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Picheny, Victor Chargé de recherche, Prowler.io, Royaume-Uni Co-directeur
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grâce à vous que je garderai un si bon souvenir de ces trois années. Ce fut un plaisir de
travailler avec vous et pour ceux que je quitte à l’issue de cette aventure, j’espère vous
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Introduction

Comme de nombreux produits conçus dans divers domaines de l’ingénierie, un
véhicule est constitué d’un grand nombre de systèmes, intéragissant entre eux et avec
l’environnement, comme le moteur, les suspensions, le chassis, la forme extérieure du
véhicule, les composants électroniques, etc. Afin de garantir la performance, la sécurité
et le confort passager, ces systèmes doivent être optimisés. Au cours des dernières
décennies, l’augmentation de la puissance de calcul des ordinateurs a permis de
substituer de nombreuses expériences physiques par des codes de calcul, et il est ainsi
possible de simuler le comportement d’une voiture dans de nombreux domaines tels que
la combustion, l’aérodynamique, l’aéro-acoustique, la vibro-acoustique,
l’électro-magnétique, réduisant les coûts de prototypage et le temps de conception de
nouveaux véhicules de manière drastique. Une reproduction fidèle de la réalité nécessite
néanmoins l’usage de simulateurs numériques coûteux en temps de calcul. Dans des
applications aérodynamiques ou en combustion, la simulation de l’écoulement autour
d’un véhicule ou de l’inflammation au sein du moteur nécessitent la résolution de
systèmes d’équations aux dérivées partielles (EDP) hautement non-linéaires. En raison
de la complexité des phénomènes physiques mis en jeu (turbulence, spray), les codes de
mécanique des fluides numérique nécessitent un maillage du système (c’est-à-dire la
forme extérieure de la voiture ou le moteur) à un niveau de résolution très fin. Les
méthodes classiques telles que les volumes finis ou les éléments finis considèrent la
résolution du système d’EDP en chacun des nel éléments du maillage via des solveurs
itératifs. Cette opération est numériquement coûteuse en raison du grand nombre de
mailles (plusieurs dizaines de millions), et une seule simulation numérique dure en
général entre 12 et 24 heures.

Plus que la reproduction fidèle du comportement de la voiture, c’est l’optimisation
des systèmes à travers la simulation numérique qui est recherchée par les ingénieurs.
Dans les applications industrielles, l’optimisation vise à proposer de nouveaux designs
capables de combiner le respect de normes toujours plus exigeantes et l’attractivité du
produit. Elle a également pour but d’être un outil d’aide à la décision en proposant
des solutions et des règles de conception de systèmes complexes que l’humain ne peut
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pas intuiter. L’optimisation de systèmes repose généralement sur la Conception Assistée
par Ordinateur (CAO) : les designs considérés sont restreints à une classe de systèmes
paramétrés par d variables x1, . . . , xd, x ∈ X, déterminant la forme associée, Ωx. Ces
variables correspondent à des caractéristiques diverses du système : elles incluent des
descriptions générales telles que des tailles (hauteur, largeur, longueur du système) ainsi
que des détails (rayons, angles, ajustements locaux, ...). Selon le degré de précision de
la CAO, le nombre de tels paramètres peut être grand, d & 50. Dans le but d’obtenir la
configuration optimale du système, les paramètres CAO x∗ qui minimisent une fonction
objectif f(x) sont recherchés.

En raison du coût associé à chaque simulation numérique, ces optimisations sont
budgetées : en fonction du planning projet et de la durée d’une simulation, un nombre
prescrit d’évaluations de la fonction objectif, un budget (typiquement une centaine de
simulations), est autorisé. Des méthodes d’optimisation largement répandues telles que
les algorithmes évolutionnaires (Deb, 2001; Eiben and Smith, 2003; Michalewicz, 2013)
nécessitent un grand nombre d’évaluations de fonction avant d’atteindre l’optimum. Les
méthodes de gradient (Liu and Nocedal, 1989) sont plus rapides mais requièrent ∇f(x)
qui n’est en général pas connu, et surtout, ces méthodes ne convergent que vers un
optimum local dont la qualité est dépendante du point d’initialisation. Des techniques de
multistart permettent de se rapprocher de l’optimum global au prix d’un plus grand
nombre d’évaluations de la fonction objectif. Ces deux types de méthodes ne sont
donc pas adaptés aux fonctions “bôıtes noires coûteuses” que nous considérons, et pour
lesquelles le lien entre un système x et sa réponse y = f(x) est uniquement accessible
à travers une simulation numérique. Une approximation de ∇f(x) par différences finies
nécessiterait d évaluations supplémentaires et n’est pas envisagée. Optimiser une fonction
basse fidélité f̃(x) plus rapide à évaluer n’est pas une solution en général dans la mesure
où des phénomènes physiques critiques pourraient être omis. Dans cette thèse, nous
nous intéressons à des algorithmes d’optimisation ne nécessitant qu’un nombre restreint
d’évaluations de f(·) pour proposer une solution. De telles méthodes (Jones, 2001)
reposent sur l’utilisation d’un modèle de substitution (ou méta-modèle, Loshchilov et al.,
2010; Rasmussen and Williams, 2006; Sudret, 2008) du code de calcul, peu coûteux à
évaluer, construit à partir des simulations passées et utilisé pour déterminer itérativement
une séquence de designs x(n+1),x(n+2), . . . ,x(budget) à évaluer pour diriger rapidement la
recherche vers x∗. L’efficacité des méthodes assistées par méta-modèles a été démontrée
pour approcher l’optimum en un nombre restreint d’itérations sur un vaste éventail
d’applications (Forrester and Keane, 2009; Shahriari et al., 2015).

La performance de telles méthodes se détériore néanmoins quand le nombre de variables
considérées x1, . . . , xd est grand. Ce phénomène, connu comme le fléau de la dimension
(Bellman, 1961) rend l’optimisation de formes paramétrées difficile. De plus, bien qu’ils
soient intuitifs pour un designer pour automatiser la génération de formes, les paramètres
CAO xi n’ont pas vocation à satisfaire des propriétés mathématiques, et ne sont pas
forcément la représentation la plus pertinente de l’objet sous-jacent. Il existe souvent
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des corrélations entre des paires ou des groupes de xi, et certaines variables décrivent la
forme de manière globale au contraire d’autres qui raffinent le système localement. Une
paramétrisation reliée à la forme entière, et dont l’impact sur Ω soit quantifiable serait
plus judicieuse que celle reposant sur des modifications ponctuelles du système.

Les ingénieurs souhaitent souvent optimiser leurs systèmes vis-à-vis de multiples objec-
tifs antagonistes, et peuvent être amenés à spécifier des contraintes de faisabilité. Au lieu
d’un problème mono-objectif, ce sont des solutions optimales d’un problème multi-objectif
contraint qui sont cherchées, c’est-à-dire le front/l’ensemble de Pareto. Les approches
avec méta-modèles ont été étendues pour répondre à cette problématique (Binois, 2015;
Emmerich et al., 2006; Ponweiser et al., 2008) et pour converger rapidement vers le front
de Pareto. Il n’est cependant pas possible d’approcher précisément le front en un nombre
restreint d’évaluations de fonctions, notamment lorsque plus de 2 ou 3 objectifs sont
considérés, en raison de l’augmentation exponentielle de la taille du front avec le nombre
d’objectifs. De plus, une grande partie du front possède peu d’intérêt en pratique, et
les méthodes avec méta-modèles deviennent elles aussi plus coûteuses lorsque davantage
d’objectifs sont considérés. Au lieu de tenter de découvrir (le plus souvent en vain, en
raison du budget limité) la totalité du front sans tenir compte des ressources disponibles,
il est préférable d’améliorer la convergence vers des solutions réellement pertinentes dans
la limite du budget imparti.

Résumé par chapitres

Dans le Chapitre 2, les notions essentielles et les techniques de l’état de l’art en
processus gaussiens, optimisation bayésienne et optimisation multi-objectif, utilisées tout
au long de cette thèse, sont exposées.

Dans le Chapitre 3, le cas test MetaNACA est présenté. Il s’agit d’un problème
multi-objectif, de dimension d et à nombre d’objectifs m variables. Le MetaNACA est
un émulateur d’un simulateur numérique de l’écoulement aérodynamique autour d’un
profil d’aile d’avion NACA. Il a été construit en alliant des techniques de
méta-modélisation (processus gaussiens) à des méthodes d’enrichissement séquentiel :
un grand nombre de profils NACA (≈ 1000) ont été évalués par le simulateur, lesquels
ont été utilisés pour construire un méta-modèle suffisamment précis pour remplacer la
simulation. L’intérêt du MetaNACA réside dans son temps d’exécution négligeable,
ainsi que dans les phénomènes physiques qu’il modélise : ce cas test est un représentant
typique des problèmes d’optimisation de fonctions physiques réellement rencontrés et
pour lesquels nous souhaitons développer des optimiseurs multi-objectifs. Par
conséquent, il est préférable de s’étalonner sur ce problème pour tester et comparer les
méthodes développées plutôt que sur des fonctions analytiques (Zitzler et al., 2000), peu
représentatives de problèmes réels (typiquement trop multi-modales). Les objectifs à
optimiser sont la trâınée et la portance de ce profil, à angle d’incidence αI = 0◦ ou
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αI = 8◦. Des problèmes avec m = 2, 3 ou 4 objectifs peuvent ainsi être formulés. La
géométrie d’un profil NACA est déterminée par d = 3 paramètres, x = (M,P, T )>.
Pour traiter des problèmes en plus grande dimension, nous avons créé des géométries
avec d = 8 et d = 22 paramètres de forme, en ajoutant respectivement 5 ou 19 bosses de
hauteur Li le long de l’intrados et de l’extrados. Dans le Chapitre 3, le MetaNACA est
utilisé pour comparer des fonctions d’acquisition de la littérature (Emmerich et al.,
2006; Picheny, 2015; Ponweiser et al., 2008; Svenson and Santner, 2010), étudier
l’influence de la dimension et du nombre d’objectifs sur les résultats de l’optimisation,
ainsi que la répartition du budget d’optimisation entre les n évaluations constituant le
plan d’expériences initial et les p évaluations pilotées par la fonction d’acquisition. Il a
été observé que les meilleurs résultats en termes de convergence vers le front de Pareto
sont obtenus en utilisant la majorité du budget lors de la phase d’ajouts séquentiels. Au
cours des chapitres suivants, le MetaNACA est employé pour analyser et comparer les
diverses méthodes et algorithmes d’optimisation multi-objectif et de réduction de
dimension développés (d’autres cas tests le compléteront).

Le Chapitre 4 est consacré au développement d’une nouvelle méthode d’optimisation
multi-objectif assistée par méta-modèles. Dans le cas de budgets d’optimisation forte-
ment restreints et/ou d’un grand nombre d’objectifs, il n’est pas possible de converger
précisément vers le front de Pareto entier. La taille de ce dernier augmente en effet expo-
nentiellement avec le nombre d’objectifs. De plus, toutes les solutions Pareto-optimales
n’intéressent généralement pas le décideur. Si ce dernier est capable d’exprimer ses
préférences à travers un point de référence R, employé comme une cible à atteindre ou à
dépasser, l’algorithme R-EHI vise à prioriser la partie du front de Pareto correspondante.
Si le décideur n’est pas en mesure d’exprimer ses préférences, l’algorithme C-EHI, dans
lequel le centre du front de Pareto est la préférence par défaut, est utilisé. R-EHI et
C-EHI reposent sur une nouvelle lecture du critère d’acquisition Expected Hypervolume
Improvement (EHI), un critère qui respecte la Pareto-optimalité. Le centre du front de
Pareto est aussi l’une des contributions de cette thèse. Il s’agit d’un point d’équilibre entre
les m objectifs. Sa définition, ses bonnes propriétés et des moyens robustes pour l’estimer
via le méta-modèle sont exposés dans le Chapitre 4. C-EHI et R-EHI se concentrent dans
un premier temps sur l’atteinte d’un point bien précis du front de Pareto. Il est possible
que ce dernier soit atteint avant épuisement du budget. Lorsque tel est le cas, cibler
exclusivement ce point est une perte de ressources ; il vaut mieux se concentrer sur une
zone plus large du front, mais pas trop vaste pour pouvoir être découverte de manière
précise au cours des b itérations restantes. Pour cela, dans le Chapitre 4, un critère de
convergence locale vers le front de Pareto est défini. Il repose sur l’incertitude du front
de Pareto dans la zone d’intérêt. Lorsque ce dernier est déclenché, C-EHI et R-EHI
déterminent une nouvelle zone d’intérêt plus large, dans laquelle une bonne convergence
en fin d’optimisation est prédite. La détermination de cette région se fait en anticipant
virtuellement le comportement de l’algorithme au cours des b itérations restantes, pour
diverses parties du front de Pareto de taille croissante. La région la plus grande pour
laquelle suffisamment peu d’incertitude est prédite en fin d’optimisation est choisie pour
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finalement être ciblée au cours des évaluations restantes. C-EHI et R-EHI proposent ainsi
une approximation du front de Pareto s’adaptant au budget disponible, tout en insistant
sur les solutions les plus pertinentes (fournies par l’utilisateur, ou bien le centre du front
de Pareto par défaut). Par rapport à des méthodes bayésiennes multi-objectif classiques
(par exemple EHI, Emmerich et al., 2006), ou des algorithmes évolutionnaires (NSGA-
II, Deb et al., 2002), une meilleure convergence vers la partie critique du front et une
atteinte plus rapide de solutions désirées sont obtenues dans le cas de budgets limités.

Dans le Chapitre 5, des extensions de C-EHI et R-EHI, renforçant leur intérêt pratique,
sont proposées. Dans un premier temps, les fonctions d’acquisition utilisées par ces
algorithmes pour décider des paramétrisations à évaluer sont étendues à des groupes de
points : au lieu de proposer un point x(t+1), q designs x(t+1), . . . ,x(t+q) prometteurs sont
retournés. Cela présente un grand intérêt dans le cas où q simulateurs ou noeuds de
calculs d’un cluster sont disponibles puisque des lots de q designs peuvent être évalués
simultanément. Pour un même temps horloge, q fois plus de simulations numériques
pourront être effectuées, améliorant la convergence vers le front de Pareto et le temps de
restitution de solutions désirées par l’utilisateur. Dans ce chapitre, les algorithmes sont
également adaptés pour la prise en compte de contraintes d’optimisation. Les étapes de
C-EHI et R-EHI sont modifiées en conséquence. La propriété de ciblage est également
étudiée dans un autre contexte : celui de problèmes fortement contraints, dans lesquels
il est difficile de trouver une paramétrisation satisfaisant les mc contraintes. D’autres
modifications et utilisations possibles de C-EHI et de R-EHI sont discutées pour améliorer
le temps d’exécution de l’algorithme, ou pour utiliser les mécanismes de ciblage dans
d’autres situations.

Enfin, dans le Chapitre 6, motivés par le problème d’optimisation de formes à grand
nombre de paramètres, nous proposons une méthode permettant d’éviter le fléau de la
dimension (Bellman, 1961) quand d est grand. Au lieu de considérer les paramètres CAO
x qui définissent la forme associée, Ωx, une base de données de formes est analysée de
manière non-supervisée, par Analyse en Composantes Principales (ACP) après plonge-
ment (non-linéaire) dans un espace de formes en très grande dimension. Cela permet de
faire émerger les motifs les plus fréquents, les “formes propres” du design. Au contraire
des paramètres CAO, ces dernières ont un impact global sur la forme. Chaque design
x peut être décomposé dans cette nouvelle base via ses coefficients de reconstruction de
forme, ααα. Les formes propres sont hiérarchisées : elles sont triées par ordre décroissant
d’importance, et il est ainsi aisé de n’en conserver qu’un nombre restreint pour effectuer
l’optimisation bayésienne en dimension réduite. Cela étant, l’ACP classe les formes
propres selon leur importance d’un point de vue géométrique. Il n’est néanmoins pas
garanti que les plus grandes variations géométriques d’une forme soient majoritairement
responsables des fluctuations de la sortie y. Une procédure de maximum de vraisemblance
pénalisée vise à déterminer les quelques formes propres vj les plus influentes sur la
sortie. Ces variables actives, αααa, sont priorisés au sein d’un processus gaussien additif qui
prend également en compte les variables non-sélectionnées, αααa, de manière plus grossière
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: les variables actives sont décrites par un processus anisotrope, celles inactives par
un processus isotrope. Cette structuration des variables permet à la fois de réduire la
dimension en considérant l’impact de αααa sur y comme un effet résiduel, et de conduire
l’optimisation bayésienne en dimension réduite à travers la priorisation des variables
actives. Cette démarche permet d’obtenir des designs optimaux bien plus rapidement
que par l’approche classique reposant sur l’optimisation des paramètres CAO, x.

Le cas des formes comportant plusieurs éléments est également étudié dans ce chapitre.
Des méthodes permettant de prendre en compte les symétries apparaissant dans de tels
problèmes sont proposées et analysées. Elles reposent sur la modification des formes
propres ou sur la propagation de la symétrie dans l’espace des ααα, et permettent d’accrôıtre
la précision du méta-modèle.

Conclusions

Les développements poursuivis dans ce manuscrit ont visé à étendre les méthodes
existantes en optimisation multi-objectif bayésienne pour mieux contrôler la qualité de
la convergence lorsque le nombre d’appels aux fonctions coûts est fortement restreint.
Tout d’abord, les méthodes de l’état de l’art en optimisation multi-objectif assistée par
méta-modèles (Emmerich et al., 2006; Jones et al., 1998) ont été améliorées. Une nouvelle
façon d’appréhender le problème multi-objectif a été proposée au travers des algorithmes
C-EHI et R-EHI. Il s’agit de prioriser la découverte de solutions optimales pertinentes,
puis, en fonction du budget à disposition au moment de la convergence locale vers le
front de Pareto, d’étendre la zone de recherche afin de proposer un éventail de solutions
plus large, mais toujours pertinent pour le décideur. Lorsque ce dernier n’a pas ou ne
sait pas exprimer ses préférences, le centre du front de Pareto, défini dans cette thèse, est
la région d’intérêt par défaut. Il s’agit d’un point du front particulièrement intéressant
dans la mesure où il équilibre les objectifs, ce qui est l’essence même d’un problème
multi-objectif. Les techniques employées dans ces algorithmes ont été complétées pour
les rendre plus pratiques : une version multi-point de la fonction d’acquisition permet
d’évaluer plusieurs designs en parallèle ; elle a également été étendue pour traiter des
problèmes multi-objectifs avec contraintes.

Dans un second temps, inspirée par l’optimisation de formes paramétrées, une méthode
permettant de contourner le fléau de la dimension a été développée. Elle se base sur
la construction d’un espace de variables auxiliaires plus à même de décrire les formes
globalement, et dont un nombre limité impacte la réponse du simulateur. Ces variables
sont priorisées au sein d’un processus gaussien additif qui ne néglige pas totalement les
variables moins influentes, et qui est utilisé au cours d’une procédure d’optimisation
bayésienne en dimension réduite.

Dans l’esprit de la SIR (Li, 1991) ou de la PLS (Frank and Friedman, 1993), la
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construction d’une base orthonormale en dimension réduite dépendante des m objectifs
faciliterait la procédure de sélection des variables actives et pourrait améliorer la méta-
modélisation. L’utilisation de méta-modèles plus flexibles tels que les processus de
Student (Shah et al., 2014) ou les récents Deep Gaussian Processes (Bui et al., 2016;
Damianou and Lawrence, 2013) est également une perspective attrayante pour inférer
le lien entre la sortie y et les variables d’entrée x (ou φ(x)). Enfin, des paires ou
groupes de fonctions à optimiser étant souvent corrélés (Shah and Ghahramani, 2016),
la réduction du nombre d’objectifs (Brockhoff and Zitzler, 2006b; Deb and Saxena, 2006)
ou la méta-modélisation jointe de ceux-ci (Fricker et al., 2013; Svenson, 2011) constituent
des directions de recherche importantes pour l’amélioration des solutions restituées.
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4.3.1 Ciblage à l’aide du point de référence . . . . . . . . . . . . . . 50
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Mines Saint-Étienne David Gaudrie



List of Figures xxv

6.2 Example 6.1 and first eigencomponents. . . . . . . . . . . . . . . . . . . . 138
6.3 Example 6.1, 9 first eigenvectors when φ = characteristic function. . . . . 140
6.4 Example 6.1, first eigenvector when φ = signed distance or contour dis-

cretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.5 Example 6.1, 9 first eigenvectors when φ = characteristic function. . . . . 141
6.6 Example 6.1, 9 first eigenvectors when φ = signed distance. . . . . . . . . 141
6.7 Example 6.1, 2 first eigenvectors when φ = contour discretization. . . . . 142
6.8 Example 6.1, 9 first eigenvectors when φ = characteristic function. . . . . 142
6.9 Example 6.1, 9 first eigenvectors when φ = signed distance. . . . . . . . . 143
6.10 Example 6.1, 3 first eigenvectors when φ = contour discretization. . . . . 143
6.11 Second example: an over-parameterized circle. . . . . . . . . . . . . . . . 144
6.12 Four first eigencomponents in Example 6.2 for different shape representa-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.13 Example 6.2,9 first eigenvectors when φ = characteristic function. . . . . 146
6.14 Example 6.2, 9 first eigenvectors when φ = signed distance. . . . . . . . . 147
6.15 Example 6.2, 3 first eigenvectors when φ = contour discretization. . . . . 147
6.16 Third example: three circles with varying centers and radii. . . . . . . . . 148
6.17 Example 6.3, 9 first eigenvectors when φ = characteristic function. . . . . 149
6.18 Example 6.3, 9 first eigenvectors when φ = signed distance. . . . . . . . . 149
6.19 Example 6.3, 9 first eigenvectors when φ = discretization. . . . . . . . . . 150
6.20 Example 6.4: a rectangle with varying position, size, and deformation of

its sides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.21 6 first eigenshapes of the rectangles in Example 6.4. . . . . . . . . . . . . 152
6.22 Example 6.5: a straight line joining two points, modified by perturbations

to approximate a curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.23 7 first eigenshapes for the curves of Example 6.5. . . . . . . . . . . . . . 155
6.24 Eigenshapes and AN manifold, NACA airfoil. . . . . . . . . . . . . . . . 156
6.25 Eigenshape-based reconstruction of NACA 22 airfoils. . . . . . . . . . . . 158
6.26 Mean shape and 6 first eigenshapes for the NACA with 22 parameters. . 159
6.27 Example of two different shapes whose reconstruction in the space of the

three first eigenshapes is very similar. . . . . . . . . . . . . . . . . . . . . 161
6.28 Variable selection on the NACA 22 benchmark by penalized maximum

likelihood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.29 Example of a function that primarily varies along the αααa direction, and

secondarily along αααa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.30 Rectangular heart target shape of Example 6.4. . . . . . . . . . . . . . . 166
6.31 Boxplots of R2 for the prediction of f4. . . . . . . . . . . . . . . . . . . . 168
6.32 Boxplots of R2 for the prediction of f5. . . . . . . . . . . . . . . . . . . . 170
6.33 Boxplots of R2 for the prediction of f7L and f7D. . . . . . . . . . . . . . 171
6.34 EI maximization in αααa complemented by the maximization along a random

line in the αααa space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.35 When ααα(t+1)∗ /∈ A, the solution of the pre-image problem (in the ααα space),

ααα(t+1), is its projection on A. . . . . . . . . . . . . . . . . . . . . . . . . . 177
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Notations

The notations, symbols and acronyms employed throughout this thesis are introduced
in this section. Vectors and matrices are given in bold symbols, and the (·) notation
indicates the handled object is a function.

� Pareto domination.
0n n-dimensional vector of zeros.
1n n-dimensional vector of ones.
1A Indicator function of the event A.
a General purpose threshold.

A Manifold of ααα’s for which ∃x ∈ X: V>(φ(x)− φφφ) = ααα.
AN Empirical manifold of ααα’s which are the coordinates of the φ(x(i))’s in the eigenbasis.
ααα Coordinates of a design in the eigenshape basis.
αααa Active components of ααα.
αααa Inactive components of ααα.
ααα(i) i-th design (among the N designs in ΦΦΦ, or the t in Dt) in the eigenvector basis.
ααα(1:t) Set of t designs in the eigenshape basis, ααα(1:t) = {ααα(1), . . . ,ααα(t)}.
ααα1:δ δ first components of ααα, ααα1:δ = (α1, . . . , αδ)

>.
αj j-th eigenbasis component of ααα.
αI Angle of incidence of the NACA airfoil.
α Coordinate along a random line in the αααa space.
αLCB Lower confidence bound optimization parameter.
b Remaining budget once the local convergence criterion is triggered.
β Constant mean function of the GP.

β̂ GLS estimate of β.
budget Number of allowed function evaluations during an optimization

(with single-point infill criterion), budget = n+ p.
c(·, ·) Conditional covariance function, c(x,x) = s2(x).
C Number of candidate reference points.
C Center of the Pareto front.

Ĉ Estimated center of the Empirical Pareto front.
CΦΦΦ Empirical covariance matrix of ΦΦΦ.
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d Number of (CAD) parameters.
δ Number of chosen/selected components for dimension reduction.
D Dimension of the high-dimensional shape representation.
Dt Set of t input/output pairs, Dt = {(x(1),y(1)), . . . , (x(t),y(t))} = {x(1:t),y(1:t)}.
e Number of elements in a multi-element shape.
f(·) Objective function.

f̂(·) Surrogate to f(·).
fj(·) j-th objective function in a multi-objective problem, j = 1, . . . ,m.
f(·) Multi-objective objective function, f(·) = (f1(·), . . . , fm(·))>.
fmin Smallest observed objective function value.
FX Feasible part of X.
gj(·) j-th constraint, j = 1, . . . ,mc.
g(·) Vector of mc constraints.
Gj(·) Gaussian Process model for the constraint gj(·).
G(·) (Independent) Gaussian Process model for the mc constraints.
ΓΓΓ Conditional covariance matrix.
Hk Reproducing Kernel Hilbert Space of k(·, ·).
i, j, k, l Indices. Most often, i refers to a design while j refers to a parameter or to an

objective function. k is employed for number the nsim or NMC simulated GPs.
I(·) Improvement function.
IH Hypervolume indicator.
IR m-dimensional space dominated by R, IR = {y ∈ Rm : y � R}.
I Ideal point of PY , I ∈ Rm.

Î Estimated Ideal point.
I Empirical Ideal point.
k(·, ·) Gaussian Process kernel.
kφ(·, ·) Kernel PCA kernel.
K Kernel matrix whose entries are Kij = k(x(i),x(j)).
l(·) Log-likelihood function.
λ Penalized (log-) likelihood parameter.
λj j-th PCA eigenvalue.
L Likelihood function.
L Ideal-Nadir line.
L′ Broken line joining I, the user-provided R and N.

L̂ Estimation of L.
m Number of objectives.
m(·) GP mean function.
mc Number of constraints.
M Maximum objective value in Y , M ∈ Rm.
M Empirical maximum objective value.
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n Number of designs in the initial DoE Dn.
nsim Number of Gaussian Process simulations.
N Number of shapes in the ΦΦΦ database.
NDOE Number of designs to build the MetaNACA.
NMC Number of Monte Carlo samples for estimating the q-EHI and q-mEI criteria.
N Nadir point of PY , N ∈ Rm.

N̂ Estimated Nadir point.
N Empirical Nadir point.
N Standard normal distribution.
νjνjνj j-th extreme point.

νjνjνj j-th extreme point of the empirical Pareto front.
Ωx Shape induced by the x parameterization.
p Number of allowed calls to the infill criterion. With single-point criteria,

p is the number of additional designs evaluated after the initial DoE.
p(·) Probability of domination of y ∈ Y .
pl(·) Penalized log-likelihood.
PX Pareto set.
PY Pareto front.

P̂Y Empirical Pareto front (from the set y(1:t)).

P̃Y Simulated Pareto front.
ΠA(·) Projection operator onto A.
ϕN (·) Density function of the standard Gaussian N (0, 1)
φN (·) Cumulative distribution function of the standard Gaussian N (0, 1).
φ(·) High-dimensional shape mapping, φ : X 7→ Φ
Φ Space of shape discretizations, Φ ⊂ RD.
φφφ High-dimensional shape representation of one design (φφφ ∈ RD).

φφφ Mean shape in the ΦΦΦ database.
ΦΦΦ Shape database (N ×D matrix whose i-th row is φ(x(i))).
q Number of designs returned by multi-point infill criteria (batch size).
R EHI or mEI’s reference point. R is also used as the user-provided reference point in R-EHI.
Rθθθ Correlation matrix released from σ2, σ2Rθθθ = K.

R̂ Updated reference point.

R̃ Attainable reference point (on PY).
s Number of designs x where Gaussian Process simulations are performed.

s2(·) Kriging variance, s2(·) : X → R+. s(·) =
√
s2(·) is alternatively employed.

s2
j(·) Kriging variance of the metamodel of the j-th objective.

s2(·) Kriging variance of the m objective functions, s2(·) = (s2
1(·), . . . , s2

m(·))>.
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σ Permutation in Φ such that the discretizations σ ◦ φ(x) and φ(x) correspond to
the same Ωx. Additionally, σ ◦ φ(x) = φ(τ ◦ x) for one specific τ .

σ2 Variance parameter of the GP.

σ̂2 Estimated variance of the GP.
t Current number of evaluated designs during a Bayesian optimization, n ≤ t ≤ budget.
τ Permutation of a design under which the shape is invariant, Ωx = Ωτ◦x.
τε GP nugget effect.
θθθ Vector of GP length-scales, θθθ = (θ1, . . . , θd)

ϑ GP hyperparameters including θθθ and σ̂2.
U(·) Uncertainty measure.
vj j-th eigenvector of the covariance matrix of ΦΦΦ. vj ∈ RD, j = 1, . . . , D.
V D ×D matrix whose columns are the vj’s.
V Eigenvector basis.
x Design vector in the space of parameters, x ∈ X.
x(i) i-th observed value.
xj j-th parameter of x.
x(1:t) Set of t designs, x(1:t) = {x(1), . . . ,x(t)} ⊂ X.
ξξξj j-th extreme design, ξξξj ∈ X and fj(ξξξ

j) = Nj.
X Original search space (of CAD parameters), X ⊂ Rd.
X Set of designs, X ⊂ X.
y Scalar output of f(·).
y(i) i-th observed (scalar) output.
yj Scalar output of fj(·).
y(1:t) Set of t observed scalar outputs, y(1:t) = {y(1), . . . , y(t)}.
y m-dimensional observed value in a multi-objective problem, y ∈ Y .
y(i) i-th observed (vectorial) output, y(i) ∈ Rm.
y(1:t) Set of t observed vectorial outputs, y(1:t) = {y(1), . . . ,y(t)} ⊂ Y .
ŷ(·) Kriging mean predictor, ŷ(·) : X → R.
ŷj(·) Kriging mean predictor of the metamodel of the j-th objective.
ŷ(·) Vectorial kriging mean predictor, ŷ(·) = (ŷ1(·), . . . , ŷm(·))>.
Y objective space, Y ⊂ Rm.
Y (·) Gaussian Process model for the function f(·).
Y(·) (Independent) Gaussian Process models for the multi-objective function f(·),

Y(·) = (Y1(·), . . . , Ym(·))>.
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Chapter 1

Introduction

As is common in design engineering, a vehicle is made of several systems interacting
together, such as the engine, the suspensions, the bodystructure, electrical devices. To
guarantee performance, reliability, user-comfort and to comply with certifications, these
systems need to be optimized. Over the last decades, computer codes have increasingly
replaced physical experiments and one is capable to simulate the behavior of the car
in various fields such as combustion, aerodynamics, aeroacoustics, noise vibration and
harshness (NVH), electromagnetics, etc., reducing the costs of prototyping and the
time required for designing new cars. A high-fidelity simulation nevertheless requires
computationally demanding numerical simulators. In applications such as combustion
or aerodynamics for instance, highly non-linear systems of Partial Differential Equations
(PDE) need to be solved for simulating the ignition inside the combustion chamber or
the flow around the vehicle. Because of the complex modeling of the underlying physical
phenomena (spray, turbulence), Computational Fluid Dynamics (CFD) codes require the
meshing of the system (i.e. the engine or the external shape of the vehicle) at a very
fine resolution to guarantee precision. Standard techniques such as finite volumes or
finite elements consist in a meshing of the shape in nel elements on which the PDE is
addressed. Iterative solvers aim at finding the solution at any vertex by solving a system
of nel equations. This operation is numerically expensive due to the large number of
nodes in the mesh (several decades of millions), and a single simulation time typically
ranges between 12 and 24 hours.

More than the accurate prediction of the vehicle’s behavior, it is the possibility to
optimize the systems through numerical simulation which is aimed at. In industrial
applications, optimization aims at proposing new attractive designs that comply with
more binding regulations (EURO, 2016, CAFE, 2011). It also supports decision makers
by providing not only solutions but also insights in the non-intuitive design of complex
systems. The classical approach to design optimization relies on Computer Aided Design
(CAD): shapes of interest are restricted to a class of designs parameterized by d variables
x1, . . . , xd, x ∈ X, which define the associated shape Ωx. These variables stand for various
characteristics of the design: they include macro descriptions such as sizes (height, width,
length of the design) as well as smaller details (radii, angles, local adjustments, ...).
Depending on the level of refinement, there may be a large number of variables, d & 50.

1



2 1 Introduction

To obtain the optimal configuration of the system, parametric shape optimization aims
at finding the CAD parameters x∗ which minimize a physical objective function f(x).

Figure 1.1: Typical systems evaluated through CFD and which are optimized.

Because of the expense associated to one numerical simulation, optimizations are
budgeted: depending on project schedules and on the duration of one simulation, a
prescribed number of function evaluations, the budget (typically of the order of 100), is
allowed. Among these few evaluated designs, the best observed one1 is chosen. Standard
optimization methods such as evolutionary algorithms (Deb, 2001; Eiben and Smith,
2003; Michalewicz, 2013) require a large amount of function evaluations before finding the
optimum. Gradient-based methods (Liu and Nocedal, 1989) are faster but require ∇f(x)
which is generally unknown, and above all, only converge to a local optimum whose
quality depends on the starting design. Multistart methods are a step towards global
optimization at the expense of a larger number of function evaluations. These methods are
not adapted to the “expensive black-box” objective functions we consider, for which the
link between a design x and its associated output y = f(x) is exclusively available through
a computer experiment, and for which an approximation of ∇f(x) via finite differences

would require d additional simulations. Optimizing a faster lower-fidelity function f̃(x) is
not a solution in most cases since critical physical phenomena may be omitted. Instead,
this thesis focuses on optimization algorithms which only require a small amount of
function evaluations to propose a solution. Such methods (Jones, 2001) hinge on a cheap
surrogate model (or metamodel, e.g., Gaussian Processes in Rasmussen and Williams,
2006, Support Vector Regression in Loshchilov et al., 2010, or polynomial chaos in Sudret,
2008) to the computer code built upon past simulations which is employed for the iterative
construction of a sequence of promising designs x(n+1),x(n+2), . . . ,x(budget), to rapidly
direct the search towards optimal designs. Surrogate-based approaches have proven
their effectiveness in locating x∗ within a few iterations on a wide range of applications
(Forrester and Keane, 2009; Shahriari et al., 2015).

The performance of such methods nonetheless degrades when the number of considered
design variables x1, . . . , xd is large. This phenomenon, known as the curse of dimension-

1or one among the set of best designs in a multi-objective problem.
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ality (Bellman, 1961), makes it difficult to optimize parameterized shapes. Moreover,
even though they are intuitive to a designer to automate shape generation, the CAD
parameters xi are not intended to satisfy any mathematical property, and may not be
the most relevant way to characterize the underlying object. Correlations typically exist
between some pairs or groups of xi’s, and some variables describe the design globally as
opposed to others which locally refine the shape. A parameterization related to the entire
shape instead of marginal details and whose impact on the shape is quantifiable would
be preferable.

Engineers often would like to optimize systems with regard to multiple conflicting ob-
jectives f1(·), . . . , fm(·), and potentially wish to specify feasibility constraints. Instead of
a mono-objective problem, optimal trade-off solutions to a (constrained) multi-objective
problem known as the Pareto set are sought. Surrogate-based approaches have been
extended to this setting (Binois, 2015; Emmerich et al., 2006; Wagner et al., 2010)
to rapidly locate the Pareto set/front. However, it is not possible to approximate it
accurately within a restricted number of function evaluations, especially when more than
2 or 3 objectives are considered because the size of the Pareto set grows exponentially
with the number of objectives. Moreover, a large part of the Pareto front/set has
a limited interest in applications, and surrogate-based optimization methods become
computationally more demanding as m increases. One would benefit from enhancing
convergence towards relevant solutions instead of trying to uncover the whole front most
often in vain considering the budget limitations.

Following existing works, Bayesian multi-objective optimization methods are further
developed in this thesis. State-of-the-art techniques and concepts in Gaussian Processes,
Bayesian optimization, and multi-objective optimization are reviewed in Chapter 2.

Chapter 3 introduces a benchmark test problem made of real-world aerodynamic sim-
ulations, the MetaNACA. The MetaNACA benchmark is often employed, in addition
to classical academic functions, for testing and evaluating multi-objective optimizers,
dimension reduction techniques, as well as other methods developed throughout this
thesis. It has tunable dimensions, d = 3, 8, 22 parameters, and several number of
objectives, m = 2, 3, 4.

Chapter 4 is devoted to the R-EHI algorithm, a new Bayesian multi-objective optimizer.
Contrarily to existing methods, this algorithm uncovers the Pareto front in steps. It
prioritizes convergence towards user-desired solutions during its first phase by revisiting
the Expected Hypervolume Improvement (EHI, Emmerich et al., 2006) acquisition cri-
terion. Once a convergence criterion has detected the attainment of the Pareto front in
that preferred part, in its second phase, R-EHI aims at unveiling a broader region of
the Pareto front. The breadth of this new targeted area is determined by forecasting
the width of the Pareto front that can be accurately discovered during the remaining
iterations. R-EHI assumes user-preferences have been provided. If this is not the case, as
non-compromising designs usually have little interest in applications, C-EHI chooses the
center of the Pareto front as a default region where to seek solutions first. The concept
of Pareto front center is a contribution of this thesis defined in Chapter 4 together with
properties and estimation methods relying on Gaussian Processes.
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4 1 Introduction

Chapter 5 extends the C-EHI/R-EHI algorithm to exploit parallel computing possibil-
ities of the objective functions, and to consider optimization constraints. The acquisition
function which dictates the designs to be evaluated by the simulator is modified to yield
a batch of promising designs per iteration and to consider the constraints.

Chapter 6 is devoted to the dimension reduction of parametric shapes. First, the
non-supervised learning of a shape database through a Principal Component Analysis
(PCA) permits to build a new basis which describes the shapes globally. The axes that
contribute the most to the output’s variation are selected through a regularized likelihood
maximization, and are emphasized inside an additive GP of lower dimension which does
not completely disregard the less important directions. Bayesian optimization is carried
out in the smaller dimensional space of active components, complemented by a random
embedding (Wang et al., 2013) in the space of remaining components, to address the
optimization in reduced dimension. Finally in Chapter 7, the contributions of this thesis
are summarized, and directions for future research are proposed.
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Chapter 2

Basics in Gaussian Processes and
Multi-Objective Optimization

Contents
2.1 Gaussian Processes . . . . . . . . . . . . . . . . . . . 6

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Gaussian conditioning . . . . . . . . . . . . . . . . . . 9

2.1.3 Hyperparameter estimation . . . . . . . . . . . . . . . 12

2.2 Bayesian Optimization . . . . . . . . . . . . . . . . . 13

2.2.1 Design of Experiments . . . . . . . . . . . . . . . . . . 13

2.2.2 Infill criteria for optimization . . . . . . . . . . . . . . 14

2.3 Multi-Objective Optimization . . . . . . . . . . . . . 18

2.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Performance metrics . . . . . . . . . . . . . . . . . . . 20

2.3.3 Standard techniques and Evolutionary Multi-
Objective Optimization Algorithms . . . . . . . . . . . 22

2.4 Bayesian Multi-Objective Optimization . . . . . . . 23

We consider the framework of expensive and/or time-consuming experiments. The
underlying phenomenon is considered as a black-box function, f : Rd → R and the
link between the d real valued parameters (or variables) x ∈ X ⊂ Rd and the scalar
output y = f(x) is only available through a costly experiment. In this setting, it is

customary to replace f(·) by a cheap surrogate model f̂(·), alternatively called meta-
model, or response surface. Different types of surrogate models have been employed in
the literature, e.g. Generalized Linear Models (Hastie et al., 2005; McCullagh and Nelder,
1989), Radial Basis Functions (Broomhead and Lowe, 1988), Gaussian Processes (Cressie,
1992; Rasmussen and Williams, 2006; Stein, 1999), Artificial Neural Networks (Hastie
et al., 2005; Zurada, 1992), Support Vector Regression (Boser et al., 1992; Drucker et al.,
1997; Scholkopf and Smola, 2001; Vapnik and Chervonenkis, 1974), Regression Trees
(Breiman et al., 1984), Lasso (Tibshirani, 1996) or ridge regression (Hastie et al., 2005),
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6 2 Basics in Gaussian Processes and Multi-Objective Optimization

etc. They differ in the nature, quantity and dimension of the data they can handle, but
share a common point: evaluating f̂(x) is much cheaper than running f(x).

In the following, only Gaussian Process (GP) surrogate models are employed. They
were first proposed by Krige (Krige, 1951) for geophysical applications before being
formalized by Matheron under the name kriging (Matheron, 1962, 1969).

We chose GPs mainly for two reasons. First, they provide a distribution probability
π(x) at any x, instead of solely returning a prediction f̂(x). This is particularly appealing
for global optimization because GPs are equipped with a built-in exploitation/exploration
mechanism (Jones et al., 1998). The strong mathematical background they hinge on
(Cressie, 1992; Rasmussen and Williams, 2006; Stein, 1999) also facilitates their construc-
tion, interpretability, and flexibility. Second, these methods are particularly efficient in
the framework of small data: accurate predictions are achieved even when only limited
observations Dn := {(x(1), y(1)), . . . , (x(n), y(n))}, y(i) = f(x(i)) are available. Other
methods may be more appropriate when n goes beyond 1000-2000 observations, albeit
making GPs tractable for larger datasets is an ongoing field of research (Rullière et al.,
2018; Titsias, 2009). But since the problems we consider are expensive, acquiring 100 or
200 experiments is anyway an approximate upper bound for n.

2.1 Gaussian Processes

In this part, definitions, properties, and practical techniques to handle Gaussian Processes
are introduced.

2.1.1 Definition

Definition 2.1. (Gaussian Process) A Gaussian Process Z : X ⊂ Rd → R is a collection
of random variables such that ∀n ∈ N, ∀x(i) ∈ X, Z(x(1), . . . ,x(n)) is a Gaussian vector.

A Gaussian Process is a random function, entirely characterized by its mean function
m : X → R, m(x) = E[Z(x)] and its covariance function, a.k.a. its kernel k : X×X → R,
k(x,x′) = Cov(Z(x), Z(x′)). We employ the notation Z(·) ∼ GP(m(·), k(·, ·)). m(·)
corresponds to a long term behavior. One may choose a relevant basis (e.g. a polynomial
basis) F(·) and fit some regression coefficients βββ, m(x) = F(x)>βββ (Universal Kriging, see
Forrester and Keane, 2009), but a common practice that we follow in this thesis is the
use of a constant mean, m(x) = β (Ordinary Kriging, see Forrester and Keane, 2009),
learned from the data. The covariance function has to be a symmetric semi-positive
definite function, i.e.

∀x,x′ ∈ X, k(x,x′) = k(x′,x)

∀n ∈ N,∀x(1), . . . ,x(n) ∈ X, ∀ααα ∈ Rn,
n∑
i=1

n∑
j=1

αiαjk(x(i),x(j)) ≥ 0
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2.1 Gaussian Processes 7

Therefore, the Gram matrix (or kernel matrix) K ∈ Rn×n whose elements are Kij =
k(x(i),x(j)) is symmetric semi-positive definite too.

A wide variety of kernels can be found in the literature (Rasmussen and Williams,
2006). They measure the dependence between x,x′ ∈ X. Four usual one-dimensional
kernels are given in Example 2.1. They include some hyperparameters ϑ which account
for modifications of the original kernel, an horizontal or vertical scaling in the following
example where ϑ = (θ, σ2). Those hyperparameters let themselves interpret as the length-
scale of the GP and the variance of the GP.

Example 2.1. (Usual kernels).

• Exponential kernel k(x, x′) = σ2 exp
(
− |x−x

′|
θ

)
• Matérn 3/2 kernel k(x, x′) = σ2

(
1 +

√
3|x−x′|
θ

)
exp

(
−
√

3|x−x′|
θ

)
• Matérn 5/2 kernel k(x, x′) = σ2

(
1 +

√
5|x−x′|
θ

+ 5|x−x′|2
3θ2

)
exp

(
−
√

5|x−x′|
θ

)
• Squared-exponential kernel k(x, x′) = σ2 exp

(
− (x−x′)2

2θ2

)
The kernel is the main ingredient of the Gaussian Process. It defines a Reproducing

Kernel Hilbert Space (RKHS) Hk (Gretton, 2013) of functions with particular regularity
and/or some other features. The mean predictor ŷ(·) of a GP Y (·) with kernel k(·, ·)
belongs to Hk. The RKHS’s of kernels in Example 2.1 are the space of C0, C1, C2 or C∞
functions, respectively. Figures 2.1, 2.2 and 2.3 show the effect of varying θ, σ2, or the
kernel of GPs with covariance function k(·, ·).

Many algebraic operations preserve the semi-positive definiteness. If k1(·, ·) and
k2(·, ·) are semi-positive definite kernels, the sum k1(x,x′) + k2(x,x′) or the tensor sum
k1(xa,x′a) + k2(xb,x′b) (where xa and xb form a partition of x) are semi-positive
functions, hence valid covariance functions too. This also applies to the product and
tensor product, warping of the input space, etc. (see Rasmussen and Williams, 2006, for
more details).

A kernel is said to be stationary if k(x, x′) = k̃(x − x′), meaning that the covariance
between Z(x) and Z(x′) only depends on the distance between x and x′. It further implies
that the distribution of the GP is insensitive to translations. The kernels in Example 2.1
and those which will be used throughout this thesis are all stationary kernels. In such
cases, k(x, x) = k̃(0) = σ2, the variance of the GP, and the regularity of the GP only
depends on the regularity of k̃(0) (Stein, 1999).

With multi-dimensional inputs x ∈ Rd, the distance between x and x′ is measured by
the weighted Euclidean distance,

‖x− x′‖θθθ =

(
d∑
i=1

(xi − x′i)2

θ2
i

)1/2

.
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Figure 2.1: Effect of changing the length-scale of the GP. Left: θ = 0.3. Center: θ = 1.
Right: θ = 3.
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Figure 2.2: Effect of changing the variance of the GP. Left: σ2 = 0.1. Center: σ2 = 0.5.
Right: σ2 = 1.

θθθ = (θ1, . . . , θd)
> ∈ Rd is a vector of length-scales associated to each dimension. If θi = θ

∀i = 1, . . . , d the kernel is isotropic, otherwise, an anisotropic behavior is implemented,
which is of interest when the GP needs to vary differently according to the direction. By
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Figure 2.3: Effect of changing the kernel of the GP. Left: exponential kernel. Center:
Matérn 5/2 kernel. Right: squared-exponential kernel.

learning these hyperparameters from the data, an Automatic Relevance Determination
(ARD, Rasmussen and Williams, 2006) is obtained.

2.1.2 Gaussian conditioning

Definition 2.1 states that ∀x(1), . . . ,x(n) ∈ X,Z(x(1))
...

Z(x(n))

 ∼ Nn (1nβ,K)

where Nn is the n-dimensional Gaussian distribution and K is the covariance matrix with
elements Kij = k(x(i),x(j)).

Let Dn := {(x(1), y(1)), . . . , (x(n), y(n))} = {x(1:n), y(1:n)} be n observations of f(·). By
applying the Gaussian conditioning formulae (Eaton, 1983), Z(·) can be conditioned by
{Z(x(1)) = y(1), . . . , Z(x(n)) = y(n)}, and the conditional GP

Y (·) := [Z(·)|Dn] ∼ GP(ŷ(·), c(·, ·)), (2.1)

is obtained, where
ŷ(x) = β̂ + k(x,x(1:n))>K−1(y(1:n) − 1nβ̂) (2.2)

is the conditional mean function (a.k.a., the kriging mean predictor) and

c(x,x′) = k(x,x′)−k(x,x(1:n))>K−1k(x′,x(1:n))+
(1− 1>nK−1k(x,x(1:n)))(1− 1>nK−1k(x′,x(1:n)))

1>nK−11n
(2.3)
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10 2 Basics in Gaussian Processes and Multi-Objective Optimization

is the conditional covariance function, from which stems the conditional variance, s2(x) =
c(x,x) (see e.g. Rasmussen and Williams, 2006, for details). Remark that the latter does
not depend on the observations y(1:n) but solely on a distance metric induced by k(·, ·).

In particular, for any new x, Y (x) ∼ N (ŷ(x), s2(x)). ŷ(x) and s2(x) let themselves
interpret as the kriging mean predictor, and the uncertainty of this prediction at any
unknown x. ŷ(x) is known to be the Best Linear Unbiased Predictor (BLUP) at x and
s2(x) its mean squared error (Sacks et al., 1989; Stein, 1999). From the RKHS point
of view (Gretton, 2013), ŷ(·) is the function h(·) ∈ Hk with minimal (RKHS) norm,
〈h, h〉Hk , which interpolates the observations, i.e. h(x(i)) = y(i), i = 1, . . . , n.

Following Definition 2.1 and (2.1), the distribution of Y (·) at a set of untested points
{x(n+1), . . . ,x(n+s)} is an s-dimensional Gaussian vector:Y (x(n+1))

...
Y (x(n+s))

 ∼ Ns

ŷ(x(n+1))

...
ŷ(x(n+s))

 ,ΓΓΓ

 (2.4)

where Γij = c(x(n+i),x(n+j)). The knowledge of the distribution of
(Y (x(n+1)), . . . , Y (x(n+s)))> enables to draw samples of the conditional GP at these
locations (Binois et al., 2015a) as shown on the left part of Figure 2.5.

The computational bottleneck for GP prediction and uncertainty quantification is the
inversion of K in (2.2) and (2.3). K is symmetric semi positive definite and its Cholesky
factorization (Johnson and Horn, 1985) accelerates the inversion. The complexity of the
procedure is O(n3). The remaining operations are matrix-vector products of complexity
O(n2)1, and can be accelerated by judicious algebraic tricks (Roustant et al., 2012).
Likewise, for simulating conditional GPs (2.4), the inversion (or Cholesky factorization)
of the s× s matrix ΓΓΓ is required. Gaussian Processes are therefore well-suited for “small-
data” problems where few observations (n ≈ 100-200) are available. An approximate
upper bound for n and s is 5000 points. Notice that the estimation of hyperparameters
described in Section 2.1.3 involves several inversions of K, hence is already expensive
when n ≈ 1000.

Example 2.2. (Gaussian Process conditioning: prediction, uncertainty quantification,
and simulation).

Let Z(·) ∼ GP(0, k(·, ·)) where k(·, ·) is a Matérn 5/2 kernel with variance σ2 = 0.2
and length-scale θ = 1. Figure 2.4 shows 10 random functions with this prior.

The function f(x) = sin(x) exp(−x2/40) to be learned is observed at
{x(1), x(2), x(3), x(4), x(5), x(6)} = {0, 2, 4, 6, 8, 10}, y(i) = f(x(i)), i = 1, . . . , 6, shown in
Figure 2.4.

The conditional GP Y (·) = [Z(·)|{Z(x(1)) = y(1), . . . , Z(x(6)) = y(6)}] interpolates the
data. Ten realizations of Y (·) are shown on the left hand side of Figure 2.5. The kriging
mean predictor ŷ(x) = E[Z(x)] and its variance s2(x) = V ar(Z(x)) are the mean and
the variance over these random curves. They can be computed analytically via (2.2) and

1O(ln2) if predicting at l locations.
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Figure 2.4: Ten samples of the initial (unconditioned) GP Z(·) and observations (x(i), y(i))
(red crosses).

(2.3) and are shown on the right hand side of Figure 2.5. Notably, ŷ(x(i)) = y(i) and
s2(x(i)) = 0 ∀i = 1, . . . , 6.
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Figure 2.5: Left: samples of the conditional GP which interpolate the data. Right:
kriging mean predictor (black curve) and [ŷ(x) − s(x), ŷ(x) + s(x)] confidence interval
(light blue envelope). The dotted blue line is the true function. The distribution at two
untested designs x = 2.2 and x = 5, Y (2.2) ∼ N (ŷ(2.2), s2(2.2)), Y (5) ∼ N (ŷ(5), s2(5)),
is the vertical green density.

Noisy measurements

We deal with GPs that interpolate the data, i.e. Y (x(i)) = y(i), ∀i = 1, . . . , n. GPs can
also handle noisy measurements where the observations y(i) are corrupted by noise ε(i)

with variance τ 2
ε , i.e. y(i) = f(x(i))+ε(i) are observed. Using K+τ 2

ε In instead of the Gram
matrix K incorporates this uncertainty inside the GP, and ŷ(x(i)) 6= y(i), s2(x(i)) 6= 0. τ 2

ε

is also called the nugget effect (Cressie, 1988; Rasmussen and Williams, 2006; Roustant
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12 2 Basics in Gaussian Processes and Multi-Objective Optimization

et al., 2012), and has the additional effect of improving the conditioning of the Gram
matrix. GP regression with nugget effect is related to ridge regression (Hastie et al.,
2005) in the RKHS framework (Gretton, 2013).

2.1.3 Hyperparameter estimation

The kernels in Example 2.1 include hyperparameters which may be difficult to hand-tune.
The mean of the GP, β, has also to be chosen. One way to determine them is to resort to
the probabilistic nature of GPs. Since (Y (x(1)), . . . , Y (x(n)))> ∼ Nn(β,K), the likelihood
of Y (·) is

L(ϑ; x(1:n), y(1:n)) = fY (x(1)),...,Y (x(n))(ϑ; y(1:n)),

the density of the Gaussian vector (Y (x(1)), . . . , Y (x(n)))> at the observations y(1:n) when
Y (·) has the hyperparameters ϑ. L has closed-form expression (Roustant et al., 2012):

L(ϑ; x(1:n), y(1:n)) =
1

(2π)n/2|K|1/2
exp

(
−1

2
(y(1:n) − 1nβ)>K−1(y(1:n) − 1nβ)

)
(2.5)

where |K| stands for the determinant. The hyperparameters ϑ = (θ1, . . . , θd, σ
2) are

contained in K through k(·, ·). Maximizing L with respect to ϑ means finding the
hyperparameters under which the observed data is the most likely to have been generated
by a GP Y (·) possessing this ϑ.

Usually, the log-likelihood l(ϑ; x(1:n), y(1:n)) = log(L(ϑ; x(1:n), y(1:n))) is maximized in-
stead (Rasmussen and Williams, 2006; Roustant et al., 2012). To break the dependence
between β, σ2 and the θj’s in (2.5), by setting their partial derivatives to 0, β and σ2 are
estimated by

β̂ =
1>nR−1

θθθ y(1:n)

1>nR−1
θθθ 1n

and

σ̂2 =
1

n
(y(1:n) − 1nβ̂)>R−1

θθθ (y(1:n) − 1nβ̂)

where Rθθθ is the correlation matrix with entries k(x(i),x(j)) released from the GP variance

σ2 and which only depends on θθθ = (θ1, . . . , θd)
>, σ2Rθθθ = K. β̂ is the Generalized Least

Squares estimate of β (Hastie et al., 2005; Roustant et al., 2012) and this approach
extends to universal kriging where βββ is a vector of regressors. Both terms are plugged in
(2.5), and finally the concentrated log-likelihood,

l̂(ϑ; x(1:n), y(1:n)) = −n
2

log(2π)− n

2
log(σ̂2)− 1

2
log(|Rθθθ|)−

n

2
(2.6)

is maximized to find ϑ∗ = (θ∗1, . . . , θ
∗
d, σ̂

2). (2.6) is differentiable with respect to θj,
j = 1, . . . , d (see Roustant et al., 2012, for the formula), and is maximized by means
of standard gradient-based techniques, such as BFGS (Liu and Nocedal, 1989) with
multistart.
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2.2 Bayesian Optimization 13

In a purely Bayesian framework, ϑ are instead given a prior distribution and ϑ∗ is
sampled from the posterior distribution. However, such approaches usually rely on
expensive MCMC procedures, which make them much harder to use in practice. Other
techniques to set-up ϑ include cross-validation (Bachoc et al., 2017). This is a common
approach to fit the hyperparameters of surrogate models which do not possess a likelihood
of ϑ given the observations, such as Radial Basis Functions or Neural Networks.

2.2 Bayesian Optimization

Global optimization aims at finding x∗ = arg min
x∈X

f(x). Common techniques in optimiza-

ton (Allaire, 2005; Nocedal and Wright, 2006) hinge on assumptions such as the convexity
of f(·), Lipschitz continuity, and/or the knowledge of its gradient, whose opposite is
employed as a descent direction. Nonetheless, for a black-box function, the convexity
of f(·) is an overly strong assumption and though f(·) might be sufficiently regular,
its Lipschitz constant is obviously unknown. Gradient methods are not well-suited to
find f(·)’s global minimizer since they only converge to a local optimum. Additionally,
∇f(·) is usually unknown and d additional function evaluations would be required to
estimate it via finite differences (Smith, 1985). Last but not least, these methods need a
large number of function evaluations which we cannot afford. Evolutionary Algorithms
(Goldberg, 1989) are standard tools for global optimization but require many calls to
f(·) too.

Bayesian optimization rather exploits a cheap surrogate model by placing a Gaussian
Process prior over the function to be minimized: a GP Y (·) is fitted to the t previous
observations {x(1:t), y(1:t)}. Instead of f(·), information provided by Y (·) is gathered to
conduct the optimization. A review of Bayesian optimization methods can be found in
Shahriari et al. (2015).

2.2.1 Design of Experiments

The first step of Bayesian optimization is the fitting of the GP (see Section 2.1.2) to a
Design of Experiments (DoE). It is advocated (Jones et al., 1998; Loeppky et al., 2009)
to pick up n = 10d points x(1:n) = {x(1), . . . ,x(n)} ⊂ X where to evaluate f(·). To gather
as much information as possible about f(·) in the limit of these n evaluations, x(1:n)

needs to be space-filling. Different such designs have been discussed in the literature.
Sobol (Sobol’, 1967) and Halton (Halton, 1960) designs are analytical sequences (hence
quickly computable) which cover the design space X. Latin Hypercube Designs (McKay
et al., 1979; Stein, 1987) are a class of DoEs which put restrictions on the location of
the x(i)’s. Basically, X is divided in nd hypercubes which contain at most one x(i).
Two x(i) and x(j) cannot share the same hyperrow or hypercolumn. Usually, a Latin
Hypercube Sample (LHS) is generated and optimized with regard to an infill measure
using an heuristic algorithm, such as simulated annealing (Van Laarhoven and Aarts,
1987). The most employed criterion is the maximin (Pronzato, 2017), which tends to
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14 2 Basics in Gaussian Processes and Multi-Objective Optimization

maximize the smallest distance between two designs x(i) and x(j), i, j = 1, . . . , n, i 6= j.
The minimax (Pronzato, 2017) measures the maximal distance of any x ∈ X to its
nearest neighbor within x(1:n), and has to be minimized, but is much more cumbersome.
Entropy, discrepancy or uniformity measures (Fang et al., 2005) of x(1:n) can also be used
for the DoE optimization.

