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Thèse de doctorat de l’Université Paris-Saclay
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CHAPTER 1

Introduction

Contents

1.1 General motivations and objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 General motivations and objectives

The overall aim of the thesis work presented in this manuscript is the im-
provement of the microscopic description of nuclear collective properties.
Ultimately, we wish to analyze in an accurate and predictive way the exci-
tation spectra of stable and unstable nuclei. To that end, the approach which
we adopt consists in coupling individual degrees of freedom and multiparticle-
multihole configurations of the nucleons. This allows us to overcome the
mean-field (MF) approximation, enriching in this way the description of the
excited modes of nuclei. Such a mixing of configurations provides a much
more complete and realistic description of the excitation spectra. This is
done in practice using a second-random-phase-approximation(SRPA)-based
model where the multiparticle-multihole configurations are 2 particle-2 hole
(2p2h) configurations.

The general context in which this work was developed is described in the
next section of this chapter (Sec. 1.2).

This work followed several steps, which we may attempt to summarize
here by presenting the structure of the manuscript.

A model which is often used to describe collective excitations is the random-
phase approximation (RPA), where the excited modes are superpositions of
1 particle-1 hole (1p1h) configurations only. Despite all its qualities and
advantages, the RPA applied on top of the Hartree-Fock (HF) method is a
theoretical approach which remains at the MF level.
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CHAPTER 1. INTRODUCTION

Chapter 2 focuses on these MF methods that form the basis of the models
later presented in this manuscript, and is therefore a prerequisite to the next
developments. We first provide an overview of the energy-density-functional
(EDF) framework, in which all our models are applied. We next derive the
HF equations, and describe the main formal aspects of the RPA.

In order to go beyond this MF framework, we base our developments on
the extension of the RPA to 2p2h configurations, known as the SRPA.

In Chap. 3, we present this model, which constitutes our starting point.
After a brief historical overview of the SRPA applications, the main formal
aspects are discussed, as well as the limitations that motivated the present
work. In fact, the straightforward extension of the standard RPA to 2p2h
configurations suffers from strong drawbacks which do not allow for a sat-
isfactory description of the nuclear excitation spectra.

Chapter 4 is devoted to a way of addressing the drawbacks of the SRPA
model, namely the subtraction method. We describe formally this method
and its practical use in a first part, and then present all the applications
that were carried out in this thesis work. This theoretical method is called
the subtracted SRPA (SSRPA). In particular, SSRPA applications are carried
out to analyze the dipole low-lying spectrum and the dipole giant resonance
region in 48Ca (the electric dipole polarizability is also analyzed), to study
isoscalar quadrupole resonances in several nuclei, from medium-mass sys-
tems to heavy nuclei, and to estimate beyond-MF effects on the effective
mass, based on calculations of giant quadrupole excitations. Comparisons
with available experimental results are discussed.

The second main part of the manuscript, presented in Chap. 5, is dedi-
cated to several extensions.

First, an extension of the SSRPA model is presented which allows us to
deal with nuclei having a partially filled last orbital. This was a limitation of
the previously available SSRPA model due to which several nuclei could not
be treated, for instance most open-shell nuclei. The equal-filling approxima-
tion is employed to perform this extension. As a first step, this extension is
used on top of a genuine HF ground state. Then, it is used on top of a corre-
lated ground state. In particular, pairing correlations are introduced through
occupation numbers obtained from a Bardeen-Cooper-Schrieffer (BCS) cal-
culation and this allows us to make a first estimation of the effects of pairing
correlations.

Low-lying 2+ excitations in some Argon isotopes are analyzed and a com-
parison with experimental results is presented.

2



CHAPTER 1. INTRODUCTION

Secondly, we present an extension (already employed in the past years
for metal clusters) to go beyond the quasiboson approximation (QBA) in
RPA-type models. Factors containing the occupation numbers of a corre-
lated ground state are introduced to renormalize matrix elements. The ap-
plication of this approach to atomic nuclei is made here for the first time.
The occupation numbers are computed using the X and Y RPA amplitudes.
The correlations computed in this way have thus a relevant impact only in
many-body systems where the Y amplitudes are not negligible. We discuss
the effects of introducing such a correlated ground state in the SRPA model.

Finally, we summarize our results and conclusions in Chap. 6, and provide
an outlook on further possible developments.

1.2 Context

When introducing nuclear physics, complexity is usually the characteristic
feature which is foremost highlighted. This complexity can be glimpsed from
different viewpoints.

From the conceptual one, nuclei are self-bound quantum many-body sys-
tems, composed of particles having a spin and an isospin, if one adopts the
low-energy description of a nucleus, in which protons and neutrons are the
relevant degrees of freedom. We place our study in this framework, and
consider protons and neutrons as point-like and structureless particles. The
degrees of freedom which are relevant at different energy scales are illus-
trated in Fig. 1.1.

From the observational point of view, nuclei feature very diverse phenom-
ena, among which ground-state properties (mass, size, ...), excitation modes
studied by spectroscopy, various decay modes, reaction processes (fusion,
transfer, knock-out, ...) and exotic behaviors (clustering, halos, ...). Sev-
eral nuclei are superfluid and this has an impact on their properties such
as their binding energy (there is a contribution to the total energy coming
from superfluidity) or their excitation spectra, in particular their low-lying
modes. Such a superfluidity is characterized by the existence of Cooper pairs
composed of nucleons.

Some fundamental questions arise from observations, such as

• How many nuclei exist?

• What is the heaviest possible element? How does stability behaves for
super-heavy elements?

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of the considered degrees of freedom at different energy scales.

• Are magic numbers the same for unstable nuclei?

• Are there more exotic decay modes than α, β , γ decays and fission?

In this thesis, we are mainly concerned with the many-body description
of nuclei, which are studied as systems composed of A nucleons (Z protons
and N neutrons).

Many-body techniques are of course not specific to nuclei, but form a set
of very interdisciplinary theoretical tools. Examples of domains in which
such tools find applications are atomic physics, condensed-matter physics
and chemistry. Similar methods are applied, leading to the description of
systems as diverse as Bose-Einstein condensates of ultra-cold trapped atoms
or molecules. A pictorial representation of such a variety of many-body sys-
tems is shown on Fig. 1.2.

In particular, the interdisciplinary aspect of the work presented in this
manuscript may be seen in that some formal developments on which it is
based were first carried out in the study of metal clusters. For example, some
applications of RPA renormalization schemes, which we discuss in Sec. 5.2,
were done for these many-body systems, providing useful physical insights
and tests.

Also, as will be explained later in this manuscript, several analogies ex-

4



CHAPTER 1. INTRODUCTION

Chemistry  Atomic physics

Solid-state physics

Figure 1.2: Examples of other domains where many-body techniques and models may be
applied.

ist between what is developed for the nuclear many-body problem and the
density functional theory, which is used in chemistry and solid-state physics.

Moreover, a very interesting interdisciplinary link exists with nuclear as-
trophysics and, in particular, with the physics of neutron stars. A schematic
view of a neutron star is displayed on Fig. 1.3. Such a link with nuclear
physics exists for several reasons. First, many-body models may be employed
for the treatment of the internal and external crusts of neutron stars, where
exotic nuclei and extremely neutron-rich nuclear systems are located.

Let us mention that nuclear physics is often approached through nuclear
matter. Nuclear matter is an idealized infinite system whose properties may
be related to properties of nuclei and whose study may thus help for a better
understanding of nuclei as well as for checking the validity of the employed
functionals and interactions. As an example of application, many properties
of a neutron star are strongly related to the equation of state of neutron-rich
and pure neutron matter.

A given choice for the functional (interaction) and for the approximation
scheme (for example, MF approximation or second-order approximation)
generates specific equations of state for matter. Examples of equations of
state for infinite matter are illustrated on Fig. 1.4, from symmetric (lowest
curve) to pure neutron (highest curves), for different values of the isospin

5



CHAPTER 1. INTRODUCTION

Figure 1.3: Schematic view of a neutron star.

asymmetry δ = N−Z
A , from δ = 0 (symmetric matter) to δ = 1 (pure neutron

matter). The two highest curves are two examples of equations of state for
pure neutron matter.

In the recent years, ab initio models based on the use of chiral potentials
have produced microscopic equations of state, especially for neutron matter
(see for example Ref. [1]). However, uncertainty bands for these equations
of state are still very large, except at extremely low densities. Furthermore,
in most cases such models do not reproduce the empirical saturation point
of symmetric matter (see, for example, Ref. [2]), with the exception of those
specific cases where additional adjustments of parameters are carried out on
selected properties of finite nuclei [3].

Several properties of nuclear matter are related to excitation spectra and
collective excited modes of nuclei, which constitute the heart and the main
topic of this thesis work. For example, the incompressibility modulus is
related to isoscalar giant monopole resonances (breathing modes) and to
isoscalar giant dipole resonances. The effective mass is related to isoscalar
giant quadrupole resonances (axial breathing modes). The symmetry en-
ergy and its density dependence may be related for instance to giant dipole
resonances and to the so-called pygmy dipole modes. Recent reviews may
be found in Refs. [4–7].

The developments made in this thesis are based on the SRPA model (see

6
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Figure 1.4: Examples of equations of state of infinite matter for different values of the
isospin asymmetry δ.

Chap. 3). As we discuss in more detail in a dedicated section (Sec. 2.1), we
use this many-body tool in the context of EDFs. In principle, this approach
allows for a description of nuclei throughout the whole nuclear chart.

We stress that in all applications done in this thesis work, only even-
even nuclei with assumed spherical symmetry are treated. With the aim
of microscopically describing collective excitations of nuclei, the targeted
phenomena are low-lying states and giant resonances.

Unlike giant resonances, low-lying states are those states usually located
below 10-12 MeV in the excitation spectrum of a nucleus. They may be sim-
pler excitations which involve a few nucleons (therefore they do not feature
collectivity) or, in some cases, they may have a more collective nature, for
instance in some pygmy dipole resonances.

The occurrence of collective excitations is a common characteristic of
many-body systems. Giant resonances are a manifestation of this collectivity,
where many particles moving coherently are involved, and can be schemat-
ically seen as macroscopic vibrations of the system. Because of their collec-
tive nature, they depend on global properties of the systems (size, number
of particles) on the one hand, and can provide information on their bulk
properties and dynamics on the other hand. They were extensively studied,

7



CHAPTER 1. INTRODUCTION

and detailed descriptions of their various aspects can be found in the liter-
ature [8–12]. They correspond to resonances which lie higher in excitation
energy than low-lying states. These resonances are characterized by a width
Γ and a centroid energy EC. Different modes of giant resonances exist, some
of which are schematically represented on Fig. 1.5.

Figure 1.5: Schematic view of collective modes characterizing giant resonances. ∆L, ∆S
and∆T are respectively the change in multipolarity, total spin and total isospin occurring in
the excitations. The not represented isoscalar giant dipole resonance (ISGDR) corresponds
to a translation of the system as a whole, and is thus not an intrinsic excitation.

Phenomenologically, giant resonances can be observed as more-or-less
broad resonances (for example by photon absorption or scattering of a par-
ticle), usually spreading over the region of transferred energy between 10
MeV and 30 MeV (for isoscalar excitations). The main difficulty when mea-
suring giant resonances is the overlapping of resonances of various modes
in the same excitation energy region. Specific probes have to be used in
order to excite selectively the studied modes. In addition, spectra in these
energy regions can be spoiled by a background contribution, which can be
addressed by performing coincidence experiments.

The width of giant resonances can be explained by several damping mech-
anisms. It is convenient to conceptually separate these different mechanisms
by associating each of them with one contribution to the total width of the
resonance. Indeed, a giant resonance is composed of a collective state, which
is a coherent superposition of several configurations that have a given multi-
polarity, spin and isospin — characterizing the giant resonance. The strength
of this collective state can be spread and fragmented, so that the total result-

8



CHAPTER 1. INTRODUCTION

ing width can be expressed as follows:

Γ t = Γ L + Γ s + Γ e . (1.1)

In this equation, the so-called Landau-damping width Γ L represents the
fragmentation of the strength due to the possible presence, in the energy
region of the collective state, of elementary 1p1h states that have the same
quantum numbers. In nuclei, this constitutes a single-particle contribution
to the total width which may be accounted for by MF-based models.

The spreading width Γ s is the most important term in the total width, and
arises from couplings of different configurations, for example from the cou-
pling of 1p1h configurations to higher-order ones (2p2h, 3 particle-3 hole,
etc.). One can easily imagine that couplings of higher order than 2p2h are
less important.

Now in the SRPA model, 1p1h and 2p2h configurations are coupled by
construction. That is why the SRPA describes naturally the spreading and
therefore allows for a much better description of the total width than the
RPA, which only accounts for 1p1h configurations.

Lastly, the escape width Γ e is induced by the coupling with the contin-
uum. It is expected to be generally less important than the spreading width,
but in some nuclei these two contributions can become comparable. In the
studies presented in this thesis manuscript, the coupling to the states lying
in the continuum is not treated and, consequently, the escape width cannot
be described.

9
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CHAPTER 2

Mean-field methods within energy-density-
functional theories

Contents

2.1 Energy-density functionals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The Hartree-Fock method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 General assumptions and notation conventions . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Derivation of the Hartree-Fock equations. . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 HF-based RPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Derivation of the RPA equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Unsufficiency and inconsistency of the standard RPA. . . . . . . . . . . . . . . . 21

2.1 Energy-density functionals

Nuclear EDFs are generally derived from so-called effective phenomenolog-
ical interactions. The latter are nuclear interactions containing several pa-
rameters to be adjusted on selected observables and on properties of nu-
clear matter, and are built with the aim of gathering as much physics of
the nucleus as possible. Microscopic models which employ such effective
phenomenological interactions lead in general to a satisfactory description
of bulk properties of finite nuclei, such as masses and charge radii. These
models place themselves in between ab initio models, which use microscopic
nucleon-nucleon potentials as ansatz, and macroscopic models, such as the
nuclear liquid-drop model, based on global properties of the nucleus.

Nuclear EDFs have been used since the 1970s, for a variety of applica-
tions, among which the study of binding energies, radii, shell-structure prop-
erties, deformation properties, low-energy excitations and giant resonances.
The form of the functionals (and the number of parameters to adjust) de-
pends on assumptions one makes on the nucleon-nucleon interaction, for
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THEORIES

instance its zero or non-zero range. Different choices can be made, which
lead to different EDFs. The two mostly used types of interactions are the
phenomenological Skyrme [13–15] and Gogny [16, 17] interactions.

All the terms of Skyrme interactions have zero range, whereas the Gogny
interaction contains both finite-range terms (Gaussians) and zero-range den-
sity-dependent and spin-orbit terms.

The first applications which were carried out in the 1970s were essentially
MF calculations aimed at describing the ground state of even-even closed-
shell nuclei. Ref. [18] summarizes some of these first applications which
were performed at that time.

Also, it is interesting to remind that attempts to link these interactions
to the bare nucleon-nucleon potential were discussed in those years. For
example, for the case of the Skyrme interaction, one can mention the work
of Negele and Vautherin [19, 20], where a procedure based on the density-
matrix expansion was used.

Ref. [21] is a more recent review on EDF theories and their applications
to the ground state of spherical and deformed nuclei as well as to excited
states. It contains also the description of several beyond-MF models.

The nuclear EDF and the density-functional theories (DFTs) used in chem-
istry and in condensed matter physics show important analogies and, also,
several differences. DFT was founded in a well-defined theoretical scheme
based on the Hohenberg-Kohn theorems [22, 23]: in a many-body system
put in an external potential, the density is determined in a unique way. The
external potential energy is a functional of the density. The total energy is
as well a functional of the density and the density which minimizes it leads
to the exact ground-state energy.

These theorems were demonstrated for a many-body system localized
by an external potential. This is not the case for finite nuclei which are
self-bound systems. This represents the main important difference between
the nuclear EDF and DFT theories (other differences exist but we will not
mention them because this is not the focus of the present work).

Despite the differences, the MF equations which are solved for a nuclear
system have strong analogies with the Kohn-Sham equations [24]. These
equations follow from the Hohenberg-Kohn theorems.

We stress once again that, whereas DFT was constructed over the years
based on a well-defined theoretical framework, the nuclear EDF was devel-
oped in a quite empirical way and was not based on founding theorems.

EDF functionals have been extensively used and have generally achieved
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success in reproducing properties of nuclei throughout the whole nuclear
chart. Several developments have been conducted to improve the function-
als, like alternative expressions of the density-dependent terms, higher-order
derivatives of the density, or steps towards derivations of functionals which
are closer to the DFT. The reader can refer to Ref. [25] for a more in-depth
discussion of these improvements.

Of notable importance for the present study are the various problems
that may arise when beyond-MF models are employed with EDFs, such as
the overcounting of correlations, instabilities or divergences, some of which
are related to the density dependence or to the zero range of the interactions.
This will be discussed for the particular case of SRPA in Subsec. 3.2.2.

Finally, it is worth mentioning that current studies are also focusing on
more ab initio approaches to nuclear EDFs, especially in an attempt to link
the functionals to ab initio models, inspired by effective-field theories (EFTs)
[26–36].

2.2 The Hartree-Fock method

2.2.1 General assumptions and notation conventions

We first wish to point out the following assumptions, which will hold also
in the next parts of the present work. We place our study at low-energy
scales — a few MeV/nucleon. Given these energy scales, it is sensible to
consider that nucleons are structureless particles. Therefore we will assume
that nucleon degrees of freedom are the relevant ones.

The formalism we will rely on throughout most of the derivations is the
second quantization (see for example Ref. [37]). The vacuum will be de-
noted by |−〉, unless otherwise stated.

In this formalism, the general Hamiltonian operator that we will consider
has the following expression:

Ĥ = T̂ + V̂ =
∑

µ,µ′
Tµµ′a

†
µaµ′ +

1
4

∑

µ,ν,µ′,ν′
vµνµ′ν′a

†
µa†
νaν′aµ′ , (2.1)

where Tµµ′ is a matrix element of the kinetic energy operator in the single-
particle space, and vµνµ′ν′ is an antisymmetrized matrix element of the two-
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body potential:

Tαβ := 〈α| T̂ |β〉 ,

vαβγδ := 〈αβ | V̂ |γδ〉 − 〈αβ | V̂ |δγ〉 = −vβαγδ = −vαβδγ .

Assuming a ground state where all the states of lowest energy are occu-
pied by the nucleons, the unoccupied single-particle states are called particle
states, and the occupied ones are called hole states. Unless otherwise stated,
we will conventionally use the subscripts i, j, k, l to refer to hole states, and
m, n, p, q to refer to particle states, whereas greek letters will be used when
such a distinction is not made.

2.2.2 Derivation of the Hartree-Fock equations

We succinctly follow here the derivation presented in Ref. [38].
In our study, the HF method allows us to obtain a ground state on which

practical RPA calculations are made, as explained in more detail in Sec. 2.3.
As we show here, this determination implies a minimization of the energy
of the system, which relies on a variational principle.

To begin with, let us therefore recall the variational principle on the en-
ergy of the system

E(Ψ) :=




Ψ
�

�Ĥ
�

�Ψ
�

〈Ψ|Ψ〉
. (2.2)

This variation is performed by imposing that the derivatives of the energy
(2.2) with respect to the states |Ψ〉 and 〈Ψ|= (|Ψ〉)† be equal to 0, that is















∂ E
∂ |Ψ〉

(Ψ) = 0

∂ E
∂ 〈Ψ|

(Ψ) = 0 . (2.3)

In particular, the state that minimizes the energy obviously satisfies Eq. (2.3).

Let us consider that the Hamiltonian operator is a sum of single-particle
components ĥ(i), each governing the motion of the nucleon labeled i:

Ĥ =
A
∑

i=1

ĥ(i) . (2.4)

This assumption implies that the nucleons are thought of as independent
particles evolving in a one-body field created by the action of all the particles,
hence the name “mean field”.

14



CHAPTER 2. MEAN-FIELD METHODS WITHIN ENERGY-DENSITY-FUNCTIONAL
THEORIES

The HF method consists in the following: assuming a Hamiltonian of
the form (2.4), find the state |Φ0〉 that minimizes the energy. Note that,
because of the assumption (2.4), the state determined in this way is only an
approximation of the exact ground state.

Now because of the antisymmetry of the wave functions, the eigenfunc-
tion of the MF Hamiltonian of Eq. (2.4) associated to the lowest eigenvalue,
i.e. the HF ground state, is a Slater determinant and can be written as

|Φ0〉 =
A
∏

i=1

a†
i |−〉 .

