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Chapter 1

Introduction: thermoelectricity

The team that brings clean and abundant energy
to the world will benefit humanity more than all
of history’s saints, heroes, prophets, martyrs,
and laureates combined.

Steven Pinker, Enlightenment Now: The Case
for Reason, Science, Humanism, and Progress.

Over the past decades, the world has grown increasingly aware that it is heading for
disaster. Since the early XIXth century, when 90% of mankind was still living in extreme
poverty and the industrial revolution was just starting to bear its fruits, humanity has been
enjoying an ever greater degree of material wealth (see [1, 2, 3] and Fig 1.1a). Today, the
proportion of people living in extreme deprivation is only 10% and the United Nations
aim to eliminate extreme poverty by the middle of the XXIst century [4]. Thanks to
machines and industries providing us with food, shelter, furniture, heating, transportation
and entertainment, the average European lives like a king by our ancestors’ standards [5].
However, this amazing, absolutely unprecedented progress has mostly been powered by the
consumption of fossil fuel — coal, oil and natural gas, see [6] and Fig 1.1b — and this
arrangement is now clearly unsustainable.

The issue with fossil fuels is twofold. First, as their names suggest, fossil fuels take
millions of year to form, and we are burning them at a much faster rate. This was not
an issue in the early days of the industrial revolution, because their amount seemed inex-
haustible then, but if we keep going like this our proven reserves of oil and natural gas will
be depleted by the end of the century [8]. Second, and this is even more alarming, fossil
fuels emit greenhouse gas into the atmosphere when they burn, which is responsible for
around two-thirds of anthropogenic greenhouse gas emissions, see [9] and Fig 1.2a. This
is the primary cause of climate change, a process that comes with a host of extremely
unpleasant consequences. Among them, the sea level is expected to rise due to the ther-
mal expansion of water, leading to coastal flooding and threatening many large cities. At
the same time, whole regions will suffer accelerated desertification and will be subjects to
shortages of water and food. Extreme weather events, such as floods, droughts and storms,
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(a) From Ref. [3], share of the human popu-
lation in extreme poverty from 1820 to 2015.

(b) From Ref. [7], Global energy consump-
tion per year from 1800 to 2010.

Figure 1.1

will also be more frequent. Though estimates are flawed and unreliable [10], it seems clear
that these changes will displace tens of millions of people by mid-century. The severity of
these consequences will largely depend on the efficiency with which we will constrain our
greenhouse gas emissions. If we are intent on preserving the basis of our modern way of life
and on extending the fruits of progress to people still trapped in poverty, we must transition
our energy sources from fossil fuels to carbon-free, sustainable alternatives. We also need
to reduce our energy consumption, at least until our economy is sufficiently decarbonized
to adress the immediate danger of global warming.

(a) From Ref. [11], global green-
house gas emissions by economic
sector.

(b) From Ref. [12], the shares of energy that is useful
(service) or lost (exhausts, others), by economic sector.

Figure 1.2

Scientists and engineers around the world have taken on the challenge. One obvious
possibility is to exploit the abundant energy of the sun, and although the technology of
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crystalline silicon photovoltaics is already quite mature, research is still ongoing to find
cheaper and more efficient materials [13]. Solar and wind power have come to epitomize
renewable energy solutions, but the power output of solar panels and wind turbines is as
capricious as the weather. In order to manage these distributed and intermittent power
sources and to accelerate the replacement of combustion-based vehicles by electric cars,
researchers have been working on smart energy grids as well as cleaner, more efficient bat-
teries and supercapacitors [14, 15]. Another avenue for low-emission electricity production
is nuclear power, which is far safer than fossil fuels and emits very little greenhouse gas
[16]. However, since expanding the use of current fission reactors face a number of economic
and societal obstacles, research in next-generation nuclear power and fusion technology is
crucial to the global energy transition [17]. It seems clear that the pathway towards a decar-
bonized economy will inevitably feature a mix of these innovative technologies [18] along
with several others, such as carbon capture and storage techniques [19, 20], geothermal
energy [21] and waste heat harvesting by thermoelectric devices.

Thermoelectric modules are essentially solid-state heat engines that create a voltage
when placed in a thermal gradient, and can thus directly convert heat into electrical energy.
This technology could have huge applications, because part of the energy transition is an
effort to cut down waste and increase energy efficiency. Although much is being done to
weatherize city buildings and individual houses, around two thirds of the energy used in
the world is wasted in heat, see [12] and Fig 1.2b. The transportation and industrial sector,
in particular, generate large amounts of high-temperature heat, a significant portion of
which can theoretically be converted into electrical energy within the constraint of Carnot
efficiency. There are considerable opportunities for improving the energy efficicency of
many industrial manufacturing processes, such as steelmaking, if enough progress is made
on thermoelectric devices [22]. In the transportation sector, prototypes of cars and trucks
fitted with thermoelectric modules have been realized and tested, and it is estimated that
the development of better, cheaper devices could cut fuel usage by around 10% [23, 24].
Aircraft engines and ship incinerators represent another potential source of energy. Research
is also ongoing to improve photovoltaic generators by adding a thermoelectric device on it,
or even to concentrate sunrays directly onto a thermoelectric module [25, 26, 27].

While much effort should be directed towards improving energy efficiency in the devel-
opped world, helping people currently trapped in extreme poverty to reach higher standards
of living remains an ethical imperative. Around 15% of the world population still lacks ac-
cess to electricity, and an even greater proportion has to use wood and organic waste for
heating and cooking, which is inefficient and leads to indoor air pollution due to incomplete
combustion [28]. In remote villages, connecting to the energy grid is simply not an option,
so thermoelectric devices exploiting the heat from household stoves could significantly im-
prove quality of life [23]. Such devices, which could fan air into the stove to make the
combustion complete in addition to lighting up a LED or charging a mobile phone, would
need to be cheap and widely available to make a difference.

Rising up to the global challenge of preserving and spreading the fruits of modernity
will require a sustained research effort in many technological areas. It seems clear that
thermoelectricity can be part of the solution if cheaper and more efficient heat harvesting
devices are developed.
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1.1 Thermoelectric power generation

1.1.1 The Seebeck effect

The physical effect behind thermoelectric power generation was discovered by T. J. Seebeck
in 1821, and was thus named after him. An illustration of the Seebeck effect is shown in
Fig 1.3. A material, say a semiconductor, is placed in a thermal gradient, with an extremity
at the temperature Tc and the other at Th > Tc. The charge carriers (electrons and holes)
are more energetic at the hot end, so they move towards the cold end, generating a diffusive
charge current density �jT . This current creates a charge depletion at the hot end and an
accumulation at the cold end, giving rise to a voltage ΔV accross the material. A steady
state is reached when the current density �jV caused by this voltage compensates �jT . The
so-called Seebeck coefficient S (sometimes also noted α) can then be defined as the ratio
of the voltage over the temperature difference:

S = − ΔV

Th − Tc
. (1.1)

The current generated by the thermal gradient, �jT , can be derived from the balance equation
�jT +�jV = �0. For a homogeneous material characterized by a conductivity σ, �jV = −σ�∇V
with �∇V = −S�∇T , so we find

�jT = −σS �∇T. (1.2)

This simple physical picture already gives valuable information. First, the voltage generated
by the Seebeck effect is static. Second, the sign of S depends on the nature of the charge
carrier. In Fig 1.3, the majority carriers are electrons (n-type) and S < 0, but if most
carriers are holes (p-type), the surface charge and the sign of ΔV are reversed, giving S > 0.
We will see later that this correspondance between the charge of the majority carrier and
the sign of S, though verified in most cases, is not always true. Third, since minority carriers

e

e

e

e+ -
+
+

-
-

h

charge current

Figure 1.3: Illustration of the Seebeck effect.
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transport charge in the direction opposite to majority carriers, their presence decreases the
magnitude of the Seebeck coefficient. Indeed, bipolar conduction is one of the main limits
on thermoelectric performance at high temperature. Finally, good metals tend to exhibit
low Seebeck coefficients, because in these compounds a small voltage ΔV is sufficient to
generate a large compensating current �jV . For instance, S is around ≈ 1μV/K in copper
(a good metal), while it is ≈ −75μV/K in bismuth (a semimetal) and ≈ 450μV/K in
intrinsic silicon (a semiconductor). Therefore, good thermoelectric materials are generally
semimetals or semiconductors.

The reverse of the Seebeck effect also exists, and is called the Peltier effect. If a voltage
is applied to a thermoelectric material, a heat current �jQ is generated in addition to a
charge current. Onsager showed that there is a symmetry between the two effects [29], so
that

�jQ = −σST �∇V. (1.3)

The Peltier effect has been used for years in temperature control and refrigeration devices,
and the development of more efficient thermoelectric modules would make them competitive
as domestic refrigerators and heat pumps [24]. In particular, the replacement of R-134a in
standard refrigerators by thermoelectric modules, in which the working gas is composed of
electrons and holes, could yield significant environmental benefits. Though we will mostly
have power generation in mind throughout this thesis, efforts to design better thermoelectric
materials can also lead to applications in Peltier cooling.

1.1.2 Device efficiency: the figure of merit

The working principle of a thermoelectric generation module is shown in Fig 1.4. Like
standard heat engines, it exploits the temperature difference between a heat source and

heat

source

heat

sink

n-type

e

e

e

e
e

e

charge current

p-type

h h

h
h h

h
h

charge current 

charge current 

Figure 1.4: The concept of a thermoelectric generation module.
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a heat sink. Two segments of thermoelectric material, called the legs of the module, are
placed between the heat source and sink. They are connected to each other and to a charge
resistance Rc by metallization layers. One segment is n-type and the other is p-type, so
that the currents generated in the legs by the Seebeck effect reenforce each other. A portion
of the heat flux φ pouring out of the heat source through the legs is therefore converted
into an electrical current I, providing a power RcI

2 to the charge. Neglecting the heat
flux escaping in other ways and the energy sometimes needed to cool the heat sink, the
efficiency of the device writes

η =
RcI

2

φ
. (1.4)

It can be calculated by solving the full set of equations for the charge current density �j and
the thermal current density �jQ in the legs:

�j = −σ �∇V − σS �∇T, (1.5)

�jQ = −σST �∇V − κ0 �∇T, (1.6)

where κ0 is the thermal conductivity in the absence of electric field, i.e. in closed circuit.
The last term in equation (1.5) comes from the Seebeck effect, equation (1.2), while the first
term in the right hand side of equation (1.6) comes from the Peltier effect, equation (1.3). It
is convenient to define a thermal conductivity κ in open circuit, when no electrical current is
present, which differs from κ0 due to the Seebeck effect. Replacing �∇V from equation (1.5)
in equation (1.6) yields:

�jQ = ST �j − κ �∇T, (1.7)

with
κ = κ0 − σS2T. (1.8)

Assuming uniform conductivities and Seebeck coefficients in the thermoelectric legs, equa-
tions (1.5) and (1.7), together with the equations governing the charge conservation �∇·�j = 0

and the energy conservation �∇ ·
(
�jQ + V�j

)
= 0, can be solved [30, 31]. This yields an ex-

pression for the heat flux and for the electrical current

φ = (Kp +Kn)(Th − Tc) + (Sp − Sn)ThI − (Rp +Rn)I
2

2
, (1.9)

I =
(Sp − Sn)(Th − Tc)

Rp +Rn +Rc
, (1.10)

where Kp, Sp, Rp (resp. Kn, Sn, Rn) are the thermal conductance, Seebeck coefficient and
electrical resistance of the p-type leg (resp. n-type leg). The combinations Kp + Kn and
Rp + Rn appear because the legs are electrically in series and thermally in parallel. Also,
recall that Sp > 0 and Sn < 0. The first term in the right-hand side of equation (1.9)
is simply the usual heat diffusion that would flow from the heat source in the absence of
current. The second is associated with the Peltier effect, and the third represents half the
energy dissipated by joule heating in the legs (the other half is rejected to the heat sink).
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The thermoelectric module is electrically equivalent to a DC voltage generator of amplitude
(Sp−Sn)(Th−Tc) in series with a resistance Rp+Rn, which gives equation (1.10). Replacing
I and φ in equation (1.4) yields an expression for the device efficiency that depends on the
charge resistance Rc, which should be dimensioned with respect to the module. Optimizing
the efficiency with respect to the charge resistance gives Rc of the same order of magnitude
as Rn +Rp, and an optimal efficiency

η =
Th − Tc

Th

√
1 + ZT − 1√
1 + ZT + Tc

Th

, (1.11)

where T = Th+Tc

2 and Z = (Sp−Sn)2

(Rp+Rn)(Kp+Kn)
. If the sections of the legs are further optimized

to minimize (Rp +Rn)(Kp +Kn), ZT becomes [31, 32]

ZT =
(Sp − Sn)

2(√
κp

σp
+
√

κn

σn

)2T , (1.12)

where κp and σp (resp. κn and σn) are the thermal and electrical conductivities of the p-type
leg (resp. n-type leg). ZT is called the figure of merit of the device, and depends only on
intrinsic bulk properties of the termoelectric materials composing the legs. It was calculated
here assuming that the Seebeck coefficients and conductivities of these compounds are
uniform, but in reality they depend on the temperature, which is non-uniform. Therefore,
the relevant quantity is the temperature-average figure of merit, ZT . For given Tc and Th,
the optimal efficicency is an increasing function of ZT , and η tends to the Carnot efficiency
if ZT → ∞.

(a) From Ref. [33], illustration of a thermo-
electric device, complete with plating and
electrical connections.

(b) From Ref. [34], a commercially available
thermoelectric module.

Figure 1.5
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Actual thermoelectric devices are depicted in Fig 1.5. Many thermoelectric elements
such as in Fig 1.4 are placed thermally in parallel and electrically in series using metal
interconnects. Platings of ceramic materials such as aluminium oxide are used as substrate
and encasing. In many applications, heat exchangers are needed to efficiently bring heat
to the hot side of the device, and to evacuate heat from the cold side. In practice, most
devices are segmented, meaning that their legs are made up of several thermoelectric ma-
terials, usually two or three, placed thermally in series [31, 24]. Each material is optimized
to the temperature range corresponding to its position in the thermal gradient. This allows
for better performances, but puts constraints on the thermoelectric compatibility between
the different materials [35]. Moreover, thermal expansion imposes further mechanical con-
straints between the n-type and p-type legs [36]. It is therefore quite favorable for both
types of legs to be composed of very similar materials. Thermoelectric modules have many
advantages due to their mode of operation, which directly converts heat into electricity
without any moving part or working fluid. This makes them exceptionally robust and re-
liable, as well as highly scalable from small domestic power generation to industrial and
geothermal bottoming cycles. So far, however, their poor efficiency and high cost per watt
have confined them to niche applications such as space exploration or remote areas, where
their high reliability and small size are paramount.

Figure 1.6: From Ref. [37], the power generation efficiency of mechanical engines and
thermoelectric devices with several ZT values, as a function of the heat source temperature
for a heat sink at room temperature.

In Fig 1.6 is shown the efficiency as a function of Th for Tc = 300K and several values
of ZT [37]. Right now, commercial devices have ZT � 1, which makes them much less
efficient than mechanical heat engines, such as Stirling and Rankine [23, 38]. Unless a
truly spectacular breakthrough happens, thermoelectric modules will not replace steam-
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based cycles in large-scale power plants, but they are at an advantage when it comes
to small-scale power generation [39]. Depending on the application area, the widespread
use of thermoelectric devices would require cheaper modules and a figure of merit of at
least 2 to 4 [24, 22, 39]. Furthermore, the cost per watt is another crucial factor to be
considered, in addition to overall efficiency [40]. For comparison, the price of solar and
wind power has gone down to around 1 $/W while thermoelectric devices are at minimum
in the 50 $/W range for mid-temperature power generation (500-800 K) [37, 41, 42]. The
price of the thermoelectric materials themselves, but also of the ceramic platings and the
heat exchangers, are all important factors to determine the final cost per watt. On the
one hand, some thermoelectric compounds are more expensive than others by up to two
orders of magnitudes [41], which suggests focusing on researching cheap, earth-abundant
materials like silicon. On the other hand, device design optimization can raise efficiency
significantly if parasitic resistances are minimized [23], and can also bring down drastically
the amount of thermoelectric materials used in each module if the legs can be made thin
(so that they typically cover between 1% and 10% of the substrate) and short (typically
a few millimeters long) [43]. For this optimized geometry, the overall device cost per watt
is dominated by the price of the heat exchanger and the ceramic plating, so the ZT of
the thermoelectric legs should be maximized regardless of the materials’ cost. However,
if reducing the dimensions of the legs is impossible due to other mechanical and electrical
constraints, the thermoelectric materials’ price per kilogram C can dominate the overall
cost, and then ZT

κC should be maximized to optimize the device cost per watt [42].
From the point of view of the condensed matter physicist, the primary goal is therefore

to find or design thermoelectric materials that maximize ZT to reach at least 2 or higher.
This would represent progress both in term of device efficiency and when it comes to
device cost per watt. The secondary objective, which arises purely from economic and
environmental considerations, is to find high-ZT materials that are cheap, earth-abundant,
and non-toxic.

1.2 The search for efficient thermoelectric materials

For several decades now, the scientific community has been searching for better thermo-
electric materials. Although the figure of merit ZT is defined, strictly speaking, for a
thermoelectric module and thus a pair of thermoelectric compounds, it is much easier to
study, measure, or model the electrical and thermal properties of one material at a time.
Consequently, in order to evaluate the thermoelectric performance of a given compound, it
is useful to define the material figure of merit zT :

zT =
σS2

κ
T, (1.13)

where σ is the electrical conductivity, S is the Seebeck coefficient and κ is the thermal
conductivity of the material. The numerator, σS2, is called the power factor because it
is directly linked to the power output that can be generated in a thermoelectric device.
The objective is to find materials with zT reaching 2 or higher, on as wide a temperature
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σ (S cm−1) S (μVK−1) σS2 (μWcm−1K−2) κ (Wm−1K−2) zT

Copper 6× 105 1.5 1.4 400 10−4

Bismuth 8× 103 -80 50 8 0.2

As-doped
silicon 3× 102 -400 50 120 0.01

Intrinsic
silicon 4× 10−6 440 8× 10−7 150 10−10

Table 1.1: Room-temperature thermoelectric properties of copper [44, 45], bismuth [46, 45],
As-doped silicon [47], and intrinsic silicon [48, 45, 46].

range as possible. In order to grasp the orders of magnitudes involved, Table 1.1 summa-
rizes the room-temperature thermoelectric properties of copper (a good metal), bismuth (a
semimetal), As-doped silicon (a n-doped semiconductor), and intrinsic silicon (an intrinsic
semiconductor). Metals like copper exhibit a very good electrical conductivity but a poor
Seebeck coefficient, leading to mediocre power factors. Their thermoelectric performance
is further ruined by their high thermal conductivity. Intrinsic semiconductors such as sili-
con are equally unimpressive, because their high Seebeck coefficient is rendered useless by
their tiny electrical conductivity. Efficient thermoelectric materials are to be found in the
middle ground between these extremes, i.e. semimetals and heavily doped semiconductors.
Both bismuth and As-doped silicon, for instance, display a very good power factor around
50microW cm−1K−2. Bismuth also has quite a low thermal conductivity of 8Wm−1K−2,
giving it a figure of merit of 0.2, which is almost good.

Since the advent of thermoelectric devices in the 1960’s, the most widely used materials
for room-temperature power generation (300-500 K) have been based on bismuth telluride,
Bi2Te3, typically alloyed with antimony telluride Sb2Te3 (p-type) [51] or bismuth selenide
Bi2Se3 (n-type) [52]. For mid-temperature power generation (500-800 K), lead telluride
PbTe doped with various agents such as PbI2 (n-type) or Ag2Te (p-type) has been the
most efficient compound [53]. At high temperatures (800-1300 K), the prominent materials
have been Si-Ge alloys, either doped with boron (p-type) [54] or phosphorus (n-type) [55].
In 1993, renewed interest in thermoelectricity was sparked by Hicks and Dresselhaus when
they theorized that confining electrons in two-dimensional or one-dimensional superlattices
could greatly enhance the figure of merit [56, 57]. Since then, a huge amount of research has
been devoted to thermoelectric compounds, and much progress has been made to improve
the materials’ performances through various strategies [58, 59, 60, 61, 62]. Fig 1.7a displays
the evolution of zT over the years, and Fig 1.7b showcases the figure of merit as a function of
temperature for several state-of-the-art p-type and n-type thermoelectric materials [49, 50].
Since 1993, the performances of Bi2Te3, PbTe and Si-Ge have increased significantly, and
quite a few other compounds have joined them in the race for high zT values. We shall
now review the main strategies that are followed to enhance the figure of merit.
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(a) From Ref. [49], the evolution of thermoelectric materials through the years. The figures of
merit are values at optimal temperature for each material.

(b) From Ref. [50], the figure of merit as a function of temperature for several state-of-the-art
thermoelectric materials.

Figure 1.7
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1.2.1 Suppressing the thermal conductivity

So far, most of the gains in thermoelectric efficiency (see Fig 1.7a) have been achieved by
decreasing the thermal conductivity, i.e. the denominator in zT [63]. The termal conduc-
tivity can be written κ = κL + κe, with a lattice contribution κL from the phonons and
a charge carrier contribution κe from the electrons and holes. In doped semiconductors
and semimetals, the lattice part of κ usually dominates, so this section will focus on the
reduction of the phonon thermal conductivity. The typical shape of κL as a function of
temperature is shown in Fig 1.8a. At T = 0K, there is no phonon in the material, so κL
vanishes. As the temperature is increased, more and more phonons populate the crystal
vibration modes and are able to carry heat, giving rise to a finite thermal conductivity.
In this low-temperature regime, κL is mostly limited by scattering on defects and grain
boundaries. As T continues to rise, the resistive phonon-phonon scattering processes be-
come dominant and the thermal conductivity reaches a maximum. It then decreases as
more and more phonon-phonon scattering events take place. The precise shape of κL and
the position of the maximum strongly depend on the particular forms of the scattering
rates. The case of silicon and germanium is shown in Fig 1.8b as an illustration.

phonon-defect

scattering

phonon-phonon

scattering

(a) The typical temperature dependance of the
lattice thermal conductivity. The dominant scat-
tering processes in each regime are illustrated.

(b) From Ref. [64, 65, 66], the thermal
conductivity of silicon and germanium
as a function of temperature.

Figure 1.8

As a rule of thumbs, crystals featuring, heavy atoms, loose chemical bonds and complex
structures tend to exhibit low lattice thermal conductivities [67, 68, 33], but researchers
have been more proactive in the pursuit of high-efficiency thermoelectric materials. They
have seeked to suppress κ further by introducing defects, impurities and nanostructures in
order to scatter away phonons as efficiently as possible. Such interventions, however, should
be carried out in a way that preserves the electronic performances of the material. In this
spirit, the ideal compound would be a "phonon glass, electron crystal" in which phonons
have mean free paths as short as if they were in an amorphous material, while electrons
propagate like in a perfect crystal [32]. With this restriction in mind, let us go over some
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of the strategies used to suppress the thermal conductivity.

(a) From Ref. [69], the thermal conductivity
of Si-Ge alloys as a function of the Ge con-
tent.

Nanoparticle

Short wavelength phonon

Mid/long wavelength phonon

Atomic 
defect

Grain

boundary

Hot Electron

Cold Electron

(b) From Ref. [70], a sketch of the phonon-
impurity scattering in bulk nanostructured
materials.

Figure 1.9

Point defects. One of the first methods employed to bring down κ, doping or alloying
was used in bismuth telluride and silicon-germanium compounds to introduce mass
disorder, scattering phonons and impeding heat transport [69]. Fig 1.9a shows the
thermal conductivity of Si1−xGex as a function of x. Clearly, huge gains of one
order of magnitude in κ can be achieved in this way. Another type of point defect
is the vacancy, which can be intentionally added to lower the thermal conductivity.
For instance, Sn vacancies largely contribute to the κ reduction observed in SnTe
upon alloying with AgSbTe2 [71]. In this case, the vacancies also soften the phonon
modes, decreasing the speed of sound in the material. A drawback of introducing
point defects is that they tend to scatter long-wavelength phonons less efficiently
than short-wavelength ones [67]. Another is that they may scatter electrons as well,
which risks degrading the electronic properties.

Nanostructures. After 1993, experimentalists were spurred to design nanostructured su-
perlattices of thermoelectric materials to enhance the figure of merit. Although Hicks
and Dresselhaus’ original idea was to boost the power factor through electron confine-
ment, experimental performance gains in superlattices came mostly from a reduction
in the thermal conductivity due to the nanostructures’ interfaces [70, 67]. This fact,
together with the cost and time needed to synthesize superlattice thin films, drove
researchers to study bulk nanostructured compounds [72, 67, 70, 33, 63]. Such a
material is sketched in Fig 1.9b: the idea is to randomly introduce nanoscale grain
boundaries and large nano-inclusions so that phonons scatter off interfaces. The ad-
vantage of random nanostructures over superlattices is that they can be synthesized
through bulk processes, without the need to precisely control the atomic planes like
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in Molecular Beam Epitaxy. The advantage over alloys is that, since interfaces are ex-
tended defects, they may be able to scatter long-wavelength phonons more effectively
than point defects. Additionally, by tuning the average distance between interfaces,
it can be made shorter than the typical phonon mean free path but longer than the
electron mean free path. If this is achieved, it can be hoped that the nanostructuring
decreases the thermal conductivity without degrading the electronic properties. This
strategy was used in Bi2Te3 alloys, for instance, yielding significant improvements in
the figure of merit [51, 73, 52].

(a) From Ref. [74], crystal structure of Zintl
AZn2X2 compounds such as CaZn2Sb2.

(b) From Ref. [75], the crystal structure of
the filled skutterudite RCo4Sb12.

Figure 1.10

Zintl substructures. In the 2000’s, Zintl phases emerged as a promising concept for ther-
moelectrics [76, 74]. The idea is to have spatially separated crystal substructures with
different functionalities, e.g. one substructure conducts electrons or holes while the
other scatter phonons. A typical Zintl compound is the semiconductor CaZn2Sb2,
whose crystal structure is shown in Fig 1.10a. The Zn and Sb atoms form covalently
bound layers separated by Ca layers. The bonding between the Ca and Zn/Sb atoms
is very ionic, with the Ca acting as cations and Zn/Sb as anions. Doping the Ca layer
with less electropositive Yb introduce holes that propagate in the Zn/Sb layer. It is
thus possible to introduce defects in the Ca layer, reducing the thermal conductivity
without hindering electricial transport.

Rattler atoms. At the same time, excellent thermoelectric properties were found in crys-
tals possessing cage-like structures in their unit cell, the two most well-known being
clathrates and skutterudites [77]. Clathrates such as Ba8Ga16Si30, for instance, can
be viewed as a special case of Zintl compound in which the Ba cations are isolated
in cages of Ga and Si atoms. The large distance between Ba and the Ga/Si atoms
is typically associated with soft phonon modes, so the caged atom is called a rattler.
Such materials tend to exhibit low thermal conductivities due to this mechanism.
Skutterudites like CoSb3 and FeSb3 also have empty cage-like structures, which can
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be partially filled with guest atoms to substantially lower the thermal conductivity
(see Fig 1.10b) [50]. Introducing Sn atoms in the cages of FeSb3, for instance, creates
goldstone phonon modes, i.e. zero-energy degrees of freedom of the Sn guest, which
could result in a very low κ below 1Wm−1K−2 [78].

1.2.2 Enhancing the power factor

Another option to improve the figure of merit zT is to increase the power factor σS2, a
quantity that is mostly governed by electronic properties. Contrary to the lattice ther-
mal conductivity, the electrical conductivity and the Seebeck coefficients can be tuned by
changing the charge carrier concentration, most often via doping. In Fig 1.11a is shown the
hole concentration dependance of σ, S, σS2 and zT for a typical p-type material, assuming
that its electronic structure is not disrupted by doping. σ is more or less proportional to the
carrier density, but S decreases as more holes are added in the compound. This interplay
between the electrical conductivity and Seebeck coefficient gives rise to a maximum of the
power factor, typically at intermediate or heavy doping. As an illustration, the experimen-
tal power factors of La-doped lead telluride [79], partially filled skutterudite CoSb3 [80],
and two doped Half-Heuslers, FeNbSb [81] and ZrNiSn [82], are shown in Fig 1.11b. The
figure of merit zT has, broadly speaking, the same carrier concentration dependance as the
power factor, with a maximum slightly shifted because of variations in the total thermal
conductivity. The variations of the electrical conductivity with temperature vary wildly
from one compound to another, depending on the statistics of the carriers (degenerate or
non-degenerate) and on the scattering laws. The Seebeck coefficient tend to increase with
temperature, before reaching a maximum at the onset of bipolar conduction, i.e. when the
density of minority carriers (holes in n-type materials and vice versa) becomes comparable
to concentration of majority carriers.

Naturally, researchers have been trying to reach the optimal power factor in Fig 1.11a by
adjusting the carrier concentration through various means. Substitution doping or alloying
are the most common procedures. For exemple, replacing a Pb atoms by Na atoms in
lead telluride creates holes in the valence band, turning PbTe into a p-type material [84].
Controlling the amount of Na substitution allows for the tuning of the hole density. Another
procedure is to introduce vacancies in the crystal structure. La deficient lanthanum telluride
La3−xTe4, for instance, can be synthesized by mechanical alloying with a controlled amount
of La vacancies [85]. In stoechiometric La3Te4, La atoms are electron donors, and the Fermi
level lies in the conduction band [86]. Therefore, the presence of La vacancies leads to a
decrease in the electron density of the material, which can be adjusted in this way to
optimize the power factor.

The dopants and vacancies introduced to control the carrier concentration are also point
defects which can disrupt both thermal and electrical transport, and distort the electronic
structure of the material. Although degrading the thermal conductivity is always beneficial,
the effects on the electronic properties often result in a deterioration of the power factor.
Thus, for every thermoelectric material, scientists look for procedures that enable dopants
to act as electron or hole reservoirs. Such tuning of the charge carrier density without any
distortion of the electronic structure is called a rigid shift of the Fermi level, or a rigid band
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(a) From Ref. [83], the typical carrier con-
centration dependance of σ, S, σS2 and the
figure of merit for a rigid shift of the Fermi
level.
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(b) From Ref. [81, 79, 80, 82], the power fac-
tor as a function of the measured charge car-
rier concentration for several thermoelectric
materials.

Figure 1.11

shift. In some compounds, certain dopants naturally fulfill this condition, for instance Nb
and La in strontium titanate (see section 3.1). In others, it is necessary to be more creative.
Modulation doping (also called remote doping), for instance, consists in spatially separating
the dopant species from the charge carriers [87]. In this spirit, nanograins of Si70Ge30 alloys
were introduced as dopants in a Si95Ge5 host, yielding a significant improvement in the
power factor compared to uniform Ge doping [88].

Nevertheless, even with perfect rigid band doping, the power factor is still limited by
the optimal value in Fig 1.11a. Since the thermal conductivity has already been severly
curtailed in most state-of-the-art thermoelectric materials, researchers now expect that
further improvements of the thermoelectric performances will come from boosting the power
factor beyond this rigid band optimum. In order to achieve this, it is necessary to distort
the electronic structure in very specific ways that are beneficial to the power factor. These
strategies usually exploit the fact that in degenerate semiconductors, the Seebeck coefficient
can be approximated by the Mott formula [32, 89]:

S ≈ −π2k2BT

3e

1

σ(E)

∂σ(E)

∂E
. (1.14)

σ(E) is the electrical conductivity at the Fermi energy E, and S is basically the logarithmic
derivative of this quantity. Thus, while scaling factors in σ(E) leave S unchanged, sharp
variations of the conductivity with the Fermi level leads to high values of the Seebeck
coefficient, as theorized by Mahan and Sofo in 1996 [90]. Let us now review a few of the
strategies to boost the power factor.

Band convergence. This method is conceptually quite simple: since a scaling factor in
the conductivity has no effect on the Seebeck coefficient, the power factor is di-
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(a) From Ref. [91], a sketch of the
temperature-dependant band convergence in
PbTe.

(b) From Ref. [87], an illustration of the en-
ergy filtering mechanism.

Figure 1.12

rectly proportional to the number of valleys occupied by the charge carriers. Ac-
cordingly, classic thermoelectric materials have several equivalent conduction valleys:
6 for Bi2Te3, 4 for PbTe and 6 for SiGe [87]. The idea behind band convergence
is to bring additional valleys to the same energy as the conduction band minimum
or valence band maximum, thereby boosting the valley degeneracy [92]. This has
been achieved in PbTe by Se doping and by exploiting the temperature dependance
of the electronic structure (see Fig 1.12a), yielding a threefold boost of the power
factor [91]. Substantial gains in the power factor were also realized by alloying Mg2Si
and Mg2Sn, which have two low-lying conduction valleys with energies reversed from
one compound to the other [93]. Note that this method is valid only if intervalley
scattering negligible, otherwise the scattering may be enhanced and compensate the
increase in the number of valleys.

Energy filtering. This approach aims at boosting the Seebeck coefficient by introducing
energy barriers in the material. These barriers scatter preferentially the low-energy
electrons, while the high-energy electrons can pass through (see Fig 1.12b). This
mechanism should give rise to an strong energy dependance of σ(E), leading to a
boost of S at the cost of a decrease in σ [87, 67]. An experimental proof-of-principle
was carried out using InGaAs/InGaAlAs superlattices in which a boost of the See-
beck coefficient was observed [94]. For thermoelectric applications, it is hoped that
the boost of the Seebeck coefficient overcompensates the drop in conductivity, thus
enhancing the power factor. Such increases of the power factor due to energy fil-
tering have been claimed in many compounds, for instance in BiSbTe3 and CoSb3

nanostructures, where the grain boundaries presumably act as energy barriers for the
electrons [95, 96].
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(a) The shape of the density of states (DOS) in three, two and one dimensions.

(b) From Ref. [97], S2 times the carrier
density in a PbTe/Pb1−xEuxTe multiple-
quantum-well.

(c) From Ref. [98], a sketch of the DOS in
the presence of impurity levels and resonant
states.

Figure 1.13

Dimensional confinement. Hicks and Dresselhaus’ original idea in 1993 was that con-
fining the charge carriers in two-dimensional or one-dimensional structures should
drastically improve the power factor [56]. This can be understood by considering the
density of state (DOS) of an electron gas in three, two and one dimensions, Fig 1.13a.
Reducing the dimensionality of the system introduces sharp features and large val-
ues in the DOS, which could lead to strong energy variations of the conduction and
thus to a boost of the Seebeck coefficient [99, 100]. The first experimental test of
these ideas was carried out on PbTe/Pb1−xEuxTe multiple-quantum-well structures,
and it did yield a substantial boost of S2n, with n the carrier density (see Fig 1.13b
and [97]). Since then, several groups have investigated confinement effects in super-
lattices, including Bi2Te3/Sb2Te3 and SrTiO3/SrTi0.8Nb0.2O3 superlayers [101, 102],
even though it is not always clear if the charge carriers are truly confined in two
dimensions in such systems [70]. Either way, a boost of the power factor does not
necessarily follows from a reduction of dimensionality, because the scattering rate
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can also be affected by the change in the DOS. This may be part of the reason why
the spectacular power factor gains predicted by Hicks and Dresselhaus have been so
difficult to realize experimentally.

Resonant states. When a dopant is introduced in a material, it can create localized
impurity levels in the band gap, acting as electron donors or acceptors if the energy
separation ED with the conduction (or valence) band is not too large compared to
kBT . It is also possible, however, for the impurity levels to be located inside the
conduction band and to hybridize with the conduction states. In such a case, they are
called resonant states and give rise to sharp peaks in the DOS of the host material (see
Fig 1.13c and [98]). These steep variations of the DOS due to resonant impurities and
the possibly strong energy dependance of the electron-impurity scattering rate may
lead to a boost the power factor if the Fermi level can be positioned in the vicinity
of the resonant peak. It has been claimed, for instance, that the enhancement of
the Seebeck coefficient observed in Tl doped PbTe and Sn doped Bi2Te3 are due to
resonant states introduced by the dopants [103, 104]. However, this remains somewhat
controversial [105], and there is no clear consensus wether actual resonant boosts of
the power factor have been observed experimentally, or over the precise enhancement
mechanism.

This short review of the most prominent optimization strategies is obviously non-
exhaustive, and there are many other families of materials that hold great promise for ther-
moelectric power generation, among them organic-inorganic hybrids, germanium-tellurium,
transition metal dichalcogenides, superionic compounds... This wealth of possibilities is
both a reason for optimism and a daunting challenge, as synthesizing a significant propor-
tion of these compounds and measuring their properties would require a massive amount
of time and money. Therefore, theoretical guidance is essential to guide the search for
high-performance thermoelectric materials. As many of the techniques used to suppress
the thermal conductivity and enhance the power factor involve introducing defects in the
crystal structure, it appears crucial to developp theoretical methodologies that are capable
of describing the effects of nanoscale disorder in thermoelectric materials.

1.3 Content of the thesis

In this work, we study the thermoelectric transport properties of several compounds us-
ing a combination of ab initio calculations and real-space methodologies. In chapter 2,
we present the formalism of density functional theory, that gives access to the electronic
and vibrational structure of specific materials with no adjustable parameters, and from
which realistic tight-binding Hamiltonians and dynamical matrices can be extracted. We
then cover the basics of electron and phonon diffusive transport in the framework of the
Boltzmann transport equation, before providing a link to the Landauer formalism in order
to include ballistic effects. These methodologies, which are valid in the absence of strong
disorder effects, are applied in chapter 3 to model electron transport in oxides. The bulk
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thermoelectric properties of n-type SrTiO3 and rutile TiO2 are investigated, allowing for
a direct comparison between our theory and experimental data from the existing litera-
ture. The issue of quantum confinement in SrTiO3 superlattices is then adressed, showing
that the thermoelectric properties of these systems can be explained without assuming any
confinement of the electrons. In chapter 4, we detail a real-space formalism capable of
including strong disorder effects as well as our methodology to compute the electron and
phonon transport properties of large disordered systems. Starting with the basic defini-
tions of Green’s functions, we introduce the concepts of self-energy and spectral function,
explaining their relevance to the issue of transport and scattering. We then show how
the fully quantum conductivity can be calculated from the Kubo formalism that includes
Anderson localization. Numerical methods allowing for an exact treatment of disorder are
presented. In chapter 5, these techniques are used to study the effects of resonant states
on electronic transport in the context of thermoelectric power generation. A study on a
minimal disordered Hamiltonian is carried out to extract the general properties of resonant
impurities. We focus next on the specific case of vanadium doping in SrTiO3, first through
a fully ab initio investigation and then by combining density functional theory calculations
with real-space methods to fully include disorder and localization effects. Finally, chapter 6
is devoted to disordered two-dimensional materials. The influence of doping on electronic
transport in single-layer transition-metal dichalcogenides is investigated through ab initio
calculations. We then study phonon transport in graphene when randomly distributed
monovacancies are present in the compound, using a realistic modelling of the vibrational
properties obtained from density functional theory calculations. Our predictions for the
thermal conductivity are compared with experimental data from the existing literature on
suspended graphene.
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Chapter 2

Modelling thermoelectric transport
from first-principles

Freedom is the freedom to say that two plus two
make four. If that is granted, all else follows.

George Orwell, 1984.

In this chapter will be covered the methodology used to model electron and phonon
transport in thermoelectric materials when the deviations from crystalline order can be con-
sidered weak and perturbative. The presence of strong, non-perturbative disorder requires
more sophisticated theoretical approaches such as Green’s functions techniques, which will
be presented in chapter 4.

In the context of thermoelectric power generation, the cause of transport is a temper-
ature gradient between a heat source and a heat sink, which is not supposed to change
very fast and exhibits strong thermal inertia in any case. Thus, a first restriction in our
study of thermoelectricity is that we will be interested only in the static, zero-frequency
values of the electrical conductivity, Seebeck coefficient and thermal conductivity, and we
will consider only steady-state regimes.

A second and perhaps less obvious restriction is that we will make the approximation
of near-equilibrium transport. Strong-field transport can be described by the Boltzmann
transport equation [106, 107] and by fully quantum frameworks such as the Non-Equilibrium
Green’s Function (NEGF) formalism [108]. However, near-equilibrium thermoelectric trans-
port in disordered materials is not only capable of estimating the performance of different
materials through the figure of merit zT , but it also encompasses a wealth of subtle and in-
teresting phenomena, such as those presented in section 1.2. Consequently, for our purposes
there is no need to go far from equilibrium.

A first stepping-stone towards the study of near-equilibrium transport is the description
of equilibrium itself. To evaluate the electrical conductivity and Seebeck coefficient of a
given material, we have to compute its electronic band structure first. Likewise, in order
to calculate its lattice thermal conductivity, we first need the phonon dispersion. The next
section is devoted to the methodology by which we obtain such quantities.
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2.1 Electron and phonon structure of solids

In principle, the Hamiltonian for the many-body wavefunction of the electrons and nuclei
composing a cristalline solid is known. It can be written as

Ĥ =− �
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where i and j run over the electrons, I and J over the nuclei, ZI and MI are the charge
and mass of the I nuclei respectively. The first term in equation (2.1) is the kinetic energy
of the electrons, the second is the Coulomb electron-nuclei interaction, the third is the
Coulomb repulsion between electrons, the fourth is the kinetic energy of the nuclei, and the
last term is the Coulomb repulsion between the nuclei. Athough it may appear relatively
simple written in this form, solving this many-body Hamiltonian represents a formidable
task even for very small systems.

A first approximation that is usually made to make the problem more tractable is the so-
called Born-Oppenheimer approximation. Since the nuclei masses are much larger than the
electron masses (typically by four orders of magnitude), the former can be expected to move
much slower than the latter. Thus, the electrons can be assumed to follow adiabatically
the movement of the nuclei. The full problem can then be tackled following a two-step
procedure:

• First, consider the nuclei at rest and their positions as parameters for the electron
Hamiltonian. Find the ground-state and the energy of the electrons as functions of
these parameters.

• Second, study the movement of the nuclei in the energy surface obtained at step one.

The Born-Oppenheimer approximation breaks down when the coupling between electron
and nuclei is essential in describing the phenomenon of interest. For instance, particu-
larly strong electron-phonon coupling in certain polar materials may drastically alter the
nature of the electronic states. The electrons in these compounds, dressed by the sur-
rounding lattice deformation, are then called polarons [109, 110]. A less spectacular but
far more ubiquitous consequence of electron-phonon interactions is the scattering of con-
duction electrons or valence holes, which represents the largest source of electrical resis-
tance in most semiconductors and metals. Nevertheless, in condensed matter physics the
Born-Oppenheimer approximation is always used as a starting point, even if the effects of
electron-phonon coupling are to be reintroduced subsequently through perturbation theory
or other techniques.

Even with the great simplifications brought by considering the nuclei as fixed and their
position as mere parameters, directly solving the many-body electron Hamiltonian (2.1)
is an impossible task for systems of even small size. The fundamental issue is that the
many-body wavefunction for N electrons depends on 3N coordinates (ignoring the spin).
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If we were to discretize the space using p points for every direction, the wavefunction
would be represented by p3N coefficients. If we had, say, N = 10 electrons and p = 10
discretization steps, that would be 1030 numbers or ≈ 1031 bytes of storage. This is far
beyond the capabilities of modern computers, which can handle no more than 1012 bytes
if they have a terabyte of RAM. Thus, a numerical method to solve the quantum problem
of electrons in a crystal must necessarily avoid dealing with the many-body wavefunction,
and must involve auxiliary quantities. In most first-principles simulations, this quantity is
the electron density.

2.1.1 Density functional theory

Density Functional Theory (DFT) has sometimes been described as the standard model of
condensed matter [111]. In its narrowest sense, DFT is an exact mathematial reformulation
of the many-electron problem in terms of the electron density n(�r), bypassing the cumber-
some many-body wavefunction. But in the last decades, it has come to designate a set of
numerical first-principles techniques, procedures and tools that stem from this formalism
of quantum chemistry and condensed matter. Today, the DFT methodology is widely used
to provide the basis for studying the properties of most materials, including thermoelectric
compounds. In this work, we use two software packages: the Spanish Initiative for Elec-
tronic Simulations with Thousands of Atoms (SIESTA) using mainly local orbitals [112],
and the Quantum opEn-Source Package for Research in Electronic Structure, Simulation,
and Optimization (Quantum ESPRESSO), based on plane-wave states [113]. We shall now
briefly review the basics of DFT and its numerical implementation. Many important sub-
tleties and precisions will be omitted, so the reader is referred to more complete textbooks
on the topic, such as [114, 115].