Adaptive infill criteria

Once fitted to {x(1:n), y(1:n)} adaptive criteria aim at improving Y (·) by sampling new
designs (Picheny et al., 2010). Typically, the variance of the estimator is decreased by
enriching the DoE with x∗, the solution of D-optimality, A-optimality, E-optimality, G-
optimality or I-optimality problems (Sacks et al., 1989), given the previous observations.

2.2.2 Infill criteria for optimization

Rather than enhancing the precision of f(·)’s predictor, optimization aims at finding
the minimum of f(·). The objective of adaptive optimization criteria is to generate a
sequence of designs x(n+1), . . . ,x(n+p) such that min

i=1,...,n+p
y(i) gets as close as possible to

the true minimum, min
x∈X

f(x), where n is the number of designs in the initial DoE and p

the number of additional infills.
The outline of a Bayesian optimization algorithm is depicted in Figure 2.6. In the

Efficient Global Optimization (EGO) algorithm (Jones et al., 1998), once a GP has been
fitted to the initial DoE Dn, at each iteration n ≤ t < n+ p a cheap infill criterion which
relies on Y (·) is maximized (or minimized). Its optimum x(t+1) is then evaluated by the
simulator which returns y(t+1) = f(x(t+1)), and Y (·) is updated. This step is repeated
until the budget := n + p is exhausted. To exploit parallel computing possibilities, e.g.
when f(·) can be evaluated simultaneously on different computers or on several nodes of
a cluster, infill criteria returning a batch of q designs have been proposed (Ginsbourger
et al., 2010; Schonlau, 1997) and are the topic of Section 5.1. During the update step,
the covariance parameters are re-estimated and the additional evaluation (x(t+1), y(t+1))
taken into account, which modifies the conditional mean and covariance of the GP. If the
hyperparameters are unchanged, update formulae (Chevalier et al., 2014) enable the fast
recomputation of ŷ(·) and s2(·). At the end of the procedure, the best observed design
and its performance, x∗ := arg min

i=1,...,budget
f(x(i)), y∗ := f(x∗), are returned. To a certain

extent, Bayesian optimization transforms the minimization of f(·) into the optimization

of an acquisition function which solely relies on the cheap surrogate f̂(·) and only uses
the expensive f(·) to evaluate the infill criterion-promoted design.

Both mean and variance of the GP predictor are differentiable almost everywhere2.
They have closed form expressions which depend on the kernel and its gradient, see Stein
(1999) for instance. This property is very appealing since the gradient of most infill

2With a stationary kernel, they are differentiable ∀x ∈ X except at the x(i)’s if the kernel is not
regular enough.
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2.2 Bayesian Optimization 15

Figure 2.6: Outline of a Bayesian optimization algorithm.

criteria (and in particular the ones detailed in this section) can be derived too. Global
search methods such as evolutionary algorithms (Goldberg, 1989; Mebane Jr et al., 2011)
can therefore be combined with gradient-based (Liu and Nocedal, 1989) techniques to
accelerate and improve the optimization of the infill criterion.

Besides the metamodel, the acquisition function is the main ingredient of Bayesian
optimization since it determines the sequence of designs that are evaluated. Several have
been proposed in the literature (Jones, 2001; Jones et al., 1998). The most straightforward
is to sample f(·) at the minimizer of the predictor mean, x(t+1) = arg min

x∈X
ŷ(x). But such

a method gets rapidly stuck at a local optimum (Jones, 2001).
The probabilistic framework of GPs enables the use of the prediction uncertainty, s2(x),

inside the infill criterion. A popular infill criterion is the probability of improvement
(Kushner, 1964; Schonlau, 1997) over a target a, usually set as fmin := min

i=1,...,t
y(i), the

minimal value observed during the t function evaluations. It aims at finding the design
which is the most likely to achieve better performance than the current best observed
solution. Since Y (x) ∼ (ŷ(x), s2(x)), it is computable in closed form:

PI(x; a) = P(Y (x) ≤ a) = φN

(
a− ŷ(x)

s(x)

)
, (2.7)

where φN stands for the normal cumulative distribution function. PI is a global criterion
since it both promotes designs with small ŷ(x), or with large s2(x) when a < ŷ(x).
However, it was found to get stuck at local optima for a long time before visiting other
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16 2 Basics in Gaussian Processes and Multi-Objective Optimization

promising parts of X (Jones, 2001). In Figure 2.5, PI corresponds to the integral of the
(vertical) green density for y under the red fmin dotted line.

Instead of solely considering the probability of improving a, the Expected Improvement
(EI, Mockus, 1975) measures the magnitude of progress (over a, usually chosen as fmin)
which is expected, EI(x; a) := E[I(x; a)] = E[(a − Y (x))+] where the improvement
function I(x; a) = (a − Y (x))+ is a random variable measuring the progress at x, and
(z)+ := max(z, 0). Likewise, it has closed-form expression:

EI(x; a) = (a− ŷ(x))φN

(
a− ŷ(x)

s(x)

)
+ s(x)ϕN

(
a− ŷ(x)

s(x)

)
(2.8)

where ϕN stands for the normal density function. The EI favors designs whose prediction
improves over a (first part of 2.8) and/or for which the prediction variance is large (second
part of 2.8). It is naturally equipped with an “exploitation-exploration” mechanism
(Jones, 2001): parts of X in the vicinity of x(i)’s with good f(x(i)) value are promoted, but
under-sampled regions of X with a large s2(x) too: when the predictor is very uncertain,
prediction errors may be large and f(·) might be much smaller than ŷ(·) there. Such areas
should therefore not be disregarded and are episodically promoted by the EI. Contrarily
to PI, promising under-sampled areas get visited by the EI more rapidly (Jones, 2001).
In Figure 2.5, EI corresponds to the integral of the (vertical) green density for y under
the red fmin dotted line multiplied by the red improvement line.

The EI is differentiable and has closed-form expression, see for instance Roustant et al.
(2012),

∇EI(x; a) = −∇ŷ(x)× φN (z(x)) +∇s(x)× ϕN (z(x)), (2.9)

where z(x) = (a− ŷ(x))/s(x). This property3 is appealing for the efficient maximization
of (2.8). ∇ŷ(x) and ∇s(x) require the gradient of Y (·)’s kernel k(·, ·) at x, with the
past observations x(1:t), i.e. ∇k(x,x(1:t)), which is analytically computable. ∇s2(x) =
2s(x)∇s(x) helps computing s(x)’s gradient.

Another popular approach that achieves an exploitation-exploration trade-off is the
minimization of a Lower Confidence Bound (LCB, Brochu et al., 2010; Srinivas et al.,
2009). Instead of ŷ(x) which leads to over-exploitation, the minimizer of ŷ(x)−αLCBs(x)
is sought and used in the next iteration. αLCB controls the exploration/exploitation trade-
off. While theoretical results (Srinivas et al., 2009) propose specific increasing sequences
of values, they are in practice hugely over-conservative, and in practice αLCB is usually
set to 1 or 2 (Emmerich et al., 2020; Ponweiser et al., 2008).

Figure 2.7 illustrates and compares these four infill criteria on a simple example. A GP
has been fitted to (x(1), y(1)), . . . , (x(4), y(4)) (red crosses). The predictor ŷ(x) (Equation
2.2) is the black curve which aims at predicting the true function (dotted blue curve) at
any untested x. x(2) is the current minimizer and fmin = y(2) is the threshold for the EI
(2.8) and the PI (2.7), which are the red and blue curves at the bottom. The green curve

3which is not limited to the EI, the gradient of other acquisition functions such as PI have closed-form
expression too.
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2.2 Bayesian Optimization 17

is the LCB, ŷ(x)−2s(x). The next iterate selected by these four infill criteria differs. The
maximizer of PI (blue triangle) and minimizer of ŷ(x) (black overlapped triangle) exploit
too much previous observations and provide an x(t+1) close to the current minimizer.
The exploitation/exploration mechanism of EI and LCB is highlighted: their maximizer
(respectively minimizer) take the uncertainty of ŷ(x) into account and designs which are
farther from x(2) though promising get promoted.
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Figure 2.7: Comparison of four common Bayesian optimization acquisition functions.
The new promoted iterate, x(4+1) (triangle) differs depending on the infill criterion.

Bayesian optimization is not limited to those criteria. Entropy Search (Hernández-
Lobato et al., 2014; Villemonteix et al., 2009) is a Stepwise Uncertainty Reduction (SUR)
strategy (Picheny, 2014) where x(t+1) is the design which reduces the most the uncertainty
about x∗, f(·)’s minimizer. In Benassi et al. (2011), a fully Bayesian infill criterion
was developed. More than the kriging prediction uncertainty, the latter also accounts
for hyperparameter uncertainties while searching x∗. This additionally improves their
estimation and the precision of the surrogate. Convergence of Bayesian optimization
algorithms has been proven for infill criteria which factorize in a certain form and respect
some regularity and monotonicity conditions (Bect et al., 2016). This is the case for PI,
EI, LCB, as well as for other acquisition functions. However, no convergence rate has
been found for these heuristic methods.

Contrarily to Gaussian Processes, other types of surrogate models which are not ac-
companied by a built-in uncertainty quantification do not directly let themselves use for
global optimization. Since they have no natural s2(x) measure of uncertainty, the EI or
other infill criteria cannot be employed directly. Even though measures of uncertainty
can eventually be derived by varying some hyperparameters (Snoek et al., 2015), or
via bootstrap techniques, the ability to provide a prediction uncertainty is one major
advantage of GPs for surrogate-based global optimization.

Mines Saint-Étienne David Gaudrie



18 2 Basics in Gaussian Processes and Multi-Objective Optimization

2.3 Multi-Objective Optimization

Often, the minimization of not only one objective is considered. Indeed, the worth of
a design is frequently measured with several criteria and subject to constraints, which
corresponds to a constrained multi-objective optimization problem. While the handling
of constraints is rapidly discussed in Sections 2.4 and 5.2, the focus of this thesis is on
multi-objective problems, introduced in this section,

min
x∈X

(f1(x), . . . , fm(x)). (2.10)

2.3.1 Definitions

In (2.10), fj(·), j = 1, . . . ,m are the m real-valued objective functions. Since these
goals are generally competing, there does not exist a single solution x∗ minimizing every
function in (2.10), but several trade-off solutions.

Definition 2.2. (Domination). a ∈ Rm is said to Pareto-dominate b ∈ Rm, a � b, if
and only if aj ≤ bj ∀j = 1, . . . ,m and ai < bi for at least one i.
b ∈ Rm is dominated by the set A ⊂ Rm (written A � b) if ∃a ∈ A : a � b.
“�” is a partial ordering since a � b and b � a may simultaneously occur. In strict
Pareto dominance (“≺”), aj < bj must hold ∀j.

Definition 2.3. (Non-domination). A solution a ∈ A ⊂ Rm is said to be non-dominated
(ND) within A if there exists no a′ ∈ A such that a′ � a.
a ∈ Rm is non-dominated by the set B ⊂ Rm (written B � a) if @b ∈ B : b � a.

Definition 2.4. (Set-domination). The set A ⊂ Rm is said to Pareto-dominate B ⊂ Rm
written A � B if and only if ∀b ∈ B, ∃a ∈ A : a � b

Figure 2.8 illustrates these concepts. On the left, A and B dominate C since the latter
belongs to their the dominance cone (upper right part of the objective space from these
vectors). A, B and D are mutually non-dominated. Remark that D belongs to the
non-dominated set even if it does not dominate C whereas A and B do. On the right,
A � B since any red circle b is dominated by at least one black cross a ∈ A. A and C
cannot be directly compared using the sole domination concept because A � C (A � c1)
and C � A. They are non comparable. The same remark applies to B and C (B � c1 or
c2), even though some points of C are dominated by B (B � c3), and vice versa.

Definition 2.5. (Pareto set). The optimal solutions to (2.10) form the Pareto set PX .
They correspond to an optimal compromise in the sense that it is not possible to find a
competitor being better in all objectives simultaneously, PX = {x ∈ X : @x′ ∈ X, f(x′) �
f(x)}, where f(x) := (f1(x), . . . , fm(x))>.

Definition 2.6. (Pareto front). The Pareto front PY is the image of the Pareto set and
contains only non-dominated solutions: PY = f(PX ) = {y ∈ Y : @y′ ∈ Y,y′ � y}, with
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Figure 2.8: Domination relation among vectors (left) and among sets (right) in a problem
with m = 2 objectives.

Y = f(X) ⊂ Rm the image of the design space through the objectives called the objective
space.

Definition 2.7. (Ideal point). The Ideal point I of a Pareto front PY is its component-
wise minimum, I = ( min

y∈PY
y1, . . . , min

y∈PY
ym).

The Ideal point also corresponds to the vector composed of each objective function
minimum. Obviously, there exists no y better in all objectives than the minimizer of
objective j. As a consequence, the latter belongs to PY and min

y∈PY
yj = min

y∈Y
yj, j =

1, . . . ,m. I can therefore be alternatively defined as (min
x∈X

f1(x), . . . ,min
x∈X

fm(x)). The

decomposition on each objective does not hold for the Nadir point, which depends on the
structure of the Pareto front:

Definition 2.8. (Nadir point). The Nadir point N of a Pareto front PY is the component-
wise maximum of the Pareto front, N = (max

y∈PY
y1, . . . ,max

y∈PY
ym).

I and N are virtual points, that is to say that there generally does not exist an x ∈ X
such that f(x) = I or N. They are bounding points for the Pareto front, as every y ∈ PY
is contained in the hyperbox defined by these points. Usually N is different from the
maximum point M.

Definition 2.9. (Maximum point). The Maximum point M of (2.10) is
component-wise maximum of the objective space, M = (max

y∈Y
y1, . . . ,max

y∈Y
ym)

= (max
x∈X

f1(x), . . . ,max
x∈X

fm(x)).
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Definition 2.10. (Extreme points). An extreme point for the j-th objective, νννj, is an
m-dimensional vector that belongs to the Pareto front, νννj ∈ PY , and such that νjj = Nj.
The Nadir point can thus be rewritten as N = (ν1

1 , . . . , ν
m
m). A j-th extreme design point

is ξξξj ∈ X such that f(ξξξj) = νννj, i.e., fj(ξξξ
j) = νjj = Nj.

The reader interested in additional concepts and theory in multi-objective optimization
is referred to Collette and Siarry (2002); Deb (2001); Gal et al. (1999); Miettinen (1998);
Sawaragi et al. (1985).

Figure 2.9 shows examples of Pareto fronts with m = 2 or 3 objectives. The Ideal
point, Nadir point and the 2 (or 3) extreme points are also shown. The Pareto front is
not necessarily convex nor continuous. Remark that in the case m = 2, νji = Ii, i 6= j:
the other coordinate of the j-th extreme point is the minimum in the other objective.
This is generally not the case when m > 2; νννj has simply to be non-dominated in the
remaining dimensions {1, . . . ,m}\{j}.

Figure 2.9: Example of Pareto fronts (black), Ideal (red square), Nadir (green square)
and Extreme points (blue dots).

2.3.2 Performance metrics

Multi-objective optimizers aim at finding an approximation front P̂Y to PY built upon

the past observations y(1:t) = {y(1), . . . ,y(t)}, P̂Y = {y ∈ y(1:t) : @y′ ∈ y(1:t),y′ � y}.
The empirical Ideal, empirical Nadir, empirical Maximum and empirical extreme points
are the Ideal, Nadir, Maximum and extreme points of P̂Y , denoted I, N, M and νννj,
respectively (the ·̂ notation is kept for estimators of the true I and N in Chapter 4).

P̂Y should come with some properties such as convergence or diversity. Comparing the

Mines Saint-Étienne David Gaudrie



2.3 Multi-Objective Optimization 21

performance of algorithms and the approximation fronts they return is not as easy as
in the single-objective case, where the lowest value is a straightforward metric. Since
the solutions of an approximation front A may generally contain solutions that dominate
those of another approximation B and vice-versa (see right part of Figure 2.8), more
sophisticated indicators need to be employed. In this section, common multi-objective
performance metrics (Deb, 2001; Miettinen, 1998) which enable the comparison of two
non-dominated sets A and B ⊂ Rm, are introduced.

Definition 2.11. (Hypervolume indicator). The hypervolume indicator (Zitzler, 1999;
Zitzler and Thiele, 1998, also known as S-metric) IH(A; R) of a non-dominated set
A ⊂ Rm is the m-dimensional volume upper-bounded by a reference point R ∈ Rm, which
is dominated by at least one a ∈ A, IH(A; R) = V ol

(⋃
a∈A{z : a � z � R}

)
.

The hypervolume indicator is a unary indicator since it does not need to be compared
with another front or with a reference front. It complies with Pareto-dominance since
A � B ⇒ IH(A; R) > IH(B; R), whatever R. However, IH depends on the scaling of
the objectives and on the reference point. If IH(A; R) > IH(B; R), there might exist an
R′ such that IH(B; R′) > IH(A; R′), or a different scaling of the objectives which inverts
the ordering relation (Knowles and Corne, 2002, 2003).

Definition 2.12. (Additive ε-indicator). The additive ε-indicator (Zitzler et al., 2002)
Iε+(A,B) measures to what extent A needs to be improved to dominate B. By denoting
A−z1m = {a−z1m, a ∈ A}, the additive ε-indicator is Iε+(A,B) = min

ε≥0
ε : A−ε1m � B.

Iε+ is a binary measure since it compares A with B. Except if A � B (or vice versa), in
which case Iε+(A,B) = 0, Iε+(A,B) > 0 and Iε+(B,A) > 0 simultaneously. A is better
than B if Iε+(A,B) < Iε+(B,A). The additive ε-indicator can also be used in its unary
version if a reference front (such as the true Pareto front of the problem), R, is provided.
In this case, A is better than B if Iε+(A,R) < Iε+(B,R). Since isotropic improvements
−ε1m are considered, the fj(·)’s should have the same magnitude.

Definition 2.13. (Inverted Generational Distance). The Inverted Generational Dis-
tance (IGD, Coello and Cortés, 2005) measures the average distance between the clos-
est point of a non-dominated set A to the points of a reference set R, IGD(A,R) =

1
|R|

√∑
r∈Rmin

a∈A
‖r− a‖2

2.

It is a unary indicator which requires the knowledge of a reference set (e.g. the true
Pareto front) and promotes the good coverage and convergence to R. A is better than B
if IGD(A,R) < IGD(B,R), even though the IGD is not monotonic with respect to the
domination ordering.

Definition 2.14. (Attainment time). The attainment time of a target r ∈ Rm corre-
sponds to the number of function evaluations required by an algorithm to dominate r.
Supposing the elements of A are sorted chronologically, T (A; r) = min{i : a(i) � r}.

Figure 2.10 illustrates these indicators. More multi-objective performance metrics exist
and can be found e.g. in Collette and Siarry (2002).
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Figure 2.10: Left: hypervolume indicator (brown area) of a non-dominated set A. Center:
additive ε-indicator of A (black set) with respect to B (red set). Right: IGD indicator of
A (red set), with respect to the reference set R (black set).

2.3.3 Standard techniques and Evolutionary Multi-Objective
Optimization Algorithms

Standard techniques (Gal et al., 1999; Miettinen, 1998) consider the aggregation of
objective functions via weights wj > 0,

∑m
j=1wj = 1 and the optimization of

∑
j wjfj(x).

The solution to this problem is Pareto-optimal. Solving the scalarized problem for
different convex combinations of the objectives provides a wider variety of solutions
belonging to PY . These approaches are nonetheless capable of finding the whole Pareto
front in problems where PY is convex only, and the distribution of solutions may be
poor. Adaptive methods (Kim and de Weck, 2005) exist to refine the Pareto front
approximation in regions where it lacks of diversity. Other aggregations which come
up with better properties are weighted Tchebycheff functions (Steuer and Choo, 1983).

Lexicographic methods solve the m problems sequentially in significance order. Each
objective function fj(·) is minimized under the constraint that the solution of all previous
objectives fi(·), i < j is not worsened. In the same spirit, ε-constraint methods put
constraints on all objectives but one which is optimized.

The Normal Boundary Intersection method (Das and Dennis, 1998) is a way to produce
a well-distributed Pareto front. It consists in a series of single-objective optimizations
starting from points located on the line (or hyperplane) joining anchor points (such as
extreme points νννj). The optimization is conducted from each starting point by solving a
scalarized problem whose weights are adjusted to direct the optimization in the normal
direction to the hyperplane.

Other methods to solve (2.10) can be found e.g. in Marler and Arora (2004); Miettinen
(1998); Sawaragi et al. (1985).

Evolutionary Multi-Objective Optimization Algorithms (EMOA) are another class of
techniques to solve (2.10). Being population-based methods, they are well-suited to the
plurality of solutions and have proven their benefits for solving multi-objective prob-
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lems (Coello et al., 2007; Deb, 2001). Various algorithms have been proposed. VEGA
(Schaffer, 1985) alternates the objective to be optimized. SPEA2 (Zitzler et al., 2001)
and NSGA-II (Deb et al., 2002) are dominance-based algorithms in the sense that they
count the number of dominated solutions or rank the non-domination of solutions and
incorporate this information in the fitness. Indicator-Based Evolutionary Algorithms
such as SMS-EMOA (Beume et al., 2007), HypE (Bader and Zitzler, 2011), R2-IBEA
(Phan and Suzuki, 2013) are driven by performance metrics such as those defined in
Section 2.3.2 to assign the fitness of solutions and to conduct the optimization.

In the absence of a model to the objective functions, EMOAs are however not adapted
to expensive objectives because they need a large number of function evaluations.

Preference incorporation in Multi-Objective Optimization

Targeting special parts of the objective space has been largely discussed within the multi-
objective optimization literature, see for example Rachmawati and Srinivasan (2006) or
Bechikh et al. (2015) for a review. Preference-based methods incorporate user-supplied
information to guide the search towards specific parts of the Pareto front (Wierzbicki,
1980, 1999). The preference can be expressed either as an aggregation of the objectives
(e.g., Bowman, 1976; Miettinen, 1998), or an aspiration level (also known as reference
point) to be attained or improved upon (Wierzbicki, 1980), the distance to which is
measured by a specific metric (e.g. L1, L2 or L∞ norms). It can also appear as a ranking
of solutions or objectives (Fonseca and Fleming, 1995), or via the modification of the
dominance relation (Branke et al., 2004b).

For instance, in Wierzbicki (1980), achievement scalarizing problems are defined. They
employ a user-provided reference point R ∈ Rm which reflects some preferences and aim
at minimizing max

j=1,...,m

fj(x)−Rj
Nj−Ij + ρ

∑m
j=1

fj(x)−Rj
Nj−Ij . Instead of the max, another Lp, p < ∞

norm can be used alternatively (Wierzbicki, 1999).
Using same ingredients, EMOAs have also been developed with the aim of taking

preferences into-account (Bechikh et al., 2015; Deb and Sundar, 2006; Rachmawati and
Srinivasan, 2006).

2.4 Bayesian Multi-Objective Optimization

To avoid the slow convergence of evolutionary algorithms, Bayesian methods have been
extended to perform Efficient Global Optimization (Jones et al., 1998) in a multi-objective
setting. In general, m GPs Yj(·) are fitted to each objective fj(·) independently even
though different approaches such as the one described in Loshchilov et al. (2010), where
the Pareto dominance relation is modeled by one surrogate, exist. Svenson (2011) has
considered themGPs to be (negatively) correlated in a bi-objective case, without noticing
significant benefits. The GP framework enables both the prediction of the objective
functions, ŷj(x), and the quantification of the uncertainties, s2

j(x),∀x ∈ X.
All Bayesian multi-objective methods conform to the outline of Figure 2.6, excepted
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that m surrogates Y1(·), . . . , Ym(·) and m objective functions are now considered, and that

an empirical Pareto set P̂X and Pareto front P̂Y are returned. As in the single-objective
case, the problem is cast into the sequential optimization of an acquisition function used
for determining x(t+1) ∈ X, the most promising next iterate to be evaluated. In some
approaches, the m surrogates are aggregated or use an aggregated form of EI (Jeong and
Obayashi, 2005; Knowles, 2006; Liu et al., 2007; Zhang et al., 2009). Other methods
use a multi-objective infill criterion relying on Y(·) := (Y1(·), . . . , Ym(·))> for taking into
account all the metamodels simultaneously (Wagner et al., 2010). This is the case of
the Expected Hypervolume Improvement (EHI, also called EHVI, Emmerich et al., 2005,
2011, 2006), the Expected Maximin Improvement (EMI, Svenson, 2011; Svenson and
Santner, 2010), and Keane (2006)’s Euclidean-based improvement, multi-objective infill
criteria that boil down to EI when facing a single objective. S-metric selection (SMS,
Ponweiser et al., 2008) is based on an LCB strategy, and SUR (Picheny, 2015) considers
the stepwise uncertainty reduction on the Pareto set. These infill criteria aim at providing
new non-dominated points while balancing exploitation and exploration, and eventually
have the goal of approximating the Pareto front entirely. Most acquisition functions
redefine the single-objective improvement over the best solution by the increase of a
multi-objective metric (see Section 2.3.2): in EHI and SMS a growth of the hypervolume
indicator is considered, while EMI focuses on the expected growth of the additive ε-
indicator. Contrarily to the EI, these acquisition functions and/or their gradient are not
necessarily known in closed-form, which complicates their computation and maximiza-
tion. The hypervolume-based criteria additionally suffer from the exponentially growing
complexity of the latter in the number of objectives. Being the basis for the multi-
objective infill criterion developed in Chapter 4, more details about EHI (Emmerich
et al., 2006; Emmerich and Klinkenberg, 2008), one of the most popular Bayesian multi-
objective infill criterion, as well as adaptations which enable it to incorporate preferences
and to target parts of the objective space will be given in Chapter 4.

Example 2.3. (Bayesian Multi-Objective Optimization).

The following simple example in dimension d = 1 and with m = 2 objectives gives
insights into EHI’s logic: min

x∈[0,1]
(f1(x), f2(x)) where f1(x) = 0.6x2 − 0.24x + 0.1 and

f2(x) = x2 − 1.8x + 1. Both minima are respectively 0.2 and 0.9. The multi-objective
optimality conditions (Miettinen, 1998) show that the Pareto set is PX = [0.2, 0.9] and
the Pareto front PY = {y = (f1(x), f2(x))>, x ∈ [0.2, 0.9]}. The functions are sampled at
x(1:3) = {0.1, 0.5, 0.9} (black dots on the left plot of Figure 2.11). The EHI is maximal
at x∗ = 0.67 (right plot of Figure 2.11). This design leads to the largest expected growth
of the hypervolume indicator. In the left plot, the prediction of Y1(·) and Y2(·) at x∗ are
shown (blue cross), as well as the hypervolume increase brought by (ŷ1(x∗), ŷ2(x∗))>. The
prediction uncertainty (s1(x∗), s2(x∗)) is also shown (blue ellipse); the latter is taken into
account since the expectation of the hypervolume improvement is considered.
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Figure 2.11: Example of Bayesian Multi-Objective Optimization with EHI. 3 designs (left
figure, black dots) have been observed. EHI is maximal at x = 0.67 (right figure) where
the expected growth of the hypervolume indicator is the largest.

Handling constraints in Bayesian optimization

A closely related problem is that of (mono-objective) constrained optimization,

min
x∈X

g1(x)≤0

...
gmc (x)≤0

f(x) (2.11)

where gj(·), j = 1, . . . ,mc are mc continuous expensive-to-evaluate constraints the design
has to satisfy. Here, we only consider inequality constraints, gj(·) ≤ 0. Gaussian
Processes cannot account for equality constraints directly, which deserve special attention
(Picheny et al., 2016). Binary constraints can be handled through classifiers (Rasmussen
and Williams, 2006; Vapnik, 1995). The issue of non-evaluable designs for which f(x) = ∅
(e.g. non-convergence or crash of the simulation) is a different topic discussed in Bachoc
et al. (2019); Basudhar et al. (2012); Sacher et al. (2018).

Standard approaches to solve (2.11) (Coello Coello, 2016; Forrester and Keane, 2009;
Gardner et al., 2014; Parr et al., 2012a,b; Schonlau, 1997) rely on independent4 GPs Y (·)
for f(·) and Gj(·) for gj(·), j = 1, . . . ,mc. The probabilistic framework of GPs and the
independence enables the calculation of the probability of feasibility (PoF):

4which may be an excessively strong assumption in cases such as box constraints, g1(x) ≤ b, g2(x) =
−g1(x) ≤ a (Jiao et al., 2019).
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PoF(x) = P(G1(x) ≤ 0, . . . , Gmc(x) ≤ 0) =
mc∏
j=1

P(Gj(x) ≤ 0) =
mc∏
j=1

PIj(x; 0) (2.12)

where PIj(x; 0) is the Probability of Improvement over the value 0 for the GP Gj(·),
defined in (2.7). The infill criterion needs to be adapted to cope with the constraints. The
EI (2.8) can be maximized under a constraint of feasibility (Sacher et al., 2018; Schonlau,
1997), max

x∈X
PoF(x)≥βp

EI(x), where βp is a feasibility threshold. Another option is to maximize

a constrained infill criterion, max
x∈X

EIPF(x) where EIPF is the product of both criteria,

EIPF(x; a) = EI(x; a)×PoF(x). Under the independence hypothesis, the justification
is it equals E[(a − Y (x))+1G1(x)≤0,...,Gmc (x)≤0]: it is the expectation of a constrained
improvement function which equals 0 if x is unfeasible. Similarly to the EI, PoF’s gradient
has closed-form expression which is advantageous for EIPF’s maximization.

In constrained multi-objective problems, the multiplication of a multi-objective infill
criterion (e.g., EHI) with PoF is commonplace (Feliot, 2017; Feliot et al., 2017; Hussein
and Deb, 2016; Parr, 2013; Singh et al., 2014). The multi-objective infill criterion
developed in Chapter 4 which is extended to constrained problems in Section 5.2 follows
this logic too. The targeting properties and fast attainment it exhibits may also be
appealing property for highly-constrained multi-objective problems (Feliot, 2017; Jiao
et al., 2019, 2018) introduced in Section 5.2.2, where finding feasible designs is challenging.
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Chapter 3

MetaNACA: a practical
aerodynamic test bed for
multi-objective optimizers
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When designing algorithms, it is worth benchmarking and enhancing them on the class
of problems for which they are intended (Stork et al., 2020). The “no free lunch theorem”
(Ho and Pepyne, 2002; Wolpert et al., 1997) states that it is not possible to design a
method which performs best on any problem. Instead of evaluating our techniques only
on artificial multi-objective test functions (Deb et al., 2005; Zitzler et al., 2000), which
may contain irrelevant features in comparison with the considered physical objective
functions (Stork et al., 2020), we aim at testing our algorithms on “real-world like” multi-
objective shape optimization problems. The developed algorithms should behave well on
the class of physical functions (which should be quite regular), with parametric designs
(see Chapter 1). For benchmarking purposes and extensive comparison, the evaluation
time of test problems should nonetheless be negligible, contrarily to real cases where
evaluating the simulator is cumbersome.

Pursuing these goals for designing and comparing well-suited algorithms (Stork et al.,
2020), we have built the “MetaNACA” test suite. It stems from 2D aerodynamic simula-
tions and returns the lift coefficient (Cz) and the drag coefficient (Cx) of a parameterized
airfoil. The evaluation time of such a simulation is relatively small (20 minutes) but
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28 3 MetaNACA: a test bed for multi-objective optimizers

nonetheless prohibitive for conducting a large amount of simulations and optimization
experiments. Therefore, using (adaptive) DoE techniques (Gramacy and Lee, 2009), we
have fitted GPs to a large number of simulations. The created metamodel is an emulator
of both physical quantities and used as a benchmark problem. The approach of creating
a surrogate to a computer code to benchmark algorithm was already pursued in the
MOPTA test case for constrained optimization (Jones, 2008) and in Eggensperger et al.
(2015) for hyperparameters optimization.

To study the effect of the dimension d and of the number of objectives m, modified
parameterizations of the airfoil, as well as additional objective functions have been
designed. The final test bed has instances in d = 3, 8, 22 dimensions, with m = 2, 3
or 4 objectives to be optimized simultaneously.

3.1 NACA airfoil and aerodynamic simulation

NACA profiles (Anderson Jr, 1984) are airfoil shapes described by 4 digits. They
correspond to three parameters, M , P and T which define the geometry of a shape.
M is the maximum of camber, P the position of this maximum, and T the thickness of
the airfoil. The parametric shapes {(xu, yu), (xl, yl)} of the upper part (extrados) and
of the lower part (intrados) depend on (M,P, T ) and are calculated analytically (Jacobs
et al., 1933). A NACA profile is shown in Figure 3.1.

Figure 3.1: Example of a NACA airfoil with parameters (M,P, T ).

The flow around the profile is simulated using a commercial Computational Fluid Dy-
namics (CFD) software. The Reynolds Averaged Navier Stokes (RANS) equations with
a k − ε turbulence model (Launder and Spalding, 1983) and standard wall functions are
solved. The angle of attack is αI = 0◦, the chord c = 960mm and the freestream velocity
V∞ is 40m/s to perform the simulation at a typical Reynolds number for aeronautics. The
NACA profile is placed at 10 chord lengths upstream, 20 chord lengths downstream and 15
chord lengths of the top and the bottom walls of a fixed domain meshed in approximately
100,000 cells. The boundary layer of the NACA is composed of 10 unstructured layers of
quadratic elements in order to capture the essential physical phenomena near the airfoil.
A second order finite volume scheme returns the pressure and velocity field of the flow
around the airfoil, from which the lift and drag forces are computed (Anderson Jr, 1984)
and averaged over the converged last 30 iterations1, to obtain the drag coefficient (Cx)

1among 1500 iterations.
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3.1 NACA airfoil and aerodynamic simulation 29

and lift coefficient (Cz) of the NACA profile.
The NACA simulator is a typical blackbox function: a parametric design

x = (M,P, T )> ∈ R3 is given, and two physical outputs f1 ≡ Cz and f2 ≡ Cx are
returned. ∇f1 and ∇f2 are unknown. For these reasons, it belongs to the class of
optimization problems considered throughout this thesis. The multi-objective
optimization of the lift and drag coefficient of an airfoil is a typical real-world problem,
which was also considered for benchmarking optimizers in Yang et al. (2019c).

3.1.1 Towards higher-dimensional shapes

Typical parametric shapes may nonetheless hinge on a larger number of dimensions d.
We therefore aim at creating NACA airfoils parameterized by more than 3 variables.
To this aim, we design the “NACA 8” and “NACA 22” shapes in d = 8 and d = 22
dimensions, respectively. The latter are modifications of the standard NACA, to which
small bumps are added. More precisely, the 5 and 19 additional parameters are heights of
evenly distributed perturbations along the airfoil, Li > 0, which modify the shape. Figure
3.2 shows a NACA 8 shape (left) and a NACA 22 shape (right). The dotted line is the
original NACA profile, and Li the size of the i-th bump. To keep the shapes smooth, a
spline is fitted to the Li’s corresponding to the extrados and added to yu. Likewise, a
second spline is fitted to the Li’s corresponding to the intrados and subtracted from yl.

The magnitude of these bumps is smaller than the typical dimensions of a NACA airfoil,
Li ∈ [0.1, 15] mm while the airfoil’s chord (blue line on Figure 3.1) is 960mm. The M , P ,
T parameters therefore have a larger impact on the shape than the Li’s, as can be seen
at the bottom of Figure 3.2. This is a common setting in real-world Computer Aided
Design (CAD) shapes: some parameters such as the length, the width, etc., are a macro
description of the shape, while others correspond to smaller refinements.

The NACA simulator is extended to both cases and returns the Cx and Cz of an airfoil
parameterized by d = 8 or d = 22 parameters.

3.1.2 Additional objective functions

A typical multi-objective optimization problem is the simultaneous maximization of the
lift coefficient and minimization of the drag coefficient of the NACA airfoil,

min
x∈X

(f1(x), f2(x)) (3.1)

where X ⊂ Rd is a hypercubic domain depending on the considered instance of the
NACA airfoil, f1(x) = −Cz(x) (a minus sign is employed to maximize the lift coefficient),
f2(x) = Cx(x).

Bi-objective problems are nonetheless not the only class of problems we are interested
in. Moreover, some properties of multi-objective problems (see Chapter 2) slightly differ
whether m = 2 or m > 2. We therefore look for additional criteria to increase the
dimension of (3.1) in terms of objectives.
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Figure 3.2: Top: example of a NACA 8 profile (left) and of a NACA 22 profile (right).
Bottom: nine different NACA 22 airfoils corresponding to different parameterizations
x = (M,P, T, L1, . . . , L19)>.

Two additional aerodynamic objectives are defined. They are the drag coefficient Cx
and the lift coefficient Cz at a different angle of incidence with the chord, αI = 8◦, shown
in Figure 3.3.

f3(x) = −Cz(x)|αI=8◦ and f4(x) = Cx(x)|αI=8◦ are obtained by running the NACA
simulator on a design x ∈ Rd where the aerodynamic flow around the rotated airfoil
(Figure 3.3) is simulated. Notice that these functions are highly correlated to f1(x) =
−Cz(x)|αI=0◦ and to f2(x) = Cx(x)|αI=0◦ , respectively. This is nonetheless not an issue,
since real-world problems with many objectives may consider similar (or even the same)
objective functions under different operating conditions. The correlation in objectives
may also open discussions about the necessity of all objectives, and about objective
space dimension reduction.

These extensions of the original NACA problem enable to define multi-objective prob-
lems with d = 3, 8, 22 parameters and with m = 2, 3, 4 objectives.
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αI

Figure 3.3: NACA airfoil with angle of attack αI = 8◦.

3.2 MetaNACA: a metamodel of the NACA prob-

lems

The benefits of the NACA problem reside in its parametric shape associated to multiple
physical objective functions, with tunable dimension and number of objectives. Our
interest in using it is the investigation and the benchmarking of algorithmic behaviors
and settings, since it is a typical representative of the class of problems we eventually
aim at solving.

The fj(·)’s defined in Section 3.1 evaluated by the NACA simulator with inputs in
X ⊂ Rd could be directly used for this purpose. To further accelerate the evaluation
time of the objective functions, surrogates to the fj(·)’s, f̂j(·), j = 1, . . . ,m, will be used

instead in the optimization experiments. Once built, the evaluation time of f̂j(x) will be
negligible (smaller than 1s). Remark the assumption of Bayesian optimization is verified

by considering the f̂j(·)’s: the functions to optimize are the realization of a Gaussian
Process.

The two following parts of this section detail the construction of the surrogate models,
called “MetaNACA”.

3.2.1 Design of Experiments

True evaluations of the NACA simulator are required for building the MetaNACAs. To
substitute the NACA by an emulator, the surrogate model should be as accurate as
possible. To this aim, in reason of the moderate cost of the computer code and of the
possibility of distributing calculations on different processors, we build a large Design of
Experiments (DoE) of NDOE ≈ 1000 designs for each dimension of the NACA.

To enhance the predictivity of f̂j(·), the DoE x(1:NDOE) ⊂ X needs to be space-filling.
In reason of the curse of dimensionality (Bellman, 1961), 1000 points in X ⊂ R3 cover the
space much better than in R8 or in R22. Two different strategies are therefore completed
regarding d.
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3.2.1.1 Factorial design in dimension 3

In dimension d = 3, the objective functions are evaluated on a factorial design (Fang
et al., 2005): the fj(·)’s are computed on a regular grid of 103 = 1000 designs. X is
a hyper-rectangular domain, with bounds for M , P , T [0,0.09], [0.1,0.5] and [0.05,0.25].
They correspond to the maximum camber, position of this maximum, and maximum
thickness, divided by the chord, respectively. These values are normalized the [0, 1]3

hypercube, and the grid values of the factorial design are xj = 0.05, 0.15, . . . , 0.95, in
each dimension j = 1, . . . , d.

Next, the f̂j(·)’s are simply the mean predictor of a GP fitted to the 1000 (x(i), fj(x
(i))),

i = 1, . . . , NDOE observations (see Chapter 2). To avoid issues related to the magnitude of
the objective functions, the observations fj(x

(i)) are centered and scaled to unit variance
before.

The 1000 observations and the empirical Pareto front are shown in black in Figure 3.4.
An evolutionary algorithm (NSGA-II, Deb et al., 2002) was applied to obtain the Pareto

front and the Pareto set of the min
x∈X

(f̂1(x), f̂2(x)) problem. PY is shown in red on the

left, and PX is shown in the design space on the right.

Figure 3.4: MetaNACA 3 DoE. Left: observed values (circles) and Pareto front (red) of
the MetaNACA 3 problem. Right: Pareto set of the MetaNACA problem.

3.2.1.2 Space-filling LHS and adaptive infilling in dimension 8 and 22

Evaluating 108 or 1022 designs is not affordable. 1000 points in a 8 or 22 dimensional
design space may nonetheless not reflect enough of the fj(·)’s features, and we could
potentially miss some fluctuations.

A two step strategy is therefore considered for the construction of the MetaNACA 8
and MetaNACA 22. First, an LHS design (McKay et al., 1979) of size NDOE = 1000
optimized by the maximin criterion (Pronzato, 2017), is evaluated. At this step, each
fj(·) is normalized (so that the NDOE sample mean is 0 and has variance 1) and a GP

f̂j(·) is fitted to (x(i), fj(x
(i)))i=1,...,NDOE .
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Following, an adaptive infill criterion is used for enriching the DoE with 100 supplemen-
tary designs. Rather than using a predictivity-oriented acquisition function which aims
at improving the quality of f̂j(·) in the whole X, we use a multi-objective Bayesian
optimization infill criterion (see Section 2.4). The MetaNACA test functions being
designed for multi-objective problems, optimization experiments are likely to ask for the
evaluation of designs related to Pareto-optimality. It is worth improving f̂j(·) in good
trade-off areas of X, rather than in an arbitrary undersampled part of X. A classical
multi-objective Bayesian optimization procedure (Figure 2.6) is applied to (f1(x), f2(x))

and to (f3(x), f4(x))2: given the surrogate models f̂j(·), 100 new designs x∗ ∈ Rd are

sequentially promoted and evaluated by the NACA simulator. The metamodels f̂j(·) are
updated at each iteration. Figure 3.5 depicts this procedure.

Figure 3.5: Sequential infill procedure for the construction of the MetaNACA 8.

Finally, to prevent from any artifact of alignment in the high-dimensional design
space due to some space-filling properties, 100 randomly chosen designs x(i) ∼ U(X)
are evaluated. While these last points will help in improving the accuracy, they are
mainly useful in removing any artificial periodicity in the design space due to space-
filling properties which might hinder the estimation of correlation parameters. The final
surrogate model is built over these 1200 evaluations, and its predictive capabilities have
been enhanced in optimal parts of X.

Figure 3.6 highlights the benefits of this procedure for the MetaNACA 8 and 22 on the
(f1(·), f2(·)) problem. The blue dots are the objective values of the starting DoE (NDOE

designs). The red triangles correspond to both the sequential and the random infills.

2such a procedure selects designs which are promising in the (f1(x), f2(x)) and in the (f3(x), f4(x))
bi-objective problems. Applying the routine to (f1(x), f2(x), f3(x), f4(x)) could have been better for
choosing designs which are critical for all 4 objectives simultaneously. Our approach is justified by the
fact that the f̂j(·) metamodels at αI = 0◦ and at αI = 8◦ were not created at the same moment.
Eventually, since the objectives are correlated, the metamodels have been enriched in similar regions of
the design space. Last but not least, this infill criterion is devoted to bi-objective optimizations which
are widely investigated.
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These red points have clearly enhanced the empirical Pareto front. The Pareto fronts of
min
x∈X

(f̂1(x), f̂2(x)) found by NSGA-II are shown in both problems. The blue one is the

Pareto front of the f̂j(·)’s fitted to 1000 designs only, and the red one corresponds to the

Pareto front of the f̂j(·)’s fitted to all 1200 designs. The latter is much more accurate
because the metamodel has gained in precision in Pareto optimal parts of X. In the
d = 22 case (right), it has clearly corrected the over-optimistic estimation of the Pareto
front.

Figure 3.6: Observations and estimated Pareto front (obtained by means of an
Evolutionary Algorithm applied to the predictor) of the MetaNACA fitted to the 1000
first points (blue), or to all 1200 points (red). Left d = 8, right d = 22.

Remark 3.1. Depending on the designs and on the instance of the NACA airfoil, some
simulations did not converge, led to outliers, or even crashed. These simulations were of
course not taken into account for building the surrogate models, which in the end contain
slightly less than 1000 or 1200 observations.

3.2.2 Validation and Pareto front analysis

3.2.2.1 Validation

To substitute the true NACA simulators by the MetaNACAs for the purpose of opti-
mization experiments, the latter need to be validated. This is achieved by means of
prediction on a different test set and leave-one-out cross validation. Comparison metrics
include the Normalized RMSE (NRMSE), the Mean Absolute Error and the coefficient

of determination R2. For the sake of brevity, only the leave-one-out R2 of f̂1(·) and f̂2(·)
are given (for d = 3, 8, 22) in Table 3.1, because the same conclusions were obtained from
other indicators and for the other MetaNACAs. By denoting y(i) the i-th observation,
ȳ = 1

NDOE

∑NDOE
i=1 y(i) (NDOE it the total number of simulations ≈ 1200), and ŷ(−i)(x(i))

the leave-one-out prediction at x(i), the R2 is defined as

R2 = 1−
∑NDOE

i=1 (y(i) − ŷ(−i)(x(i)))2∑NDOE
i=1 (y(i) − ȳ)2

. (3.2)
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d f̂1(·) f̂2(·)
3 0.99984 0.98822
8 0.99985 0.98634
22 0.99708 0.97699

Table 3.1: Leave-one-out R2 coefficient for f̂1(·) and f̂2(·), MetaNACAs in dimension
d = 3, 8, 22.

Figure 3.7 details the leave-one-out residuals and shows a QQ-plot for d = 8. As
confirmed by the latter, the model correctly predicts unobserved designs and the stan-

dardized residuals r(i) := y(i)−ŷ(−i)(x(i))

s(−i)(x(i))
, where s2(−i)

(x(i)) is the leave-one-out variance at

x(i), are normally distributed, in accordance with the theory (Rasmussen and Williams,
2006).
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Figure 3.7: Leave-one-out predictions and 95% confidence interval (top) and QQ-plots
(bottom) to validate the MetaNACA 8. Left: negative lift, right: drag.

The R2 confirms the excellent goodness-of-fit. The same conclusions were obtained
by validation on additional test designs. The MetaNACAs are therefore an accurate
enough emulator of the NACA simulator and can be used as a substitute to benchmark
optimizers.

Since they have second-order importance, it was analyzed whether the additional Li
variables could simply be ignored. If yes, the MetaNACA would no longer be a d = 8
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or d = 22 dimensional problem. Validation indicators which take the complexity (i.e.
dimension) of the metamodel into account, such as the adjusted R2 coefficient (Draper
and Smith, 1998), nonetheless favored the MetaNACA in dimension d = 8 or d = 22 over
metamodels considering x1, x2, x3 only; these Li’s are not dummy variables which can be
disregarded.

An interesting validation test related to the DoE enriching (Section 3.2.1.2) is the

prediction at the 200 additional points by the “initial DoE MetaNACA”, i.e. the f̂j(·)’s
before incorporation of these points. As was already pointed out by the blue Pareto
frontier in the right plot of Figure 3.6, the initial metamodel was too optimistic. This is
confirmed by the validation test shown in Figure 3.8. For small values (lower left part) of
the negative lift (left plot) or drag (right plot), the designs are consistently predicted lower
than their true value. This highlights the benefits of enriching the DoE in Pareto-optimal
regions, and the effect of higher dimensional input spaces.
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Figure 3.8: Evaluation of the “initial MetaNACA 22” built over the first 1000 points, on
the 200 additional designs (to be further incorporated in this model). Predicted values
and 95% confidence bounds are plotted against the true value of these designs. Left:
negative lift, right: drag.

3.2.2.2 MetaNACA Pareto front

Since the MetaNACA emulators have a negligible execution time, for all dimensions d =
3, 8, 22, the Pareto fronts of the problems min

x∈Rd
(f̂1(x), f̂2(x)), min

x∈Rd
(f̂1(x), f̂2(x), f̂4(x)),

min
x∈Rd

(f̂1(x), f̂2(x), f̂3(x), f̂4(x)) have been obtained by brute-force. The evolutionary

multi-objective optimization algorithm NSGA-II (Deb et al., 2002) was run with a large
population and for enough generations to return an approximation front PY to be con-
sidered as the “true MetaNACA Pareto front”. The knowledge of the latter enables
to compute binary metrics (Section 2.3.2) depending on a reference set, as well as the
analysis and improvement of the algorithms developed throughout this thesis. Figure 3.9
shows the Pareto front of the (f̂1(·), f̂2(·)) problem for d = 3, 8, 22, as well as the Pareto

front of (f̂1(·), f̂2(·), f̂4(·)) in dimension d = 8. 100,000 points randomly drawn in X are
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evaluated to illustrate the objective space Y of these problems. Remark that it gets more
difficult to randomly obtain Pareto optimal designs with the increase in dimension.

Figure 3.9: Pareto fronts (red curve/dots) for some MetaNACA problems (top left d = 3,
top right d = 8, bottom left d = 22, bottom right d = 8) with two or three objectives.
The black dots correspond to other randomly sampled designs.

An analysis of the Pareto set PX highlights the most critical variables, as well as
relations between parts of PY and regions of PX , but is not detailed here for the sake
of brevity. As an example, in the (-lift, drag) optimization in dimension 3 (see Figure
3.4), Pareto optimal designs have large P and small T (thin airfoil where the maximum
of camber is far away from the leading edge). The variation along the Pareto front, from
high lift-high drag airfoils to profiles with low lift and low drag is caused by the decrease
of M , the maximum camber. In this case the Pareto front and set are continuous, but
this is not necessarily the case in other problems.

3.3 Benchmarking of Bayesian Multi-Objective Op-

timizers

From now on, the MetaNACA are considered as black-boxes. Given the dimension of
the problem, a design x ∈ Rd is associated to its outputs f̂j(x) (where the j’s are the
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considered problems).
In applications, multi-objective problems

min
x∈X

(f1(x), . . . , fm(x)) (3.3)

have to be solved within a prescribed schedule, which determines the allowed computa-
tional budget in the Bayesian optimization procedure (Figure 2.6). Questions nonetheless
remain regarding the optimizer setting. Having a benchmark with tunable dimension and
number of objectives enables the analysis of the behavior of Bayesian multi-objective
optimizers (Figure 3.10).

Figure 3.10: MetaNACA: a benchmark for Bayesian multi-objective optimizers, built
from real-world data using surrogate modeling techniques.

The GPareto (Binois and Picheny, 2015) package used during this thesis includes four
Bayesian multi-objective infill criteria introduced in Section 2.4: EHI (Emmerich et al.,
2006), EMI (Svenson and Santner, 2010), SMS (Ponweiser et al., 2008) and SUR (Picheny,
2015). In this section, optimization experiments are carried out on the MetaNACA test
suite to answer following questions:

• Given a budget = n + p, how to choose n and p? Should the emphasis be given
to a large DoE, in order to have an accurate initial metamodel? Or should the
budget favor the infill criterion, to drive the optimization towards the Pareto front
as rapidly as possible, at the risk of being mislead by an insufficiently precise initial
metamodel?

• Is there an acquisition function which consistently outperforms or gets outperformed
by the others? How do they drive the optimization and how does the empirical
front evolve during the successive iterations? Do they lead to similar Pareto front
approximations?

• Does the increase in dimension d make the problem harder? How does it impact
the optimizers?

• Is the increase in the number of objectives m a supplementary difficulty? May it
be worth to consider less objectives?
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For the purpose of answering these questions, optimizations were run of the problems
defined in Section 3.2.2.2, for all dimensions d = 3, 8, 22.

More designs are needed to fit an initial DoE with increasing dimension. It is also
expected to wait for more iterations before covering the Pareto front in 22 dimensions
than in 3. For these reasons, we took budget = 60 for d = 3, budget = 100 for d = 8,
and budget = 200 for d = 22. Even though n = 10d is advised for the initial DoE in
many studies (Jones et al., 1998; Loeppky et al., 2009), we tried surrogate models with
even less observations. The smallest DoEs contain n ≈ 2d+ 4 designs, similar to the size
n = 3d in Feliot (2017). The following n + p combinations are used to investigate the
allocation of budget.

d budget Allocation (n+ p)
3 60 10+50 30+30 50+10
8 100 20+80 40+60 60+40 80+20
22 200 50+150 100+100 150+50

Table 3.2: budget distribution in the MetaNACA experiments.

All the experiments were started from 10 different space-filling DoEs of size n to provide
statistically significant results. Some results and convergence figures are given in the
Appendix A. SUR was only run for d = 3 and m = 2 due to the integration in the X
space. The general conclusions are the following:

• SMS slightly outperforms the other acquisition functions.

• EHI uncovers PY slightly more at the borders of the front than other criteria. The
approximation needs a little more iterations to attain the central part of PY .

• Regarding the budget allocation, it was evidenced that it is worth assigning an
as large proportion as possible to p. Even though the first surrogate models may
lack of precision, the approximation front is enhanced during the first iterations.
Additionally, such a procedure improves the GP in the part of the design space
related to Pareto-optimality, instead of making it more accurate in the whole, but
majorly non-critical X. Recall that the exploitation-exploration mechanism may
anyway episodically promote undersampled regions of X. An illustration of two
runs with same budget but different allocations, 20+80 and 80+20, (d = 8) is
proposed in Figure 3.11. The n DoE points are shown in black, and the p sequential
infills are the blue triangles. In terms of hypervolume indicator, the black Pareto
front (i.e. the Pareto front considering only the DoE observations) is better when
n = 80 (right) than when n = 20 (left). However, for the same computational
budget (budget = n + p = 100), the final Pareto front (blue) is enhanced in the
20+80 (left) case, as highlighted by the larger hypervolume (computed up to the
red square, cyan area).
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• Initial fronts (i.e. approximation fronts after the sole n DoE designs have been
evaluated) are only slightly improved with larger n’s.

• The progress in the indicators is the largest during the first iterations. Even if the
initial metamodel might lack of precision, Pareto front enhancements are quickly
obtained. However, the hypervolume indicator does not reach 1 at the exhaust of
the budget and its slope (see Appendix A) is not null in the last iterations, i.e.
budget is not enough to unveil the whole Pareto front accurately. This appears to
be even more true when m = 4 as the size of the Pareto is larger.

• The quality of Pareto front approximations are quite comparable regarding d (keep-
ing in mind the budgets are augmented with d). However, more clusters of similar
y values have been observed for larger d’s. Indeed, due to the Li’s which do not
impact y substantially, some designs appear to be very distant in X although they
lead to approximately the same output.

• At an equal budget, the increase in number objectives leads to approximately the
same ratio of covered hypervolume. However, if considering the restriction of four-
objectives optimizations to two objectives (i.e. (f̂1(x), f̂2(x), f̂3(x), f̂4(x)) restricted

to (f̂1(x), f̂2(x))), the front in the latter two objectives is not as good as the front
in the purely bi-objective problem: a worsened marginal optimality is the price
to pay when optimizing more objectives. Vice-versa, optimizations focusing on
two objectives do not produce an as good four-objectives hypervolume as four-
objectives optimizations. Another remark is that the infill criteria become much
more expensive to compute and optimize, especially for criteria that consider an
expectation, i.e. EHI and EMI, and the number of non-dominated points grows.

Figure 3.11: Impact of the budget = n + p allocation. Left: EHI optimization with
n+ p = 20 + 80. Right: EHI optimization with 80+20 budget allocation.
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A supplementary experiment was conducted with non-normalized (in the objective

space) MetaNACAs f̂j(·). The optimizations were only lightly degraded for all infill
criteria, except for EMI, whose convergence to the Pareto front became clearly poorer
because this acquisition function relies on a max criterion among the objectives, which
is not adapted to objective functions with different magnitudes.

In the following chapters of this thesis, together with other test problems, the
MetaNACA test bed is employed for benchmarking various proposed concepts and
techniques. It is also used in experiments in Chapters 4 and 5 to compare and analyze
the behavior of the developed algorithms with regard to state-of-the-art
implementations.

The method developed in Chapter 4 hinges on the EHI criterion. Even though it
was slightly outperformed by SMS, it performed well on the MetaNACA instances.
Additionally, its reference point, originally thought of as a second-order hyperparameter,
lets itself interpret as a focus operator which will be managed to control the optimization.
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In multi-objective optimization, when the number of experiments is severely restricted
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and/or when the number of objectives increases, uncovering the whole set of Pareto
optimal solutions is out of reach, even for surrogate-based approaches: the proposed
solutions are sub-optimal or do not cover the front well. As all optimal solutions do
not have the same worth, in this chapter, we prioritize the search of solutions that
reflect the decision maker’s preferences, expressed through a target objective. Following,
a Bayesian multi-objective optimization method for directing the search towards this
preferred part of PY is proposed by tailoring the well-known EHI (Emmerich et al., 2006)
infill criterion. If no preference indication is given, we start by searching solutions which
are close to the Pareto front center, as non-compromising solutions have usually little
point in applications. We define and characterize this center, which is defined for any
type of front. Targeting a subset of the Pareto front allows an improved optimality of
the solutions and a better coverage of this zone, which is our main concern. A criterion
for detecting local convergence to the Pareto front is described. Once the criterion is
triggered, a widened part of the Pareto front, where sufficiently accurate convergence is
forecasted within the remaining budget, is targeted. Numerical experiments show how
the resulting algorithm, C-EHI or R-EHI (whether the central region or a user-supplied
area is desired), better attains the preferred part of the Pareto front when compared to
state-of-the-art Bayesian algorithms.

4.1 Introduction

We consider the multi-objective optimization problem

min
x∈X

(f1(x), . . . , fm(x)) (4.1)

where X ⊂ Rd is the parameter space, and fj(·), j = 1, . . . ,m are the m objective
functions. The latter are the outputs of a computationally expensive computer code
(several hours to days for one evaluation), so that only a small number of experiments
can be carried out. Under this restriction, Bayesian optimization methods (see Section
2.2) have proven their effectiveness in single objective problems, and have been extended
to the multi-objective setting (Bautista, 2009; Binois, 2015; Emmerich et al., 2006;
Keane, 2006; Knowles, 2006; Picheny, 2015; Ponweiser et al., 2008; Svenson and Santner,
2010). In the case of very narrow budgets (about a hundred evaluations), obtaining
an accurate approximation of the Pareto front remains out of reach, even for Bayesian
approaches. This issue gets worse with increasing number of criteria. The chapter
provides illustrations of this phenomenon in Section 4.7. Looking for the entire front
can anyway seem useless as the Pareto set will contain many irrelevant solutions from an
end-user’s point of view.

