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Chapitre 1 :      Introduction 

1 

Chapter 1: Introduction 

1.1. Context 

In a world more and more connected, the security of data transfer is a major concern for the 

development of new technologies. Currently, data is secured using cryptography. This method 

is based on the use of a logic key by the sender to encrypt a message. This key is transmitted 

to the recipient through a parallel channel so he could decrypt the message. However, the 

interception of the key directly allows the decryption of the message without any way for the 

sender or the recipient to know that the key was intercepted. A new method of encryption 

based on the use of quantum object was developed to tackle this issue, it is called quantum 

cryptography. In fact, the measure of the properties of a quantum object changes these 

properties and therefore the interception of a key would be detected by the recipient. There 

are various quantum objects that can be used for such applications but the one with the most 

promising experimental results to date is a photon from a single photon source. Many 

materials can be used as a single photon source like defects in crystals, quantum dots or 

molecules. Molecules have advantage to be tunable and one can think about controlling the 

optical properties of the single photon source controlling the structure of the molecule. 

Several examples of single photon emitters based on polycyclic aromatic hydocarbons (PAHs) 

such as terrylene or dibenzanthathrene have been described in the literature. Actually PAH 

molecules can be considered as small pieces of graphene and therefore, as graphene is a zero 

bandgap semiconductor, the bandgap and consequently the wavelength of the emitted 

photons can be tuned from an energy of 4.77 eV (emission of a benzene molecule) to 0 eV (2D 

graphene). 
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1.2. Graphene 

1.2.1. Generalities 

Graphene is a monolayer of sp2 carbon atoms organized into a two-dimensional (2D) 

honeycomb lattice (Figure 1.1). It is the building block of graphite which is the stacking of 

multiple layers of graphene. The existence of graphene was postulated in 19471–3 but such 

monoatomic layer was supposed to be unstable4,5 until A. Geim and K. Novoselov were able 

to isolate it in 2004 from graphite using scotch tape.6 The first studies of graphene focused on 

its electronic properties and it was found that graphene is a semi-metal (or a zero bandgap 

semiconductor). It means that graphene does not exhibit bandgap between the conduction 

and valence bands as it was predicted by theoretical calculation.7 The mobility was found to 

be on the order of 10 000 cm2.V-1.s-1 for graphene deposited on SiO2
6 and up to 200 000 cm2.V-

1.s-1 for suspended graphene8 

 

Figure 1.1: Artistic representation of graphene. 

The valence and conduction bands of graphene are cone-shaped, they meet at the Dirac point 

and the density of state at this point is zero (Figure 1.2). Very early, theoretical calculations 

predicted outstanding properties for graphene, including the best known mechanical 

properties,9 high thermal conductivity10–12 and intriguing quantum Hall effect13–15 and these 

properties were soon confirmed experimentaly.16–18 This turned graphene into a hot topic in 

modern science and only six years after their discovery A. Geim and K. Novoselov received the 

Nobel Prize. 
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Figure 1.2: a) Band structure of graphene; b) close-up of the low energy region showing the 

so-called “Dirac cone”. 

With such properties, graphene was considered as a promising material for a wide range of 

applications from electronics,19 energy conversion and storage,20 catalysis,21 

electrochemistry22 or photonics.23 In fact, the first domain of applications that was studied 

was electronics with the realization of Field Effect Transistors (FET) in which graphene plays 

the role of channel (the active part of the device) between the source and the drain electrodes 

(Figure 1.3a). In FET, the current flowing through the channel (from source to drain) can be 

controlled applying an electric field between the source and gate (VGS). There are two types 

of FETs: radiofrequency devices and digital logic devices. Considering its high carrier mobility 

and its two dimensional structure, graphene is well suited for radiofrequency FETs in which 

the channel should respond quickly to variations of voltage24 and should exhibit a high current 

for the ON-state. In 2010, IBM fabricated wafer-scale epitaxial graphene FETs that achieved a 

frequency of 100 GHz.25 On the contrary, for digital logic devices, the information is stored by 

the switching between the ON-state (1) and the OFF-state (0); the low ION/IOFF ratio observed 

in graphene FETs constitutes a severe limitation to the use of graphene in such electronic 

devices. Actually, silicon based FET have ON/OFF ratios between 104 and 107 while graphene 

FETs exhibit ON/OFF ratios between 2 and 100 (Figure 1.3b). This relatively low ratio leads to 

high power dissipation during the OFF-state.26 
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Figure 1.3: a) Schematic representation of the basic design of a graphene FET and b) Current-

Voltage curve of a graphene FET with a channel length of 5µm and width of 10 µm27 (inspired 

from refs 24 and 27) 

This limitation makes F. Schwierz write at the end of his review in 2010: “The primary 

challenges facing the community at present, therefore, are to create in a controlled and 

practical fashion a bandgap in graphene, which would allow logic transistors to switch off and 

radiofrequency transistors to avoid the second linear regime (...).”24 Therefore, the gap 

engineering of graphene and the preservation of its outstanding properties is a major 

challenge for future application. 

1.2.2. Bandgap opening 

To open a bandgap in graphene, various methods based either on physical or chemical 

approaches have been proposed. As graphene is a single layer of carbon atoms with a well-

defined structure, any modification to its environment can affect its electronic properties. 

Theoretical calculations showed that the simple presence of water molecules in air have an 

impact on the electronic properties of graphene.28 Yavari et al. showed that a bandgap of ca. 

0.2 eV could be obtained by exposing graphene to an absolute humidity level of 0.31 kg of 

water per kg of dry air in an environmental chamber.29 The effect is reversible and in vacuum 

the observed bandgap returns to almost zero as expected for graphene. The adsorption of 

polycyclic aromatic molecules such as pyrene or perylene derivatives on graphene is an easy 

and versatile way of functionalizing graphene.30,31 Whereas theoretical studies on perylene-

3,4,9,10-tetracarboxylic-3,4,9,10-diimide (PTCDI) showed that the adsorption of aromatic 

a b 
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molecule should open a bandgap,32,33 experimentally only a shift of the Dirac point was 

observed.34 Despite the large amount of literature on the bandgap engineering on graphene 

made by adsorption of gas or molecules,35 these methods are not suitable, so far, to produce 

materials that can be manipulated and used in devices in an easy and reproducible way. 

The covalent functionalization of graphene with hydrogen, fluorine atoms or organic 

molecules has a strong impact on its electronic properties. The hydrogenation of graphene 

gave rise to a new 2D material called graphane which is made of a single layer of sp3 carbons 

(Figure 1.4a).36,37 Graphane is an insulator but both theoretical38,39 and experimental40 work 

showed that a partial hydrogenation can permit to open a bandgap up to 4 eV. However, the 

control of the level of hydrogenation is experimentally complicated and the loss of aromaticity 

induces a decrease of carrier mobility (down to about 9 cm2V-1 s-1). The reaction of graphene 

with fluorine gives rise to fluorographene which have the same structure as graphane but with 

fluorine atoms instead of hydrogens (Figure 1.4b).41 It was found to be a wide gap 

semiconductor42 (3.8 eV) but once again the carrier mobility is not comparable to the one of 

graphene. In the case of organic molecule, whereas many studies are done on the organic 

functionalization of graphene,43–45 very few are able to open a bandgap. Some examples are 

the covalent functionalization with p-nitrobenzenediazonium46 or azidotrimethylsilane47 

which are able to open gaps of 0.36 and 0.66 eV respectively. 

 

Figure 1.4: a) Graphane and b) Fluorographene structures.36 

The inclusion of heteroatoms in the graphene structure is called doping; the presence of 

heteroatoms impacts the electronic properties. For example, atoms like boron or oxygen 

create a p-type48–50 doping whereas atoms like nitrogen and phosphorous create a n-type51–53 

doping. Theoretical calculations49,54,55 showed that the doping of graphene could open a 

a b Fluorine 

Carbon 

Hydrogen 

Carbon 
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bandgap and it was possible to obtain experimentally a bandgap of ca. 0.2 eV with nitrogen 

doped graphene (Figure 1.5a).56 However, once again, the precise control on the bandgap is 

not straightforward due to the wide variety of nitrogen configuration in the materials (Figure 

1.5b). 

   

Figure 1.5: a) Angle-resolved photoemission spectroscopy (ARPES) showing a bandgap of 0.2 

eV in nitrogen doped graphene made by Chemical vapor deposition (CVD) using 1,3,5-

triazine56 and b) representation of the multiple configurations of nitrogen impurities in 

nitrogen-doped graphene. 

It is well known that when a material is reduced to nanoscale dimensions, the electronic 

confinement induces unique size-dependent properties. One famous example is the 

semiconductor quantum dots (QD) in which the confinement of the electrons leads to strongly 

luminescent materials with adjustable bandgap.57–59 The reduction of one dimension of 

graphene down to the nanoscale leads to graphene nanoribbons (GNRs) whereas the 

reduction of the two dimensions leads to graphene quantum dots (GQDs) (Figure 1.6). 

 

Figure 1.6: Evolution of the shape of the material with the size reduction. 

Graphite Graphene GNR GQD 

a b 
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A very appealing alternative to reduce the dimensionality of graphene consists in forming an 

ordered array of holes in a graphene sheet. This 2D-material theoretically proposed in 200860 

is called a Graphene Nanomesh (GNM) or a Graphene Anti-dot Lattice (GAL). 

For the production of these graphene derivatives two different strategies can be adopted, the 

top-down strategy and the bottom-up strategy. In the following section, I will give an overview 

of the fabrication of GQDs, GNRs and GNMs using these two approaches. 

1.3. Top-Down approach 

The top-down approach is widely known as the strategy that starts from a macroscopic scale 

system and breaks it down to the nanoscale. This approach constitutes a fast and easy process 

that allows mass production of graphene materials for a large range of applications. 

1.3.1.  Graphene quantum dots 

The fabrication of GQDs via the top-down approach requires bulk carbon material which will 

be sized down to the nanometer scale. The top down approach is used with a wide range of 

starting material like graphite, coal, carbon black, carbon fibers, carbon nanotubes, graphene 

oxide or graphene.61,62 The majority of top-down routes are based on chemical techniques 

that can be described as defect-mediated fragmentation process where an oxidation step acts 

as the defect generation and the reduction as the cleaving step (Figure 1.7). 

 

Figure 1.7: Principle of the GO cutting by oxidation and reduction (inspired from ref 44) 

The first preparation of graphene quantum dots was reported in 2010 by the group of H.Dai 

who used graphite as starting material (Figure 1.8).63 Graphite was oxidized into Graphene 

Oxide (GO) with Hummers’ method64 to favor the separation of graphene sheets. The GO was 

then oxidized a second time under mild sonication to break it down to the nanometer scale. 
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This step was followed by a reduction step to transform the GO-QDs into GQDs. The 

nanoparticles that they obtained exhibited a diameter distribution between 5 and 13 nm and 

thicknesses between 1 and 3 layers of graphene (1-2 nm). It is worth mentioning that Dai and 

co-workers demonstrated that their GQDs could emit light in the visible and NIR region and 

this property has excited the interest of the entire community because of the potential 

interest of these GQDs biology. 

Other solvothermal methods were used to produce GQDs, they differed from the previous 

one by the use of microwave to speed up the exfoliation and reduction steps.65 With this 

method, single layer GQDs were prepared with an average diameter of 3 nm with a 5 min 

process.66 

 

Figure 1.8: Usual method for the preparation of GQDs by chemical ablation.67 

The electrochemistry at high redox potential (ranging from ±1.5 V to ±3 V) is another method 

for the preparation of GQDs. A potential applied between the graphite electrodes was used 

to directly oxidize the C-C bonds or oxidize water to generate hydroxyl and oxygen radicals to 

cleave the C-C bonds. This method can achieve the synthesis in one-pot of GQDs with 

diameters between 3 and 5 nm and thicknesses between 1 and 3 layers of graphene (1-2 

nm).68 It can also be done with a platinum foil used as counter electrode in alkaline 

conditions69 to form GQDs exhibiting diameters between 5 and 10 nm and constituted only of 

monolayers. 

The cage opening of fullerene C60 is another interesting approach that uses surface chemistry 

to form GQDs. In this method, C60 was evaporated in the chamber of a scanning tunneling 

microscope (STM) on a Ru(0001) surface and annealed.70 Depending on the temperature 

(between 725 and 825 K) and the annealing time, the GQDs can take different shapes like 
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triangles, parallelograms or hexagons. These structures have lateral dimensions between 5 

and 10 nm and the resulting bandgap are between 0.25 and 0.8 eV. 

Up to now, the optical studies on GQDs are mainly limited to optical absorption and 

photoluminescence (PL) measurements on samples produced by these top-down techniques 

and therefore containing a lot of defects and uncontrolled edges.71 The only experimental 

report available at the single nanoparticle level was done with GQDs prepared with a 

hydrothermal cutting method which presented disparities in size (width from 10 to 35 nm) 

and thicknesses. This work showed that the PL from these objects is caused by the emission 

of defects which means that the PL is not intrinsic to the GQD.72 This study demonstrates that 

the uncontrolled edges blur out the intrinsic properties and that the bottom-up synthesis 

approach is mandatory to study the electronic and optical properties of such graphene nano-

objects. 

1.3.2. Graphene nanoribbons 

The study of size reduction of graphene attracted huge attention and both theoretical73–76 and 

experimental77–80 works have shown that quantum confinement and edge effects permits to 

open a bandgap in narrow graphene ribbons. The first GNRs were prepared by the group of 

Dai from expanded graphite via rapid thermal annealing followed by dispersion using poly(m-

phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) (PmPV) in 1,2-dichloroethane 

(DCE).77 However, the GNR were obtained with a poor yield and a broad width distribution 

(from less than 10 nm to 100 nm) which led to the development of a new method based on 

the etching of carbon nanotubes (CNTs). This method was also developed by the group of H. 

Dai in 2009 and starts from multi-wall carbon nanotubes (MWCNTs) deposited on a silicon 

substrate and embedded in poly(methyl methacrylate) (PMMA) (Figure 1.9a).81 The PMMA-

MWCNT film was exposed to an argon plasma to selectively etch the upper part of the tubes 

and depending on the etching time, single layer GNRs can be isolated with width from 10 to 

20 nm. The same year, the group of J. M. Tour used chemical unzipping of carbon nanotubes 

to produce well-defined GNRs (Figure 1.9b).82 This method was based on the creation of 

defects via oxidation to open the CNT in one direction. The MWCNTs were oxidized with 
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potassium permanganate in concentrated sulfuric acid. The GNRs were then isolated and they 

exhibited width from 20 to 100 nm with a yield up to 100% depending on the oxidation 

conditions.  

 

Figure 1.9: The methods for the preparation of top-down GNRs. a) The group of H. Dai reported 

the use of argon plasma to etch the upper part of a MWCNT and depending on the etching 

time, they could selectively produce single or multi-layer GNR. b) The group of J.M. Tour 

developed an unzipping method based on chemical oxidation to open CNTs.82 

These techniques based on CNTs can take advantage of the specific chirality of CNTs to try to 

control the type of GNRs formed. In the ideal case, GNRs edges can have two basic shapes, 

the armchairs and zig-zags and both have different effects on the band structure of graphene 

(Figure 1.10a).76 For instance, the zigzag edges in GNRs can induce spin polarized states.74 The 

bandgap of both zig-zag and armchair nanoribbons is inversely proportional to their width.24 

Considering the calculated gaps for ideal GNRs (Figure 1.10b), to produce GNRs exhibiting a 

bandgap similar to the one of silicon around 1 eV, the width should be below 10 nm. 

a b 
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Figure 1.10: a) GNR edge shapes and b) evolution of the bandgap with the width of the GNR 

(adapted from ref 24) 

The methods developed by J. M. Tour and H. Dai can achieve GNRs with width of less than 10 

nm with FETs exhibiting ION/IOFF > 100. However, such top-down approaches do not permit to 

control efficiently and in a reproducible way the width of the GNRs which can range from 10 

to 100 nm. In addition, the edges can be either zigzag, armchair or a disordered mix of 

zigzag/armchair edges and their oxidation/defect states are not controlled. Finally, as the low 

control of the structure of GQDs heavily impacts their optical properties, the electronic 

properties of top-down GNR are heavily impacted by the variations of edge type (AC, ZZ or 

disordered) and their oxidation state. 

1.3.3.  Graphene nanomeshes 

The first theoretical exploration of the GNMs60 in 2008 showed that it should be possible to 

open a bandgap in graphene by introducing a regular pattern of holes in the graphene lattice. 

It was also shown that the bandgap is controlled by the ratio between removed atoms (holes) 

and atoms left in between these holes (necks) (Figure 1.11).  

Zig-Zag edges (ZZ) Armchair edges (AC) 

a b 
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Figure 1.11: GNM with necks and holes definitions (inspired from ref 83) 

Several attempts to prepare GNM came from the straightforward approach of drilling holes in 

graphene using electron and ion-beam lithography.66, 67 The pores position, shape and size 

were controlled by the positioning and movement of the beam. With about 1 second for each 

hole these techniques were time consuming for large surfaces and unpractical for a regular 

pattern preparation. 

In 2010 several groups in University of California Los Angeles (UCLA), University of Wisconsin-

Madison (UW), Lawrence Berkley National Laboratory (LBNL) and Rice University have used a 

general approach based on nanolithography for the realization of GNMs. To fabricate the 

GNMs, graphene sheets deposited or synthesized on substrates were covered with porous 

templates made with a block copolymer,86,87 by imprinting,88 using colloidal mask89 or 

aluminum oxide membranes.90 The holes in graphene were created by etching process and 

finally the porous mask were removed giving rise to the nanomesh structures (Figure 1.12). 
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Figure 1.12: Two methods for the preparation of GNMs reported by the groups of UCLA (a) and 

of LBNL (b). a) graphene is covered with a thin layer of SiO2 and with a 

polystyrene/polymethylmethacryalte (PS/PMMA) block copolymer. The PMMA is removed 

with UV exposure and glacial acid development and the resulting structure is subjected to 

etching and O2 plasma. Finally, SiO2 is removed leading to the graphene nanomesh. b) 

graphene is covered by PS. Then an imprint template made of SiO2 is used to imprint the PS 

layer. Finally, O2 plasma is used to etch both the PS and the graphene to obtain the GNM 

structure. (Adapted from ref 86 and 88) 

Several other methods were then developed like local catalytic hydrogenation91 or UV-

assisted photodegradation92 but they showed less control on the final structure compared to 

the previous methods presented. 

The GNMs have been theoretically and experimentally studied for a wide range of application 

like FET,93 biosensors94 or gas sensing.95 However, for each sample, the variability over the 

necks and holes width, the defects, contaminants and partial oxidations have a huge impact 

on the final electronic properties of the GNM. In fact, several theoretical studies showed that 

irregularities in the nanomesh structure can degrade the carrier mobility.96–98 All these results 

show, once again, that the top-down approach presents important limitations on the control 
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of the final object prepared. The complete control on this object and thus on its properties 

cannot be achieved with the top-down approach and thus, the method should be changed for 

the bottom-up approach. 

1.4. Bottom-Up approach 

Conversely to the top-down approach, the bottom-up approach is the strategy that aims to 

build materials from a small scale system to a larger one. In chemistry or in nanoscience, this 

means that the material is prepared by assembling in a controlled way small molecules to 

build larger structures. Therefore, it seems to be a good strategy for a complete control on 

the final material. 

1.4.1. Carbon quantum dots 

The research around carbon quantum dots (CQDs) or carbon dots (C-dots) is exploding due to 

their chemical inertness, tunable emission, low cytotoxicity and excellent biocompatibility.67 

The term C-dots gathers nano-sized particle mainly made of carbon. The principal synthesis 

method is the treatment of organic precursors using a hydrothermal process or microwave 

irradiation.61 The most widely spread organic precursor are citric acid combined with an amino 

derivative.99 In 2008, the group of E.P. Giannelis produced C-dots by combining citric acid with 

sodium 11-aminoundecanoate followed by thermal oxidation at 300°C.100,101 These kind of 

carbon quantum dots exhibit strong photoluminescence in the visible light (between ca. 450 

to 600 nm) depending on their size and composition.99,102 

C-dots show a huge potential for biological applications, nevertheless the low control on the 

final structure and the oxidation and edge state of the final structure constitutes the same 

limitations in terms of properties compared to nanoparticles produced by the top-down 

approach. Finally to be able to control precisely the structure of graphene quantum dots, the 

strategy developed by Klaus Müllen seems to be the most promising.103 

1.4.2. Graphene quantum dots 

The complete control of the properties of the final material can only be achieved by the 

complete control of the size, shape and edges of the GQD. The only way to do so is to use a 
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synthetic approach based on organic chemistry reactions. The smallest building block for 

graphene is a phenyl ring and it should be considered as a good starting material for the 

bottom-up approach.  

The structures formed by the addition of phenyl rings to a benzene molecule are called 

polycyclic aromatic hydrocarbons (PAHs). Starting with naphthalene (10 carbons) and 

followed by anthracene and phenanthrene (14 carbons), this family includes a myriad of 

molecules and a few examples are presented in Figure 1.13. By adding in a controllable 

manner aromatic rings to benzene, one can think synthesizing graphene nanoparticles.  

PAHs were first discovered in coal tar in the nineteenth century,104 however due to their low 

solubility, large PAHs like coronene or ovalene cannot be extracted from such complex 

mixture. Therefore, to obtain well-defined structures with no mixture, large PAHs had to be 

prepared by chemical synthesis. 

 

Figure 1.13: The basic structures of the PAHs. 

The work of Clar, Scholl and Zander105–114 on dehydrogenation and polyphenylene coupling 

allowed the preparation of many new PAHs; however, for applications and characterization, 

the low solubility of the final compounds remained a problem. The group of Klaus Müllen 

developed the synthesis of soluble hexa-peri-hexabenzocoronene (HBC) derivatives in the 

nineties.103 The synthesis was based on the Diels-Alder reaction: the precursor bearing 

acetylenic groups reacted with the tetraphenylcyclopentadienone with the extrusion of 

carbon monoxide to form a polyphenylene dendrimer. Depending on the final product 

desired, the acetylenic and the tetraphenylcyclopentadienone derivatives could contain 

solubilizing groups. The dehydrogenation of the polyphenylene dendrimer via the Scholl 

reaction110 gave rise to a new PAH which can be considered as a nanoparticle of graphene: a 

graphene quantum dots GQD (Figure 1.14). 
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Figure 1.14: General procedure for the synthesis of GQDs; here the synthesis of HBC. 

The group of Müllen further explored the synthesis and properties of hexabenzocoronene 

(HBC) molecules by adding and varying the nature of the peripheral chains,115–117 in order to 

solubilize HBCs partially118 or completely in water119 and to study their liquid-crystalline 

properties.117,120–124 

 

Figure 1.15: Structure of the GQD made of a) 222 carbons125 and b) 216 carbons.126 

To create a large variety of structures, Müllen prepared a wide range of precursors bearing 

acetylenic groups and following an approach based on the divergent synthesis of dendrimer. 

They were able to obtain GQDs with linear,127,128 diamond,129 triangular,130 propeller131,132 or 

rectangular shapes.133 The biggest fully dehydrogenated GQD that they were able to prepare 

has the same edge state as HBC but is made of 222 carbons (Figure 1.15a).125,131 This structure 

was modified to exhibit a hole in the middle (6 carbon missing in the structure).126 This GQD 

made of 216 carbon atoms was prepared from the circular compound 5,5′,5″,5‴,5″″,5″″′-

Hexa-ethynyl-hexa-m-phenylene to demonstrate that as for GNM, the presence of a hole in 

the regular structure can increase the gap from 1.8 eV for the particles containing 222 carbons 

to 2.2 eV for 216 carbons (Figure 1.15b). They prepared a bigger structure made of 474 

carbons but the increase in size also increased the insolubility of the final product and the 
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dehydrogenation of the polyphenylene dendrimer was not complete (Figure 1.16). From the 

interpretation of the mass spectrometry, they suggested that the molecule takes a propeller-

like structure.134 

 

Figure 1.16: Partially dehydrogenated structures identified with 474 carbon atoms.134 

Considering the low solubility of these compounds, it is necessary to use characterization 

methods that are different from the usual nuclear magnetic resonance (NMR) and 

electrospray ionization mass spectrometry (ESI-MS). While the smaller PAHs can be 

characterized in laser-desorption ionization mass spectrometry (LDI-MS), the ones with more 

than 96 carbons need matrix assisted laser-desorption ionization mass spectrometry (MALDI-

MS). 