Density Functional Theory in principle

The very basis of DFT lies in the famous Hohenberg-Kohn theorems, published in 1964
[116], which apply to any system of interacting electrons under the influence of an arbitrary
external potential Vext(�r). The first Hohenberg-Kohn theorem states that Vext(�r) is uniquely
determined (up to a constant) by the ground-state electron density nGS(�r), i.e. no two
different potentials can give the same density. It follows that all the properties of the
system (including, for instance, the excitation energies, the response functions, etc...) are
in principle determined by the ground-state density nGS(�r), which can thus be viewed
as the fundamental variable for the description of the system. The second Hohenberg-
Kohn theorem states that there is a universal energy functional of the density E[n], whose
minimization with respect to n(�r) gives the ground-state energy EGS and the ground-state
density nGS(�r). More precisely, the energy functional can be written [117, 118]

E[n] = F [n] +

∫
d3�r Vext(�r)n(�r) + Enuc (2.2)

where
∫
d3�r Vext(�r)n(�r) is the Coulomb potential energy of the electrons in the presence of

the nuclei (second term in equation (2.1)), Enuc is the interaction energy between the nuclei
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(last term in equation (2.1)), the kinetic energy of the nuclei has been neglected following
the Born-Oppenheimer approximation, and

F [n] = min
Ψ→n(�r)

〈
Ψ
∣∣∣ T̂ + V̂int

∣∣∣Ψ〉 (2.3)

stands for the kinetic and interaction energies of the electrons (first and third term in equa-
tion (2.1)), minimized with respect to the many-body wavefunctions |Ψ〉 with an electron
density n(�r). The functional F [n] does not depend on the external potential Vext(�r), hence
the term "universal". The proofs of the Hohenberg-Kohn theorems are quite simple, and
can be found in any textbook on DFT such as [114].

Elegant as it is, this formalism does not provide an operational procedure to find the
ground-state density, other than minimization of the functional defined by equations (2.2)
and (2.3), which again involve the full many-body wavefunction. The immense practical
utility of DFT comes from the so-called Kohn-Sham ansatz [119], which assumes that
the ground-state density of the real, interacting electron system is also the ground-state
density of an auxiliary system of non-interacting particles obtained by minimizing the
energy functional

EKS [n] = T0[n] +
1

2

∫
d3�r

∫
d3�r′

e2n(�r′)n(�r)
4πε0|�r − �r′| +

∫
d3�r Vext(�r)n(�r) + Exc[n] + Enuc. (2.4)

Note that this assumption has never been proven in general, although it is considered
reasonable and is widely accepted. The first three terms of equation (2.4) are the Hartree
ansatz, where the electron-electron interaction appears as the mean-field classical Coulomb
energy (the second term). The exchange energy and the effects of electronic correlation
have been put together in a term called the exchange-correlation energy, Exc. T0[n] is the
kinetic energy minimized with respect to the non-interacting wavefunction of the auxiliary
system with density n(�r). Imposing EKS [n] = E[n] yields

Exc[n] = F [n]− T0[n]− 1

2

∫
d3�r

∫
d3�r′

e2n(�r′)n(�r)
4πε0|�r − �r′| , (2.5)

which can be viewed as a definition for the exchange-correlation functional Exc[n]. From
equation (2.5), it is manifest that Exc[n] is universal, in the sense that it does not depend
on the external potential Vext. Thus, it can in principle be determined once and for all,
and if it is known exactly then the minimization of EKS [n] for the auxiliary non-interacting
system should give the exact ground-state density and energy of the real interacting system.
From there, all the properties of the real system can in principle be determined, as stated
by the first Hohenberg-Kohn theorem.

Since the N particles in the auxiliary system are non-interacting, its many-body wave-
function must be a single slater determinant of N single-particle wavefunctions ψi(�r). The
minimization of the functional EKS [n] with respect to each ψi(�r) under the constraint that
the wavefunction should be normalized yields a set of Schrödinger-like equations(

− �
2

2me
∇2 +

∫
d3�r′

e2n(�r′)
4πε0|�r − �r′| +

δExc

δn(�r)

)
ψμ(�r) = εμψμ(�r) (2.6)
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with εμ the Lagrange multipliers ensuring the normalization constraint. Equations (2.6)
are called the Kohn-Sham equations, and solving them is the main computational workload
of DFT packages such as SIESTA and Quantum ESPRESSO. When it is important to take
spin polarization into account, there are two sets of Kohn-Sham equations, one for each spin.
The operator on the left-hand side acting on ψμ(�r) is called the Kohn-Sham Hamiltonian
ĤKS , and depends explicitely on the density n(�r). This makes the Kohn-Sham equations
self-consistent. The procedure to solve them, called a self-consistent field cycle (SCF cycle),
is illustrated in Fig 2.1a. An initial guess is made for n(�r), which defines the initial Kohn-
Sham Hamiltonian. This Hamiltonian is then diagonalized, giving a set of single particle
eigenstates ψμ(�r) and eigenenergies εμ. The N lowest eingenstates are filled (sometimes
a non-integer filling factor is used, such as a Fermi-Dirac distribution) according to the
aufbau principle, and the corresponding new density is calculated by

n(�r) =

N∑
μ=1

|ψμ(�r)|2 . (2.7)

This new density is used to define a new Kohn-Sham Hamiltonian, which is then solved in
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turn, giving yet new eigenstates and a new density, and so on and so forth until convergence
is reached. The criterion for self-consistency varies from one implementation to another.
In SIESTA, for instance, the elements of the electron density matrix are compared between
two successive steps, while in Quantum ESPRESSO it is the total energy of the system.

In principle, this procedure yields the exact ground-state density and energy for given
positions of the nuclei. In a similar way, the crystal structure can be relaxed to predict the
lattice constant, for instance, by minimizing the total energy with respect to the positions
of the nuclei, see Fig 2.1b. A first SCF cycle is performed with an initial guess of the cristal
geometry. Once it is done, the forces are computed using the Hellmann-Feynman theorem
[120]:

�FI = −∂EKS

∂ �RI

= −
〈
∂ĤKS

∂ �RI

〉
= −

∫
d3�r n(�r)

∂Vext(�r)

∂ �RI

− ∂Enuc

∂ �RI

. (2.8)

The pressure is calculated in a similar way. The nuclei are then moved a short distance
(typically a tenth of an angström) in the direction of the force acting on them. A new
SCF cycle is performed, yielding new forces. The nuclei are moved again, and so on until
the forces and the pressure are judged sufficiently small. Typically, the optimization is
stopped when the atomic forces are below Fmax = 10−2 eV/Å and the pressure below
Pmax = 0.1 kbar. When the end goal is to compute phonon dispersions, the requirements
have to be much more stringent, typically Fmax = 10−5 eV/Å and Pmax = 1bar.

Density Functional Theory in practice

Although the DFT methodology described in the previous section should lead to an exact
description of the interacting electron system, there are in practice several fundamental
approximations that must be made beyond the numerical and convergence errors.

The first of these is related to the exchange-correlation functional (equation (2.5)). The
entire method hinges on the availability of an expression for Exc[n] that is both practical
and accurate enough. Since no formula for the exact functional has been discovered yet, a
number of approximations have been made, most of them involving local functions of the
density. The oldest is the Local Density Approximation (LDA), which can be written

ELDA
xc [n] =

∫
d3�r n(�r)εhom

xc (n(�r)) (2.9)

with εhom
xc (n) the sum of the exchange energy density and the correlation energy density for

the homogeneous electron gas of uniform density n. The exchange energy density is known
analytically, while the (much smaller) correlation energy has been evaluated by Monte
Carlo simulations. The LDA approximation is expected to work fairly well on systems
exhibiting small spatial variations of the electron density, but it has yielded remarkably
accurate results in a number of cases where it could have been expected to fail, such as
atomic systems. Another, slightly more refined approximation is the Generalized Gradient
Approximation (GGA). The basic idea is to make the local exchange-correlation energy
dependant on the gradient of the density in addition to the density itself:

EGGA
xc [n] =

∫
d3�r n(�r)εxc(n(�r, |∇n|)). (2.10)
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Several flavours exist for the precise form of the expansion, the most common being the
Becke (B88) [121], the Perdew and Wang (PW91) [122], and the Perdew, Burke and Enz-
erhof (PBE) [123] functionals. The GGA exchange-correlation functionals yield robust im-
provements over the LDA, and they are the most widely used in condensed matter physics.
For all their successes, however, the GGA and LDA functionals have serious limitations
that should be kept in mind. They rely on an analogy with the uniform electron gas, which
makes them unable to capture the physics of strongly correlated systems where a central
role is played by the interplay of exchange-correlation with strong spatial variations of the
electron density. The forms (2.9) and (2.10) are local while the analytical exchange energy
from the Hartree-Fock approximation is known to be non-local. Most notoriously, the LDA
and GGA functionals reliably and significantly underestimate the electronic band gap of
insulators and semiconductors. To overcome these difficulties, several improvements can
be made to the approximation for exchange and correlation. One possibility is to add on
certain localized orbitals a hubbard term of the form

EU = Un̂i,↑n̂i,↓, (2.11)

where n̂i,↑ (n̂i,↓) is the occupation operator for the spin up state (resp. spin down state) of
the i orbital, to model the strong effects of exchange and correlation. In such "LDA+U"
approaches, the Hubbard energy U can be fitted to experimental data or obtained from
other first-principles calculations [124]. Another possible improvement to LDA and GGA
is to introduce a measure of orbital-dependant Hartree-Fock exchange in the functional,
thereby making it partly non-local. This is called a "hybrid functional". The drawbacks
are, first, that the proportion of non-local exchange has to be chosen somewhat arbitrarily,
and second, that the computational cost is much greater than with local functionals.

As second approximation layer consists in using so-called pseudopotentials to avoid
dealing with atomic core electrons. In condensed matter, core electrons are usually tightly
bound to their atoms and chemically inert, so they play no role in chemical bonding or
electrical transport beyond a screening of the nuclei charge. Additionally, the orthogo-
nality condition between core and valence atomic states of the same angular momentum
give rise to sharp variations in the valence wavefunctions near the core, which would ne-
cessitate fine grids or large number of planewaves to describe. For these reasons, core
electrons are usually not taken into account explicitely, instead they are replaced by effec-
tive atomic potentials called pseudopotentials. These are typically generated from ab initio
calculations on isolated atoms, with several possible flavours corresponding to different re-
quirements on the potentials. Typically, a reference atomic configuration is chosen (often it
is the neutral atom), and the pseudopotentials are generated so that the valence eigenval-
ues and the valence wavefunctions beyond a certain cutoff radius are exactly reproduced.
The so-called "norm-conserving" pseudopotentials, for instance, additionally impose that
the charge density integrated from the nucleus to the cutoff radius be correct. Generally
speaking, the softness of the pseudopotentials (eliminating strong spatial variations) should
be balanced with their transferability (keeping their descriptive power in various chemical
environnements).

A third source of approximation comes from the choice of basis for the electron states.
Most DFT software packages solve the Kohn-Sham equations (2.6) by decomposing the
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eigenstates on a basis of functions φi:

ψμ(�r) =
∑
i

ciμφi(�r). (2.12)

Thus, diagonalizing the Kohn-Sham equation amounts to solving the generalized eigenvalue
problem ∑

i

(
HKS

ji − εμSji

)
ciμ = 0 (2.13)

in which HKS
ji = 〈φj |ĤKS |φi〉 is the Kohn-Sham Hamiltonian matrix and Sji = 〈φj |φi〉 is

the overlap matrix. This is done using optimized algebra routine contained in specialized
libraries such as Basic Linear Algebra Subprograms (BLAS) and Linear Algebra PACKage
(LAPACK). In principles, this procedure is exact if a complete basis of the Hilbert space
is used. However, that would require an infinite number of basis functions, and a lim-
ited number of them have to be selected for an approximate expansion of the eigenstates.
The most well-known software packages, such as the Vienna Ab initio Simulation Package
(VASP) [125] and Quantum ESPRESSO, use plane-waves for the basis φi(�r). An energy
cutoff is chosen to determine the size of the basis, excluding the plane waves corresponding
to free electrons of energy greater than the cutoff. A typical value for the cutoff is 50Ry.
One advantage of this choice is the simplicity in systematically improving the quality of
the basis expansion: just choose a higher cutoff. Another benefit is that all the quantities
are expressed in the reciprocal space, in which the expressions for the matrix elements
HKS

ji have simple forms and the density and potentials can be efficiently computed by
Fast Fourier Transform algorithms. The drawback is that convergence usually demands a
large number of plane waves, and is particularly demanding for describing tightly bound
states such as 3d orbitals. A second class of software packages, such as SIESTA, use local-
ized atomic-like orbitals as basis. SIESTA, for instance, typically uses the solutions of the
Kohn-Sham equations for isolated atoms in the presence of a confinement potential. The
basis orbitals are taken from the eingenstates of this problem corresponding to the valence
electrons, and more orbitals can be added by generating other radial ("multiple-ζ") and
angular ("polarization") shapes. The advantage of using such localized orbitals is that the
basis size is typically small, leading to modest calculation times. The drawback is that
there is no systematic way of improving the basis, although there are tools to optimize it
(Simplex for SIESTA). In SIESTA, the matrix elements HKS

ji corresponding to the kinetic
energy are calculated in reciprocal space, while the potential terms that involve the electron
density are calculated in real space using a discretized grid. Also worth mentioning is a
third methodology, the so-called atomic sphere method that use localized functions near the
nuclei but planewaves far from them. This is very accurate but more difficult to implement
and very expensive in calculation time.

DFT calculations on solids exploit the periodicity of the crystal by using the Bloch
theorem, which shows that the Hamiltonian is block-diagonal with blocks indexed by the
crystal momentum �k taken in the first Brillouin zone. An eigenstate with momentum �k

display a phase shift ei
�k �R in a translation �R from one unit cell to another:

ψ
n,�k

(�r + �R) = ei
�k �Rψ

n,�k
(�r) (2.14)
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Figure 2.2: A sketch of the block-diagonal Kohn-Sham Hamiltonian.

where n is the band index distinguishing between different eigenstates of the same block
�k. A finite, periodic system composed of Nc unit cells has Nc possibles values of �k in
the Brillouin zone. For an infinite system, the sum over �k becomes an integral. Here, an
approximation has to be made again by sampling the Brillouin zone with a given number
Nk of momentum values. Usually, a few hundred �k values are enough to perform the SCF
cycle. The number of bands Nb is the number of reciprocal lattice vectors (for planewaves)
or orbitals in the unit cell (for localized orbitals) included in the basis. The great advantage
of using the Bloch theorem is that instead of having to diagonalize the (NkNb) × (NkNb)
Kohn-Sham Hamiltonian, which scales as ∼ N3

kN
3
b in computation time, we just have to

diagonalize Nk Nb × Nb blocks, which scales as ∼ NkN
3
b (see Fig 2.2). This N3

b scaling
highlights the computational time gained by using a small basis set.

The implementation of DFT methodology described in this section allows to find the
ground-state electron density and the optimized structure of cristals with unit cells com-
prising up to several hundred atoms in a reasonable computation time (a few days or even
hours). Once this has been achieved, there still remains the issue of finding the excitation
spectrum to obtain the band structure, the density of states and other properties such
as the electrical conductivity. Here, an approximation is made that has nothing to do
with computational limitations. In principle, the first Hohenberg-Kohn theorem ensures
that the excitation spectrum can be derived from the knowledge of the ground-state elec-
tron density. In practice, this requires further many-body calculations, or an extension of
the Kohn-Sham approach that includes time-dependance in order to compute the dynam-
ical response functions, a theory known as Time-Dependant Density Functional Theory
(TDDFT). In materials science, a simpler method is usually followed: the single-particle
excitation energies of the system are taken directly from the eigenvalues of the Kohn-Sham
Hamiltonian (2.6) calculated with the correct electron density. When this is done, the
Kohn-Sham system is no longer considered as a mere mathematical device, but as a mean-
field representation of the real electron system. Standard mean-field approaches map a
many-body problem onto a single-particle one by neglecting the correlations in the inter-
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action terms of the Hamiltonian. For instance, in a mean-field theory of the Hubbard
Hamiltonian, the Hubbard term (2.11) might be rewritten

EU = U (ni,↑ + (n̂i,↑ − ni,↑)) (ni,↓ + (n̂i,↓ − ni,↓)) ≈ U (ni,↑n̂i,↓ + ni,↓n̂i,↑ − ni,↑ni,↓) ,
(2.15)

where ni,↑ (resp. ni,↓) is the ground-state expectation value of the occupation operator
n̂i,↑ (resp. n̂i,↓), and the product (n̂i,↑ − ni,↑) (n̂i,↓ − ni,↓) has been neglected. The Hamil-
tonian, which now depends on the self-consistent parameters ni,↑ and ni,↓, can then be
diagonalized. In such mean-field approaches, the correlations are lost and the electrons are
taken to interact wih the average field created by the other electrons. In DFT, the Kohn-
Sham procedure does the same thing, except that the correlations effects are reintroduced
approximately through the exchange-correlation term Exc[n], which is also self-consistent.

2.1.2 From DFT to tight-binding: Wannier orbitals

Even though the electronic band structure, density of states (DOS) and transport proper-
ties (electrical conductivity, Seebeck coefficient) can be computed directly from the Bloch
eingenstates |ψ

n,�k
〉 and eingenvalues ε

n,�k
of the Kohn-Sham Hamiltonian, in certain cases

it is more convenient to choose a different representation based on localized orbitals. This
is especially necessary when one wishes to study defects and disorder from first principles,
beyond the Boltzmann transport framework (see section 2.2.1). The formalism of Wannier
functions, which dates back to the 1930’s [126] but has been modernized in 1997 by Marzari
and Vanderbilt [127] and subsequently implemented in efficient post-processing softwares
[128], appears particularly suited to our needs. The idea behind Wannier functions is to
perform linear combinations of Bloch eigenstates to construct an orthonormal basis of lo-
calized orbitals. To be more precise, consider a crystal composed of Nc unit cells (periodic
boundary conditions are assumed) and suppose we are interested in a set of Nb isolated
bands described by Bloch eigenstates |ψ

n,�k
〉, with n ranging from 1 to Nb. Given a vec-

tor �R from the Bravais lattice of the crystal, it is straightforward to show that the linear
combinations

|�R, i〉 = 1√
Nc

∑
�k

e−i�k·�R
Nb∑
n=1

U
�k
ni |ψn,�k

〉 (2.16)

define an orthonormal set of states if the Nb ×Nb matrices U�k are unitary. Such states are
called Wannier functions, and the U

�k can be chosen such that the wavefunction 〈�r|�R, i〉
decreases exponentially as �r moves away from the unit cell �R, making |�R, i〉 localized on
this unit cell. Marzari and Vanderbilt devised an algorithm to find the U

�k that minimize
the spread of the Wannier orbitals, resulting in so-called Maximally Localized Wannier
Functions (MLWF). However, it is often sufficient to project the Bloch eigenstates over
wisely chosen atomic orbitals [129]. Consider for instance the case of rutile TiO2, the most
stable form of titanium oxide at high temperatures, which has 2 Ti atoms and 4 O atoms
in its unit cell. The conduction band of this material is composed of 10 bands, primarily
made up of the Ti 3d orbitals. On can project the conduction Bloch states onto the 3d
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Figure 2.3: The Wannier orbitals associated with the conduction band of rutile TiO2.

atomic orbitals |χi〉 of the Ti atoms in the �R = �0 unit cell:

|φ̃
i,�k
〉 =

Nb=10∑
n=1

|ψ
n,�k

〉 〈ψ
n,�k

|χi〉 (2.17)

where the Bloch-like states |φ̃
i,�k
〉 are not orthonormal. They can be orthonormalized using

the overlap matrix
(
S�k

)
ji
= 〈φ̃

j,�k
|φ̃

i,�k
〉:

|φ
i,�k
〉 =

Nb∑
j=1

|φ̃
j,�k
〉
(
S
−1/2
�k

)
ji

(2.18)

and the Wannier orbitals are then calculated by

|�R, i〉 = 1√
Nc

∑
�k

e−i�k·�R |φ
i,�k
〉 . (2.19)

This procedure is a particular case of the definition (2.16) with a physically motivated
choice of the matrix U

�k, and it often yields Wannier orbitals as localized as the full MLWF
algorithm would. The resulting orbitals from the central Ti atom of the unit cell in rutile
TiO2 (shown in Fig 2.3) can be classified as t2g-like and eg-like, and display a strong
resemblance with the atomic 3d orbitals that make up the conduction band and were used
for the projection.

Since the Wannier orbitals are localized on particular atoms of the crystal and more or
less correspond to atomic orbitals, the Hamiltonian matrix elements 〈�R′, j|Ĥ|�R, i〉 = t

�R′ �R
ji of

the Kohn-Sham Hamiltonian can be interpreted as electron hopping terms between orbitals,
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in the spirit of the Linear Combination of Atomic Orbitals (LCAO) and Tight-Binding
(TB) methodologies. In the case of the diagonal terms, they can be interpreted as on-site
potentials. Thus, the Wannier projection leads to a first-principles TB Hamiltonian, which
can be cast in the formalism of second quantification:

Ĥ =
∑

j,i, �R′, �R

t
�R′ �R
ji c†

j, �R′ci, �R

where c†
i, �R

is the electron creation operator on the Wannier orbital i of the unit cell �R.
Since the Wannier basis is orthonormalized, the annihilation and creation operators satisfy
the fermion anticommutation relation

{c
i, �R

, c†
j, �R′} = δijδ�R�R′ {c

i, �R
, c

j, �R′} = 0 {c†
i, �R

, c†
j, �R′} = 0. (2.20)

In the case of a pristine crystal with periodic boundary conditions, the Bloch decomposition
can be recovered by performing a Fourier transform of the operators:

c†
i,�k

=
1√
Nc

∑
�R

ei
�k·(�R+�ri)c†

i, �R
c†
i, �R

=
1√
Nc

∑
�k

e−i�k·(�R+�ri)c†
i,�k

(2.21)

where �ri is the position of the orbital �i with respect to the unit cell position �R. Since
the hopping terms between the unit cells �R and �R′ depend only on the relative position
Δ�R = �R′ − �R, i.e. t

�R′ �R
ji = tΔ

�R
ji , the Fourier transform of the Hamiltonian writes

Ĥ =
∑
�k

∑
i,j

⎛⎝∑
Δ�R

tΔ
�R

ji e−i�k·(Δ�R+�rj−�ri)

⎞⎠ c†
j,�k
c
i,�k

= Ĥ =
∑
�k

∑
i,j

H
�k
ji c

†
j,�k
c
i,�k
. (2.22)

Diagonalizing the Nc Nb×Nb matrices H�k
ji yields the eigenvalues ε

n,�k
and the Bloch eigen-

operators c†
n,�k

, where n is the band index. Thus, the band structure, density of states and
other electronic properties can be efficiently calculated from the tight-binding Hamiltonian.

One could wonder if the machinery of Wannier functions is really necessary given that
some DFT softwares already generate localized orbitals as a basis. Why not use directly
the atomic-like orbitals provided by SIESTA, for instance? The first reason is that Wan-
nier orbitals are orthonormal, which makes the diagonalization of the Hamiltonian much
simpler and is essential for defining the creation and annihilation operators, the trace of
observables, etc... The second reason is that, when studying transport properties, we are
usually only interested in a few bands, either the conduction bands or the valence bands.
The Wannier projections result in a minimal localized basis describing these bands. For
instance, the conduction band of rutile TiO2 is described by only 10 orbitals in the Wannier
representation (see Fig 2.3). These orbitals look very much like the 3d orbitals of the Ti
atoms, but notice that there is significant weight on the 2p orbitals of the neighbouring
oxygens. If we had used the atomic orbital basis generated by SIESTA, we should have
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Figure 2.4: Our methodology to model electronic properties in thermoelectric materials.

included not only the 3d orbitals of the Ti atoms, but also the 2p orbitals of the oxygens,
resulting in a much larger basis.

Thus, our methodology to study the electronic properties of a given material can be de-
scribed in the following way, illustrated in Fig 2.4. First we perform DFT calculations using
software packages, such as SIESTA or Quantum Espresso, to find the electronic structure of
the pristine crystal. In particular, this yields the Bloch eingenstates and eigenvalues of the
Kohn-Sham Hamiltonian. Second, we perform Wannier projections to extract a realistic
tight-binding Hamiltonian expressed on a localized, orthonormal basis of Wannier orbitals.
Once in possession of this tight-binding Hamiltonian, many possibilities offer themselves.
We can compute the electronic transport properties (electrical conductivity and Seebeck
coefficient) in the framework of the Boltzmann Transport Equation (see section 2.2.1). We
can compute the electronic properties in real space in the presence of defects and disorder
(see chapter 4), which can be modeled by studying the hopping terms obtained from DFT
calculations on a supercell including a defect. We can investigate the effects of nanostruc-
turing and dimensional confinement by reducing the size of the system, or carrying out
additional ab initio calculations. We can even study electronic correlations by adding a
Hubbard term, for instance. Occasionally, it is useful to solve a toy model for understand-
ing the general properties of certain phenomena. In that case, it is possible to start with
a simple tight-binding Hamiltonian, without any DFT calculations and Wannier projec-
tions which would involve specific materials. Such a model study of resonant states will be
presented in section 5.1.

2.1.3 Vibrations in solids: Dynamical matrix

We are now interested in computing the phonon dispersion of the material of interest,
i.e. the collective vibration modes whose quantization gives rise to phonons. The crystal
structure relaxation described in Fig 2.1b yields the equilibrium geometry of the unit cell.
In this configuration, the forces on the ions (the nuclei dressed by the pseudopotentials)
vanish by definition. It is possible, however, to compute the energy and the forces for other
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positions of the ions, keeping them fixed during the SCF cycle to compute the electronic
ground-state. In the spirit of the Born-Oppenheimer approximation, this defines a potential
energy surface Ep

(
{�Ri}

)
, where �Ri is the position of the ion i. Writing �Ri = �R0

i + �ui,

with �R0
i the equilibrium position of the ion i, we can expand the Ep around the equilibrium

configuration in powers of the displacements �ui

Ep

(
{�Ri}

)
= Ep

(
{�R0

i }
)
+
∑
i,α

∂Ep

∂uαi

∣∣∣∣
0

uαi +
1

2

∑
i,j,α,β

∂2Ep

∂uαi ∂u
β
j

∣∣∣∣
0

uαi u
β
j +O(u3), (2.23)

where α and β are indices for the directions x, y and z. On the right-hand side of equa-
tion (2.23), the first term is a constant that can safely be ignored. The second term involve
the quantities ∂Ep

∂uα
i

which are the forces on the ions at the equilibrium configuration, there-

fore this term vanishes. The second derivatives ∂2Ep

∂uα
i ∂u

β
j

are called the Interatomic Force

Constants (IFC) and are usually noted φαβ
ij . They can be interpreted classically as spring

constants between the ions and they determine the phonon spectrum. Third-order and
higher-order terms, which are neglected in this expansion known as the harmonic approx-
imation, are responsible for the interactions between phonons. When they are taken into
account, it is typically in the form of perturbative collision terms. When the ions are
displaced, the force of the ion i writes, in the harmonic approximation:

Fα
i = −∂Ep

∂uαi
= −

∑
j,β

φαβ
ij uβj . (2.24)

This expression allows us to find the IFC through DFT calculations. They are performed on
a supercell which contains several unit cells of the material. Each atom of the central unit
cell is in turn displaced by a small distance (typically a few percents of angströms) in every
direction. A SCF cycle is performed in this configuration and the forces on all the atoms of
the supercell are recorded. They are divided by the magnitude of the displacement, yielding
the IFC. This procedure is illustrated in Fig 2.5. The supercell should be large enough so
that the IFC between atoms at the center and at the border of the supercell are negligible.
Typically, supercells of 5× 5× 5 unit cells are sufficient, sometimes 3× 3× 3 unit cells are
enough. Post-processing softwares such as Phonopy [130] can exploit the symmetries of the
lattice to reduce the number of calculations. In addition, these programs usually enforce
the symmetry constraint φαβ

ij = φβα
ji and the translation sum rule

∑
jβ

φαβ
ij = 0, (2.25)

which ensures that a rigid translation of the system does not create atomic forces, i.e. the
acoustic branches have zero frequency at the Γ point. There is also a sum rule ensuring
that no force is created by a rigid rotation of the system [131], but this constraint is rarely
enforced.
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Unit cell

Supercell

Figure 2.5: A sketch of the system used in IFC calculations. The yellow square is the unit
cell, in which the blue atom is moved. The white square is a 5 × 5 supercell, in which
the atomic forces are computed. The periodic images of the system are represented in the
shaded regions.

Once the IFC have been obtained, the phonon spectrum can be computed. The Hamil-
tonian for the Na ions in the crystal is the sum of their kinetic and potential energy:

Ĥ =
∑
i,α

(p̂αi )
2

2mi
+

1

2

∑
i,j,α,β

φαβ
ij ûαi û

β
j (2.26)

where mi is the mass of the ion i and p̂αi and ûαi are the impulsion and position operators
of the ion i on the α direction. They are hermitian and satisfy the commutation relations[

ûαi , p̂
β
j

]
= i�δαβδij

[
ûαi , û

β
j

]
= 0

[
p̂αi , p̂

β
j

]
= 0. (2.27)

Defining the reduced impulsion and position operators P̂α
i = p̂αi /

√
mi and Ûα

i =
√
mi û

α
i ,

which satisfy the same commutation relations, the Hamiltonian writes

Ĥ =
1

2

∑
i,α

(
P̂α
i

)2
+

1

2

∑
i,j,α,β

φαβ
ij√

mimj
Ûα
i Û

β
j . (2.28)

The 3Na × 3Na matrix Dαβ
ij = φαβ

ij /
√
mimj is called the Dynamical Matrix (DM), and is

the key quantity to be diagonalized in order to compute the phonon dispersion. Since it is
a real symmetric matrix, it can be diagonalized using a real ortogonal matrix A:

Dαβ
ij =

∑
μ

Aα
i μλμA

β
j μ (2.29)
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where μ is an index between 1 and 3Na for the eigenvalues λμ. The λμ are real and
positive since uαi = 0 corresponds to an energy minimum, so they can be written λμ = ω2

μ.
Defining the eigenoperators P̂μ =

∑
iαA

α
i μP̂

α
i and Ûμ =

∑
iαA

α
i μÛ

α
i , which satisfy the

same commutation relations as (2.27), the Hamiltonian writes

Ĥ =
∑
μ

(
1

2
P̂ 2
μ +

1

2
ω2
μÛ

2
μ

)
. (2.30)

From this expression, it is clear that the vibrations of the crystal can be considered in
the harmonic approximation as a set of decoupled harmonic oscillators, whose pulsation
squared is found by diagonalizing the DM. Introducing the phonon creation operators

a†μ =

√
ωμ

2�

(
Ûμ − i

ωμ
P̂μ

)
, (2.31)

which satisfy the boson commutation relations[
aμ, a

†
ν

]
= δμν

[
aμ, aν

]
= 0

[
a†μ, a

†
ν

]
= 0, (2.32)

finally casts the Hamiltonian in the familiar form

Ĥ =
∑
μ

�ωμ

(
a†μaμ +

1

2

)
. (2.33)

In the case of a pristine crystal, the Bloch decomposition can be recovered by noting the
IFC between the atom i of unit cell at �R and the atom j of the unit cell at �R′ = �R +Δ�R
as φαβ

Δ�R,ij
, where i and j now run between 1 and the number na of atoms in the unit

cell. By defining the Fourier transforms P̂α
i,�k

and Ûα
i,�k

of P̂α
i, �R

and Ûα
i, �R

in a way similar to
equation (2.21), the atomic Hamiltonian writes

Ĥ =
1

2

∑
�k

⎛⎝∑
iα

P̂α
i,−�k

P̂α
i,�k

+
∑
ijαβ

Dαβ
�k,ij

Ûα
i,−�k

Ûβ

j,�k

⎞⎠ (2.34)

with

Dαβ
�k,ij

=
∑
Δ�R

φαβ

Δ�R,ij√
mimj

ei
�k·(Δ�R+�rj−�ri) (2.35)

the �k-dependant dynamical matrix, which is now a set of Nc 3na×3na matrices. Diagonal-
izing them yields the eigenvalues ω2

�ks
associated with the eigenoperators P̂�ks

and Û�ks
, where

s is the branch index running from 1 to 3na. Introducing the phonon creation operators

a†�ks =
√

ω�ks

2�

(
Û †
�ks

− i

ω�ks

P̂ †
�ks

)
, (2.36)
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Figure 2.6: Our methodology to model phonon properties in thermoelectric materials.

which satisfy the commutation relations[
a�ks, a

†
�k′s′

]
= δss′δ�k�k′

[
a�ks, a�k′s′

]
= 0

[
a†�ks, a

†
�k′s′

]
= 0, (2.37)

again casts the Hamiltonian in the form

Ĥ =
∑
�ks

�ω�ks

(
a†�ksa�ks +

1

2

)
. (2.38)

To conclude this section, our approach to studying the vibrational properties from first
principles is similar to our methodology for electrons, and is illustrated in Fig 2.6. The
IFC are first obtained through ab initio calculations on the pristine material. The thermal
conductivity can then be computed in the Boltzmann Transport Equation framework (see
section 2.2.1), and the effects of disorder, nanostructuring or confinement can be investi-
gated either through direct modelling or with the help of further ab initio calculations.

2.2 Electron and phonon quantum transport

The realistic TB Hamiltonian and the dynamical matrix obtained from ab initio calculations
on a thermoelectric material give direct access, once diagonalized, to the band structure,
dispersion relation and DOS of the compound. We now turn to the much more delicate
task of computing the thermoelectric transport properties. What makes this endeavour
so complicated is the fact that the electrical coductivity, Seebeck coefficient and thermal
conductivity are very sensitive to the many-body interactions of electrons and phonons
and to the material defects and impurities. There are three transport regimes that will be
encountered in this thesis:

Diffusive transport. This regime is the most common is bulk thermoelectric materials.
The electron and phonon mean free paths are small compared to the crystal size, but
the particles can still be thought of as propagating between scattering events that
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hinder transport. The Ohm and Fourier laws are valid, which makes the electrical
and thermal conductivities well-defined quantities.

Ballistic transport. If the scattering processes become so weak or the sample so small
that the mean free paths become substantially longer than the crystal length, the
leads start to play an important role in the transport properties. The conductivities
then depend on the dimensions of the material, so they become ill-defined.

Anderson localization. If the sample is very strongly disordered due to defects and im-
purities, the electron and phonons may become localized, in the sense that their
wavefunction is spatially confined. Such localized states do not propagate and thus
do not participe in conduction.

It is worth mentioning that there are other transport regimes due to many-body interac-
tions, exhibited for instance by Mott insulators or superconducting phases. In this section,
we will cover two formalisms, the Boltzmann Transport Equation and the Landauer for-
malism, that describe the diffusive and ballistic regimes. In chapter 4 will be presented
the Kubo formalism, which can describe the effects of strong disorder, including Anderson
localization.

2.2.1 Semi-classical treatment of the diffusive regime

The Boltzmann transport formalism (or, in the context of condensed matter, the Bloch-
Boltzmann formalism) is by far the most widely used framework to predict the transport
properties of thermoelectric materials. It is a semiclassical description of transport that
considers electrons and phonons as wavepackets of Bloch states of the pristine material
[89, 132]. The central quantity is the Boltzmann distribution function gn(�r,�k, t), whose
physical meaning is that gn(�r,�k, t)

d�rd�k
(2π)d is the number of electrons or phonons of the band

or branch n in the spatial region d�r around �r and in the region d�k around �k in the first
Brillouin zone at time t (d is the dimension of the system, and a factor 2 should be added for
electrons due to the spin degeneracy). In this picture, the electrons and phonons propagate
like well-defined particles between collision events. These events do not change the prop-
agative Bloch states but induce transitions from one state to another. Thus, the Boltzmann
formalism breaks down when the character of the states is deeply affected by disorder or
many-body interactions, i.e. when the band-structure is significantly distorted. This for-
malism cannot properly describe impurity states or resonant states formed by defects, for
instance. As a semi-classical framework, it does not take into account the quantum interfer-
ences between propagative states, and thus it cannot include Anderson localization effects
(see section 4.2.1). Although we will be interested only in the static limit, it is also worth
mentioning that the dynamical conductivity predicted in this framework does not include
interband transitions. Still, despite these important limitations, the power of the Boltz-
mann formalism should not be underestimated. It can be easily combined with ab initio
calculations and it is able to incorporate a variety of scattering and relaxation processes in
a relatively simple way. For instance, it has proven successful in describing the dynamics
of hot electrons at the surface of metals in the context of laser pump-probe experiments
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[133]. Another exemple is its ability to take into account the crucial distinction between
Normal and Umklapp scattering for calculating the thermal conductivity of graphene [134]
(see below and section 6.2). If the relaxation time approximation is made (see the next
section), it gives very simple closed expressions for the electrical conductivity and Seebeck
coefficient, which makes it well suited to provide a first evaluation of the thermoelectric
performances.

A general form of the BTE can be written that is valid for both electrons and phonons.
As we are interested in the static, steady-state regime, gn does not depends explicitely on
t. But if we follow with time a wavepacket in phase space, its position changes due to its
velocity �v = �̇r and, in the case of electrons, its wavevector �k changes due to force fields
�F = ��̇k acting on it. Thus, in the absence of collisions, a wavepacket of position �r and
wavevector �k at time t will end up with a position �r + �vdt and a wavevector �k + �Fdt/�
at time t + dt. In this case, since the Liouville theorem states that phase space neither
shrinks nor expand along a trajectory, the distribution function must also be conserved:
gn(�r + �vdt,�k + �Fdt/�) = gn(�r,�k). In the presence of collisions, however, a certain number
of particles are brought in the phase space region (�r,�k) by scattering events between t and
t+dt, while a certain number are scattered away. The net result is a change in the number
of particles around (�r,�k) that can be noted (∂gn∂t )coll dt. This leads to the steady-state
Boltzmann transport equation:

�v · ∂gn
∂�r

+
�F

�
· ∂gn
∂�k

=

(
∂gn
∂t

)
coll

. (2.39)

The force term and the collision term in this expression are different between electron and
phonon transport, which we will now examine in turn.

The Boltzmann transport equation for electrons

In the presence of a static electric field �E , the semiclassical movement of electron wavepack-
ets can be described by the equations

�̇r = �vn =
1

�

∂εn(�k)

∂�k
, (2.40)

�̇k =
�F

�
= −e�E

�
, (2.41)

where εn(�k) is the energy of the Bloch eingenstate with a wavevector �k in the band n. In
the Boltzmann formalism, a static electric field causes the distribution of electrons to drift
in �k space. In the steady state regime, this is counteracted by the collisions which tend to
bring the distribution back to an equilibrium value g0n. This equilibrium value is given by
the Fermi-Dirac distribution f(E, T ):

g0n(�r,
�k) = f

(
εn(�k), T (�r)

)
=

1

e
εn(�k)−μ

kBT (�r) + 1
, (2.42)
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where μ is the chemical potential and T depends on �r in the presence of a temperature
gradient. It is convenient to write the distribution function as a sum of its equilibrium and
a perturbation: gn = g0n + g1n. The BTE then becomes

�vn · ∂T
∂�r

(
∂g0n
∂T

+
∂g1n
∂T

)
− e�E

�
·
(
∂g0n

∂�k
+

∂g1n

∂�k

)
=

(
∂g1n
∂t

)
coll

, (2.43)

where the driving forces (electric field and thermal gradient) have appeared explicitely in
the left-hand side (spatial variations of the chemical potential can be included inside �E ,
which is then the gradient of the electrochemical potential). Here, the hypothesis of near-
equilibrium transport comes into play. We assume the driving forces to be small and retain
only the first-order terms, so the derivatives of g1n on the left-hand side can be discarded.
The linearized BTE thus writes(

− ∂f

∂E

)[
εn(�k)− μ

T
�vn · ∂T

∂�r
+ e�vn · �E

]
=

(
∂g1n
∂t

)
coll

, (2.44)

where only the collision term depends on the perturbation g1n. In principle, the collision
term should incorporate a detailed balance of the outoing and ingoing scattered electrons.
In practice, an approximation, called the relaxation time approximation (RTA), is very
often made that simplifies considerably the calculation of the transport properties. It
retains only the fact that the collisions tend to bring the distribution function back to its
equilibrium value, and assigns a relaxation rate 1

τn(�k)
to this process, such that the collision

term is taken as (
∂g1n
∂t

)
coll

= −g1n(�r,
�k)

τn(�k)
. (2.45)

A closed form for the distribution function is then easily derived, and the transport prop-
erties can be found by calculating the charge and heat currents

�j(�r) = −2e
∑
n

∫
d�k

(2π)d
g1n(�r,

�k)�vn(�k), (2.46)

�jQ(�r) = 2
∑
n

∫
d�k

(2π)d
(εn(�k)− μ)g1n(�r,

�k)�vn(�k), (2.47)

where the factor 2 comes from the spin degeneracy, �k is integrated over the first Brillouin
zone and g1n appears instead of gn because the currents vanish in equilibrium. A comparison
with equations (1.5) and (1.6), yields the transport coefficients:

σi = 2e2
∑
n

∫
d�k

(2π)d

(
− ∂f

∂E

)
vin(

�k)vin(
�k)τn(�k), (2.48)

Si = − 2e

σiT

∑
n

∫
d�k

(2π)d

(
− ∂f

∂E

)
(εn(�k)− μ)vin(

�k)vin(
�k)τn(�k), (2.49)

κie,0 =
2

T

∑
n

∫
d�k

(2π)d

(
− ∂f

∂E

)
(εn(�k)− μ)2vin(

�k)vin(
�k)τn(�k), (2.50)
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where the factors 2 all come from the spin degeneracy and i = x, y, z are the directions
of the crystal for which the conductivity is diagonal. It should be remembered that the
open-circuit electronic thermal conductivity is given by κie = κie,0−σi(Si)2T . It is apparent
from equations (2.48) to (2.50) that the electronic transport properties can be derived from
the knowledge of a single function of energy and temperature Σi(E, T ), called the transport
distribution function (TDF) [135]:

σi =

∫
dE

(
− ∂f

∂E

)
Σi(E, T ), (2.51)

Si = − 1

eTσi

∫
dE

(
− ∂f

∂E

)
(E − μ)Σi(E, T ), (2.52)

κie,0 =
1

e2T

∫
dE

(
− ∂f

∂E

)
(E − μ)2Σi(E, T ). (2.53)

In the framework of the Boltzmann formalism and within the RTA, the TDF is given by

Σi(E, T ) = 2e2
∑
n

∫
d�k

(2π)d
vin(

�k)vin(
�k)τn(�k) δ(E − εn(�k)). (2.54)

The existence of the TDF and the equations (2.51) to (2.53), however, are quite general.
They are valid for independant electrons in the presence of static disorder, and it was proven
by Jonson and Mahan that they approximately remain so even in the presence of electron-
phonon interaction (there is a small correction to the Seebeck coefficient) [136, 137, 30].
The quantity

(
− ∂f

∂E

)
is basically a window function of width ≈ 4kBT around the Fermi

level μ. In degenerate systems, a Sommerfeld expansion gives

σi ≈ Σi(μ, T ), (2.55)

Si ≈ −π2k2BT

3e

1

Σi

∂Σi

∂E

∣∣∣∣
E=μ

. (2.56)

The Mott formula [138] is thus recovered and the Seebeck coefficient can be interpreted as
the logarithmic derivative of the TDF at the Fermi level, while the electrical conductivity
is the TDF evaluated at the Fermi level. If the scattering rate depends only on the energy
(τn(�k) = τ(εn(�k), T )), then the TDF can be recast as

Σi(E, T ) = Di(E)τ(E, T ), (2.57)

where Di(E) is the so-called Drude weight, which can be calculated efficiently as the second
derivative of the total ground-state energy with respect to a vector potential in the direction
of transport (see appendix D). In the Boltzmann transport framework, the Drude weight
is simply

Di(E) = 2e2
∑
n

∫
d�k

(2π)d
vin(

�k)vin(
�k) δ(E − εn(�k)). (2.58)

Many studies of thermoelectric materials assume a constant relaxation time [139, 140,
105], which allows the calculation of the Seebeck coefficient without any assumption about
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scattering and may provide a rough estimate of the thermoelectric performances. A proper
treatment of the scattering processes, however, is often crucial for an accurate prediction of
electronic transport over a wide range of temperature and carrier concentration. An exact
solution of the BTE requires the full expression for the collision term:(

∂g1n(
�k)

∂t

)
coll

= −
∑
n′

∫
d�k′

(2π)d
[
Sn,n′

�k,�k′ gn(
�k)(1− gn′(�k′)) (2.59)

−Sn′,n
�k′,�k

gn′(�k′)(1− gn(�k))
]

where Sn,n′

�k,�k′ is the transition rate between states from band n with wavevector �k and

states from band n′ with wavevector �k′ (spin-conserving scattering has been assumed).
For electrons, though, it is usually sufficient to use the RTA with realistic expressions for
the relaxation time. It may be chosen as the scattering rate of a single carrier with no other
states occupied:

1

τn(�k)
=
∑
n′

∫
d�k′

(2π)d
Sn,n′

�k,�k′ , (2.60)

although this does not take into account the efficiency with which collisions scramble the
momentum and energy of the carriers. In heavily doped semiconductors, three scattering
mechanisms are present:

Electron-defect scattering. Ionized impurities, vacancies, grain boundaries and lattice
imperfections can all scatter electrons, as illustrated in Fig. 2.7a and Fig. 2.7b. The
simplest way to calculate the transition rate Sn,n′

�k,�k′ is through second-order time-
dependant perturbation theory, also called Fermi’s golden rule:

Sn,n′

�k,�k′ =
2π

�
| 〈ψ

n′,�k′ |Ĥdef|ψn,�k
〉 |2 δ(εn′(�k′)− εn(�k)), (2.61)

where Ĥdef is the perturbation in the Hamiltonian due to the defects. The presence
of the delta function indicates that this type of scattering is elastic: the energy
and phase of the carriers are not changed by the scattering events. The validity of
equation (2.61) is limited to cases in which the defects are dilute and their influence
remain weak. We will present in chapter 4 a methodology to deal with strong disorder
stemming from an arbitrary amount of defects.

