which used elliptical or
triaxial models to describe DM halos shape (Warren et al. 1992;
Jing & Suto 2002; Oguri et al. 2010). We also observe that low-
mass clusters are less elliptical, in line with Despali et al. (2014).
Indeed, this link between cluster masses and their internal shape
is consistent with the prediction of hierarchical structure forma-
tion scenario. Due to the fact that lower mass haloes are formed

at higher redshift than massive haloes, they have more time to
relax. Consequently, they lose the memory on their accretion
history, ergo the preferential directions induced by past events
as merging processes have also vanished. By contrast, massive
haloes are still in a formation phase, their shape is still a↵ected
by major mergers or accretion of surrounding matter through fil-
aments.

Let us see if the angular shape of galaxy clusters at small
and large scales are correlated. A cross-spectrum of multipoles
at di↵erent scales may tell us about how far into the halos the
filaments may plunge. In Fig. 4 we plot the reduced cross-
spectrum of multipolar moments at radii R 2 [0.25 � 0.5]Rvir
and R 2 [1 � 4]Rvir for the M1 mass bin. This reads

⇢1,4(m, n) =
h(Qm(R1)Q⇤n(R4)i � �m0�n0hQ0(R1)ihQ0(R4)i

�Qm(R1) �Qn(R4)
. (39)
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Fig. 3. Multipolar moments spectra around clusters (upper red curves) and around random location (lower blue curves) for the two annuli
0.25  R/Rvir < 0.5 and 1  R/Rvir < 4 (left and right-hand panels respectively) for the z = 0 simulation output. There is an excess of power
around clusters as compared to random localisations, since the density field is denser. At large m (substructures scales), their spectra di↵er by a
nearly constant multiplicative factor ↵̂, which is the first order signature of the dynamical evolution of the shape of clusters (see Sect. 3.3).

moments reads

Qm =

Z 1

0
drrm+1wm(r)

Z 2⇡

0
d' eım' ⌃(r, '),

=
X

j

Mjrm
j wm(r j)eım' j . (23)

Because of the spherical extraction of particles performed
around each cluster, one needs to subtract o↵ the contribution
of the cosmological mean density, which simply reads

⌃0(r) = 2⇢mean

q
R2

H � r2. (24)

Since it does not depend on the azimuth ', it only involves a
non-zero correction Qbg

0 to the monopole term m = 0 in Eq. (23).
As discussed, the practical measurement of these multipolar mo-
ments requires signal stacking and, by symmetry, the phases of
Qm will be lost in this process. Any departure from circular sym-
metry would thus be washed out. A simple workaround that does
not depend on the visible baryonic mass in clusters is to consider
the mean power of their multipolar moments in harmonic space.
The focus is therefore on the statistics of h|Q2

m|i.
For each simulated cluster i, the projections along the

three canonical (x, y, z) directions are averaged for a given
annulus �R

3 |Qi
m|2 = |Qi,x

m |2 + |Qi,y
m |2 + |Qi,z

m |2. (25)

Finally, for a given mass bin �M, one averages the multipolar
moments of haloes within the same mass bin to compute the
spectrum of multipolar moments

h|Qm|2i(�M,�R) =
1

Nhaloes

Nhaloes2�MX

i

|Qi
m|2(�R). (26)

In order to explore how the background cosmology a↵ects
h|Qm|2i, these multipoles are also computed for spheres drawn

randomly inside the simulation box. For each position, a virial
radius (and mass) is randomly assigned from the parent halo cat-
alogue and the multipolar moments of these random “haloes”
is measured. This allows us to contrast the growth of moments
near clusters to the overall cosmic growth of structures cast into
the particular filtering of the density field as given by Eq. (8). In
order to limit the noise in these reference moments, many more
random positions than haloes are drawn. Appendix B checks that
this approach yields results that are consistent with a formal in-
tegration of the power spectrum of the density contrast P�(k).

At this stage, these (centred or random) spectra are not cor-
rected from the shot noise contribution due to the finite number
of particles in the simulation that are sampling the density field.
This correction is only substantial at low mass, on small scales
(the smallest �R annulus), and for the largest multipole orders m.
Shot noise corresponds to a white convergence (or surface den-
sity, here) power spectrum that is independent of the wave vector
k as described in Sect. 2.2

P(k) ⌘ P0 = h⌃0(r)iMpart, (27)

with h⌃0(r)i the mean projected density for r 2 [Rmin,Rmax].
For multipoles centred on clusters, this latter equation is mul-
tiplied by 1+ hQcluster

0 i/hQbg
0 i to get the correct shot noise ampli-

tude. Here the average accounts for cluster-to-cluster variations
of Rmax (due to Mvir variations within that mass range).

Figure 3 presents the shape of the h|Qm|2i spectrum of multi-
polar moments at redshift z = 0 as a function of multipolar order
m, and for the four mass bins and two radial bins. In order to
highlight the e↵ect that a galaxy cluster has on the statistics of
h|Qm|2i, we also display the same quantity for random locations.

3.3. Overall excess of power

There is an obvious excess of power in Fig. 3 at almost all mul-
tipoles and scales around clusters as compared to random loca-
tions of similar size since the density field is denser due to the
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Fig. 4. Evolution with redshift of the normalisation factor ↵̂ of multipo-
lar moments spectra for the 100 most massive haloes (red solid lines).
The theoretical prediction of ↵ is overlaid in black. The model repro-
duces the variations with time, mass and scale remarkably well, despite
a crude treatment of projections and the limited validity of the spherical
collapse model.

presence of the central cluster. Clusters and random locations
di↵er by a nearly constant multiplicative factor, which is the first
order signature of the dynamical evolution of the shape of clus-
ters, as quantified in Sect. 2.3. This multiplicative factor ↵̂ (the
2D counterpart of the boost factor ↵ of Sect. 2.3) is estimated
empirically by focussing on the m 2 [15�30] multipole range,
since it is on the smallest angular scales that the assumptions
behind the Zeldovich boost are most sensible:

log ↵̂ =
1

16

30X

m=15

⇣
log h|Qm|2icluster � log h|Qm|2irandom

⌘
. (28)

Figure 4 shows the evolution of ↵̂ with redshift and as a function
of scale for the 100 most massive clusters in the simulation box.
This boost, of order ⇠100 on the small R 2 [0.25, 0.5]Rvir scale,
and of order ⇠10 in the larger R 2 [1, 4]Rvir scale, is, of course,
of key importance for the detectability of |Qm|2.

A comparison with the prediction of ↵ based on the spherical
contraction of a Lagrangian shell presented in Sect. 2.3 is over-
laid. It shows a remarkable agreement, given the limited validity
of the extension of this model deeply inside virialised haloes and
the lack of modelling of projection e↵ects. Since we use aper-
tures that scale with the virial radius, ↵ should not evolve much
with time or mass (up to a mild change with time and mass of
the halo concentration, see Appendix A). This is clearly seen and
reproduced in Fig. 4.

3.4. Harmonic distortions

In order to highlight spectral distortions that are in excess
of the overall boost, Fig. 5 shows the normalised spectra
h|Qm|2iclusters/(↵ h|Qm|2irandom) as a function of halo mass at red-
shift zero in the top panels, and as a function of redshift for the
100 most massive haloes in the bottom panels.

A residual excess of power is found on large angular scales
m . 8, possibly extending slightly further for the outermost ra-
dial bin and for more massive haloes. Systematically, odd orders
carry less power. This should be the signature of the peak con-
straint (that was only a↵ecting m = 1 for a GRF). The center-
ing reduces the power excess at odd multipolar orders, mainly

at m = 1, 3. Mis-centering will thus reduce the contrast between
odd and even orders. We explored the amplitude of this e↵ect
by applying random o↵sets of the order 0.1 Rvir, and only found
noticeable di↵erences on small-scale moment spectra whereas
o↵sets as large as 0.5Rvir are required to substantially change
moments in the 1�4Rvir range. The main e↵ect of mis-centering
on small-scale moments is to reduce the contrast between odd
and even orders, leaving the latter ones almost unchanged.

Comparing small (0.25  R/Rvir < 0.5) and large-scale
(1.0  R/Rvir < 4.0) annuli, respectively, on the left and right
panels of Fig. 5, a similar excess is found suggesting that the
small- and large-scale shape might be correlated (see Sect. 3.5
below). The faster damping with m inside haloes represents a
noticeable di↵erence, tracing the higher level of symmetry in
the core of virialised structures. It can indeed be approximated
by an ellipsoid (with possibly some amount of m = 4 boxiness).
In fact, the inner quadrupole m = 2 presents a higher ampli-
tude relative to the monopole than in the outskirts of clusters
(right panel). This is consistent with recent studies which use el-
liptical or triaxial models to describe dark matter haloes shape
(Warren et al. 1992; Jing & Suto 2002; Despali et al. 2014).

More massive haloes are more sensitive to the anisotropic
environment they formed in. Interpreting this excess of power as
the non-linear sharpening of the filamentary structure of haloes
sitting at the nodes of the cosmic web, one may infer that these
haloes are connected to a larger number of filaments, as already
found by Pichon et al. (2010) and Aragón-Calvo et al. (2010).
Massive haloes are more likely to be in their early formation
phase, and their shape is typically distorted by major mergers or
accretion along the preferred direction set by their connecting
filaments. Conversely, lower-mass haloes are formed at higher
redshift and have had more time to relax. They typically lost the
memory on their accretion history, and therefore the preferential
directions induced by recent merging events.

Following the same haloes with time (bottom panels), that
is, at constant initial overdensity while compensating for pro-
genitor bias (e.g. Sheth & Tormen 2004), one can see that no
significant evolution of the multipole is observed. This suggests
that the shape of haloes is settled early in the cosmic history,
probably in the initial conditions, as anticipated in Sect. 3.1 (and
discussed in e.g. Bond et al. 1996). Though one might have ex-
pected to observe a disconnection of dark haloes through the
dark-energy-induced stretching of the cosmic web (Pichon et al.
2010), it turns out that the most massive clusters of the simu-
lation have not had time to disconnect from the cosmic web nor
fully relax. Their outskirts are still imprinted by their initial envi-
ronment, whose azimuthal geometry displays power on a fairly
wide range of multipoles triggered by the connected filaments
and walls. Both large- and small-scale moments are frozen in
shape from the initial conditions and only grow with time at the
cosmic rate captured by the boost. Their excess multipole seems
qualitatively consistent with the expected number of connected
filaments (peaking at 2–4) inferred from the initial conditions
(Pichon et al. 2010), keeping in mind that multipoles are mass
weighted.

3.5. Radial correlations

Let us investigate now whether the angular shape of galaxy clus-
ters at small and large scales are correlated. A cross-spectrum
of multipoles at varied scales would tell us how far the fila-
ments plunge into the haloes. Figure 6 shows the reduced cross-
spectrum of multipolar moments at radii R 2 [0.25�0.5]Rvir and
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Fig. 3. Multipolar moments spectra (top panel) and multipolar moments spectra normalized by random profiles (bottom panel) for the two annuli
�R1 and �R4 (left and right columns respectively) for the z = 0 simulation output. The depletion at m = 1 follows from the centering condition;
the m = 2 excess reflects the ellipticity of DHs, while the weak excess at m = 4 is consistent at larger R with the expected mean degree of 2D
vertices (Pichon et al. 2010).

Comparing small 0.25  R/Rvir < 0.5 and large 1.0 
R/Rvir < 4.0 scales, respectively on the left and right panels of
Fig. 3, we see a rather similar excess suggesting that the small
and large scale shape are correlated. A noticeable di↵erence re-
sides in the quadrupole that is enhanced on small scales, show-
ing the high level of symmetry in the core of virialised structures.
This latter can well be approximated by ellipsoids (with possibly
some amount of m = 4 boxiness). In fact, the quadrupole m = 2
presents a higher amplitude than in outskirts of clusters (right
panel). It is consistent with recent studies which used elliptical or
triaxial models to describe DM halos shape (Warren et al. 1992;
Jing & Suto 2002; Oguri et al. 2010). We also observe that low-
mass clusters are less elliptical, in line with Despali et al. (2014).
Indeed, this link between cluster masses and their internal shape
is consistent with the prediction of hierarchical structure forma-
tion scenario. Due to the fact that lower mass haloes are formed

at higher redshift than massive haloes, they have more time to
relax. Consequently, they lose the memory on their accretion
history, ergo the preferential directions induced by past events
as merging processes have also vanished. By contrast, massive
haloes are still in a formation phase, their shape is still a↵ected
by major mergers or accretion of surrounding matter through fil-
aments.

Let us see if the angular shape of galaxy clusters at small
and large scales are correlated. A cross-spectrum of multipoles
at di↵erent scales may tell us about how far into the halos the
filaments may plunge. In Fig. 4 we plot the reduced cross-
spectrum of multipolar moments at radii R 2 [0.25 � 0.5]Rvir
and R 2 [1 � 4]Rvir for the M1 mass bin. This reads

⇢1,4(m, n) =
h(Qm(R1)Q⇤n(R4)i � �m0�n0hQ0(R1)ihQ0(R4)i

�Qm(R1) �Qn(R4)
. (39)
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Fig. 5. Top panels: multipolar moments spectra (normalised by random profiles) for the annulus 0.25  R/Rvir < 0.5 (left) and 1  R/Rvir < 4
(right) at redshift z = 0 as a function of halo mass. In the internal region, the quadrupole prevails, and reflects the ellipsoidal symmetry of the core.
In the external region, the residual power excess at 2 < m < 10, not predicted by GRF approximation, should represent the non-linear sharpening
of the filamentary structure. Bottom panels: multipolar moments spectra (normalised by random profiles) for the annulus 0.25  R/Rvir < 0.5 (left)
and 1  R/Rvir < 4 (right) for the 100 most massive haloes for the z = 0, z ⇠ 0.3, z ⇠ 0.6 and z ⇠ 0.9 simulation outputs. Comparing a population
of haloes with the same level of non-linearity (or the same rareness), the shape of haloes appears to be settled early in the cosmic history.

R 2 [1�4]Rvir for the M1 mass bin. This reads

⇢1,4(m, n) =
h(Qm(R1)Q⇤n(R4)i � �m0�n0hQ0(R1)ihQ0(R4)i

�Qm(R1) �Qn(R4)
· (29)

The disconnected part (product of the means) is subtracted to
highlight the relative fluctuations between annuli and multipolar
orders. In contrast to what was done for the auto-spectra h|Qm|2i
for which the mean hQ0i2 was not subtracted o↵ because it con-
tributes to the overall signal amplitude and to its detectability
(Sect. 4). Without subtraction, hQ0(R1)ihQ0(R4)i would induce a
large correlation ⇢1,4(0, 0) � 0.5.

Except for the diagonal m = n = 1, 2, 4 terms, no signifi-
cant correlation is observed. A similar trend is found at higher
masses although the signal to noise is even lower. Apart from

the quadrupole, the shapes seem to decorrelate. Hence there is
no strong angular coherence between the structures found at
R 2 [0.25�0.5]Rvir and R 2 [1�4]Rvir beyond the quadrupole.
The non-zero cross-correlation at m = 1 is induced by the condi-
tion to be centred on a density peak. We also checked that mis-
centring has the e↵ect of reducing the hQ1(R1)Q⇤1(R4)i term. In
order to reach a factor 2 decline in correlation amplitude, one
needs to reach o↵sets of the order 0.2 Rvir.

4. Measuring multipolar moments from shear data

Let us now quantify our ability to estimate the power spectrum
of multipolar moments from real WL data. They involve a set
of background galaxies whose light is deflected by a foreground
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Table 1. Critical lensing surface density used to convert Sect. 3 multi-
polar moments expressed in terms of mass into moments expressed in
terms of convergence.

Lens redshift 0 0.3 0.6 0.9
h⌃�1

criti�1 [1015 M�Mpc�2] 1 3.330 4.413 7.585

galaxy cluster. Since very few detections of filaments, and little
evidence for a departure from circular symmetry have been re-
ported so far, there is a dire need to investigate how to measure
the mean excess power spectrum of multipolar moments from a
set of galaxy clusters. The aim is, in particular, to quantify the
expected signal to noise ratio as a function of redshift, scale, and
mass.

Three leading sources of noise must be considered here: the
shape noise coming from the unknown intrinsic ellipticity of
background sources, the lensing gravitational potential due to
the LSS along the line-of-sight, and the sample variance due to
the finite number of clusters one can average over to infer the
mean multipolar spectrum. One expects some internal variabil-
ity due to the relative dynamical age of these massive structures
undergoing merger, being fed by a variable number of filaments.
The derivation we use follows Schneider et al. (1998) who stud-
ied the statistical properties of the aperture mass Map estimators,
but neglects the e↵ects of Poisson fluctuations in the number
of background sources. This is legitimate for large-scale cluster
lensing with deep wide-field imaging.

One first needs to rescale the multipolar moments previously
inferred from simulations in terms of mass per Mpc since the
convergence was replaced by the surface density in Eq. (23).
Therefore the moments will be multiplied by the mean inverse
critical density h⌃�1

crit(z)i, averaged over the same redshift distri-
bution of background sources as that assumed in Sect. 2.2. The
corresponding values for the fiducial lens redshifts are listed in
Table 1.

4.1. Covariance of multipolar moment spectrum estimators

The convergence field around a cluster should be replaced by
three uncorrelated fields

 !  + s + L, (30)

where  is the signal produced by the cluster, s is the contribu-
tion from the intrinsic ellipticity of background sources and L

is due to the uncorrelated LSS along the line-of-sight. The LSS
that is not physically correlated to the direct cluster environment
(beyond 10 Mpc, or so) will nevertheless give rise to a cosmo-
logical convergence field that will act as an additive source of
noise plaguing the multipolar moment (or more generally the
convergence field sourced by the clusters) to be measured. This
so-called cosmic shear signal has to be taken into account for the
detectability of multipolar moments as it is a substantial source
of noise for overall cluster-mass measurements (Hoekstra 2001,
2003). Section 2.2 already showed the two-point properties of
this component L through the Eq. (14). In the remainder, the
statistical properties of L are approximated as those of a GRF
(with null kurtosis) since the focus is on the statistics of .

The convergence field is not directly observable; ellipticities
are used to measure shear. The observed complex ellipticity ✏
of a galaxy with intrinsic source plane ellipticity ✏s and carrying
a complex shear signal � is simply: ✏ = ✏s + �. Since for an
ensemble of galaxies with random intrinsic orientation, the mean
✏S is null, one can write:

h✏ii = �i, (31)
h✏i✏ ji = �i� j + �

L
i �

L
j + �

2
✏ �i j, (32)

where the one-dimensional rms dispersion of intrinsic source
ellipticities �✏ ' 0.25 was introduced. In practice, measure-
ment errors that depend on the quality of images (correction for
smearing by the Point Spread Function, signal-to-noise...) would
also increase this dispersion to a value that we shall take to be
�✏ ⌘ 0.3 in the remainder.

Following again Schneider & Bartelmann (1997), let us con-
sider the local estimator of Qm from measured shear as defined
by Eq. (9) and in which only background galaxies projected into
a given annulus of inner and outer radius ⌫Rmax and Rmax are
used to estimate the multipolar moments in that aperture. The
non-local estimator, involving shear measurements outside that
aperture, may increase the sensitivity but at the expense of intro-
ducing large correlations between annuli. The remainder of this
work only explores the merits of the local estimator Eq. (9) that
is rewritten in the same way as Schneider & Bartelmann (1997)

Qm =

Z
d2r

"
bt,m(r)

r
�t(r, ') + ı

b⇥,m(r)
r

�⇥(r, ')
#

eım', (33)

with

bt,m(r) = rm+1wm(r), (34)

b⇥,m(r) = rm+1
✓
wm(r) +

r
m
w0m(r)

◆
. (35)

For a finite number N of sources inside a given annulus
[⌫Rmax,Rmax], the discrete version of Eq. (33) reads

Q̂m =
1
n

NX

k

eim'k

"
bt,m(rk)

rk
✏t,k + ı

b⇥,m(rk)
rk

✏⇥,k

#
, (36)

where n is the mean number density of background sources, for
which a typical value n = 30 arcmin�2. Even though the sources
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Fig. 7. Multipolar moment spectra of clusters for the mass bin M3 and the noise contribution at two scales in the annuli �R1 (top panel) and �R4
(bottom panel) and for two redshift values z = 0.3 and 0.6, respectively, from left to right. The left-hand panels show the di↵erent sources of noise
as described in Sect. 4. On the right-hand panels, the total noise profile �mm is shown once divided by

p
Nclusters in order to mimic the shot noise

obtained by stacking the spectra of Nclusters clusters.

are randomly oriented, the ensemble average of the quadratic
estimator |Q̂m|2 of |Qm|2 will contain a shape noise and a LSS
noise contribution that must be subtracted o↵

h|Q̂m|2i = |Qm|2 + |Qs
m|2 + |QL

m|2. (37)

As shown in Schneider & Bartelmann (1997), this shape noise
mean power spectrum is

|Qs
m|2 =

�2
✏

n2

NX

k

b2
t,m(rk) + b2

⇥,m(rk)

r2
k

, (38)

=
⇡�2

✏

n

Z R

⌫R
dr

b2
t,m(r) + b2

⇥,m(r)
r

· (39)

This mean noise spectrum gives us a sense of our ability to
measure multipolar moments. But one really needs to compute
the covariance of the estimator by following the calculations
made for cosmic shear correlation functions (Schneider et al.
1998, 2002) and consider the covariance matrix of the multipolar

moments

�2
mn ⌘ h|Q̂m|2|Q̂n|2i � h|Q̂m|2ih|Q̂n|2i,
= �mn|Qs

m|2
h
|Qs

m|2 + 2|Qm|2 + 2|QL
m|2

i

+ �m0�n0|Q̃s
0|2

h
|Q̃s

0|2 + 2|Q0|2 + 2|QL
0 |2

i

+ 4A,mnAL,mn

+ h|Qm|2|Qn|2i � h|Qm|2ih|Qn|2i
+ h|QL

m|2|QL
n |2i � h|QL

m|2ih|QL
n |2i. (40)

The first two terms in Eq. (40), containing Qs
m, correspond to the

shape noise. They are diagonal and dominate for m = 0. Their
derivation along with the definition of the modified moments
|Q̃s

m|2 are detailed in Appendix C. The last three terms corre-
spond to the mixture of sampling variance and LSS noise con-
tributions. If both  and L were GRFs, these three terms would
simplify to 2(A,mn + AL,mn)2, with Amn defined in Eq. (14).
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4.2. Overall detectability

The left-hand panels of Fig. 7 compare the amplitude of |Qm|2,
|Qs

m|2 and |QL
m|2 along with the rms dispersion of |Qm|2 for a

single cluster of galaxies in the intermediate mass bin (M 2
[4�8]⇥1014 h�1M�) at redshift z ⇠ 0.3. The total combination of
diagonal terms �mm in Eq. (40) is also overlaid. It appears that
for the internal regions (top panel), the shape noise – coming
from the intrinsic ellipticities of the background galaxies – dom-
inates, whereas on large scales, the dominant source of noise
is the line-of-sight density fluctuations |QL

m|2. Hoekstra (2003)
also found a similar radial behaviour of the relative importance
of shape noise and LSS for measuring overall cluster masses.
Obviously, detectability is easier in the central region than at
the outskirts of clusters, since the density field is stronger. The
signal-to-noise declines also as redshift increases and mass de-
creases. The overall signal-to-noise is quite low for a single clus-
ter, with values of order 0.1 for the most favourable multiples
(m = 0, 2, 4). On small scales, using a non-local multipole es-
timator might slightly reduce shape noise contributions, but on
large scales, LSS will dominate anyway, suggesting that very
deep observations with a low shape noise level would not be of
much help. We must therefore consider stacking the lensing sig-
nal of many clusters.

On the right panels of Fig. 7, the amplitude of h|Qm|2i is com-
pared to the total noise contribution �mm for a single cluster in
the mass bin M3 at z ⇠ 0.6 at small and large radii. Instead of
splitting the noise budget into its components, the total overall
noise level is scaled by a factor 0.1 or 0.01 as it should naturally
decrease if one considers 100 or 10 000 clusters instead of just
one. Besides, at higher redshift, the signal-to-noise decreases due
to the rise of the critical density with redshift (see Table 1).

The Euclid photometric galaxy cluster survey will contain
about 2 ⇥ 105 clusters between z = 0.2 and z = 2 (Sartoris et al.
2016). The authors provide an estimate of the number of galaxy
clusters to be detected for a given range of redshift and min-
imum mass by carefully accounting for the Euclid cluster se-
lection function. This allows us to predict the expected num-
ber of clusters in each mass bin and for three redshift intervals,
hence the expected signal-to-noise ratio on multipolar moments.
This is shown in Fig. 8 for both internal and external regions
of galaxy clusters. Higher signal-to-noise can be achieved for
lower mass clusters because of their larger abundance. More
specifically, multipolar moments measured at the outskirts of
clusters should accurately be detected by stacking clusters with
Mvir  8 ⇥ 1014 h�1M� and z  0.75. In the internal regions, we
estimate that the angular symmetries on cluster cores could be
probed for all cluster masses for z . 0.75.