Furthermore, each Slater determinant |Φ〉 is uniquely associated with a
one-body density ρ(Φ) [38] whose matrix elements in the single-particle
space are defined as follows:

ραβ(Φ) := 〈Φ| a†
β

aα |Φ〉 . (2.5)

Using the general expression (2.1) of the Hamiltonian, and recalling that
a Slater determinant is by definition normalized, the energy reads

E(Φ) =



Φ
�

�Ĥ
�

�Φ
�

(2.6)

=
∑

µ,µ′
Tµµ′




Φ
�

�a†
µaµ′

�

�Φ
�

+
1
4

∑

µ,ν,µ′,ν′
vµνµ′ν′




Φ
�

�a†
µa†
νaν′aµ′

�

�Φ
�

=
∑

µ,µ′
Tµµ′ρµ′µ(Φ) +

1
2

∑

µ,ν,µ′,ν′
vµνµ′ν′ρµ′µ(Φ)ρν′ν(Φ) , (2.7)

where in the last step we used the antisymmetry property of the potential
and the Wick theorem [39] to evaluate the four-operator expectation value.
The energy can therefore be seen as a function E(ρ(Φ)) of the one-body
density, which we write E[ρ] for simplicity. Then, the variational principle
translates into

δE[ρ] = 0 . (2.8)

On the one hand, one always has

δE[ρ] =
∑

α,β

hαβδρβα , (2.9)

with hαβ being defined as the partial derivative of E with respect to the (β ,α)
element of ρ:

hαβ :=
∂ E[ρ]
∂ ρβα

. (2.10)

On the other hand, one can obtain an expression for the quantity hαβ by
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taking the derivative of Eq. (2.7) with respect to ρβα:

hαβ = Tαβ +
∑

µ,µ′
vαµβµ′ρµ′µ(Φ) . (2.11)

A new operator Γ̂ can be introduced, called the self-consistent field, such
that

ĥ = T̂ + Γ̂ ,
and

Γαβ :=
∑

µ,µ′
vαµβµ′ρµ′µ(Φ) . (2.12)

The HF method then amounts to finding the one-body density that min-
imizes the energy: variations are carried out on the density and not on the
Slater determinant. As shown for example in Ref. [38], Appendix D.2., a
wave function is a Slater determinant if and only if the associated one-body
density matrix is a projector in the single-particle space, that is

ρ2 = ρ . (2.13)

This must hold also for the varied density ρ +δρ:

(ρ +δρ)2 = ρ +δρ . (2.14)

Up to first order in δρ, Eq. (2.14) implies

ρδρρ = 0 ,

which means that, in the single-particle basis that diagonalizesρ, the particle-
particle and hole-hole elements of δρ vanish. As a consequence, Eq. (2.9)
reads

δE[ρ] =
∑

m,i

(hmiδρim + himδρmi) .

This last equation and the variational condition (2.8) lead to

hmi = him = 0 .

In addition, ρ is a projector, therefore its eigenvalues are 1 and 0 and the
elements of h expressed in the single-particle basis in which ρ is diagonal
read

hαβ = Tαβ +
A
∑

k=1

vαkβk . (2.15)

Hence in particular

Tmi +
A
∑

k=1

vmkik = 0 ,
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which can be written as
[h,ρ] = 0

and implies that h and ρ can be diagonalized in the same single-particle
basis:

hαβ = ε
HF
α δαβ . (2.16)

This basis is called the HF basis, and is obtained from the basis in which the
expression (2.11) is written by a unitary transformation D, such that

ρµ′µ =
A
∑

k=1

Dµ′kD∗µk .

Hence the so-called Hartree-Fock equations are:

∑

ν

 

Tαν +
A
∑

k=1

∑

µ,µ′
vαµβµ′Dµ′kD∗µk

!

Dνβ = ε
HF
α Dαβ . (2.17)

2.3 HF-based RPA

2.3.1 Derivation of the RPA equations

Rowe showed [40] that if one denotes by |0〉 the exact ground state of a given
many-body system, characterized by a Hamiltonian Ĥ, then the excitations
of this system are described by the following equations of motion [41]:

∀R, ∀λ ∈H ,



0
�

�

�

R, [Ĥ,Q†
λ
]
��

�0
�

= ħhωλ



0
�

�

�

R,Q†
λ

��

�0
�

, (2.18)

where R is any operator on the Hilbert space H , |λ〉 an eigenstate of the
Hamiltonian (excited state) associated with the eigenvalue ωλ (excitation
energy of the state |λ〉), and Q†

λ
the operator that creates the excited state

|λ〉 when applied to the ground state. In other words, the operator Q†
λ

is
defined for each excited state |λ〉 by

¨

Q†
λ
|0〉 = |λ〉

Qλ |0〉 = 0 ,

(2.19)

(2.20)

and will be called here an excitation operator for the state |λ〉.
Given a Hamiltonian, the general aim here is to determine the excited

states |λ〉 of the nucleus by solving Eq. (2.18). The starting point of the
method is to assume — in other words, to choose — a particular form of the
excitation operator Q†

λ
. Only the following two constraints on the excitation

operators have to be fulfilled:
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1. They should verify the relation ∀(λ,µ), [Qλ,Q†
µ] = δλµ1, because we

require the set of eigenstates to be orthonormal;

2. They should verify Eqs. (2.19) and (2.20).

This step is where the RPA starts strictly speaking. In fact, in RPA, the exci-
tation operator is chosen so that it accounts for superpositions of 1 particle-1
hole (1p1h) configurations only. It is therefore chosen as the following ex-
pression:

Q†
ν

:=
∑

m,i

�

Xmi(ν)α
†
mi − Ymi(ν)αmi

�

, (2.21)

where α†
mi are products of a creation and an annihilation operator:

α†
mi := a†

mai . (2.22)

The amplitudes “X ” (forward amplitude) and “Y ” (backward amplitude) of
the excitation operator are to be determined by the method (see below).

The arbitrary operator R in Eq. (2.18) can thus be any linear combination
of α†

mi and αmi.
From the choice (2.21), the equations of motion (2.18) can be written as a
matrix equation, known as the RPA equations:

�

A B
B∗ A∗

��

X (ν)
Y (ν)

�

= ħhων

�

G 0
0 −G∗

��

X (ν)
Y (ν)

�

. (2.23)

The forward and backward amplitudes X (ν) and Y (ν), along with the ex-
citation energies ħhωλ, are the unknowns of the problem. By solving the RPA
equations, one thus gets the knowledge of the excitation operator, which in
turn provides the knowledge of the excited states according to Eq. (2.19).

The elements of these matrices are defined as follows:

Ami,n j :=



0
�

�

�

a†
i am, [Ĥ, a†

na j]
��

�0
�

, (2.24)

Bmi,n j := −



0
�

�

�

a†
i am, [Ĥ, a†

j an]
��

�0
�

, (2.25)

Gmi,n j :=



0
�

�

�

a†
i am, a†

na j

��

�0
�

= δmnρ ji −δ ji ρmn = G∗n j,mi . (2.26)

When the ground state |0〉 is replaced by the HF ground state in the above
definitions, one obtains that A and G are hermitian, and B is symmetric.
Provided these properties of A, B and G, the matrices

S :=

�

A B
B∗ A∗

�

(2.27)
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and

M :=

�

G 0
0 −G∗

�

, (2.28)

which are respectively known as the stability matrix and the metric matrix,
are both hermitian. The RPA equations (2.23) are compactly written as

S Z (ν) = ħhωνMZ (ν) , (2.29)

where we define

Z (ν) :=

�

X (ν)
Y (ν)

�

. (2.30)

Let us explain at this point the link between the stability condition of the
collective modes and the stability matrix S . A collective mode |ν〉 is un-
stable if its energy ħhων, as calculated by the resolution of Eq. (2.29), is
non-real. The stability condition of the RPA solutions was discussed in detail
in the past [40, 42–44]. The Thouless theorem [42] establishes the equiva-
lence between the minimization of the expectation value of the Hamiltonian



ψ
�

�Ĥ
�

�ψ
�

by a Slater determinant |ψ〉 and the stability of the solutions of
these equations, when |ψ〉 is taken as an approximation of the ground state
in the RPA equations. More specifically, one may express |ψ〉 as a function of
the exact ground state |0〉 (assumed to be a Slater determinant). According
to the Thouless theorem, as |ψ〉 is a Slater determinant, such an expression
would read

|ψ〉 = exp

�

∑

m,i

Cmia
†
mai

�

|0〉

The expectation value



ψ
�

�Ĥ
�

�ψ
�

can then be expanded in terms of the
C coefficients, and the stability condition is that the terms that are linear in
these coefficients must vanish and that the quadratic ones must be positive
or zero. One can show that the positiveness of the quadratic terms translates
into

Z (ν)†S Z (ν) ≥ 0 , (2.31)
meaning that the stability matrix S is positive semi-definite. In a nutshell,
the RPA collective modes are stable if the linear terms in the above-mentioned
expansion of the energy vanish and the stability matrix is positive semi-
definite. In other words, if the HF ground state is really a minimum of the
energy, then the RPA equations have only real solutions — nothing guaran-
tees that the reverse is true. We will go back to this result in Subsec. 3.2.2,
where we tackle the stability condition in SRPA.

We next derive a relation between the RPA amplitudes X and Y , which is
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imposed by requiring the orthonormality of any two excited states |λ〉 and
|λ′〉 of the many-body system.

If we denote by |0〉 the correlated ground state, which is sought to be
the exact ground state, the orthonormality requirement of the excited states
reads

〈λ′|λ〉= δλλ′ , (2.32)

and, in virtue of Eqs. (2.19) and (2.20), we also have

〈λ′|λ〉 = 〈0| [Qλ′,Q
†
λ
] |0〉 . (2.33)

Starting from the expression of the excitation operator (2.21) and of its
conjugate operator

Qλ :=
∑

n, j

�

X ∗n j(λ) a
†
j an − Y ∗n j(λ) a

†
na j

�

, (2.34)

we calculate the relation between the coefficients of the excitation operator
that arises from the orthonormality requirement. Let us therefore express
the commutator [Qλ′,Q

†
λ
] in terms of these coefficients, and of the metric

matrix elements:

[Qλ′,Q
†
λ
] =

∑

m,i,n, j

�

X ∗mi(λ
′)Xn j(λ) [a

†
i am, a†

na j] + Y ∗mi(λ
′)Yn j(λ) [a

†
mai, a†

j an]

− Y ∗mi(λ
′)Xn j(λ) [a

†
i am, a†

j an]− X ∗mi(λ
′)Yn j(λ) [a

†
mai, a†

na j]
�

.

(2.35)

From the anticommutation relations (fermions), by taking the expecta-
tion value in the ground state and using Eqs. (2.32) and (2.33), the following
orthonormality relation for any two RPA excited states |λ〉 and |λ′〉 may be
derived:

δλλ′ =
∑

m,i,n, j

�

X ∗mi(λ
′)Xn j(λ)Gmi,n j − Y ∗mi(λ

′)Yn j(λ)G
∗
mi,n j

�

. (2.36)

Note that, independently of the orthonormality requirement, the right-
hand side of Eq. (2.36) can be written as Z (λ′)†MZ (λ), where M is the
metric matrix (see Eq. (2.28)) and Z (λ) is defined in Eq. (2.30). Hence

〈λ′|λ〉 = Z (λ′)†MZ (λ) . (2.37)

Finally, we derive the explicit expression of the transition amplitude 〈λ| F̂ |0〉
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of a given one-body operator F̂ . Such an operator has the from

F̂ =
∑

α,β

〈α| F̂ |β〉 a†
αaβ ,

where the labels run over all single-particle states.
Making use of properties (2.19)-(2.20), the transition amplitude may be

written as
〈λ| F̂ |0〉 =




0
�

�

�

Qλ, F̂
��

�0
�

.
Then, by a similar reasoning as that used to establish the orthonormality

relation of excited states, one gets the following explicit relation:

〈λ| F̂ |0〉 =
∑

m,i,n, j

�

X ∗mi(λ) 〈n| F̂ | j〉 − Y ∗mi(λ) 〈 j| F̂ |n〉
�

G∗mi,n j . (2.38)

Let us stress that in Eq. (2.38), only the particle-hole components of the
transition operator F̂ are present, because of the particle-hole form of the
operator Qλ. This is of importance when considering the following identity,
known as the energy-weighted sum rule (EWSR):

∑

λ

ωλ
�

�〈λ| F̂ |0〉
�

�

2
=

1
2




0
�

�

�

F̂ ,
�

Ĥ, F̂
���

�0
�

. (2.39)

It turns out that this equation holds exactly when the HF ground state
|HF〉 replaces the correlated one |0〉 in both sides, and when |λ〉 are the
RPA excited states1, in virtue of the Thouless theorem [42]. This identity is
useful in practice to indicate the quality of a given theoretical model and of
practical applications.

It does not hold when the correlated ground state is maintained, because
then all the components of F̂ appear — not just the particle-hole ones. That is
why extensions of RPA which assume a correlated ground state and consider
only particle-hole excitations are said to violate the EWSR [45–47].

2.3.2 Unsufficiency and inconsistency of the standard RPA

In principle, the RPA ground state is not an independent-particle-like state,
as the HF ground state is (Slater determinant). Indeed, the chosen form of
the excitation operator (2.21) assumes a ground state where not all the hole
states are filled and not all the particle states are empty (correlated ground
state). Otherwise the backward term of this operator would always yield 0
when applied to the ground state, and would be pointless. In standard RPA

1It is the case within the quasiboson approximation; see Subsec. 2.3.2.
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however, the following approximation, known as the quasiboson approxi-
mation (QBA), is used in the computation of matrix elements:




0
�

�

�

a†
i am, a†

na j

��

�0
�

= δmnδi j −δmn




0
�

�a ja
†
i

�

�0
�

−δi j




0
�

�ana†
m

�

�0
�

' δmnδi j =



HF
�

�

�

a†
i am, a†

na j

��

�HF
�

(2.40)

i.e. Gmi,n j ' δmnδi j . (2.41)

This means that the HF ground state is used to approximate the RPA
ground state, and this replacement is made in all the matrix elements. This
approximation is inconsistent with the choice of the form of the excitation
operator, as in Eq. (2.21), and violates the Pauli principle. In Sec. 5.2 we
will present a method that may overcome this problem.

Note that within this approximation, the G block of the metric is equal to
the identity, as may be seen in Eq. (2.41).
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3.1 Towards the second random-phase approxima-
tion

The RPA and its extension that includes pairing correlations, the QRPA, have
been extensively used to describe properties of both giant resonances and
low-lying states, and have generally provided a satisfactory description of
them [48]. But if one wants to account for the spreading width and the
fragmentation of the excitation modes, one has to go beyond the RPA. A
possible path in this direction is the use of more complex configurations than
1p1h ones. The SRPA includes 2p2h configurations in addition to the latter,
and yields much more spread and fragmented spectra.

In fact, the SRPA model not only allows us to describe the Landau damp-
ing, which is a single-particle contribution to the width of excitation modes,
already present at the RPA level. It also allows us to reproduce the broad-
ening of excitations related to the spreading width, which corresponds to
a dissipation of the energy to the system’s internal degrees of freedom —
here, the beyond-1p1h configurations —. The escape-width contribution to
the width of an excited state can be described only in those models where
the continuum is properly described, at variance with our approach where
we discretize it using a basis. For a more detailed discussion on the three
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contributions to the width, the reader may refer to Refs. [12, 49].

Until recently, extending the configuration space to 2p2h configurations
was computationally unaffordable. To make computations tractable, drastic
approximations were adopted in the past. For example, calculations were
carried out relying on approximations such as using low-energy cutoffs for
2p2h configurations or using a diagonal approximation in the 2p2h sector
of the matrix to be diagonalized, in some cases even neglecting the residual
interaction between 2p2h configurations in the diagonal part [50–54].

More recently, there was a regain of interest for the SRPA model, es-
pecially because of the modern increase of computational capabilities. The
SRPA equations could be solved with less restrictive energy cutoffs and avoid-
ing the diagonal approximation [55–59]. The computation of rearrangement
terms for EDF-type calculations based on density-dependent interactions was
also implemented [60].

3.2 The SRPA model

3.2.1 Derivation of the SRPA equations

We derive here the SRPA equations by emphasizing the changes with re-
spect to the RPA, as derived in Subsec. 2.3.1. Like in the RPA case, the
present derivation is based on the equations-of-motion method [40], as may
be found in Ref. [61], although alternative derivations were proposed, based
on a variational approach [62] or on the small-amplitude limit of the time-
dependent density matrix [63, 64].

The formal properties of the RPA and the SRPA are analogous [65], and
as we did in the case of the RPA, we only present here the equations that are
of particular interest for our study. Also, we derive the equations within the
QBA.

The standard version of the SRPA is the mere extension of the RPA to
2p2h configurations. This leads to additional terms in the expression of the
excitation operators, compared to the RPA ones (see Eq. (2.21)), in order
to account for these higher configurations. The SRPA excitation operator is
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then defined as

Q†
ν

:=
∑

m,i

�

Xmi(ν)α
†
mi − Ymi(ν)αmi

�

+
∑

m, n>m
i, j>i

�

Xmni j(ν)α
†
mni j − Ymni j(ν)αmni j

�

,

(3.1)

where

α†
mi := a†

mai , (3.2)

α†
mni j := a†

ma†
na jai . (3.3)

As a consequence, in addition to the usual RPA amplitudes Xmi(ν) and
Ymi(ν) of the excitation operator, there are new forward and backward am-
plitudes to determine, respectively Xmni j(ν) and Ymni j(ν).

The equations of motion have the same expression as Eq. (2.18), but it
is now understood that the arbitrary operator R in this equation can also
feature terms corresponding to 2p2h configurations, i.e. linear combinations
of α†

mni j and αmni j. Thus we see that the number of terms resulting from
the computation of the commutators increases with respect to the RPA. Of
course, one also has the same definition (2.19)-(2.20) of the excitation op-
erator.

The equations of motion can then be written as a matrix equation iden-
tical to the RPA case (see Eq. (2.23))

�

A B
B∗ A∗

��

X (ν)
Y (ν)

�

= ħhων

�

G 0
0 −G∗

��

X (ν)
Y (ν)

�

, (3.4)

but where the matrices A, B and G and the vectors X and Y now contain
additional elements, due to the inclusion of 2p2h configurations. To high-
light what has formally changed from RPA to SRPA, let us first rename the
RPA matrices and vectors by adding subscripts referring to 1p1h configura-
tions: A11, B11, G11, X1 and Y1. By considering the above SRPA excitation
operator and by writing the equations of motion into a matrix form, the RPA
matrices appear as subblocks of the — larger — SRPA blocks A, B and G and
eigenvectors X and Y , such that1

A =

�

A11 A12

A21 A22

�

, B =

�

B11 B12

B21 B22

�

, G =

�

G11 G12

G21 G22

�

, (3.5)

1In the following notations of the matrix subblocks, we will use the subscripts ’1’ and ’2’, to refer
to 1p1h and 2p2h configurations, respectively. For example: the A12 subblock contains elements
written as Apk,mni j; X1(ν) contains elements written as Xmi(ν); X2(ν) contains elements written as
Xmni j(ν).
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and

X (ν) =

�

X1(ν)
X2(ν)

�

, Y (ν) =

�

Y1(ν)
Y2(ν)

�

. (3.6)

The blocks that involve 2p2h configurations are defined as follows:

Apk,mni j :=



0
�

�

�

αpk, [Ĥ,α†
mni j]

��

�0
�

, (3.7)

Amni j,pk :=



0
�

�

�

αmni j, [Ĥ,α†
pk]
��

�0
�

, (3.8)

Amni j,pqkl :=



0
�

�

�

αmni j, [Ĥ,α†
pqkl]

��

�0
�

, (3.9)

Bpk,mni j := −



0
�

�

�

α†
pk, [Ĥ,α†

mni j]
��

�0
�

, (3.10)

Bmni j,pk := −



0
�

�

�

α†
mni j, [Ĥ,α†

pk]
��

�0
�

, (3.11)

Bmni j,pqkl := −



0
�

�

�

αmni j, [Ĥ,αpqkl]
��

�0
�

= 0 , (3.12)

Gpk,mni j :=



0
�

�

�

αpk,α†
mni j

��

�0
�

, (3.13)

Gmni j,pk :=



0
�

�

�

αmni j,α
†
pk

��

�0
�

= G∗pk,mni j , (3.14)

Gmni j,pqkl :=



0
�

�

�

αmni j,α
†
pqkl

��

�0
�

= G∗pqkl,mni j . (3.15)

One still has

Ami,n j :=



0
�

�

�

αmi, [H,α†
n j]
��

�0
�

,

Bmi,n j := −



0
�

�

�

αmi, [H,αn j]
��

�0
�

,

Gmi,n j :=



0
�

�

�

αmi,α
†
n j

��

�0
�

= δmnρ ji −δ ji ρmn = G∗n j,mi , (3.16)

and, similarly to the RPA as in our derivation in Subsec. 2.3.1, the above
definitions imply that the matrices A and G are hermitian and that B is sym-
metric. One thus has the following relations between blocks:

A†
11 = A11 A†

21 = A12 A†
22 = A22 (3.17)

B†
11 = B∗11 B†

21 = B∗12 B†
22 = B∗22 = 022 (3.18)

G†
11 = G11 G†

21 = G12 G†
22 = G22 (3.19)

Let us now show how the normalization of eigenvectors is modified by
the inclusion of 2p2h configurations.

As in the RPA, the normalization relation is obtained by requiring that
the expectation value

〈λ′|λ〉 = 〈0| [Qλ′,Q
†
λ
] |0〉

be equal to δλλ′. The commutator [Qλ′,Q
†
λ
] expanded using the expression

(3.1) now contains sixteen terms, half of which are zero due to anticommu-
tation relations. The remaining terms can be gathered using the definitions
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(3.16), (3.13) and (3.15) of the G11, G12 and G22 elements respectively, so
as to obtain the following relation:

〈λ′|λ〉 =
∑

m,i,n, j

�

X ∗mi(λ
′)Xn j(λ)Gmi,n j − Y ∗mi(λ

′)Yn j(λ)G
∗
mi,n j

�

+
∑

p, m, k, i,
q>p, n>m,

l>k, j>i

�

X ∗pqkl(λ
′)Xmni j(λ)Gpqkl,mni j

−Y ∗pqkl(λ
′)Ymni j(λ)G

∗
pqkl,mni j

�

+
∑

p, m, k, i
n>m, j>i

�

�

X ∗pk(λ
′)Xmnkl(λ)− Ypk(λ)Y

∗
mnkl(λ

′)
�

Gpk,mni j

−
�

Y ∗pk(λ
′)Ymnkl(λ)− X pk(λ)X

∗
mnkl(λ

′)
�

G∗pk,mni j

�

.