Electron-phonon scattering. At room-temperature and above, electrons can emit or
absorb a phonon as illustrated in Fig. 2.7c and Fig. 2.7d, which is often the dom-
inant source of scattering. There are two major mechanisms for electron-phonon
interaction. The first, called deformation potential scattering, is due to the fact
that longitudinal phonons stretch and shrink the crystal unit cell, thus shifting the
electronic bands. The second is present in polar materials such as GaAs and many
oxides. Phonons in such materials represent an oscillating perturbation of the atomic
dipoles, thus radiating electromagnetic waves that scatter electrons. This is a strong
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(a) Electron scattering on a point
defect (substitution, vacancy...).

(b) Electron scattering on a ex-
tended defect (boundary, disloca-
tion...).

(c) Electron-phonon scattering by
emission of a phonon.

(d) Electron-phonon scattering by
absorption of a phonon.

(e) Electron-electron scattering.

Figure 2.7: Illustrations of the electron scattering mechanisms.

effect for optical phonons (it is then called polar optical scattering), but much weaker
for acoustic phonons (it is called piezoelectric scattering). A quantum treatment of
electron-phonon scattering requires the formalism of many-body Green’s functions,
in which second-order perturbation theory (analogous to Fermi’s golden rule) gives a
scattering rate (2.60) of the general form [141, 142]

1

τn(�k)
=

2π

�

∑
λ,n′

∫
d�k′

(2π)d

∣∣∣∣Mλ,n,n′

�k,�k′

∣∣∣∣2[fB(ωλ(�q)) δ
(
εn′(�k′)− εn(�k)− �ωλ(�q)

)
(2.62)

+
(
fB(ωλ(−�q)) + 1

)
δ
(
εn′(�k′)− εn(�k) + �ωλ(−�q)

)]
where �q = �k′−�k, ω�q is the frequency of the phonon in branch λ with wavevector �q and
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fB is the Bose-Einstein distribution (equation (2.67)). The first term in the bracket
corresponds to phonon absorption and the last term to phonon emission. Mλ,n,n′

�k,�k′ is a

matrix element between states (n,�k) and (n′, �k′) from the electron-phonon interaction
Hamiltonian. It can be calculated from first-principles [143, 144, 145], or it can be
parametrized using simple models and then fitted to experimental results, as was done
in section 3.3.

Electron-electron scattering. Finally, electrons may scatter off each other, as illustrated
in Fig. 2.7e. Because the coulomb interaction is screened by the electron gas, this
mechanism is usually negligible at room-temperature and above, though it might
actually dominate in certain oxides (see section 3.1). An assumption for the screened
potential has to be made in order to calculate the transition rates. In the case of a
parabolic conduction band, a simple Thomas-Fermi screening gives [89, 146]

1

τn(�k)
∝ (kBT )

2

� εn(�k)
(2.63)

where the origin of the energies is taken at the conduction band minimum.

When several sources of scattering have to be taken into account within the RTA, a common
approximation is to sum the transitions probabilities from the different mechanisms, the
so-called Matthiessen’s rule:

1

τtot
=

1

τdef
+

1

τe-ph
+

1

τe-e
. (2.64)

The Boltzmann transport equation for phonons

In the case of phonon transport, the same manipulations of the BTE can be performed
to calculate the lattice thermal conductivity [147, 148, 149], although there are several
important differences with electrons. There is no equivalent to the electric field, so the
semi-classical equations of motion are:

�̇r = �vλ =
∂ωλ(�k)

∂�k
, (2.65)

�̇k = �0, (2.66)

where ωλ(�k) is the frequency of a Bloch eigenstate with a wavevector �k in the branch λ.
The equilibrium distribution function is given by the Bose-Einstein distribution fB(ω, T ):

g0λ(�r,
�k) = fB

(
ωλ(�k), T (�r)

)
=

1

e
�ωλ(�k)

kBT (�r) − 1

. (2.67)

We can again linearize the BTE around the equilibrium distribution, which yields(
− ∂f

∂�ω

)[
�ωλ(�k)

T
�vλ · ∂T

∂�r

]
=

(
∂g1λ
∂t

)
coll

. (2.68)
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The phonon heat current is

�jQ(�r) =
∑
λ

∫
d�k

(2π)d
�ωλ(�k)g

1
λ(�r,

�k)�vλ(�k), (2.69)

The RTA is also called the single-mode approximation (SMA) in the context of phonon
transport. It yields for the lattice thermal conductivity:

κiph =

∫
d(�ω)Wph(ω, T )Σ

i
ph(ω, T ) (2.70)

where

Wph(ω, T ) =
3

π2

(
�ω

kBT

)2(
−∂fB
∂�ω

)
(2.71)

is a half-window of width ≈ 2kBT centered on ω = 0, analogous to the electronic quantity(
− ∂f

∂E

)
, and

Σi
ph(ω, T ) =

π2k2BT

3

∑
λ

∫
d�k

(2π)d
viλ(

�k)viλ(
�k)τλ(�k) δ(�ω − �ωλ(�k)) (2.72)

is a transport distribution function for phonons. There are again three sources of scattering:

Phonon-defect scattering. All materials contain a certain amount of isotopes that rep-
resent a mass fluctuation and thus scatter phonons. Moreover, in thermoelectric
materials, other type of defects such as vacancies, substitutions, grain boundaries
and nanostructures are intentionally introduced for the express purpose of reducing
the thermal conductivity by scattering phonons (see Fig. 2.8a and Fig. 2.8b). The
simplest way to calculate the scattering rate for point defects is through the FGR
(equation (2.61)). The matrix element of the perturbation is typically proportional
to ω2, which gives the so-called Klemens formula for the scattering rate

1

τλ(�k)
= g ω2ρ(ωλ(�k)), (2.73)

where ρ(ω) is the phonon density of states and g is a factor that depends on the
type and mass of the defects [150, 151]. Again, we will examine in chapter 4 more
sophisticated treatments of defects and disorder.

Phonon-phonon scattering. Phonon-phonon interactions stem from the anharmonicity
of the lattice potential energy (i.e. terms of order 3 and higer in equation (2.23)),
and represent a very important source of scattering. The stronger contributions come
from the third order terms of the form a†a†a and a†aa, that are associated with three
phonon processes represented in Fig. 2.8. In Fig. 2.8c, a phonon with wavevector �k
decays into two phonons of wavevectors �k′ and �k′′, while in Fig. 2.8d, two phonons
of wavevectors �k” and �k′′ coalesce into a phonon of wavevector �k. The conservation
of crystal momentum implies �k = �k′ + �k′′ + �G, where �G is a vector of the reciprocal
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lattice. Collisions with �G = �0, called Normal processes, cannot bring the phonon
distribution back to equilibrium. Collisions with �G �= �0, called Umklapp processes,
must involve a phonon with a wavevector of magnitude || �G||/2 at least, so they are
thermally activated.

Phonon-electron scattering. The same electron-phonon coupling seen in the previous
section also act as phonon scatterers. They are often negligible though, as transport
is dominated by defect and boundary scattering at low temperatures and by phonon-
phonon scattering at high temperatures.

(a) Phonon scattering on a point
defect (isotope, vacancy...).

(b) Phonon scattering on a ex-
tended defect (boundary, disloca-
tion...).

(c) Phonon scattering by decay
into two phonons.

(d) Phonon scattering by coales-
cence of two phonons.

Figure 2.8: Illustrations of the phonon scattering mechanisms.

The fact that Normal phonon-phonon scattering processes cannot bring the phonon
distribution back to equilibrium complicates the problem of solving the BTE. In the RTA,
Matthiessen’s rule lumps all the scattering processes together in a total relaxation time:(

∂gλ
∂t

)
coll

= −gλ(�r,�k)− g0λ(�r,
�k)

τ tot
λ (�k)

, (2.74)

with
1

τ tot
λ (�k)

=
1

τN
λ (�k)

+
1

τU
λ (�k)

+
1

τdef
λ (�k)

+
1

τph-e
λ (�k)

. (2.75)
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But this places Normal processes on equal footing with the other sources of scattering, even
though the former is not resistive. There are two methodologies to deal with this issue. A
first option is to use a different approximation for the collision term, the so-called Callaway
model [152, 153, 154]. In this approach, the Normal processes are considered to bring the
phonon distribution back to a drifted Bose-Einstein distribution gdrift

λ (�r,�k) instead of the
usual one centered around �k = �0. Thus, the Normal scattering rate is set apart in the
collision term: (

∂gλ
∂t

)
coll

= −gλ(�r,�k)− gdrift
λ (�r,�k)

τN
λ (�k)

− gλ(�r,�k)− g0λ(�r,
�k)

τR
λ (�k)

, (2.76)

where the resistive relaxation time 1

τR
λ (�k)

includes all the other sources of scattering. This
yields a closed expression for the thermal conductivity, with a correction to the RTA:

κiCal = κiRTA +
(Ai)2

Bi
(2.77)

where

Ai =
1

T

∑
λ

∫
d�k

(2π)d

(
−∂fB
∂�ω

)
�ωλ(�k)v

i
λ(
�k)ki

τ tot
λ (�k)

τN
λ (�k)

, (2.78)

Bi =
1

T

∑
λ

∫
d�k

(2π)d

(
−∂fB
∂�ω

)
kiki

τ tot
λ (�k)

τN
λ (�k)τR

λ (�k)
.

An alternative is to keep the full expression for the collision term (analogous to equa-
tion (2.59)), and solve the BTE numerically to obtain an exact solution. This method
is the most accurate but also the most complex and demanding in computation time, al-
though efficient iterative and variational schemes have been developped [148]. Comparisons
of the three methods outlined above show that the RTA is generally reasonably accurate for
three-dimensional systems at room-temperature and above [154, 147]. In two-dimensional
systems, however, the Normal processes tend to remain dominant even around 300K, in
which case the RTA severly underestimate the thermal conductivity. In such cases, it be-
comes crucial to solve the exact BTE, or to use the Callaway model which is often quite
successful in predicting the thermal conductivity (see [134] and section 6.2).

2.2.2 Ballistic regime: the Landauer formalism

The Boltzmann formalism describes electrons and phonons diffusing under an electric field
or temperature gradient, subjected to scattering events with an average frequency 1

τ with
a mean free path l = vτ between collisions. In section 2.2.1, the size L of the sample
was assumed to be large so that the boundaries were unimportant and l � L. In such a
physical picture, the conductivity grows without bound if the sources of scattering become
vanishingly small, as can be checked by taking τ → ∞ in equations (2.54) and (2.72).
In reality, the system actually undergoes a crossover between the diffusive regime l � L
and the ballistic regime l 
 L. In this regime, what happens at the boundaries of the
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system is crucial for the transport properties. In conductivity measurements, the sample is
typically attached to macroscopic leads or contacts, which can be considered semi-infinite
as illustrated in Fig. 2.9. The most natural theoretical framework to describe transport
near and in the ballistic regime is called the Landauer formalism [155, 156, 157]. In the
Landauer picture, the conductance is a measure of how Bloch waves are transmitted from
one lead to another through the sample. It remains finite even in perfect conductors without
any source of scattering. More precisely, if perfect contacts are assumed between sample
and leads, the zero-temperature electrical conductance along the i = x axis of a perfect
conductor of size Lx × Ly × Lz is given by:

Gx =
2e2

h
Mx(E), (2.79)

where the factor 2 comes from the spin degeneracy and E is the Fermi level. Mx(E) is the
number of modes at the energy E. It is calculated by plotting the Bloch energies εn(�k) of
the system as a function of kx > 0 for all values of ky, kz and n, and counting the number
of crossing points with the line of energy E (see Fig. 2.10). Each crossing point represents a
conduction channel available to electrons, associated with a "quantum of conductance" 2e2

h .
For the lattice thermal conductivity, the same formula holds but the "quantum of thermal
conductance" is π2k2

BT
3h for phonons [158, 159]. For large systems, the density of modes and

thus the conductance are proportional to LyLz but independant of the length Lx of the
system in the transport direction. Thus, Ohm’s law is broken in the ballistic regime: the
conductivity depends on the system size and is not a well-defined property of the material.

At finite temperature and in the presence of disorder, reflections and defects, the elec-
trical conductance can be recast as

Gx =
2e2

h

∫
dE

(
− ∂f

∂E

)
Mx(E)T x(E), (2.80)

where 0 < T x(E) < 1 is the average transmission probability from one lead to another
through a channel at energy E. For a perfect conductor, T (E) = 1 and equation (2.79)
is recovered. This expression is conceptually simple but it hides the fact that the con-
duction channels are mixed by the presence of disorder and that the transmission varies

Left lead Right leadSample

Figure 2.9: The typical geometry described by the Landauer formalism: electrons and
phonons go from one semi-infinite lead to another through the sample.
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Figure 2.10: A sketch of the procedure for calculating the number of modes: the crossing
of the energy bands for kx > 0 with the Fermi level should be counted. The energies are
shown for only one band and one value of (ky, kz).

strongly from one channel to another [156]. It is difficult, moreover, to rigorously introduce
inelastic sources of scattering like electron-phonon or phonon-phonon collisions. Indeed,
this requires more sophisticated approaches such as the non-equilibrium Green’s function
(NEGF) formalism [155]. It is possible, however, to bridge the gap between the Boltzmann
and Landauer formalisms in a somewhat phenomenological way [160, 158]. For electrons,
the number of modes can be recast as

Mx(E) = LyLz
h

2

∑
n

∫
d�k

(2π)d

∣∣vxn(�k)∣∣ δ(E − εn(�k)). (2.81)

Therefore, equation (2.80) gives the same TDF as the BTE with the RTA, equation (2.54),
if the transmission is chosen to be T x(E) = lx

Lx
with the electron mean free path lx defined

as

lx = 2
〈vxvxτ〉
〈∣∣vx∣∣〉 =

∑
n

∫
d�k vxn(

�k)vxn(
�k)τn(�k) δ(E − εn(�k))∑

n

∫
d�k

∣∣vxn(�k)∣∣ δ(E − εn(�k))
. (2.82)

It is therefore possible to describe diffusive transport in the language of the Landauer
formalism, in which the carrier scattering simply translates into a probability of non-
transmission through the channels accross the sample: excited carriers may "disappear"
in the middle of the system. Conversely, one recover the expression (2.79) for ballistic
transport in a perfect conductor by using the solution (2.54) of the BTE with an energy-
dependant scattering rate defined as

1

τ(E)
=

2

Lx

〈vxvx〉
〈∣∣vx∣∣〉 , (2.83)

which is equivalent to setting the mean free path lx = Lx. Thus, it is also possible to
describe ballistic transport in the language of the BTE. The wavepackets are considered
to propagate freely across the entire sample, and then a scattering event happens at the
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interface with the lead: excited carriers "disappear" in the lead. This is consistent with the
fact that the energy dissipation of ballistic conductors takes place mainly in the lead, not
in the sample itself [155]. The same procedures can be carried out for the lattice thermal
conductivity.

In the context of thermoelectricity, power generation devices involve thermoelectric
materials a few millimeters long. The crystal length Lx is therefore very large compared
to typical electron mean free paths of a few tens of nanometers [161] and typical phonon
mean free paths of a few micrometers [162], so transport can be safely considered diffusive.
The experimental study of transport in two-dimensional materials, however, tends to be
carried out on small samples a few micrometers long, in which thermal transport may not
be entirely diffusive. To compare the theoretical predictions with the measured thermal
conductivities in these systems, it may thus be necessary to describe the crossover from the
diffusive to ballistic regime. From the above discussion, this can be achieved in the Landauer
formalism by choosing a transmission T x(E) = lx

Lx+lx
, or in the Boltzmann formalism by

adding a "ballistic scattering" term 1

τbal
n (�k)

= 2 |vx
n(
�k)|

Lx
or (2.83) in Matthiessen’s rule. This

phenomenological procedure can be justified in one dimension [155], but misrepresents the
transmission distribution when several channel are present [156]. Still, it has the great
merits of being simple and successful in providing a crossover between the correct limits of
(semiclassical) diffusive and ballistic conductivities. We will see in chapter 4 how a more
rigorous treatment of the leads could be achieved.
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Chapter 3

Electronic transport in oxides

Quantity has a quality all its own.

A saying attributed to various historical figures.

Recently, transition metal oxides have prompted great interest as potential thermo-
electric materials, especially for high-temperature power generation [163, 164, 165]. The
classical materials for high-temperature thermoelectrics, SiGe compounds, exhibit a zT
around 1 [54, 55]. The other high-performance materials, bismuth telluride and lead tel-
luride based compounds, are mostly toxic and easily decompose at high temperatures.
Oxides, on the other hand, tend to be very stable at high temperatures, composed of earth-
abundant elements, unexpensive and environmentally benign. Although they are usually
strongly polar, they can exhibit surprisingly high power factors at room-temperatures (see
section 3.1). Transition metal oxides, and especially strontium titanate, have been the
focus of numerous experimental studies aiming at suppressing the thermal conductivity by
nanostructuring and boosting the power factor by quantum confinement of the electrons. It
is therefore important to provide a theoretical understanding of the factors that determine
the thermoelectric performances in these materials.

In this chapter, we will focus on electronic transport in two transition metal oxides,
SrTiO3 and TiO2. Section 3.1, which has been published in [166], investigates the ther-
moelectric properties in n-doped SrTiO3. Section 3.2, published in [167], deals with the
issue of quantum confinement in SrTiO3 superlattices. In section 3.3, we study electronic
transport in bulk TiO2 for high-temperature thermoelectricity [168].

3.1 Unified modelling of the thermoelectric properties in SrTiO3

Among oxides, the perovskite material SrTiO3 (STO) is particularly interesting because it
has already a relatively large power factor of the order of 20 μW/cm·K2 comparable to that
of the best known thermoelectric (TE) materials such as Bi2Te3 [51]. However, because of
its relatively high thermal conductivity of κ ≈ 11 W/m·K [169], the ZT of STO is only
0.1. It is thus clear that the nanostructuration of the material (reduction of the thermal
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conductivity) combined with a judicious dopant could further boost the PF and thus lead to
large values of ZT. In this work, we propose a detailed theoretical study of the TE transport
in STO and compare our results with a wide panel of experimental published data for bulk
and thin films. To complete the latter, we present our thermoelectric measurements on
heavily La doped STO films epitaxially grown by MBE on STO (001) substrate [170].

3.1.1 The tight-binding Hamiltonian and transport calculations

First principles studies show that the lowest conduction bands (π∗) in STO have mainly the
Ti d character [171, 172, 173, 174]. Therefore, instead of performing full ab initio calcula-
tions, our strategy consists in building up a minimum tight-binding (TB) Hamiltonian from
the most relevant electronic bands. This allows more general discussions and facilitates the
identification of the relevant underlying mechanisms just by tuning a single well-defined
physical parameter. First, we define the minimal but realistic TB Hamiltonian for the t2g
orbitals and then we introduce the relevant scattering processes needed to address the TE
properties beyond the constant relaxation time approximation.

The Hamiltonian reads, Ĥ = Ĥ0 + Ĥdis where,

Ĥ0 =
∑
ij,αβ

tαβij c†jβciα, (3.1)

Ĥdis =
∑
i,α

εic
†
iαciα. (3.2)

Ĥ0 is the TB part and Ĥdis describes the effects of disorder (dopants substitution and
intrinsic defects) where ciα is the annihilation operator for the α orbital at site i. |α〉, |β〉
denote |xy〉, |yz〉 or |zx〉, the 3 t2g d-orbitals of Ti. The on-site scattering potentials εi
in Ĥdis are chosen randomly within a box distribution of width W. The treatment of Ĥdis

is discussed in what follows. The integrals tαβij are restricted to nearest and next nearest
neighbour only. We also assume no hopping between d-bands, e.g. tαβij = 0 if α �= β.
Resulting from the symmetry of the orbital, we have for the dxy-band the following set of
intra-orbital hoppings: for i and j nearest neighbors in the xy plane, tij = t1; for i and j
next-nearest neighbors in the xy plane, tij = t3; and for i and j nearest neighbors along the z
axis, tij = t2. The parameters are t1=0.277 eV, t2=0.031 eV and t3=0.076 eV as estimated
in Ref. [175]. The other two bands (dyz and dzx) are obtained by applying a circular per-
mutation (x,y,z)→(y,z,x)→(z,x,y). The TB Hamiltonian becomes, Ĥ0 =

∑
k,α ε

0
α(k)c

†
kαckα

where ε0xy(k) = −2t1 (cos(kxa) + cos(kya))− 2t2cos(kza)− 4t3cos(kxa)cos(kya), where the
lattice parameter a = 3.9Å in STO.

The conductivity and the Seebeck coefficient are calculated using equations (2.51)
and (2.52) where the transport distribution function (TDF) can be written Σ(E, T ) =
D(E)τ(E, T ) (equation (2.57)). D(E) is the Drude weight calculated at T=0 K. By anal-
ogy with the classical Drude formalism, one can write D(E) = ne2

mt
where n is the carrier

density and mt the transport effective mass. τ(E, T ) is the energy and temperature depen-
dent electron lifetime.
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D(E) is the order parameter for the metal-insulator phase transition, and can be directly
extracted from the following sum rule [176, 177, 178, 179, 180] (see appendix D),

D(E) = − 2

π

∫ +∞

0
σreg(ω,E)dω − σ0

N�
〈K̂x〉(E), (3.3)

where σreg is the regular (incoherent) part of the optical conductivity corresponding to
intraband transitions, σ0 = e2

�a = 6258 Ω−1 ·cm−1, N is the number of sites and K̂x = −∂2Ĥ
∂κ2

x

(κx = kxa).
In this study, we restrict ourselves to weak disorder regime, a justified approximation

for samples exhibiting a good metallic behaviour. This regime corresponds to kF le 
 1,
where kF is the Fermi wave vector and le the mean free path. As will be seen, this is indeed
the case for most samples considered here. In the weak disorder regime, D(E) is reduced
to the second term in equation (3.3), since the transfer of weight from the Drude peak to
finite frequencies is small, hence D(E) ≈ − σ0

N�
〈K̂x〉(E). Note also that D(E) is dominated

by dxy and dxz bands that contribute equally, whilst dyz band has a negligible contribution
(the hopping in the x-direction is very small for this band).

We now briefly discuss the nature of the scattering rate. It has two contributions:
1

τ(E,T ) =
1

τdis(E) +
1

τth(T,E) . τdis(E) denotes the effect of disorder resulting from the cationic
substitutions and presence of other defects (intrinsic, dislocations, grain boundaries) whilst
τth(T,E) is the temperature dependent part. Its origin is electron-phonon processes (e-ph)
and electron-electron (e-e) scattering. In oxides such as STO, several studies showing a T2

dependent resistivity suggest that the e-e mechanism dominates over the e-ph contribution
up to relatively large temperatures [181, 182, 183, 184]. Thus, we consider this term only.
Using the Fermi golden rule we get �

τdis(E) = 2π〈ε2i 〉ρ(E) = πW 2

6 ρ(E) where ρ(E) is the

density of states. The thermal contribution has the form, �

τth(E) = C (kBT )2

E−Eb
where C is a

dimensionless constant and Eb the energy at the bottom of the conduction band. There
is no simple and direct way to estimate C, it depends on the Thomas-Fermi screening
length scale, carrier concentration and topology of the Fermi surface. Below, we explain
the procedure that allows to set free parameters (C,W).

It is interesting to mention, regarding the nature of the charge carriers, that it has been
argued that transport properties in electron doped STO could be understood within the
polaronic framework [185, 186, 187, 188, 189]. Nevertheless, as discussed in ref.[182], the T2

dependent resistivity in electron doped STO could result from an effective polaron-polaron
scattering mechanism. Concerning the heavier polaron mass, which amounts in our picture
to a renormalization of the hopping integrals, this can be directly absorbed in the (C,W)
parameters. Therefore, whether the charge carriers in n-doped STO are described in terms
of electrons or polarons (electrons dressed by the interactions with the phonons) does not
affect our modelization.

Let us now discuss our results. Fig. 3.1(top) shows the dispersion obtained from both
(i) ab initio calculations (QuantumEspresso [113] (QE) and SIESTA [112]) and (ii) TB
model described previously. Both SIESTA and QE calculations are performed using the
PBE functional [123] and a Monkhorst-pack of 10× 10× 10 k-points. For QE calculations,
Vanderbilt Ultra-soft pseudopotentials [190] are used with a plane wave cut-off of 100 Ry.
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Figure 3.1: From [166]. (Top) Density of states and dispersion for SrTiO3 obtained with
SIESTA (continuous red and black lines), QuantumEspresso (continuous green line) and
within the minimal TB model for the 3 t2g bands (blue dots). (Bottom) Tight binding
model calculations of (i) the normalized density of states (blue dashed line, right axis) and
(ii) the reduced Drude weight −〈Kx〉/N (blue continuous line, left axis) as a function of E.
The dashed vertical lines indicate the position of the Fermi level for a carrier charge per
unit cell ranging from n.a3=0.015 to 0.20.

For SIESTA calculations we use Troullier-Martin norm-conserving pseudopotentials [191],
a mesh cut-off of 400 Ry and a dζp basis optimized with the simplex tool. As can be clearly
seen, SIESTA and QE lead to very similar results.

We find an excellent agreement between ab initio and TB approach, that fully supports
the 3 t2g bands Hamiltonian modelization. In Fig. 3.1(bottom) we have also plotted both
the calculated DOS and the reduced Drude weight −〈Kx〉/N as a function of E. It can

54



be seen that beyond an electron concentration n.a3=0.10, D(E) increases almost linearly.
The corresponding Fermi energy coincides with that of the kink in the DOS or edge of the
heavy electron bands as plotted in Fig. 3.1(top). Below a carrier density n.a3=0.10, we find
D(E) ∝ (E − Eb)

5

3 , in contrast with the free electron model for which the power is 3/2.

3.1.2 The thermoelectric properties

In what follows, and because La, Nb are single electron donors and act as a reservoir we
will systematically assume for the comparison that the carrier density in measured samples
is nexp ≈ x/a3. The sign ≈ means that the system may contain intrinsic compensating
defects such as oxygen vacancies that may affect the electron density. In Fig. 3.2 the
resistivity is plotted as a function of temperature. We set the free parameters C and W
in such a way that we reproduce the resistivity measurements for 10% La doped sample of
Ref.[192] corresponding to a carrier density of n = 1.7 1021 cm−3. More precisely W is set
to reproduce R(T= 0 K) and C adjusted to give R(T= 300 K) measured experimentally.
The motivation for this choice is the good metallic behaviour found for this concentration
of dopant. This leads respectively to W = 0.17 eV and C =24.5. These parameters are now
set for the whole study. This value of W is consistent with the assumption of weak disorder
regime, indeed W � Wb where the bandwidth of the conduction band Wb is of the order of
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Figure 3.2: From [166]. Resistivity as a function of temperature: theory (dashed lines) vs
experiments for LaxSr1−xTiO3 (symbols). The data points on bulk and thin films are taken
from Ref. [192] and our measurements. In the theoretical calculations, the concentration
of carriers (n) is directly indicated in the figure.
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2 eV. We now discuss the results of our calculations. First, for sufficiently large doping (n.a3

≥ 0.06-0.07) we observe a very good quantitative agreement between theory and experiment
for the whole range of temperature. Below (between n.a3 = 0.03-0.05) some deviations at
low temperature between theory and experiment are visible. Theory leads to slightly larger
values of the resistivity, the reasons for this could be manifold. First, the simplicity of the
model: the low energy band structure (below the kink in the DOS) should be improved.
Secondly, the electron-electron scattering rate used here does not include the true nature of
the d-orbitals. In other words, the non spherical nature of the Fermi surface resulting from
the strong hopping anisotropy is not taken into account. Finally, the presence of native
defects, such as oxygen vacancies, not included here, should also have an effect. Oxides are
known to contain oxygen vacancies, with a typical concentration of 1 or 2% per unit cell.
Because of their donor character, the effects on the carrier concentration are expected to be
more visible at low electron doping. A full quantitative analysis of these effects goes beyond
the scope of this study, and requires much more involved numerical calculations. Below
n.a3= 0.015, it is experimentally observed that the resistivity increases strongly [192]. A
possible explanation could be that at low density the Fermi level gets closer to the mobility
edge (separating extended from localized states). Localization effects, not included in the
present study, should lead to a strong suppression of the Drude weight (significant transfer
of weight to the regular part of the conductivity) and thus to an increase of the resistivity.
If we further decrease the carrier density, we expect a metal to insulator transition below
a critical concentration as seen in Ref.[192].

In Fig. 3.3 we have plotted the measured Seebeck coefficient (S) as a function of tem-
perature in both La and Nb doped samples, together with the theoretical calculations. For
large concentration (beyond n.a3=0.05), we observe an overall good quantitative agreement
between theory and experiments. At lower concentration, the agreement is very good above
100 K, and below this temperature the experimental data slightly deviates from the calcu-
lations. This larger measured |S| could be a consequence of the Fermi level proximity to
localized states region. This feature is expected to become more pronounced as the carrier
density is further reduced, leading eventually to a minimum in |S| at low temperature. This
is for instance observed in 1.5% La doped samples in ref.[192] and [194]. A well defined
minimum is clearly seen in both papers when the electron density is small enough. Such
a minimum is often attributed to phonon-drag. However, the relevance of this mechanism
is still highly debated. Thus, it would be of great interest to clarify for low doped STO,
whether the minimum is a signature of Anderson localization or due to phonon drag.

We propose now to compare the calculated carrier dependent electrical conductivity and
Seebeck coefficient at T = 300 K to available experimental data. The results are depicted
in Fig. 3.4. The agreement found between theory and experiments is very good for carrier
densities spreading over four decades (extremely low to heavily doped). The agreement is
almost insensitive to the electron donor (La, Nb & B) and to the nature of the sample
(bulk or thin films). The conductivity varies over four decades and is impressively well
reproduced by the theory. This is especially surprising considering the simplicity of our
realistic TB model. The Seebeck coefficient varies from -60 μV·K−1 at about n.a3=0.20 to
-900 μV·K−1 for n.a3=10−5. The quantitative agreement is again very good for the overall
range of carrier concentrations and weakly depends on the dopant and nature of the sample.
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Figure 3.3: From [166]. Seebeck coefficient S as a function of temperature: theory vs
experiment. The squares and circles are data extracted from ref.[192] and the green di-
amonds from ref. [193]. Both triangles and purple diamonds have been obtained in the
present study. The continuous lines are the calculated values. The electron concentration
n is indicated in the figure.

A deviation can be seen below n.a3=0.001, the measured S are more dispersed but slightly
higher than those calculated by about 10-15%. This small deviation could be attributed
to localization effects. It is important to remember that as the temperature is reduced the
effect of localization should become more pronounced. In the inset, we have plotted the
calculated power factor (PF) as a function of n.a3 for three different temperatures. First, we
observe a maximum located at n.a3 ≈ 0.1 (for T=300 K) that progressively shifts towards
lower concentrations as the temperature is decreased. The PF increases significantly with
the temperature. This results from a stronger increase of S2 that overcompensates the
reduction of the conductivity. At T= 300 K, we obtain a relatively high value for the power
factor PF=43 μW/cm·K2 that is in good agreement with recent measurements in La doped
thin films [196]. A secondary peak in PF is observed for the lowest temperature, this is
attributed to the kink in the DOS (see Fig. 3.1). This figure illustrates nicely the universal
character of the present theoretical approach for the TE properties in STO. It is important
to stress that, at T=300 K and over the whole range of carrier densities, our calculations
reveal that the scattering rate is controlled by C only. Thus, the conductivity is inversely
proportional to C and the Seebeck coefficient is independent on both parameters. Thus,
the crucial ingredients are (i) the realistic band structure and (ii) the T2/E dependence of
the e-e scattering rate.
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Figure 3.4: From [166]. Conductivity and Seebeck as a function of the carrier concentration
(n) at T = 300 K. From very dilute up to n.a3=0.20: Theory vs experiment. The inset shows
the calculated power factor PF (in μWcm−1K−2) for 3 different temperatures. Experimen-
tal data (symbols) have been extracted from ref. [192, 193, 195, 196, 197, 198, 199, 194] and
from our measurements. The nature of the dopant and material (bulk or film) is indicated
in the figure.

In the last section we discuss the T dependence of the resistivity (in metallic samples
only). Due to the e-e scattering mechanism, the resistivity can be accurately fitted by
R(T ) = R(0) + AT 2. Indeed, it has been shown recently by Lin et al. [201] that the T2

law persists down to very low concentration of dopants. Similar experimental results have
been reported as well in Ref.[202]. In Fig. 3.5 we plot the variation of A with the electron
density, but our concern here is the comparison between theory and experiment. Thus,
it is sufficient to restrict ourselves to data ranging from intermediate to heavy doping. In
Fig. 3.5, we find that the agreement is very good above n.a3=0.03. Beyond n.a3=0.08
doping, the variation of A with respect to n is very weak (almost flat). Below n.a3=0.03-
0.04, A varies very strongly as n is reduced, and a deviation from the measured values
is observed. Note however, that the data become very dispersed as seen for instance in
the 2% (n.a3=0.02) doped compounds. It should also be mentioned that the measured
carrier concentrations are not precisely known which could also contribute to the observed
deviation. In addition, at low carrier densities, the details and nature of the disorder may
play a role. From this figure we can conclude that the overall agreement is rather good.
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To conclude, in this study that combines theory and experiments we have addressed the
thermoelectric properties in electron doped SrTiO3. Our theory based on a realistic 3 bands
tight binding model that includes relevant scattering processes (weak disorder and e-e scat-
tering mechanism) captures qualitatively and quantitatively well the electronic transport
properties in these compounds. The agreement found between theory and experiments cov-
ers a wide range of concentrations, from very low to heavily doped. The results are weakly
sensitive to the dopant La, Nb, B and even Gd and to the nature of the material, thin
films or bulk. The calculations show that STO can already exhibit a relatively high power
factor of 43 μW · /cm · K2 at room temperature for about 10% doping. This is in good
agreement with recent experimental data. This study provides an efficient procedure to
explore new pathways to improve the thermoelectric properties in oxides and other families
of compounds. It should also facilitate the search for new dopants and allow for including
effects such as nanostructuration and localization.

3.2 Absence of confinement in (SrTiO3)/(SrTi0.8Nb0.2O3) su-
perlattices

Recent studies in nanostructured thermoelectric materials have opened interesting path-
ways towards materials exhibiting large ZT [57, 90, 203, 204, 205]. The main ideas behind
nanostructuring are twofold. First, it leads to quantum confinement of the carriers, induc-
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ing sharp peaks in the density of states, therefore giving rise to a simultaneous increase
of both the S and σ. Second, the nanostructuring suppresses κ by increasing the phonon
scattering. This strategy has for instance been applied to thin films superlattices such as
Bi2Te3/Sb2Te3 [206, 101], quantum dot superlattices PbSeTe/PbTe [207] and bulk alloys
BiSbTe [51]. However, achieving quantum confinement in superlattices is not a simple and
straightforward task [70]. As an example, it has been claimed in Ref. [208] that the strong
enhancement (with respect to the bulk compound) of both S and ZT in PbSeTe/PbTe
quantum dot superlattices originated from the quantum confinement. It has been shown
later [209], that the carrier densities were actually incorrect leading to a wrong interpre-
tation of the measured Seebeck coefficients. Therefore it has been concluded that this
PbSeTe/PbTe superlattice did not exhibit any confinement. Thus, experimental measure-
ments that do not constitute a direct probe of the confinement effects should be analysed
carefully.

Recently, it has been argued that resulting from the two dimensional carrier confine-
ment in (SrTiO3)x/(SrTi0.8Nb0.2O3)y superlattices (x and y are respectively the number of
undoped and Nb doped layers), giant Seebeck coefficients have been measured [210, 102].
In particular, in the extreme limit of a single Nb doped layer (y = 1 and x varies), the
measured S as a function of x could saturate at values almost 6 times larger than that of
the bulk material. In addition, it has been concluded that the critical barrier thickness
for quantum confinement was about 6.25 nm (16 unit cells of STO). However, it is impor-
tant to notice that the large increase of the Seebeck coefficient does not provide a direct
signature of the 2D quantum confinement. In this work, we demonstrate that the data
could be explained assuming the absence (or weakness) of quantum confinement in these
superlattices.

Figure 3.6: From Ref. [167]. (a) Schematic view of (STO)x(STO:Nb)y (b) Bulk band
structure from ab initio (continuous lines) and minimal tight binding (TB) model (pink
dashed lines). Green lines correspond to the valence band blue lines to the conduction

bands. (c) TB calculations of the density of states and reduced Drude weight
∼
D(E) =

�

σ0
D(E), Eb is the energy of the bottom of the conduction band. Vertical dashed lines

indicate the position of the Fermi level for various carrier concentrations.
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3.2.1 Theoretical modelling of the thermoelectric properties

In the previous section, we have shown that the thermoelectric properties of electron doped
STO (conductivity and Seebeck coefficient) could be well understood and reproduced within
the framework of a realistic Tight Binding (TB) Hamiltonian (3 t2g bands) that includes
electron-electron scattering mechanism and disorder treated in the Born approximation.
The hopping integrals of the TB Hamiltonian were directly extracted from ab initio based
studies. The Hamiltonian reads, Ĥ0 =

∑
k,α ε

0
α(k)c

†
kαckα where α denotes the orbital

index. The dxy band dispersion is ε0xy(k) = −2t1 (cos(kxa) + cos(kya)) − 2t2cos(kza) −
4t3cos(kxa)cos(kya), where a is the lattice parameter. The two other bands (dyz and dzx)
are obtained straightforwardly by a circular permutation of (x, y, z). The hopping param-
eters obtained from Wannier projections are t1=0.277 eV, t2=0.031 eV and t3=0.076 eV.
The electrical conductivity σ and the Seebeck coefficients S are calculated as in section 3.1,
using the same values of the fitting parameters C and W , and will be directly compared to
the existing and available experimental data. In Fig. 3.6 is plotted, (a) a schematic view of
the super-lattice structure, (b) the bulk band structure from ab initio (SIESTA) [112] and
from the minimal TB model and (c) the TB calculations for the bulk density of states and
reduced Drude weight. The position of the Fermi level for various carrier concentrations
per unit cell is also shown.

We now consider the scenario in which there is no 2D quantum confinement in the su-
perlattices (STO)x(STO:Nb)y. In order to calculate S we assume a uniform carrier density
per unit cell in the overall superlattice. Some indication that would support the absence
of confinement scenario are the experimental observations that suggest that Nb acts es-
sentially as an electron reservoir in STO. This is supported by several DFT studies that
show that the band structure, the density of states and appear to be weakly affected by the
substitution of Ti by Nb [211, 212, 213]. The Nb concentration per unit cell in the doped
regions in the measured samples is cD = 0.20 (Ref. [102]). Since we assume no 2D quantum
confinement, the additional electrons introduced by the Nb atoms in the doped regions dis-
perse in the entire compound, leading to a uniform carrier density per unit cell c = y

x+y cD,
which corresponds to the measured electron density denoted neobs in table 1 of Ref. [102].
Note that our conclusions would not be changed significantly if the carrier concentration
was not strictly uniform, but slightly modulated in the z-direction. The important point
is the absence of true quantum confinement, i.e. the electronic wavefunctions should not
decrease exponentially in the undoped regions. It is important to stress that from now on,
our theory is completely free of fitting parameters. We would like to emphasize that for
the temperature range considered here (300 K to 900 K), the Seebeck coefficient is almost
independent from both C and W . Thus, the only relevant physical ingredients are (i) the
details and accuracy of the band structure and (ii) the form of τth(T,E). If the electrons
are really confined in the growth direction in these superlattices, we should expect a strong
disagreement between our calculations and the experimental measurements, that would
completely invalidate our procedure.
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3.2.2 Ruling out the confinement scenario

In Fig. 3.7(a) the Seebeck coefficient at T=300 K in the super-lattice (STO)x(STO:Nb)y
is shown as a function of x for y = 1, 2 and 4. We clearly observe an overall good
agreement between the measured values and the calculated ones. In Fig. 3.7(b) the data
are now plotted as a function of c = y

x+y cD, we find that the experimental data are well
reproduced by the theoretical curve that assumes a uniform distribution of the carriers in
the superlattice. The experimental data points exhibit some dispersion that may reflect the
quality of the samples, the presence of native defects such as oxygen vacancies, dislocations,
interface defects/deformations, sample history and also the fact that the Nb concentration
may fluctuate from sample to sample.

In Fig. 3.8 we now focus on the effect of the thickness of the Nb doped region assuming a

Figure 3.7: From Ref. [167]. (a) Seebeck coefficient at T=300 K in (STO)x(STO:Nb)y=
1,2 and 4 and x varies from 0 to 50. Open squares are experimental data from Ref. [102],
the continuous lines are the TB calculations. (b) S as a function of c = y

x+y cD, where
cD = 0.20 (Nb concentration in the doped regions). The experimental data are extracted
from Refs. [194, 198, 199, 196]. The continuous line are the TB calculations.
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Figure 3.8: From Ref. [167]. Seebeck coefficient at T =300 K and 900 K in
(STO)x=17(STO:Nb)y as a function of y. Symbols are experimental data from Ref.
[102, 214] and continuous lines are the TB calculations.

fixed value for the undoped one. We have now plotted the Seebeck coefficient as a function
of y for two different temperatures, namely T=300 K and 900 K, the number of undoped
layers is set to x = 17. As we increase y the amplitude of the Seebeck coefficient decreases as
a consequence of the increase of the overall carrier density. We again find a good agreement
between the theory of a uniformly distributed electron gas and the experimental data, this
agreement is even excellent at room temperature. In addition, we expect a saturation of
the Seebeck coefficient for large y at SBulk(cD), which appears to be the case already for
y = 20.

In the next figure, Fig. 3.9, we now focus on the particular case of a δ-doped compound,
y = 1 for which a large increase of the Seebeck has been reported in Ref. [102, 214]. We plot
the enhancement factor | S

SBulk
| as a function of x and for two different temperatures (T= 300

K and 900 K) where SBulk refers to the 20% doped bulk material that corresponds to x = 0.
As mentioned above, the density of carriers can not be precisely tuned experimentally, as
a result of various mechanisms. Indeed, as seen from Hall measurements in Ref. [102],
the density of electrons per doped layer can fluctuate by as much as 30% from sample
to sample. Therefore, we include the effects of these variations by adding typically 1%
additional carriers per unit cell. To be more specific, we perform the calculations for
c = y

x+y cD + δc with δc up to 1% per unit cell. Note that performing realistic calculations
including defects such as oxygen vacancies or dislocations would be extremely complicated
and demanding (requires extremely large supercells) and would go beyond the scope of the
present manuscript. Let us now discuss the results. First notice that the experimental
data, for a given value of x, are sample sensitive especially for large x (see full squares and
empty squares), the enhancement factor can vary by about 20%. More generally, there
is some dispersion in the experimental data, especially strong around x = 10. However,
the agreement between theory and experiments is rather good, and even better at large
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Figure 3.9: From Ref. [167]. Enhancement factor | S
SBulk

| of the Seebeck coefficient in
(STO)x(STO:Nb)1 as a function of x for both T =300 K and 900 K. The filled region
indicate the effects of an additional concentration of carriers δc up to 1%. The experimental
data (symbols) are extracted from Refs [102, 214].

temperature. As expected, the effect of additional carriers becomes more pronounced as
we increase x. Thus, if δc is constant, it would result in the saturation of the enhancement
factor at large x but it should be noticed, that no critical or characteristic length-scale can
be extracted.