In order to improve the signal-to-noise and permit detec-
tions on a shorter timescale, one can consider a broader an-
nulus R = [0.1�1.0] Rvir that probes the high-density regions,
the corresponding list of signal-to-noise ratios for 100 clus-
ters in Table 2. A detection of the multipoles from m = 0 to
m = 4 is possible in this annulus, stacking the signal over about
100 galaxy clusters, for all mass bins at z ⇠ 0.3 and for the most
massive clusters. At z ⇠ 0.6, the measurement is possible for
clusters of similar mass but only up to the quadrupole.

5. Summary and conclusions

The multipolar moments of the convergence were used to quan-
tify asymmetries in the projected density field around galaxy
clusters. The multipoles were computed within annuli centred
on mock clusters of galaxies, extracted from a large dark matter

Table 2. Signal-to-noise ratio on multipolar moment spectra for
Ncluster = 100 when the annulus R 2 [0.1, 1.0] Rvir is considered.

Redshift Mass bin Multipole m
0 1 2 3 4 5

0.3

M1 9 0.6 1.8 0.4 0.4 0.2
M2 12 1.2 3.4 1.0 1.0 0.5
M3 14 2.4 5.4 2.1 2.2 1.1
M4 11 3.2 7.1 3.6 3.7 2.1

0.6

M1 8 0.3 0.9 0.2 0.2 0.08
M2 10 0.6 2.0 0.5 0.5 0.2
M3 12 1.4 3.7 1.0 1.1 0.4
M4 17 3.1 4.9 2.0 2.4 0.8

0.9
M1 5 0.1 0.3 0.01 0.01 0.003
M2 8 0.2 0.9 0.2 0.2 0.06
M3 10 1.0 1.9 0.5 0.5 0.24

simulation. The power spectra of these moments, h|Qm|2i, were
studied in detail, noticeably via their evolution with redshift,
cluster mass and radial aperture.

We quantified the degree of angular symmetries around clus-
ters that is in excess of the background density field. To this end,
we compared the multipolar moment spectra centred on clusters
to those of random locations. To first order, the non-linear evolu-
tion of mass shells sinking towards the centre of clusters induces
a boost of power at all angular scales due to the contraction of
the Lagrangian patch initially encompassing the mass fluctua-
tions. When the density field is nearly Gaussian, only m  2 mo-
ments are a↵ected by the peak constraint, as demonstrated in
Codis et al. (2017), while in the quasi-linear regime this paper
also predicts, perturbatively, the achromatic boost. In the highly
non-linear regime, a simple model based on the spherical col-
lapse model was presented, and is found to be in good agreement
with measurements on massive haloes extracted from the PLUS
Dark Matter cosmological simulation.

Looking at the harmonic distortions occurring on top of
the overall boost, we found an angular power excess at orders
m . 10 in the outer shell, which traces the azimuthal shape of
the projected density. The excess chromatic power in the multi-
poles seems qualitatively consistent with the predicted number
of connected filaments in the outskirts of clusters (Pichon et al.
2010; Pogosyan et al., in prep.), keeping in mind that the har-
monic analysis is mass weighted. We also found a higher am-
plitude for the quadrupole in the central regions, which reflects
the ellipsoidal symmetry of the core of haloes (see also, e.g.
Despali et al. 2014). Given the similarity in the excess power in
internal and external regions, we examined the cross-correlation
of multipolar moments between these two annuli. Except for
the quadrupole, angular shapes at small and large scales seem
to be uncorrelated. This is probably because, typically, two
branches of filaments are connected to a node of the cosmic web
on small scales (Pogosyan et al. 2009). Further away from the
nodes, bifurcation points appear and therefore increase the num-
ber of filaments. We therefore expect the quadrupole to be cor-
related between small and large scales but correlations beyond
the quadrupole to be suppressed on small scales. Therefore, the
steeper profile of the small-scale multipoles compared to their
large-scale counterpart is fully consistent with this idea that the
cosmic connectivity is smaller on small scales.

We also studied the evolution of multipolar spectra at di↵er-
ent redshifts (from z = 0 to z ⇠ 0.9) and found that following the
same population of haloes, that is, with the same initial rareness
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Fig. 8. Expected signal-to-noise ratio of multipolar moment spectra that one could obtain by stacking the total number of galaxy clusters
Ncluster(z,M), that will be uncovered in the future Euclid survey (Sartoris et al. 2016). Red and blue curves represent the signal-to-noise ratio
for the annuli R1 2 [0.25�0.5]Rvir and R4 2 [1�4]Rvir, respectively. Three di↵erent ranges of redshift are considered (⇠0.3, ⇠0.6 and ⇠0.9 from
left to right), together with four fiducial cluster mass intervals (M4, · · ·M1, from top to bottom).

level, the multipolar moments measured in an annulus that fol-
lows the growth of the virial radius grow at a rate that is similar
to the cosmic rate (implying no change of the spectra normalised
by ↵). This suggests that the larger-scale shape in the vicinity of
the halo is fixed at early times in its formation history, and keeps
the memory of its initial conditions during collapse (Bond et al.
1996). Indeed, the dark-energy-induced disconnection from the
cosmic web (Pichon et al. 2010) has not yet occurred for this
most massive population of clusters. We note that, as expected,
for a less massive population of haloes, we observe a decrease
of the harmonic excess in both internal and external regions with
time. This decrease is due to a virialisation of the core and a
disconnection of the halo from the cosmic web, at the respec-
tive scales. Globally, these quantitative estimates are consistent
with dynamical expectation drawn from the visual inspection of
simulations.

Finally, we estimated the detectability of these harmonics
using WL data, taking into account di↵erent sources of noise
such as the shape noise (intrinsic ellipticity of the background
galaxies), the impact of the LSS along the line-of-sight, and the
sample variance. As expected, the amplitude of the signal-to-
noise ratio increases with halo mass and depends on the aperture
and the cluster redshift (see Fig. 7). On small scales (within the
virial radius), shape noise dominates whereas additional deflec-
tions due to matter along the line-of-sight dominate the noise
budget on larger scales (outside the virial radius). Due to the

weakness of the signal, one has to stack the multipolar moment
spectra over a larger number of clusters. Hence, one should con-
sider current detections of filaments with WL with caution.

With the upcoming Euclid mission (Laureijs et al. 2011),
multipolar moment spectra will be detected with a good de-
gree of precision up to m ⇠ 10 in central and external re-
gions. On a shorter timescale, considering a broader annulus
(R = [0.1�1]Rvir), harmonic components should be measured
at orders m = 0, 2, 4, by stacking ⇠100 massive clusters up to
z ⇠ 0.6. Such measurements on ground-based observations will
be presented in a forthcoming companion paper (Gavazzi et al.,
in prep.). Upcoming investigations should extend this study to
varying cosmological models. Cosmology can have an impact
on multipolar moment spectra but the overall amplitude is gov-
erned by the cluster mass profile, which is better constrained by
a direct stacking of the tangential shear or a stacking of Q0 val-
ues. Cosmological e↵ects related, for instance, to the growth rate
and dark energy, may have an e↵ect on the relative amplitude of
moments. One could extend those measurements to cosmologi-
cal hydrodynamical simulations in which baryonic physics, such
as gas cooling and feedback from active galaxy nuclei, will sub-
stantially change the shape of the total mass distribution on small
scales (Teyssier et al. 2011; Suto et al. 2017). These scales may
be more e�ciently probed by strong lensing observables (fol-
lowing, e.g. Peirani et al. 2008). Additionally, models involving
warm or self-interacting dark matter may leave an interesting
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footprint on the spectrum of multipolar moments, as departure
from vanilla CDM would tend to make haloes rounder. We thus
expect these spectra to be a valuable Dark Matter probe on small
scales. Finally, we expect that comparisons between multipolar
moments measured with lensing and similar moments measured
on di↵erent populations of galaxies of di↵erent types may shed
new light on the relative bias of these populations inside fila-
ments and as they sink into cluster haloes. The key role of envi-
ronment on the quenching of star formation in galaxies around
clusters may hence be probed.
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Appendix A: Towards the non-linear statistics
of Qm

Let us first consider the weakly non-linear regime for the statis-
tics of Qm around clusters before turning to its strong non-linear
counterpart.

A.1. The weakly non-linear regime

For simplicity, let us first focus on the statistics of density fluc-
tuations in a 3D shell of matter located at a radius r from the
centre of a cluster of galaxies. This shell is falling onto the
cluster at a rate that can be derived from the spherical col-
lapse model or the Zeldovich approximation. It was originally
located at a Lagrangian radius q. Specifying the initial potential
 (q) =  l(q)+ c(q) , where  c is the potential generated by the
peak at the centre and  l is due to matter fluctuations in the orig-
inal shell, the mapping between the Eulerian coordinate r and its
corresponding Lagrangian position q is

r = q � D0rq (q), (A.1)

with D0 = D(a)/4⇡G⇢̄a3, D(a) the linear growth rate, and ⇢̄ the
mean comoving cosmic density. The evolved density contrast is
given by the Jacobian of this transformation

1 + � =
����i j � D0 c

,i j � D0 l
,i j

����1
, (A.2)

with | | the determinant of its argument. Taylor expanding this
relation around small values of  l and defining the distortion ten-
sor �i j = �i j � D0 c

,i j, allows us to rewrite Eq. (A.2) as

1 + � =
����i j

����1 ⇣
1 + D0Tr(��1

i j  
l
,i j)

⌘
, (A.3)

where Tr is the trace of its argument. Accounting now for the
spherical symmetry of  c, the � matrix reads

� = Diag
 
1 � D0 c

,qq, 1 � D0
1
q
 c
,q, 1 � D0

1
q
 c
,q

!
, (A.4)

in spherical coordinates. Let us now also neglect the anisotropy
of � by assuming that the radial compression of fluctuations oc-
curring as the shell shrinks does not significantly depart from the
angular compression, so that �i j = (1 � D0 1

q 
c
,q) �i j. This is only

strictly valid for a uniform initial overdensity but any departure
from it would leave no imprint on angular fluctuations over the
surface of the shell. Then, taking into account that the poten-
tial perturbations are related to the local initial density contrast
through Poisson’s equation D0Tr( l

,i j) = D(a)�l,i, we can write

D0 Tr(��1
i j  

l
,i j) ' D(a)�l,i

 
1 + D0

1
q
 c
,q

!
. (A.5)

In Eqs. (A.2), (A.3), 1 + � refers to the contrast with respect
to the background mean density. However, we are interested in
the contrast of fluctuations in the shell that are in excess of the
smooth cluster contribution 1 + �c. We can therefore multiply
Eq. (A.3) by |�|. We also simplify terms involving the derivatives
of the potential by considering the small initial cluster density
contrast �c,i (at radius q) and the mean initial density contrast �̄c,i

(averaged inside the sphere of radius q)

D0
 c
,q

q
=

D(a) �̄c,i

3
⌘ D(a)

q3

Z q

0
�c,i p2dp. (A.6)

When expressed relative to the smooth cluster density, Eq. (A.3)
becomes

1 + �
1 + �c = |�| (1 + �) ' 1 + D(a)�l,i

"
1 + D(a)

�̄c,i

3

#
, (A.7)

noticing that without the cluster one would recover the classical
linear theory result � = D(a)�l,i. Local fluctuations experience a
multiplicative boost factor corresponding to the term in brackets
in Eq. (A.7), and thus the power spectrum of local fluctuations
in the cluster vicinity can be written as

Pcluster(k) = Prandom(k)
"
1 +

D(a) �̄c,i

3

#2

⌘ ↵ Prandom(k). (A.8)

In this equation, Prandom = D(a)2P0, as expected from linear the-
ory. We nevertheless assume below that the relation still holds
for the non-linearly evolved Prandom.

Equation (A.8) simply quantifies the boost imposed by the
peak condition in the initial conditions �̄c,i. This is consis-
tent with the perturbative approach of Codis et al. (2017) who
showed that gravitational evolution induces a non-linear bias at
all multipoles proportional to the peak height ⌫, the amplitude
of fluctuations �0 / D(a) and the rescaled three-point function
⇠(3). The agreement between both approaches follows from the
D(a)�̄c,i $ �0⌫ correspondence. From Eq. (A.8) and Codis et al.
(2017), it appears that the excess amplitude of harmonics scales
like D(a) at first order. However, these predictions are only valid
in the weakly non-linear regime.

A.2. The highly non-linear regime

The above formalism can be extended to a fully non-linear
regime, where gravitational clustering boosts all multipoles
in proportion, through the convergence of the flow towards
the central peak. In practice, one needs to relate Pcluster(k)
and Prandom(k) to the cluster environment at late time. In the
Zeldovich approximation (or in the spherical collapse model
before shell crossing), the Lagrangian radius q is related to its
evolved Eulerian counterpart r via

r = q ⇢(< r)�1/3, (A.9)

if the mass enclosed by this falling shell is constant M(<q) =
M(<r). Writing q = �r, where � = ⇢(<r)1/3 is related to the
mean density within the sphere of radius r, the solution for � is

� = 1 +
D(a) �̄c,i

3
, at early time, (A.10)

=

 
3M(<r)
4⇡⇢̄r3

!1/3

, at late time. (A.11)

The boost of power ↵ previously defined in Eq. (A.8) was found
to be ↵ = �2 at early time and we assume here it should remain
↵ = �2 at late time. At late time, it is also convenient to assume
a NFW density profile (Navarro et al. 1997) for the equilibrium
state of the clusters, which is characterised by is virial mass Mvir
and concentration c. These two parameters are correlated and
slowly change with time. This allows us to express the density
enclosed in the sphere of radius r as

⇢(<r) = ⇢vir
fNFW(cr/Rvir)

fNFW(c)
, (A.12)

with ⇢vir the mean density inside the virial radius Rcir and
fNFW(x) = [log(1 + x) � x/(1 + x)]/x3, which relates the mean
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Fig. B.1. Comparison between the analytical (solid lines) and the mea-
sured (dotted lines with tiny error bars) spectrum of multipolar moments
for annuli taken at random positions in the simulation box. The bottom
(resp. top) curves correspond to small R 2 [0.25�0.5] Rvir (resp. large
R 2 [1�4] Rvir) annuli. Four mass and redshift values are overlaid for
each radius.

density contrast at radius r to the contrast at the virial radius. We
finally get

↵ =

"
⇢vir

⇢̄

fNFW(cr/Rvir)
fNFW(c)

#2/3

· (A.13)

where ⇢̄ is the mean background density. Equation (A.13) only
depends on time via the (weak) time and mass dependence vari-
ation of the concentration parameter (Klypin et al. 2016). This
can be see in Fig. 4.

Appendix B: Spectrum of multipolar moments
at random location

The spectrum of multipolar moments calculated at random loca-
tions can be inferred from the power spectrum of density fluc-
tuations and compared to the spectrum measured in simulations.
In Sect. 2.2.1, we related the spectrum of multipolar moments
with the power spectrum of the underlying two-dimensional den-
sity (or, there, convergence) field. We thus need to compute the
power spectrum of the projected density ⌃(R) from the power
spectrum of the three-dimensional density fluctuations P�(k).
Since we excise spheres of size RH = 4Rvir, the statistical prop-
erties of the projected density from this sphere are not stationary
because the radial extent a over which the density is integrated

is a function of the projected radius R, a = a(R) =
q

R2
H � R2.

Therefore, the two-dimensional spectrum reads

P⌃(k?,R) =
2a2 ⇢2

⇡

Z 1

�1
dkk P�

✓q
k2
? + k2

k

◆
sinc

�
kka

�2. (B.1)

Figure B.1 compares this analytical prediction with the mea-
surements made in the simulation for di↵erent masses, annuli
and redshifts. For this calculation, we again use the Boltzmann
code CLASS toolkit (Blas et al. 2011; Lesgourgues 2011) for the
fiducial Planck Cosmology. To simplify the expression of the

theoretical prediction, we approximate a(R) =
q

R2
H � R̄2 with

R̄ =
p

Rmin Rmax, the geometrical mean radius of the annulus.
The agreement is quite satisfactory. The small mismatch is due
to the simplifying assumptions used to conduct the analytical
integration (approximation on a(R)), and to the theoretical un-
certainties on the non-linear power spectrum P� on the smallest
scales.

Appendix C: Covariance of multipolar moments

Let us present here the details of the derivation of the four-point
statistical properties of the shape noise contribution to the local
multipolar moments in Eq. (40), by following the same nota-
tions as Schneider et al. (1998). Let us neglect terms that are due
to the finite number of sources carrying shear. No coherent shear
is carried by galaxies either. Hence, uncorrelated galaxy elliptic-
ities satisfy

h✏i↵i = 0, h✏i↵✏ j�i = �2
✏ �i j�↵�, (C.1)

with Latin indices i 2 1 . . .N labelling di↵erent galaxies in
an annulus [⌫Rmax,Rmax] and Greek indices labelling elliptic-
ity components ↵ 2 {t,⇥}, hence following the notations of
Schneider et al. (2002) with the distinction that �✏ is, here,
the one-dimensional dispersion of source ellipticities. The four-
point expectation value of ellipticities is

h✏i↵✏ j�✏kµ✏l⌫i = �4
✏

⇣
�i j�↵��kl�µ⌫ + �ik�↵µ� jl��⌫ + �il�↵⌫� jk��µ

⌘
.

This will be useful for averaging over source ellipticities the
multipolar moment power spectrum

|Qm|2 = 1

n2

X

jk

eım(' j�'k)
h ⇣
�m

jt�
m
kt✏ jt✏kt + �

m
j⇥�

m
k⇥✏ j⇥✏k⇥

⌘

+ı
⇣
�m

j⇥�
m
kt✏ j⇥✏kt � �m

jt�
m
k⇥✏ jt✏k⇥

⌘ i
, (C.2)

adopting the convention �m
j↵ = b↵,m(r j)/r j. In the absence of

shear, the expectation value of Eq. (C.2) is simply

h|Qm|2i ⌘ |Qs
m|2 =

�2
✏

n2

NX

k=1

⇣
�m,2

kt + �
m,2
k⇥

⌘
. (C.3)

Accounting for symmetries and arranging terms, the four-point
moments reads

h|Qm|2 |Qn|2i = h|Qm|2i h|Qn|2i + |K+mn|2 + |K�mn|2, (C.4)

where

K±mn ⌘
�2
✏

n2

X

k

eı(m⌥n)'k
⇣
�m

kt�
n
kt ± �m

k⇥�
n
k⇥

⌘
. (C.5)

We highlight that the averaging over source positions within the
annulus yields

hK+mni = �mn|Qs
m|2, hK�mni = �m0�n0Q̃s2

0 , (C.6)

with the modified moments defined by

|Qs
m|2 =

⇡�2
✏

n

Z R

⌫R
dr

b2
t,m(r) + b2

⇥,m(r)
r

, (C.7)

|Q̃s
m|2 =

⇡�2
✏

n

Z R

⌫R
dr

b2
t,m(r) � b2

⇥,m(r)
r

· (C.8)
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Chapter 4

Gravitational lensing in the
Horizon-AGN simulation light-cone

4.1 Weak lensing in the Horizon-AGN simulation light-cone:
Small scale baryonic effects
(Article submitted to Astronomy & Astrophysics)

Context

For scales below few Mpc, the density field is non-linearly impacted by baryons and their associated
physics, as shown in Chapter 1. Yet, with the advent of high performance hydrodynamics, it is now
becoming possible to model the complex interplay of baryons and dark matter at these non-linear
scales. Hence I focus in the second part of my thesis on mocking weak lensing observables down
to these scales through the post-processing of state-of-the-art of hydrodynamical cosmological
simulations. I also construct statistical estimators which I validate on these mocks.

Such predictions are crucial for upcoming lensing surveys surveys such as Euclid, LSST and
WFIRST, which will measure the lensing signal with an new level of accuracy in order to achieve
the nominal level of accuracy on the dark energy parameters. In anticipation of these future
data sets, lensing observables need to be calibrated and characterised while including baryonic
physics. Semboloni et al. (2011) showed that weak lensing statistics can significantly differ between
pure-DM predictions and those which include the impact of baryonic physics. In addition, the
number of convergence peaks itself is altered by taking account the baryonic component, as
described by Yang et al. (2013).

As detailed in chapter 2, significant progress has been made to efficiently predict lensing
observables up to non-linear scales with large cosmological simulations. Regarding works using
pure N-body simulations, one can cite the production of WL full sky maps with angular resolutions
of a few arcmin (e.g. Fosalba et al. 2015; Giocoli et al. 2016b; Takahashi et al. 2017b). Such
realisations are used to accurately predict the variance of weak lensing statistics (by reducing
the cosmic variance). Predicting lensing observables from hydrodynamical simulations is more
complex, as we must take into account different matter particles (stars, BH, DM) which have
different masses, as well as the gas component which could be either cells (Eulerian code) or
particles (Lagrangian code). Nevertheless, the advance of hydrodynamical simulations and
numerical ray tracing methods, prediction of lensing signal from such simulation have started. For
instance, Velliscig et al. (2017) recently predicted the galaxy-galaxy lensing signal on the EAGLE
simulation, and found a significant agreement with the GAMA+KiDS data (Dvornik et al. 2017).
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Paper presentation

In the paper below, I investigate the impact of baryons on the weak lensing observable in the
Horizon-AGN simulation (Dubois et al. 2014). This is a full physics cosmological hydrodynamical
simulation based on the AMR code RAMSES, as described in chapter 1. In particular, to mimic
all deviations of light-rays along a mock light-of-sight, light rays are propagated trough the light
cone of the simulation.

To perform the light rays propagation the multiple-lens-plane approximation is applied, i.e.,
the light cone is partitioned into a series of lens planes and light rays are deflected plane by plane
(Hilbert et al. 2009, see for example ). Light-ray are also propagated in the Born approximation
(only one effective thin lens plane), to quantify the impact of lens-lens coupling on weak lensing
statistics.

In this study, two different algorithms are used to evaluate the deflection of light rays on
each lens plane. The first method accurately integrates the acceleration along the path of light
rays on each cell of the AMR simulation (called after OBB method). This new method has
the advantage of providing an estimation of the deflection at a resolution level similar to the
simulation grid. The second one, inspired from the Smooth Particle Lensing method (Aubert
et al. 2007), adaptively smooths particles depending of the total local density. This more standard
approach allow to distinguish the individual impact of dark and baryonic matter on the lens-
ing signal. Both methods are then used to deflect light-rays along the light-cone, and are compared.

From the computed lensing signal toward the light cone, I predict the standard weak lensing
statistics: convergence power spectrum, two-point shear correlation and galaxy-galaxy lensing.
Standard cosmic shear statistics are estimated for the total matter, and by considering the DM
particles only. Convergence power spectra are impacted by the baryonic component: at the 10%
level for angular scales below a few arcmin. Note that due to the weak opening angle of the
light-cone (1 square degree) the prediction of weak lensing statistics on large scale are strongly
noised by the cosmic variance. In addition, the impact of the reduced shear approximation
(g = γ/(1− κ) ∼ γ) on the two-point shear correlation function is also estimated: ξg−/ξ

γ
− > 5%

for scales lower than 1 arcmin.

The magnification bias is also quantified on the galaxy-shear correlation, i.e. the magnification
of lens by all of the matter between the lens and the observer. A proper propagation of light-rays
is necessary to accurately model the magnification of lens. The galaxy-galaxy lensing (GGL)
predictions are compared to current measurements realised by Leauthaud et al. (2017) on the
CMASS sample of galaxies at z ∼ 0.55. Tacking into account the magnification bias induced on
the stellar mass estimation of lens galaxies, a good agreement is found between GGL predictions
and the measurements of Leauthaud et al. (2017). By considering galaxy lenses at higher redshift
zL ≥ 1, the impact of magnification bias on GGL signal is relevant for separations greater than 1
Mpc.

Finally, this paper is a first step towards building a full end-to-end generation of lensed mock
images from large cosmological hydrodynamical simulations, as explained in section 2.

Details of the numerical work

In this study, I perform light-ray propagation in the multiple-lens plane approximation and with
two methods of deflection field reconstruction, as detailed in the paper below. Because some
numerical aspect is discussed in that paper explicitely, while others have been discussed in Chapter
2, I will not get into too much details here.
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Nevertheless, I would like to focus on the problem of missing (and excess) cells in the light
cone, which arose during the development and testing of the OBB method (see section 3.4 of the
paper). When the light cone slice is written to disk during the run of the simulation, some cells
are missing or appear twice. This is due to the fact that cells at the edge of a slice can be refined
or de-refined from one time step to the next, and this effect is not properly accounted for. This
problem is illustrated in figure 4.1.

I thus spent a few months to identify, characterise and attempt to correct this problem. Yet,
eventually I chose not to, given its complexity: the light cone is computed on the fly, so I cannot
re-run the light cone realisation. Instead, I recommended identifying all cells with this problem
and correcting it. While more tractable, this approach still requires considerable quantities of
work, computational time and memory. Nevertheless, I have convinced myself that the impact of
this error is minor, while the OBB method overall presents significant advantages 1 and could be
used in any light cone (knowing the simulation grid, either regular or AMR).

In addition to the OBB method, I also calculated lensing quantities using a more standard
approach, by smoothing particle masses on a 2-D grid to obtain the surface density. Considering
the level of accuracy that I reach in this study, adaptative smoothing is necessary, which is
implemented using a version that I wrote inspired by the SPL code of Aubert et al. (2007). Such
codes are indeed well-suited to treat single components of matter (either DM, star, BH or gas). It
thus directly run for each component at each time step, which involves very long computational
times, as it requires building a tree in the distribution of particle for each component. In my
study, I had already reconstructed the AMR grid in the light cone when using the OBB method.
I thus already have the information of the resolution level around a given particle. Tacking the
advantage of this information, I smooth particle by a 2-D gaussian kernel for which the standard
deviation σ is proportional to the RAMSES grid resolution at the location of the particle.