In 2010, the group of Liang-Shi Li used the strategy developed by Klaus Müllen to produce new 

GQDs (Figure 1.17).135,136 To improve the solubility, they introduced three 2,4,6-

trialkylylphenyl group so that the alkyl chains prevent stacking between the cores of the GQDs. 

More importantly, they were able to fabricate nanoparticles with slightly different structures, 
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for example with a missing part or with two additional carbon atoms (in red on the figure). 

This precision level on the structure can be reached only by bottom-up synthetic chemistry. 

 

Figure 1.17: L.S. Li structures derived from the C168 structure.137 

Finally, the group of Müllen modified the periphery of their GQDs with chlorine atoms.138 

Because of the bulkiness of the chlorine atoms, compared to hydrogen which are normally 

present at the periphery of the molecules, the GQDs are distorted which increases greatly the 

solubility of the materials. After exploring GQDs for one decade, the group of Müllen used its 

experience to develop the bottom-up synthesis of GNRs. 

1.4.3. Graphene nanoribbons 

1.4.3.1. Graphene nanoribbons prepared in solution 

The bottom-up synthesis of nanoribbon-like molecules was initiated in the seventies by J.K. 

Stille who developed conjugated polymers.139 They prepared a ladder-type polymer consisting 

of hexagonal and pentagonal aromatic rings using Diels-Alder polycycloaddition (Figure 

1.18a). The low solubility of the compound due to - interactions was solved in 1994 by the 

group of D. Schlüter who added flexible alkyl loops to prevent the stacking (Figure 1.18b).140,141 

The first fully conjugated ladder type polymer only made of hexagonal aromatics was done 

from 1,4-dibromo-2,5-bis(4-decyloxybenzoyl)benzene using Yamomoto coupling followed by 

an olefination of the carbonyl groups. This polymer was synthesized by the group of U. Scherf 

in 1993 and it was called “angular polyacene” (Figure 1.18c).142,143 
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Figure 1.18: First GNR-like structures of a) J.K. Stille139, d) D. Schlüter141 and c) U. Scherf.142 

From this narrow GNR new synthesis were developed to expand the width from a single 

benzene ring to polyphenylenes with different edges type. In 2000, the group of K. Müllen 

used the A2B2-type Diels-Alder polymerization to prepare the first GNR with a width larger 

than a single phenyl ring but it resulted in a mixture of randomly kinked GNRs (GNR 1) (Figure 

1.19a).144 They chose to change of strategy for a A2B2-type Suzuki coupling for the synthesis 

of the GNR 2 (Figure 1.19b);145 however, the length of those GNRs was limited to ca. 10 nm.146 

In 2012, they moved to the AA-type Yamamoto coupling to prepare GNR 3 exhibiting widths 

between 1.54-1.98 nm and with lengths of ca. 20-30 nm and an optical bandgap of 1.1 eV 

(Figure 1.19c).147 

 

Figure 1.19: a) A2B2-type Diels-Alder coupling between the 1,4-

bis(tetraphenylcyclopentadienone-yl)benzene and the 1,4-diethynylbenzene. The polymer was 

dehydrogenated by Cu(CF3SO3)2 and AlCl3 to give GNR 1.144 b) A2B2-type Suzuki coupling 

a b c

a 

b

c

GNR 1 

GNR 2 

GNR 3 
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between the bis-boronic ester and the 1,4-diiodo-2,3,5,6-tetraphenylbenzene. The polymer 

was dehydrogenated with FeCl3 in DCM and nitromethane.145 c) AA-type Yamamoto coupling 

of chlorinated monomer in the presence of nickel complexes. The polymer was dehydrogenated 

with FeCl3 in DCM and nitromethane.147 

In 2014, K. Müllen and coworkers applied the Diels-Alder polymerization of a AB-type 

monomer followed by a treatment with FeCl3 to prepare a “cove-type”148 edge GNR with 

unprecedented lengths of 600 nm (Figure 1.20a).149 The GNR exhibited a width between 0.69-

1.13 nm. Later, they also prepared a wider version of this GNR in which two rows of phenyl 

were added (Figure 1.20b). The new GNR exhibited a width between 1.54-1.98 nm and in 

accordance with the theory,150,151 the optical bandgap decreased from 1.9 to 1.2 eV for GNRs 

4 and 5, respectively.152 They also applied the chlorination method developed on GQDs to the 

narrow cove-type edges GNR (Figure 1.20c) and found that, as verified by theoretical 

calculation,150 the optical bandgap decreased of 0.2 eV to reach 1.7 eV.138 

 

Figure 1.20: Two cove-type edge GNR with width between a) 0.69-1.13nm149 and b) 1.54-

1.98nm.152 The reaction conditions are the same for both GNR 4 and 5, the AB-type Diels-Alder 

coupling is an intramolecular reaction of the cyclopentadienones bearing an acetylenic bond. 
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c) The GNR bearing tert-Butyl groups is subjected to AlCl3 and ICl in CCl4 to give the 

corresponding chlorinated GNR 6.138 

While the K. Müllen group focused on the control of the witdh, other groups like the group of 

J. F. Morin have explored new structure like helically coiled GNRs (Figure 1.21). Their work is 

based on the use of photochemical cyclodehydrochlorination of chlorinated precursors.153 

Depending on the precursor they were able to prepare nanocoils with various helical pitch and 

doping.154,155 

  

Figure 1.21: Structure of the doped helical GNR of J.F. Morin.154 

In 2014 the group of Sinitskii prepared a more than 100 nm long chevron-type GNR in solution. 

156 After the synthesis, the GNR was deposited on Au crystal and imaged by STM. It is worth 

mentioning that the fabrication of the same chevron-type GNR was reported previously 

directly on Au(111) by Müllen and Fasel in their seminal article of 2010.157 In the case of 

Sinitskii and coworkers, it is remarkable that they obtained very well defined defect-free 

structures in solution. Another approach based on the cyclization of alkyne substituents on a 

linear poly(2,6-dialkynyl-p-phenylene) was developed by Chalifoux in 2016 however, it is 

limited to narrow width and length of about 35nm.158 

1.4.3.2. Graphene nanoribbons prepared on surface 

For the synthesis of GNRs in the Ultra-High Vacuum (UHV) chamber of a STM, the surface 

realizes both the coupling of aryl halides as for the synthesis of molecular wires159 and 

catalyzes the dehydrogenation. The first example of GNR synthesized on surface was reported 

in 2010 by the groups of Müllen and Fasel via surface-assisted Ullmann160 coupling (Figure 
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1.22).157 It was shown that upon heating, the carbon halogen bond was cleaved and a biradical 

intermediate is formed.161 These radicals then recombined to form a carbon-carbon bond that 

led to the formation of a linear polymer. After heating at higher temperature, the 

polyphenylene polymer was dehydrogenated to form a fully delocalized GNR. 

 

Figure 1.22: Principle of the surface preparation of GNR (adapted from ref 157) 

This procedure allowed the preparation of the armchair edges GNRs with several rows of 

carbon atoms N=5,162 6,163 7,157,164 13,165 14166 and 15167 (Figure 1.23). For a long time, only 

armchair GNRs were available due to the usual synthetic route which used aryl-aryl coupling 

along the armchair direction rather than the zig-zag direction. In 2016, the group of Müllen 

synthesized a new U-shaped precursor which was used by R. Fasel to prepare a N=6 zigzag 

GNR in a STM chamber.168 The structure of the precursor can be tuned with groups like 

phenyls in the edges to control the band structure of the edge states. These structures may 

confirm the theoretical predictions that showed promising properties for spintronic like spin 

confinement169 and filtering.170,171 
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Figure 1.23: Structures of armchair GNRs prepared under UHV in a STM with N=5,162 7,157,164 

13165 and 15167 and zigzag GNR168 and the corresponding brominated precursors. 

The combination of solution chemistry and surface chemistry gave rise to many interesting 1D 

structures and a wide range of GNRs with various edge states, width and length are now 

available. These works on 1D structures and the developments made on surface chemistry 

allowed the transfer of this knowledge for the development of 2D structures on surface. 

1.4.4. 2D structures: graphene nanomesh 

The bottom-up synthesis of 2D structures is based on the use of an organic precursor bearing 

non-linearly oriented functional groups that are evaporated in a STM chamber on a metallic 

substrate. This precursor should react with the surface and be mobile to reach other 

precursors. The synthesis of polyphenylene networks on surface were reported almost 

simultaneously by Lackinger and by Müllen and Fasel in 2009.172,173 In the first case, the 

synthesis was based on the surface polymerization of 1,3,5-tris-(4-bromophenyl)benzene on 

Cu(111) (Figure 1.24a) however, the network produced showed pentagonal, hexagonal or 

heptagonal structures which led to a great irregularity in the network. A more controlled 

network could be obtained with the Müllen and Fasel method using the polymerization of an 

hexaiodo-substituted cyclohexa-m-phenylene macrocycle on Ag(111) (Figure 1.24b).173 The 

covalent bonds between the molecules were formed via the Ullmann reaction as in the case 

of the formation of GNRs. 
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The same type of structure was reported by Müllen and Fasel using cyclotrimerization of the 

1,3,5- tris-(4’-ethynylphenyl)benzene. The cyclotrimerization was done on Au(111) and it 

formed a phenyl ring between each precursor to create the 2D polyphenylene dendrimer 

(Figure 1.24c).174 

 

Figure 1.24: Chemical structure and STM images of 2D networks of polyphenylenes from: a) 

1,3,5-tris-(4’-bromophenyl)benzene,172 b) cyclohexa-m-phenylene173 and c) 1,3,5-tris-(4’-

ethynylphenyl)benzene.174  

The preparation of 2D covalent networks on surface has been widely investigated during the 

last decades; in some aspect these networks are related to GNMs. In the following section I 

will report briefly some examples of realization. 

The first example was described in 2007 by Leonhard Grill and Stephan Hecht who reported 

the realization of a covalent porphyrin network on Au(111) surface.175 The size of the network 

was limited and contained defect; however, this work opened the route of the realization of 

2D networks on surface. In 2013, Cardenas et al. prepared a 2D network containing doping 

from the tetrabromotetrathienoanthracene (TBTTA).176 The precursor was annealed at 300°C 

on a Ag(111) surface and the resulting network was well extended but some irregularities 

arised due to the rotational disorder of the precursor (Figure 1.25a). In 2017 Liu et al. 

fabricated N-doped network using the 2,7,13,18-

tetrabromodibenzo[a,c]dibenzo[5,6:7,8]quinoxalino-[2,3-i]phenazine (2-TBQP) as the 

precursor (Figure 1.25b).177 They annealed the precursor at 250°C on an Au(111) surface and 

observed both the expected network where each molecule reacted with 4 others and the 
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linear structure where the molecule only reacts with 2 others to form a ribbon. Those two 

mechanisms create a lot of irregularities in the resulting network. S. Clair and M. Abel 

developed 2D networks based on organometallic structures.178 They used the co-evaporation 

of iron and 1,2,4,5-tetracyanobenzene on a Ag(111) or Au(111) surface with a 2:1 

stoichiometry. Once the molecules were on the surface, they reacted to form a polymeric iron 

phthalocyanine network (Figure 1.25c). 

 

Figure 1.25: Chemical structure and STM images of doped 2D networks of polyphenylenes a) 

tetrabromotetrathienoanthracene,176 b) 2-TBQP177 and c) TCNB.178 

Finally, other examples of 2D networks based on triphenylamine cores appeared in literature 

recently.179,180 Despite their interest, only a limited number of nanomesh-like structures have 

been reported and in all examples reported so far the “graphene necks” are constituted by a 

single C-C bond between two phenyl rings which reduces significantly the delocalization of 

electrons and decreases the conductivity. To increase the conductivity while keeping a decent 

bandgap, it is necessary to develop new precursors that lead to structures with bigger width 

as it was done from the first conjugated ladder type polymers up to the current GNRs. 

In this part I tried to review the different approaches to synthesize “gaped” graphene 

materials. While the top-down approach is a powerful method for the mass production of 

graphene based materials, the low control on the final structures (edge states, oxidation states 

a b c
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and sizes and shapes) makes this method not suitable for some applications in optics or 

electronics. For applications that require a precise control of the structure, the best approach 

is the bottom-up approach; however, this approach is much more complicated and time 

consuming, making it less suitable for mass production. 

During my PhD, I focused on the synthesis of graphene quantum dots for applications in optics. 

After the description of the fabrication of the materials; in the following section, I will give an 

overview of the techniques used for the optical characterization of these materials and 

particularly for the detection of single photon emission. 

1.5. Optical properties 

1.5.1. Absorption and photoluminescence 

  

Figure 1.26: a) Jablonski diagram and b) example of normalized absorption and fluorescence 

of a perylene bisimide dye.181 

The properties of a dye that absorbs and emits light are described by the energetic levels 

schematically represented in the Jablonski diagram (Figure 1.26a).182 Three levels are 

represented, two singlet state levels (S0 and S1) and a triplet state level (T1). As the dye absorbs 

a photon, an electron from the ground state S0 goes to the excited state S1. The wavelength 

of this absorption is defined by the gap between S0 and S1, only wavelengths that correspond 

to energy equal or greater than this gap will be absorbed. Once the electron is in the excited 

state, it can go back to the ground state with two mechanisms of PL, the fluorescence and the 

phosphorescence. 

Absorption 
Fluorescence

Phosphorescence

Stokes shift 

a b 

Inter-system 
crossing 
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Fluorescence is the direct transition from the lowest energy level of the excited state S1 to the 

ground state S0. An electron that was excited at a higher level than the lowest level of the 

excited state can undergo an energy and momentum relaxation towards this level through 

non-radiative mechanisms like Coulomb scattering and interaction with phonons. 

Fluorescence is a radiative mechanism where the wavelength of the emitted photon depends 

on the gap between S0 and S1. This emission is most of the time at higher wavelength than the 

absorption due to the relaxation through non-radiative mechanisms that decreases the energy 

of the photon emitted (Figure 1.26a). This induces a shift between absorption and emission 

called Stokes shift (Figure 1.26b).  

The phosphorescence phenomenon is caused by the intersystem crossing: an electron can go 

from the excited state S1 to the triplet state T1. Once in this state, the electron is trapped with 

only “forbidden” transitions available to return to lower states. Whereas the transitions are 

kinetically unfavorable, they can still happen and give rise to phosphorescence. Whereas the 

typical decay times for fluorescence are within the range of 0.5 to 20 ns, the decay times for 

phosphorescence can go from milliseconds up to hours. 

Both Fluorescence and phosphorescence can be interrupted definitely or randomly by 

extinction phenomena like photobleaching or photoblinking. The photobleaching is the 

irreversible extinction caused by the overexposure of dyes to light (Figure 1.27a). This 

phenomenon is caused by light-induced chemical degradation that quench the emitted light. 

Photobleaching is a big issue for the optical study of low quantities of dyes since it will prevent 

extended experiment time. The photoblinking is the reversible extinction of the emitted light 

caused by the transition into non- or low-emissive states (Figure 1.27b). This a random 

phenomenon that can disrupt an experiment inducing uncontrolled extinctions. Both 

photobleaching and photoblinking are properties that depend mostly on the stability and band 

structure of the material. Therefore, it is important for optical application to have a material 

with a high chemical stability. 
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Figure 1.27: Fluorescence intensity traces as the function of time showing for different 

emitters a) photobleaching in reduced carbon dots183 and b) photoblinking in CdSe/ZnS 

QDs.184 

The chemical stability of graphene led to the realization of graphene quantum dots for optical 

application. In particular, the fundamental optical properties of GQDs synthesized via the 

bottom-up approach is supposed to enable important developments toward the use of such 

materials for a large range of application from biology to cryptography. However, due to the 

low solubility of GQD, their dispersion is a key point to observe the single molecule properties. 

1.5.2. Dispersion and optical properties of PAHs 

The absorption185 and PL186 of PAHs has been widely investigated theoretically. The study by 

Cocchi et al. on the difference between coronene and HBC and HBC and bigger structures with 

the same edge type demonstrated the influence of respectively the edge type and the size on 

the PL (Figure 1.28). 

 

Figure 1.28: Theoretical calculation for the emission of coronene, HBC and bigger GQDs 

(C114H30 and C222H42).186 

CdSe/ZnS Carbon dots a b 
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The optical study of large PAHs started with the study of the absorption and emission of 

HBC.187 This compound exhibits a large emission band at 500 nm but its low solubility 

(especially when the molecule is not functionalized with alkyl chains) makes difficult the 

identification of the intrinsic emission properties of HBC versus the emission properties of 

aggregates necessarily present in solution. In 2012, J. N. Coleman studied the dispersion of 

HBC in organic solvents like N-cyclohexylpyrrolidone (CHP) and tetrahydrofurane (THF).188 

They verified the quality of the dispersion by measuring the absorption, the emission and 

performing the photoluminescence excitation (PLE) map (Figure 1.29). The map is done by 

measuring the emission spectra for every excitation. The PL intensity is coded with color from 

blue to red. For the PL and the PLE, narrow peaks are typical of a good dispersion because 

aggregation tends to broaden the peaks due to the inter-molecular energy and/or electron 

transfers. The result in Figure 1.29 on organic solvents clearly shows that CHP is a better 

solvent for HBC than THF. 

 

Figure 1.29: Absorption and emission spectra and PLE map of HBC in a) CHP and b) THF. 

(adapted from ref 188) 

a 

b 
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A similar study was performed by the group of A. Hirsch in water using surfactants to stabilize 

the HBC.189 The surfactant studied were sodium cholate (SC), sodium deoxycholate (SDC) and 

sodium dodecylbenzenesulfonate (SDBS) and as for organic solvents, they measured the 

absorption, the PL and the PLE map (Figure 1.30). The results for these surfactant showed that 

SDC is the better surfactant to disperse HBC in water while SC was decent and SDBS a poor 

surfactant. They also studied the lifetime of the photoluminescence in the three surfactants 

and they could fit the lifetime with triexponantial decay functions. 

 

Figure 1.30: Absorption and PL spectra, PLE map and PL lifetime  of HBC in SDC, SDBS and SC. 

(adapted from ref 189) 

The quality of the dispersion clearly has an influence on the optical properties measured. For 

single photon emission properties, it is mandatory to look at single molecule level and 

therefore, to disperse and individualize molecules properly in solution. 

1.5.3. Single photon emitters 

A key step for the study of single photon emitters is the control of the uniqueness of the 

emitting molecule. This control is done measuring the temporal correlations of the photons 

collected. 

If the light source is an usual thermal light source, photons are emitted by groups, this is the 

bunching effect. It means that for “short” times  (compared to the lifetime of the excited 

state) there are more than one photon emitted (Figure 1.31 bottom). For coherent light like 
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laser, the probability of emission for each photon is independent which means that the 

emission of a photon does not increase the chance that another photon is emitted at the same 

time like in thermal light. This does not lead to any bunching or anti-bunching effect; the 

photons are uncorrelated. In the case of a single photon emitter, photons can only be emitted 

one by one and for “short” times there should be a gap between two photons, this 

phenomenon is called antibunching.190 

 

Figure 1.31: a) Schematic of the photoemission for various light sources and b) example of 

corresponding second order correlation function. 

However, experimentally, the direct value of this time period cannot be determined with only 

one detector since detectors need a down-time of about 30 ns.182 The setup used is the 

Hanbury Brown-Twiss arrangement191 with two detectors and a 50:50 beam splitter (Figure 

1.32). In this setup, one detector acts as the “start” for the measurement and the second one 

as the “stop” and this gives the continuous time difference between two photons. This can be 

registered and converted from time to amplitude and with the proper normalization,192 the 

amplitude is proportional to the second order coherence function g(2)()≡
<I(𝑡)I(𝑡+𝜏)>

<I(𝑡)>²
. The 

g(2)() functions for each type of light are represented Figure 1.31b and show that each one of 

them can be discriminated at low values of the time difference  

 

Figure 1.32: Schematic representation of the Hanbury Brown-Twiss setup. 

Laser 564nm 

Single photon emitter 

in matrix 

Start 

Stop 

g(2)() 

Single photon emitter 

Coherent light (laser) 

Thermal light source 

a b 
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The first single molecules emission measurements were achieved on pentacene dispersed in 

para-terphenyl in the nineties by M. Orrit193 and W.E. Moerner194 at cryogenic temperatures. 

They launched a wide range of new experiments and applications but they were limited by 

the complicated conditions they had to use for their experiments. However, this was 

overcome in 1996 with ambient temperature single molecules observation of DiIC12 (a cyanine 

dye commonly used in biology)195 and it was soon followed by the NV color centers in 

diamond192,196,197 and nanocrystals of semiconductor CdSe.198–200 While all these structures 

have interesting single photon emission properties, they suffer from both photoblinking and 

photobleaching and as a result they are unpractical for experiments of more than a few 

minutes (Figure 1.33).  

  

Figure 1.33: Coincidence counts and time trace of a CdSe QD.200 

1.6. Aim of this work 

This work results from the collaboration between the Laboratoire d’Innovation en Chimie des 

Surfaces Et Nanosciences (LICSEN) and the Laboratoire Aimé Cotton (LAC), it started in 2014. 

The work at LICSEN is focused on the chemical synthesis of the materials and the LAC studies 

the dispersion in matrix and the optical properties of the materials. The objective of this 

collaboration is to investigate the intrinsic properties of the graphene quantum dots made by 

the bottom-up approach. 

The first objective of this project was to re-synthesize GQDs previously described by the group 

of K. Müllen and investigate the advanced optical properties of these compounds. With the 

wide range of structures available, it was interesting to see the effect of various parameters 
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like the size, shape or edge states on the properties. The first part is centered on triangular-

shaped GQD made of 96 carbon atoms (C96).  

From the experience gained on the C96 family, we decided to explore, in the second part of 

this manuscript, new types of graphene materials which is an intermediate between GQDs 

and GNRs. This material should have a 1D structure but with a controlled length to see the 

impact of the length variation on the electronic properties. In fact, the characterization of the 

optical properties for GNRs is hardly conclusive due to the large variations of length caused by 

the polymeric approach. This intermediate material between a GQD and a GNR is designated 

as Graphene Nanorods (GNRods). 

Finally, after the exploration of 0D and 1D structures, we turned to 2D structures in the last 

part of this work. Currently, GNMs are mostly made by the top-down approach and the 

bottom-up synthesis of 2D structures is limited to small width and reduced delocalization of 

the electrons. To expand this width there is a need for new organic precursors that should 

self-organize on surfaces and be reactive to self-assemble upon heating. To explore structures 

that were already theoretically predicted, there are needs for specific precursors to have 

specific necks/holes width ratio. 
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Chapter 2: Graphene Quantum Dots 

2.1. Synthesis of the Quantum Dots 

 

Figure 2.1: Structures of C96H30 1, C96Cl27H3 2 and C168H210 3. 