We now study the effect of temperature (it varies from T= 300 K to 900 K) on the
Seebeck coefficient S in the super-lattice (STO)x(STO:Nb)1, where x ranges from 0 (20%
doped bulk material) to 36. The results are depicted in Fig. 3.10. First, regarding the bulk
data (x = 0) we observe that the theory agrees very well with the data from Ref. [193].
The measured bulk data of Ref. [214] are slightly smaller and appear to fluctuate with
the temperature. Note that, for these data, the calculations would fit better assuming a
slightly larger Nb concentration of the order of 23% instead of 20%. On the other hand,
our calculated Seebeck coefficient agrees perfectly well with the experimental data for both
x = 1 and x = 3, for the overall range of temperature. For x = 9 the calculated Seebeck
coefficients are slightly larger (by 10-15%). However, assuming a small additional amount
of electrons (δc = 1% only), the agreement between theory and experiment now becomes
excellent. Note also, that adding a small concentration of electrons for both x = 1 and x = 3
would only weakly affect the results (the average concentration would only weakly change).
Regarding larger values of x (x = 25, 30 and 36) we first notice that the experimental
data strongly fluctuates with the temperature, the average carrier concentrations in these
superlattices are relatively low: 0.8%, 0.7% and 0.5% respectively. For δc = 0 the agreement
is good but the theoretical Seebeck coefficients are still slightly larger. However, by adding
just 0.25% of carriers, the agreement between theory and experiment becomes excellent.

At this stage, we have shown that the experimental data can be well explained quali-
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Figure 3.10: From Ref. [167]. Seebeck coefficient as a function of temperature in
(STO)x(STO:Nb)1, x varies from 0 (20% doped bulk material) to 36. Filled and open
symbols are experimental data from Ref. [214] and Ref. [193] respectively. Dashed and
continuous lines are the TB calculations. The shaded regions correspond to the effect of δc
up to 1% for x = 9 and δc up to 0.25% for x = 36. The effective concentration c = y

x+y cD
is also plotted in the figure.

tatively and quantitatively assuming the absence of carrier confinement. To complete our
demonstration, we now propose to analyse the effects of a full confinement of the electrons in
the doped regions. This is achieved by assuming infinite potential barriers at the interfaces
between doped and undoped regions. The calculated Seebeck coefficients (with and without
confinement) and the experimental data are depicted in Fig. 3.11. Let us first compare the
two theoretical scenarii. Starting from large values of the doped region thickness y (bulk
limit) clear opposite trends in the calculated Seebeck coefficients are visible as y is reduced
towards δ-doping. In the delocalized electron scenario, the Seebeck coefficient increases (in
absolute value) as y is reduced. In contrast, in the fully confined electron picture, |S| is
almost flat down to y = 5 and then is strongly reduced to values much smaller than that
of the bulk compound. As can clearly be seen, the apparent enhancement of the measured
Seebeck coefficient is only consistent with the absence of confinement scenario. In particu-
lar, for y = 1, the measured Seebeck coefficient was around 300 μV/K at 300 K and 400
μV/K at 900 K, while perfect confinement predicts only 25 μV/K at 300 K and 80 μV/K
at 900 K. The suppression of the Seebeck coefficient for y ≤ 5 in the confined scenario
results from the fact that the two out of plane orbitals (dxz and dyz) are sent to higher
energy. Mechanically, the carrier concentration in the lowest orbital increases, resulting in
an upward shift of the Fermi energy and thus a reduction of the Seebeck coefficient.

To conclude, we have demonstrated that the recently reported giant increase of the See-
beck coefficients in (SrTiO3)x/(SrTi0.8Nb0.2O3)y superlattices is fully consistent only with
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Figure 3.11: From Ref. [167]. Seebeck coefficient at (a) T =300 K and (b) 900 K in
(STO)x=17(STO:Nb)y as a function of y. Filled symbols (squares and circles) are experi-
mental data from Ref. [214]. The calculated Seebeck coefficients correspond to the green
continuous lines (no confinement) and diamonds (perfect confinement of the carriers in the
doped regions).

the absence of 2D quantum confinement of the carriers in the doped regions. Indeed, in
the electron confinement picture the opposite trend is found, namely the suppression of the
Seebeck coefficient. Our conclusion is further supported by the observation that the power
factor (σS2) measured in these superlattices is close to that of the bulk electron doped STO
[215]. It would be of great interest to confirm whether our scenario is correct by direct mea-
surements such as transverse resistivity, Angle Resolved Photoemission Spectroscopy, or by
a direct probe of the depth profile of the carrier concentration. Oxide based thermoelectric
superlattices are promising materials for high ZT devices but achieving a true 2D quantum
confinement requires (i) a suitable choice of dopant that has a drastic effect on the host
band structure in the vicinity of the Fermi level or (ii) a more appropriate choice for the
undoped compound.

3.3 Investigating the high-temperature thermoelectric prop-
erties of n-type rutile TiO2

As we have seen in the previous sections, despite an excellent room-temperature power
factor around 40μWcm−1K−2, optimization of bulk SrTiO3 by doping and nanostructuring
has been unable so far to yield figures of merit exceeding 0.5 [163]. Therefore, it is worth
studying the thermoelectric properties of other transition metal oxides that might equal of
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even surpass the performances of strontium titanate. Another well-known oxide compound
is TiO2, which comes in three naturally occuring phases: rutile, anatase and brookite. Of
these, rutile is particularly stable at high temperatures with a melting point around 2100K,
while anatase and brookite undergo a phase transition to rutile near 1000K. Additionally,
the carrier concentration of rutile can be tuned by doping with several elements such as
boron, niobium or cobalt, or by using reduction processes to introduce oxygen vacancies
acting as electron donors. [216, 217, 218, 219] Therefore, this compound would represent a
very promising prospect for waste heat recovery applications if its thermoelectric properties
could be optimized.[140]

In this section, we investigate the electron transport properties of n-type rutile TiO2

by combining first-principle calculations with a modelling of electron-phonon interactions
and donor defects. This method allows us to directly compare our results with reported
measurements of scattering rates, mobility, electrical conductivity, Seebeck coefficient and
power factor. TiO2 being a very polar material, it is known that strong interactions between
electrons and optical phonons in rutile give rise to the formation of intrinsic small polarons
at low temperature, i.e. the electrons are self-trapped by the surrounding deformation
of the lattice. [110] This behaviour has been observed both experimentally [220] and in
Density Functional Theory (DFT) calculations using hybrid functionals [221] or DFT+U
methodology. [222] On the other hand, the small polarons have been found to be highly
unstable at room-temperature and above. Several DFT calculations also find these states
to be only slightly favoured energetically compared to delocalized conduction states, with
an energy barrier hindering the localization of extended electrons. [223, 224] Furthermore,
the mobility predicted by the small polaron hopping mechanism is orders of magnitudes
lower than the experimental estimates in reduced samples. [225] The measured mobility
above 100K also decreases when the temperature is elevated, [226] suggesting conduction
band transport rather than small polaron hopping. Therefore, it is considered likely that
the transport properties at room-temperature and above are dominated by delocalized
electrons (large polarons) in the conduction band. For these reasons, we will investigate the
thermoelectric properties of rutile TiO2 assuming that the electrons are delocalized in the
conduction band. Although the standard Generalized Gradient Approximation functional
of Perdew, Burke, and Ernzerhof [123] (PBE) is unable to describe small polaron states,
it predicts the same band structure for the conduction band as the Heyd, Scuseria, and
Ernzerhof [227, 228] hybrid functional, that has been used to investigate small polarons.
[229] Therefore, we will compute the conduction band structure with the PBE functional,
and we will introduce parameters to model the electron scattering and mass renormalization
that are expected to result from strong electron-phonon coupling. These parameters will
be set by direct comparison with carrier lifetime and transport measurements.

3.3.1 Modelling electron transport in rutile TiO2

We perform ab initio calculations with the DFT package SIESTA [112] on the rutile
structure of TiO2 (see Fig 3.12). The GGA-PBE functional and Troullier-Martins norm-
conserving pseudopotentials [191] are used. We perform an optimization of the double-ζ-
polarized basis with the Simplex tool of the SIESTA package. The unit cell is relaxed to
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Figure 3.12: From Ref. [168]. Top: the conventional cell of rutile TiO2, where the grey and
red spheres represent the Ti and O atoms respectively. Bottom: The band structure and
density of states of the conduction band, from full DFT calculations (black lines) and from
Wannier projections (cyan lines and DOS).

forces less than 0.01 eV/Å and to a pressure less than 0.15 kbar. The self-consistent field
cycles have been performed with a Monkhorst-Pack of 4× 4× 4 k-points and a mesh cutoff
of 400Ry. We have checked that the band-structure predicted by the plane-wave based
DFT package Quantum ESPRESSO [113] is consistent with the results from SIESTA. The
electron dispersion and the density of states (DOS) of the conduction band are shown in
Fig 3.12. The black lines corresponds to the SIESTA results, and the cyan lines and the
DOS are calculated from Wannier projections of the Bloch states onto the 3d orbitals of the
Ti atoms, using the Wannier90 software. [128] The 10 Wannier orbitals (shown in Fig. 2.3)
can be classified as low-energy t2g-type and high-energy eg-type following the crystal field
classification. The partial density of states (PDOS) of the t2g and eg orbitals are shown in
Fig. 3.13. Although the lower half of the conduction band is overwhelmingly composed of
the t2g orbitals, there is still some weight from the eg ones at the bottom of the band, thus
it is necessary to take the ten of them into account in order to properly describe the band-
structure in the energy region of interest. In the Wannier basis, the Hamiltonian matrix
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elements with an amplitude lower than 1meV have been cut, which still yields an excellent
agreement with the full SIESTA band structure. Since the experimental bandgap of rutile
TiO2 is rather large (more than 3 eV), a description of the valence band is unnecessary for
the transport properties (we have checked that bipolar conduction is negligible in all our
results). The conduction band effective mass in the z direction is mz

b = 0.63me, while the
effective masses in the x and y directions are mx

b = my
b = 1.3me. There is some anisotropy,

but much less than in SrTiO3 in which the ratio of the effective masses is as high as 10.
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Figure 3.13: From Ref. [168]. The partial density of state (PDOS) associated with the t2g
and eg orbitals of the conduction band.

We calculate the electron transport properties of n-type rutile TiO2 within the frame-
work of the Boltzmann transport equation [89, 132] (BTE), using the relaxation time ap-
proximation (RTA), equations 2.51, 2.52 and 2.54. The Fermi level μF is determined by
integrating the DOS to find the correct electron concentration. The TDF is calculated
efficiently using the Drude formalism (see equation (2.57) and appendix D).

The description of the thermoelectric properties requires an accurate modelling of the
electron lifetime. It is especially important to get the correct temperature dependance since
we are interested in high-temperature power generation. The scattering rate �/τ has been
measured in Ref. [230] from 11K to 300K. It increases with temperature, exhibiting rather
high values around 80meV at room temperature (see Fig 3.14, left panel). The temperature
dependance between 100K and 300K is inconsistent with the typical 3

2 power-law of the
acoustic deformation potential mechanism, indeed a fit gives an exponent between 2.5 and
3. On the other hand, the large interaction between electrons and optical phonons can be
expected to dominate scattering in such a polar compound, provided that the optical modes
are sufficiently populated. [145] First-principle calculations [231] and inelastic neutron
scattering measurements [232] of the phonon spectrum in rutile TiO2 indicate the presence
of optical modes from 15meV to 100meV. Thus, longitudinal optical (LO) modes should
be populated at 300K and above, leading to a significant polar-optical scattering rate.
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Figure 3.14: From Ref. [168]. Left: the experimental (circles, Ref. [230]) and theoretical
scattering rate �/τ in meV. The theoretical values correspond to the bottom of the con-
duction band at the Γ point. Right: The experimental (circles, Ref. [226]) and theoretical
mobility μ in the z direction, in cm2V1 s−1.

Assuming a parabolic dispersion for the conduction band electrons and a flat one for the
LO branches, second order perturbation theory gives [141, 142]

�

τk,λ
=

2α√
εk,λ

∑
ν

(�ων)
3

2

[
NνArgsh

(√
εk,λ
�ων

)
(3.4)

+Θ(εk,λ − �ων) (Nν + 1)Argsh
(√

εk,λ
�ων

− 1

)]
,

where Θ is the Heaviside function, α is the Fröhlich coupling constant, ν is a branch
index running over the LO branches, ων is the Γ-point frequency of the branch ν and
Nν = 1/(eβ�ων −1) is the Bose-Einstein occupation factor. The first term inside the bracket
corresponds to the absorption of an optical phonon, while the second term is associated
with the emission of an optical phonon and thus requires the electron energy to be higher
than the optical mode frequency. For simplicity, we have included all optical modes in the
sum and divided the resulting scattering rate by 3. The optical mode frequencies, extracted
from Ref. [231], are listed in Table 3.1. We have also assumed α to be the same for all
modes, thus our scattering law depends only on this single parameter. To set the value of
α, we compare the calculated scattering rate at the bottom of the conduction band with
the experimental values between 100K and 300K. As shown in Fig. 3.14 (left panel), the
choice α = 0.85 leads to a good agreement between theory and experiment, thus validating
our assumption of dominant polar-optical electron scattering. This value corresponds to
a weak Fröhlich interaction with each phonon mode, which is consistent with the use of
second order perturbation theory. The scattering rate as a function of energy is shown in
Fig. 3.15 for several temperatures. The discontinuities in the derivative are caused by the
absorption processes that activate when the energy reaches the phonon mode frequency.
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branch �ω (meV)

1 14.4

2 16.2

3 22.2

4 24.7

5 46.8

6 50.4

7 52.2

8 53.0

9 56.1

10 59.6

11 60.5

12 62.7

13 78.9

14 102.2

15 104.7

Table 3.1: The optical mode frequencies used in the calculation of the electron scattering
rate.

The next step is to reproduce the experimental mobilities that have been measured
in Ref. [226] for the z direction. However, if we calculate the TDF from the ab initio
band-structure shown in Fig. 3.12, the predicted mobility is an order of magnitude higher
than the measurements, indicating a large transport mass renormalization of the delocalized
carriers due to electron-phonon interactions. This could seem surprising given the relatively
low coupling constant α = 0.85, but the conduction electrons in rutile TiO2 interact with
five different LO branches: in such cases, the effective coupling constant αeff for a one-
branch interaction is given by αeff =

∑
ν αν . [233, 234] This gives αeff = 4.25 which

corresponds to the intermediate to strong coupling regime, consistent with the existence of
small polarons and a large mass renormalization of the delocalized conduction electrons. A
natural question then arises whether the perturbative expression (3.4) should be valid, given
the strong overall electron-phonon interaction. It must be kept in mind that the delocalized
electrons in TiO2 are very close to a metal-insulator transition, since small polarons are
estimated to be slightly favoured energetically. In such cases, the single-particle properties,
such as the band mass and the scattering rate obtained from the spectral function, are not
critical quantities. However, the transport mass calculated from the conductivity can be
much more sensitive and may be considerably enhanced due to vertex corrections [141].
This scenario is our best hypothesis to resolve the apparent contradiction between a large
mass renormalization and the delocalized behaviour exhibited by electrons in rutile TiO2.
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Figure 3.15: From Ref. [168]. The electron scattering rate as a function of energy for several
temperatures.

To take this effect into account in the simplest way, we introduce the renormalization
parameters fz and fx = fy for transport in the z and xy directions, respectively. Only the
TDF is renormalized: Σi(E, T ) → Σi(E, T )/fi, and the electron mobilities are calculated
to be compared with experiment. As shown in Fig. 3.14 (right panel), the large value fz = 7
leads to an excellent agreement between theory and experiment. In the xy direction, the
measurements are reproduced by an even larger renormalization factor fx = fy = 23.5.
These values are comparable to the effective masses found in Ref. [226] by fitting the
transport measurements.

3.3.2 The thermoelectric properties from ambient to high temperatures

The transport properties can then be calculated as functions of the electron density n, and
compared with experimental measurements. We show in Fig. 3.16 (left panel) the room-
temperature electrical conductivity in the z direction (red), in the xy directions (green)
and in polycristalline materials (orange) for which an orientational average was taken.
Experimental data from Ref. [226, 235, 236, 217] are also plotted. The agreement between
theory and experiment is very good over a wide range of carrier concentration (five orders
of magnitude). In the right panel of Fig. 3.16 is shown the predicted Seebeck coefficient as a
function of the conductivity, together with experimental data rom Ref. [235, 236, 217, 218,
219]. Although the theory may somewhat underestimate the Seebeck coefficient in some
samples, overall it agrees well with experiments. This success of the theory at 300K confirms
that the electronic transport properties in rutile TiO2 are consistent with a band conduction
mechanism based on delocalized carriers, as opposed to small polaron hopping. Moreover,
it should be noted that renormalizing the DOS by the parameters fz and fx in addition
to the TDF would have lead to a large discrepency between the predicted and measured
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Figure 3.16: From Ref. [168]. Left: the predicted room-temperature electrical conductivity
in the z direction (red line), the xy directions (green line) and in polycristalline samples
(orange line), as a function of the carrier density n. Right: the predicted Seebeck coefficient
as a function of the conductivity for the same directions. The experimental data are taken
from Ref. [226] (circles), Ref. [235, 236] (squares), Ref. [217] (downward triangles), Ref. [218]
(upward triangles) and Ref. [219] (diamonds).

Seebeck coefficients. This supports our hypothesis that the large mass enhancement results
from vertex corrections and is absent from the one-particle properties.

As high-temperature generation is the main application prospect for TiO2 as a ther-
molectric material, it is crucial to accurately predict the transport properties between 300K
and 2000K. In Ref. [219], the electrical conductivity and Seebeck coefficients of reduced ru-
tile samples, subjected to spark plasma sintering (SPS) at different temperatures, have been
measured up to 523K. The conductivity displays a very weak temperature dependance,
even though the scattering rate (3.4) increases substantially with elevated temperature.
This suggests an activation mechanism for the number of electrons in the conduction band,
as confirmed by the Hall measurements in Ref. [226] that clearly show an increase of the car-
rier density with temperature. On the theoretical side, several first-principle calculations of
oxygen vacancies in rutile TiO2 find energetically favored electronic bound states localized
on neighboring Ti atoms. [224, 222, 221, 237, 238, 239] There is no consensus on the bind-
ing energy, although most experimental and theoretical estimates fall between 50meV and
200meV. The situation is similar for Ti interstitials, another important intrinsic defect,
[240, 241] and for extrinsic dopants such as Nb and F substitutions. [224]

To capture the effects of this activation mechanism in a simple and general way, we
model the presence of oxygen vacancies by adding localized defects levels inside the gap at
an energy ε in the DOS. Thus, TiO2−x is modeled by adding a term 4xδ(E− ε) in the pris-
tine DOS, while the TDF is unchanged (the impurity states have zero conductivity). The
total carrier density is set at 4x electron/cell (each oxygen vacancy is assumed to bring 2
electrons), leading to an activation mechanism with more and more carriers populating the
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Figure 3.17: From Ref. [168]. The predicted electrical conductivity (left), Seebeck coefficient
(center), and power factor (right) of polycristalline TiO2−x as a function of temperature
for x = 1.3× 10−4 (purple), x = 1.7× 10−3 (red) and x = 1.3× 10−2 (blue). The shaded
regions correspond to a binding energy ε = −150 ± 20 meV. The circles are experimental
data from Ref. [219] for three samples subjected to SPS at 1173K (purple), 1173K (red)
and 1173K (blue).

conduction band from the defect states as temperature is increased. We adjust the param-
eters ε and x to reproduce the experimental conductivities from the samples in Ref. [219]
subjected to SPS at 1173K, 1173K and 1173K. Fig. 3.17 show the polycristalline electri-
cal conductivity, Seebeck coefficient and power factor for ε = −150meV and three vacancy
concentrations x = 1.3× 10−4, x = 1.7× 10−3 and x = 1.3× 10−2. These values lead to a
rather good agreement with experimental data, and in particular they reproduce the weak
temperature dependance of the conductivities, Seebeck coefficient and power factor, thus
validating our approach. The important disparities in the predicted vacancy concentration
between samples (two order of magnitudes) reflect the measured resistivities that exhibit
similarly large variations.

The thermoelectric power factor σS2 of rutile TiO2 can now be calculated between 300K
and 2000K. Fig. 3.18 shows the predicted polycristalline PF as a function of the conduction
electron density for several temperatures (top) and as a function of temperature for sev-
eral oxygen vacancy concentrations (bottom). The optimum carrier concentration is quite
large around 0.2 electron/cell, corresponding to a maximum value of ≈ 1.15μWcm−1K−2

(see the inset). Unsurprisingly, a large number of oxygen vacancies (more than 10%) are
necessary to provide these carriers, but the activated conduction makes the power factor
very stable with temperature between 500K and 1800K. Still, 1μWcm−1K−2 is a rather
low value compared to other oxides such as SrTiO3, which has an optimum power factor
40 times larger at room temperature. This poorer performance of titanium oxide is likely
caused by two important features of TiO2. First, and as noted previously, its band struc-
ture exhibits only modest anisotropy due to its crystal structure. In SrTiO3, by contrast,
the t2g orbitals that make up the conduction bands are oriented along the crystal axis, thus
leading to a very two-dimensional character of electron transport. This is not the case in
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Figure 3.18: From Ref. [168]. Top: the polycristalline power factor σS2 as a function of
the electron density for several temperatures. Inset: the maximum PF as a function of
temperature. Bottom: the PF as a function of temperature for several oxygen vacancy
concentrations.

TiO2. Second, the electron-phonon interactions lead to a strong mass enhancement and to
a lower mobility in TiO2 than in SrTiO3, which is detrimental to the power factor.

The maximum value of the figure of merit zTmax in rutile can be roughly estimated
assuming an amorphous value κ ≈ 1Wm−1K−1 for the thermal conductivity, as was done
in Ref. [140] This leads to zTmax ≈ 0.15 around 1800K. This value is six times lower than
the estimate of Ref. [140], which aimed at comparing the different TiO2 phases and thus
did not include the temperature dependance of the scattering rate. Even accounting for the
occasional underestimation of the predicted Seebeck coefficient, we do not expect the figure
of merit to exceed 0.6, which is insufficient for widespread applications in power generation.
Therefore, if rutile TiO2 is to be useful as a thermoelectric material, significant changes in
its electronic structure must be engineered in order to boost the power factor beyond what
can be reached by simply increasing the carrier concentration.

In conclusion, we have investigated thermoelectric transport in n-type rutile TiO2

through a combination of ab initio calculations for the band-structure and model descrip-
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tions for the electron-phonon interaction and oxygen vacancies. The parameters for the
polar-optical coupling scattering rate, mass renormalization and defect binding energy were
set by a comparison between the predicted transport properties and the available experi-
mental measurements. A very good agreement between theory and experiment is obtained
over a wide range of carrier concentrations, supporting a band conduction picture of elec-
tronic transport at room-temperature and above. We predict a maximum power factor of
1.15μWcm−1K−2 reached at 900K for a large carrier density of 0.2 electron/cell, which
requires more than 10% oxygen vacancies in reduced samples. Such a low value of the
power factor leads to an estimate of around 0.15 for the maximum figure of merit if the
thermal conductivity is reduced to its amorphous limit. Therefore, the power factor must
be boosted significantly before rutile TiO2 can be widely used as a thermoelectric material
in power generation modules. This might possibly be achieved using quantum confinement
and energy filtering effects, for instance.
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Chapter 4

Dealing with disorder

Uniformity of opinion seems to require either a
reliable and thorough method to knowledge, or
the brazenly unacceptable: complete and utter
totalitarianism.

James. A. Lindsay,
Everybody Is Wrong About God.

In the previous chapter, we assumed that the systems under study were sufficiently
clean to neglect disorder or treat it as a small perturbation, using Fermi’s Golden Rule.
But, as we have seen in chapter 1, many strategies to enhance the figure of merit require
introducing strong disorder in the material. To reduce the thermal conductivity, for in-
stance, nanostructures and defects are often engineered in order to scatter off phonons, and
a full calculation of the scattering rate (beyond second-order perturbation theory) is nec-
essary to evaluate the success of the procedure (see section 6.2). Resonant defects, used to
optimize the power factor, are meant to distort the band structure and bring about signifi-
cant changes in the character of the electronic states, introducing impurity states, resonant
states, and sometimes even leading to Anderson localization effects (see section 5.3). In
such cases, the impurities and their effects must be treated explicitely. For electronic sys-
tems, the single-particle Hamiltonian should then be written Ĥ = Ĥ0 + Ĥd, with H0 the
clean Hamiltonian and Ĥd standing for the defects and impurities. Similarly for phonons,
the dynamical matrix can be written D = D0 + Dd. It is often natural and simple to
describe the perturbations Ĥd and Dd in real space as modifications of certain hopping
terms, on-site potential or interatomic force constants in the neighborhood of the defect
position. This makes real-space methodologies, based on tight-binding Hamiltonians or
dynamical matrices, particularly suited to deal with such disorder. In this chapter, we
will describe in particular the formalism of Green’s functions, a very powerful framework
to describe quantum dynamics and transport. Green’s functions are often introduced and
presented in the context of many-body physics, where they constitute the building blocks
of Feynman diagrams [141]. It is possible, however, to describe Green’s functions entirely
in the single-particle framework [242]. This is especially useful when the crucial challenge
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is disorder and not many-body interactions, as is the case here. Therefore, and although
some definitions and results that are valid in many-body will be presented, we will mostly
adopt single-particle notations throughout this chapter.

4.1 Impurity states and resonances: Green’s functions

Let us consider the case of a disordered electronic Hamiltonian Ĥ =
∑

μ εμc
†
μcμ, with εμ the

single-particle eigenstates and c†μ the creation eigenoperators, both a priori unknown. The
retarded, zero-temperature, many-body Green’s function for the eigenstate μ is defined as

Gμ(t) = − i

�
Θ(t) 〈0|{cμ(t), c†μ}|0〉 = − i

�
Θ(t) e−iεμt/�, (4.1)

where |0〉 is the vacuum state (no electron in the system) and cμ(t) is the annihilation
operator at time t in the Heisenberg representation. Physically, the state μ is created (or
destroyed) at time 0, left to propagate for a while and then destroyed (or created) at time t.
Thus, the Green’s function contrains informations about the quantum dynamics from time
0 to time t. Since we have chosen to propagate an eigenstate, this dynamics is not very
interesting: it is just a phase e−iεμt/�. The Heaviside factor ensures that no state propagates
backward in time, hence the adjective "retarded" for the Green’s function. Introducing
the evolution operator Û(t) = e−iĤt/�, the Green’s function is written in single-particle
notations

Gμ(t) = − i

�
Θ(t) 〈μ|Û(t)|μ〉 . (4.2)

Thus, it is possible to define the Green’s function operator Ĝ(t) and its energy-dependant
Fourier transform Ĝ(E) =

∫
dtĜ(t)eiEt/�:

Ĝ(t) = − i

�
Θ(t)Û(t) = − i

�
Θ(t)

∑
μ

e−iεμt/� |μ〉 〈μ| , (4.3)

Ĝ(E) =
1

E − Ĥ + iη
=
∑
μ

|μ〉 〈μ|
E − εμ + iη

, (4.4)

where η is an infinitely small positive imaginary part. The Green’s function (4.4) contains
as much information on the system as the Hamiltonian Ĥ. It may seem like we haven’t
done anything very useful by defining Ĝ(E), but as we will see in section 4.3, it is more
efficient to compute the exact transport properties of strongly disordered systems through
the Green’s function than by simply diagonalizing the Hamiltonian. Moreover, we will now
show that valuable single-particle informations, such as the density of states and relaxation
times, can be easily extracted from this formalism.

4.1.1 Single-particle properties: the self-energy

To simplify the discussion, let us consider a clean Hamiltonian Ĥ0 on a simple cubic lattice
with just one wannier orbital |�R〉 per site �R. It can be written in diagonal form in the basis
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of Bloch states |�k〉: Ĥ0 =
∑

i |�k〉 ε�k 〈�k|. The Green’s function of this clean system can be
defined:

P̂ (E) =
1

E − Ĥ0 + iη
=
∑
�k

|�k〉 〈�k|
E − ε�k + iη

. (4.5)

Suppose now that a concentration x of defects is introduced in the crystal, and that each
defect traps or repulses electrons with an on-site potential ξ. This perturbation can be
modeled by a disorder Hamiltonian Ĥd =

∑
�R |�R〉 ξ�R 〈�R|, where ξ�R is either equal to ξ if

the site is occupied by a defect (probability x), or to 0 if the site is unoccupied (probability
1− x). The full Hamiltonian, Ĥ = Ĥ0 + Ĥd is no longer diagonal in the Bloch state basis.
The Green’s function, however, simply writes

Ĝ(E) =
1

E − Ĥ0 − Ĥd + iη
= P̂ (E)

(
1− ĤdP̂ (E)

)−1
(4.6)

= P̂ (E) + P̂ (E)ĤdP̂ (E) + P̂ (E)ĤdP̂ (E)ĤdP̂ (E) + ...

The so-called T-matrix T̂ (E) can be defined by Ĝ(E) = P̂ (E) + P̂ (E)T̂ (E)P̂ (E), yielding

T̂ (E) = Ĥd + ĤdP̂ (E)Ĥd + ĤdP̂ (E)ĤdP̂ (E)Ĥd + ... (4.7)

Calculations of the T-matrix for a single defect are computationally feasible and yield
important informations about the electron-defect scattering rate in the dilute limit [242,
243]. However, when the amount of disorder is large, it becomes necessary to take into
account the scattering of electrons on multiple impurities.

If the phase coherence length of electrons is much smaller than the system size, the
electronic properties will be averaged incoherently over many parts of the system [244].
Thus, the physical quantities should be averaged over all disorder configurations. For
single-particles properties such as the density of states, it is sufficient to calculate the
disorder-averaged Green’s function 〈Ĝ〉(E) (things are different for the conductivity, see
section 4.2). The perturbation expansion (4.6) then becomes

〈Ĝ〉(E) =P̂ (E) +
∑
�R

P̂ (E) |�R〉 〈ξ�R〉 〈�R| P̂ (E) (4.8)

+
∑
�R,�R′

P̂ (E) |�R〉
〈
ξ�R 〈�R| P̂ (E) |�R′〉 ξ�R′

〉
〈�R′| P̂ (E) + ...

The term
∑

�R |�R〉 〈ξ�R〉 〈�R| is just the scalar
〈
ξ�R

〉
= xξ. The third term is more complicated.

The case �R = �R′ involves the quantities
〈
ξ2�R

〉
= xξ2 and 〈�R| P̂ (E) |�R〉 = P0(E), which

is independant of �R since the clean system is homogeneous. The case �R �= �R′ involves
the quantity

〈
ξ�Rξ�R′

〉
=

〈
ξ�R

〉 〈
ξ�R′

〉
= x2ξ2 (where it was assumed that different sites are

uncorrelated) and a restricted sum
∑

�R

∑ �R′ �= �R. If we ignore for now the restriction on
the sum (termed a multiple-occupancy correction), then the expansion (4.8) becomes

〈Ĝ〉(E) = P̂ (E) + P̂ (E)xξP̂ (E) + P̂ (E)xξ2P0(E)P̂ (E) + P̂ (E)xξP̂ (E)xξP̂ (E) + ... (4.9)
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It is convenient to visualize this expansion using Feynman diagrams, as shown in Fig. 4.1.
The solid lines represent the unperturbed Green’s function P̂ (E) describing free electron
propagation, while the dashed lines represent successive scattering on impurities.

+ + +

+ +

+ + + + ...
Figure 4.1: A diagrammatic representation of the perturbation expansion (4.9).

The series can be resummed by noticing that certain diagrams are just combinations
of simpler diagrams linked by P̂ (E). Those diagrams that cannot be separated into two
diagrams by cutting just one solid line are called irreducible. Summing all those irreducible
diagrams with their external legs removed, as shown in Fig. 4.2, gives a very important
operator called the self-energy π̂d(E). The link between the Green’s function and the
self-energy is called Dyson’s equation:

〈Ĝ〉(E) = P̂ (E) + P̂ (E)π̂d(E)P̂ (E) + P̂ (E)π̂d(E)P̂ (E)π̂d(E)P̂ (E) + ... (4.10)

= P̂ (E) + P̂ (E)π̂d(E)〈Ĝ〉(E).

Note that, contrary to the T-matrix, the Dyson equation implies an infinite number of
impurities, and thus an infinite system. Since the disorder average restores the translation
invariance, 〈Ĝ〉(E) and thus also π̂d(E) are diagonal in the Bloch states basis. The Dyson
equation implies

〈Ĝ〉(E) =
1

E − Ĥ0 − π̂d(E) + iη
=
∑
�k

|�k〉 〈�k|
E − ε�k − πd

�k
(E) + iη

. (4.11)

The meaning of the self-energy can be further illuminated by defining another important

+ + + ...+
Figure 4.2: A diagrammatic representation of the self-energy.
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quantity, the spectral function A(�k,E):

A(�k,E) = − 1

π
Im

( 〈�k|〈Ĝ〉(E)|�k〉 ) = ∑
μ

∣∣ 〈�k|μ〉 ∣∣2δ(E − εμ
)

=

⎧⎪⎨⎪⎩
1
π

∣∣Im(πd
�k
(E)

)∣∣
(
E−ε�k−Re

(
πd
�k
(E)

))2

+Im
(
πd
�k
(E)

)2 if Im
(
πd
�k
(E)

) �= 0

δ
(
E − ε�k − Re

(
πd
�k
(E)

))
if Im

(
πd
�k
(E)

)
= 0

(4.12)

A(�k,E) represents the energy distribution of the Bloch state |�k〉, and accordingly it obeys
the sum rule

∫
dEA(�k,E) = 1. It can be measured by angle-resolved photoemission spec-

troscopy (ARPES) experiments. In the clean case, it is simply a Dirac delta centered on
ε�k, describing the fact that |�k〉 is an eigenstate with energy ε�k. In the presence of disorder,
the real part of the self-energy shifts the Dirac delta from ε�k to another value ε̃�k, while
the imaginary part broadens it into a approximately lorentzian shape, with a width at
half-maximum γd = 2

∣∣Im(
πd
�k
(ε̃�k)

)∣∣, (see Fig. 4.3). This is associated to a time evolution

e−iε̃�kt/�e−γt/2� for the amplitude of the |�k〉 state, and to a decay e−γt/� for its norm. Thus,
in a Boltzmann picture, the presence of disorder can be associated to a lifetime τ�k for the
plane-wave excitations, with

�

τ�k
= 2

∣∣Im(
πd
�k
(ε̃�k)

)∣∣. (4.13)

Summing the spectral function over the N Bloch eigenstates |�k〉 gives the disorder-averaged
density of states (DOS) ρ(E)

ρ(E) = − 1

Nπ
Im

(
Tr〈Ĝ〉(E)

)
=

1

N

∑
�k

A(�k,E). (4.14)

 disordered
system

E

clean
system

E
Figure 4.3: A sketch of the spectral function in clean (left) and disordered systems (right).
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Thus, the averaged Green’s function and the self-energy contain extremely useful infor-
mation about the single-particle properties of the system. Certain transport properties,
however, are not captured by these quantities and require averaging over a product of two
Green’s functions, as will be explained in section 4.2.

It is instructive to examine the physical meaning of the diagrams appearing in the
expansion of Fig. 4.2. In each diagram, the number of dots corresponds to the power of the
defect concentration and the number of dashed lines to the power of the on-site potential ξ.
Therefore, when both x and ξ are small, it is necessary to include only the first diagrams.
The very first one simply gives xξ for the self-energy. It just shifts the entire spectrum by
this quantity, without giving any scattering. This approximation, called the virtual crystal
approximation (VCA), is equivalent to taking the average of the Hamiltonian Ĥ before
calculating the properties of the system. To obtain a scattering rate, it is necessary to
go to second order and include the second diagram, which gives a self energy xξ2P0(E).
Taking the imaginary part gives a scattering rate �

τ�k
= 2πxξ2ρ0(ε�k), with ρ0 the DOS of

the clean system. This is nothing but Fermi’s golden rule, recovered through the Green’s
function formalism. If the defect concentration x is small but not the on-site potential
ξ, an infinity of diagrams must be included. Those associated with the lowest-order in
x are the single-impurity diagrams, such as the first three in Fig. 4.2. Summing up all
the single-impurity diagrams is called the "bare single-site approximation" [245] (the word
"bare" means that the multiple-occupancy corrections are not included. It yields for the
self-energy and scattering rate:

πd
�k
(E) =

xξ

1− ξP0(E)
, (4.15)

�

τ�k
=

2πxξ2ρ0(ε�k)∣∣1− ξP0(ε�k)
∣∣2 . (4.16)

These expressions contain important features of strong disorder. There are three cases,
depending on the relative amplitude of ξ to the half-bandwidth W of the clean DOS (see
Ref. [242] for more details):

• If |ξ| is small with respect to W , then the numerator in equations (4.15) and (4.16)
can be ignored and Fermi’s golden rule is valid.

• As |ξ| becomes comparable to W , there is an energy inside the band for which the
real part of 1−ξP0(E) vanishes. This may lead to a peak in the scattering rate, called
resonant scattering. It is typically associated with a resonant bump in the DOS at
this energy.

• There is a crossover at a certain value ξc ≈ W . If |ξ| > ξc, there is an energy outside
the band for which 1 − ξP0(E) vanishes and the self-energy becomes infinite. From
the case Im

(
πd
�k
(E)

)
= 0 of equation (4.12), an impurity band forms below (if ξ < 0))

or above (if ξ > 0)) the main band. It is made up of states localized around the
defects. In the limit |ξ|/W → ∞, the spectral function outside the clean band tends
to A(�k,E) ≈ xδ(E − ξ).
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(a) An example of DOS given by the ATA in
the presence of resonant states.
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(b) An example of DOS given by the ATA in
the presence of impurity states.

Figure 4.4

The typical shape of the DOS in the presence of resonant and impurity states is shown
in Fig. 4.4. Including the multiple-occupancy corrections in the single-site approximation
simply adds a factor 1−x to P0(E) at the denominator of equations (4.15) and (4.16). This
is called the average T-matrix approximation (ATA). The nested diagrams, such as the last
one in Fig. 4.2, can be included in the self-energy by replacing the clean Green’s functions
P̂ (straight lines) in Fig. 4.2 by the full Green’s function 〈Ĝ〉. This procedure, known as
the coherent potential approximation (CPA), yields a self-consistent equation that can be
solved numerically [246]. Note that all these procedures lead to a scalar, i.e. �k-independant
self-energy.

Although we have defined the self-energy for a particular type of defects, it is a very
general concept and can be used to describe different forms of disorder. The case of a
lorentzian disorder, for instance, has a particularly simple solution: if the potential on each
lattice site is given by a lorentzian distribution with a broadening Γ, then the self-energy is
just −iΓ [247]. This type of disorder does not give rise to resonant or impurity states, but
only to a uniform broadening of the clean eigenstates. An inelastic self-energy can also be
defined for many-body interactions, such as electron-phonon or electron-electron scattering
[141]. Therefore, a simple way to include these interactions in the problem of disordered
conductors is to add an inelastic self-energy Σin = −iγin/2, where γin is the electron-phonon
or electron-electron scattering rate.

4.1.2 The phonon Green’s function

The problem of harmonic vibrations in a disordered crystal can also be tackled with the
formalism of Green’s functions. The dynamical matrix can be decomposed between a clean
part D0 and a disorder part Dd. We could define, by direct analogy with the electron
case, the phonon’s Green function as − i

�
Θ(t) 〈0|

[
aμ(t), a

†
μ

]
|0〉, where a†μ is the phonon

creation eigenoperator defined in equation (2.31), and |0〉 is now the phonon ground state

83



(no excitations of the vibration modes). However, this would lead to a time evolution
e−ωμt involving the eigenfrequency and thus the square root of the dynamical matrix. It
is possible to proceed in this way [248], but the square root leads to numerical issues in
real-space representation. It is more convenient [249, 245] to define the phonon Green’s
function using the reduced position operators Ûμ introduced in section 2.1.3

Gμ(t) = − i

�
Θ(t) 〈0|

[
Ûμ(t), Ûμ

]
|0〉 = −Θ(t)

ωμ
sin(ωμt), (4.17)

and its Fourier transform Gμ(ω) =
∫
dtGμ(t)e

iωt:

Gμ(ω) =
1

2ωμ

(
1

ω − ωμ + iη
− 1

ω + ωμ + iη

)
=

1

ω2 − ω2
μ + 2iωη

, (4.18)

where η is again an infinitely small positive imaginary part. By analogy with the electron
case, we can consider the dynamical matrix and the phonon Green’s function as operators
on a Hilbert space of dimension 3N (with N the number of atoms in the system):

Ĝ(ω) =
∑
μ

|μ〉 〈μ|
ω2 − ω2

μ + 2iωη
=

1

ω2 − D̂ + 2iωη
(4.19)

where D̂ is the dynamical matrix and |μ〉 is an eigenvector of D̂. Technically, |μ〉 should
be considered not as an eigenstate of the Hamiltonian (2.30), but simply as the coefficients
Aα

i μ describing the vibration eigenmodes. The expression (4.19) is in complete formal
analogy with the electron Green’s function (4.4). This allows electrons and phonons to be
treated on equal footing, with the same analytical and numerical techniques. It is possible,
therefore, to introduce a self-energy π̂d(ω) and a spectral function As(�k, ω) for phonons
(here s denotes the branch index). To give these quantities the same interpretations and
usefulness as their electronic counterparts, the disorder-averaged Green’s function should
be expressed as

〈Ĝ〉(ω) = 1

ω2 − D̂0 − 2ωπ̂d(ω) + 2iωη
=
∑
�k,s

|�k, s〉 〈�k, s|
ω2 − ω2

�ks
− 2ωπd

�ks
(ω) + 2iωη

, (4.20)

and the spectral function should be defined as

As(�k, ω) = −2ω

π
Im

( 〈�k, s|〈Ĝ〉(ω)|�k, s〉 ) = ∑
μ

∣∣ 〈�k, s|μ〉 ∣∣2 (δ(ω − ωμ

)
+ δ

(
ω + ωμ

))
.

(4.21)
The spectral function is symetric in ω, so broadening the Dirac delta should be done
carefully at low frequencies. It obeys the sum rule

∫∞
−∞ dωAs(�k, ω) = 2. The phonon DOS

ρ(ω) can then be defined as

ρ(ω) = − 2ω

3Nπ
Im

(
Tr〈Ĝ〉(ω)) = 1

3N

∑
�ks

As(�k, ω). (4.22)

Table 4.1 summarizes the correspondance between the electron and phonon Green’s func-
tions.
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electrons Green’s function phonon Green’s function

Hamiltonian Ĥ dynamical matrix D̂

energy E pulsation squared ω2

self energy π̂d(E) 2ω times self-energy 2ωπ̂d(ω)

Bloch eigenstate |�k, n〉 Bloch eigenvector |�k, n〉
spectral function A(�k,E) = − 1

π Im
( 〈�k|〈Ĝ〉(E)|�k〉 ) spectral function −2ω

π Im
( 〈�k, s|〈Ĝ〉(ω)|�k, s〉 )

DOS ρ(E) = − 1
Nπ Im

(
Tr〈Ĝ〉(E)

)
DOS ρ(ω) = − 2ω

3Nπ Im
(
Tr〈Ĝ〉(ω))

Table 4.1: The important quantities related to the electron and phonon Green’s function.

4.2 Quantum linear transport and localization: the Kubo for-
malism

We will now present a fully quantum formalism of electronic transport in disordered systems,
known as the Kubo formalism [250, 157, 141, 244]. Our goal is to calculate the transport
distribution function (TDF) without making any semi-classical assumption as was done in
the Boltzmann transport approach (section 2.2.1). This will be achieved by calculating the
electrical conductivity while neglecting all many-body interactions. The effects of electron-
electron and electron-phonon scattering can be reintroduced later by adding an inelastic
self-energy in the Green’s function. This allows us to focus on the disorder effects within
the single-particle framework. Fig. 4.5 illustrate the situation to be described: a large,
disordered sample is contacted by two (or more) leads and subjected to an electric field �E.
For our purpose, the leads can be modelled by perfectly clean, semi-infinite conductors.