(3.20)

One may notice at this point that, similarly to the RPA case, this expectation
value can be related to the SRPA metric matrix and amplitudes:

〈λ′|λ〉 = Z (λ′)†MZ (λ) . (3.21)

The general form of the normalization relation then reads:

Z (λ′)†MZ (λ) = δλλ′ . (3.22)

Let us proceed to some approximations that allow us to reduce the num-
ber of terms in the general expression (3.22):

1. The ground-state expectation value of pairs such as aαaβ and a†
αa†
β

(“anomalous correlators”) are zero. The Wick theorem [39, 66] allows
us to write any two-body expectation value (e.g. 〈0| a†

αa†
β

aγaδ |0〉) as

a linear combination of one-body expectation values (e.g.〈0| a†
αaβ |0〉),

among which some anomalous correlators may appear. This approx-
imation thus implies that two-body density matrix elements, defined
as

ραβγδ(0) := 〈0| a†
γa

†
δ
aβaα |0〉 , (3.23)

can be expressed in terms of only one-body matrix elements

ραβ(0) := 〈0| a†
β

aα |0〉 , (3.24)

by the following relation2:

∀(α,β ,γ,δ), ραβγδ ' ραγρβδ −ραδρβγ . (3.25)
2Where we have dropped the reference to the ground state for simplicity, as will hold in the

following.
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2. The one-body density matrix is assumed to be diagonal in the chosen
single-particle basis, i.e.

∀(α,β), ραβ = δαβ nα , (3.26)

where nα is the occupation number of the single-particle state α.

Within these approximations, one can show that the G12 and G21 blocks
of the SRPA metricM actually have only zero elements.

To conclude, the SRPA normalization relation simply reads

δλλ′ '
∑

m,i,n, j

�

X ∗mi(λ
′)Xn j(λ)Gmi,n j − Y ∗mi(λ

′)Yn j(λ)G
∗
mi,n j

�

+
∑

p, m, k, i,
q>p, n>m,

l>k, j>i

�

X ∗pqkl(λ
′)Xmni j(λ)Gpqkl,mni j − Y ∗pqkl(λ

′)Ymni j(λ)G
∗
pqkl,mni j

�

.

(3.27)

Continuing the correspondance with the RPA derivation of Subsec. 2.3.1,
let us finally consider the SRPA transition amplitude 〈λ| F |0〉 of a one-body
operator F . In this case, the only additional terms compared to the RPA case
are those mixing 1p1h and 2p2h configurations, similar to the “12” terms of
Eq. (3.22). Therefore, provided the approximations (3.25)-(3.26) hold, the
expression of the transition amplitude of any one-body operator is actually
the same as in the RPA (see Eq. (2.38)):

〈λ| F |0〉 =
∑

m,i,n, j

�

X ∗mi(λ) 〈n| F | j〉 − Y ∗mi(λ) 〈 j| F |n〉
�

G∗mi,n j . (3.28)

3.2.2 Drawbacks of the SRPA model

The standard form of the SRPA model suffers from several problems. Some
of them are general in that they are present in all types of SRPA calculations.
Others are related to the use of EDFs. We present each of them succinctly in
this section.
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General problems. Abnormal shift towards low energies and instabilities (Thou-
less theorem)

Instabilities (non-real eigenenergies) may appear in standard SRPA, contrary
to standard RPA3 provided the HF ground-state in the RPA does correspond
to a true minimum of the energy4. Indeed, in contrast to the standard RPA,
the fact that the reference state (the HF ground state) minimizes the energy
is not sufficient anymore to guarantee stable solutions. As was highlighted
by Papakonstantinou [67], this comes from the fact that a single Slater de-
terminant cannot fulfill the stability condition in the SRPA case, namely the
simultaneous positive semi-definiteness of the stability matrix and the can-
cellation of linear terms in the expansion of the Hamiltonian expectation
value (see Subsec. 2.3.1). Of course, the latter expansion contains more
terms than in the RPA case, due to the presence of 2p2h configurations, as
may be seen in Ref. [62]. In summary, the Thouless theorem [42], applica-
ble in the standard RPA, does not extend to the standard SRPA. However, it
may be extended by means of a correction of the stability matrix, such as the
subtraction procedure [68], which we discuss in Chap. 4.

Note that the onset of instabilities when including 2p2h configurations is
not specific to the EDF framework, but arises also when other types of in-
teractions are used, for example functionals derived from realistic nucleon-
nucleon interactions [56].

The very large and unphysical shift towards low energies that is found in
SRPA spectra compared to RPA spectra may also he related to the instability
problems of the SRPA model, as analyzed in Ref. [67].

Illustrations of this shift are shown on Figs. 3.1 to 3.3.
Figure 3.1 is extracted from Ref. [57] and displays the 16O isoscalar (IS)

and isovector (IV) monopole responses, in both the RPA and the SRPA. One
observes that the whole SRPA spectrum is shifted by several MeVs towards
low energies with respect to the RPA, similarly in the isoscalar and in the
isovector case (upper and lower panels, respectively). The used Skyrme
parametrization is SGII [69, 70].

On Fig. 3.2, which was extracted from Ref. [56], the same behavior is
found. This figure shows the isoscalar quadrupole response of 48Ca (upper

3By “standard” we mean that the quasiboson approximation is used (see Subsec. 2.3.2).
4The standard RPA may have instabilties (for example in the quadrupole case close to the phase

transition to quadrupole deformation, or in the charge-exchange case) due to a failure of the min-
imization of the expectation value 〈HF| Ĥ |HF〉 in the variational procedure.
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panel) with a realistic interaction, derived from the Argonne V18 potential
[71] using the unitary correlation operator (UCOM) [72, 73], and the isovec-
tor dipole response of 16O (lower panel) with the Brink-Boeker (BB) interac-
tion [74]. One sees in addition that the effect of the diagonal approximation
is marginal.

Figure 3.3 was published in Ref. [75] and displays strength distributions
for several multipolarities L in the metal cluster Na+9, which is positively
charged. Metal clusters are treated within the jellium approximation where
the ionic structure is described as a positively charged uniform background
interacting with delocalized valence electrons [76]. The interaction acting
between the jellium and the electrons and between the delocalized electrons
is the Coulomb interaction. The energy scale is different in metal clusters
(then, the shift is of the order of the eV) than in nuclei (generally a shift of
several MeVs), and in this case, the effect of the diagonal approximation is
more important than in Ref. [56]. In particular, the dipole response (upper
right panel) shows that the shift is indeed unphysical, for in the SRPA results,
the dipole S = 0 state is located further from the experimental result than
the RPA, with a worse reproduction obtained from the full SRPA (all 2p2h
couplings) than from the SRPA with diagonal approximation.
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Figure 3.1: RPA [dashed (black) lines] and SRPA [full (red) lines] for the isoscalar (upper
panel) and isovector (lower panel) monopole strength distributions in 16O. The calcula-
tions are performed with the Skyrme parametrization SGII. In SRPA, the cutoff on 2p2h
configurations is 120 MeV. From Ref. [57].
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Problems related to EDFs. Double-counting and possible ultraviolet diver-
gence

Let us recall that all the present studies are carried out in the framework
of EDFs. When EDFs are used, beyond-RPA approaches generate a double
counting of correlations [25]. Indeed, effective interactions contain param-
eters which are adjusted to reproduce selected properties of nuclei. In gen-
eral, these adjustments have been performed using mean-field calculations,
but the measured quantities that they aim to reproduce contain correlations.
This implies that some correlations are indeed implicitly accounted for in the
numerical values of the adjusted parameters. Now the SRPA is a beyond-MF
method, because of the inclusion of 2p2h configurations, therefore it is de-
signed to describe correlations which are absent in a simple MF model. If
EDFs adjusted at the MF level are used, there is a risk of overcounting cor-
relations.

Eliminating the double counting of correlations would thus mean in this
case subtracting those correlations which are already accounted for in the
numerical values of the parameters and leaving only the genuine beyond-
mean-field effects (what Tselyaev calls dynamic correlations [68]).

As already mentioned in Sec. 2.1, the most used interactions in the EDF
framework are the Skyrme and Gogny interactions. In the Skyrme case, all
the terms are of zero range, whereas in the Gogny case, some terms have zero
range and others finite range (gaussians). When the mean-field approxima-
tion is overcome, the zero range of the used interaction may generate ultra-
violet divergences and the obtained results acquire a cutoff dependence.

This divergence was for example studied analytically in Ref. [78], where
second-order calculations of the equation of state of infinite matter are car-
ried out with Skyrme interactions.

In cases where ultraviolet divergences occur, regularization schemes are
required.
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A correction of SRPA: Subtracted SRPA

“Prends un siège Cinna, et assieds-toi par terre
Et si tu veux parler, commence par te taire.”

Raymond Rua.
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4.1 Principle of the subtracted SRPA (SSRPA)

4.1.1 SRPA as an energy-dependent RPA-like problem

In this section, we show a derivation which will be used to introduce our
subtraction method.

We first remind the matrix form of the (S)RPA equations:
�

A B
B∗ A∗

��

X (ν)
Y (ν)

�

= ħhων

�

G 0
0 −G∗

��

X (ν)
Y (ν)

�

. (4.1)

Let us consider the SRPA case and denote by N1 and N2 respectively the
number of 1p1h and 2p2h configurations. A, B and G therefore belong to
MN1+N2

(C) in the general case. Defining the dimension of the problem as
D := 2(N1 + N2), the stability matrix belongs toMD(C).
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Making the matrix subblocks appear explicitly, one has:








A11 A12 B11 B12

A21 A22 B21 B22

B∗11 B∗12 A∗11 A∗12
B∗21 B∗22 A∗21 A∗22

















X1(ν)
X2(ν)
Y1(ν)
Y2(ν)









= ħhων









G11 G12 0 0
G21 G22 0 0
0 0 −G∗11 −G∗12
0 0 −G∗21 −G∗22

















X1(ν)
X2(ν)
Y1(ν)
Y2(ν)









.

(4.2)

Now, as we have derived in Subsec. 3.2.1, the different matrix subblocks
are linked to one another by the properties (3.17) to (3.19), and we have
shown that G12 = 012 under two approximations. In these conditions, the
SRPA equations (4.2) become


















A11X1(ν) + A12X2(ν) + B11Y1(ν) + B12Y2(ν) = ħhωνG11X1(ν)

A†
12X1(ν) + A22X2(ν) +

t B12Y1(ν) = ħhωνG22X2(ν)

B†
11X1(ν) + B∗12X2(ν) + A∗11Y1(ν) + A∗12Y2(ν) = −ħhωνG∗11Y1(ν)

B†
12X1(ν) +

t A12Y1(ν) + A∗22Y2(ν) = −ħhωνG∗22Y2(ν) .

(4.3)

(4.4)

(4.5)

(4.6)

In Eqs. (4.4) and (4.6), the X2 and Y2 vectors can be factorized indepen-
dently from one another, by defining two new matrices for each eigenvalue
ω:

M(ω) := ħhωG22 − A22 , (4.7)

P(ω) := −
�

ħhωG∗22 + A∗22

�

. (4.8)

Hence, if one assumes that M and P are invertible, an expression for
these two vectors is

X2(ν) = M(ων)
−1
�

A†
12X1(ν) +

t B12Y1(ν)
�

, (4.9)

Y2(ν) = P(ων)
−1
�

B†
12X1(ν) +

t A12Y1(ν)
�

. (4.10)

If so, one can replace X2 and Y2 in Eqs. (4.3) and (4.5) to transform these
equations into the following ones:











































�

A11 + A12M(ων)
−1A†

12 − B12P(ων)
−1B†

12

�

X1(ν)

+
�

B11 + A12M(ων)
−1 t

B12 − B12P(ων)
−1 t

A12

�

Y1(ν)

= ħhωνG11X1(ν)
�

B†
11 + B∗12M(ων)

−1A†
12 − A∗12P(ων)

−1B†
12

�

X1(ν)

+
�

A∗11 + B∗12M(ων)
−1 t

B12 − A∗12P(ων)
−1 t

A12

�

Y1(ν)

= −ħhωνG∗11Y1(ν) .

(4.11)

(4.12)
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The system (4.11)-(4.12) would resemble an RPA-like problem, if the factor
of Y1 in Eq. (4.12) were the Hermitian conjugate of that of X1 in Eq. (4.11)
(and similarly for the two other factors). This condition is fulfilled if M(ων)
and P(ων) are their own complex conjugates.

It then seems relevant to introduce the following two N2
1 -matrices:

A′11(ω) := A11 + A12M(ω)−1A†
12 − B12P(ω)−1B†

12 , (4.13)

B′11(ω) := B11 + A12M(ω)−1 t
B12 − B12P(ω)−1 t

A12 . (4.14)

Note that these matrices depend on the excitation energyων, unlike the RPA
matrices A11 and B11.

The system (4.11)-(4.12) can now be written in matrix form:
�

A′11(ων) B′11(ων)
B′∗11(ων) A′∗11(ων)

��

X1(ν)
Y1(ν)

�

= ħhων

�

G11 0
0 −G∗11

��

X1(ν)
Y1(ν)

�

. (4.15)

In the end, provided the matrices M(ων) and P(ων) are real and invert-
ible for each eigenvalueων, the initial problem of dimension D = 2(N1+N2)
has been reduced a problem of dimension N1, involving the inversion of two
N2

2 -matrices (M(ων) and P(ων)) — this inversion is needed to set up the
new block matrices, but also to calculate X2 and Y2 (according to Eqs. (4.9)
and (4.10)). Of course, Eq. (4.15) is not properly speaking an eigenvalue
problem, because the matrices themselves depend on the solution.

The above derivation can be summarized in the following way:
If M(ων) = ħhωνG22 − A22 and P(ων) = −

�

ħhωνG∗22 + A∗22

�

are real and in-
vertible for each ων, then:

SRPA problem (4.2) ⇔

¨

Inversion of M(ων) and P(ων) for each ων
Energy-dependent RPA-like problem (4.15)

4.1.2 Benefits and practical use of the subtraction method

Historically, the subtraction procedure was introduced by Tselyaev [79] as
a means to address the problem of spurious states in the quasiparticle-time-
blocking-approximation (QTBA) approach. Let us recall at this point that
spurious states are excitations of the many-body system that correspond to
given symmetries, such as translational of rotational invariance. They do
not correspond to physical excited modes and are therefore expected to have
zero excitation energies. Tselyaev’s method consisted in finding a sufficient
condition for the response function to have poles at zero excitation energy
corresponding to the spurious states. Later, Tselyaev showed that, in the
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case of beyond-RPA approaches, this procedure also allows for the elimina-
tion of correlations that might already be accounted for in the values of the
parameters of the effective interaction (in EDF models), as already discussed
in Subsec. 3.2.2 (double counting of correlations) [68].

It was shown [68] that the subtraction procedure also solves the stabil-
ity problem of SRPA (see Subsec. 3.2.2). In fact, the SRPA stability matrix
resulting from the subtraction is positive semi-definite, which allows for an
extension of the Thouless theorem to SRPA [42, 67].

In Ref. [68], the latter features of this subtraction procedure are high-
lighted for a category of RPA-like problems into which the problem (4.15)
falls, which is of interest for our study. To present how the procedure is
translated in the SRPA case, we briefly introduce here the needed quantities
from the response function formalism.

Let us first define the RPA matrix ΩRPA, in terms of the RPA stability and
metric matrices, S RPA andM RPA respectively:

ΩRPA := M RPA−1S RPA . (4.16)

The RPA response function [38] is defined as

RRPA(ω) := −(ω−ΩRPA)−1M RPA , (4.17)

and the (dynamic) polarizability ΠRPA
F , which determines the distribution of

the transition strength due to an external field represented by the single-
particle operator F , has the following definition:

ΠRPA
F (ω) := −




F
�

�RRPA(ω)
�

� F
�

. (4.18)

The so-called static polarizability is the value of the polarizability at ω = 0.
This quantity can be derived as −2m−1 [80], where m−1 :=

∫∞
0 S(E)E−1dE

is the inverse energy-weighted moment of the strength function S, which
contains all the information of the spectrum. Now, the general idea is that
EDF functionals are built so as to encapsulate contributions to the correla-
tions, because they contain parameters adjusted with mean-field calculations
to reproduce measured observables. In a DFT spirit, these functionals may
be regarded as “universal functionals” tailored to describe correlated many-
body systems. Following this idea, the standard mean-field RPA would then
provide the supposedly exact value of the static polarizability. On the other
side, when beyond-MF models are employed (such as the SRPA model), cor-
relations which are absent in a mean-field calculation are explicitly included.
If a traditional EDF functional is used, double counting of correlations may
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occur.

Therefore it is sensible to impose that the inverse energy-weighted mo-
ment of the strength m−1 (related to the static polarizability and calculated
with the beyond-MF approach of interest) be equal to the RPA m−1, so that
correlations are accounted for without double counting. As already pointed
out in Subsec. 3.2.2, this subtraction concerns static contributions (ω = 0),
keeping the benefits of the beyond-MF approach with respect to RPA in the
description of excited states (dynamic contributions to correlations are taken
into account).

The procedure then amounts to impose that the beyond-RPA and the RPA
static polarizabilities be equal. In our case, the beyond-MF approach is the
SRPA, and, as we have shown in the previous section, the SRPA can be ex-
pressed as an energy-dependent RPA-like problem, which we will label RPA′

in the formulae. The prescription reads

ΠRPA′

F (0) = ΠRPA
F (0) . (4.19)

As we have seen, the stability matrix of this RPA-like problem depends
on the excitation energy:

S RPA′(ω) :=

�

A′11(ω) B′11(ω)
B′∗11(ω) A′∗11(ω)

�

, (4.20)

and so does the corresponding RPA matrix ΩRPA′(ω) := M RPA′−1
S RPA′(ω)

(where M RPA′ = M RPA; see Eq. (4.15)), by definition. Making use of the
definitions (4.18), (4.17) and (4.16), we get

ΠRPA′

F (0) = −
D

F
�

�

�ΩRPA′(0)
−1
M RPA′

�

�

� F
E

= −
D

F
�

�

�S RPA′(0)
−1
M RPA′2

�

�

� F
E

,

which shows that the prescription (4.19) can equivalently be formulated on
the stability matrices:

S RPA′(0) = S RPA . (4.21)

According to the definition of the stability matrices, we conclude that this
requirement translates into the equality of the RPA-like blocks at zero energy
and standard RPA blocks:

¨

A′11(0) = A11

B′11(0) = B11 .
(4.22)

Now the RPA-like blocks were defined as the RPA ones to which an energy-
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dependent term (self-energy) is added (see Eqs. (4.13) and (4.14)):

A′11(ω) = A11 +WA(ω) , (4.23)

B′11(ω) = B11 +WB(ω) , (4.24)

where we define

WA(ω) := A12M(ω)−1A†
12 − B12P(ω)−1B†

12 , (4.25)

WB(ω) := A12M(ω)−1 t
B12 − B12P(ω)−1 t

A12 . (4.26)

One would have satisfied the prescription (4.22) if one had have, in place of
the A′11(ω) and B′11(ω) blocks, respectively the following ones:

AS
11(ω) := A′11(ω)−WA(0) = A11 +WA(ω)−WA(0) , (4.27)

BS
11(ω) := B′11(ω)−WB(0) = B11 +WB(ω)−WB(0) . (4.28)

As is apparent in Eqs. (4.27) and (4.28), the RPA-like problem is cleared
from the static contribution to the correlations, while having the dynamic
correlations preserved.

A way of satisfying the prescription would be to choose beforehand the
A11 and B11 blocks to be A11 −WA(0) and B11 −WB(0) respectively. In other
words, let us suppose that one has a SRPA problem (4.2), where the A11

and B11 blocks are subtracted in this way. The derivation carried out in
Subsec. 4.1.1 can be followed for this subtracted SRPA problem, and the
corresponding RPA-like blocks exactly fulfill the prescription (4.22). This
is how the subtraction method is performed in practice in our numerical
applications.

As a conclusion, the SSRPA model amounts to a correction of the RPA
block matrices, while setting up all the other matrices in the usual way, fol-
lowed by the resolution of the subsequent SRPA problem. The major cost
of this procedure is the computation of the terms to subtract, namely WA(0)
and WB(0). As one can see in their respective definitions (4.25) and (4.26),
their computation involves the inversion of the M and P matrices, which are
matrices of size N2

2 (see Eqs. (4.7) and (4.8)). The large number of 2p2h
configurations (N2), compared to that of 1p1h ones (N1), may result in non-
negligible computational effort when performing this procedure.

Gambacurta et al. [81] showed that the subtraction procedure also elimi-
nates the ultraviolet divergences when zero-range interactions, such as Skyr-
me interactions, are used. Figure 4.1 illustrates this. There, the isoscalar
monopole response of 16O computed with the Skyrme parametrization SGII
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is displayed for several cutoff values. These cutoff values are put both on the
corrective terms (self-energy) and on the 2p2h sector of the SSRPA matrix to
be diagonalized. For a numerical simplification of such a test, the diagonal
approximation was used in the computation of the corrective terms (in the
matrix to be inverted).

10 15 20 25 30
E (MeV)

0

2

4

6

B
(E

0)
 (

e2 fm
4 M

eV
-1

)

SSRPA
D

(70 MeV in SRPA and in the corr. term)
SSRPA

D
(90 MeV in SRPA and in the corr. term)

SSRPA
D

(80 MeV in SRPA and in the corr. term)

Figure 4.1: Isoscalar monopole response of 16O in the diagonal approximation for the
computation of the corrective terms, with cutoff at 70 (black line and magenta area), 80
(green dashed line), and 90 (blue dotted line) MeV. From Ref. [81].

The choice of the cutoff in the corrective terms is crucial to guarantee
that the m−1 moment of the strength is conserved with respect to RPA. As an
illustration, Fig. 4.2 shows the ratios of the moments m−1, m0 and m1 of the
quadrupole strength distribution in 16O with the parametrization SGII (the
ratios are taken with respect to the RPA values). The subscripts F and D indi-
cate whether the matrix to be inverted (in the corrective terms) is computed
without approximations or in the diagonal approximation, respectively. A
cutoff of 50 MeV is employed for the SRPA and the SSRPA calculations. Three
cutoff values, 40, 45 and 50 MeV, are used in the corrective terms. One may
observe that the m−1 moment is fully conserved only when the matrix to
invert in the corrective terms is treated without the diagonal approximation
and the 2p2h cutoff values used in the SSRPA diagonalization and in the
corrective terms are the same.
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Figure 4.2: Ratios of the moments m−1 , m0 , and m1 of the quadrupole strength distri-
bution in the SRPA (purple circles), the full SSRPA (SSRPAF, red squares), and the SSRPA
with diagonal approximation in the corrective terms (SSRPAD, yellow diamonds) to those
in the RPA for increasingly high cutoffs in the correction terms, at 40, 45, and 50 MeV.
From Ref. [81].