This numerical aspect made use of high performance computing, including OPEN-MP/MPI
parallelisation and code optimisation. Overall 300,000 hours of CPU were used on the Horizon
Cluster hosted by the Institut d’Astrophysique de Paris.

Overview of my different contribution

I am also the main architect of this paper: I realised the post-processing of the light cone including
the ray-tracing, and the lens plane construction with the two methods. I also computed the
cosmic shear statistics, including the convergence power spectra and the 2-point shear correlation
function. The galaxy shear correlation and magnification bias investigations were done jointly by
Raphael Gavazzi and me. The first three authors contributed actively to writing the paper. For
example, I wrote the first draft of the introduction, which was then modified in turn by Raphael
Gavazzi and Christophe Pichon.

Perspectives of this study

In this paper, I predict the weak lensing statistics with stat-of-the-art of hydrodynamical cos-
mological simulation, and quantify the impact of baryons and baryonic physic on the cosmic
shear lensing signal. These predictions take advantageously into account all the matter along the
line-of-sight (from z ∼ 7 to z = 0.05), is resolved up to scales relevant for the impact of baryons
(angular resolution of 0.1”), and take care of all relevant numerical approximations (propagation
over a large number of planes, and impact of deflection field reconstruction).

By using the lensing quantities computed here, one can already extend my study to the
strong lensing regime. Strong lensing predictions, which include a realistic physic of baryons, are

1as detailed in the paper: the mass distribution outside the light cone is consistently taken into account, and it
provides the deflection directly
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important as they provide information on the core of the lens, where baryonic component cannot
be negligible. Indeed, current studies reconcile observations with dark matter halo models by
incorporating baryonic physics inside simulations addressing scientific issues such as the cusp-core
problem or sub-haloes abundance problem. For instance, Peirani et al. (2018) already showed that
the innermost parts of Horizon-AGN galaxies are consistent with the strong lensing observations
of Sonnenfeld et al. (2013) and Newman et al. (2013, 2015).

In addition, I am currently incorporating my ray-tracing results to mock images produced by
Clotilde Laigle (Kaviraj et al. 2017). The corresponding project will be detailed at the end of this
chapter. This work will allow me to extract the true gravitational lensing signal form observations.
Such forecasts are crucial in order to prepare future surveys such as Euclid or LSST.

Figure 4.1 – Schematic view of the missing (and excess) cells found at the edge between two
light cone slices, presented along two distinct views. In addition, this picture illustrates the
orrientation of RAMSES cells relatively to the line-of-sight.
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ABSTRACT

Context. Accurate model predictions including the physics of baryons are required to make the most of the upcoming large cosmo-
logical surveys devoted to gravitational lensing. The advent of hydrodynamical cosmological simulations enables such predictions on
sufficiently sizeable volumes.
Aims. Lensing quantities (deflection, shear, convergence) and their statistics (convergence power spectrum, shear correlation func-
tions, galaxy-galaxy lensing) are computed in the past lightcone built in the Horizon-AGN hydrodynamical cosmological simulation,
which implements our best knowledge on baryonic physics at the galaxy scale in order to mimic galaxy populations over cosmic time.
Methods. Lensing quantities are generated over a one square degree field of view by performing multiple-lens plane ray-tracing
through the lightcone, taking full advantage of the 1 kpc resolution and splitting the line of sight over 500 planes all the way to red-
shift z ∼ 7. Two methods are explored (standard projection of particles with adaptive smoothing, and integration of the acceleration
field) to ensure a good implementation. The focus is on small scales where baryons matter most.
Results. Standard cosmic shear statistics are affected at the 10% level by the baryonic component for angular scales below a few
arcminutes. The galaxy-galaxy lensing signal, or galaxy-shear correlation function, is consistent with measurements for the redshift
z ∼ 0.5 massive galaxy population. At higher redshift z & 1, the effect of magnification bias on this correlation is relevant for separa-
tions greater than 1 Mpc.
Conclusions. This work is pivotal for all current and upcoming weak-lensing surveys and represents a first step towards building a
full end-to-end generation of lensed mock images from large cosmological hydrodynamical simulations.

Key words. large-scale structure of Universe – gravitational lensing: weak – methods: numerical

1. Introduction

Gravitational lensing has become a versatile tool for prob-
ing the cosmological model and scenarios of galaxy evolution.
From the coherent distortions, generated by the intervening mat-
ter along the line of sight, of the last scattering surface (e.g.
Planck Collaboration VIII 2018) or intermediate-redshift galax-
ies (Bartelmann & Schneider 2001; Kilbinger 2015), to the inner
parts of massive galaxies (Treu 2010), lensing directly mea-
sures the fractional energy density in matter of the Universe.
Because it does not rely on assumptions about the relative dis-
tribution between the galaxies and the underlying dark mat-
ter (DM), which drives the dynamical evolution of cosmolog-
ical structures, weak lensing plays a key role in recent, ongo-
ing, or upcoming ground-based imaging surveys, such as the
Canada France Hawaii Lensing Survey (Heymans et al. 2012),
the Dark Energy Survey (Dark Energy Survey Collaboration
2005; Abbott et al. 2016), the Kilo-Degree Survey (KiDS:
Kuijken et al. 2015), the Hyper Suprime-Cam Subaru Strate-
gic Survey (Miyazaki et al. 2012), and the Large Synoptic
Survey Telescope (LSST Science Collaborations 2009). It is also
at the centre of the planned Euclid and WFIRST satellites
(Laureijs et al. 2012; Spergel et al. 2015).

The statistical power of these experiments dramatically
increases and drives on its way enormous efforts for the con-
trol of systematic effects. One of them concerns the accuracy
to which theoretical predictions on the statistical properties of
the matter distribution when it has evolved into the non-linear
regime can be made on a small scale. Arguably, cosmologi-
cal N-body numerical simulations have been playing a key role
in solving the complex dynamical evolution of DM on scales
smaller than a few Megaparsec (e.g. Springel et al. 2006). The
upcoming Euclid or LSST missions require an extreme accu-
racy on the matter density power spectrum and the associ-
ated covariances that may enter a likelihood analysis of these
data. The effort is currently culminating with the Flagship sim-
ulation, for instance (Potter et al. 2017). It also motivated ear-
lier very large simulations such as Horizon-4π (Teyssier et al.
2009; Pichon et al. 2010), DEUS (Rasera et al. 2010), or MICE
(Fosalba et al. 2015a), however. It has early been envisioned
to propagate light rays through such DM simulations in order
to reproduce the deflection and distortions of light bundles in
a lumpy universe. The motivation is to derive lensing observ-
ables such as convergence maps and one-point probability dis-
tribution functions of this field or its topological properties
(peaks, voids, etc.) or two-point shear correlation functions

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
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(Jain et al. 2000; Pichon et al. 2010; Hamana & Mellier 2001;
Vale & White 2003; Hennawi & Spergel 2005; Hilbert et al.
2007, 2009; Sato et al. 2009). Much progress has since been
made on large and mildly non-linear scales with the production
of full-sky maps with an angular resolution of a few arcminutes
(e.g. Fosalba et al. 2015b; Giocoli et al. 2016; Takahashi et al.
2017).

In order to make the most of the upcoming surveys, the mat-
ter distribution for Fourier modes as large as k ∼ 10 h Mpc−1

must be predicted to the percent accuracy, which today still
represents a challenge (Schneider et al. 2016). Furthermore,
at these scales, the physics of baryons can differ from the
dynamics of DM, and even though it amounts to ∼17% of
the total cosmological matter budget, it has to be taken into
account (van Daalen et al. 2011). For weak-lensing statistics,
Semboloni et al. (2011) showed that the modelling of the two-
point shear correlation function can be significantly biased when
the baryons are simply treated like the collision-less DM. Even
the number of convergence peaks itself is altered by baryons, but
to a lesser extent than the power spectrum (Yang et al. 2013).

Recently, significant progress has been made on hydro-
dynamical simulations, which are now able to reproduce a
morphological mix of galaxies in a cosmological context by con-
sidering baryonic physics such as radiative cooling, star forma-
tion, and feedback from supernovae and active galactic nuclei
(AGN). Despite the balancing act that is required to be achieved
between the high-resolution needs for properly describing the
galaxies that formed at the centre of DM halos and the necessity
of simulating sizeable cosmological volumes, recent simulations
such as Horizon-AGN (Dubois et al. 2014), Illustris/Illustris-
TNG (Vogelsberger et al. 2014; Pillepich et al. 2018), or
EAGLE (Schaye et al. 2015) have now reached volumes of about
100 Mpc on a side and a resolution of about 1 kpc. This opens
the possibility to quantify the effect of baryons (experiencing
adiabatic pressure support, dissipative cooling, star formation,
feedback, etc.) on the total matter distribution and its effect
on lensing cosmological observables (see e.g. van Daalen et al.
2011; Tenneti et al. 2015; Hellwing et al. 2016; Springel et al.
2018; Chisari et al. 2018). Prescriptions to account for this
effect (e.g. Semboloni et al. 2013; Schneider & Teyssier 2015;
Mead et al. 2015; Rabold & Teyssier 2017) have been explored,
and some start to be incorporated into cosmic shear studies
(Hildebrandt et al. 2017).

In this paper, we further investigate the effect of baryons on
lensing observables in the Horizon-AGN simulation. By taking
advantage of the lightcone that is generated during the simu-
lation run, we are able to fully account for projection effects
(mixing physical scales) and small-scale non-linearities occur-
ring in the propagation of light rays (e.g., Born approximation,
lens-lens coupling, corrections for shear – reduced shear) that
may be boosted by the steepening of the gravitational potential
wells that are caused by cooled gas that sinks to the bottom of
DM halos. This extends the analysis of Chisari et al. (2018), who
mostly focused on the effect of baryons on the three-dimensional
matter power spectrum and compared the Horizon-AGN results
with those of Illustris, OWLS, EAGLE, and Illustris-TNG and
found a broad qualitative agreement. The common picture is
that hot baryons that are prevented from sinking into halos like
DM induce a deficit of power inside halos (in a proportion of
about Ωb/ΩM), and at still smaller scales (k & 30 h Mpc−1),
baryons in the form of stars (and to a lesser extent, cooled
gas) dramatically boost the amplitude of density fluctuations.
However, even though these results seem to converge from
one simulation to another, they substantially depend on the

assumptions about sub-grid physics, and in particular, about
AGN feedback.

In addition to these encouraging successes at quantify-
ing the nuisance of baryons on cosmological studies, hydro-
dynamical simulations entail a wealth of information on the
relation between galaxies or galaxy properties and the halo
they live in. It is therefore a way to understand the large-
scale biasing of these galaxies with respect to the overall total
matter density field. We also explore the small-scale relation
between galaxies and their surrounding gravitational poten-
tial that sources the lensing deflection field. In particular, the
correlation between galaxies and the tangential distortion of
background sources (so-called galaxy-galaxy lensing signal,
GGL) has proven to be a way to constrain the galaxy-mass
correlation function (e.g. Brainerd et al. 1996; Guzik & Seljak
2001; Mandelbaum et al. 2006, 2013; Leauthaud et al. 2012;
Velander et al. 2014; Hudson et al. 2015; Coupon et al. 2015). In
this vein, Velliscig et al. (2017) recently showed that the GGL
around z ∼ 0.18 galaxies in the EAGLE simulation is consis-
tent with the GGL measured around the Galaxies And Mass
Assembly (GAMA) groups using KiDS data (Dvornik et al.
2017).

Finally, subtle observational effects entering GGL by high-
redshift deflectors (z & 0.8) are investigated from the lensing
information over the full past lightcone of the Horizon-
AGN simulation. The magnification bias affecting the selection
of deflectors (Ziour & Hui 2008) complicates the interpretation
of GGL substantially. Currently, no such high-z lens sample
has been studied because even higher faintly lensed sources
that carry the shear signal are scarce, but the situation may
change with Euclid. Its slit-less grism spectroscopy will provide
a large sample of Hα emitters in the 0.9 ≤ z ≤ 1.8 redshift
range. A thorough understanding of the clustering properties
of this sample may be achieved with the GGL measurement
of this sample by using the high-z tail of the shape catalogue
obtained with the visible imager (VIS) for Euclid. Some ray-
tracing through cosmological simulations (Hilbert et al. 2009;
Fosalba et al. 2015b) has briefly mentioned some aspects of the
problem of magnification bias that was raised by Ziour & Hui
(2008). The Horizon-AGN lightcone is a good opportunity to
quantify these effects in order to correctly interpret upcoming
GGLs. In this paper, cosmic shear or GGL quantities are directly
measured from the lensing quantities obtained by ray-tracing
methods. They are not inferred from the shape of galaxies, as
is done in observations. A forthcoming paper will present the
generation of mock wide-field images including lensing dis-
tortions from the full view of Horizon-AGN lightcone and the
light emission predicted for the simulated stars, taking us one
step closer to a full end-to-end generation of mock lensing
observations.

The paper is organised as follows. Section 2 presents the
Horizon-AGN hydrodynamical simulation, the structure of its
lightcone, and some properties of the galaxy population therein.
Section 3 describes the methods we implemented to generate
the deflection field on thin lens planes and to propagate light
rays through them. Section 4 describes the one- and two-point
statistics of the resulting convergence and (reduced-)shear fields.
The validity of the ray-tracing method is quantified by compar-
ing our results with independent methods. Section 5 measures
the GGL around the galaxies in the Horizon-AGN simula-
tion. A comparison with observations is made for low-redshift
deflectors. The problem of magnification bias is investigated for
future observations of high-z GGL. Section 6 summarises our
results.
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2. Horizon-AGN simulation lightcone

2.1. Characteristics

The Horizon-AGN simulation is a cosmological hydrodynam-
ical simulation performed with RAMSES (Teyssier 2002). The
details of the simulations can be found in Dubois et al. (2014).
We first briefly summarise the main characteristics. Horizon-
AGN contains 10243 DM particles with a mass resolution of 8×
107 h−1 M� in a box of comoving size Lbox = 100 h−1 Mpc on a
side. The gravity and hydrodynamics are treated in RAMSES with
a multiscale approach with adaptive mesh refinement (AMR):
starting from a uniform 10243 grid, cells are then adaptively
refined when the mass inside the cell exceeds eight times the ini-
tial mass resolution. Cells are recursively refined (or de-refined
according to the refinement criterion) down to a minimum cell
size of almost constant 1 proper kpc (an additional level is trig-
gered at each expansion factor a = 0.1, 0.2, 0.4, 0.8). The under-
lying cosmology is a standard ΛCDM model consistent with the
WMAP7 data (Komatsu et al. 2011), with total matter density
Ωm = 0.272, dark energy density ΩΛ = 0.728, amplitude of the
matter power spectrum σ8 = 0.81, baryon density Ωb = 0.045,
Hubble constant of H0 = 70.4 km s−1 Mpc−1, and scalar spectral
index ns = 0.967.

The evolution of the gas is solved on the RAMSES grid
using a Godunov method with the approximate Harten-
Lax-van Leer-Contact Riemann solver on the interpolated con-
servative hydrodynamical quantities, which are linearly inter-
polated at cell boundaries from their cell-centred values using
a MinMod total variation diminishing scheme. In addition,
accurate models of unresolved sub-grid physics have been
implemented. The gas heating comes from a uniform UV
background that started at the re-ionisation zreion = 10
(Haardt & Madau 1996). The cooling function of the gas follows
Sutherland & Dopita (1993), from H and He collision and from
the contribution of other metals. Star formation is modelled fol-
lowing the Schmidt law (Kennicutt 1998), with a constant star
formation efficiency of 2% per free fall time. It occurs when
the density of the gas exceeds the threshold 0.1 H cm−3. The
temperature at gas densities higher than 0.1 H cm−3 is modified
by a polytropic equation of state with polytropic index of 4/3
and scaling temperature of 104 K (Springel & Hernquist 2003).
Stellar evolution is performed assuming a Salpeter (1955) initial
stellar mass function. The sub-grid physics also includes stel-
lar winds and supernova feedback in the form of heating, metal
enrichment of the gas, and kinetic energy transfer to the ambi-
ent gas (see Kaviraj et al. 2017, for more details). Finally, black
holes (BH) are created when the gas density exceeds 0.1 H cm−3,
and when no other BH lies in the close environment. They grow
by direct accretion of gas following an Eddington-limited Bondi-
Hoyle-Littleton accretion rate, and by merger when BH binaries
are sufficiently close. The AGN feedback is treated by either an
isotropic injection of thermal energy, or by a jet as a bipolar out-
flow, depending on the ratio between the Bondi and the Edding-
ton accretion rates (see Dubois et al. 2012; Volonteri et al. 2016,
for details).

The past lightcone of the simulation was created on-the-fly
as the simulation was running. Its geometry is sketched in Fig. 1.
The opening angle of the cone is 2.25 deg out to redshift z = 1
and 1 deg all the way to z = 8. These two values correspond
to the angular size of the full simulation box at these redshifts.
We can therefore safely work in the flat sky (or infinitely remote
observer) approximation. Up to z = 1, the volume of the cone
is filled with about 7 replicates of the box. Between z = 0 and
z = 4, the narrow cone contains about 14 replicates of the box,
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Fig. 1. 2D sketch of the past lightcone around redshift z = 1 (orange
vertical line). Each mesh is a replicate of the Horizon-AGN simulation
box (bounded with cyan lines). The tiling is performed all the way up
to redshift z ∼ 8.

and the union of the two cones contains about 19 copies. This
should be kept in mind when the statistical robustness of our
results is quantified.

In order to limit projection effects, a non-canonical direction
was chosen for the past lightcone, but in order to preserve peri-
odic boundary conditions between replicates, no random rotation
was applied. Projection effects will still be present and induce
characteristic spectral distortions on large scales that must be
taken into account. Particles and AMR cells were extracted on-
the-fly at each coarse simulation time step (when all levels were
synchronized in time because a factor 2 of subcycling is used
between levels) of the simulation according to their proper dis-
tance to a fiducial observer located at the origin of the simula-
tion box. The lightcone of the simulation thus consists of 22 000
portions of concentric shells. Each of them contains stellar BH
DM particles (with their position and velocity, mass, and age),
along with AMR Eulerian cells storing the gas properties (posi-
tion, density, velocity, temperature, chemical composition, and
cell size) and the total gravitational acceleration vector.

2.2. Properties of galaxies and host halos

The AdaptaHOP halo finder (Aubert et al. 2004) was run on
the lightcone to identify galaxies from the stellar particle dis-
tribution. The local stellar particle density was computed from
the 20 nearest neighbours, and structures were selected with a
density threshold equal to 178 times the average matter den-
sity at that redshift. Galaxies resulting in fewer than 50 particles
('108 M�) were not included in the catalogue. Because the iden-
tification technique is redshift dependent, AdaptaHOP was run
iteratively on thin lightcone slices. Slices overlapped to avoid
edge effects (i.e. cutting galaxies in the extraction) and dupli-
cates were removed. In a second step, DM haloes were extracted
independently from the DM particle distribution, with a density
threshold of 80 times the average matter density, and keeping
only haloes with more than 100 particles. The centre of the halo
was temporarily defined as the densest particle in the halo, where
the density was computed from the 20 nearest neighbours. In
a subsequent step, a sphere of the size of the virial radius was
drawn around it and a shrinking sphere method (Power et al.
2003) was implemented to recursively find the centre of mass
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of the halo. In each iteration, the radius of the halo was reduced
by 10%. The search was stopped when a sphere three times
larger than our spatial resolution was reached. Each galaxy was
matched with its closest halo.

The simulation contains about 116 000 galaxies and halos in
the simulation box at z = 0, with a limit of about M∗ & 2 ×
109 M�. These yields have been extensively studied in previous
papers of the Horizon-AGN series. For instance, Kaviraj et al.
(2017) compared the statistical properties of the produced galax-
ies, showing a reasonable agreement with observed stellar mass
functions all the way to z ∼ 6. The colour and star formation his-
tories are also well recovered, and so are the BH – bulge relations
and duty-cycles of AGNs (Volonteri et al. 2016).

Following up on an earlier work (Dubois et al. 2013) that
focused on a handful of zoomed galaxy simulations with
RAMSES, Dubois et al. (2016) confirmed with a much greater
statistical significance in Horizon-AGN that the morphological
diversity of galaxies is well reproduced (fraction of rotation-
versus dispersion-supported objects, and how this dichotomy
maps into the star-forming versus quiescent dichotomy).
Taking advantage of a parallel simulation run with the same
initial conditions and in which the AGN feedback is turned off
(Horizon-noAGN), the key role of the latter in shaping the galaxy
morphology was emphasised. Furthermore, Peirani et al. (2017)
studied the effect of AGN feedback on the innermost density
profiles (stars, gas, DM, and total) and found a good agreement
of the density profile, size-mass relation, and DM fraction inside
the effective radius of galaxies with observations. In particular,
Peirani et al. (2019) showed that the innermost parts of Horizon-
AGN galaxies are consistent with strong-lensing observations of
Sonnenfeld et al. (2013) and Newman et al. (2013, 2015).

Populating the lightcone yields a volume-limited sample of
1.73 × 106 galaxies in the narrow 1 deg cone. However, a large
portion of the low-mass high-redshift galaxies would not be of
much practical use in a flux-limited survey, as shown in Fig. 2,
which plots the redshift-dependent limit in stellar mass that is
attained with several i-band apparent limiting magnitudes. This
was obtained using the COSMOS2015 photometric catalogue of
Laigle et al. (2016).

3. Ray-tracing through the lightcone

After briefly describing the basics of the propagation of light
rays in a clumpy universe and the numerical transcription of
this formalism, we now describe the ray-tracing computation in
the Horizon-AGN lightcone. Our implementation of the multi-
ple lens plane (but also the Born approximation) builds on sim-
ilar past efforts (Hilbert et al. 2008; Metcalf & Petkova 2014;
Petkova et al. 2014; Barreira et al. 2016). It has been tailored
for the post-treatment of the Horizon-AGN past lightcone, but
provided the flat-sky approximation holds, our implementation
could readily be applied to any other RAMSES lightcone output
(Teyssier et al. 2009).

As detailed below, two methods are investigated to infer
deflection angles from either the distribution of various particle-
like matter components or the total gravitational acceleration
stored by RAMSES. The light rays are then propagated plane by
plane (both within and beyond the Born approximation) for these
two different estimates of the deflection field.

3.1. Thin lens plane

We define β the (un-perturbed and unobservable) source plane
angular position and θ the observed angular position of a light
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Fig. 2. Distribution in the redshift – stellar mass plane of the 1.7 million
galaxies in the Horizon-AGN lightcone. For guidance, the stellar mass
limit for completeness is shown as well as fiducial cuts in mass that
would be obtained with a flux-limited survey of various i-band limiting
magnitudes.

ray. Considering a unique thin lens plane, the relation between
the angular position of the source β, the deflection angle α, and
the image θ is

β = θ − Dls

Ds
α(θ), (1)

where Dls and Ds are the angular diameter distance between the
source and the lens, and between the observer and the source,
respectively. The deflection angle α(θ) is obtained by integrat-
ing the gravitational potential Φ(r) along the line of sight (here,
radial proper coordinate x3),

α(θ) =
2
c2

∫
∇⊥Φ(θ, x3) dx3. (2)

Hence, across a thin lens plane, the lensing potential φ(θ) is
related to the deflection field by the Poisson equation:

∆φ = ∇ · α ≡ 2κ, (3)

where the convergence κ is the projected surface mass density
Σ(θ) in the lens plane expressed in units of the critical density
Σcrit

Σcrit κ(θ) = Σ(θ) ≡
∫

ρ(θ, z) dz. (4)

The critical density reads

Σcrit =
c2

4πG
Ds

DlDls
, (5)

with Dl, the angular diameter distance between the observer and
the lens. In the above equations, all distances and transverse gra-
dients are expressed in physical (proper) coordinates.

A Taylor expansion of the so-called lens Eq. (1) yields the
Jacobian of the θ → βmapping, which defines the magnification
tensor (e.g. Bartelmann & Schneider 2001)

ai j(θ) =
∂β

∂θ
=

(
δi j − φ,i j

)
≡

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
, (6)

where δi j is the Kronecker symbol, and the two components γ1/2
of the complex spin-2 shear have been introduced. We note that
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subscripts following a comma denote partial derivatives along
that coordinate. Both shear and convergence are first derivatives
of the deflection field α (or second derivatives of the lensing
potential)

κ =
1
2

(α1,1 + α2,2), (7)

γ1 =
1
2

(α1,1 − α2,2), (8)

γ2 = α1,2 = α2,1. (9)

Therefore, starting from pixelised maps of the deflection
field α1/2(i, j) in a thin slice of the lightcone, we can easily derive
γ1/2(i, j) and κ(i, j) with finite differences or fast Fourier trans-
forms (FFTs), even if α is only known on a finite aperture, with-
out periodic boundary conditions. Conversely, starting from a
convergence map κ(i, j), it is impossible to integrate Eq. (3) with
FFTs to obtain α (and then differentiate again to obtain γ) with-
out introducing edge effects if the periodic boundary conditions
are not satisfied. Additionally, we also introduce the scalar mag-
nification µ, which is the inverse determinant of the magnifica-
tion tensor ai, j of Eq. (6).