It is useful at this point to provide a more careful definition of the electrical conductivity.
In quantum physics, the current density at position �r is an operator �̂j(�r), whose expression is
discussed in appendix B. The electrical conductivity is a tensor σij(ω,�r, �r′) that relates the
Fourier component of the expectation value of the current density to that of the electrical
field:

ji(ω,�r) = Tr(ρ̂(t)ĵi(ω,�r)) =
∑
j

∫
d�r′σij(ω,�r, �r′)Ej(ω,�r), (4.23)

where i and j are direction indices and ρ̂(t) is the density matrix. The Kubo formalism
provides an expression for the conductivity tensor derived from quantum linear response
theory. At time t = −∞, the system is assumed to be unperturbed in equilibrium. The
density matrix at that time, ρ̂0, is just the grand-canonical density matrix. Then, a small
electric field is adiabatically switched on, creating a current. It can be chosen to derive
from a vector potential

Ai(t, �r) =

∫
dω

2π

Ei(ω,�r)

i(ω + iη)
e−i(ω+iη)t, (4.24)

where a small positive imaginary part η has been introduced to force the adiabatic turn-on.
Since we are interested only in the steady-state regime, the limit η → 0 should be taken
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Figure 4.5: An illustration of the system in which electron transport takes place.

in the final result. Time-dependant quantum perturbation theory gives a linear-response
expression for the conductivity tensor in terms of the continuous eigenstates |α〉 of the
entire system including the leads (see appendix C and Ref. [250]) :

σij(ω,�r, �r′) = i

∫
dα

∫
dβ

f(εα)− f(εβ)

εβ − εα

〈α|ĵi(�r)|β〉 〈β|ĵj(�r′)|α〉
ω + εα−εβ

�
+ iη

, (4.25)

where η is an infinitely small imaginary part, εα is the energy associated to |α〉, f(E) is the
Fermi-Dirac distribution and it must be specified that when εα = εβ , the fraction f(εα)−f(εβ)

εβ−εα

should be replaced with − ∂f
∂E (εα). In the absence of magnetic fields, this expression can be

recast in terms of the Green’s function Ĝ of the entire system, leads included:

σij(ω,�r, �r′) =
�

π

∫
dE

f(E)− f(E + �ω)

�ω
Tr

(
ĵi(�r)Im Ĝ(E + �ω) ĵj(�r′) ImĜ(E)

)
. (4.26)

Of course, this formula cannot be implemented in practical calculations since the Green’s
function involves the Hamiltonian of the leads, which is an infinite matrix in tight-binding
representation. However, as demonstrated in Ref. [156], the left and right leads can be
"integrated out" by introducing non-hermitian self-energies operators π̂L and π̂R into the
Green’s function of the sample alone, without the lead i.e. with open boundary conditions.
The trace in equation (4.26) can then be taken on the sample sites only, and the Green’s
function Ĝ can be replaced with

ĜLR(E) =
1

E − Ĥ − π̂L(E)− π̂R(E) + iη
, (4.27)

where η is again infinitely small. If the Green’s function (4.27), with the correct self-energies
for the leads, is plugged into the Kubo formula (4.26), then the results are equivalent to
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those predicted by the Landauer formalism or by the non-equilibrium Green’s function
(NEGF) method in the linear regime [156, 251]. It is a rigorous procedure to study electronic
transport in the ballistic or ballistic-to-diffusive regime. In the context of thermoelectric
power generation, however, the samples are typically a few millimeters long. For these
system sizes, the regime for electron transport is squarely diffusive, and the leads should
not enter the modelling and influence the simulation results. In other words, we will only
be interested in the thermodynamic limit. For this reason, we will neglect the self-energy
operators and only use the usual Green’s function (4.4). An immediate issue arises from
this choice: in finite systems, this gives either a vanishing or an infinite conductivity due
to the delta functions contained in the imaginary part of the Green’s function (4.4). It
simply reflects the fact that no dissipation mechanism is present in the system. One was
provided by the leads through the self-energies π̂L and π̂R, but now we have removed them.
A solution is to reintroduce the electron or phonon bath as an energy sink through electron-
electron or electron-phonon scattering. This can be achieved by adding an inelastic self-
energy Σin = −iγin/2 into the Green’s function, defining a dephasing lifetime τin = �/γin
after which the electrons loose their coherence and memory of past collision events. If the
disorder is strong enough such that the transport along a sample of length L is diffusive, a
relevant energy scale is the Thouless energy ET = �De/L

2, with De the electronic diffusivity
[252]. The thermodynamic limit is reached if γin 
 ET or, equivalently, if L 
 √

Deτin
i.e. the sample is much longer that the typical distance covered by an electron before
phase relaxation. In the case of weak disorder and ballistic transport, the Thouless energy
should be replaced by the inverse time-of-flight �vF /L, with vF the Fermi velocity, and
the criterion for the thermodynamic limit simply becomes L 
 vF τin. Note that this
last condition implies that the conductance of the system is much lower than the ballistic
Landauer conductance (2.79). To summarize: if the sample length in the transport direction
is smaller than the phase relaxation length, then the leads and the boundary conditions have
a physical influence on the conductivity. If it is larger, then the leads can be ignored and
the system is unsensitive to the boundary conditions, open or periodic. We will generally
choose periodic boundary conditions as they make size effects easier to eliminate. As for
the width of the sample in the transverse direction, it should be large enough to make the
separation of the discrete energy levels much smaller than the broadening γin.

Our formula for the TDF can finally be written. We are not interested in the spatial
distribution of the current inside the sample, so we average the current density over the
whole sample, in the presence of a uniform electric field. The current density integrated
over the sample is simply the velocity operator times the electron charge (see appendix B):∫

d�r ĵi(�r) = −ev̂i = − e

i�

[
r̂i, Ĥ

]
, (4.28)

with r̂i the position operator along direction i. In the static (ω → 0) limit of the Kubo
formula, the factor f(E)−f(E+�ω)

�ω becomes − ∂f
∂E . Thus, the TDF is given by

Σi(E) =
�e2

πΩ
〈Tr(ImĜ(E) v̂i ImĜ(E) v̂i)〉, (4.29)

where Ω is the sample size and the brackets denote disorder averaging. Since the sample is
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chosen much longer than the phase relaxation length, the average over disorder configura-
tions is typically redundant and only a few or even one configuration is sufficient.

4.2.1 Anderson localization

If the averaged Green’s function (4.11) has been calculated, using for instance ATA or
CPA methods, it can be plugged into the kubo formula (4.29) to obtain an estimation of
the TDF. In the case of weak, perturbative disorder, this procedure recovers the result
predicted by the Boltzmann transport equation under the relaxation time approximation
(RTA), equation (2.54) [141]. However, this method makes an important approximation
because it replaces the disorder averaged product of two Green’s functions by a product
of two disorder averaged Green’s functions, and in doing so neglects the off-diagonal terms
of Ĝ(E) in the �k basis. A diagrammatic expansion of the Kubo formula is shown in
Fig. 4.6, featuring so-called bubble diagrams in which the Green’s functions loop due to
the trace. The thick shaded lines represent the full, disordered Green’s function, the solid
lines represent as before the unperturbed Green’s function P̂ (E), and the brown squares
represent the v̂i operators. Taking the product of the disorder averaged Green’s functions
take the first three diagrams into account, but not the last two, which are called vertex
diagrams or vertex corrections. These diagrams feature impurity scattering connecting the
Green’s functions on the opposite sides of the bubble. Because they incorporate the �k-space
off-diagonal elements of the Green’s function into the conductivity, they keep track of the
efficiency with which the defect scattering events scramble the momentum of the carriers
[141]. They also contain the effects resulting from coherent interference between the two
Green’s functions. In particular, diagrams such as the last one in Fig. 4.6, in which crossed
scattering lines feature prominently, include the phenomenon of Anderson localization.

+ +

+ + + ...

Figure 4.6: A diagrammatic representation of the Kubo formula. The thick shaded lines
represent the full disordered Green’s functions.

Anderson localization denotes the spatial localization of eigenstates in a strongly disor-
dered system, in the sense that the wavefunction is not extended but decays with distance
as e−||�r||/ξl , where ξl is the so-called localization length [253, 254, 242]. It is considered here
in the context of electrons in solids, but it is a general phenomenon of waves propagation in
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Figure 4.7: A sketch of a disordered density of states. The localized region in grey is
associated with vanishing conductivities at zero temperature. It is separated from the
extended region in green by mobility edges (black dashed lines).

strongly disordered media. The localization of electronic wavefunctions results from the fact
that constructive interferences from collision events involving two or more impurities survive
the disorder averaging only when the initial and final momenta are opposite (backscatter-
ing processes). A rule of thumb for evaluating the importance of localization corrections to
the conductivity is the Ioffe-Regel criterion, that compares the Fermi wavevector kF to the
disorder mean free path le. If kF le 
 1, the mean free path is much greater than the wave-
length and quantum interferences effects may be neglected. If not, localization effects are
likely to come into play. This criterion is consistent with perturbative calculations (weak
localization corrections) in three-dimensions, but breaks down in one and two dimensions
[254, 242]. The DOS of a typical disordered system is shown in Fig. 4.7. At the edges of
the bands, the states are localized in keeping with the Ioffe-Regel criterion. Then, at higher
Fermi energies, the wavelength becomes smaller than the mean free path and the states
loose their localized character. The localized part of the spectrum is characterized by a
vanishing conductivity at zero temperature, as the localized eigenstates cannot transport
electrons. The limit between the two regions called the mobility edge Ec. If the Fermi level
crosses the mobility edge, a disorder-induced metal-insulator phase-transition occurs. Like
other phase transitions, the Andersion transition exhibits universal characters: the exis-
tence of mobility edges and the critical exponents do not depend on the particular type of
disorder. If the disorder strength is increased, the mobility edges move towards the center
of band. Eventually, they merge as a critical disorder strength is reached, and the entire
spectrum becomes localized. It is worth noting that in one and two-dimensional systems,
this is always the case. There is no mobility edge and the entire spectrum is localized, no
matter how weak the disorder.
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Since Anderson localization arises from quantum interferences between two or more im-
purities, the presence of dephasing inelastic processes, such as electron-electron or electron-
phonon scattering, tend to destroy localization effects. Thus, the introduction of an imag-
inary self-energy Σin = −iγin/2 leads to finite conductivities in the localized regions of
the spectrum, even at zero temperature. This is in violation of Matthiessen’s rule (equa-
tion (2.64)), which predicts that the conductivity is always decreased by the addition of
scattering processes.

4.3 Practical calculations and numerical methods

Despite the elegance of the formalism presented in the previous sections, it is difficult to
carry out analytical calculations on realistic models for electrons and phonons in the pres-
ence of disorder. Therefore, numerical simulations must be employed in order to formulate
quantitative predictions. In this section are presented the practical methodologies that we
use to compute the properties of disordered systems (we will focus on electrons for the sake
of simplicity, but the case of phonon is analogous, see section 4.1.2). They constitute an
exact treatment of disorder, in the sense that every diagram is included in the expansion of
the Kubo formula, Fig. 4.6. They are real-space approaches, meaning that the Hamiltonian
is always manipulated in the basis of Wannier orbitals as opposed to the Bloch basis. This
tight-binding representation is particularly suited to the study of disorder, since defects
and impurities can be readily modeled by their local influence on the on-site potentials and
hopping terms of neighboring orbitals.

4.3.1 Exact diagonalization

Perhaps the simplest and most natural approach in dealing with disordered systems is exact
diagonalization (ED). In principle, it is possible to store the full Hamiltonian matrix for a
given disorder configuration into an array and then to diagonalize it using dedicated linear
algebra libraries such as BLAS and LAPACK. This would give access to the eigenstates and
eigenvalues, and from these to all the properties of the system. The quantities of interest,
say the conductivity, could be computed from each configuration and then averaged. In
practice, however, the size of the systems that can be studied by this approach is severely
limited. For a cubic system composed of L3 unit cells, the diagonalization of the Hamilto-
nian scales as L9. Thus, the maximum length attainable through ED is typically L ≈ 30
unit cells. For samples of this size, the transport regime is generally not diffusive and the
absence of leads in the simulation is likely to produce unphysical size effects.

It is still possible, however, to extract meaningful physical information from the diag-
onalization of small systems. The scaling of the eigenstate wavefunctions with increasing
system size, for instance, yields clear indications about the presence or absence of Ander-
son localization. Let us consider for simplicity a d-dimensional lattice with one orbital per
unit cell and a normalized eigenstate |μ〉 = ∑

�R cμ�R
|�R〉. For extended states such as Bloch

states, the coefficients cμ�R
in the Wannier basis scale as 1/L

d

2 . For localized states, on the
other hand, they can be considered independant of the system size if L is greater than the
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localization length ξl. It can be roughly considered that cμ�R
= 1/ξ

d

2

l in a box of size ξdl
and vanishes outside the box. A useful quantity to define is the inverse participation ratio
(IPR) [255, 256]. The IPR for the engeinstate |μ〉 is defined as

IPRμ =
∑
�R

∣∣∣cμ�R∣∣∣4 . (4.30)

For extended states, we expect IPRμ ∝ 1/Ld and for localized states IPRμ ≈ 1/ξdl if L 
 ξl.
Thus, a finite size study of the IPR should provide a robust indication on the extended or
localized character of the eigenstates at a given Fermi energy.

Another quantity of interest that can be evaluated through ED is the diffusivity, as was
done in Ref. [156]. For a degenerate conductor, the electronic diffusion coefficient along
direction i Di

e can be defined by the Einstein relation Σi = e2ρDi
e, where ρ is the DOS

per unit volume at the Fermi level. Expressing the Kubo formula (4.29) in terms of the
eigenstates |μ〉 yields

Σi = e2〈 1
Ω

∑
μ

δ(E − εμ)D
i
μ〉, (4.31)

with
Di

μ = π�
∑
ν

∣∣〈μ|v̂i|ν〉∣∣2 δ(εμ − εν). (4.32)

The quantity Di
μ can be interpreted as the diffusivity for the eigenstate |μ〉 in direction

i. As indicated by the presence of delta peaks, this expression was obtained assuming no
inelastic self-energy in the Green’s function, i.e. without any electron-electron or electron-
phonon scattering. To estimate the value of Di

μ at the thermodynamic limit, we broaden the
delta peaks into lorentzians of half-width η, with η typically a multiple of the average level
separation. This is just a trick to simulate infinite systems without inelastic scattering,
and no physical meaning can be attached to η. Therefore, the values obtained for the
diffusivities through ED represent an upper limit to the actual diffusivity, which can be
decreased by inelastic processes in extended regions of the spectrum.

4.3.2 The Chebyshev Polynomial Green’s Function method

A powerful method to compute quantities dependant on disordered Green’s functions con-
sists in using Chebyshev polynomials. This methodology has been pioneered by J. Wheeler,
M. Prais and C. Blumstein [257] and has been developped in the context of electronic trans-
port and magnetic interactions by D. Mayou and S. Roche [258, 259, 260]. Excellent reviews
have been published in Ref. [261] and Ref. [262], the latter of which presents a recent for-
mulation, known as the Chebyshev Polynomial Green’s Function method (CPGF), that we
will use in this work. The central idea is to expand the Green’s function Ĝ(E) on the or-
thogonal basis of Chebyshev polynomials of the first kind Tn(x) = cos(n arccos(x)). Since
they are defined only for x ∈ [−1, 1], this requires rescaling the energies E → Ẽ and the
Hamiltonian Ĥ → ˜̂

H so that the spectrum falls between −1 and 1. The Green’s function
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can then be expressed as a semi-analytic series:

Ĝ(Ẽ) =

∞∑
n=0

gn (z̃)Tn(
˜̂
H), (4.33)

where z̃ = Ẽ + iη̃ and

gn(z̃) = −i (2− δn,0)

(
z̃ − i

√
1− z̃2

)n

√
1− z̃2

. (4.34)

It is instructive to visualize the imaginary part of a typical gn function (only the imaginary
part of the Green’s function is used to calculate the DOS, spectral function and TDF). In
Fig. 4.8 is plotted the imaginary part of g100 as a function of Ẽ. Im(gn) has n nodes so,
roughly speaking, it oscillates at a frequency n/4. Thus, the Chebyshev polynomial basis
can be considered analogous to the Fourier basis for quantities defined on finite segments,
and it is very often used in numerical expansions due to its superior convergence properties
[263]. The imaginary part η̃ mainly influences the overall amplitude of Im(gn), which is
approximately e−nη̃. Therefore, the presence of a finite η̃ renders negligible all terms of
the series beyond, say, 5/η̃. Since it can be interpreted as an inelastic self-energy, two
strategies can be adopted towards setting the value of η. If one wishes to study the effects
of disorder only (as is typically the case when computing the DOS or the spectral function),
η should be taken smaller and smaller until the quantity of interest no longer depends on
it, at which point the disorder dominates. If, on the other hand, one wishes to include
inelastic scattering effects in the calculation (of particular interest for the TDF), η should
be set equal to γin/2.

0-0.5 0.5-1 1

0

-0.5

0.5

1

Figure 4.8: The imaginary part of g100 as a function of Ẽ.
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Inserting the series (4.33) into the Kubo formula (4.29) for the TDF yields

Σi(Ẽ) =
�e2

πΩ

∑
n,n′

μi
n,n′ Imgn(z̃) Imgn′(z̃), (4.35)

with
μi
n,n′ = 〈Tr(Tn(

˜̂
H) ˜̂vi Tn′(

˜̂
H) ˜̂vi)〉. (4.36)

The quantities μn,n′ are called the moments and their calculation represents the main
workload of CPGF implementations. The power of this method comes from its use of a
recursion relation between the Chebyshev polynomials. They satisfy the relation

Tn+1(
˜̂
H) = 2

˜̂
HTn(

˜̂
H)− Tn−1(

˜̂
H), (4.37)

with T0(
˜̂
H) = 1 and T1(

˜̂
H) =

˜̂
H. Thus, the moments can be efficiently computed by

iterative multiplications of the Hamiltonian matrix operator. They can then be stored and
the TDF can be calculated on an arbitrarily fine energy grid due to the simple analytical
expressions for the gn. This is especially useful in the context of thermoelectricity, as the
TDF must basically be differentiated to compute the Seebeck coefficient.

The calculation of the trace in equation (4.36) is performed using a stochastic method.
For each disorder configuration, we define Nr random vectors |r〉 =

√
2
∑

�R cos(φ�R) |�R〉,
with φ�R random phases, and the moments are approximated by

μi
n,n′ =

1

Nr

∑
r

〈r|Tn(
˜̂
H) ˜̂vi Tn′(

˜̂
H) ˜̂vi|r〉 . (4.38)

If enough random vectors are used, the cross-terms do not survive the averaging of the
random phases and one is left with the trace. It should be noted that the moments μi

n,n′

are in principle symmetric in n and n′. However, the stochastic procedure introduces an
error that breaks the symmetry in practical calculations. Because of error cancellations in
the Chebyshev polynomial expansion, the convergence of equation (4.38) with the number of
random vectors is much improved if all the moments are calculated (as opposed to just half
of them). This is particularly true for low values of the TDF, which is highly relevant when
localization phenomena are involved. The convergence properties of the CPGF method are
further detailed in appendix E.

The calculation of the DOS is much simpler than the TDF, as it involves moments
featuring only one Chebyshev polynomial, 〈Tr(Tn(

˜̂
H)〉. Similarly, the spectral function

A(�k,E) requires calculating moments of the form 〈〈�k|Tn(
˜̂
H)|�k〉〉. The CPGF method gives

access to other quantities of interest, such as the local DOS (LDOS) and the typical DOS.
For a particular disorder configuration c, the local DOS at site �R is defined as

ρc�R(E) = − 1

π
〈�R|Ĝc(E)|�R〉 (4.39)

and can be interpreted as the energy distribution at site �R for this configuration. The DOS
is simply the arithmetic average of ρc�R(E) over the lattice sites and disorder configurations.
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The typical DOS ρt is defined as

ρt(E) = exp

⎛⎝ 1

NcN

∑
c

∑
�R

ln(ρc�R(E))

⎞⎠ =

⎛⎝∏
c

∏
�R

ρc�R(E)

⎞⎠
1

NcN

, (4.40)

where Nc is the number of disorder configurations. It is a geometric average instead of an
arithmetic average, which makes it a critical quantity with respect to Anderson localization.
In principle, it vanishes in the localized regions of the spectrum, contrary to the DOS. This
is because the geometric average is much more sensitive to small values than the arithmetic
one. Thus, if one of the local terms ρc�R

(E) is exactly zero, the entire average also vanishes.
In practice, the limited number of sites and disorder configurations, as well as the necessary
presence of an imaginary part η, lead to finite values of the typical DOS. Nevertheless, the
localized regions are likely to be indicated by much smaller values of the typical DOS with
respect to the DOS.

In contrast to exact diagonalization, the CPGF algorithms scale linearly with the system
size. As for the number of moments Nm, they scale linearly when calculating the DOS and
spectral function, and they scale as N2

m when calculating the TDF. These favorable scalings
allows the simulation of large systems consisting of tens of millions of sites, with lengths
that can reach the micrometer scale. This methodology is thus extremely powerful for the
study of large disordered systems, and will be used extensively in the following chapters.
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Chapter 5

Boosting the power factor: resonant
states

I never thought I’d see a resonance cascade...
Let alone create one.

Dr. Kleiner, Half-Life.

A promising method to boost the power factor (PF) consists in using resonant states
[98, 90, 205], as mentioned in section 1.2.2. The concept is illustrated in Fig. 5.1. Dopants
introduce impurity or defect states inside the conduction band that hybridize with the ex-
tended states. This way, a sharp peak in the density of states (DOS) of the host compound
is created, which alters the electronic transport properties when the Fermi level lies in its
vicinity. In the context of thermoelectric transport, the presence of a resonant peak is
thought to be favorable for the PF, for reasons that will be detailed shortly. An enhance-
ment of the thermoelectric properties through resonant impurity states has been claimed
in various compounds, such as Tl-doped PbTe [103], Sn-doped Bi2Te3 [104], In-doped SnTe
[264], Al-doped PbSe [265], or Sn-doped β-As2Te3 [266]. It has also been suggested [90]
that the very high power factor of YbAl3 [267, 268] could be explained by the presence of a
sharp f-level peak in its DOS [269]. The case of Tl-doped PbTe is controversial since first-
principles calculations reproduced the experimental values for the Seebeck coefficient with
a simple rigid-band shift of the pristine material [105]. Subsequently, numerical studies
using the Coherent Potential Approximation (CPA) coupled with first-principles calcula-
tions [270] have been conducted to investigate the effects of random Tl doping in PbTe
[271, 272, 273]. However, transport properties were calculated in the absence of electron-
phonon scattering, and the treatment of disorder by CPA methods is known to ignore the
vertex corrections and thus localization effects [242]. More importantly, no clear improve-
ment in the PF over a rigid-band shift of the Fermi level was shown for Tl-doped PbTe. As
it stands, there is still no consensus in the literature whether actual resonant enhancement
of the thermoelectric properties have been observed experimentally. Indeed, despite such
intense activity around resonant states in thermoelectricity, there are still a few widespread
misconceptions about how resonant levels affect thermoelectric transport.
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Figure 5.1: From Ref. [274]. Sketch of the density of states as a function of energy corre-
sponding to a conduction band in the presence of resonant states.

Let us now describe the mechanisms that are commonly found in the literature to
explain how resonant states can enhance the PF. The electronic transport properties of
any compound depend solely on the transport distribution function (TDF) Σ(E, T ), see
equations 2.51 and 2.52 (note that we omit from now the direction index for the trans-
port properties). The Mott formula, equations 2.55 and 2.56, imply that maximizing the
power factor σS2 requires finding a material in which the TDF has a high amplitude (high
conductivity) as well as sharp variations (high Seebeck coefficient).

Mahan and Sofo [90] found that the shape of the TDF most conducive to good thermo-
electric properties is the delta function. Writing the Einstein formula:

Σ(E, T ) = e2 ρ(E) v2x(E) τ(E, T ), (5.1)

in which ρ(E) is the DOS, vx(E) is the band velocity along the transport direction x, and
τ(E, T ) is the relaxation time, they suggested that a sharp peak in the DOS would translate
to a sharp peak in the TDF (Fig. 5.2a), provided that the velocity vx and scattering rate are
not suppressed significantly around resonance. In this case, they also calculated that the
presence of a background DOS could destroy the resonant effect, which would encourage
looking for resonant states very near the host valence or conduction band edge. Notice how
the sign of the slope of the TDF changes around the resonant state in this physical picture.
Consequently, one should expect the sign of the Seebeck coefficient to change as the Fermi
level crosses the resonant band. This interpretation has been invoked to explain the results
of ab-initio calculations for ZnSe containing O impurities [275].

Another slightly different mechanism is used to explain the effects of resonant states
throughout the literature [98, 92, 103, 265]. Since the TDF is basically the conductivity at
low temperature, one can write

Σ(E, T ) ≈ e n(E)μx(E, T ), (5.2)
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TDF

(a) Mahan-Sofo picture.

Energy

(b) "Carrier density" picture.

Figure 5.2: From Ref. [276]. Schematic representation of the density of state (black dashed
line) and transport distribution function (blue line) in the presence of a resonant peak.

in which n(E) is the total carrier density and μx(E, T ) is the carrier mobility along the
transport direction. The Mott formula then yields

S ≈ −π2k2BT

3e

(
1

n

∂n

∂E
+

1

μx

∂μx

∂E

)
. (5.3)

The first term, 1
n

∂n
∂E = ρ(E)

n(E) , depends very little on temperature and is associated with
band structure effects, it is straighforward to see that a local increase in the DOS would
cause a local boost in the Seebeck coefficient. The second term, 1

μx

∂μx

∂E , is associated in
the literature with scattering. If the resonant states bring about a drastic change in the
carrier scattering, the Seebeck coefficient might be boosted through this term. The effects of
resonant scattering are thought to vanish at high temperature, as the scattering becomes
dominated by phonons. Assuming no resonant scattering, then, the carrier mobility is
thought not to change violently aroung the resonance, and the TDF is approximatively
proportional to the carrier density n (Fig. 5.3). Note that in this picture, the slope of the
TDF remains positive, so the sign of the Seebeck coefficient is not expected to change.
Moreover, the Fermi level should be located right at the resonance for maximum effect.

Both mechanisms in Fig. 5.2 require the resonant states to participate in conduction,
meaning that either the band velocity vx or the mobility μx must not be drastically sup-
pressed by the resonance. This seems incompatible with the requirement that the resonant
peak in the DOS be sharp since a flat band implies low velocities and low mobilities. From
the point of view of the Bloch states, a resonant peak is typically associated with a high
scattering rate (resonant scattering, see section 4.1.1). If we consider instead the eigenstates
of the disordered system, the hybridization between the extended and impurity states gives
a more localized character to the eingenstates near the resonant peak, leading to low ve-
locities. As noted by Heremans et al. [98], if the two types of states are not hybridized
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with one another, the transport properties are entirely dominated by the extended states
(which have the highest conductivity) and the defect states are useless. Therefore, some
hybridization is needed to boost the power factor. Thus, a single very flat band, for instance
a doping impurity band in the gap of the host material, leads to bad thermoelectric proper-
ties despite having a very delta-like DOS [205, 277]. Confinement techniques work around
this problem because they introduce flat dispersions only in the confinement directions.
For the same reason, highly anisotropic orbitals like d orbitals are naturally conducive to
good thermoelectric properties, and it is possible to boost the power factor by making them
come into play [278]. Even then, they must have both a strong weight in the DOS and
a sufficient dispersion in the transport direction to enhance the thermoelectric properties
[211].

In this chapter, we will investigate the effects of resonant states on thermoelectric trans-
port. In section 5.1, published in Ref. [274], this is done on very general grounds using a
disordered tight-binding model. In section 5.2, we focus on the specific case of vanadium
doping in SrTiO3 using first-principle calculations [279]. In section 5.3, we combine the two
methodologies to adress the influence of disorder and localization in V-doped SrTiO3, and
more generally to study resonant states in similar oxide perovskites [280].

5.1 Large enhancement of the thermoelectric power factor in
disordered materials through resonant scattering

The discussion above raises a few questions about the general properties of resonant states.
What exactly happens to the TDF in the presence of resonant impurities? What is the
right hybridization between the extended and defect states? Where should the resonant
level be, with respect to the edge of the host band? Where should the Fermi level be, with
respect to the resonant level? What kind of boost can we expect for the power factor?
In this section, our goal is to answer these questions and to clarify the general conditions
required for a boost of the PF using resonant substitution impurities, independantly of the
material-specific band-structure or scattering law. In particular, we will investigate the
influence of the impurity concentration x, the effects of inelastic scattering, and finally we
will examine the case of anisotropic orbitals, all with a full treatment of the disorder and
resonant scattering.

5.1.1 Disordered model Hamiltonian and methodology

To that end, we consider a single-orbital tight-binding Hamiltonian featuring hopping terms
t between nearest neighbors on a cubic lattice. Here the charge carriers are electrons (n-
type), but because of electron-hole symmetry, our results are valid for p-type materials as
well. The resonant impurities are modelled by an on-site potential ε on the defect sites and
an hybridization V between the host and impurity sites. The position of the defects are
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t V
ε

Figure 5.3: From Ref. [274]. A sketch of the disordered lattice and tight-binding Hamilto-
nian.

chosen randomly. Hence, the Hamiltonian, as illustrated in Fig. 5.3, reads:

Ĥ =− t
∑
〈i,j〉,σ

(
c†i,σcj,σ + c†j,σci,σ

)
(5.4)

+ ε
∑
m,σ

c†m,σcm,σ − V
∑

〈i,m〉,σ

(
c†i,σcm,σ + c†m,σci,σ

)
,

i runs over host sites, m over impurity sites, σ is the electron spin and the brackets denote
nearest neighbors only. Since the transport properties do not depend explicitely on t, we
express the other parameters in units of t (see below).

The electrical conductivity and the Seebeck coefficient at electron density n and temper-
ature T are calculated from the TDF, equations (2.51) and (2.52). The chemical potential
μ is set to give the correct electron density when the DOS ρ(E) is integrated. From the
Mott formula, equation (2.55) and equation (2.56), σ is the thermal average of Σ around
the Fermi level μ, while S is basically the logarithmic derivative of Σ around μ. There-
fore, high Seebeck coefficients arise from strong, sharp variations in the TDF (i.e. large
values of | dΣdE |). Most theoretical studies of doped thermoelectric materials compute the
TDF within the framework of the Boltzmann transport equation with the relaxation time
approximation. They either consider impurity scattering to be negligible compared to
electron-phonon scattering [74, 281, 282, 283, 139], or estimate the electron-impurity scat-
tering rate by second-order perturbation theory (i.e. Fermi’s Golden Rule) using a model
description for the impurity scattering[284, 59, 161]. This is reasonable when the doping
does not significantly alter the electronic structure and causes only weak electron-impurity
scattering, as is the case of La or Nb doped SrTiO3 for instance [166]. But the whole
point of resonant states is that they distort the band structure of the host material and
introduce strong scattering. Therefore, in this study, we go beyond the semi-classical Boltz-
mann formalism to incorporate the full effects of disorder and multiple resonant scattering.
We use the Kubo formula expressed in terms of the Green’s function Ĝ of the system
[285, 157, 250, 251]

Σ(E) =
�e2

πΩ
〈Tr(ImĜ(E) v̂x ImĜ(E) v̂x)〉, (5.5)

brackets denote disorder averaging, Ω is the total volume, v̂x = it
�

∑
<i,j>,σ(xi−xj)(c

†
i,σcj,σ−
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c†j,σci,σ) is the velocity operator along the transport direction x, and the Green’s function
writes

Ĝ(E) =
1

E − Ĥ + iγin
2

. (5.6)

A constant imaginary part has been introduced in the denominator of Ĝ(E) to account
for the presence of inelastic scattering mechanisms in the system, such as electron-phonon
(e-ph) or electron-electron (e-e) collisions. It will be further discussed thereafter. Σ can
be expressed in terms of the adimensioned TDF Σ̃, Σ = e2

a� Σ̃, and likewise for the power
factor, PF = k2

B

a� P̃F. For definiteness, we set a = 4Å, which gives the same volume per
atom as in Si or PbTe, leading to e2

a� = 6.08× 103 S/cm and k2
B

a� = 45.18μW · cm−1 ·K−2.

The exact diagonalization of the Hamiltonian (5.4) would drastically limit the system
sizes that could be studied with a reasonable amount of memory and computational time.
Therefore, we use the Chebyshev-Polynomial Green’s Function method (CPGF), presented
in section 4.3.2 and in Ref. [262, 261], to compute Σ(E) exactly, fully including vertex
corrections. The CPGF is a real-space approach particularly suitable for addressing the
physics in disordered systems. Around 1800× 1800 moments are sufficient for the TDF to
fully converge. Periodic boundary conditions are used to reach the thermodynamic limit
more easily. Here, we compute the TDF on systems of size N = 1200×200×200 (48× 106

sites), this slab geometry allows faster convergence. The trace in equation (5.5) is evaluated
efficiently by a stochastic method involving random vectors as described in section 4.3.2.
When calculating the TDF for such a large system size, only a few random vectors and
disorder configurations are necessary. We have checked that the clean limit is perfectly
recovered for both open and periodic boundary conditions.

Regarding γin in equation (5.6), it can be interpreted as the inelastic contribution to
the electron relaxation time [141]. In thermoelectric materials, scattering rates at room
temperature typically range from 1meV to 100meV. In certain Half-Heuslers such as
ZrNiSn, for instance, particularly weak e-ph couplings lead to inelastic scattering rates
varying between 1meV and 20meV [286] while strong e-e scattering in SrTiO3 leads to
γin ranging from 50meV to 200meV and even higher [166]. In between, scattering rates
vary from 10meV to 100meV in Si [287, 288, 161] or from 20meV to 60meV in pristine
and doped SnSe [289]. From the bandwidth in these compounds, we estimate t ranging
from 0.3 eV to 1 eV, therefore we will consider 0.02 t ≤ γin ≤ 0.2 t. This corresponds to
γin ranging from 10meV to 200meV and mean free paths between 50Å and 500Å in the
pristine case, which is well in line with calculated values in PbTe [281], for instance. As we
will see shortly, a small inelastic scattering is most favorable for resonant enhancements of
the PF, therefore we set γin = 0.02 t unless specified otherwise. The choice of a constant γin
preserves the generality of this investigation, since incorporating energy and temperature
dependences requires a material-specific study. Note also that computations for smaller γin
would imply a strong increase in the number of calculated moments before convergence is
reached.
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5.1.2 Boosting the power factor

In what follows, we consider the set of values ε = −4 t and V = 0.3 t that were found optimal
in a previous study that completely ignored disorder [276]. Unless specified otherwise, the
electronic properties will be calculated using these values. Fig. 5.4(a) shows the TDF and
the DOS (inset) for different impurity concentrations x = Nimp

N , with Nimp the number
of randomly distributed defects. Five concentrations are considered, from x = 0% (the
pristine reference case) to x = 5%. The defects introduce a local peak in the DOS, which
is considered the main signature of resonant states in the literature, and the mechanism
by which the transport properties are enhanced. The higher the impurity concentration,
the bigger and sharper the peak, so we would expect the best thermoelectric performances
from the highest concentrations. As we will see shortly, this is not the case. The resonant
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Figure 5.4: From Ref. [274]. (a) Transport distribution function Σ(E) and density of states
ρ(E) (inset) for five impurity concentrations, from x = 0% (reference, black dashed line) to
x = 5%. A vertical dashed line marks the position of the resonant peak. (b) Σ(E) and its
derivative (inset) for x = 1% calculated exactly (CPGF) and by second-order perturbation
theory (FGR).
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peak gives rise in the TDF to a sharp, asymmetrical dip, as the extended states acquire a
more localized character by hybridizing with impurity states. At high defect concentrations,
electron transport is more suppressed across the whole energy range so the variations of the
TDF are gentler (| dΣdE | is reduced as x increases). We compare in Fig. 5.4(b) the TDF and
dΣ
dE calculated by CPGF and by the often used Fermi’s Golden Rule (FGR). Matthiessen’s
rule states that the total scattering rate is γtot = γimp+γin with γimp the impurity scattering
rate. FGR leads to γimp(E) = 2πxε2ρ0(E), ρ0(E) being the DOS of the clean system. The
FGR transport distribution function is given by ΣFGR(E) = γin

γtot
Σ(0)(E) where Σ(0)(E) is

the pristine TDF. Notice that the exact Σ(E) cannot be cast into such an analytical form.
Clearly, the FGR approach completely fails to give the correct dependance of the TDF. In
particular, the dip is entirely absent. The discrepancy is even worse for the derivatives,
which are directly linked to the Seebeck coefficients. Therefore, when resonant states are
involved, second-order perturbation theory breaks down.
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Figure 5.5: From Ref. [274]. (a) Electrical conductivity σ and (b) Seebeck coefficient S as a
function of the electron density n for five impurity concentrations, from x = 0% to x = 5%.

From the results of Fig. 5.4(a), we compute the room-temperature electrical conductivity
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σ and Seebeck coefficient S, as plotted in Fig. 5.5 as a function of the electron density n.
T is set to 0.025 t which corresponds to room temperature if t ≈ 1 eV. σ is reduced by
the disorder and still exhibits the same features as Σ(E) (T being relatively small). This
reduction would be detrimental to the PF, but the sharp variations in the TDF lead to
a boost of the Seebeck coefficient that overcompensates the suppression of σ. This is
accompanied by a sign inversion of S around n = 0.1 electrons/cell. Thus, S can change
sign in the disordered systems, while it remains n-type in the absence of resonant states.
This interesting feature opens the possibility of changing the thermoelectric material from
n-type to p-type just by introducing the appropriate impurity or dopant. Therefore, one
could build a device with both n and p legs from the same semiconductor host. This would
be advantageous for device performance and reliability, provided that the PF is sufficiently
large.

P
F

 (
μ
W

.c
m

-1
.K

-2
)

n (electrons/cell)

0

10

20

30

0.04 0.06 0.08 0.1 0.2

0.001 0.01
n

P
F

0

2

4

6

Figure 5.6: From Ref. [274]. Power factor σS2 as a function of the electron density n for five
impurity concentrations, from x = 0% to x = 5%. Inset: PF for lower electron densities.

The PF is plotted in Fig. 5.6 as a function of n. The pristine system exhibits a maximum
of 6.3μW · cm−1 ·K−2 around n = 10−3 electrons/cell, corresponding to a conductivity of
400 S/cm and a Seebeck coefficient of −130μV/K. Note that this relatively low value
of the power factor is partly due to the absence of band degeneracy and anisotropy in
our single-band model. The effects of resonant impurities relative to the pristine case
would not be affected by band degeneracy, while the case of anisotropic orbitals will be
examined thereafter. When resonant defects are introduced, the PF is suppressed at low
densities (inset), because multiple impurity scatterings have a stronger effect on the long
wavelength carriers. By contrast, around n = 0.1 electrons/cell, the PF now exhibits a
large enhancement due to the boost of the Seebeck coefficient that overcompensates the
drop in conductivity. The largest increase corresponds to x = 1%, for which the PF reaches
its maximum 35.9μW · cm−1 ·K−2, a sixfold enhancement compared to that of the clean
system. For x = 5%, the boost is still present but less spectacular (a ratio less than 2) due
to the gentler variations in the TDF. This is an important and surprising finding: to achieve
an efficient enhancement of the thermoelectric properties with resonant states, the defect
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x = 0% 0.5% 1% 2% 5%

ε = −4 t
V = 0.3 t

6.3 30.2 35.9 27.6 8.7

ε = −5.5 t
V = 0.3 t

6.3 1.3 1.7 1.8 1.8

ε = −4 t
V = t

6.3 0.01 0.05 0.06 0.05

Table 5.1: Room-temperature optimum power factor in μW · cm−1 ·K−2 for γin = 0.02 t
and several values of the on-site potential and hybridization parameter.

concentration should be kept relatively low, typically around 1%. From an experimental
point of view, that is favorable, because such concentrations usually lie below the solubility
limit [290]. Co-doping with a donor atom acting as an electron reservoir is necessary to
shift the Fermi level inside the resonant peak, where the PF is enhanced and the Seebeck
inversion occurs. This carrier density optimization still requires at most 10% co-doping,
which is reasonable. We define PFmax as the optimum PF with respect to the carrier
concentration. PFmax extracted from Fig. 5.6 are shown in the first row of table 5.1.

5.1.3 The influence of the model parameters

We now address the influence of both ε and V on the transport properties. In Fig. 5.7(a),
the DOS and TDF are plotted for x = 1% resonant impurities with ε = −5.5 t and V = 0.3 t.
The increase of the on-site potential shifts the position of the resonant peak much closer
to the bottom of the conduction band. The resulting TDF also features a much smaller
dip in Σ(E) at the position of the peak in ρ(E). Consequently, | dΣdE | remains quite weak,
and so does the Seebeck coefficient. There is still a sign inversion, but no boost in the
PF. Indeed it is even suppressed by a factor 3-4 with respect to the reference value of
6.3μW · cm−1 ·K−2 (see the second row of table 5.1). Thus the resonant peak should not
be too close to the band edge, but deep inside the conduction band. We now focus on the
effect of a larger hybridization, which implies a stronger coupling between conduction and
defect states. Results are depicted in Fig. 5.7(b). The increase in hybridization also pushes
the resonant states at the very edge of the band, and severely suppresses the TDF below
−5 t (notice the scale in the inset). There is still a small dip in Σ(E) and a sign inversion
of S, but because the carriers are now so localized in this energy range, the PF shrinks by
at least two orders of magnitude compared to that of the reference. For x = 1%, PFmax
is now 0.05μW · cm−1 ·K−2 (see the third row of table 5.1 for the other concentrations).
This suppression of the PF is entirely due to a huge reduction in the conductivity caused by
multiple scattering events that become important at low energy in the presence of stronger
disorder. These findings are consistent with the results obtained in Ref. [273] for Tl-doped
PbTe, in which the Tl doping creates a resonant bump at the edge of the valence band
associated with a much higher resistivity compared to that of Na doping which behaves as
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Figure 5.7: From Ref. [274]. Density of states ρ(E) (dotted line, right axis) and transport
distribution function Σ(E) (left axis) for x = 1% with (a) ε = −5.5 t, V = 0.3 t and (b)
ε = −4 t, V = t. Inset: zoom on the bottom of the conduction band, notice the different
scales for the TDF.

a reservoir. It should also be mentioned that resonant states formed by antisites in Fe2VAl
have been found to suppress the PF by more than an order of magnitude while changing the
sign of S [291]. The takeaway to obtain a boost of the PF is that the substituting element
should be suitably selected in order to create a resonant peak far from the band edge. This
could also explain why many claims of experimental enhancement of the PF by resonant
states remain controversial, and why no sign inversion of the Seebeck coefficient has been
observed so far. These effects are indeed sensitive to the hybridization, on-site potential
and position of the Fermi level. Additionally, it is difficult to rule out other enhancement
mechanisms, such as energy filtering effects resulting from ionized impurity scattering, for
instance.

Since thermoelectric materials are meant to be used in a wide range of temperature, we
now discuss the T -dependence of PFmax. Fig. 5.8 shows PFmax as a function of temperature
for the same impurity concentrations as in Fig. 5.6. It increases when the temperature rises,
reaching a broad maximum, and then decreases slowly in the disordered systems. This high
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Figure 5.8: From Ref. [274]. Optimum power factor as a function of temperature for five
impurity concentrations, from x = 0% to x = 5%.

temperature behaviour results from the sharp variations in the TDF being smoothed out
by the thermal average. Accordingly, at high values of x, the variations in the TDF are
broader and are less sensitive to the thermal average, so the maximum region is shifted to
higher temperatures. An important finding is that PFmax itself is robust, suggesting that
resonant states could be efficient for both low and high temperature power generation.

We now propose to investigate the role of inelastic scattering. In Fig. 5.9(a), we plot
PFmax as a function of γin. Clearly, the PF is completely suppressed if the inelastic scat-
tering is too strong. This results from the competition between resonant impurity scatter-
ings (elastic processes) and inelastic scatterings. In Fig. 5.9(b) is presented the TDF for
γin = 0.02 t, 0.08 t and 0.2 t with x = 1%. The inset shows the impurity scattering rate γimp,
extracted from an analysis of the single-particle spectral function, defined in section 4.1.1.
γimp exhibits a non-monotonic behavior and large variations across the resonant peak, from
4× 10−3 t at E = −4.5 t to 2× 10−1 t at −4 t. At the position of the dip in the TDF, where
the electronic states have a stronger localized character, transport is not very sensitive to
the strength of γin because γimp ≈ 2× 10−1 t dominates. In contrast, if γimp is smaller than
γin, which is the case for states associated with large values of the TDF (γimp ≈ 4× 10−3 t
at E = −4.5 t), then increasing γin strongly suppresses Σ(E). Thus, large inelastic scat-
tering rates have the overall effect of reducing the disparities in the TDF, leading to poor
values of the Seebeck coefficient. If we now consider small values of γin (below 0.03 t) for
x ≤ 2%, we observe a huge increase of PFmax as γin is reduced. If we extrapolate to
γin ≤ 0.02 t for x = 1%, an enhancement factor of more than an order of magnitude could
even be reached. Hence, due to the competition between elastic and inelastic scattering,
the impurity concentration should be tuned with respect to the inelastic scattering rate in
the host material to reach an optimal boost of the PF. Compounds exhibiting strong e-ph
or e-e scattering should not be the best candidates for resonant substitution doping.