4.2 Results: Assessment of the correction capabili-
ties of SSRPA

4.2.1 Residual interaction in SSRPA calculations

In all the applications that will be presented in this manuscript, the adopted
phenomenological interaction is the Skyrme interaction in its most currently
used form (and not containing tensor terms), that is:

V (r1, r2) = t0(1+ x0Pσ)δ(r) +
1
6

t3(1+ x3Pσ)ρ(R)
αδ(r)

+
1
2

t1(1+ x1Pσ)[P
′2δ(r) +δ(r)P2] + t2(1+ x2Pσ)P

′ ·δ(r)P

+ iW0σ · [P′ ×δ(r)P] ,

The density-dependent term may be recognized as the second term of the
first line. Two gradient terms appear in the second line, one of s-wave type
(t1) and the other of p-wave type (t2). The last line describes the spin-orbit
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contribution. The employed notation is the following:

r = r1 − r2 , R =
1
2
(r1 + r2) , (4.29)

P =
1
2i
(∇1 −∇2) , (4.30)

σ = σ1 +σ2 , Pσ =
1
2
(1+σ1 ·σ2) .

P′ is the complex conjugate of P (acting on the left), σ are the spin ma-
trices and Pσ are spin-exchange operators. The parameters are t i, x i (i ∈
{0, 1,2, 3}), α (power of the density-dependent term), and W0 (spin-orbit
parameter).

This interaction is used to carry out the HF calculations for the ground
state.

The residual interaction for the SRPA and SSRPA applications is derived
from the same Skyrme interaction. In the first applications [57, 58, 81], cal-
culations were not fully self-consistent because the Coulomb and spin-orbit
contributions were not included in the residual interaction. Only starting
from the application of Ref. [82], which will be described in Subsec. 4.2.2,
these two contributions were fully taken into account.

Owing to the presence of a density-dependent term in the Skyrme inter-
action, the so-called rearrangement terms must be properly included in the
residual interaction. This important aspect was addressed in Ref. [60] and
will be discussed in what follows.

Rearrangement terms are a peculiarity of cases where a density-dependent
interaction is used and are produced by the second derivative of the func-
tional with respect to the density. They are also present in the diagonal
matrix elements of A, containing single-particle energies.

In Ref. [83], a derivation of rearrangement terms was presented in the
context of the shell model. Reference [84] was a first attempt to derive re-
arrangement terms for beyond-RPA matrix elements. However, Ref. [60] is
the first derivation of all the terms for SRPA-type calculations, which, in ad-
dition, allows one to recover the RPA rearrangement terms in the RPA limit.
The variational procedure of Ref. [62] is extended to the case of density-
dependent forces. The ground-state |ψ〉 is written as

|ψ〉 = eS |HF〉 ,
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where
S =

∑

m,i

Cmia
†
mai +

1
2

∑

m,n,i, j

Cmni ja
†
ma†

na jai .

We introduce the coefficients

cαβγδ := Cαβγδ − Cαβδγ .

The Hamiltonian with a density-dependent interaction is written as

Ĥ = T̂ + V̂ (ρ) =
∑

µ,µ′
Tµµ′a

†
µaµ′ +

1
4

∑

µ,ν,µ′,ν′
vµνµ′ν′(ρ)a

†
µa†
νaν′aµ′ ,

where
vαβγδ(ρ) := 〈αβ | V̂ (ρ) |γδ〉 − 〈αβ | V̂ (ρ) |δγ〉 .

Assuming that the coefficients Cmi and Cmni j are small, one may expand the
expectation values of one- and two-body operators in powers of S and one
may truncate this expansion at second order.

Let us start with the one-body density matrix:

ραβ(ψ) = 〈ψ| a
†
β

aα |ψ〉 = 〈HF|eS†
a†
β

aαeS |HF〉

= 〈HF|
�

1+ S† +
1
2

S†2
+ · · ·

�

a†
β

aα

�

1+ S +
1
2

S2 + · · ·
�

|HF〉

' ρ(0)
αβ
+ 〈HF|

�

a†
β

aαS + S†a†
β

aα
�

|HF〉

+ 〈HF|
�

1
2

a†
β

aαS2 + S†a†
β

aαS +
1
2

S†2
a†
β

aα

�

|HF〉 ,

where ρ(0)
αβ

is the HF density, the second term on the third line is the linear

contribution δρ(1) and the term on the last line is the quadratic contribution
δρ(2) to the variation of the density δρ = δρ(1) + δρ(2). Terms beyond the
quadratic contribution are neglected.

The mean value of the Hamiltonian can be written as



Ĥ
�

=



HF
�

�Ĥ
�

�HF
�

+
∑

m,i

�

C∗miλmi(ρ) + Cmiλim(ρ)
�

+
∑

m, n>m
i, j>i

�

c∗mni j vmni j(ρ) + cmni j vi jmn(ρ)
�

+ F (2) ,

where F (2) contains all the quadratic contributions in the C coefficients (see
Eq. (8) in Ref. [62]). The quantities λ are defined as

λαβ(ρ) = Tαβ +
∑

k

vαkβk(ρ) .
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The A and B matrices are derived as second derivatives of



Ĥ
�

with re-
spect to the coefficients. For instance:

Ami,pk =

�

∂ 2



Ĥ
�

∂ C∗mi∂ Cpk

�

C=C∗=0

,

Ami,pqkl =

�

∂ 2



Ĥ
�

∂ C∗mi∂ cpqkl

�

C=C∗=0

,

Amni j,pqkl =

�

∂ 2



Ĥ
�

∂ c∗mni j∂ cpqkl

�

C=C∗=0

,

Bmi,pk =

�

∂ 2



Ĥ
�

∂ C∗mi∂ C∗pk

�

C=C∗=0

.

Of course, when the interaction is not density-dependent, only the F (2) terms
of



Ĥ
�

contribute. Otherwise, rearrangement terms appear.
Let us now expand the antisymmetrized interaction v̂ around ρ(0) up to

quadratic terms:

vαβγδ ' vαβγδ(ρ
(0)) +

∑

a,b

�

∂ vαβγδ
∂ ρab

�

ρ=ρ(0)
δρab

+
1
2

∑

a,b,c,d

�

∂ 2vαβγδ
∂ ρab∂ ρcd

�

ρ=ρ(0)
δρabδρcd .

Using this expansion, the rearrangement terms for the beyond-RPA matrix
elements may be found (see Ref. [60] for details). For example, for the
matrix elements coupling 1p1h and 2p2h configurations, one has

A(rearr)
mi,pqkl =

�

∂ vklpq

∂ ρim

�

ρ=ρ(0)
ρim ,

B(rearr)
mi,pqkl =

�

∂ vklpq

∂ ρmi

�

ρ=ρ(0)
ρmi .

4.2.2 Dipole response and polarizability in 48Ca

This study consisted in the first application of the SSRPA model to analyze
the dipole strength and polarizability in 48Ca [82].

The electric dipole polarizability is a quantity of importance, because it
might provide information on the slope and density dependence of the sym-
metry energy in the equation of state of nuclear matter [85]. Its determi-
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nation has various implications in nuclear physics: for instance in nuclear
structure for the description of the neutron-skin thickness of neutron-rich
nuclei [86, 87], or in nuclear astrophysics, where the concerned quantities
are the radius, proton fraction, and cooling of neutron stars [88–90].

The electric dipole response of atomic nuclei has been extensively studied
in different experiments and with different probes. For example recently the
low-lying dipole response in 48Ca has been measured in Darmstadt. These
measurements in the low-energy region of the 48Ca spectrum, based on the
(γ, γ′) reaction [91, 92], showed that only certain types of beyond-MF calcu-
lations — among which SRPA — could provide results in reasonable agree-
ment with the data, as far as fragmentation is concerned [57, 92, 93]. Also, a
recent study [94] suggested that the inclusion of complex configurations was
necessary to account for this low-lying strength. The RPA model is unable to
reproduce the strength below 10 MeV because either it does not provide any
strength at these low energies, or if some strength is predicted, only the Lan-
dau damping is present, and therefore no sufficient fragmentation is found.
On the contrary, the SRPA model provides some strength at energies lower
than 10 MeV and leads naturally to such an additional fragmentation, due
to the mixing between 1p1h and 2p2h configurations.

More recently, experimental studies were conducted to reach both the
low-energy and giant resonance regions [95, 96] of the dipole spectrum. In
particular, the experiment of Ref. [96], which was carried out at the RCNP
facility in Osaka, employing the (p, p’) reaction at forward angle, concerned
48Ca. Future studies are planned at ELI-NP in Bucharest [97, 98].

In Ref. [82], two different parametrizations of the Skyrme interaction
were used: SLy4 [99–101] and SGII. As these two parametrizations were
adjusted without the so-called J2 terms, where J is the spin–orbit density,
the J2 terms were not included in the mean field and in the residual inter-
action used in our calculations. This holds also for all the other calculations
that will be illustrated later in this manuscript. The 1p1h cutoff was set to
100 MeV, the 2p2h cutoff to 60 MeV with SGII and to 70 MeV with SLy4. It
was verified that the choice of the cutoff on the 1p1h configurations guar-
antees that the isoscalar and isovector EWSRs are preserved (deviations are
less than 1 %). It was also checked that the 2p2h cutoffs were high enough
so to have results that were practically cutoff-independent. In addition, a di-
agonal approximation was applied in the corrective terms of the subtraction.
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Exp SRPA SSRPA SRPA SSRPA
SGII SGII SLy4 SLy4

∑

B(E1) 0.068 0.563 0.078 1.012 0.126
± 0.008

∑

i EiBi(E1) 0.570 4.618 0.621 8.795 1.062
± 0.062

Centroid 8.38 8.20 7.96 8.69 8.43

Table 4.1: Experimental and theoretical
∑

B(E1) (in e2 fm2) and
∑

i EiBi(E1) (in MeV e2

fm2) summed between 5 and 10 MeV. The third line reports the corresponding centroid
energies in MeV. The experimental values are extracted from Ref. [92].

Let us first present the results obtained in the low-energy region (between
5 and 10 MeV). A previous work [58] tackled the dipole response of 48Ca in
particular, calculated in SRPA, with a focus on the low-lying strength. The
present work differs in that it makes use of the subtraction procedure, and
in that all the terms of the residual interaction are included (spin-orbit and
Coulomb terms were neglected in Ref. [58]).

In the study of Ref. [58], where no subtraction procedure was used, the
dipole strength integrated up to 10 MeV was largely overestimated. On the
contrary, the present calculations use a subtraction procedure, which, as we
discussed in Subsec. 4.1.2, avoids the occurrence of instabilities and UV di-
vergences. As the abnormal downward shift of the strength is also corrected
by the subtraction, the integrated low-lying B(E1) transition probability be-
comes much more compatible with experiments. This improvement can be
seen in Table 4.1: the m0 (integrated strength) and m1 moments calculated
with subtraction are much closer to the experimental values than in standard
SRPA. For example, with the SGII parametrization, which gives the best re-
sults in this case, we obtain less than 15 % discrepancy in SSRPA against a
factor of more than 8 in standard SRPA. Although the SLy4 parametrization
leads to less satisfactory results in this energy region in particular, the sub-
traction brings nevertheless a significant improvement over RPA and SRPA.
With the two parametrizations used here, no strength is found below 10 MeV
with RPA.

Regarding the position of the peaks below 10 MeV, Fig. 4.3 displays the
experimental data (upper panel) and the SRPA results with and without sub-
traction (lower panel) computed with the parametrization SGII. One ob-
serves that SSRPA results are in overall better agreement with the experi-
mental peak positions than standard SRPA. Although the corresponding re-
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Figure 4.3: (a) Experimental B(E1) values [91]; (b) Theoretical distributions of the tran-
sition probabilities B(E1) calculated with the standard SRPA (dashed red bars; the values
have been divided by 2) and with the SSRPA (blue thick bars), employing the Skyrme
parametrization SGII.

sults with the SLy4 parametrization are less satisfactory (see Fig. 4.4), the
subtraction allows for a reduction of the strength also in this case, which is
an improvement compared with standard SRPA results.

Note that we also performed calculations for 40Ca: for this nucleus, no
strength below 10 MeV is found, in agreement with the experiments of Refs.
[91, 92].

We next focus on the GDR region. The experimental values of the centroid
energy EC and width Γ , reported in Ref. [96], are respectively 18.9 ± 0.2
MeV and 3.9 ± 0.4 MeV. In our calculations, these quantities are computed
according to the formulas

EC =
m1

m0
(4.31)

Γ =
Æ

m2/m0 − (m1/m0)2 , (4.32)

where
mk :=

∑

i

Ek
i Bi(E1) (4.33)

is the energy-weighted moment of order k.

Figure 4.5 shows the strength distributions calculated with the parametriza-
tion SGII in RPA, SRPA, and SSRPA, compared with the experimental distri-
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Figure 4.4: Same as Fig. 4.3, but the theoretical results are obtained this time with the
Skyrme parametrization SLy4.

butions of Ref. [96]. One obtains a good reproduction of the experimental
width in SSRPA, a notable correction of the downward shift present in SRPA,
but still with an underestimation of the centroid of about 1.5 MeV. A similar
width is obtained in SRPA and SSRPA (Γ = 2.5 MeV), which confirms that
the subtraction does not remove the beyond-MF contribution to the width.
The missing width with respect to the above-mentioned experimental value
could reside in the escape width (not taken into account in this study) or in
higher-order configurations (3p3h, etc.).

With the SLy4 parametrization (Fig. 4.6), despite an overall worse re-
production of experimental data, one observes similar improvements of SS-
RPA with respect to SRPA and RPA. For all the theoretical results shown in
Figs. 4.5 and 4.6, a folding with a Lorentzian having a width of 0.25 MeV is
done. This of course produces an artificial spreading for the RPA case.

To better appreciate the width reproduction given by the SSRPA results,
the distributions of Figs. 4.5 and 4.6 are displayed with an artificial shift
on Fig. 4.7. The differences between the results obtained with the two
parametrizations may be connected to the properties of the interaction. In
fact, Ref. [102] suggested a relation between the GDR excitation energy and
the symmetry energy, which is confirmed here: the parametrization SLy4,
which corresponds to a higher symmetry energy (32 MeV), predicts a lower
centroid energy than that predicted by SGII for which the symmetry energy
is around 27 MeV.
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Figure 4.5: Dipole strength distributions evaluated with RPA (solid black line), SRPA (blue
dotted line), and SSRPA (orange line and area), compared with the experimental distribu-
tions (magenta circles) of Ref. [96]. The SGII Skyrme interaction is used.
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Figure 4.6: Same as Fig. 4.5 but with the Skyrme interaction SLy4.
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We note that results for 40Ca in the GDR region were compared with
the results obtained for 48Ca and with experimental data. For 40Ca, our
calculations yield a less spread and fragmented distribution than for 48Ca,
in contrast to the very resembling distributions reported in Ref. [96], but
in agreement with Ref. [103], which employed the relativistic quasiparticle
time-blocking approximation.

Lastly, we computed the electric dipole polarizability

αD =
8π
9

∫

Bi(E1)
Ei

dEi (4.34)

Experimentally [96], the contribution to the electric dipole polarizability be-
low 10 MeV is negligible, and is of 1.73 ± 0.18 fm3 between 10 MeV and 25
MeV. As our results are more satisfactory with the SGII parametrization than
with the SLy4 one, we will focus our discussion on the SGII results for the
polarizability.

Below 10 MeV, we indeed obtain negligible values of αD in RPA and SS-
RPA, respectively 6·10−4 fm3 and 3·10−3 fm3. We may next represent the po-
larizability calculated by varying the upper limit of the integral in Eq. (4.34).
Figure 4.8 shows such a trend. The measurement of Ref. [96] was done up
to 25 MeV. However, 25 Mev as upper limit of the integral in Eq. (4.34) is
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not enough to obtain a saturated value for αD. The experimental values of
Ref. [96] were for this reason extrapolated to plot the polarizability up to 60
MeV (using for this extrapolation results available for 40Ca).
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Figure 4.8: Electric dipole polarizability as a function of the excitation energy. The orange
area corresponds to ab initio results [104, 105] and the area between the two solid red
lines to experimental results reported in Ref. [96]. In particular, the measurement illus-
trated in Ref. [96] provides the values in the band up to the vertical dashed line located
at 25 MeV. Results obtained with the RPA (blue dotted line) and the SSRPA (black dashed
line) models are displayed. The violet circles and dashed line represent these latter results
shifted upwards by 1.5 MeV. The Skyrme interaction SGII is used.

We compute the SSRPA trend of αD up to 25 MeV (vertical dotted line in
Fig. 4.8), owing to the huge computational effort required for these calcula-
tions.

Ab initio results are also shown in the figure and represented by an orange
area. They are obtained with coupled-cluster calculations [104, 105]. The
orange band corresponds to the use of different chiral Hamiltonians [106].

As a first observation, it is clear on Fig. 4.8 that both the RPA and the
ab initio polarizabilities have a too steep slope, compared with the experi-
ments. This means that these RPA and ab initio results fail to reproduce the
experimental spreading of the transition probability. Contrary to RPA, which
gives a centroid energy in between the two experimental curves, the ab ini-
tio results additionally overestimate the position of the centroid. In contrast,
our SSRPA model with the SGII parametrization produces a slope which is
compatible with the experimental data (as the shifted SSRPA curve shows),
despite an underestimation of the centroid energy. This result indicates that
our SSRPA is able to correctly account for the spreading of the electric dipole
excitation in 48Ca.
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Notice that the RPA and the SSRPA curves do not converge to the same
value on Fig. 4.8. Yet as discussed in Subsec. 4.1.2, the subtraction proce-
dure requires that the RPA and SSRPA inverse moments m−1 be equal, and
therefore that the converged values of αD be equal. Of course, this discrep-
ancy may be explained first by the fact that one should integrate up to an
energy much higher than 25 MeV to obtain converged values for αD. Also,
this discrepancy may be explained by our use of the diagonal approximation
in the corrective terms.

To conclude, our SSRPA model allows for improvements in the descrip-
tion of both the low-lying and GDR transition probabilities in 48Ca, with re-
spect to standard RPA and SRPA. A particular advantage of the SSRPA is the
ability to account for the spreading of the electric dipole excitation in the
giant resonance region, as seen by the satisfactory reproduction of the slope
of the polarizability.

4.2.3 Quadrupole response: systematics on selected nuclei

In this section, we apply the SSRPA model to perform a systematic study of
the centroids and the widths of the IS GQR for several nuclei, from medium-
mass to heavy systems. The corresponding published article is Ref. [107].

From the experimental point of view, the IS GQR was extensively ana-
lyzed since its discovery more than forty years ago [108–110]. The first mea-
surements were summarized in the 1980s in a review on giant resonances
[111] and in a systematic study dedicated to the GMR and to the GQR for
several medium-mass and heavy nuclei, up to 208Pb [112]. The IS GQR and
GMR could be identified and distinguished from each other using inelastic
α scattering at small angles. Measurements for 48Ca [113], 90Zr [114], and
Sn and Sm nuclei [115, 116] are also available, based on inelastic scatter-
ing of α particles. Data taken on unstable nuclei were recently published: a
measurement was first done on 56Ni, based on the reaction 56Ni(d, d ′) [117]
and, more recently, a measurement was performed on 68Ni using inelastic α
and deuteron scattering [118].

High-resolution experiments based on proton inelastic scattering have
been performed at iThemba LABS to investigate the fine structure of GQR
excitations for 40Ca [119], 58Ni, 90Zr, 120Sn and 208Pb [120].

In this work, we extract the experimental data for the centroid energies
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from Ref. [112] for almost all nuclei, with the exception of 48Ca [113], 112Sn,
114Sn, 148Sm, 150Sm and 152Sm [115]. Data on the IS GQR are also available
for Sn isotopes in Ref. [116]. The widths reported in Ref. [116] are in some
cases very different compared to those obtained with other measurements
[112, 115]. Due to this ambiguity, we showed in Ref. [107] a systematic
comparison with the experimental results only for the centroid energies.
Fragmentation and fine structure are compared with the experimental re-
sults only for some selected cases in which high-precision (p, p′) data are
available.

Of course, SRPA-based models are not the only beyond-MF approaches
allowing for a proper description of the fragmentation and the width of ex-
cited state. Several microscopic approaches have been introduced in recent
decades to describe the widths and the damping properties of collective ex-
citations. Some illustrations are the quasiparticle-phonon model [121–123],
particle-phonon (or quasiparticle-phonon) coupling models [49, 124–127],
particle-phonon coupling models based on the so-called time-blocking ap-
proximation [79, 128], and, more recently, the relativistic quasiparticle time-
blocking approximation [103, 129].

We perform RPA and SSRPA calculations with the SLy4 parametrization
of the Skyrme interaction. The single-particle space is chosen large enough
to assure that the EWSR are preserved within 1 %. For the 2p2h space in the
SSRPA calculations, we use a cutoff of 60 MeV for medium-mass nuclei (30Si,
34Si, 36S, 40Ca, 48Ca, 56Ni and 68Ni) and of 50 MeV for the heavy ones (90Zr,
114Sn, 116Sn, 120Sn, 132Sn and 208Pb). We checked that these cutoff values
provide stable results.