The synthesis of GQDs has been widely investigated by the group of K. Müllen in the early 

nineties and in the beginning of the 2000s. Many structures have been developed exhibiting 

various sizes, shapes and edge states. The most studied GQDs are hexabenzocoronene 

(HBC)1,2 followed by superphenalene C96H30 1 (C96)3,4 (Figure 2.1). Actually, the C96 GQD can 

be functionalized with various chemical groups to form what we called the C96 “family” and 

therefore tune the solubility and optical properties of the nanoparticles. At the beginning of 

my PhD, in order to be familiar with the chemistry and manipulation of GQDs, and also to be 

able to provide rapidly interesting structures to the group of Prof. Jean-Sébastien Lauret, we 

decided to reproduce the synthesis of the C96 GQDs.4,5 

2.1.1. The Scholl reaction 

The first synthesis of this GQD was developed in 1997 by Müllen et al.3 and it was based on 

the Diels-Alder reaction of an acetylenic compound with a cyclopentadienone derivative 

followed by the extrusion of CO to form a polyphenylene dendrimer. The reaction was 

followed by the Scholl reaction,6,7 an oxidation step known to dehydrogenate polyphenylene 

to form carbon-carbon bounds. The dehydrogenation of the C96 dendrimer was initially 

performed with copper(II) trifluoromethanesulfonate and AlCl3;3 however, these conditions 

are not suitable for the dehydrogenation of the C96 dendrimer containing solubilizing C12H25 
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alkyl chains since the reaction often leads to unwanted chlorination and/or removal of 

peripheral alkyl chains. Alternative oxidation procedures based on 2,3-dichloro-5,6-dicyano-

1,4-benzoquinone (DDQ) in the presence of triflic acid only lead to partial dehydrogenation 

product.8 The most efficient procedure is based on the use of FeCl3 as the oxidant which gives 

better results in term of oxidative strength and low chlorination. 

The Scholl reaction proceeds via a radical mechanism and consequently, it requires non-

stabilized dichloromethane (DCM) since ethanol or amylene which are commonly used to 

stabilize DCM are free radical scavengers. Finally to prevent uncontrolled chlorination of the 

GQD, the reaction is done with a special setup in which argon is first bubbling in a round-

bottom flask filled with DCM and then a canula transfers the argon flow from this flask to the 

reaction solution (Figure 2.2). 

 

Figure 2.2: Setup for the Scholl reaction. 

This setup allows a high flow of argon to bubble in the reaction flask to remove HCl from the 

solution before it can react with the GQD and without evaporating too quickly the DCM from 

the reaction flask. 

2.1.2. The structures of the C96 family 

The synthesis of the C96 GQD starts with the Diels-Alder reaction between 1,3,5-

triethynylbenzene and tetraphenylcyclopentadienone in diphenyl ether at 180°C overnight 

(Scheme 2.1). It is followed by the Scholl reaction in the presence of FeCl3 in nitromethane to 

dehydrogenate polyphenylene 4 and form GQD 1. With the setup presented in the previous 

part, the reaction is conducted at room temperature overnight with a very good yield (95%). 

Argon 

Non-stabilized DCM 

Dendrimer+FeCl3 in MeNO2 

in Non-stabilized DCM 
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Scheme 2.1: i) Ph2O, 180°C, overnight, 40% ; ii) FeCl3, MeNO2, DCM, R.T., overnight, 95%. 

The reaction is quenched with methanol and GQD 1 is purified by filtration and washing since 

it is insoluble in the usual organic solvent. However, the low solubility of 1 in usual solvents is 

a huge drawback for optics experiments that need individual molecule dispersions. To face 

this issue, we decided to functionalize the edge by chlorination or by adding alkyl chains.4,5  

 

Scheme 2.2: i) AlCl3, ICl, CCl4, 80°C, 48h, 73%. 

Because of the large size of chlorine compared to the hydrogen atoms, the chlorination of the 

edge of the particles forces the molecule to bend and thus prevents - stacking and 

improves solubility.5 This synthesis starts directly from C96 1 and proceeds with AlCl3 and ICl 

in CCl4 to replace almost every hydrogen and form C96Cl27H3 2 (also named C96Cl) (Scheme 

2.2).5 Three of the hydrogens are left due to the strong steric hindrance of the neighboring 

chlorines. The resulting molecule is highly soluble in chlorinated and usual organic solvents. 

The purification is done by column chromatography with chloroform as the eluent and 

product 2 is collected at solvent front.  
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The functionalization of the GQD with dodecyl chains is preformed to increase the solubility 

of the GQD with organic solvents. The synthesis follows the same synthetic procedure as the 

synthesis of C96 GQD 1; however, cyclopentadienone 9 containing two dodecyl chains has to 

be synthesized in four steps (Scheme 2.3).4 

 

Scheme 2.3: i) AlCl3, CH3(CH2)10COCl, 50°C, 1h30, 73%; ii) KOH, N2H4, triethylene glycol, 130°C, 

3H40, 74%; iii) n-BuLi, THF, R.T., overnight, 33%; iv) KOH, EtOH, 90°C, 30min, 51%. 

The starting material for this synthesis is bromobenzene which undergoes a Friedel-Crafts 

reaction with dodecanoyl chloride. The para-substituted product 5 is isolated with a good yield 

(73%) and subjected to the Wolf-Kishner reduction with hydrazine and potassium hydroxide 

in triethylene glycol. This is the key step for this synthesis since the reaction is very sensitive. 

In fact, if the temperature is a few degrees too low, the ketone is not reduced and on the 

contrary, if the solution is heated too much or for a too long time, the product is degraded. 

After optimization of the process we found that the best conditions to perform the reaction is 

to heat at 130°C for 3h40 and in the same time remove water by distillation. With these 

conditions, the yield can go up to 74%. Dione 8 is synthesized via the lithiation of the 4-

bromododecylbenzene 6 followed by the addition on 1,4-dimethylpiperazine-2,3-dione 7 

prepared as described in litterature.9 The final step is the formation of cyclopentadienone 9 

by a double Knoevenagel condensation of dione 8 on 1,3-diphenylpropan-2-one.10,11 This 

reaction is done in the presence of potassium hydroxide in ethanol for 30 min at reflux and 

has a yield of 51%. 
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Scheme 2.4: i) Ph2O, 180°C, overnight, 57% ; ii) FeCl3, MeNO2, DCM, T.A., overnight, 95%. 

After the preparation of cyclopentadienone 9, the Diels-Alder reaction is conducted for the 

synthesis of the nanoparticle with dodecyl chains 3 (C96C12) with the same conditions as for 

C96 GQD (Scheme 2.4). However, for this compound, the dehydrogenation step is harder to 

control due to the possible chlorination of the alkyl chains caused by HCl in solution. 

Therefore, the reaction progress should be monitored by MALDI-TOF mass spectrometry to 

make sure that the molecule is fully dehydrogenated with no chlorination. After reaction, the 

product is purified with filtration and washing with methanol to obtain the pure product with 

95% yield. 

2.1.3.  Chemical characterization 

The different molecules were characterized with various methods mostly depending on their 

solubility. For small molecules like the ones prepared in the synthesis of cyclopentadienone 9, 

the main characterization tool was 1H-NMR. The spectrum of cyclopentadienone 9 presented 

in Figure 2.3 exhibits two sets of signal in the aliphatic and aromatic regions. In the aliphatic 

region, the protons of the alkyl chains resonate at 0.86, 1.26 and 2.57 ppm. The CH2 near the 

aromatics are more deshielded. In the aromatic part of the spectrum, the protons of the 

phenyl rings bearing the chain appear as an AB system (two doublets) at 6.80 and 6.96 ppm. 

The two last phenyl rings close to the carbonyl group appear as a multiplet at higher chemical 

shifts (between 7.22 to 7.25 ppm). 
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Figure 2.3: 1H-NMR spectrum of cyclopentadienone 9 in CDCl3 

When cyclopentadienone 9 undergoes the Diels-Alder reaction, the shape of the 1H-NMR 

spectrum obtained is slightly changed (Figure 2.4). The protons from the alkyl chains still 

exhibit low chemical shifts between 0.88 and 2.32 ppm depending on their proximity to the 

aromatic core and the protons in this aromatic core are still highly deshielded and show 

chemical shifts between 6.52 and 7.15 ppm. The aromatic part is now extremely difficult to 

interpret since many protons with similar environment are superimposed. It is interesting to 

note that in the 2.25-2.50 ppm region that the CH2 in benzylic position (close to the phenyl 

rings) are slightly different and appear as two triplet centered at 2.32 and 2.36 ppm. 

 

Figure 2.4: 1H-NMR spectrum of dendrimer 10 in CDCl3 
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For dendrimer 4 (without alkyl chains), the interpretation of the 1H-NMR spectrum is even 

more complicated and the characterization by mass spectrometry (MS) makes more sense to 

confirm the structure of the final product. In fact, the starting product undergoes a high 

molecular weight change that is easily followed by MS. The MALDI-TOF mass spectrum of 

dendrimer 4 (Figure 2.5) clearly exhibits a peak at the expected value for the m/z of 1219.54 

for the desired tri-substituted compound and there are no traces of the di-substituted 

compound at m/z of 863.12. 

 

Figure 2.5: MALDI-TOF MS spectrum of dendrimer 4. 

For the characterization of the dehydrogenated compounds 1 and 2, it is impossible to 

perform NMR because of the low solubility of the compounds. Consequently, the 

characterization is done by MALDI-TOF MS. For the preparation of the samples, we used two 

procedures depending on the solubility of the molecule. In the first one, the GQD is dispersed 

in a solvent (DCM for example) and 10 µl of this solution is mixed with 90 µl of a solution of 

trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) (10 mg in 1 

ml of THF). 1 µl of this mixture is deposited on the MALDI plate and analyzed. In the second 

method, 0.5 mg of the sample is directly crushed with 50 equivalents of 

tetracyanoquinodimethane (TCNQ) in a crucible. This mixture is either directly deposited on a 

conducting tape on the MALDI plate or dispersed in a non-solvent (water or cyclohexane) and 

then deposited.12 While C96Cl 2 and C96C12 3 are soluble enough in solvents and can be 
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characterized with the process in solution with DCTB, C96 1 has to be characterized with the 

solid process with TCNQ. In fact, the use of a matrix helps the ionization of the molecule 

allowing a better transfer of the energy from the laser to the molecules. 

 

Figure 2.6: MALDI-TOF MS spectra of a) C96 1 b) C96C12 3 

The MALDI-TOF spectrum for 1 (Figure 2.6a) only shows the fully dehydrogenated compound 

with no trace of the dendrimer at m/z 1182.18. The spectrum of C96C12 3 exhibits peaks at 

m/z 2192.80 (M+H) for an expected exact mass of 2191.36 g/mol (Figure 2.6b). 

 

Figure 2.7: a) MALDI-TOF MS spectrum of C96Cl 2 and b) comparison of the spectrum 

obtained and the one simulated for C96Cl 2. 
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The MALDI-TOF spectrum of GQD 2 shows the fully chlorinated compound with m/z of 

2113.72 (Figure 2.7). The monoisotopic peak reflecting the exact mass at m/z 2099.18 cannot 

be observed because it represents a negligible part of the sample. The simulated mass 

spectrum obtained from the website: www.chemcalc.org (with molecular formula C96H3Cl27 

and FWHM 0.5) is fully consistent with the experimental data. Finally, on the full spectrum, 

one can observe unavoidable traces of partially chlorinated compounds at lower m/z. 

2.1.4. Microscopy analysis of GQD 3 

Both for the physical and optical properties, we mainly focused on GQD 3 since it has the same 

2D aromatic core as C96 GQD 1 but a much better solubility thanks to the dodecyl chains. This 

GQD exhibits a size of about 1.5 nm for the core and 1.5 nm for the chains which was 

confirmed by High-Resolution Transmission Electron Microscopy (HRTEM) in the images in 

Figure 2.8 made by Dr. Hanako Okuno from the “Institut Nanosciences et Cryogénie” of the 

CEA-Grenoble. GQDs 3 also tend to stack to form columns as shown on the TEM image. 

 

Figure 2.8: HRTEM images of GQD 3 realized at INAC CEA-Grenoble by Dr. H. Okuno. 

We also tried to perform STM at the solid liquid interface in order to characterize the 

organization of the nanoparticles on surface. The STM images were realized by Dr. Fabien Silly 

from our Institute at CEA-Saclay for GQD 3 in 1-phenyloctane on HOPG (highly oriented 
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pyrolytic graphite) (Figure 2.9). Unfortunately, no organization of individual molecules was 

observed and only columnar structures were visualized. 

   

Figure 2.9: STM images of the columnar structures of C96C12 GQD 3 performed at the 

Service de Physique de l’Etat Condensé (SPEC) (CEA-Saclay) by Dr. F. Silly. 

As it is shown on the TEM and STM images, C96C12 GQD 3 tends to aggregate and form 

columnar structures. For the characterization of their properties at the single molecule level 

it is therefore mandatory to find a way to separate the aggregates and more importantly when 

the nanoparticles are individualized to keep them isolated from each other. 

2.2. Optical properties 

2.2.1. Absorption 

When working with carbon nanomaterials (carbon nanotubes and graphene), one of the main 

challenge is the dispersion and the preparation of stable solutions. We face the same 

problems with the nanoparticles of graphene, especially for bare (non-functionalized) 

nanoparticles. In order to disperse these particles, we have tested different solvent such as 

toluene, N-methylpyrrolidone (NMP), 1,2,4-trichlorobenzene (TCB) and surfactants like 

sodium cholate (SC) or sodium deoxycholate (SDC). We conclude that the best dispersants are 

TCB and SDC so, for the rest of the study, we will use spectrophotometric grade TCB to 

disperse GQDs. It is worth mentioning that when the GQDs contain functional groups like 

chlorine atoms or alkyl chains (GQD 2 and 3), they exhibit an apparent good solubility in usual 

solvents like dichloromethane, chloroform, toluene and tetrahydrofuran; however, the 
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particles still form aggregates in solution.4,13 Therefore for functionalized nanoparticles we 

also choose to work in TCB. The solutions of GQDs are prepared at 0.1 mg/ml in TCB, sonicating 

in an ultrasonic bath for 30 seconds and stirring for 24 hours. 

We first determined the absorption spectra of GQDs 1, 2 and 3 in TCB (Figure 2.10). The 

difference in the intensity of absorption can be seen immediately and is mostly due to the 

poor solubility of GQD 1 compared to GQD 2 and 3. The spectrum of 1 shows a weak 

absorption band around 450 and 500 nm with a shoulder around 650 nm. The spectrum of 3 

shows a large band at ca. 450 nm with shoulders at around 575 and 650 nm. The spectrum of 

2 is relatively different and shows major peaks at 510 and 540 nm and the maximum 

absorption is red-shifted of ca. 20 nm and 40 nm compared to those of GQD 1 and 3, 

respectively. This behavior is attributed to a better dispersion of the molecules in solution.5 
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Figure 2.10: UV-Vis absorption spectra of GQDs 1, 2 and 3 in TCB 

In order to gain more insight in the optical properties of the particles, we performed 

photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies and we 

evaluated the single emission properties of the particles in collaboration with a group of 

physicists. For the rest of this chapter, we will focus on C96C12 GQD 3. 



Chapter 2: Graphene Quantum Dots 

58 

2.2.2. Photoluminescence 

The PL measurements are done on a custom setup at the Laboratoire Aimé Cotton (LAC) of 

the University Paris-Sud in Orsay. The setup is made of a supercontinuum laser source and 

two monochromators to control the wavelength of the excitation light. The PL is collected by 

a convergent lens and the excitation wavelength is excluded by a filter ahead of the 

monochromator and the CCD camera (Figure 2.11). 

 

Figure 2.11: Setup for the PL measurement 

In the usual conditions, the PL spectra are recorded with an excitation at 400 nm at a power 

of 110 µW. To prevent the saturation of the detector by the excitation light, the filter installed 

before the CCD camera suppresses the light with wavelength smaller than 405 nm. The PL 

spectrum of GQD 3 showed a large Stokes shift of the PL of 230 nm with the largest emission 

band at 648 nm and smaller emissions at 704, 575 and 520 nm (Figure 2.12). Those emissions 

are corresponding to the bumps observed in the absorption spectrum, which shows that the 

levels involved in both mechanisms are connected. 
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Figure 2.12: Absorption and PL of a solution of GQD 3 in TCB (0.01 mg/ml) 

The shape of the PL and the presence of several bands cannot be explained only with this 

measurement and it is necessary perform other analysis like time resolved photoluminescence 

to discriminate the transitions involved and determine if this emission comes from individual 

molecules or aggregates. 

2.2.3. Time-resolved photoluminescence 

The time-resolved PL is done with the same setup as presented in Figure 2.11 but now the 

CCD camera is replaced by an avalanche photodiode, the laser is linked to a start-stop counter 

and the intensity of PL signal is monitored as a function of time at a given wavelength. The 

fluorescence decay of GQD 3 is monitored at 520, 575, 648 and 704 nm (Figure 2.13). 
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Figure 2.13: PL decay over time of a solution of 3 (0.01g/ml) for various wavelength  

The lower energy transitions (648 and 704nm) show mono-exponential decay with lifetimes 

of about 5 ns while the higher energy transitions show multi-exponential decay. The mutli-

exponential behavior means that more than one level is involved in the de-excitation. It is 

impossible to discriminate whether this multi-step de-excitation involves different levels in 

the same molecule or in small aggregates. Nevertheless, the mono-exponential decays 

observed at lower energy show that only one level is involved and it is a good indication that 

these transitions correspond to transition of individualized molecules in solutions. The fact 

that the molecules are individualized is extremely important for the characterization of the 

single photon emission properties. 

To complete this experiment and be able to conclude on the quality of the dispersion, PLE map 

is a powerful tool, as we showed in the introduction (paragraph 1.4.2) for the dispersion of 

HBC. 

2.2.4. Photoluminescence-excitation map 

The PLE map of the GQD 3 is made by measuring the PL spectra for every wavelength of 

excitation and combining them (Figure 2.14b). The resulting map represents the excitation 
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wavelength as a function of the emission wavelength with a variation of color representing 

the intensity of the PL. 

  

Figure 2.14: Spectra of a solution of C96C12 3 (0.01 mg/ml): a) photoluminescence spectrum, 

b) photoluminescence excitation map and c) normalized photoluminescence excitation 

spectra extracted from the PLE map at wavelength indicated by the colored arrows (blue, 

green, pink and brown) and superimposed absorption spectrum (black) of the solution. 

This map confirms that the main emission is at 650 nm with one resonance at higher 

wavelength (705 nm) and two at lower wavelength (575 and 520 nm). The main emission peak 

seems to be caused by the relaxation of multiple excitation levels and these levels also seem 

to relax in the emission at lower energy (705 nm). The photoluminescence excitation curves 

are extracted from this map by selecting spectra at the wavelength of the PL spectrum (520, 

575, 650 and 705 nm). These excitation curves are compared to the absorption (Figure 2.14c) 

and show that for low energy emission (650 and 705 nm), the spectra exhibit a well-defined 

structure with some peaks corresponding to bumps in the absorption spectrum. This means 

that the energy levels involved in the absorption in solution are indeed the levels that relax 

into the low energy PL. 
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2.3. Single molecule properties 

2.3.1. Sample preparation 

To study single molecule properties, the molecules of the GQDs need to be isolated from each 

other in a polymer matrix and deposited on a surface. The matrix is also useful to minimize 

the quenching and the blinking of the PL due to the contact with the environment: substrate, 

air, charges, etc. The single molecule photoluminescence setup is presented in Figure 2.15. A 

laser source at 594 nm passes through an objective and excites the sample. The light emitted 

by the GQDs is collected by the same objective and is separated from the incident light with a 

dichroic mirror before passing through a pinhole to increase the spatial resolution of the 

image at the spectrograph. The objective is motorized in order to perform the mapping of the 

substrate to determine the source of the emission and therefore see if it comes from 

aggregates or single molecules. 

 

Figure 2.15: PL mapping setup 

To prepare the samples for single molecule measurements, the previously prepared solution 

of GQD 3 at 0.1 mg/ml (about 5.10-5 M) is diluted 10 times and 100 times to achieve three 

different solutions at 5.10-5 M, 5.10-6 M and 5.10-7 M. 2 ml of these solutions of GQD 3 were 

mixed with 2 ml of a solution of purified polystyrene14 in TCB (0.075 mg/ml) and sonicated in 

an ultrasonic bath for 10 seconds. Approximately 20 µl of these mixtures were spin-coated at 

2000 rpm for 180 seconds15 on a glass coverslip previously treated with oxygen plasma for 5 
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min to remove any organic contaminant. The sample is then dried at 90°C for one hour and 

imaged in the PL mapping setup described in Figure 2.15. 

 

Figure 2.16: PL images of the various dispersions prepared from GQD 3 solutions at a) 5.10-5 

M, b) 5.10-6 M and c) 5.10-7 M and d) PL image of PS only. 

Figure 2.16 shows the photoluminescence images of the three samples prepared from 

solution of GQD 3 at 5.10-5, 5.10-6 and 5.10-7 M in TCB and, as a reference, the PL response of 

the polystyrene film alone. While, the solution at 5.10-4 and 5.10-5 M seem too concentrated 

because we observe a large number of non-individualized PL signals; on Figure 2.16c, we 

observed small isolated spots which may correspond to a single molecule. The purified 

polystyrene analyzed confirmed that the PL was not coming from impurities left in the matrix 

since it did not show any significant photoluminescence signals. 

 

Figure 2.17: PL map and enlargement on a diffraction limited spot. 

Figure 2.17 shows the signal observed on another sample; this technique is limited by 

diffraction and the minimal spot size is about 200-300 nm. These small spots indicate that the 
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emitter is made of a limited number of molecules but it does not ensure that it is due to a 

single GQD. To have an idea of the number of molecules in this spot, we examined the stability 

of its photoluminescence. 

2.3.2. Single molecule discrimination 

The photobleaching of the molecules under the beam can be used to determine the number 

of emitters. In fact, in the case of multiple molecules under illumination, the molecules will be 

turned off one after the others. This phenomenon will give rise to a decrease of the PL 

intensity over time with discrete jumps as the number of molecules becomes close to one 

(Figure 2.18). 

Figure 2.18: Spectrum of the PL intensity over time for the Alexa Fluor 555 dye (red) 

compared to the background (grey)16 

In the case of a single emitter, this intensity should exhibit a single step from a constant 

intensity down to zero. This means that the only light source is a GQD and when it turns off, 

the PL is extinguished. In our case, the objective is focused on a spot and the PL is recorded to 

trace the spectrum of the intensity over time (Figure 2.19). 
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Figure 2.19: PL intensity evolution as a function of time for a diffraction limited spot of GQD 3 

The PL intensity trace presented in Figure 2.19 was observed for multiple spots, it confirms 

that the spots are made of a single GQD (or of very few molecules which all turned off 

simultaneously, which is unlikely) and it allowed us to ensure that the PL obtained is intrinsic 

to the C96C12 GQD 3. In term of stability, GQD 3 is stable for hours with no blinking at a usual 

power of 200 nW (Figure 2.20). 
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Figure 2.20: Typical photostability of C96C12 GQD 3 over time 

The high photostability of the sample is a promising result for the optical study and the 

applications of the GQDs. The confirmation of the uniqueness of the emitter permits the study 

of the single photon emission starting with the PL of a single molecule. 
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2.3.1. Photoluminescence 

The confirmation of the single molecule characteristic of our sample allows us to look at the 

intrinsic PL of the GQD 3. The overall shape of the PL (Figure 2.21) is very similar to the one 

obtained in solution (Figure 2.12) which confirms the good dispersion of the GQDs.  

 

Figure 2.21: PL spectrum and time-resolved PL of a single C96C12 GQD 3 

The main peak is still located at 653 nm with peaks at lower energy at 719 and 797 nm. The 

time-resolved PL is in good agreement with the results in solution and shows a mono-

exponential decay with a life-time of about 4.7 ns. 

2.3.2. Single photon emitter 

The single photon emission properties were introduced in chapter 1.4. and we showed that 

this unique property was characterized by the evolution of the second order correlation 

function g(2)(). In theory for a single photon emitter, this function should go down to zero 

when  = 0 however, experimentally, the emitter is considered a single photon emitter if g(2)() 

< 0.5. The setup for the measurement of g(2)() is the same as for PL mapping but this time the 

emitted light is collected into the Hanbury Brown-Twiss setup made of a 50:50 beam splitter 

and two detectors (Figure 2.22). 