3.2. Propagation of rays in a continuous lumpy universe

On cosmological scales, light rays cross many over- or under-
dense extended regions at different locations. Therefore, the
thin lens approximation does not hold. The transverse deflec-
tion induced by an infinitely thin lens plane is still given by the
above equations, but the trajectory of rays along their path needs
to be fully integrated. For a given source plane at comoving dis-
tance χs, the source plane position of a ray, initially observed at
position θ, is therefore given by the continuous implicit (Voltera)
integral equation (Jain & Seljak 1997)

β(θ, χs) = θ − 2
c2

∫ χs

0
dχ

χs − χ
χs χ

∇βφ (β(θ, χ), χ) . (10)

To first order, the gravitational potential along an unper-
turbed path can be evaluated, so that

β(θ, χs) = θ − 2
c2

∫ χs

0
dχ

χs − χ
χs χ

∇θφ (θ, χ) . (11)

This is known as the Born approximation, which is common
in many diffusion problems of physics. An interesting property
of the Born approximation is that the relation between β and
α can be reduced to an effective thin lens identical to Eq. (1)
allowing the definition of an effective convergence, which is the
divergence of the effective (curl-free) deflection field: 2κeff =
∇ · αeff .

When the approximation does not hold, the relation between
β and α can no longer be reduced to an effective potential and
some curl-component may be generated, implying that the mag-
nification tensor is no longer symmetric but requires the addition
of a rotation term ω and so-called B-modes in the shear field. In
this more general framework, the magnification tensor should be
rewritten

ai j(θ) =

(
1 − κ − γ1 −γ2 − ω
−γ2 + ω 1 − κ + γ1

)
. (12)

3.3. Multiple lens planes approximation

The numerical transcription of Eq. (10) in the Horizon-AGN past
lightcone requires the slicing of the latter into a series of paral-
lel transverse planes, which could simply be the 22 000 slabs
dumped by RAMSES at runtime every coarse time step. These are
too numerous and can safely be stacked into thicker planes by
packing together 40 consecutive slabs1. Here 500 slices of vary-
ing co-moving thickness were produced all the way to redshift
z = 7 to compute either the deflection field or the projected sur-
face mass density as described below.

The discrete version of the equation of ray propagation (10)
for a fiducial source plane corresponding to the distance of the
plane j + 1 reads

β j+1 = θ −
j∑

i=1

Di; j+1

D j+1
αi(βi), (13)

where αi is the deflection field in the lens plane i, D j+1 is the
angular diameter distance between the observer and the plane
j + 1, and Di; j+1 is the angular diameter distance between planes
i and j + 1. Therefore, as sketched in Fig. 3, rays are recursively
deflected one plane after the other, starting from unperturbed
positions on a regular grid θ ≡ β1.

The practical implementation of the recursion in Eq. (13) is
computationally cumbersome and demanding in terms of mem-
ory because the computation of the source plane positions β j+1

requires holding all the j previously computed source plane posi-
tions. Instead, this paper follows the approach of Hilbert et al.
(2009), who showed that Eq. (13) can be rewritten as a recursion
over only three consecutive planes2

β j+1 =

(
1 − D j

D j+1

D j−1; j+1

D j−1; j

)
β j−1+

D j

D j+1

D j−1; j+1

D j−1; j
β j−D j; j+1

D j
α j(β j).

(14)

In addition to this thorough propagation of light rays, the
source plane positions and associated quantities (convergence κ,
shear γ, and rotation ω) were additionally computed using the
Born approximation, following the discrete version of Eq. (11):

β j+1 = θ −
j∑

i=1

Di; j+1

D j+1
αi(θ). (15)

The deflection maps in each lens plane were computed on
a very fine grid of pixels of constant angular size. In order to
preserve the spatial resolution of about 1 kpc that is allowed by
the simulation at high redshift, 36 000 × 36 000 deflection maps
were built in the narrow 1 deg lightcone. The deflection maps
in the low-redshift 2.25 sq deg wide cone that reach z = 1 were
computed on a coarser 20 000 × 20 000 pixel grid because the
actual physical resolution of the simulation at low redshift does
justify the 0.1 arcsec resolution of the narrow 1 sq deg field of
view. Even though the image plane positions θ = β1 are placed
on the regular pixel grid, the deflections they experience must be
interpolated in between the nodes of the regular deflection map
as they progress backward to a given source plane. This was done
with a simple bilinear interpolation scheme.

1 This number was chosen as a tradeoff between the typical number
of CPU cores in the servers used to perform the calculations and the
preservation of the line-of-sight native sampling of the lightcone.
2 This recursion requires the introduction of an artificial β0 ≡ β1 = θ
slice in the initial setup.
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Fig. 3. Schematic view of the propagation of a light ray through a
lightcone sliced into multiple discrete lens planes. The ray (red line)
is deflected at each intersection with a thin lens plane. The deflection
field is defined for each plane depending of the angular position on this
plane α j(β j).

3.4. Total deflections from the RAMSES accelerations

We now describe how we obtained α that we used in Eqs. (14)
and (15). The first method uses the gravitational acceleration
field, which is registered on each (possibly refined) grid loca-
tion inside the lightcone. The very same gravitational field that
was used to move particles and evolve Eulerian quantities in
RAMSES was interpolated at every cell position and was therefore
used to consistently derive the deflection field. The merits of the
complex three-dimensional multi-resolution Poisson solver are
therefore preserved and the transverse components of the accel-
eration fields can readily be used to infer the deflection field. By
integrating the transverse component of the acceleration along
the light of sight, we can compute the deflection field according
to Eq. (2).

To do so, gas cells that intersect the ray were considered for
each light ray, and the intersection length along the line-of-sight
li was computed. Knowing the cell size δi, and its orientation with
respect to the line of sight, we deduced li with an oriented-box-
boundary (OBB) algorithm (e.g. Akenine-Möller et al. 2008) that
assumes that all cells share the same orientation (flat-sky approx-
imation), and we factorised out expensive dot products between
normals to cell edges and the line of sight,

α(θ) =
2
c2

∑

i∈V(θ)

∇⊥φi(θ) li, (16)

where V(θ) denotes the projected vicinity of a sky position θ.
As shown in Fig. 4, a fiducial light ray is drawn: at each lens
plane, the deviation of the light is calculated as the direct sum
of the transverse acceleration components recorded on the cells
i, weighted by the intersection length li. Here, the field of view
is small and we can safely assume that light rays share the same
orientation (flat-sky approximation) and are parallel to the line
of sight.

This method has the main advantage that it preserves the
gravitational force that was used when the simulation was
evolved. In particular, the way shot noise is smoothed out in

light ray
(θ1, θ2)

Missing cells

Cells in excess

lightcone slice at tlightcone slice at t+dt

Time

l1 l2 l3

Fig. 4. Schematic view of the problem induced by cells at the boundary
of slabs j and j + 1, which become refined between time t and t + dt.
Missing cells (devoid of dots) or cells in excess (overlapping dotted
cells of different colour) can end up as lightcone particles. A fiducial
light ray is drawn to illustrate the intersection length li between the ray
and RAMSES cells.

the simulation to recover the acceleration field from a mix-
ture of Lagrangian particles and Eulerian gas cells is faithfully
respected in the ray-tracing. In other word, the force felt by pho-
tons is very similar to the force felt by particles in the simulation.
Acceleration is also local, in the sense that the deflection experi-
enced by a light ray (and related derivatives leading to e.g. shear
and convergence) depends only on the acceleration of cells that
this ray crosses. The mass distribution outside the lightcone is
therefore consistently taken into account through the accelera-
tion field.

However, this method is sensitive to small artefacts that are
present at the lightcone generation stage (i.e. simulation run-
time) and that could not be corrected without a prohibitive post-
processing of the lightcone outputs. When the simulation dumps
two given neighbouring slabs at two consecutive time steps,
problems can arise if cells on the boundary between the two slabs
have been (de-)refined in the mean time. As illustrated in Fig. 4,
such cells can be counted twice or can be missing if they are
refined (or de-refined) at the next time step. These bumps and
dips in the deflection map translate into saw-tooth patterns in
the convergence maps. They are quite scarce and of very modest
amplitude, however.

A 100 arcsec wide zoom into the convergence map obtained
with this method is shown in the left panel of Fig. 5. The source
redshift is zs = 0.8. A few subdominant artefacts due to miss-
ing acceleration cells are spotted. They induce small correlations
on scales smaller than a few arcseconds and are otherwise com-
pletely negligible for our cosmological applications.

3.5. Projection of smoothed particle density

The second method of computing the deflection maps in thin
lens planes is more classical: it relies on the projection of parti-
cles onto surface density maps that are then turned into deflec-
tion maps. If the line-of-sight integration is performed under the
Born approximation, the Fourier inversion going from the pro-
jected density to the deflection is just done once starting from
the effective convergence. Otherwise, with the full propagation,
many FFT inversions on projected density maps that do not fulfil
the periodic boundary condition criterion imply an accumulation
of the inaccuracies in the Fourier inversion.
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Fig. 5. Comparison of zs = 0.8 convergence maps obtained with the OBB method (integration of transverse accelerations in cells, left) and with
the SPL method (projection of particles onto convergence planes after adaptative Gaussian smoothing, right). The latter method applies a more
aggressive smoothing that better erases shot noise. Inaccuracies of long-range deflections in the SPL method that are due to edge effects translate
into a global shift for some galaxies, as compared to OBB. With this method, some missing acceleration cells occasionally produce modest artefacts
on a small scale.

First of all, this method allows us to separate the contribution
of each matter component from the total deflection field. We can
therefore compute the contribution of stars or gas to the overall
lensing near a given deflector. This is not possible with the accel-
eration method because only the total acceleration is computed
by the simulation.

In addition, particles can be projected with an efficient and
adaptive smoothing scheme. Instead of a standard nearest grid
point or cloud-in-cell projection, a Gaussian filter (truncated at
four times the standard deviationσ) is used in which the width of
the smoothing filter σ is tuned to the local density, hence follow-
ing the smooth particle lensing (SPL) method of Aubert et al.
(2007). Because the AMR grid of RAMSES is adaptive, the
resolution level around a given particle position from the neigh-
bouring gas cells can be recovered. This thus bypasses the time-
consuming step of building a tree in the distribution of particles,
which is at the heart of the SPL method.

To illustrate the merits of this method and for comparison
with the previous one, we show the same region of simulated
convergence fields for a source redshift zs = 0.8 in the right panel
of Fig. 5. This adaptive Gaussian smoothing (referred to as SPL
method below) seems more efficient at smoothing the particle
noise out. Between the two methods, we note small displace-
ments of some galaxies of a few arcseconds. They are due to the
long-range inaccuracies generated by the Fourier inversions.

3.6. Lensing of galaxy and halo catalogues

In order to correlate galaxies (or halos) in the lightcone with
the convergence or shear field around them and, hence, mea-
sure their GGL, their catalogue positions β (which are intrinsic
source plane coordinates) need to be shifted and their observed
lensed image plane positions θ need to be inferred. These are
related by the thorough lens Eq. (10), or its numerical transla-
tion (13). However, this equation is explicit only for the θ → β
mapping. The inverse relation, which can be multi-valued when

strong lensing occurs, has to be solved numerically by testing
for every image plane mesh θi j whether it surrounds the coordi-
nates βgal of the deflected galaxy when cast into the source plane
βi j (e.g. Schneider et al. 1992; Keeton 2001; Bartelmann 2003).
Because the method should work in the strong-lensing regime,
regular rectangular meshes may no longer remain convex in the
source plane and it is therefore preferable to split each mesh
into two triangles. These triangles will map into triangles in the
source plane and we can safely test whether βgal is inside them.
In order to speed up the test on our large pixel grids, the image
plane was partitioned into a quad-tree structure that recursively
explores finer and finer meshes. The method is very fast and
yields all the image plane antecedents of a given galaxy position
βgal. This provides us the updated catalogues of halos and galax-
ies. Obviously, when the GGL signal is measured in the Born
approximation, catalogue entries do not need to be deflected
and therefore source plane and image plane coordinates are
identical.

3.7. Summary of the generated deflection maps

Table 1 summarises the main advantages and drawbacks of the
OBB and SPL methods. Altogether, 2 × 2 (OBB/SPL and Born
approximation/full propagation) deflection maps were generated
for each of the 246 source planes all the way to z = 1 in the
wide opening angle field. Likewise, we obtained 2 × 2 maps for
each of the 500 source planes all the way to z = 7 in the narrow
opening angle field.

4. Cosmic shear

This section assesses the validity of our ray-tracing methods by
measuring one- and two-point statistics of the lensing quantities
such as convergence and (reduced-)shear. It also compares these
finding with other methods.
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Table 1. Summary of the main properties of the SPL and OBB methods ray-tracing methods.

OBB SPL

Deflection (per plane) Integration of transverse acceleration Particles adaptively smoothed and projected
onto density planes

Large scale Matter outside the lightcone is taken into account Edge effects due to Fourier transforms
Small scale Uses the multi-scale RAMSES potential Smoothing reduces small-scale features

Cells missing/in excess Produces small-scale artefacts Unaffected
Matter component Only for the total matter Can individually consider DM, stars, and gas
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Fig. 6. Left panel: convergence map generated with a 0′′.1 pixel grid over a 2.25 × 2.25 sq. deg. field of view for a fiducial source plane at zs ∼ 1.
Right panel: convergence map with a field of view of 1 sq. deg. at zs ∼ 2, and its corresponding convergence PDF showing the characteristic
skewed distribution.

The focus is on the effect of baryons on small scales for mul-
tipoles ` & 2000 to check whether the baryonic component is
connected to other non-linear effects like the shear – reduced
shear correction and beyond-Born treatments.

4.1. Convergence of one-point statistics

The most basic quantity that can be derived from the conver-
gence field shown in the right panel of Fig. 6 is the probability
distribution function (PDF) of the convergence. The Fig. 6 shows
this quantity, which is extremely non-Gaussian at the ∼1′′ reso-
lution of the map. The skewness of the field is visible, with a
prominent high-end tail and a sharp decrease in negative conver-
gence values.

4.2. Convergence power spectrum

In Fourier space, the statistical properties of the convergence
field are commonly characterised by its angular power spectrum
Pκ(l),

〈κ̂(`) κ̂∗(`′)〉 = (2π)2 δD(` − `′) Pκ(`), (17)

where δD(` is the Dirac delta function. For two fiducial source
redshifts (zs = 0.5 and zs = 1), Fig. 7 shows the angular power
spectrum of the convergence obtained with the two ray-tracing
techniques: the OBB and SPL methods (solid magenta and solid
cyan curves, respectively). The low-redshift methods are based
on the 2.25 deg wide lightcone. They are thus more accurate on
larger scales ` . 103, even though the large sample variance
will not permit quantitative statements. On small scales (` ∼ 2 ×
105), the additional amount of smoothing implied by the SPL
projection of particles onto the lens planes induces a deficit of
power with respect to the less aggressive softening of the OBB
method in which shot noise has not been entirely suppressed (see
Fig. 5).

The middle panel of Fig. 7 shows the difference between
power spectra inferred using the Born approximation or with
the full multiple lens plane approach for the OBB method. For
angular scales ` . 8 × 104, we find differences between the two
propagation methods that are smaller than about 0.5%, which
is totally negligible given possible numerical errors and sam-
pling variance limitations. At lower angular scales ` & 105,
departures rise above the few percent level. We note that this
scale also corresponds to the scale where shot noise (from
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Fig. 7. Upper panel: convergence power spectra for source redshift
zs = 1 (top) and zs = 0.5 (bottom) derived with the OBB (magenta) and
the SPL (green) methods. The more aggressive smoothing of this latter
method translates into a faster high-` fall-off. The cyan curves (DM)
only account for the DM component (rescaled by 1 + Ωb/ΩM). The red
curve corresponds to the direct integration of the three-dimensional total
matter power spectrum (Limber approximation) in the Horizon-AGN
simulation (Hz-AGN). The blue curves are the direct integration of
the Horizon-DM (DM-only) matter power spectrum (Hz-DM). Dashes
reflect regimes where the three-dimensional spectra of Chisari et al.
(2018) were extrapolated by a simple power law (extrapolation). The
yellow lines show the particle shot-noise contribution at two differ-
ent redshifts. Middle panel: ratio of the zs = 0.5 convergence power
spectra obtained with the Born approximation and the proper multiple
lens plane integration showing only very small changes up to ` ∼ 105.
Bottom panel: ratio of the DM-only to total convergence power spectra
at zs = 0.5, 1.0, and 1.5 for the SPL method.

DM particles) and convergence power spectral are of equal
amplitude (yellow shaded area). Below these very small scales,
close to the strong-lens regime, the Born approximation may
start to break down (Schäfer et al. 2012).

Under the Limber and Born approximations, the conver-
gence power spectrum can be expressed as an integral of the
three-dimensional non-linear matter power spectrum Pδ (Limber
1953; Blandford et al. 1991; Miralda-Escudé 1991; Kaiser 1992)
from the observer to the source plane redshift or corresponding
co-moving distance χs:

Pκ(`) =


3ΩmH2

0

2c2


2 ∫ χs

0
dχ

(
χ(χs − χ)
χsa(χ)

)2

Pδ

(
`

χ
, χ

)
, (18)

where a is the scale factor and where no spatial curvature
of the universe was assumed for conciseness and because the
cosmological model in Horizon-AGN is flat. As a validation
test of our light-deflection recipes, the lensing power spectrum
derived from the actual ray-tracing was compared to an inte-
gration of the three-dimensional matter power spectrum mea-
sured by Chisari et al. (2018) in the Horizon-AGN simulation
box. The red curve is the direct integration of Pδ(k) power spec-
tra, and the dashed parts of the lines corresponds to a power-law

extrapolation of the Pδ(k) down to smaller scales. In the range
3000 . ` . 3 × 105, an excellent agreement is found between
the red curve and the spectra inferred with our two ray-tracing
techniques. On larger scales, the cosmic variance (which is dif-
ferent in the full simulation box and the intercept of the box with
the lightcone) prevents any further agreement. This is also the
case for ` & 3 × 105 , where some possibly left-over shot noise
in the ray-tracing maps and the hazardous high-` extrapolation
of the three-dimensional power spectra complicate the compari-
son. In addition, the low-` oscillations of the spectrum is likely
to originate from the replicates of the simulation box throughout
the past lightcone.

Chisari et al. (2018) also measured matter power spectra in
the Horizon-DM simulation at various redshifts. This simulation
is identical to Horizon-AGN in terms of initial conditions, but
has been run without any baryonic physics in it after the mass
of DM particles was rescalded to conserve the same total mat-
ter density (Peirani et al. 2017; Chisari et al. 2018). The inte-
gration of this DM-only power spectrum allows us to obtain a
sense on the effect of baryons in the DM-distribution itself. In
the same way as the red curve showed the result of the Lim-
ber integral in Eq. (18) for Horizon-AGN, the dark blue curve
shows the same integral for Horizon-DM. The latter has much
less power for ` & 2 × 104 than either the integration of the
full physics Horizon-AGN matter power spectrum (red) or that
derived directly from ray-tracing (purple or green). The boost of
spectral amplitude is due to cool baryons in the form of stars
at the centre of halos. Moreover, we note a deficit of power
on scales 2 × 103 . ` . 2 × 104 for the full physics sim-
ulation. As pointed out by Semboloni et al. (2011), the pres-
sure acting on baryons prevents them from falling onto halos
as efficiently as DM particles, hence reducing the depth of the
potential wells when compared to a DM-only run. This effect
has previously been investigated with more sensitivity on the
three-dimensional matter power spectrum in the Horizon-AGN
simulation (Chisari et al. 2018), and a clear dip in the matter den-
sity power spectrum of the full physics simulation is observed
on scales 1 . k . 10 h Mpc−1. Here, the projection some-
what smears out this dip over a larger range of scales, but a
∼15% decrease in amplitude is typically observed for ` = 104

at zs = 0.5. In order to show the changes due to the inclu-
sion of the baryonic component more clearly, we traced rays
through the lightcone by considering only the DM particles of
the Horizon-AGN run with the SPL method. For this particu-
lar integration of rays trajectories, we multiplied the mass of the
DM particules by a factor 1 + Ωb/ΩDM (where ΩDM = Ωm −Ωb)
to obtain the same overall cosmic mean matter density. The cyan
curve in the upper panel shows the resulting convergence power
spectrum. The ratios between the total full physics convergence
power spectrum and the rescaled DM contribution of this power
spectrum at zs = 0.5, 1.0 and 1.5 are shown in the bottom panel
and further illustrate the two different effects of baryons on inter-
mediate and small scales.

By considering two raytracing methods to derive the conver-
gence power spectrum, and by asserting that consistent results
are obtained by integrating the three-dimensional matter power
spectrum, we now search for small scale effects that involve the
possible coupling between the baryonic component and shear –
reduced shear corrections.

4.3. Shear – reduced shear corrections to two-point functions

In practical situations, rather than the convergence power spec-
trum, which is not directly observable, wide field surveys give
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Fig. 8. Upper panel: two-point shear correlation functions ξ+ (solid
lines) and ξ− (dotted lines) for a fiducial source redshift zs = 0.5. We
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lation to highlight the small-scale effect of baryons on this non-linear
correction. Middle panel: ratio of shear correlation functions for the
two cases. Bottom panel: ratio of shear correlation functions for a ray-
tracing that only includes rescaled DM particles or all the components.

access to the angular correlation of pairs of galaxy ellipticities.
The complex ellipticity3 ε is directly related to the shear γ. The
relation between the ensemble mean ellipticity and the shear is

〈ε〉 = g ≡ γ

1 − κ ' γ, (19)

with g the so-called reduced shear. Therefore, the two point cor-
relations of ellipticities and shear only match when the conver-
gence κ is small. Because the regions of large convergence are
typically the centres of halos where the contribution of cooled
baryons is highest, we might expect a coupling between the
inclusion of baryons and the shear – reduced-shear corrections
needed to properly interpret the cosmological signal carried by
the two-point statistics (e.g. White 2005; Kilbinger 2010)

Owing to the spin-2 nature of ellipticity, we can define the
angular correlation functions ξ±

ξ±(θ) = 〈γ+(ϑ + θ)γ+(ϑ)〉ϑ ± 〈γ×(ϑ + θ)γ×(ϑ)〉ϑ,
= 2π

∫
d` `J0/4(θ`)Pκ(`), (20)

where γ+ and γ× are defined with respect to the separation vector
between two galaxies or, here, any two image plane positions
at separation θ. J0 and J4 are zeroth- and fourth-order Bessel
functions.

Instead of the shear, observers can only measure associated
ellipticities ε, which should thus replace γ in Eq. (20) in practical
measurements. The reduced shear maps were computed together
with shear and convergence maps, so as to measure the modified

3 ε = (a − b)/(a + b)e2iϕ, with a and b the major and minor axis of a
given galaxy, respectively, and ϕ is the orientation of the major axis.

ξ+ and ξ− angular correlations to compare them with the actual
correlation functions. For efficiency, the Athena code4 was used
to compute correlation functions.

The results are shown in Fig. 8 for a fiducial source red-
shift zs = 0.5. Here ξ

g
+ and ξ

γ
+ only depart from one another

at the ∼2−3% level on angular separations ∼1′. The effect is
slightly stronger for ξ− , which is known to be more sensitive
to smaller non-linear scales than ξ+, but is also more difficult
to measure in the data because of its lower amplitude. On 1′
scales, ξg−/ξ

γ
− − 1 ' 7−8%. Like for the power spectra in the

previous subsection, the cyan curves represent the correlations
ξ
γ
± for the rescaled DM contribution. The bottom panel shows

the ratio of rescaled DM over full physics reduced shear correla-
tion functions, further illustrating the effect of baryons on small
scales. Again, ξ− responds more substantially to the inclusion of
baryons. The deficit of correlation amplitude when baryons are
taken into account peaks at 3−4′ and is of about 10%. Below 1′,
the effect starts to increase, but those scales are never used in
practical cosmic shear applications. We show in the next section
that these scales remain perfectly relevant for galaxy evolution
studies by means of the galaxy-galaxy weak-lensing signal.

5. Galaxy-galaxy lensing

Focussing further on DM halos, we now investigate the yields
of the simulation in terms of the galaxy-galaxy weak-lensing
signal. The tangential alignment of background galaxies around
foreground deflectors is substantially altered by the aforemen-
tioned baryonic physics, and we also expect a strong signature
in this particular lensing regime.

For a circularly symmetric mass distribution Σ(R), we can
relate shear, convergence, and the mean convergence enclosed
inside a radius R centred on a foreground galaxy or halo as

κ̄(<R) =
2

R2

∫ R

0
κ(R′)R′dR′ = κ(R) + γ(R). (21)

Using the definition of the critical density given in Eq. (5),
we can define the excess density

∆Σ(R) =
M(<R)
πR2 − Σ(R),

= Σcritγ(R). (22)

The previous section has shown that the lensing conver-
gence or shear maps have adequate statistical properties, and in
Sect. 3.6 we showed how to use the associated deflection maps
to map our lightcone galaxy catalogue into the image plane. In
addition, galaxies are also expected to become magnified when
lensed. Future extensions of this work will include the realistic
photometry of the Horizon-AGN galaxies. We can easily account
for the magnification bias by multiplying stellar masses by the
magnification µ, however, as if luminosity or flux were a direct
proxy for stellar mass. In the following, we refer to M∗ for the
intrinsic and µM∗ for the magnified mass proxy.