Unlike in the study presented in Subsec. 4.2.2, the centroid energies EC

and widths Γ were not estimated using the formulas (4.31) and (4.32) based
on moments of the strength. Indeed, this method is not adequate in all
cases: on the one hand, spectra obtained with SRPA-based calculations may
be strongly fragmented, making the estimation based on moments artificially
underestimate the widths; on the other hand, RPA calculations for some
nuclei produce a single significant peak, leading to an overestimated width
if Eq. (4.32) is used.

We choose instead to compute EC and Γ by fitting a Lorentzian function
to the distribution obtained after folding. Such a method is similar to that
used in Ref. [130]. The folding of the discrete spectra is performed using
Lorentzian functions of width 100 keV, which is adapted to the high density
of states observed in SSRPA results. We verified that such folding did not
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produce any artificial effect on the spreading, neither in SSRPA nor in RPA.

As the first part of this study, we make a systematic analysis of the centroid
and width of thirteen spherical-expected nuclei: 30Si, 34Si, 36S, 40Ca, 48Ca,
56Ni, 68Ni, 90Zr, 114Sn, 116Sn, 120Sn, 132Sn and 208Pb.

The trend of the centroids obtained in SSRPA is displayed versus the mass
number on Fig. 4.9, along with the corresponding RPA results and available
experimental values. Nuclei for which a comparison between our theoretical
results and the corresponding experimental data may be done are identified
in the figure by vertical dotted red lines. We observe that the SSRPA cen-
troids are systematically located at lower energies than the RPA values, and
therefore usually reproduce the experimental data better than RPA, which
tends to overestimate them.
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Figure 4.9: Centroids of the IS GQR. The experimental data are displayed as black circles
(with their associated error bars) and are extracted from Refs. [112, 113, 115, 117]. SSRPA
(RPA) values are plotted as blue diamonds (magenta triangles). At A = 48, there are two
experimental measurements, for 48Ti and for 48Ca. The experimental point corresponding
to 48Ca is the highest one. Theoretical calculations are performed for the nuclei 30Si, 34Si,
36S, 40Ca, 48Ca, 56Ni, 68Ni, 90Zr, 114Sn, 116Sn, 120Sn, 132Sn and 208Pb.

We mention here that the centroid energies of the IS GQR can be related
to the effective mass, which we discuss in a separate work with an emphasis
on beyond-MF effects on the effective mass (see Subsec. 4.2.4).

As far as the widths are concerned, our SSRPA results are shown on
Fig. 4.10 together with RPA results. In this case, we decided not to represent
the experimental data, due to the above-mentioned ambiguities concerning
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the corresponding widths in the literature.
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Figure 4.10: Theoretical widths calculated with the fit of a Lorentzian distribution within
RPA and SSRPA models.

As expected, we observe that the SSRPA widths are systematically larger
than the RPA ones, due to the additional spreading brought by the coupling
between 1p1h and 2p2h configurations. The escape width, not present in
our applications, might modify some of our results, especially for light nu-
clei. However, the escape width is expected to be less important than the
spreading width.

A further observation can be made on Fig. 4.10: the widths tend globally
to decrease going from light to heavy nuclei, suggesting that there is more
fragmentation in the former than in the latter. Since this effect is observed
already at the RPA level, we deduce that the higher fragmentation for lighter
nuclei is produced by a stronger Landau damping. This single-particle effect
was already discussed in Refs. [119, 131, 132]. We notice that, for 40Ca, we
do not find any important effect related to the Landau damping, the RPA
width being particularly small. For this nucleus, the beyond-MF effects com-
ing from the mixing with 2p2h configurations are particularly important and
produce a strong increase of the width going from RPA to SSRPA.

In a second step of our study, we select nuclei for which high-precision
(p, p′) data (40 keV resolution) are available: 40Ca, 90Zr, 120Sn, and 208Pb.
We compare our theoretical results with both RPA and experimental spectra,
and analyze in detail their fine structure and fragmentation.

We present in Fig. 4.11 the SSRPA strength distribution (violet bars) for
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the nucleus 40Ca. To better compare it with the corresponding experimental
spectrum (b), a folded curve is also plotted (black solid line and grey area),
obtained by folding the discrete distribution with a Lorentzian of width equal
to 40 keV, which corresponds to the experimental energy resolution.
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Figure 4.11: (a) RPA strength distributions calculated for the nucleus 40Ca; (b) Experimen-
tal spectrum [119] for the IS GQR for 40Ca; (c) SSRPA strength distributions calculated for
the nucleus 40Ca. For the cases of the RPA and SSRPA discrete spectra, units are e2 fm4.
For the SSRPA folded case, units are e2 fm4 MeV−1.

This is the only case shown in Fig. 4.9 where the SSRPA underestimates
the experimental centroid energy, whereas the RPA value is closer to it. How-
ever, the significant advantage of using the SSRPA model instead of RPA
is clearly indicated by Fig. 4.11. Our RPA distribution displays a unique
dominant peak, whereas the SSRPA strength distribution is much more frag-
mented and extends over a larger energy region where the experimental data
are spread.

Figure 4.12 shows the same quantities as in Fig. 4.11 but for the nucleus
90Zr. In this case, the RPA centroid is larger by more than 1 MeV compared
to the experimental value (Fig. 4.9). The SSRPA value is located at lower
energies, in better agreement with data. Again, a relevant improvement with
respect to RPA is observed in the strength fragmentation (unique dominant
peak in RPA). The same comments may be extended to Figs. 4.13 and 4.14,
where results for 120Sn and 208Pb are presented.

We observe that the comparison with the experimental fine structure
shows a qualitative global agreement in the sense that our model provides a
fragmented response in the same energy region. We note however that, for
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Figure 4.12: Same as in Fig. 4.11 but for the nucleus 90Zr. The experimental data are this
time extracted from Ref. [120]. For the cases of the RPA and SSRPA discrete spectra, units
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Figure 4.14: Same as in Fig. 4.13 but for the nucleus 208Pb. For the cases of the RPA
and SSRPA discrete spectra, units are e2 fm4. For the SSRPA folded case, units are e2 fm4
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all these nuclei, the energy window where the experimental strength is dis-
tributed is broader than the range where the SSRPA response is located. This
is probably related to missing effects in our theoretical model, such as the in-
clusion of higher-order configurations and of fragmentation effects induced
by the coupling with the continuum, not taken into account here.

We also notice that our 40Ca results are different from those of Ref. [119].
In that study, the used potential was derived from the realistic interaction
Argonne V18 with the UCOM, and the SRPA calculations were performed
without subtraction. Compared with our results, the RPA spectrum is more
fragmented, its centroid strongly overestimates the experimental value, and
the SRPA spectrum is much less dense than ours. These differences may
probably be ascribed to the use of a potential derived from a realistic in-
teraction (Argonne V18) which generates, at the HF level, a single-particle
spectrum with very large interlevel spacings. This is the reason why the RPA
centroid is located so high in energy. And this is probably also the reason
why the coupling with 2p2h configurations in the SRPA model is not able
in that case to produce a dense strength distribution, in spite of the huge
number of elementary 2p2h configurations.

In a last part, we verify the ability of the subtraction procedure to elim-
inate the ultraviolet divergences, which may appear in SRPA-based calcula-
tions based on zero-range forces. Such a property of the SSRPA was already
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noticed in Ref. [81]. We illustrate it in the case of 40Ca, by displaying the
strength distribution for four values of the 2p2h cutoff (Fig. 4.15). Visually,
one may observe the cutoff independence, which is confirmed by the sta-
bility of the numerical value of the centroid. For example, the value 16.74
MeV of the centroid at a cutoff of 60 Mev is modified by less than 1 % when
increasing the cutoff to 70 MeV.
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Figure 4.15: Strength distributions obtained for the nucleus 40 Ca with four different
cutoff values for the 2p2h configurations: 40 (a), 50 (b), 60 (c), and 70 (d) MeV.

In summary, this systematic analysis of centroids and widths demon-
strated the improvement brought by the SSRPA model over the RPA: a bet-
ter reproduction of the experimental centroids is achieved for nearly all the
studied nuclei, the spreading width and fragmentation of the spectra are in-
creased, and their fine structure is in better agreement with the available
high-resolution experiments.

Additionally, the ability of the subtraction procedure to remove the di-
vergent contribution leading to cutoff-independent results was further con-
firmed.

4.2.4 Beyond-mean-field effects on the effective masses

This study tackles the relation between the frequency of axial breathing
modes and effective masses in nuclear physics, using the SSRPA model with
Skyrme forces. We present here a method which allows for a microscopic
description of beyond-mean-field (BMF) effects. This work was published in
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Ref. [133].

The Landau’s theory of interacting Fermi systems [134, 135] provides
an elegant description of low-energy excitations in Fermi liquids. The com-
plex dynamics of the interacting particles is simplified through the concept
of quasiparticles having an effective mass m∗ induced by the interparticle
interaction. The study of m∗ meets a broad interest in several branches of
many-body physics. Since m∗ is related to the propagation of particles in a
medium and, more specifically, to the density of states in many-body systems
[37], it has an important impact on several observables such as the energies
of axial compression modes in atomic gases [136] and in nuclei [137, 138],
the specific heat of a low-temperature Fermi gas [37], or the maximum mass
of a neutron star [139].

The effective mass is usually evaluated through the computation of the
self-energy (see for instance Refs. [37, 140]), and may be provided by Quan-
tum Monte Carlo calculations. References [141, 142] show for example
Quantum Monte Carlo calculations for the polaron in atomic gases which
are strongly imbalanced. Similar calculations done this time for nuclear sys-
tems can be found in Refs. [33, 143].

The centroid energies of isoscalar giant quadrupole resonances (axial
breathing modes) of nuclei may be related to the effective mass in nuclear
matter [137, 138]. In particular, a relation exists between the frequency of
axial breathing modes and

p

m/m∗. This relation can be derived within the
Landau theory of Fermi liquids using the local-density approximation. The
measured centroids were then used to phenomenologically constrain the ef-
fective mass (see Ref. [4] and references therein).

For a particle of energy E and momentum k, the effective mass m∗ is
defined by the relation

1
m∗

:=
dE
dk

1

ħh2k
(4.35)

where

E =
ħh2k2

2m
+Σk +Σk,E . (4.36)

In Eq. (4.36), Σk + Σk,E is the self-energy, sum of the MF contribution Σk

(from the leading order of the Dyson equation in the perturbative many-
body expansion) and of a BMF energy-dependent contribution Σk,E. The
self-energy does not have any energy dependence in the MF approximation.
An explicit energy dependence is acquired only when the MF approximation
is overcome.
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Using the definition of m∗ in Eq. (4.35), one can write

m∗

m
=

�

1−
∂Σk,E

∂ E

�

·
�

1+
m

ħh2k

∂Σk

∂ k

�−1

=
m∗E
m
·

m∗k
m

, (4.37)

where the above expression defines the so-called E-mass m∗E/m and k-mass
m∗k/m, using the same notations as in Refs. [137, 144–147]. In the MF ap-
proximation, where the self-energy may only have a k dependence, the E-
mass is equal to 1. In the case of a zero-range interaction without gradient
terms, for example, also the k-mass would be equal to 1 in the MF approxi-
mation, and one should go to second order to have a k-mass different from
1. The t1 and t2 terms of the Skyrme interaction provide a k-mass different
from 1 in the MF approximation. The effective mass is modified by BMF
effects, which is visible by an E-mass not equal to 1 anymore.

We exploit here the above-mentioned relation between the energies of
axial breathing modes and the effective mass to propose a new method to
estimate BMF effects on the effective mass of nuclear matter: we calculate
the BMF centroids of axial breathing modes in SSRPA; then, assuming the
relation between these excitation modes and the effective mass, we use a
linear fit performed on MF centroids to extract the BMF effective masses,
and deduce the E-masses. Determining the E-masses in this way allows us
to quantify the BMF effects induced by our SSRPA model.

More specifically, we first calculated the IS GQR centroids of the medium-
mass nucleus 48Ca and the heavier nucleus 90Zr in RPA, using four Skyrme
parametrizations SkP [148], SGII, SLy4, and Ska [149]. These parametriza-
tions have MF effective masses respectively equal to 1, 0.79, 0.7 and 0.61 in
nuclear matter. The RPA centroids of 48Ca and 90Zr are displayed on Fig. 4.16
as a function of

p

m/m∗, where we use the values of the MF effective mass
in nuclear matter for each interaction. The experimental values of the cen-
troids are represented as orange bands. For each nucleus, we performed a
linear fit on the four centroids (blue dotted lines). To estimate the BMF ef-
fects on the effective masses, we then calculated these centroids with our
SSRPA model, choosing the SLy4 and the SGII parametrizations as illustra-
tions, and reported them on the linear fits. We observe that the centroids
are located at lower energies for the SSRPA model with respect to the cor-
responding RPA values. Such a lowering of the energies implies that the
associated effective mass increases with respect to the MF value. For 48Ca
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(90Zr), the extracted effective mass for nuclear matter increases from 0.7 in
the MF case to 0.834 (0.769) for the BMF calculations of the IS GQR with
SLy4. With SGII, the effective mass for matter increases from 0.79 to 0.837
(0.842) from the calculations done for 48Ca (90Zr).

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
(m/m*)

1/2

8

10

12

14

16

18

20

22

24

26
IS

 G
Q

R
 c

en
tr

oi
ds

 (
M

eV
)

RPA
Linear fit
SGII SSRPA
SLy4 SSRPA Ska

SLy4

SGII
SkP

Exp
48
Ca

90
Zr

Exp

Figure 4.16: IS GQR centroid energies for 48Ca and 90Zr as a function of
p

m/m∗. The
RPA centroids (black circles) are reported for four Skyrme parametrizations and associated
to the corresponding MF effective masses in nuclear matter. A linear fit is done on these
points (blue dotted lines). The SSRPA-SLy4 and SSRPA-SGII centroids are reported on the
blue dotted lines (green triangles and magenta squares, respectively). The experimental
values are also displayed by orange bands.

Using Eq. (4.37), we can then extract the average values of the E-mass,
equal to 1.19 (1.06) with SLy4 (SGII) for 48Ca and to 1.10 (1.07) with SLy4
(SGII) for 90Zr. BMF effects produce an increase of the E-mass ranging from
6 to 16 %, the largest variation from 1 occurring for 48Ca and the SLy4
parametrization.

We observe in Fig. 4.16 that, for 48Ca, the SSRPA centroid energies ob-
tained with the two parametrizations SLy4 and SGII are very similar, leading
to very similar values of m∗/m. Since the MF effective mass is not the same
for the two parametrizations, this implies a stronger BMF modification of
the E-mass for the case of SLy4 (where the MF effective mass is lower). On
the other side, the SSRPA centroids obtained with SLy4 and SGII are slightly
different for 90Zr, leading to a higher value of m∗/m for the case of SGII. The
two BMF E-masses are very similar to one another for this nucleus.
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Remaining at the MF level, one may associate a theoretical error to the
effective mass of matter, related to the use of different parametrizations of
the interaction. One may wonder how this error behaves when going beyond
the MF. We show on Fig. 4.17(a) (MF) and Fig. 4.17(b) (BMF) estimations
of the theoretical errors on the ratio m∗/m: the yellow area corresponds
to the discrepancy between SGII and SLy4, and the grey area corresponds
to the additional discrepancy when the Ska interaction is used (m∗/m =
0.61). This parametrization is also employed to provide an estimation of
the typical MF error bar on effective masses, knowing that, for most Skyrme
parametrizations, MF effective masses have values located between 0.6 and
0.8.

For example, in the MF case, there is a discrepancy of 11 % on the m∗/m
ratio if one considers SLy4 and SGII. If the three parametrizations are con-
sidered, the MF error bar is 23 %. In the BMF case (lower panel), the m∗/m
ratio is extracted using the method explained above, for several nuclei cov-
ering three different regions of the nuclear chart: 48Ca, 90Zr and 120Sn. We
observe that, (not) including the Ska BMF values in Fig. 4.17(b) (green sym-
bols), the discrepancy window is of (9 %) 22 %. We may thus infer that our
extraction method of a BMF effective mass for nuclear matter does not pro-
duce an overall error larger than the one already induced with MF calcula-
tions and related to the dependence on the used parametrization — even if,
in the BMF case, there is an additional dependence on the nucleus.

Note that this method for extracting BMF effective masses is general and
can be employed with other BMF models than SSRPA.

The effective mass can be related to the density of states [150]: BMF
changes of the m∗ value induce a different single-particle spectrum, which is
compressed if the m∗ is increased. This BMF modification of single-particle
spectra is well known for instance in models based on the particle-vibration
coupling (see for example Refs. [147, 151]). It is worth mentioning that a
compression of single-particle spectra was also predicted in Ref. [152]within
a self-consistent RPA applied to metal clusters. Generalized single-particle
energies were computed from the A matrix elements. In this extension of
RPA, a matrix (which would reduce to HF single-particle energies in the stan-
dard RPA limit) is diagonalized using the correlated one-body density matrix
that is provided self-consistently from the model. Such generalized single-
particle energies are compared with the HF spectrum and a compression of
the spectrum can be observed (see Fig.4 of Ref. [152]).
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Figure 4.17: (a) Theoretical error associated to the MF effective mass for nuclear matter
induced by two Skyrme parametrizations, SLy4 (indigo) and SGII (magenta) (yellow band)
and three Skyrme parametrizations, SLy4, SGII, and Ska (green) (yellow plus grey band);
(b) Same as in panel (a) but for the BMF effective mass. The three colors represent the three
interactions as in panel (a). Squares, triangles, and circles represent the BMF effective
masses extracted from 48Ca, 90Zr, and 120Sn, respectively.

The lowering of the excitation energies provided by SRPA-based models
(with respect to the RPA spectrum) is a general feature of the model that
does not occur only in nuclear systems. The same type of effect was found
for instance also for metal clusters in Refs. [75, 153]. In all cases, one thus
expects an increase of the effective mass (E-mass larger than 1) and, conse-
quently, an effective compression of the single-particle spectrum.

In the following, we analyze this aspect in more detail for the nuclei
48Ca and 90Zr. We recall that the SRPA problem can be written as a energy-
dependent RPA-like problem, where self-energy corrections provide a renor-
malization of the diagonal matrix elements A11 in particular (see Eqs. (4.23)
and (4.25)). Since such matrix elements contain the single-particle excita-
tion energies, this renormalization certainly induces a BMF renormalization
of the 1p1h single-particle spectrum. By performing the subtraction pro-
cedure, the rescaling of the matrix element A11 is further modified by the
subtraction of the zero-energy self-energy.

As an illustration, we discuss the case of the parametrization SLy4. Fig-
ure 4.18 shows the diagonal matrix elements A11 calculated for the nucleus
48Ca for the first three 1p1h configurations entering in the construction of the
collective quadrupole excitations. In this case, the three configurations are
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neutron configurations. We present RPA and SSRPA results. In the case of
SSRPA, to compute the rescaling effect induced by BMF calculations, the
energy-dependent self-energy correction is calculated at an energy value
given by the SSRPA centroid of the IS GQR. This guarantees that we make
this estimation in the region of the GQR.
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Figure 4.18: RPA and SSRPA diagonal matrix elements A11 calculated with the
parametrization SLy4 for the nucleus 48Ca for the first three single-particle configurations
(which are neutron configurations). The BMF results are calculated using in the energy-
dependent matrix elements an energy value equal to the IS GQR centroid obtained in
SSRPA.

We notice that the BMF rescaling of the matrix element is more pro-
nounced for the first configuration and becomes less important at increasing
energies. We have observed that this effect is indeed strongly quenched for
the highest-energy 1p1h configurations.

Also, the BMF modification produces in all cases a global reduction of
the matrix element (and, consequently, a reduction of the single-particle ex-
citation energy). Such a reduction implies an effective compression of the
single-particle spectrum, consistent with the enhancement of the effective
mass indicated by our previous analysis done on the values of the centroid
energies.

Figure 4.19 shows the same quantities as Fig. 4.18, but for the nucleus
90Zr. In this case, the third single-particle configuration is a proton configu-
ration.

For the two nuclei, 48Ca and 90Zr, the third single-particle configuration
entering in the construction of the quadrupole collective phonon is located in
the same energy region as the IS GQR. One can thus in this case provide an
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Figure 4.19: Same as in Fig. 4.18 but for 90Zr. One of the configurations is in this case a
proton configuration.

intuitive physical interpretation of the BMF renormalization effects. Such
effects may be regarded in the same spirit as in particle-phonon-coupling
models: the unperturbed 1p1h excitation mode couples with the collective
phonon because the two excitation energies are close to one another. The
resulting effect is the lowering of the centroid for the collective phonon, the
formation of a spreading width for the collective excitation due to the mixing
with 2p2h configurations, and the compression of the single-particle spec-
trum that we deduce from the fact that our effective single-particle excitation
energies are systematically reduced.

Let us focus on this third 1p1h configuration and on the nucleus 48Ca (the
SSRPA matrix element A11 is reduced by 11.6 % with respect to RPA).

To push further this analysis, we computed the SSRPA energy-dependent
self-energy correction of Eq. (4.27). We have done this calculation for the
third single-particle configuration, for the nucleus 48Ca and the parametriza-
tion SLy4. We denote this self-energy byΣ3: the quantity 1−∂Σ3/∂ E should
correspond to an estimation of the E-mass for the third 1p1h configuration
(see Eq. (4.37)). The derivative of Σ3 with respect to the energy is negative,
which leads to values for the E-mass larger than 1. This quantity goes to 1 in
the static limit where we recover the MF result. Consistently with the previ-
ous extraction of the average E-mass from the centroid of the collective axial
modes, we noticed that, at the energy value of the third 1p1h configuration
(for which the computation is performed) this estimation of the E-mass pro-
vides the value of 1.16, which is very close to the one previously found for
48Ca and SLy4 (1.19).
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Analogous results were obtained for the heavier nucleus 90Zr and the
parametrization SGII. In general, we did not identify any particular differ-
ence between the results obtained for the two nuclei, despite their different
mass.