Chapter 2: Graphene Quantum Dots 

67 

 

Figure 2.22: Schematic representation of the experimental setup for the measurement of the 

g(2) function 

In our case, the correlation function plotted in Figure 2.23a exhibits a g(2)() = 0.05. This result 

is in strong contrast with the results of such experiments performed on “top-down” GQDs 

made from graphene oxide where no antibunching was observed.17 In this study, the absence 

of antibunching was interpreted as a consequence of the extrinsic nature of the states at the 

origin of the luminescence: multidefect sites emitting in an uncorrelated manner. In our case, 

we have performed measurements on more than 30 specimens of GQD 3, all of them leading 

to g(2)(0) < 0.1. Moreover, the weak value observed for the g(2)(0) is an indication of the good 

purity of single photon emission associated with the single graphene quantum dots. This result 

strongly suggests that GQDs synthesized via the “bottom-up” approach constitute interesting 

alternatives to other single emitters, such as defects in WSe2,18–22 in h-BN23–25 or to carbon 

nanotubes.26 Indeed, the emission wavelength of GQDs can be tuned thank to their size 

and/or functionalities. In addition, water soluble GQDs could find important applications in 

biology as stable, bright and non-toxic dyes. These results have been summarized in a paper 

deposited on ArXiv27 and have been accepted for publication in Nature Communications.28 

g(2) measurement setup 
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Figure 2.23: a) g(2) function for GQD 3 and b) comparison between the saturation curve for 

GQD 3 (red) and NV center (blue); the experiments were realized on the same setup. 

The confirmation of the character of single photon emitter allowed us to explore other 

important characteristics like brightness. The brightness is extracted from the saturation curve 

(Figure 2.23b) measured increasing the power of excitation and plotting the intensity of the 

PL. The intensity of the PL in this case is fitted by: 𝑅 = 𝑅𝑠𝑎𝑡/(1 +
𝐼𝑠𝑎𝑡

𝐼𝑒𝑥𝑐
) 

With 𝑅𝑠𝑎𝑡 the count rate at saturation, 𝐼𝑠𝑎𝑡 the incident power at saturation and 𝐼𝑒𝑥𝑐 the 

incident power. The fit leads to 𝑅𝑠𝑎𝑡~9.7 Mcounts/s and 𝐼𝑠𝑎𝑡= 28 kW.cm-2. These results were 

compared with the widely used NV centers in diamond and particularly with a NV center in 

111-diamond on the same setup. This emitter led to a 𝑅𝑠𝑎𝑡~0.3 Mcounts/s which is coherent 

with the values of the literature29 but this value is 30 times lower than the one obtained for 

GQD 3. 
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2.3.3. Optical study of C96Cl 

The advantage of GQDs compared to the current single photon emitters is that the doping, 

the functionalization or the change of the size or edge states could allow us to tune the optical 

properties of the GQDs. The chlorination of nanoparticle induces a red shift of the absorption 

and emission compared to the bare or alkyl-functionalized GQDs 1 and 3.5 To this end, GQD 2 

was dispersed in TCB and polystyrene and then spin-coated on glass coverslips. The procedure 

was the same than the one established for GQD 3: a dispersion of 2 in TCB at 0.01 mg/ml is 

mixed with purified polystyrene in TCB (0.075 mg/ml) and sonicated in an ultrasonic bath for 

10 seconds. Approximately 20 µl of the mixture is spin-coated at 2000 rpm for 180 seconds15 

on a glass coverslip previously treated with oxygen plasma for 5min to remove any organic 

contaminant and the sample is then dried at 90°C for 1h. 

We were able to obtain the PL spectrum of a single C96Cl GQD 2 and a red-shift of ca. 100 nm 

compared to the PL of GQD 3 was observed (Figure 2.24a). C96Cl GQD 2 also exhibited single 

photon emission properties (Figure 2.24b). 

 

Figure 2.24: a) PL spectra of C96Cl 2 (blue line) and C96C12 3 (red dot line) and b) g(2) function 

for C96Cl 2. 

2.4. Conclusion 

To sum up, we were able to reproduce the synthesis of three GQDs containing 96 sp2 carbon 

atoms in their aromatic cores: one without any functional groups at the periphery (GQD 1), 

a b 
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one containing 27 chlorine atoms (GQD 2) and one containing six C12H25 alkyl chains (GQD 3). 

The solubility of the GQDs is increased depending on the edge functionalization and this 

allowed dispersion of the functionalized GQDs in TCB for optical studies. The optical properties 

were further explored for C96C12 GQD 3 with the study of its properties at the single molecule 

level. GQD 3 exhibited a single photon emission with a photostability of hours with no blinking 

and an intensity of saturation 30 times better than NV centers in diamond. Moreover, we 

proved that the functionalization of GQD 1 with chlorine to form C96Cl 2 can tune the bandgap 

while keeping the single photon emission properties. To further explore the properties of 

those materials, we decided to focus on one parameter, the length variation, while keeping 

the atomically controlled structure; this gave rise to graphene nanorods (GNRods) which will 

be detailed in Chapter 3. 
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Chapter 3: Graphene Nanorods 

3.1. Introduction 

The optical characterization of the intrinsic properties of GNRs is complicated due to their low 

solubility and their polydispersity. To be able to discriminate the effects of the width, the edge 

state and of the length on the properties it is necessary to control those parameters. While 

for GNRs the control of the width and the edge state is done by the choice of the precursor, 

the control of the length is impossible due to the polymerization. Therefore, the development 

of a new type of 1D materials with controlled width, edge state and length is mandatory to 

understand the impact of this parameter on the optical properties observed. 

 

Figure 3.1: Structures of the N = 9 AC GNR, C78 GNRod and N = 9 GNRod. 

By analogy with “gold nanorods”, an intermediate object between round-shaped gold 

nanoparticles and gold nanowires, we called this new type of graphene material “graphene 

nanorods” (GNRods). The first structure we studied is based on the N = 9 AC GNR1 (Figure 3.1) 

and is made of 78 carbon atoms (C78). This rod-shaped graphene quantum dots, of formula 

C78H26, exhibits a width of about 0.9 nm and a length of about 2.5 nm; it has already been 

reported by Klaus Müllen.2 The variation of length of the GNRod can be achieved via the 

controlled addition of a rows of phenyls to the structure to give rise to the N = 9 GNRod family. 

In this study we focused on the addition of a single row of phenyls to form the first member 

of this family. In the case of the graphene particle 11, the addition of this row gives rise to a 

linear structure, C96H30 12 (C96L) (Figure 3.2). It is interesting to notice that this nanoparticle 

constitutes an isomer of the triangle-shaped GQD 1 described in Chapter 2. 
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Figure 3.2: Length variation of C78 graphene nanoparticles 11. 

The second structure we studied is based on the N = 15 GNR and the corresponding GNRod is 

C132H34 (C132) (Figure 3.3).3 This structure has the same length of about 2.5 nm but it has a 

width of about 1.5 nm. The addition of multiple rows of phenyl gives rise to the N=15 GNRods. 

 

Figure 3.3: Structures of the N = 15 GNR, C132 GNRod and N = 15 GNRod and schematic 

representation of the extension of the C132 graphene nanoparticles 13 

Similarly to C78 11, the C132 GNRod 13 was also prepared with an additional row of phenyl 

rings and it gave a new structure, C162H38 14 (C162) (Figure 3.3).  

Like the graphene quantum dots described in Chapter 2, the structure and the properties of 

these GNRods can be tuned either by the addition of alkyl chains of chlorine atoms and 

therefore this creates a wide range of structure variation that we synthesized (Figure 3.4). 
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Figure 3.4: Structures of the GNRods synthesized in this Chapter 

3.2. N = 9 graphene nanorods  

The synthetic methods of the GNRods are the same as those presented for GQDs in the 

previous chapter. The first step is a Diels-Alder reaction with an acetylenic precursor to form 

a polyphenyl dendrimer which is oxidized and eventually chlorinated. The first synthetic route, 

described by Müllen, for the preparation of C78 GNRod was based on the reaction of 1,3-

di(phenyl-ethynyl)benzene 23 with tetraphenylcyclopentadienone (Figure 3.5).2 
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Figure 3.5: First synthetic route for the preparation of C78.2 

However, to increase the length of the GNRod in one direction, we have decided to explore 

another approach based on the use of 2’,5’-diethynyl-para-terphenyl core and tune the 

number of terphenyl in the core to gradually increase the number of terphenyl units in the 

core (see below paragraph 3.2.1.). Most of the syntheses presented in this chapter are based 

on two palladium catalyzed reactions: the Suzuki coupling and the Sonogashira coupling; the 

mechanism of these reactions are described in Figure 3.6. 

 

Figure 3.6: Representation of the Suzuki and Sonogashira catalytic cycles.  

Each palladium coupling is made of three steps, the oxidative addition, the transmetalation 

and the reductive elimination. In the case of the Sonogashira coupling, an additional step is 

needed involving the metalation of the alkyne group with copper (I) before the 

transmetalation. These reactions should be carried out under argon to prevent the inhibition 

of the palladium (0) catalyst by oxygen and therefore, the solvent used are distillated and 

subsequently degassed with “freeze-pump-thaw” technique. This technique consists in the 

freezing of the solvent with liquid nitrogen followed by the slow heating up to room 

temperature under vacuum to remove gases from the solution. 
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3.2.1. Synthesis and characterization of the C78 family 

The synthesis of the desired 2’,5’-diethynyl-para-terphenyl 29 started with the disylilation of 

1,4-diiodobenzene with trimethylsilyl chloride in the presence of lithium di-iso-propylamide 

(LDA) ( 

Scheme 3.1)4 to give 1,4-diiodo-2,5-bis(trimethylsilyl)benzene 25 with a decent yield of 64%. 

It was followed by a Suzuki coupling with two equivalents of phenylboronic acid. The Suzuki 

reaction was performed with Pd(PPh3)2Cl2 catalyst in the presence of K2CO3 in a mixture of 

THF, EtOH and water and the para-terphenyl derivative 26 was obtained with 97% yield. The 

product was iodinated directly with 4 equivalents of ICl (1M in CH2Cl2) (2 equivalents per TMS 

group) to give 2’,4’-diiodo-para-terphenyl 27. The final step was the Sonogashira coupling of 

two equivalents of ethynyltrimethylsilane on diiodo-para-terphenyl 27. The resulting 

protected compound 28 was deprotected with tetra-n-butylammonium fluoride (TBAF) to give 

precursor 29 right before the Diels-Alder reaction. 

 

Scheme 3.1: i) TMSCl, LDA, -78°C, 1h, 64%; ii) PhB(OH)2, Pd(PPh3)2Cl2, K2CO3, THF/EtOH/H2O, 

60°C, overnight, 97%; iii) ICl, DCM, R.T., overnight, 40%; iv) ethynyltrimethylsilane, 

Pd(PPh3)2Cl2, CuI, 80°C, 24h, 96%; v) TBAF, R.T., 2h, 91%. 

The protected precursor 28 was characterized by 1H-NMR spectroscopy. The NMR spectrum 

exhibited a singlet at 7.61 ppm for the two aromatic protons of the central phenyl, a mutiplet 

from 7.66 to 7.63 ppm for the four protons of the external phenyl in ortho position of the 

central phenyl and a multiplet between 7.43 and 7.35 ppm for the other protons of the 

external phenyls. Finally the eighteen protons of the TMS groups appear as a singlet at 0.13 

ppm (Figure 3.7). 
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Figure 3.7: 1H-NMR spectrum of the protected precursor 28 in CDCl3. 

To prepare GNRod 11, precursor 29 underwent a Diels-Alder reaction with 

tetraphenylcyclopentadienone and the resulting polyphenylene dendrimer 30 was 

dehydrogenated with FeCl3 to give the C78 GNRod 11 (Scheme 3.2). 

  

Scheme 3.2: i) o-xylene, 180°C, overnight, 51%; ii) FeCl3, MeNO2, DCM, R.T., overnight, 90%. 

The MALDI-TOF mass spectrum of dendrimer 30 was done by solubilizing the molecule in DCM 

and mixing it with the DCTB matrix. Figure 3.8a showed the di-substituted compound at m/z 

of 990.43 (M+) and 1013.42 (M+Na)+. The completely dehydrogenated GNRod had a low 

solubility in the usual organic solvents and therefore, as for GQD 1, the characterization of this 

product was only possible using the mixing of the sample with TCNQ matrix as presented in 

2.1.2 for C96 1. The spectrum of GNRod 11 exhibited a main peak at m/z of 962.26 (M+) and a 

second peak corresponding to (M+Na)+ at 985.63 (Figure 3.8b). 
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Figure 3.8: MALDI-TOF mass spectra of a) dendrimer 30 and b) GNRod 11. 

GNRod 11 can be functionalized with chlorine and alkyl chains like to form a complete family. 

For the chlorination, the condition was similar to the one used for GQD 2, AlCl3 and ICl in CCl4 

at 80°C for 30 hours (Scheme 3.3). However, despite changes in the reaction time, (up to 72 

h) and AlCl3 and ICl equivalents, the product was always obtained as a mixture of partially 

chlorinated compounds.  Similarly to GQD 3, the C78C12 16 GNRod was prepared via Diels-

Alder reaction of precursor 29 with alkyl-substituted tetraphenylcyclopentadienone 9 and the 

dehydrogenation of the resulting dendrimer 31 was performed with FeCl3. 
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Scheme 3.3: i) AlCl3, ICl, CCl4, 80°C, 72h, 10%; ii) o-xylene, 180°C, overnight, 98%; iii)FeCl3, 

MeNO2, DCM, R.T., 5h, 66%. 

The product of the synthesis of GNRod 15 was characterized with MALDI-TOF spectrometry 

and the spectrum exhibits a mixture of chlorinated compounds with the GNRod missing two 

chlorine as the main product at m/z of 1788.15 (Figure 3.9a). This powder cannot be purified 

due to the low difference in polarity between the fully chlorinated compound and the ones 

missing few chlorines. The spectrum of GNRod 16 shown Figure 3.9b exhibited two peaks of 

the desired product at m/z of 1635.11 (M+) and 1657.98 (M+Na)+ with no traces of the 

chlorinated compound at 1668.92. 

 

Figure 3.9: MALDI-TOF of a) GNRod 15 and b) GNRod 16. 

After preparing these first GNRods, we extended the length in one direction while keeping the 

same edge state changing the precursor used. 

3.2.2. Synthesis and characterization of the linear C96 family 

The preparation of the linear C96 structure (C96L) is based on the same principle as the 

preparation of C78 11. Considering the shape of the molecule, the deduction of the precursor 

needed is straightforward from the synthesis of GNRod 11, C96L polyphenylene dendrimer 33 

should be prepared from bis(terphenyl) core 32 (Figure 3.10). 
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Figure 3.10: Determination of the precursor for C96L 12. 

To determine the synthetic route for the preparation of the acetylenic precursor 32, we 

performed a retrosynthetic study (Figure 3.11). The ethynyl groups will be added by 

Sonogashira coupling on the dihalogenated-diterphenyl derivative which will be prepared 

from the di(TMS)-diterphenyl derivative. The latter will be obtained from monohalogenated-

terphenyl which will be synthesized from the terphenyl 26. 

 

Figure 3.11: Retrosynthesis for the preparation of precursor 32. 

To perform this synthesis, para-terphenyl 26 was mono-iodinated in the presence 0.9 

equivalents of AgBF4 and ICl (1M in CH2Cl2) to give the mono-iodo terphenyl derivative 34 

(Scheme 3.4).5 The addition of ICl was done at 0°C and the reaction was left 1 h at room 

temperature. The reaction did not form the di-iodoterphenyl derivative but led to a mixture 

of terphenyl 26 and monoiodo-terphenyl 34. The iodoterphenyl 34 was purified partially by 

column chromatography since a part of the terphenyl 26 can be removed and a part remains 

in mixture with 34. The presence of para-terphenyl 26 is not an issue for the next reaction 

since the TMS groups are not reactive. 
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Scheme 3.4: i) ICl, AgBF4, R.T., 1h, 76%; ii) Pd(OAc)2, Cu, DMSO, 50°C, 4h, 0%; iii) Pd/C, Zn, 

Acetone/water, R.T., overnight, 0%. 

We tried to synthesize the bis(terphenyl) 35 with the Ullmann coupling of two iodoterphenyl 

34. In our case, due to the sensitivity of the protective group (TMS) it was impossible to use 

the usual conditions with copper as the catalyst and heating at high temperature (above 

200°C).6 Therefore, milder methods should be used based on palladium catalyst like Pd(OAc)2 

combined with copper7 or Pd/C combined with zinc.8 Unfortunately, the conditions tested did 

not permit to achieve the desired bis(terphenyl) 35. 

The Suzuki coupling was adopted to solve this problem; it required first the preparation of the 

boronic derivative 36 (Scheme 3.5).5 Iodoterphenyl 34 reacted with n-BuLi followed by the 

addition on iso-(propoxy)boronpinacol (i-PrOBpin), then 36 reacted with the iodoterphenyl 34 

in the presence of Pd(OAc)2 and SPhos in a mixture of toluene and water (6:1) at 60°C and 

gave the bis(terphenyl) derivative 35 with 53% yield. 

 

Scheme 3.5: i) n-BuLi, i-PrOBpin, THF, -78°C, overnight, 90%; ii) 34, Pd(OAc)2, SPhos, K3PO4, 

toluene/water, 60°C, overnight, 53%; iii) ICl, DCM, R.T., overnight, 61%; iv) 

ethynyltrimethylsilane, Pd(PPh3)2Cl2, CuI, toluene/Et3N, 80°C, overnight, 60%; v) TBAF, THF, 

R.T., 2h. 

The bis(terphenyl) 35 was then iodinated via the usual iodination conditions with 4 

equivalents of ICl in CH2Cl2 to give diiobo-bis(terphenyl) 37 with 61% yield. The Sonogashira 

coupling of the diiodo-bis(terphenyl) 37 with ethynyltrimethylsilane was carried out using 

Pd(PPh3)2Cl2 as the catalyst and CuI as the co-catalyst. After one night at 80°C the protected 
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precursor 38 was obtained with 60% yield. The final step was the deprotection, which was 

done right before the Diels-Alder reaction, with TBAF in THF for 2 hours and it resulted in 

precursor 32 with 91% yield. 

 

Figure 3.12: 1H-NMR spectrum of bis(terphenyl) 38 in CDCl3. 

The bis(terphenyl) 38 was characterized by 1H-NMR spectroscopy. The NMR spectrum showed 

two singlets for the four protons of the central phenyls at 7.55 and 7.53 ppm. Sixteen protons 

from the outside phenyls showed shifts from 7.46 to 7.04 ppm while the four protons in para 

of the central phenyls appeared as two singlets at 6.80 and 6.78 ppm and the peak of the 

eighteen protons from the TMS groups was located at 0.14 ppm. 

 

Scheme 3.6: i) o-xylene, 180°C, overnight, 92%; ii) FeCl3, DCM, overnight, 80%. 

The new precursor 32 underwent a Diels-Alder reaction with tetraphenylcyclopentadienone 

to give dendrimer 33 (Scheme 3.6). The dehydrogenation via the Scholl reaction achieved the 
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preparation of C96L GNRods 12. Both dendrimer 33 and GNRod 12 were characterized with 

MALDI-TOF spectrometry. The spectrum of dendrimer 33 exhibited the peaks of the pure 

products at m/z of 1218.53 (M+) (Figure 3.13a) and similarly, the spectrum of GNRod 12 

showed a single peak at m/z of 1182.28 (M+) (Figure 3.13b). 

 

Figure 3.13: MALDI-TOF mass spectra of a) dendrimer 33 and b) GNRod 12. 

The C96L structure could undergo the same edge variation as C96 GQD 1 and be chlorinated 

but since the edge structure is different, the structure obtained is not partially but completely 

chlorinated which means that we obtained the C96Cl30 17 (C96LCl) (Scheme 3.7). The 

chlorination of 14 is done in the presence of AlCl3 and ICl to give 17 however, as for C78Cl 15, 

the resulting powder is made of a mixture of fully and partially chlorinated compound. It is 

possible to add alkyl chains but since the precursor for C96L reacted with two 

tetraphenylcyclopentadienone, dendrimer 39 possessed only 4 dodecyl chains. The reaction 

of the bis-terphenyl 32 with the alkyl-substituted tetraphenylcyclopentadienone 9 gave 

dendrimer 39 which was oxidized by FeCl3 to give to the C96LC12 GNRods 18. However, while 

the conditions used for this last step are the same that were used for C96C12 3, they could 

not achieve the fully dehydrogenated compound. This means that besides being dependent 

on the number of bonds that need to be formed, the dehydrogenation conditions are also 

dependent on the shape of the molecule. These conditions are still getting optimized to 

achieve the fully dehydrogenated GNRod 18. 
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Scheme 3.7: i) AlCl3, ICl, CCl4, 80°C, 72h, 35%; ii) o-xylene, 180°C, overnight, 66%; iii) FeCl3, 

MeNO2, DCM, R.T.. 

The MALDI-TOF spectrum of GNRod 17 exhibits the peak of the fully chlorinated GNRod at m/z 

of 2216.25 but the compound missing one chlorine is the main product at m/z of 2182.25 with 

traces of the one missing two chlorines at m/z of 2147.28. We are still investigating the 

reasons why the main product is the one missing one chloride. The edge state should not be 

a problem since it is the same as for the C60H22 prepared by Müllen9 and AlCl3 and ICl are both 

introduced in excess. The GNRod 18 was also characterized with MALDI-TOF spectrometry and 

it exhibited a single peak for the compound missing 5 carbon-carbon bonds at m/z 1865.25. 
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Figure 3.14: MALDI-TOF spectra of a) the GNRod 17 and b) the GNRod 18. 

3.3. N = 15 graphene nanorods 

The C132 GQD 13 was first prepared by Müllen in 1997.3  From this structure, we decided to 

expand the length of the nanoparticle similarly to the N = 9 nanorod family. 

3.3.1. Synthesis and characterization of the C132 family 

The synthesis of the square-shaped graphene nanoparticle 13 started with the synthesis of 

the protected tetraethynylbiphenyl core 40 which was prepared via the Sonogashira coupling 

of 4 equivalents of ethynyltrimethylsilane on 3,3’,5,5’-tetrabromobiphenyl. The deprotection 

of 40 before the Diels-Alder reaction with TBAF gave the tetraethynyl derivative 41 (Scheme 

3.8). The reaction of 41 with the tetraphenylcyclopentadienone gave the polyphenylene 

dendrimer 42 which was dehydrogenated via the usual conditions with FeCl3 to give the 

graphene nanoparticle 13. 
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Scheme 3.8: i) Ethynyltrimethylsilane, Pd(PPh3)2Cl2, CuI, Toluene/Et3N, 80°C, overnight, 45%; 

ii) TBAF, THF, R.T., 2h, 50%; iii) Ph2O, 180°C, overnight, 75%; iv) FeCl3, DCM, R.T., 18h, 51%. 

The MALDI-TOF spectrum (Figure 3.15a) of the dendrimer 42 showed the expected peak at 

m/z of 1674.79 with no traces of the tri-substituted derivative. After the dehydrogenation 

reaction, the MALDI-TOF spectrum showed a complete dehydrogenation at m/z of 1618.34 

(Figure 3.15b). 

 

Figure 3.15: MALDI-TOF mass spectra of dendrimer 42 and GNRod 13. 

The C132 GQD was chlorinated to give the C132Cl nanoparticles 19 (C132Cl32H2) (Scheme 3.9). 

As for C96Cl 2, some positions could not undergo the chlorination due to the edge 

conformation. Similarly to what was done above, the biphenyl precursor 41 reacted with the 
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tetraphenylcyclopentadienone 9 to give the dendrimer with eight dodecyl chains 43 (Scheme 

3.9). The dendrimer 43 was dehydrogenated in the presence of FeCl3 to give 20. 