Till now, we have been considering an isotropic electronic structure (s-type orbitals),
but it is worth considering the influence of orbital anisotropy [292, 278]. Low-dimensional
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Figure 5.9: From Ref. [274]. (a) Optimum power factor as a function of the inelastic
scattering rate γin for five impurity concentrations, from x = 0% to x = 5%. Inset: Ratio
of the optimum power factor with respect to that of the clean system. (b) Σ(E) for x = 1%
with γin = 0.02 t, 0.08 t and 0.2 t (left axis). ρ(E) is also shown (dotted line, right axis). A
vertical dashed line marks the position of the resonant peak. Inset: the calculated impurity
scattering rate along the Γ-X direction as a function of energy. The dashed curve is a guide
to the eye.

confinement is expected to introduce sharp structures in the DOS and thus sharp variations
in the TDF, thereby boosting the Seebeck coefficient. To evaluate the gain in the PF that
could be obtained from resonant states in anistropic systems, we now introduce a different
hopping t⊥ in a direction perpendicular to transport. The optimum PF for the reference
x = 0% and for x = 1% is presented in Fig. 5.10 as a function of t⊥/t. First notice that the
PF of the pristine system strongly increases with the anisotropy, from 6.3μW · cm−1 ·K−2

(3D) to 73.3μW · cm−1 ·K−2 (2D). This confirms that two-dimensional confinement in itself
does favor good performances. The maximum PF (p-type) for x = 1% also increases with
the anisotropy, from 35.9μW · cm−1 ·K−2 (3D) to 74.4μW · cm−1 ·K−2 (2D). Surprisingly,
for t⊥ = 0 we find no boost in the PF, suggesting that the presence of resonant states in
fully confined systems might not further enhance the thermoelectric properties. However,
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Figure 5.10: From Ref. [274]. Optimum power factor as a function of the anisotropy ratio
t⊥/t for x = 0% (reference) and x = 1%.

one should emphasize that even for finite but low ratios t⊥/t (down to 0.05), the PF
can be significantly increased by resonant states. This is promising for bulk systems in
which charge carriers populate highly anisotropic orbitals. This is, for instance, the case
of n-doped SrTiO3, in which the Titanium 3d orbitals exhibit a t⊥/t ≈ 0.1 [293, 166].
Moreover, using resonant states in fully confined materials could be interesting for the sign
inversion of S alone.

To conclude, we have used the Chebyshev-Polynomial Green’s Function method to ad-
dress the effects of resonant impurities on electron transport. Although resonant states
suppress the electrical conductivity, they may also lead to a boost and a sign inversion of
the Seebeck coefficient. Consequently, the power factor can increase by one order of magni-
tude. However, the resonant peak should be located far from the band edge, otherwise the
thermoelectric performances are destroyed. Additionally, the optimal boost of the power
factor depends crucially on the interplay between elastic and inelastic scattering. Strong
electron-phonon or electron-electron scattering are found to preclude the possibility of en-
hancing thermoelectric transport. Therefore, materials featuring long electron mean free
paths and weak inelastic scattering, such as PbTe [281], certain Half-Heuslers compounds
[286] or even graphene [294, 295] should be promising candidates. Finally, the resonant
boost of the power factor is found robust in the case of anisotropic orbitals. This study
will hopefully contribute to a better understanding of resonant states in the context of
thermoelectric power generation.

5.2 Ab initio investigation of the role of vanadium impurity
states in SrTiO3 for thermoelectricity

As we have seen in chapter 3, oxide TE materials have the advantages of being non-
toxic, earth-abundant, low-cost and chemically stable. The perovskite material SrTiO3
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(STO) is particularly interesting because it has already a relatively large power factor
of the order of 39 μW.cm−1.K−2 [196], that is comparable to that of the best known TE
materials such as Bi2Te3 [192]. However, because of its relatively high thermal conductivity
of κ ≈ 11 W.m−1.K−1 [169], STO exhibits a relatively modest ZT of only 0.1, unlike Bi2Te3
which has a κ around 1.6 W.m−1.K−1 and a ZT � 0.96 [296, 297]. Herein, we report on the
theoretical basis of ab initio calculations the promising use of vanadium to dope STO which
advantageously exhibits resonant states leading to a large boost of the Seebeck coefficient.

5.2.1 Computing the thermoelectric properties

In what follows, the TE properties are calculated using the Landauer formalism combined
with ab initio calculations. In the linear response regime, the electrical conductance and
the Seebeck coefficient can be written as:

G = −2e2

�
L0 , S = − 1

kBT
L1/L0 , (5.7)

with

Ln =

∫ +∞

−∞
(E − EF )

n T̃ (E)

(
∂f

∂E

)
dE , (5.8)

where T is the temperature, EF the Fermi level, f the Fermi distribution and T̃ (E) the
energy dependent transmission. For a conductor of length lz, the transmission can be
recast as T̃ (E) = λ(E)

lz
M(E) , where λ(E) is the mean free path and M(E) the density of

modes (DOM) (see Ref. [155] and section 2.2.2). For this work, we have used a constant
mean free path approximation [298] i.e. λ(E) = λ0 with λ0 � 20 Å which reproduces
the room-temperature resistivity measured in 10 % La-doped STO samples [166, 192, 196].
The DOM can be evaluated by a direct diagonalization of the Hamiltonian of the system
using the eigenvalues (see for instance Ref. [160]). This DOM corresponds to a count of
the bands intersecting the energy of interest. Finally, the electrical conductivity is defined
as σ = lz

lx×ly
G , where lx and ly are the the dimensions of the system perpendicular to the

transport direction.
The ab initio calculations are performed with the DFT package SIESTA [112]. This

code is very well suited to study oxides as it is based on atomic like orbitals. We have
used the Perdew, Burke & Ernzerhof [123] exchange-correlation functional corresponding
to a generalized gradient approximation. A Troullier-Martin norm-conserving pseudopo-
tentials [191] has been used. The basis corresponds to a double-ζ-polarized basis optimized
with the simplex tool of the SIESTA package. All the atomic structures were optimized up
to forces less than 0.01 eV/Å and to an hydrostatic pressure less than 0.1 kbar. Finally,
a Monkhorst-pack of 6 × 6 × 6 k-points has been used for the self consistent calculations
(80× 80× 80 for the transport calculations) along with a mesh cutoff of 400 Ry.

5.2.2 vanadium doping

In Fig. 5.11 is given the band structure along with the density of states (DOS) of pristine
STO and vanadium doped STO. As pointed out in section 3.1 the lowest conduction bands

109



Figure 5.11: From Ref. [279]. Band structure and density of states for pristine SrTiO3

and SrTi0.875V0.125O3 along with its projected density of states for the d orbitals of V and
Ti as function of the energy (centered relatively to the bottom of the conduction band of
SrTi0.875V0.125O3 and denoted Ec).

of pristine STO are mainly due to the d-type orbitals of Ti (namely, it corresponds to t2g
orbitals). When doped with vanadium (in substitution of a Ti atom), the crucial issue is
the occurrence of impurity bands at the bottom of the conduction bands. As illustrated
by the projected density of states, these bands are mainly due to the d orbitals of V and,
as can be seen, they are acting as resonant states. Indeed, they are in close vicinity of the
t2g bands and this is leading to a large increase of the DOS and, as pointed hereafter, of
the Seebeck coefficient. However, in order to use these resonant states for TE application,
the Fermi level must be in close vicinity of them. For the vanadium concentration used
in Fig. 5.11, the Fermi level is definitely located far from the resonant region. This point
raises the need to fill the conduction bands up to the resonant states either by means of a
device based on a field effect or by using a co-dopant that would shift the Fermi level.

In Fig 5.12 is represented the electrical conductivity σ, the Seebeck coefficient S and the
power factor (PF) σ.S2 using a rigid band shift model for n-type doping. This model, which
consists in moving rigidly the Fermi level, illustrates the equivalent effect of a field effect
device. As a guide to the eyes, we have added at the top of the figure the corresponding
equivalent doping of lanthanum in the hypothesis of a perfect electron reservoir. We have
investigated the pristine case (undoped STO) and STO doped with vanadium for 2 different
concentrations. It should be noted that the abscissa corresponds to the added carrier charge
with respect to the neutral material. It is obtained by integrating the DOS from the Fermi
level. For this reason, the conductivity for V doped STO at zero added carrier charge has a
non-zero value. Conversely, for pristine STO the conductivity is exactly zero at zero added
carrier charge.
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Figure 5.12: From Ref. [279]. From top to bottom, electrical conductivity, Seebeck coef-
ficient and power factor obtained with a rigid band shift model for pristine and V doped
STO as function of the added carrier charge to the neutral material. On top is given the
theoretical equivalent La co-doping required to achieve the corresponding added carrier
charge.

For pristine STO the behavior is quite conventional. As a matter of fact, the conduc-
tivity increases with the added carrier charge and the Seebeck coefficient is negative and
decreases with the added carrier. This is leading to the familiar behavior for the PF with
a sharp peak linked with the two opposite trends of S and σ.

For doped STO, the behavior is completely different. The major effect occurs for the
Seebeck coefficient which exhibits a sign inversion close to the resonant states. This point, as
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we have already pointed out in a previous work [276], is opening tremendous perspectives
for obtaining both n and p-type TE materials using the same dopant. Moreover, for a
concentration of 3.7%, the amplitude of the Seebeck coefficient (at the maximum of the
PF) is of the same amplitude that pristine STO. One can argue that the increase of the
Seebeck comes with a decrease of the conductivity, but as the PF depends on the square of
the Seebeck coefficient, the resulting PF is as large as that of the pristine material. Finally,
it should be noted that the range of the carrier charge, for which these large values of the
PF are observed with V doped STO, is much greater than the pristine case.

5.2.3 Co-doping

Another way to fill the conduction band up to the resonant state could come from a second
dopant which would act as an electron reservoir for STO i.e. which would lead to a signifi-
cant charge transfer without modifying the band structure. Actually, La in substitution to
Sr appears to be a very good candidate for electron doping in STO [166]. For instance, this
reservoir behavior is also observed with yttrium and niobium doping [299, 198]. The whole
strategy is thus to use vanadium to create resonant states and to use a co-dopant as an
electron reservoir in order to fill the conduction band up to these resonant states. However,
it is definitely not obvious that for STO doped with both vanadium and a co-dopant the
particular behavior pointed out previously will be preserved.

Figure 5.13: From Ref. [279]. Band structure and density of states (DOS) for
SrTi0.875V0.125O3 and Sr0.875La0.125Ti0.875V0.125O3 along with its projected density of states
for the d orbitals of V and Ti as function of the energy (centered relatively to the bottom
of the conduction band).

In Fig. 5.13 is given the band structure along with the DOS of co-doped STO with V
and La. We have also represented the band structure of STO doped only with V (same
as in Fig. 5.11) for comparison purposes. It can be noticed that La has not a neutral role
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when combined with V. The impurity bands induced by vanadium are still observed, but
these bands are shifted at higher energy and are actually overlapping with the t2g bands.
Indeed, at the top of the impurity bands, we have now a clear mix with the intrinsic bands
of STO. This behavior is very specific to the co-doping and for a doping with La alone,
we have verified that the band structure of pristine STO is preserved i.e. that La is an
electron reservoir. This mixing (or pinning) of the impurity bands with the t2g ones has an
influence on the resonant state as can be seen on the DOS. First, the resonant states are
now shifted at higher energy and second, the amplitude of the DOS is reduced compared
to the case where V is used alone. As presented hereafter, the amplitude of the Seebeck
coefficient at the resonant states is affected too by this phenomenon.

Figure 5.14: From Ref. [279]. Density of modes (DOM) for pristine SrTiO3, SrTi1−xVxO3

(x = 12.5% and 3.7%) and Sr0.875La0.125Ti0.875V0.125O3 as function of the added carrier
charge to the materials.

In order to have some insights on the effects associated with the co-doping, the DOM for
pristine STO, V doped STO and co-doped STO with V and La are presented in Fig. 5.14.
First of all, the sign inversion of the Seebeck coefficient pointed out previously (see Fig. 5.12)
for V doped STO is actually directly linked with the slope inversion of the DOM. For pris-
tine STO, the slope is strictly positive and thus the sign of the Seebeck coefficient remains
constant. Conversely, for V doped STO this slope exhibits an inversion which is fully re-
lated to the resonant states induced by the vanadium. This phenomenon is observed for
all doping concentrations and also when a co-dopant is introduced. however, a close ex-
amination of the expression of the Seebeck (see equation (5.7) and (5.8)) leads us to the
conclusion that, in order to obtain a large Seebeck coefficient, we both need a negative
slope for the DOM and a slope transition which tends as close as possible to zero. This
situation is achieved for STO solely doped with V when the dopant concentration is small
enough. For co-doped STO we obtain a negative slope almost equivalent but, due to the
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pinning of the impurity bands with the t2g bands, the DOM does not tend to zero. For this
reason, and as presented hereafter, the amplitude of the Seebeck coefficient for co-doped
STO is smaller than that of STO doped with V only.

Figure 5.15: From Ref. [279]. Power factor for Sr1−yLayTi1−xVxO3, Sr1−yYyTi1−xVxO3

and SrTi1−x−yVxNbyO3 with x = 3.7% as function of the co-dopant concentration. The
Seebeck coefficient and the conductivity are given in inset.

In Fig. 5.15 is given the PF (the Seebeck and the conductivity are in inset) for co-doped
STO. It corresponds to a vanadium concentration of 3.7% which has been observed to be
the best choice to take benefit of the resonant states. The concentration of the co-dopant is
ranging from 0 to almost 60%. We have considered three different co-dopants (La, Nb and
Y) which all have been observed experimentally to be electron dopants for STO [299, 198].
However, as can be seen in this figure, all of them are leading to a very similar behavior.

The Seebeck coefficient is behaving in a rather close way to what we have already
observed in Fig. 5.12, that is to say a sign which can be either positive or negative depending
on the co-dopant concentration. For small co-dopant concentration, we have a negative sign
for the Seebeck (as conventionally observed for electron doping) but for large concentration
the Seebeck coefficient tends to zero and becomes positive. This behavior has a direct
impact on the PF.

For low co-dopant concentration, the PF decreases when the co-dopant concentration
increases. It goes to zero when the Seebeck coefficient sign reverses and finally increases
and reaches a second maximum but now with a positive Seebeck coefficient for large co-
dopant concentration. This behavior is actually opening the perspective to obtain both n
and p type TE materials doped with exactly the same dopants. In this paradigm, the n
or p nature is chosen by modifying only the co-dopant concentration. However, due to the
pinning effect mentioned previously, further investigations are required in order to improve
the amplitude of the Seebeck coefficient and thus of the PF.
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In the present work, the mechanism for SrTiO3 doped with vanadium based on resonant
states to boost the power factor has been presented. This mechanism, conversely to the
accepted picture of a boost of the density of states, is linked with a reduction of the
conductivity together with a boost of the Seebeck coefficient against all odds. This result
opens the perspective to use only a single dopant to obtain both n and p type semiconductor
for thermoelectricity thanks to the sign inversion of the Seebeck coefficient observed in the
vicinity of the resonant peak. Moreover, by using co-dopant such as La, Nb or Y, an
actual sign inversion of the Seebeck coefficient is observed by modifying the co-dopant
concentration of the compound. However, the power factor amplitude is less significant
than that observed within a rigid band shift which indicates that these co-dopants are no
more simple electron reservoirs in V doped SrTiO3.

5.3 Resonant states and vanadium doping in SrTiO3, BaTiO3

and CaTiO3: effects of disorder and localization on the
thermoelectric properties

The previous section investigates vanadium doping in SrTiO3 through a DFT supercell
study, and consequently it does not include any disorder effect associated with the random
distribution of V atoms. Since the bottom of the SrTiO3 conduction band is strongly
affected by the V-doping, these effects are expected to be important and can even lead to
Anderson localization. In this section, we combine the CPGF methology used in section 5.1
with the realistic tight-binding Hamiltonian for the conduction band of SrTiO3 presented in
section 3.1 and with a simple modelization of V substitution doping, both obtained through
Wannier projections of DFT calculations. We then investigate the influence of different
impurities on the class of perovskite oxides SrTiO3, BaTiO3 and CaTiO3 by exploring the
range of modelization parameters.

5.3.1 Anderson localization from vanadium doping in SrTiO3

The first step is to model the substitution of a Ti atom by a V atom in terms of tight-
binding parameters. To that end, Wannier projections on the Ti and V 3d orbitals of
a 2 × 2 × 2 supercell of SrTiO3 containing one V atom (12.5% doping) are performed
using the Wannier90 software [128] interfaced with the SIESTA package [112]. The DFT
simulation parameters are the same as in section 5.2. The matrix elements of the Kohn-
Sham Hamiltonian on the Wannier basis are then compared with the hopping terms of
pristine SrTiO3. The main difference is found to be an on-site potential ε = −1.4 eV on the
orbitals of the V atom, while the hopping terms and on-site potentials of the neighboring
atoms are little affected. Therefore, we retain only this potential ε in order to preserve the
simplicity of the tight-binding Hamiltonian. To test the validity of this approximation, we
show in Fig. 5.16 the DOS and TDF calculated for the 2 × 2 × 2 supercell containing one
V atom with either the full DFT Hamiltonian or the model Hamiltonian including only
the on-site potential ε. The TDF is calculated from the Boltzmann transport equation
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assuming a constant mean-free path of 20Å as in section 5.2. In both calculations, the
DOS exhibits a peak near the bottom of the band due to the V impurities, although it is
somewhat sharper in the full ab initio case. The TDF predicted by the model is very close
to that predicted by DFT. It features in particular the same maximum at the energy of
the peak, although the downward slope is slightly smoother than predicted by DFT. This
confirms that the essential physics of V substitution is captured by the model Hamiltonian,
thus validating our approach.
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Figure 5.16: From Ref. [280]. Comparison of the DOS and TDF of a 12.5% V-doped SrTiO3

supercell between fully ab initio calculations (thick blue line) and the model Hamiltonian
(thin red line).

Now in possession of a realistic tight-binding Hamiltonian for both pristine SrTiO3

and the substitution of a Ti atom by a V atom, we can study the electronic structure
and transport properties of a SrTiO3 crystal containing an arbitrary concentration x of
randomly distributed V atoms. We use the Chebyshev polynomial Green’s function method
(CPGF) and in addition we perform exact diagonalizations (ED) of the Hamiltonian, two
complementary approaches that allow for an exact treatment of disorder (see section 4.3).
The CPGF method is based on an expansion on the Chebyshev polynomial basis of the
electron Green’s function

Ĝ(E) =
1

E − Ĥ + iγin
2

, (5.9)

where Ĥ is the full disordered tight-binding Hamiltonian and γin can be interpreted as an
inelastic scattering rate. The TDF is calculated from the Kubo formula

Σ(E) =
�e2

πΩ
〈Tr(ImĜ(E) v̂x ImĜ(E) v̂x)〉, (5.10)

where Ω is the volume of the system, v̂x is the velocity operator along the x direction
and the brackets denote disorder averaging. The trace is evaluated by a stochastic average
involving Nr random vectors as described in section 4.3.2. The transport calculations are
performed on systems of size N = 900 × 180 × 180 (≈ 30× 106 sites) with 2000 × 2000
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Figure 5.17: From Ref. [280]. The DOS for V-doped SrTiO3 (x from 0% to 10%) calculated
from (a) ED and (b) CPGF. The thick black line is the reference (x = 0%).

moments included in the Chebyshev expansion. For such system sizes, only one disorder
configuration and 20 random vectors are enough to get converged values of the TDF. Exact
diagonalization of the Hamiltonian is limited to much smaller systems of size L3 ≈ 303 but
gives access to the eigenstates |μ〉 and to the eigenvalues εμ. From ED we can evaluate the
diffusivity D(E) = Σ(E)/e2ρ(E) (with ρ(E) the DOS per unit volume) in the absence of
inelastic scattering. The Kubo formalism gives an expression for the diffusivity Dμ of the
eigenstate |μ〉 (see section 4.3.1)

Dμ = π�
∑
ν

|〈μ|v̂x|ν〉|2 δ(εμ − εν). (5.11)

In order to estimate the thermodynamic limit, each delta peak δ(εμ − εν) is broadened
into a lorentzian of half-width equal to twenty-five times the average level separation in an
energy range around εμ. The Dμ are then averaged over an energy interval of 25meV. All
transport calculations are performed in the x direction on the xy orbital only, and the spin
degeneracy and equivalent contribution of the xz orbital are taken into account by a factor
4. The yz orbital conduction can safely be neglected due to the very low yz hopping in
the x direction (see section 3.1). Periodic boundary conditions are used in all directions to
reach the thermodynamic limit more easily.

Fig. 5.17 shows the DOS calculated from ED and the CPGF method. The much greater
system sizes reachable through the CPGF method allow for a much better resolution of the
structures in the DOS. It is clear, in particular, that impurity states are created approxi-
mately 0.2 eV below the bottom of the SrTiO3 conduction band for 1% and 2% V-doping.
As the doping concentration is increased (x = 5% and x = 10%), these defect states merge
with the main conduction band. Thus, V-doping in SrTiO3 does not result in proper
resonant states, rather they have the character of shallow impurity states.

In Fig. 5.18 is shown the diffusivity as a function of the Fermi level, calculated from ED
and CPGF. The CPGF calculation is performed with a low inelastic scattering γin = 5meV
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Figure 5.18: From Ref. [280]. The zero-temperature diffusivity as a function of the Fermi
level for V-doped SrTiO3 (x from 1% to 10%) calculated from ED (dots) and CPGF (solid
lines). The ED diffusivity is calculated on a lattice of size 32 × 32 × 32, while the CPGF
diffusivity is calculated with an inelastic scattering rate γin = 5meV.

for comparison with ED. Note that investigating lower values of γin = 5meV is possible but
would have required the inclusion of more terms in the expansion of the Green’s function on
the Chebyshev polynomials basis, leading to a greater computation time and memory usage.
The diffusivities predicted by the two methods are in very good agreement, especially for
high values of the V concentration, which confirms the validity of the results obtained from
the CPGF method. For smaller values of x (1% and 2%), finite size effects are prominent in
the ED diffusivity due to the small size (32×32×32) of the lattice. The small discrepancies
between the two methods at high energy are most likely due to the presence of the inelastic
scattering γin in the CPGF results which, although small, still influences the transport
properties for x = 1% and x = 2% far from the bottom of the conduction band. As can
be expected, the diffusivity is found to decrease with the V-doping concentration due to a
more intense electron-defect scattering. The energy region below −1.5 eV, corresponding
to the impurity states, exhibits almost no conduction, suggesting that the defects states
are entirely localized even for x = 10%.

In order to confirm the Anderson localization of the impurity states and estimate the
position of the mobility edges, we perform a finite size study of the inverse participation
ratio (IPR) calculated from the eigenstates obtained through ED (see section 4.3.1, equa-
tion (4.30)). For extended states, the IPR is expected to decrease as 1/L3 as the system
size increases, while for localized states with a localization length ξ it is expected to con-
verge towards a finite value around 1/ξ3. We plot the cubic root of the IPR (averaged over
25meV) as a function of the inverse length of the system 1/L for several Fermi levels: an
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Figure 5.19: From Ref. [280]. The cubic root of the IPR as a function of the inverse length
of the system for 5% V-doped SrTiO3 at several Fermi levels. The IPR is averaged over
25meV. The size of the symbols are a rough estimate of the error bars. Linear fits of the
IPR are shown as dashed lines: the values for 1/L = 0 correspond approximately to the
inverse of the localization length.

example of such plot is shown in Fig. 5.19 for x = 5%. Linear fits of the IPR, shown as
dashed lines, indicate the localized or extended character of states since their values for
1/L = 0 give an estimate of the localization length ξ. The case E = −1.75 eV, correspond-
ing to the middle of the impurity states, shows a clear Anderson localization with ξ ≈ 5
unit cells, confirming the localized character of the defect states even for x = 5%. Con-
versely, the states at the middle of the conduction band (E = 0 eV) are clearly extended
(infinite value for the localization length). The crossover between these two behaviors hap-
pens around E = −1.25 eV and E = −1.2 eV, which gives an estimate of the mobility
edge, Ec ≈ −1.225 eV, for x = 5%. Similarly, the mobility edges are estimated to be
Ec ≈ −1.425 eV for x = 1%, Ec ≈ −1.375 eV for x = 2% and Ec ≈ −1 eV for x = 10%.
The localized regions of the DOS, as predicted by the IPR, are shown as greyed areas in
Fig. 5.20. Also shown are the typical DOS, defined as the geometrical average of the local
DOS, which is an order parameter for the Anderson transition at zero temperature and in
the absence of inelastic scattering (see section 4.3.2, equation (4.40)). It is calculated here
on lattices of size 160×160×160, with an average performed over 6 disorder configurations
and 100 lattice sites per configuration, and a small value γin = 0.5meV that requires 30000
terms in the expansion of the Green’s function on the Chebyshev polynomials basis. The
typical DOS is much smaller than the average DOS in the impurity states region, again
confirming the localization of these states. Due to the inelastic scattering term and the
finite size of the lattice, it does not exhibit a critical behavior at the mobility edge. For this
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value of γin, the localized region corresponds roughly to the energies for which the typical
DOS falls below ≈ 50% of the average DOS. The IPR, by contrast, does not contain any
inelastic scattering and therefore allows for a more precise determination of the mobility
edges.
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Figure 5.20: From Ref. [280]. The typical DOS (thick solid lines) and the average DOS
(thin solid line) calculated from CPGF for V-doped SrTiO3 (x from 1% to 10%) with the
greyed regions indicating the localized part of the spectrum as predicted by the IPR. The
typical DOS is calculated on a lattice of size 160 × 160 × 160 with an inelastic scattering
rate γin = 0.5meV.

We now calculate the room-temperature thermoelectric transport properties for V-
doped SrTiO3 from the CPGF method. At room temperature, strong electron-electron
scattering dominates the transport properties in the clean compound (see section 3.1). To
keep our modelization simple, we set γin = 130meV, a reasonable value that gives the
correct electrical conductivity in Nb or La doped SrTiO3 for an electron concentration
n = 10%. In Fig. 5.21a, we plot the TDF for a vanadium concentration from 0% (refer-
ence, the thick black line) to 10%. Again, we find that the TDF decreases with increasing V
concentration due to stronger electron-defect scattering. A small but finite conduction can
also be observed at energies corresponding to the localized impurity states. This is due to
the presence of strong inelastic scattering acting as a dephasing mechanism, partly destroy-
ing the quantum interferences and thus counteracting the effects of Anderson localization.
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As shown in the inset for the x = 10% case, lowering the inelastic scattering rate actually
decreases the TDF in this region, in violation of Matthiessen’s rule that would predict an
increase of the conduction. In Fig. 5.21b is shown the power factor (PF) and the electrical
conductivity (in inset) as a function of the carrier concentration. Although the localization
effects are partly destroyed by the inelastic scattering, the conductivity in V-doped systems
shows a clear crossover between a low-conductivity region, corresponding to the impurity
states, and a high-conductivity region associated with extended states of the conduction
band, while the reference case (clean SrTiO3) exhibits no such behavior. As a consequence,
the PF is stronly suppressed (by more than an order of magnitude with respect to the
reference case) when the Fermi level lies in the impurity states region. Therefore, introduc-
ing vanadium impurities in SrTiO3 actually turns out to be extremely detrimental to the
thermoelectric performances because of the effects of Anderson localization.
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Figure 5.21: From Ref. [280]. The room-temperature thermoelectric transport properties
of V-doped SrTiO3 (x from 0% to 10%) calculated from CPGF with γin = 130meV.

5.3.2 Resonant states in SrTiO3, BaTiO3 and CaTiO3

This poor performance of vanadium doping in SrTiO3 can be attributed to several causes.
First, the strong on-site potential ε = −1.4 eV on the orbitals of the V atoms gives rise
to impurity states below the conduction band. In section 5.1, it was shown that proper
resonant states positioned well inside the conduction band are necessary to observe an en-
hancement of the thermoelectric properties. Likewise, the hopping parameter t′ between the
vanadium orbitals and the neighboring Ti orbitals are the same as the hopping parameters
t between neighboring Ti orbitals in pristine SrTiO3. Such a strong hybridization between
the defects and regular lattice sites was also shown to push the resonant peak to the edge
of the conduction band in section 5.1, resulting in very poor thermoelectric performances.
Finally, the strong inelastic scattering γin present in SrTiO3 would destroy a resonant boost
of the power factor. This last point is most problematic because, unlike the parameters ε
and t′, it is not specific to vanadium doping and therefore seems to preclude the possibility

121



of enhancing the power factor in SrTiO3 using a better resonant dopant than vanadium.
However, the pervoskite oxides BaTiO3 and CaTiO3 have almost the same conduction band
structure as SrTiO3 (see Fig. 3 of Ref. [300]) but electronic transport in these compounds
may be characterized by a different inelastic scattering mechanism. Thus, it is relevant
to consider ε, t′ and γin as parameters and to explore a range of values that could poten-
tially correspond to other resonant dopants in the family of materials SrTiO3, BaTiO3 and
CaTiO3 sharing the same conduction band structure. The conduction band structure of
the pristine material will be kept identical to SrTiO3. A more precise approach would be to
perform DFT calculations and Wannier projections on BaTiO3 and CaTiO3 to take into ac-
count their specific electronic structure, but as ab initio computations predict only around
15% variations in their dispersion relation and transport properties with respect to SrTiO3

(Fig. 2 and Fig. 3 of Ref. [300]), we do not expect this approximation to lead to large errors.
Since a low inelastic scattering rate is necessary for a resonant boost of the power factor,
as shown in section 5.1, we set γin = 5meV comparable to the scattering rate predicted in
certain Half-Heuslers such as ZrNiSn exhibiting weak electron-phonon coupling [286]. For
the on-site potential, we consider the values ε = −1.4 eV, −1.2 eV, −1.0 eV and −0.8 eV
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Figure 5.22: From Ref. [280]. The DOS and TDF as a function of the Fermi level for
SrTiO3/BaTiO3/CaTiO3, pristine (thick black line) and 1% doped with a low-hybridization
resonant dopant (t′ = 0.2 t, 0.4 t) for several values of ε.
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(lower values would bring the resonant states too far from the conduction band minimum).
For the hopping parameter between the resonant dopants and the neighboring Ti atoms,
we start by studying thermoelectric transport for low hybridization values t′ = 0.2 t and
0.4 t, before examining the higher values t′ = 0.7 t and 1.0 t. We set the resonant defect
concentration to x = 1%, the value found optimal in section 5.1.

Fig. 5.22 shows the DOS and TDF for low-hybridization dopants (t′ = 0.2 t, 0.4 t). The
doping gives rise to resonant peaks whose position is controlled by the value of ε, with
ε = −1.4 eV creating a peak at the very edge of the conduction band. The resonant peaks
are sharper for t′ = 0.2 t than for t′ = 0.4 t. For ε = −1.2 eV, −1.0 eV and −0.8 eV,
they translate in the TDF to a sharp asymmetrical drop at the energies of the peaks, with
the conduction suppressed much more broadly at higher energies than below the resonant
peaks. No such effect can be observed for ε = −1.4 eV due to the resonant states being too
close to the band edge. It should be noted that while the resonant defects seem to have a
minimal influence on the DOS for t′ = 0.4 t (only slight bumps can be observed), the effect
on the TDF is quite important. Thus, the transport properties of the system cannot be
predicted simply from the shape of the DOS.
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Figure 5.23: From Ref. [280]. The room-temperature Seebeck coefficient and PF as a
function of the electron concentration for SrTiO3/BaTiO3/CaTiO3, pristine (thick black
line) and 1% doped with a low-hybridization resonant dopant (t′ = 0.2 t, 0.4 t) for several
values of ε.
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We show in Fig. 5.23 the room-temperature Seebeck coefficient and PF as a function
of the electron concentration, calculated from the results of Fig. 5.22. In this model, the
clean system exhibits a very high maximum power factor around 420μWcm−1K−2 due in
part to the low inelastic scattering rate. For ε = −1.2 eV, −1.0 eV and −0.8 eV, the sharp
drop in the TDF leads to a sign inversion of the Seebeck coefficient (which is related to the
slope of the TDF), while S always remains negative for the clean system and ε = −1.4 eV.
For ε = −1.0 eV and −0.8 eV, this is accompanied by a boost of the Seebeck coefficient.
For ε = −0.8 eV, this boost actually overcompensates the drop in conductivity and results
in an enhancement of the PF by around 15% for t′ = 0.2 t and 35% for t′ = 0.4 t, from
420μWcm−1K−2 to 475μWcm−1K−2 and 560μWcm−1K−2 respectively. However, these
enhanced PF values require a very high carrier concentration around 0.7-0.8 e−/cell, which
is probably unreachable experimentally. This weak enhancement of the PF could appear
surprising given the sixfold resonant increase observed in section 5.1. This is partly due to
the conduction band structure of SrTiO3, BaTiO3 and CaTiO3, which is very anisotropic
with a band mass ratio of 10 between the x and z direction for the xy orbital (see sec-
tion 3.1). Resonant states were found to be much less efficient for such two-dimensional
electronic structures. Additionally, the largest hopping term t between nearest-neighbors is
equal to 0.27 eV, while it was assumed to be 1 eV in the minimal Hamiltonian of section 5.1.
Thus the room temperature corresponds to a ratio kBT/t ≈ 0.1, for which only a modest
increase of the PF was found.

For these sets of parameters (ε = −0.8 eV, t′ = 0.2 t and 0.4 t) that lead to an en-
hancement of the PF, we study the influence of the inelastic scattering rate γin. We plot
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Figure 5.24: From Ref. [280]. Ratio of the maximum power factor associated with a positive
Seebeck coefficient to the maximum power factor of the clean system, as a function of γin
for ε = −0.8 eV, t′ = 0.2 t and 0.4 t. Inset: the TDF for γin = 130 eV.
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in Fig. 5.24 as of function of γin the ratio of the maximum p-type PF in the resonant case
with respect to the maximum PF of the clean system. As the inelastic scattering rate is
increased, the PF ratio quickly goes from a slight increase of the PF for γin = 5 eV to a
modest decrease for γin = 10 eV, then a 75% drop for γin = 20 eV and a near-complete sup-
pression for γin = 40 eV. No sign inversion of the Seebeck coefficient occurs for γin > 40 eV.
Higher inelastic scattering destroys the resonant enhancement of the PF because the trans-
port properties become dominated by the inelastic processes that completely level the sharp
variations in the TDF introduced by the resonant impurities. This is illustrated by the inset
of Fig. 5.24, showing the TDF for γin = 130 eV that corresponds to the case of SrTiO3: the
resonant states have almost no influence on the transport properties for such high inelastic
scattering rates.

For higher values of the hybridization (t′ = 0.7 t and 1.0 t), the defects either do not
create a resonant peak, leading to a broad decrease of the TDF due to electron-defect
scattering, or they give rise to impurity bands at or below the conduction band bottom.
The latter case is similar to V-doped SrTiO3, and we show in Fig 5.25 the DOS and room-
temperature power factor for several values of the on-site potential. We can define the
donor level δ as the energy separation between the impurity states and the conduction
band bottom. The transport properties appears to be governed by the donor level: larger
values of δ lead to lower power factors if the Fermi level lies in the Anderson localized defect
states. The crossover from localized to extended states is particularly clear for the largest
donor level corresponding to V-doped SrTiO3 (t′ = 1.0 t, ε = −1.4 eV). In all cases, the
maximum PF is much lower than the reference value of 420μWcm−1K−2.

To conclude, we have studied the effects of randomly distributed vanadium doping in
SrTiO3 by constructing a realistic tight-binding model from DFT calculations. The disorder
was treated exactly through the CPGF method, validated by exact diagonalizations of
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Figure 5.25: From Ref. [280]. The DOS and PF for SrTiO3/BaTiO3/CaTiO3, pristine (thick
black line) and 1% doped with a high-hybridization resonant dopant (t′ = 0.7 t, 1.0 t) for
several values of ε. The donor level δ is defined as the energy separation between the
impurity states and the conduction band bottom.
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the Hamiltonian. We have calculated the thermoelectric transport properties (diffusivity,
conductivity, Seebeck coefficient, power factor) as well as the inverse participation ratio
and typical density of states to investigate the presence of Anderson localization. We
have found that vanadium doping creates localized impurity states below the conduction
band of SrTiO3, leading to poor thermoelectric performances due to Anderson localization
effects. We have then varied the defect parameters and inelastic scattering to investigate a
broader range of potential resonant impurities in the family of materials SrTiO3, BaTiO3

and CaTiO3 sharing a very similar conduction band structure. We have found only modest
increases of the power factor associated with an unreasonably large carrier concentration
and a low inelastic scattering rate, for which the maximum power factor of the clean
system would already be very large. Therefore, resonant states appear to be ineffective as
a strategy to boost the power factor in this class of materials. This is partly due to their
strong conduction orbital anisotropy. Our results underscore the importance of treating
disorder effects in a thorough and rigorous manner when studying resonant states. Our
real-space methodology based on realistic tight-binding Hamiltonians extracted from DFT
calculations appears well suited to adress this challenge.
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Chapter 6

Defects in two-dimensional materials

I don’t understand, there’s no known physics
model for this. Unless... Oh my god, I’m
two-dimensional!

Gordon Freeman, Freeman Across The Universe.

Two-dimensional materials have been the focus of intense research efforts since the iso-
lation of a single graphene layer in 2004 [301]. They offer unique opportunities to control
and functionalize the geometry and chemical composition of the crystal layer through a va-
riety of techniques, from nanolithography to physisorption of molecules, and they represent
great promise for valleytronics and spintronics technological applications, among others
[302, 303, 304]. Graphene is particularly interesting due to its outstanding performances
in several aspects, including an extremely high mechanical strength, electron mobility and
thermal conductivity [305, 306, 294]. Electronic transport in this material displays exotic
properties due to the massless Dirac-like relation dispersion and chirality of the electrons
[295]. In addition, it has been found that the electronic properties of a bilayer graphene sys-
tem could be spectacularly affected by the rotation angle between the two sheets [307, 308].

From the point of view of thermoelectric transport, two-dimensional materials may ex-
hibit superior electronic properties due to the quantum confinement of electrons in a single
plane, which is expected to result in improved values of the power factor, as mentioned
in section 1.2.2. The low-dimensionality of these compounds also influences their phonon
properties. For instance, they can vibrate in the direction perpendicular to the material
plane: these so-called flexural modes can display a quadratic dispersion relation in cer-
tain materials such as graphene and MoS2 [309, 310]. A record-high thermal conductivity
has been measured in graphene, making it a promising material for thermal management
applications [311, 312]. Of course, efficient thermal conduction is undesirable for thermo-
electric power generation, but the long phonon mean free paths in graphene suggest that
the thermal properties can be suitably tuned by the introduction of impurities, vacancies,
nanostructures and edge defects [313, 314].

In this chapter, we investigate both electron and phonon transport in two-dimensional
materials. In section 6.1, published in Ref. [315], we study the electrical conductivity and
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Seebeck coefficient of several transition-metal dichalcogenides through ab initio calcula-
tions, focusing on the issue of doping with substitutions and adatoms. In section 6.2,
we investigate the phonon scattering rates and thermal conductivity of graphene in the
presence of vacancies [316, 317] by combining DFT calculations with our Green’s function
methodology.

6.1 First principle investigation on thermoelectric properties
of transition metal dichalcogenides: beyond rigid band
model

Two-dimensional (2D) direct band-gap [318, 319] transition-metal dichalcogenides (TMDC)
with chemical composition MX2 (M=Mo or W and X=S or Se) have led to a growing interest
in the last decade. For instance, in the field of nanoelectronic, significant accomplishments
have been done in the development of MoS2 based transistors [320, 321, 322]. More recently
people have paid attention to this material in the prospect of thermoelectricity on both
theoretical [323, 324, 325, 326, 327, 328] and experimental side [329, 330, 331].

Low dimension materials like 2D compounds are expected to have higher thermoelectric
figure of merit compared to bulk materials due to poor thermal conductivity [56, 57]. How-
ever, this is not so obvious for TMDC considering that the observed thermal conductivity
of MoS2 is of the order of 30− 50 W.m−1.K−1 [332, 333, 334]. More recently a lower value
of 13.3 W.m−1.K−1 has been obtained for suspended monolayer [335]. Nevertheless, even
if the thermal conductivity of TMDC is not as low as some other promising thermoelectric
materials [336], this issue is actually not critical for 2D materials due to recent progress in
phonon engineering [313].

In order to use semiconducting materials as thermoelectric devices, it is mandatory to
perform doping. However, doping issues in TMDC are actually very intriguing. When deal-
ing with 2D material or layered material, there are 3 ways to dope the material, substitution
doping is the most conventional one and it has been successfully used experimentally. For
example, p-type doping has been achieved on MoS2 by substituting Mo atoms by Nb [337]
or S by P [338]. In the case of metal MoS2 contact a significant reduction of the Schottky
barrier has been reached by chloride substitution of a sulfur corresponding to an electron
doping [339]. Another doping mechanism is vacancy induced doping which is suspected to
have a major role in contact resistance lowering between metal and MoS2 [340]. Finally,
a very efficient way to obtain a significant doping with 2D material is based on chemical
adsorption. For instance, Kong et al [341] have recently shown that oxygen adsorption
strategy leads to an enhancement of the thermoelectric properties of MoS2. Furthermore,
adsorbed potassium has been successfully used as electron donor in the topic of field effect
transistor [342]. A comprehensive review of doping techniques of MoS2 can be found in
Ref [343].

In this section we investigate theoretically the influence of substitution and adsorption
doping on the properties of the Seebeck coefficient, the electric conductance and the power
factor within the Landauer Büttiker formalism (it is portrayed in Fig. 6.1 for a TMDC single
layer) at room temperature (T = 300 K). Within this framework, we are going beyond the
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usual semiclassical Boltzmann formalism in order to analyze accurately the influence of the
disorder. The guiding line of the section is to detail which doping procedure can lead to
the largest power factor.

6.1.1 Theoretical framework

All the calculations are performed using the SIESTA ab initio package [112] under the
generalized gradient approximation of Perdew, Burke & Ernzerhof [123] and using Troullier-
Martin norm-conserving pseudopotentials [191]. The basis used corresponds to a double-
zeta-polarized (dζp) basis optimized using the simplex tool of the SIESTA package. All
the atomic structures were optimized up to forces less than 0.01 eV/Å. A Monkhorst-pack
of 10× 10 k-points have been used for the calculations using a mesh cutoff of 400 Ry.

The spin-orbit coupling is not taken into account in these calculations. One of the effect
of this coupling is a band splitting [344, 319] leading to a degeneracy removal at some high
symmetry points of the band structure. The expected influence of this band splitting on
the transport properties is to lower a bit the Seebeck coefficient and thus the PF. However
this effect is not supposed to affect significantly our results.

Based on ab initio calculations, the thermoelectric properties i.e. the Seebeck coefficient
and the electrical conductance are calculated using the Landauer formalism [155, 345] for
which the key ingredient is the transmission through the system. Within this formalism,
the electrical conductance and the Seebeck coefficient can be expressed respectively as:

G(EF ) = −2e2

�
L0(EF ) , (6.1a)

S(EF ) = − 1

kBT
L1(EF )/L0(EF ) , (6.1b)

with,

Ln(EF ) =

+∞∫
−∞

(E − EF )
n T (E)

(
∂f

∂E

)
dE , (6.2)

where T (E) is the transmission, f(E) the Fermi distribution and EF the Fermi energy.
The temperature dependence comes from the Fermi distribution and in the following, we
have focused on room temperature (T = 300 K) calculations.