To conclude, we proposed here an original and general method to extract
BMF effective masses of nuclear matter, based on centroid energies of axial
breathing modes of nuclei. We highlighted the increase of the effective mass
induced by BMF effects, as well as the subsequent compression of the single-
particle spectrum.

We took advantage of the SSRPA model, which, as we showed before, is
a robust BMF model against instabilities, divergences and double-counting
of correlations.
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Extensions of the model

“Certainty is either conventional, or mistaken.”
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5.1 Treating nuclei with partially-filled orbitals: Equal-
filling approximation

In all our applications of the RPA and SRPA models described in the previous
chapters, spherical symmetry was assumed. This constitutes an important
simplification when it comes to practical calculations. In addition, we only
treated nuclei where the last orbitals of the single-particle spectrum are fully
occupied for both neutrons and protons.

However, this is surely a limitation which did not allow us to treat most
of the open-shell nuclei present in the nuclear chart.

With the perspective of enriching our SSRPA model, our aim here is to
extend it so that nuclei with partially-filled orbitals can be described. One
simple such extension can be performed using the equal-filling approxima-
tion (EFA).

The EFA originally consists in considering, in odd-mass nuclei, that the
unpaired nucleon occupies a state and its time-reversed companion with
equal probabilities. In the case of spherical symmetry, where one has (2 j+1)-
degenerate orbitals of total angular momentum j, this occupation probability
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is distributed over all substates of the given (partially-filled) orbital, mean-
ing that all single-particle states of magnetic angular momentum m j have an
occupancy of 1

2 j+1 . An interpretation and a justification of the EFA in terms
of quantum statistical mechanics were proposed in Ref. [154]. This justi-
fication showed that the EFA can be extended beyond the mean field and,
consequently, may indeed have a quite large range of applicability. The very
important advantage of using the EFA is that time-reversal symmetry (and
thus spherical symmetry) can be maintained.

In the next sections, we show how we use this extension to treat even-
even nuclei having their last orbital partially occupied. The occupation of
this orbital is distributed over the magnetic angular momenta m j.

First, we apply the EFA within the HF approximation, where all the oc-
cupation numbers are 1 and 0, except for the last (partially-filled) orbital
where the occupation is shared among the (2 j + 1)-degenerate states.

As a second step, by applying EFA renormalization factors to all the single-
particle wave functions, we propose to use such a procedure to introduce
occupation number different from 1 and 0 in the ground state. This is done
with the objective of making an estimation of the effect of some correlations.

In particular, occupation numbers modulated by pairing correlations (trea-
ted through the BCS approximation) are used. Some links with the QRPA
and quasiparticle SRPA (QSRPA) are discussed.

5.1.1 Within the HF approximation

To begin with, calculations for the ground state have to be performed. For
the HF calculation, the EFA translates into a renormalization of the wave
function of the last occupied orbital P — which is partially filled — by a factor

equal to
Ç

φ
2 jP+1 , where φ is the number of occupied states on this orbital.

This accounts for the partial occupation of the orbital P. The occupation is
shared between the (2 jP + 1)-degenerate states.

Going to RPA or SSRPA calculations, the wave function of the partially-
filled orbital has to be renormalized by a factor equal to

p
nα or

p

1− nα,
where nα is the occupation number of the state α, according to whether this
state plays the role, in a given matrix element, of a hole or of a particle,
respectively1.

These modifications concern the A and B matrix elements, and also apply
to the transition amplitudes 〈λ| F̂ |0〉 of a given one-body operator F̂ (see

1See also Ref. [155].
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Eq. (2.38)). For example, the expression for the transition amplitudes is
modified as follows:

〈λ| F̂ |0〉 =
∑

m,i,n, j

�

X ∗mi(λ) 〈n| F̂ | j〉 − Y ∗mi(λ) 〈 j| F̂ |n〉
�q

n j(1− nn) . (5.1)

To do this, we have extended our numerical codes which are now able to
treat also nuclei having a last orbital with a partial occupation.

These kinds of calculations of course still remain in the framework of the
HF approximation.

5.1.2 With a superfluid ground state

Having extended our SRPA model to nuclei with partially-filled orbitals, we
aim in this section at presenting how pairing correlations can be included,
to study the effects of superfluidity. The RPA and SRPA, as derived in Sub-
sec. 2.3.1 and Subsec. 3.2.1 respectively, do not account for pairing, and one
should go to extensions such as the QRPA and the QSRPA to fully take into
account pairing correlations in superfluid nuclei.

In this thesis work, we have performed a first step along this direction by
making an estimation of pairing correlations with the use of BCS occupation
numbers included in EFA-type renormalization factors.

We first present the main derivation steps of the BCS model, which is de-
tailed for example in [38], before explaining our approach within the EFA.

We start with a trial wave function of the BCS type:

|BCS〉 :=
∏

α>0

�

uα + vαa†
αa†
ᾱ

�

|−〉 , (5.2)

where ᾱ represents the conjugate (time-reversed if time-reversal invariance
is assumed), and uα and vα are the variational parameters, related to one
another by the normalization condition

|uα|
2 + |vα|

2 = 1 . (5.3)

These coefficients enter in the unitary transformations which define the quasi-
particle operators α†

µ and αµ:

α†
µ

:= uµa†
µ − vµaµ̄ ,

αµ := uµaµ − vµa†
µ̄ .

The BCS state Eq. (5.2) does not have the good number of particles N .
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For this reason, one has to impose the condition



BCS
�

�N̂
�

�BCS
�

= N , (5.4)

where N̂ is the particle-number operator. This guarantees that the number
of particles is conserved in average.

Assuming once again a Hamiltonian of the form

Ĥ =
∑

µ,µ′
Tµµ′a

†
µaµ′ +

1
4

∑

µ,ν,µ′,ν′
vµνµ′ν′a

†
µa†
νaν′aµ′ , (5.5)

one determines the coefficients uα and vα by minimization of the energy. To
ensure that the condition (5.4) is satisfied, the minimization is performed
on the expectation value of the variational Hamiltonian H ′:

Ĥ ′ := Ĥ −λN̂ . (5.6)

From the variational condition
∂

∂ N
〈BCS| Ĥ ′ |BCS〉 = 0 , (5.7)

the Lagrange multiplier λ can be derived as

λ =
∂

∂ N
〈BCS| Ĥ ′ |BCS〉 =

∂

∂ N
E , (5.8)

which is the chemical potential.
As the BCS wave function (5.2) is completely determined by the varia-

tional parameters which are related to each other by the relation (5.3), the
variational equations reads

�

∂

∂ vα
+
∂

∂ uα

∂

∂ vα

�

〈BCS| Ĥ ′ |BCS〉 = 0 . (5.9)

Using Eqs. (5.2) and (5.5), the above derivatives finally yield the set of
BCS equations:

∀α > 0, 2ε̃uαvα +∆α(v
2
α − u2

α) = 0 , (5.10)

with

ε̃ :=
1
2

�

tαα + tᾱᾱ +
∑

µ

(vαµαµ + vᾱµᾱµ)v
2
µ

�

−λ

and the gap parameter

∆α := −
∑

µ>0

vαᾱµµ̄uµvµ .

The normalization condition (5.3) and the requirement v2
α = 1 and u2

α = 0
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when ∆α = 0 (no pairing interaction) lead to the following solutions of the
BCS equations:

v2
α =

1
2

�

1−
ε̃α

Æ

ε̃2
α −∆2

α

�

, (5.11)

u2
α =

1
2

�

1+
ε̃α

Æ

ε̃2
α −∆2

α

�

. (5.12)

From the particle-number requirement (5.4), the actual computation of
the variational parameters (5.11) and (5.12) can be carried out by iterations.

In our approach, we use BCS calculations to compute the occupation
probabilities nα (occupation numbers), which thereby contain pairing corre-
lations. These correlated occupation numbers are then used as input in the
factors

p
nα and

p

1− nα. We shall call this approach the BCS-based EFA.
Before describing the practical applications that were carried out, let us

make a link with the Q(S)RPA case. We consider the QRPA case as an illus-
tration.

The A and B matrix elements have the following form in QRPA [41]:

AQRPA
αβ ,γδ = δαγδβδ(Eα + Eβ)

+ 〈αβ | V̂ |γδ〉 (uαuβuγuδ + vαvβ vγvδ)

+



α(β)−1
�

� V̂
�

�γ(δ)−1
�

(uαvβuγvδ + vαuβ vγuδ)

−



α(β)−1
�

� V̂
�

�δ(γ)−1
�

(uαvβ vγuδ + vαuβuγvδ) ,

(5.13)

BQRPA
αβ ,γδ = − 〈αβ | V̂ |γδ〉 (uαuβ vγvδ + vαvβuγuδ)

+



α(β)−1,γ(δ)−1
�

� V̂ |QRPA〉 (uαvβuγvδ + vαuβ vγuδ)

−



α(β)−1,δ(γ)−1
�

� V̂ |QRPA〉 (uαvβ vγuδ + vαuβuγvδ) ,

(5.14)

where Eα is the energy of the quasiparticle α.
The RPA limit for the matrices A and B may be easily found by imposing

¨

vm = vn = ui = u j = 0

um = un = vi = v j = 1 ,

because u2
α and v2

α represent the probabilities by which a single-particle state
α is unoccupied and occupied, respectively. This means that, in general,

v2
α = nα ; u2

α = 1− nα .

One can recognize in Eqs. (5.13) and (5.14) the particle-hole matrix ele-
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ments



α(β)−1
�

� V̂
�

�γ(δ)−1
�

= 〈αδ| V̂ |βγ〉 = vαδβγ ,



α(β)−1,γ(δ)−1
�

� V̂ |QRPA〉 = 〈αγ| V̂ |βδ〉 = vαγβδ .

The interaction matrix elements entering in the RPA matrices A and B,
with the EFA approximation, are renormalized by factors of the type

q

nin j(1− nm)(1− nn) . (5.15)

In terms of the u and v coefficients of the BCS ground state, the expression
(5.15) may be written as

vi v jumun ,
which is the same as in the particle-hole matrix elements of the QRPA ma-
trices A and B (see Eqs. (5.13) and (5.14)).

We may then conclude that, by applying the EFA procedure and by using
BCS occupation numbers, our matrix elements have the same structure as
some of the QRPA matrix elements.

In particular, for the BCS-based EFA in the RPA case, we have uvuv-
type matrix elements. For the BCS-based EFA in the SSRPA case, we have
viumunup, vv j vkum, umunupuq, vi v j vkvl and vi vkupum-type matrix elements.

Even if we are not performing a full quasiparticle calculation, we are thus
using a simplified procedure to describe pairing effects. One thing to note
is that we did not introduce a pairing interaction for some specific matrix
elements of the residual interaction. The pairing interaction is used only for
the ground-state calculation.

Note that in this extension, the pairing results in a smearing of the occu-
pancies, so that in practice all the states acquire an occupation number dif-
ferent from the sharp 1 and 0 values. Now as in the HF-based EFA presented
in Subsec. 5.1.1, we allow for any orbital having a fractional occupancy to
play the role of particle- or hole-state orbital in the configurations.

As a consequence, this extension with pairing correlations generates an
additional non-negligible computational cost, due to the more numerous
configurations that are allowed, compared to the HF-based EFA. Thus in
practice, it was necessary to restrict this allowance, by imposing an artificial
tolerance criterion on the occupation numbers: only those orbitals whose
occupation numbers have, in absolute value, a difference greater than the
tolerance with respect to the HF values 1 and 0 are allowed to play both
roles (hole- and particle-state respectively) — the other orbitals are treated
as pure hole- or particle-states, meaning that their role can only be of one
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type. Numerical details are provided in the next section.

5.1.3 Results

In this subsection, we present the applications of our RPA and SSRPA models
in the EFA. As explained in Subsec. 5.1.1 and Subsec. 5.1.2 respectively, these
applications can be either based on a HF ground state or on a BCS ground
state, depending on how the input occupation numbers are calculated.

A recent study [156] reported the first γ-ray spectroscopy of the 52Ar nu-
cleus as well as an analysis of the lowest 2+ states of other even-even Argon
isotopes with N > 20. The experiment, conducted at the Radioactive Iso-
tope Beam Factory (RIBF) in Japan, employed the 53K(p, 2p)52Ar reaction at
~210 MeV/u to investigate the low-lying spectrum of 52Ar. The main goal
was to determine how the N = 34 subshell closure, suggested only in 54Ca
so far, would evolve below Z = 20.

The results of several theoretical phenomenological and ab initio calcula-
tions were confronted to the currently available experimental values for the
considered Argon isotopes.

Figure 5.1 is extracted from Ref. [156], where we focus on the region
N > 28. We are indeed interested in the trend from N = 28 to N = 34. At
N = 28 and N = 34, the experimental measurements lead to two maxima,
indicating that these two nuclei have a shell-closure nature.

The experimental values shown on the figure are taken from Ref. [156]
and from Refs. [157, 158].

One can see that large-scale shell model calculations with the SPDF-U
[159] and SPDF-MU [160, 161] (original and modified) interactions give a
satisfactory reproduction of the experimental data, especially of the N = 28
shell closure and of the rise of the lowest 2+ (denoted as 2+1 ) observed in
52Ar. Calculations in the valence-space in-medium similarity renormaliza-
tion group (VS-IMSRG) approach with the 1.8/2.0(EM) [162–164] and the
N2LOsat [3] interactions reproduce reasonably well the experiments. Coupled-
cluster calculations [156] are not in favour of the N = 34 closure persistence
and reproduce less well the experimental results. They are obtained using
the DCE-EOM and 2PR-EOM methods with the 1.8/2.0(EM) interaction.

It is interesting to see what information our RPA and SSRPA calculations
can provide in this context. We therefore decided to perform systematic
calculations of the quadrupole response of Argon isotopes from N = 28 to
N = 34.
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Figure 5.1: Experimental 2+1 energies for even-even Ar isotopes compared with theory:
VS-IMSRG with the chiral interaction 1.8/2.0(EM) [162–164] and N2LOsat [3], coupled-
cluster calculations (CC) [156] using the DCE-EOM and 2PR-EOM methods with the
1.8/2.0(EM) interaction, and large-scale shell model (LSSM) calculations with the SDPF-U
[159] and the so-called original [161] and modified [160] SDPF-MU interactions. Exper-
imental data are taken from Ref. [156] (’Liu et al.’) and from Refs. [157, 158] (’Nowak
et al.’ and ’NNDC’).
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Let us recall that in both the HF-based and BCS-based calculations, the
EFA factors are applied to the A and B matrices and to transition amplitudes
of one-body operators. In BCS-based calculations, the tolerance on occupan-
cies2 is chosen to be 0.1: single-particle states with occupation numbers in
[0;0.1] and [0.9; 1] are respectively considered as pure particle states and
pure hole states. In HF-based calculations, where for a given isospin there is
at most one orbital with a fractional occupancy, the tolerance value is cho-
sen to be close to zero3, so that the partially-filled orbitals are always treated
as both hole and particle state orbitals when building the (S)RPA configura-
tions.

The cutoff on 1p1h configurations is set to 100 MeV, in both RPA and
SSRPA calculations. In SSRPA, to keep the calculations more tractable, a
40-MeV 2p2h cutoff is adopted. Moreover, the same 2p2h cutoff is applied
for the matrices involved in the subtracted self-energy, and the diagonal ap-
proximation is used to compute these subtracted terms.

In the case where occupation numbers are calculated using BCS calcula-
tions, the pairing interaction has the following form:

V (r, r′) = V0

�

1−η
�

ρ(r)
ρ0

�γ�

δ(r− r′) . (5.16)

In Eq. (5.16), the pairing strength V0 is set to 400 MeV·fm3. This choice
leads to reasonable values of the average proton pairing gap (~1.2 MeV)
along the isotope chain we consider, and to the correct description of the
neutron shell closure N = 28 for 46Ar. The η parameter is set to 0.5, and
we take γ = 1. ρ(r) is the isoscalar nucleonic density and ρ0 = 0.16 fm−3.
This parameterization is adopted for both neutrons and protons. In both
cases, ten single-particle states located above the last occupied HF state are
included, and are active for pairing.

For this systematic analysis, all the RPA and SSRPA calculations are car-
ried out with the SLy4 Skyrme parameterization, which we extensively used
in previous applications (see Sec. 4.2).

We shall start by reporting the HF-based and BCS-based RPA results of
our calculations. They are displayed on Fig. 5.2 with the same experimental
values as in Fig. 5.1. It is clear that these RPA results do not reproduce the
rises of the 2+1 energies for 46Ar and 52Ar and even predict the opposite trend.
We note also that the effect of adding pairing correlations is to increase the

2See the corresponding discussion in Subsec. 5.1.2.
3The value is not exactly 0 in practice because of the numerical noise that can generate small

fluctuations of the occupation numbers around the values 0 and 1 for filled orbitals.
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excitation energies.The trend remains very similar from the HF-based to the
BCS-based calculation. These results would thus seem opposed to the ex-
perimental observation of a shell closure in 46Ar and 52Ar.
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Figure 5.2: Lowest 2+ energies in N = 28 to N = 34 Argon isotopes, calculated in RPA
with EFA. Occupation numbers used as input are computed in HF ("HF-based") and BCS
("BCS-based") calculations. Experimental values are the same as in Fig. 5.1.

One may next study the evolution of these energies when including 2p2h
configurations. The comparison between the HF-based and the BCS-based
EFA in SSRPA is presented on Fig. 5.3. In this case, we observe again the
higher position of the energies in presence of pairing, but there is a notable
deviation of the HF-based with respect to the BCS-based values for 52Ar:
while the tendency is to a decrease in the HF case, the inclusion of pairing
leads to a continual increase from 46Ar to 52Ar. This suggests that the addition
of pairing correlations in SRPA-type calculations can substantially affect the
description of the low-lying spectrum of some nuclei. In the present case, the
original absence of pairing would not allow for a conclusion in favor of the
persistence of the shell closure in 52Ar, whereas the trend obtained with our
BCS-based approach agrees with the experimental observation of Liu et al.

Finally, the results of the BCS-based RPA and SSRPA are compared on
Fig. 5.4. This allows for a direct comparison of the two models where pairing
effects are estimated through BCS occupation numbers. Going from RPA to
SSRPA, the trend at the minima N = 28 and N = 34 is partly rectified. One
can conclude that it is the mixing with 2p2h configurations which leads to
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Figure 5.3: Lowest 2+ energies in N = 28 to N = 34 Argon isotopes, calculated in SSRPA
(2p2h cutoff of 40 MeV) with EFA. Occupation numbers used as input are computed in HF
("HF-based") and BCS ("BCS-based") calculations. Experimental values are the same as in
Fig. 5.1.

this correction towards a better agreement with the experimental values.
To conclude, the BCS-based EFA approach that we introduced allows for

an estimation of the effect of pairing in RPA and SRPA. While not modifying
substantially the results in RPA, more important modifications are observed
when including 2p2h configurations, towards a better agreement with ex-
perimental data. This supports the importance of including pairing correla-
tions within SRPA-type calculations to improve the description of low-lying
states of certain nuclei. Of course, as pointed out previously, this is only a
simplified inclusion of pairing correlations.

5.2 Going beyond the QBA

As discussed in Subsec. 2.3.2, the standard RPA resolution relies on the QBA
to set up the matrix elements, because the exact (correlated) ground state is a
priori unknown. We remind here that this approximation, which in practical
applications is equivalent to using the HF ground state when building the
matrix elements, is inconsistent and has the obvious drawback of bounding
the applications to the MF framework.

In principle, the form of the RPA excitation operators implies that the
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Figure 5.4: Lowest 2+ energies in N = 28 to N = 34 Argon isotopes, calculated in RPA
and SSRPA with EFA. Occupation numbers used as input are computed in BCS calculations.
Experimental values are the same as in Fig. 5.1.

RPA ground state is correlated. Replacing such a correlated ground state
with the HF ground state thus induces a clear inconsistency in the model.
This also produces a violation of the Pauli principle. In addition, within the
RPA model, the use of the QBA leads to a fully harmonic spectrum (no an-
harmonicities in the multiphonon spectrum).

To go beyond this approximation, various formal developments were made
in the past. In the pioneering studies of Refs. [40, 165], the so-called renor-
malized RPA was introduced for the first time, where renormalization factors
depending on the occupation numbers of single-particle states appeared.
Such occupation numbers were different from 1 and 0 because a corre-
lated ground state was used instead of the HF ground state (the QBA was
not adopted). In these first studies, the single-particle energies were esti-
mated by measurements (centroids extracted from pickup or stripping re-
actions). Applications to the study of low-lying states [166, 167] and of
double beta decay [168–170] were carried out. In these latter applications,
single-particle energies were this time computed microscopically.

Such a renormalized RPA model is a simplification of the so-called self-
consistent RPA [171–174] where two-body densities are simplified by an
antisymmetrized product of single-particle densities.
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Several directions were explored to overcome the QBA, in some cases by
constructing theories based on a boson formalism [175–183] and, in other
cases, remaining within a fermionic space [47, 152, 166, 184–191]. In the
cases where boson-expansion methods were used, the operator Q†

ν was de-
fined in terms of the boson operators. Fermion operators of interest were
replaced by their boson images through a mapping procedure. By truncat-
ing the boson Hamiltonian at two-boson terms, a boson formulation of RPA
could be obtained. A higher level of approximation was reached if the boson
image of the Hamiltonian included higher-order terms.

It is known that enlarging the RPA model by avoiding the QBA gener-
ates violations of the EWSRs. These violations were cured by including, in
addition to particle-hole configurations, also particle-particle and hole-hole
configurations [45–47, 192].