For any given source redshift, we average the tangential
shear around galaxies of any given stellar mass M∗ (or more
realistically magnified stellar mass µM∗), in order to estimate
the GGL around Horizon-AGN galaxies. This is done around
deflected galaxy positions.

4 http://www.cosmostat.org/software/athena
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5.1. Comparison with CMASS galaxies

We first compared the GGL around Horizon-AGN galaxies
with the GGL excess mass profiles obtained by Leauthaud et al.
(2017), who analysed the spectroscopic CMASS sample of
massive galaxies in the footprint of the CFHTLS and CS82
imaging surveys, which covered ∼250 deg2. These authors paid
particular attention to quantifying the stellar mass of the CMASS
galaxies that are centred around lens redshift z ∼ 0.55. The
CMASS sample is not a simple mass selection, and includes a
set of colour cuts, which makes this just a broad comparison.
These results are somewhat sensitive to the detailed distribution
in stellar mass above that threshold. The sample mean mass only
slightly changes with redshift, but remains close to 3 × 1011 M�.

In order to match this lens sample, we extracted from the
wide low-redshift lightcone the galaxies in the redshift range
0.4 ≤ z ≤ 0.70, and with a stellar mass above a threshold that was
chosen to match the CMASS mean stellar mass. Even though
these galaxies centred around lens redshift z ∼ 0.52 were treated
as lens galaxies, they experience a modest amount of magnifi-
cation (they behave like sources behind the mass distribution at
yet lower redshift, see Sect. 5.2). We therefore chose galaxies
that satisfy µM∗ > 1.7 × 1011 M�. At this stage, selecting for M∗
or µM∗ does not make any significant difference (.4%) because
of the relatively low redshift of the lens sample. By doing so,
we obtained the same sample mean stellar mass as the CMASS
sample.

We then measured the mean tangential shear around these
galaxies for a fiducial unimportant source redshift zs = 1 and
converted shear into excess density ∆Σ. The result is shown
in Fig. 9. A good agreement between our predictions (OBB
method, green with lighter envelope) and the observations of
Leauthaud et al. (2017) (blue dots) is found, further suggesting
that Horizon-AGN galaxies live in the correct massive halos
(Mh ' 1013 M�), or at the very least, produce the same shear
profile as CMASS galaxies around them. We note that we split
the 2.25 deg field of view into four quadrants and used the dis-
persion in these areas to compute a rough estimate of the model
uncertainties.

On scales R . 0.2 h−1 Mpc, the shear profile is 10−15%
above the observations. Answering whether the discrepancy is
due to faulty subgrid baryonic physics, a missing cosmologi-
cal ingredient (or not perfectly adequate cosmological param-
eters), or leftover systematics in the data will certainly require
more GGL observations, possibly combined with yet smaller
scale strong-lensing and kinematical data (e.g. Sonnenfeld et al.
2018). Small-scale GGL clearly is a unique tool for addressing
these issues (e.g. Velliscig et al. 2017), and asserting that the
galaxy-halo connection is correctly reproduced by the simula-
tions all the way to z & 1 is arguably one of the foremost goals
of galaxy formation models.

Figure 9 also shows our GGL results for the same popula-
tion of lenses at the same redshift, but as inferred from the SPL
method (solid black), which allows us to split the total lensing
signal into its DM (blue and baryonic components (red). First of
all, the agreement between the two methods for the total lensing
signal is remarkable, except on scales &2 Mpc∼ 5′ , where dif-
ferences begin to exceed the percent level. As we described in
the previous section, this is due to inaccuracies of the Fourier
transforms performed with the SPL method. We can use this
latter technic to compare the contribution of DM and baryons
(stars+gas), however. Clearly, the total and DM profiles look
very similar beyond ∼0.2 Mpc up to a ∼17% renormalisation of
the matter density. Only below these scales begin cooled baryons
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Fig. 9. Comparison of the GGL tangential shear signal around z = 0.55
Horizon-AGN galaxies (green curve surrounded by a light green rib-
bon) and the GGL observations of Leauthaud et al. (2017) (blue dots
with error bars). Units are all physical (and not comoving!). Model
uncertainties in the simulation past lightcone are roughly estimated by
splitting the 2.25 deg wide field of view into four quadrants. They may
be underestimated beyond 1 h−1 Mpc. Cuts in stellar mass are expressed
in units of 1011 M�. Black, blue, and red curves show the GGL shear
signal predicted with the SPL method for the total, DM, and baryonic
mass distributions, respectively. For clarity, uncertainties are omitted.
They are similar to those in the case of the OBB method (green).

(stars) to contribute substantially. We predict an equal contri-
bution of DM and stars to the total shear signal near a radius
∼15 kpc. We refer to Peirani et al. (2017) for further details about
the innermost density profiles around Horizon-AGN galaxies in
the context of the cusp-core problem.

5.2. High-redshift magnification bias

For zl & 0.6, the lens population begins to be lensed by yet nearer
structures. This can lead to a magnification bias, which was stud-
ied by Ziour & Hui (2008).

The spatial density of a lensed population of back-
ground sources can be enhanced or decreased by magni-
fication as light rays travel through over- or under-dense
sight-lines (e.g. Moessner & Jain 1998; Moessner et al. 1998;
Ménard & Bartelmann 2002; Scranton et al. 2005). Further-
more, the fraction of sources that are positively or negatively
magnified depends on the slope of the luminosity function of
the population. If it is very steep (typically the bright end of a
population), we can observe a dramatic increase in the number
of bright lensed objects. These deflectors appear brighter than
they actually are Fig. 10 shows the mean magnification experi-
enced by Horizon-AGN lightcone galaxies above a given stellar
mass threshold (mimicking a more realistic flux limit) as a func-
tion of redshift and minimum mass. The upper panel does not
take into account the effect of magnification bias, whereas the
lower panel does. Those that are consistently magnified and pass
a given threshold (bottom panel) are slightly magnified on aver-
age, whereas the top panel only shows a tiny constant µ ∼ 1−3%
systematic residual magnification. This residual excess does not
depend on wether the SPL or OBB method are used, or whether
we properly integrate rays or use the Born approximation. This
is likely because the replicates of the simulation box fill up the
lightcone, which slightly increases the probability of rays leav-
ing an over-dense region to cross other over-dense regions on
their way to the observer. This residual magnification is however
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Fig. 10. Average magnification experienced by presumably foreground
deflectors including (bottom) or excluding (top) for magnification bias
effect that mostly affects the rapidly declining high end of the stellar
mass function. Without magnification bias, a flat nearly unity mean
magnification at all redshifts is recovered to within ∼1%. When the
magnification bias is turned on, as expected in actual observations, no
rapid rise is found (∼10% at z ∼ 1 for the most massive or luminous
galaxies). Cuts in stellar mass are expressed in units of 1011 M�.

tiny for sight-lines that are populated by galaxies, and it com-
pletely vanishes for rays coming for random positions.

The massive end of the galaxy stellar mass function appears
tobe significantly magnification biased. A ∼8% effect for galax-
ies at 0.6 ≤ z ≤ 1.2 and M∗ & 2 × 1011 M� is typical. It can be
as high at ∼20−50% at 1.5 ≤ z ≤ 2 for µM∗ & 3 × 1011 M�.
A thorough investigation of the effect of this magnification bias
when we try to place constraints on the high end of the z & 2
luminosity function from observations is left for a forthcoming
paper.

Taking the magnification bias into account, we now explore
three fiducial populations of massive deflectors to highlight the
changes induced in the projected excess density profiles. The
first population consists of the CMASS galaxies at z = 0.54
and µM∗ ≥ 1.7 × 1011 M�, the second case corresponds to the
same lower limit on the mass, but pushed to z = 0.74. In both
cases, the excess density is measured for source redshift zs = 0.8.
The last lens sample corresponds to the population of Hα emit-
ters in the 0.9 ≤ z ≤ 1.8 redshift range that will be detected
by the Euclid slit-less grism spectrograph above a line flux of
∼2 × 10−16 erg s−1 cm−2. About 2000 such sources per square
degree are expected; therefore the 2000 most massive Horizon-
AGN lightcone sources are picked in that redshift interval to
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Fig. 11. Upper panel: effect of magnification bias on GGL for several
high-z fiducial lens samples showing an increase in excess density ∆Σ
(or tangential shear) for R & 1 Mpc. Solid curves ignore the magnifica-
tion, whereas dotted lines account for it. Lower panel: dependence of
this effect on the source redshift. In both panels, cuts in stellar mass are
expressed in units of 1011 M�.

crudely mimic an Hα line flux selection. To account for magnifi-
cation bias, the selection was also made on µM∗, and the source
redshift for this populations was set to zs = 2. Results for these
three populations are shown in the top panel of Fig. 11, where
we distinguish the excess density profiles that include (dotted) or
exclude (solid) for magnification. As anticipated, no significant
change is obtained for the z = 0.54 CMASS-like sample (green),
but differences are more noticeable as lens redshift increases, and
on large scales (R & 1 Mpc), we observe a 20−50% increase in
∆Σ, consistent with the large-scale linear scale-invariance bias
model used by Ziour & Hui (2008). Between z = 0.54 and
z = 0.74, galaxies of the same mass seem to live in halos of the
same mass (very little evolution of the M∗ − Mh relation), lead-
ing to no evolution of ∆Σ below ∼200 kpc. The only difference
occurs farther out where the two-halo term starts to be important
in this galaxy-mass correlation function. There, galaxies of the
same mass at z = 0.54 and z = 0.74 live in rarer excursions of
the initial density field, and are thus more highly biased, which
leads to an increase of ∆Σ on the large scale. For the Euclid-like
distant lens population, the trend is similar, and the amplitude
of the magnification bias effect would suggest a bias of the lens
population about 30% higher than it really is.

The lower panel of Fig. 11 shows the evolution of the
magnification-bias-induced excess density profile with source
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redshift for massive deflectors at z = 0.74. In principle, accord-
ing to Eq. (22), the excess density should not depend on source
redshift. However, the magnification bias favours over-densities
in front of deflectors. The response of distance sources carry-
ing shear to these over-densities will depend on the source red-
shift in a way that is not absorbed by Eq. (22). Hence, a scale-
dependent distortion of the profiles is observed. The closer the
source redshift from the deflector, the smaller the scale it kicks
in. As already stressed by Ziour & Hui (2008), this hampers a
direct application of shear-ratio tests with high-redshift deflec-
tors (e.g. Jain & Taylor 2003).

6. Summary and prospects

Using two complementary methods for projecting the density
or gravitational acceleration field from the Horizon-AGN light-
cone, we propagated light rays and derived various gravitational
lensing observables in the simulated field of view. The simu-
lated area was 2.25 deg2 out to z = 1 and 1 deg2 all the way to
z = 7. The effect of baryons on the convergence angular power
spectrum Pκ(`) was quantified, together with the two-point shear
correlations ξ±(θ) and the galaxy-galaxy lensing profile around
massive simulated galaxies.

For cosmic shear, the inclusion of baryons induces a deficit
of power in the convergence power spectrum of about 10% for
103 < ` < 104 at zs = 0.5. The amplitude of the distortion
is about the same at zs = 1, but is slightly shifted to roughly
twice as high ` multipole values. On yet higher multipoles, the
cooled baryons, essentially in the form of stars, produce a dra-
matic boost of power, nearly a factor 2 for ` ∼ 105. As empha-
sised in Chisari et al. (2018), it is worth stressing that detailed
quantitative statements on such small angular scales may still
depend on the numerical implementation of baryonic processes.

For galaxy-galaxy lensing, the projected excess density pro-
files for a sample of simulated galaxies consistent with the
CMASS sample at z ∼ 0.52 (analysed by Leauthaud et al. 2017)
were found to be in excellent agreement. To properly analyse
this signal around high-redshift deflectors, the magnification bias
affecting the bright end of a population of distant galaxies was
carefully taken into account, showing a large-scale increase of
the signal as high as 30% beyond 1 Mpc for lenses at z & 1. This
type of effect is particularly pronounced for future samples of
distant deflectors, such as the spectroscopic Euclid sources that
are detected based on their Hα line intensity.

Peirani et al. (2019) have shown that the innermost parts of
Horizon-AGN galaxies are consistent with strong-lensing obser-
vations of Sonnenfeld et al. (2013) and Newman et al. (2013,
2015) at zlens . 0.3. We intend to make more predictions on
the optical depth for strong lensing in the Horizon-AGN light-
cone with our implemented ray-tracing machinery. Likewise, in
a forthcoming paper we will present the results of the deflection
field applied to simulated images derived from the light that is
emitted by the stars that are produced in the simulation, hence
enabling the possibility of measuring lensing quantities (shear,
magnification, etc.) in the very same way as in observations:
shape measurement in the presence of noise, PSF, pixel sam-
pling, photometric redshift determinations, realistic galaxy bias-
ing, and more generally, directly predicted galaxy-mass relation,
and also the intrinsic alignment of galaxies and their surrounding
halos (Codis et al. 2015; Chisari et al. 2015, 2016).
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4.2 Production of lensed mock images

In order to produce mock observational images for lensing analysis, we have to model the light
emission of all star particles along the light-cone, to stack them and put them on a regular grid,
to lens them and finally to add observational PSF and noise. In complement of the creation
of the deflection maps described above, this requires computing the corresponding number of
2D-luminosity maps. This computation is described below. The realisation of 2D-luminosity
maps is done with my collaborator Clotilde Laigle.

4.2.1 Modelling light emission from star particles

In the simulation, each star particle (with a mass of ∼ 3× 10.6M�) is assumed to behave like a
single stellar population (SSP), i.e. a population of stars born at the same time from the same gas
cloud. The light emitted by a given SSP depends essentially on the initial mass function (IMF) of
the stellar population, its current mass, age and metallicity, and on the chosen stellar evolution
model and stellar template library. Different weights given to specific phases of stellar evolution
(for example the AGB, post-AGB or Wolf-Rayet stars), but also different stellar feedback and
supernova models can lead to dramatically different SSP spectra.

In this work, in order to model the light emitted by Horizon-AGN stellar particles, we use
the BC03 single stellar population templates from Bruzual & Charlot (2003), with a Chabrier
IMF (Chabrier 2003). In brief, we want that each particle is attached a BC03 SSP, which
matches the particle in terms of age and metallicity. However, because of the different metallicity
and age sampling in either Horizon-AGN or the BC03 model, BC03 SSPs are logarithmically
interpolated to reproduce the desired Horizon-AGN values.

The BC03 SSP is also rescaled to match the initial stellar mass of the particle, and stellar
mass losses are then treated according to the BC03 model instead of the stellar evolution model
implemented in Horizon-AGN, since they are slightly different. This step is important for the
purpose of treating mocks as real observed images. In fact, if the initial mass of the SSP is not
rescaled, systematic offsets will occur in the photometry, and the galaxy masses estimated through
SED-fitting from the simulated photometry will also be systematically offset from the intrinsic
masses (defined as the sum of the stellar particle masses).

In addition it should be noted that the choice of the IMF is not insignificant, as it controls
both the stellar mass loss prescription and the overall mass-to-light ratio (magnitudes beeing
∼ 0.4 dex fainter with a Salpeter (Salpeter 1955) IMF compared to a Chabrier one). Although
stellar mass loss prescriptions are implemented using a Salpeter IMF in Horizon-AGN, the
Chabrier IMF is preferred here for the photometry computation because it brings the simulated
galaxy counts in much better agreement with observed galaxy counts.

Re-normalisation of the metallicity As discussed in Kaviraj et al. (2017), the relatively low
resolution reached in Horizon-AGN implies a delayed enrichment of star-forming clouds, which
induces an underestimation of the gas phase metallicity compared to observations. To correct
for this underestimation, a redshift-dependent boosting factor (varying from 4 at z ∼ 0 to 2.4 at
z ∼ 3) has been computed in order to brings the simulated mass-gas phase metallicity relation
with observations from Mannucci et al. (2010) at z = 0, 0.7, 2.5 and Maiolino et al. (2008) at
z = 3.5. This factor is redshift dependent: Z = Zold + 4.08430− 0.213574z − 0.111197z2.

Dust extinction and IGM absoprtion At this stage, dust extinction could be added as a
screen in front of each particle. Although dust extinction has been successfully implemented when
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computing the total photometry around individual galaxies (see e.g. Kaviraj et al. 2017), it is much
more computationally heavy to implement at the creation stage of the full cone 2D-luminosity
maps. As a matter of fact, computing dust extinction requires to compute the dust column
density from of each star particle, while taking the gas mass metallicity distribution as a proxy for
the dust distribution. When working with individual galaxies, it is enough, for each particle, to
compute the dust column density over the galaxy virial radius. When producing full-cone image,
a variable length (scaling with the galaxy virial radius the particle is attached to) should be used
to compute the dust column density. Although this is easy to implement, it requires changing
the current structure of the mock creation code, which is still an-going project. Therefore in the
following only the dust-free 2D-luminosity maps are presented.

Beyond the attenuation by dust within the interstellar-medium, galaxy luminosities are
impacted by absorption along the line-of-sight due to intervening gas clouds in the intergalactic-
medium (IGM), mainly through the Lyman-α forest. Consistently implementing IGM absorption
is doable in the Horizon-AGN lightcone, since the distribution of gas in the foreground of each
star particle is known all the way to z ∼ 0. Attenuation by the IGM is not negligible at high
redshift. The mean transmitted flux in the Lyman-α forest evolves from 0.83 to 0.71 between
redshift 2 and 3, and will impact the rest-frame UV band blue-ward to the Lyman-α wavelength.
For instance, at z ∼ 3, magnitudes in the apparent B-band are on average 0.3 dex fainter with
IGM absorption. However, IGM absorption is still much less important than dust extinction.
This will be implemented in the mock images in the future .

4.2.2 Mock image production

From stellar particles to pixels We then perform the mapping between the stellar particle
distribution and the cartesian grid of the 2D-luminosity maps. The lightcone is sliced in the
same number of parallel transverse planes as done for the deflection maps computation, i.e in
500 slices (of varying comoving thickness), all the way to z ∼ 6, with an angular resolution of
0.1arcsec. Therefore 500 2D-luminosity maps are produced, which will be deflected and magnified
in a second step described below.
In order to map star particles to the 2D cartesian grid, the most straightforward way to proceed
is to use a cloud-in-cell interpolation. However this leads to considerable shot noise at low redshift
in the weakly populated outskirts of galaxies, when the angular resolution of the luminosity maps
is better than the physical resolution of the AMR grid. The resulting image is unrealistic, and
the lensing signal strongly polluted. To overcome this issue, each star particle is spread with a
normal distribution over a sphere around its initial position, the radius of which being calibrated
on the local gas density. By summing in this way the SED of all the SSPs falling in a pixel (the
SSPs being weighted by the weight of the star particle in the cell), we finally get a SED for each
pixel of the 500 2D-luminosity maps, ranging from 91 to 16×105Å, with a resolution of 3 Å from
3200 Å to 9500 Å, and a lower resolution outside this range. The SED is then shifted according
to its redshift and converted to get apparent flux unit. Eventually, the photometric images are
obtained by convolving the SED with some chosen filter passbands. In order to make predictions
for various current and future surveys, we choose optical (u, r, z) filters from SDSS, NIR filters
from Euclid and UltraVista, and the broad band optical filter from Euclid (riz). It is obviously
easy to produce images in the photometric baseline of any desired survey. For illustration, a mock
composite image of the Horizon-AGN lightcone, realised by Clotilde Laigle is displayed in figure
4.2.

Distortion of images The lensing deflection field is then applied to the 500 2D surface
brightness maps in order to distort then. For each such source plane, the corresponding deflection,
integrating all the mass contribution between the observer and that plane is used. For instance,
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Figure 4.2 – A 14 arcmin2 sim-
ulated composite image from the
Horizon-AGN lightcone, in the u,
r and z filters. The resolution is
0.15”/pixel and the image is computed
using star particles in the redshift
range 0.1 < z < 5.8. Credit to Clotilde
Laigle, and published in Kaviraj et al.
(2017).

the 30th luminosity map is deflected by the lensing signal computed for 29 α(θ) previous deflection
planes.

Since deflection moves light rays away from the original image plane pixel grid, one has to
perform a interpolation of intensity values of source plane pixel values around the source plane
position. The luminosity in source planes Is(~β) is transposed to the image positions ~θ by using
the conservation of surface brightness:

I(~θ) = Is(~β) = Is(~θ − ~α(~θ)) . (4.1)

This requires an bi-linear interpolation ~β → ~θ − ~α(~θ), for each pixel. Since the gravitational
lensing effect is achromatic, the interpolation is identical for all the possible filters we considered
to derive source plane intensity maps.

By doing so, the full lens equation is solved and, therefore, all the regimes of distortions are
incorporated, which means that strong lensing as well as weak lensing are taken into account.

This can be seen in Figure 4.4, where faint background sources are not only sheared but also
curved (so-called flexion regime), occasionally leading to arcs or ring-like features.

Towards realistic mock lensed observations Figure 4.3 presents a composite lensed image
of 1 square degree of the Horizon-AGN lightcone in the apparent band u, r and z, and with a
resolution of 0.1 arcsec. The right panel shows the corresponding lensing convergence map for a
fiducial source plane at zs = 1.5.

Although these images already appear to resemble observed images, the pipeline is still missing
some ingredients in order to produce fully realistic mock images. Observed images are indeed
intrinsically limited by the point spread function (PSF), which depends both on the atmospheric
conditions and the instrument, and can vary as a function of wavelength but also spatially over
a field from tile-to-tile. In order to consistently implement all the uncertainties arising in the
observations, our mock images need to be convolved by the PSF corresponding to the instrument
from which they are miming the observations.
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Figure 4.3 – Simulated distorted image at large scales and the corresponding zoom in the
convergence map in the top right window. This image is 36000×36000 pixels in size.

Observations are also inevitably surface-brightness limited and noise diluted, and so should our
mock images. Noise can be modelled in a first approach as gaussian/poissonian noise, and the
flux value of each pixel can be replaced by a random value taken from a Gaussian distribution
with the mean being the intrinsic flux and of a given σ. In addition, we will add in the image the
emission by point sources objects, in particular nearby stars which easily saturate and pollute the
photometry of close-by objects.

4.2.3 Summary and perspectives

I have produced mock lensed images from a simulated light-cone, reproducing a realistic diversity
of galaxies in terms of morphology and photometry, but also in terms of spatial distribution and
lensing. Theses aspects are extremely important in order to conduct end-to-end comparison of
galaxy properties and distribution in the simulations with the same quantities in observations.
This work is therefore pivotal for current and upcoming surveys relying on lensing analysis for
constraining the cosmology. It will also be useful for all surveys focused on galaxy formation
and evolution which rely on galaxy photometry to derive their physical properties, and for which
lensing is either a pollution or on alternatively a tool to detect the first galaxies in the Universe
(which would remain unseen if they would not be magnified).
The extensions of this work, which are still on-going and will presented in future publications,
include:

Quantifying the contribution of intrinsic alignments to lensing and the contamination
of the signal by observational limitations The first natural outcome of our work will be to
test the purity of the extracted lensing signal in the context of current and upcoming surveys, i.e.
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Figure 4.4 – Example of simulated distorted images from the Horizon-AGN light-cone in
observational bands r,u,g, zoomed around the massive objects of the light-cone. The resolution
is 0.1 arc-second/pixel. The critical lines for two redshift sources are overlapped: in light-blue
zs = 1.2 and in dark-blue zs = 3.5.
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Figure 4.5 – Mock galaxies produced by the New-Horizon simulation, painted in the large
framework of Horizon-AGN mock images.

how well the galaxy-galaxy lensing signal can be recovered from observed images. In particular, I
will test the impact of the PSF, noise and blending in measuring the shear and magnification of
galaxies. In addition, because the intrinsic alignment of galaxies is consistently reproduced in
the Horizon-AGN lightcone, we will also be able to measure the contamination to the lensing
signal in realistic conditions, as a follow up of previous works based on the Horizon-AGN
shapshots (Codis et al. 2015a; Chisari et al. 2016). This work will naturally form part of the
current collaborative effort of the Euclid consortium, in order to make optimal use of the upcoming
wealth of all-sky photometric data.