In this chapter, instead of trying to approximate the entire front, we search for a well-
chosen part of it. The practitioner is asked to express its desires via the specification of
an aspiration point R which should be attained and improved if possible. If no specific
information about the preferences of the decision maker is given, we assume that solutions
which are well-balanced are the most interesting ones. More than returning only relevant

Mines Saint-Étienne David Gaudrie



4.2 Deeper Insights in Bayesian Multi-Objective Optimization 45

designs at the end of the procedure, we argue that convergence at these solutions should
be enhanced by the specifically targeting them. Restricting the search to parts of the
objective space according to user-supplied information is a common practice in multi-
objective optimization, see Section 2.3. More recently, preferences have also been included
in Bayesian multi-objective optimization and a more detailed review of related works is
given in Section 4.2.2.

The first contribution of this chapter is the definition of a criterion for targeting specific
parts of the Pareto front (i.e. the user-provided target or equilibrated solutions). The
second contribution is the formal definition of “well-balanced solutions” via the concept
of Pareto front center. The latter is automatically determined by processing the GPs and
defines an implicitly preferred region when no external information is supplied. Other
contributions are the description of a local convergence criterion to the Pareto front,
and the management of the preference region according to the remaining computational
budget once the criterion is triggered.

An overview of the proposed method, which we name the C-EHI algorithm (for Cen-
tered Expected Hypervolume Improvement), is sketched in Figure 4.1. It uses the concept
of Pareto front center defined in Section 4.4.2. C-EHI iterations are made of three steps.
First, an estimation of the Pareto front center is carried out, as described in Section
4.4.2 and sketched in Figure 4.1a. Second, the estimated center allows to target well-
balanced parts of the Pareto front by a modification of the EHI criterion (cf. Section 4.3).
Figure 4.1b illustrates the idea. Third, to avoid wasting computations once the center
is attained, the part of the Pareto front that is searched for is broadened in accordance
with the remaining budget. To this aim, a criterion to test convergence to the center
is introduced in Section 4.5. When triggered (see Figure 4.1c), a new type of iteration
starts until the budget is exhausted (see Figure 4.1d). Section 4.6 explains how the new
goals are determined.

The R-EHI algorithm (for Reference point based Expected Hypervolume Improvement)
operates exactly in the same manner, except that the preferred region to be targeted has
no longer to be estimated, since it is externally supplied by the decision maker.

The methodology is tested on popular test functions (ZDT1, ZDT3, Zitzler et al., 2000,
and P1, Parr, 2013), and on the MetaNACA (Chapter 3). The results are presented in
Section 4.7. The default test case that illustrates the algorithm concepts before numerical
testing (Figures 4.12 to 4.23) is the MetaNACA with m = 2 objectives and d = 8
variables.

4.2 Deeper Insights in Bayesian Multi-Objective Op-

timization

4.2.1 EHI: a multi-objective optimization infill criterion

The EHI (Expected Hypervolume Improvement, Emmerich et al., 2005, 2011, 2006) is
one of the most competitive (Emmerich et al., 2020; Shimoyama et al., 2013; Yang et al.,
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Figure 4.1: Sketch of the proposed C-EHI algorithm for targeting equilibrated solutions.
The Pareto front center properties (a) are discussed in Section 4.4.2; How to guide the
optimization (b) is the topic of Section 4.3; Section 4.5 details how convergence to the
Pareto front center is tested (c); How to widen the search within the remaining budget
(d), is presented in Section 4.6.

2015; Zuhal et al., 2019) multi-objective infill criteria. It rewards the expected growth of
the hypervolume indicator (Emmerich et al., 2005; Zitzler, 1999), corresponding to the
hypervolume dominated by the approximation front up to a reference point R (see Section
2.4 and Figure 4.2), when adding a new observation x. The hypervolume indicator of a
set A is

IH(A; R) =
⋃
y∈A

∫
y�z�R

dz = V ol

(⋃
y∈A

{z : y � z � R}

)
and the hypervolume improvement induced by y ∈ Rm to the set A is I(y; R) = IH(A∪
{y}; R)− IH(A; R). In particular, if A � {y}, or if y � R, I(y; R) = 0. For a design x,
EHI(x; R) is

EHI(x; R) := E[I(Y(x); R)]. (4.2)

The EHI possesses appealing theoretical properties (Emmerich et al., 2011; Shimoyama
et al., 2012; Wagner et al., 2010) and is a refinement of the Pareto dominance (see Section
2.3). As the hypervolume improvement induced by a dominated solution equals zero, EHI
maximization intrinsically leads to Pareto optimality. It also favors well-spread solutions,
as the hypervolume increase is small when adding a new value close to an already observed
one in the objective space (Auger et al., 2009c, 2012).
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Figure 4.2: The hypervolume indicator of the non-dominated set (green points)
corresponds to the area dominated by it, up to R (in brown). The blue rectangle is
the hypervolume improvement brought by Y(x), I(Y(x); R).

Several drawbacks should be mentioned. First, EHI requires the computation of m-
dimensional non rectangular hypervolumes. Even though the development of efficient
algorithms for computing the hypervolume (Beume et al., 2009; Chan, 2013; Couckuyt
et al., 2014; Jaszkiewicz, 2018; Lacour et al., 2017; Russo and Francisco, 2014; While et al.,
2012) to temper the computational burden of EHI is an active field of research especially
in bi-objective (Emmerich et al., 2011, 2016) and three objectives problems (Yang et al.,
2017; Zhao et al., 2018), the complexity grows exponentially with the number of objectives
and linearly with the number of non-dominated points. Very recently only, a formula for
computing EHI has been found for any number of objectives m (Yang et al., 2019a).
This avoids expensive Monte Carlo that were previously required to compute the EHI
(Binois, 2015; Binois and Picheny, 2015; Emmerich et al., 2006). The complexity of EHI’s
calculation is nonetheless growing exponentially in m as the non-dominated hypervolume
computation is an NP hard problem (in the number of objectives, Yang et al., 2019a). An
analytic expression of its gradient has been discovered recently only, and is limited to the
bi-objective case (Yang et al., 2019b). Second, the hypervolume indicator is less relevant
for many-objective optimization, as the amount of non-dominated solutions rises with m,
and more and more solutions contribute to the growth of the non-dominated hypervolume;
in a many-objective setting, this metric is less able to distinguish truly relevant from non-
informative solutions. Last, the choice of the reference point R is unclear and influences
the optimization results, as will be highlighted in Example 4.1 and in Section 4.3.

R was originally seen as an arbitrary second order hyperparameter with default values
chosen so that all Pareto optimal points are valued in the EHI (Beume et al., 2007;
Emmerich et al., 2005; Knowles and Corne, 2003). Several studies (e.g., Ponweiser et al.,
2008) suggest taking N + 1, or N + 0.1(N− I), which is employed in Binois and Picheny
(2015).
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Later, the effect of R has received some attention. Auger et al. (2009c, 2012) have
theoretically and experimentally investigated the µ-optimal distribution on the Pareto
front induced by the choice of R. Ishibuchi et al. (2010) have noticed a variability in the
solutions given by an EMO algorithm when R changes. Feliot (2017) has also observed
that R impacts the approximation front and recommends R to be neither too far away
nor too close to PY . By calculating EHI restricted to areas dominated by “goal points”,
Parr (2013) implicitly acted on R and noticed fast convergence when the goal points

were taken on P̂Y . In Li et al. (2018b), an alternative to the hypervolume improvement
is proposed. In essence, it is a sum of EHI’s with different non-dominated reference point
R’s which eases the computations when compared to EHI in a similar fashion to the
criterion proposed in Section 4.3.2.

The choice of R is further discussed in Section 4.3. The following example highlights
its omnipresence inside the EHI infill criterion.

Example 4.1. Let us consider the m-objective degenerate problem,

min
x∈X⊂Rd

(f(x), . . . , f(x)︸ ︷︷ ︸)
m times

, (4.3)

observed at x(1:n) ⊂ X with corresponding values y(1:n) = {y(1)1m, . . . , y
(n)1m} ⊂ Y . Let

fmin = min(y(1), . . . , y(n)). (4.3) has a unique minimum and the empirical Pareto front is

P̂Y = {fmin}, with fmin = 1mfmin.

Consider EHI with an arbitrary reference point R for which P̂Y � R (i.e., fmin ≤ R)
with Rj = R ∀j = 1, . . . ,m (such a dominated R eases the calculations and is adapted
to this problem, but the remark applies to any dominated R). We consider y’s of the
form 1my which stem from (4.3) and by definition, EHI(x,R) = E[I(Y(x); R)] where

I(y; R) = IH(P̂Y ∪ {y}; R) − IH(P̂Y ; R) = IH({min(fmin,y)}; R) − IH(P̂Y ; R). Since

R = 1mR and y = 1my, IH({y}; R) = (R− y)m+ , IH(P̂Y ; R) = (R− fmin)m+ , and finally

I(y; R) =
m−1∑
k=0

Ck
m(fmin − y)m−k+ (R− fmin)k+. (4.4)

While R should not impact the optimization and be a second-order hyperparameter, it is
evidenced in (4.4) that the improvement brought by y depends on R through the (R −
fmin)k+ term, see Figure 4.3.

This example highlights that pre-assigned reference points, or R’s chosen as N + 1 or
R = M are not neutral and influence the optimization, due to the last term in (4.4).

Here, R’s bias can be removed by suppressing the terms depending on R which occur
for k = 1, . . . ,m − 1 in (4.4), i.e. if (R − fmin)+ = 0, hence R = fmin, in which case
I(y; R) = (fmin − y)k+ = (R − y)k+: it is a product of improvements over fmin (or R),
and by independence of the metamodels the EHI boils down to a product of Expected
Improvements. As (4.3) is in reality a mono-objective problem, this is the formulation
one would wish to retrieve.
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Figure 4.3: m-degenerate problem (4.3). The improvement brought by y ∈ Y is measured
by the improvement over fmin (light red area), but also by a term depending on R (light
blue area).

(4.4) holds for P̂Y � R, hence does not apply to R < fmin, because R ≺ P̂Y (strictly)
in this case. y’s such that R < y < fmin would have null improvement in this case, even
though they improve over fmin. With such an R, I(y; R) = (R− y)m+ : the improvement

exclusively depends on R. Even though it corresponds to R ≺ P̂Y which is clearly not
the standard setting (Beume et al., 2007), R < fmin eventually also makes sense as it
refers to a different EI threshold (Equation 2.8) investigated in Jones (2001), namely
a = R. In this case, the improvement is uniquely but explicitly controlled by the choice
of R and no longer by fmin.

In truly multi-objective problems, R biases the improvement of extreme points only.
The remarks nonetheless highlight the impact of R and suggest possible directions to
articulate it (Auger et al., 2009c) through alternative settings such as R ∈ P̂Y or non-
dominated R’s, that, to the best of our knowledge, have never been investigated1. The
proper choice of R constitutes the foundations for the mEI criterion introduced in Section
4.3 and is further discussed in Section 5.3.1.

Remark 4.1. In Example 4.1, setting the reference point R = N + r(N − I), r ≥ 0,
which is recommended in Ishibuchi et al. (2018) and is the default setting in GPareto

(Binois and Picheny, 2015) with r = 0.1, removes the (R − fmin)k+ term in (4.4) since
I = N, and eventually R = fmin.

Remark 4.2. If the EMI infill criterion (Svenson and Santner, 2010, Section 2.4) is

1In vertue of Proposition 4.1, some approaches proposed in Parr (2013); Zhan et al. (2017) are
implicitly equivalent to choosing such particular R’s, which however was not the original aim of the
authors.
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considered for solving (4.3), the improvement I(y) is measured by max
j=1,...,m

(fminj − yj)+ =

(fmin − y)+. The criterion is not biased by an external hyperparameter and the EI
formulation is directly retrieved, but it is surprising to find a mono-objective improvement
inside a multi-objective infill criterion. As discovered through the experiments of Chapter
3, this acquisition function indeed tends to consider improvements in the m functions
separately.

4.2.2 Past work on targeted Bayesian multi-objective optimiza-
tion

Targeting special parts of the objective space has been largely discussed within the multi-
objective optimization literature (see Section 2.3.3). The benefits of targeting a part of
the Pareto front instead of trying to unveil it entirely go beyond reflecting the user’s
preferences: as will be shown by the experiments of Section 4.7, it allows an enhanced
distribution of the proposed solutions within this area.

Previous works in Bayesian Multi-Objective Optimization have also targeted particular
areas of the objective space thanks to ad-hoc infill criteria. The Weighted Expected
Hypervolume Improvement (WEHI, Auger et al., 2009a,b; Brockhoff et al., 2013; Feliot
et al., 2018; Zitzler et al., 2007) is a variant of EHI that emphasizes given parts of the
objective space through a user-defined weighting function. In Palar et al. (2018); Yang
et al. (2016a,b), a Truncated EHI criterion is studied where the Gaussian distribution is
restricted to a user-supplied hyperbox in which new solutions are sought.

4.3 An infill criterion to target parts of the Pareto

front

4.3.1 Targeting with the reference point

Our approach starts from the observation that any region of the objective space can be
targeted with EHI solely by controlling the reference point R. Indeed, as y � R ⇒
I(y; R) = 0, the choice of R is instrumental in deciding the combination of objectives
for which improvement occurs, the improvement region:

IR := {y ∈ Y : y � R}.

As illustrated in Figure 4.4, the choice of R defines the region in objective space where
I > 0 and where the maximum values of EHI are expected to be found. The choice of R
is crucial as it defines the region in objective space that is highlighted. To our knowledge,
R has always been chosen to be dominated by the whole approximation front (that is, R
is at least the empirical Nadir point, which corresponds to the case of R1 in Figure 4.4).
The targeting ability of R can and should however be taken into account: for example,
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Figure 4.4: Different reference points and the areas IR that are targeted.

solutions belonging to the left part of the Pareto front in Figure 4.4 can be aimed at
using EHI(·; R2) instead of the more general EHI(·; R1).

Because of the extremely limited number of possible calls to the objective functions,
we would like to prioritize the search by first looking for a well-chosen part of PY : we
implicitly prefer this area over other solutions. This is implemented simply by setting
the reference point R adequately, in contrast to other works that set the reference point
at levels dominated by all Pareto optimal points, and by maximizing EHI(x; R).

4.3.2 mEI, a computationally efficient proxy to EHI

We define the mEI criterion for multiplicative Expected Improvement

Definition 4.1. (mEI criterion) The multiplicative Expected Improvement is the product
of Expected Improvements in each objective defined in Equation (2.8),

mEI(·; R) :=
m∏
j=1

EIj(·;Rj), (4.5)

where EIj is the EI operating on the j-th metamodel, Yj(·). mEI is a natural extension of
the mono-objective Expected Improvement, as the utility function (fmin−y)+ is replaced
by
∏

j(Rj − yj)+. A large part of the motivation for using mEI is that it is naturally
designed for promoting IR. Under some hypothesis, it is equivalent to EHI and therefore
shares the appealing properties of the latter (Emmerich et al., 2011; Knowles and Corne,
2002; Wagner et al., 2010), while being less computationally demanding (the complexity
grows linearly in m) and easier to be maximized.
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First, it is able to target a part of the objective space via R as the improvement function
it is built over differs from zero only in IR and therefore favors designs which dominate
R. Conversely, as it does not take the shape of the current approximation front into
account, mEI cannot help in finding well-spread Pareto optimal solutions.

Second, when P̂Y ⊀ R, mEI is equivalent to EHI but it is much easier to compute.
Contrarily to EHI, mEI does not imply the computation of a costly m-dimensional
hypervolume (cf. Section 4.2.1). Its formula is analytical (substitute Equation 2.8 into
Equation 4.5) and can easily be parallelized on different processors.

Proposition 4.1. (EHI-mEI equivalence). Let Y1(·), . . . , Ym(·) be independent GPs fitted

to the observations {x(1:t),y(1:t)}, with empirical Pareto front P̂Y . If P̂Y ⊀ R, EHI(·; R) =
mEI(·; R).

Proof. Let P̂Y ⊀ R. For such a reference point, the hypervolume improvement is

I(y; R) = IH(P̂Y ∪ {y}; R)− IH(P̂Y ; R) = IH({y}; R) =

{ ∏m
j=1(Rj − yj) if y � R

0 else

With the (.)+ notation, I(y; R) =
∏m

j=1(Rj−yj)+ and EHI(x; R) reduces to E[
∏m

j=1(Rj−
Yj(x))+] =

∏m
j=1 E[(Rj − Yj(x))+] as the Yj(·) are independent. This is the product of m

Expected Improvements with thresholds Rj.

Figure 4.5: Left: when using a non-dominated reference point P̂Y ⊀ R, EHI and
mEI are equivalent. The area in blue corresponds to a sample of both the product
of improvements w.r.t. Rj and the hypervolume improvement. Right: a product of
Expected Improvements with respect to each fj(·)’s best observed value is equivalent to
searching an hypervolume increase in II (lower left corner), hence a much too optimistic
setting.

Thus, choosing a (weakly) non-dominated point as reference point allows to define a
criterion that can replace EHI for targeted optimization at a much lower computational
cost. The complexity of accounting for the empirical Pareto front is carried over from
mEI’s calculation to the location of the reference point.
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Third, being a product of Expected Improvements, ∇mEI(x; R) is computable as

∇mEI(x; R) =
m∑
i=1

∇EIi(x;Ri)
m∏
j=1
j 6=i

EIj(x;Rj)

 (4.6)

where ∇EIi(x; R) has closed form, see Roustant et al. (2012) for instance. This offers
the additional possibility of combining global optimization with gradient based methods
when maximizing mEI(·; R). In comparison, EHI’s gradient has been discovered recently
only (Yang et al., 2019b), and is limited to m = 2 objectives.

As we shall soon observe with the numerical experiments in Section 4.7, mEI is an
efficient infill criterion for attaining the Pareto front provided that R is taken in the
non-dominated neighborhood of the Pareto front. It is important that R is (weakly)
not dominated, not only for the equivalence with EHI to hold. Indeed, mEI with a
dominated R may lead to clustering: let yi0 = f(xi0) ∈ P̂Y such that yi0 ≺ R. Then,
because improvement over R is certain at xi0 , mEI(·; R) will be large and often maximal
in the vicinity of xi0 . Clustering in both the objective and the design space will be
a consequence, leading to ill-conditioned covariance matrices. Taking a weakly non-
dominated reference point instead will diminish this risk as

∏m
j=1(Rj−yj)+ = 0 ∀y ∈ P̂Y ,

and no already observed solution will attract the search. If the reference point is too
optimistic, the mEI criterion makes the search exploratory as the only points x where
progress is achieved during GP sampling are those with a large associated uncertainty
s2(x). A clear example of a too optimistic reference point comes from the straightforward
generalization of the default single objective EI(·; fmin) to multiple objectives: it is the
criterion

∏m
j=1 EIj(·; fminj) = mEI(·; I), that is, the mEI criterion with the empirical Ideal

as a reference (right part of Figure 4.5). In non-degenerated problems where the Ideal is
unattainable, sequentially maximizing mEI(·; I) will be close to sequentially maximizing
s2(x).

4.4 Targeting preferred regions

In our method, while mEI is a simple criterion, the emphasis is put on the management
of the reference point, described for two situations. Section 4.4.1 assumes the reference
point R expresses the initial goal of the search and an updated target R̂, which adapts to
the current Pareto front approximation P̂Y , controls the next iterates through x(t+1) =
arg max

x∈X
mEI(x; R̂). In the absence of explicitly provided user preferences, the central

part of the Pareto front is targeted. The center of the Pareto front, C, is defined in Section
4.4.2 and is as a default preference since it balances the objectives. The estimated center
Ĉ corresponds to the center of the current approximation front, and at each iteration of
the algorithm, improvements over it are sought by evaluating x(t+1) = arg max

x∈X
mEI(x; Ĉ).
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4.4.1 User-provided aspiration point

In this section, a user-supplied target R is provided. Two situations occur and are shown
in Figure 4.6. Either this goal can be reached, i.e. there are points of the true Pareto
front that also belong to the dominance cone IR (left plot), in which case we want to find
any of these performance points as fast as possible. Since it is possible to find solutions
better than R, a more ambitious goal is defined: R̃ is the point belonging to the Ideal-R
line that is the closest to the true Pareto front; this goal is the intersection of IR with
PY if it exists. Or the initial aspiration point is too ambitious, no point of the Pareto
front dominates R (right plot), in which case the new achievable goal R̃ to reach is taken
as the point belonging to the R-Nadir line that is the closest to the true Pareto front.
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Figure 4.6: Achievable point R̃ ∈ PY arising from the target R. In case of non-continuous
fronts, R̃ is taken as the closest point to PY , see Figure 4.7.

The updated target R̂ used inside mEI is controlled to reach the attainable target R̃
while avoiding the two pitfalls of global optimization: too much search intensification in
already sampled regions, and too much exploration of low potential regions. Excessive in-
tensification is associated with R̂ dominated by already sampled points while superfluous
exploration comes from a too ambitious R̂. A compromise is to adapt R̂ to the current
approximation front P̂Y and to determine it as illustrated in Figure 4.7: if R dominates
at least a point of the empirical Pareto front, R̂ is the point of the R-estimated Nadir
(N̂) line that is the closest in Euclidean distance to a point of P̂Y ; vice versa, if R is

dominated by at least one calculated point, R̂ is the point of the estimated Ideal (̂I)-R

line that is the closest to P̂Y ; finally, in more general cases where R is non-dominated,

R̂ is set at the point of the broken line L̂′ joining Î, R and N̂ that is the closest to P̂Y .
R̂ progresses along L̂′ during the optimization and smoothly drives the search towards
R (more precisely towards the attainable target R̃). Being critical in the definition of
the center of the Pareto front, the estimation of the Ideal and Nadir point is detailed in
Section 4.4.2.3. In the rare cases where R̂ is dominated after the projection, it is moved on
the ÎRN̂ segments towards Î until it becomes non dominated. Thus R̂ is non-dominated
which has the theoretical advantage that mEI(x; R̂) is equivalent to EHI(x; R̂).

During the optimization, as P̂Y progresses towards PY , R̂ moves along the ÎRN̂ line.

In the limit of a converged P̂Y , the updated reference point will correspond to the R̃ of
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Figure 4.7: To adapt to P̂Y , the user-supplied R is updated to R̂. Left: R is too

optimistic, it dominates some of the points of P̂Y , and R̂ is the closest orthogonal
projection of a non-dominated point onto RN̂. Right: the user-provided target has
been attained and a more ambitious R̂ is used instead, the closest orthogonal projection
of a point of P̂Y onto ÎR.

Figure 4.6. mEI is therefore a local criterion in the Y space, since it eventually targets
R̃. It is nonetheless worth mentioning that mEI is only local in the Y space. Similarly
to EI or to EHI, it is naturally equipped with the exploitation/exploration mechanism
and searches for promising2 new designs in the entire X space.

A flow chart of this Bayesian targeting search is given in Algorithm 1. In the absence
of preferences expressed through R, the default implementation uses the center of the
front as target, R = C, which is the subject of the next section.

4.4.2 Center of the Pareto front: definition, properties and
estimation

In this section, no preferences are expressed by the decision maker, and as a default
setting, the unveiling of well-balanced solutions of PY is prioritized.

There has been attempts to characterize parts of the Pareto front where objectives
are “visually” equilibrated. In Wierzbicki (1999), the neutral solution is defined as the
closest point in the objective space to the Ideal point in a (possibly weighted) Lp norm
and is located “somewhere in the middle” of the Pareto front. The point of the Pareto
front which minimizes the distance to the Ideal point is indeed a commonly preferred

2In the sense that they improve over R̂.
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Data: Create and evaluate an initial DoE of n designs;
Initialize m GPs Yj(·) for each objective fj(·), j = 1, . . . ,m;
t = n; budget;
while t < budget do

Estimate the Ideal and Nadir point, Î and N̂;

if R given ; /* adapt R̂ to the current Pareto front */

then

Compute R̂ as the closest point from the broken line joining Î, R and N̂
to P̂Y ;

else
/* no R given, default to center */

Estimate the center of the Pareto front Ĉ, and set R̂ = Ĉ;

end

x(t+1) = arg max
x∈X

mEI(x; R̂);

Evaluate fj(x
(t+1)), j = 1, . . . ,m, update the GPs and P̂Y ;

t = t+ 1;

end
Algorithm 1: The R/C-mEI Bayesian targeting Algorithm.

solution (Zeleny, 1976). In Buchanan and Gardiner (2003), not only the closest to the
Ideal point, but also the farthest solution to the Nadir point (see definitions in Section
2.3.1) are brought out, in terms of a weighted Tchebycheff norm. Note that the weights
depend on user-supplied aspiration points. Other appealing points of the Pareto front
are knee points as defined in Branke et al. (2004a). They correspond to parts of the
Pareto front where a small improvement in one objective goes with a large deterioration
in at least one other objective, which makes such points stand out as kinks in the Pareto
front. When the user’s preferences are not known, the authors claim that knee points
should be emphasized and propose methods for guiding the search towards them.

Continuing the same effort, we propose a definition of the Pareto front center that
depends only on the geometry of the Pareto front.

4.4.2.1 Definition

Definition 4.2. (Pareto front center) The center of a Pareto front C is the closest point
in Euclidean distance to PY on the Ideal-Nadir line L.

In the field of Game Theory, our definition of the center of a Pareto front corresponds
to a particular case of the Kaläı-Smorodinsky equilibrium3 (Binois et al., 2019; Kalai and
Smorodinsky, 1975), taking the Nadir as disagreement point d ≡ N. This equilibrium
aims at equalizing the ratios of maximal gains of the players, which is the appealing

3convexity of the objective space is also assumed for the KS solution.
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property for the center of a Pareto front as an implicitly preferred point. Recently, it
has been used for solving many-objective problems in a Bayesian setting (Binois et al.,
2019). In general, C is different from the neutral solution (Wierzbicki, 1999) and from
knee points (Branke et al., 2004a). They coincide in particular cases, e.g. a symmetric
and convex front with scaled objectives and a non-weighted norm.

In the case where the Pareto front is an m − 1-dimensional continuous hypersurface,
C corresponds to the intersection between PY and L. In a more general case the Pareto
front may not be continuous, or may contain some lower dimensional hypersurfaces. This
is in particular the case for the empirical front P̂Y , a set of non-dominated points. C is
then the projection of the closest point belonging to PY on L.

The computation of this point remains cheap even for a large m in comparison with
alternative definitions involving e.g. the computation of a barycenter in high-dimensional
spaces. Some examples for two-dimensional fronts are shown in Figure 4.8. The center
of the Pareto front has also some nice properties that are detailed in following section.
It exists even if PY is discontinuous (top right front) or convoluted.

Figure 4.8: Examples of two-dimensional Pareto fronts and their center. Notice that on
the bottom, the left and the right fronts are the same, except that the left is substantially
extended in the x direction. However, the center has been only slightly modified.
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4.4.2.2 Properties

Invariance to a linear scaling of the objectives

The Kalai-Smordinsky solution has been proved to verify a couple of properties, such as
invariance to linear scaling4 (Kalai and Smorodinsky, 1975), which hold in our case. We
extend here the linear invariance to the case where there is no intersection between PY
and L.

Proposition 4.2. (Center invariance to linear scaling, intersection case) When PY
intersects L, the intersection is unique and is the center of the Pareto front. Furthermore,
in that case, the center is invariant after a linear scaling S : Rm → Rm of the objectives:
S(C(PY)) = C(S(PY)).

The proof is given in Appendix B.1. In the bi-objective case (m = 2), we also show that
a linear scaling applied to the objective space does not change the order of Euclidean
distances to L. When PY ∩ L = ∅, the closest y ∈ PY to L, whose projection on L
produces C, remains the closest after any linear scaling of the objective space.

Proposition 4.3. (Center invariance to linear scaling, 2D case) Let y,y′ ∈ Y ⊂ R2,
and L be a line in R2 passing through the two points I and N. Let ΠL be the projection
on L. If ‖y − ΠL(y)‖ ≤ ‖y′ − ΠL(y′)‖, then y remains closer to L than y′ after having
applied a linear scaling S : R2 → R2 to Y .

The proof is given in Appendix B.2. This property is of interest as the solutions in
the approximation front P̂Y will generally not belong to L. Applying a linear scaling to

Y in a bi-objective case does not change the solution in P̂Y that generates Ĉ. However,
exceptions may occur for m ≥ 3 as the closest y ∈ PY to L may not remain the same
after a particular affine transformation of the objectives, as shown in Appendix B.3.

Low sensitivity to Ideal and Nadir variations

Another positive property is the low sensitivity of C with regard to extreme points (see
Section 2.3.1 for definitions). This property is appealing because the Ideal and the Nadir
will be estimated with errors at the beginning of the search (cf. Section 4.4.2.3) and
having a stable target C prevents dispersing search efforts.

Under mild assumptions, the following proposition expresses the low sensitivity in terms
of the norm of the gradient of C with respect to N.

Proposition 4.4. (Stability of the center to perturbations in Ideal and Nadir) Let PY
be locally continuous and m−1 dimensional around its center C. Then, | ∂Ci

∂Nj
| < 1, i, j =

4in Game Theory, given a feasible agreement set F ⊂ Rm (Y in our context) and a disagreement
point d ∈ Rm (N here), a KS solution f ∈ F (the center C) satisfies the four following requirements:
Pareto optimality, symmetry with respect to the objectives, invariance to affine transformations (proven
in Proposition 4.2) and, contrarily to a Nash solution, monotonicity with respect to the number of
possible agreements in F .
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1, . . . ,m where N is the Nadir point, and the variation ∆C of C induced by a small
variation ∆N in N verifies ‖∆C‖2 < ‖∆N‖2. A similar relation stands for small Ideal
point variations, ‖∆C‖2 < ‖∆I‖2.

The proof is given in Appendix B.4. Proposition 4.4 is a local stability result. Without
formal proof, it is observed that the center will be little affected by larger errors in Ideal
and Nadir positions when compared to alternative definitions of the center. A typical
illustration is as follows: the Nadir point is moved by a large amount in one objective
(see Figure 4.9). The center is shifted by a relatively small amount and will continue
to correspond to an area of equilibrium between all objectives. Other definitions of the
center, typically those based on the barycenter of PY would lead to a major displacement
of C. In Figure 4.9, the barycenter on PY signaled by B and B′ has B′2 ≈ I2, which does
not correspond to an equilibrated solution as the second objective would almost be at its
minimum.

Figure 4.9: Illustration of the global stability of the center in 2D: adding the black part
to the colored Pareto fronts will highly modify them and N′ becomes the new Nadir
point. The new center C′ is relatively close to C despite this major N modification. B,
a barycenter-based center would be much more affected, and would no longer correspond
to an equilibrium.

4.4.2.3 Estimation of the Pareto front center using Gaussian Processes

Now that we have given a definition of C relying on PY through I and N, let us discuss
the estimation of C. The real front PY is obviously unknown and at any stage of the

algorithm, we solely have access to an approximation front P̂Y . The empirical Ideal

and Nadir points (computed using P̂Y) could be weak estimates in the case of a biased
approximation front. Thus, we propose an approach using the GPs Yj(·) to better
estimate I and N through conditional simulations.

Mines Saint-Étienne David Gaudrie



60 4 Targeting Solutions in Bayesian Multi-Objective Optimization

Estimating I and N with GP simulations

Estimating the Ideal and the Nadir point accurately is a difficult task. Indeed, obtaining
I is equivalent to finding the minimum of each fj(·), j = 1, . . . ,m, which corresponds
to m classical mono-objective optimization problems. Prior to computing N, the whole
Pareto front has to be unveiled but this is precisely our primary concern. Estimating
N before running the multi-objective optimization has been proposed in Bechikh et al.
(2010); Deb et al. (2010) using modified EMOAs to emphasize extreme points. We aim

at obtaining sufficiently accurate estimators Î and N̂ of I and N rather than solving these
problems exactly. The low sensitivity of C with regard to I and N discussed previously
suggests that the estimation error should not be a too serious issue for estimating C.
As shown in Section 2.1.2, given s simulation points x(t+1), . . . ,x(t+s), possible responses
at those locations can be obtained through the conditional GPs Yj(·), j = 1, . . . ,m.
The simulated responses are filtered by Pareto dominance to get nsim simulated fronts

P̃Y
(k)

. The Ideal and Nadir points are then estimated by Îj = median
k=1,...,nsim

(
min

y∈P̃Y
(k)
yj

)
;

N̂j = median
k=1,...,nsim

(
max

y∈P̃Y
(k)
yj

)
, j = 1, . . . ,m.

Notice that the definition of I is not based on the Pareto front. Hence the estimation
of Ij does not require m-dimensional simulated fronts, but only single independently

simulated responses Ỹj
(k)

. By contrast, as the Nadir hinges on a front, simulated fronts

P̃Y
(k)

are mandatory for estimating N.

GP simulations are attractive for estimating extrema because they not only provide
possible responses of the objective functions but also take into account the surrogate’s
uncertainty. It would not be the case by applying a (multi-objective) optimizer to a
deterministic surrogate such as the conditional mean functions. Even so, they rely
on the choice of simulation points x(t+i), i = 1, . . . , s (in a d-dimensional space). For
technical reasons (Cholesky or spectral decomposition of ΓΓΓj required for sampling from
the posterior), the number of points is restricted to s / 5000. x(t+i) have thus to be chosen
in a smart way to make the estimation as accurate as possible. In order to estimate I
or N, GP simulations are performed at x’s that have a large probability of contributing
to one component of those points: first, the kriging mean and variance of a very large
sample X ⊂ X is computed. The calculation of ŷj(X) and s2

j(X) is indeed tractable
for large samples contrarily to GP simulations. Next, s designs are picked up from X
using these computations. In order to avoid losing diversity, the selection is performed
using an importance sampling procedure (Bect et al., 2017), based on the probability of
contributing to the components Ij or Nj.

As Ij = min
x∈X

fj(x) good candidates are x’s such that P(Yj(x) < aj) is large. To account

for new evaluations of fj(·), a typical value for aj is the minimum observed value in the
j-th objective, min

i=1,...,t
fj(x

(i)). According to the surrogate, such points have the greatest
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probability of improving over the currently best value if they were evaluated.

Selecting candidates for estimating N is more demanding. As seen in the Definition 2.8,
Nj is not the maximum value over the whole objective space Y but over the unknown PY ,
i.e., each Nj arises from a ND point. Thus the knowledge of an m-dimensional front is
mandatory for estimating N. The best candidates for N’s estimation are extreme design
points (Definition 2.10). Quantifying which points are the most likely to contribute to
the Nadir components, in other terms produce extreme points, is a more difficult task
than its pendant for the Ideal. Good candidates are x’s such that the sum of probabilities
P(Yj(x) > νjj,Y(x) ND) + P(Y(x) � νννj) is large, where ννν are the extreme points of the

empirical Pareto front P̂Y . For reasons of brevity, the procedure is detailed in Appendix
C. An illustration of the selected x’s where the GP simulations are performed is given in
Appendix D.

Since the optimization is directed towards the center of the Pareto front, the metamodel
may lack precision at extreme points. It might be tempting to episodically target these
parts of the Pareto front to improve I and N’s estimation. But this goes against the
limited budget of calls to f(·) and it is not critical since the center is quite stable with
respect to I and N’s inaccuracies (Proposition 4.4). Since the optimality of solutions is
favored over the attainment of the exact center of the Pareto front, this option has not
been further investigated.

Ideal-Nadir line and estimated center

To estimate I and N, we first select s = 5000 candidates from a large space-filling DoE
(Halton, 1960; Sobol’, 1967), X ⊂ X, with a density proportional to their probability
of generating either a Ij or a Nj as discussed before. s/2m points are selected for the
estimation of each component of I and N. nsim conditional GP simulations are then
performed at those x(t+i), i = 1, . . . , s in order to generate simulated fronts, whose Ideal
and Nadir points are aggregated through the medians to produce the estimated Î and
N̂. The resulting simulated fronts are biased towards particular parts of the Pareto front
(extreme points, individual minima). Finally, the estimated center Ĉ is the projection of

the closest point of P̂Y on the estimated Ideal-Nadir line, L̂.
Linearly extending the Pareto front approximation following the approach of Har-

tikainen et al. (2012) and taking the intersection with L̂ was originally considered for

defining Ĉ. However, when m > 2, the prolongation of P̂Y is a collection of polytopes
of dimension at most m − 1 (Singh et al., 2016). To preserve non-domination among
all members, the concept of inherent non-dominance was defined in Hartikainen et al.
(2011a,b). As a result, some polytopes of dimension m − 1 are removed and others of

dimension lower than m − 1 belong to the extension. Therefore, L̂ does not necessarily
cross the extended Pareto front approximation.

Experiments have shown significant benefits over methodologies that choose the sim-
ulation points x(t+i) according to their probability of being not dominated by the whole
approximation front, or that use s points from a space-filling DoE (Morris and Mitchell,
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1995) in X. Figure 4.10 compares the component estimation of I and N for different
techniques during one optimization run of the MetaNACA with m = 3 objectives. X.IN
(blue curve) corresponds to our methodology. The other curves stand for competing
methodologies: X.LHS (green) selects the x(t+i) from a space-filling design, and X.ND
(red) chooses them according to their probability of being non-dominated with respect
to the entire front. NSGA-II (gold) does not select design points x(t+i) to perform GP
simulations but rather uses the Ideal and Nadir point found by one run of the NSGA-
II (Deb et al., 2002) multi-objective optimizer applied to the kriging predictors ŷj(·),
j = 1, . . . ,m. The black dashed line corresponds to the component of the current
empirical front (I and N), a computationally much cheaper estimator. The bold dashed
line shows I and N’s true components.
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Figure 4.10: Estimation of I and N using different techniques. The proposed methodology
(blue) is able to consistently produce close estimates to I’s and N’s components (bold
black dashed line).

Our methodology outperforms the two other simulation techniques, because they do
not perform the simulations specifically at locations that are likely to correspond to
an extreme design point or to a single-objective minimizer. Benefits are also observed
compared with the empirical Ideal and Nadir points, that are sometimes poor estimators
(for example for I1, I2 and N2). Using the output of a multi-objective optimizer (here
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NSGA-II) applied to the kriging mean functions is also a promising approach but has the
drawback of not considering any uncertainty in the surrogates (that may be large at the
extreme parts of the Pareto front). It also suffers from classical EMOA’s disadvantages,
e.g. several runs would be required for more reliable results and convergence can not be
guaranteed. Note that as these methods rely on the surrogates, they are biased by the
earlier observations: the change of the empirical Ideal or Nadir point has an impact on the
estimation. However, the X.IN, X.LHS and X.ND estimators compensate by considering
the GPs uncertainty to reduce this bias.

As we are in fine not interested in the Ideal and the Nadir point but in the Pareto front
center, we want to know if these estimations lead to a good Ĉ. Proposition 4.4 suggests
that the small Ideal and Nadir estimation error should not be a too serious concern. This
is confirmed by Figure 4.11, where the center estimation error is low with respect to the
range of the Pareto front.
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Figure 4.11: Evolution of the estimated center during one run (using Î and N̂ from

Figure 4.10): Ĉ’s components are close to the true ones in regard of the range of PY
(between the horizontal bars).

Figure 4.12 shows an example of one GP simulation targeting the extreme points of the
Pareto front. Notice the difference between the current empirical Pareto front (in blue)
and the simulated front for I and N (in black): the extreme points which are simulated
go well beyond those already observed.

4.4.3 Experiments: targeting with the mEI criterion

This section illustrates the targeting capabilities of mEI (4.5), both when the attainment
of a target or the unveiling of the Pareto front center is aimed at. Examples on the
MetaNACA benchmark (Chapter 3) illustrate the logic of the criterion as well as the
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Figure 4.12: One (among the nsim) GP simulation targeting the extreme points of the
Pareto front to enhance the estimation of I and N. The projection of the closest non-
dominated point to L on it is the estimated center (in green). The real center (in red)
lies close to the estimated center and to the estimated Ideal-Nadir line.

reference point update mechanism. The mEI targeting capabilities are compared with
state-of-the-art multi-objective optimizers (the Bayesian EHI, Emmerich et al., 2006, and
the evolutionary algorithm NSGA-II, Deb et al., 2002) on the MetaNACA and on the P1
(Parr, 2013) and ZDT3 (Zitzler et al., 2000) test problems.

4.4.3.1 Targeting a user-defined region

The proposed methodology is applied to the MetaNACA benchmark. The chosen version
of the problem is the one with d = 8 dimensions and m = 2 objectives, the negative
lift and the drag, to be minimized. The target R = (−1.7, 0)> is provided to explicitly
target the associated region IR. A sample convergence of the R-mEI algorithm is shown
in Figure 4.13 through the sampled f(x(i))’s (blue triangles) and Figure 4.14 gives the

associated updated aspiration points R̂. mEI(·, R̂) effectively guides the search towards
the region of progress over R. Upon closer inspection, it is seen that the points are not
spread within IR as they would be with EHI(·,R) because the mEI criterion targets a

single point (R̃) on the Pareto front.

For a more significant analysis of the ability of mEI to attain a region of the Pareto
front defined through a target R, two popular analytical test functions for multi-objective
optimization are considered. The first one is the ZDT3 (Zitzler et al., 2000) function which
is represented in Figure 4.15. The Pareto set and front of this bi-objective problem consist
of five disconnected parts, and we target the second sub-front by setting R to its Nadir,
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Figure 4.13: Optimization run targeting an off-centered part of the Pareto front through
R. After 20 iterations, the Pareto front approximation has been improved in the left
part, as specified by R. The successive reference points R̂ used by mEI are shown in
Figure 4.14.
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Figure 4.14: Reference points R̂ successively used for directing the search during the run
of Figure 4.13, where R = (−1.7, 0)> is provided. R̂ adjusts to the current approximation
front to direct the algorithm in a region of the Pareto front that dominates R.

R = (0.258, 0.670)>. In the d = 4 dimensional version of ZDT3 that we consider in the
following experiments, less than VR = 0.003% of the input space X = [0, 1]d overshoots
this target.

In the second experiment, we consider the P1 benchmark problem of Parr (2013) which
is also plotted in Figure 4.15. It has d = 2 dimensions, and we target the part of the
objective space such that f1(x) ≤ 10 and f2(x) ≤ −23 by setting R = (10,−23)>. This
corresponds to approximately VR = 0.9% of the design space, X = [0, 1]2.
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Figure 4.15: Left: Pareto front of the ZDT3 problem and chosen R. PYT is targeted.
Right: objective space and Pareto front of the P1 problem, and targeted region defined
through R.

R-mEI’s ability to produce user-desired solutions is compared with the EHI acquisition
function (Emmerich et al., 2006), and with the evolutionary algorithm NSGA-II (Deb
et al., 2002). The default choice in GPareto (Binois and Picheny, 2015) is used for
EHI’s reference point, i.e. 1.1N − 0.1I (re-computed at each iteration). For ZDT3, the
frequently advised (Emmerich et al., 2020; Yang et al., 2019c) reference point (11, 11)> is
also investigated. In the ZDT3 problem, R-mEI and EHI start with an initial design of
experiments of size n = 20 and are run for p = 20 additional iterations. For NSGA-II, a
population of 20 individuals is used, and the results are shown after the second generation
(i.e., after 20 additional function evaluations, for comparison at the total budget of mEI
and EHI), and after 19 supplementary generations. Runs of NSGA-II with different
number of generations and population sizes have also been investigated, but since they
do not change our conclusions and for the sake of brevity, they are not shown here.

In the P1 problem, the size of the initial design of experiments is n = 8, and R-mEI
and EHI are run for p = 12 iterations. NSGA-II is run for 1 and for 11 supplementary
generations, with a population of 12 individuals. Table 4.1 summarizes the configuration
of both experiments.

Test function User target R VR (%) d n p
P1 (10,−23)> 0.9 2 8 12

ZDT3 (0.258, 0.670)> 0.003 4 20 20

Table 4.1: Benchmark problem configurations.

The attainment time (Definition 2.14) of R including the n initial function evaluations
is the first comparison metric. × indicates that no run was able to attain R within the
prescribed budget. An estimator for the expected runtime (Auger and Hansen, 2005)5

is given in red if at least one run did not reach this target, together with the number of

5A rough estimator for the expected runtime is T s/ps where T s and ps correspond to the runtime of
successful runs and to the proportion of successful runs respectively
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successful runs in brackets. The second metric is the hypervolume indicator (Definition
2.11). The latter is computed up to R which restricts it to the part of the Pareto front
which dominates R. IH is normalized by the hypervolume of the true Pareto front of
each problem PY such that the upper bound for the indicator is 1. A third metric is
the number of obtained solutions that dominate R, i.e., that fall in the preferred region.
These indicators are averaged over 10 runs starting from different initializations, and
their standard deviations given in brackets in Tables 4.2 and 4.3. In this table, NSGA-II’s
subscript corresponds to the number of additional generations that have been evaluated.

mEI EHI EHI(11,11) NSGA-II1 NSGA-II19

#f(·) 20+20 20+20 20+20 20+20 20+380
Attainment time 24.2 (2.6) 45.3 [7] 103.3 [3] × 341.5 [7]

Hypervolume 0.634 (0.078) 0.218 (0.353) 0.112 (0.211) 0 0.248 (0.253)

Solutions ≺ R 4.1 (1.8) 1.1 (1.9) 0.3 (0.5) 0 4.2 (4.1)

Table 4.2: Comparison of the algorithms on the ZDT3 function, with respect to the three
metrics. The results are averaged over 10 runs, and the standard deviation is shown in
brackets. The number of function evaluations for each method can be found in the row
#f(·) (initial design + additional function evaluations).

mEI EHI NSGA-II1 NSGA-II11

#f(·) 8+12 8+12 12+12 12+132
Attainment time 12.6 (3.5) 25.6 [5] 120 [1] 67.1 [8]

Hypervolume 0.620 (0.165) 0.163 (0.213) 0.043 (0.136) 0.394 (0.295)

Solutions ≺ R 6.5 (2.5) 0.6 (0.7) 0.2 (0.6) 2.8 (2.4)

Table 4.3: Comparison of the algorithms on the P1 function, with respect to the three
metrics. The results are averaged over 10 runs, and the standard deviation is shown in
brackets. The number of function evaluations for each method can be found in the row
#f(·) (initial design + additional function evaluations).

These results confirm that mEI is able to consistently produce solutions in the user-
defined part of the Pareto front within a limited number of iterations: all mEI runs attain
IR contrarily to EHI, which attains the region 7 times out of 10 on ZDT3, and 5 times
out of 10 on P1. At the same budget, NSGA-II almost never attains IR, and some runs
still do not reach it despite larger budgets, on both problems. In both experiments mEI
takes the least function evaluations to attain R.

In comparison with EHI, mEI better converges to PY in IR as confirmed by the larger
hypervolume (even though mEI’s logic is solely to overshoot R and not necessarily a
good distribution in IR, as highlighted by Figure 4.14). The smaller standard deviations
confirm that the results of mEI are more repetitive. Indeed some EHI runs converge to
PYT while other runs do not. Remark that EHI with (11, 11)> as reference point leads
to even less points inside IR than the variant where EHI’s reference point is computed
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accordingly to I and N. Even for much larger budgets, the hypervolume indicator in IR
obtained by NSGA-II is much smaller.

Last, more solutions dominating R are produced by mEI than by the other algorithms.
Even though this indicator may not be as meaningful as the others since it does not
measure the fast attainment of R, the convergence to PY inside IR, nor the solution’s
diversity, it evidences that mEI is a criterion capable of directing the optimization towards
desired and difficult-to-attain solutions.

4.4.3.2 Targeting a hole

To prove that the mEI acquisition function is able to cope with any kind of Pareto front,
let us continue with ZDT3 and target R1 = (0.133, 0.665)> and R2 = (0.738,−0.465)>.
These vectors correspond to the middle of the hole between ZDT3’s first and second
front, and to the middle between ZDT3’s fourth and fifth front, respectively (see Figure
4.15). They are utopian since @x ∈ X : f(x) � R1 or R2. Even worse, solutions in
their vicinity are not Pareto-optimal. However, mEI naturally adapts and rapidly drives
the search towards the closest Pareto optimal solutions in the neighborhood of R as
figured out in Figure 4.16. Because of the shape of ZDT3’s objective space (f2 ≈ 1 when
f1 = 0.738 = R21, hence much more than R22 = −0.465, whereas f1 is only slightly larger
than R21 when f2 = −0.465 = R22), the right-hand side optimization solely attains the
fourth front while the left-hand side run reaches both the first and the second sub-front.
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Figure 4.16: When the target R is at a discontinuity of PY , mEI uncovers the closest
Pareto optimal solutions.

4.4.3.3 Targeting the center of the Pareto front

When no preferences are given, the center of the Pareto front becomes the implicit target,
R = C. In the following experiments, the center of the MetaNACA benchmark (Figure
4.18) is targeted. Figure 4.17 shows that, compared with standard techniques, the
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proposed methodology automatically leads to a faster and a more precise convergence
to the central part of the Pareto front at the cost of a narrower covering of the front.
Figure 4.18 indicates how R = Ĉ evolves to direct the search to the unknown center of
the true Pareto front, C.

Figure 4.17: Bi-objective optimization with the C-mEI algorithm (left). The initial
approximation (black) has mainly been improved around the center. Compared with a
standard EHI (right), the proposed methodology achieves convergence to the central part
of the front. EHI considers more compromises between objectives, but cannot converge
within the given budget.
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Figure 4.18: Reference points R successively used for directing the search during the
C-mEI run of Figure 4.17. They lie close to the dashed Ideal-Nadir line (IN) and lead
the algorithm to the center of the Pareto front (C).

For more significant results, the ability of C-mEI to automatically drive the optimiza-
tion towards the center of the Pareto front is investigated on the MetaNACA benchmark

Mines Saint-Étienne David Gaudrie



70 4 Targeting Solutions in Bayesian Multi-Objective Optimization

(Chapter 3). Again, mEI is compared with EHI and NSGA-II by means of the attainment
time and the hypervolume indicator. Since the latter require a target or a reference point,
we use Rw := (1−w)C+wN, where C is the center of the Pareto front, and N the Nadir
point of the problem. We take w = 0.1 which means that the hypervolume is calculated
only for the points that are in a small vicinity6 of C. Figure 4.27 shows the part of PY
to which Rw refers.

Table 4.4 reports the averages and standard deviations of the performance metrics,
calculated over 10 independent runs for the MetaNACA problems with d = 8 and 22
parameters, and m = 2 objectives (lift and drag). The optimizations start with n = 20
or 50 observations and are run for p = 20 or 50 supplementary iterations, respectively.
NSGA-II is run with a population of 20 individuals, and results are shown after 1 and
19 additional generations when d = 8, and after 4 and 24 when d = 22 (generations are
given in subscript), to compare it with the Bayesian approaches both at the same number
of function evaluations, and for 5 times more calls to f(·). Other population/generation
configurations have been tested but are not reported for the sake of brevity since they led
to same conclusions. × indicates that no run was able to attain R0.1, and the empirical
runtime is reported in red if at least one run did not reach this target, with the number
of successful runs in brackets.

d = 8 d = 22
Criterion mEI EHI NSGA-II1 NSGA-II19 mEI EHI NSGA-II4 NSGA-II24

#f(·) 20+20 20+20 20+20 20+180 50+50 50+50 20+80 20+480
Attainment time 28.4 (5.4) 66.8 [5] × 261.9 [6] 56.3 (7.2) 71.4 (13.9) × 191.9 [9]

Hypervolume 0.256 (0.09) 0.025 (0.04) 0 0.044 (0.08) 0.222 (0.12) 0.153 (0.09) 0 0.106 (0.07)

Table 4.4: Comparison of the different infill criteria and algorithms for the MetaNACA.
The metrics are averaged over 10 runs, and the standard deviation is shown in brackets.
The number of function evaluations for each technique can be found in the row #f(·).

These empirical results indicate that mEI is able to automatically direct the optimiza-
tion towards the center of the Pareto front. It attains I0.1 := IR0.1 in each run and in
the smallest number of function evaluations. mEI better converges towards the central
part of PY than EHI as measured by the hypervolume indicator in I0.1. EHI attempts to
uncover the whole Pareto front but does not get as close to the true Pareto front’s center,
and in the problem in dimension d = 8, 5 EHI runs out of 10 did not reach I0.1 within
the prescribed budget. At the same budget, NSGA-II is not able to produce solutions
within I0.1, and some runs are not able to reach it even for 5 times larger budgets. The
MetaNACA in dimension d = 22 gives the same conclusions.

6In case of a linear Pareto front, I0.1 corresponds to the 10% most central solutions
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4.5 Detecting local convergence to the Pareto front

The Pareto front may be locally reached before depletion of the computational resources.
If the algorithm continues targeting the same region, no improvement can be obtained,
and the infill criterion will tend to favor the most uncertain parts of the design space.
As sketched in Figure 4.1, the aim of our optimization algorithm is to first converge
towards relevant solutions (the attainable target R̃ or the center C), before unveiling a
broader part of PY around the initial goal. It is necessary to detect local convergence to
the Pareto front so that a wider search can be conducted in the remaining iterations, as
will be explained in Section 4.6. In this section, we propose a novel method for checking
convergence to the center. It does not utilize the mEI value which was found too unstable
(since R fluctuates at each iteration) to yield a reliable stopping criterion. Instead, the
devised test relies on a measure of local uncertainty.

To test the convergence to a local part of the Pareto front, we define the probability of
domination in the Y space7, p(y), as the probability that there exists y′ ∈ Y : y′ � y.
y’s for which p(y) is close to 0 or to 1 have a small or large probability, respectively, that
there exist objective vectors dominating them. On the contrary, p(y) close to 0.5 indicates
no clear knowledge about the chances to find better vectors than y. p(y) measures how
certain domination or non-domination of y is. Formally, the domination d(y) is a binary
variable that equals 1 if ∃x ∈ X : f(x) � y and 0 otherwise. The Pareto front being a
boundary for domination, d(·) can also be expressed in the following way

d(y) =

{
1 if PY � y,

0 otherwise.

d(y) can be thought of as a binary classifier between dominated and non-dominated
vectors whose frontier is the Pareto front and which is only known for previous observa-
tions (d(y(i)) = 1 if y(i) /∈ P̂Y). The metamodeling of d(·) is the approach followed by
Loshchilov et al. (2010) where rather than the objective functions, the Pareto dominance
of x is modeled. The probability that a design is Pareto optimal is also utilized within
the acquisition function in Davins-Valldaura et al. (2017).

We now consider an estimator D(y) of d(y) that has value 1 when the random Pareto
front of the GPs, PY(·), dominates y, and has value 0 otherwise,

D(y) = 1(PY(·) � y).

The reader interested in theoretical background about the random set PY(·) is referred
to Binois (2015); Molchanov (2005).

D(y) is a Bernoulli variable closely related to the domination probability through
p(y) = P(D(y) = 1) = E[D(y)]. If p(y) goes quickly from 0 to 1 as y crosses the Pareto
front, the front is precisely known around this y.

7The probability of domination is also called “attainment function” in Binois (2015).
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As the Yj(·)’s are independent, it is easy to calculate the probability of domination for a

specific x, P(Y(x) � y) =
∏m

j=1 φN

(
yj−ŷj(x)

sj(x)

)
, a product of probabilities of improvement

(Equation 2.7). In contrast, the probability of dominating y at any x by Y(x), P(∃x ∈
X : Y(x) � y), has no closed-form as many overlapping cases occur. Even for a discrete
set X = {x(t+1), . . . ,x(t+s)}, P(∃x ∈ X : Y(x) � y) has to be estimated by numerical
simulation because of the correlations in the Gaussian vector Y(X).

To estimate the probability p(y) that an objective vector y can be dominated, we
exploit the probabilistic nature of the GPs conditioned by previous observations: Pareto

fronts P̃Y
(k)
, k = 1, . . . , nsim are extracted from nsim simulated GPs. D(k)(·) is a realiza-

tion of the estimator and random variable D(y),

D(k)(y) = 1(P̃Y
(k)
� y) =

{
1 if ∃z ∈ P̃Y

(k)
: z � y,

0 otherwise.

Therefore, p(y) which is the mean of D(y) can be estimated by averaging the realizations,

p(y) = lim
nsim→∞

p̂(y) where p̂(y) =
1

nsim

nsim∑
k=1

D(k)(y) .

One can easily check that p̂(y) is monotonic with domination: if y′ � y, then every P̃Y
(k)

dominating y′ will also dominate y and p̂(y′) ≤ p̂(y).
As discussed in Section 4.4.2.3, the choice of points x(t+i) ∈ X, i = 1, . . . , s where the

GP simulations are performed is crucial. Here, as the simulated Pareto fronts aim at
being possible versions of the true front, the x’s are chosen according to their probability
of being non-dominated with regard to the current approximation P̂Y , P(Y(x) ND), in a
roulette wheel selection procedure (Deb, 2001) to maintain both diversity and a selection
pressure. An illustration of the selected x’s where the GP simulations are performed is
given in Appendix D. Simulating the GPs on a space-filling DoE (Halton, 1960; Morris
and Mitchell, 1995; Sobol’, 1967) leads to less dominating simulated fronts hence an
under-estimated probability of dominating y. Another advantage of the estimation of
p(·) through GP simulations is that the computational burden resides in the x selection
procedure and the simulation of the GPs. Once the simulated fronts have been generated,
p(·) can be estimated for many y’s ∈ Y without significant additional effort.

The variance of the Bernoulli variable D(y) is p(y)(1 − p(y)) and can be interpreted
as a measure of uncertainty about dominating y. When p(y) = 1 or 0, no doubt subsists
regarding the fact that y is dominated or non-dominated, respectively. When half of
the simulated fronts dominate y, p(y) = 0.5 and p(y)(1− p(y)) is maximal: uncertainty
about the domination of y is at its highest.

Here, we want to check convergence to the Pareto front in the preferred part of PY (the

center, or the user-desired region) which is located on the estimated Ideal-Nadir line L̂ or

the estimated Ideal-Target-Nadir line L̂′, respectively (see Figure 4.7 or Figure 4.12). For

the sake of brevity, L̂ is used in the following, but the approach is identical for L̂′. We
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(a) p̂ in Y space (b) p̂(1− p̂) in Y space

Figure 4.19: Detection of convergence to the Pareto front center using simulated fronts.
Five of the nsim = 200 simulated fronts are shown in white. The approximation P̂Y
(thin black line) has converged towards PY (thick black curve) at the center of the front

(intersection with L̂). Consequently, p(y) grows very fast from 0 to 1 along L̂ and the
domination uncertainty on the right plot p(y)(1− p(y)) is null.

consider the uncertainty measure (p(y)(1− p(y))) for y varying along L̂, convergence at

the center being equivalent to a sufficiently small uncertainty of D(y) along L̂. This leads
to saying that convergence to the center has occurred if the line uncertainty is below a
threshold, U(L̂) < ε, where the line uncertainty is defined as

U(L̂) :=
1

|L̂|

∫
L̂
p(y)(1− p(y))dy. (4.7)

|L̂| is the (Euclidean) distance between the estimated Ideal and Nadir points and ε is
a small positive threshold. Figure 4.19 illustrates a case of detection of convergence to
the Pareto front center. On the left plot, when moving along L̂ from Î to N̂, p(·) goes
quickly from 0 to 1 when crossing the estimated and real Pareto fronts. The variability
between the simulated Pareto fronts is low in the central part, as seen on the right plot:
p(y)(1 − p(y)) equals 0 (up to estimation precision) all along L̂ and in particular near
the center of the approximation front where sufficiently many points f(x(i)) have been
observed and no further improvement can be achieved.