In Ref. [187], renormalized operators

B†
mi :=

∑

p,k

Nmi,pka†
pak (5.17)

were introduced to construct the excitation operators:

Q†
ν

:=
∑

m,i

�

Xmi(ν)B
†
mi − Ymi(ν)Bmi

�

(5.18)

It was assumed a diagonal one-body density matrix

〈0| a†
β

aα |0〉 = δαβ nα

and the following choice was made:

Nmi,pk = δmpδik(ni − nm)
−1/2 := δmpδikD−1/2

mi . (5.19)

In the above equations, nα is the occupation number of the single-particle
state α.

Then, through a linearization of the equations of motion, expressions for
the matrices A and B containing the one-body density matrix were obtained.
Thanks to the number operator method [193], the one-body density matrix
elements were derived as functions of the amplitudes X and Y of the RPA
excitation operator. This led to a set of non-linear equations which were
solved iteratively. One limitation was that the one-body density matrix was
assumed to be diagonal in the HF basis. This limitation was overcome in Ref.
[188]. However, the ansatz (5.17) and the choice (5.19) were still adopted.

To avoid this, it was proposed in Ref. [152] to work with operators which
are not renormalized. By linearizing the equations of motion, a set of RPA-
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type equations was obtained, again depending on the one-body density ma-
trix, the latter being related to the X and Y amplitudes by the use of the
number operator method. A similar procedure was employed in Ref. [153]
to extend the SRPA model. The importance of avoiding the QBA in the SRPA
model was underlined by Papakonstantinou [67] as already mentioned.

5.2.1 An extension of RPA and SRPA with renormalization fac-
tors: Formalism

In this thesis work, the extended SRPA model of Ref. [153] is used. We re-
mind that this extension is based on a similar procedure as that employed
in a previous study made for the RPA case [152]. These two models were
referred to as extended SRPA (ESRPA) and extended RPA (ERPA) in the two
articles, respectively. They were both applied to the study of collective exci-
tations in metal clusters. The novelty of the present work resides in the fur-
ther development of these extended models and their application to atomic
nuclei.

Let us start with the ERPA case. This model was developed as an im-
provement of other extensions of RPA presented in Refs. [187, 188]. In the
extension introduced in Ref. [187] the particle-hole operators are renormal-
ized (Eq. (5.17)). By defining the correlated ground state |0〉 as the vacuum
of the operators Qν (where Q†

ν are given by Eq. (5.18)), by assuming that the
one-body density matrix is diagonal and by adopting the choice (5.19), RPA-
like equations may be derived where the matrices A and B are now expressed
as

Ami,n j :=



0
�

�

�

Bmi, Ĥ, B†
n j

��

�0
�

, (5.20)

Bmi,n j := −



0
�

�

�

Bmi, Ĥ, Bn j

��

�0
�

, (5.21)

and
Gmi,n j :=




0
�

�

�

Bmi, B†
n j

��

�0
�

, (5.22)
having introduced the antisymmetrized double-commutators:

[a, b, c] :=
1
2

�

�

a, [b, c]
�

+
�

[a, b], c
�

�

. (5.23)

The usual orthonormality conditions as in standard RPA may be found:

δλλ′ =
∑

m,i,n, j

�

X ∗mi(λ
′)Xn j(λ)− Y ∗mi(λ

′)Yn j(λ)
�

. (5.24)
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To simplify this complicated problem, the linearization of the equations of
motion is carried out. In the computation of the commutator of the Hamil-
tonian Ĥ with a particle-hole operator, the two-body terms are contracted
with respect to |0〉. In this way, one obtains expressions for the matrices A
and B where only the one-body density matrix appears. Thus, the matrices
A and B depend on the occupation numbers which, in turn, depend on the
amplitudes X and Y . This non-linear problem is solved iteratively.

The fact that the one-body density matrix is assumed to be diagonal in
Ref. [187] in the HF basis is a clear limitation. This limitation is overcome
in Ref. [188], which is however still based on Eqs. (5.17) and (5.18).

To go beyond such a strong constraint, an improvement of the model was
then proposed in Ref. [152].

The form of the excitation operator Q†
ν is this time the same as in standard

RPA (see Eq. (2.21)), and the system to solve is that of Eq. (2.23), with the
matrix elements defined in Eqs. (2.24) to (2.26). The solutions X and Y of
the problem satisfy the orthonormality condition (2.36).

Assuming the expression (2.1) of the Hamiltonian, and using the lin-
earization of the equations of motion, the density-dependent expressions
of the matrix elements are obtained:

Ami,n j =
1
2

�

hmnρ ji + hi jρnm −δi j

∑

p

hpnρpm −δmn

∑

k

hk jρki

+
∑

k,l

vmklnρilρ jk +
∑

p,q

vipq jρmqρnp + 2
∑

k,p

vkpniρ jkρmp

+ (m, i↔ n, j)
�

, (5.25)

Bmi,n j = −
�

∑

p,q

�

vi jpqρnpρmq

�

+
∑

k,l

�

vklnmρ jkρil

�

(5.26)

+
∑

p,k

�

vkipnρ jkρmp

�

+
∑

p,k

�

vk jpmρikρnp

�

�

, (5.27)

where the hαβ quantity was defined as in Eq. (2.11).

One always has
Gmi,n j = δmnρ ji −δ ji ρnm . (5.28)

As already mentioned, the elements of the one-body density matrix are
expressed in terms of the X and Y amplitudes through the number operator
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method. One obtains

ρmm′ =
∑

ν,ν

S(ν,ν′)
∑

p,i

∑

q, j

Ypi(ν)Y
∗

q j(ν
′)
∑

k

Gmk,piG
∗
m′k,q j , (5.29)

ρii′ = δii′ −
∑

ν,ν

S(ν,ν′)
∑

p,k

∑

q, j

Ypk(ν)Y
∗

q j(ν
′)
∑

m

Gmi,pkG∗mi′,q j , (5.30)

where

S(ν,ν′) = δνν′ −
1
2

∑

m,i,n, j

Xmi(ν)X
∗
n j(ν

′)
∑

p,k

Gpk,miG
∗
pk,n j . (5.31)

As was done in Ref. [152], one may diagonalize the h matrix to obtain
“generalized single-particle energies” hαβ = εαδαβ , and use the subsequent
single-particle basis.

In our model we do not diagonalize the one-body density matrix. In-
stead, we assume it to be diagonal. Such additional approximation in our
model results in the following expressions for the matrix elements, where
we separate the kinetic and the interaction parts:

Ami,n j = δmnδi j(εm − εi)(ni − nm) + vmjin(ni − nm)(n j − nn) , (5.32)

Bmi,n j = vmni j(ni − nm)(n j − nn) , (5.33)

Gmi,n j = δmnδi j(ni − nm) . (5.34)

One may express in a similar fashion the transition amplitude 〈λ| F̂ |0〉
of a one-body operator F̂ . We already derived such an expression in Sub-
sec. 2.3.1 (see Eq. (2.38)). Notice that this quantity also depends on the
one-body density via the elements of the G matrix.

We now present the corresponding equations for the SRPA case, following
the same approximation framework as in Ref. [153].

The A11, B11 and G11 blocks of the SRPA stability matrix are the same as
in Eqs. (5.32) to (5.34). The elements of the remaining (non-zero) SRPA
blocks can be derived in a similar way. As an example of such a derivation,
the case of the A12 elements is presented in App. 1. We provide here only
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the final expressions for the SRPA block matrices:

Apk,mni j = A(i, j)δk j vipmnχ
(3p1h) −A(m, n)δpnvi jmk χ

(3h1p) , (5.35)

Amni j,pqkl = A(i, j)A(m, n)δikδmpδ jlδnq(εm + εn − εi − ε j)χmi,n j

+A(i, j)δikδ jl vmnpq χ
(4p)

+A(m, n)δmpδnqvi jkl χ
(4h)

+A(i, j)A(m, n)A(k, l)A(p, q)δ jlδnqvmkip χ
(2p2h)

(5.36)

Gmni j,pqkl = A(i, j)A(m, n)δikδmpδ jlδnq χmi,n j , (5.37)

where the renormalizing factors that contain occupation numbers are de-
fined as follows:

χmi,n j := nin j (1− nm − nn)− nmnn

�

1− ni − n j

�

(5.38)

χ(3p1h) := nkni (1− nm − nn) +
1
2
χpm,in (5.39)

χ(3h1p) := nin j

�

1− nm − np

�

+
1
2
χim, jk (5.40)

χ(4p) := χmi,n j

�

1−
nm + nn + np + nq

2

�

(5.41)

χ(4h) := −χmi,n j

�

1−
ni + n j + nk + nl

2

�

(5.42)

χ(2p2h) := χmi,n j

ni + nk − nm − np

2
. (5.43)

Notice that, because of our approximation framework, the expressions of
the matrix elements with density matrices reduce to expressions with only
occupation numbers.

Having derived these beyond-QBA expressions of the matrix elements,
one needs to compute the occupation numbers to evaluate the renormalizing
factors prior to solving the SRPA problem. The practical way we address this
problem will be described in detail in Subsec. 5.2.2.

The expressions for the occupation numbers are derived via the number
operator method introduced in Ref. [193]. The expressions used in our cal-
culations are based on the simplification Gmi,n j = δmnδi j and contain only
terms with up to a quadratic dependence in the amplitudes (O(|X 2|) and
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O(|Y 2|)). One has in this scheme

nm '
1
2

∑

ν

∑

i

|Ymi(ν)|
2 +O(|Y 4|) , (5.44)

ni ' 1−
1
2

∑

ν

∑

m

|Ymi(ν)|
2 +O(|Y 4|) . (5.45)

More involved expressions, keeping the full expression for Gmi,n j and go-
ing up to terms in O(|Y 4|), can be derived [187]. However such expressions
are not considered in our approach. We provide the main steps of the num-
ber operator method in App. 2.

5.2.2 An extension of RPA and SRPA with renormalization fac-
tors: Results

We provide in this section the details of our applications of the extensions of
RPA and SRPA introduced in the previous subsection, and discuss the corre-
sponding results.

Let us remind that our aim in this particular study is to achieve a renor-
malization of SRPA as per Eqs. (5.32) to (5.37), by using occupation num-
bers calculated self-consistently in RPA. As was underlined and suggested in
Ref. [67], the drawbacks of the SRPA model related to the stability and to
the Thouless theorem may be cured by going towards a model where the
ground state is not the HF one but a correlated ground state. One can thus
hope that, if the ground state calculated with the RPA amplitudes is suffi-
ciently correlated (with occupation numbers noticeably different from 1 and
0), the SRPA model with renormalization factors (depending on such occu-
pation numbers) may be an alternative method to the subtraction procedure,
leading to the same type of corrections.

This is indeed what was found in practice in Ref. [153] in the application
carried out to describe dipole strength distributions in metal clusters (where
these excitations are vibrations of the delocalized valence electrons against
the ionic core, which is approximated by a jellium). Whereas the standard
SRPA produces in Ref. [153] the well-known unphysical downward shift of
the excitation energies compared to RPA, the extension of the SRPA based on
a correlated ground state leads to an important correction of the spectrum,
which is shifted to higher energies.

This is consistent with what was discussed a long time ago from a formal
point of view by Takayanagi et al. [194, 195]. If a correlated ground state

84



CHAPTER 5. EXTENSIONS OF THE MODEL

is used, the SRPA model may be rewritten in such a way that a modified
response function is obtained (compared to the case of the standard SRPA),
where the self-energy is corrected by the inclusion of a new term (recall
that a corrective term to the self-energy is also introduced by the subtraction
procedure).

However, this procedure based on a correlated ground state (with renor-
malization factors) is working efficiently only for cases where such renor-
malization factors induce non negligible ground state modifications.

Now, the correlations that RPA-based models are able to describe are
those which are related to the amplitudes X and Y . In particular, they de-
pend on the amplitudes Y (to what extent they are different from zero). It
turns out that, for metal clusters, these amplitudes are quite large. We have
then checked how this procedure works for atomic nuclei.

We base our implementation of the renormalized RPA on the skyrme_rpa
program [196]. This program was extended to allow for iterative renormal-
ized RPA calculations.

Our approach consisted in the following two steps:

1. Calculate the occupation numbers in iterative renormalized RPA, using
Eqs. (5.44) and (5.45). The first calculation (iteration 0) is performed
in standard RPA (the iteration process is therefore initialized by HF
occupation numbers). The procedure is stopped when convergence is
reached, that is when the RPA eigenenergies at a given iteration are
considered identical to those of the previous one.

2. Use the occupation numbers resulting from the last RPA iteration as in-
put for a renormalized SRPA calculation. The occupation numbers are
taken into account via the renormalizing factors defined in Eqs. (5.38)
to (5.43).

Note that, according to the number operator method, the computation of
the occupation numbers is all the more accurate as more multipolarities Jπ

are taken into account in the iterative process. In fact, for a given nucleus,
our method allows us to include a desired number of multipolarities in the
iterative calculation, so that they all finally contribute to the converged oc-
cupation numbers. In the cases presented in this section, five multipolarities
Jπ were included at each iteration of the occupation-number computation:
0+, 2+, 4+, 1−, 3−.

We recall that, inherently to the number operator method, the total num-
ber of particles (neutrons and protons) is recovered when summing all the
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occupation numbers — this serves also as a test, and was systematically ver-
ified for all our calculations.

We exemplify here our results by presenting the case of the monopole
response of 16O, using the SLy4 interaction. The energy cutoff was set to
100 MeV for single-particle states and to 100 MeV for 1p1h configurations,
in both RPA and SRPA calculations. In SRPA, the 2p2h cutoff was set to 60
MeV.

As far as the RPA iterations are concerned for this nucleus, it was found
that five iterations are enough to obtain eigenvalues converged up to 10−4

MeV. In addition, it appears that the difference between the converged and
the initial values of the eigenenergies usually does not exceed 0.1 MeV.

Occupation numbers calculated iteratively for 16O are displayed on Fig. 5.5.
One observes the depletion of states that are occupied in HF, and the corre-
sponding population of particle states, the latter being spread over the whole
remaining single-particle basis. One can notice that the modification of the
occupation numbers with respect to 1 and 0 is extremely weak.
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Figure 5.5: Occupation numbers np for particle states and opposite of depletion numbers
1−nh for hole states, calculated iteratively with renormalized RPA for the 16O nucleus. The
upper panel displays the values for neutrons, the lower panel for protons. The indicated
multipolarities were included at each step of the RPA iterations.

Figure 5.6 represents the same occupation numbers computed this time in
the case where only the multipolarity of the final SRPA calculation (Jπ = 0+)
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was included in the iterative RPA calculations. This figure shows that the ef-
fect on the occupation numbers of adding different multipolarities in the
iterative process is non-negligible: the total depletion of hole-states is in-
creased by around 4 % (the most depleted hole state having an occupation
number of 0.93), when all the above-mentioned five multipolarities were
added, instead of only the Jπ = 0+.
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Figure 5.6: Same as Fig. 5.5, but where only the multipolarity Jπ = 0+ was included in
the iterative RPA calculations for the computation of occupation numbers.

Now feeding back the converged values of occupation numbers to a 16O
SRPA calculations, a modification of the spectrum is indeed observed, as can
be seen on Fig. 5.7.

From this result we made the following observations:

• The observed renormalization has the expected effect: the whole spec-
trum is pushed towards higher energies. Indeed, this behavior tends
to correct (though insufficiently) the unphysical shift observed in stan-
dard SRPA.

• The renormalization is weak (usually of a few hundreds of keV in the
GR region). By fitting a Lorentzian function to the distribution obtained
after folding in each case, the centroids estimated in this way are lo-
cated at 19.8 MeV in standard SRPA, and at 20.3 MeV in renormalized
SRPA.
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Figure 5.7: Monopole response of 16O calculated with the SLy4 interaction in SRPA (no
renormalization) and in SRPA renormalized with RPA occupation numbers. The transition
probability was folded with Lorentzian functions of width 0.1 MeV. The folded spectrum
was rescaled to the maximum value of the discrete spectrum. The energy cutoff for 2p2h
configurations is 60 MeV.

We checked that a similar behavior is obtained with the SGII interaction,
and with higher 2p2h energy cutoffs in SRPA. As an additional illustration,
we show on Fig. 5.8 the quadrupole response of the same nucleus, evaluated
with a 2p2h cutoff of 30 MeV (the same behavior is obtained by increasing
the value of the cutoff).

The very low effect of such a renormalization demonstrates that ground-
state correlations coming only from self-consistent RPA calculations are not
sufficient to correct for the strong shift observed in standard SRPA.
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Figure 5.8: Quadrupole response of 16O calculated with the SLy4 interaction in SRPA (no
renormalization) and in SRPA renormalized with RPA occupation numbers. The transition
probability was folded with Lorentzian functions of width 0.1 MeV. The folded spectrum
was rescaled to the maximum value of the discrete spectrum. The energy cutoff for 2p2h
configurations is 30 MeV.
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CHAPTER 6

General conclusions & perspectives

With the initial aim of improving the description of nuclear excitation spec-
tra, this thesis work contributed to the assessment and the development of
beyond-mean-field methods. These methods address the nuclear many-body
problem by coupling single-particle degrees of freedom with more complex
configurations and correlations. We summarize here the main results of our
studies, and provide insights to possible further developments and perspec-
tives.

We have highlighted the need to overcome the mean-field approxima-
tion, used in particular in RPA on top of the HF method, to account for
the spreading and the fragmentation of excitation spectra observed experi-
mentally. The SRPA as a mere extension of RPA to 2p2h configurations is a
possible approach to go beyond the mean field, but it has important draw-
backs. An anomalously large shift of the excitation spectra to lower energies
is found in SRPA, compared to the RPA case. Instabilities and imaginary solu-
tions may be obtained due to the fact that the Thouless theorem is not valid
in the standard SRPA. In addition, if traditional interactions are employed
where the parameters are adjusted at the mean-field level, a risk of double
counting correlations exists. If such interactions have a zero range, as is the
case for Skyrme interactions, an ultraviolet divergence is generated beyond
the mean field, which is visible in a dependence on the cutoff put on 2p2h
configurations. We therefore built our developments on a corrected version
of SRPA based on a subtraction procedure — the Subtracted SRPA (SSRPA)
— which allows us to solve all these drawbacks.

We first carried out an extensive analysis of the capabilities of the SS-
RPA. Applying this model to the dipole response and the electric polariz-
ability in 48Ca, we first showed the gain in accuracy it allows in accounting
for the position of the low-lying excitation energies with the SGII Skyrme
parametrization. While the centroids of the giant dipole resonance provided
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by the SSRPA are still underestimating the experimental data, an important
improvement is observed in the description of the spreading, as seen by the
satisfactory reproduction of the slope of the electric dipole polarizability.

We next performed a systematic application of our SSRPA model to the
quadrupole response of a range of even-even, spherically-expected medium
and heavy-mass nuclei. We obtained in the large majority of the consid-
ered nuclei an improved reproduction of the experimental centroid energies
compared to RPA, and verified the enhancement of the widths when go-
ing from RPA to SSRPA. In addition, we showed that the SSRPA allows for
a better description of the fine structure of the excitations, as provided by
high-resolution experiments.

A third study involving the SSRPA model was dedicated to the analysis
of beyond-mean-field effects in 48Ca and 90Zr. We proposed a method to
extract beyond-mean-field effective masses from axial breathing modes in
these nuclei, and we highlighted the compression of single-particle spectra
which is observed by going beyond the mean-field approximation.

As a second step in our studies, we tackled the possible ways of enriching
our models.

Firstly, we extended the method to nuclei with partially-filled orbitals, by
using the equal-filling approximation. This provided us with a convenient
way of reaching most even-even open-shell nuclei. An approach was intro-
duced to estimate in part the pairing effects in nuclei, by calculating the oc-
cupation numbers in a BCS model, which are in turn used in the equal-filling
factors. We concluded, by calculating the low-lying states of neutron-rich Ar-
gon isotopes, that such an inclusion of pairing correlations allows for a better
agreement with recent experimental values than the original SSRPA model.
The SSRPA model, on the other side, already improved the agreement with
experimental results, compared to the RPA case, owing to the mixing with
2p2h configurations.

Secondly, we investigated the inclusion of beyond-QBA correlations in
SRPA, through the iterative computation of occupation numbers carried out
using RPA X and Y amplitudes. This allowed us to introduce a correlated
ground state. However, the obtained renormalization of SRPA matrix ele-
ments revealed to be too weak to correct the problems of standard SRPA,
but showed the expected trend towards such correction.

We therefore opened means to improve the description of both low-lying
and higher energy excitations of nuclei. Several ways of development could
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be followed from this study.
Given the promising results obtained in our estimate inclusion of pairing

correlations, a step towards a more complete account of these correlations
could be made. A quasiparticle SSRPA approach could be considered.

Alternatively, an estimate approach to pairing effects, similar to that which
we introduced in the equal-filling approximation, could be made within the
beyond-QBA models, still by computation of occupation numbers in BCS or
HFB calculations.

Yet another possible extension along the inclusion of correlations through
occupation numbers would be to take into account effects of a non-zero tem-
perature, by introducing a temperature dependence in the one-body den-
sity matrix (Fermi distribution), thereby authorizing the study of giant reso-
nances in hot nuclei.

On the other side, reducing the set of approximations (e.g. diagonal one-
body density matrix) used in the SRPA renormalized beyond the QBA may be
beneficial to further extensions. This could allow us to generate stronger cor-
relations in the ground state by the use of X and Y amplitudes and could lead
to an alternative method to the subtraction procedure. Such a method could
correct the energy-dependent self-energy in such a way to cure the anoma-
lous shift of the excitation spectra which characterises the standard SRPA.
Of course, the double counting of correlations and the cutoff dependence of
the results would remain in this way open problems if Skyrme interactions
are still used.
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Appendix 1. Computation of renormalized matrix el-
ements

In this section, we present the main derivation steps of the elements of the
A12 matrix.