Measuring the impact of lensing distortion, displacement and magnification on
galaxy morphologies, mass function and clustering While quantifying the contamination
of intrinsic alignment to the lensing signal is of prime importance for cosmology, the inverse
operation, i.e. quantifying the contamination of lensing to the measurement of galaxy intrinsic
alignment is also very relevant for galaxy formation. As a matter of fact, numerous works (e.g.
Dubois et al. 2014; Lee et al. 2018; Ganeshaiah Veena et al. 2018) have investigated the process
of galaxy alignment with the cosmic web in order to understand galaxy angular momentum
acquisition and in turn the origin of the Hubble sequence. In short, large-scale matter flows
crossing from walls generate multipolar high-vorticity quadrants in filaments (Laigle et al. 2015).
Structure (haloes and galaxies) which are forming in these flows will end up with an angular
momentum aligned with that vorticity and consequently with the filament. They will accrete
matter through secondary infall with a coherent rotational motion, up to a specific transition mass,
beyond which inflow will start to advect misaligned angular momentum. Subsequent mergers
along the filaments lead to galaxy spin-flip ,and the most massive structures end up azimuthally
aligned (and see also Welker et al. 2014; Codis et al. 2015b). Finally, satellites caught by massive
halos settle into a plane around their central galaxy (Welker et al. 2018).
Observationally, measuring galaxy alignment with the cosmic web is difficult, in particular because
estimating galaxy spin orientation remains a challenge, though some attempts have proven to be
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successful at low redshift (especially in the SDSS Tempel et al. 2013; Zhang et al. 2013; Chen et al.
2018). At higher redshift and in the absence of high-resolution spectroscopy or IFU observations,
one needs to rely on the two-dimensional shapes of the galaxies as a proxy for their orientations.
Obviously in this case, the spin measurement will be polluted by rotation and shearing from
lensing. In this project, we will measure galaxy shape and orientation both in the mock lensed and
unlensed images. This will directly allow us to quantify how much the lensing signal contaminates
galaxy shape and orientation measurements. Estimating the systematics it creates will help us to
sharpen the intrinsic alignment signal measured in photometric surveys, and will be a determining
step for the study of galaxy angular momentum acquisition in the Universe.

Beyond shearing and rotating galaxies, lensing cause displacements and magnification. For
example, at z ∼ 1, galaxies can be coherently displaced of the order of the arcminute (e.g. Chang
& Jain 2014). A follow-up of the project will therefore to estimate how magnification biases
1-point statistics and displacement biases 2-point statistics. These biases are generally not taken
into account in galaxy evolution studies relying either on the mass function (e.g. Davidzon et al.
2017) or on angular clustering measurements (Hatfield et al. 2016) to follow galaxy population
evolution across cosmic time and to connect galaxies to their dark halos. In the era of upcoming
large-field photometric surveys such that LSST and Euclid, taken these effects into account will
be crucial to improve our current constraints on galaxy evolution.

Testing our ability to observe high-z galaxies through gravitational lensing Massive
clusters can play the role of natural gravitational telescopes and can reveal, through magnification,
background galaxies at very high redshift which would otherwise remain too faint to be detected
(see e.g. GLASS Treu et al. 2015, amongst others), pushing the instruments to their faintest
limits and reaching luminosities of at least 2 or 3 order of magnitudes beyond the normal limit.
However, once detected, estimating the right magnification, a crucial step in order to accurately
determine the galaxy mass, is very hard. In addition, correcting from the distortion in the case of
strong lensing remains a challenge. in order to properly use gravitational lensing to perform a
deep study of the high-redshift Universe, making accurate forecasts and estimating systematic
uncertainties is in order.
In this project, we will combine the ray-tracing procedure that we have developped on the
Horizon-AGN lightcone with current state-of-the art very high-resolution simulations of star-
forming galaxies at z = 6 and above (Rosdahl et al. 2018, Katz et al. in prep). Mock images of
these high-z simulated galaxies will be placed in background of the Horizon-AGN lightcone with
various orientations and at various random positions, with clustering properties corresponding to
the one expected for this population. In a second time, the images will be distorted and magnified
as described above, and convolve with the PSF of current (e.g. HST) and future facilities (e.g.
JWST Zackrisson 2011). The photometry of these high-z galaxies will then be extracted and
analysed in the exact same way as done in observations, and possibly testing how well different
code perform to extract the photometry and compute the physical properties of the galaxies.
Taking advantage of the realistic clustering of galaxies in the lightcone, we will also be able to
test the impact of blending on extracting the photometry. This work will be a crucial step in
preparation and exploitation of upcoming missions. Indeed, our work will help to choose the
ideal targets in current NIR facilities which could be followed up with ELT spectrocopy (e.g.
with MOSAIC) or JWST, in order to optimize the detection and study of high-z candidates. In
turn, it should help answering long-standing key questions about the time and modality of the
reionisation of the Universe.

Lensing of the lyman-α forest The Horizon-AGN lightcone does not only allow to create
mock photometric images, but also mocks of the lyman-α forest. Lyman-α forest observations are
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precious to map the distribution of neutral Hydrogen in the Universe. It is now routinely used to
test cosmology, but it is also a promising tool to map the cosmic web at high redhsift (e.g. Pichon
et al. 2001; Lee et al. 2014, Laigle et al. in prep) with future facilities such that PFS (Takada et al.
2014) and MOSAIC on the ELT (Evans et al. 2012). Its power lies in particular in the fact that,
instead of galaxies, it allows to sample uniformly high and low density regions of the matter field.
Naturally, gravitational lensing deflects the position of emitting background galaxies and quasars,
the spectra of which is used to trace the lyman-α forest. Each absorption feature in the Lyman-α
forest corresponds to an overdensity at a precisely known redshift, and can be considered as a
source for gravitational lensing. Gravitational lensing will therefore distort the image of the IGM.
Should the Lyman-α forest signal-to-noise ratio allow to measure this distortion, lensing from the
lyman-α forest could be use to constrain Cosmology. In particular, it has the advantage to involve
a three-dimensional source field (compared to CMB lensing) and does not require galaxy shape
measurement. Furthermore, it will allow us to probe matter distribution at a higher redshift
than the one accessible from galaxy shear. As postulated by Croft et al. (2018), it can therefore
become a complementary cosmological probe.



Chapter 5

Conclusion

5.1 Context

In the introduction and the first chapter of this thesis dissertation, we have seen that cosmology
is more than ever confronted to the challenges of understanding the nature of Dark Matter and
Dark Energy. Both the accelerated expansion of the Universe and the growth of the large scale
cosmological structure at all scales must be characterised in detail. This is a prerequisite in order
to make progress on the (possibly time varying) equation of state of DE, to better constrain the
mass of neutrinos or the amount of Warm Dark Matter, if any, or even to test modifications of
General Relativity.

The recent completion of the Planck mission has almost entirely starved the information
content on the early stages of the Universe one can extract from the cosmic microwave background1.
More emphasis is now being put on the thorough description of the matter distribution at later
cosmic time, and on smaller scales, since it entails a wealth of statistical power to refine the
cosmological model. This has motivated enormous observational efforts in the form of ongoing or
upcoming wide field imaging and spectroscopic surveys like DES, DESI and soon Euclid, LSST or
SKA.

These investigations require accurate theoretical predictions which are particularly difficult
to obtain on small and intermediate scales due to the strong non-linearities imposed by the
gravitational instability together with baryonic physics. In chapter 1, I explained why simulations
are essential to correctly describe matter clustering in the concordance ΛCDM model in the
highly non-linear regime. They bridge theories and observations, and are thus extensively used
to refine expected cosmological observables. On large scales, the global behaviour of the large
scale structure, the so-called cosmic web, is well reproduced in simulations. For collapsed systems
such as clusters and galaxies, however, we have seen that our understanding remains incomplete,
because these are governed by both the uncertain behaviour of dark matter on small scales and the
complex dissipative physics of baryons, which is strongly impacted by mostly unknown stellar and
AGN feedback. This results in discrepancies between models and observations: uncertainties in
the dark matter halo properties (density profile, morphology, substructure) and galaxy population
(evolution over cosmic time, luminosity distribution, environmental dependence) etc. Such issues
are open and under rigorous study in the community: the relation between halo and host galaxies,
possible self-interaction of dark matter, the feedback of the baryonic physics on the underlying
matter distribution etc... are all fertile fields of research at the time of writing.

In this framework, high-resolution hydrodynamical cosmological simulations are one of many
recent undertakings which aim to improve our understanding of the complex interplay between

1Constraining the amount of tensor modes generated during inflation remains a key goal, which only CMB
polarisation experiments will be able to tackle
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dark and luminous matter, and to provide a realistic picture of the Universe down to galactic
scales. Such high performance simulations allow for the modelisation of the effect of complex
processes while accounting for non-linear scale coupling, and to decide quantitatively which
non-linear process dominates when and how. In addition, they permit to produce (large) virtual
surveys so as to build and validate effective estimators and model biases.

Over the last decades, gravitational lensing has emerged as a unique tool in cosmology because
of its ability to relate the total gravitational potential with the more directly accessible but
difficult to predict distribution of galaxies. Lensing provides us with a way to quantify the total
matter distribution, and to explore the connection between galaxies and total matter on a broad
range of scales: from the linear galaxy bias at large scales, to the characterisation of dark matter
in the core of clusters, galaxies and the substructures (or satellites) therein.

Notably, recent cosmic shear measurements like KiDS and DES have demonstrated the power
of the joint analysis of galaxy shapes and positions (the so-called 3 times two-point correlation
functions) to break well-known degeneracies with nuisance parameters and constrain simultaneous
galaxy biasing, intrinsic alignments and cosmology (DES Collaboration et al. 2017; van Uitert
et al. 2018). In addition, lensing can potentially shed light on possible modifications of General
Relativity by testing the validity of the Poisson equation on cosmological scales.

However, reaching these goals requires to properly model lensing observables, which is all the
more challenging as lensing is very sensitive to small scales where non-linearities and gastrophysics
(in particular feedback processes) make any analytical modelling very difficult and challenging.
Here again, numerical simulations provide us with an incredible tool to understand better this
non-linear regime of structure formation. In particular, they represent an excellent testbed for
the theoretical models used in cosmological inference pipelines which can be refined and improved
thanks to the comparison with these numerical experiments. For instance, it is quite standard
to try and increase the regime of validity of analytical techniques (such as perturbation theory)
down to smaller scales by adding new free parameters (Carrasco et al. 2012). However, the
number of free parameters rapidly explodes making any practical implementation useless. In this
context, simulations can be used to find which of these parameters are the most relevant and find
sometimes relations between them, therefore reducing the number of degree of freedom left in the
analysis. Similarly, one can use numerical simulations to try and define the optimal strategy to
model effectively the impact of baryons on lensing observables.

For these reasons, my thesis focused on the construction of lensing observables from numerical
simulations with, in mind, the ultimate goal of reaching the percent accuracy up to k ∼ 10h/Mpc
that is needed for the Euclid mission (Laureijs et al. 2011). The Euclid consortium, that I joined
in the course of my PhD, is actively working on large dark matter only N-Body simulations to
improve our understanding of the imprint of non-linear matter evolution on cosmic shear signal
on scales greater than a few Mpc. Here, reaching the required precision is already challenging
and an effort is currently being made to assess the convergence of ray tracing techniques. Among
other things, the dark matter simulations produced by the consortium are used to estimate the
complex covariance matrices entangling lensing, galaxy clustering observables, and the biasing of
halos with respect to the total matter distribution; in different cosmologies, and possibly, with
modifications of gravity.

In this context however, the limited computing power available does not allow us to produce
neither end-to-end nor even DM only Euclid mocks. Indeed, the number of required simulations
is far beyond our current capabilities given the large volume of parameter space (we want to
vary cosmological parameters within LCDM and beyond) and the large number of realisations
needed to estimate covariance matrices with sufficient accuracy. The use of faster approximate
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methods in this case is currently tested (Lippich et al. 2018; Blot et al. 2018; Colavincenzo
et al. 2018). Of course, parallel analytical effort is being conducted on those relatively large
scales (Standard perturbation theory, effective field theory, response approach...). Inspired by
simulations, theoretical models are now trying to also include the effect of baryons on e.g the
matter power spectrum (Schneider & Teyssier 2015) which is a key ingredient for cosmic shear
predictions. There is no doubt that an hybrid approach between analytical modelling and
numerical simulations will be the optimal way of analysing the data.

5.2 Summary and immediate objectives

My thesis work is complementary to this ongoing effort as it focuses on smaller deeply non-linear
scales where baryonic physics starts playing a significant role. It will allow the community to
estimate the cutoff in k below which semi analytic post processing of dark matter simulations
should not be trusted. Accurately predicting the weak lensing signal below cluster scales requires
hydrodynamical cosmological simulations. Indeed, even if the impact of baryonic processes on
lensing signal was early acknowledged (Semboloni et al. 2011), its quantification remains uncertain.
Only recently, the first ”full physics” cosmological hydrodynamical simulations have been run and
allow for the first time to directly predict the level of impact of baryons on cosmological observables
(clustering and lensing). I therefore undertook a minute propagation of light rays through the
past lightcone of the Horizon-AGN hydrodynamical cosmological simulation, which had been
obtained by my colleagues at IAP, my host institute. The derivation of lensing observables
and the exploitation of these results for a number of direct applications was at the core of this
thesis work. This constitutes the material of Chapter 4. This intensive numerical study required
substantial investment in parallel programming for the post-treatment of several terabytes of
simulation outputs, on a distributed cluster of computers at IAP, which can be summarised as
high-performance computing.

In order to acquire those skills and develop my own tools, I started by a project involving
the extraction of numerical data around galaxies clusters on a pure N-body simulation. Chapter
3 presented this work, which focused on the use of statistical methods for cosmic web analysis
at cluster scales. Characterising the connection between clusters and the surrounding large
filamentary structures is a promising way to probe the underlying cosmology and to improve our
understanding of structure formation history and cluster evolution. I thus projected particles
around clusters to derive lensing observables, such as convergence and the more direct shear signal
and used an harmonic decomposition of the 2D matter distribution to investigate the signature
of filaments at the outskirts of clusters. I developed a new statistical tool to suitably stack the
low amplitude aperture multipolar moments of this particular weak lensing signal. In practice,
I found that the stacking of the power spectra of these moments for a large number of clusters
provides us with a good method to measure the connectivity of clusters without relying on visible
tracers like galaxies or gas. I also quantified the prospects of measuring this signal in the Euclid
data with a careful analysis of all possible sources of noise and given the expected number of
clusters to be uncovered in the Euclid survey. This work was the subject of my first publication in
Astronomy and Astrophysics (Gouin et al. 2017), reproduced in Chapter 3. An interpretation of
the origin of these moments is present in this paper and I also participated to a more theoretical
investigation of the connectivity of convergence peaks (ie clusters), which is further explored in a
companion paper (Codis et al. 2017) led by S Codis. This paper is also reproduced in Appendix
B.
I intend to extend this statistical tool to other observables like the distribution of galaxies around
clusters, the Sunyaev-Zeld’ovitch effect or the X-rays emission for which I expect a greater
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signal-to-noise ratio than the weak lensing signal. This will give insights on the relative bias of
galaxies and hot and warm gas inside filaments.

Equipped with those numerical tools, I went one step further in technicality by exploiting
the lightcone of the Horizon-AGN simulation, as presented in Chapter 4. Compared to previous
work, the propagation of light rays through such a simulation involved developing more complex
tools to slice the volume in multiple lens planes, perform the propagation of rays, deal with
more sophisticated numerical data for different physical components. All those developments
are gathered in Section 2.3 and in an paper that has just been submitted to Astronomy &
Astrophysics, reproduced in Chapter 4. Arguably, the main technical novelty resides in the use of
the gravitational acceleration to infer the lensing deflection. The robustness of this ray-tracing
technics was assessed with a comparison with more commonly used methods. For the first time,
a state-of-the-art hydrodynamical simulation was used to build those lensing observables over a
large field-of-view and with exquisite angular resolution able to resolve the internal structure of
galaxies.

A first application of the deflection and convergence maps I derived from the simulated
Horizon-AGN field is presented in the submitted article. It quantifies the impact of baryons on
cosmic shear two-point statistics which is of paramount importance for Euclid. On scales smaller
than a few arcminutes, baryons suppress correlation at the 10% level. The exact amplitude of the
effect may depend somewhat on the details of the sub-grid physic but this will undoubtedly bias
a cosmological analysis that would neglect baryons. It is thus very likely that a survey like Euclid
will restrict the cosmic shear analysis to larger scales. However, this small scale information,
which will be available at high signal-to-noise, can be used for other purposes like the relation
between galaxies and their host dark matter halo to understand galaxy bias. This can be done
with the Galaxy-Galaxy lensing signal that we also analysed in the submitted paper. At this
stage, Horizon-AGN may still be too small to make relevant predictions for Euclid but we checked
that this simulation produces the right galaxies in the right halos by comparing our shear profiles
around massive galaxies with recent Galaxy-Galaxy lensing observations.

The mentioned results only scratch the surface of possible extensions of my work to other
scientific lensing applications of the lensing signal in the Horizon-AGN lightcone. Indeed, the
second section of the Chapter 4 presents the production of mock observations that are distorted
by the lensing deflection field I obtained in Horizon-AGN as a second extension. The light cone
of this simulation contains galaxies in which the emission of stellar particles have been calculated
by my collaborators. I distorted those images and, after adding realistic observational defects
(noise, convolution by a Point-Spread Function...), I should soon be in a position to apply all the
techniques currently used to extract weak and strong lensing from actual multi-band optical or
near infrared data. This will prove essential to check for possible biases entering the analysis
pipeline, especially on small scales where the impact of the baryons is dominant (shape and
ellipticity measurement, extraction and de-blending of sources for accurate photometry and
subsequent photometric redshifts...). The different investigations which wait to be explored with
the mock lensed (and un-lensed) images are detailed at the end of the chapter 4. This kind of
end-to-end approach is also actively being conducted by the Euclid consortium over much larger
fields of view for statistical power but without the advantages of an hydrodynamical simulation
which provides complex galaxies in specific environments.

5.3 Perspectives

What could be the future developments of my thesis work on a larger time scale? We saw that
some of the conclusions still lack statistical power to reach the ultimate accuracy that a mission
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like Euclid demands. For instance, our 100h/Mpc on a side box does not contain any dark matter
halo more massive than 3×1014 M� and thus does not allow me to study the impact of baryons on
galaxy clusters. Such objects are currently being investigated with zoomed simulations elsewhere.
But one may want to simulate larger volumes (& 1 Gpc3) with a resolution comparable or even
better than Horizon-AGN, to better understand lensing and galaxy clustering. This may not
be reachable for the coming years, especially as we want to run many such simulations with
different cosmologies and different prescriptions for the subgrid physics. For instance, one can
expect that changing the small scale properties of dark matter (eg adding a pressure term due to
self-interactions, free-streaming, Bose-Einstein condensates, etc) will modify the density profile
near the center of galaxies and clusters. However, a modification of subgrid baryonic processes
(AGN or supernova feedback) might lead to similar profile modifications...

Such degeneracies should be explored thoroughly in the coming years. Some of them may not
require very large volumes, but the spatial or mass resolution in the simulations should definitely
be varied. This path has started to be explored by my colleagues responsible of the Horizon-AGN
simulation in the form of the New-Horizon and Obelics simulations (20 Mpc zooms into the
Horizon-AGN box with 20 pc resolution centred on a quiet region of the box and a cluster resp,
see figure 4.5). At this stage, non standard cosmologies are not explored but the validity of
subgrid physical recipes can be much more effectively tested with the detailed structure of such
re-simulated galaxies (dynamics of disks, bulges, chemical composition, etc). I intend to explore
the yet smaller scale lensing signal one can predict with these zoom, especially for galaxy-galaxy
lensing and the strong lensing regimes.

As stated, we may have to wait a long time before sufficiently large and resolved hydrodynamical
simulations can meet at once all the requirements of the upcoming surveys. In this context, I
would like to explore simpler simulations containing accurate predictions for the galaxy-host halo
relations. Such small systems could be somehow randomised into larger volumes, where large
scale properties can easily be derived (from pure N-body,or generation of halo catalogues in the
halo-model formalism. . . ). This could be seen as an extension of existing semi-analytical models.
However, ”reshuffling” more advanced simulation outputs, may require using modern deep learning
techniques that I am keen to explore in the future.

As a final word, I would say that this thesis work allowed me to acquire a broad range of
numerical and statistical skills, develop by myself a variety of HPC tools and acquire a substantial
knowledge of astronomical data, not directly by analysing current observational data but rather
by simulating them while aiming to bring simulations as close as possible to observations. I truly
believe that this kind of work is essential to really understand limitating issues in the data or their
processing and to make the most of cosmological data sets. I found it extremely simulating as it
allows to grasp a wide range of expertise. I intend to push this effort further in the coming years.





Appendix A

Complements to chapter 1

A.1 Additional cosmological definitions

Following the formalism described in section 1.1, some useful variables should be introduced in
addition.

A.1.1 Redshift

Because the light rays are progating through an expanding Universe, the relative dilatation of the
light’s wavelength due to the expansion can be related to the scale factor as:

z = λobs − λemit
λemit

1 + z = a(tobs)
a(temit)

. (A.1)

This definition can be described in detail, by considering light rays as following null geodesic in
the FLRW metric, i.e. ds = 0. For small distance, Hubble found a linear relation between the
redshift and the distance of galaxies, the so-called Hubble law: such as c z = H0 d. The discovery
of the shift of galaxy spectrum as depending of their distance, by Hubble in 1933, has the first
evidence of a expanding Universe. Notice that this relation does not take the pecular velocities of
galaxies into account, but only the apparent velocity induced by the expansion of the spacetime.

A.1.2 Distances

The notion of distance in cosmology is more complex as we have to consider the expansion and
the curvature of the Universe. We can first define physical and comoving distance, as the spatial
measure by considering (or not) the expansion respectively, i.e. they can be related as:

Dphy = a(t)Dc . (A.2)

The comoving distance Dc = fK(ω) is a function of the curvature K, as defined by the FLRW
metric such as:

fK(ω)


1/
√
K sin(

√
Kω) K > 0

ω K = 0

1/
√
−K sinh(

√
−Kω) K < 0

(A.3)

One can also define the angular diameter distance to an object at a redshift z, such that:

dA(z) ∝
∫ z

0

dz′

H(z′) . (A.4)
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A.2 The spherical collapse for an Einstein-de-Sitter Universe

The initial conditions of the spherical density fluctuation Ri, δi can be related by:

δi + 1 = 3M
4πR3

i ρ0
= ρ

ρ0
. (A.5)

According to an EdS Universe (Ωm = 1 and ΩΛ = 0), the solution of the spherical collapse is
known, as explained in Peebles (1980). Remembering that in this case a(t) = (3/2H0t)2/3, thus
two solution can be found depending of the sign of the initial overdensity as:

• initial over-dense fluctuation δi > 0:

δi
a(t)
a(ti)

= 3
5

(3
4(θ − sin θ)

)
, δ + 1 = 9

2
(θ − sin θ)2

(1− cos θ)3 . (A.6)

• initial under-dense fluctuation δi < 0:

δi
a(t)
a(ti)

= −3
5

(3
4(θ − sin θ)

)
, δ + 1 = 9

2
(sinh θ − θ)2

(cosh θ − 1)3 . (A.7)

Thus, for an Einstein-de-Sitter model, the probability of forming a halo depends only of the
initial overdensity and the scale factor. We observe that for δi > 0 , the over-dense regions tend
to become denser as time goes. The density perturbation δ diverges when collapse occurs (or
virialisation) for a certain θ and time.

A.3 Numerical simulation - The smoothing scheme

By considering a simulation grid with a cell size ∆x, one can use different interpolation scheme
to deposit the mass particle onto the cells:

• The Nearest-grid-point (NGP), as the particle is associated to the closest cell only:

W (x) = 1
∆xδD

(
x

∆x

)
. (A.8)

• The cloud-in-cell (CIC), which spreads the particle mass over 23 = 8 cells (for 3D) as:

W (x) = 1
∆x

 1, for |x| < 1/2∆x ,

0, otherwise .
(A.9)

• The triangular shape cloud (TSC), which spreads the particle mass on 33 = 27 cells (for
3D) as:

W (x) = 1
∆x

 1− |x|/∆x, for |x| < ∆x ,

0, otherwise ,
(A.10)

• A Gaussian kernel with a fixed width σ as:

W (x) = 1√
2πσ

e−
x2
2σ2 . (A.11)



Appendix B

On the projected mass distribution
around galaxy clusters :
a Lagrangian theory of harmonic
power spectra (article)

Overview

The statistics of multipolar moments Qm, described in the chapter 3, are also predicted in the
paper below in the Gaussian random field approximation which should represent well the early
universe on large scales. By comparing the statistics of Qm between numerical simulation and
prediction from linear theory, we could highlight the impact of the non-linear evolution of the
density field on the multipolar power spectrum.

In this study, clusters are identified as peaks of density in the initial Gaussian field, and are
characterised by their peak height ν. The statistics of multipolar moments Qm are quantified
with/without the condition of being centred on a peak. In comparison, the peak condition induces:

• a significant boost at the monopole (m = 0),

• a depletion at the dipole (due to the centred) (m = 1),

• a slightly suppression of the power at the quadrupole (m = 2),

• and finally leaves all other multipoles m > 2 unchanged.

Using the perturbative Gram-Charlier expansion, the weakly non-linear regime is also investi-
gated. We find that gravitational evolution induces a non-linear bias of the multipolar moments
proportional to the height and the variance of the field. Taking the non-linear evolution of the
density field around clusters into account, we predict a boost the excess of multipolar power at
all orders m. Indeed, the ratio between the multipolar moments with/without the centred peak
predicted by the perturbative theory are consistent with the results presented in the chapter 3,
found using an N-body simulation (Gouin et al. 2017).
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Abstract

Aims. Gravitational lensing allows to quantify the angular distribution of the convergence field around clusters of galaxies to constrain
their connectivity to the cosmic web. We describe in this paper the corresponding theory in Lagrangian space where analytical results
can be obtained by identifying clusters to peaks in the initial field.
Methods. We derive the three-point Gaussian statistics of a two-dimensional field and its first and second derivatives. The formalism
allows us to study the statistics of the field in a shell around a central peak, in particular its multipolar decomposition.
Results. The peak condition is shown to significantly remove power from the dipolar contribution and to modify the monopole
and quadrupole. As expected, higher order multipoles are not significantly modified by the constraint. Analytical predictions are
successfully checked against measurements in Gaussian random fields. The effect of substructures and radial weighting is shown to
be small and does not change the qualitative picture. The non-linear evolution is shown to induce a non-linear bias of all multipoles
proportional to the cluster mass.
Conclusions. We predict the Gaussian and weakly non-Gaussian statistics of multipolar moments of a two-dimensional field around
a peak as a proxy for the azimuthal distribution of the convergence field around a cluster of galaxies. A quantitative estimate of this
multipolar decomposition of the convergence field around clusters in numerical simulations of structure formation and in observations
will be presented in two forthcoming papers.