 

Scheme 3.9: i) AlCl3, ICl, CCl4, 80°C, 48h, 36%; ii) o-xylene, 180°C, overnight, 63%; iii) FeCl3, 

DCM, R.T., overnight, 92%. 

The MALDI-TOF spectrum of C132Cl 19 shown in Figure 3.16a exhibited a peak distribution 

coherent with the one expected for this type of chlorinated compound with a major peak at a 

m/z of 2721.02. Traces of compounds missing one or two chlorine were found at m/z of 

2687.10 and 2653.13. The spectrum for C132C12 20 showed a major peak corresponding to 

the expected product at m/z of 2963.84 (M)+ (Figure 3.16b). 
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Figure 3.16: MALDI-TOF mass spectra of a) GNRod 19 and b) GNRod 20. 

3.3.2. Synthesis and characterization of the C162 family 

For the extension of the C132 particles, we decided to follow the same strategy as for the 

linear C96 GNRods with the extension of the central core. Consequently, biphenyl 41 used for 

the preparation of dendrimer 42 should be replaced by bis(diethynylphenyl)pentaphenyl 44 

to produce polyphenylene dendrimer 45 (Figure 3.17). 

 

Figure 3.17: Determination of the precursor for C162 14. 

The precursor 44 was synthesized in two blocks starting from 1,3,5-tribromobenzene for the 

first block and from 2,5-diiodo-1,4-phenylenebistrimethylsilane 26 for the second block 

(Scheme 3.10). 1,3,5-tribromobenzene reacted with 2 equivalents of ethynyltrimethysilane in 

the presence of PdCl2(PPh3)2 and CuI to give the monobromodiacetylene compound 46 which 

was converted to boronic acid derivative 47 by treatment with n-BuLi and iso-

(propoxy)boronpinacol. 
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Scheme 3.10: i) Ethyltrimethylsilane, Pd(PPh3)2Cl2, CuI, Toluene/Et3N, 80°C, overnight, 45%; ii) 

n-BuLi, i-PrOBpin, Et2O, -50°C, overnight, 85%; iii) meta-biphenylboronic acid, Pd(OAc)2, 

SPhos, Toluene/water, 80°C, overnight, 68%; iv) ICl, DCM, R.T., overnight, 66%; v) Pd2(dba)3, 

SPhos, K2CO3 Toluene/EtOH/water, 80°C, overnight, 57%. 

The second building block was synthesized in two steps by reaction of 2,5-diiodo-1,4-

phenylenebistrimethylsilane 26 with meta-biphenylboronic acid. The TMS groups of the 

pentaphenyl derivative 48 were converted into iodo groups by treatment with 4 equivalents 

of ICl (1M in CH2Cl2) to give the diiodopentaphenyl derivative 49. Finally, the protected core 

50 was synthesized by Suzuki coupling between 47 and 49 in the presence of Pd2(dba)3, SPhos 

and K2CO3 in a mixture of toluene, ethanol and water at 80°C. The catalyst for this last Suzuki 

coupling was changed because of the low reproducibility of the reaction with Pd(OAc)2 in this 

case. 

The 1H-NMR spectra of the two building blocks 47 and 49 and the protected core 50 are 

presented in Figure 3.18. The 1H-NMR spectrum of the boronic ester 47 exhibited two singlets 

for the three aromatic protons at 7.84 and 7.64 ppm, a singlet at 1.33 ppm for the twelve 

protons on the boronic ester and a singlet at 0.22 ppm for the eighteen protons on the TMS 

groups. The 1H-NMR spectrum of the diiodopentaphenyl 49 exhibited a singlet for two 

aromatic protons of the central phenyl at 7.96 ppm and a multiplet for eighteen protons of 

the external phenyls between 7.68 and 7.36 ppm. The 1H-NMR spectrum of the dendritic core 

50 exhibited a singlet for 2 protons of the central phenyl at 7.52 ppm, a multiplet for twenty-
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four protons of the external phenyls between 7.52 and 7.30 ppm and a singlet for eighteen 

protons of the TMS groups at 0.19 ppm 

 

Figure 3.18: 1H-NMR spectrum of boronic ester 47, pentaphenyl 49 and dendritic core 50 in 

CDCl3. 

The family of C162 GNRods (i.e., the bare C162, C162Cl and C162C12) was synthesized 

according the synthetic scheme described previously (Scheme 3.11). The ethynyl groups of the 

core of the dendrimer were deprotected using TBAF before the Diels Alder reaction. Precursor 

44 reacted with tetraphenylcyclopentadienone to give dendrimer 45 which was oxidized to 

form the expected C162 GNRod 14. The latter GNRod was chlorinated in the presence of ICl 

and AlCl3 in CCl4 to give C162Cl GNRod 21. 

49 
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Scheme 3.11: i) TBAF, THF, 0°C, 1h, 94%, ii) o-xylene, 180°C, overnight, 39%; iii) FeCl3, MeNO2, 

DCM, R.T., overnight, 73%; iv) AlCl3, ICl, CCl4, 80°C, 72h, 49% 

Like for the previous GNRods, C162 dendrimer 45 and GNRod 14 were characterized by 

MALDI-TOF mass spectrometry using the classical preparation in solution with DCTB matrix 

for 45 and the solid mixing of the sample with TCNQ matrix for 14 (Figure 3.19). The spectrum 

of dendrimer 45 showed two peaks at m/z 2054.65 (M+) and 2077.69 (M+Na)+ and the 

spectrum of GNRod 14 showed a peak at m/z 1962.43 (M+). 

 

Figure 3.19: MALDI-TOF mass spectra of a) dendrimer 45 and b) GNRod 14. 
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The characterization the GNRod 21 is problematic since neither the expected peaks 

corresponding to the chlorinated particles at 3204.89 (exact mass) or 3224.06 (molecular 

weight) nor the peak of the starting material can be found in the final blue powder (Figure 

3.20). The mass spectra only showed noisy signals containing two maxima at m/z of 1830 and 

m/z of 3777 which did not correspond to any expected structure. 

 

Figure 3.20: a) MALDI-TOF mass spectra of the GNRod 21 and b) comparison of the obtained 

spectrum for GNRod 21 with the simulated one. 

While this characterization by mass spectrometry was impossible yet, the compound obtained 

after the chlorination exhibited a good solubility in chlorinated solvent like chloroform and it 

was even purified by high-performance liquid chromatography (HPLC) on Hypersil GOLDTM 

silica column. In addition, the absorption spectrum of this compound is coherent with the 

expected spectra for C162Cl; this study is developed in the following section. Therefore, we 

strongly believe that we obtained the desired compound and we are currently working on its 

characterization. The experience we have with this reaction shows that the graphene 

nanoparticles do not degrade during the chlorination, the latter always proceeds and the only 

byproducts observed are due to incomplete chlorination. 

Finally, the C162C12 GNRod 22 was synthesized by reaction of 44 with 9, the dendrimer 51 

was dehydrogenated in the presence of FeCl3. 
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Scheme 3.12: i) o-xylene, 80°C, overnight, 68%; ii) FeCl3, MeNO2, DCM, R.T., overnight, 34%. 

The GNRod 22 exhibits the same difficulty of characterization as GNRod 21 and while the 

product was characterized with MALDI-TOF spectrometry, neither the expected peak 

corresponding to the fully dehydrogenated compound at 3321.80 (exact mass) nor the peak 

of the starting material (3400.49) can be found in the final powder. 

 

Figure 3.21: a) MALDI-TOF spectrum of the GNRod 22 and b) comparison of the obtained 

spectrum for GNRod 22 with the simulated one. 

The organic synthesis of several GNRods allowed us to have access to a wide range of 

structures. Despite the current problems with the dehydrogenation step of the new GNRod 

containing alkyl chains (C96LC12 18), the partial chlorination of some GNRods (15, 17 and 19) 

and the problems with the characterization of the doped C162 (21 and 22), the optical study 

of the effect of the size variation can still be explored. In fact, we studied the effect of the size 



Chapter 3: Graphene Nanorods 

95 

and width variation in the narrow GNRods C78 11 and C96L 12 and the wider GNRods C132 

13 and C162 14. 

3.4. Optical properties 

3.4.1. The C78 based GNRods 

The first optical study was the comparison between the GNRods C78 11 and C96L 12. For this 

study, we chose to disperse the GNRods in SDS due to the flaws of TCB. In fact, if TCB contains 

traces of air, it degrads for a sonication carried out for more than 5 min with an ultrasonic 

bath or with an ultrasonic probe. Moreover, the high density of TCB (1.45 g/cm3) made 

centrifugation impossible. Those two points were huge drawbacks for compounds with a poor 

solubility since optical experiments need a clear solution without non-soluble aggregates. On 

the contrary, SDS solutions are stable to sonication and allow higher power and time of 

sonication with no issues regarding centrifugation. The solutions were prepared at 0.1 mg/ml 

in a solution of SDS (2%) before sonication during 1 hour in an ultrasonic bath and stirring 

overnight. The resulting solutions for GNRods 11 and 12 are presented in Figure 3.22 and 

exhibit pale yellow and pale orange colors. 

 

Figure 3.22: Pictures of the dispersions of a) C78 11 and b) C96L 12 in SDS. 

The absorption spectra of the solutions of GNRods 11 and 12 were measured and the first 

result is that the low solubility of the bare GNRods induces a low intensity of the absorption 

(Figure 3.23). The spectrum for C78 11 shows a broad absorption band at ca. 400 nm with 

lower absorptions at 540, 589 and 640 nm. The spectrum for C96L 12 is very similar with a 

broad absorption band around 425 nm and two lower at 575 and 645 nm. The red-shift of 
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about 25 nm between GNRods 11 and 12 confirms that absorption can be tuned with length 

variation without changing the edge state. 
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Figure 3.23: Absorption spectra of C78 11 and C96L 12 GNRods and GQD 1. 

GNRod 12 and GQD 1 are both made of 96 carbon atoms but exhibit different shapes; while 

GNRod 12 is linear, GQD 1 is triangular. These structures were compared to see the impact of 

a shape variation on the optical properties. The spectra Figure 3.23 show that there is a 

difference of about 50 nm between the two main absorption peaks. This confirms that optical 

properties of graphenic materials are mainly governed by the shape and edge state of the 

material. While these parameters slightly change between C78 11 and C96L 12, they 

drastically change between C96L 12 and C96 1, it results in a much bigger shift in the second 

case. 

3.4.2. The C132 based GNRods 

The C132 GNRods are dispersed in TCB following the method presented for GQDs and the 

resulting dispersions are shown in Figure 3.24. The solution of C132 13 exhibits a pale pink 

color due to its low solubility, C132Cl 19 is highly soluble with a clear blue color and C132C12 

20 is also soluble with a purple color. 
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Figure 3.24: Pictures of the dispersions of a) C132 13, b) C132Cl 19 and c) C132C12 20 in TCB. 

The absorption spectra of these GNRods showed low shifts of the absorption with differences 

in the intensity of absorption mostly due to the poor solubility of GNRod 13 compared to 

GNRod 19 and 20. The spectra of C132 13 and C132C12 20 exhibited broad absorption band 

at about 570 nm with additional weak absorption bands for GNRod 20 at 440, 640, 700 and 

740 nm (Figure 3.25). The main absorption band of the spectrum of C132Cl 19 is located at 

585 nm with weaker absorptions at 360, 390, 425, 650 and 700 nm. The shift of ca. 15 nm 

between C132 13 and C132Cl 19 was coherent with the shift observed between C96 1 and 

C96Cl 2 (ca. 20 nm), this confirms the red-shifting effect of chlorination. 
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Figure 3.25: Absorption spectra of the C132 family in TCB. 

The absorption spectrum of C132 13 was compared with the one of C162 14, the GNRod with 

an additional row of phenyls (Figure 3.26). The spectrum of GNRod 14 exhibited a broad 
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absorption band at ca. 590 nm with a weaker absorption at 410 nm. The red-shift of ca. 20 nm 

observed between the main absorption bands of C132 13 and C162 14 confirmed the results 

of GNRods C78 11 and C96 12 showing that an increase in length induces a red-shift of the 

absorption. 
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Figure 3.26: Comparison of the absorption spectra of C132 13 and C162 14 in TCB. 

The spectrum of GNrod 14 was then compared with the spectra of the functionalized C162 

GNRods (chlorinated and with alkyl chains) using SDS for the dispersion (Figure 3.27). The 

shape of the spectra for the C162 family were very similar to the ones obtained for the C132 

family. The spectra of C162 14 and C162C12 22 exhibited a main absorption bands at 590 nm 

with an additional weaker band for GNRod 22 at 420 nm. The spectrum of GNRods C162Cl 21 

showed a broad absorption band at 605 nm which corresponds to a shift of ca. 15 nm. This 

absorption value is intermediate between the one of C132Cl 19 and the absorption of the 

chlorinated GQD made of 222 carbons (C222CI42) reported in the literature (ca. 700 nm).9 While 

this did not give any information on the chlorination state or the purity, it confirmed that the 

product of the chlorination of C162 21 was a chlorinated GNRod with an intermediate size 

between C132Cl 21 and C222CI42. 
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Figure 3.27: Absorption spectra of the C162 family GNRods in SDS. 

3.1. Conclusion 

To conclude, we were able to prepare a new series of GNRod adding a row of phenyl to the 

precursor of existing GNRods. These new GNRods (12 and 14) exhibited absorption bands with 

a red-shift of ca. 20 nm compared to their shorter counterparts (11 and 13). This method could 

be used to further extend the length of the GNRods. The only limit to this length increase is 

the solubility of the needed acetylenic precursor.  However, the comparison between C96L 12 

and C96 1 showed that large shifts can be achieved changing the shape of the graphenic 

structures. Chlorination is another method able to increase the solubility and tune the optical 

properties inducing a shift of ca. 15 nm compared to the bare molecule. All these results 

showed that one can select the optical properties of graphenic structures tuning them at the 

atomic level.  
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Chapter 4: Graphene Nanomeshes 

4.1. Introduction 

The processes of deposition and activation of small molecules on metal surfaces in a STM 

chamber developed for the formation of 2D covalent networks1 and graphene nanoribbons2 

can be applied to the formation graphene nanomesh. Despite their interest, only a limited 

number of graphene nanomesh-like structures have been reported (Figure 4.1).3–8 It is 

important to notice that in all examples reported so far the “graphene necks” are constituted 

of a single C-C bond between 2 phenyl rings. In such structures, because of the free rotation 

along the single bond and of the steric hindrance between the hydrogen atoms in ortho of the 

C-C bond, the phenyl rings are not coplanar which reduces significantly the delocalization of 

electrons and decreases of the conductivity. This phenomenon is well-known in biphenyl 

derivatives.9  

 

Figure 4.1: a) Chemical structure of typical GNM precursors, hexaiodocyclohexa-m-phenylene 

(CHmP),5 1,3,5-tris-(4’-ethynylphenyl)benzene (TEB)4 and 1,3,5-tris-(4’-bromophenyl)benzene 

(TBB);3 b) the STM images of the resulting network for TEB4 and c) the simulated structure for 

TEB. 

During my PhD, we wanted to fabricate graphene nanomeshes in which the graphene neck is 

composed of several benzene rings and not only of a single C-C bond as it is the case in the 
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examples described in Figure 4.1. To this end, we synthesized two precursors: the 2,2’,2”-

triiodotriphenylene 52 and the 1,3,5-tris(4’-iodo-para-terphenyl)benzene 53 which exhibit a 

C3 symmetry and contain 3 iodine atoms (Figure 4.2). 

 

Figure 4.2: Chemical structure of 2,2’,2”-triiodotriphenylene 52 and 1,3,5-tris(4’-iodo-para-

terphenyl)benzene 53. 

We expected these compounds to give rise to the formation of GNMs in which the graphene 

necks are constituted of two or three phenyl rings with holes corresponding to a phenyl (6 

carbon atoms) or a hexabenzocoronene (42 carbon atoms) missing (Figure 4.3). The neck 

widths and the hole diameters are respectively of 0.6 and 0.7 nm for the GNM from 52 and 

0.9 and 1.0 nm for the GNM from 53. 
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Figure 4.3: Structure of the GNMs made from triiodotriphenylene 52 and tris(para-

terphenyl)benzene 53. 

The group of Philippe Dollfus at the “Insitut d’Electronique Fondamentale” (IEF) of the 

University of Orsay, investigated by numerical simulation the electrical properties of graphene 

nanomesh devices with hole and neck sizes in the typical range of what can be obtained by 

the bottom-up approach.10,11 This part of my project based on well-controlled graphene 

objects may offer the unique opportunity to compare simulation to measurements and to 
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orient the chemical synthesis towards the best structures. Both the precursor 52 and 53 are 

not commercial, so they have to be synthesized. 

4.2. Synthesis of the precursors for the graphene 

nanomesh 

4.2.1. Triphenylene 

The first GNM precursor (2,2’,2”-triiodotriphenylene 52) was prepared following procedures 

previously reported by Bin Xu and co-workers.12,13 2,3-Dichloronitrobenzene underwent a 

trimerization catalyzed by copper in N,N-dimethylformamide (DMF) at 160°C overnight to give 

the 2,2’,2”-trinitrotriphenylene 54 (Scheme 4.1). The nitro groups were reduced into amine 

groups by hydrogenation in the presence of Pd/C in a mixture of ethyl acetate and ethanol. 

The amine groups of 55 were converted into diazonium salts which were transformed into 

iodine groups by a Sandmeyer reaction in the presence of potassium iodide to give the 

triiodotriphenylene 52. 

 

Scheme 4.1: i) Cu, DMF, 160°C, overnight, 34%; ii) Pd/C, EtOAc/EtOH, R.T., overnight, 73%; iii) 

KI, HCl, NaNO2, water, 0°C to R.T., 1h, 26%. 

The precursor 52 was characterized with 1H-NMR, it exhibited a doublet highly deshielded for 

the protons in ortho of the iodine at 9.20 ppm, a doublet for the protons in para of the iodine 

at 8.23 ppm and a doublet of doublet centered at 7.15 ppm for the protons in meta of the 

iodine (Figure 4.4). 
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Figure 4.4: 1H-NMR spectrum of the precursor 52 in CDCl3. 

4.2.2. Tris(terphenyl)benzene 

For the second GNM precursor, we wanted to prepare two precursors bearing either bromine 

or iodine atoms to be able to tune the reactivity on surface. Indeed, for the CVD growth of the 

GNM, depending on the halogen, the coupling reaction can be performed at different 

temperature.14 The carbon-bromine bond is more stable compared to the carbon-iodine bond 

due to a higher dissociation energy (336 and 272 kJ/mol respectively in the gas phase) and 

therefore, the activation temperature for the coupling is higher for bromine compared to 

iodine (around 120°C for iodine and at least 200°C for bromine).14 

We first tried to prepare the brominated precursor 57; the reaction started from the already 

prepared mono-iodo-para-terphenyl 34 which underwent a Suzuki coupling reaction with 

1,3,5-phenyltriboronic acid tris(pinacol) ester (Scheme 4.2). The coupling was tested using 

Pd(PPh3)4 as the catalyst and K2CO3 as the base in a mixture of ethanol, water and THF. 

However, due to the high steric hindrance and despite changes in the reaction time, 

temperature or base (for example Cs2CO3) the pure product could not be isolated and the 

reaction gave a mixture of the mono-, di- and tri-substituted compound with partial loss of 

the trimethylsilyl groups. We changed the catalyst for Pd(OAc)2 using SPhos as an electon-rich 

ligand with K3PO4 as the base in a mixture of toluene and water. These conditions were used 
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to force the reaction toward the formation of the tri-substituted compound and attained the 

desired product 56 with a 62% yield. 

 

Scheme 4.2: i) Pd(OAc)2, SPhos, K3PO4, toluene/water, 100°C, overnight, 62%; ii) NBS, NaBr or 

LiBr, MeOH/THF or DCM, R.T., overnight, 0%; iii) Br2, NaOAc, THF, R.T., 24h, 0%. 

In the next step, we studied the transformation of the TMS groups into bromine. The first 

attempts were made using purified N-bromosuccinimide (NBS) with sodium bromide in a 

mixture of methanol and THF15 but these conditions could not permit to achieve the 

brominated compound. Similarly, the reaction with lithium bromide and DCM could not 

permit to isolate the fully brominated compound. We also tested the direct bromination with 

Br2 and sodium acetate16 but once again we were not able to achieve the desired product. 

Consequently, we changed strategy and tested the iodination reaction. 

 

Scheme 4.3: i) ICl, DCM, R.T., overnight, 98%. 

The iodination was carried out with the conventional procedure used also in Chapter 3 with 

two equivalents of iodine monochloride per TMS group in DCM; the desired precursor 53 was 
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obtained with a 98% yield (Scheme 4.3). The precursor 53 was characterized with 1H-NMR, it 

exhibited a distinct signal around 7.92 ppm for the three protons of the core phenyl and a 

multiplet from 7.46 to 6.49 ppm for the 36 other protons (Figure 4.5). 

 

Figure 4.5: 1H-NMR spectrum of precursor 53 in CDCl3. 

4.3. Simulation 

The GNMs have been a growing field of interest for theoretical calculation;10,11,17–21 however, 

the structures simulated so far did not fit perfectly with the structures that we are developing. 

Consequently, it was necessary to perform specific theoretical calculations with our 

precursors and the foreseen structures to extract the properties like the band structures and 

the gap of the GNMs. The theoretical calculations were performed by Dr Sylvain Latil at the 

Service de Physique de l’Etat Condensé (SPEC) from CEA-Saclay using density functional theory 

(DFT) with the autocoherent tight-binding code “DFTB+” after validation of the method on a 

model GNM. 

To construct the band structures and estimate the gap in GNMs, it was first necessary to define 

the structure of the unit cells. Graphene nanomeshes are defined as a periodical network of 

holes in the 2-dimensional structure of graphene. Considering 𝐚𝟏⃗⃗⃗⃗  and 𝐚𝟐⃗⃗⃗⃗  the two base vectors 

of the hexagonal lattice of graphene, the holes are arranged following the vectors 𝐀𝟏
⃗⃗⃗⃗  ⃗ and 𝐀𝟐

⃗⃗⃗⃗  ⃗ 
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defined as: 𝐀𝟏
⃗⃗⃗⃗  ⃗ = 𝑚11. 𝐚𝟏⃗⃗⃗⃗ + 𝑚12. 𝐚𝟐⃗⃗⃗⃗  and 𝐀𝟐

⃗⃗⃗⃗  ⃗ = 𝑚21. 𝐚𝟏⃗⃗⃗⃗ + 𝑚22. 𝐚𝟐⃗⃗⃗⃗  with 𝑚𝑖𝑗 defined as integers 

(Figure 4.7). Therefore, a network is defined by its matrix: 

M = [
𝑚11 𝑚12

𝑚21 𝑚22
]. 

One can note that both triiodotriphenylene 52 and triiodotris(para-terphenyl)benzene 53 

molecules are prochiral. This means that they will form two stereoisomers on a surface; these 

stereoisomers cannot react with each-other to give defect-free GNMs (Figure 4.6). On surface, 

depending on which face precursor 52 will adsorb, it will give rise to two different GNMs while 

precursor 53 will give rise to the same network (Figure 4.7). 

 

Figure 4.6: Representation of the mirror images and resulting reactions of the prochirals a) 

precursor 52 and b) precursor 53. 
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Figure 4.7: a) Precursor 52 and its resulting GNM and b) precursor 53 and its resulting GNM. 

The pale grey structures represent the removed atoms. 

Finally for the GNMs obtained from precursor 52, the two matrices of the networks can be 

expressed as: and M = [
5 −1
4 1

] and M = [
4 1
5 −1

] and for the GNM obtained from 

precursor 53, the matrix of the network can be expressed as: M = [
9 0
0 9

]. GNMs obtained 

from precursor 52 belong to the group of symmetry p6 and the GNMs obtained from precursor 

53 to group of symmetry p6m. 
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Figure 4.8: Band structures for the GNMs from a) precursor 52 and b) precursor 53. 