If p(y) equals either 0 or 1 along L̂, all nsim simulated fronts are intersected at the

same location by L̂, thus convergence is assumed in this area. To set the threshold ε, we
consider that convergence has occurred in the following limit scenarios: as there are 100
integration points on L̂ for the computation of the criterion (4.7), p(y) jumps successively
from 0 to 0.05 and 1 (or from 0 to 0.95 and 1); or p(y) jumps successively from 0 to 0.025,
0.975 and 1. This rule leads to a threshold ε = 10−3.

Remark 4.3. To select the x’s where to simulate the GPs, it may be cumbersome to
evaluate P(Y(x) ND) on a large space-filling design when the number of non-dominated
solutions is large and/or when m increases. Since we are mostly interested in p(y)

for y’s which dominate R (on the L̂ line), other relevant selection operators are the
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probability of dominating the reference point P(Y(x) � R) or the mEI(x; R). These
criteria are analytically tractable and their complexity only grows linearly in m and does
not depend on the cardinality of P̂Y . Other measures of local convergence such as the
median improvement of the simulated fronts along L̂ (normalized by the square root of the

sum of the GP variances), or the number of simulated fronts that improve P̂Y sufficiently
enough in IR have also been investigated. In both cases, similar results than those obtained
by (4.7) have been observed.

4.6 Expansion of the approximation front within the

remaining budget

If local convergence on the preferred part of the Pareto front is detected and the objective
functions budget is not exhausted, i.e., b calls to f(·) are still allowed, the goal is no longer
to search at this location where no direct progress is possible, but to investigate a wider
part of the Pareto front. A second phase of the algorithm is started during which a
new fixed reference point R is set for the EHI infill criterion. To continue targeting the
preferred part of the Pareto front, the new R has to be located on L̂ (or L̂′). The more
distant R is from PY , the broader the targeted area in the objective space will be, as
IR ⊂ IR′ if R � R′. As shown in Figure 4.20, R is instrumental in deciding in which area
solutions are sought. After having spent the b remaining calls to the objective functions,
we would like to have (i) an approximation front P̂Y as broad as possible, and (ii) which
has converged to PY in the entire targeted area IR. These goals are conflicting: at a fixed
remaining budget, the larger the targeted area, the least PY will be well described. The
reference point leading to the best trade-off between convergence to the Pareto front and
width of the final approximation front is sought.

To choose the best reference point for the remaining b iterations, we anticipate the
behavior of the algorithm and the final approximation front obtained with a given R.
Candidate reference points Rc, c = 1, . . . , C, are uniformly distributed along L̂ starting
from R0 = Ĉ or R̂, and RC = N̂. Each Rc is related to an area in the objective space it
targets, IRc . Departing from the current GPs Y(·), C virtual optimization scenarios are
anticipated by sequentially maximizing EHI b times for each candidate reference point Rc.
We use a Kriging Believer (Ginsbourger et al., 2010) strategy in which the metamodel is
augmented at each virtual iteration using the kriging mean functions ŷ(x∗(i)), x∗(i) being
the maximizer of EHI(·; Rc) at one of the virtual steps i = 1, . . . , b. Such a procedure
does not modify the posterior mean ŷ(·), but it changes the posterior variance s2(·). The
conditional GPs Y(·) augmented by these b Kriging Believer steps are denoted as YKB(·).

The optimizations for the Rc’s are independent and parallel computing can be exploited
(in our implementation, it has been done through the foreach R package). At the end, C
different final Kriging Believer GPs YKB

c (·) are obtained that characterize the associated

Rc. R’s close to R0 = Ĉ or R̂ produce narrow and densely sampled final fronts whereas
distant R’s lead to more extended and sparsely populated fronts, as can be seen in
Figure 4.21.
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Figure 4.20: Two possible reference points R1 and R2 located on L̂, and the part of the
Pareto front they allow to target when used within EHI.

Figure 4.21: Virtual infills (purple circles) obtained by sequentially maximizing EHI(·; R)
b times, for two different reference points (purple squares). The shape and sampling
density of the final virtual front depends on R.

To measure how much is known about the Pareto front, we generalize the line uncer-
tainty of Equation (4.7) to the volume IR and define the volume uncertainty, U(R; Y(·))
of the GPs Y(·). The volume uncertainty is the average domination uncertainty p(y)(1−
p(y)) in the volume that dominates R bounded by the Ideal point where p(y) is calculated
for Y(·),

U(R; Y(·)) :=
1

V ol(I,R)

∫
I�y�R

p(y)(1− p(y))dy . (4.8)

In practice, the estimated Ideal Î is substituted for the Ideal. U(R; Y(·)) quantifies the
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convergence to the estimated Pareto front in the progress region delimited by R. It is a
more rigorous uncertainty measure than others based on the density of points in the Y
space as it accounts for the possibility of having many inverse images x to y.

The optimal reference point is the one that creates the largest and sufficiently well
populated Pareto front. The concepts of augmented GPs and volume uncertainty to
measure convergence allow to define the optimal reference point,

R∗ := Rc∗ where c∗ = max
c=1,...,C

c

such that U(Rc; YKB
c (·)) < ε

(4.9)

Note that the uncertainty is calculated with the augmented GPs YKB
c (·), i.e., the domi-

nation probabilities p(y) in Equation (4.8) are obtained with YKB
c (·). Associated to R∗

is the optimal improvement region, IR∗ that will be the focus of the search in the second
phase. The same threshold ε = 10−3 as in Equation (4.7) is applied.

The procedure for selecting R after local convergence is illustrated in Figures 4.22 and
4.23. In this example, the initial DoE is made of n = 20 observations, and convergence
to the center is detected after 26 added points, leaving b = 54 calls to f(·) in the second
phase of the algorithm for a total budget of 100 f(·) evaluations. Figure 4.22 shows the
final virtual Pareto fronts obtained for two different reference points, as well as simulated
fronts sampled from the final virtual posterior (those fronts are used for measuring the
uncertainty). On the left, the area targeted by R is small, and so is the remaining
uncertainty (U(R; YKB

c (·)) = 3 × 10−6 < 10−3). On the right, a farther R leads to
a broader approximation front, but to higher uncertainty (U(R; YKB

c (·)) = 0.0015 >
10−3). Figure 4.23 represents the final approximation front obtained with the optimal
R∗ (U(R∗; YKB

c∗ (·)) = 9.4 × 10−4) of Equation (4.9) for the b remaining iterations. A
complete covering of PY in the targeted area is observed. As the remaining budget after
local convergence was important in this example (54 iterations), the Pareto front has
been almost entirely unveiled. When less resources remain (e.g. 14 iterations), an R∗

much closer to PY is determined.

4.7 Algorithm implementation and testing

4.7.1 Implementation of the C-EHI algorithm

The concepts and methods defined in Sections 4.3 to 4.6 are put together to make the
C-EHI/R-EHI algorithm which stands for Centered or Reference point-based Expected
Hypervolume Improvement, depending if a used supplied target R has been specified.
The R package DiceKriging has been used for building the Gaussian Processes and
additional implementations were written in the R language. The C-EHI algorithm which
was sketched in Figure 4.1 is further detailed in Algorithm 2. The R-EHI algorithm
follows exactly the same outline (replace Ĉ by R̂ and L̂ by L̂′). The integral for U(L̂)

is estimated numerically using NL = 100 points regularly distributed along L̂. U(R) is
computed by means of Monte Carlo techniques with NMC = 105 samples.
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Inputs: uncertainty limit ε, budget;
Data: Create and evaluate an initial DoE of n designs;
Initialize m GPs Yj(·) for each objective fj(·), j = 1, . . . ,m;

t = n; U(L̂) = +∞; /* U(L̂) line uncertainty, Equation (4.7) */

/* First phase: optimization towards the center, see Algorithm 1

*/

while t < budget and U(L̂) > ε do

Estimate the Ideal and Nadir point, Î and N̂⇒ L̂ and Ĉ; /* see Section

4.4.2 */

x(t+1) = arg max
x∈X

mEI(x; Ĉ); /* see Section 4.3 */

Evaluate f(x(t+1)) and update the GPs; Compute U(L̂); /* see Section

4.5 */

t = t+ 1;
end
/* If remaining budget after convergence: second phase */

/* Determine widest accurately attainable area and target it,

Section 4.6 */

if t < budget then
Choose R∗ solution of Equation (4.9); /* see Section 4.6 */

R∗ = arg min
R∈L̂

s.t. U(R;YKB(·))<ε

‖R− N̂‖;

end
while t < budget do

x(t+1) = arg max
x∈X

EHI(x; R∗); /* Target larger improvement region IR∗

*/

Evaluate fj(x
(t+1)) and update the GPs;

t = t+ 1;
end

return final DoE, final GPs, and approximation front P̂Y ;

Algorithm 2: C-EHI (Centered Expected Hypervolume Improvement) Algorithm.
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Figure 4.22: Uncertainty quantification through final virtual fronts. The anticipated
remaining uncertainty can be visualized as the grey area within IR roamed by the sampled
fronts. It is small enough for the R used on the left and too important for the R on the
right. The blue reference point on L̂ is R∗, the farthest point that leads to a virtual front
with low enough uncertainty.

Figure 4.23: Final approximation of the Pareto front by C-EHI with, as a red square,
the reference point of the second phase chosen as a solution to problem (4.9), R =
R∗. The objective values added during the second phase of the algorithm are circled
in red. Compared to the initial front obtained when searching for the center (other
blue triangles), the final approximation front is expanded as highlighted by the blue
hypervolume.

Figure 4.24 details a typical run of the C-EHI algorithm when facing a too restricted
budget to uncover the entire Pareto front of the MetaNACA for d = 8. During the first
iterations, the center of the Pareto front is targeted. Once local convergence has been
detected, the part of the Pareto front in which convergence can be accurately obtained
within the remaining budget is forecasted, and then targeted. The approximation of PY
is enhanced in its central part. The targeting methodology gains in importance as the
number of objectives increases because the relative number of Pareto optimal solutions
grows and it becomes harder to approximate all of them. An illustrative C-EHI run with
m = 3 objectives is shown in Figure 4.25.
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Figure 4.24: Comparison of C-EHI (left) with the standard EHI (right). Top:
approximation front after 20 iterations: C-EHI better converges to the center of the
Pareto front to the detriment of the front ends. Bottom: approximation front after
40 iterations: after local convergence (at the 26th iteration here), a wider optimal
improvement region (under the red square) is targeted for the 14 remaining iterations.
Compared to the standard EHI, the Pareto front is sought in a smaller balanced part of
the objective space, at the advantage of a better convergence.
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Figure 4.25: Typical C-EHI (green points) and EHI (blue points) runs on the MetaNACA
problem with m = 3 objectives. Black dots are evaluations of the initial DoE. The true
Pareto front (red) is attained at its center by C-EHI while it is approximated globally
yet less accurately by EHI.

4.7.2 Test results

In this section, the capabilities of C-EHI to produce a well spread approximation of the
Pareto front in the central part of PY is compared with the state-of-the-art EHI. Exper-
iments are completed on two popular multi-objective problems, and on the MetaNACA
benchmark (Chapter 3).

4.7.2.1 Restricted performance metrics

Classical multi-objective indicators (Section 2.3.2) compare fronts which are aimed at
finding the whole PY . This is not the case of C-EHI and R-EHI, which consider the
unveiling of a smaller but more relevant part of PY where to enhance convergence, and
empirical Pareto fronts with similar shapes to the one shown in blue in Figure 4.20 will
be measured as performing poorly as they do not cover the entire front. The metrics
introduced in Chapter 2 have therefore to be adapted to assess C-EHI capabilities.

In order to focus on the central part of the Pareto front, the indicators and fronts are
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restricted to the regions of interest

Iw := {y ∈ Y : y � Rw} where Rw := (1− w)C + wN. (4.10)

To focus on parts of PY in the vicinity of C, w’s ranging between 0.05 and 0.3 will be
used. Figures 4.26 and 4.27 show some Iw.

Notice that these truncated indicators will also show if C-EHI was able to recover the
real center of the Pareto front: if it was directed towards a wrong (in the sense not
central) location of PY during the first phase, the indicators will exhibit bad results.

If local convergence to PY has been detected (Section 4.5), the algorithm determines
an optimal improvement region IR∗ (defined in Section 4.6) where new values are sought
during the last iterations. Indicator values in this part of the Pareto front are also of
interest as this area is targeted within the last iterations.

4.7.2.2 Experiments with analytical test functions

In this section, we investigate how C-EHI converges to the center of the Pareto front
and compare it with two state-of-the-art algorithms: a Bayesian optimizer with the EHI
infill criterion (Emmerich et al., 2011) and the Evolutionary Algorithm NSGA-II (Deb
et al., 2002). As discussed in Section 4.2.1, EHI is defined up to a reference point which
is instrumental in selecting the part of the objective space IR where PY is sought. To
target the entire PY with EHI, R should be placed at the Nadir point of the true Pareto
front. Since PY is unknown, it is suggested (Feliot, 2017; Ishibuchi et al., 2018) to take
a conservative empirical Nadir point, N + r(N − I) with r = 0.1, where I and N are
the empirical Ideal and Nadir points. This is the default choice for setting R in GPareto

(Binois and Picheny, 2015).

This EHI implementation depends on P̂Y through I and N. We therefore consider
three additional EHI variants. In the idealized EHIPY , the reference point is R = N,
the true Nadir point. In this variant, IR = IPY : the considered improvement area is the
right one. EHIPY corresponds to an utopian setting where it would be known in advance
where to look for the Pareto front in the objective space. Its interest is that it provides
an upper bound on the expected performance of EHI.

The third variant, EHIN, has R defined as the estimated Nadir point of the Pareto front,
N̂ using the techniques of Section 4.4.2.3. EHIN is a new version of the EHI algorithm:
instead of defining R relying on observed data such as the empirical front or extreme
observations, R is set up according to the metamodels.

Last, we consider the EHIM variant in which the reference point is R = M (maximal
value observed). Contrarily to EHIN, the maximum is taken over all the points instead

of over those in P̂Y . Such a reference point will often have large components. If it covers
all of the objective space, it may over-emphasize the extreme parts of the Pareto front.

The algorithms are benchmarked with two popular analytical test functions for multi-
objective optimization. The first one is the P1 problem of Parr (2013), which has d = 2
dimensions and m = 2 objectives. It is initialized with a design of experiments of size
n = 8 and run for p = 12 iterations. The second test problem is ZDT1 (Zitzler et al.,
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2000) in d = 4 dimensions and m = 2 objectives, initialized with a design of experiments
of size n = 20 and run for p = 40 additional iterations. In the case of ZDT1, a popular
reference point for EHI being (11, 11)>, the EHI(11,11) experiment considers this setting.

Two comparison metrics are considered. The first one is the hypervolume indicator
restricted to Iw for w = 0.05, 0.15, 0.25 to evaluate convergence and diversity in the
central parts of the Pareto front. Figure 4.26 shows these improvement regions for both
benchmark problems. IH is normalized by the hypervolume of PY in Iw, such that the
indicator is upper bounded by 1. The second performance metric is the attainment time
which assesses the number of function evaluations (including the n initial designs) it takes
to a method for entering the improvement region irrespectively of the final hypervolume
covered.

(a) P1 objective space

(b) ZDT1 (d = 4) objective space (c) Zoom on the ZDT1 (d = 4) Pareto front

Figure 4.26: Pareto fronts (red) and objective spaces (black) of the P1 problem (top)
and of the ZDT1, d = 4, problem (bottom, zoom on PY on the right) with the Iw areas
to which the performance metrics are restricted. These correspond to a central part of
the Pareto front.

Runs are repeated 10 times starting from different initial space-filling designs. The
metrics means and standard deviations are reported in Tables 4.5 and 4.6. They are
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computed for C-EHI, the four EHI variants, and NSGA-II. The population size of NSGA-
II is set to 12 and 20 for P1 and ZDT1, respectively. The performance of NSGA-II
is recorded at the smallest number of generations such that the number of functions
evaluations is larger or equal to that of the Bayesian algorithms. This number of
generations is 2 and 3 for P1 and ZDT1 and the metrics are on the NSGA-IIb row in
Tables 4.5 and 4.6. For comparison purposes, NSGA-II runs are continued until 120 and
800 functions evaluations are reached for the P1 and ZDT1 functions. The final metrics
are given in both tables on the NSGA-II+ row.

Hypervolume Attainment time
w 0.05 0.15 0.25 0.05 0.15 0.25

C-EHI 0.185 (0.233) 0.549 (0.263) 0.668 (0.185) 21.6 [7] 13.1 (2.7) 9.5 (1)

EHI 0.155 (0.218) 0.465 (0.179) 0.611 (0.114) 39.4 [4] 13.2 (2.6) 11.4 (2.6)

EHIPY 0.269 (0.260) 0.446 (0.175) 0.636 (0.136) 30.0 [6] 14 (3.2) 11 (2.6)

EHIN 0.130 (0.158) 0.312 (0.223) 0.460 (0.192) 32.4 [5] 16.7 [9] 11.5 (3.5)

EHIM 0.012 (0.039) 0.202 (0.181) 0.389 (0.136) 180 [1] 22.7 [7] 12.6 (4.1)

NSGA-IIb 0 0.052 (0.110) 0.107 (0.183) × 80 [2] 51.1 [3]

NSGA-II+ 0.188 (0.219) 0.576 (0.109) 0.705 (0.069) 169.6 [5] 50.4 (31.1) 41.3 (31.9)

Table 4.5: Hypervolume and attainment time averaged over 10 runs (standard deviation
in brackets), for different central parts of the Pareto front on the P1 problem. When at
least one run did not attain Rw, red figures correspond to empirical runtimes with the
number of successful runs in brackets. × indicates that no run was able to attain Rw in
the given budget.

Hypervolume Attainment time
w 0.05 0.15 0.25 0.05 0.15 0.25

C-EHI 0.703 (0.049) 0.895 (0.010) 0.936 (0.006) 26.8 (6.6) 23.4 (2.2) 23.4 (2.2)

EHI 0.065 (0.154) 0.097 (0.204) 0.101 (0.213) 145 [2] 145 [2] 145 [2]

EHIPY 0.611 (0.066) 0.848 (0.029) 0.901 (0.023) 28.7 (2.8) 22.8 (2.3) 21.4 (0.5)

EHIN 0.362 (0.349) 0.650 (0.246) 0.740 (0.206) 48.1 [6] 22.2 (0.4) 22.2 (0.4)

EHIM 0.575 (0.107) 0.845 (0.038) 0.906 (0.022) 24.4 (5.6) 22.2 (0.6) 22.1 (0.3)

EHI(11,11) 0.133 (0.13) 0.327 (0.251) 0.472 (0.218) 120 [2] 120 [2] 59.2 [5]

NSGA-IIb 0 0 0 × × ×
NSGA-II+ 0.375 (0.161) 0.749 (0.075) 0.842 (0.052) 532.9 (143.4) 331.9 (121) 219.2 (101.5)

Table 4.6: Hypervolume and attainment time averaged over 10 runs (standard deviation
in brackets), for different central parts of the Pareto front on the ZDT1 problem. When
at least one run did not attain Rw, red figures correspond to empirical runtimes with the
number of successful runs in brackets. × indicates that no run was able to attain Rw in
the given budget.

Before analyzing the results in more details, let us state the main conclusions of Tables
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4.5 and 4.6. On both test problems, C-EHI consistently outperforms all other EHI vari-
ants in terms of hypervolume and time to reach the central parts of PY . The performances
of the different optimizers depend on the test function and further explanations are given
in the following. At the considered limited budget, the evolutionary algorithm NSGA-
II gives a weaker approximation of the Pareto front central regions than the Bayesian
methods, as measured by both the hypervolumes and the attainment times.

P1 problem

The statistics of the hypervolumes reported in Table 4.5 indicate that C-EHI better
converges to the central part of the Pareto front than the other EHI algorithms. The
helped EHIPY outperforms C-EHI only when w = 0.05. This is due to the fact that
this benchmark contains a local Pareto front (which can be seen on Figure 4.26 for
small f1 values and f2 ≈ −17), which lightly deteriorates the Ideal and the Nadir point

estimation, hence the estimation of the Center. The error in Ĉ leads to a slightly off-
centered convergence which is highlighted by the fact that 3 C-EHI runs out of 10 did not
attain this narrow part of PY . Some difficulties in estimating N through GPs simulations
are visible in the moderate performance of EHIN relatively to the standard EHI approach
(where R is defined according to the empirical front). Yet, as stated in Proposition 4.4,
the error in Nadir estimation barely affects C-EHI, but impacts EHIN more significantly.
Regarding EHI variants, EHIM performs poorly when compared to the standard EHI and
EHIPY because of the distant reference point which targets an unnecessarily large part
of the objective space. At the same number of function evaluations (20), C-EHI clearly
outperforms NSGA-II which needs approximately 6 times more function evaluations to
achieve the same performance.

The attainment times recorded in Table 4.5 for the P1 problem confirm that the center-
targeting C-EHI reaches the central regions faster than the other methods. The thinnest
area of interest (w = 0.05) is attained more consistently (reached 7 times out of 10 against
6 times by EHIPY , 5 times by EHIN, 4 times by EHI and 1 time by EHIM). Because of
its distant R, EHIM is the Bayesian method which needs the most function evaluations
to find Iw. The evolutionary NSGA-II is not able to attain I0.05 within 24 function
evaluations, only 2 runs out of 10 attain I0.15 and 3 out of 10 attain I0.25.

ZDT1 problem

As shown at the bottom of Figure 4.26, the ZDT1 problem has a wide f2 range. In
dimension d = 4, it is difficult to find f2 values in PY ’s range: only 0.8% of X leads to
f2 ≤ 1. On the contrary, all f1 values are in PY ’s range. Therefore, the definition of the
part of the objective space where to seek PY through R is critical.

C-EHI correctly identifies the center of PY and drives the optimization towards it, as
evidenced by the larger hypervolumes of C-EHI in Table 4.6 for all w’s. C-EHI has the
best but one attainment time of I0.05 with 26.8 evaluations on the average. EHIM solely
attains I0.05 in fewer function evaluations. It is worth mentioning that only 5 × 10−6%
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of the design space has an image in I0.05, highlighting the performance of C-EHI (and
EHIM for the occasion). The number of function evaluations to reach I0.15 and I0.25 is
slightly larger for C-EHI than for the other EHI’s. This is due to the fact that the first
mEI iterations of the C-EHI algorithm sometimes target parts of PY that are not exactly
at the center, because of ZDT1’s objective space shape. Nonetheless, C-EHI corrects this
initial inaccuracy and, at the end of the second phase, a better convergence is achieved
as confirmed by the hypervolume. Even though it is equipped with the correct R, EHIPY
does not exhibit results as good as C-EHI, except the attainment time of the wider central
parts (I0.15 and I0.25).

The EHI in which R is computed through the empirical Ideal and Nadir points performs
poorly. Only two runs touch the central parts of PY . Because the Pareto front of ZDT1
has a small f2 range and a large f1 range, the initial errors in R cut large f1 values out of
the improvement region. Graphically, the search seems directed towards the left-hand-
side of the Pareto front. EHIN is outperformed by C-EHI and EHIPY , but achieves a
much better convergence than EHI. This shows the benefits of estimating the location
of the Nadir point through GP simulations instead of picking the empirical Nadir for R
in problems such as ZDT1, if the whole Pareto front is sought. Even though EHIM does
not work well on general functions because of a too large targeted part in the objective
space IR, it yields good results here both in terms of hypervolume and attainment time.
Indeed, EHIM avoids the pitfalls of ZDT1 that were just mentioned, i.e., it does not
remove large f1 values from the improvement region. At the same number of function
evaluations (60, row NSGA-IIb), NSGA-II is never able to find any Iw. Even when 800
designs (row NSGA-II+) are evaluated, the hypervolume in these central areas is much
smaller than that of C-EHI.

4.7.2.3 Experiments on the MetaNACA test bed

For the sake of brevity, only experiments on the instance with d = 8 parameters are
reported here, with m = 2, 3 or 4 objectives, because the results on the MetaNACA with
3 or 22 dimensions led to the same conclusions. One run of the C-EHI algorithm on
the MetaNACA in dimension d = 22, m = 2 objectives can be found at the end of this
section, in Figure 4.29. The Iw areas to which the metrics are restricted are shown in
Figure 4.27 for m = 2.

The Tables 4.7 and 4.8 below contain the hypervolume indicator and the IGD (Defi-
nition 2.13) to the true Pareto front for the 2, 3 and 4 objective MetaNACA test cases.
They are computed in I0.1, I0.2 and I0.3, and averaged over 10 runs. Standard deviations
are indicated in parentheses. The last column averages the indicator values restricted
to IR∗ (the optimal reference point of Equation 4.9) over the runs that reached the
second phase. × indicates that no run has reached the second phase for the considered
budget. Similarly to the attainment times in the previous section, red figures correspond
to extrapolated indicators: when for at least one run, no solution was found in Iw, the IGD
is averaged over the runs which entered Iw and divided by the proportion of successful
runs. Brackets indicate the number of successful runs. The indicator values of the C-
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Figure 4.27: Central parts of the Pareto front of the MetaNACA (d = 8, m = 2) for
which the indicators are computed. The I0.1 area only considers extremely close and
central solutions.

EHI algorithm are compared to those obtained with the standard EHI implementation
of the R package GPareto (right column) in which the default reference point is taken
at 1.1N − 0.1I. Dealing with parsimonious calls to the objective functions, four tight
optimization budgets are considered: 40, 60, 80 and 100 calls to f(·). The n = 20 first
calls to f(·) are devoted to the initialization of the GPs using an LHS space-filling design
(Stein, 1987), and the experiments are repeated 10 times starting from different initial
designs.

Figure 4.28 shows how the hypervolume indicator evolves with optimization iterations.
The indicators are of course increasing with the iterations, and the C-EHI consistently
outperforms the general EHI in finding points in the central part of the Pareto front for
2 and 3 objectives. For 4 objectives an important number of points obtained by both
algorithms belongs to I0.2 and I0.3. While significantly more values (and Pareto-optimal
values) are obtained by C-EHI in I0.2 and I0.3, EHI may episodically and non-significantly
yield a larger hypervolume.

A few words of caution are needed to read the Tables 4.7 to 4.8. As the width of the
Pareto front that is targeted in the second phase depends on the remaining budget, runs
of the C-EHI algorithm with different budgets are not directly comparable. For instance,
if convergence is detected after 35 iterations, the reference point that defines the targeted
area for the last calculations R∗ will be different if 5 or 45 iterations remain. The first
case will concentrate on a very central part of the Pareto front, whereas the second will
target a broader area. As a consequence, some numbers may express better performance
in thinner portions of the Pareto front in spite of a smaller total budget, which is only
due to the fact that they have explicitly targeted a smaller part of the solutions.

The average performance measures reported in Tables 4.7 to 4.8 confirm the behavior
of the C-EHI algorithm already illustrated in Figure 4.24 for a typical run: mEI set to
improve on the estimated center efficiently drives the algorithm towards the (unknown)
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m budget R0.1 R0.2 R0.3 R∗

C-EHI EHI C-EHI EHI C-EHI EHI C-EHI EHI

40 0.275 (0.18) 0.025 (0.04) 0.498 (0.17) 0.227 (0.15) 0.581 (0.10) 0.386 (0.19) 0.664 0.253
2 60 0.377 (0.19) 0.096 (0.12) 0.651 (0.11) 0.342 (0.14) 0.719 (0.09) 0.525 (0.12) 0.768 (0.13) 0.418 (0.24)

80 0.548 (0.10) 0.118 (0.11) 0.759 (0.05) 0.398 (0.12) 0.821 (0.03) 0.572 (0.11) 0.881 (0.04) 0.606 (0.22)

100 0.524 (0.14) 0.153 (0.16) 0.744 (0.08) 0.503 (0.13) 0.831 (0.05) 0.658 (0.08) 0.919 (0.02) 0.805 (0.08)

40 0.013 (0.02) 0 (0) 0.181 (0.09) 0.086 (0.05) 0.319 (0.05) 0.237 (0.07) × ×
3 60 0.058 (0.06) 0.010 (0.02) 0.267 (0.08) 0.136 (0.06) 0.394 (0.05) 0.305 (0.04) 0.286 (0.03) 0.021 (0.03)

80 0.109 (0.08) 0.012 (0.02) 0.327 (0.14) 0.170 (0.10) 0.447 (0.17) 0.321 (0.13) 0.476 (0.08) 0.161 (0.11)

100 0.160 (0.09) 0.016 (0.02) 0.412 (0.07) 0.218 (0.06) 0.546 (0.04) 0.391 (0.06) 0.584 (0.05) 0.224 (0.09)

40 0.113 (0.11) 0.075 (0.10) 0.291 (0.09) 0.240 (0.10) 0.374 (0.06) 0.378 (0.09) × ×
4 60 0.187 (0.15) 0.138 (0.09) 0.356 (0.08) 0.340 (0.09) 0.418 (0.05) 0.473 (0.07) 0.533 0.238

80 0.312 (0.16) 0.198 (0.08) 0.470 (0.09) 0.413 (0.07) 0.516 (0.09) 0.533 (0.06) 0.617 (0.08) 0.338 (0.07)

100 0.519 (0.08) 0.219 (0.07) 0.612 (0.11) 0.464 (0.07) 0.642 (0.12) 0.580 (0.06) 0.729 (0.05) 0.453 (0.04)

Table 4.7: Hypervolume indicator averaged over 10 runs for different central parts of
the Pareto front, budgets and number of objectives. The true Pareto front has an
hypervolume indicator of 1.

m budget R0.1 R0.2 R0.3 R∗

C-EHI EHI C-EHI EHI C-EHI EHI C-EHI EHI

40 0.130 [9] 0.391 [5] 0.176 (0.09) 0.246 [9] 0.228 (0.05) 0.293 (0.20) 0.069 0.175
2 60 0.095 (0.05) 0.242 [7] 0.109 (0.05) 0.204 (0.08) 0.133 (0.06) 0.184 (0.06) 0.066 (0.02) 0.101 [9]

80 0.059 (0.02) 0.203 [8] 0.058 (0.01) 0.171 (0.05) 0.067 (0.02) 0.161 (0.07) 0.050 (0.01) 0.149 (0.05)

100 0.067 (0.02) 0.177 [8] 0.059 (0.02) 0.138 (0.05) 0.055 (0.02) 0.118 (0.03) 0.048 (0.02) 0.109 (0.03)

40 0.736 [5] 4.267 [1] 0.455 (0.13) 0.518 (0.13) 0.531 (0.12) 0.500 (0.10) × ×
3 60 0.390 [8] 0.961 [4] 0.388 (0.11) 0.460 (0.11) 0.471 (0.13) 0.439 (0.06) 0.196 (0.03) 0.287 [8]

80 0.238 (0.10) 0.550 [5] 0.256 (0.12) 0.361 (0.17) 0.339 (0.14) 0.356 (0.14) 0.181 (0.05) 0.241 [9]

100 0.226 (0.05) 0.510 [6] 0.250 (0.05) 0.349 (0.06) 0.335 (0.08) 0.351 (0.07) 0.183 (0.05) 0.349 (0.08)

40 0.345 [9] 0.624 [6] 0.381 (0.05) 0.447 (0.12) 0.626 (0.07) 0.571 (0.07) × ×
4 60 0.280 (0.13) 0.374 [8] 0.334 (0.04) 0.359 (0.06) 0.587 (0.07) 0.512 (0.07) 0.197 0.233

80 0.210 (0.06) 0.282 (0.06) 0.285 (0.05) 0.298 (0.04) 0.523 (0.08) 0.460 (0.06) 0.212 (0.04) 0.262 (0.08)

100 0.158 (0.02) 0.266 (0.06) 0.236 (0.05) 0.277 (0.03) 0.468 (0.08) 0.430 (0.05) 0.257 (0.04) 0.291 (0.08)

Table 4.8: Inverted Generational Distance averaged over 10 runs for different central
parts of the Pareto front, budgets and number of objectives. Lower values are better.

central part of the real Pareto front. Table 4.7 summarizes test results expressed in
terms of hypervolume improvements. In the most central part of the front (w = 0.1)
C-EHI significantly surpasses the standard EHI. It is also remarkable that despite early
GPs inaccuracies, the algorithm does not drift towards off-centered locations of the front.
EHI outperforms C-EHI only with 4 objectives and w = 0.3, since in this case Iw is not
a restrictive central part in such dimension.
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Figure 4.28: Mean hypervolume indicator for 2, 3 or 4 objectives (as columns) and budgets
of 40, 60, 80, 100 (as rows). The blue, red and green colors correspond to the improvement
regions I0.1, I0.2 and I0.3, respectively. Dashed lines correspond to the standard EHI,
continuous lines to the C-EHI algorithm.

The IGD (Table 4.8) shows similar results. Notice that for at least one run, the classical
EHI does not reach the I0.1 area in the two and three objective cases, even if 100
evaluations are allowed. In the 4 dimensional case, at least 80 iterations are needed.
Again, the results show smaller distances between points in PY ∩Iw and P̂Y with C-EHI
for 2 objectives, and when the restriction area is small. For 4 objectives and w = 0.3,
EHI outperforms C-EHI, but in this case I0.3 is a quite large part of Y . Many solutions
in PY ∩ I0.3 are thus far away from the area where C-EHI converges.
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Figure 4.29: Comparison between C-EHI (left) and EHI (right) for one run of the
MetaNACA problem in d = 22 dimensions. 150 calls to f(·) were allowed and 50 of
them were devoted to the initial DoE. Again, C-EHI improves the Pareto front at its
center, EHI tries to uncover the whole front at the cost of a lower accuracy.

Other indicators such as attainment times or the ε-Indicator confirm the results re-
ported above, but are not given here for reasons of conciseness.

The same conclusions are obtained with R-EHI which relies on the same mechanisms.
No statistically significant results are shown here for the sake of brevity, but a typical
run of R-EHI on the MetaNACA (d = 8, m = 2) where R = (−2.1,−0.2)> is shown in
Figure 4.30.

Figure 4.30: Typical run of the R-EHI algorithm with a budget of 20+20 function
evaluations, when the target R (red square) is provided. Remark that after convergence
detection, the eventually chosen R∗ (black square, see Section 4.6) targets a wider part of
PY than the initially supplied R because accurate enough convergence has been forecasted
for the remaining iterations inside IR∗ .
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4.8 Conclusions

In this chapter, we have developed new concepts and have adapted existing Bayesian
multi-objective optimization methods to enhance convergence to preferred solutions of
a multi-objective optimization problem at severely restricted number of calls to the
objective functions. A general definition of the Pareto front center, valid for non-convex,
discontinuous, convoluted fronts has been given and some of its properties analyzed. In
case no target has been expressed, the latter is implicitly preferred over other solutions.
We have proposed the C-EHI optimization algorithm which first estimates the Pareto
front center, then maximizes the mEI criterion and finally chooses a targeted central
part of the Pareto front in accordance with the remaining budget. The R-EHI algorithm
operates in the same logic, except that the part of the Pareto front to unveil first is
user-dictated. Both algorithms aim at first converging towards a preferred part of the
Pareto front before widening the approximation front taking the remaining resources into
account. They have shown faster and better convergence to the critical part of the Pareto
front than other state-of-the-art approaches.
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Extensions of the C-EHI/R-EHI
algorithm
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This chapter deals with extensions of the previously described C-EHI/R-EHI algorithm
(Chapter 4). The first part is devoted to multi-point extensions such that the criteria
return a batch of designs where to evaluate the objective functions at each iteration,
instead of one single design. This is particularly attractive if the simulator can be run
in parallel on q different computers or nodes of a cluster since the number of evaluated
designs within the same wall-clock time can be multiplied by a factor q. In Section 5.1.1,
we propose and study a multi-point extension to the mEI criterion, named q-mEI. We also
explain why a tempting alternative criterion to q-mEI is inappropriate for optimization.
Numerical tests comparing the sequential and batch versions of the mEI algorithm show
a better convergence towards the preferred part of PY at the same number of iterations.
In Section 5.1.2, q-EHI, the multi-point extension to the EHI criterion used during the
second phase of our algorithm is proposed and analyzed, as well as cheaper multi-point
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proxys to this figure of merit.
Section 5.2 deals with constraints the designs have to comply with. The steps of

the C-EHI/R-EHI algorithm are adapted to account for the necessity of satisfying the
constraints by modifying the Pareto-dominance relation. The incorporation of constraints
within the mEI and EHI criteria is discussed, and the use of mEI in the case of severely
constrained problems (i.e., where it is even hard to find one design which satisfies all
constraints) analyzed.

Last, in Section 5.3, implementation details of C-EHI/R-EHI as well as possible ways
to improve and extend the algorithm are proposed.

5.1 Batch criteria in Bayesian Optimization

In the context of costly objective functions, the temporal efficiency of Bayesian opti-
mization algorithms can be improved by evaluating the functions in parallel on different
computers (or on different cluster nodes). A batch version of these Bayesian algorithms
directly stems from replacing the infill criteria with their multi-point pendants: if q
points are produced by the maximization of the infill criterion, the f(·)’s can then be
calculated in parallel. In some cases, there is a side benefit to the multi-point criterion in
that it makes the algorithms more robust to inadequacies between the GPs and the true
functions by spreading the points at each iteration while still complying with the infill
criteria logic.

In a mono-objective setting, the multi-point Expected Improvement (q-EI) introduced
in Schonlau (1997) searches an optimal batch of q points, instead of looking for only one.
In Ginsbourger et al. (2010) it is defined as

q-EI({x(t+1), . . . ,x(t+q)}) = E[ max
i=1,...,q

(fmin − Y (x(t+i)))+] = E[(fmin − min
i=1,...,q

Y (x(t+i)))+].

(5.1)
{x(t+1)∗, . . . ,x(t+q)∗} maximizing (5.1) are q promising points to evaluate simultaneously.
It is clear from the q-EI criterion that the price to pay for multi-point infill criteria is an
increase in the dimension of the inner optimization loop that creates the next iterates. In
Algorithm 1, the next iterate x(t+1) results from an optimization in d dimensions, while
in a q-points algorithm there are d× q unknowns.

The multi-point Expected Improvement has received some attention recently, see for
instance Frazier and Clark (2012); Ginsbourger et al. (2011); Ginsbourger and Le Riche
(2010); Janusevskis et al. (2011, 2012), where the criterion is computed using Monte
Carlo simulations. It has been calculated in closed form for q = 2 in Ginsbourger et al.
(2010) and extended for any q in Chevalier and Ginsbourger (2013). An expression and
a proxy for its gradient have then been calculated for efficiently maximizing it in Xq

(Marmin et al., 2015, 2016).

To the best of our knowledge, there exists no Bayesian multi-point multi-objective
infill criterion. In the same spirit, we wish to extend the multi-objective mEI and EHI
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criteria (Binois, 2015; Emmerich et al., 2006) employed in Chapter 4 so that they return
q designs to evaluate in parallel. In Horn et al. (2015), several techniques have been
proposed to obtain a batch of q different locations where the functions of multi-objective
problems can be evaluated in parallel. Common practices consist in parallelizing certain
steps of the algorithm. In ParEGO (Knowles, 2006) for instance, since randomly chosen
coefficients define a mono-objective problem to be optimized, a straightforward step
towards batch optimization is to consider q such problems simultaneously. Similarly,
the decomposition framework of MOEA/D (Zhang and Li, 2007) was exploited for batch
Bayesian multi-objective optimization (Zhang et al., 2009). Multi-point multi-objective
infill criteria either rely on the simultaneous execution of multi-objective searches with
q different goals (e.g., Deb and Sundar, 2006), on multi-objective infill criteria, e.g. a
multi-objective maximization of the EI (Jeong and Obayashi, 2005; Ribaud, 2018), on
the parallel evaluation of q points located on an estimation of the Pareto front (Namura
et al., 2017a), or finally on q sequential steps of a multi-objective Kriging Believer strategy
(Feliot, 2017; Ginsbourger et al., 2010). A problem involving q-EI’s with two objectives
is presented in the Chapter 3 of Ribaud (2018) but the formulation is likely to have the
same flaws as the mq-EI below, i.e., each point can optimize only a criterion. In the
current work, we investigate Bayesian multi-objective criteria whose maximization yields
q points. The resulting strategy is therefore optimal with respect to the criterion.

5.1.1 Batch targeting in multi-objective optimization: the q-
mEI criterion

5.1.1.1 A naive and a correct batch version of the mEI

mEI being a product of EI’s, a first approach to extend the mEI criterion to a batch of
q points is to use the product of single-objective q-EI’s (called mq-EI for “multiplicative
q-EI”) using Rj instead of min

i=1,...,t
fj(x

(i)) in (5.1):

mq-EI({x(t+1), . . . ,x(t+q)}; R) =
m∏
j=1

q-EIj({x(t+1), . . . ,x(t+q)};Rj)

=
m∏
j=1

E[ max
i=1,...,q

(Rj − Yj(x(t+i)))+] = E[
m∏
j=1

max
i=1,...,q

(Rj − Yj(x(t+i)))+] (5.2)

because the Yj(·)’s are assumed independent. This criterion has however the drawback of
not using a product of joint improvement in all objectives, as the max among the q points
is taken independently for each objective j considered. This may lead to undesirable
behaviors: the batch of q optimal points using this criterion may be composed of optimal
points w.r.t. each individual EIj. For example withm = 2 and q = 2, a batch {x(1)∗,x(2)∗}
with promising Y1(x(1)∗) and Y2(x(2)∗) may be optimal, without taking Y2(x(1)∗) and
Y1(x(2)∗) into account. x(1)∗ and x(2)∗ may not even dominate R while scoring a high
mq-EI. For these reasons, the mq-EI criterion breaks the coupling through x between
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the functions, allocating marginally each point to an objective. mq-EI does not tackle
multi-objective problems.

Following the definition of q-EI (5.1), a proper multi-point extension of mEI (4.5) is

q-mEI({x(t+1), . . . ,x(t+q)}; R) = E

[
max
i=1,...,q

(
m∏
j=1

(Rj − Yj(x(t+i)))+

)]
. (5.3)

5.1.1.2 Properties of both criteria

We now give some properties and bounds for both criteria.

Proposition 5.1. When evaluated twice at the same design, mq-EI and qm-EI reduce to
mEI: mq-EI({x,x}; R) = q-mEI({x,x}; R) = mEI(x; R).

Proof:
mq-EI({x,x}; R) =

∏m
j=1 q-EIj({x,x};Rj) =

∏m
j=1EIj(x;Rj) = mEI(x; R).

q-mEI({x,x}; R) = E[(
∏m

j=1(Rj − Yj(x))+)] = mEI(x; R). �

Proposition 5.2. When PY � R, q-mEI calculated at two training points x and x′ is
null. q-mEI calculated at one training point x and one new point x′′ reduces to mEI at
the latter: q-mEI({x,x′}; R) = 0, q-mEI({x,x′′}; R) = mEI(x′′; R).

Proof:
As x and x′ are training points, Y(x) and Y(x′) are no longer random variables, and
the expectation vanishes. Since R is not dominated by the observed values y = Y(x)
and y′ = Y(x′),

∏m
j=1(Rj − Yj(x))+ =

∏m
j=1(Rj − yj)+ = 0 and the same occurs with y′.

Finally, q-mEI({x,x′}; R) = 0.
In the case of one observed x and one unobserved x′′,∏m

j=1(Rj − Yj(x
′′))+ ≥

∏m
j=1(Rj − Yj(x))+ = 0, and

q-mEI({x,x′′}; R) = E[
∏m

j=1(Rj − Yj(x′′))+] = mEI(x′′; R). �

Even though these properties seem obvious and mandatory for a multi-point infill
criterion, they do not hold for mq-EI. To see this, let us consider a case with m = 2
objectives, R a non-dominated reference point, and x and x′ two evaluated designs with
responses y = f(x) = (y1, y2)>, y′ = f(x′) = (y′1, y

′
2)>, satisfying y1 < R1 < y′1 and

y′2 < R2 < y2. By definition, mq-EI({x,x′}; R) =
∏2

j=1 E[max((Rj − yj)+, (Rj − y′j)+)] =

(R1−y1)(R2−y′2) > 0. Furthermore, mq-EI({x,x′′}; R) =
∏2

j=1 E[max((Rj−yj)+, (Rj−
Yj(x

′′))+)] = EI2(x′′;R2)×E[max((R1−y1), (R1−Y1(x′′))+)]> EI2(x′′;R2)×EI1(x′′;R1) =
mEI(x′′; R).

Some bounds can also be computed. We assume q ≥ m which will usually be verified.
Let us denote x(j)∗ the maximizers of EIj(·;Rj) for j = 1, . . . ,m; x(m+1)∗, . . . ,x(q)∗ any
other points and x∗ the maximizer of mEI(·,R). Then,

Mines Saint-Étienne David Gaudrie



5.1 Batch criteria in Bayesian Optimization 95

max
x(1),...,x(q)

mq-EI({x(1), . . . ,x(q)}; R) = max
x(1),...,x(q)

m∏
j=1

q-EIj({x(1), . . . ,x(q)}; Rj)

≥
m∏
j=1

q-EIj({x(1)∗, . . . ,x(m)∗,x(m+1)∗, . . . ,x(q)∗}; Rj) ≥
m∏
j=1

EIj(x
(j)∗; Rj)

This inequality shows that mq-EI’s maximum value is greater than the product of
expected improvement maxima, which shows that this criterion does not minimize
f1(·), . . . , fm(·) jointly. The last term can be further lower bounded,∏m

j=1 EIj(x
(j)∗; R) ≥

∏m
j=1 EIj(x

∗; R) = mEI(x∗; R).
For q-mEI, a trivial lower bound is the mEI maximum:
max

x(1),...,x(q)
q-mEI({x(1), . . . ,x(q)}; R) ≥ max

x
mEI(x; R) = mEI(x∗; R).

These lower bounds indicate that more improvement is expected within the q steps
than during a single mEI step.

5.1.1.3 Kriging Believer strategy

The Kriging Believer strategy (Ginsbourger et al., 2010) was introduced in Section 4.6
for anticipating the behavior of the algorithm during the remaining iterations. Here it
is employed to produce a batch of q points where to evaluate the simulator. At each
iteration, the single-point mEI is maximized and its optimum x∗KB is virtually appended
to the metamodel using the kriging predictions ŷ(x∗KB) as an emulator for f(·). The
metamodel is updated (this procedure only changes the variances, s2(·), which vanish
at x∗KB that will no longer be promoted) and a batch of designs to be evaluated by
the true functions is generated by repeating this procedure q times successively. The
Kriging Believer does not require Monte Carlo simulations being only made of analytical
single-point mEI maximizations, for which even the gradient is available (see Section
4.3.2). The d dimensional space over which it is defined constitutes a supplementary
advantage for its maximization and q-mEI-KB does not suffer as much as q-mEI from
q’s increase. It however heavily depends on the metamodel since each mEI maximizer is
virtually incorporated together with its kriging prediction. This may be a drawback for
functions that are weakly approximated by GPs and/or when the number of observations
is too small to have an accurate surrogate. In the following, we will denote this criterion
q-mEI-KB and compare it with the q-mEI and the sequential mEI.

In the Kriging Believer strategy, the virtual observations ŷ(x∗KB) may dominate R,

which is recomputed (projection of the virtual empirical Pareto front P̂Y onto L) at each
iteration to stay non-dominated. While minor differences have been observed for small
batches (q = 2 or q = 4), the update of R at each virtual step has shown to produce better
results in case of larger batches (q = 10) than keeping the initial R during the q virtual
steps. In the latter case, less diversity was observed as virtual solutions dominating R
attracted the search.
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5.1.1.4 Experiments with the batch targeting criteria

We now investigate the capabilities of the batch versions of mEI and compare them with
the results obtained by the sequential mEI (Section 4.3.2). First, in Section 5.1.1.4, a
comparison between q-mEI and mq-EI is made on the basis of two simple one-dimensional
quadratic functions. This example illustrates why q-mEI is the correct multi-point
extension of mEI. Then, the batch criterion q-mEI is compared with the sequential mEI
for finding the Pareto front center using the MetaNACA test bed (Chapter 3). Finally,
a larger comparison investigates the sequential and batch criteria on analytical functions
and where an off-centered preference region is specified, as in Section 4.4.3.1.

Note that in the experiments, parallel executions of the algorithms are simulated on
sequential computers. As usual in Bayesian optimization, we assume that the computa-
tion time is mainly taken by the calls to the objective functions and there are sufficient
computing resources so that the speed-up is close to q. The term “wall-clock time” will
therefore mean the number of calls to the objective functions divided by the batch size
q.

The q-mEI and mq-EI criteria of formula (5.3) and (5.2) are calculated by Monte Carlo
simulation with NMC = 10, 000 samples. To be more precise, q-mEI (5.3) at a candidate
batch {x(t+1), . . . ,x(t+q)} is computed by averaging over NMC (joint) conditional GPs

Ỹj
(k)

, which leads to the estimator

q̂-mEI({x(t+1), . . . ,x(t+q)}; R) =
1

NMC

NMC∑
k=1

[
max
i=1,...,q

(
m∏
j=1

(Rj − Ỹj
(k)

(x(t+i)))+

)]
. (5.4)

Because the optimization of the criteria is carried out in a q × d dimensional space and
the gradients are not available, in the experiments, the number of iterates evaluated
simultaneously is restricted to q = 2 and 4. Larger batches can be employed with the
Kriging Believer criterion.

Comparison between mq-EI and q-mEI on quadratic functions

To compare q-mEI with mq-EI, we consider a simple example with d = 1, q = 2 and
m = 2 quadratic objective functions:

min
x∈[0,1]

(f1(x), f2(x))

where f1(x) = 0.6x2−0.24x+0.1 and f2(x) = x2−1.8x+1, whose minima are respectively
0.2 and 0.9. The multi-objective optimality conditions (Miettinen, 1998) show that the
Pareto set is PX = [0.2, 0.9] and the Pareto front PY = {y = (f1(x), f2(x))>, x ∈
[0.2, 0.9]}. f1 and f2 are plotted in red in Figure 5.1, both in the design space X = [0, 1]
and in the objective space. Two independent GPs, Y1(·) and Y2(·), are fitted to n = 3
data points, x(1) = 0.05, x(2) = 0.6 and x(3) = 0.95. Figure 5.1 also shows the kriging
predictors f̂1(x) and f̂2(x), as well as the empirical Pareto front.
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Figure 5.1: Top: Kriging predictors and true f1 and f2 functions. Bottom: true and
empirical Pareto fronts.

Let us take the non-dominated reference point R = (0.15, 0.42)> that we will use
both with mq-EI and q-mEI. With that reference point, shown in green in Figure 5.2,
domination of R is achieved when x ∈ [0.42, 0.55].

In a first experiment, we fix x(n+1) (but it is not a training point, its objective values
are handled through the GPs) and search for the x(n+2) maximizing
mq-EI({x(n+1), x(n+2)}; R) and q-mEI({x(n+1), x(n+2)}; R). Besides illustrating the
difference between q-mEI and mq-EI, this experiment may serve as an introduction to
the asynchronous versions of the batch criteria (Janusevskis et al., 2012), further
discussed in Section 5.1.2, which are important in practical parallel implementations: as
soon as one computing node becomes available, the q-points criteria are optimized with
respect to 1 point while keeping the q − 1 other points fixed at their currently running
values. Two different settings are considered whose results are presented in Figures 5.2
and 5.3.

In the first setting, x(n+1) = 0.2 is a bad choice as it corresponds to an extreme point
of the Pareto set and its future response will not dominate R, an information already
seen on the GPs. q-mEI gives x(n+2) = 0.49 which is very close to the (one-step) mEI
maximizer, hence a relevant input as f(x(n+2)) will dominate R. On the contrary, mq-EI
separates the objectives. As x(n+1) is a good input for objective f1(·), the criterion reaches
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its maximum when x(n+2) = 0.86, which is a good input when considering f2(·) alone.

Figure 5.1 tells us that 0.86 is almost the minimizer of f̂2(x). However, the original goal
of dominating R is not achieved.

Figure 5.2: Setting 1: x(n+1) = 0.2 (blue triangle). Top: q-mEI({x(n+1), x}; R) (left)
and mq-EI({x(n+1), x}; R) (right) criteria for the second input in the design space. The
maximum is achieved at different locations for both criteria. Also notice that for training
points x(i) (black dots), mq-EI({x(n+1), x(i)}; R) 6= mEI(x(n+1); R) ≈ 0, contrarily to q-
mEI(x(n+1), x(i)). Bottom: corresponding values for f(x(n+2)). q-mEI provides an input
whose image (pink) dominates R. On the contrary, mq-EI’s solution concentrates on the
minimization of the second objective (purple). The transparent triangles correspond to
the kriging predictions at x(n+2).

In the second setting, x(n+1) = 0.46 is a good point as its image will dominate R. q-
mEI leads to x(n+2) = 0.53 whose image also dominates R. Notice that as 0.46 is chosen
for x(n+1), the point that jointly maximizes q-mEI with that first point is slightly larger
than 0.48 (the mEI maximizer), and provides more diversity in IR. The second input
for maximizing mq-EI is x(n+2) = 0.83, an input that is good only to minimize f2(·) (it
is almost the same as in the previous case) but f(x(n+2)) does not dominate R.

Now, we optimize directly mq-EI and q-mEI with respect to both inputs x(n+1) and
x(n+2). The optimal batches are {0.43, 0.51} for q-mEI and {0.26, 0.87} for mq-EI. Figure
5.4 shows that these inputs lead to IR with q-mEI. On the contrary, the images of mq-
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Figure 5.3: Setting 2: x(n+1) = 0.46 (blue triangle). Top: q-mEI({x(n+1), x}; R) (left)
and mq-EI({x(n+1), x}; R) (right) criteria for the second input in the design space whose
maximum is again achieved at different locations. Bottom: corresponding values for
f(x(n+2)). q-mEI provides an input whose image (pink) also dominates R. On the
contrary, mq-EI returns an input which concentrates on the minimization of the second
objective (purple). The transparent triangles correspond to the kriging predictions at
x(n+2).

EI’s optimum are located at the boundaries of the Pareto front and none of them is in
IR. Figure 5.4 further indicates that q-mEI is high when both inputs are in the part of
the design space that leads to domination of R (gray box) contrarily to mq-EI, which
is high when each input leads to the improvement over one component of R. Note that
even though both criteria are symmetric with respect to their q inputs, the symmetry is
slightly broken in the figure because of the Monte Carlo estimation.

Batch targeting of the Pareto front center

We now compare the multi-point criteria, q-mEI and q-mEI-KB, with the sequential mEI.
As in Section 4.4.3.3, the tests are performed with the MetaNACA benchmark in d = 8
and d = 22 dimensions, and with m = 2 objectives. No user-defined reference point is
provided so the center of the Pareto front is targeted.

The ability of mEI to quickly attain and converge towards central parts of the Pareto
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Figure 5.4: 2 points mq-EI and q-mEI. Top: values obtained in the objective space using
both criteria. The images of x(n+1) and x(n+2) returned by q-mEI (pink) both dominate
R. None of those returned by mq-EI (purple) are in IR, they rather improve over each
function individually. Transparent triangles correspond to the kriging mean predictor.
Bottom: criteria values for varying (x(n+1),x(n+2)). For q-mEI (left), the best x’s, in dark
red, lead to domination of R (gray box). Conversely, for mq-EI (right), good x’s improve
upon R’s components for each objective. The white dots correspond to both optima.
The purple square is an example of a training point pair where q-mEI is null but mq-EI
is not (this holds for all other training point pairs that are not shown).

front in comparison with the Bayesian EHI infill criterion and with NSGA-II was high-
lighted in Chapter 4. For the sake of clarity, only mEI’s results are recalled here since
it significantly outperformed EHI and NSGA-II. As in Table 4.4, the attainment time of
a central part of PY (I0.1, dominated by R0.1) and the hypervolume restricted to it are
the comparison metrics. Since q-mEI’s interest resides in the distributed computation of
f(·), an additional indicator is the number of calls to the infill criterion, denoted #crit.
Supposing q supplementary designs are evaluated after each call to the infill criterion, this
metric enables the comparison of attainment times at approximately the same wall-clock
time. mEI and q-mEI’s performance are reported at different times of the optimization
to compare the criteria at both the same number of function evaluations and the same
number of iterations.

Mines Saint-Étienne David Gaudrie



5.1 Batch criteria in Bayesian Optimization 101

Before turning to statistically more significant comparisons where runs are repeated,
Figure 5.5 allows a graphical comparison of the effects of the sequential and batch mEI
criteria at constant wall-clock time or constant number of calls to the objective functions,
on the MetaNACA in 8 dimensions. Under our assumptions of costly objective functions,
2-mEI with 2 × 10 iterations and mEI with 10 iterations roughly need the same wall-
clock time. Similarly, 4-mEI with 4 × 5 iterations and mEI with fourth budget take
the same time. On both rows of the figure, it is seen that at the same wall-clock
time, q-mEI’s approximations to the front center (left) are improved when compared to
mEI’s (right). For an equal number of added points, 2-mEI and mEI provide equivalent
approximations to the center, and 4-mEI is slightly degraded (but the time is divided by
4). At the same number of evaluations, the small deterioration of q-mEI’s results over
those of mEI is explained as follows: when q increases, the batch versions of the criterion
affect resources (i.e., choose the x’s to be calculated and re-estimate the center) with
increasingly incomplete information.

Tables 5.1 and 5.2 report the averages and standard deviations of the performance
metrics over 10 independent runs for mEI, q-mEI and q-mEI-KB with q = 2 and 4 (and
10 in the KB version). Because of the d× q dimensional criterion input space, q-mEI is
only considered with q = 2 for the MetaNACA 22. The number of considered function
evaluations is reported in the row “Budget”, where the first figure stands for the initial
DoE (n = 20 for d = 8 and n = 50 for d = 22). mEIhalf and mEIfourth correspond to
optimizations stopped at half or fourth the allowed iterations, p = 20 for d = 8 and
p = 50 for d = 22. The t subscript indicates q-mEI is considered at the same wall clock
time, i.e. after p iterations during which p×q supplementary design have been evaluated,
and the blue color indicates that even less than p iterations were performed. In absence
of the subscript, q-mEI runs with p additional designs are considered. As in Chapter 4,
if at least one run does not enter in I0.1, an estimator of the empirical runtime is given
in red together with the number of successful runs in brackets.

These empirical results indicate that at the same wall-clock time, q-mEI outperforms
mEI in attainment time of R0.1: even though mEI attains this central target after less
function evaluations, q-mEI is able to perform q calls to f(·) during one iteration, which
leads to a faster attainment of the center in terms of calls to the criterion with q-mEI than
with mEI. Generally, at a fixed number of function evaluations, the hypervolume lightly
decreases with the batch size, as q less metamodel updates and center-estimations are
performed. However, at an equal number of iterations, I0.1 is attained faster in wall-clock
time and the hypervolume becomes larger for increasing q’s. The number of iterations
after which the convergence criterion described in Section 4.5 is triggered (not reported
here) also diminishes when using the multi-point criteria: the second phase of C-EHI
would start earlier in wall-clock time, in a “true C-EHI” optimization1.