Key words. Galaxies: clusters: general – large-scale structure of Universe – Gravitational lensing: weak – Methods: analytical –
Methods: statistical

1. Introduction

Galaxies are not islands uniformly distributed in the Universe.
Over the last decades and with the increasing precision of both
observations and simulations, they have been shown to reside in
a complex network made of large filaments surrounded by walls
and voids and intersecting at the overdense nodes of this so-
called cosmic web (Klypin & Shandarin 1993; Bond et al. 1996).
From the pioneering works of Zeldovich in the seventies to the
peak-patch picture of Bond & Myers (1996), the anisotropic na-
ture of the gravitational collapse have been used to explain the
birth and growth of the cosmic web. The origin of filaments
and nodes lies in the asymmetries of the initial Gaussian ran-
dom field describing the primordial universe and amplified by
gravitational collapse. The above-mentioned works pointed out
the importance of non-local tidal effects in weaving the cosmic
web. The high-density peaks define the nodes of the evolving
cosmic web and completely determine the filamentary pattern in
between. In particular, one can appreciate the crucial role played
by the study of constrained random fields in understanding the
geometry of the large-scale matter distribution.

Galaxy clusters sitting at these nodes are continuously fed
by their connected filaments (e.g. Aubert et al. 2004, and ref-
erence therein; see also Pogosyan et al, in prep. for a study of
the connectivity of the cosmic web). The key role played by this
anisotropic environment in galaxy formation is increasingly un-

? E-mail: codis@cita.utoronto.ca

derlined. For instance, it has been observed that the properties of
galaxies –morphology, colours, luminosities, spins among oth-
ers – are correlated to their large-scale environment (see Oemler
1974; Guzzo et al. 1997; Tempel & Libeskind 2013; Kovač et al.
2014, among many others).

Numerical simulations allow us to study the details of this
large-scale structure of the Universe together with its impact
on the formation and evolution of galaxies. Using N-body sim-
ulations, Hahn et al. (2007); Gay et al. (2010); Metuki et al.
(2015) found that the properties of dark matter halos such as
their morphology, luminosity, colour and spin parameter depend
on their environment as traced by the local density, velocity and
tidal field. In addition to scalar quantities, it also appears that
their shape and spin are correlated to the directions of the sur-
rounding filaments and walls both in dark matter (see for in-
stance Aubert et al. 2004; Bailin & Steinmetz 2005; Brunino
et al. 2007; Aragón-Calvo et al. 2007; Sousbie et al. 2008; Paz
et al. 2008; Codis et al. 2012; Aragon-Calvo & Yang 2014) and
hydrodynamical simulations (Navarro et al. 2004; Hahn et al.
2010; Dubois et al. 2014).

Analytical works provide important insights to understand
the results of those simulations in the quasi-linear regime. As
already pointed out, the theory of constrained random fields is
an important tool that allows analytical calculations in the linear
or weakly non-linear regime which is effective at large scales
or early times in the Universe. Virialised halos are the highly
non-linear result of gravitational dynamics. They tend to form in
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the high-density peaks of the density field by gravitational insta-
bility and as such represent a biased tracer of the density field
(Kaiser 1984; Bardeen et al. 1986). Peak statistics has focused a
lot of attention in the recent years as it provides a unique way to
analytically study the statistics of halos from their spatial distri-
bution to their mass function (Paranjape & Sheth 2012) or their
spin (Codis et al. 2015), at least for rare enough objects (Ludlow
& Porciani 2011).

Despite clear evidence from numerical simulations, the de-
tection of filaments and cold flows is still a debated but crucial
issue as filamentary flows are often depicted as the solution to
the missing baryons problem (Persic & Salucci 1992; Fukugita
et al. 1998; Davé et al. 2001; Shull et al. 2012). In particular,
gravitational lensing has emerged as a potential powerful probe
of the filamentary cosmic web despite being challenging because
of the systematics and the weakness of the signal (Dietrich et al.
2005; Mead et al. 2010; Martinet et al. 2016).

Gravitational lensing is related to the projected density inte-
grated along the line of sight from distant source to the observer.
The so-called convergence κ is proportional to the projection of
the density contrast δ, and, as such, it inherits its statistical prop-
erties. In particular, projection will tend to wash the non gaus-
sianities of the δ field out. One would therefore try and enhance
the importance of the filamentary structure by looking at the sta-
tistical properties of the convergence field at the vicinity of the
rarest, most singular, events, which are the clusters at the nodes
of the web. In this work, we quantify the amount of symmetry
of the matter distribution around clusters of galaxies by means
of the aperture multipolar moments of the convergence field
(Schneider & Bartelmann 1997) and their power spectrum. In
particular, this tool should allow us to detect the signature of
filaments feeding galaxy clusters in weak lensing surveys. This
paper aims to do the theory of this observable in the Gaussian
regime while a companion paper (Gouin et al. 2017) explores the
fully non-linear regime by analyzing clusters of galaxies within
cosmological N-Body simulations.

This works complements in two dimensions the 3D har-
monic analysis of infall at the Virial radius presented in Aubert
& Pichon (2007). The paper is organized as follows. Section 2
describes the mathematical formalism from the general defi-
nition of multipolar moments to the statistical description of
peaks in Gaussian random fields (GRF hereafter) and their im-
pact on the statistics of the multipolar moments. Section 3 then
compares the predictions to measurements in Gaussian random
fields. Section 4 studies the effect of substructures and Section 5
adds a generic radial weight function. We describe the weakly
non-linear evolution of the multipolar moment in Sect. 6. Finally,
we give preliminary conclusions of this work in Sect. 7 and pro-
pose possible follow-up developments. A statistical characteri-
sation of the geometry of peaks for 2D Gaussian random fields
is given in App. A.

2. Formalism

2.1. Aperture multipolar moments

The focus of this paper lies in the azimuthal mass distribution at
various scales around massive galaxy clusters. For a thin grav-
itational lens plane, the convergence κ at a given position r in
the sky corresponds to the projected excess surface density ex-
pressed in units of the so-called critical density Σcrit

κ(r) =
1

Σcrit

∫
dz (ρ(r, z) − ρ) , (1)

with the convention that the line-of-sight corresponds to the z-
axis and the plane of the sky r vector can be defined by polar
coordinates (r, ϕ). The critical density involves distance ratios
between a fiducial source at an angular diameter distance Ds, the
distance to the lensing mass Dl and the distance between the lens
and the source Dls

Σcrit =
c2

4πG
Ds

DlDls
. (2)

On cosmological scales, the thin lens approximation is gener-
ally not valid and the integrated deflections experienced by light
rays as they travel from the source to the observer requires nu-
merical treatment but for most cosmological applications the
integration of the deflections along the unperturbed light rays
(so-called Born approximation, see eg Bartelmann & Schneider
2001) yields a linear integral relation between the convergence
κ and the density contrast δ. For a known time-varying1 three-
dimensional power spectrum Pδ(k, χ), and for a given source
plane redshift zs, one can thus write the convergence power spec-
trum Pκ(`, zs) by means of the Limber approximation (Blandford
et al. 1991; Miralda-Escudé 1991; Kaiser 1992; Bartelmann &
Schneider 2001; Simon 2007)

Pκ(`, zs) =
9
4

Ω2
m

(H0

c

)4 ∫ χs

0
dχ

(χs − χ)2

χ2
s

Pδ (`/χ, χ)
a2(χ)

. (3)

Following early works by Schneider & Bartelmann (1997), we
define the aperture multipolar moments of the convergence (pro-
jected surface mass density) field κ as

Qm =

∫ ∞

0
dr r1+mwm(r)

∫ 2π

0
dϕ eimϕκ(r, ϕ) , (4)

with a radial weight function wm(r) commonly defined on a com-
pact support. Those multipoles aim to quantify possible asym-
metries in the mass distribution as probed by gravitational lens-
ing.

The covariance between multipolar moments can straightfor-
wardly be written as

〈QnQ∗m〉 = 2π in−m
∫

kdk Un(k)Um(k) P(k) . (5)

where Un(`) is the Hankel transform of the radial weight func-
tion

Um(`) =

∫
rdr rmwm(r)Jm(`r) , (6)

Jm(x) are the first kind Bessel functions and P(k) is the power
spectrum of the two-dimensional random field κ.

In a suite of papers (including Gouin et al. (2017) and
Gavazzi et al, in prep.), we propose to use the full statistics of
these multipolar moments around clusters of galaxies. The co-
variance of the aperture multipolar moments in specific locations
of space, such as the vicinity of clusters, becomes

〈QnQ∗m|clusters〉 =

∞
"

0

rdr r′dr′
2π
"

0

dϕdϕ′ rnwn(r)r′mwm(r′)

× ei(nϕ−mϕ′)〈κ(r, ϕ)κ(r′, ϕ′)|clusters〉 , (7)

1 where time variation is captured by an explicit dependence on co-
moving distance χ
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Figure 1. Left-hand panel: This paper aims at describing the angular distribution of a 2D Gaussian field κ around a peak in rz. We
will therefore consider two points on the annulus at a distance r from the central peak. Their respective cartesian coordinates are
rx = r(cos θ, sin θ) and ry = r(cos θ + ψ, sin θ + ψ). In particular, we will compute the expectation value of the product of the field
in those two locations on the annulus given a central peak. Right-hand panel : example of such a 2D Gaussian random field with
a power-law power spectrum with spectral index ns = 0. Peaks of height ν = 3 ± 0.5 are highlighted with black dots. We hereby
investigate the polar distribution of the field around such peaks.

where 〈κ(r, ϕ)κ(r′, ϕ′)|clusters〉 is a constrained two-point corre-
lation function as we impose a cluster at the origin of the polar
coordinate system.

In order to develop a physical intuition of the effect of this
cluster constraint on the statistics of the multipolar moments,
we propose in this paper to study analytically this observable
for a Gaussian random field in which clusters are identified as
high peaks. To simplify the problem, we drop the radial weight
function and focus on Gaussian random fields smoothed with a
Gaussian kernel on a given scale R. In what follows, we will
investigate the angular distribution of a Gaussian random field
around a peak. We therefore need to study the joint statistics of
the field in three locations of space (the location of the peak and
two arbitrary points on the circle at a distance r away from the
central peak). In addition, according to the peak theory origi-
nally developed in Bardeen et al. (1986), we need to consider
the field, its first and second derivatives at the location of the
peak. In Sect. 2.2, we will first present the result for the joint
PDF of those random variables before computing the resulting
multipolar decomposition around a central peak in Sect. 2.6.

2.2. Three-point statistics of the field and its derivatives

For a given two-dimensional Gaussian field κ (for example, the
projected density contrast), we define the moments

σ0
2 = 〈κ2〉, σ1

2 = 〈(∇κ)2〉, σ2
2 = 〈(∆κ)2〉. (8)

From these moments, we will use two characteristic lengths R0 =
σ0/σ1 and R? = σ1/σ2, as well as the spectral parameter

γ =
σ1

2

σ0σ2
. (9)

Let us now define the following normalised random variables

x =
1
σ0
κ, xi =

1
σ1
∇iκ, xi j =

1
σ2
∇i∇ jκ, (10)

which have unit variance by construction.
In what follows, P(X) denotes the one-point probability den-

sity (PDF) and P(X,Y,Z) designates the joint PDF for the
normalized field and its derivatives, X = {x}, Y = {y} and
Z = {z, zi, zi j}, at three prescribed comoving locations (rx,ry and
rz) separated by a distance r = |rx − rz| = |ry − rz| so that we are
considering the density field in two locations, rx and ry on a same
infinitely thin shell around the central peak in rz – see also the
left-hand panel of Fig. 1 –. The right-hand panel of Fig. 1 shows
a Gaussian random field and the position of its peaks. This paper
aims to investigate the angular matter distribution around those
peaks.

For a Gaussian field (in particular cosmic fields at early times
or large scales), the joint PDF is a multivariate normal distribu-
tion

N(X,Y,Z) =

exp

−
1
2


X
Y
Z



T

· C−1 ·


X
Y
Z





det|C|1/2 (2π)(6+3d+d2)/4
, (11)

where d is the dimension – d = 2 here – and C is the covariance
matrix which depends on the separation vectors only because of
homogeneity

C =


1 〈xy〉 CXZ
〈xy〉 1 CYZ
CT

XZ CT
YZ CZZ

 , (12)
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Figure 2. Left-hand panel: Number density of minima, saddle points and peaks compared to the approximation of rare events in
units of R−2

? . Right-hand panel : relative error on the number density of peaks of height ν when using the rare event approximation
instead of the exact result. Different colours correspond to different spectral indices as labeled.

with

CXZ = (〈xz〉 , 〈xz1〉 , 〈xz2〉 , 〈xz11〉 , 〈xz12〉 , 〈xz22〉), (13)
CYZ = (〈yz〉 , 〈yz1〉 , 〈yz2〉 , 〈yz11〉 , 〈yz12〉 , 〈yz22〉), (14)

CZZ =



1 0 0 −γ/2 0 −γ/2
0 1/2 0 0 0 0
0 0 1/2 0 0 0
−γ/2 0 0 3/8 0 1/8

0 0 0 0 1/8 0
−γ/2 0 0 1/8 0 3/8



. (15)

For instance, for a 2D power-law power spectrum with spec-
tral index ns smoothed with a Gaussian filter (r is now the sepa-
ration in units of the Gaussian smoothing length)

〈xz〉 = 1F1

(
ns

2
+ 1; 1;− r2

4

)
≡ ξ(r), (16)

〈xy〉 = ξ(|rx − ry| = 2r sin(ψ/2)), (17)

〈x∇z〉 =

√
ns + 2

2
√

2
1F1

(
ns

2
+ 2; 2;− r2

4

)
r, (18)

〈xz11〉 = −γ
2

[
2 cos2(θ + ψ) 1F1

(
ns

2
+ 2; 1;− r2

4

)
(19)

− cos(2(θ + ψ)) 1F1

(
ns

2
+ 2; 2;− r2

4

)]
, (20)

〈xz12〉 = − r2γ(ns + 4)
32

sin(2(θ + ψ)) 1F1

(
ns

2
+ 3; 3;− r2

4

)
,(21)

〈xz22〉 = −γ
2

[
2 sin2(θ + ψ) 1F1

(
ns

2
+ 2; 1;− r2

4

)
(22)

+ cos(2(θ + ψ)) 1F1

(
ns

2
+ 2; 2;− r2

4

)]
. (23)

Here 1F1(a; b; z) is the confluent hypergeometric function, ξ is
the two-point correlation function of the field and the spectral
parameter reads γ =

√
(ns + 2)/(ns + 4). The correlation matrix

CYZ is obviously the same as CXZ once ψ has been set to zero.

2.3. The central peak condition

Eq. (11) is sufficient to compute the expectation of any quan-
tity involving the fields and its derivatives up to second or-
der in three different locations. This is the case if one wants

to implement a peak condition at the rz location. Indeed, fol-
lowing Longuet-Higgins (1957); Adler (1981); Bardeen et al.
(1986), this peak constraint reads | det zi j|δD(zi)ΘH(−λi) where
δD(zi) ≡ δD(z1)δD(z2) is a product of Dirac delta functions which
imposes the gradient to be zero, ΘH(−λi) ≡ ΘH(−λ1)ΘH(−λ2)
an Heaviside function forcing the curvatures (equivalently the
eigenvalues of the Hessian matrix λi) to be negative. The factor
| det zi j| = |z11z22 − z2

12| encodes the volume associated to each
peak, in other words the Jacobian which allows us to go from a
smoothed field distribution to the discrete distribution of peaks.
The rareness of the peak ν can also be imposed by adding a factor
δD(z − ν). We will therefore denote npk(Z) the localized density
of peaks

npk(Z) =
1

R2
?

| det zi j|δD(zi)ΘH(−λi)δD(z − ν) . (24)

The most difficult part in the peak constraint is often to im-
pose the sign of the curvatures and the positivity of the Jacobian
which can prevent from getting analytical results as it is the case
for 3D differential peak counts (Gay et al. 2012) or peak-peak
correlation functions (as described in Baldauf et al. (2016) in
one dimension and Regos & Szalay (1995) in three dimensions)
which can only be solved numerically. A standard approxima-
tion to keep results analytical is to drop this sign constraint and
remove the absolute values of the determinant factor for high
contrasts as one expects rare enough critical points to be essen-
tially peaks. If this approximation is very accurate for one-point
statistics, it may not be the case for (N > 1)-point statistics.
For instance, peak-peak correlation functions on small scales are
not very well reproduced by this approximation even for large
contrasts because the contribution from the other critical points
actually dominates at small distance (there is at least one sad-
dle point between two peaks!). However, in the context of this
work, we impose the peak constraint in one location only and
therefore the rare peak approximation is expected to be accurate
for ν >∼ 2. As an illustration, Fig. 2 displays the Gaussian mean
number density of minima, saddle points and peaks (Longuet-
Higgins (1957); Adler (1981) and later generalised to weakly

4
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Figure 3. Top panels: expected two-point correlation function
〈
κκ′|pk

〉
in units of σ2

0 for a 2D power spectrum with spectral index
ns = 0 and a central peak of height ν? =

√
7/3γ and eigenvalues λ1? = (−√7/3 +

√
1/3)/2 and λ2? = (−√7/3 − √1/3)/2 in

rz. Different values of θ, the angle between the major axis of the ellipse (i.e smaller curvature) and the first point on the annulus,
between 0 and π/2 are displayed from left to right. ψ is the angle between rx and ry and r is the separation to the central peak (in
units of the smoothing length) so that the displayed value corresponds to the correlation function between this point, ry, and the one
on the positive x-axis at the same radius, rx. The values we chose here correspond to the most likely height and curvatures of a peak
(and do not depend on the spectral index). Bottom panels: same as top panels for νr = 3. The corresponding most likely curvatures
of the peak are λ1r = −0.94 and λ2r = −1.6.

non-Gaussian fields by Pogosyan et al. (2011))

n̄pk/min(ν) =
γ2
√

2 exp
(
− ν2

2

)

16π3/2R2
?

(ν2 − 1)

1 ± erf


γν√

2(1 − γ2)




+

√
2 exp

(
− 3ν2

6−4γ2

)

16
√

3 − 2γ2π3/2R2
?

1 ± erf


γν√

2(1 − γ2)(3 − 2γ2)




±
√

1 − γ2

8π2 γν exp
(
− ν2

2 − 2γ2

)
,

n̄sad(ν) =

√
2 exp

(
− 3ν2

6−4γ2

)

8
√

3 − 2γ2π3/2R2
?

,

and compares the latter to the high-ν approximation (related to
the genus) χ(ν) = 〈det zi jδD(zi)δD(z−ν)〉/R2

? which can be easily
computed

χ(ν) =
γ2

4
√

2π3/2R2
?

exp
(
−ν

2

2

)
(ν2 − 1) . (25)

The relative error between the number density of peaks and its
high-ν approximation is shown on the right-hand panel of Fig. 2.

2.4. Density correlations on the circle surrounding a central
peak with given geometry

The expected product of projected density κ in two locations of
space rx and ry such that rx − rz = r(cos θ, sin θ) and ry − rz =
r(cos(θ+ψ), sin(θ+ψ)) and given a peak in rz of height ν and cur-
vatures 0 > λ1 > λ2 along the first and second coordinates can
be analytically computed. For instance for a power-law power
spectrum with ns = 0 (and γ = 1/

√
2), we get

〈
κ(r, θ)κ(r, θ + ψ)|pk

〉

σ2
0

= ξ(|rx − ry|)

+ exp
(
− r2

2

) [
l0 + l2r2 + l4r4

]
, (26)

where

l0 = (ν2 − 1), (27)

l2 = [ν2 +
√

2νI1(1 − 2e cosψ cos(2θ + ψ)) − cosψ]/2, (28)

l4 =
[
ν2 − 2 cos2 ψ + 2

√
2νI1(1 − 2e cosψ cos(2θ + ψ))

+2I2
1 (1 − 2e cos(2θ))(1 − 2e cos(2θ + 2ψ))

]
/16, (29)

5
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Figure 4. Zero lag annulus correlation function
〈
κ(r, θ)2|pk(ν)

〉

in units of σ2
0 for a central peak with height ν? =

√
7/3γ and

eigenvalues λ1? = (−√7/3 +
√

1/3)/2 and λ2? = (−√7/3 −√
1/3)/2 in rz for a Gaussian random field with power spectrum

P(k) ∝ k0 smoothed with a Gaussian filter (similar to Fig. 3 when
the two points on the annulus are the same). The separation r is
given in units of the smoothing length.

I1 = λ1 + λ2 is the trace of the density Hessian at the location of
the peak, e = (λ2−λ1)/(2I1) is the ellipticity of the peak and the
unconstrained correlation function is

ξ(|rx − ry|) = exp
(
− r2

2
(1 − cosψ)

)
. (30)

To start with, Fig. 4 shows the zero lag contribution to the annu-
lus correlation function (i.e when the two points are at the same
location on the annulus, ψ = 0) in the frame of the central peak.
As expected the amplitude of fluctuations around the peak have
an ellipsoidal shape, more elongated along the smallest curvature
λ1?. Note that this zero-lag annulus correlation is dominated by
the square of the mean density profile at small separations and
by the fluctuations at larger separations.

Fig. 3 then displays the full constrained correlation function
on the annulus. We use different orientations of the pair (rx, ry)
with regard to the axis of smaller curvature (corresponding to
λ1) of the central peak. The orientation of rx is described by the
angle θ which is taken to be 0, π/4 and π/2 from the left-hand to
the right-hand panel. On each plot, the angle between rx and ry,
namely ψ, vary between 0 and 2π and the separation to the cen-
tral peak is described by the value r. We show the result for two
different peak heights, the most likely value ν? = γ

√
7/3 (top

panels) and a rarer case νr = 3 (bottom panels) more relevant to
our study. In each case respectively, we fix the peak curvatures
to their most likely values λ1? = (−√7/3 +

√
1/3)/2, λ2? =

(−√7/3 − √1/3)/2 and λ1r = −0.94, λ2r = −1.6 (we refer the
reader to App. A for a description of the most likely geometry of
a peak). As expected, the product of density is larger when the
separation vectors are close one to the other and aligned with the
major axis of the peak. For the case of a rare peak (bottom pan-
els), the prominence of the peak is obviously larger (increased

Figure 5. Annulus correlation function
〈
κ(r, θ)κ(r, θ + ψ)|pk(ν)

〉
in units of σ2

0 for a central peak with height ν = 3 in a Gaussian
random field with power spectrum P(k) ∝ k0 smoothed with a
Gaussian filter. The separation r is given in units of the smooth-
ing length. The angular anisotropy of the annulus correlation
function will be quantified using a multipolar decomposition in
Sect. 2.6.

magnitude and spatial extend of the peak). Conversely, the com-
mon peak, ν? occupies a smaller volume and is surrounded by
two closer voids and peaks. In what follows, we do not fix the
shape of the peak and therefore we marginalise over λ1 and λ2.