The band structures were obtained from the DFTB+ calculations; the networks exhibit a direct 

bandgap of 1.28 eV for precursor 52 and 1.06 eV for precursor 53 (Figure 4.8). These values of 

bandgap permit to envision electronics applications; in addition the fact that the bandgaps 

are direct leads us to envision interesting optical properties. 

4.4. On surface synthesis 

The work on GNR polymerization on metallic surfaces2,22–29 paved the way for the creation of 

2D covalent networks and it was expected that GNMs were grown on metallic surface during 

the course of the PhD, unfortunately our colleagues at the University of Orsay faced problems 

with their microscope and then their Institute moved on top of the “Plateau de Saclay” last 

year. They are now setting up their new laboratory and as soon as the STM will be operative, 

they will test growth of GNMs with the precursors already prepared. 

In the meantime, we decided to test the organization of the 2,2’,2”-triiodotriphenylene 52 at 

the solid-liquid interface on HOPG (Highly Oriented Pyrolytic Graphite) in collaboration with 

Dr Yoshihiro Kikkawa at the National Institute of Advanced Industrial Science and Technology 
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(AIST) in Tsukuba (Japan). Indeed the formation of halogen bonds is valuable approach to the 

realization of a well-ordered covalent networks.30,31 The determination of the conditions to 

observe stable crystalline phases would be a huge step toward the realization of a 2D network. 

So far, while multiple solvents (1-phenyloctane, 1,2,4-trichlorobenzene, 1-octanoic acid) were 

tested but no stable phase was observed. 

4.5. Conclusion 

In this chapter, we presented the synthesis of two potential precursors of graphene 

nanomeshes. The band structures and bandgaps were determined by DFT calculation; 

unfortunately, the molecules have not been tested yet for the growth of GNMs. As we have 

seen, the precursors presented in this part are prochirals and while they are interesting for a 

first proof of concept, the GNMs will certainly exhibit a high level of defect and limited sizes. 

To obtain a regular network and prevent any variation of the structure depending on the side 

the molecule lands on, new non-prochiral precursors or non-influeneced by the chirality 

should be designed. It is the case of compound 58 (Figure 4.9). This structure can be 

synthesized and it can be further tuned by the addition of heteroatoms like nitrogen. 

 

Figure 4.9: Structure of a GNM precursor in which would not be influence by the chirality  
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Chapter 5: Conclusion 

In this work we realized the synthesis of various GQDs based on Diels-Alder coupling of an 

acetylenic precursor with a cyclopentadienone followed by a dehydrogenation step via Scholl 

reaction. The structure of the GQDs can be tuned by the addition of either chlorine or dodecyl 

chain to increase solubility and change the optical properties. 

In chapter 1 (Introduction), we gave an overview of the gapped-graphene materials and we 

presented two approaches: the top-down and the bottom-up approaches that were 

developed for the fabrication of these materials. Most of the studies on the bottom-up 

approach are devoted to the synthesis and properties of graphene nanoribbons. GNRs are 

synthesized by polymerization and therefore GNRs present a certain polydispersity that 

prevents exploring their intrinsic properties. Finally, despite the large amount of literature on 

graphene quantum dots and graphene nanoribbons, there is still room for the development 

of original structures and for the study of their optical properties. 

In chapter 2, we reported the synthesis and new characterization on the well-known 

superphenalene C96 structure. The C96C12 GQD 3 was imaged with STM and HR-TEM and 

columnar structures were observed. For advanced optical study, it was necessary for find the 

best conditions for the dispersion of the particles in order to obtain individualized molecules 

in solution. It was realized with 1,2,4-trichlorobenzene and it was confirmed with the results 

in PL, PLE and time-resolved PL on GQD 3. The single photon emission properties of GQD 3 

embedded in polystyrene were characterized and we found that this GQD could emit single 

photon at room temperature with a high brightness and high stability. The saturation rate 

curves showed that GQD 3 had an intensity of saturation 30 times higher than N-V center in 

111-diamond. Finally, the C96Cl GQD 2 was also tested to confirm the possibility to tune the 

optical properties and it appeared that it is also a good single photon emitter at room 

temperature. Moreover, the peripheral functionalization with chlorine atoms permitted to 

shift the maximum emission of ca. 100 nm in the red. 
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In chapter 3, we synthesized new families of graphene nanoparticles exhibiting elongated 

shapes. These nanoparticles were named graphene nanorods (GNRods). Using the same final 

steps as GQDs (Diels-Alder and Scholl reactions), the length of these rods was tuned adding a 

row of phenyls to the acetylenic precursor. Starting from the C78 11 and C132 13, the change 

of precursors gave rise to new structures, the C96L 12 and the C162 14 with the same width 

and edge morphology than their parent nanoparticles and with only one parameter varying: 

their length. The four GNRods (11-14) were also chlorinated and we faced some difficulties to 

chlorinate totally the C78, C96L and C132 GNRods. Indeed, the analyses by MALDI-TOF mass 

spectrometry showed a mixture of the desired nanoparticles with particles with 1, 2 or 3 

chlorine atoms missing. The synthesis needs to be optimized. For the biggest GNRod 21 

(C162Cl), we were not able to characterize properly the materials by MALDI-TOF mass 

spectrometry; the work is still ongoing. Finally, the polyphenylene dendrimers with dodecyl 

alkyl chains were also prepared but the dehydrogenation step has to be optimized to get the 

fully dehydrogenated GNRods without chlorination. 

In chapter 4, we have used the bottom-up approach to synthesize two precursors for the 

preparation of graphene nanomeshes (GNMs). In literature, the GNM structures reported so 

far, the graphene neck is constituted of a single C−C bond between phenyl rings. We 

envisioned to form GNM structures with larger conductive graphene necks (between 0.6 and 

1 nm, 2 to 4 phenyl rings). The precursors should have been deposited on metallic surfaces in 

a STM chamber; unfortunately, several problems with STM delayed the experiments. 

Nevertheless, the precursors are ready and they can be tested as soon as the problems will be 

solved. The properties of the GNMs were simulated and bandgaps in the order of 1 eV are 

expected. We also showed that the precursors are prochiral and therefore they may produce 

irregular networks during the CVD in the STM chamber and that. Moreover, precursor 52 can 

give rise to two different networks depending on which face they adsorb on surface.  

In the future, this project should focus around the in depth study of the already prepared 

GNRods to see the impact of length variation on the intrinsic optical properties. First, the 

problem of synthesis should be solved; then to go further in this direction, additional rows of 

phenyls should be added following the approach developed for precursors 32 and 44 (Figure 
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5.1). However, this approach will be limited due to the high number of synthetic steps needed, 

the poor solubility of the resulting precursor and the difficulty of purification. 

 

Figure 5.1: The chemical structures of the N = 9 and N = 15 GNRods. 

The future GNRods will permit to fully study the influence of the shape and edge morphology 

of the nanoparticles on their properties. Indeed N = 9 GNRods with n = 2 and n = 4 contain 96 

and 128 sp2 carbons, respectively. Their properties will be compared to the triangular-shaped 

C96 (GQD 1) and to the square-shaped C132 (GQD 13). The N = 15 GNRods with n = 3 contain 

222 sp2 carbons. It will be compared to the well-known hexagonal C222 nanoparticles 

synthesize by Müllen. 

Concerning GNMs, to tackle the issue of the prochirality of precursors 52 and 53, a new 

precursor will be designed (Figure 5.2). The structure of this precursor and consequently of 

the final GNM can be further tuned by the addition of nitrogen at both extremities of the 

central terphenyl by replacement of phenylboronic by 4-pyridinylboronic acid during the 

synthesis. 

Finally, other nitrogen-doped structures based on tetraanthracenylporphyrin are currently 

developed in the group. We hope that these structures will also give rise to 2D covalent porous 

networks on surface. 
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Figure 5.2: The chemical structure of a) the zig-zagging AC GNR1 and b) the non-prochiral 

precursor. 
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Chapter 6: Experimental Part 

6.1. Technics 

The UV-vis spectra were recorded in quartz cells of 1 cm in a Perkin Elmer Lambda 900 UV-

Vis-NIR spectrophotometer. The photoluminescence spectra are recorded on a custom setup 

at the LAC. The setup is made of a supercontinuum laser (SC-400-6, Fianium), two 

monochromators for the excitation (SP2150i, Princeton Instruments), a monochromator for 

the emission (SP2300i, Princeton Instruments) and a CCD camera (PIXIS100B, Princeton 

Instruments). For time resolved photoluminescence, the Peletier-cooled CCD camera is 

replaced by an avalanche photodiode (IDQ100) and the laser is linked to a start-stop counter 

(TimeHarp 260, PicoQuant). The single photon experiments are done with an oil-immersion 

microscope objective (PLAPON 60XO, Olympus) using the oil with ref 10976 from Fluka. The 

excitation is polarized with a Glan-Taylor prism (Thorlabs) and the emission is collected with 

an avalanche photodiode (APD) (SPCM-AQRH-13, PerkinElmer) in the case of the optical 

scanning and a liquid-nitrogen-cooled CCD camera (PyLoN-100BRX, Princeton Instruments) in 

the case of the photoluminescence measurement. For the optical scanning, a xyz piezoelectric 

scanner (Nano-PDQ, Mad City Labs) is also needed with its acquisition card (PCIe-6323, 

National Instruments). For the second order correlation measurement, the Hanbury-Brown 

and Twiss interferometer is made of a counter/timer (Picoharp 3009), an 800 nm short-pass 

filter (03SWP418, Melles Griot) and two APDs (SPCM-AQRH-13, PerkinElmer) connected to a 

wide-range time digitizer (P7887, FastComtec). The 1H-NMR spectra were recorded with a 400 

MHz BRUKER Avance spectrometer. The chemical shifts presented are in ppm (parts per 

million) compared to the solvent signal used as the internal reference (CDCl3: 7.26 ppm). The 

MALDI-TOF spectra are recorded with a BRUKER Ultraflextreme or a BRUKER Autoflex Speed 

(for the monitoring of the Scholl reaction). The APPI MS spectra are recorded with an Agilent 

Technology QTOF 6540. STM imaging of the samples was performed at the liquid/solid 

interface using a Pico-SPM (Molecular Imaging, Agilent Technology) scanning tunneling 

microscope. Cut Pt/Ir tips were used to obtain constant current images at room temperature 

with a bias voltage applied to the sample. STM images were processed and analyzed using the 

application FabViewer.1 The HR-TEM images were obtained with a FEI-Titan Ultimate 

transmission electron microscope operating at 80 kV. 
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6.1. Solvents and reagents 

The solvents are of technical grade and used as receive from Carlo Erba Reagents or Sigma-

Aldrich. For anhydrous synthesis, dichloromethane, carbon tetrachloride, triethylamine and 

diethyl ether are distillated with calcium hydride under nitrogen, toluene and THF are 

distillated with potassium/benzophenone under nitrogen. The reagents are used as received 

from Sigma-Aldrich, TCI or Interchim. The 1,4-dimethylpiperazine-2,3-dione 7 was prepared 

as described in the litterature.2 

 

6.2. Graphene quantum dots 

Synthesis of the dendrimer 43: 

 

Tetraphenylcyclopentadienone (240 mg, 0.63 mmol) and 1,3,5-triethynylbenzene (26 mg, 

0.17 mmol) were introduced in a dry Schlenck flask with diphenyl ether, degassed with two 

vaccum-argon cycles and heated at 180 °C overnight. The viscous violet product was diluted 

with 1mL of dichloromethane and added dropwise to cold ethanol (200 ml). The violet product 

was filtered on PTFE (0.2 µm) and dried under vacuum. The product was first purified with 

column chromatography with toluene to get rid of Ph2O. The product was redispersed in hot 

methanol to solublize the excess of cyclopentadienone, filtered on PTFE membrane and 

washed with methanol. Finally, 306.4 mg of white powder were obtained (40% yield). 
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1H NMR (δ in ppm, 400MHz, CDCl3): 7.35-7.32 (m, 3H), 7.16-6.61 (m, 63H). 

MALDI-TOF MS: calcd for C96H66: 1219.58 found: 1219.54. 

Synthesis of GQD 13:  

 

Dendrimer 4 (268 mg, 0.22 mmol) was dispersed in 120 ml of non-stabilized dichloromethane 

in a two-necked round-bottom flask of 250 ml. Separetly, FeCl3 (4.49 g, 27.6 mmol) was added 

to 5 ml of anhydrous nitromethane in a glovebox and then added to the solution of dendrimer. 

The solution was left 18 hours under argon coming from a two necked round-bottom flask 

filled with Dichloromethane in which argon was bubbling. The evolution of the reaction was 

followed with MALDI-TOF mass spectrometry after quenching of a small amount of reaction 

mixture with methanol followed by centrifugation. The solution was quenched with methanol 

(about 80 ml) and then filtered on PTFE and washed with methanol. The pure product was 

obtained as 247.7 mg of black powder (95% yield). 

MALDI-TOF MS: calcd for C96H30: 1182.23, found: 1182.18. 

Synthesis of GQD 24:  
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GQD 1 (29 mg, 0.025 mmol) and AlCl3 (13 mg, 0.098 mmol) were introduced in a dry two 

necked round-bottom flask (100 ml), and dissolved on 20 ml of CCl4. After 20 min of argon 

bubbling, ICl (0.74 ml, 14.7 mmol) was added and the reaction was left for 48h at 80°C. The 

reaction was quenched with ethanol and ICl and CCl4 were evaporated at about 60°C with a 

liquid nitrogen trap. The solid obtained after evaporation of the solvents was then washed 

with ethanol and purified by column chromatography on chloroform. Finally, the product was 

obtained as 37.2 mg of a violet powder (73% yield). Because of the presence of 27 chlorine 

atoms, the monoisotopic mass was not detected. 

MALDI-TOF MS: calcd for C96H3Cl27: 2099.18 (MW 2113.28), found: 2113.72.  

Synthesis of 4-bromododecanoylbenzene 55:  

 

Bromobenzene (21 ml, 210 mmol) and aluminum chloride (16 g, 120 mmol) were introduced 

under stirring in a two necked round-bottom flask at room temperature. Dodecanoyl chloride 

(24 ml, 100 mmol) was introduced dropwise and the mixture was heated at 50°C for 1h30. The 

solution was then cooled down to room temperature and poured on ice. The product was 
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extracted with dichloromethane and washed with water (500 ml), hydrochloric acid (2 ml of 

HCl 37% in 400 ml of water) and saturated sodium chloride solution (400 ml) and dried with 

sodium sulfate. After evaporation of the organic solvent the product was purified by 

recrystallization in ethanol. The solid was filtered and dried under vacuum overnight to finally 

obtain 24.74 g of white powder (73% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.83-7.81 (d, J=8.4Hz, 2H, b), 7.61-7.59 (d, J=8.4Hz, 2H, 

a), 2.94-2.90 (t, J=7.4Hz, 2H, c), 1.74-1.53 (m, 18H, d-y), 0.90-0.86 ppm (t, J=6.6Hz, 3H, z). 

 
Synthesis of 4-bromododecylbenzene 65:  

 

4-bromododecanoylbenzene 5 (10 g, 29.5 mmol), potassium hydroxide (5 g, 89 mmol) and 

hydrazine monohydrate (3.5 ml, 72 mmol) were introduced in a round-bottom flask with 50 

ml of ethylene glycol. The mixture was heated at 130°C and after 3h40, water and hydrazine 

were distillated at 220°C for 4h30. The mixture was the cooled down and poured in diluted 

hydrochloric acid. The product was extracted with dichloromethane and washed with water. 

The organic phase was then dried with sodium sulfate and the solvent was evaporated. The 

product was purified by column chromatography with petroleum ether. The 4-

bromododecylbenzene was obtained as 7.06 g of a colorless liquid (74% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.41-7.39 (d, J=8Hz, 2H, a), 7.07-7.05 (d, J=8.4Hz, 2H, b), 

2.57 (t, J=7.6Hz, 2H, c), 1.57 (t, J=7.2, 2H, d), 1.28 (m, 20H, e-y), 0.91 (t, J=6.8Hz, 3H, z). 

 
Synthesis of 1,2-bis(4-dodecylphenyl)ethane-1,2-dione 85:  
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4-bromododecylbenzene 6 (8 g, 24.5 mmol) was introduced under argon in a dried round-

bottom flask with anhydrous THF. The mixture was cooled down to -50°C and n-butyllithium 

(17.5 ml, 24.5 mmol) was added dropwise. The solution was heated up to 0°C in an ice bath 

and transferred through a cannula in a two-necked round-bottom flask in a suspension of 1,4-

dimethylpiperazine-2,3-dione (1.58 g, 11 mmol) in 80 ml of anhydrous THF. The mixture was 

stirred overnight at room temperature. The reaction was quenched with diluted hydrochloric 

acid. The product was extracted with dichloromethane and washed with diluted hydrochloric 

acid and water and dried with sodium sulfate. The organic phase was evaporated and the solid 

was purified by column chromatography with a mixture of cyclohexane and dichloromethane 

(2/1). The pure product was obtained as 2.19 g of a yellowish powder (33% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.89-7.87 (d, J=8Hz, 4H, a), 7.31-7.29 (d, J=8.4Hz, 4H, b), 

2.69-2.65 (t, J=7.6Hz 4H, c), 1.64-1.30 (m, 40H, d-y), 0.90-0.86 ppm (t, J= 4.95Hz, 6H, z). 

 
Synthesis of 3,4-bis(4-dodecylphenyl)-2,5-diphenylcyclopenta-2,4-dienone 95:  

 

1,2-bis(4-dodecylphenyl)ethane-1,2-dione 8 (2 g, 3.8 mmol) and 1,3-diphenylpropan-2-one 

(0.72 g, 3.45 mmol) were introduced in 10mL of ethanol and the yellow mixture was heated 

to 90°C. Potassium hydroxide (0.22 g, 3.9 mmol) was then added and the mixture turns purple. 

After 30min the solution was cooled down to 0°C and the viscous mixture was added to diluted 
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hydrochloric acid. The product was extracted with dichloromethane and washed with water. 

After evaporation of the organic phase the solid was purified by column chromatography with 

a mixture of cyclohexane and dichloromethane (10/1). The pure product was obtained as 2.49 

g a purple powder (51% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.26-7.20 (m, 12H, a, b, c), 6.97-6.95 (d, J=6Hz, 4H, d), 

6.82-6.80 (d, J=6Hz 4H, e), 2.57-2.53 (m, 4H, f ), 1.54-1.27 (m, 40H, g-y), 0.90-0.87 ppm (t, J= 

4.95Hz, 6H, z). 

 
Synthesis of dendrimer 105: 

 

3,4-bis(4-dodecylphenyl)-2,5-diphenylcyclopentadienone 9 (450 mg, 0.62 mmol) and 1,3,5-

triethynylbenzene (25 mg, 0.17 mmol) were introduced in a dry Schlenck flask with diphenyl 

ether (5 ml) and heated at 180 °C overnight. The viscous brown product was diluted with 1mL 

of dichloromethane and added dropwise to cold ethanol (200 ml). The brown product was 

filtered on PTFE (0.2 µm) and dried under vacuum. The product was first purified with column 

chromatography with toluene to get rid of Ph2O. The product was redispersed in hot methanol 

to solublize the excess of cyclopentadienone, filtered on PTFE membrane and washed with 

methanol. Finally, 220 mg of yellowish powder were obtained (57% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.15-6.52 (m, 60H); 2.35 (dt, J=17.1, 7.4 Hz, 12H); 1.25 

(m, 120H); 0.88 (t, J=6.8 Hz, 18H). 
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MALDI-TOF MS: calcd for C168H210: 2227.64, found: 2228.60 (M+H). 

Synthesis of GQD 35:  

 

Dendrimer 10 (50 mg, 0.022 mmol) was dispersed in non-stabilized dichloromethane (40 ml) 

in a two-necked round-bottom flask of 100 ml. Separetly, FeCl3 (458 mg, 2.8 mmol) was 

dissolved in anhydrous nitromethane in a glove box (2 ml) and added to the solution of 

dendrimer. The solution was left 18 hours under argon coming from a two necked round-

bottom flask filled with dichloromethane in which argon was bubbling. The evolution of the 

reaction was followed with MALDI-TOF mass spectrometry after quenching of a small amount 

of reaction mixture with methanol followed by centrifugation. When the reaction wais 

finished, the solution was quenched with methanol (40 ml) and then filtered on PTFE 

membrane (0.2 µm). The pure product was obtained as 46mg of a black powder (95% yield).  

MALDI-TOF MS: calcd for C168H174: 2191.36; found: 2191.80. 

 

6.3. Graphene nanorods 

Synthesis of 1,4-diodo-3,6-trimethylsilylbenzene 256:  
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1,4-diiodobenzene (9.9 g, 30 mmol) and chlorotrimethylsilane (8.5 ml, 66 mmol) were 

introduced in a dry three necked round-bottom flask of 250 ml with 70 ml of dry THF. The 

solution was cooled down to -70°C and lithium diisopropylamide (LDA) (33 ml, 2 M in THF) was 

added dropwise. The solution was left an hour under stirring around -50°C and then 

hydrolysed with H2SO4 (1.5 10-2 M , about 100 ml). After extraction with ether, the organic 

phase was washed with water twice and dried. The solide was then dispersed in methanol, 

filtered and washed with methanol. The product was obtained as 9.04 g of a white powder 

after drying under vaccum (64% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.39 (s, 2H, a), 0.38ppm (s, 9H, b). 

MALDI-TOF MS m/z: calcd for C12H20I2Si2: 473.93; found: 473.92. 

 
Synthesis of 2',5'- bis(trimethylsilyl)-1,1':4',1''-terphenyl 26:  

 

Compound 25 (2 g, 4.2 mmol), phenylboronic acid (1.54 g, 12.6 mmol), potassium carbonate 

(3.5 g, 25.3 mmol) and Pd(PPh3)2Cl2 (0.30 g, 0.4 mmol) were inserted in a dry three necked 

round-bottom flask. The powders were degassed by 3 vaccum-argon cycles. 50 ml of THF, 40 

ml of Ethanol and 20 ml of water were mixed together and degassed by 3 “freeze-pump-

thaw”. After addition of the solvents, the reaction was left at 60°C overnight. The dark solution 

obtained was extracted with DCM, filtered on celite and washed with water twice and brine. 

The brownish solid was first purified through a pad of silica with cyclohexane and then with 

flash chromatography with a mixture of cyclohexane and dichloromethane (9/1). The pure 

product was obtained as 1.54 g of white powder (97% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.44 (s, 2H, a), 7.49-7.37 (m, 10H, b-d), 0.02 (s, 18H, e). 
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MALDI-TOF MS m/z: calcd for C24H30Si2: 374.67; found: 374.19. 

 
Synthesis of 2',5'- diiodo-1,1':4',1''-terphenyl 27:  

 

2',5'- bis(trimethylsilyl)-1,1':4',1''-terphenyl 26 (750 mg, 2.0 mmol) was introduced in a dry 

two necked round-bottom flask with 20 ml of dry dichloromethane. After cooling down to 0°C, 

ICl (401 µL, 8.0 mmol) was added dropwise. The reaction was left overnight at room 

temperature under argon. The solution was quenched with sodium thiosulfate (1 M, about 20 

ml) and washed with water. The product was purified via recrystallization in cyclohexane and 

filtration to give 383 mg of a white powder (40% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.89 (s, 2H, a), 7.48-7.39 (m, 10H, b-d). 

MALDI-TOF MS m/z: calcd for C24H30I2: 481.90; found: 481.90. 