The conductivity σ is defined for these 2D systems as σ = G
L⊥

, where L⊥ is the dimension
of the layer perpendicular to the transport direction. Under this definition of σ for 2D
systems, the physical dimension of the conductivity is equivalent to the conventional one.
This definition is underpinned by the fact that under ballistic regime, the conductance
does not depend on the length Lz of the device. The transmission is computed on the
basis of Green’s function formalism using the Hamiltonian computed by SIESTA. The
present ab initio quantum transport theory, fully described in Ref. [346], is similar to
TRANSIESTA. [347] For all the transport calculations, we have used 80 k-points in the
transverse direction.
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On the basis of the Landauer-Büttiker formalism, the transmission reads:

T (E) = tr [ΓLG
rΓRG

a] , (6.3)

where Gr(a) is the retarded (advanced) Green’s function and ΓL(R) the coupling between
the left (right) lead and the device (see Fig. 6.1). The main assets of this formalism are
to allow to deal with disordered systems and to fully include the quantum backscattering
processes.

Figure 6.1: From Ref. [315]. Schematic representation of the decomposition of the sys-
tem used within the Landauer formalism and corresponding to a generic MX2 layer with
adatoms.

6.1.2 Rigid band model

In order to have a starting point to evaluate the doping efficiency of the various techniques
and dopants, we first present some results for the PF obtained within the rigid band model.
In this model, the Seebeck coefficient and the electrical conductivity are obtained from the
Landauer formalism for a pristine layer by shifting rigidly the Fermi level of the system.
When the Fermi level is shifted toward the valence bands it mimics hole doping and when
shifted toward the conduction bands it mimics electron doping. This approach allows to
easily get a first insight on how the material is behaving under doping provided that the
band structure (or at least the bands of interest) of the host material is not significantly
perturbed. This kind of modeling has been used to study the thermoelectric properties of
TMDC in Ref. [348] with a various number of layers but without realistic doping.

In Fig. 6.2 is depicted the PF (the Seebeck coefficient and the electrical conductivity are
in inset) for the various TMDC. We have considered two major transport directions, the
armchair and the zigzag ones. These directions are depicted on top of Fig. 6.2 accordingly
to the TMDC structures. These plots are given as a function of the Fermi level position
but they can be linked with the carrier charge density (see table 6.1 for specific values) by
integration of the density of states ρ(E). Negative Fermi level is equivalent to hole doping
and positive Fermi level to electron doping. Basically, the maximum observed for the PF
either for hole or electron doping (respectively the red and the blue curves) arises from the
two opposite behavior of the Seebeck coefficient and the conductivity. When increasing
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Figure 6.2: From Ref. [315]. Powerfactor for (from top to bottom) MoS2 , MoSe2 , WS2

and WSe2 . In inset is given the Seebeck coefficient and the electrical conductivity. Red
and blue curves correspond resp. to hole and electron doping. On top is represented the
transport direction in the TMDC layer. The black and yellow atoms are resp. the M and
X atoms of MX2 .
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S(μV/K) σ(μS/Å)
PF carrier charge

(μW/K2/m) per UC

MoS2
−156.6 7.7 1888 +0.010

+163.1 2.7 718 −0.012

MoSe2
−86.9 19.6 1480 +0.090

+182.8 1.9 635 −0.005

WS2
−85.8 16.2 1193 +0.065

+167.6 1.9 534 −0.007

WSe2
−172.7 6.6 1968 +0.015

+179.0 1.8 577 −0.007

Table 6.1: Seebeck Coefficient,Conductivity and PF for the zigzag transport direction
obtained at the maximum of the PF (depicted by dashed lines in Fig. 6.2) for electron and
hole doping. The last column is the carrier charge per unit cell. Negative and positive
charge corresponds respectively to p and n-type.

carrier charge, the Seebeck coefficient tends to zero (negatively or positively depending of
the doping) and conversely, the electrical conductivity tends to increase with the carrier
density. The maximum of the PF results from the combination of these two opposite trends.

At first one can notice that the PF is almost similar for both transport directions, the
anisotropy of these materials is actually quite small. Second, there is a strong asymmetry
between hole and electron doping. Indeed, hole doping is always leading to a lower PF
than electron doping. In table 6.1 is given the Seebeck coefficient and the conductivity
obtained for the maximum of the PF in the case of the zigzag transport direction (these
values are pointed out in Fig. 6.2 by a dashed line). By inspecting these values, one can
notice that the difference between p and n doping is mainly due to the conductivity, it is
always lower for p doping compared with n doping. This can be directly linked with the
density of states which is smaller at the top of the valence band compared with that of
the bottom of conduction band. Therefore, the thermoelectric performance of a full p-n
thermoelectric device based on these materials would necessarily suffer from the limitations
due to the p side.

Anyhow, focusing at the n side, the maximum of the PF can reach a value almost as large
as 2600μW/K2/m for WSe2 in the armchair direction. This value is in good accordance
with experimental one, for instance Yoshida et al. [330] have obtained a PF of the order
of 3200μW/K2/m and a Seebeck coefficient of the order of −150μV/K for an ultrathin
WSe2 crystal by electrostatic doping (or field effect carrier doping) using a gate voltage.
The results obtained with this technic are directly comparable to the rigid band model as
the carrier concentration is solely tuned by a field effect. They have also measured the
PF in Ta doped WSe2, that was found one order of magnitude lower than that obtained
by electrostatic doping. Kong et al. [341] have also reported values of the same order of
magnitude, 300μW/K2/m, in MoS2 doped by MoO2 nanoinclusions.
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However, this results must be qualified by the fact that, if the maximum is occurring
for large value of the Fermi level, it will correspond to a larger dopant concentration (see
table 6.1 for the carrier charge per unit cell at the maximum of the PF). A material with
a large PF at unrealistic dopant concentration is not useful. For instance, both MoSe2 and
WS2 require a large carrier charge to achieve the maximum of PF (this carrier charge can be
directly linked with the dopant concentration in the case a substitution doping). Thus, in
the search of a material which allows to achieve a large PF, we must also take into account
the energy difference between the maximum of the PF and the bottom of the conduction
band. As a matter of fact, the smaller this difference the lower the needed concentration
of dopant.

Within this consideration, it appears that the best candidates for electron doping would
be MoS2 and WSe2 for which the PF maxima are obtained for Fermi levels closer to the
bottom of the conduction band corresponding to a carrier charge per unit cell of 0.01 and
0.015 respectively. For comparison, Fang et al. [342] have measured for potassium doped
MoS2 an electron concentration of 1.0× 1013 cm−2 which corresponds to 0.009 e−/UC (us-
ing a cell parameter of 3.16 Å for MoS2).

In order to discuss the validity of the rigid band scenario, we now consider the effects
of the different kinds of doping in a more realistic manner.

6.1.3 Realistic doping

There are several ways to dope TMDC by substitution, for instance it is possible to sub-
stitute a X atom (S or Se) by an atom in the neighboring columns of the periodic table.
Indeed, the substitution by a phosphorus atom is leading to a hole doping and the sub-
stitution by a chloride atom is leading to an electron doping. The same is also valid for
the transition metal atom. For example, the substitution by a rhenium atom is leading
experimentally to a n-type semiconductor. [349]

In Fig. 6.3 is given the density of states (DOS) obtained for two substitutional doping
with either phosphorus or chloride in MoS2, for each case we have varied the dopant con-
centration. For x = 17% it corresponds to a 2×3 rectangular cell and for x = 4% to a 4×6
cell. At high concentration, a significant DOS is observed at the Fermi level either at the
top of the valence band (P doping) or at the bottom of the conduction band (Cl doping).
However, when the concentration is decreased, it can be noticed in both cases that the DOS
tends to display sharp peaks around the Fermi level. These sharp peaks are associated with
almost flat bands which are an indication on the localized nature of these states. Actually,
when we inspect the projected density of states (PDOS) on the significant atomic orbitals,
it should be stressed that the DOS at the Fermi level is induced by the dopant states and
is absent in the intrinsic DOS of pure MoS2. The dopant hybridizes locally with Mo and S
and is leading to specific bands with almost no dispersion for low dopant concentration, the
only way to obtain a significant dispersion at the Fermi level is to use unrealistic doping
concentration of the order of 17%. This is even more obvious when we compare the DOS
obtained with the phosphorus dopant and the DOS of pristine MoS2. We can clearly see
that the DOS close to the Fermi level does not correspond to that of pristine MoS2. Both
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Figure 6.3: From Ref. [315]. Electronic density of states (DOS) for P (top) and Cl (bottom)
doped MoS2 . For comparison purpose, the pristine DOS is also shown (it is shifted accord-
ingly to the 4 .2% case). The projected DOS (PDOS) is given for the 4 .2% Cl doped case.
The green shaded backgrounds depict the location of the conduction band in the pristine
case.

kind of substitutional dopant clearly modify the band structure around the Fermi level.
This already suggests that the rigid band model fails for those cases. This local states are
actually not specific to chloride and phosphorus and are also observed with Br, F, N and
As.

One other promising strategy to dope 2D materials is chemical adsorption, this technic
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has been investigated theoretically for MoS2 [350, 351, 352] on the basis of ab initio cal-
culations. However, these calculations were not focusing specifically on the link between
electronic and thermoelectric properties. A variety of adatoms have been examined, and
only few atoms lead to a significant doping. Alkalies seem very promising because they are
leading to a significant electron doping with no local states at the Fermi level. Based on this
statement, we have thus focused on alkali doping for this study on transport properties. In
this work, the adsorption site used for the alkalies is at the top of a molybdenum atom, this
site is actually the most energetically favorable. However, when we consider an adsorption
site at the center of an hexagon (almost as favorable as at the top of Mo), it is found that
it makes no difference on the thermoelectric properties.

Figure 6.4: From Ref. [315]. Electronic density of states for MoS2 doped by adsorption
with K (top) and Li (bottom). The pristine case corresponds to the red curve.
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In Fig. 6.4 is presented the DOS obtained in the case of MoS2 doped with either potas-
sium or lithium. In both cases, an electron doping results due to the donor nature of alkalies
with respect to the MoS2 layer. The influence of these adatoms concentration is mainly
to shift the Fermi level with no significant modification of the pristine DOS. This can be
opposed to the case of substitution doping with phosphorus and chloride for which the
DOS was significantly affected by the dopant. No indication of local states is observed and
the DOS at the Fermi level corresponds to bands already existing in the pristine material.
Indeed, the electronic states of the alkalies are located at much higher energy and do not
have any contribution at the bottom of the conduction band. This can be clearly seen by
comparison with the DOS of the pristine MoS2 layer. We have observed this behavior with
all alkali atoms till rubidium. The only influence of the dopant on the DOS shape is a
light spreading of the bottom of the conduction band toward lower energy. This spreading
of the DOS at the bottom of the conduction band observed with alkali dopants has its
origin in the degeneracy removal of some conduction bands. It is depicted in Fig. 6.5 which
corresponds to the band structure for a 2×3 rectangular cell of a 17% Li doped MoS2 layer
and a pristine one. The bottom of the conduction band of the pristine MoS2 single layer
corresponds to four bands which are degenerated at the Γ and U points. This degeneracy
is removed when the dopant is adsorbed on the layer. This behavior is definitely expected
considering the symmetry breaking introduced by the dopant. However, it can be noticed
that two bands are shifted toward lower energy at the U point leading to the spreading
of DOS. The splitting at this point is 0.26 eV and it has, as it is described hereafter, a
significant influence on the Seebeck coefficient.

We now provide an overview of the thermoelectric properties of MoS2 realistically doped
either with substitution or adsorbed atoms introduced in the previous paragraphs. Trans-
port properties of these doped materials are still performed within the Landauer formalism.

Figure 6.5: From Ref. [315]. Band structure of a 2 × 3 rectangular MoS2 lattice for
pristine and Li doped (17%). For Li doped, the energy is shifted for comparison with the
pristine case.
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On Fig. 6.6 is represented the PF for three different dopants: Chloride dopant corresponds
to a substitution doping and potassium and lithium dopants to adsorption doping. For
comparison purpose, we have also plotted the result within the rigid band approximation.
The PF is represented as function of the carrier charge per unit cell. It actually corresponds
for alkalies to the charge transferred by the adatom to the MoS2 layer, this charge is es-
timated by means of Mulliken analysis. We have also checked with Voronoï and Hirshfeld
analysis the consistency of the estimated charge and the resulting relative uncertainty is
about 10% for the largest concentration and about 5% for the smallest one. One should
notice that under substitution doping by chloride the dopant concentration (referenced as
x on Fig. 6.3) is equivalent to the carrier charge per unit cell. However, this is not true for
adsorption doping for which the carrier charge (or the transferred charge) is linked with
the affinity between the adatom and the host layer. Note that this charge is always lower
than the carrier charge obtained with an equivalent substitution doping concentration.

Concerning the substitution with chloride, one can notice that the PF is much lower
than the hypothetical one obtained from the rigid band model. On one side, starting from
high concentration and decreasing it, the enhancement of the Seebeck coefficient leads
firstly to an increase of the PF. On the other side, due to the local states, the conductivity
then decreases dramatically and leads to a very rapid drop of the PF. Conversely, doping
with alkali adatoms leads to larger values of the PF and are actually closer to the rigid
band model. As argued previously, in the case of alkali doping, the bands involved in the
transport are almost unaffected by the dopants and so we obtain a PF which is behaving
more or less as the rigid band model but with smaller values. Indeed, due to the degeneracy
removal induced by the dopants, the Seebeck coefficient obtained with alkalies is smaller
than that obtained with the rigid band model (the conductivity is almost not affected).

Figure 6.6: From Ref. [315]. Power factor for MoS2 with 3 different dopants: K, Li and
Cl, as well as the rigid band calculation (for comparison purpose) plotted as a function of
the carrier charge per unit cell.
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4.2% σ(μS/Å) S(μV/K) PF(μW/K2/m)

MoS2

Li 3.6 −104.0 389.4

Na 1.8 −105.5 200.3

K 5.2 −116.9 710.6

Rb 5.7 −113.0 727.8

MoSe2
K

4.6 −79.1 287.8

WS2 5.9 −85.3 429.3

WSe2 4.1 −150.5 928.7

Table 6.2: Conductivity, Seebeck coefficient and power factor for various alkali adatoms
with a 4 .2% concentration.

This is the reason why the PF is always smaller than that obtained within the rigid band
model.

When we compare the different alkalies, a significant difference can be noticed. Li is
leading to poorer PF compared with K. In table 6.2 is given the PF for various alkali
adatoms (concentration of 4.2%) and for the four different TMDC. One can notice that
small alkalies like Li or Na lead to smaller PF than large adatoms such as K or Rb. The
difference is actually coming from the conductivity and linked with the charge transfer
between the alkali and the MoS2 layer which is smaller for Na and Li than K and Rb. This
is leading, for the same dopant concentration, to a lower DOS at the Fermi level and thus
to a lower conductance. The comparison between the four TMDC clearly points out that
MoS2 and WSe2 are the best candidate for thermoelectric applications considering their
high power factors at rather low dopant concentration.

6.1.4 Influence of the disorder

One issue which have not yet been argued is the influence of the disorder. All the results
presented previously are made artificially periodic by supercell construction and do not
fully take into account the natural disordered location of the dopants. In order to have
an insight on the influence of disorder, we have now considered systems where the dopants
are randomly distributed. Indeed, it is possible within the Green’s function formalism to
define an aperiodic device (see Fig. 6.1). Moreover, using the tridiagonal shape of the
Hamiltonian, we have dealt with system with length up to 50 nm, corresponding to 100
unit cells or more than 2500 atoms. We have thus defined systems on which the dopants are
randomly distributed among the adsorption/substitution sites and by varying the length of
the system, it is then possible to evaluate the effects of the disorder on the thermoelectric
properties. One should notice that we have voluntarily focused on scattering by static
disorders and other scattering mechanisms as phonon scattering are not considered. We
justify this approach by the fact that it has previously been shown [353] that phonon
scattering is not likely to be the limiting mechanism in MoS2 for the dopant concentration
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used here.
The results are presented in Fig. 6.7 for chloride substitution and potassium adsorp-

tion. In these plots, each point corresponds to an average over 10 different systems with
same length but with different random locations of the dopants. The uncertainty on these
values is of the order of the marker size for K. For Li the uncertainty is increasing with
length, below 10 nm it is of the order of the marker size and for 32 nm the PF value is
(9 ± 6).10−4 μW/K2/m. For these calculations, the length perpendicular to the transport
direction (L⊥) is kept constant and only the length Lz in the transport direction is varied.
As expected, chloride doping is leading to very poor power factor when the length of the
disordered system is increased. With raising the length of the system, an Anderson localiza-
tion phenomenon is occurring, leading to an exponential decrease of the conductivity which
is not compensated by the Seebeck increase. In these conditions, the PF is dropping very
rapidly by 5 orders of magnitude with the length of the system. Conversely, for potassium
the influence of the disorder is very small and the PF is only reduced by a factor of 3.
One key quantity to estimate quantitatively the influence of the disorder is the localization
length. [155, 354] For disordered systems, the conductivity can be expressed as a decaying
law with the length for which, the localization length (Lc) comes as a reference length of
the system. It can be expressed as:

σ(L) =
σ0

e2L/Lc − 1
. (6.4)

We have represented the corresponding law for the two dopants in Fig. 6.7 as dotted

Figure 6.7: From Ref. [315]. Power factor for Cl and K doped MoS2 as function of the
device length (Lz). The dopant concentration is set to 12 .5%. In inset is represented the
Seebeck coefficient and the conductivity (the dotted lines corresponds to the fits). Each
point corresponds to an average over 10 different configurations (random locations of the
dopants)
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lines (for K, it is almost not distinguishable from the data). This law is rather well verified,
in the chloride case it is leading to a localization length of 3.5 nm and for potassium the
derived Lc is about 1.5μm. However, this last value is extracted from a very short length
range compared with Lc and it must thus be taken as a lower bound of the possible Lc

value for potassium. Anyhow, the 3 orders of magnitude between these two values is clearly
illustrating the localization phenomenon occurring with chloride dopant.

In summary, we have investigated the thermoelectric properties of single layer transition
metal dichalcogenide on the basis of ab initio quantum transport within the Landauer
Büttiker formalism. We conclude, on the basis of rigid band model, that MoS2 and WSe2
are leading, for equivalent doping concentration, to the largest PF under electron doping
compared to MoSe2 and WS2. Moreover, by performing realistic doping, we observe that
the substitution doping mechanism by chloride is inducing local states at the Fermi level,
leading at low dopant concentration to a poor PF. In contrast, alkalies are acting as almost
perfect electron donors, the band structure at the Fermi level is then very close to the band
structure of the pristine TMDC layer. However, due to a degeneracy removal phenomenon,
the PF obtained with alkali doping is not as large as the one obtained within the rigid
band model. This point is tempering a bit the attractivity of TMDC for thermoelectric
applications. Finally, we have investigated the influence of the disorder induced by the
dopant. In case of adsorption doping by potassium the PF is barely affected by the disorder.
Conversely, the disorder induced by substitution doping by chloride leads to an exponential
drop of the PF within a typical length scale of 30 nm. This last point highlights the utmost
importance of the Anderson localization phenomenon for TMDC materials when evaluating
the transport properties.

6.2 Drastic effects of vacancies on thermal transport in graphene

Over the past decade, and because of its unique mechanical, electronic, optical and ther-
mal properties, the 2D material prototype, graphene, has been at the heart of a plethora
of publications [355, 295, 305]. Among all these remarkable properties, the particular topic
of thermal transport has attracted much attention over the past years. Graphene exhibits
an unusually high thermal conductivity [311, 356, 357, 358], that could, in the near future,
make this two dimensional material one of the best candidates for efficient thermal dissipa-
tion in microelectronics. In addition, nanostructuring [359] and disorder [360] in graphene
based compounds could be promising pathways for high-efficiency thermoelectric devices
to transform waste heat into electrical energy. The desired effects are a drastic suppression
of the thermal conductivity and significant improvement of the Seebeck coefficient, both
required to reach a large thermoelectric efficiency.

Many efforts are still devoted to understanding the lattice thermal conductivity in
graphene, but no clear consensus has been reached so far, the topic remains controver-
sial. Experimentally, the measured room temperature thermal conductivity (κ) spans
over a large range of values, typically between 400 W.m.−1K−1 and 600 W.m.−1K−1

for supported samples[357, 361] and 1500 W.m.−1K−1 to 5400 W.m.−1K−1 for suspended
ones.[311, 357, 362] The important fluctuations in the measured values can be attributed
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to (i) large measurement uncertainties, (ii) variations in the processing conditions and (iii)
graphene quality. This could indicate a high sensitivity to intrinsic defects such as va-
cancies, lattice reconstruction, edge roughness or even ripples. From the theoretical side
[363, 364, 365, 366, 367, 368], the scenario is even more open. The estimates of κ at room
temperature in graphene vary by more than one order of magnitude, typically it ranges
from 500 W.m.−1K−1 to about 9000 W.m.−1K−1.

In this section, using state of the art first principle based approaches, we address the
issue of vacancies’ effects on lattice thermal transport in single mono-layer graphene. For
that purpose, we follow a two steps procedure. First, we calculate the vacancy induced
multiple scattering contribution to the phonon lifetime by an exact real space treatment
of the disorder. Notice that, in most of the existing theoretical studies, disorder is treated
perturbatively. As will be seen, the second order perturbation theory appears to severely
overestimate the phonon lifetimes. Note however, that the perturbation theory often used
in the case of isotopic disorder is reasonable, because of the weak effects of the substitution
of 12C by 13C. In the second step, we calculate the thermal conductivity as a function of
the vacancy concentration by including phonon-phonon scattering (Normal and Umklapp
processes) and going beyond the relaxation time approximation (RTA). It should be em-
phasized that all calculations are parameter free, since the disordered phonon dynamical
matrix is obtained from first principle calculations.

6.2.1 Exact disorder contribution to the phonon dispersion and lifetimes

Fig. 6.8(left) shows the calculated dispersion in the pristine graphene monolayer along the
Γ-M-K-Γ path in the Brillouin Zone (BZ). The inter-atomic force constants (IFC) φαβ

ij have
been calculated from first principle simulations, i and j are the positions of the C atoms
and α, β = x, y and z.

The ab initio calculations are performed with the DFT package SIESTA [112]. The
exchange-correlation functional used here corresponds to the generalized gradient approx-
imation as proposed by Perdew, Burke & Ernzerhof [123]. However, the local density
approximation leads to similar results. Troullier-Martin norm-conserving pseudopoten-
tials [191] are used. The basis corresponds to a double-ζ-polarized basis optimized with
the simplex tool of the SIESTA package. All the atomic structures were optimized up to
forces less than 10−4 eV/Å and to an hydrostatic pressure smaller than 10 bar. Finally, a
Monkhorst-pack of 10×10×1 k-points is used for the calculations along with a mesh cutoff
of 600 Ry.

The IFC, φαβ
ij , were calculated by the finite displacement method. The displacement

amplitude was 0.04 Bohr. Note that, we use the local constraint φαβ
ii = −∑

j �=i φ
αβ
ij that

ensures that no force results from a global translation of the whole system.
In the presence of a C vacancy, two different supercells have been used to compute the

inter atomic force constants. First, we have considered a large rectangular supercell with
dimensions 21.3Å × 24.6Å (199 C atoms) and second a smaller diamond shaped supercell
that contains 97 atoms. In both cases, the nearest-neighbours IFC (φzz

n−n) exhibit the same
axial symmetry (y-axis) as that of the chosen supercell. The average value of the φzz

n−n
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Figure 6.8: From Ref. [316]. (left) Calculated phonon dispersions in pristine graphene along
the Γ-M-K-Γ path (continuous lines) for LA, TA, LO, TO, ZA and ZO branches. The dotted
symbols are experimental data from Ref. [369, 370, 371]. (middle) ab initio calculated
nearest-neighbour inter-atomic force constants for the ZA and ZO modes in the vicinity of
a vacancy (in eV/Å2). (right) 2D color plot of the calculated averaged phonon dynamical
spectral function As(q, ω) in the presence of 5% of vacancies. The chosen polarisation for
the in-plane modes is es = 1√

2
(ex + ey).

of the 2-coordinated atoms is −3.03 eV/Å2 for the largest supercell and −2.82 eV/Å2 for
the smallest. The fluctuations around the average, were about 0.8 eV/Å2 and 0.4 eV/Å2

respectively for the rectangular and diamond shaped supercells. These fluctuations origi-
nates from the non-symmetric free relaxation of the C atoms in the supercells. The angles
involving C2 and C3 of Fig. 1 in the manuscript are close to 121◦, in contrast, that of C1 is
around 126◦ for the largest supercell, and the distance were slightly shorter for the bonds
involving C1.

Note that in the case of graphene, in-plane (xy) and out of plane (z) modes are decou-
pled. We observe an excellent agreement between our calculations and the experimental
data, over the whole BZ. We should emphasize that, we have retained the first 6 nearest
neighbour shells for the calculations, including further shells has negligible effects.

In Fig. 6.8(middle) are plotted the nearest-neighbour inter-atomic force constants φzz
n−n

for the out of plane modes (ZA and ZO) in the vicinity of a vacancy. The rectangular
supercell used for the calculations contains 199 C atoms. In a pure graphene mono-layer
φzz
n−n is −6.1 eV/Å2. When a vacancy is introduced, φzz

n−n is strongly affected. More
precisely, for the 2-coordinated C atoms the average value is only −3.03 eV/Å2. As we
move away from the vacancy we rapidly recover the value in the pristine compound. For
larger distances between C atoms (beyond nearest-neighbours), the IFC are less affected by
the presence of the vacancy. In what follows, and for simplicity, the inclusion of a vacancy
is treated as follows: (i) a removal of a C atom and the corresponding bonds and (ii) a
reduction by a factor 2 of the nearest neighbour IFC of the 2-coordinated C atoms, for
both in and out of plane modes. We should mention, in contrast to what has been reported
recently in a semi-empirical theoretical study [364], that the φαβ

n−n are not enhanced by a
factor 2 but strongly suppressed as revealed by our first principle calculations.

To obtain the vacancy induced multiple scattering contribution to the phonon scattering
rate, we evaluate numerically on large systems (typically 106 C atoms) the phonon dynam-

142



ical spectral function. Note that this function is directly accessible from inelastic neutron
scattering experiments. For a fixed concentration of vacancies and given configuration of
disorder (random positions of the vacancies), the dynamical spectral function reads (see
section 4.1.2),

As(q, ω) = − 2

π
ω�(Gs(q, ω)), (6.5)

where

Gs(q, ω) = lim
η→0

〈q, s|
[
(ω2 + iη)1̂− D̂

]−1 |q, s〉 , (6.6)

where D̂ is the dynamical matrix and |q, s〉 is a Bloch state with momentum q and polar-
isation vector es, and η is a small imaginary part. We define the plane wave state,

|q, α〉 = 1√
N

∑
i

eiq.ri |i, α〉 , (6.7)

where the sum runs over the sites occupied by C atoms. For in plane modes, for a chosen po-
larisation vector es = cos(θs).ex+sin(θs).ey, we define |q, s〉 = cos(θs) |q, x〉+sin(θs) |q, y〉.
Hence, es = ( qx|q| ,

qy
|q|), (

−qy
|q| ,

qx
|q|) and ( 1√

2
, 1√

2
) for respectively longitudinal, transverse and

(1,1)-axis polarisation. For the out of plane modes (ZO, ZA) es = ez. The matrix element

Dαβ
ij =

φαβ
ij√

mimj
xixj, where xi = 0 if the site i is occupied by a vacancy, otherwise xi = 1.

In addition, for 2-coordinated atoms φαβ
ij is half of its value in the pristine compound for

nearest-neighbour IFC only. For a given q of the BZ, the peaks in As(q, ω) provide both
the energy of the phonon modes and the lifetimes that correspond to the inverse of the
full width at half maximum (FWHM) of the peaks. To extract reliably and accurately the
phonon peak positions and more particularly the FWHM that are strongly η dependent for
low energy modes, the calculations are performed using the powerful iterative Chebyshev
Polynomial Green’s Function approach (CPGF) [262, 261] (see section 4.3.2). A similar
methodology involving Chebyshev Polynomials to expand the time evolution operator has
been developed earlier to address the dc conductivity in quasi crystals [372]. Note that
performing a direct exact diagonalization of the disordered dynamical matrix, would re-
quire a large amount of both memory and CPU time. In particular the CPU time scales
as N3, where N is the total number of C atoms. In contrast, the calculation using CPGF
scales linearly with the system size and the memory required is small, because there is no
need to store large matrices. We should emphasize that, within CPGF the treatment of
the disorder is exact. Thus, quantum interferences and localization phenomena are fully
included.

Fig. 6.8(right) represents the disorder averaged dynamical spectral function for both
in plane and out of plane modes and a concentration of vacancies set to x = 5%. Note
that, because of the large system sizes considered here, a few configurations of disorder are
enough to get reliable statistical average. In addition, in this figure, a small finite η has been
kept for the sake of visibility. However, in what follows and in order to properly extract
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the exact disorder contribution to the phonon lifetime the limit η → 0 will be properly
carried out. In the vicinity of the Γ point the phonon modes are well defined, but the ZA
modes appear to have a much broader width than that of the in-plane acoustic modes. As
we move away, along the Γ-M or Γ-K path, first the phonon width of the acoustic modes
increases significantly (lifetime reduces) and then becomes almost constant. The case of the
optical modes is slightly different. In particular, for TO branch, the width first increases
rapidly then reaches a maximum and as we approach the zone boundary it decreases again.
Along the M-K path, ZA, ZO and especially TO modes are very sharp in contrast to LA,
TA and LO modes. In this region, it is difficult to separate LO and LA modes. It is worth
mentioning two other interesting features: a well defined vacancy induced flat band located
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Figure 6.9: From Ref. [316]. (top) LA and TA phonon dispersions along the Γ-M direction
for various concentrations of vacancies ranging from x = 0 to 0.1. (bottom) ZA phonon
dispersion in the ΓM direction for the same concentrations. The dashed lines correspond
to linear fits for the long wavelength phonons. The inset shows a zoom of this region.
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at about 500 cm−1 and the disappearance (fuzzy region) of the phonon modes around 1200
cm−1 in the vicinity of the K point.

Let us now discuss the effects of the vacancy concentration (x) on phonon dispersions.
We choose here to focus our attention on the Γ-M direction. The results for the acoustic
modes LA, TA and ZA are depicted in Fig. 6.9. We first observe that both dispersions
and velocities of LA and TA modes are weakly affected, the effects start to be visible for
relatively large vacancy concentration of the order of 10%. In contrast, the situation is
very different for the ZA branch. For large values of the momentum |q|, the dispersion
is insensitive to the vacancy concentration. However, in the vicinity of the Γ point the
dispersion goes from quadratic to linear. The long wavelength modes develop a finite
velocity vZA that depends on x. For instance, if we set x = 5%, we find that vZA is as large
as 0.15 vLA. As clearly shown in the inset, the region of linear dispersion rapidly increases
with the concentration of defects.

We now propose to analyse the effects of vacancies on the phonon modes FWHM de-
noted Γ(ω). As(q, ω) has been calculated in the whole BZ. Typically 200 to 300 q-points
uniformly distributed over the BZ have been targeted. Note that the number of Chebyshev
polynomials (CP) considered were typically of the order of 2.104 for q-points far from the
BZ center. However, for the acoustic modes in the vicinity of the BZ center, because of
the tiny values of the FWHM, it was necessary to include up to 3.106 CP to get converged
results denoted "highly accurate calculations". Γ(ω) (rescaled by x(1 − x)) as a function
of the phonon mode energy is plotted in Fig. 6.10 for both LA and TA branches. The
highly accurate calculations for the low energy modes in the ΓM direction are also shown.
First, we observe for both branches a non monotonic behaviour of Γ(ω). We also find
for ω ≤ 400 cm−1 that the data points obtained for various vacancy concentrations lie
on the same curve. Beyond 400 cm−1, we observe, for a given energy, larger fluctuations
around the average value. They are relatively small for the LA branch, of the order of
10 %. In contrast, they are much larger for the TA modes. For instance, for ω = 600
cm−1 the fluctuations are of the order of 30 %. However, beyond 700 cm−1 the fluctuations
are strongly suppressed. In addition, for ω ≤ 500 cm−1, the FWHM is found cubic in
energy: Γλ(ω) = x(1 − x) ω3

ω2
0,λ

where ω0,λ = 288 cm−1 and 236 cm−1 respectively for λ =

LA and TA. The cubic power law found here is in agreement with perturbation theory
(PT) that gives ΓPT

λ (ω) = xπ
2 (

ΔM
M )2ω2ρλ(ω), ΔM is the mass variation of the substituted

atom and ρλ(ω) denotes the phonon density of states in the pristine compound [150]. In
the particular case of vacancies ΔM

M = −Ma

M − 2 ≈ −3, Ma being the mass of the missing
atom and M the average mass per atom, -2 accounts for the potential energy of the missing
linkage [151, 373]. For LA and TA modes the density of states is ρλ(ω) = Ω

2πv2
λ
ω where

Ω is the primitive cell area. The comparison between PT and our exact results leads to
ΓPT
LA ≈ 0.018 ΓLA and ΓPT

TA ≈ 0.03 ΓTA. Thus, perturbation theory drastically underesti-
mates the vacancy contribution to the scattering rate. This is not surprising considering
the non-perturbative nature of such defects compared to isotopic disorder. Note that in a
recent study [374] devoted to thermal transport in irradiated graphene, a value of (ΔM

M )2

of the order of 590 instead of 9 was found necessary to reproduce the experimental data.
This is entirely consistent with our finding that LA scattering rate is about 55 times larger
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Figure 6.10: From Ref. [316]. (top) LA phonon full width at half maximum (rescaled by
x(1 − x)) at T = 0 K as a function of the phonon energy ω for x = 0.025, 0.05 and 0.1.
A grid of 200 to 300 q-points uniformly distributed over the whole Brillouin zone has been
used. The filled symbols correspond to highly accurate calculations in the Γ-M direction
(see text). The continuous line is a cubic fit of this set of data up to 500 cm−1. (bottom)
Same as in the top figure but for TA branch.

than that predicted by PT.
The case of the ZA branch is even more interesting. Γ(ω) for the ZA branch is plotted

in Fig. 6.11. First, after rescaling, the data points lie on a single curve as seen previously
for in plane modes. The behaviour is non monotonic, Γ(ω) exhibits a maximum at about
200 cm−1 and a strong decrease as we approach the BZ boundary (M and K points).
The fluctuations for a given ω are found relatively small, at most of the order of 10% to
15% around the average value. Unexpectedly, as we introduce vacancies, we find a linear
behaviour of ΓZA as a function of the mode energy in the vicinity of the BZ center. The
fluctuations are very small in this region as clearly seen in the inset. A linear fit for ω ≤ 100
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cm−1 leads to ΓZA(ω) = 20x(1 − x)ω. This linear scaling of the ZA width in the long
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Figure 6.11: From Ref. [316]. ZA phonon full width at half maximum (rescaled by x(1−x))
at T = 0 K as a function of the phonon energy ω for x = 0.01, 0.025, 0.05 and 0.1. A
grid of 200 to 300 q-points uniformly distributed over the whole Brillouin zone has been
used. The filled symbols correspond to highly accurate calculations in the Γ-M direction
(see text). The continuous line is a linear fit for the low energy modes (see inset).

wavelength regime means that these modes are marginal since limω→0
ΓZA

ω = 20x(1 − x).
For well defined excitations, one expects this ratio to be zero. Furthermore, ΓZA(ω) ≥ ω
for x ≥ 0.05, hence the phonon quasi-particles are not well defined in this range of vacancy
concentrations. These findings are in strong contrast with perturbation theory. Indeed,
it is expected that ΓPT

ZA(ω) = x(ΔM
M )2 Ω

8Dω2 where D is the stiffness of the ZA branch in
the pristine compound, i.e. ω(q) = D|q|2 in the long wavelength limit. Therefore, the
prediction of a quadratic power law from perturbation theory is inconsistent with the exact
numerical results. For example, for ω = 50 cm−1 and 100 cm−1 we find ΓPT

ZA

ΓZA
= 0.045

and 0.09 respectively. Once again, perturbation theory severely overestimates the phonon
lifetime and hence the mean free path of the ZA phonon modes in the presence of vacancies.
Because the thermal conductivity is dominated by the ZA modes in both pristine graphene
and in the presence of C isotopes[375], we naturally expect in the calculation of κ a strong
deviation from PT as vacancies are introduced.

6.2.2 Effects of vacancies on the thermal conductivity

Linearized Boltzmann Transport Equation (BTE) is a frequently used and efficient theoreti-
cal approach to address the thermal conductivity in 2D and 3D materials (see section 2.2.1).
In the great majority of studies, and because solving exactly the BTE is more cumbersome
[376, 377], the relaxation time approximation (RTA) is often assumed. However, compara-
tive studies have revealed that RTA calculated thermal conductivity is often much smaller
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than the full BTE solution in 3D [378, 379, 380, 381]. The discrepancy is even stronger in
2D compounds such as pristine or natural graphene monolayer [365, 375, 382]. The origin of
the discrepancy is the fact that within RTA, Umklapp (U) and Normal (N) phonon-phonon
scattering processes are treated on equal footings, as resistive. However, N processes are
not resistive, the thermal conductivity is expected to diverge in the absence of U scattering.
There is an alternative to full BTE that can be implemented more easily and corrects the
shortcomings intrinsic to the RTA approach. Several decades ago, Callaway proposed a
theory that allows U and N processes to be treated separately [152, 153, 154]. It has been
found that the Callaway theory leads to thermal conductivities that agree very well with
the full BTE approach in 3D systems such as Si [383] and even in graphene [134]. Here, we
propose to address the effects of the vacancies on thermal conductivity using the Callaway
approach (see section 2.2.1, the details of the calculation are given in appendix A). Within
this approach the thermal conductivity in the α-direction reads,

κα = καRTA +Δκα, (6.8)

the first term is the RTA contribution and the second one is the correction due to the
appropriate separation between resistive and non-resistive processes. καRTA is given by,

καRTA =
1

kBT 2

1

NΩδ

∑
q,λ

(�ωλ)
2(vαλ )

2τ totλ f0
λ(f

0
λ + 1), (6.9)

δ is the separation of carbon planes in graphite, f0
λ is the Bose-Einstein distribution for the

λ-branch and vαλ the velocity in the α-direction. According to Mathiessen’s rule the total
phonon lifetime is 1/τ totλ = 1/τNλ +1/τUλ +1/τDλ . We remind that the disorder contribution
is τDλ = �

Γλ
. The full expression of Δκα is given in section 2.2.1 and appendix A.

To compute numerically the total conductivity as a function of temperature, we need
the temperature dependence of τNλ and τUλ . We use the ab initio calculated scattering rate
at room temperature (T0) for both U and N processes (τN0,λ, τ

U
0,λ) extracted from Ref. [366].

We make the following ansatz to have the full T variation of the scattering rates,

1/τNλ (T ) = (1/τN0,λ)
T

T0
(6.10)

and the Umklapp scattering rate is,

1/τUλ (T ) = (1/τU0,λ)
T

T0
e
−ωDλ

3
( 1

T
− 1

T0
)
. (6.11)

This ansatz is motivated by the fact that the form usually assumed for the N and U process
are, 1/τNλ = ωaT b and 1/τUλ ∝ (1/τNλ )e−

ωDλ
cT where a = 1 or 2, b = 1, 2 or 3 and c is often

set to 3 [152, 384, 385, 386]. For the vacancy concentration dependent scattering 1/τDλ we
use the results found in the present study.

In Fig. 6.12, the average thermal conductivity κ = (κx+κy)/2 (see eq. (6.8)) is plotted
as a function of temperature for various concentrations of vacancies. In the clean limit
(x = 0), we find very high values of the thermal conductivity and because of the presence
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Figure 6.12: From Ref. [316]. Thermal conductivity κ in W.m.−1K−1 as a function of
temperature for various concentrations of vacancies ranging from 0 to 0.01 (continuous
lines). The symbols (circles, stars and diamonds) are experimental measurements extracted
from Refs. [311, 358, 312]. The inset represents the variation of the room temperature κ as
a function of x, the blue continuous line is a fit for x ≥ 10−5.

of the U-processes, we observe a 1/T suppression of κ. As we introduce a very small
amount of vacancies of the order of x = 10−5 only, the effects are dramatic below 200 K.
At room temperature, κ is already reduced by 40 % and the suppression is even stronger
for x = 10−4. Indeed, for this concentration, κ = 1000 W.m.−1K−1 at room temperature,
five times smaller than that of pristine graphene. As we increase the vacancy concentration
to 0.1%, the thermal conductivity falls to κ = 200 W.m.−1K−1, 25 times smaller than that
of pristine. The variation of κ at 300 K is plotted in the inset as a function of x and
reveals a crossover around x = 10−5. Below this concentration, κ is weakly sensitive to the
defects concentration, and above, κ decreases rapidly with a power law decay κ ∝ 1/x0.623.
There is no simple way to anticipate such an exponent. Let us now compare our results to
experimental measurements[311, 358, 312]. At room temperature, in the pristine limit, we
obtain κ = 4800 W.m.−1K−1 which is in very good agreement with the highest experimental
values of the thermal conductivity ever reported [311]. The agreement with the other data
sets beyond room temperature is also relatively good. The measured values are consistent
with an extremely low concentration of defects of the order of x = 10−6 to 10−5 suggesting
that the samples should be of good quality. Notice that, the agreement between theory and
experiments, in the pristine case, has already been achieved in the full BTE calculations of
Refs. [365, 375].

Our prediction for the thermal conductivity dependance on the vacancy concentration
can be compared with the experimental measurements of Ref. [374] on suspended graphene
samples subjected to electron beam irradiation. We also compare our results with those of
several molecular dynamics (MD) studies of thermal transport in vacancy-ridden graphene
[374, 387, 363, 388]. Due to the huge fluctuations in the theoretical and experimental values
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κ0 (Wm−1 K−1)

Our theory 4720

Exp. [a] (est.) 2000

RNEMD [a] 1249

NEMD [b] 175

NEMD [c] 475

EMD [d] 2913

Table 6.3: The room-temperature thermal conductivity κ0 for clean graphene (x = 0)
corresponding to the data in Fig 6.13. The MD values are taken from Ref. [374] ([a]),
Ref. [387] ([b]), Ref. [363] ([c]), and Ref. [388] ([d]). The experimental value is estimated
from Ref. [374].

for the room-temperature thermal conductivity of pristine graphene κ0 (see table 6.3), it is
most relevant to compare the ratio of the thermal conductivity in the presence of vacancies
to the thermal conductivity of clean graphene, as shown in Fig. 6.13. Our results are in
very good agreement with the experimental data, with a substantial drop in conductivity
starting for very low vacancy concentrations around 10−5. The MD data, on the other
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Figure 6.13: From Ref. [317]. The thermal conductivity at T = 300K as a function of the
vacancy concentration x and renormalized by the value κ0 for x = 0. The shaded region
around the solid line (our theory) corresponds to a 30% variation in the strength of the
disorder scattering. The circles are experimental data from Ref. [374]. The squares are
molecular dynamics data from Ref. [374] (green, [a]), Ref. [387] (magenta, [b]), Ref. [363]
(red, [c]) and Ref. [388] (orange, [d]).
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Figure 6.14: From Ref. [317]. The weight of the ZA modes in the calculated thermal
conductivity as a function of the vacancy concentration x, from 30K to 1200K.

hand, exhibit a clear discrepancy with the measured values, at least regarding the non-
equilibrium MD (NEMD) results. This is possibly due to strong finite-size effects that can
be expected in NEMD simulations. Also, the interatomic potentials used in MD to describe
the C-C interactions might not be well-suited for thermal conductivity calculations.

It is also instructive to investigate the relative contributions of the in-plane and out-
of-plane modes in thermal transport when vacancies are present. Despite their quadratic
dispersion, the ZA modes have been shown to dominate the thermal conductivity of clean
graphene at room-temperature [375]. In Fig. 6.14 is shown the weight of the ZA modes
in the thermal conductivity as a function of x for several temperatures. For low vacancy
concentrations (x < 10−4), the ZA contribution accounts for 60% of the total conductivity
at high temperatures (600K and beyond), 70% at room-temperature and completely dom-
inates at low temperatures. However, because the ZA modes are very sensitive to disorder,
their contribution drops when the vacancy concentration is increased to 10−3, and becomes
negligible in highly disordered graphene (x = 10%).