2.5. Density correlations around a peak of specified height ν

If one wants to marginalise over the shape of the peak (which
means integrating over the eigenvalues λ1 and λ2 in the range
λ2 < λ1 < 0), then the expected product of projected densities
on the annulus (the annulus two-point correlation function) be-
comes

〈
κ(r, θ)κ(r, θ + ψ)|pk(ν)

〉

σ2
0

=

〈
xy det(zi j)δD(z − ν)δD(zi)ΘH(−λi)

〉
〈
det(zi j)δD(zi)ΘH(−λi)

〉 ,

where we marginalize over all variables except ν which is fixed.
Unfortunately, this expression cannot be analytically computed.
For sufficiently rare peaks (high ν), we drop the constraint on the
sign of the eigenvalues (high critical points are most of the time
peaks) and an explicit expression for

〈
κ(r, θ)κ(r, θ + ψ)|pk(ν)

〉
can be obtained

〈
κ(r, θ)κ(r, θ + ψ)|pk(ν)

〉

σ2
0

=ξ(|rx − ry|) +
2 f 2

21

ν2−1
+ 4 f11 f21

+
ν4−6ν2+3
ν2−1

f 2
11−

ns+2
4

r2 f 2
22 cosψ− 2 cos(2ψ)

ν2−1
( f21− f11)2, (31)

where fi j and the unconstrained correlation function ξ(|rx − ry|)
are functions of the following Kummer confluent hypergeomet-
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Figure 6. Multipoles |Qm|2| for a central peak with height ν = 2 to 4 as labeled in a Gaussian random field with power spectrum
P(k) ∝ k0 smoothed with a Gaussian filter and on the annulus at a distance r = 0.1R (top left-hand panel), R (top right), 2R (bottom
left). The dashed line corresponds to the random case (where we do not impose a central peak). The bottom right-hand panel shows
the ratio of those multipoles to the random case for r = R.

ric functions

fi j = 1F1

(
ns

2
+ i; j;− r2

4

)
, (32)

ξ(|rx − ry|) = 1F1

(
ns

2
+ i; j;− r2

2
(1 − cosψ)

)
. (33)

As an illustration, for a power spectrum P(k) ∝ k0, it be-
comes

〈
κ(r, θ)κ(r, θ + ψ)|pk(ν)

〉

σ2
0

= ξ(|rx − ry|) + exp
(
− r2

2

)

×
8(ν2−1)2−8ν2r2+r4−4

(
ν2−1

)
r2 cosψ−r4 cos 2ψ

8
(
ν2−1

) , (34)

where ξ(|rx − ry|) = exp
(
− r2

2 (1 − cosψ)
)

is the unconstrained
correlation function on the annulus. The apparent singularity at
ν = ±1 is due to our high ν approximation which breaks down in
this regime as many ν = 1 critical points are not peaks but saddle
points. Fig. 5 illustrates the behaviour of

〈
κ(r, θ)κ(r, θ + ψ)|pk(ν)

〉
for a central peak with height ν = 3. Similarly to the case where
the peak geometry is imposed, here the annulus correlation func-
tion is larger when the separation vectors are close one to the
other and aligned with the major axis of the peak. The isocon-
tours are close to spherical for small separations but become very
anisotropic and elongated along the axis ψ = 0 (when the two
points overlap) at larger separations.

2.6. Multipoles around a peak of specified height ν

Once the two-point correlation function around a peak –〈
κ(r, θ)κ(r, θ + ψ)|pk(ν)

〉
– is known, one can compute the cor-

responding multipolar moments that we define here as

〈
|Qm|2|pk

〉
(r, ν)=

∫ 2π

0

dψ
2πσ2

0

〈
κ(r, θ)κ(r, θ + ψ)|pk

〉
eımψ. (35)

The result is again analytical. As expected, only the first three
multipoles are modified by the peak condition, the rest being
unchanged

〈
|Qm|2|pk

〉
=

〈
|Qm|2

〉
for all m ≥ 3 . (36)

For instance, for P(k) ∝ k0 power spectra, those multipoles read

〈
|Q0|2| pk

〉
=

〈
|Q0|2

〉
+

r4 − 8ν2r2 + 8(ν2 − 1)2

8(ν2 − 1)
exp

(
− r2

2

)
, (37)

〈
|Q1| 2| pk

〉
=

〈
|Q1|2

〉
− 1

4
r2 exp

(
− r2

2

)
, (38)

〈
|Q2|2| pk

〉
=

〈
|Q2|2

〉
− 1

16
r4

ν2 − 1
exp

(
− r2

2

)
, (39)

〈
|Qm|2| pk

〉 m≥3
=

〈
|Qm|2

〉
≡ exp

(
− r2

2

)
Im

(
r2

2

)
, (40)

where Im are the modified Bessel functions of the first kind.
We note in particular that the correction to the monopole (resp.
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Figure 7. Same as Fig. 6 for central peaks of height ν = 3 and
separation r = 1 (in units of the smoothing length) as a function
of the spectral index ns.

dipole, quadrupole) is maximal for r = 0 (resp.
√

2, 2). It can
easily be checked that the condition of zero gradient only af-
fects the dipole, while the constraint on the peak height changes
the monopole and the Hessian modifies both the monopole and
quadrupole.

Fig. 6 shows the amplitude of the multipoles for various peak
heights and separations. There is a significant drop of power in
the dipole while the change in the monopole and quadrupole is
much less pronounced. The dependance on the peak height is
rather small. Those predictions will be checked against GRF re-
alizations in Sect. 3.

2.7. Dependence on the slope of the power spectrum

In this work, we have shown results for a power-law power spec-
trum (ns = 0) but the qualitative conclusions can be shown to
be almost independent from the spectral index. To illustrate this
property, we have computed the multipoles for different slopes
of the power spectrum from -1.5 (close to the effective spec-
tral index of the convergence field at cluster scale) to 1 as dis-
played on Fig. 7. The correction to the monopole and dipole are
quasi-linearly suppressed when ns increases while the quadruple
is constant for a wide range of slopes ns . 1 and shows only
a decrease at very low spectral indices. Overall, it shows that
the qualitative picture described in this paper does not depend
significantly on the slope of the power spectrum. Investigating
the effect of the running is left for future works as no analytical
results can be obtained in this case. The study of a more real-
istic ΛCDM power spectrum in the non-linear regime will be
presented elsewhere.

3. Comparison with direct measurements in GRF

Let us generate ten maps of a 20482 GRF with power spectrum
P(k) ∝ k0. Each map is then smoothed with a Gaussian kernel
on R = 8 pixels. A portion of such a map is displayed in the
right-hand panel of Fig. 1.

Peaks are then found using the code map2ext (Colombi
et al. 2000; Pogosyan et al. 2011): for every pixel a segment of
quadratic surface is fit in the tangent plane based on the field val-
ues at the pixel of origin and its neighbours. The position of the
extremum of this quadratic surface, its height and its Hessian
are computed. The extremum is counted into the tally of the
type determined by its Hessian (two negative eigenvalues for

peaks) if its position falls within the original pixel. Several ad-
ditional checks are performed to preclude registering extrema in
the neighbouring pixels and minimize missing extrema due to
jumps in the fit parameters as region shifts to the next pixel. This
procedure performs with better than 1% accuracy when the map
is smoothed with a Gaussian filter whose full width at half max-
imum exceeds 6 pixels.

The field is then interpolated at 100 equally spaced points
on the circle located at r = R around each peak and Fourier
transformed. Only the square modulus of the Fourier coefficients
are stored. For comparison, a similar procedure is followed to
estimate the multipolar decomposition around the same number
of random points in the field.

The resulting multipolar decomposition measured in GRF is
displayed on Fig. 8 for various peak heights and separations.
Those measurements are in very good agreement with the the-
oretical predictions described in Sect. 2.6. The high-ν approx-
imation used to derive the prediction is therefore shown to be
very accurate in the regime ν ≥ 2.5. Below this threshold, some
departures – in particular in the quadrupole – are seen and would
require a numerical integration of the equation with the correct
peak curvature constraints.

4. Effect of substructures

In practice, measurements in simulations and observations of the
angular distribution of the convergence field around clusters nat-
urally involve two separate scales : the (relatively large) scale of
the cluster and the (smaller) scale of the convergence field (or
the dark matter density field in a N-body simulation) around it.
Even if those scales are not identical, they are necessarily highly
correlated and the effect described in this paper should persist.
To study the effect of substructures, let us redo the analysis but
introducing two different smoothing lengths, one R1 for the field
z at the location of the peak and one R2 at the location of the
annulus. In this section only, we will denote R = R2/R1 ≤ 1
the corresponding (dimensionless) ratio. The same formalism as
described above applies but all the coefficients of the covariance
matrix are changed. Let us first redefine the random variables as

z =
1
σ0
κ(rz), zi =

1
σ1
∇iκ(rz), zi j =

1
σ2
∇i∇ jκ(rz), (41)

x =
1
σ0
κ(rx), y =

1
σ0
κ(ry), (42)

where the factors σi are the respective variances of the field, gra-
dient and Laplacian smoothed on scale R1. With this definition,
one can easily recompute the coefficients of the covariance ma-
trix. For instance,

〈xz〉 = 〈yz〉 = β−ns−2
1F1

(
ns

2
+ 1; 1;− r2

4β2

)
, (43)

〈xy〉 = R−
ns+2

2 1F1

(
ns

2
+ 1; 1;− r2

2R2 (1 − cosψ)
)
, (44)

〈xz22〉 = −γ
2
β−ns−4

[
2 sin2(θ + ψ) 1F1

(
ns

2
+ 2; 1;− r2

4β2

)

+ cos(2(θ + ψ)) 1F1

(
ns

2
+ 2; 2;− r2

4β2

)]
, (45)

where the separation r is again a dimensionless quantity (ex-
pressed in units of R1) and β is the dimensionless quadratic mean
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Figure 8. Left-hand panel: Same as the bottom right-hand panel of Fig. 6 for measurements in ten realizations of a 20482 2D GRF
smoothed with a Gaussian filter on 8 pixels. The height of the peaks are binned as labelled and the separation considered here is
r = R = 8 pixels. Right-hand panel: Same as left-hand panel when we vary the separation r instead of the peak height which is set
to ν = 3 here. We overplotted the theoretical predictions with dashed lines that are almost indistinguishable from the measurements.

of the two smoothing lengths

β =
√

(1 + R2)/2, (46)

which ranges from 1/
√

2 (when R2 goes to zero) to 1 (when the
two smoothing scales are equal R2 = R1).

An analytical solution for the mean amplitude of the multi-
poles of the field around a central peak can again be computed.
For the same example of a power-law power spectrum P(k) ∝ k0,
those multipoles read

〈
|Q0|2|pk

〉
=

〈
|Q0|2

〉
+

apk
0

8β12(ν2 − 1)
exp

(
− r2

4β2

)
, (47)

〈
|Q1|2|pk

〉
=

〈
|Q1|2

〉
− r2

4β8 exp
(
− r2

4β2

)
, (48)

〈
|Q2|2|pk

〉
=

〈
|Q2|2

〉
− r4

16(ν2 − 1)β12 exp
(
− r2

4β2

)
, (49)

〈
|Qm|2|pk

〉 m≥3
=

〈
|Qm|2

〉
≡ 1

R2 exp
(
− r2

2R2

)
Im

(
r2

2R2

)
. (50)

where Im are the modified Bessel functions of the first kind and

apk
0 = r4 − 8β2

[
1 + β2(ν2 − 1)

]
r2

+ 8β4
[
2 + 4β2(ν2 − 1) + β4(ν4 − 6ν2 + 3)

]
.

The limit R = β = 1 trivially reduces to the former Eqs. (37-40).
Those small-scale multipoles are displayed in Fig. 9 for

R = 1/100 to R = 1. The multi-scale approach described in
this section does not modify the m > 2 multipoles. As expected,
the correction due to the peak decreases when R goes to 0 as the
scales decorrelate. In addition, we expect that non-linearities and
corrections beyond the Hessian will change the power of higher
order multipoles.

5. Beyond the thin shell approximation

The effect of the radial weight function in Eq. (7) can be studied
by relaxing the assumption that rx and ry are on a same infinitely
thin shell around the central peak in rz. Let us therefore consider

the general setting for which rx is at a distance r from the central
peak and ry at a distance r′. In this case, the constrained two-
point correlation function reads

〈
κ(r, θ)κ(r, θ + ψ)|pk(ν)

〉

σ2
0

= ξ(|rx − ry|)+
2 f21 f ′21

ν2−1
+2( f ′11 f21+ f11 f ′21)

+
ν4−6ν2+3
ν2−1

f11 f ′11−
ns+2

4
r2cosψ f22 f ′22

−2 cos(2ψ)
ν2−1

( f21− f11)( f ′21− f ′11), (51)

where f , f ′ and the unconstrained correlation function ξ(|rx −
ry|) are functions of the following Kummer confluent hypergeo-
metric functions

fi j = 1F1

(
ns

2
+ i; j;− r2

4

)
, (52)

f ′i j = 1F1

(
ns

2
+ i; j;− r′2

4

)
, (53)

ξ(|rx − ry|) = 1F1

(
ns

2
+ i; j;− r2 + r′2 − 2rr′ cosψ

4

)
. (54)

It can easily be checked that Eq. (51) trivially reduces to Eq. (31)
when r′ = r. As an illustration, for a power-law power spectrum
P(k) ∝ k0, the correction to the unconstrained correlation func-
tion ξ(|rx − ry|) reads

〈
κ(r, θ)κ(r′, θ + ψ)|pk

〉

σ2
0

−ξ(|rx − ry|) = exp
(
− r2 + r′2

4

)
δξ , (55)

with

δξ=
8(ν2−1)2−4ν2(r2+r′2)+r2r′2(1−cos 2ψ)−4

(
ν2−1

)
rr′cosψ

8
(
ν2−1

) .

From Eq. (51), one can now easily compute the statistics of
the multipoles including the radial weight function wn(r) that
appears in Eq. (7). We find again that only the amplitude of the
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Figure 9. Same as the bottom right-hand panel of Fig. 6 when
the field is smoothed at two different scales whose ratio R goes
from 1/100 to 1.

first three multipoles are affected by the peak constraint

〈
|Q0|2|pk

〉
=

〈
|Q0|2

〉
+

∫

S0

r4−8ν2r2+8(ν2−1)2

8(ν2−1)
exp

(
− r2

2

)
, (56)

〈
|Q1|2|pk

〉
=

〈
|Q1|2

〉
−
∫

S1

r2

4
exp

(
− r2

2

)
, (57)

〈
|Q2|2|pk

〉
=

〈
|Q2|2

〉
−
∫

S2

1
16

r4

ν2−1
exp

(
− r2

2

)
, (58)

〈
|Qm|2|pk

〉m≥3
=

〈
|Qm|2

〉
, (59)

where
∫
Sm

stands for the following 2D radial integral

∫

Sm

f (r, r′) = (2π)2σ2
0

∫
rdr r′dr′ rnwn(r)r′mwm(r′) . (60)

Fig. 10 shows the resulting multipoles for a radial weight func-
tion defined following Schneider & Bartelmann (1997) as

R1+m
max wm(r) =

1
x1+m + α1+m −

1
1 + α1+m +

(1 + m)(x − 1)
(1 + α1+m)2 (61)

over the range x = r/Rmax ∈ [α, 1] and zero elsewhere (which
was found to be optimal for an isothermal mass distribution).
The qualitative picture does not change : the most affected mul-
tipole is the dipole whose power is significantly reduced by the
peak constraint, the monopole and quadrupole are slightly af-
fected in a ν-dependant way and all other coefficients are unaf-
fected.

6. A non-linear theory of harmonic power spectra

In this section, we study the weakly non-linear evolution of the
multipolar moments. We therefore no longer assume that the
PDF is Gaussian P(x, y, z) = G(x, y, z). Instead, we expand the
PDF around a Gaussian by means of the so-called Gram-Charlier
expansion (Cramér 1946; Pogosyan et al. 2009a). For simplicity,
we will restrict ourselves to the case where we only impose the
height of the cluster but not the rest of the peak condition (no
zero gradient or constraint on the eigenvalues of the Hessian).
We will show that this effect dominates the high multipoles.
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ν=4
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
Q
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

Figure 10. Same as the bottom right-hand panel of Fig. 6 when
we apply a radial weight function defined by Eq. (61) with Rmax
equals the smoothing length and α = 0.5 (which means that the
minimum radius considered is half the smoothing length).

6.1. The Gram Charlier expansion

The Gaussian PDF has zero means and covariance matrix

C =


1 b a
b 1 a
a a 1

 , (62)

with a = ξ(r) and b = ξ(2r sin(ψ/2)).
We first diagonalise this matrix and use a new set of variables

(u, v, z) where

w =
y − az√
1 − a2

(63)

u =
x(1 − a2) + y(a2 − b) + za(b − 1)√

(1 − b)(1 − 2a2 + b)(1 − a2)
(64)

so that
P(u,w, z) = N(u)N(w)N(z) (65)

with N a normal distribution of zero mean and unit variance.
Following Gay et al. (2012); Codis et al. (2013), we then use

a Gram-Charlier expansion of the PDF

P(u,w, z) = G(u,w, z)

1 +

∞∑

i+ j+k=3

Hi(u)H j(w)Hk(z)
i! j! k!

〈
uiw jzk

〉
GC



where Hi represent probabilistic Hermite polynomials and the
Gram-Charlier coefficients are given by

〈
uiw jzk

〉
GC

=
〈
Hi(u)H j(w)Hk(z)

〉
. (66)

Once the joint PDF is known, we can compute the annulus two-
point correlation function 〈xy|z = ν〉 as

〈xy|z = ν〉 =

∫
dx dyP(u(x, y, z),w(y, z), ν)xy

P(z = ν)
, (67)

which can be rewritten

〈xy|z = ν〉 =

∫
du dwP(u,w, ν)x(u,w, ν)y(u,w, ν)

P(z = ν)
, (68)

10
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Figure 11. A slice through the fields nstep =0,1,2 and 3 obtained by a Zeldovich displacement of an initial GRF. We measure the
multipolar moments around all points of height ν > 2 in those maps.

where xy is a polynomial of u and w

xy = a2z2 + uza

√
(1 − b)(1 − 2a2 + b)

1 − a2 + wza
1 + b − 2a2

√
1 − a2

+ uw
√

(1 − b)(1 − 2a2 + b) + (b − a2)w2 (69)

which is the sum of four terms proportional respectively
to H0(u)H0(w), H1(u)H0(w), H0(u)H1(w), H1(u)H1(w) and
H0(u)(H2(w) + H0(w)) as H0(x) = 1, H1(x) = x and H2(x) =
x2 − 1. Using the property of orthogonality of Hermite polyno-
mials, it is then easy to compute Eq. 68 so that eventually

〈xy|z = ν〉 = b + a2(ν2 − 1) + ∆NL , (70)

where the non-linear contribution reads

∆NL=

∑∞
k=1

Hk(ν)
k!

〈
Hk(z)

[
2aν(x−az)+xy−b−2azx+a2z2 + a2

]〉

1 +
∑∞

k=3
Hk(ν)

k!
〈
zk〉

GC

,

which, at first order in σ0 – the amplitude of fluctuations –, is
given by2

∆
(1)
NL= a2(2ν − ν3)

〈
z3

〉
+ a(ν3 − 3ν)

〈
xz2

〉
+ ν 〈xyz〉 .

In terms of multipoles, it means that for m > 0, we get a non-
linear bias given by

〈
|Qm|2|ν

〉
〈|Qm|2〉 = 1 + ν

〈xyz〉m
bm

+ O(σ2
0) , (71)

where the subscript m refers to the associated multipole of order
m. The multipoles near a high density cluster is therefore biased
compared to random locations, this bias being proportional to
the height ν with a proportionality coefficient related to the ratio
between the isosceles three-point function 〈xyz〉 and the two-
point correlation function of its base b = 〈xy〉 = ξ(2r sin(ψ/2)).
Note that the all-order expression is also easily obtained once it

2 An easy way to get this expression is to only keep Gram-Charlier
coefficients

〈
uiw jzk

〉
GC

for which i + j + k = 3 which were shown to be
equivalent to cumulants and correspond exactly to the first-order cor-
rection, proportional to σ0 (Gay et al. 2012).
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Figure 12. Ratio between the multipolar moments at a distance
r = 8 pixels from a field point of height ν > 2 compared to ran-
dom locations, for a GRF displaced following the Zeldovich ap-
proximation for different time steps between 0 and 20 as labeled
and smoothed over 3 pixels. The solid line is the measurements
and the dashed line is the prediction for m > 0 given by Eq. 71.

is realised that the only terms which depend on the angle ψ are
b and the cumulants involving the product xy

〈
|Qm|2|ν

〉
〈|Qm|2〉 = 1 +

∑∞
k=1

Hk(ν)
k! 〈Hk(z)(xy−b)〉m

bm

(
1 +

∑∞
k=3

Hk(ν)
k!

〈
zk〉

GC

) . (72)

The monopole is also easy to compute
〈
|Q0|2|ν

〉
〈|Q0|2〉 =1 +

a2(ν2−1)
b0

+ δqNL
0 , (73)

where the first order non-linear correction reads

δqNL
0 = +ν

a2(2−ν2)
〈
z3

〉
+ a(ν2−3)

〈
xz2

〉
+〈xyz〉0

b0
+ O(σ2

0).

6.2. Comparison with simulations

To test the m > 0 prediction, we have generated various GRF
and displaced the density field following a Zeldovich displace-
ment with different time steps denoted nstep =0,1,2 and 3 (from
Gaussian to more evolved fields). In practice, we compute the
displacement field as the gradient of the gravitational potential
by FFT and we multiply by a constant times nstep. We then move
the mass in each pixel according to this displacement and dis-
tribute it to the eight closest pixels. Those fields are illustrated
on Fig. 11. We measure the multipoles around field point of
height ν > 2 together with the mean height of those peaks (resp.
ν̄ = 2.36, 2.52, 2.63, 2.86) and the multipolar decomposition of
the bispectrum 〈xyz〉m. The result is displayed on Fig. 12 and
shows a fair agreement of the m > 0 multipoles with the predic-
tion given in Eq. 71.

7. Conclusions

We have computed the statistics of the multipolar moments
around a peak for a generic two-dimensional Gaussian field as
a proxy for the azimuthal distribution of matter around clusters
seen by weak gravitational lensing experiments. For rare enough
peaks (ν >∼ 2.5), all results are completely analytical. It is shown

that only the monopole, dipole and quadrupole are affected by
the central peak while higher order multipoles are essentially
left unchanged by the peak constraint. Overall, the dominant
effect we find is a significant drop in the dipole coefficient as
expected from the zero gradient condition. Substructures in the
Gaussian field and the addition of a radial weighting function do
not change this qualitative picture.

This feature in the dipole can also be detected in numerical
simulations of structure formation as will be shown in a forth-
coming paper (Gouin et al. 2017). We anticipate that higher or-
der corrections will also emerge from the non-linear evolution
of the density field in the vicinity of peaks beyond the Gaussian
picture described here but also from possible departure from the
peak model itself which, as we showed in this paper, boils down
to modifying the power in the monopole, dipole and quadrupole
only. As an illustration, we have computed the non-linear bias of
the multipolar moments due to the height of the cluster. This bias
is proportional to the height ν and to the variance of the field σ
by means of the rescaled bispectrum. This approach based on the
statistics of multipolar moments in the convergence field around
clusters will soon be applied to data (Gavazzi et al, in prep.).

Extensions of this analytical work in the future might include
i) an investigation of the accuracy of the large ν approximation
and a precise numerical integration in the regime of intermediate
contrasts where this approximation breaks down, ii) a study of
the effect of the scale-dependence of the power spectrum.
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Kovač, K., Lilly, S. J., Knobel, C., et al. 2014, MNRAS, 438, 717
Longuet-Higgins, M. S. 1957, Philosophical Transactions of the Royal Society

of London Series A, 249, 321
Ludlow, A. D. & Porciani, C. 2011, MNRAS, 413, 1961
Martinet, N., Clowe, D., Durret, F., et al. 2016, A&A, 590, A69
Mead, J. M. G., King, L. J., & McCarthy, I. G. 2010, MNRAS, 401, 2257
Metuki, O., Libeskind, N. I., Hoffman, Y., Crain, R. A., & Theuns, T. 2015,

MNRAS, 446, 1458
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Appendix A: Typical peak geometry

The typical geometry of a Gaussian peak in two dimensions can
easily be computed. Starting from the Gaussian joint PDF of the
field value ν and local curvatures λ1 > λ2 (Doroshkevich 1970;
Pogosyan et al. 2009b)

P(ν, λ1, λ2)=
2
√

J2

π
√

1 − γ2
exp

−
1
2


ν + γI1√

1 − γ2


2

− 1
2

I2
1−J2

 , (A.1)

where I1 = λ1 + λ2 and J2 = (λ1 − λ2)2, one can show that the
PDF for a peak to have height ν and geometry 0 > λ1 > λ2 reads
(Bardeen et al. 1986; Codis et al. 2015)

P(ν, λ1, λ2|pk) =
8
√

3(λ1 − λ2)λ1λ2

π
√

1 − γ2
×

exp

−
1
2


ν + γ(λ1 + λ2)√

1 − γ2


2

− 1
2

(λ1 + λ2)2−(λ1−λ2)2

 . (A.2)

It has to be emphasized that here we do impose exactly the
peak constraint given by Eq. (24). The most likely value of the
peak height and curvatures is therefore given by ν? =

√
7/3 γ,

λ1,2? = (−√7/3 ± √1/3)/2 which corresponds to an ellipticity
e? = 1/(2

√
7).

If ν is fixed e.g to a rare value νr = 3, the maximum of the
PDF given by Eq. (A.2) is changed to λ1r = −0.94 and λ2r =
−1.6 so that the ellipticity of the peak is given by er = 0.13,
independently from the spectral parameter γ. The evolution of
the most likely peak curvatures as a function of height is shown
in Fig A.1. In particular, it illustrates the well-known result that
high peaks are increasingly spherical.
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Chang, C., Pujol, A., Gaztañaga, E., et al. 2016, MNRAS, 459, 3203 24

Chen, Y.-C., Ho, S., Blazek, J., et al. 2018, ArXiv e-prints [[arXiv]1805.00159] 114

Chisari, N., Laigle, C., Codis, S., et al. 2016, MNRAS, 461, 2702 113

Chisari, N. E., Koukoufilippas, N., Jindal, A., et al. 2017, MNRAS, 472, 1163 41

Chisari, N. E., Richardson, M. L. A., Devriendt, J., et al. 2018, ArXiv e-prints, arXiv:1801.08559
44

Choudhury, T. R. & Padmanabhan, T. 2005, A&A, 429, 807 29

Clerkin, L., Kirk, D., Lahav, O., Abdalla, F. B., & Gaztañaga, E. 2015, MNRAS, 448, 1389 24
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