 
Synthesis of 2',5'- bis(ethynyltrimethylsilane)-1,1':4',1''-terphenyl 28:  

 

2',5'- diiodo-1,1':4',1''-terphenyl 27 (250 mg, 0.52 mmol), Copper iodide (19.7 mg, 0.10 mmol) 

and Pd(PPh3)2Cl2 (36.3 mg, 0.052 mmol) were introduced in a three necked round-bottom 

flask and degassed by two vaccum-argon cycles. 60 ml of triethylamine and 40 ml of toluene 

were introduced and degassed by three “freeze-pump-thaw”. The solution was heated up to 

80°C and ethynyltrimethylsilane (220 µl, 1.5 mmol) was added dropwise. The reaction was left 

under argon at 80°C for 24 hours. The solution was filtered on celite and the product was 

extracted with DCM and washed with water. The organic phase was dried and the solvent was 
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evaporated. The product was purified with column chromatography with a mixture of 

cyclohexane and DCM (95/5). The pure product was obtained as 138.9 mg of yellowish powder 

(96% yield) 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.66-7.63 (m, 4H, b), 7.61 (s, 2H, a), 7.41-7.36 (m, 6H, c-

d), 0.13 (s, 18H, e). 

MALDI-TOF MS m/z: calcd for C28H30Si2: 422.19; found: 422.19. 

 
Synthesis of 2',5'- bis(ethynyl)-1,1':4',1''-terphenyl 29:  

 

2',5'- bis(ethynyltrimethylsilane)-1,1':4',1''-terphenyl 28 (100 mg, 0.23 mmol) was introduced 

in a dry Schlenck flask and degassed by two vaccum-argon cycles. The solvent (THF, 6 ml) was 

added and then Bu4NF (0.56 ml, 1M in THF, 0.57 mmol) was introduced dropwise and the 

yellowish solution turned blue. The solution was then left at ambient temperature for two 

hours. The product was extracted by DCM and washed twice by water. The solvent was 

evaporated and the final product was obtained as 60 mg of yellow powder (91% yield). The 

product was directly used in the next reaction without further purification. 

Synthesis of dendrimer 30:  

 

2',5'- bis(ethynyl)-1,1':4',1''-terphenyl 29 (131 mg, 0.47 mmol) and 

tetraphenylcyclopentadienone (545 mg, 1.4 mmol) were introduced in a dried Schlenck flask 

and degassed by two vaccum-argon cycles. The o-xylene (5 ml) was then introduced and the 

solution was heated up to 180°C and left under stirring overnight. About 1 ml of DCM was 
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added to decrease the viscosity and the solution was poured in about 150 ml of cold methanol. 

The precipitate was filtered and washed with methanol. The pure product was obtained as 

236 mg of a pinkish powder (51% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.56 (s, 2H), 7.31 (s, 2H), 7.20-6.53 (m, 50H). 

MALDI-TOF MS m/z: calcd for C78H54: 990.42; found: 990.40. 

 
Synthesis of GNRod 11:  

 

Dendrimer 30 (150 mg, 0.15 mmol) was dispersed in 40 ml of non-stabilized Dichloromethane 

in a two-necked round-bottom flask of 250 ml. Separetly, FeCl3 (2.4 g, 15 mmol) was added to 

5 ml of anhydrous nitromethane in a glove box and then added to the solution. The solution 

was left 17 hours under argon coming from a two necked round-bottom flask filled with 

dichloromethane in which argon was bubbling. The evolution of the reaction was monitored 

with MALDI-TOF mass spectrometry after quenching of a small amount of reaction mixture 

with methanol followed by centrifugation. The solution was quenched with methanol (about 

40 ml) and then filtered on PTFE and washed with methanol. The pur product was obtained 

as 132 mg of black powder (90% yield). 

MALDI-TOF MS m/z: calcd for C78H26: 962.20; found: 962.22. 

 
Synthesis of GNRod 15: 
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GQD 11 (50.3 mg, 0.052 mmol) and AlCl3 (27.7 mg, 0.21 mmol) were introduced in a dry two 

necked round-bottom flask (100 ml), and dissolved on 20 ml CCl4. After 20 min of argon 

bubbling, ICl (5g, 30.8 mmol) were added and the reaction was left for 72h at 80°C. The 

reaction was quenched with ethanol and ICl and CCl4 were evaporated at about 60°C with a 

liquid nitrogen trap. The solid obtained after evaporation of the solvents was then washed 

with ethanol and purified by column chromatography with chloroform. After evaporation of 

the solvent, 10.4 mg of a brown powder were obtained (10% yield). Because of the presence 

of 26 chlorine atoms, the monoisotopic mass was not detected. 

MALDI-TOF MS m/z: calcd for C78Cl26: 1845.19 (MW 1858.56); found: 1788.15. The main 

product is the compound missing two chlorines. 

 
Synthesis of dendrimer 31:  

 

2',5'- bis(ethynyl)-1,1':4',1''-terphenyl 29 (58.9 mg, 0.21 mmol) and 3,4-bis(4-dodecylphenyl)-

2,5-diphenylcyclopentadienone (457.8 mg, 0.64 mmol) were introduced in a dried Schlenck 

flask and degassed by two vaccum-argon cycles. The o-xylene (4 ml) was then introduced and 

the solution was heated up to 180°C and left under stirring overnight. After evaporation of the 
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solvent, the product was purified with column chromatography with a mixture of cyclohexane 

and DCM (70/30). The pure product was obtained as 340 mg of a pale brown powder (98% 

yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.54 (s, 2H), 7.09-6.47(m, 48H), 2.37-2.30 (dt, J=26.5, 

7.4Hz, 8H), 1.30-1.21 (m, 80H), 0.89-0.86 (m, 12H). 

MALDI-TOF MS m/z: calcd for C126H150: 1663.17; found: 1664.23 (M+H). 

 
Synthesis of GNRod 16: 

 

Dendrimer 30 (50 mg, 0.030 mmol) was dispersed in 40 ml of non-stabilized Dichloromethane 

in a two-necked round-bottom flask of 100 ml. Separetly, FeCl3 (409 mg, 2.52 mmol) was 

added to 5 ml of anhydrous nitromethane in a glove box and then added to the solution of 

dendrimer. The solution was left 5 hours under argon coming from a two necked round-

bottom flask filled with dichloromethane in which argon was bubbling. The evolution of the 

reaction was monitored with MALDI-TOF mass spectrometry after quenching of a small 

amount of reaction mixture with methanol followed by centrifugation. The solution was 

quenched with methanol (about 40 ml) and then filtered on PTFE and washed with methanol. 

The product was purified with a column chromatography with THF and a second one with 

Toluene and obtained as 32.2 mg of black powder (66% yield). 

 
MALDI-TOF MS m/z: calcd for C126H122: 1634.95; found: 1635.10. 

 
Synthesis of 2'-Iodo-5'-(trimethylsilyl)-1,1':4',1''-terphenyl 347:  
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2',5'- bis(trimethylsilyl)-1,1':4',1''-terphenyl 26 (1 mg, 2.7 mmol) and AgBF4 (0.47 mg, 2.4 

mmol) were introduced in 14 ml of THF/MeOH (2/1) in a two-necked round-bottom flask. The 

solution was cooled down to 0°C and 2.67 ml of ICl (1 M in DCM) were added and left 1 hour 

under stirring at room temperature. After quenching with Na2S2O3 (1 M, around 10 ml), the 

organic phase was separated and washed 3 times with water before evaporation of the 

solvents. The product is purified with column chromatography with cyclohexane and after 

evaporation of the solvent, 867 mg of white powder are obtained (76% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.85 (s, 2H, a), 7.49-7.39 (m, 10H, b-d), 0.01 (s, 9H, e). 

MALDI-TOF MS m/z: calcd for C21H21ISi: 428.39; found: 428.05. 

 
Synthesis of acid -5'-(trimethylsilyl)-1,1':4',1''-terphenyl-2'-boronic ester 367: 

 

2'-Iodo-5'-(trimethylsilyl)-1,1':4',1''-terphenyl 34 (0.1 g, 0.23 mmol) was introduced in a dry 

round-bottom flask, degassed by two vaccum-argon cycles and left two hours under vaccum. 

15 ml of dry THF were introduced and cooled down to -78°C. The n-BuLi solution (0.175 ml, 

0.35 mmol, 1 M in cyclohexane) was added dropwise and the solution turned yellow. After 

one hour, the solution was heated up to -40°C and 2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (0.14 ml, 0.70 mmol) was added dropwise. The reaction was then left under 

argon at ambient temperature for three hours. The product was extracted with 

dichloromethane, washed with water twice and dried with sodium sulfate. After the 

evaporation of the solvent and purification with column chromatography with a mixture of 
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cyclohexane and DCM (60/40), the product was obtaiend as 90 mg of a yellowish powder (90% 

yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.61 (s, 1H, a), 7.57 (s, 1H, b), 7.42-7.33 (m, 10H, c-e), 1.19 

(s, 12H, f), 0.01 (s, 9H, g). 

MALDI-TOF MS m/z: calcd for C27H33BO2Si: 428.23; found: 428.23. 

 
Synthesis of 3,3’-di(trimethylsilyl)-2,5,2',5'- tetraphenylbiphenyl 35:  

 

Boronic ester 36 (200 mg, 0.47 mmol), iodo-terphenyl 34 (300 mg, 0.7 mmol), Palladium 

acetate (55 mg, 0.24 mmol), SPhos (190 mg, 0.47 mmol) and Potassium phosphate tribasic 

(198 mg, 0.93 mmol) were introduced in a dry round-bottom flask and degassed by three 

vaccum-argon cycles. 6 ml of Toluene and 1 ml of water were added and degassed by 3 

“freeze-pump-thaw” and the reaction was left at 60°C overnight. The dark solution obtained 

was extracted with DCM, filtered on celite and washed twice with water and brine. The 

brownish solid was first purified through a pad of silica with cyclohexane and then with flash 

chromatography with a mixture of cyclohexane and dichloromethane (95/5). The product was 

obtained as 150 mg of a white powder (53% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.61 (s, 2H, a), 7.57 (s, 2H, b), 7.47-7.32 (m, 20H, c-e), 0.0 

(s, 18H, f). 

MALDI-TOF MS m/z: calcd for C42H42Si2: 602.28; found: 602.28. 

 
Synthesis of 3,3’-diiodo-2,5,2',5'- tetraphenylbiphenyl 37:  
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3,3’-di(trimethylsilyl)-2,5,2',5'- tetraphenylbiphenyl 35 (150 mg, 0.25 mmol) was introduced 

in a dry 25 ml round-bottom flask and dezaged with two vaccum-argon cycles. Then 5 ml of 

DCM were added and the solution was cooled down to 0°C. Iodine monochloride (50 µL, 1.0 

mmol) was added and the reaction was left overnight at room temperature under argon. The 

reaction was quenched with a saturated solution of sodium thiosulfate, the product was 

extracted with DCM and washed twice with water. The organic phase was evaporated and the 

solide was purified by column chromatography with a mixture of cyclohexane and DCM 

(70/30). The pure product was obtained as 108 mg of a yellowish powder (61% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.81-7.60 (m, 4H, a), 7.52-7.31 (m, 8H, b), 7.23-7.12 (m, 

8H, c), 6.79-6.78 (m, 4H, d). 

MALDI-TOF MS m/z: calcd: 710.00; found: 710.01. 

 
Synthesis of 3,3’-bis(ethynyltrimethylsilane)-2,5,2',5'- tetraphenylbiphenyl 38: 

 

3,3’-diiodo-2,5,2',5'- tetraphenylbiphenyl 37 (100 mg, 0.14 mmol), Copper iodide (27 mg, 0.14 

mmol), and Pd(PPh3)2Cl2 (49 mg, 0.07 mmol) were introduced in a dry three neck round-

bottom flask and degassed with two vacuum-argon cycles. Then 10 ml of toluene and 15 ml 

of Et3N were introduced and the solution was degassed with two “freeze-pump-thaw”. The 

ethynyltrimathylsilane (48 µL, 0.34 mmol) was then introduced dropwise and the solution was 
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left at 80°C overnight. The solution was filtered on celite and the product was extracted with 

DCM, washed with water twice and dried with sodium sulfate. After purification with column 

chromatography with a mixture of cyclohexane and DCM (95/5) the final product was 

obtained as 55.4 mg of a white powder (60% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.55-7.53 (m, 4H, a), 7.46 (s, 2H, b), 7.40-7.34 (m, 8H, c), 

7.19-7.04 (m, 8H, d), 6.80-6.78 (m, 4H, e), 0.07 (s, 18H, f). 

MALDI-TOF MS m/z: calcd for C46H42Si2: 650.28; found: 650.30. 

 
Synthesis of 3,3’-diethynyl-2,5,2',5'- tetraphenylbiphenyl 32:  

 

3,3’-bis(ethynyltrimethylsilane)-2,5,2',5'- tetraphenylbiphenyl 38 (50 mg, 0.077 mmol) was 

introduced in a Schlenck flask and degassed with to vacuum-argon cycles and THF (3 ml) was 

introduced. The Bu4NF was then added (184 µL, 0.18 mmol) and the solution was left 2h at 

ambient temperature. The product was extracted with DCM and washed with water twice 

before the organic phase was evaporated and the product was obtained as 60 mg of white 

powder (91% yield). The product was directly used in the next reaction without further 

purification. 

Synthesis of dendrimer 33:  
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3,3’-diethynyl-2,5,2',5'- tetraphenylbiphenyl 32 (18 mg, 0.035 mmol) and 

tetraphenylcyclopentadienone (33 mg, 0.085 mmol) were introduced in a Schlenck flask and 

degassed with two vacuum-argon cycles. The o-xylene (5 ml) was then added and the reaction 

was left at 180°C overnight. About 1 ml of DCM was then added and the solution was added 

dropwise to about 100 ml of cold ethanol. The resulting white precipitate was then filtered 

and washed with ethanol. The product was obtained as 40 mg of a white powder (92% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.45-7.28 (m, 6H), 7.24-6.62(m, 60H). 

MALDI-TOF MS m/z: calcd for C96H66: 1218.52; found: 1218.53. 

 
Synthesis of GNRod 12:  
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Dendrimer 33 (35 mg, 0.029 mmol) was dispersed in non-stabilized DCM and the solution was 

degassed with argon for 30 min. Separetly, FeCl3 (587 mg, 3.6 mmol) was added to 5 ml of 

anhydrous nitromethane in a glove box. After the addition of the FeCl3 solution, the mixture 

was left 16 hours under argon coming from a two necked round-bottom flask filled with 

dichloromethane in which argon was bubbling. The evolution of the reaction was monitored 

with MALDI-TOF mass spectrometry after quenching of a small amount of reaction mixture 

with methanol followed by centrifugation. The solution was quenched with methanol (about 

40 ml) and then filtered on PTFE and washed with methanol. The pur product was obtained 

as 27 mg of black powder (80% yield). 

MALDI-TOF MS m/z: calcd for C96H30: 1182.23; found: 1182.28. 

 
Synthesis of GNRod 17: 

 

GQD 12 (30 mg, 0.025 mmol) and AlCl3 (13.5 mg, 0.10 mmol) were introduced in a dry two 

necked round-bottom flask (100 ml), and dissolved in 20 ml of CCl4. After 20 min of argon 

bubbling, ICl (5 g, 30.8 mmol) was added and the reaction was left for 48h at 80°C. The reaction 

was quenched with ethanol and ICl and CCl4 were evaporated at about 60°C with a liquid 

nitrogen trap. The solid obtained after evaporation of the solvents was then washed with 

ethanol and purified by column chromatography with chloroform. After evaporation of the 

solvent, the product was obtained as 19.8 mg of green powder (35% yield). Because of the 

presence of 30 chlorine atoms, the monoisotopic mass was not detected. 
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MALDI-TOF MS m/z: calcd for C96Cl30: 2201.07 (MW 2216.56); found: 2182.25. The main 

product is the compound missing one chlorine. 

 
Synthesis of dendrimer 39: 

 

3,3’-diethynyl-2,5,2',5'- tetraphenylbiphenyl 32 (40 mg, 0.079 mmol) and 3,4-bis(4-

dodecylphenyl)-2,5-diphenylcyclopentadienone (171 mg, 0.24 mmol) were introduced in a 

Schlenck flask and degassed with two vacuum-argon cycles. The o-xylene (5 ml) was then 

added and the reaction was left at 180°C overnight. About 1 ml of DCM was then added and 

the solution precipitated in about 100 ml of cold ethanol. The resulting white precipitate was 

then filtered and washed with ethanol. The product was obtained as 99 mg of a white powder 

(66% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.23-6.79(m, 62H), 2.57-2.53 (m, 8H), 1.26 (s, 80H), 0.88 

(t, J=6.4Hz, 12H). 

MALDI-TOF MS m/z: calcd for C144H162: 1891.27; found: 1891.37. 

 
Synthesis of GNRod 18:  
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Dendrimer 39 (56 mg, 0.030 mmol) was dispersed in non-stabilized DCM and the solution was 

degassed with argon for 30min. Separetly, FeCl3 (691 mg, 4.3 mmol) was added to 5 ml of 

anhydrous nitromethane in a glove box. After the addition of the FeCl3 solution, the mixture 

was left 8 hours under argon coming from a two necked round-bottom flask filled with DCM 

in which argon was bubbling. The evolution of the reaction was monitored with MALDI-TOF 

mass spectroscometry after quenching of a small amount of reaction mixture with methanol 

followed by centrifugation. The solution was quenched with methanol (about 40 ml) and then 

filtered on PTFE and washed with methanol. After evaporation of the solvent, 45.7 mg of black 

powder are obtained (83% yield). 

MALDI-TOF MS m/z: calcd for C144H126: 1854.99; found: 1865.25. The main peak found is the 

one of the compound missing 5 carbon-carbon bonds. 

 
Synthesis of 3,3',5,5'-tetra(ethynyltrimethylsilane)-1,1'-biphenyl 408: 

 

3,3',5,5'-tetrabromo-1,1'-biphenyl (500 mg, 1.06 mmol), copper iodide (81 mg, 0.43 mmol), 

Pd(PPh3)2Cl2 ( 149 mg, 0.21 mmol) and triphenylphosphine (112 mg, 0.43 mmol) were 
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introduced in a dry round-bottom flask and degassed by three vacuum-argon cycles. The 

distillated toluene (7 ml) and triethylamine (12 ml) were added and the orange solution was 

left 15 min at 60°C under argon. The ethynyltrimethylsilane (0.9 ml, 6.4 mmol) was added and 

the solution turned black. The mixture was left 5h at 80°C and quenched with diluted 

hydrochloric acid. The product was extracted with dichloromethane and washed with water. 

After evaporation of the organic phase, the solid was purified with a mixture of cyclohexane 

and ethyl acetate (2%). The product was obtained as 254 mg of a white powder (45% yield).  

1H NMR (δ in ppm, 400MHz, CDCl3): 7.59-7.57 (m, 6H, a-b), 0.25 (s, 36H, c). 

Synthesis of 3,3',5,5'-tetraethynyl-1,1'-biphenyl 418: 

 

3,3',5,5'-tetra(ethynyltrimethylsilane)-1,1'-biphenyl 40 was introduced (0.13 g, 0.24 mmol) in 

a solution of Bu4NF (0.46 ml, 1 M in THF) and THF (7 ml). The solution was stirred for 2 hours 

at room temperature. The product was extracted with dichloromethane and washed with 

water. The organic solution was dried with Na2SO4 and the solvent was evaporated. The 

purification was done with column chromatography with a mixture of cyclohexane and 

toluene (7/1) and gives 30 mg of a white solid (50% yield). The product was directly used in 

the next reaction without further purification. 

Synthesis of dendrimer 428: 
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3,3',5,5'-tetraethynyl-1,1'-biphenyl 40 (30 mg; 0,12 mmol) and tetraphenylcyclopentadienone 

(253 mg; 0,66 mmol) were added to diphenylether (1 ml) in a dry Schlenk flask and heated at 

180 °C overnight. The viscous product was diluted with 1 ml of dichloromethane and added 

dropwise to cold ethanol (200 ml). The product was filtered and dried under vacuum. The 

powder was first purified with column chromatography with toluene to get rid of Ph2O. The 

second purification was done on column chromatography with a mixture of cyclohexane and 

DCM (7/1). The final product was obtained as 150 mg of a pale brown powder (75% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.17-6.66 (m, 86H), 6.34-6.31 (m, 4H). 

MALDI-TOF MS m/z: calcd for C132H90: 1674.70, found: 1674.79. 

Synthesis of GNRod 138:  

 

Dendrimer 42 (50 mg, 0.22 mmol) was dispersed in 120 ml of non-stabilized DCM in a two-

necked round-bottom flask of 250 ml. Separetly, FeCl3 (4.49 g, 27.6 mmol) was added to 5 ml 

of anhydrous nitromethane in a glove box. After addition of the FeCl3 solution, the mixture 

was left 18 hours under argon coming from a two necked round-bottom flask filled with DCM 

in which argon was bubbling. The evolution of the reaction was monitored with MALDI-TOF 

mass spectrometry after quenching of a small amount of reaction mixture with methanol 

followed by centrifugation. The solution was quenched with methanol (about 80 ml) and then 

filtered on PTFE and washed with methanol. The pure product was obtained as 25 mg of black 

powder (51% yield). 

MALDI-TOF MS m/z: calcd for C132H34: 1618.27, found: 1618.34. 
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Synthesis of GNRod 194:  

 

GNRod 13 (20 mg, 0.012 mmol) and AlCl3 (6.6 mg, 0.049 mmol) were introduced in a dry two 

necked round-bottom flask (100 ml), and dissolved on 20 ml of CCl4. After 20 min of argon 

bubbling, ICl (0.37 ml, 7.4 mmol) was added and the reaction was left for 48h at 80°C. The 

reaction was quenched with ethanol and then ICl and CCl4 were evaporated at about 60°C 

with a liquid nitrogen trap. The solid obtained after evaporation of the solvents was washed 

with ethanol and purified by column chromatography with chloroform. The final product was 

obtained as 12 mg of a blue powder (36% yield). 

MALDI-TOF MS m/z: calcd for C132H2Cl32: 2705.02 (MW 2721.87), found: 2721.02. 

Synthesis of dendrimer 439: 
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3,3',5,5'-tetraethynyl-1,1'-biphenyl 41 (30 mg; 0,12 mmol) and 3,4-bis(4-dodecylphenyl)-2,5-

diphenylcyclopentadienone (253 mg; 0,66 mmol) were added to o-xylene (2 ml) in a dry 

Schlenk flask and heated at 180 °C overnight. The viscous product was diluted with 1 ml of 

dichloromethane and added dropwise to cold ethanol (200 ml). The precipitate was filtered 

and dried under vacuum. The purification was done with column chromatography with a 

mixture of cyclohexane and DCM (4/1) and the desired product was obtained as 230 mg of 

brownish powder (63% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.16-6.33 (m, 82H), 2.39-2.30 (m, 16H), 1.41-1.09 (m, 

160H), 0.88 (t, J=6.8Hz, 24H). 

MALDI-TOF MS m/z: calcd for C228H282: 3022.76, found: 3022.56. 

Synthesis of GNRod 209:  
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Dendrimer 43 (50 mg, 0.22 mmol) was dispersed in 120 ml of non-stabilized DCM in a two-

necked round-bottom flask of 250 ml. Separetly, FeCl3 (4.49 g, 27.6 mmol) was added to 5 ml 

of anhydrous nitromethane in a glove box. After addition of the FeCl3 solution, the mixture 

was left 21 hours under argon coming from a two necked round-bottom flask filled with DCM 

in which argon was bubbling. The evolution of the reaction was monitored with MALDI-TOF 

mass spectrometry after quenching of a small amount of reaction mixture with methanol 

followed by centrifugation. The solution was quenched with methanol (about 80 ml) and then 

filtered on PTFE and washed with methanol. The pure product was obtained as 45 mg of black 

powder (92% yield). 

MALDI-TOF MS m/z: calcd for C228H226: 2963.77, found: 2963.84. 