The Kriging Believer strategy performs good on these test problems and outperforms
the q-mEI criterion. Additionally, larger batches (q = 10) can be employed, and exhibit
good performance after few iterations. For instance, 10mEI-KB largely outperforms

1For comparison purposes, we continue targeting the center even if local convergence is detected.
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Figure 5.5: Top: example run using 2-mEI (left) with 2 × 10 additional designs, and
mEI with 20 (center) and 10 (right) iterations. Bottom: example run using 4-mEI (left)
with 4 × 5 additional designs, and mEI with 5 iterations (right). At a fixed wall-clock
time, q-mEI converges more accurately to the center than mEI. At a fixed number of
evaluations, the degradation is small.

other variants in terms of hypervolume after solely 8 supplementary iterations on the
MetaNACA 8. These test functions may nevertheless overestimate the performance of
KB strategies, because they stem from a Gaussian Process and may be learned easily.

Runs which do not attain I0.1 are nonetheless more frequent with multi-point criteria,
especially on the MetaNACA 22. This is related to less metamodel updates and center
estimations, which sometimes lead to the targeting of a slightly off-centered run, assessed
as bad by the performance metrics. This bias will not be present in the following section,
where the targeted area is defined through a user-defined R.
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mEI q-mEI
Criterion mEI mEIhalf mEIfourth 2mEI 2mEIt 4mEI 4mEIt
Budget 20+20 20+20/2 20+20/4 20+2×10 20+2×20 20+4×5 20+4×20

#f(·) to target 28.4 (5.4) 36.9 [7] 72.2 [3] 35.6 [8] 33.1 (5.7) 71.9 [4] 44.5 (17.3)

#crit to target 8.4 (5.4) 8.4 [7] 5.5 [3] 5.3 [8] 6.6 (2.9) 5.5 [4] 6.1 (4.3)

Hypervolume 0.256 (0.09) 0.134 (0.15) 0.077 (0.13) 0.170 (0.13) 0.280 (0.16) 0.056 (0.09) 0.296 (0.19)

q-mEI-KB
Criterion 2mEI-KB 2mEI-KBt 4mEI-KB 4mEI-KBt 10mEI-KB 10mEI-KBt

Budget 20+2×10 20+2×20 20+4×5 20+4×20 20+10×2 20+10×8
#f(·) to target 34.2 [9] 33 (8.9) 57.6 [5] 38.5 (11.3) 49.2 [6] 37.2 (13.7)

#crit to target 6.0 [9] 6.5 (2.3) 4.4 [5] 4.6 (11.3) 2.8 [6] 2.5 (1.4)

Hypervolume 0.221 (0.14) 0.361 (0.12) 0.128 (0.16) 0.466 (0.25) 0.040 (0.08) 0.531 (0.17)

Table 5.1: MetaNACA 8 problem, indicators computed in I0.1 for mEI, q-mEI and q-
mEI-KB at identical number of evaluations or wall-clock times. Averages (std. deviation)
over 10 runs.

mEI q-mEI
Criterion mEI mEIhalf 2mEI 2mEIt
Budget 50+50 50+50/2 50+2×25 50+2×50

#f(·) to target 56.3 (7.2) 56.3 (7.2) 71.3 [8] 71.3 [8]

#crit to target 6.3 (7.2) 6.3 (7.2) 4.7 [8] 4.7 [8]

Hypervolume 0.222 (0.12) 0.139 (0.10) 0.085 (0.09) 0.119 (0.10)

q-mEI-KB
Criterion 2mEI-KB 2mEI-KBt 4mEI-KB 4mEI-KBt 10mEI-KB 10mEI-KBt

Budget 50+2×25 50+2×50 50+4×12 50+4×25 50+10×5 50+10×25
#f(·) to target 73.0 [8] 68.9 (23.0) 63.6 (12.7) 63.6 (12.7) 69.1 [9] 59.7 (7.2)

#crit to target 3.3 [8] 5.3 (5.8) 4 (3.1) 4 (3.1) 1.9 [9] 1.7 (0.7)

Hypervolume 0.121 (0.11) 0.260 (0.14) 0.215 (0.14) 0.398 (0.16) 0.100 (0.08) 0.440 (0.26)

Table 5.2: MetaNACA 22 problem, indicators computed in I0.1 for mEI, q-mEI and q-
mEI-KB at identical number of evaluations or wall-clock times. Averages (std. deviation)
over 10 runs.

Batch targeting of a user-defined region

Let us analyze the ability of q-mEI to attain a region of the Pareto front defined through
a reference point R. Following the experiments of Section 4.4.3.1, ZDT3 (in dimension
d = 4) and P1 are employed, and R is taken as the Nadir point of the second sub-front,
R = (0.258, 0.670)>, and R = (10,−23)>, respectively.

The sequential mEI is compared to q-mEI and to q-mEI-KB for batches of q = 2 and
q = 4 designs. The initial DoE has size n = 20 for ZDT3 and n = 8 for P1. p = 20 or
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p = 12 additional iterations are allowed. Remember that during these 20 (respectively
12) iterations, q-mEI and q-mEI-KB enables to evaluate f(·) 20×q (12×q) times, against
20 or 12 function evaluations for mEI.

As in the previous section, to compare the criteria at a fixed budget, the optimization
is not stopped nor R-EHI’s second phase starts once the local convergence criterion to the
Pareto front is triggered, even though this situation frequently occurs. The same metrics
(hypervolume, attainment times) are employed and shown in Tables 5.3 and 5.4. They
are now restricted to R instead of the central R0.1. Additionally, the number of solutions
that eventually dominate R is provided. This indicator does not express convergence to
the Pareto front, but the capability to produce user-desired outputs.

q-mEI q-mEI-KB
Criterion mEI 2mEI 2mEIt 4mEI 4mEIt 2mEI-KB 2mEI-KBt 4mEI-KB 4mEI-KBt

Budget 20+20 20+2×10 20+2×20 20+4×5 20+4×20 20+2×10 20+2×20 20+4×5 20+4×20
#f(·) to target 24.2 (2.6) 26.3 (4.3) 26.3 (4.3) 32.7 [9] 32.5 (6.6) 24.2 (2.6) 24.2 (2.6) 33.8 [8] 33.2 (15.8)

#crit to target 4.2 (2.6) 3.2 (2.2) 3.2 (2.2) 2.6 [9] 3.1 (1.7) 2.4 (1.3) 2.4 (1.3) 2.4 [8] 3.9 (4.0)

Hypervolume 0.634 (0.078)0.548 (0.201)0.621 (0.147)0.424 (0.227)0.622 (0.088)0.513 (0.149)0.513 (0.149)0.445 (0.251)0.518 (0.201)

Solutions � R 4.1 (1.8) 2.8 (1.0) 3.6 (0.8) 1.5 (1.0) 2.4 (1.0) 2.4 (0.7) 2.4 (0.7) 2.1 (0.9) 2.2 (0.8)

Table 5.3: Comparison of the different infill criteria on the ZDT3 function. The results
are averaged over 10 runs, and the standard deviation is shown in brackets.

q-mEI q-mEI-KB
Criterion mEI 2mEI 2mEIt 4mEI 4mEIt 2mEI-KB 2mEI-KBt 4mEI-KB 4mEI-KBt

Budget 8+12 8+2×6 8+2×12 8+4×3 8+4×12 8+2×6 8+2×12 8+4×3 8+4×12
#f(·) to target 12.6 (3.5) 12.7 (2.6) 12.7 (2.6) 15.1 (3.9) 15.1 (3.9) 12.6 [9] 13 (7.8) 15.5 [8] 14.3 (7.3)

#crit to target 4.6 (3.5) 2.4 (1.3) 2.4 (1.3) 1.8 (1.0) 1.8 (1.0) 3.0 [9] 3.4 (2.9) 2.5 [8] 2.4 (1.4)

Hypervolume 0.620 (0.165)0.624 (0.063)0.686 (0.042)0.437 (0.207)0.718 (0.054)0.393 (0.214)0.451 (0.167)0.205 (0.190)0.540 (0.179)

Solutions � R 6.5 (2.5) 5.6 (1) 9.7 (1.1) 2.6 (1.6) 11.4 (2.1) 1.8 (0.9) 2.3 (1.5) 1.2 (0.8) 4.1 (3.1)

Table 5.4: Comparison of the different infill criteria on the P1 function. The results are
averaged over 10 runs, and the standard deviation is shown in brackets.

As observed when the center of PY was targeted (Tables 5.1 and 5.2), the multi-point
q-mEI and q-mEI-KB are able to attain IR faster than mEI in terms of wall-clock time.
At the same number of function evaluations, the hypervolume lightly diminishes with q,
but is larger when the results are compared at the same wall-clock time. Here, q-mEI
performs better than q-mEI-KB. The P1 functions are less easily learned by a GP and the
small number of observations degrades the performance of the Kriging Believer strategy.
q-mEI-KB does not attain IR during the first p additional function evaluations in all
runs, and the relatively large attainment time of 4mEI-KBt on ZDT3 is due to one run
which took 19 iterations (93 function evaluations in total) before entering in IR. The

ZDT3 functions are easily learned by the GP but as the updated reference point R̂ has
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quickly attained PY , q-mEI and q-mEI-KB become exploratory, hence the little increase
in hypervolume between q-mEI and q-mEIt (and between q-mEI-KB and q-mEI-KBt).
This also the reason why fewer designs dominating R are found by q-mEI and q-mEI-KB;
R̂ attains PY slower with mEI.

5.1.2 Towards a multi-point EHI: q-EHI and variants

5.1.2.1 The q-EHI criterion

A generic form of the q-EI (5.3) is E[ max
i=1,...,q

(I(x(t+i)))], where I is the improvement

measure of the infill criterion, evaluated at one design x ∈ X. In the case of the EI,
I is the magnitude of progress measured by I(z) = (fmin − Y (z))+

2. In the framework
of EHI, the latter is the hypervolume increase: I(z) = IH(PY ∪ {Y(z)}; R)− IH(PY ; R)
where PY stands for the current approximation front, Y(·) for the m metamodels, IH
for the hypervolume indicator (Zitzler, 1999) and R is the reference point. Following the
EI-to-q-EI extension, a possible formulation of q-EHI is therefore

q-EHImax({x(t+1), . . . ,x(t+q)}; R) = E[ max
i=1,...,q

IH(PY∪{Y(x(t+i))}; R)]−IH(PY ; R). (5.5)

However, the max operator may not be appropriate for multi-objective optimization
based on the hypervolume measure. Indeed, it is a competition operator between the
q points. While this can be understood in a mono-objective setting, where all designs
share the same goal (improving over fmin), or in the m-EI sense (improving over R), this
is less meaningful with the hypervolume indicator. Since the improvement function aims
at increasing the hypervolume the most after adding the batch of q points, the indicator
will benefit from collaborative work. Instead of trying to individually improve the most
the hypervolume indicator, the q designs should share tasks and focus on different parts
where to improve PY to jointly increase IH the most. Instead of (5.5), the following
multi-point EHI which looks for the hypervolume increase brought by {x(t+1), . . . ,x(t+q)}
can therefore be considered (Feliot, 2017):

q-EHI({x(t+1), . . . ,x(t+q)}; R) = E[IH(PY ∪ {Y(x(t+1), . . . ,x(t+q))}; R)]− IH(PY ; R).
(5.6)

5.1.2.2 Optimization of the criterion and hypervolume computation

Like the q-EI, the maximization of q-EHI is carried out in a space of dimension d× q. In
our implementation using the GPareto (Binois and Picheny, 2015) package, the analytical
formula of the regular EHI is solely available for m = 2 or 3 objectives (Couckuyt et al.,
2014; Emmerich et al., 2006, 2016; Yang et al., 2017) and we rely on Monte Carlo methods

2A threshold T can be used in lieu of fmin.
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when m > 3 (Binois and Picheny, 2015; Emmerich et al., 2006) because the expression
of EHI for any m has been found very recently only (Yang et al., 2019a). An analytical
formula for q-EHI is out of reach, as well as an expression for its gradient, which has
been discovered recently for EHI in bi-objective problems (Yang et al., 2019b). Both
criteria are estimated using Monte Carlo methods with NMC samples: given a batch
X = {x(t+1), . . . ,x(t+q)}, NMC simulations of the joint Y(X) are carried out. The resulting
NMC simulated Pareto fronts are averaged to estimate (5.5) or (5.6). q-EHI’s Monte Carlo
estimation is

q̂-EHI({x(t+1), . . . ,x(t+q)}; R)

=
1

NMC

NMC∑
k=1

[(
IH(PY ∪ {Ỹ(k)(x(t+1)), . . . , Ỹ(k)(x(t+q))}; R)− IH(PY ; R)

)]
(5.7)

where Ỹ(k)(x) is the k-th simulated GP at x.

The cost of q-EHI quickly becomes non-negligible because of the large number of
hypervolume computations required (Beume et al., 2009; While et al., 2012). In our
implementation, we use the genetic algorithm genoud (Mebane Jr et al., 2011) with a
fixed population size and number of generations whose product is S. In reason of the
curse of dimensionality, we make the population proportional to the criterion’s dimension:
S ∝ d̃ := d× q. During the optimization, q-EHI or q-EHImax are therefore evaluated αdq
times.

As (5.5) and (5.6) are evaluated by means of Monte Carlo simulations, NMC hypervol-
umes are averaged during one q-EHI evaluation. For q-EHImax, the maximum among q
hypervolumes is averaged over NMC simulations: qNMC hypervolumes calculations are
therefore required. When NMC = 10, 000, our settings lead to more than 15,000,000
hypervolume calculations for q = 2, and more than 30,000,000 when q = 4. This
is a potential huge drawback, since the computation time of the hypervolume grows
exponentially in the number of objectives. Here, we have considered low d, q and m’s, but
the number of required hypervolume calculations increases for more complex problems.
Table 5.5 gives insights in the computation time of one hypervolume for varying numbers
of non-dominated points p and objectives m in ms. Our implementation extends the
current version of GPareto (Binois and Picheny, 2015), relying on the emoa package.
Even though the computation of hypervolumes is an active field of research (Jaszkiewicz,
2018; Lacour et al., 2017; Russo and Francisco, 2014) and faster implementations than
ours to compute hypervolumes exist, when the number of objectives and of non-dominated
points grows, the computation and optimization of the criterion may become expensive.
A smaller number of samples accelerates q-EHI’s computation at the expense of a weaker
estimation. Similarly to Janusevskis et al. (2011) in the mono-objective q-EI, it might
be possible to derive bounds on q-EHI’s precision to choose NMC accordingly.
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m/p 5 10 50 100
2 2.7×10−3 4.8×10−3 5.7×10−3 7.2×10−3

3 5.7×10−3 6.8×10−3 18×10−3 24×10−3

4 6.3×10−3 9×10−3 75×10−3 177×10−3

5 7×10−3 11×10−3 0.3 2.2
6 8.2×10−3 25×10−3 2.1 33.5

Table 5.5: Hypervolume computation time (ms) for different number of objectives (m, in
rows) and non-dominated points (p, in columns).

5.1.2.3 Other EHI-based multi-point multi-objective infill criteria

In this section, two multi-point multi-objective infill criteria relying solely on the one step
look ahead EHI are further introduced.

Asynchronous version

If the expensive functions f1(·), . . . , fm(·) have varying runtimes depending on the eval-
uated design x, it may be worth considering an asynchronous criterion, in order to run
a new experiment as soon as a resource gets available. Given q − 1 pending designs
x(t+1), . . . ,x(t+q−1), an asynchronous q-EHI is

q-EHIasync(x; {x(t+1), . . . ,x(t+q−1)}; R) = E[IH(PY∪{Y(x,x(t+1), . . . ,x(t+q−1))}; R)]−IH(PY ; R)
(5.8)

More than permitting the evaluation of the fj(·)’s as soon as a resource gets available,
(5.8) presents the additional advantage of being defined in a smaller d (instead of d× q)
dimensional space in which the maximization can be carried out more efficiently since
x(t+1), . . . ,x(t+q−1) are fixed. The maximization of q-EHIasync returns the design which
is optimal given that x(t+1), . . . ,x(t+q−1) are currently being evaluated. In essence, it
resembles to the Kriging Believer strategy defined in the next section, but requires GP
simulations due to the correlation between x,x(t+1), . . . ,x(t+q−1).

Kriging Believer Strategy

In Horn et al. (2015), a Kriging Believer (KB) strategy was proposed as multi-point multi-
objective infill criteria. During one q-EHI-KB iteration, the (one-point) EHI maximizer
is sought and the metamodel is virtually updated at this location using the kriging
predictions as an emulator for f(·). This sets the kriging variance of the latter to 0 so
that it will no longer be promoted by the EHI. A batch of q designs to be evaluated
by the true functions is generated by repeating this procedure q times successively.
Compared with the other criteria, the Kriging Believer strategy has the advantage of
maximizing the EHI criterion in dimension d. Moreover, it does not require Monte Carlo
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simulations3 since the expectation of the GP is only considered at one x contrarily to the
previous q-EHI variants, in which conditional GP simulations were required to take the
correlation between the q designs into account. The drawback of the q-EHI-KB is that
it heavily depends on the metamodel since each EHI maximizer is virtually incorporated
together with its kriging prediction. This may be a drawback for functions that are
weakly approximated by GPs and/or when the number of observations is too small to
have an accurate surrogate.

5.1.2.4 Complexity comparison

Apart from the evaluation of f(·), the main complexity of the algorithm resides in q-EHI’s
evaluation and maximization. The cost of the kriging model computation or update is
upper bounded by the cost of inverting an n × n matrix. This cost is usually of a
magnitude smaller than the computation and optimization of hypervolume-based infill
criteria, especially for more than 2 objectives. The cost of simulating the GPs at q
locations when Monte Carlo methods are needed to approximate the criterion requires
one Cholesky decomposition of a matrix of small size q× q, and one matrix product with
matrices of respective sizes q× q and q×NMC . This is also negligible compared with the
computation of the hypervolume of all NMC simulated Pareto fronts to be averaged. In
variants where the metamodels need to be updated and/or called within the maximization
(as for q-EHI-KB or the asynchronous q-EHI) these computation times are also neglected.

Therefore, we compare the complexities of the multi-point EHI variants in terms of
hypervolume computations. NMC GPs are simulated when the criterion has to be esti-
mated using Monte Carlo techniques, and d is the dimension of the problem (dimension
of the fj(·)’s). We consider EHI to be analytical, even though it also requires Monte
Carlo simulations when m > 3 in our implementations. d̃ is the dimension of the infill
criterion, d̃ = d for EHI’s maximization but d̃ = q × d for q-EHI. Notice that there is a
symmetry in the q × d dimensional q-EHI space since q-EHI({x,x′}) = q-EHI({x′,x})
which might be exploited for enhancing the criterion’s maximization.

As mentioned, the criterion is maximized with a genetic algorithm which evaluates the
criterion αd̃ times (Section 5.1.2.2).

• EHI’s maximization requires αd̃ = αd calls to EHI. It is analytically known and
does not require NMC hypervolume computations.

• q-EHI’s maximization requires αd̃ = αdq calls to q-EHI. The latter requires NMC

GP simulations and hypervolume computations. The total cost is therefore
αdqNMC .

• q-EHImax’s maximization requires αd̃ = αdq calls to q-EHImax. The latter requires
NMC GP simulations. As the hypervolume contribution of each of the q points is

3For m > 3 the EHI computation in GPareto (Binois and Picheny, 2015) requires Monte Carlo
methods (Emmerich et al., 2006). An analytical expression for EHI has nonetheless been found recently
for any m in (Yang et al., 2019a).
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considered, it requires qNMC hypervolume computations per q-EHImax evaluation.
Hence, the total cost is αd̃qNMC = αdq2NMC .

• EHIasync’s maximization is equivalent to q successive q-EHI maximizations where q−
1 variables are freezed, hence d̃ = d. It however requires Monte Carlo estimations.
The total cost is αdqNMC .

• q-EHI-KB’s maximization is equivalent to q successive EHI maximizations per
iteration. It does not require simulations. The total cost is therefore αd̃q = αdq.

The following table summarizes the normalized number of hypervolume computations
during one criterion maximization. EHI is of course the cheapest criterion but q-EHI-KB
is only q times more expensive. q-EHI and q-EHIasync are much more expensive because
they rely on Monte Carlo simulations. q-EHImax is the most cumbersome criterion. When
EHI needs to be estimated by simulation (i.e. when m > 3 in the current implementation
of GPareto (Binois and Picheny, 2015), an extra NMC term has to be added to EHI and to
EHI-KB. Since q � NMC , q-EHI, q-EHImax and q-EHIasync are less dramatically expensive
than EHI and q-EHI-KB in such cases. However, as a formula for EHI has recently been
discovered for any m by Yang et al. (2019a), in the future, it may no longer be necessary
to resort to Monte Carlo simulations for estimating the single-point criterion, for any m.

Criterion Cost
EHI 1

q-EHI qNMC

q-EHImax q2NMC

q-EHI-KB q
q-EHIasync qNMC

Table 5.6: Relative cost of the criteria maximization in terms of hypervolume
computations.

5.1.2.5 Experiments

We now compare the performance of q-EHImax (5.5) and q-EHI (5.6), as well as the
sequential EHI on two well-known test functions. The first one is the P1 problem (Parr,
2013) and the second one the ZDT1 problem (Zitzler et al., 2000). Both have d = 2
dimensions and m = 2 objectives which is ideal for optimizing the criterion and analysis
of the results. As we are solely interested in the behavior of the multi-point algorithms
and not in any artifact related to the reference point, we fix R = (132.7,−21.1)> and
R = (1, 1)> for P1 and ZDT1 respectively, which is the Nadir point of each problem.
Experiments are initialized with a space-filling DoE of n = 8 designs.

The third benchmark is the MetaNACA test bed (Chapter 3). We use the problem
with d = 8 dimensions and m = 2 objectives, and an initial space-filling DoE of n = 20
observations. Even though they are the mean predictor of a Gaussian Process, the

Mines Saint-Étienne David Gaudrie



110 5 Extensions of the C-EHI/R-EHI algorithm

MetaNACA’s objective functions are slightly less regular than the ones considered in
P1 and ZDT1.

The additional multi-point criteria introduced in Section 5.1.2.3 (namely q-EHIasync

and q-EHI-KB) are also benchmarked for further comparison. All experiments are run
for 12 additional iterations and carried out for batches of size q = 2 or q = 4. The final
approximation fronts obtained by the multi-point EHI’s or by the sequential EHI are
compared at the same number of function evaluations, or at the same wall-clock time
(during which q more function evaluations can be carried out assuming that q-EHI’s
maximization time is negligible compared with f(·)’s evaluation). The chosen metric
for analyzing the results is the hypervolume indicator (Zitzler, 1999) computed up to
R. Table 5.7 reports the mean of this metric obtained by the sequential EHI. Table 5.8
compares the performance of q-EHI and q-EHImax with q = 2 infills, and with q = 4
in Table 5.9. Tables 5.10 and 5.11 record the performance of EHIasync and EHI-KB
respectively, both for q = 2 and q = 4. To facilitate comparison at different number
of function evaluations or at different wall-clock times, the hypervolume indicator is
computed at different moments during the optimization. Figure 5.6 visually compares
the hypervolume indicator for the different infill criteria, at the same wall clock time (left
column) and with regard to the number of function evaluations (right column).

Criterion EHI
#f(·) 12 6 3

P1 0.913 (0.029) 0.789 (0.068) 0.635 (0.107)
ZDT1 0.939 (0.003) 0.885 (0.007) 0.786 (0.017)
NACA 0.748 (0.067) 0.644 (0.094) 0.587 (0.085)

Table 5.7: Hypervolume indicator obtained by EHI for different computational budgets
and benchmarks. Averages (std. deviation) over 10 runs.

Criterion 2-EHI 2-EHImax

#f(·) 2× 12 2× 6 2× 12 2× 6
P1 0.963 (0.007) 0.898 (0.036) 0.949 (0.008) 0.882 (0.026)

ZDT1 0.970 (0.001) 0.939 (0.002) 0.961 (0.003) 0.926 (0.006)
NACA 0.831 (0.046) 0.718 (0.093) 0.807 (0.046) 0.725 (0.077)

Table 5.8: Hypervolume indicator obtained by q-EHI for different computational budgets
and benchmarks with q = 2. Averages (std. deviation) over 10 runs.

These results indicate that at the same number of function evaluations (p = 12),
EHI performs slightly better than all multi-point q-EHI variants. However when f(·) is
expensive to evaluate, which is a common assumption in Bayesian optimization, and is
much more costly than maximizing the infill criterion4, it is worth comparing the criteria

4This assumption clearly depends on the evaluation time of f(·) since some criteria are no longer
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Criterion 4-EHI 4-EHImax

#f(·) 4× 12 4× 3 4× 12 4× 3
P1 0.984 (0.002) 0.856 (0.054) 0.964 (0.005) 0.817 (0.063)

ZDT1 0.980 (0.001) 0.934 (0.004) 0.960 (0.004) 0.883 (0.012)
NACA 0.866 (0.026) 0.705 (0.065) 0.845 (0.018) 0.712 (0.053)

Table 5.9: Hypervolume indicator obtained by q-EHI for different computational budgets
and benchmarks with q = 4. Averages (std. deviation) over 10 runs.

Criterion 2-EHIasync 4-EHIasync

#f(·) 2× 12 2× 6 4× 12 4× 3
P1 0.963 (0.009) 0.893 (0.048) 0.983 (0.002) 0.852 (0.061)

ZDT1 0.970 (0.001) 0.940 (0.003) 0.983 (0.001) 0.933 (0.003)
NACA 0.841 (0.038) 0.744 (0.064) 0.887 (0.025) 0.714 (0.049)

Table 5.10: Hypervolume indicator obtained by q-EHIasync for different computational
budgets and benchmarks with q = 2 and q = 4. Averages (std. deviation) over 10 runs.

Criterion 2-EHI-KB 4-EHI-KB
#f(·) 2× 12 2× 6 4× 12 4× 3

P1 0.965 (0.006) 0.908 (0.038) 0.972 (0.005) 0.860 (0.059)
ZDT1 0.970 (0.001) 0.939 (0.003) 0.985 (0) 0.941 (0.004)
NACA 0.830 (0.031) 0.715 (0.097) 0.897 (0.028) 0.703 (0.093)

Table 5.11: Hypervolume indicator obtained by q-EHI-KB for different computational
budgets and benchmarks with q = 2 and q = 4. Averages (std. deviation) over 10 runs.

at the same number of iterations. In this setting, q times more function evaluations
can be obtained by the parallel criteria, and the hypervolume indicator reports a better
uncovering of the Pareto front at the same wall clock time (i.e. the number of iterations).
At the same number of function evaluations (2×6 or 4×3) the q-EHI variants with q = 2
outperform those where q = 4 which is explained by the higher number of metamodel
updates (6 against 3). But at the same number of iterations (12), the variants which
evaluate batches of q = 4 designs per iteration lead to a higher hypervolume than with
q = 2, because twice more designs have been evaluated.

Even though being the natural extension of q-EI, the q-EHImax criterion behaves worse
than q-EHI in all experiments and for all budgets (except in the NACA case in the earlier
iterations, i.e., 2×6 or 4×3). This is explained by the fact that the q points are driven
towards the same part of the Pareto front, since each design aims at individually leading
to the largest hypervolume growth instead of collaborating to achieve a well-distributed

“easy to be maximized”. Here, the additional cost of maximizing the criterion is neglected in regard
of f(·)’s evaluations, and comparisons at “the same wall-clock time” correspond to the same number of
iterations, during which q evaluations are carried out.
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Figure 5.6: Hypervolume indicator comparison for the different infill criteria, with respect
to the number of iterations (left column) or the number of function evaluations (right
column). Curves with ◦ correspond to q = 2 and curves with * to q = 4. Top row: P1,
middle row: ZDT1, bottom row: NACA.

and larger increase in hypervolume.

Besides from its practical interest, the asynchronous version of the q-EHI criterion,
q-EHIasync, behaves even slightly better than q-EHI. This might be due to the easier
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optimization of the criterion, carried out in a q times lower dimensional space since only
one design is sought given the q − 1 pending evaluations.

Surprisingly, the Kriging Believer strategy in which EHI maximizers are virtually
appended to the metamodel using the kriging mean predictor to obtain a q-points batch
behaves as well or even better than the “truly multi-point” criteria, q-EHI and q-EHIasync.
Maybe the three considered benchmarks are too regular and easy to be learned by a
metamodel. Performance might be degraded in cases where believing in the kriging
predictor is questionable. Nonetheless, this variant is the cheapest multi-point criterion,
since it does not require the averaging of hypervolumes and its maximization is carried
out in a d dimensional space, which makes it an attractive criterion.

5.1.3 Concluding remarks

In this section, we have considered the problem of finding a batch of q points where
to evaluate the functions of a multi-objective problem in parallel. We have derived an
optimal q points criterion for multi-objective optimization based on the mEI and on the
hypervolume measure, called q-mEI and q-EHI, respectively. Assuming the functions to
be optimized are expensive but can be computed in parallel, q-mEI and q-EHI attain
faster the region of interest and achieve better convergence towards the Pareto front than
their single-point counterparts, mEI and EHI, in wall-clock time.

Being computed by averaging the improvement of GP simulations, q-mEI and especially
q-EHI’s calculation and maximization may be expensive. Variants that come with an
easier maximization and/or a reduced cost have also been investigated in this section.
The first one is q-EHIasync, an asynchronous version of q-EHI, which looks for the optimal
design where to start a new experiment while a batch of q − 1 designs is currently
evaluated. The original aim of this criterion resides in its practical interest: in case the
objective functions f(·) have heterogeneous running times depending on the design x,
it avoids waiting for the completion of all q simulations before launching a new batch;
a new experiment is started as soon as a resource gets available instead. It is further
computationally attractive: the maximization of this greedy acquisition function is more
tractable by reason of the dimension reduction of the criterion input space (d instead
of q × d). In the reported experiments, q-EHIasync has shown to perform comparably to
q-EHI.

A second less expensive q points multi-objective criterion, hinging on a Kriging Believer
strategy, q-mEI-KB or q-EHI-KB, respectively, has also been investigated. It consists in
q combined maximizations of mEI (respectively EHI) and emulations using the kriging
mean predictor to return a batch of q designs. It does not require expensive Monte Carlo
methods and operates in a space of smaller dimension, d, hence it can be maximized faster.
If available, the gradient of the infill criterion is also employed easing its maximization.
Surprisingly, this cheaper alternative which blindly believes in the surrogate model has
also shown comparable performance with q-EHI on the three benchmark problems studied
in this section. In the case of mEI, its performance was comparable to that of q-mEI too.

The high-dimensional q-mEI and q-EHI maximization may be helped by combining
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the optimizer with the gradient of the infill criterion. q-mEI and q-EHI are not known
in closed form and neither are their gradients. Reparameterization tricks (Kingma and
Welling, 2014) nevertheless constitute a promising direction to obtain a proxy for q-
mEI and q-EHI’s gradient stemming from the Monte Carlo sample (Wang et al., 2016;
Wilson et al., 2018; Wu and Frazier, 2016). This technique has led to a more efficient
maximization of the q-EI criterion in Frazier and Clark (2012); Marmin et al. (2015), and
may accelerate q-mEI and q-EHI’s maximization. A better criterion maximizer might be
found, which may further improve q-mEI and q-EHI’s performance.

Reducing q-EHI’s complexity remains a main challenge in future research since it would
allow a fast maximization of the criterion and its use in moderately-expensive problems.
Similarly to Yang et al. (2019c), searching the mEI maximizer in q regions of the objective
space is a different way towards batch Bayesian multi-objective optimization, at a lower
computational burden, further discussed in Section 5.3.3.

5.2 Constraints in Bayesian Multi-Objective Opti-

mization

Building independent surrogate models G1(·), . . . , Gmc(·) for the mc constraints and
incorporating this knowledge within the infill criterion is the most common way to
handle constraints in Bayesian optimization, see Section 2.4, and straightforwardly ex-
tends to constrained multi-objective problems. In this section, we explain the modi-
fications brought to the C-EHI/R-EHI algorithm such that each of its steps considers
the fulfillment of constraints. We consider multi-objective problems with mc constraints
(g1(·), . . . , gmc(·))> =: g(·),

min
x∈X

g1(x)≤0

...
gmc (x)≤0

(f1(x), . . . , fm(x)) (5.9)

The “�” ordering is extended to account for the feasibility of designs (Feliot, 2017;
Feliot et al., 2017), called constrained Pareto dominance.

Definition 5.1. (Constrained Pareto dominance). Denoting a = [ao, ac] ∈ Rm+mc the
augmented vector (where ao stand for the objective values and ac for the constraint values)
a � b in one of the following cases:

• a is feasible and b is not feasible (i.e. ac � 0mc
5 and bc � 0mc);

• a and b are feasible and ao � bo;

• a and b are not feasible but (ac)+ � (bc)+.

5By a minor abuse of notations, we write ac � 0mc even though no strict inequality aci < 0 is required
here.
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With this extended rule, feasible designs always dominate unfeasible ones regardless of
the objective values, and the Pareto dominance in the space of constraints is employed for
comparing non-feasible solutions, to quantify which one is the least worst. In this case,
instead of the brute constraint value, the amount by which gj(·) is violated (0 when the
constraint is satisfied) is considered through the (·)+ operator to not compare the degree
of constraint satisfaction. Remark that the number of violated constraints is not taken
into account for domination in the constraint space. For instance, if a solution a violates
mc − 1 constraints and b does not satisfy the remaining one, a and b are incomparable
even though one might wish b � a. Figure 5.7 shows a front with constrained Pareto
dominance. PY (black stairs) is the set of non dominated points among the feasible
designs (black dots). Even though some of them are non-dominated in the (f1, f2) space,
perhaps dominating some solutions, non feasible solutions (gray dots) are filtered out for
constrained Pareto dominance.

f1

f 2

0 1 3 4

0
1

3
4

R

Figure 5.7: Illustration of constrained Pareto dominance: PY is the non-dominated set
among the feasible (black dots) designs. Non feasible designs are in gray.

5.2.1 C-EHI/R-EHI adjustments to cope with constraints

Assuming feasible designs exist6, the Pareto set of (5.9) is PX = {x ∈ X : g(x) �
0mc ,@x′ ∈ X,g(x′) � 0mc , f(x′) � f(x)} and its Pareto front is PY = f(PX ). The

empirical front P̂Y ⊂ Rm is the non-dominated set among the observations y(1:t)o =
{y(1)o, . . . ,y(t)o} ⊂ Rm which comply with the constraints. In this part we assume at
least one observed design is feasible, i.e. ∃y ∈ y(1:t)c : yc � 0mc .

6Otherwise, the Pareto set/front would be the Pareto set/front in the space of constraints.
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5.2.1.1 Updated target

Once a target R is provided, the R-EHI algorithm (Chapter 4) builds an updated reference

R̂ point on the IRN line. I and N are the Ideal and Nadir point of PY which now
restricts to feasible design. I and N are unknown and estimated by Î and N̂ using
samples of the Gaussian Processes (Section 4.4.2.3). The location in X where the GPs
are simulated is critical and in Chapter 4, they were performed at x(t+1), . . . ,x(t+s) with
largest probabilities of contributing to one component of I or N.

To account for feasibility, the density of this importance sampling procedure is mul-
tiplied by the probability of satisfying the constraints, PoF(x) (2.12), which is a prod-
uct of probabilities of improvement over 0 of the Gj(·)’s. nsim GPs are simulated at
x(t+1), . . . ,x(t+s) and the resulting fronts are filtered by constraint satisfaction. As in
Section 4.4.2.3, Î and N̂ are the medians of the Ideal and Nadir points of the nsim fronts,
and finally, the updated reference point R̂ is the closest point on L̂′ = ÎRN̂ to P̂Y (or

on L̂ = ÎN̂ if no preference is expressed).

5.2.1.2 Convergence detection

Similarly, the convergence detection relies on simulations of the Y1(·), . . . , Ym(·) GPs.
At this step, x(t+1), . . . ,x(t+s) are selected according to their probability of being non-
dominated in the objective space, P(P̂Y � Y(x)). The latter is multiplied by PoF(x) to
account for the satisfaction of constraints and the resulting simulated fronts are filtered
by the extended Pareto rule. The uncertainty along L̂′ or L̂ is computed as in (4.7), after
the simulated fronts have been filtered to remove any non-feasible simulated value.

5.2.1.3 Widening of the approximation front

Once convergence is detected, an optimal reference point R∗ ∈ L̂′ is sought, by anticipat-
ing the behavior of the algorithm and more specifically of the EHI infill criterion during
the remaining b iterations, via a Kriging Believer strategy (Section 4.6). The same logic is
followed except that a modified EHI (detailed in Section 5.2.1.4), EHIPF, which accounts
for the satisfaction of constraints is employed. The virtual fronts are filtered to remove
any non feasible (according to the kriging prediction because of the KB strategy) design.
The selection of x’s where the final virtual GPs are simulated takes the satisfaction of
constraints into account through P(P̂Y � Y(x))×PoF(x). These simulated fronts are
filtered by the extended Pareto rule too to quantify the uncertainty on the associated
final virtual front.

5.2.1.4 Modified infill criteria

The most straightforward way to consider constraints in Bayesian optimization is to make
the infill criterion account for the satisfaction of constraints. In mono-objective problems,
the EI (or any other acquisition function) is multiplied by PoF (2.12, Schonlau, 1997).
This is the adopted approach. We define the mEIPF and EHIPF,
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mEIPF(x; R) = mEI(x; R)× PoF(x) (5.10)

EHIPF(x; R) = EHI(x; R)× PoF(x) (5.11)

where the reference point R ∈ Rm is defined in the objective space, Y . Under the
hypothesis of independence between the Yj(·)’s and the Gj(·)’s, (5.10) and (5.11) are
the expectation of constrained utility functions which equal 0 for non-feasible designs,
namely

∏m
j=1(Rj − yj)+1g1≤0,...,gmc≤0 and (IH(P̂Y ∪ {y}; R)− IH(P̂Y ; R))︸ ︷︷ ︸

I(y;R)

1g1≤0,...,gmc≤0.

An alternative is to maximize mEI and EHI with a constraint βp on PoF (Sacher et al.,
2018). mEIPF’s gradient has closed form expression since both ∇mEI and ∇PoF have
analytical gradients (see Equation 2.12, Equation 4.6, and Roustant et al., 2012), which
is advantageous for the inner-loop optimization.

As shown in Figure 5.7, regarding only the objective space, R might be dominated
by some non-feasible y’s. mEIPF both promotes designs with large probability of being
feasible which potentially dominate R and designs with large R domination and which
might be feasible.

Modified batch infill criteria

In the context of parallel evaluations of f(·) at a batch {x(t+1), . . . ,x(t+q)}, both q-mEI and
q-EHI are estimated by means of Monte Carlo simulations. The Monte Carlo estimation
of the constrained versions of the constrained q-mEI solely requires the indicator function
of feasibility, as in the corresponding utility function:

̂q-mEIPF({x(t+1), . . . ,x(t+q)}; R) =
1

NMC

NMC∑
k=1

[
max
i=1,...,q

(
m∏
j=1

(Rj − Ỹj
(k)

(x(t+i)))+

mc∏
l=1

1
G̃l

(k)
(x(t+i))≤0

)]
(5.12)

The constrained q-EHI rewards the hypervolume increase of feasible simulated values
only,

̂q-EHIPF({x(t+1), . . . ,x(t+q)}; R) =
1

NMC

NMC∑
k=1

IH(P̂Y
q⋃
i=1

G̃(k)(x(t+i))�0mc

{Ỹ(k)(x(t+i))}; R)− IH(P̂Y ; R)


(5.13)

where G̃l

(k)
(x) is the k-th simulated constraint value at x of Gl(·)

(G̃(k)(x) = (G̃1

(k)
(x), . . . , G̃mc

(k)
(x))>) and Ỹ(k)(x) = (Ỹ1

(k)
(x), . . . , Ỹm

(k)
(x))> the

k-th simulated (m dimensional) objective value at x (joint simulations over
{x(t+1), . . . ,x(t+q)}).
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Constraints incorporation in mEI and EHI via the reference point

A way of handling constraints is to consider them inside a multi-objective problem
(Knowles et al., 2001; Mezura-Montes and Coello, 2006; Saxena and Deb, 2007; Segura
et al., 2016). The multi-objectivization of (5.9),

min
x∈X

(f1(x), . . . , fm(x), g1(x), . . . , gmc(x)) (5.14)

can therefore be considered. This problem can be of interest if one is not uniquely
interested the satisfaction of gj(·) ≤ 0, but also in an optimization of the gj(·)’s. The
advantage of mEI and EHI for (5.14) resides in the targeting ability of the reference point.
Here, in the “objectives” m+ 1 to m+mc, a reference value is already known, Rc = 0mc .
One can therefore think of solving (5.14) using mEI or EHI with an augmented reference
point Rm+mc 3 Raug := [R,0mc ], for targeting R in the objective space, and satisfying
g(·) � 0mc .

In the spirit of the R-EHI algorithm, instead of employing the potentially difficult 0mc ,
the reference point for g1(·), . . . , gmc(·) may be adapted, e.g. by using an Rc different from
0mc inside Rm+mc 3 Raug = [R,Rc]. Rc is computed through the current approximation

front P̂Y (with constrained Pareto dominance) to accommodate observed feasible values,
as will be shown in the next section (Figure 5.8). The main risk of (5.14) is to put too
much emphasis on the constraints if Rc is not managed accordingly.

Substituting the gj(·)’s in (5.14) by their indicator function 1gj(·)≤0 and solving the
augmented problem using mEI or EHI together with Raug = [R,0mc ] is conceptually
equivalent to solving (5.9) via mEIPF(·; R) or EHIPF(·; R) and refers to the use of
binary classifiers for handling constraints (Basudhar et al., 2012; Sacher et al., 2018).

5.2.1.5 Experiments: attaining the center of the Pareto front in constrained
problems

In this part, the capability of the mEIPF criterion to attain the central part of constrained
Pareto fronts are highlighted. mEIPF is compared with four other infill criteria: EHIPF,
which does not target specifically the center of the Pareto front. mEIC, which considers
Problem (5.14) and where the mEI criterion operates in an m+mc-dimensional objective
space. It accounts for the constraints by employing the m + mc metamodels with the
reference point Raug = [R,0mc ] augmented by zeros in the “objectives” that correspond
to the gj(·)’s. Last, the performance of the standard mEI and EHI which do not take the
constraints into account7 is also investigated. Five popular multi-objective constrained
problems are used for comparison: BNH (Deb, 2001), Two Bar, Welded Beam (Chafekar
et al., 2003), Constr (Zitzler et al., 2000) and Water (Ray et al., 2001). The dimension,
number of objectives and number of constraints of these problems are given in Table 5.12.
The experiments start with a space-filling DoE of n = 3d observations and are run for
p = 3d supplementary iterations.

7they however consider an improvement over the center of the constrained front, or the hypervolume
improvement with respect to the constrained front, i.e. after having removed non feasible designs.
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Problem d m mc

BNH 2 2 2
Two Bar 3 2 1

Welded Beam 4 2 4
Constr 2 2 2
Water 3 5 7

Table 5.12: Dimension, number of objectives and of constraints of the constrained multi-
objective problems.

Three performance metrics are used for comparing the infill criteria. The first one is
the restriction of the hypervolume indicator IH to a central part of the Pareto front, I0.1,
dominated by R0.1 (4.10), which indicates convergence to this part of PY . Only feasible
designs are considered in I0.1. Depending on the objectives and on the constraints, I0.1

may be very hard to attain within the restricted budget of p = 3d iterations. This
indicator is normalized by the hypervolume of the true Pareto front restricted to I0.1.
The second metric is the attainment time of I0.1, measured by the number of function
evaluations (including the initial DoE) to dominate R0.1. It indicates how fast the
algorithms attain this central part of PY . Last, the number of feasible designs found
at the end of the search is investigated too.

The averaged metrics over 10 runs are reported in Table 5.13 with standard deviation
in brackets. When at least one run did not attain I0.1, an estimator of the empirical
runtime (Auger and Hansen, 2005) is given in red, the number of successful runs being
reported in brackets. × indicates that no run was able to access I0.1. In each run, there
was at least one feasible design in the initial DoE.

Hypervolume in I0.1 I0.1 attainment time Feasible designs
mEIPF EHIPF mEIPF EHIPF mEIPF EHIPF

BNH 0.596 (0.050) 0.537 (0.090) 6.4 (0.5) 6.5 (0.7) 11.2 (0.6) 11.8 (0.4)

Two Bar 0.060 (0.092) 0.041 (0.060) 25.6 [4] 24.4 [4] 9.3 (1.9) 11.8 (2.5)

Welded Beam 0.026 (0.062) 0 87.5 [2] × 7.8 (2.6) 10.8 (3.3)

Constr 0.293 (0.182) 0.366 (0.268) 8.9 [8] 10.2 [8] 7.0 (0.7) 8.7 (0.8)

Water 0.064 (0.107) 0.028 (0.087) 37.8 [3] 170.0 [1] 13.4 (1.1) 16.3 (0.7)

Hypervolume in I0.1 I0.1 attainment time Feasible designs
mEIC mEI EHI mEIC mEI EHI mEIC mEI EHI

BNH 0.583 (0.055) 0.603 (0.055) 0.535 (0.094) 6.4 (0.5) 6.4 (0.5) 6.5 (0.7) 11.6 (0.5) 11.5 (0.7) 11.8 (0.4)

Two Bar 0.112 (0.126) 0.034 (0.060) 0.034 (0.060) 18.3 [6] 30.0 [3] 30.0 [3] 9.1 (2.1) 7.9 (0.6) 14 (3)

Welded Beam 0 0 0 × × × 8.2 (2.7) 5.0 (1.2) 5.3 (1.5)

Constr 0.314 (0.129) 0.004 (0.011) 0.004 (0.011) 8.6 (1.3) 60.0 [1] 60.0 [1] 7.6 (0.8) 3.0 (0.7) 4.1 (1.2)

Water 0.086 (0.139) 0.031 (0.065) 0.011 (0.030) 38.9 [3] 60.0 [2] 70.0 [2] 14.4 (0.8) 13.7 (1.3) 15.7 (1.8)

Table 5.13: Performance metrics averaged over 10 runs (standard deviation in brackets)
obtained by the five investigated infill criteria.
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These results indicate that mEIPF is able to produce better convergence in I0.1 (even
though the well spread approximation inside I0.1 is not the criterion’s first aim) than
EHIPF. Surprisingly, mEIC which handles the constraints through mEI’s reference point
performs well too, even though it also considers an improvement over the constraint
threshold, 0mc . Its performance is comparable with that of mEIPF on these test functions.

mEIPF attains I0.1 faster and more consistently than EHIPF as measured by the
attainment time. More solutions (not shown here) are also found inside I0.1 by mEIPF
and mEIC than by EHIPF, mEI and EHI. It is worth noting that mEIPF and mEIC
produce less feasible designs than EHIPF. Indeed, the EHI criterion values all designs
that augment PY whereas mEIPF and mEIC only promote designs which improve over
Ĉ and [Ĉ,0mc ], respectively. Therefore, less candidates are relevant in mEI’s logic
than in EHI’s one. The amount of such candidates that additionally comply with the
constraints is further reduced which explains why mEIPF and mEIC find less feasible
designs than EHIPF. Additionally, mEIC’s satisfaction of constraints is treated by the
more exploratory than PoF (Jones, 2001) EI which explains this difference. No significant
difference is nonetheless observed here between mEIC and mEIPF for the number of found
feasible designs.

When it is difficult to satisfy the constraints, mEI and EHI have the weakest perfor-
mance. These criteria indeed consider solutions that improve over Ĉ or the hypervolume,
respectively, as good, regardless of the satisfaction of the constraints. mEI nonetheless
performs the best on the lightly constrained BNH problem and EHI behaves similarly to
EHIPF on it. Both criteria find a large number of feasible solutions in this problem, even
without considering the feasibility of designs. However, in more challenging problems,
they face more difficulties to attain the central part of PY and even to find feasible
solutions. In Welded Beam for instance, 1.2 additional feasible designs have been found
on average during the p = 3d = 12 additional iterations by EHI, and 0.9 by mEI.

5.2.2 mEI for severely constrained problems

mEI has proven to rapidly attain user desired objective values expressed through R.
In this part, the worth of mEI’s targeting abilities are investigated for another type of
problems: highly constrained (multi-objective) problems, where finding x’s such that
g(x) � 0mc is challenging. We consider the case where no feasible solution has been

found, @y ∈ y(1:t)c : y � 0mc (and P̂Y = ∅). Constrained Pareto domination (Definition
5.1) boils down to Pareto domination in the constraint space8 G ⊂ Rmc , regardless of
the objective values, and the most urgent matter is to find a feasible designs, yc � 0mc :
mEIPF and EHIPF are replaced by criteria aiming at finding such designs (remark that

since P̂Y = ∅, it is not possible to compute an updated goal R̂, an estimated center Ĉ,
or a reference point in the objective space).

A first option to search for feasible designs is to evaluate PoF’s maximizer (2.12).
A second is the Expected Violation approach (Jiao et al., 2019, 2018) which assigns a

8negative constraint values are first replaced by 0.
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constraint violation to each design, v(x(i)) = max
j=1,...,mc

(gj(x
(i)))+. For a feasible design,

v(x) = 0. As long as no feasible solution is found, in the spirit of the Expected
Improvement,

x(t+1) = arg max
x∈X

E[(vmin − v(x))+], (5.15)

the design which is expected to improve the most the smallest constraint violation vmin :=
min
i=1,...,t

v(x(i)), is chosen. Note that v(·) has no longer Gaussian distribution, but (5.15) has

semi-analytic expression. Another drawback is that the violation in the mc constraints
are aggregated by the max operator, and the constraint responsible for vmin may change
over time.

InG, the target 0mc is explicitly provided, and we therefore aim at using mEIG(·)(·; 0mc),
where the G(·) subscript indicates that the expected value is taken with regard to the G(·)
metamodels. In the update philosophy of R-mEI where the reference point is adapted
to the current state of the Pareto front, to avoid a drastically too severe target which
may promote the most uncertain designs, 0mc may benefit from an adaptation to P̂c

Y , the
empirical Pareto front in G. Like in R-mEI, a line Lc joining two anchor points Ic and
Nc is drawn, whose closest point to P̂c

Y , Rc, is used as mEIG(·)’s reference point. Nc does
not appear to be critical to attain the feasible region and is chosen as the empirical Nadir
point of P̂c

Y , Nc = N
c
. Two alternatives are relevant regarding Ic. One can choose the

crude 0mc . Another possibility is to adapt to previous observations by using Ic = Ic, the

empirical Ideal point of P̂c
Y . Recall that by definition of constrained Pareto-dominance

(Definition 5.1), all negative constraint values have been replaced by 0, which therefore is
a lower bound for Ic’s components: Icj = max(0, min

i=1,...,t
gj(x

(i))). Note that Ic = 0mc once

marginally feasible designs have been observed in each constraint (i.e. min
i=1,...,t

gj(x
(i)) ≤ 0,

j = 1, . . . ,m), a situation that mostly occurs. Using directly Ic or 0mc for Rc can lead
to longer attainment times of I0mc as will be shown in the following experiments, and
depending on the problem, it can be worth using the adapted Rc which smoothly leads
to 0mc .

Figure 5.8 illustrates these concepts. Ic, 0mc (red squares) and the adapted reference
points Rc they define are shown (blue squares) in the three different cases which may
occur: either Ic equals 0mc (left, feasible solutions have marginally been observed in
each constraint, which is the most common situation). Or 0mc dominates Ic (center, no
feasible design has been found in any constraint). Or Ic and 0mc differ in 0 < j < mc

constraints (right, feasible designs in g1(·) have been found but not in g2(·)).

Experiments in severely constrained problems

Severely constrained multi-objective problems

In this part, three different benchmark problems are considered: OSY, SRN and TNK
(Deb, 2001). The dimension, number of objectives and number of constraints of these
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Figure 5.8: Severely constrained problem: in the space of constraints, no observation
dominates 0mc . mEI’s targeting ability can be employed for attaining the feasible light
red part of G. Ic, 0mc , or their update (corresponding blue square on the line to Nc)
can be used as Rc, mEI’s reference point in the constraint space. Grey dots are the
projection of observed constraint values onto the positive orthant of Rmc .

problems are given in Table 5.14. The experiments start with a space-filling DoE of
n = 3d observations and are run for p = 3d supplementary iterations.

Problem d m mc # Feasible
OSY 6 2 6 4
SRN 2 2 2 6
TNK 2 2 2 2

Table 5.14: Dimension, number of objectives and of constraints, and runs with at least
one feasible design in the initial DoE, for the constrained multi-objective problems.

The difference with the problems in Section 5.2.1.4 is that depending on the initial DoE,
there may not exist any feasible x ∈ x(1:n). The number of runs (out of 10) with at least
one feasible design is reported in the “# Feasible” column in Table 5.14. If no design in
x(1:n) is feasible, before using the constrained multi-objective mEIPF or EHIPF, a feasible
design needs to be found via the use of a feasibility infill criterion. This is the aim of the
following three criteria: mEI (with reference point set at 0mc in this part), PoF, and EV.
6 different combinations of Constrained multi-objective criterion + Feasibility

criterion can be defined and are investigated here: EHIPF+mEI, EHIPF+PoF, EHIPF+EV,
mEIPF+mEI, mEIPF+PoF and mEIPF+EV. As in Section 5.2.1.4, the ability of these infill
criteria to attain feasible central parts of the Pareto front are compared using the hyper-
volume indicator restricted to the central I0.1 (normalized by the hypervolume indicator
of the true front in I0.1) and the attainment time of I0.1. The amount of feasible solutions
is also compared, as well as the number of iterations required before finding a feasible
design (column “Attainment time of 0mc”). This last indicator is set to n = 3d if a
feasible design is found in the initial DoE, and equals t > n if x(t) is the first feasible
design. The attainment time of the feasible region only compares the ability of the
Feasibility criterion to produce feasible designs, which is further investigated in the
next experiments.
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The indicators are averaged over 10 runs (standard deviation in brackets) and reported
in Table 5.15. When at least one run did not attain I0.1, an estimator of the empirical
runtime (Auger and Hansen, 2005) is given in red, the number of successful runs being
reported in brackets. × indicates that no run was able to access I0.1.

OSY problem
Hypervolume in I0.1 Attainment time of I0.1 Feasible designs Attainment time of 0mc

EHIPF+mEI 0.428 (0.354) 35.3 [7] 10.6 (2.4) 18.6 (0.5)

EHIPF+PoF 0.178 (0.328) 91.1 [3] 11.7 (1.5) 18.6 (0.5)

EHIPF+EV 0.161 (0.303) 70 [4] 10.6 (2.4) 19 (1.1)

mEIPF+mEI 0.616 (0.130) 22.7 (1.2) 7.9 (1) 18.6 (0.5)

mEIPF+PoF 0.642 (0.118) 22.9 (1.8) 8 (1.3) 18.6 (0.5)

mEIPF+EV 0.589 (0.063) 22.5 (1.3) 7.2 (1.8) 19 (1.1)

SRN problem
Hypervolume in I0.1 Attainment time of I0.1 Feasible designs Attainment time of 0mc

EHIPF+mEI 0.191 (0.248) 23.8 [4] 3.7 (0.7) 7.4 (1.8)

EHIPF+PoF 0.118 (0.195) 32.3 [3] 3.6 (0.7) 6.5 (0.7)

EHIPF+EV 0.094 (0.186) 31.1 [3] 3.3 (0.9) 7.6 (2.1)

mEIPF+mEI 0.375 (0.171) 10.4 (1.3) 3.7 (1.1) 7.4 (1.8)

mEIPF+PoF 0.389 (0.169) 9.9 (0.9) 4 (0.8) 6.5 (0.7)

mEIPF+EV 0.398 (0.164) 10.5 (1.2) 3.7 (1.1) 7.6 (2.1)

TNK problem
Hypervolume in I0.1 Attainment time of I0.1 Feasible designs Attainment time of 0mc

EHIPF+mEI 0.016 (0.046) 55.5 [2] 2.5 (1) 7.7 (1.1)

EHIPF+PoF 0 × 2.4 (1) 7 (0.7)

EHIPF+EV 0 × 2.2 (1.1) 7.6 (1.5)

mEIPF+mEI 0.100 (0.109) 16.9 [6] 2.3 (0.8) 7.7 (1.1)

mEIPF+PoF 0.101 (0.140) 20.8 [5] 2 (0.8) 7 (0.7)

mEIPF+EV 0.098 (0.151) 25.6 [4] 1.7 (0.9) 7.6 (1.5)

Table 5.15: Performance metrics averaged over 10 runs (standard deviation in brackets)
obtained by the three investigated infill criteria.

These results again indicate the advantage of using mEIPF for targeting the center
of the Pareto front in a constrained problem over EHIPF. The central part of PY is
attained much faster and consistently with this constrained multi-objective criterion.
Again, the number of feasible designs obtained by using mEIPF is slightly smaller than
the one returned by the EHIPF criterion. Concerning the Feasibility criterion used
when no valid design is found in the initial DoE, PoF slightly outperforms mEI (in the
space of constraints) and EV. The attainment times are nonetheless small for all criteria
which quickly succeed in finding a feasible design. In these examples where it is not
too complicated to find feasible designs, the lack of exploration of PoF (Jones, 2001) is
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not an issue, neither it is for mEI and EV which explore the design space a little more.
In the case EHIPF is used as Constrained multi-objective criterion, the variants
that have used mEI in the phase where no feasible design was found better attain I0.1

than EHIPF+PoF, even though the latter finds feasible designs slightly more rapidly. This
phenomenon might be explained by the more exploratory behavior of mEI compared
to PoF which is attracted by already visited points. While this may lead to a slightly
longer time to find feasible designs, once some have been found, the metamodel in the
EHIPF+mEI option may be more accurate than the one of EHIPF+PoF.

Finding feasible designs: the YUCCA problem

Finally, in this section, we investigate the performance of the mEI, PoF and EV criteria
to find feasible designs in a highly constrained case, the YUCCA problem introduced in
Feliot (2017). This problem has tunable dimension d and mc = 2d constraints gj(x).
The latter are extremely antagonist and the proportion of the feasible space FX ⊂ X :
g(FX) � 0mc is only (10−κ)d where κ is a harshness parameter, that will be set to
1, 3, 5 in the following. The complexity of the YUCCA test suite grows with d as
the design space is less densely populated. The κ parameter defines the size of the
off-centered FX hypercube. As in Feliot (2017), experiments are conducted with d =
2, 5, 10, 20 dimensions with initial designs of respectively n = 10, 20, 30, 40 observations.
The algorithms are run for at most p = 200 iterations and are stopped once a feasible
design is found (see Table 5.16).

d n p
2 10 200
5 20 200
10 30 200
20 40 200

Table 5.16: Investigated YUCCA problems.

For the different values of κ and the settings of Table 5.16, mEI, PoF and EV are
compared in terms of attainment time of 0mc . The mEI adapted and PoF adapted

variants rather use the adapted target Rc (see Figure 5.8) instead of 0mc , to smoothly
direct the optimization towards the feasible region. In each run, all constraints are
marginally satisfied (i.e. ∀j = 1, . . . , 2d,∃x ∈ x(1:n) : gj(x) ≤ 0). Therefore, the leftmost
situation in Figure 5.8 in which 0mc = Ic is encountered and both variants are the same.