6.2.3 Size effects and phonon mean free paths

A somewhat controversial aspect of thermal transport in graphene is the size dependance
of the thermal conductivity. The suspended samples used in thermal conductivity measure-
ments are only a few μm long, which is not much larger than the typical phonon mean free
path in silicon, for instance [162, 67]. Consequently, ballistic phonon transport and size
effects are thought to be relevant in graphene [134, 365, 375], and there are even predictions
of a thermal conductivity diverging logarithmically with the system length [389]. In many
experimental setups, the thermal conductivity is measured by laser heating the center of a
graphene sheet suspended over a circular or rectangular hole [311, 357, 390, 356, 391]. A
proper inclusion of size effects in these cases would require solving the Boltzmann transport
equation in such nontrivial geometries [365]. However, a systematic experimental study of
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Figure 6.15: From Ref. [317]. The thermal conductivity as a function of the system length
Lx, at (a) T = 300K and (b) T = 120K. The calculations (solid lines) are carried out with
a vacancy concentration x = 2.5× 10−5, a width Ly = 1.5μm and a specularity parameter
p = 0.85. The circles are experimental data from Ref. [389].

the thermal conductivity dependance on the system length was performed in Ref. [389] on
rectangular graphene sheets suspended between large SiNx membranes acting as heat source
and heat sink. Such a situation can be reasonably described in the framework of Boltzmann
transport by introducing an energy-dependant ballistic scattering rate corresponding to a
mean free path equal to the system length Lx in the transport direction (see section 2.2.2
and equation (2.83)). This procedure recovers the results of the Landauer formalism when
the system length is much smaller than the mean free path associated with the usual scat-
tering mechanisms. For the LA and TA branches, the ballistic scattering rate is a constant
1
τB
λ

= π
2
vλ

Lx
, while for the ZA branch it can be expressed as 1

τB
ZA

= π
2

√
4Dω
Lx

. As the width of
the graphene sheet in Ref. [389] is 1.5μm, which is small compared to the largest length
of 9μm, we also take into account the possibility of phonon scattering on the rough edges
of the sample. This is done by introducing a scattering rate 1

τE
λ

= π
2
vλ

Ly

1−p
1+p for the LA and

TA branches and 1
τE
ZA

= π
2

√
4Dω
Ly

1−p
1+p , where Ly is the sample width and p is the so-called

specularity parameter measuring the roughness of the edges (p = 1 corresponds to perfect
edges i.e. no resistive edge scattering). p is usually in the range 0.8 − 0.9 and has been
estimated to be approximately 0.9 from scanning electron microscopy data [392, 312, 364],
therefore we choose p = 0.85. Fig. 6.15 shows a comparison between the experimetal data
from Ref. [389] and the calculated thermal conductivity at 120K and 300K as a function of
the sample length. A very good agreement between theory and experiment is found for the
vacancy concentration x = 2.5× 10−5, demonstrating that the measurements are compat-
ible with a finite value of the thermal conductivity at the thermodynamic limit Lx = ∞,

152



10-4

10-3

10-2

10-1

10 20 30 10 20 30 10 20 30

10

0

50 K 300 K 1200 K

2
4
6
8

12

B

D

N
B

D

N
B

D

U(a) (b) (c)

Figure 6.16: From Ref. [317]. Color graph of the energy-averaged phonon mean free path
lph of the XY modes at (a) 50K, (b) 300K and (c) 1200K with respect to the system length
Lx and to the vacancy concentration x. The width Ly is assumed infinite. The dashed
lines correspond to different regimes for lph, where it is mostly ballistic (B), dominated
by disorder scattering (D), by Normal phonon-phonon scattering (N), and by Umklapp
phonon-phonon scattering (U).

as opposed to a logarithmic divergence of κ.
Having validated our procedure of including a ballistic scattering rate to account for

the finite size of the system, we now calculate the phonon mean free path lph, neglecting
for simplicity the rough edge scattering (Ly = ∞). The total energy and temperature
dependant scattering rate 1

τλ
is given by Matthiessen’s rule:

1

τλ
=

1

τBλ
+

1

τDλ
+

1

τNλ
+

1

τUλ
. (6.12)

The energy dependant mean free path is then calculated using equation (2.82), which yields
lλph(ω) =

π
2 vλτλ(ω) for the LA and TA branches and lZA

ph (ω) = π
2

√
4Dω τZA(ω) for the ZA

branch. We then obtain an typical value for lph by averaging the inverse mean free paths
over the energy:

1

lλph
=

∫
dωρλ(ω)f

0
λ(ω)

1
lλph(ω)∫

dωρλ(ω)f
0
λ(ω)

. (6.13)

In Fig. 6.16 is plotted a color map of the total phonon mean free path of the in-plane
modes (LA and TA branches) as a function of the system length Lx and vacancy concenta-
tion x. Low (50K), ambient (300K) and high (1200K) temperatures are considered, and
the scattering regimes where different scattering mechanisms dominate are demarcated by
dashed lines. We consider that disorder scattering dominates, for instance, if the mean free
path is multiplied by a factor less than 2 when all the other scattering mechanisms are
neglected. Overall, the mean free paths are of the order of the micrometer even at high
temperatures, and can even increase to around 10μm at low temperatures. At room tem-
perature, there is a non-negligible ballistic regime for system sizes up to 4μm and vacancy
concentrations lower than 1%. The Normal and disorder scattering processes otherwise
dominate depending on the vacancy concentration. At low temperatures, the transport
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is mostly ballistic even for system sizes of 25μm, while it is overwhelmingly diffusive at
high temperatures. The Umklapp processes actually dominate over Normal phonon-phonon
scattering at 1200K.

Fig. 6.17 shows the same plot for the out-of-plane modes (ZA branch). Notice that
the scales for lph, Lx and x are different. The ZA mean free paths are about an order of
magnitude smaller than their LA and TA counterparts and, due to the high sensitivity of
the in-plane modes to the presence of vacancies, the disorder quickly dominates transport
for vacancy concentrations as low as 0.01 − 0.1%. Thermal transport is actually mostly
diffusive at room temperature for the Z modes, with scattering dominated by the Normal
phonon-phonon processes at low vacancy concentration. This does not necessary means,
however, that the size effects observed in fig. 6.15 are only due to the XY modes, because
the N processes are not resistive and the phonon mean free path cannot be directly related
to the thermal conductivity. Nevertheless, the phonon-phonon processes are quite weak at
low temperature, which does suggest a high sensitivity of the thermal conductivity to the
sample geometry and quality. At all temperatures, the Normal processes dominate over the
Umklapps, indicating a probable failure of the RTA for the thermal conductivity, at least
for x < 0.1%.
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Figure 6.17: From Ref. [317]. Color graph of the energy-averaged phonon mean free path
lph of the Z modes at (a) 50K, (b) 300K and (c) 1200K with respect to the system length
Lx and to the vacancy concentration x. The width Ly is assumed infinite. The dashed
lines correspond to different regimes for lph, where it is mostly ballistic (B), dominated by
disorder scattering (D), and by Normal phonon-phonon scattering (N).

Finally, it is interesting to comment on the validity of the RTA approximation. In
Fig. 6.18 is shown the ratio Δκ

κRTA
as a function of T. Let us first consider low vacancy

concentrations (x ≤ 10−4). For this range of concentration, the correction Δκα(T ) is
important and even dominates. For instance the ratio Δκ/κRTA is 1, 4.5 and 7.5 for
x = 10−4, 10−5 and for the pristine case at room temperature. On the other hand, when
the vacancy concentration is large enough beyond 0.1% of the C atoms, the correction
becomes very small, it is less than 15% of the RTA value. For x = 1% the correction to
RTA represents only 5% of the total conductivity. These results show that in the presence of
a sufficient amount of C vacancies, beyond 0.1%, the RTA approach becomes appropriate for
the evaluation of the thermal conductivity, provided that the scattering rates are calculated
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Figure 6.18: From Ref. [316]. (Color online) Callaway’s correction to the total thermal con-
ductivity over RTA contribution as a function of temperature, for various concentrations of
C vacancies. The green area corresponds to negligible Callaway correction ("RTA regime")
and the purple one to dominant Callaway correction.

accurately.
Combining state of the art ab initio approaches with a full and exact treatment of

the disorder, we have addressed the impact of vacancies on phonon thermal transport in
graphene. It has been found that the vacancy induced multiple scattering contribution
to phonon lifetimes are much larger than predicted by second order perturbation theory.
Furthermore, vacancies have drastic effects on both dispersion and lifetime of ZA modes.
The ZA dispersion becomes linear in the vicinity of the Brillouin zone center and the vacancy
induced scattering rate is linear in energy instead of the quadratic behaviour often assumed.
We have also shown that the vacancies have dramatic effects on the thermal conductivity
calculated beyond the relaxation time approximation. A mere 0.1% of vacancies leads to a
spectacular 95% suppression of the thermal conductivity at room temperature. This strong
dependance of thermal transport on the vacancy concentration is found in agreement with
experimental data from electron beam irradiated samples. We have modeled the ballistic-to-
diffusive transition in the framework of Boltzmann transport and found a good agreement
with experimental measurements, suggesting that the thermal conductivity does not diverge
at the thermodynamic limit. These findings contribute to a better understanding of thermal
transport in 2D materials and could be promising for high-efficiency thermoelectric power
generation as the high lattice conductivity in natural graphene is the major obstacle. It is
also worth noticing that our methodology is very general, it could easily incorporate other
features such as extended defects, porosity and nanostructuring.
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Conclusions and perspectives

In this thesis, we have used a combination of density functional theory calculations and
real-space methods to study the thermoelectric transport properties of several compounds
through the Boltzmann transport equation or the Kubo formalism. This approach has
proved well-suited to tackle the challenges posed by the optimization strategies of thermo-
electric materials, which often involve strong disorder effects in large systems.

It has allowed us to investigate the electronic transport properties of two oxides, SrTiO3

and rutile TiO2. While we predict low thermoelectric performances for TiO2 due to the
strong electron-phonon coupling in this material, n-doped SrTiO3 exhibits a very good max-
imum power factor at room temperature, on par with current state-of-the art thermoelectric
materials such as bismuth telluride. This is in part due to the strong orbital anisotropy
in strontium titanate, which gives a two-dimensional character to electronic transport and
mimics the effects of quantum confinement. This band-structure anisotropy has negative
consequences as well: we predict that confining the conduction electrons in a single atomic
layer of SrTiO3 would be counterproductive for the thermoelectric performances, in addi-
tion to being technically difficult. Moreover, the introduction of resonant states in SrTiO3,
and indeed also in BaTiO3 and CaTiO3 that share a very similar band-structure, appears
to be a dead end, in part because of the two-dimensional character of the Ti orbitals in
these compounds. Vanadium doping in SrTiO3, in particular, is found to destroy the ther-
moelectric performances due to Anderson localization effects. Still, resonant states remain
a promising prospect to boost the power factor, particularly in materials exhibiting weak
electron-phonon scattering, such as lead telluride [281] or certain Half-Heusler alloys like
ZrNiSn [286].

We have studied the transport properties of two-dimensional materials, in which elec-
trons and phonons are confined in an atomic plane. Fully ab initio calculations of electronic
transport in single-layer transition-metal dichalcogenides show that doping should be done
using adatoms rather than substitutional impurities which lead to a localization of the
charge carriers. We have also calculated the phonon scattering rates and thermal conduc-
tivity of graphene in the presence of vacancies. The out-of-plane vibrational modes are
found very sensitive to disorder, and even low vacancy concentrations lead to a huge reduc-
tion of the thermal conductivity. This encouraging result for thermoelectric applications
could be supplemented by a similar study of electron transport in vacancy-ridden graphene,
which would yield a complete picture of thermoelectric transport in this material and would
allow a full prediction of the figure of merit.

The use of defects and disorder appears to be a particularly efficient and promising
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strategy to suppress and curtail the thermal conductivity, no just in graphene but in three-
dimensional materials as well. The generally long mean-free paths of phonons (they reach
the micrometer scale in silicon, for instance [162, 67]) should give ample opportunity to
tune and control thermal transport by introducing strong, perhaps anisotropic disorder.
Filled clathrates and skutterudites, for instance, are exemplars of very successful thermal
conductivity suppression using point defects [50]. Our methodology is well suited to study
different types of impurities and disorder and their effect on phonon transport. Such the-
oretical investigations could guide experimentalists towards the most efficient systems for
thermal management and energy applications.

More generally, combining ab initio calculations with a real-space treatment of disor-
der based on the single-particle Green’s function should constitute an efficient approach to
study electron and phonon transport in the presence of extended defects and nanostruc-
tures. Introducing grain boundaries and random nanoinclusions, for instance, has become
a standard strategy to decrease the thermal conductivity of thermoelectric materials [67].
However, the theoretical modelling of their effects on both electron and phonon transport
remains challenging as the validity of the Boltzmann picture is doubtful for small grain sizes
(see Fig. 6.19a). Another example of extended defect that could influence the transport
properties are ripples and strain fields expected to be present in two-dimensional materials,
both suspended or supported by a substrate (see Fig. 6.19b). In graphene, such out-of-plane
deformations are typically 10Å high, several nanometers long, and have been proposed as
the dominant electron scattering mechanism in high-quality samples [393, 394].

(a) From Ref. [67], transmission electron mi-
croscopy image of grain boundaries in a SiGe
compounds. Several length scales relevant to
electron transport are sketched.

(b) From Ref. [395], spatial configurations of
a graphene sheet at 50K (top) and 12.5K
(bottom) computed through molecular dy-
namics.

Figure 6.19

Nanoporous materials, i.e. solids with a high density of empty spaces (pores) in their
structure, display remarkable properties and constitute another potential area in which our
methodology could be usefully applied (see Fig. 6.20a and Fig. 6.20b). They are classified as
microporous if the pore size is less than 2 nm, mesoporous if it is between 2 nm and 50 nm,
and macroporous if it is more than 50 nm [397]. In the case of nanoporous silicon, these
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(a) A demonstration of the thermal insulating properties of silica aerogels.

(b) From Ref. [396], scanning electron mi-
croscopy image of nanopores in a thin silicon
membrane.

(c) The first steps of a Sierpinski carpet.

Figure 6.20

structures can be efficiently synthesized, are easily scalable, and represent a promising op-
timization strategy for thermoelectric power generation [398]. Both numerical simulations
(Monte Carlo, DFT and molecular dynamics) [399, 400] and experimental measurements
[396, 401] show a suppression of the thermal conductivity by orders of magnitude, while
electronic transport may be weakly affected. Finally, fractal materials are crystalline or
molecular compounds featuring self-similar nanostructures, such as pores in a Sierpinski
carpet configuration (see Fig. 6.20c). These materials can now be synthesized from two-
dimensional compounds through nanolithography and etching techniques [402] or directly
from molecules through bottom-up self-assembly processes [403]. Neither periodic nor disor-
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dered, they constitute an altogether different class of systems whose electronic and thermal
properties likely exhibit unique properties. In recent years, several numerical studies of the
thermal and electrical conductivity in fractal crystals based on either graphene [404, 405] or
model lattices [406, 407, 408] have been carried out. Using a variety of approaches, such as
the Landauer and NEGF formalisms, molecular dynamics simulations and expansion of the
time-dependant evolution operator on the Chebyshev polynomial basis, they have found
remarkable transport properties related to the geometrical pattern of the nanostructures,
including self-similarity in the energy-dependant electronic transmission. In these systems,
too, our methodology could prove extremely fruitful.
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Appendix A

The Callaway theory in graphene

The full and detailed derivation of the Callaway method can be found in Refs. [152, 153,
154]. In this appendix, we just summarize the main results and detail their application in
the case of graphene. The total conductivity in the α-direction can be written,

κα(T ) = καRTA(T ) + Δκα(T ), (A.1)

where, the RTA contribution is,

καRTA =
1

kBT 2

1

NΩδ

∑
q,λ

(�ωλ)
2(vαλ )

2τ totλ f0
λ(f

0
λ + 1), (A.2)

N is the total number of unit cells, λ the mode index (LA, TA, ZA), Ω the primitive cell
area, δ the distance between graphene sheets in graphite, f0

λ is the Bose distribution, �ωλ

the mode energy, vαλ its velocity in the α-direction and τ totλ the inverse of the total scattering
rate for the branch λ. According to Mathiessen’s rule the total phonon lifetime is,

1/τ totλ = 1/τNλ + 1/τUλ + 1/τdisλ . (A.3)

The first step consists in replacing in the standard Boltzmann equation the collision rate
by, (

∂fλ
∂t

)
c

=
fd
λ − fλ
τN

+
f0
λ − fλ
τR

, (A.4)

fd
λ is the drifted distribution function, and we have defined the scattering rate for resistive

processes, 1/τRλ = 1/τUλ + 1/τdisλ . Only the resistive processes tend to bring fλ back to its
equilibrium value. The drifted distribution fd

λ is defined by

fd
λ =

1

eβ(ωλ(q)−vd.q) − 1
, (A.5)

where we have introduced as a Lagrange multiplier the drift velocity vd. This quantity
is determined by the condition that the normal processes conserve the momentum. By
following step by step Callaway’s derivation we find,

Δκα(T ) =
(Aα(T ))2

Bα(T )
, (A.6)
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where the numerator Aα(T ) =
∑

λA
α
λ(T ) and,

Aα
λ(T ) =

1

kBT 2

1

NΩδ

∑
q

τ totλ

τNλ
�ωλv

α
λq

α
λf

0
λ(f

0
λ + 1), (A.7)

and the denominator Bα(T ) =
∑

λB
α
λ (T ) and,

Bα
λ (T ) =

1

kBT 2

1

NΩδ

∑
q

τ totλ

τNλ τRλ
(qαλ )

2f0
λ(f

0
λ + 1). (A.8)

To facilitate the calculations we replace the discrete sum over q by an integral over
energy and thus we introduce Debye frequencies for LA, TA and ZA modes. This leads to,

Aα
λ(T ) = cλ

1

Ωδ

∫ ωDλ

0

τ totλ

τNλ
ωρλ(ω)

∂f0

∂T
dω, (A.9)

where the coefficient cλ=1/2 for LA and TA branches and 1 for ZA. Similarly Bα
λ (T ) can

be rewritten,

Bα
λ (T ) =

1

2�Ωδ

∫ ωDλ

0

τ totλ

τNλ τRλ
gλ(ω)ρλ(ω)

∂f0

∂T
dω. (A.10)

The density of states is ρλ(ω) = Ω
2πv2

λ
ω for both LA and TA, and Ω

4πD for ZA. vλ is the
velocity at the Γ point for LA and TA, and D is the stiffness of the ZA branch. gλ(ω) =

ω
v2
λ

for LA and TA, and 1/D for ZA. Note that, in eq.(A.9) and (A.10) we have used the linear
dispersion for LA and TA and the quadratic one for ZA.
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Appendix B

The current density operator in
tight-binding representation

This appendix deals with the definition of the current density and velocity operators for
a tight-binding Hamiltonian written in a basis of Wannier functions. We write the single-
particle Hamiltonian of the full disordered system in the presence of a vector potential
�A:

Ĥtot = Ĥhop + Ĥloc (B.1)

in which Ĥloc are on-site terms and Ĥhop is composed of hopping term between orbitals on
different atoms:

Ĥhop =
∑
<i,j>

κ̂ij (B.2)

in which < i, j > designates couples of neighboring atoms, and where

κ̂ij = −
(
tij c

†
jci + tij

∗ c†icj
)

(B.3)

is the hopping operator between the neighboring orbitals i and j, in which

tij = tij e
i q

�

�Aij ·(�rj−�ri) (B.4)

is the hopping term between i and j with the Pieirls substitution, �Aij being an appropriate
value of the vector potential for the hopping between i and j.

It is necessary to clarify the expressions of the current, velocity and current density op-
erators in this formalism. One can start with the conservation of the charge, by diffentiating
the charge on the atom i in Heisenberg representation, Q̂i(t) = qc†i (t)ci(t):

∂Q̂i(t)

∂t
=

q

i�

[
c†i (t)ci(t), Ĥ(t)

]
(B.5)

yielding the conservation equation:

∂Q̂i(t)

∂t
+

∑
j neigh i

iq

�

(
tij c

†
jci − tij

∗ c†icj
)
= 0 (B.6)
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from which we deduce that the charge current between atom i and atom j is:

Îij =
iq

�

(
tij c

†
jci − tij

∗ c†icj
)

(B.7)

From this expression, it is intuitive that the velocity of electrons between i and j writes:

�̂vij =
i

�
(�rj − �ri)

(
tij c

†
jci − tij

∗ c†icj
)

(B.8)

and indeed this expression is consistent with the definition of the velocity as the time
derivative of the position:

�̂v(t) =
1

i�

[
�̂r(t), Ĥ(t)

]
=

∑
<i,j>

�̂vij(t) (B.9)

The current density is the symmetrized product of the charge density and the velocity:

�̂j(�r) =
q

2

(
n̂(�r) �̂v + �̂v n̂(�r)

)
(B.10)

The electron density must be expressed in terms of the Wannier orbitals χi(�r):

n̂(�r) =
∑
i,j

χ∗
i (�r)χj(�r) |i〉 〈j| (B.11)

Since the Wannier orbitals are localized, the electron density varies rapidly inside the
crystal unit cell. Clearly, we are not interested in such miscroscopic variations. Therefore,
the electron density (and with it the current density) should be space-averaged over a
mesoscopic volume τ(�r) centered on �r and covering a large number of atoms:

n̂τ(�r) =
1

τ(�r)

∫
τ(�r)

d3�r n̂(�r) =
1

τ(�r)

∑
i,j

|i〉 〈j|
∫
τ(�r)

d3�r χ∗
i (�r)χj(�r) (B.12)

The overlap integral over the volume τ(�r) vanishes if either the i or j orbital is well outside
τ(�r), and gives δij if they are both inside. The orbitals near the border are neglected as
τ(�r) is assumed to comprise many atoms. We then find:

n̂τ(�r) =
1

τ(�r)

∑
i∈τ(�r)

|i〉 〈i| (B.13)

The current density averaged over τ(�r) then gives (again, neglecting the orbitals near the
border):

�̂jτ(�r) =
1

τ(�r)

∫
τ(�r)

d3�r �̂j(�r) =
1

τ(�r)

∑
<i,j>∈τ(�r)

q �̂vij (B.14)

Noting Nl,τ(�r) the number of neighbors < i, j > (links) in the volume τ(�r), we can define a
"density of link" nl = Nl,τ(�r)/τ(�r), that should be independant of τ(�r) if it is chosen large
enough. The current density averaged over τ(�r) then writes:

�̂jτ(�r) =
1

Nl,τ(�r)

∑
<i,j>∈τ(�r)

q nl �̂vij (B.15)
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From this expression, it is clear that we can define �̂jij = q nl �̂vij as a current density
operator for the link < i, j >, keeping in mind that it is meaningful only when averaged
over a mesoscopic volume. Now, we should check that the current density, when summed
over a "mesoscopic surface" S (i.e. a surface with a mesoscopic width l), gives the electrical
current through the surface:∫

S

�̂j · �dS =
1

l

∫
Smeso

�̂j · �dSdl =
1

l

∫
S

�̂jl dS · l �dS =
1

l

∫
S

∑
<i,j>∈l dS

q �̂vij ·
�dS

dS

=
1

l

∫
S

∑
<i,j>∈l dS

Îij (�rj − �ri) ·
�dS

dS

(B.16)

Using the conservation equation, one can then show that this expression corresponds to the
current across S. In practical calculations of the conductance for finite systems, we will
only use the exact expression for the current density integrated over the whole system:∫

Ω
d3�r �̂j(�r) =

∑
<i,j>

q �̂vij = q �̂v (B.17)
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Appendix C

The Kubo formalism of quantum
transport

In this appendix, expression (4.25) for the electrical conductivity is derived in the framework
of the Kubo formalism. The demonstration has been carried out in Ref. [250] and Ref. [157],
but it is instructive to go through it. The system under consideration is a disordered system
that includes semi-infinite leads, whose single particle Hamiltonian is noted Ĥ. It is in
unperturbed equilibrium at time t = −∞, therefore the density matrix at that time is the
grand-canonical density matrix ρ̂0. The system is then subjected to the adiabatic switch-on
of an electrical field �E deriving from a small vector potential �A:

�A(�r, t) =

∫
dω

2π
�A(�r, ω + iη)e−i(ω+iη)t =

∫
dω

2π

�E(�r, ω + iη)

i(ω + iη)
e−i(ω+iη)t (C.1)

where the small imaginary part η has been introduced to force the adiabatic turn-on. Since
we are interested only in the steady-state regime, the limit η → 0 should be taken in the
final result.

The perturbed Hamiltonian writes:

Ĥ(t) = Ĥ
∣∣∣
�A=0

+

∫
d3�r

δĤ

δ �A(�r)

∣∣∣∣∣
�A=0

�A(�r, t)

+
1

2

∫
d3�r d3�r′

δ2Ĥ

δ �A(�r)δ �A(�r′)

∣∣∣∣∣
�A=0

�A(�r, t) �A(�r′, t) + O( �A3)

(C.2)

and we can define the first-order perturbation operator:

V̂ (t) =

∫
d3�r

δĤ

δ �A(�r)

∣∣∣∣∣
�A=0

�A(�r, t) (C.3)

The electron current density is:

�̂J(�r, t) = − δĤ(t)

δ �A(�r, t)
= − δĤ

δ �A(�r)

∣∣∣∣∣
�A=0

−
∫

d3�r′
δ2Ĥ

δ �A(�r)δ �A(�r′)

∣∣∣∣∣
�A=0

�A(�r′, t) + O( �A2) (C.4)
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The last term is called the diamagnetic contribution to the current, while the first term is
called the paramagnetic component �̂j(�r):

�̂j(�r) = − δĤ

δ �A(�r)

∣∣∣∣∣
�A=0

(C.5)

The time evolution of the density matrix under the perturbation can be written in the
interaction representation:

ρ̂I(t) = ρ̂0 − i

�

∫ t

−∞
dt1

[
V̂I(t1), ρ̂I(t1)

]
= ρ̂0 − i

�

∫ t

−∞
dt1

[
V̂I(t1), ρ̂0

]
+ O(V̂ 2) (C.6)

The average current density at time t is (here the brackets denote the quantum expec-
tation value and not disorder averaging):

〈
�̂J(�r, t)

〉
= Tr

(
ρ̂I(t) �̂JI(�r, t)

)
= Tr

(
ρ̂0 �̂JI(�r, t)

)
− i

�

∫ t

−∞
dt1Tr

([
V̂I(t1), ρ̂0

]
�̂JI(�r, t)

)
+ O(V̂ 2)

= Tr
(
ρ̂0 �̂J(�r, t)

)
− i

�

∫ t

−∞
dt1Tr

(
ρ̂0

[
�̂JI(�r, t), V̂I(t1)

])
+ O(V̂ 2)

=
〈
�̂j(�r)

〉
0
−
∫

d3�r′
〈

δ2Ĥ

δ �A(�r)δ �A(�r′)

∣∣∣∣∣
�A=0

〉
0

�A(�r′, t)

+
i

�

∫
d3�r′

∫ t

−∞
dt1 �A(�r′, t1)

〈[
�̂jI(�r, t),�̂jI(�r

′, t1)
]〉

0
+ O( �A2)

where the paramagnetic current �̂jI(�r, t) appears in the last term instead of �̂JI(�r, t) because
the diamagnetic contribution gives a term quadratic in the vector potential. The 0 index
denotes an expectation value using the unperturbed density matrix ρ̂0. Since no current
flows through the sample in equilibrium, we can forget about

〈
�̂j(�r)

〉
0
. We can also define

the current-current correlation tensor and its Fourier transform:

χ(�r, t;�r′, t′) = −iΘ(t− t′)
〈[
�̂jI(�r, t),�̂jI(�r

′, t′)
]〉

0
(C.7)

χ(ω + iη, �r, �r′) =
∫

dtχ(�r, t;�r′, 0)ei(ω+iη)t (C.8)
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so that:

〈
�̂J(�r, t)

〉
= −

∫
d3�r′

〈
δ2Ĥ

δ �A(�r)δ �A(�r′)

∣∣∣∣∣
�A=0

〉
0

�A(�r′, t)

− 1

�

∫
d3�r′

∫ ∞

−∞
dt1 �A(�r′, t1)χ(�r, t;�r′, t1) + O( �A2)

=

∫
dω

2π
e−i(ω+iη)t

∫
d3�r′

�E(�r′, ω + iη)

i(ω + iη)

[
−
〈

δ2Ĥ

δ �A(�r)δ �A(�r′)

∣∣∣∣∣
�A=0

〉
0

− 1

�

∫ ∞

−∞
dt1e

i(ω+iη)(t−t1)χ(�r, t;�r′, t1)
]

and the Fourier component of the average current density is:

〈
�̂J(�r, ω + iη)

〉
=

∫
d3�r′

i

ω + iη

[〈
δ2Ĥ

δ �A(�r)δ �A(�r′)

∣∣∣∣∣
�A=0

〉
0

+
1

�
χ(ω + iη, �r, �r′)

]
�E(�r′, ω + iη)

(C.9)

Comparing this last equation to the definition of the conductivity tensor, equation (4.23),
we find:

σ(ω + iη, �r, �r′) =
i

ω + iη

[〈
δ2Ĥ

δ �A(�r)δ �A(�r′)

∣∣∣∣∣
�A=0

〉
0

+
1

�
χ(ω + iη, �r, �r′)

]
(C.10)

where η is an infinitely small imaginary part. This is a very general version of the Kubo
formula that is valid even when many-body interactions are present. It emphasizes the
connexion between the linear response coefficient σ and the equilibrium correlation function
χ (fluctuation-dissipation theorem).

To obtain a more convenient expression for the conductivity, we use the single-particle
nature of the Hamiltonian. Since the system is infinite, the Hamiltonian has a continuum
of eigenstates |α〉 associated to eigenenergies εα. The expectation value of an operator F̂
is simply 〈

F̂
〉
0
=

∫
dα 〈α|F̂ |α〉 f(εα) (C.11)

where f(E) is the Fermi-Dirac distribution. Thus, the Kubo formula (C.10) can be rewrit-
ten

σ(ω + iη, �r, �r′) =
i

ω + iη

[ ∫
dα 〈α| δ2Ĥ

δ �A(�r)δ �A(�r′)

∣∣∣∣∣
�A=0

|α〉 f(εα)

− i

�

∫
dtΘ(t)ei(ω+iη)t

∫
dα 〈α|

[
�̂jI(�r, t),�̂jI(�r

′, 0)
]
|α〉 f(εα)

] (C.12)
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The first derivative in the diamagnetic term can be redistributed (keeping in mind that
the derivatives should be evaluated for �A = 0:

〈α| δ2Ĥ

δ �A(�r)δ �A(�r′)
|α〉 f(εα) = δ

δ �A(�r)

(
〈α| δĤ

δ �A(�r′)
|α〉 f(εα)

)

−〈α| δĤ

δ �A(�r′)
|α〉 δf(εα)

δ �A(�r)
− δ 〈α|

δ �A(�r)

δĤ

δ �A(�r′)
|α〉 f(εα)− 〈α| δĤ

δ �A(�r′)
δ |α〉
δ �A(�r)

f(εα)

(C.13)

Time-independant quantum perturbation theory gives (the degenerate eigenvectors should
be chosen to diagonalize the perturbation):

δ |α〉
δ �A(�r)

=

∫
εα �=εβ

dβ
〈β| δĤ

δ �A(�r)
|α〉

εα − εβ
|β〉 (C.14)

and so, taking into account that �̂j(�r) = − δĤ
δ �A(�r)

and 〈α|�̂j(�r)|α〉 = − δεα
δ �A(�r)

, we find

∫
dα 〈α| δ2Ĥ

δ �A(�r)δ �A(�r′)
|α〉 f(εα) = − δ

δ �A(�r)

〈
�̂j(�r′)

〉
0

+

∫
dα

(
− ∂f

∂E
(εα)

)
〈α|�̂j(�r)|α〉 〈α|�̂j(�r′)|α〉

−
∫ ∫

εα �=εβ

dαdβ
f(εα)− f(εβ)

εα − εβ
〈α|�̂j(�r)|β〉 〈β|�̂j(�r′)|α〉

(C.15)

where the eigenstate indices have been switched to find the last term.
The current-current correlation term can also be expressed in the eigenstate basis:∫

dα 〈α|
[
�̂jI(�r, t),�̂jI(�r

′, 0)
]
|α〉 f(εα) =∫ ∫

dαdβ

(
e

i

�
(εα−εβ)t 〈α|�̂j(�r)|β〉 〈β|�̂j(�r′)|α〉

−e
i

�
(εβ−εα)t 〈β|�̂j(�r)|α〉 〈α|�̂j(�r′)|β〉

)
f(εα)

=

∫ ∫
εα �=εβ

dαdβ
(
f(εα)− f(εβ)

)
e

i

�
(εα−εβ)t 〈α|�̂j(�r)|β〉 〈β|�̂j(�r′)|α〉

(C.16)

where the eigenstate indices have been switched for the last equality. Thus, performing the
time integration in equation (C.12), we find

− i

�

∫
dtΘ(t)ei(ω+iη)t

∫
dα 〈α|

[
�̂jI(�r, t),�̂jI(�r

′, 0)
]
|α〉 f(εα) =

1

�

∫ ∫
εα �=εβ

dαdβ
(
f(εα)− f(εβ)

) 〈α|�̂j(�r)|β〉 〈β|�̂j(�r′)|α〉 1

ω + iη + εα−εβ
�

(C.17)
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For the next step, it should be noticed that

1

ω + iη + εα−εβ
�

=
�

εα − εβ
− �(ω + iη)

(εα − εβ)(ω + iη + εα−εβ
�

)
(C.18)

When putting everything together, the first term of equation (C.18) actually cancels the
last term of equation (C.15). We end up with:

σ(ω + iη, �r, �r′) =
i

ω + iη

[
− δ

δ �A(�r)

〈
�̂j(�r′)

〉
0

+

∫
dα

(
− ∂f

∂E
(εα)

)
〈α|�̂j(�r)|α〉 〈α|�̂j(�r′)|α〉

]
+ i

∫ ∫
εα �=εβ

dαdβ
f(εα)− f(εβ)

εβ − εα

〈α|�̂j(�r)|β〉 〈β|�̂j(�r′)|α〉
ω + iη + εα−εβ

�

(C.19)

The term δ
δ �A(�r)

〈
�̂j(�r′)

〉
0

involves permanent currents in the presence of a magnetic fields. As
discussed in Ref. [250] and Ref. [157], such currents cannot create a net current in the leads,
and moreover they are destroyed on a length scale such that the inelastic scattering rate is
much greater than the Thouless energy [252], which is precisely the regime that is relevant
for our work (see section 4.2). Therefore, we can neglect this term in large disordered
systems, although it can be useful to keep it in other circumstances (see appendix D).
Putting the remaining two terms together, we find

σ(ω + iη, �r, �r′) =i

∫
dα

(
− ∂f

∂E
(εα)

) 〈α|�̂j(�r)|α〉 〈α|�̂j(�r′)|α〉
ω + iη

+ i

∫ ∫
εα �=εβ

dαdβ
f(εα)− f(εβ)

εβ − εα

〈α|�̂j(�r)|β〉 〈β|�̂j(�r′)|α〉
ω + iη + εα−εβ

�

(C.20)

which is identical to equation (4.25).
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Appendix D

The Drude formalism and the sum
rule

Even though the term corresponding to permanent currents in equation (C.19) can be
discarded for large systems, it can also be kept in order to express the conductivity in a
different way. The terms inside the brackets can be simplified:

− δ

δ �A(�r)

〈
�̂j(�r′)

〉
0
−
∫

dα
∂f

∂E
(εα) 〈α|�̂j(�r)|α〉 〈α|�̂j(�r′)|α〉 =

∫
dα

δ2εα

δ �A(�r)δ �A(�r′)
f(εα) (D.1)

This quantity, called the Drude weight D(�r, �r′), is a second derivative of the ground-state
energy of the system with respect to vector potentials. Taking the limit η → 0, the real
part σr of the conductivity can then be expressed as

σr(ω,�r, �r
′) = πD(�r, �r′)δ(ω) + σreg(ω,�r, �r

′) (D.2)

where

σreg(ω,�r, �r
′) =

π

∫ ∫
εα �=εβ

dαdβ
f(εα)− f(εβ)

εβ − εα
〈α|�̂j(�r)|β〉 〈β|�̂j(�r′)|α〉 δ

(
ω +

εα − εβ
�

)
(D.3)

is called the regular part of the conductivity and vanishes at ω = 0. Thus, expression D.2
separates the DC part of the conductivity (Drude peak at ω = 0) from the transitions
between different levels taking place at finite frequencies.

The real part of the conductivity satisfies a well-known sum rule when integrated over
the frequency axis. This can be easily shown from equation (C.10). Because the current-
current correlation function obeys the Kramers-Kronig relations and is real in the time
domain, it is straightforward to show that, when η → 0:∫ ∞

0
dω Re

(
i

ω + iη
χ(ω + iη, �r, �r′)

)
= 0 (D.4)
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Thus, the sum rule is ∫ ∞

0
dω σr(ω,�r, �r

′) =
π

2

〈
δ2Ĥ

δ �A(�r)δ �A(�r′)

∣∣∣∣∣
�A=0

〉
0

(D.5)

It is simply the diamagnetic term, which is generally not very sensitive to perturbations of
the Hamiltonian, especially on-site perturbations. For an electron gas in a parabolic band
subjected to an on-site disorder, for instance, the integral of the conductivity associated
with an uniform electrical field is just π

2
nee2

mb
, where ne is the electron density and mb is the

band mass. The Drude weight, by contrast, is very sensitive to disorder and interactions,
and is actually a critical quantity in the event of a metal-insulator transition: it vanishes
in insulating phases. Thus the effects of disorder can be seen as transfering spectral weight
from the Drude peak to the regular part of the conductivity.

Equation (D.2) gives an infinite DC conductivity if the Drude weight is finite, which
makes sense because no energy dissipation mechanism has been introduced. An somewhat
phenomenological procedure to obtain physically meaningful values for the conductivity is
to replace delta peak δ(ω) by a lorentzian with a width corresponding to a finite scattering
rate �/τ . Then, the DC conductivity for a uniform electric field associated with a vector
potential �A is simply:

σDC =
1

Ω

∫
d�rd�r′σr(ω = 0, �r, �r′) = Dτ (D.6)

where Ω is the system size and

D =
1

Ω

∫
d�rd�r′D(�r, �r′) =

1

Ω

∫
dα

∂2εα

∂ �A2
f(εα) (D.7)

For a clean, periodic system, the Peierls substitution amounts to replacing the crystal
momentum �k with �k + e

�
�A. Thus, the Drude weight can be expressed in this case as

D =
e2

�2

∑
n

∫
d�k

(2π)d
∂2εn(�k)

∂�k2
f(εn(�k)) (D.8)

where n is the band index. This expression is identical to equation (2.58) because of the
periodicity of the band structure in the Brillouin zone (there can be discrepancies for a
finite number of �k points, denoting the possible presence of permanent currents in finite
systems). Thus, equation (D.6) recovers the solution of the Boltzmann transport equation
under the relaxation time approximation, equation (2.48). It is often more convenient to
calculate the conductivity from equation (D.7), because there is no need to introduce a
broadening of delta peaks.

Finally, it is informative to consider the effects of boundary conditions on the conductiv-
ity of a clean system, for instance a simple cubic lattice with only nearest-neighbor hopping
t for which analytical expressions are available. For periodic boundary conditions, the regu-
lar part of the conductivity (like the current-current correlation function) vanishes because
the total current operator is diagonal in the eigenstate basis. So we are just left with a peak
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at ω = 0, the Drude peak. For open boundary conditions, on the other hand, the Drude
weight vanishes because the eigenvalues are insensitive to a uniform vector potential that
can be interpreted as a twist of the boundary conditions for a different gauge choice. In this
case, the spectral weight has been displaced at finite frequencies. The zero-temperature
conductivity writes:

σ(ω) =
π�e2

Ω

∑
εα<E<εβ

∣∣∣vαβx ∣∣∣2
εβ − εα

δ(�ω + εα − εβ) (D.9)

where the eigenstates can be labeled by integer quantum numbers lx, ly and lz between
1 and Lx, Ly and Lz respectively. The eigenenergy of the eigenstate (lx, ly, lz) is simply
εlx,lylz = −2t cos( πlx

Lx+1)−2t cos( πly
Ly+1)−2t cos( πlz

Lz+1). The velocity matrix element between
states (lx, ly, lz) and (l′x, l′y, l′z) is non-zero only if ly = l′y, lz = l′z and lx+ l′x is odd, in which
case it is given by

vlx,l
′
x

x =
2iat

�(Lx + 1)

⎛⎝sin
(

π
Lx+1

lx+l′x
2

)
sin

(
π

Lx+1
lx−l′x

2

) −
sin

(
π

Lx+1
lx−l′x

2

)
sin

(
π

Lx+1
lx+l′x

2

)
⎞⎠ , (D.10)

where a is the lattice constant.
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Figure D.1: The zero-temperature conductivity for a simple cubic lattice with a nearest-
neighbor hopping term t and open boundary conditions. The parameters are chosen to be
η = 0.01t, E = −5.5t, Ly = Lz = 50.

For large systems at the thermodynamic limit, the two situations (periodic and open
boundary conditions) should give the same conductivity. What happens is that, for open
boundary conditions, the peak at finite frequency shifts closer and closer to ω = 0 as the

177



system size increases (see Fig. D.1). Thus, for an infinite system we end up with a peak
at ω = 0+. Note that due to the broadening of the delta peaks in Fig. D.1, around half
the spectral weight is in the negative frequency domain for the largest systems, violating
the sum rule. This is an artefact of the broadening procedure, which is purely numerical.
Thus, when studying the low-frequency conductivity, the full expression (4.26) should be
used, with a small inelastic scattering introduced in the Green’s functions. This procedure
has a clear physical meaning and ensures that the closed and open boundary conditions
yield the same conductivities at the thermodynamic limit.
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Appendix E

The convergence of the CPGF
method

In this appendix, we give some details on the convergence properties of the CPGF method,
presented in section 4.3.2. We take as an example the calculation of the TDF in SrTiO3

doped with 1% Vanadium impurities, which was carried out in section 5.3.1 on lattices of
size 900×180×180 using 1 disorder configuration, 20 random vectors and Nm = 2000 terms
in the Chebyshev expansion of the Green’s function (for a total of 2000× 2000 calculated
moments). To illustrate the convergence issues, we take a small value γin = 5meV for the
inelastic scattering.
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Figure E.1: The TDF of the xy orbital in 1% V-doped SrTiO3 for γin = 5meV and
two different disorder configurations (red and black lines). Inset: a zoom on the energies
corresponding to the V imppurity band.
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In Fig. E.1 we show the TDF calculated with two different disorder configurations. The
results are almost identical on the entire energy range, demonstrating that the TDF is
self-averaged for such large system sizes. Thus, only one disorder configuration is necessary
to obtain meaningful results.
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Figure E.2: The TDF of the xy orbital and two different disorder configurations (red and
black lines). Inset: a zoom on the energies corresponding to the V imppurity band.

We now turn to the convergence of the TDF with respect to the random vectors used in
the stochastic calculation of the trace in equation (4.36). Fig E.2 shows the TDF calculated
when the trace is evaluated using only one of the 20 different random vectors. The results
are very close for each random vector, indicating that an average over just a few of them
is sufficient to obtain converged quantities. Again, the large size of the system makes the
convergence faster due to self-averaging.

Finally, it is interesting to examine the convergence properties with respect to the
number of terms in the Chebyshev expansion of the Green’s function, Nm. We plot in
Fig. E.3a the value of the TDF as a function of Nm for E = −1 eV and E = −1.2 eV,
corresponding to extended states in the main conduction band. The convergence is very
fast, indeed only about 300 terms are necessary at these energies. From this example, it is
clear that the rule of thumb Nm ≈ 5/η̃, which would lead to Nm ≈ 2000 (the rescaling factor
is 2.2 eV here), is but an upper limit on the required number of terms in the Chebyshev
expansion. For localized states, characterized by a much lower TDF, the picture is rather
different. The TDF at the center of the impurity band is plotted in Fig. E.3b as a function
of Nm for several values of γin between 2.5meV and 20meV. For the lowest value of γin,
the TDF has not quite converged yet. For γin = 5meV, between 1500 and 2000 terms are
necessary, while the TDF is converged at Nm ≈ 1000 for γin = 10meV and at Nm ≈ 500 for
γin = 20meV. Thus, the rule of thumb appears to be adequate in this more delicate case.
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(a) The convergence with respect to Nm of
the xy TDF in 1% V-doped SrTiO3 with
γin = 5meV for the energies E = −1 eV
and E = −1.2 eV corresponding to extended
states.
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(b) The convergence with respect to Nm

of the xy TDF in 1% V-doped SrTiO3 with
γin = 2.5meV, 5meV, 10meV and 20meV
for E = −1.725 eV corresponding to the cen-
ter of the localized V impurity band.

Figure E.3

It should be noted that if γin is set at 130meV, a value chosen on the physical grounds that
it reproduces the resistivity of 10% La or Nb doped SrTiO3, then only about a hundred
terms in the Chebyshev expansion are necessary.
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