Synthesis of 3,5- bis(ethynyltrimetylsilane)-bromobenzene 4610:  

 

Tribromobenzene (500 mg, 1.6 mmol), Copper iodide (80.4 mg, 0.42 mmol), 

triphenylphosphin (116 mg, 0.44 mmol) and Pd(PPh3)2Cl2 (148.7 mg, 0.21 mmol) were 

introduced in a three necked round-bottom flask and degassed by two vaccum-argon cycles. 

12 ml of triethylamine and 7 ml of toluene were introduced and degassed by three “Freeze-
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pump-thaw”. The solution was heated up to 80°C and ethynyltrimethylsilane (0.39 ml, 2.74 

mmol) was added dropwise. The reaction was left under argon at 80°C overnight. The solution 

was filtered with celite and the product was extracted by DCM and washed with water. The 

brown oil obtained after evaporation of the solvent was filtered on silica with DCM and then 

purified with a mixture of cyclohexane and ethyl acetate (2%). After evaporation of the solvent 

235 mg of the oily product were obtained (45% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.53 (2H, m, a), 7.49 (1H, m, b), 0.24 (18H, s, c). 

MALDI-TOF MS m/z: calcd for for C16H21BrSi2: 348.04; found: 348.04. 

 
 
Synthesis of Acid 3,5- bis(ethynyltrimetylsilane)-phenylboronic ester 47:  

 

3,5- bis(ethynyltrimetylsilane)-bromobenzene 46 (0.6g, 1.7 mmol) was introduced in a dry 

round-bottom flask and degassed with two vaccum-argon cycles. The diethylether (about 15 

ml) was distilated directly in the reaction flask after drying overnight with CaH2. The solution 

was cooled down to -50°C and n-Butyllithium solution (1.28 ml, 2.5 mmol, 2 M in cyclohexane) 

was added dropwise. After stirring for 5 min, the reaction turned orange and 2-Isopropoxy-

4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.05 ml, 5.1 mmol) was added before stirring again 

overnight at room temperature. The product was extracted with DCM and washed with water 

and the organic phase was dried and evaporated. The oily product was purified with column 

chromatography first with cyclohexane and then with DCM. The product was obtained as 575 

mg of a yellow oil (85% yield).  

1H NMR (δ in ppm, 400MHz, CDCl3): 7.84 (2H, m, a), 7.64 (1H, m, b), 1.33 (12H, s, c), 0.22 (18H, 

s, d). 

MALDI-TOF MS m/z: calcd for C22H33BO2Si2: 396.21; found: 393.18. 
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Synthesis of 2',5'- bis(trimethylsilyl)-3’,3’’biphenyl-1,1':4',1''-terphenyl 48:  

 

DiiododiTMSbenzene 25 (1 g, 2.1 mmol), 2-biphenylboronic acid (1.25 g, 6.33 mmol), 

Potassium carbonate (1.34 g, 6.33 mmol), SPhos (170 mg, 0.42 mmol) and Pd(OAc)2 (47 mg, 

0.21 mmol) were introduced in a dry three necked round-bottom flask. The powders were 

degassed by 3 vaccum-argon cycles. 30 ml of toluene and 5 ml of water were mixed and 

degassed by 3 “freeze-pump-thaw”. After addition of the solvents, the reaction was left at 

80°C overnight. The dark solution obtained was extracted with DCM, filtered on celite and 

washed twice with water and brine. The brownish solid was first purified through a pad of 

silica with cyclohexane and then with flash chromatography with cyclohexane and 

dichloromethane (9/1). The pure product was obtained as 760mg of white powder (68% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.88 (s, 2H, a), 7.69-7.38 (m, 28H, b-h), 0.05-0.02 (m, 18H, 

i). 

MALDI-TOF MS m/z: calcd: 526.25; found: 526.25. 

 
Synthesis of 2',5'- diiodo-3’,3’’biphenyl-1,1':4',1''-terphenyl 49:  

 

2',5'- bis(trimethylsilyl)-3’,3’’biphenyl-1,1':4',1''-terphenyl 48 (0.1 g, 0.19 mmol) was 

introduced in a dry round-bottom flask and degassed by two vaccum-argon cycles. Then 5 ml 

of DCM were added and the solution was cooled down to 0°C and degassed with argon 

bubbling for 10min. The ICl solution (0.76 ml, 1M in DCM, 0.76 mmol) was then added 

dropwise and the reaction was left under stirring at ambient temperature under argon 
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overnight. The reaction was quenched with a sodium sulfate solution (1 M, about 10 ml) and 

the product was extracted with DCM and washed twice with water. After evaporation of the 

solvent and purification with a column chromatography with a mixture of cyclohexane and 

ethyl acetate (2%), the pure product was obtained as 80 mg of a white powder (66% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.89 (s, 2H, a), 7.68-7.36 (m, 18H, b-h). 

MALDI-TOF MS m/z: calcd for C36H38Si2: 633.97; found: 633.96. 

 
Synthesis of 2',5'- bis(3,5- bis(ethynyltrimetylsilane)-phenyl)-3’,3’’biphenyl-1,1':4',1''-
terphenyl 50:  

 

2',5'- diiodo-3’,3’’biphenyl-1,1':4',1''-terphenyl 47 (830 mg, 1.31 mmol), acid 3,5- 

bis(ethynyltrimetylsilane)-phenylboronic ester 47 (1.3 g, 3.27 mmol), Pd2(dba)3 (119 mg, 0.13 

mmol), SPhos (215 mg, 0.52 mmol) and potassium carbonate (1.08 g, 7.84 mmol) were 

introduced in a schlenk flash and degassed with two vaccum-argon cycles. Toluene (18 ml), 

ethanol (6 ml) and water (3 ml) were added and degassed with three Freeze-pump-thaw. The 

reaction was left 24 hours at 80°C under argon. The solution was filtered on celite with DCM 

and washed twice with water. The organic phase was evaporate and purified with column 

chromatography with a mixture of cyclohexane and DCM (9/1) as eluant. The pure product 

was obtained as 735 mg of powder (57% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.52 (s, 2H), 7.48-7.30 (m, 24H), 0.19 (s, 36H). 

MALDI-TOF MS m/z: calcd for C62H62Si4: 918.39; found: 918.39.   
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Synthesis of 2',5'- bis(3,5- diethynylphenyl)-3’,3’’biphenyl-1,1':4',1''-terphenyl 44:  

 

Compound 50 (150 mg, 0.16 mmol) was introduced in a dry schlenk flask and degassed with 

two vaccum-argon cycles. 20 ml of THF and TBAF (0.82 ml, 0.82 mmol, 1 M in THF) were added 

and the reaction was left 1 hour at 0°C. The product was extracted with DCM and washed 

twice with water and the organic phase was evaporated. The product was precipitated in 

methanol and filtered to obtain 95 mg of powder (94% yield). The product was directly used 

was the next reaction without further purification. 

Synthesis of dendrimer 45:  

 

Precursor 44 (150 mg, 0.24 mmol) and tetraphenylcyclopentadienone (400 mg, 1.1 mmol) 

were introduced in a dry schlenk flask and degassed by two vaccum-argon cycles. The o-xylene 

(5 ml) was added and the reaction was left at 180°C overnight. The solution was then 

precipitated dropwise in cold ethanol (about 200 ml) and the precipitate was filtered. This 
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solide was purified with multiple recrystalisations in methanol. The pure product was obtained 

as 183 mg of a white solid (39% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.42-7.28 (m, 10H), 7.22-6.64 (m, 100H). 

MALDI-TOF MS m/z: calcd for C162H110: 2054.86; found: 2054.65. 

 
Synthesis of GNRod 14:  

 

Dendrimer 45 (30 mg, 0.015 mmol) was dispersed in 40 ml of non-stabilized DCM in a two-

necked round-bottom flask of 100 ml. Separetly, FeCl3 (0.43 g, 2.6 mmol) was added to 4 ml 

of anhydrous nitromethane in a glove box. After addition of the FeCl3 solution, the mixture 

was left 20 hours under argon coming from a two necked round-bottom flask filled with DCM 

in which argon was bubbling. The solution was quenched with methanol (about 40 ml) and 

then filtered on PTFE and washed with methanol. The pure product was obtained as 21 mg of 

black powder (73% yield). 

MALDI-TOF MS m/z: calcd for C162H36: 1982.30; found: 1982.43. 

 
Synthesis of GNRod 21: 
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GNRod 14 (15 mg, 0.0076 mmol) and AlCl3 (20 mg, 0.15 mmol) were introduced in a dry two 

necked round-bottom flask (100 ml), and dissolved on 20 ml CCl4. After 20 min of argon 

bubbling, ICl (2.1 g, 13 mmol) were added and the reaction was left for 72h at 85°C. The 

reaction was quenched with ethanol and ICl and CCl4 were evaporated at about 60°C with a 

liquid nitrogen trap. The solid obtained after evaporation of the solvents was solubilized with 

DCM and precipitated in methanol. The precipitate was then washed with methanol and 

purified by column chromatography in chloroform. The final product was obtained as 12 mg 

of a blue powder (49% yield). 

MALDI-TOF MS m/z: calcd for C27H2Cl34: 3204.89 (MW 3224.00); this product could not be 

characterized with this method. 

 
Synthesis of dendrimer 51: 
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Precursor 50 (15 mg, 0.024 mmol) and tetraphenylcyclopentadienone (82 mg, 0.11 mmol) 

were introduced in a dry schlenk flask and degassed by two vaccum-argon cycles. The o-xylene 

(5 ml) was added and the reaction was left at 180°C overnight. The solution was then added 

dropwise to cold ethanol (about 200 ml) and the precipitate was filtered. This solide was 

purified with multiple recrystalisations in methanol. The pure product was obtained as 55 mg 

of a red solid (68% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.40-7.28 (m, 12H), 7.21-6.51 (m, 90), 2.36-2.31 (m, 16), 

1.42-1.07 (m, 160H), 0.89-0.86 (m, 24H). 

MALDI-TOF MS m/z: calcd for C258H303: 3400.36; found: 3400.49. 

 
Synthesis of GNRod 22:  
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Dendrimer 51 (40 mg, 0.012 mmol) was dispersed in 40 ml of non-stabilized DCM in a two-
necked round-bottom flask of 100 ml. Separetly, FeCl3 (1.1 g, 4.2 mmol) was added to 8 ml of 
anhydrous nitromethane in a glove box. After addition of the FeCl3 solution, the mixture was 
left 20 hours under argon coming from a two necked round-bottom flask filled with DCM in 
which argon was bubbling. The solution was quenched with methanol (about 40 ml) and then 
filtered on PTFE and washed with methanol. The pure product was obtained as 39 mg of black 
powder (99% yield). 
 
MALDI-TOF MS m/z: calcd for C258H230: 3327.80; this product could not be characterized with 
this method. 
 

6.4. Graphene nanomesh 

Synthesis of 1,5,9-trinitrotriphenylene 5211: 

 

2,3-dichloronitrobenzene (10g, 52.1mmol) was introduced in a round-bottom flask and 

degassed by 2 vacuum-argon cycles. Anhydrous dimethylformamide (DMF) (200mL) and 

copper (20g, 312.5mmol) were introduced and the solution was stirred at 160°C overnight. 

After cooling down to 120°C the solution was filtered on celite. The product was washed 3 

times with DMF and the filtrate was then poured in a diluted ammonium solution (1.2 l at 

6.5%) under stirring. The black solid was filtered and washed with the diluted ammonium 
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solution and water. The product was recrystallized in acetone and filtered twice to get 2.12 g 

of the pure yellowish powder (34% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 8.16-8.14 (d, J=8.3Hz, 3H, a), 7.94-7.92 (d, J=7.7Hz, 3H, c), 

7.70-7.66 (dd, J=8.1, 8.1Hz, 3H, b). 

MALDI-TOF MS m/z: calcd for C18H9N3O6: 363.05, found: 363.04. 

 
Synthesis of triphenylene-1,5,9-triamine 5311: 

 

1,5,9-Trinitrotriphenylene 52 (1.5 g, 4.1 mmol) was introduced in a reaction flask with 250 ml 

of ethyl acetate and 25 ml of ethanol. The solution was degassed bubbling argon 5 min and 

palladium on carbon (300 mg) was added. The flask was then placed in a shaker hydrogenation 

apparatus for an hour. The solution was filtered on celite and washed with ethyl acetate and 

the solvent was evaporated. The pure product was obtained as 820 mg of yellowish powder 

(73% yield) 

1H NMR (δ in ppm, 400MHz, CDCl3): 8.35-8.33 (d, J=8.1Hz, 3H, a), 7.31-7.27 (dd, J=8.0 , 8.0Hz, 

3H, b), 6.88-6.86 (d, J=7.7Hz, 3H, c). 

MALDI-TOF MS m/z calcd for C18H9NH2: 273.13, found: 274.13 (M+H)+. 

 
Synthesis of 1,5,9-Triiodotriphenylene 5412: 

 

1,5,9-Trinitrotriphenylene 53 (0.2g, 0.73mmol) was introduced in a 25 ml round-bottom flask 

with 2 ml of HCl (3M) and 2 ml of water. The solution was cooled down to 0°C and a solution 

of sodium nitrite (1.45 M, 2 ml) was added dropwise under stirring. The resulting solution was 

added to a solution of sodium iodide (4.45 M, 3 ml) and left under stirring at room 
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temperature for one hour. The solution was heated to 65°C for 15 min. The solid was filtered 

and washed with a diluted solution of sodium thiosulfate. The solid was diluted in 

dichloromethane (about 50 ml) and washed with water three times. The organic phase was 

dried and evaporated to obtain a dark red powder. This powder was purified with column 

chromatography with DCM to afford 112 mg of pale yellow powder (26% yield) 

1H NMR (δ in ppm, 400MHz, CDCl3): 9.21-9.19 (d, J=8.2Hz, 3H, a), 8.24-8.22 (d, J=7.7Hz, 3H, c), 

7.15 (dd, J=8.0, 7.8Hz, 3H, b). 

MALDI-TOF MS m/z: calcd for C18H9I2: 605.78, found: 605.81.  

 
Synthesis of 1,3,5-tris(2’-trimethylsilyl-1,1':4',1''-terphenyl)benzene 55:  

 

Iodoterphenyltrimethylsilane 34 (1.24 g, 2.89 mmol), Acid phenyltriboronic ester (400 mg, 

0.87 mmol), Palladium acetate (6.5 mg, 0.029 mmol), SPhos (23.8 mg, 58 mmol) and Potassium 

phosphate tribasic (1.23 g, 5.7 mmol) were introduced in a 25 ml Schlenk flask and degassed 

with three vaccum-argon cycles. The solution was left overnight at 100°C under argon and 

filtered on celite with DCM before evaporation of the solvents. The product was purified with 

recrystallisation in cyclohexane and obtained as 530g of a white powder (62% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 8.36 (s, 6H), 7.52-7.38 (m, 30H), 7 (s, 3H), 0.03 (s, 27H). 

MALDI-TOF MS m/z: calcd for C69H66Si3: 978.45, found: 978.43. 
 
 
Synthesis of 1,3,5-tris(2’-iodo-1,1':4',1''-terphenyl)benzene 56:  
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1,3,5-tris(2’-trimethylsilylterphenyl)benzene 55 (350 mg, 0.35 mmol) was introduced in 30 ml 

of DCM in a two-necked round-bottom flask. The solution was degassed with argon bubbling 

for 15min and cooled down to 0°C. The ICl (2.1 ml, 2.1 mmol, 1 M in nitromethane) was added 

dropwise and the solution was left overnight under stirring at room temperature. The reaction 

was quenched with Na2S2O3 (1 M, 20 ml) and the product was extracted with DCM, washed 

twice with water and brine. After evaporation of the solvent, the product is purified with 

column chromatography with a mixture of cyclohexane and ethyl acetate (2%). The pure 

product was obtained as 400 mg of pale yellow powder (98% yield). 

1H NMR (δ in ppm, 400MHz, CDCl3): 7.97-7.89 (m, 3H), 7.46-7.32 (m, 15H), 7.17-6.49 (m, 21H). 

MALDI-TOF MS m/z: calcd for C69H39I2: 1140.69, found: 1140.03. 
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Synthèse et propriétés des points quantiques et nanomeshes  

de graphène 

 

La modification des propriétés du graphène, notamment l’ouverture d’une bande interdite 

par la nanostructuration, est un véritable enjeu pour la physique et pour les applications du 

graphène. Ce travail est le résultat de la collaboration entre le Laboratoire d’Innovation en 

Chimie des Surfaces et Nanosciences (LICSEN) et le Laboratoire Aimé Cotton (LAC). Le but de 

cette collaboration est l’exploration des propriétés intrinsèques des points quantiques de 

graphène préparés par l’approche ascendante. En effet, cette approche permet un contrôle 

complet de la structure du matériau obtenu et rend possible la modification à l’atome près en 

vue de décrire complètement les relations structure/propriétés.  

Le premier objectif de cette thèse a été de reproduire des synthèses de points quantiques de 

graphènedéjà existantes dans la littérature afin d’être capable d’en explorer les propriétés 

optiques avancées. Le grand nombre de structures synthétisables permet de faire varier 

sélectivement la forme, la taille et les états de bords des points quantiques de graphène. La 

première partie de cette thèse est donc centrée sur la synthèse organique d’un point 

quantique de 96 atomes de carbone (C96). Cette synthèse est basée sur le couplage de Diels-

Alder d’un composé acétylénique et de la tétraphénylcyclopentadiénone suivi d’une étape de 

déshydrogénation de Scholl. Ce point quantique peut être fonctionnalisé soit avec six chaines 

dodécyles (C96C12), soit avec des atomes de chlore (C96Cl). L’étude optique s’est concentrée 

sur le composé C96C12 qui présente une absorption à 475 nm et une émission à 650 nm dans 

le solvant 1,2,4-trichlorobenzène. Malgré des problèmes d’agrégation due aux interactions pi, 

cette molécule a été isolée dans une matrice de polystyrène pour l’observation de ses 

propriétés optiques intrinsèques. Ces propriétés sont remarquables, en effet, il y a émission 

de photons uniques avec une grande pureté et une grande brillance. L’émission de photons 

uniques est conservée dans le cas du C96Cl avec un décalage de 100 nm vers le rouge, ce qui 

prouve la possibilité de contrôler les propriétés en contrôlant parfaitement la structure. 

Grâce à l’expérience accumulée sur la famille des C96, nous avons pu explorer un nouveau 

type de matériaux graphéniques, intermédiaires entre les points quantiques et les 



 

 

 

nanorubans. Ces matériaux ont une structure unidimensionnelle (1D) et une longueur 

contrôlée. Ce dernier point diffère des nanorubans dont la longueur varie à cause de la 

préparation via une polymérisation, ce qui rend l’étude de l’impact de la longueur sur les 

propriétés optiques impossible sur ces objets. En partant des structures faites de 78 et 132 

carbones (C78 et C132), nous avons ajouté une rangée de phényles en préparant des 

nouveaux précurseurs acétyléniques. Cette méthode a permis la synthèse de deux nouvelles 

structures allongées faites de 96 et 162 carbones (C96L et C162) que nous avons appelées 

« nanorods » de graphène. De la même manière que les points quantiques, ces nanorods ont 

été préparés avec des chaînes alkyles et des chlores pour former une grande variété de 

structures. L’étude de l’absorption de ces molécules a montré que l’augmentation de la 

longueur d’une rangée de phényles (de C78 à C96L et de C132 à C162) engendrait un 

déplacement de la longueur d’onde d’absorption vers le rouge. Cependant, ce décalage est 

plus faible que celui engendré par une variation de forme pour un même nombre d’atomes 

(entre C96 et C96L). 

Enfin, après l’exploration de structures à zéro dimension et 1D, nous nous sommes intéressés 

aux structures à deux dimensions (2D), les nanomeshes. Les nanomeshes de graphène sont 

des réseaux périodiques de trous dans le graphène. Dans ce matériau, la taille et l’organisation 

des trous dans la structure ainsi que la taille des partie graphéniques restantes entre les trous 

(appelées « neck ») vont être responsables de ces propriétés. Actuellement, ces réseaux sont 

principalement faits par approche descendante à partir de graphène exfolié via des étapes 

d’oxydation partielle ; les tailles des trous sont de l’ordre d’une cinquantaine de nm et ceux 

de la partie graphénique (« neck ») de l’ordre d’une dizaine de nanomètre. Cette méthode 

offre peu de contrôle sur le type de structures obtenues et sur leur état d’oxydation, il faut 

donc lui préférer l’approche ascendante. Les premières tentatives pour réaliser des réseaux 

2D covalents graphéniques par l’approche ascendante sont limitées à des largeurs de « neck » 

d’un seul phényle entre les trous, réduisant ainsi la délocalisation des électrons dans le plan. 

Nous avons donc préparé deux nouveaux précurseurs organiques dont l’assemblage et la 

réaction sur surface dans une chambre de STM devrait permettre de réaliser des réseaux avec 

une largeur de « neck » de deux à trois phényles soit environ 1 nm. 
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Titre : Synthèse et proprietés des boites quantiques et nanomeshes de graphene. 

Mots clés : Nanoparticules de graphène, Synthèse organique, Photoluminescence 

Résumé : La modification des propriétés du 

graphène, notamment l’ouverture d’une bande 

interdite par la nanostructuration, est un 

véritable enjeu pour la physique et pour les 

applications du graphène. La nanostructuration 

peut se faire suivant l’approche « top-down » ou 

« bottom-up ». Au cours de cette thèse nous 

nous sommes intéressés à la seconde approche. 

L’approche « bottom-up » permet de contrôler à 

l’atome près la structure des matériaux. 

L’objectif de cette thèse est de fabriquer par 

synthèse chimique des boites quantiques de 

graphène et des motifs graphéniques contenant 

un réseau périodique de trous (nanomesh) et 

d’en étudier les propriétés physiques. Dans une 

première partie, une « famille » de 

nanoparticules de graphène a été  

préparée par synthèse organique via des 

réactions de Diels-Alder et de Scholl et les 

propriétés optiques ont été étudiées sur des 

solutions et à l’échelle de la molécule unique. 

Dans une deuxième partie, un nouveau type de 

structures graphéniques intermédiaires entre les 

boites quantiques et les nanorubans, des nano-

bâtonnet de graphène (nanorods) ont été 

synthétisés. Enfin, plusieurs précurseurs ont été 

synthétisés pour la réalisation de nanomeshs de 

graphène. Ces précurseurs permettront 

d’obtenir, en utilisant le dépôt chimique en 

phase vapeur dans la chambre d’un microscope 

à effet tunnel, des nanomesh de graphène 

présentant des structures différentes. 

 

 

Title : Synthesis and properties of graphene quantum dots and nanomeshes 

Keywords : Graphene nanoparticles, organic synthesis, photoluminescence 

Abstract : The manipulation of the electronic 

properties of graphene, and in particular the 

bandgap opening by nano-patterning, is a 

crucial issue for both physics and applications. 

The nanostructuration can be done either 

through the top-down approach or the bottom-

up approach. This bottom-up approach allows 

controlling at the atomic level the structure of 

the materials. The aim of this thesis is to prepare 

graphene quantum dots and graphene 

nanomeshes (regular arrays of holes in a 

graphene sheet) by chemical synthesis, and to 

study their physical properties. In the first part, 

a “family” of graphene quantum dots was 

prepared with organic chemistry via Diels-Alder 

and Scholl reactions and the optical properties  

were studied both in solution and at the single 

molecule scale.  

In the second part, a new type of graphenic 

structures intermediate between quantum dots 

and nanoribbons were synthesized and we 

named them “graphene nanorods”. These 

objects are one dimensional but have a 

controlled length compared to nanoribbons 

prepared via polymerization. Finally, various 

precursors were synthesized to create graphene 

nanomeshes. These precursors will allow the 

formation, using chemical vapor deposition in a 

scanning tunneling microscope chamber, of 

nanomeshes exhibiting different structures and 

morphology. 

 

 

 