Table 5.17 reports the number9 of acquisition function queries required to attain FX .
The results are averaged over 10 runs and the standard deviation is given in brackets.
When at least one run did not enter FX within the p = 200 iterations, an estimator of
the empirical runtime (Auger and Hansen, 2005) is given in red, the number of successful

9Values smaller than 1 are due to the rare cases in which one feasible design was found in the initial
DoE. This only happens two times in the easiest (d = 2, κ = 1) problem.
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runs being reported in brackets. × means none of the 10 runs reached FX . The three
tables correspond to κ = 1, 3, 5 and each row to a dimension d of the YUCCA problem
(remember there are 2d constraints) given in Table 5.16.

κ = 1
d mEI mEI adapted PoF PoF adapted EV
2 0.8 (0.4) 2.2 (1.3) 0.8 (0.4) 8.9 (13.8) 1.3 (0.8)

5 1 (0) 3 (1.2) 1 (0) 6.7 (6.9) 2 (0)

10 1.1 (0.3) 3 (0) 1 (0) 5.9 (0.6) 2 (0)

20 2.4 (1) 3.9 (1.5) 1.3 (0.5) 19.6 [5] 2.6 (0.5)

κ = 3
d mEI mEI adapted PoF PoF adapted EV
2 2 (0) 12.1 (3.8) 2 (0) × 2 (0)

5 4 (0.8) 6.7 (0.7) 3 (0) × 3 (0)

10 11.4 (0.8) 11.4 (1.7) 4.1 (0.3) × 3.7 (0.5)

20 130.7 (5.1) 106.2 (11.8) 7.6 (3.1) × 6 (0)

κ = 5
d mEI mEI adapted PoF PoF adapted EV
2 3 (0) 20.3 (7.4) 3 (0) × 3 (0)

5 6.3 (0.8) 7 (0.8) 4.4 (0.5) × 4.1 (0.3)

10 32.3 (3) 12.1 (1.2) 6.1 (0.6) × 4.6 (0.5)

20 × 229.6 [5] 11.7 (2.3) × 7.2 (0.4)

Table 5.17: Attainment time of FX on the YUCCA problem with varying d and κ, for
different infill criteria.

Overall, mEI is outperformed by PoF and EV. While it performs comparably well in
problems where d (hence mc) and κ are small, mEI faces difficulties as far as the problem
becomes more challenging (κ = 3, 5) or when more constraints are considered (d = 10, 20).
It is worth analyzing the effect of the adapted reference point. While in easy problems
(κ = 1 and/or d = 2, 5) using an adapted, not as ambitious as 0mc reference point
slows the attainment of FX , in harder problems (smaller feasible region and/or more
constraints) it avoids the exploratory behavior of mEIG(·)(·; 0mc) by considering stepwise
improvements leading to 0mc . The weak performance of mEI adapted when d = 2 is due
to the small DoE. In early iterations, mEI adapted targets a part of the constraint space
which includes 0mc but is slightly off-centered because of the YUCCA problem in which
it is easy to satisfy the first even constraints (g2(·), g4(·), . . . ) but hard to satisfy the first
odd constraints (g1(·), g3(·), . . . ). Rc’s components are in general similar and > 0 in the
first odd constraints, and close to 0 in the first even constraints. This bias is corrected
as far as more observations get available and Rc becomes closer to 0mc . It remains that
mEI is too ambitious for such a problem since the worth of a design is measured by the
amount it may dominate 0mc , which is not a concern when only the attainment of FX is
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aimed at. Its logic is not adapted to the small subset of designs that actually respect the
constraints. mEI samples from a too wide range of designs and is not the best option for
attaining a highly constrained FX .

By nature, PoF only looks for designs that outperform 0mc , whatever the magnitude.
This is the reason why it surpasses mEI when the harshness and/or the number of
constraints of the problem increase. Using the adapted reference point in lieu of 0mc in
PoF’s formulation leads to the worst results. When used in a Probability of Improvement
setting (2.7, Jones, 2001), this acquisition function is known for promoting designs that
only slightly improve over the target. PoF adapted progresses towards 0mc such slowly
that it is not able to find any feasible design when κ = 3, 5. In the κ = 1 instance, it
faces difficulties with d = 2, 5 because of the off-centered though adapted reference point
used during the early iterations. In the d = 20 setting, its progress towards FX heavily
depends on the initial DoE and 5 runs out of 10 fail at reaching FX . Besides, the good
performance of PoF suggests the use of the Probability of Improvement (2.7) in multi-
objective problems with an ambitious but attainable target. A similar approach was
recently proposed in Emmerich et al. (2020) where PIε, the Probability of Improvement
over an optimistic front was employed.

Overall, EV is the acquisition function that performs the best on the YUCCA test
problem. It is outperformed by PoF and even by mEI on the easiest instances (κ = 1
and/or d = 2), but attains FX slightly faster than PoF when more constraints and/or
smaller feasible design spaces are considered. Aggregating the mc constraints into one
function (the constraint violation) might seem hazardous in case of extremely antagonist
functions as g1(·) and g2(·), because v(·) does not account for the constraint that is vio-
lated. However, the mc YUCCA constraints being pairs of nonlinear box-constraints, the
independence assumption PoF and mEI hinge on is clearly not verified. This may explain
EV’s good performance for mc = 20, 40 constraints as their simultaneous satisfaction is
circumvented by considering their maximal violation.

5.3 Further possible improvements

In this section, technical details regarding the C-EHI/R-EHI are discussed, as well as
possibilities offered by the mEI criterion to cheaply approximate the EHI criterion or to
conduct batch multi-objective optimization in a different manner.

5.3.1 On the choice of the updated reference point

In Chapter 4, the mEI criterion is defined together with a reference point that enables
targeting a part of PY . Whether the reference point is user-provided or the center is
targeted, a new goal on the Pareto front is defined (see Figure 4.6). This goal is the
intersection with the L (or L′) line for continuous fronts. In the case of a discontinuous

or discrete front as the empirical front P̂Y , the updated reference point R̂ or the estimated

center of the Pareto front, Ĉ, accommodates P̂Y by being set at the projection of P̂Y on
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L̂′ (or on L̂, respectively). It is then used as mEI’s reference point, R, whose maximizer
with respect to x is the next evaluated design.

Even though other threshold values have been investigated (Jones, 2001), the spirit of
the EGO algorithm (Jones et al., 1998) is to consider the improvement over fmin, the
currently best observed value. In a multi-objective setting, the equivalent to “fmin” is
“a non-dominated point”. A plenty of reference points R extend in this sense. The
hatched green parts of Figure 5.9 show the reference points which comply with this logic.
Different choices of R are possible, even when restricting to a line. As for the EI threshold
a (2.8), the more R is optimistic (i.e. small in all its components), the more the criterion
becomes exploratory and may promote designs with large uncertainty; on the contrary,
R’s located in the vicinity of the Pareto front barrier (red line) might promote x’s near to

already observed designs that are close to dominating R. More than the projection10 on L̂
(blue square), alternative definitions exist for the updated reference point. For instance,

R could be set at the intersection between L̂ and P̂Y (red square), or at the junction

between the green dominating envelope and L̂ (green square). It could also be thought as
the middle between these points (brown square), or could even be the intersection with
some simulated fronts. Copulas (Nelsen, 2007) are another way towards a continuous
representation of PY (Binois et al., 2015c) with which the intersection might be chosen.

Figure 5.9: Empirical Pareto front (P̂Y , red), estimated Ideal-Nadir line (L̂, blue) and

possible valid reference points on L̂ (squares), belonging to the hatched green non-
dominated zone.

Our investigations have shown that the way the reference point is produced to accom-
modate P̂Y is not critical in the optimization and is problem dependent. Further work
may nonetheless address this question theoretically to derive the optimal management

10Which might lead to a point outside the green area, in which case it is projected onto the rectangle.
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of R. The intersection with P̂Y has the desirable property of valuing any y ∈ L̂ that
increases the Pareto front. However in this setting, even though the improvement of
any y ∈ P̂Y is null, there exists one such y which (weakly) dominates R as yj < Rj in
m− 1 objectives and yj0 = Rj0 in the remaining objective j0. The EHI-mEI equivalence
(Proposition 4.1) holds but the search might be attracted towards this y, because a little
enhancement of yj0 leads to a strictly positive improvement.

5.3.2 Anticipation of the attainable region

In Section 4.6, the computational cost of the determination of IR∗ , the area to target
for the remaining iterations, can be further improved. Since EHI has a closed-form
expression, its update can be accelerated using the kriging variance update formulae of
Chevalier et al. (2014). This is computationally appealing if the maximization is carried
out on a fixed discrete set of designs. Another possibility for accelerating the virtual
iterations is to replace the potentially costly EHI by a cheaper and similar acquisition
function such as SMS (Section 2.4, Ponweiser et al., 2008), or the Matrix-Based Expected
Improvement (Zhan et al., 2017). A last alternative is to pre-compute the Pareto set of
the kriging mean functions, PX (ŷ(·)) ⊂ X using an EMOA, and to iteratively choose
x∗(i) = arg max

x∈PX (ŷ(·))
EHI(x,Rc).

Regarding the virtual steps, instead of a Kriging Believer strategy, the use of nested
simulations of the GP to account for the metamodel’s uncertainty combined with the
reconditioning of previous GP simulations (Chevalier et al., 2015) was also considered.
Several virtual optimizations were nonetheless necessary for each candidate reference
point Rc, which led to an even more expensive determination of R∗.

Finally, a cheap way to choose R∗ is to consider the proportion of the (estimated)
Ideal-Nadir hyperbox in which convergence has occurred when the convergence criterion
triggers, and to determine the R∗ along the line for which a linear extrapolation in the
b remaining iterations indicates convergence in the Ideal-R∗ hyperbox at the end of the
search. This criterion is computationally much more tractable, but is a much coarser
approximation of the part of the objective space that can be unveiled in the remaining
iterations. It does not take the logic of the infill criterion, nor the shape of the front into
account.

5.3.3 Multiple targets

More generally, once R∗ has been set up, the b remaining maximizations of EHI(·; R∗)
within C-EHI and R-EHI may be cumbersome. Similarly to the Matrix-Based Expected
Improvement, a computationally cheap proxy to EHI which is equivalent to the max of
mEI’s with the elements of P̂Y as reference points (Zhan et al., 2017), an mEI-like criterion
can be devised to substitute EHI. Directly applying mEI(·; R∗) is not an option. Due

to the targeting property and to the myopia of this criterion with respect to P̂Y , a well
spread approximation in IR∗ will not be achieved. However an additive mEI criterion,
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or a maximal mEI criterion

add-mEI(x; {R1, . . . ,Rr}) :=
r∑
i=1

mEI(x; Ri),

max-mEI(x; {R1, . . . ,Rr}) := max
i=1,...,r

mEI(x; Ri),

may have desirable properties if a suitable set of reference points {R1, . . . ,Rr} is es-
tablished. The Ri’s have to be non-dominated, cover as much as possible IR∗ ’s non-
dominated subspace, and overlap as little as possible, as shown in the left part of Figure
5.10. Relevant points of P̂Y might be chosen as Ri’s, or they could be the projection of

P̂Y onto other lines than the Ideal-Nadir line.
As a box decomposition (Yang et al., 2019a) of EHI leads to a (potentially large) sum

and subtraction of mEI’s with particular reference points (
∑

imEI(·,Ai)-
∑

jmEI(·,Sj))
as shown in the right part of Figure 5.10, restricting to few well-chosen terms Ai (and
Sj) will speed up the computation.

Figure 5.10: Left: example of three non-dominated reference point which cover IR and
might be candidates in an additive or maximal mEI framework. Right: bi-objective
example for the computation of EHI. The hypervolume improvement of y ∈ Rm is the sum
of product improvements with respect to A1, A2 and A3 (blue filled areas + hatched blue
rectangles) minus the product improvements with respect to S2 and S3 (pink rectangles,
to remove the overlap between the Ai’s).

The use of multiple reference points opens a new possibility for conducting batch-
optimization discussed in Section 5.1 too: instead of searching q designs that jointly
improve the most over R in the mEI or EHI sense, q designs that individually improve
over well-distributed R1, . . . ,Rq can be searched. Splitting the objective space in areas
where to conduct the optimization in parallel is a common practice in multi-objective
optimization to obtain a batch of designs (Horn et al., 2015; Zhang and Li, 2007), and the
targeting Truncated EHI criterion (Palar et al., 2018; Yang et al., 2016a,b) has recently
been employed in this purpose by Yang et al. (2019c).
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From CAD to Eigenshapes for
Optimization in Reduced Dimension
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In this chapter, we consider the optimization of parametric shapes. In this framework,
the minimization of an objective function f(x) where x are CAD (Computer Aided
Design) parameters, is aimed at. This task is difficult when f(·) is the output of an
expensive-to-evaluate numerical simulator and the number of CAD parameters is large.
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Most often, the set of all considered CAD shapes resides in a manifold of lower effective
dimension in which it is preferable to build the surrogate model and perform the opti-
mization. In this chapter, we uncover the manifold through a high-dimensional shape
mapping and build a new coordinate system made of eigenshapes. The surrogate model
is learned in the space of eigenshapes: a regularized likelihood maximization provides
the most relevant dimensions for the output. The final surrogate model is detailed
(anisotropic) with respect to the most sensitive eigenshapes and rough (isotropic) in the
remaining dimensions. Last, the optimization is carried out with a focus on the critical
dimensions, the remaining ones being coarsely optimized through a random embedding
and the manifold being accounted for through a replication strategy. At low budgets, the
methodology leads to a more accurate model and a faster optimization than the classical
approach of directly working with the CAD parameters.

For the sake of clarity, contrarily to Chapters 3, 4, 5, a single-objective optimization
problem is considered. As mentioned at the end of the chapter, an extension to multi-
objective problems is nonetheless achieved through minor modifications of the method-
ology.

6.1 Introduction

The most frequent approach to shape optimization is to describe the shape by a vector
of d CAD parameters, x ∈ X ⊂ Rd and to search for the parameters that minimize
an objective function, x∗ = arg min

x∈X
f(x). In the CAD modeling process, the set of all

possible shapes has been reduced to a space of parameterized shapes, ΩΩΩ := {Ωx,x ∈ X}.
It is common for d to be large, d & 50. Optimization in such a high-dimensional design

space is difficult, especially when f(·) is the output of an expensive simulator that can only
be run a restricted number of times (Shan and Wang, 2010). Surrogate-based approaches
(Forrester and Keane, 2009; Sacks et al., 1989) relying on a metamodel (e.g., Gaussian
Processes, Cressie, 1992; Rasmussen and Williams, 2006; Stein, 1999) used throughout
the previous chapters have proven their effectiveness to tackle optimization problems in
a few calls to f(·) by evaluating designs promoted by an acquisition function such as
the Expected Improvement (Mockus, 1975), cf. Section 2.2. However, such techniques
suffer from the curse of dimensionality (Bellman, 1961) when d is large. The budget is
also typically too narrow to perform sensitivity analysis (Saltelli et al., 2004) and select
variables prior to optimizing. A further issue is that the CAD parameters x commonly
have heterogeneous impacts on the shapes Ωx: many of them are intended to refine the
shape locally whereas others have a global influence so that shapes of practical interest
involve interactions between all the parameters.

Most often, the set of all CAD generated shapes, ΩΩΩ, can be approximated in a δ-
dimensional manifold, δ < d. In Raghavan et al. (2013, 2014) this manifold is accessed
through an auxiliary description of the shape, φ(Ω), φ(·) being either its characteristic
function or the signed distance to its contour. The authors aim at minimizing an objective
function using diffuse approximation and gradient-based techniques, while staying on the
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manifold of admissible shapes. Active Shape Models (Cootes et al., 1995) provide another
way to handle shapes in which the contour is discretized (Stegmann and Gomez, 2002;
Wang, 2012).

Building a surrogate model in reduced dimension can be performed in different ways.
The simplest is to restrict the metamodel to the most influential variables. But typical
evaluation budgets are too narrow to find these variables before the optimization. More-
over, correlations might exist among the original dimensions (here CAD parameters) so
that a selection of few variables may not constitute a valid reduced order description and
meta-variables may be more appropriate. In Wu et al. (2019), the high-dimensional input
space is circumvented by decomposing the model into a series of low-dimensional models
after an ANOVA procedure. In Bouhlel et al. (2016), a kriging model is built in the
space of the first Partial Least Squares axes for emphasizing the most relevant directions.
Related approaches for dimensionality reduction inside GPs consist in a projection of the
input x on a lower dimensional hyperplane spanned by orthogonal vectors. These vectors
are determined in different manners, e.g. by searching the active space in Constantine
et al. (2014); Li et al. (2019), or during the hyperparameters estimation in Tripathy et al.
(2016). A more detailed bibliography of dimension reduction in GPs is conducted in
Section 6.3.

For optimization purposes, the modes of discretized shapes (Stegmann and Gomez,
2002) are integrated in a surrogate model in Li et al. (2018a). In Cinquegrana and Iuliano
(2018), the optimization is carried out on the most relevant modes using evolutionary
algorithms combined with an adaptive adjustment of the bounds of the design space, also
employed in Shan and Wang (2004).

Following the same route, in Section 6.2, we retrieve a shape manifold with dimension
δ < d. Our approach is based on a Principal Component Analysis (PCA, Wall et al.,
2003) of shapes described in an ad hoc manner in the same vein as Cinquegrana and
Iuliano (2018); Li et al. (2018a) but it provides a new investigation of the best way to
characterize shapes. Section 6.3 is devoted to the construction of a kriging surrogate
model in reduced dimension. Contrarily to Li et al. (2018a, 2019), the least important
dimensions are still accounted for. A regularized likelihood approach is employed for
dimension selection, instead of the linear PLS method (Bouhlel et al., 2016). In Section
6.4, we employ the metamodel to perform global optimization (Jones et al., 1998) via the
maximization of the Expected Improvement (Mockus, 1975). A reduction of the space
dimension is achieved through a random embedding technique (Wang et al., 2013) and
a pre-image problem is solved to keep the correspondence between the eigenshapes and
the CAD parameters.

6.2 From CAD description to shape eigenbasis

CAD parameters are usually set up by engineers to automate shape generation. These
parameters may be Bézier or Spline control points which locally readjust the shape. Other
CAD parameters, such as the overall width or the length of a component, have a more
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global impact on the shape. While these parameters are intuitive to a designer, they are
not chosen to achieve any specific mathematical property and in particular do not let
themselves interpret to reduce dimensionality.

In order to define a better behaved description of the shapes that will help in reducing
dimensionality, we exploit the fact that the time to generate a shape Ωx is negligible in
comparison with the evaluation time of f(x).

In the spirit of kernel methods (Schölkopf et al., 1997; Vapnik, 1995), we analyze the
designs x in a high-dimensional feature space Φ ⊂ RD, D � d (potentially infinite
dimensional) that is defined via a mapping φ(x), φ : X → Φ. With an appropriate φ(·),
it is possible to distinguish a lower dimensional manifold embedded in Φ. As we deal
with shapes, natural candidates for φ(·) are shape representations.

This chapter is motivated by parametric shape optimization problems. However, the
approaches developed for metamodeling and optimization are generic and extend to any
situation where a pre-existing collection of designs {x(1), . . . ,x(N)} and a fast auxiliary
mapping φ(x) exist. φ(x) = x is a possible case. If x are parameters that generate a
signal, another example would be φ(x), the discretized times series.

6.2.1 Shape representations

In the literature, shapes have been described in different ways. First, the characteristic
function of a shape Ωx (Raghavan et al., 2013) is

χΩx(s) =

{
1 if s ∈ Ωx

0 if s /∈ Ωx

(6.1)

where s ∈ R2 or R3 is the spatial coordinate. χ is computed at some relevant locations
(e.g. on a grid) S = {s(1), . . . , s(D)} and is cast as a D-dimensional vector of of 0’s or 1’s
depending on whether the s(i)’s are inside or outside the shape.

Second, the signed distance to the contour ∂Ωx (Raghavan et al., 2014) is

DΩx(s) = ε(s) min
y∈∂Ωx

‖s− y‖2, where ε(s) =

{
1 if s ∈ Ωx

−1 if s /∈ Ωx

(6.2)

and is also computed at some relevant locations (e.g. on a grid) S, transformed into a
vector with D components.

Finally, the Point Distribution Model (Cootes et al., 1995; Stegmann and Gomez, 2002)
where ∂Ωx is discretized at D/k locations s(i) ∈ ∂Ωx ⊂ Rk (k = 2 or 3), also leads to

a D-dimensional representation of Ωx where DΩx = (s(1)>, . . . , s(D/k)>)> ∈ RD. For
different shapes Ω and Ω′, S has to be the same for χ and D, and the discretizations

{s(1)>, . . . , s(D/k)>} of Ω and Ω′ need to be consistent for D. Figure 6.1 illustrates these
shape representations for two different designs. The first one consists of three circles
parameterized by their centers and radii. The second design is a NACA airfoil with
three parameters. These shapes are described by the mappings φ(x) ∈ RD with φ(x) =
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χΩx(S),DΩx(S) and DΩx , respectively. Specifying another design with parameters x′

generally leads to φ(x) 6= φ(x′).

Figure 6.1: Shape representations for a design consisting of three circles (top) and for
a NACA airfoil (bottom). The representations are the characteristic function (left), the
signed distance to the contour (center), and the contour discretization(right).

6.2.2 PCA to retrieve the effective shape dimension

We map a large number (N) of plausible designs x(i) ∈ X to Φ ⊂ RD and build the matrix
ΦΦΦ ∈ RN×D which contains the φ(x(i)) ∈ RD in rows and whose column-wise mean is φφφ ∈
RD. In the absence of a set of relevant x(i)’s, these designs can be sampled from an a priori
distribution, typically a uniform distribution. Next, we perform a Principal Component
Analysis (PCA) on ΦΦΦ: correlations are sought between the φ(x)j’s, j = 1, . . . , D. The

eigenvectors of the empirical covariance matrix CΦΦΦ := 1
N

(ΦΦΦ−1Nφφφ
>

)>(ΦΦΦ−1Nφφφ
>

), written
vj ∈ RD, form an ordered orthonormal basis of Φ with decreasing importance as measured
by the PCA eigenvalues λj, j = 1, . . . , D. They correspond to orthonormal directions
in Φ that explain the most the dispersion of the high-dimensional representations of the
shapes, φ(x(i)). Any design x can now be expressed in the eigenbasis V := {v1, . . . ,vD}
since

φ(x) = φφφ+
D∑
j=1

αjv
j (6.3)

where (α1, . . . , αD)> =: ααα = V>(φ(x) − φφφ) are the coordinates in V (principal compo-
nents), and V := (v1, . . . ,vD) ∈ RD×D is the matrix of eigenvectors (principal axes).
αj is the deviation from the mean shape φφφ, in the direction of the eigenvector vj. The
ααα(i)’s form a manifold AN := {ααα(1), . . . ,ααα(N)} which approximates the true ααα manifold,
A := {ααα ∈ RD : ∃x ∈ X, ααα = V>(φ(x) − φφφ)}. Even though AN ⊂ RD, it is often a
manifold of lower dimension, δ � D, as we will soon see (Section 6.2.3).

Link with kernel PCA

N designs x(i) ∈ Rd have been mapped to a high-dimensional feature space Φ ⊂ RD
in which PCA was carried out. This is precisely the task that is performed in Kernel
PCA (Schölkopf et al., 1997), a nonlinear dimension reduction technique (contrarily to
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PCA which seeks linear directions in Rd). KPCA aims at finding a linear description of
the data in a feature space Φ, by applying a PCA to nonlinearly mapped φ(x(i)) ∈ Φ.
The difference with our approach is that the mapping φ(·) as well as the feature space
Φ are usually unknown in KPCA, since φ(x) may live in a very high-dimensional or
even infinite dimensional space in which dot products cannot be computed efficiently.
Instead, dot products are computed using designs in the original space X via a kernel
which should not be mistaken with the kernel of GPs, kφ : X × X → R, kφ(x,x′) =
〈φ(x), φ(x′)〉Φ (this is called the “kernel-trick”, see Schölkopf et al., 1997; Vapnik, 1995).

The eigencomponents of the points after mapping, α
(i)
j = vj

>
(φ(x(i)) − φφφ), can be

recovered from the eigenanalysis of the N×N Gram matrix Kφ with Kφij = kφ(x(i),x(j))
(see Schölkopf et al., 1997; Wang, 2012, for algebraic details). Finding which original
variables in x correspond to a given vj is not straightforward and requires the resolution
of a pre-image problem (Mika et al., 1999; Wang, 2012).

Having a shape-related and computable φ(·) avoids these ruses and makes the principal
axes vj directly meaningful. It is further possible to give the expression of the equivalent
kernel in our approach, in terms of the mapping φ(·), from the polarization identity. By
definition of the (centered) high dimensional mapping to Φ, x 7→ φ(x)− φφφ,

‖(φ(x)− φφφ)− (φ(x′)− φφφ)‖2
RD = 〈(φ(x)− φφφ)− (φ(x′)− φφφ), (φ(x)− φφφ)− (φ(x′)− φφφ)〉RD

= ‖(φ(x)− φφφ)‖2
RD + ‖(φ(x′)− φφφ)‖2

RD − 2〈(φ(x)− φφφ), (φ(x′)− φφφ)〉RD︸ ︷︷ ︸
kφ

hence,

kφ(x,x′) =
1

2
(‖φ(x)− φφφ‖2

RD + ‖φ(x′)− φφφ‖2
RD − ‖φ(x)− φ(x′)‖2

RD) (6.4)

Logically, kφ(·, ·), a similarity measure between designs, is negatively proportional to the
distance between the shape representations. Because of the size of the eigenanalyses to
be performed, kernel PCA is advantageous over a mapping followed by a PCA when
D > N , i.e. when the shapes have a very high resolution, and vice versa. In the current
work where φ(·) is known and D is smaller than 1000, we will follow the mapping plus
PCA approach.

6.2.3 Experiments

In this section, all the parametric design problems used in the experiments throughout
this chapter are introduced and discussed in terms of significant dimensions. Unless
stated otherwise, the database ΦΦΦ is made of N = 5000 designs sampled uniformly in X.
We start with 3 test cases of known intrinsic dimension, which will be complemented by
4 other test cases. The metamodeling and the optimization will be addressed later in
Sections 6.3 and 6.4.

Mines Saint-Étienne David Gaudrie



6.2 From CAD description to shape eigenbasis 137

6.2.3.1 Retrieval of true dimensionality

In this part, we generate shapes of known low intrinsic dimension. In the Example 6.1
(cf. Figure 6.2), the shapes are circular holes of varying centers and radii, therefore
described by 1, 2 or 3 parameters. In the Example 6.2 (cf. Figure 6.11), they are also
circular holes but whose center positions and radii are described by sums1 of parts of the
39 parameters. Last, in the Example 6.3 (cf. Figure 6.16), the shapes are made of three
non overlapping circles with parameterized centers and radii. PCAs were then carried
out on the ΦΦΦ’s associated to the three mappings (characteristic function, signed contour
distance and contour discretization). In each example, the 10 first PCA eigenvalues λj
are reported. The ααα’s manifolds, AN ⊂ RD, are plotted in the first three dimensions as
well as the first eigenvectors in the Φ space.

Example 6.1. A hole in R2 parameterized by its radius (d = 1), its radius and the x-
coordinate of its center (d = 2), or its radius and the x and y coordinates of its center
(d = 3).

1other algebraic operations such as multiplications have also led to the same conclusions.
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Figure 6.2: Example 6.1: three first eigencomponents of the ααα(i)’s for three parametric
test cases (columns) with low effective dimension equal to 1 (left), 2 (center) and 3 (right).
The rows correspond to different φ’s which are the characteristic function (top), the signed
distance to the contour (middle) and the discretization of the contour (bottom).
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Characteristic function Signed Distance Discretization
j Eigenvalue Cumulative percentage Eigenvalue Cumulative percentage Eigenvalue Cumulative percentage
1 324.63 63.09 840.14 100 25.20 100
2 75.98 77.86 0 100 0 100
3 32.69 84.21 0 100 0 100
4 18.20 87.75 0 100 0 100
5 11.48 89.98 0 100 0 100
6 8.12 91.56 0 100 0 100
7 5.92 92.71 0 100 0 100
8 4.45 93.57 0 100 0 100
9 3.50 94.25 0 100 0 100
10 2.79 94.80 0 100 0 100

Table 6.1: 10 first PCA eigenvalues for the different φ’s, circle with d = 1 parameter.

Characteristic function Signed Distance Discretization
j Eigenvalue Cumulative percentage Eigenvalue Cumulative percentage Eigenvalue Cumulative percentage
1 60.90 26.50 1332.17 80.41 100.82 94.14
2 44.63 45.93 294.07 98.15 6.27 100
3 26.70 57.55 25.48 99.69 0 100
4 20.62 66.52 3.88 99.93 0 100
5 9.48 70.65 0.81 99.97 0 100
6 4.87 72.77 0.24 99.99 0 100
7 3.97 74.49 0.09 99.99 0 100
8 3.74 76.12 0.04 100 0 100
9 3.25 77.54 0.02 100 0 100
10 3.11 78.89 0.01 100 0 100

Table 6.2: 10 first PCA eigenvalues for the different φ’s, circle with d = 2 parameters.

Figures 6.3-6.10 show the 9 first eigenvectors (if they have strictly positive eigenvalue)
in the 3 cases of Example 6.1 with the three φ’s.
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Characteristic function Signed Distance Discretization
j Eigenvalue Cumulative percentage Eigenvalue Cumulative percentage Eigenvalue Cumulative percentage
1 26.48 10.12 1045.26 42.42 82.13 48.51
2 25.82 19.98 1037.44 84.53 80.82 96.26
3 20.58 27.84 300.14 96.71 6.34 100
4 19.38 35.24 33.83 98.08 0 100
5 15.65 41.22 18.49 98.83 0 100
6 11.36 45.56 14.40 99.42 0 100
7 11.20 49.84 3.78 99.57 0 100
8 11.05 54.06 3.64 99.72 0 100
9 7.52 56.93 1.58 99.78 0 100
10 7.21 59.69 1.55 99.84 0 100

Table 6.3: 10 first PCA eigenvalues for the different φ’s, circle with d = 3 parameters.

Figure 6.3: Example 6.1, circle with d = 1 parameter, 9 first eigenvectors (left to right
and top to bottom) when φ = characteristic function.

Figure 6.4: Example 6.1, circle with d = 1 parameter, first eigenvector when φ = signed
distance (left) and when φ = contour discretization (right).
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Figure 6.5: Example 6.1, circle with d = 2 parameters, 9 first eigenvectors (left to right
and top to bottom) when φ = characteristic function.

Figure 6.6: Example 6.1, circle with d = 2 parameters, 9 first eigenvectors (left to right
and top to bottom) when φ = signed distance.
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Figure 6.7: Example 6.1, circle with d = 2 parameters, 2 first eigenvectors (black and
red) when φ = contour discretization.

Figure 6.8: Example 6.1, circle with d = 3 parameters, 9 first eigenvectors (left to right
and top to bottom) when φ = characteristic function.
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Figure 6.9: Example 6.1, circle with d = 3 parameters, 9 first eigenvectors (left to right
and top to bottom) when φ = signed distance.

Figure 6.10: Example 6.1, circle with d = 3 parameters, 3 first eigenvectors (black, red,
green) when φ = contour discretization.

A property of PCA is that a linear combination of the eigenvectors given in Equation
(6.3) enables to retrieve any φ(x(i)). Some of the eigenvectors are easy to interpret: in
Figure 6.4 left (signed distance), the eigenvector is constant because the average shape
is a map (an image) whose level lines are perfect circles so that adding a constant to
it changes the radius of the null contour line; in Figure 6.7 where the mapping is a
contour discretization, the first eigenvector (as well as the second in Figure 6.10) is a
non-centered point that allows horizontal (and vertical) translations. The second (third
in Figure 6.10) eigenvector is a circle which dilates or compresses the hole. As is seen in
Tables 6.2 and 6.3, more eigenvectors are necessary for the characteristic function and for
the signed distance than for the contour discretization. Contrarily to the characteristic
function and the signed contour, when the mapping φ is the contour discretization, the
first eigenvectors look like shapes on their own and therefore we will call them eigenshapes.
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This does not mean however that all of them are valid shapes, as was seen in Figures
6.7 and 6.10 with the point vectors. In fact, most vj’s are “non-physical” in the sense
that there may not exist one design x such that φ(x) = vj, see for instance Figure 6.26
where the eigenshapes do not correspond to a valid x from v3 on. In the case of the
characteristic function, even though φ(x) ∈ {0, 1}D, the eigenvectors are real-valued (see
Figure 6.3 for instance).

Example 6.2. An over-parameterized hole in R2: the horizontal position of its center
is s :=

∑13
j=1 xj, the vertical position of its center is t :=

∑26
j=14 xj and its radius is

r :=
∑39

j=27 xj, as shown in Figure 6.11. To increase the complexity of the problem, x1,
x14 and x27 are of a magnitude larger than the other xj’s: the circle mainly depends on
these 3 parameters.

Figure 6.11: Second example: an over-parameterized circle.
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Figure 6.12: Four first eigencomponents of the ααα(i)’s in the Example 6.2, for the three
different shape representations φ. Left: characteristic function, middle: signed distance
to the contour, right: discretization of the contour. The manifolds are shown in the
{v1,v2,v3} (top), and {v1,v2,v4} bases (bottom). As can be seen from the two-
dimensional surface in the {v1,v2,v4} space when φ = D (bottom right), the true
dimension (3) is retrieved with the contour discretization. Note also that the associated
manifold is convex.

The PCA eigenvalues for this example are given in Table 6.4 and are nearly the same
as those in Table 6.3. Apart from the little modification in the uniform distribution for
sampling the x(i)’s which might lead to a slightly different ΦΦΦ, the over-parameterization
is not a concern to retrieve the correct dimension. Figures 6.13-6.15 show the 9 first
eigenvectors (if they have a strictly positive eigenvalue) for the three φ’s.
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Characteristic function Signed Distance Discretization
j Eigenvalue Cumulative percentage Eigenvalue Cumulative percentage Eigenvalue Cumulative percentage
1 9.24 9.48 1238.53 40.24 109.04 49.23
2 8.97 18.69 1210.72 79.57 104.69 96.50
3 8.76 27.68 516.05 96.33 7.75 100
4 5.95 33.79 39.70 97.62 0 100
5 5.28 39.21 24.47 98.42 0 100
6 3.93 43.25 21.83 99.13 0 100
7 3.59 46.93 6.10 99.33 0 100
8 3.36 50.38 6.03 99.52 0 100
9 2.90 53.35 3.27 99.63 0 100
10 2.80 56.23 3.12 99.73 0 100

Table 6.4: 10 first PCA eigenvalues for the different φ’s, over-parameterized circle with
d = 39 parameters, with real dimension d = 3.

Figure 6.13: Example 6.2, over-parameterized circle with d = 39 parameters, 9 first
eigenvectors (left to right and top to bottom) when φ = characteristic function.

Mines Saint-Étienne David Gaudrie



6.2 From CAD description to shape eigenbasis 147

Figure 6.14: Example 6.2, over-parameterized circle with d = 39 parameters, 9 first
eigenvectors (left to right and top to bottom) when φ = signed distance.

Figure 6.15: Example 6.2, over-parameterized circle with d = 39 parameters, 3 first
eigenvectors when φ = contour discretization.
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Example 6.3. Three (non-overlapping) holes in R2, whose centers and radii are de-
termined by x1, x2, x3 (first circle), x4, x5, x6 (second circle), and x7, x8, x9 (third
circle). This problem is more complex since it consists of three elements, and has d = 9
dimensions. For φ = D, the discretization vector φ(x) ∈ RD is split into 3 parts of size
D/3 which correspond to the discretization of each circle.

0 1 2 3

0
1

2
3

4

x1, x2( )

x3

x4, x5( )

x6

x7, x8( )

x9

Figure 6.16: Third example: three circles with varying centers and radii.

Characteristic function Signed Distance Discretization
j Eigenvalue Cumulative percentage Eigenvalue Cumulative percentage Eigenvalue Cumulative percentage
1 96.67 9.52 1785.93 31.51 154.26 19.06
2 81.57 17.56 1267.81 53.88 151.80 37.82
3 80.07 25.45 912.40 69.98 149.81 56.33
4 66.03 31.96 588.30 80.36 148.09 74.63
5 48.28 36.71 402.56 87.46 91.34 85.91
6 40.66 40.72 159.38 90.27 90.53 97.10
7 39.37 44.60 144.75 92.83 8.65 98.17
8 38.75 48.42 121.80 94.97 8.54 99.22
9 25.07 50.89 54.63 95.94 6.29 100
10 24.45 53.30 47.36 96.77 0 100

Table 6.5: 10 first PCA eigenvalues for the different φ’s, three circles with d = 9
parameters.
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The 9 first eigenvectors are illustrated for the three φ’s in Figures 6.17 to 6.19.

Figure 6.17: Example 6.3, three circles with d = 9 parameters, 9 first eigenvectors (left
to right and top to bottom) when φ = characteristic function.

Figure 6.18: Example 6.3, three circles with d = 9 parameters, 9 first eigenvectors (left
to right and top to bottom) when φ = signed distance.

In each example, for all φ(·)’s, any shape φ(x(i)) can be reconstructed via Equation
(6.3). ααα(i) is nonetheless D-dimensional hence no dimension reduction is obtained. We
are therefore interested in low-rank approximations φφφ1:δ := φφφ +

∑δ
j=1 αjv

j which solely
consider the δ first eigenvectors, while guaranteeing a sufficient precision. It is known
(Jolliffe, 2011) that ‖ΦΦΦ−ΦΦΦ1:δ‖2

F = N
∑D

j=δ+1 λj where ΦΦΦ1:δ is the reconstruction matrix

using the δ first principal axes vj only, and whose i-th row is φφφ+
∑δ

j=1 α
(i)
j vj. ΦΦΦ1:δ is also

known to be the closest (in terms of Frobenius norm) matrix to ΦΦΦ with rank lower or equal
to δ. The λj’s with j > δ inform us about the reconstruction loss. Hence, we look for a
mapping φ(·) for which the λj quickly go to zero. In Tables 6.1 to 6.5, the vanishing of
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Figure 6.19: Example 6.3, three circles with d = 9 parameters, 9 first eigenvectors (from
left to right, top to bottom) when φ = discretization. The blue part of each eigenvector
acts on the first circle, the red part of each eigenvector modifies the second circle and the
green part of each eigenvector applies on the third circle.

λj beyond the intrinsic dimension only happens when φ = D. With the other mappings,
alternative techniques relying on local PCAs (Fukunaga and Olsen, 1971) on the ααα(i)’s
are required to estimate the dimensionality of manifolds such as the ones on the top row
of Figure 6.2. The d first principal components, ααα

(i)
1:d suffice to reconstruct φ(x(i)) exactly

using D as the φ(·) mapping, while more than d components are required for φ(x(i)) to
be recovered using χ or D. With D, the eigenvectors vj (Right plot of Figure 6.4, Figures
6.7, 6.10, 6.15 and 6.19) are physically meaningful: they can be interpreted as shape
discretizations, which, being multiplied by coefficients αj and added to the mean shape
φφφ, act on the hole’s size (Eigenvector 1 in right plot of Figure 6.4, Eigenvector 2 in Figure
6.7, Eigenvector 3 in Figure 6.10, Eigenvector 3 in Figure 6.15, Eigenvectors 7-9 in Figure
6.19), or on the hole’s position (Eigenvector 1 in Figure 6.7, Eigenvectors 1-2 in Figure
6.10, Eigenvectors 1-2 in Figure 6.15, Eigenvectors 1-6 in Figure 6.19). For example, very
small eigenvectors such as the first one in Figure 6.7 displace the shape in the direction
specified by the eigenvector’s position. In Figure 6.19, the first eigenvectors tend to move
each circle with respect to each other, while the sizes of the holes are affected by the
last eigenvectors. Whereas the characteristic function χ and the signed distance D are
images, the mapping D is a discretization of the final object we represent, a contour
shape. Without formal proof, we think that this is related to the observed property that
the d (the number of intrinsic dimensions) first eigencomponents ααα

(i)
1:d, i = 1, . . . , N make

a convex set as can be seen in Figures 6.2 and 6.12.

In a solid mechanics analogy, the φφφ+
∑

j αjv
j reconstruction can be thought as a sum
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of pressure fields vj applied on each node of the Point Distribution Model, and which
deform the initial mean shape φφφ by a magnitude αj to obtain φφφ. Such an interpretation
cannot be conducted with the eigenvectors obtained via the χ or D mapping, shown in
the other figures.

Because of its clear pre-eminence, in the following, we will only consider theααα’s obtained
using the contour discretization as φ mapping.

6.2.3.2 Hierarchic shape basis for the reduction of high-dimensional designs

Following these observations, we now deal with slightly more complex and realistic shapes
Ωx. Even though they are initially described with many parameters, they mainly depend
on few intrinsic dimensions.

Example 6.4. A rectangle ABCD with x ∈ R40 whose parameters x1 and x2 are the
location of A, x3 and x4 are the width and the height of ABCD, and x5:13, x14:22, x23:31 and
x32:40 are small evenly distributed perturbations, on the AB, BC, CD and DA segments,
respectively.

x1, . . . , x4 are of a magnitude larger than the other parameters to ensure a close-to-
rectangular shape, as shown in Figure 6.20.

Figure 6.20: Example 6.4: a rectangle with varying position, size, and deformation of its
sides.

In this example where 4 parameters (position and sizes) mainly explain the differences
among shapes, we see that a reconstruction quality of 99.83% is attained with the 4 first
eigenvectors vj.

Figure 6.21 details the eigenvectors. v1 and v2, the most influencing eigenshapes plotted
in black and blue act as translations, while v3 and v4 (in red and green) correspond to
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j Eigenvalue Cumulative percentage
1 867.65 48.73
2 866.90 97.42
3 21.46 98.62
4 21.43 99.83
5 0.13 99.83
6 0.13 99.84
7 0.13 99.85
8 0.13 99.86
9 0.12 99.86
10 0.12 99.87
...

...
...

39 0.04 99.99
40 0.04 100
41 0 100

Table 6.6: First PCA eigenvalues for φ = discretization, rectangles with d = 40
parameters (Example 6.4).

widening and heightening of the rectangle. The fluctuations along the segments appear
from the 5th eigenshape on. Any shape is retrieved with the d = 40 first eigenshapes
which corresponds to the total number of parameters.

Figure 6.21: 6 first eigenshapes (in the order black, blue, red, green, yellow, purple) of
the rectangles in Example 6.4.
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Example 6.5. A straight line joining two fixed points A and B, modified by smooth
perturbations r ∈ R29, evenly distributed along [AB] to approximate a smooth curve.

The fifth example is inspired by the catenoid problem (Colding and Minicozzi, 2006).
The perturbations r are generated by a Gaussian Process with squared exponential kernel
and with length-scale 6 times smaller than [AB]. Therefore, in this example, the N = 5000
r(i)’s used for building ΦΦΦ are not uniformly distributed in X.

Figure 6.22: Example 6.5: a straight line joining two points, modified by the
perturbations rj to approximate a curve. Gray: the line joining A and B. Blue, red,
yellow and green curve: examples of lines with regular rj perturbations. Red envelope:
boundaries for the rj’s.
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j Eigenvalue Cumulative percentage
1 2.156 50.258
2 1.251 79.422
3 0.590 93.181
4 0.206 97.973
5 0.065 99.480
6 0.017 99.882
7 0.004 99.975
8 0.001 99.995
9 ε 99.999
10 ε 100
...

...
...

28 ε 100
29 ε 100
30 0 100

Table 6.7: First PCA eigenvalues for φ = discretization, curve with d = 29 parameters.
ε means the quantity is not exactly 0, but smaller than 10−3, hence less than 0.04% of
the first PCA eigenvalue.

Again, the initial dimension (d = 29) is recovered by looking at the strictly positive
eigenvalues. Furthermore, the manifold is found to mainly lie in a lower dimensional
space: AN can approximated in δ = 7 dimensions since

∑δ
j=1 λj/

∑D
j=1 λj = 99.975%.

Figure 6.23 shows the corresponding eigenshapes. The eigenshapes are similar to the
ordered modes of the harmonic series with the associated eigenvalues ordered as the
inverse of the frequencies.
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Figure 6.23: 7 first eigenshapes for the curves of Example 6.5.

Example 6.6. A classical NACA airfoil parameterized by three parameters:
x = (M,P, T )> ∈ R3 (see Section 3.1 for a detailed description).

j Eigenvalue Cumulative percentage
1 0.2819 54.619
2 0.2203 97.318
3 0.0129 99.814
4 0.0008 99.959
5 0.0001 99.983
6 ε 99.991
7 ε 99.996
8 ε 99.997
9 ε 99.999
10 ε 99.999

Table 6.8: First PCA eigenvalues of the NACA airfoil with d = 3 parameters (φ is the
contour discretization). ε means the quantity is smaller than 10−4, hence less than 0.04%
of the first PCA eigenvalue.

In this example, a typical noise-truncation criterion such as discussed in Example 6.5
would retain 3 or 4 axes. In Example 6.6 too, the effective dimension can almost be
retrieved from the λ’s.

Figure 6.24 shows the 4 first eigenshapes (left) as well as the AN manifold (right). The
eigenvectors can be interpreted as a reformulation of the CAD parameters. The first
eigenshape (blue) is a symmetric airfoil. Multiplying it by a coefficient (after adding it
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to the black mean shape) will increase or decrease the thickness of the airfoil, hence it
plays a similar role to the T parameter. The second eigenshape is a cambered airfoil,
whose role is similar to M (maximum camber). Last, the third airfoil, which has a much
smaller eigenvalue λ3, is very thin, positive in the first part of the airfoil, and negative in
its second part. It balances the camber of the airfoil towards the leading edge or towards
the rear and plays a role similar to P , the position of the maximum camber. v3’s effect
is complemented by v4.

The analysis of AN (Figure 6.24) is physically meaningful: even though x(i) are sampled
uniformly in X, AN resembles a pyramid in the (v1,v2,v3) basis. Designs with minimal
α2 share the same α3 value. Since negative α2’s correspond to wings with little camber,
the position of this maximum camber has very little impact, hence the almost null α3

value. By looking at AN , it is learned that the parameter P does not matter when M
is small, which is intuitive but is not expressed by the (M,P, T ) coordinates. Distances
in AN are therefore more representative of shape differences. An additional advantage
of analyzing shapes is that correlations in the space of parameters (such as the one
between M and P in this example) are discovered and removed, since V is an orthonormal
basis. Here, orthogonality between eigenshapes is measured by the standard scalar
product in RD. Depending on the application, there may exist natural definitions of
the orthogonality between discretized shapes, which could be used by the PCA.

Figure 6.24: NACA airfoil with d = 3 parameters. Left: mean shape and 4 first
eigenshapes (black, blue, red, green, yellow). Right: three first eigencomponents
(α1, α2, α3) of the AN manifold.
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Example 6.7. The modified NACA airfoil with d = 22 parameters,
x = (M,P, T, L1, . . . , L19)> ∈ R22 (see Section 3.1.1 and Figure 3.2 for a detailed
description).

j Eigenvalue Cumulative percentage
1 0.2826 53.932
2 0.2205 96.021
3 0.0134 98.580
4 0.0011 98.798
5 0.0006 98.903
6 0.0005 99.006
7 0.0005 99.106
8 0.0005 99.202
9 0.0005 99.293
10 0.0004 99.377
...

...
...

19 0.003 99.958
20 0.002 99.992
21 ε 99.995
22 ε 99.998
23 ε 99.999

Table 6.9: First PCA eigenvalues for φ = discretization, NACA with d = 22 parameters.
ε means the quantity is not exactly 0, but smaller than 10−4, hence less than 0.04% of
the first PCA eigenvalue.

Here, as in the Example 6.6, the noise-truncation criteria will retain between 6 and 20
dimensions, depending on the reconstruction quality required. Indeed, when looking at
specimen of NACA 22 airfoils as the one in the upper left part of Figure 6.25, less than
22 dimensions are expected to be necessary to retrieve an approximation of sufficient
quality.
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Figure 6.25: Left: examples of NACA 22 airfoils. Even though the true dimension is 22,
less dimensions may suffice to approximate the shapes well enough. Right: reconstruction
scheme of any NACA 22 shape: a weighted deviation from the mean shape φφφ in the
direction of the eigenshapes. Bottom: example of shape reconstruction (red) using 2,
3, 6 or 20 eigenshapes. The more vj’s, the better the reconstruction but the larger the
dimension of ααα.

The analysis of eigenshapes, shown in Figure 6.26, is similar to the one of Example
6.6. Small details that act on the airfoil such as the bumps only appear from the 4th
eigenshape on. Not taking them into account leads to a weaker reconstruction, as shown
in the bottom part of Figure 6.25.

According to these experiments, the eigenvectors vj, j ∈ {d + 1, . . . , D}, can already
be discarded without even considering the values of the associated objective functions
since the d first shape modes explain the whole variability of the discretized shapes. In
practice, to filter numerical noise and to remove non-informative modes in shapes that
are truly over-parameterized, we only consider the d′ first eigenshapes, d′ := min(d, d̃)
where d̃ corresponds to the smallest number of axes that explain more than a given level

of diversity in Φ (e.g. 99.9, 99.95 or 99.99%), measured by 100 ×
∑d̃

j=1 λj/
∑D

j=1 λj.

Another alternative is to define d̃ according to the dimensions for which λj/λ1 is smaller
than a prescribed threshold (e.g. 1/1000). Even though the notation D is kept, the
eigenvectors vj and the principal components αj, are considered to be null ∀j > d′ so
that in fact D = d′ in the following.
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Figure 6.26: Mean shape (black) and 6 first eigenshapes (blue, red, green, yellow, purple,
pink) for the NACA with 22 parameters. The three first eigenvectors are similar to those
observed on Figure 6.24 for the original NACA 3. Fluctuations along the eigenshapes
are found from the 4th eigenshape on. They allow to reconstruct the local refinements
(bumps) of the airfoils.

6.3 GP models for reduced eigenspaces

Building a surrogate model in the space of principal components has already been investi-
gated in the context of reduced order models (Berkooz et al., 1993). In most applications,
the dimension reduction is carried out in the output space, which has large dimension
when it corresponds to values on a finite element mesh. The response is approximated by
a linear combination of a small number of modes, and the metamodel is a function of the
modes coefficients. The construction of surrogates with inherent dimensionality reduction
has also been considered. In the active subspace method (Constantine et al., 2014), the
dimension reduction comes from a linear combination of the inputs which is carried
out by projecting x onto the hyperplane spanned by the directions of largest ∇f(x)
variation. The reduced-dimension GP is then Y (W>x) with W ∈ Rd×δ containing these
directions in columns. In Palar and Shimoyama (2018), cross-validation is employed for
choosing the number of such axes. An application to airfoils is given in Li et al. (2019)
where the authors take the directions of largest drag and lift gradients as columns of
W, even though this basis is no longer orthogonal. Another related technique with
a Y (W>x) GP which does not require the knowledge of ∇f(x) is the Kriging and
Partial Least Squares (KPLS) method (Bouhlel et al., 2016), where x is projected onto
the hyperplane spanned by the first δ axes of a PLS regression (Frank and Friedman,
1993). The dimension reduction is output-driven but W is no longer orthogonal, and
information may be lost when n < d′ because any shape (of effective dimension d′)
cannot be exactly reconstructed (Equation 6.3) with these n vectors. Coordinates in
the PLS space are therefore incomplete and metamodeling loses precision when n is
too small. In the same spirit, a double maximum-likelihood procedure is developed
in Tripathy et al. (2016) to build an output-related and orthogonal matrix W for the

Mines Saint-Étienne David Gaudrie



160 6 From CAD to Eigenshapes for Optimization in Reduced Dimension

construction of a Gaussian Process with built-in dimensionality reduction. Rotating
the design space through hyperparameters determined by maximum likelihood is also
performed in Namura et al. (2017b).

6.3.1 Unsupervised dimension reduction

Instead of the space of CAD parameters x, we reduce the dimension of the input space by
building the surrogate with information from the space of shape representations, Φ, as in
Li et al. (2018a). To circumvent the high dimensionality of Φ ⊂ RD, a linear dimension
reduction of φ(x) is achieved by building the model in the space spanned by W>φ(x).
A natural candidate for W is a restriction to few columns (eigenshapes) of the matrix
V. Notice that contrarily to the other dimension reduction techniques which operate a
linear dimension reduction of x, this approach is nonlinear in x since it operates linearly
on the nonlinear transformation φ(x). Also, it operates on a better suited representation
of the designs, their shapes, instead of their parameters.

A first idea to reduce the dimension of the problem is to conserve the δ first eigenvectors
vj according to some reconstruction quality criterion measured by the eigenvalues. Given

a threshold T (e.g., 0.95 or 0.99), only the first δ modes such that
∑δ
j=1 λj∑D
j=1 λj

> T are retained

in V1:δ ∈ RD×δ because they contribute for 100×T% of the variance in Φ. The surrogate
model is implemented in the space of the δ first principal components as

Y (ααα1:δ) = Y (V>1:δ(φ(x)− φφφ)). (6.5)

Using a stationary kernel for the Y (ααα1:δ) GP, i.e. k(ααα1:δ,ααα
′
1:δ) = k̃(‖ααα1:δ − ααα′1:δ‖Rδ),

the correlation between designs is k(ααα1:δ,ααα
′
1:δ) = k̃(‖V>1:δ(φ(x) − φ(x′))‖Rδ) = k̃(r) with

r2 = (φ(x) − φ(x′))>M(φ(x) − φ(x′)) where M = V1:δV
>
1:δ is a D × D matrix with

low rank (δ). Hence, this model implements a Gaussian Process in the Φ space with an
integrated linear dimensionality reduction step (Rasmussen and Williams, 2006). Note
that the kernel is non-stationary in the original X space.

The approaches of Bouhlel et al. (2016); Constantine et al. (2014); Tripathy et al.
(2016) mainly differ from that proposed in Equation (6.5) in the construction of the
reduced basis: in Equation (6.5), dimension reduction is carried out without the need to
call the expensive f(x) (or its gradient): the directions of largest variation of an easy to
compute mapping φ(·) are used instead. This also prevents from a spurious or incomplete
projection when n is smaller than D and avoids recomputing the basis at each iteration.

This is nonetheless a limitation since the Y (ααα1:δ) approach relies only on considerations
about the shape geometry. The output y is not taken into account for the dimension
reduction even though some vj, j ∈ {1, . . . , δ} may influence y or not. Two shapes which
differ in the αj components with j ≤ δ may behave similarly in terms of output y, so that
further dimension reduction is possible. Vice versa, eigencomponents that have a small
geometrical effect and were neglected may be reintroduced because they matter for y.

As an illustration consider the red and black shapes of Figure 6.27. Both are associated
to parameters x and x′ and their discretizations φ(x) and φ(x′) are quite different.
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Depending on the objective function, f(x) and f(x′) might differ widely. However, when
considering the φφφ+

∑δ
j=1 αjv

j reconstruction with δ = 3, they look very similar because

ααα1:3 ≈ ααα′1:3. Even though V1:3 := {v1,v2,v3} is a tempting basis because it explains
98.5% of the discretizations variance, it is not a good choice if f(x) and f(x′) are different:
because of continuity assumptions a surrogate model would typically suffer from inputs
ααα ≈ ααα′ with y 6= y′.

Figure 6.27: Example of two different shapes (black and red) whose reconstruction in the
space of the three first eigenshapes is very similar.

For this reason, instead of building the surrogate in the space spanned by the most
relevant shape modes, we would prefer to build it in the Va ⊂ V basis of the most output-
influencing eigenshapes αααa. Additionally, since the remaining “inactive” components αααa

refine the shape and might explain small fluctuations of y, instead of omitting them
(which is equivalent to stating αααa = 0), we would like to keep them in the surrogate
model while prioritizing αααa: a GP Y a(Waφ(x))+Y a(Waφ(x)) is detailed in Sec. 6.3.2.2.

6.3.2 Supervised dimension reduction

6.3.2.1 Selection of active eigenshapes

To select the eigencomponents that impact y the most, the penalized log-likelihood (Yi
et al., 2011) of a regular, anisotropic GP in the high dimensional space of ααα’s is considered,

max
ϑ

plλ(ααα
(1:t), y(1:t);ϑ) where plλ(ααα

(1:t), y(1:t);ϑ) := l̂(ααα(1:t), y(1:t);ϑ)− λ‖θθθ−1‖1 (6.6)

The ϑ are the GP’s hyperparameters made of the length-scales θj, a constant mean
term β, and the variance of the GP σ2. ααα(1:t) are the eigencomponents of the evalu-
ated designs x(1), . . . ,x(t), and y(1:t) the associated outputs, y(1:t) = (y(1), . . . , y(t))> =
(f(x(1)), . . . , f(x(t)))>. The mean and the variance terms can be solved for analytically
by setting the derivative of the log-likelihood equal to 0 (cf. Section 2.1.3) and are

substituted in (6.6) by β̂ and σ̂2 which yields the (concentrated) penalized log-likelihood

plλ(ααα
(1:t), y(1:t);ϑ) = −n

2
log(2π)− 1

2
log(|Kϑ|)−

1

2
(y(1:t)−1β̂)>K−1

ϑ (y(1:t)−1β̂)−λ‖θθθ−1‖1

(6.7)

where Kϑ is the covariance matrix with entries Kϑij = σ̂2kθθθ(x
(i),x(j)), with determinant

|Kϑ|. The penalization is applied to θθθ−1 := (1/θ1, . . . , 1/θD)>, the vector containing
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the inverse length-scales of the GP. It is indeed clear (Ben Salem et al., 2018) that if
θj → +∞, the direction vj has no influence on y as all the points are perfectly correlated
together, making the GP flat in this dimension. The L1 penalty term applied to the
θj’s performs variable selection: this Lasso-like procedure promotes zeros in the vector
of inverse length-scales, hence sets many θj’s to +∞. Few directions with small θj are
selected. Even if the maximization of plλ is carried out in a D-dimensional space, the
problem is tractable since the gradients of plλ are analytically known, and because the L1

penalty convexifies the problem. We solve it using standard gradient-based techniques
such as BFGS (Liu and Nocedal, 1989) with multistart.

Numerical experiments not reported here for reasons of brevity have shown that most
local optima to this problem solely differ in θj’s that are already too large to be relevant
and consistently yield the same set of active variables αααa. Notice that in Yi et al. (2011),
a similar approach is undertaken but the penalization was applied on the reciprocal
variables w = (w1, . . . , wD)> with wj = 1/θj. In our work, the inverse length-scales
are penalized, the gradient of the penalty is proportional to 1/θ2

j . This might help the
optimizer since directions with θj’s that are not large yet are given more emphasis. In
comparison, the w penalty function’s gradient is isotropic. Since we can restrict the
number of variables to d′ � D with no loss of information (cf. discussion at the end
of Section 6.2.3), the dimension of Problem (6.6) is substantially reduced which leads
to a more efficient resolution. Because the αj’s have zero mean and variance λj, they
have magnitudes that decrease with j. When m < n, 1/θn is typically larger than
1/θm, meaning that the optimizer is better rewarded by diminishing 1/θn than 1/θm.
Starting from reasonable θj values2 the first θj’s are therefore less likely to be increased
in comparison with the last ones, i.e. they are less likely to be found inactive. This can
be seen as a bias which can be removed by scaling all αj’s to the same interval. However,
we do not normalize the ααα variables for two reasons. First, since the αj’s correspond to
reconstruction coefficients associated to normalized eigenshapes (‖vj‖RD = 1), they share
the same physical dimension and can be interpreted in the same manner. Second, this
bias is equivalent to assuming that the most significant shape variations are responsible
for the largest output variations, which is a reasonable prior. In experiments that are not
reported here for the sake of brevity, we have noticed that a BFGS algorithm optimizing
Problem (6.6) got trapped by weak local optima more frequently when the αj’s were
normalized.

Definition 6.1 (Selection of active dimensions). Let a GP be indexed by α1, . . . , αD ∈
[αααmin,αααmax] ⊂ RD and {ααα(1:t), y(1:t))} be the data to model. The length-scales θθθ of the GP
are set by maximizing the L1 penalized concentrated log-likelihood of Equation (6.7). A
dimension j is declared active if

θj
range(αj)

≤ 10× min
i=1,...,D

θi
range(αi)

.

The δ such active dimensions are denoted αααa = (αa1 , . . . , αaδ) ∈ Rδ.
2Typically of the order of range(αj).
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Since the αj’s have different (decreasing) ranges, the length-scales have to be normalized

by the range of ααα
(1:t)
j to be meaningful during this θj comparison. Our implementation

extends the likelihood maximization of the kergp package (Deville et al., 2015) to include
the penalization term. After a dimensional analysis of plλ, we have chosen to take λ = t

D

to balance both terms. Other techniques such as cross-validation or the use of different
λ’s for obtaining a pre-defined number of active components can also be considered.

On the NACA 22 benchmark with few observations of f(·) (DoE of n = 15 observations
here), Figure 6.28 gives the only few active components that are selected by the penalized
maximum likelihood procedure. The three first principal axes, v1, v2 and v3 are retained
when considering the drag (top). Indeed, these are the eigenshapes that globally impact
the shape the most and change its drag. When the output y is the lift (bottom), only
the second principal axis is selected. This eigenshape modifies the camber of the shape,
which is known to highly impact the lift. The other eigenvectors are detected to be less
critical for y’s variations. When n grows, more eigenshapes get selected because they also
slightly impact the output. For instance when n = 50, some eigenshapes that contain
bumps (the 4th, the 5th, the 8th, etc.) are selected for modeling the lift. They also
contribute to changing the camber of the airfoil, hence its lift.

Figure 6.28: Variable selection on the NACA 22 benchmark by penalized maximum
likelihood. For the drag (top), the three first eigenshapes that act on the shape, hence
on its drag, are selected (red coefficients). For the lift, only the second eigencomponent
(v2) is selected (bottom). Indeed v2 modifies the camber of the airfoil, hence it plays a
major role on the lift. The other eigenbasis vectors (green coefficients) are estimated to
be less influential on y.

6.3.2.2 Additive GP between active and inactive eigenshapes

Completely omitting the non-active dimensions, αααa ∈ RD−δ, and building the surrogate
model Y (·) in the sole αααa space may amount to erasing some geometric patterns of
the shapes which contribute to small variations of y. For this reason, an additive GP
(Durrande et al., 2012; Duvenaud et al., 2011) with zonal anisotropy (Allard et al., 2016)
between the active eigenshapes and the residual ones is considered:

Y (ααα) = β + Y a(αααa) + Y a(αααa). (6.8)
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Y a(αααa) is the anisotropic main-effect GP which works in the reduced space of active
variables. It requires the estimation of δ + 1 hyperparameters (the length-scales θj and
a GP variance σ2

a) and aims at capturing most of y’s variation, related to αααa’s effect.
Y a(αααa) is a GP over the large space of inactive components. It is a GP which just takes
residual effects into account. To keep Y a(αααa) tractable, it is considered isotropic, i.e., it
only has 2 hyperparameters, a unique length-scale θa and a variance σ2

a. In the end, even
though Y (ααα) operates with ααα’s ∈ RD and there are fewer observations than dimensions3,
n � D, it remains tractable since only a total of δ + 3 � n hyperparameters have to
be learned, which guarantees the identifiability, i.e. the unicity of the hyperparameters
solution even when the number of observations is small. Although the αj’s have different
ranges, they are homogeneous in that they all multiply normalized eigenshapes. Thus,
the distances inside the shape manifold, A, should be relevant and an isotropic model is a
possible assumption, which again, tends to emphasize eigenshapes that appear the most
within the designs. This additive model can be interpreted as a GP in the αααa space, with
an inhomogeneous noise fitted by the Y a(·) GP (Durrande, 2011). It aims at modeling a
function that varies primarily along the active dimensions, and fluctuates only marginally
along the inactive ones, as illustrated in Figure 6.29.

Figure 6.29: Example of a function that primarily varies along the αααa direction, and
secondarily along αααa. If αααa is omitted, one implicitly considers the restriction of f(·) to
the gray plane where αααa = 0.

Denoting ka(·, ·) and ka(·, ·) the kernels of the GPs, the hyperparameters
ϑa = (θa1 , . . . , θaδ , σ

2
a) and ϑa = (θa, σ

2
a) are estimated by maximizing the log-likelihood

of (6.8) given the observed data y(1:t),

l̂Y (ααα(1:t), y(1:t);ϑa, ϑa) = −n
2

log 2π − 1

2
log(|K|)− 1

2
(y(1:t) − 1β̂)>K−1(y(1:t) − 1β̂),

using the kergp package (Deville et al., 2015). K = Ka + Ka, with

Kaij = σ2
aka(ααα

a(i),αααa(j)), and Kaij = σ2
aka(ααα

a(i)
,αααa

(j)
), and β̂ is the Generalized Least

Squares estimate, see Section 2.1.3. The correlation between ααα and ααα′ being

3Even if pruning the αj components for j > d′ (see comments at the end of Section 6.2.3), n < d′

may hold.
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k(ααα,ααα′) = σ2
aka(ααα

a,αααa′) + σ2
aka(ααα

a,αααa
′
), the kriging predictor and variance (Equations

2.2 and 2.3) of this additive GP are

ŷ(ααα) = 1nβ̂ + k(ααα,ααα(1:t))>K−1(y(1:t) − 1nβ̂)

s2(ααα) = σ2
a + σ2

a − k(ααα,ααα(1:t))>K−1k(ααα,ααα(1:t)) +
(1− 1>t K−1k(ααα,ααα(1:t)))2

1>t K−11t

(6.9)

6.3.3 Experiments: metamodeling in the eigenshape basis

We now study the performance of the variable selection and of the additive GP described
in the previous section. The different versions of GPs that are compared are the following:

• GP(X) is the GP in the original space of parameters X;

• GP(ααα ) indicates the GP is built in the space of (to be specified) principal
components;

• GP(αααa) means the GP works with the active ααα’s only;

• AddGP(αααa +αααa) refers to the additive GP (Section 6.3.2.2).

We equip the example designs 6.2, 6.4, 6.5 and 6.7 (Section 6.2.3) with objective
functions f(x) that are to be modeled by the fitted GPs. For each function, the predictive
capability of different models is compared on a distinct test set using the R2 coefficient
of determination. Later, in Section 6.4.3.2, the objective functions will be optimized.

• Example 6.2: f2(x) = r − πr2 − ‖(x, y)> − (3, 2)>‖2, where x, y and r correspond
to the position of the center and the radius of the over-parameterized circle (and
accessible through x), respectively.

• Example 6.4: f4(x) = ‖Ωt − Ωx̃‖2
2 where x̃ := x − (x1 + 2.5, x2 + 2.5, 0, . . . , 0)>

corresponds to the centered design, and Ωt, Ωx̃ are the nodal coordinates of the
shapes, see Figure 6.20. The goal is to retrieve a target shape t = (t1, . . . , t40)>

whose lower left point (A) is set at t1 = t2 = 2.5 with the flexible rectangle defined
by x. The A point of any shape x is first moved towards (2.5, 2.5) too, and f4

measures the discrepancy. Here, the target t is the rectangular heart shown in
Figure 6.30.

• Example 6.5: f5(r) = 2π
∫ yB
yA

r(y)
√

1 + r′(y)2dy: inspired by the catenoid problem

(Colding and Minicozzi, 2006), we aim at finding a regular curve joining two points
A = (0, yA) and B = (1, yB), with the smallest axisymmetric surface. The curve
r(y) is the straight line between A and B, modified by r = (r1, . . . , r29)>, see Figure
6.22.
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Figure 6.30: Rectangular heart target shape of Example 6.4.

• Example 6.7: the objective functions are the lift coefficient and the drag coefficient
of the airfoil, f7L, f7D. The latter are computed using a commercial Computational
Fluid Dynamics (CFD) computer code. Remark that in this section, we do not use
the MetaNACA of Chapter 3, but rather true CFD computations (in particular
some evaluations that where used for building the MetaNACA).

Over-parameterized circle (Example 6.2)

For the over-parameterized circle, the objective function is f2(x) = r − πr2 − ‖(x, y)> −
(3, 2)>‖2, where x, y and r correspond to the position of the center and the radius of the
circle (accessible through x), respectively. f2 explicitly depends on the parameters that
truly define the circle. Three models are compared

• A model using the CAD parameters x ∈ R39;

• A model using the 3 first eigencomponents, (α1, α2, α3);

• A model built over the true circle parameters (x, y, r).

Table 6.10 gives the average R2 over 10 runs with different space-filling DoEs of size
n = 20, 50, 100, 200. Since d = 39 > 20, no GP was fitted in the CAD parameter space
when n = 20.

n GP(X) GP(ααα1:3) GP(True)

20 - 0.99741 0.99701
50 0.78193 0.99954 0.99951
100 0.86254 0.99984 0.99985
200 0.93383 0.99992 0.99997

Table 6.10: Average R2 over 10 runs for the prediction of f2. GP(X) is the GP in the
39-dimensional CAD parameter space, GP(ααα1:3) corresponds to a GP fitted to the 3 first
principal components α1, α2, α3, and GP(True) to the GP with the space of minimal circle
coordinates.
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f2 is easily learned by the surrogate model as shown by large R2 values. Obviously,
the quality of prediction increases with n and the eigenshape GP (GP(ααα1:3)) built in a
3-dimensional space outperforms the GP in the CAD parameters space (GP(X), d = 39).
Yet, the GP(ααα1:3) performs as well (and even better for small n’s) as GP(True).

Heart target (Example 6.4)

We turn to the metamodeling of f4. It is a 40-dimensional function, f4(x) = ‖Ωt −Ωx̃‖2
2

that explicitly depends on the CAD parameters. Unlike the previous test problem, the
shapes do not have superfluous parameters since all xj’s are necessary to retrieve t.

7 different models detailed through Sections 6.3.1 and 6.3.2 are investigated. GP(X),
the standard GP carried out in the space of CAD parameters. GP(ααα1:40), the metamodel
built in the space of 40 first principal components. Indeed, Table 6.6 informed us that any
shape is retrieved via its 40 first eigenshape coefficients. To build surrogates in reduced
dimension, considering the cumulative eigenvalue sum in Table 6.6, GP(ααα1:2), GP(ααα1:4)

and GP(ααα1:16) are models that consider the 2, 4 and 16 first principal components only.
Finally, GP(αααa) and AddGP(αααa +αααa) are also compared.

Table 6.11 reports the average R2 indicator over 10 runs starting with space-filling
DoEs of size n = 20, 50, 100, 200. Figure 6.31 shows a boxplot of the results (for the sake
of clarity, only runs with R2 ≥ 0.8 are shown). The input dimension for GP(X) and
for GP(ααα1:40) is too large for coping with n = 20 observations. GP(ααα1:40) is given beside
GP(X) because both GPs have the same input space dimension.

n GP(X) GP(ααα1:40) GP(ααα1:2) GP(ααα1:4) GP(ααα1:16) GP(αααa) AddGP(αααa +αααa)
20 - - -0.063 0.979 0.844 0.935 0.967
50 0.455 0.542 -0.009 0.984 0.968 0.983 0.991
100 0.662 0.868 0 0.986 0.986 0.986 0.997
200 0.873 0.988 0 0.987 0.991 0.987 0.999

Table 6.11: Average R2 over 10 runs when metamodeling f4.

The benefits of the additive GP appear to be threefold. First, it ensures sparsity
by selecting a small number of eigenshapes for the anisotropic part of the kernel. A
high-dimensional input space hinders the predictive capabilities when n is small, as
confirmed by the weak performance of GP(X), GP(ααα1:40) and even GP(ααα1:16) for n = 20.
When n increases, higher-dimensional models become more accurate. For n = 100 and
n = 200, the model with 16 principal components outperforms the one with 4 principal
components, even though the latter was more precise with n = 20 or n = 50 observations.
In the case n = 200, even GP(ααα1:40) outperforms the 4 dimensional one (GP(ααα1:4)). This
is due to the fact that more principal components mean a more realistic shape, hence less
“input space errors”. When few observations are available, these models suffer from the
curse of dimensionality, but become accurate as soon as their design space gets infilled
enough. With more observations, GP(ααα1:40) may become the best model.
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Figure 6.31: Boxplots of R2 coefficient for the different models, rectangle test case
(Example 6.4).

Besides the dimension reduction, the selection of eigenshapes that truly influence
the output is also critical. According to Table 6.6, a tempting decision to reduce the
dimension would be to retain the two first principal components, i.e. GP(ααα1:2). But
since the 2 first eigenshapes act on the shape’s position (see Figure 6.21) to which f4 is
insensitive, this is a weak option, as pointed out by the R2 scores which are close to 0 for
this model. Here, the selected variables are usually the 3rd and the 4th eigenshape which
act on the size of the rectangle, hence are of first order importance for f4. In about 30%
of the runs, they are accompanied by the first and the second one, and more rarely by
other eigenshapes.

Third, the AddGP(αααa+αααa) outperforms GP(αααa). Indeed, the less important eigenshapes
(from a geometric point of view) v5, . . . ,v40 locally modify the rectangle, and allow the
final small improvements in f4. This highlights the benefits of taking the remaining
eigenshapes which act as local shape refinements into account.

Last, even though their input spaces have the same dimension, GP(ααα1:40) consistently
outperforms GP(X). This confirms our comments about the NACA manifold of Figure
6.24: the eigenshapes are a better representation than the CAD parameters for statistical
prediction.

Catenoid shape (Example 6.5)

In relation with the catenoid, we introduce the objective function
f5(r) = 2π

∫ yB
yA

r(y)
√

1 + r′(y)2dy. f5 is an integral related to the surface of the

axisymmetric surface given by the rotation of a curve r(y). In our example, r(y) is the
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line between two points A and B modified by regularly spaced deviations
r = (r1, . . . , r29)>. Only r’s generated by a GP that lead to a curve inside a prescribed
envelope (see Figure 6.22) are kept in the same spirit as Li et al. (2019) where a
smoothing operator is applied to consider realistic airfoils. With this, it is expected that
less than 29 dimensions suffice to accurately describe all designs. This is confirmed by
the eigenvalues in Table 6.7 and the true dimensionality detected to be 7.

In this experiment, we compare the predictive capabilities of six models. The first
one is the classical GP(X). The objective function explicitly depends on r but its high-
dimensionality may be a drawback for metamodeling. Even though less dimensions are
necessary and many eigenshapes correspond to noise, a GP fitted to all d = 29 eigen-
shapes, GP(ααα1:29), is considered. Along with it, GP(ααα1:4) and GP(ααα1:7) are considered.
The former is an unsupervised dimension reduction, considering the λj’s, while the latter
is the full dimensional eigenshape GP, since the eigenshapes 8 to 29 are non-informative.
Finally, the GPs with variable selection GP(αααa) and AddGP(αααa +αααa), are also compared.

Table 6.12 reports the average R2 indicator over 10 runs starting with space-filling
DoEs of size n = 20, 50, 100, 200. Figure 6.32 shows a boxplot of the results (for the sake
of clarity, only runs with R2 ≥ 0.95 are shown). The input dimension for GP(X) and
for GP(ααα1:29) is too large for coping with n = 20 observations. GP(ααα1:29) is given beside
GP(X) because these GPs have the same input space dimension.

n GP(X) GP(ααα1:29) GP(ααα1:4) GP(ααα1:7) GP(αααa) AddGP(αααa +αααa)
20 - - 0.966 0.958 0.914 0.992
50 0.976 0.925 0.954 0.987 0.938 0.997
100 0.992 0.968 0.958 0.997 0.957 0.999
200 0.997 0.981 0.952 0.998 0.951 0.999

Table 6.12: Average R2 over 10 runs for the metamodeling of f5.

These results indicate a better performance of AddGP(αααa + αααa) which benefits from
the prioritization of the most influential eigenshapes in the additive model and, at the
same time, accounts for all the 7 eigenshapes. Modeling in the space of the full ααα’s
(GP(ααα1:7)) performs fairly well too because the low true dimensionality (7). Despite
its lower dimensionality, GP(ααα1:4) does not work well. This is because the refinements
induced by v5, v6 and v7 are disregarded while acting on f5. This explanation also
stands for the moderate performance of GP(αααa) in which mainly the 4 first principal
components are selected. Including the remaining components in a coarse GP as is done
inside AddGP(αααa +αααa) increases the performance.

Even though there are d = 29 CAD parameters, GP(X) exhibits correct performances:
since only smooth curves are considered, they are favorable to GP modeling and the curse
of dimensionality is damped. In this example, considering all 29 eigenshapes (GP(ααα1:29)),
even though it was assumed that solely 7 were necessary, leads to the worst results,
since the non-informative eigenshapes augment the dimension without bringing additional
information.
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Figure 6.32: Boxplots of R2 coefficient for the different models, catenoid test case
(Example 6.5).

NACA 22 airfoil (Example 6.7)

The last example brings us closer to real world engineering problems. The objective
functions associated to the NACA airfoil with 22 parameters (Example 6.7), f7L and
f7D are the lift and the drag coefficient of this airfoil. f7L, f7D depend implicitly and
nonlinearly on x through Ωx.

Table 6.9 shows that only the 20 first eigenvectors are informative. Seven metamodeling
strategies are compared: GP(X); GP(ααα1:20), the surrogate in the space of all 20 mean-
ingful eigenshapes; GP(ααα1:2), GP(ααα1:3), GP(ααα1:6) where fewer eigenshapes are considered;
GP(αααa); and AddGP(αααa +αααa). GP(ααα1:20) is given beside GP(X) because these GPs have
almost the same input space dimension.

Table 6.13 reports the average R2 indicator over 10 runs starting with space-filling
DoEs of n = 20, 50, 100, 200 observations. Figure 6.33 shows a boxplot of the results (for
the sake of clarity, only runs with R2 ≥ 0.8 for f7L and ≥ 0.6 for f7D are shown). The
input dimension for the GP(X) (d = 22) and for GP(ααα1:20) is too large for coping with
n = 20 observations.

In this example too, AddGP(αααa + αααa) exhibits the best predictive capabilities. Even
though they are coarsely taken into account, the non active eigenshapes which mostly
represent bumps, are included in the surrogate model. For the lift, GP(αααa) performs
quite well too since the f7L relevant dimensions have been selected. The variable selection
method provides contrasted results between f7L and f7D. For the lift, the first eigenshape
is not always selected. The second and the third one, as well as some higher order
eigenshapes get selected, which confirms the effect of the bumps on the lift (see Figures
6.25 and 6.26). For the drag (f7D) however, only the 2 or 3 first eigenshapes are usually
selected.
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f7L

n GP(X) GP(ααα1:20) GP(ααα1:2) GP(ααα1:3) GP(ααα1:6) GP(αααa) AddGP(αααa +αααa)
20 - - 0.857 0.907 0.930 0.935 0.957
50 0.956 0.973 0.714 0.935 0.950 0.970 0.984
100 0.975 0.989 0.708 0.938 0.962 0.981 0.992
200 0.987 0.995 0.515 0.954 0.968 0.993 0.996

f7D

n GP(X) GP(ααα1:20) GP(ααα1:2) GP(ααα1:3) GP(ααα1:6) GP(αααa) AddGP(αααa +αααa)
20 - - 0.443 0.806 0.720 0.800 0.796
50 0.771 0.847 0.259 0.866 0.882 0.878 0.896
100 0.861 0.921 0.192 0.915 0.928 0.925 0.945
200 0.915 0.958 -0.008 0.920 0.950 0.946 0.969

Table 6.13: Average R2 over 10 runs for the metamodeling of f7L (top) and f7D (bottom).

Figure 6.33: Boxplots of R2 coefficient for the different models, NACA 22 airfoil example.
Left: Lift, f7L. Right: Drag, f7D.

We have also noticed that the number of selected components tends to grow with
n. This is a desirable property since with larger samples, an accurate surrogate can
be built in a higher dimensional space. As already remarked in the previous examples
(e.g. Table 6.11), it is seen here in Figure 6.33 that models with more eigenshapes
become more accurate when the number of observations grows. For f7D (bottom table)
for example, when n is small, GP(ααα1:3) is better than GP(ααα1:6) and GP(ααα1:20), but
this changes as n grows, GP(ααα1:6) and GP(ααα1:20) becoming in turn the best eigenshape
truncation-based model. For f7L (top table), in spite of the dimension reduction, very
poor results are achieved when retaining only 2 or 3 components, even with small n’s.
When considering only the two first eigenshapes (GP(ααα1:2)), the R2 is weak as the third
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eigenshape significantly modifies the camber. For this GP, the performance decreases
with n because of situations like the one shown in Figure 6.27 where shapes that falsely
look similar when considering ααα1:2 only actually differ in lift. Such situations are more
likely to occur during the training of the GP as n grows, which degrades performance. The
example of f7L is informative in the sense that GP(ααα1:20) always outperforms GP(ααα1:6)

which outperforms GP(ααα1:3), for any n (including very little n’s), despite the higher
dimension. By ignoring second order eigenshapes, GP(ααα1:3) and GP(ααα1:6) provide less
reconstruction details. These details are nonetheless important since they change the
camber of the airfoil and this is why GP(ααα1:20), a more precise reconstruction, performs
better. Indeed, the remaining ααα’s mainly reconstruct the bumps of this airfoil as can be
seen in Figure 6.26, which does influence the lift.

This is also the reason why GP(X) is better at predicting lift than GP(ααα1:3) and
GP(ααα1:6), which could seem counter-intuitive at first glance since the dimension is reduced.

Last, let us point out than even though the dimension is almost the same, GP(ααα1:20)

consistently outperforms GP(X) for both the lift and the drag: it confirms that the
eigenshape basis V is more relevant than the CAD parameters basis for GP surrogate
modeling.

GP in reduced dimension: summary of results

These four examples have proven the worth of the additive GPs: they are the models that
perform the best because of the selection and prioritization of active variables. Models
in reduced dimension that exclusively rely on the active eigenshapes provide accurate
predictions too, but are slightly outperformed as they disregard smaller effects. GPs
built in the space of all (informative) eigenshapes always outperform the ones built in
the space of CAD parameters, even when both models have the same dimension. Among
the GPs over the reduced space of δ first principal axes, further removing dimensions
generally produces better predictions when the number of data points n is small. As n
increases, more eigenshapes lead to better metamodeling. Models where dimensions have
been chosen only from a geometric criterion (the PCA) have a prediction quality that
depends on the output: if the first modes do not impact y, as the 2 first eigenshapes of the
rectangle problem, predictions are poor. Ignoring reconstruction details that affect the
output as second-order eigenshapes in f7L also degrades the performance, highlighting
the importance of finding the active variables that affect the output.

6.4 Optimization in reduced dimension

We now turn to the problem of finding the shape that minimizes an expensive objective
function f(·). To this aim, we employ the previous additive GP, which works in the
space of eigencomponents ααα, in an Efficient Global Optimization procedure (Jones et al.,
1998): at each iteration, a new shape is determined given the previous t observations
{(ααα(1), y(1)), . . . , (ααα(t), y(t))} by maximizing the Expected Improvement (EI, Mockus, 1975,
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see Equation 2.8) as calculated with the GP Y (ααα):

ααα(t+1)∗ = arg max
ααα∈RD

EI(ααα;Y (ααα)) (6.10)

6.4.1 Alternative Expected Improvement maximizations

Maximization in the entire ααα space

The most straightforward way to maximize the EI is to consider its maximization in RD
as in Equation (6.10). However, this optimization is typically difficult as the EI is a
multi-modal and high (D) dimensional function4.

Maximization in the αααa space

We can however take advantage of the dimension reduction beyond the construction of
Y (·): αααa ∈ Rδ are the variables that affect y the most and should be prioritized for the
optimization of f(·). A second option is therefore to maximize the EI solely with respect
to Y a(αααa) in dimension δ. This option is nonetheless incomplete as the full GP Y (·)
requires the knowledge of ααα = [αααa,αααa].

A first simple idea to augment αααa is to set αααa equal to its mean, 0. The inactive part
of the covariance matrix Ka would be filled with the same scalar and the full covariance
matrix K = Ka + Ka would have a degraded conditioning. A second simple idea is to
sample αααa ∼ N (0,λλλa). However, αααa act as local refinements to the shape that contribute
a little to y, and should also be optimized. In Li et al. (2019), the authors observed that
despite the gain in accuracy of surrogate models in a reduced basis (directions of largest
variation of the gradient of the lift and drag in their application), a restriction to too few
directions led to poorer optimizations since small effects could not be accounted for.

Optimization in αααa space complemented with a random embedding in αααa

This leads to the third proposed EI maximization: a maximization of the EI with respect
to αααa and the use of a random embedding (Wang et al., 2013) to coarsely optimize the
components αααa: EI([αααa, αa]) is maximized, where α ∈ R is the coordinate along a random
line in the αααa space, a = (a1, . . . , aD−δ)

>. Since αααa have been classified as inactive, it
is not necessary to make a large effort for their optimization. This approach can be
viewed as an extension of REMBO (Wang et al., 2013). In REMBO, a lower dimensional
vector y ∈ Rδ is embedded in X through a linear random embedding, y 7→ ARy, where
AR ∈ RD×δ is a random matrix. Instead of choosing a completely random and linear
embedding with user-chosen (investigated in Binois et al., 2017) effective dimension δ,
our embedding is nonlinear (effect of the mapping φ(·)), supervised and semi-random
(choice of the active/inactive directions). The dimension is no longer arbitrarily chosen

4As explained at the end of Section 6.2, we can restrict all calculations to ααα’s d′ first coordinates.
Even though d′ � D, it has approximately the same dimension as d, hence the optimization is still
carried out in a high dimensional space.
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since it is determined by the number of selected active components (Section 6.3.2.1), and
the random part of the embedding is only associated to the inactive parts of ααα: denoting
αααa = (αa1 , . . . , αaδ)

> the selected components (that are not necessarily the δ first axes)
and αααa = (αa1 , . . . , αaD−δ)

> the inactive ones, our embedding matrix Aemb ∈ RD×(δ+1)

transforms [αααa, α] into the ααα space to which the x’s are nonlinearly mapped. The δ first

columns of Aemb, A
(i)
emb, i = 1, . . . , δ, correspond to αααa and contain the δ first vectors

of the canonical basis of RD, e
(i)
D , i.e. A

(i)
emb = δaii, where δij stands for the Kronecker

symbol here, δij = 1 if i = j, 0 else. The δ + 1-th column of Aemb contains a in the rows

which correspond to αααa, A
(δ+1)
emb ai

= ai, i = 1, . . . , D − δ. Rows corresponding to active
ααα’s equal 0.

Assuming φ−1 exists, the proposed approach is the embedding of a lower dimensional
design [αααa, α] whose dimension δ + 1 has carefully be chosen, in X, via the nonlinear
and problem-related mapping [αααa, α] 7→ φ−1(VAemb[ααα

a, α] + φφφ). The approach can
alternatively be considered as an affine mapping of [αααa, α] to the complete space spanned
by the eigenshapes V ,

[αααa, α] 7→ Vemb[ααα
a, α] + φφφ with Vemb := VAemb (6.11)

The shapes generated by the map of Equation (6.11) are embedded in the space of all
discretized shapes. The columns of Vemb ∈ RD×(δ+1) associated to active components are
the corresponding eigenshapes, while its last column is sum of the remaining eigenshapes,
weighted by random coefficients, namely Va, hence a supervised and semi-random em-
bedding. Another difference to Wang et al. (2013) is that only the EI maximization is
carried out in the REMBO framework; the surrogate model is not built in terms of [αααa, α]
but rather with the full ααα’s via the additive GP (Section 6.3.2.2).

In this variant, the EI maximization is carried out in a much more tractable δ + 1 -
dimensional space and still has analytical gradients (see next section). From its optimum
ααα∗ = [αααa∗, α∗] ∈ Rδ+1 arises a D-dimensional vector, ααα(t+1)∗ = Aemb[ααα

a∗, α∗] to be
evaluated by the true function (this is the pre-image problem discussed in Section 6.4.2).

Figure 6.34: EI maximization inαααa complemented by the maximization along a, a random
line in the αααa space.

EI gradient in ααα space

The Expected Improvement is differentiable and its derivative is known in closed-form
(Roustant et al., 2012). In the case of the additive GP (6.8), the mean and variance ŷ(ααα)
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and s2(ααα) are given by (6.9). Using the notations of Section 6.3.2.2 and exploiting the
symmetry of K, few calculations lead to

∇ŷ(ααα) = ∇k(ααα,ααα(1:t))>K−1(y(1:t) − 1nβ̂)

∇s(ααα) = −∇k(ααα,ααα(1:t))>K−1k(ααα,ααα(1:t))

s(ααα)

(6.12)

where ∇k(ααα,ααα(1:t)) = σ2
a∇ka(αααa,αααa

(1:t)
) + σ2

a∇ka(αααa,αααa
(1:t)

), which are plugged in (6.12)
and in ∇EI’s expression (2.9) to obtain ∇EI(ααα;Y (ααα)). In the alternatives proposed
before, given an ααα ∈ RD, the gradient of the EI can be computed efficiently, accelerating
its maximization which is carried out by the genetic algorithm using derivatives genoud

(Mebane Jr et al., 2011). In the random embedding of α case, the EI of [αααa, α] ∈ Rδ+1 is
given by EI(Aemb[ααα

a, α];Y (ααα)), and its gradient by A>emb∇EI(Aemb[ααα
a, α];Y (ααα)).

Setting bounds on ααα for the EI maximization

As seen in the examples of Section 6.2.3, neither the manifold of ααα’s, nor its restriction
to αααa need to be hyper-rectangular domains, which is a common assumption made by
most optimizers such as genoud (Mebane Jr et al., 2011), the algorithm used in our
implementation. Two strategies were imagined to control the space in which the EI is
maximized (6.10): the first one is to restrict the EI maximization to A by setting it to
zero for ααα’s that are outside of the manifold. The benefit of this approach is that only
realistic ααα’s are proposed. But it might suffer from an incomplete description of the entire
manifold of ααα’s, A, which is approximated by AN . Additionally, given AN , the statement
“being inside/outside the manifold” has to be clarified. We rely on a nearest neighbor
strategy in which the 95th quantile of the distances to the nearest neighbor within AN ,
d0.95, is computed and used as a membership threshold: a new ααα is considered to belong
to A if and only if the distance to its nearest neighbor within AN is smaller than d0.95.
In the light of these limitations, a second strategy, in which the EI is maximized in
AN ’s covering hyper-rectangle, is also investigated. The variant of EI maximization with
embedding (random line in αααa), introduces an α coordinate which has to be bounded
too. The αmin and αmax boundaries are computed as the smallest and largest projection
of AN on a. But depending on AN and on a, this may lead to a too large domain since
the embedded αa might stay outside the αααa covering hyper-rectangle. In the spirit of
Binois et al. (2015b), to avoid this phenomenon, the largest αmin and the smallest αmax

such that αa belongs to the covering hyper-rectangle ∀α ∈ [αmin, αmax], are chosen.

EI maximization via the CAD parameters

A last option consists in carrying the maximization in the X space through the mapping
φ(·) by max

x∈X
EI(x;Y (V>(φ(x)− φφφ)︸ ︷︷ ︸

ααα

)) = EI(x;Y (ααα(x))). This avoids both the aforemen-

tioned optimization domain handling and the pre-image search described in the following
section. However, this optimization might be less efficient since it is a maximization in
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d > δ dimensions, and since ∇φ(x) is unknown, the EI loses the closed-form expression
of its gradient.

6.4.2 From the eigencomponents to the original parameters:
the pre-image problem

The (often expensive) numerical simulator underlying the objective function can only
take the original (e.g. CAD) parameters as inputs. When the EI maximization is carried
out in the eigencomponents space, the ααα’s need to be translated into x’s. To this aim, the
pre-image problem consists in finding the CAD parameter vector x whose description in
the shape representation space Φ equals Vααα(t+1)∗ + φφφ. Because there are more ααα’s than
x’s, D � d, a strict equality may not hold and the pre-image problem is relaxed into:

x(t+1) = arg min
x∈X

‖(φ(x)− φφφ)−Vααα(t+1)∗‖2
RD . (6.13)

To complete an iteration, the pre-image problem (6.13) is solved and its solution x(t+1),
the parametric shape that resembles ααα(t+1)∗ the most, is evaluated by the simulator, which
returns y(t+1) = f(x(t+1)). Solving the pre-image problem does not involve calls to the
simulator so that it is relatively not costly. The surrogate model is then updated with
y(t+1) and ααα(t+1) := V>(φ(x(t+1))− φφφ), the x(t+1) description in the V basis.

Depending on the ααα(t+1)∗ yielded by the EI maximization (remember it may not stay
on the manifold A), φφφ(t+1)∗ := Vααα(t+1)∗ + φφφ and φφφ(t+1) := Vααα(t+1) + φφφ, the shape
representation of the ααα promoted by the EI and the shape representation of x(t+1),
respectively, may substantially differ. While it is mandatory to update the GP (6.8)
with the pair (ααα(t+1), y(t+1)), it may at first seem unclear what should be done with
ααα(t+1)∗ . When ααα(t+1)∗ does not belong to A and does not have a pre-image, it might
seem straightforward to ignore it. However, if ααα(t+1)∗ was yielded by the EI, it is very
likely to be promoted in the following iterations, since its uncertainty, s2(ααα(t+1)∗), has
not vanished. Therefore, if φφφ(t+1)∗ and φφφ(t+1) are substantially different, the virtual pair
(ααα(t+1)∗ , y(t+1)) is included in the GP (6.8) too in a strategy called replication. We define
replication in general terms.

Definition 6.2 (Replication). In Bayesian optimization, when the GP is built over
coordinates ααα that are a mapping5 of the original coordinates x, ααα = T (x), at the end
of each iteration a pre-image problem such as (6.13) must be solved to translate the
new acquisition criterion maximizer ααα(t+1)∗ into the next point to evaluate x(t+1) and the
associated iterate ααα(t+1) = T (x(t+1)). The replication strategy consists in updating the
GP with both

(
ααα(t+1), f(x(t+1))

)
and

(
ααα(t+1)∗ , f(x(t+1))

)
provided ααα(t+1)∗ and ααα(t+1) are

sufficiently different.

5In this article, the mapping T (·) is the composition of φ(·) with the projection onto a subspace of
(v1, . . . ,vD).
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Here, the difference between ααα(t+1)∗ and ααα(t+1) is calculated as the distance between the
associated shapes φφφ(t+1)∗ and φφφ(t+1). Since the database ΦΦΦ contains the shape represen-
tation of N distinct designs, d0 := min

i,j=1,...,N
i 6=j

‖ΦΦΦi −ΦΦΦj‖RD , the minimal distance between

two different designs in ΦΦΦ is used as a threshold beyond which φφφ(t+1) and φφφ(t+1)∗ are
considered to be different. The replication strategy is further motivated by the fact that
since x(t+1) = arg min

x∈X
‖(φ(x) − φφφ) −Vααα(t+1)∗‖2

RD = arg min
x∈X

‖V>(φ(x)− φφφ)︸ ︷︷ ︸
ααα(x)

− ααα(t+1)∗‖2
RD ,

where the last equality expresses just a change of basis since V is orthogonal, ααα(t+1) is
an orthogonal projection6 of ααα(t+1)∗ on A, see Figure 6.35.

Figure 6.35: When ααα(t+1)∗ /∈ A, the solution of the pre-image problem (in the ααα space),
ααα(t+1), is its projection on A.

This is somehow similar to Raghavan et al. (2013, 2014) where the authors project non
realistic shapes on a smooth surface built via diffuse approximation or a local polynomial
fitting, using the points of AN , to retrieve a realistic design. In our approach, unrealistic
shape representations are directly projected onto A through the resolution of (6.13).
Incorporating the non physical (ααα(t+1)∗ , y(t+1)) in the surrogate model can be viewed as
an extension of the surrogate model outside its domain (Shahriari et al., 2016) (outside
the manifold A in our case) by constant prolongation.

6.4.3 Experiments

Many algorithms result from the combination of versions of the GP metamodel and the
EI maximization. They are related to the space in which these operations are performed
(the initial X or the eigencomponents A with the retained number of dimensions), the
classical or additive GP, and the use of embedding or not. Before further explaining and

6Since we do not know the convexity of A, the projection might not be unique.
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testing them, we introduce a shorthand notation. The algorithms names are made of
two parts separated by a dash, GP version-EI version. The GP part may either be
an anisotropic GP with Matérn kernel, in which case it is noted GP, or an additive GP
made of an anisotropic plus an isotropic kernel noted AddGP. The spaces on which they
operate are specified in parentheses. For example, GP(ααα1:3) is an anisotropic GP in the
space spanned by (α1, α2, α3), AddGP(X1:3 + X4:40) is an additive GP where the kernel
is the sum of an anisotropic kernel in (x1, x2, x3) and an isotropic kernel in (x4, . . . , x40).
The space over which the EI maximization is carried out is specified in the same way.
Unspecified dimensions in the EI have their value set to the middle of their defining
interval, e.g., GP(X)-EI(X1:2) means that the EI maximization is done on the 2 first
components of x, the other ones being fixed to 0 if the interval is centered. The EI
descriptor can also be a keyword characterizing the EI alternative employed (see Section
6.4.1). For example, AddGP(ααα1:2 +ααα3:20)-EI embed means that the EI is maximized in a
3 dimensional space made of α1, α2 and the embedding α.

6.4.3.1 Optimization of a function with low effective dimension

A set of experiments is now carried out that aims at comparing the three optimization
alternatives involving GPs which have been introduced in Section 6.4.1 when a subset of
active variables has been identified: EI maximization in the space of active variables, in
the space of active variables with an embedding in the inactive space, and in the entire
space. In order to test the EI maximization separately from the space reduction method
(the mapping, PCA and regularized likelihood), we start by assuming that the effective
variables are known. Complete experiments will be given later.

We minimize a function depending on a small number of parameters, the following
modified version of the Griewank function (Molga and Smutnicki, 2005),

fMG(x) = fGriewank(x) + fSph(x), x ∈ [−600, 600]d (6.14)

where fGriewank(x) is the classical Griewank function in dimension 2,

fGriewank(x) =
1

4000

2∑
j=1

x2
j −

2∏
j=1

cos(
xj√
j

) + 1

defined in [−600, 600]2 and whose optimum, located in (0, 0)>, is 0. To create a high-
dimensional function where only few variables act on the output, the fSph function is
added to fGriewank, where fSph is a sphere centered in c, with smaller magnitude than
fGriewank, and which only depends on the variables x3, . . . , x10:

fSph(x) =
1

400, 000

10∑
j=3

(xj − cj−2)2.

fSph(x) is the squared Euclidean distance between (x3, . . . , x10)> and c which is set to
c = (−140,−100,−60,−20, 20, 60, 100, 140)> in our experiments. Completely ignor-
ing (x3, . . . , x10)> therefore does not lead to the optimum of fMG. We define fMG in
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[−600, 600]d, d ≥ 10: the variables x11, . . . , xd do not have any influence on fMG but
augment the dimension. In the following experiments, we take d = 40.

The additive GP described in Section 6.3.2.2 operates between the active space com-
posed of x1 and x2, and the inactive space of X3:d. With the additive GP, three ways
to optimize the EI are investigated: AddGP(X1:2 + X3:40)-EI(X1:2) where the EI is
optimized along the active space only and x3, . . . , xd are set to the middle of their
intervals (0), AddGP(X1:2 + X3:40)-EI embed where the EI is optimized in the active
space completed by the embedding in the inactive space, and AddGP(X1:2+X3:40)-EI(X)

where the EI is optimized in the entire X. These Bayesian optimization algorithms with
additive GPs are compared to three classical optimizers: one based on the GP built
in the entire space (GP(X)-EI(X)), another based on the building of the GP in the
X1:2 := (x1, x2) space (GP(X1:2)-EI(X1:2)), and one working in the X1:10 := (x1, . . . , x10)
space (GP(X1:10)-EI(X1:10)).

We start the experiments with an initial DoE of n = 20 points, which is space-filling in
X (or in X1:2 or X1:10 for the variants where the metamodel is built in these spaces). We
then try to find the minimum of fMG, x∗ := (0, 0, c,∗∗∗) in the limit of p = 80 iterations7.
For the instance where the metamodel is built in X ⊂ R40, we cannot start with an
initial DoE of n = 20 points, and the experiments are initialized with n = 50 designs,
only p = 50 iterations being allowed. The EI being maximized by the genetic algorithm
genoud (Mebane Jr et al., 2011), we use the same population and number of generations
in each variant for fair comparison.

The lowest objective function values obtained by the algorithms are reported in Table
6.14. They are averaged over 10 runs with different initial designs, and standard devi-
ations are given in brackets. The left-hand side columns correspond to standard GPs
carried out in different spaces, and the right-hand side columns correspond to runs using
the additive GP of Section 6.3.2.2 together with different EI maximization strategies.

Metamodel
Standard GP Additive GP

GP(X1:2)- GP(X1:10)- GP(X)- AddGP(X1:2 +X3:40)-

EI maximization EI(X1:2) EI(X1:10) EI(X) EI(X1:2) EI embed EI(X)

Optimum (sd) 0.776 (0.221) 1.127 (0.214) 0.669 (0.280) 0.545 (0.210) 0.481 (0.185) 0.986 (0.366)

Table 6.14: Objective function values obtained within 100 (20+80 or 50+50 for the third
column) evaluations of the 40-dimensional fMG, with different metamodels and varying
EI maximization strategies.

The results in Table 6.14 show that the methods using the additive GP usually out-
perform those where the GP is built in a more or less truncated X space. The results of
GP(X1:10)-EI(X1:10) are surprisingly bad. Additional experiments have shown that they
seem to be linked with a too small initial DoE. Notice that with another version of fMG

(where c is closer to the boundaries of X3:10, not reported here), GP(X1:10)-EI(X1:10)

outperforms GP(X1:2)-EI(X1:2) and the classical GP(X)-EI(X), which is normal since

7that is to say EI maximizations, whose optima are evaluated by fMG.
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in this situation X3:10 become active. However, the AddGP-EI embed and AddGP-EI(X)

versions with the additive GP remain better.
The maximization of the EI for the additive GP between the active and inactive

components performs the best when the maximization strategy combines the advantage of
a low-dimensional active space with a rough maximization in the larger inactive subspace,
the AddGP-EI embed strategy. It is also worth mentioning that it is the variant with lowest
standard deviation. AddGP-EI(X), searching in a 40 dimensional space, is not able to
attain the optimum as well. Even though it is carried out in a very small dimension,
AddGP-EI(X1:2) is also slightly outperformed by AddGP-EI embed, because it cannot
optimize the xa’s. In this instance of fMG where c is relatively close to 0, AddGP-EI(X1:2)

does not suffer to much from disregarding xa’s. However, in the additional experiment
where c is close to the boundaries of X3:10, AddGP-EI(X1:2) exhibits poor results, while
AddGP-EI embed still performs well. In this case AddGP-EI(X) performs slightly better
than AddGP-EI embed, because it benefits from the maximization over the complete X
while the restriction on x hinders AddGP-EI embed to get as close to the solution, but
AddGP-EI embed still performs reasonably well and has a smaller standard deviation than
AddGP-EI(X). For all these reasons, the additive GP with random embedding (AddGP-EI
embed) strategy is assessed as the safest one.

6.4.3.2 Experiments with shape optimization

We now turn to the shape optimization of the designs introduced in Section 6.2.3 whose
objective functions were defined in Section 6.3.3. We compare the standard approach
where the designs are optimized in the CAD parameters space with the methodologies
where the surrogate model is built in the eigenshape basis (all variants described in
Section 6.4.1). For fair comparison, the same computational effort is put on the internal
EI maximization.

Catenoid shape

We want to find a curve r(y) which minimizes the associated axisymmetric surface as
expressed by the integral making f5(x) in the catenoid problem (Example 6.5).

The different versions of Bayesian optimizers that are now tested are the following:

• the standard GP(X)-EI(X) where both the GP and the EI work with the original
x’s, i.e. CAD parameters;

• GP(ααα )-EI(ααα ) indicates the GP is built in the space of (to be specified) principal
components over which the EI is maximized; are taken equal to 1:4 and 1:7
because, as seen in Table 6.7, 4 and 7 eigencomponents account for 98% and all of
the shape variance, respectively.

• GP(ααα )-EI(X) indicates the GP is built in the space of principal components
but the EI is maximized in the X space;
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• AddGP(αααa+αααa) refers to the additive GP, for which three EI maximizations have
been described (Section 6.4.1): EI embed where αααa and an embedding in the
αααa space is maximized, EI(αααa) where only the actives ααα’s are maximized (the
remaining ones being set to their mean value in AN , 0), and EI(ααα) where all ααα’s
are maximized;

• GP(αααa)-EI(αααa) means the GP is built over the space of active ααα’s, over which the
EI maximization is carried out.

Regarding the EI maximization in A, on manifold states that the search is restricted
to ααα’s close to AN . If not, the maximization is carried out in AN ’s covering hyper-
rectangle, and with replication indicates that both ααα(t+1) and ααα(t+1)∗ /∈ A are used
for the metamodel update, while no replication indicates that only the ααα(t+1)’s are
considered by the surrogate.

The best objective function values obtained by the algorithms are reported in Table
6.15. They are averaged over 10 runs with different initial DoEs, and standard deviations
are given in brackets. The algorithms start with a space-filling DoE of 20 individuals and
are run for 60 additional iterations. In the case of the CAD parameters, since d = 29 > 20,
the initial DoE contains 40 designs and the algorithm is run for 40 iterations. The number
of function evaluations to reach certain levels is also reported, to compare the ability
of the algorithms to quickly attain near-optimal values. When at least one run has not
reached the target, a rough estimator of the empirical runtime (Auger and Hansen, 2005),
Ts/ps, is provided in red, the number of runs achieving the target value being reported
in brackets. Ts and ps correspond to the average number of function evaluations of runs
that reach the target and the proportion of runs attaining it.

Method Best value Time to 27 Time to 30 Time to 35
GP(X)-EI(X) 31.83 (2.10) × 570.0 [1] 68.5 (9.9)

GP(ααα1:7)-EI(ααα1:7) on manifold 26.93 (0.18) 86.9 [7] 40.2 (10.5) 40.2 (10.5)
GP(ααα1:7)-EI(ααα1:7) with replication 26.16 (0.10) 30.5 (2.8) 24.3 (0.8) 23.4 (0.5)
GP(ααα1:7)-EI(ααα1:7) no replication 27.62 (0.72) 147.5 [2] 25.4 (2.5) 23.5 (0.5)

GP(ααα1:7)-EI(X) 40.57 (11.61) 370.0 [1] 163.3 [3] 120.0 [4]
AddGP(αααa+αααa)-EI embed on manifold 50.67 (0.05) × × ×

AddGP(αααa+αααa)-EI embed no replication 27.58 (0.53) 172.5 [2] 23.6 (1.4) 22.3 (0.7)
AddGP(αααa+αααa)-EI embed with replication 26.19 (0.16) 28.4 (4.1) 24.2 (3.1) 22.8 (1.9)

GP(ααα1:4)-EI(ααα1:4) with replication 27.12 (0.13) 550.0 [1] 27.0 (3.9) 25.4 (3.8)

Table 6.15: Best objective function values found and number of iterations required to
attain a fixed target (average over 10 runs, standard deviations in brackets) for different
metamodels and optimization strategies, on the catenoid problem (Example 6.5). Red
figures correspond the empirical runtime, with the number of runs which attained the
target in brackets, and × signifies that no run was able to attain it within the limited
budget.
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Comparing the results in Table 6.15 of the algorithms that stay on the manifold with
the others indicates that restricting the search of EI maximizers to the vicinity of AN
worsens the convergence. Indeed, promising ααα’s are difficult to attain or are even falsely
considered as outside A. This observation gets even worse with the additive GP: staying
in the neighborhood of AN has even stronger consequences because of the restriction to
the random line a. The EI should therefore be optimized in the covering hyper-rectangle
of AN .

For tackling the issue of EI maximizers ααα(t+1)∗ /∈ A, the replication strategy exhibits
better performance than the strategy where only the projection, ααα(t+1), is used for
updating the GP. Figure 6.36 shows the typical effect of the replication strategy. On
the left, the inner EI maximization is carried out in the covering hyper-rectangle of
AN but only the ααα ∈ A obtained through the pre-image problem solving are used to
construct the surrogate model. On the right, all EI maximizers have been used for the
GP, including ααα /∈ A. Without replication, since the variance of the GP at previous
EI maximizers has not vanished, the EI continues promoting the same ααα’s, which have
approximately the same pre-image. The same part of the ααα space is sampled, which
not only leads to a premature convergence (the best observed value has already been
attained after 6 iterations), but also increases the risk of getting a singular covariance
matrix. With the replication, the GP variance vanishes for all EI maximizers, even those
outside A, removing any further EI from these ααα’s. The ααα space is better explored with
benefits on the objective value (26.26 against 27.13 here).

Figure 6.36: Optimization with EI maximization in the covering hyper-rectangle of AN
without (left) or with (right) replication strategy.

The EI strategy which consists in maximizing via the X space of CAD parameters
avoids the ααα manifold issues. However, it does not perform well, because of the higher
dimensional space where the criterion is maximized. An additional drawback for efficient
maximization is that ∇EI is not known analytically in this case.

In this catenoid example, the additive GP and the GP in the space of (all) 7 principal
components achieve comparable results, both in terms of best value, and of function
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evaluations to attain the targets. Indeed, the true dimension (7) is relatively low, and
we have noticed that the 5, 6 or even 7 first eigenshapes often got classified as active for
the additive GP.

Heart rectangle

We now consider Example 6.4 and the minimization of f4(x) that expresses the distance
from a shape to a rectangle deformed as an heart.

As before, different metamodeling and EI maximization options are benchmarked.
They include: the standard approach of doing the process in the space of CAD parameters
(in dimension d = 40); the optimization in the space of 2, 4, 16 or 40 first principal
components, where 100% of the shapes variability is recovered with 40 eigencomponents
as seen in Table 6.6. Supervised eigenshape selection methods (Section 6.3.2) are also
used: the GP built over αααa only, and the additive model over αααa and αααa. For the latter,
the 4 EI maximization options of Section 6.4.1 are compared. In light of the above
optimization results on the catenoid, the three EI maximization strategies are carried
out in the covering hyper-rectangle of AN (as opposed to restricted to the neighborhood
of AN), and EI maximizers which do not belong to A are nonetheless used for the GP
update. Henceforth, the with replication strategy becomes the new default in all
algorithms carrying out EI maximizations in ααα’s and it will no longer be specified in the
algorithms names.

The statistics on the solutions proposed by the algorithms are reported in Table 6.16.
They consist in the best objective function values averaged over 10 runs with different
initial designs, with standard deviations given in brackets. The average and standard
deviation of the number of function evaluations to reach certain levels is also given, to
compare the ability of the algorithms to quickly attain near-optimal values. When at least
one run failed in attaining the target, it is replaced by a rough estimator of the empirical
runtime. The algorithms start with a space-filling DoE of 20 individuals and are run
for 80 supplementary iterations. In the case of the CAD parameters GP(X)-EI(X) and
of GP(ααα1:40)-EI(ααα1:40), since d = 40 > 20, the initial DoE contains 50 designs and the
algorithm is run for 50 iterations.

In this test case, as shown in Figure 6.21, the 2 first eigenshapes modify the shape’s po-
sition, to which f4 is insensitive. Poor results are therefore obtained by GP(ααα1:2)-EI(ααα1:2)

even though v1 and v2 account for 80% of shape reconstruction, highlighting the benefits
of the determination of active eigenshapes. In a first order approximation, v3 and
v4 are the most influential eigenshapes with regard to f4, which measures the nodal
difference between Ωx and the target Ωt. GP(ααα1:4)-EI(ααα1:4) exhibits very good results,
as well as GP(αααa)-EI(αααa), which mainly selects v3 and v4 (v1, v2 and other eigen-
shapes are sometimes selected too). Even though the shape reconstruction is enhanced,
GP(ααα1:16)-EI(ααα1:16) and GP(ααα1:40)-EI(ααα1:40) have poor results because of the increase
in dimension which is not accompanied by additional information, as already pointed
out during the comparison of the predictive capability of these GPs for small budgets,
see Table 6.11. GP(ααα1:40)-EI(ααα1:40) performed better than GP(X)-EI(X) in Table 6.11,
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Method Best value Time to 0.5 Time to 1 Time to 3
GP(X)-EI(X) 1.18 (0.45) × 166.9 [4] 42.1 (26.5)

GP(ααα1:2)-EI(ααα1:2) 9.21 (0.80) × × ×
GP(ααα1:4)-EI(ααα1:4) 0.33 (0.07) 48.8 (21.8) 21.8 (2.2) 21.0 (0.0)
GP(ααα1:16)-EI(ααα1:16) 0.59 (0.15) 197.8 [3] 50 (15.4) 35.0 (9.7)
GP(ααα1:40)-EI(ααα1:40) 2.95 (0.97) × × 194.4 [5]
GP(αααa)-EI(αααa) 0.32 (0.09) 33.7 (9.4) 24.5 (3.7) 21.8 (1.3)

AddGP(αααa+αααa)-EI(X) 0.54 (0.19) 199.4 [4] 40.2 (12.3) 30.2 (10.5)
AddGP(αααa+αααa)-EI embed 0.37 (0.08) 49.0 (21.4) 26.1 (5.6) 22.2 (1.9)
AddGP(αααa+αααa)-EI(αααa) 0.37 (0.09) 33.3 (14.6) 22.7 (2.6) 21.4 (0.7)
AddGP(αααa+αααa)-EI(ααα) 0.60 (0.26) 106.7 [6] 41.2 [9] 21.5 (0.5)

Table 6.16: Minimum objective function values found and number of function evaluations
required to attain a fixed target (average over 10 runs, standard deviations in brackets) for
different metamodels and optimization strategies, rectangular heart problem (Example
6.4). The red figures correspond the empirical runtime, with the number of runs which
attained the target in brackets, and × signifies that no run was able to attain it within the
limited budget. All algorithms performing an EI search in ααα’s do it with replication,
the henceforth default.

yet its optimization performance is decreased. This is certainly due to the initial DoE:
both DoEs are space-filling in their respective input space (X or the hyper-rectangle of
ααα ∈ A containing AN). However, there is a significant difference between the minima
in these DoEs: the average minimum over the 10 runs was 2.57 for GP(X)-EI(X)

(hence better than the eventual average best value for GP(ααα1:40)-EI(ααα1:40)), and 9.22
for GP(ααα1:40)-EI(ααα1:40). While GPs built over the entire ααα space (e.g. the additive one)
suffer from the same drawback, the selection of variables identifies the dimensions to focus
on to rapidly decrease the objective function. This remark applies only to the rectangular
heart test case and one may wonder what level of generality it contains. Contrarily to
the previous example where building the GP in the space of all (informative) eigenshapes
led to the best results, this strategy (GP(ααα1:40)-EI(ααα1:40)) performs weakly here because
of the higher dimension.

The variants of the additive GP perform well too but they are slightly outperformed
by GP(ααα1:4)-EI(ααα1:4). As the objective function mainly depends on v3 and v4, always
classified as active, strategies that do not put too much emphasis or that neglect αααa

(namely, AddGP(αααa + αααa)-EI embed and AddGP(αααa + αααa)-EI(αααa)) perform the best.
This explains the good performance of GP(ααα1:4)-EI(ααα1:4), which disregards α5, . . . , α40.
The maximization of the EI with respect to the full ααα is hindered by the high dimension.
Again, the performance decreases when the EI is maximized via the X space. AddGP(αααa+
αααa)-EI embed and GP(ααα1:4)-EI(ααα1:4) need more iterations to attain good values (smaller
than 0.5) than GP(αααa)-EI(αααa) and AddGP(αααa+αααa)-EI(αααa) which are early starters. This
might be due to the additional though less critical components (α or α1, α2, respectively)
considered by these methods.
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NACA 22 optimization

In this last test case, we compare two of the aforementioned algorithms by optimizing
the lift coefficient and the drag coefficient of a NACA 22 airfoil (f7L and f7D). The
simulation is made with a computational fluids dynamic code that solves the Reynolds
Averaged Navier-Stokes (RANS) equations with k − ε turbulence model, see Chapter 3.
Since a single call to the simulator (one calculation of f7) takes about 20 minutes on a
standard personal computer8, only two runs are compared for each objective. The first
algorithm is the classical Bayesian optimizer where the GP is built in CAD parameter
space, GP(X)-EI(X). In the second algorithm, AddGP(αααa + αααa)-EI embed, the GP
is built in the V basis of eigenshapes, while prioritizing the active dimensions, αααa, via
the additive GP and the EI random embedding method with the replication option, see
Section 6.4.2. The optimization in the eigenshape basis starts with a DoE of n = 10
designs and is run for p = 90 additional iterations while, because there are 22 xi’s, the
optimization in the CAD parameters space starts using n = 50 designs and is run for
p = 50 iterations.

Figure 6.37 shows the optimization runs of both algorithms for the minimization of the
NACA 22’s drag (top) and lift (bottom), and Figure 6.38 the resulting airfoils.

In this application, the main advantage of the AddGP(αααa +αααa)-EI embed (Figure 6.37,
top left and bottom left) over the standard Bayesian optimizer (top center and bottom
center) is that it enables an early search for low drag, respectively high lift airfoils,
at a time when the standard approach is still computing its initial DoE. Indeed, the
classical method needs much more function evaluations for building the initial surrogate
model (black dots) because the inputs live in a space of higher dimension. The approach
introduced in this chapter would further gain in relevance in problems with more than
d = 22 CAD parameters, where it would almost be impossible to build a large enough
initial design of experiments (whose size is typically of the order of 10× dimension,
Loeppky et al., 2009).

It is observed in Figure 6.38 that smoother airfoils are obtained with AddGP(αααa+αααa)-EI
embed (right column), because it uses a shape coordinate system instead of treating the
Li’s (i.e., xi’s with local influences on the airfoil, see Figure 3.2) separately, as is done by
GP(X)-EI(X) (left column). When the optimization aims at minimizing the drag, the
AddGP(αααa + αααa)-EI embed airfoil (top right) is smoother than the GP(X)-EI(X) one
(top left). And when the objective is to maximize the lift, the camber of the AddGP(αααa +
αααa)-EI embed airfoil (bottom right) is increased in comparison with the design yielded
by GP(X)-EI(X) (bottom left).

Multi-objective extension

The method extends to the multi-objective setting considered in Chapters 3, 4 and 5. As
all m (independent) GPs are employed for the maximization of the multi-objective infill

8Contrarily to Chapters 3, 4, 5, the real simulator is employed in this section instead of the
MetaNACA.
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Figure 6.37: Top row: drag optimization of the NACA 22 airfoil in the reduced eigenbasis
with AddGP(αααa +αααa)-EI embed (left) or carried out in the CAD parameters space with
GP(X)-EI(X) (center). Low drag airfoils are found with AddGP(αααa + αααa)-EI embed

while the classical method still evaluates the airfoils of the initial design of experiments
(right). Bottom row: lift optimization of the NACA 22 airfoil in the reduced eigenbasis
with AddGP(αααa +αααa)-EI embed (left) or carried out in the CAD parameters space with
GP(X)-EI(X) (center). High lift airfoils are found while the classical method still
evaluates the airfoils of the initial design of experiments (right), i.e., lower objective
functions are obtained faster.

criterion (e.g. mEI or EHI), they need to share the same basis. This is a further reason
why output-driven dimension reduction techniques such as the Active Subspace Method
(Constantine et al., 2014), PLS (Bouhlel et al., 2016; Frank and Friedman, 1993) or SIR
(Li, 1991) may not be adapted since they would yield a different basis per objective
function. The only way to maximize the infill criterion with metamodels operating on
different bases would be to carry out the maximization through the X space by querying
the j-th surrogate with W>

j (φ(x)−φφφ), where each projection matrix Wj depends on the
considered objective. But this option has turned out to be the weakest one among the
EI maximizations in Section 6.4.3.2 (GP(ααα )-EI(X) option).

Even though the additive GPs Yj(ααα) = Y a
j (αααa) + Y a

j (αααa) operate with ααα ∈ RD, two
options of the EI maximization handle an input in lower dimension, αααa or [αααa, α]. The
active components are nonetheless not the same in each objective. Similarly to the multi-
objective extension to REMBO (Qian and Yu, 2017), to avoid the maximization of the
infill criterion in the large-dimensional space (D) of ααα’s, the latter can prioritize the
dimensions that are critical in at least one objective, αααa =

⋃m
j=1ααα

aj where αααaj stands
for the active dimensions in objective j, as was done in the EI(αααa) or in the EI embed

strategy.

Another option is to build each of the active GPs Y a
j (·) over the space of dimensions
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Drag optimization
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Figure 6.38: Airfoils found by the compared optimization algorithms. Top: drag
minimization, bottom: lift maximization. Left: optimization with the GP(X)-EI(X)

algorithm, right: optimization with the AddGP(αααa +αααa)-EI embed algorithm.

that are active for at least one objective (
⋃m
j=1ααα

aj), and to build the Y a
j (·) GPs over

the remaining dimensions. The advantage of this approach is that each dimension active
in at least one objective is modeled finely by all GPs. The maximization of the infill
criterion should benefit from this enhanced precision. The increase in dimension of the
Y a
j (·) GPs may nonetheless result in a weaker accuracy.

6.5 Multi-element shapes

In Example 6.3, any shape is made of e = 3 non-overlapping circles. x ∈ R9 are the
parameters (position of the center and radius) of these circles. x1:3 correspond to the
first circle, x4:6 to the second, and x7:9 to the last circle. Such shapes made of multiple
elements raise additional questions regarding their discretization and metamodeling in
the ααα space. Since two designs x 6= x′ may lead to exactly the same shape hence to the
same output, dimension reduction and metamodeling can be enhanced.
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6.5.1 Contour discretization

If the design parameters x describe each of the e elements in the sense that x = [x1, . . . ,xe]
where xi are the parameters of the i-th element, i = 1, . . . , e, the first option D1 is
to discretize each element in D/e coordinates and to stack these discretizations in a
vector φφφ of size D, in the order given by x (this was the approach followed in 6.3).
This is sketched in the left part of Figure 6.39. The drawback is the sensitivity of the
mapping to permutations in x: φφφ associated to x = [x1,x2, . . . ,xe] and φφφ′ associated
to x′ = [x2,x1, . . . ,xe] are different even though the shapes are the same. This issue
is illustrated in Figure 6.39. The designs x = (x1, x2, x3, x4, x5, x6, x7, x8, x9)> and x′ =
(x1, x2, x3, x7, x8, x9, x4, x5, x6)>, which correspond to the same shapes Ωx and Ωx′ are
considered. Under D1, their shape representations φφφ and φφφ′ are different, as well as their
coordinates in the V basis since ααα = V>(φφφ− φφφ) and ααα′ = V>(φφφ′ − φφφ) are different.

Figure 6.39: Example of permutation of x under which the shapes Ωx and Ωx′ are
invariant. However, the shape representations φφφ and φφφ′ yielded by D1 are different.

A second option, D2, is to discretize each element and to stack all nodal coordinates
(regardless of the element to which they belong) in their order of appearance when
scanning the physical space (R2 or R3) in a given order. In this case, the φφφ’s in Figure
6.39 are the same. The drawback is that contiguous elements in the resulting φφφ may no
longer belong to the same element.

The last option, D3, is to discretize each element and to stack it entirely in the order
the element appears when scanning the physical space in a given order. In this variant,
two designs with swapped elements x and x′ lead to the same φφφ. By scanning the physical
space from left to right and from top to bottom, the circle 1 appears before the circle
2 and the circle 3 in Ωx. φφφ is the concatenated discretization of circle 1, circle 2 and
circle 3 (see Figure 6.39). In Ωx′ , the circle 1 appears before the circle 3 and the circle 2,
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hence φφφ′ is the concatenation of the discretized circle 1, circle 3 and circle 2. With D3,
Ωx = Ωx′ ⇒ φφφ = φφφ′, even though x 6= x′. The drawback of this approach is that a small
variation in x may change the order of appearance of the elements hence the way the
discretized elements are stacked in φφφ. Large discontinuities may therefore exist in this
variant of the φ(·) mapping.

6.5.2 PCA and eigenshapes

Depending on the discretization variant, the database ΦΦΦ significantly differs as φ(x) is
different whether φ = D1, D2 or D3. The left plot of Figure 6.40 shows the cumulative
sum of the PCA eigenvalues for the 3 circles example. D3 is the variant where the first
λj’s are the largest. Exactly 100% of reconstruction in Φ is attained when the d = 9 first
eigenshapes are considered, as is also the case for D1. However, the true dimension is not
retrieved with D2 (green curve). The correlation between discretizations in ΦΦΦ is degraded
because the order of appearance of nodal coordinates in each φφφ highly depends on the
design, and ΦΦΦ contains vectors that are not the contiguous discretization of the different
elements. The mean shape φφφ and the eigenshapes vj are spurious discretizations (they
are no longer circles) that do not help reducing the dimension in Φ.

The mean shapes obtained through D1 and D3 are shown in the middle and in the right
plot of Figure 6.40. For D1, since the x(i)’s have been sampled uniformly, φφφ is a shape
of three centered circles. For D3, as the shapes have been discretized in a prescribed
order of appearance (left to right here), the first element of the mean shape (blue) is the
left-most circle, the second circle (red) is in the center, and the third one (green) is on
the right. Differences are perceived among the resulting eigenshapes as shown in Figure
6.41 (recall that eigenvectors that appear as points displace the shape in the direction
specified by the eigenvector’s position). Since an ordering of the circles is induced by D3,
the eigenshapes move or grow in the x-axis direction or in the y-axis direction, but never
on both (the centers of the eigenvectors have always x-coordinate 0 or y-coordinate 0)
contrarily to the eigenvectors of D1.

0 1 2 3 4 5

1
2

3
4

0 1 2 3 4 5

1
2

3
4

Figure 6.40: Eigendecomposition for different multi-element mappings, 3 circles test case.
Left: PCA eigenvalues cumulative sum (in %). Middle: mean shape φφφ when φ = D1.
Right: mean shape φφφ when φ = D3.
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Figure 6.41: Example 6.3, three circles with d = 9 parameters, 9 first eigenvectors (from
left to right, top to bottom) when φ = D1 (9 top plots) or φ = D3 (9 bottom plots). The
blue part of each eigenvector acts on the first circle, the red part acts on the second circle
and the green part on the third circle.

Element-wise PCA

Previously, PCA was carried out on ΦΦΦ by searching the eigenvectors of the covariance

matrix CΦΦΦ = 1
N

(ΦΦΦ − 1Nφφφ
>

)>(ΦΦΦ − 1Nφφφ
>

). Since each row of ΦΦΦ is composed of the
discretization of three distinct circles in D1 (and in D3 also), it might be of interest to
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enforce a null correlation among nodes belonging to different circles by setting CΦΦΦij = 0
when the discretizations indices i and j do not correspond to the same element, as
schematically shown in the upper plot of Figure 6.42. The d = 9 first eigenvectors
obtained after applying an eigendecomposition of this modified CΦΦΦ explain 100% of shape
discretization variance (measured by the eigenvalues), i.e. the effective dimension is still
retrieved. As correlations between different elements have been erased, the eigenvectors
vj act on each element individually: the part of vj associated to two elements out of
three is null as shown in Figure 6.42, meaning that the reconstruction of e− 1 elements
is insensitive to vj. This is equivalent to applying e independent PCAs on the columns
of ΦΦΦ associated to each element, and to augment each eigenvector by 0 at discretization
indices corresponding to other elements.

Figure 6.42: Top: shape of the correlation matrix CΦΦΦ when enforcing a null correlation
(white) between nodes of distinct elements. Bottom: 9 eigenvectors of CΦΦΦ. Since
correlations between different circles have been removed, each vj operates on one element.

This approach which yields eigenvectors associated to one unique element may be
attractive if the underlying problem depends on each element. However, the issue of
permutation sensitivity of D1 is not resolved. This subject is further addressed in the
next sections. Finally, in the case of non-overlapping circles, the position of one circle
informs about locations where the other circles are not. A null correlation between
elements might therefore be too high an assumption. Additionally, the elements in x are
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not always randomly ordered and may reflect choices of the designer.

6.5.3 Symmetries and kriging in V
In this part, we consider only D1 as φ mapping. Even though promising eigenshapes have
been found by D3, it seems easier to circumvent D1’s drawback (permutations) than D3’s
(lack of continuity).

Two options are considered in this part for tackling the issue of swapped elements in
designs having the same shape. First, it is proposed to modify the mean shape and the
eigenvectors such that the permutations τ ∈ τττ := {τ : X → X,Ωτ◦x = Ωx} are (different)
permutations in the ααα space too. In this case, permutation invariant kriging (Ginsbourger
et al., 2012) with respect to τ ’s pendants in the ααα space can be performed in the V basis.

The second option is to perform invariant kriging in the space of ααα’s without modifying
the vj’s. This is done by propagating the permutations σ ∈ σσσ := {σ : Φ → Φ : ∃τ ∈
τττ , σ ◦ φ(x) = φ(τ ◦ x)} under which discretizations φφφ and σ ◦ φφφ correspond to the same
shape into the space of eigenshapes.

6.5.3.1 ααα invariance by eigenshape modification

In the case of the circle with 9 parameters, the permutation τ that changes (x1, . . . , x9)>

into (x4, . . . , x9, x1, x2, x3)> is one element of τττ for which Ωx = Ωτ◦x. Nevertheless,
φ(x) 6= φ(τ ◦x) when φ = D1, because the elements of x and of τ ◦x are discretized in the
order specified by x. τ ’s pendant in the space of shape discretizations is σ which verifies
σ ◦φ(x) = φ(τ ◦x). As ααα = V>(φ(x)−φφφ) and ααα′ = V>(φ(τ ◦x)−φφφ) = V>(σ ◦φ(x)−φφφ),
to obtain ααα = ααα′, both φφφ and the vj’s need to be invariant to all σ ∈ σσσ. Indeed, let
σ ◦ φφφ = φφφ and σ ◦ vj = vj, j = 1, . . . , D. Then

ααα′ = V>(σ ◦ φ(x)− φφφ) = V>(σ ◦ φ(x)− σ ◦ φφφ) = V>(σ ◦ (φ(x)− φφφ))

Therefore, the j-th component of ααα′ is

α′j =
D∑
k=1

vjk(σ ◦ (φ(x)− φφφ))k =
D∑
k=1

σ ◦ (vjk(φ(x)− φφφ)k) =
D∑
k=1

vjk(φ(x)− φφφ)k = αj

because the sum is invariant to the permutation of a vector.
The following modification of φφφ and of the vj’s obtained through PCA

φφφ←

1

e

e∑
i=1

φφφi, . . . ,
1

e

e∑
i=1

φφφi︸ ︷︷ ︸
e times

 and vj ←

1

e

e∑
i=1

vji , . . . ,
1

e

e∑
i=1

vji︸ ︷︷ ︸
e times

 , j = 1, . . . , D

where φφφi and vji ∈ RD/e are the mean discretization of the i-th element, and the dis-
cretization of the i-th element in the j-th eigenvector respectively, makes them invariant
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to any σ ∈ σσσ and leads to ααα = ααα′ where ααα′ are the coefficients in the V basis of τ ◦x. The
drawback of this approach is that the rank of the modified V matrix is divided by e, and
since φφφ and vj’s reconstruct each of the e elements identically (see Equation 6.3), only
designs with element-wise identical discretization are recovered. Finally, more designs
than just those corresponding to a τ permutation9 of x have the same ααα.

6.5.3.2 Retrieving σ in the space of ααα’s

Instead of obtaining ααα = ααα′ when x′ = τ ◦ x, here we aim at retrieving σ ◦ ααα = ααα′ by

modifying φφφ and the vj’s. To be σ invariant, first, the φφφ ←

1

e

e∑
i=1

φφφi, . . . ,
1

e

e∑
i=1

φφφi︸ ︷︷ ︸
e times


modification is considered. Next, the eigendecomposition of CΦΦΦ = 1

N
(ΦΦΦ − 1Nφφφ

>
)>(ΦΦΦ −

1Nφφφ
>

) is completed. As φφφ has been modified, it is not the standard way of doing PCA

since the ΦΦΦ−1Nφφφ
>

matrix is not centered. The issue in the previous section was that the
vj’s reconstructed all elements in the same manner. To enforce the eigenvectors to be
specific to each element, let CΦΦΦij = 0 if the discretization indices i and j do not belong to
the same element, as in Section 6.5.2. Under the assumption that each element has the
same importance in the eigendecomposition, the submatrices of V, v(1:e), v(e+1:2e), . . .
denoted as V(j) := (v(j−1)e+1,v(j−1)e+2, . . . ,v(j−1)e+e = vje) ∈ RD×e, j = 1, . . . , D/e,
are block diagonal with D/e non-zero entries per column. Among a V(j), the non-zero
entries, which apply to the discretization of one among the e elements, are averaged to
yield the vector ṽj ∈ RD/e, and the non-zero entry of each vector inside V(j) is replaced
by ṽj. This makes the eigenvectors specific to one element. At the same time, if a
permutation σ is applied to φφφ, the multiplication between the modified V(j) matrix and
σ ◦ φφφ conserves the permutation because the non zero entries of V(j) are the same. The
original V(j) submatrix as well as its modification are illustrated in Figure 6.43.

Finally, the redefined eigenvector matrix is V = (V(1), . . . ,V(D/e)) = (v1, . . . ,vD).
When a permutation τ is applied to x, its counterpart σ is retrieved in ααα. Indeed, with
the modified V and φφφ, let

ααα = V>(φ(x)−φφφ) and ααα′ = V>(φ(τ ◦x)−φφφ) = V>(σ◦φ(x)−φφφ) = V>(σ◦(φ(x)−φφφ))

ααα′’s j-th component is α′j =
∑D

i=1 v
j
i (σ ◦ (φ(x) − φφφ))i. Since there exist e − 1 vectors

in V that are the same as vj modulo a σ permutation (these vectors are the e− 1 ones
that belong to the same V() matrix as vj), and as only D/e components of vj are non

zero (see Figure 6.43), there exists a vector of V, vj̃, such that
∑D

i=1 v
j
i (σ ◦ (φ(x) −

9For instance, discretizations with identical
∑e

k=1φφφi+D
e (k−1) =: φ̃φφi’s, ∀i = 1, . . . , D/e, that is to say

discretizations with same sum (through the e elements) of nodal coordinates i = 1, . . . , D/e, have the
same ααα’s.
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Figure 6.43: Modification of the V(j) submatrix in an example with e = 3 elements.
Left: the original V(j) matrix obtained by eigendecomposition of the sparse CΦΦΦ matrix.
Right: modified V(j) matrix. The average of the pink, yellow and orange vector in the
left matrix is ṽj, which is employed in V(j) such that these e vectors apply the same
transformation to their corresponding element.

φφφ))i =
∑D

i=1 v
j̃
i (φ(x) − φφφ)i = αj̃. Therefore, α′j = αj̃. More precisely, vj̃ is the inverse

permutation σ−1 of vj. Indeed,

D∑
i=1

vji (σ ◦ (φ(x)− φφφ))i =
D∑
i=1

(vj)i(σ ◦ (φ(x)− φφφ))i

=
D∑
i=1

(
σ−1 ◦ (vj � (σ ◦ (φ(x)− φφφ)))

)
i

=
D∑
i=1

(σ−1 ◦ vj︸ ︷︷ ︸
vj̃

)i(φ(x)− φφφ)i

Therefore ααα′ = σ−1 ◦ααα, hence σ ◦ααα′ = ααα: with these adapted φφφ and V, τ ’s pendant is
retrieved in the ααα space, as shown in Figure 6.44.

The evidenced σ permutation between ααα’s coming from x’s that differ by the related
permutation τ can be exploited inside permutation-invariant kriging (Ginsbourger et al.,
2012). A GP employing the covariance kernel kperm(ααα(i),ααα(j)) := 1

|σσσ|
∑

σ∈σσσ k(ααα(i), σ ◦ααα(j))

is invariant to any permutation of σσσ, i.e. Y (ααα) = Y (σ◦ααα). An example of invariant kriging
with respect to the first bisector ((x1, x2) 7→ (x2, x1)) is shown in the left part of Figure
6.45. Only designs with x1 > x2 have been observed but the invariant kernel imposes the
predictor to be symmetric with respect to the purple line. If training points (x1, x2) are
associated to a response y, the prediction at (x2, x1) is y too and the uncertainty is null
there. Predictions are improved in comparison with a GP with a non-symmetric kernel
(right plot).

One drawback of this option is that the columns of V no longer form an orthonormal
basis. Another possible issue is that ṽj is the average over the non-zero entries of the e
eigenvectors in V(j). This makes sense in our problem because the vectors that belong to
the same V(j) apply more or less the same transformation to each circle since the designs
have been sampled uniformly, and the same kind of patterns are retrieved for the circles
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Figure 6.44: Coordinates in the eigenvector basis (in the (α1, α2) plan) of the N designs.
Two designs ααα(1) (red circle) and ααα(2) (green circle) are shown as well as the coordinates
in the ααα space of the permuted designs (when τ interchanges (x1, x2, x3) and (x4, x5, x6),

triangles), ααα(i)′ = V>(φ(τ ◦ x(i)) − φφφ). The symmetry along the line α1 = α2 is clearly
visible.

Figure 6.45: Left: example of kriging with invariance with respect to the first bisector
(purple line). Right: GP with standard kernel. Predictions are enhanced by providing
the symmetry information.

within ΦΦΦ (for instance, the rows of Figure 6.42 correspond to V(1),V(2),V(3) and are
similar). However, having quite different v’s inside the same V(j) would be problematic.

A more robust implementation of permutation-insensitive kriging should not modify
the eigenshapes and retrieve a permutation in the rotated space spanned by the vj’s.
This is the subject of the next part.
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6.5.3.3 Invariant kriging in the eigenbasis

The permutations σ in the Φ space can be expressed as matrices Aσ ∈ RD×D which
contain ones in off-centered diagonals. The permutations Aσφφφ of φφφ that lead to the same
shape are not exhibited directly in the ααα space. Figure 6.46 shows the coordinates in the
(α1, α2) plane of two ααα = V>(φφφ−φφφ) (red and green circles) together with the coordinates
of the 5 discretizations having the same shape, V>(Aσφφφ − φφφ), σ ∈ σσσ (red and green
triangles). No symmetry can be directly retrieved at first glance, even if the relative
position of these points appears to exhibit some regularity.

Figure 6.46: Two ααα’s (red and green circle) and their discretizations in the V basis which
correspond to an identical shape (triangle). Symmetries cannot be retrieved directly in
V (test case with three circles).

However, by multiplying the ααα coordinates of a permuted discretization Aσφ(x) by the
matrix Vσ := V>A−1

σ V, one gets

VσV
>(Aσφ(x)− φφφ) = V>A−1

σ VV>(Aσφ(x)− φφφ) = V>φ(x)−V>A−1
σ φφφ

i.e. the original ααα is retrieved as far as φφφ is σ invariant, Aσφφφ = φφφ ∀σ ∈ σσσ. This assumption
is almost true when using the discretization D1 (see central plot of Figure 6.40, the 3
circles are nearly the same, and interchanging the indices of the circle’s discretizations

leads to almost the same φφφ), and can be enforced by setting φφφ←

1

e

e∑
i=1

φφφi, . . . ,
1

e

e∑
i=1

φφφi︸ ︷︷ ︸
e times

.

There is a V>A−1
σ V shape-invariance in the ααα space. More generally, considering

a multi-element shape described by Aσiφ(x) with respect to an initial ordering of the
elements, applying any of the valid permutation to its ααα yields another permuted ααα,

Vσjααα = Vσj(V
>(Aσiφ(x)− φφφ)) = V>(A−1

σj
Aσiφ(x)− φφφ) = V>(Aσkφ(x)− φφφ).
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It is therefore possible to perform Vσ-invariant kriging by employing the kernel
kinv(ααα(1),ααα(2)) := 1

|σσσ|
∑

σ∈σσσ k(ααα(1),Vσααα
(2)) where k(·, ·) is a usual covariance function,

e.g. a Matérn, Squared Exponential, Exponential, ... kernel, see Example 2.1.
Remark that invariant kernels are not necessarily stationary: in a two-dimensional

problem, let k̄(x,x′) := 1
2

(k(x,x′) + k(x, σ21 ◦ x′)) be a first bisector invariant kernel
where x,x′ ∈ R2, and σ21 is the first bisector permutation, σ21 : (x1, x2) 7→ (x2, x1).

One can easily verify that k̄(·, ·) implements the symmetry invariance about the first
bisector as k̄((0, 2)>, (0, 2)>) = k̄((0, 2)>, (2, 0)>). However,
k̄((0, 2)>, (2, 0)>) 6= k̄((0, 1)>, (1, 0)>): the correlation depends on the distance to the
x1 = x2 line, which is undesirable as both points are the same under the permutation
invariance assumption. The following kernel (Rasmussen and Williams, 2006) is a

stationary version of k̄(·, ·): k̃(x,x′) = k̄(x,x′)√
k̄(x,x)
√
k̄(x′,x′)

. It exhibits symmetry along the

first bisector while being stationary, i.e. it solely depends on the distance between (the
symmetrized) x and x′.

In the same vein, the final symmetric kernel in the ααα space is

k̃inv(ααα,ααα′) =

1
|σσσ|
∑

σ∈σσσ k(ααα,Vσααα
′)√

1
|σσσ|
∑

σ∈σσσ k(ααα,Vσααα)
√

1
|σσσ|
∑

σ∈σσσ k(ααα′,Vσααα′)
(6.15)

6.5.3.4 Experiments: invariant kriging in the eigenbasis

For metamodeling purposes, we define the following objective function for the designs of
Example 6.3:

f(x) = πx2
3 + πx2

6 + πx2
9 − d(x)

where d(x) = min
τ∈τττ
‖(1, 1)> − ((τ ◦ x)1, (τ ◦ x)2)>‖2 + ‖(4, 2)> − ((τ ◦ x)4, (τ ◦ x)5)>‖2 +

‖(5, 5)> − ((τ ◦ x)7, (τ ◦ x)8)>‖2 is the summed distance between the points (1,1), (4,2),
(5,5) and the centers of the three circles, regardless of the order in which they are defined
in x (min over all permutations).

The prediction capabilities of 4 GPs built over a DoE of n = 25 designs is investigated.
4 metamodeling versions are compared. In the first one, GP(X), the metamodel is built
over the space of CAD parameters. In GP(ααα), the surrogate operates on the ααα coordinates
of those designs. AugmGP(ααα) considers not only the n = 25 ααα’s but the ααα coordinates of
all τ ◦x, τ ∈ τττ , permuted designs. There are n×e! such designs, increasing the size of the
DoE to 150. Such an option is cumbersome as far as the shape contains more elements,
or when more observations are available. Finally, SymGP(ααα) is the GP with invariant
kernel k̃inv(·, ·) (6.15) built using the DoE of n = 25 ααα’s.

Table 6.17 gives the accuracy of these models as measured by the R2 coefficient
computed over a test set of 1000 designs. The average over 20 runs starting from different
DoEs as well as the standard deviation are reported.

As remarked in the examples of Section 6.3.3, the metamodel in the V basis outperforms
GP(X). Logically, AugmGP(ααα) performs better than GP(ααα) because it contains more
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Metamodel R2
GP(X) 0.356 (0.115)

GP(ααα) 0.553 (0.095)

AugmGP(ααα) 0.709 (0.091)

SymGP(ααα) 0.765 (0.059)

Table 6.17: Three circles example. R2 on a test set for the 4 GPs, averaged over 20 runs.
Standard deviations are given in brackets.

designs. SymGP(ααα) has the best accuracy. It outperforms GP(ααα) and even AugmGP(ααα)
whose DoE has been enriched by the permuted designs (with 6 times more observations).
The standard deviation of the R2 is also smaller with this GP. Last, the kriging variance
of this GP is also reduced in comparison with GP(ααα) which is an additional advantage
when turning to optimization with the EI as in Section 6.4.

6.6 Conclusions

In this chapter a new methodology to apply Bayesian optimization techniques to para-
metric shapes and other problems where a pre-existing set of relevant points and a fast
auxiliary mapping exist has been proposed. Instead of working directly with the CAD
parameters, which are too numerous for an efficient optimization and may not be the
best representation of the underlying shape, we unveil the lower dimensional manifold of
shapes through the auxiliary mapping and PCA. The dimensions of this manifold that
contribute the most to the variation of the output are identified through an L1 penalized
likelihood and then used for building an additive Gaussian Process with a zonal anisotropy
on the selected variables and isotropy on the other variables. This GP is then utilized
for Bayesian optimization.

The construction of the reduced space of variables opens the way to several strategies
for the maximization of the acquisition criterion, in particular the restriction or not to the
manifold and the replication. The different variants for the construction of the surrogate
model and for the EI maximization have been compared on 7 examples, 6 of them being
analytical and easily reproducible, the last one being a realistic airfoil design.

Even though specific variants are more or less adapted to features of specific test prob-
lems, the supervised dimension reduction approach and the construction of an additive
GP between active and inactive components have given the most reliable results.

Regarding the EI maximization our experiments highlight the efficiency of the random
embedding in the space of inactive variables in addition to the detailed optimization
of the active variables. It is a trade-off between optimizing the active variables only,
and optimizing all variables. Benefits have been observed for not restricting this inner
maximization to the current approximation of A as well as for the virtual replication of
points outside A when ααα /∈ A is promoted by the EI.

An extension of the approach in the case of shapes made of multiple elements has also
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been proposed. It exploits the presence of symmetries in Φ by invariant kriging to the
propagated symmetries in V .

Instead of improving the modeling and optimization of variables that are considered as
active when analyzing the whole design space, a possible extension could be to find and
to prioritize the eigenshapes which impact the output in (Pareto) optimal regions of X
(Spagnol et al., 2019).
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Chapter 7

Conclusions

Contents
7.1 Summary of contributions . . . . . . . . . . . . . . . 201

7.2 Possible improvements and perspectives . . . . . . 203

7.2.1 Objective space dimension reduction . . . . . . . . . . 203

7.2.2 Output-driven shape basis construction . . . . . . . . 203

7.1 Summary of contributions

In this thesis, motivated by engineering applications, we have focused on the multi-
objective optimization of expensive black-box functions via Bayesian algorithms (Em-
merich et al., 2006; Jones et al., 1998).

First, in Chapter 3, a multi-objective benchmark problem called MetaNACA has been
created. It has a variable number of CAD parameters (d = 3, 8, 22) and a flexible number
of physical objectives (m = 2, 3, 4). It was built applying surrogate modeling techniques
to real-world aerodynamic data. Since this test case belongs to the class of problems we
aim at solving, it was extensively yet not uniquely used to benchmark existing algorithms
as well as for comparing different methods developed throughout this thesis.

In Chapter 4, a new Bayesian multi-objective optimization algorithm was developed.
It was designed for coping with expensive problems in which optimizations are budgeted.
Under the restriction of few function evaluations, it was evidenced that even though
they approach the Pareto front quicker than other algorithms, Bayesian methods are
not always able to produce a high-quality approximation of the entire front. The issue
of a non-converged Pareto front gets worse when augmenting the number of objectives
because of the growth of the Pareto set size. Contrarily to classical Bayesian approaches
which attempt to uncover the whole Pareto front regardless of the optimization resources,
the C-EHI and R-EHI developed in Chapter 4 address the multi-objective optimization in
steps. First, a part of the front is assessed as a priority area. The initial objective of the
search is to converge towards the Pareto front in this region. The preferred part of the
objective space is asked to the decision maker in R-EHI while it is implicitly defined as
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the center of the Pareto in the absence of preferences in C-EHI. The center of the Pareto
front is a contribution of this thesis. It is defined in Section 4.4.2, together with properties
and estimation methods. It corresponds to an equilibrium among the objectives and is
therefore a particularly appealing solution to a multi-objective problem. In both cases,
a simple modification to the EHI acquisition function (Emmerich et al., 2006) enables
the targeting of the preferred part of the front. The mEI criterion, a simplified EHI,
was proposed to guide both R-EHI and C-EHI algorithms in their first phase. A local
convergence criterion to the preferred part of the front was devised to trigger C-EHI/R-
EHI’s second phase. It relies on a progress uncertainty measured through Gaussian
Process simulations. In this second step, the target becomes a wider part of the Pareto
front which can be accurately unveiled during the remaining function evaluations. The
width of the attempted enlargement is determined by anticipating the behavior of the
algorithm for the remaining iterations and by forecasting the uncertainty that would
remain at the end of the search.

The C-EHI/R-EHI algorithms are extended to enhance their efficiency as well as their
applicability to other problems. Batch criteria (Schonlau, 1997) are proposed and studied
in Chapter 5 for both phases of the algorithm. This permits the evaluations of the
objective functions in parallel if several computers or nodes of a cluster are available. At
the same wall-clock time (which usually determines the allowed budget), a larger number
of designs are evaluated. C-EHI and R-EHI’s mechanisms are also adapted in Chapter 5
to comply with constraints (Feliot, 2017; Schonlau, 1997).

Motivated by high-dimensional parametric shape optimization problems, Chapter 6
proposes a way to address the curse of dimensionality (Bellman, 1961) which comes from
the large number of variables. Instead of considering the CAD parameters which are
numerous and may not express the object induced by the parameters (here a shape) in
a suitable manner, designs are considered in a shape basis. The latter is constructed
through the Principal Component Analysis of a database of discretized shapes. This
basis comes with appealing properties: the axes have decreasing (geometric) importance
and describe the shapes globally, as opposed to the CAD parameters of heterogeneous
nature and which mostly correspond to local refinements. Beyond metamodeling in the
basis of the first (hence most important) eigenvectors, a regularized likelihood indicates
the directions that impact the objective function the most. An additive GP (Durrande
et al., 2012) is then built. It is anisotropic over the reduced space of active components
and coarser, isotropic, over the space of inactive ones. In this way, the GP also accounts
for the non-selected shape vectors since they contribute a little to the output’s variation
too. By prioritizing the few more important parameters while considering all vectors of
the shape basis, the obtained metamodel better deals with the curse of dimensionality
and shows an increased accuracy. The input space is less uncertain too, which makes
the subsequent Bayesian optimization more efficient. The optimization is conducted in
reduced dimension by prioritizing the active components while the remaining eigenshapes
are coarsely optimized through an embedding strategy (Binois et al., 2015b; Wang et al.,
2013).
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7.2 Possible improvements and perspectives

7.2.1 Objective space dimension reduction

This thesis deals with problems having potentially more than 2 or 3 objectives. In Chapter
3, it was shown that the quality of solutions returned by a multi-objective optimization
on four objectives restricted to two objectives was degraded in comparison with the bi-
objective optimization. This opens the question of the necessity of all objectives (Brock-
hoff and Zitzler, 2006a,b; López Jaimes et al., 2008). Before running an m-objective
optimization, it may be worth checking whether some objectives can be neglected without
a drastic change of the Pareto front structure (Corne and Knowles, 2007). In applications,
some objectives may correspond to the same physical phenomenon observed at different
operating conditions, as the example of the MetaNACA, whose lift and drag are computed
at an angle of attack αI = 0◦ or αI = 8◦. The independence between such objectives
is questionable and a correlation structure between some objectives could be exploited
via co-kriging for instance (Cressie, 1992; Forrester and Keane, 2009; Fricker et al., 2013;
Shah and Ghahramani, 2016; Svenson, 2011). Dimension reduction carried out via PCA
in the input space in Chapter 6 could also be a way to aggregate some functions linearly
(Deb and Saxena, 2006). The quadratic functions described in the Appendix D may help
comparing alternatives as two spheres with similar centers are correlated objectives.

7.2.2 Output-driven shape basis construction

In Chapter 6, we have built the V basis through the non-supervised learning of a shape
database. The axes of V that contribute the most to the output’s fluctuation have then
been detected through a regularized likelihood maximization and have been emphasized
within the additive GP. In the spirit of Partial Least Squares (PLS, Frank and Friedman,
1993) or Sliced Inverse Regression (SIR, Li, 1991), a promising alternative would be
the construction an orthonormal basis common to the m objective functions determined
according to the output’s fluctuation, in spite of the little observations (n � D). As
seen through the examples of Section 6.3.3, the first modes are not necessarily the most
relevant ones in the PCA approach, whereas they would in such methods.

In the same vein, the more flexible Student-t Processes (Shah et al., 2014) or the
recent Deep Gaussian Processes (Bui et al., 2016; Damianou and Lawrence, 2013) may
constitute a promising direction to evidence the link between the x’s (or the φ(x)’s) and
the output.
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Appendices

A MetaNACA benchmark experiments

In this section, different experiments carried out on the MetaNACA problems described
in Chapter 3 are detailed. They aim at visualizing the effects of the input space and
objective space dimension (d = 3, 8, 22 and m = 2, 3, 4), differences in the budget = n+ p
allocation (initial DoE/infill criterion), and between the acquisition functions (EHI, EMI,
SMS and SUR, see Section 2.4). For the sake of brevity, we only consider the (ratio of)
hypervolume indicator (Definition 2.11) with reference point taken as the Nadir of the
true Pareto front to compare the experiments because other indicators as the ε-indicator,
the IGD, or attainment times led to similar conclusions drawn in Chapter 3.

The experiments are budgeted, i.e., a computational budget is defined and allocated
between the initial DoE (n) and function evaluations driven by the infill criterion (p).
budget = 60 in the d = 3 instance, 100 in the d = 8 problems and 200 for the MetaNACA
with d = 22 parameters. Table A.1 gives the investigated sizes of initial DoE for each
dimension, the number of calls to the acquisition function being p = budget−n (including
p = 0, i.e. all observations stem from a space filling DoE).

d budget n
3 60 10 30 50 60
8 100 20 40 60 80 100
22 200 50 100 150 200

Table A.1: budget distribution in the MetaNACA experiments.

A.1 Distribution of the computational budget

Here, we aim at comparing the optimizations regarding the budget allocation. We take
the same infill criterion (EHI) and compare the hypervolume indicator at the end of
the optimization, i.e. the MetaNACA has been called budget times with different n + p
repartitions. The runs are repeated ten times and presented in boxplots, for m = 2, 4,
and d = 3, 8, 22 in Figure A.1. The size of the initial DoE (n) is reported in the x-axis.
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Figure A.1: Comparison of budget = n+ p allocations on different MetaNACA instances
(d = 3, 8, 22, m = 2, 4).

For analyzing the convergence at different moments of the optimization in function of
the budget repartition, the evolution of the hypervolume indicator, averaged over the 10
runs, is shown in Figure A.2 for different DoE sizes (see Table A.1), for the m = 2, 4, and
d = 3, 8, 22 MetaNACA problems.
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Figure A.2: Evolution of the hypervolume indicator against the number of observations,
for varying sizes of DoE (n), on different MetaNACA instances (d = 3, 8, 22, m = 2, 4).

These results indicate that whatever the dimension or the number of objectives, on the
MetaNACA test problems, it is worth using an as small as possible1 initial DoE to enable
the evaluation of a large number of designs chosen by the infill criterion.

A.2 Evolution of the hypervolume indicator in the given budget

In this section, we compare the increase of the hypervolume indicator for all MetaNACA
problems (d = 3, 8, 22, m = 2, 3, 4) and all infill criteria (EHI, EMI, SMS), during the
search. Starting with n observations, the average hypervolume indicator (black curve)
over the 10 runs (grey curves) is shown at any iteration t ∈ [0, p] of the Bayesian
optimization in Figures A.3 to A.5. As budget is fixed, p is not the same depending on n
and the x-axes do not have the same range. Following the conclusion of Section A.1, the
mean hypervolume indicator obtained by the different infill criteria in the setting with
smallest initial DoE size (see Table A.1) are further compared at different times during
the search. The evolution of the hypervolume is compared for different (d,m) problems
separately.

1Here, we have considered n ≈ 2d+ 4 as smallest initial DoE.
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Figure A.3: Evolution of the hypervolume indicator in the remaining budget, for different
sizes of initial DoE (n), dimensions (d) and infill criteria.
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Figure A.5: Evolution of the hypervolume indicator in the remaining budget, for different
sizes of initial DoE (n), dimensions (d) and infill criteria.

These figures show the same type of convergence is achieved, regardless of the dimension
of the input space, the number of objectives, the size of the initial DoE or the criterion. A
large increase in the hypervolume indicator is achieved from the first iterations on. The
convergence then slows down. Yet, the curves do not seem to stagnate as the slope is
not null at completion of the budget, meaning that the Pareto front could not be entirely
unveiled. This appears to be even more true in the case m = 4, because of the larger size
of the Pareto front.

A.3 Optimizing too much or too less objectives

Since the 4 objectives of the MetaNACA are correlated (lift and drag at different angles
of attack), an interesting question is the necessity of all objectives: could good results be
achieved by optimizations focusing on two objectives only? Conversely, is there a price
to pay by running an optimization on more objectives than are truly relevant?

To answer this question, we compare the outcomes of two optimizations. The first one
is the optimization of the lift and the drag of the MetaNACA at αI = 0◦ only, i.e. m = 2.
The second one is the simultaneous optimization of all m = 4 objectives. In all cases,
the MetaNACA in dimension 8 with the EHI infill criterion is employed, starting from a
DoE with n = 20 observations.

Two situations are compared. The convergence of both optimizations restricted to
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the two first objective functions (the values observed by the optimizations with m =
4 objectives in the last two objectives are ignored) is shown in Figure A.6a. The
hypervolume increase of optimizations with 4 objectives (red curve) rapidly slows down
because critical parts in the 4 objective dimensional space were not necessarily associated
with a large hypervolume contribution in the two first objectives. There is a price to pay
by considering too much objectives.

In Figure A.6b, the opposite situation is considered. The goal is to optimize all 4
objectives, and standard optimizations considering all objectives are compared with
optimizations only concentrated on the two first objectives, whose values in f3(·) and
in f4(·) are computed for the occasion. It is seen that the latter (blue curve) almost does
not increase the hypervolume indicator in comparison with the red curve. Indeed, designs
chosen to achieve an improvement in the bi-objectives have been evaluated. These do not
bring as much improvement to the 4-objectives problem as optimizations intended for this
purpose. Despite the correlations in the objectives, an incomplete problem formulation
leads to a weaker progress in the original problem.
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Figure A.6: Evolution of the hypervolume indicator in an m-objective problem using an
m or an m′-objective infill criterion.

B Proofs of propositions related to the center

Proofs relative to the sensitivity of the center of the Pareto front to affine scalings of the
objective space, or to the stability of C (Section 4.4.2.2) are provided in this section.

B.1 Center invariance to linear scaling, intersection case

Proof of Proposition 4.2.
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Proof. First, it is clear that if PY intersects L, the intersection is unique. Indeed, as in
non degenerated cases I ≺ N, tI + (1 − t)N ≺ t′I + (1 − t′)N ⇔ t > t′. Two points on
L are different as long as t 6= t′. PY being only composed of non-dominated points it
is impossible to find two different points tI + (1 − t)N and t′I + (1 − t′)N that belong
simultaneously to PY . Obviously, as it lies on L, @y ∈ PY that is closer to it.

Let C be this intersection. S being a linear scaling, it can be expressed in the form
S(y) = Ay + b with A an m × m diagonal matrix with entries ai > 0, and b ∈ Rm.
Applying this scaling to the objective space modifies C to C′ = AC+b, I to I′ = AI+b
and N to N′ = AN + b. Because the scaling preserves orderings of the objectives, C′

remains non-dominated, and I′ and N′ remain the Ideal point and the Nadir point of PY
in the scaled objective space. As C belongs to L it writes tI + (1− t)N for one t ∈ [0, 1],
and therefore

C′ = A(tI + (1− t)N) + b

= tAI + (1− t)AN + b

= t(AI + b) + (1− t)(AN + b)

= tI′ + (1− t)N′

C′ is thus the unique point belonging to both the Pareto front and to the Ideal-Nadir
line in the transformed objective space: it is the center in the scaled objective space.

B.2 Center invariance to linear scaling, 2D case

Proof of Proposition 4.3.

Proof. Let A be the area of the IyN triangle and A′ be the area of Iy′N. Applying a

linear scaling S(y) = Ay + b with A =

(
α 0
0 β

)
, α, β > 0 to Y will modify the areas

A and A′ by the same factor αβ. Thus, ‖S(y)− ΠS(L)(S(y))‖ ≤ ‖S(y′)− ΠS(L)(S(y′))‖
still holds: in the transformed subspace, y remains closer to L than y′.

B.3 Example with m > 2 where the center is modified by a
linear scaling of the objectives

Let us consider the case of a Pareto front composed of the five following non-dominated

points (in rows) in a three-dimensional objective space: P =


1 0 0
0 1 0
0 0 1

0.5 0.5 0.6
0.5 0.55 0.5

, PY =

{P(1), . . . ,P(5)}. The Ideal point is I = (0, 0, 0)> and the Nadir point N = (1, 1, 1)>.
The squared Euclidean distance to L of these 5 points equals respectively 2/3, 2/3, 2/3,
0.02/3 and 0.005/3, hence P(5) = (0.5, 0.55, 0.5)> is the closest point to L. Let us now
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apply a linear scaling S(y) = Ay with A =

3 0 0
0 3 0
0 0 1

. In the modified objective

space, we now have P̃ =


3 0 0
0 3 0
0 0 1

1.5 1.5 0.6
1.5 1.65 0.5

, Ĩ = (0, 0, 0)> and Ñ = (3, 3, 1)>. The

squared distances to L̃ after scaling are now respectively 1710/361, 1710/361, 342/361,
3.42/361, 4.275/361. After scaling, the fourth point becomes the closest to the line. As

the projection of the latter on L̃ is different from the projection of the fifth point, the
center of the Pareto front will change after this scaling.

B.4 Stability with respect to I or N’s variation

Before proving Proposition 4.4, Lemma B.1 gives a condition on the normal vector to the
Pareto front that will be needed to prove the proposition.

Lemma B.1. Let y∗ ∈ Rm be a Pareto optimal solution, and the Pareto front be
continuous and differentiable at y∗ with d ∈ Rm the normal vector to the Pareto front at
y∗. Then all components of d have the same sign.

Proof. Because of the differentiability assumption at y∗ and the definition of Pareto
dominance, d cannot have null components. Suppose that some components in d have
opposite signs, d+ corresponding to positive ones and d− to negatives ones, d = [d+,d−].

Let ε+ and ε− be two small positive scalars such that ε+

ε−
=

∑
i:di<0 di

2∑
i:di>0 di

2 . Then, f =

y∗ +

(
−ε+d+

ε−d−

)
dominates y∗ and belongs to the local first order approximation to PY

since d>(f −C) = 0, which is a contradiction as y∗ is Pareto optimal.

We can now prove Proposition 4.4.

Proof. If PY is locally continuous and m− 1 dimensional, C is the intersection between
L and PY . For simplicity, the Pareto front is scaled between 0 and 1, that is, I = 0m and
N = 1m. Proposition 4.2 ensures that the center is not modified by such a scaling. The
tangent hyperplane to PY at C writes d>f + e = 0 where d ∈ Rm, the normal vector to
the tangent hyperplane, and e ∈ R depend on PY and are supposed to be known. Lemma
B.1 ensures that di, i = 1, . . . ,m have the same sign, that we choose positive. C satisfies
both d>C = −e and C = (1− αC)I + αCN = αC1m for some αC ∈]0, 1[. Hence,

C =
−e

d>N
N, Ci =

−e
d>N

Ni

∀j = 1, . . . ,m, j 6= i,

∂Ci
∂Nj

=
eNidj

(d>N)2
=

−dj∑
k dkNk

Ci =
−dj∑
k dk

Ci
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For i = j,

∂Ci
∂Ni

=
−ed>N + eNidi

(d>N)2
=
Ci
Ni

− Ci∑
k dkNk

= Ci

(
1− di∑

k dk

)
Ci = αC ∈]0, 1[ ∀i = 1, . . . ,m and as the di’s share the same sign, |di| ≤ |

∑
k dk|.

Therefore, | ∂Ci
∂Ni
| < 1 and | ∂Ci

∂Nj
| < 1 . Consider now that N is modified into N + ∆N,

which changes the center to C + ∆C. One has ∆C = ∇C ·∆N where ∇C is the m×m
matrix with entries ∂Ci

∂Nj
. Rearranging the terms of the derivatives into matrix form yields

∇C = αC

Im −
1∑
k dk

d1 d2 · · · dm
...

...
...

...
d1 d2 · · · dm


︸ ︷︷ ︸

D


where Im stands for the identity matrix here. D is a rank 1 matrix with positive entries
whose rows sum to 1, and has eigenvalues 0 and 1 with respective multiplicity m−1 and 1.
Consequently, ∇C’s largest eigenvalue is αC ∈]0, 1[. Finally, ‖∆C‖2 ≤ ‖∇C‖2‖∆N‖2 ≤
‖∆N‖2. By symmetry, the proposition extends to the sensitivity of the center to the
Ideal point, |∂Ci

∂Ij
| < 1, i, j = 1, . . . ,m and ‖∆C‖2 < ‖∆I‖2.

C Nadir point estimation using Gaussian Processes

In the field of EMOA’s, estimation procedures for extreme points, thus components
of N, have been proposed (Bechikh et al., 2010; Deb et al., 2010). In the Gaussian
Process framework, we look for x’s that are likely to be extreme design points (Definition
2.10). Estimating the Nadir point through surrogates is a difficult task. When m > 2,
the Nadir components come from extreme points that are not necessarily optimal in a
single objective (cf. Definition 2.8). A straightforward estimation of the Nadir involves
the knowledge of the whole Pareto front, as each component j of the Nadir point is
dependent on the j-th objective function, but also on all other functions through the
component-wise non-domination property of N. However, the C-EHI algorithm only
targets central solutions. With this algorithm, the GPs may not be accurate at non central
locations of PY . Using simulated values of the GPs instead of the kriging prediction
should nonetheless reduce the impact of a potential inaccuracy as the latter is implicitly
considered. Applying a step of mono-objective fj(·) minimization (e.g. using EGO)
might diminish this difficulty (at least for the I estimation), at the expense of m costly
evaluations of the computer code.

We now explain the proposed estimation approach. Extreme points νννj ∈ Y , j =
1, . . . ,m, are responsible for the j-th component of N, νjj = Nj (see Definition 2.10).
They are both large in the j-th objective (largest yj value inside PY) and not dominated
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(ND). To simulate possible values of extreme points, we are thus interested in x’s with
a high probability P(Yj(x) > aj,Y(x) ND), for j = 1, . . . ,m. A typical choice for aj is
the j-th component of the Nadir of the current Pareto front approximation, N j = νjj.

Non-domination refers to the current Pareto front approximation P̂Y . These events are
not independent since Y(x) contains Yj(x). However, by conditioning on {Yj(x) > νjj},
P(Yj(x) > νjj,Y(x) ND) = P(Y(x) ND|Yj(x) > νjj) × P(Yj(x) > νjj). The first part can

be further simplified: to be non-dominated by P̂Y , a vector z ∈ Rm with zj > max
y∈P̂Y

yj has

to be non-dominated by P̂Y with regard to objectives 1, . . . , j − 1, j + 1, . . . ,m. Hence,
P(Y(x) ND|Yj(x) > νjj) = P(Y(x) ND\{j}) where ND\{j} stands for non-domination
omitting the objective j. Finally, the most promising candidates for generating ex-
treme points of the Pareto front are those with large probability P(Y(x) ND\{j}) ×
P(Yj(x) > νjj).

Besides these candidates, a second scenario will lead to new extreme points. If Rm 3
z � νννj is obtained through simulations, νννj will no longer belong to the simulated Pareto
front. Consequently, the j-th component of the Nadir point of the simulated front will
also be modified in that case. When m = 2, the new νjj will be zj, but this does not
necessarily hold in higher dimensions.

In short, two events will lead to new extreme points: dominating the j-th current
extreme point, {Y(x) � νννj}, or being both larger than it in the j-th objective and
ND with respect to the approximation front in the remaining objectives, {Yj(x) >
νjj,Y(x) ND\{j}}. The areas corresponding to these events are sketched with a 2D
example in Figure C.7. Being disjoint, the probability of the union of these events equals
the sum. In the end, for estimating the j extreme points and by extension N, the most
promising candidates are those maximizing

P(Y(x) ND\{j})× P(Yj(x) > νjj) + P(Y(x) � νννj), (1)

for j = 1, . . . ,m. P(Y(x) ND\{j}) is the probability of being non-dominated with

respect to an m − 1 dimensional front (which is smaller than the restriction of P̂Y to
{1, . . . ,m}\{j}) and is the more computationally demanding term for a given x. The
other terms are univariate and product of univariate Gaussian CDF’s, respectively.

In the particular case of two objectives, the union of these events reduces to dominating
νννj in all objectives but j, that is to say, in the other objective j̄. This is equivalent to
looking for candidates with lower fj̄(·), which has already been investigated when looking
for candidates for estimating Ij̄. Unfortunately, in a general m-dimensional case no
simplification occurs. The set of candidates that are likely to dominate νννj in all objectives
but j is included but not equal to the set of candidates likely to maximize (1), whose
probabilities are respectively P(Y(x) �\{j} νννj) and P(Y(x) ND\{j}) × P(Yj(x) > νjj) +

P(Y(x) � νννj), as the latter encompasses more cases for producing new extreme points
when m > 2. It is indeed possible to construct z ∈ Rm such that zj > νjj, z ND\{j} and

z �\{j} νννj. Such a z will become the j-th extreme point without dominating the previous
j-th extreme point in objectives {1, . . . ,m}\{j}.
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Figure C.7: Areas leading to a new first component (j = 1) of N. A point in the red
zone (larger than the first extreme point, ννν1, in the first objective and non-dominated)
or in the blue zone (dominating ννν1) becomes the new (first) extreme point, and therefore
induces a modification of N.

D Quadratic objective functions

Despite their simplicity, quadratic functions are a powerful tool to study the behavior of
(multi-objective) optimizers (Brockhoff et al., 2015; Igel et al., 2007; Toure et al., 2019).
Here, we consider the m objective functions defined by

fj(x) =
1

2
‖x− cj‖2

2 (2)

where x ∈ X = [0, 1]d and cj ∈ X is the center of the j-th sphere. The multi-objective
problem

min
x∈X

(f1(x), . . . , fm(x)) (3)

is considered. The necessary Pareto-optimal conditions
(x∗ Pareto optimal ⇒ ∃λ1, .., λm ≥ 0 :

∑m
j=1 λj∇fj(x∗) = 0m, Miettinen, 1998; Toure

et al., 2019) state that the Pareto set of (3) is the convex hull of {c1, . . . , cm}.
Therefore, when m > d and the centers are not aligned, the ratio of Pareto optimal
solutions equals the volume of this hull.

In this section we illustrate the selection of designs in X where to perform the con-
ditional GP simulations described in Chapter 4. We both resort to simulated fronts to
estimate the Ideal and Nadir point of the Pareto front (used for estimating the L or
L′ line, on which R is driven towards the Pareto front, Section 4.4.2.3) and to check
local convergence to the Pareto front (Section 4.5). In the first case, x’s are selected
proportionally to their probability of being an extreme design (i.e. an x whose image is
non-dominated and has one coordinate of the Nadir point) or of being a minimum design
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(an x whose image is the minimum in one objective function), while in the second case
they are chosen according to their non-domination probability as in Binois (2015).

In the optimization problem (3) with m = 3 objectives defined through three non-
aligned circles and d = 2 dimensions, Figure D.8 shows which points in X are selected
for both tasks (purple crosses), at different times of the optimization (t = 0, 10 or 20
iterations). Conditional GPs are simulated at these case-oriented locations of X.
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Figure D.8: x’s where conditional GP simulations are performed (purple crosses) for
estimating I and N (top row) and for being non-dominated (bottom row). Left to right:
after 0, 10, or 20 additional function evaluations. The centers of the fj(·)’s are represented
by red squares, black dots are the initial DoE points, and the blue triangles correspond
to sequential infills. Non-dominated solutions are surrounded by a red diamond.

Remark D.1. The necessity of all objectives, discussed in Section A.3 and in perspectives
for future research (Section 7.2) might be investigated through these quadratic functions.
For instance, in a two-dimensional input space, let m > 3 and c1, c2, c3 be three non-
aligned points. Let the remaining centers cj, j = 4, . . . ,m belong to the convex hull
of {c1, c2, c3} as in Figure D.9. The fj(·)’s, j = 4, . . . ,m do not modify the Pareto
set nor the Pareto dominance relation in the objective space Y . However, they increase
the dimension (in terms of objectives) of the problem. They can be disregarded and a
criterion measuring the necessity of objective functions inside a multi-objective problem
should indicate that they are redundant.

Likewise, the correlation between objectives can be expressed by the proximity between
cj’s, such as c3 and c6 in Figure D.9.
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Figure D.9: Quadratic objective functions whose centers c are shown in the X = [0, 1]2

space.
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Mines Saint-Étienne David Gaudrie



References 237

Shimoyama, K., Sato, K., Jeong, S., and Obayashi, S. (2012). Comparison of the criteria
for updating kriging response surface models in multi-objective optimization. In 2012
IEEE Congress on Evolutionary Computation, pages 1–8. IEEE.

Shimoyama, K., Sato, K., Jeong, S., and Obayashi, S. (2013). Updating kriging surrogate
models based on the hypervolume indicator in multi-objective optimization. Journal
of Mechanical Design, 135(9):094503.

Singh, H. K., Bhattacharjee, K. S., and Ray, T. (2016). A projection-based approach
for constructing piecewise linear Pareto front approximations. Journal of Mechanical
Design, 138(9):091404.

Singh, P., Couckuyt, I., Ferranti, F., and Dhaene, T. (2014). A constrained multi-
objective surrogate-based optimization algorithm. In 2014 IEEE Congress on
Evolutionary Computation (CEC), pages 3080–3087. IEEE.

Smith, G. D. (1985). Numerical solution of partial differential equations: finite difference
methods. Oxford university press.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M.,
Prabhat, M., and Adams, R. (2015). Scalable Bayesian optimization using deep neural
networks. In International conference on machine learning, pages 2171–2180.

Sobol’, I. M. (1967). On the distribution of points in a cube and the approximate
evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki,
7(4):784–802.

Spagnol, A., Le Riche, R., and Da Veiga, S. (2019). Global sensitivity analysis
for optimization with variable selection. SIAM/ASA Journal on Uncertainty
Quantification, 7(2):417–443.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2009). Gaussian process
optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995.

Stegmann, M. B. and Gomez, D. D. (2002). A brief introduction to statistical shape
analysis. Informatics and mathematical modelling, Technical University of Denmark,
DTU, 15(11).

Stein, M. (1987). Large sample properties of simulations using latin hypercube sampling.
Technometrics, 29(2):143–151.

Stein, M. (1999). Interpolation of spatial data: some theory for kriging. Springer Science
& Business Media.

Steuer, R. E. and Choo, E.-U. (1983). An interactive weighted Tchebycheff procedure
for multiple objective programming. Mathematical programming, 26(3):326–344.
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objective optimization methods. To improve the attainment of Pareto optimal solutions,
an infill criterion is tailored to direct the search towards a user-desired region of the
objective space or, in its absence, towards the Pareto front center introduced in our
work. Besides targeting a well-chosen part of the Pareto front, the method also considers
the optimization budget in order to provide an as wide as possible range of optimal
solutions in the limit of the available resources. Next, inspired by shape optimization
problems, an optimization method with dimension reduction is proposed to tackle the
curse of dimensionality. The approach hinges on the construction of hierarchized problem-
related auxiliary variables that can describe all candidates globally, through a principal
component analysis of potential solutions. Few of these variables suffice to approach
any solution, and the most influential ones are selected and prioritized inside an additive
Gaussian Process. This variable categorization is then further exploited in the Bayesian
optimization algorithm which operates in reduced dimension.
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Résumé :

Dans cette thèse, nous nous intéressons à l’optimisation simultanée de fonctions coûteuses
à évaluer et dépendant d’un grand nombre de paramètres. Cette situation est rencontrée
dans de nombreux domaines tels que la conception de systèmes en ingénierie au moyen
de simulations numériques. L’optimisation bayésienne, reposant sur des méta-modèles
(processus gaussiens) est particulièrement adaptée à ce contexte. La première partie de
cette thèse est consacrée au développement de nouvelles méthodes d’optimisation multi-
objectif assistées par méta-modèles. Afin d’améliorer le temps d’atteinte de solutions
Pareto optimales, un critère d’acquisition est adapté pour diriger l’algorithme vers une
région de l’espace des objectifs plébiscitée par l’utilisateur ou, en son absence, le centre du
front de Pareto introduit dans nos travaux. Outre le ciblage, la méthode prend en compte
le budget d’optimisation, afin de restituer un éventail de solutions optimales aussi large
que possible, dans la limite des ressources disponibles. Dans un second temps, inspirée
par l’optimisation de forme, une approche d’optimisation avec réduction de dimension
est proposée pour contrer le fléau de la dimension. Elle repose sur la construction,
par analyse en composantes principales de solutions candidates, de variables auxiliaires
adaptées au problème, hiérarchisées et plus à même de décrire les candidats globalement.
Peu d’entre elles suffisent à approcher les solutions, et les plus influentes sont sélectionnées
et priorisées au sein d’un processus gaussien additif. Cette structuration des variables
est ensuite exploitée dans l’algorithme d’optimisation bayésienne qui opère en dimension
réduite.
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