Let us start by introducing the following shortcut notations:



0
�

�

�

a†
kap, [V̂ , a†

ma†
na jai]

��

�0
�

=
1
4

∑

µ,ν,µ′,ν′
vµνµ′ν′




0
�

�c1,22

�

�0
�

(A1)

where we define

c1,22 :=
�

a†
kap, [a†

µa†
νaν′aµ′, a†

ma†
na jai]

�

=
�

a†
kap, c22

�

c22 :=
�

a†
µa†
νaν′aµ′, a†

ma†
na jai

�

We derive

c22 = a†
µa†
ν

�

aν′aµ′, a†
ma†

n

�

a jai + a†
ma†

n

�

a†
µa†
ν, a jai

�

aν′aµ′

As one always has
�

a†
αa†
β
, aεaζ

�

= A(α,β)A(ε,ζ)δεβ
�

a†
αaζ −

1
2
δζα

�

one obtains

c22 = A(µ,ν)A(i, j)δν j

�

a†
ma†

na†
µaiaν′aµ′ −

1
2
δµia

†
ma†

naν′aµ′
�

−A(µ′,ν′)A(m, n)δν′n

�

a†
µa†
νa

†
maµ′a jai −

1
2
δµ′ma†

µa†
νa jai

�
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and

c1,22 = A(µ,ν)A(i, j)δν j

�

�

a†
kap, a†

ma†
na†
µaiaν′aµ′

�

−
1
2
δµi

�

a†
kap, a†

ma†
naν′aµ′

�

�

−A(µ′,ν′)A(m, n)δν′n

�

�

a†
kap, a†

µa†
νa

†
maµ′a jai

�

−
1
2
δµ′m

�

a†
kap, a†

µa†
νa jai

�

�

By shuffling the indices to get commutators which are as much similar as
possible, one may obtain

c1,22 = A(µ,ν)A(i, j)δν j

�

�

a†
kap, a†

ma†
na†
µaiaν′aµ′

�

−
1
2
δµi

�

a†
kap, a†

ma†
naν′aµ′

�

�

−A(µ′,ν′)A(m, n)δν′n

�

�

a†
kap, a†

ma†
νa

†
µaia jaµ′

�

−
1
2
δµ′m

�

a†
kap, a†

νa
†
µaia j

�

�

We introduce further shortcut notations to ease the later derivations:

c1,22 = A(µ,ν)A(i, j)δν j

�

c13 −
1
2
δµic12

�

−A(µ′,ν′)A(m, n)δν′n

�

c′13 −
1
2
δµ′mc′12

�

Let us denote by τα→β is the operator that changes α into β . Then:

c13 :=
�

a†
kap, a†

ma†
na†
µaiaν′aµ′

�

c′13 :=
�

a†
kap, a†

ma†
νa

†
µaia jaµ′

�

= τn→ντν′→ jc13

c12 :=
�

a†
kap, a†

ma†
naν′aµ′

�

c′12 :=
�

a†
kap, a†

νa
†
µaia j

�

= τm→ντn→µτν′→iτµ′→ jc12

One derives the first commutator as follows:

c13 = A(m, n)δpma†
ka†

na†
µaiaν′aµ′

+A(µ′,ν′)δν′ka†
ma†

na†
µaiaµ′ap

+δµpa†
ma†

na†
kaiaν′aµ′

+δkia
†
ma†

na†
µapaµ′aν′

Hence
c′13 = A(m,ν)δpma†

ka†
νa

†
µaia jaµ′

+A(µ′, j)δ jka†
ma†
νa

†
µaiaµ′ap

+δµpa†
ma†
νa

†
kaia jaµ′

+δkia
†
ma†
νa

†
µapaµ′a j
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We now take the ground-state expectation value of the commutators:



0
�

�c13

�

�0
�

= A(m, n)δpme1

+A(µ′,ν′)δν′ke2

+δµpe3

+δkie4

where

e1 :=



0
�

�a†
ka†

na†
µaiaν′aµ′

�

�0
�

e2 :=



0
�

�a†
ma†

na†
µaiaµ′ap

�

�0
�

= −τk→mτν′→pe1

e3 :=



0
�

�a†
ma†

na†
kaiaν′aµ′

�

�0
�

= −τµ→me1

e4 :=



0
�

�a†
ma†

na†
µapaµ′aν′

�

�0
�

= −τk→mτi→pe1

Applying the two approximations (3.25) and (3.26), one has

e1 ' δµininknnA(k, n)δµ′kδν′n
+ nµnknnA(µ′,ν′)δν′µA(k, n)δikδµ′n

Hence

e2 ' −δµininmnnA(m, n)δµ′mδpn

− nµnmnnA(µ′, p)δpµA(m, n)δimδµ′n

e3 ' −δmininknnA(k, n)δµ′kδν′n
− nmnknnA(µ′,ν′)δν′mA(k, n)δikδµ′n

e4 ' −δµpnpnmnnA(m, n)δµ′mδν′n
− nµnmnnA(m, n)δpmA(µ′,ν′)δν′µδµ′n

Therefore, one finally gets

〈0 |c13|0〉 = A(m, n)δpmδµininknnA(k, n)δµ′kδν′n
+A(m, n)δpmnµnknnA(µ′,ν′)δν′µA(k, n)δikδµ′n

−A(µ′,ν′)δν′kδµininmnnA(m, n)δµ′mδpn

−A(µ′,ν′)δν′knµnmnnA(µ′, p)δpµA(m, n)δimδµ′n

−δµpδmininknnA(k, n)δµ′kδν′n
−δµpnmnknnA(µ′,ν′)δν′mA(k, n)δikδµ′n

−δkiδµpnpnmnnA(m, n)δµ′mδν′n
−δkinµnmnnA(m, n)δpmA(µ′,ν′)δν′µδµ′n

97



CHAPTER 7. APPENDICES

With further factorizing, one has

〈0 |c13|0〉 = ninkA(m, n)δpmnnδµiA(k, n)δµ′kδν′n
+ nkA(m, n)δpmnnA(k, n)δiknµA(µ′,ν′)δν′µδµ′n
− ninmnnA(m, n)δpnδµiA(µ′,ν′)δν′kδµ′m
− nmnnA(m, n)δimnµA(µ′,ν′)δν′kA(µ′, p)δpµδµ′n

−δmininknnA(k, n)δµpδµ′kδν′n

− nmnknnA(k, n)δikδµpA(µ′,ν′)δν′mδµ′n
−δkinpnmnnA(m, n)δµpδµ′mδν′n

−δkinmnnA(m, n)δpmnµA(µ′,ν′)δν′µδµ′n

Similarly:



0
�

�c′13

�

�0
�

= ninkA(m,ν)δpmδµinνA(k,ν)δµ′kδ jν

+ nkA(m,ν)δpmnµnνA(µ′, j)δ jµA(k,ν)δikδµ′ν

− ninmA(µ′, j)δ jkδµinνA(m,ν)δµ′mδpν

− nmnνA(m,ν)δimA(µ′, j)δ jknµA(µ′, p)δpµδµ′ν

− ninkδmiδµpnνA(k,ν)δµ′kδ jν

− nmnkδµpnνA(µ′, j)δ jmA(k,ν)δikδµ′ν

− npnmδkiδµpnνA(m,ν)δµ′mδ jν

−δkinmnµnνA(m,ν)δpmA(µ′, j)δ jµδµ′ν

Let us now evaluate the remaining commutators:

c12 = A(m, n)δpma†
ka†

naν′aµ′

+A(µ′,ν′)δν′ka†
ma†

naµ′ap

and



0
�

�c12

�

�0
�

= A(m, n)δpm f1

+A(µ′,ν′)δν′k f2

where

f1 :=



0
�

�a†
ka†

naν′aµ′
�

�0
�

f2 :=



0
�

�a†
ma†

naµ′ap

�

�0
�

= −τk→mτν′→p f1

By applying the two approximations, one obtains

f1 ' nknnA(k, n)δµ′kδν′n
f2 ' −nmnnA(m, n)δµ′mδpn
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Hence

〈0 |c12|0〉 = nkA(m, n)δpmnnA(k, n)δµ′kδν′n
− nmnnA(m, n)A(µ′,ν′)δν′kδµ′mδpn

Similarly:



0
�

�c′12

�

�0
�

= A(ν,µ)δpνnknµA(k,µ)δ jkδiµ

−A( j, i)δiknνnµA(ν,µ)δ jνδpµ

We now regroup the above results in the overall sum:
∑

µ,ν,µ′,ν′
vµνµ′ν′




0
�

�c1,22

�

�0
�

=
∑

µ,ν,µ′,ν′
vµνµ′ν′

�

A(µ,ν)A(i, j)δν j

×
�

〈0 |c13|0〉 −
1
2
δµi 〈0 |c12|0〉

�

−A(µ′,ν′)A(m, n)δν′n

×
�




0
�

�c′13

�

�0
�

−
1
2
δµ′m




0
�

�c′12

�

�0
�

�

�

∑

µ,ν,µ′,ν′
vµνµ′ν′




0
�

�c1,22

�

�0
�

=
∑

µ,ν,µ′,ν′
vµνµ′ν′

�

A(i, j)δν j

×
�

〈0 |c13|0〉 −
1
2
δµi 〈0 |c12|0〉

�

−A(i, j)δµ j

×
�




0
�

�τµ→νc13

�

�0
�

−
1
2
δνi 〈0 |c12|0〉

�

−A(m, n)δν′n

×
�




0
�

�c′13

�

�0
�

−
1
2
δµ′m




0
�

�c′12

�

�0
�

�

+A(m, n)δµ′n

×
�




0
�

�τµ→νc
′
13

�

�0
�

−
1
2
δν′m




0
�

�c′12

�

�0
�

�

�
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∑

µ,ν,µ′,ν′
vµνµ′ν′




0
�

�c1,22

�

�0
�

= A(i, j)
�

∑

µ,µ′,ν′
vµ jµ′ν′ 〈0 |c13|0〉

−
1
2

∑

µ′,ν′
vi jµ′ν′ 〈0 |c12|0〉

�

−A(i, j)
�

∑

ν,µ′,ν′
v jνµ′ν′




0
�

�τµ→νc13

�

�0
�

−
1
2

∑

µ′,ν′
v jiµ′ν′ 〈0 |c12|0〉

�

−A(m, n)
�

∑

µ,ν,µ′
vµνµ′n




0
�

�c′13

�

�0
�

−
1
2

∑

µ,ν

vµνmn




0
�

�c′12

�

�0
�

�

+A(m, n)
�

∑

µ,ν,ν′
vµνnν′




0
�

�τµ′→ν′c
′
13

�

�0
�

−
1
2

∑

µ,ν

vµνnm




0
�

�c′12

�

�0
�

�

Now
∑

ν,µ′,ν′
v jνµ′ν′




0
�

�τµ→νc13

�

�0
�

= −
∑

µ,µ′,ν′
vµ jµ′ν′ 〈0 |c13|0〉

∑

µ,ν,ν′
vµνnν′




0
�

�τµ′→ν′c
′
13

�

�0
�

= −
∑

µ,ν,µ′
vµνµ′n




0
�

�c′13

�

�0
�

∑

µ′,ν′
v jiµ′ν′ 〈0 |c12|0〉 = −

∑

µ′,ν′
vi jµ′ν′ 〈0 |c12|0〉

∑

µ,ν

vµνnm




0
�

�c′12

�

�0
�

= −
∑

µ,ν

vµνmn




0
�

�c′12

�

�0
�

Thus finally
∑

µ,ν,µ′,ν′
vµνµ′ν′




0
�

�c1,22

�

�0
�

= A(i, j)
�

2
∑

µ,µ′,ν′
vµ jµ′ν′ 〈0 |c13|0〉

−
∑

µ′,ν′
vi jµ′ν′ 〈0 |c12|0〉

�

−A(m, n)
�

2
∑

µ,ν,µ′
vµνµ′n




0
�

�c′13

�

�0
�

−
∑

µ,ν

vµνmn




0
�

�c′12

�

�0
�

�
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After evaluation of the sums and gathering all the terms, on obtains



0
�

�

�

a†
kap, [V̂ , a†

ma†
na jai]

��

�0
�

'
1
2
A(m, n)A(i, j)δpmvi jnk

× (nk − np)
�

ni(n j − nn)− nn(ni − 1)
�

+
1
2
A(m, n)A(i, j)δki vp jmn

× (nk − np)
�

n j(1− nm)− nm(n j − nn)
�

+A(m, n)A(i, j)δpmδki

× (nk − np)(n j − nn)
∑

µ

v jµµnnµ

Using the fact that the interaction is antisymmetrized to simplify some
antisymmetrizers:



0
�

�

�

a†
kap, [V̂ , a†

ma†
na jai]

��

�0
�

' A(m, n)δpnvi jkm

× (nk − np)
�

nm(1− ni − n j) + nin j

�

+A(i, j)δk j vipmn

× (nk − np)
�

ni(1− nm − nn) + nmnn

�

+A(m, n)A(i, j)δpnδk j

× (nk − np)(ni − nm)
∑

µ

viµµmnµ

(A2)
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Appendix 2. Expression for the occupation numbers

In this Appendix, we derive the main equations of the number operator
method [193]. The main goal here is to obtain an expression for the diagonal
elements nα of the one-body density matrix ραβ := 〈0| a†

β
aα |0〉, as functions

of the amplitudes X and Y of the RPA excitation operators. Indeed, as we use
the approximation (3.25) in our models, the two-body elements appearing
in the (S)RPA matrix elements are just combinations of one-body elements.

In the following notations, we do not display the couplings to quantum
numbers for simplicity.

We start with a general property of the number operator N̂ =
∑

α a†
α aα

(where α labels here a single-particle state) that can be readily proven: with
Pn a product of any n annihilation operators Pn =

∏n
q=1 aαq

, and with
�

�ξ
�

any state of A fermions, one has:

N̂ Pn

�

�ξ
�

= (A− n) Pn

�

�ξ
�

. (A3)

We then use this property to derive the following equation for a particle-
state m:

nm =
1

A− 1

∑

α

〈0| a†
ma†
αaαam |0〉 (A4)

=
1

A− 1

�

∑

i

〈0| a†
ma†

i aiam |0〉+
∑

n

〈0| a†
ma†

nanam |0〉
�

,

where, as usual, i and n label hole-states and particle-states respectively.

By rearranging the hole-state indices, on gets

nm =
∑

i

〈0| a†
maia

†
i am |0〉 −

∑

n

〈0| a†
ma†

nanam |0〉 , (A5)

and using the completeness of the RPA excited states (labeled by ν), one has

nm =
∑

ν

∑

i

�

�〈0| a†
mai |ν〉

�

�

2 −
∑

n

〈0| a†
ma†

nanam |0〉 . (A6)

Now employing the expression of the RPA excitation operator (2.21), one
can derive the following relation between the first term of Eq. (A6) and the
Y amplitudes, by assuming that creation and annihilation operators satisfy
boson commutation relations (as in the QBA):

∑

ν

∑

i

�

�〈0| a†
mai |ν〉

�

�

2 '
∑

ν

∑

i

|Ymi(ν)|
2 . (A7)
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The second term can be evaluated by inserting twice the number operator
in the expectation value and using again the property (A3):

〈0| a†
ma†

nanam |0〉 =
1

(A− 2)(A− 3)

∑

α,β

〈0| a†
ma†

na†
αa†
β

aβaαanam |0〉 .

It is then possible to apply a similar treatment as that applied to
∑

α 〈0| a
†
ma†
αaαam |0〉

in Eq. (A4), and use again the completeness of the RPA excited states, as we
did previously. Explicitly displaying only terms of quadratic order in the am-
plitudes, one finally gets

∑

n

〈0| a†
ma†

nanam |0〉 =
1
2

∑

ν

∑

i

|Ymi(ν)|
2 +O(|Y 4|) . (A8)

Gathering the two terms (A7) and (A8), Eq. (A6) simply becomes

nm '
1
2

∑

ν

∑

i

|Ymi(ν)|
2 +O(|Y 4|) . (A9)

A similar derivation applied to the occupation number of a hole-state i
yields:

ni ' 1−
1
2

∑

ν

∑

m

|Ymi(ν)|
2 +O(|Y 4|) . (A10)

Equations (A9) and (A10) are the expressions used in our applications of
SRPA renormalized with RPA occupation numbers calculated iteratively.
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1 Introduction

Les noyaux atomiques sont généralement qualifiés de systèmes complexes.
Cette complexité ressort d’une part du fait qu’ils constituent des systèmes
quantiques à N corps, d’autre part de la grande diversité des phénomènes
qu’ils engendrent.

La présente étude se place à des échelles d’énergie basse, auxquelles on
considère les noyaux comme étant constitués de protons et de neutrons. Ces
particules sont supposées ponctuelles et sans structure interne, et sont con-
sidérées comme les degrés de liberté pertinents des noyaux.

Nous étudions les noyaux en utilisant des techniques pour les systèmes à
N corps, où N est ici le nombre de nucléons (A neutrons et Z protons). Ces
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techniques sont également utilisées dans d’autres domaines de la physique,
tels que la physique atomique, la physique de la matière condensée, la chimie,
ou l’astrophysique nucléaire.

L’étude des noyaux atomiques fait également souvent appel à des con-
cepts et méthodes utilisés pour décrire la matière nucléaire. Cette dernière
est un système nucléaire idéalisé, infini, dont les propriétés peuvent être re-
liées à celles des noyaux.

Les développements théoriques et les applications de la présente étude
sont basés sur le modèle de second random-phase approximation (SRPA),
qui est appliqué dans le cadre des fonctionnelles de la densité (EDF). Nous
supposons que les noyaux sont à symétrie sphérique et ne traitons que le cas
des noyaux pair-pair (A et Z pairs).

L’objectif de notre étude est d’obtenir une description microscopique la
plus précise possible des excitations nucléaires collectives, en particulier les
excitations de basse énergie et les résonances géantes.

Une attention particulière est portée est la description de la largeur des ré-
sonances géantes. Cette dernière peut être divisée de manière conceptuelle
en trois contributions: la largeur de damping Landau — provenant de la
présence d’états non collectifs dans la région de l’état collectif —, la largeur
de spreading — provenant du couplage des configurations 1 particule-1 trou
(1p1h) avec des configurations d’ordre supérieur (2 particules-2 trous (2p2h),
etc.) — et la largeur d’escape — provenant du couplage avec des états du
continuum. Cette dernière contribution n’est pas prise en compte dans notre
étude, du fait de l’absence de couplage avec le continuum.

2 Méthodes de champ moyen en théorie des fonc-
tionnelles de la densité

2.1 Fonctionnelles de la densité

De façon analogue aux théories de la fonctionnelle de la densité (DFT),
l’énergie d’un système nucléaire peut être écrite comme une fonctionnelle
de sa densité. À la différence des application usuelles de la DFTs, où la
cohérence des systèmes est assurée par un potentiel externe, les noyaux
atomiques sont liés par l’action de leurs propres constituants. Il est possi-
ble d’obtenir des équations de champ moyen pour les noyaux atomiques qui
sont similaires aux équations de Kohn-Sham, qui dérivent des théorèmes de

106



CHAPTER 7. RÉSUMÉ EN FRANÇAIS

Hohenberg-Kohn sur lesquels sont fondés les DFTs. Cependant, les EDFs
nucléaires ont été développées sur des bases empiriques et non sur de tels
théorèmes.

Les EDFs nucléaires sont généralement dérivées d’interactions effectives
phénoménologiques. Ces interactions contiennent des paramètres ajustés
sur une sélection d’observables des noyaux et sur des propriétés de la matière
nucléaire. Les modèles microscopiques utilisant des EDFs ont été employés
depuis les années 1970, et on généralement permis une description satis-
faisante des propriétés globales des noyaux. Ces modèles s’appliquent en
principe à toute la carte des noyaux.

Les deux types d’interactions effectives les plus couramment utilisées sont
les interactions de Skyrme [13–15] et de Gogny [16, 17]. Toutes les appli-
cations de notre étude emploient l’interaction de Skyrme.

Notons que certaines propriétés des EDFs nucléaires (portée nulle; dépen-
dance en densité) peuvent engendrer, au-delà de l’approximation de champ
moyen, des problèmes tels que le double comptage de corrélations, des in-
stabilités et des divergences.

2.2 La méthode de Hartree-Fock

Le formalisme utilisé dans nos développements est celui de la seconde quan-
tification. L’état du système vide de particules est noté |−〉, sauf indication
contraire.

L’expression générale du hamiltonien employé est la suivante:

Ĥ = T̂ + V̂ =
∑

µ,µ′
Tµµ′a

†
µaµ′ +

1
4

∑

µ,ν,µ′,ν′
vµνµ′ν′a

†
µa†
νaν′aµ′ , (i)

où Tµµ′ un élément de matrice de l’opérateur d’énergie cinétique dans l’espace
d’états de simple-particule, et vµνµ′ν′ est un élément de matrice antisymétrisé
du potentiel à deux corps:

Tαβ := 〈α| T̂ |β〉 ,

vαβγδ := 〈αβ | V̂ |γδ〉 − 〈αβ | V̂ |δγ〉 = −vβαγδ = −vαβδγ .

En supposant un état fondamental où les états de plus basse énergie sont
occupés par des nucléons, les états inoccupés sont appelés état de particule
et les états occupés sont appelés état de trou. Sauf indication contraire, nous
utilisons conventionnellement les indices i, j, k, l pour faire référence à des
états de trou, et les indices m, n, p, q pour faire référence à des états de
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particule, tandis que des lettres grecques sont utilisées lorsque la distinction
entre les deux n’est pas faite.

La méthode de Hartree-Fock (HF) permet dans notre cas d’obtenir l’état
fondamental sur lequel nos applications de la random-phase approximation
(RPA) sont initialement basées. La détermination de cet état consiste en une
méthode variationnelle, où l’énergie du système

E(Ψ) :=




Ψ
�

�Ĥ
�

�Ψ
�

〈Ψ|Ψ〉
(ii)

doit être minimisée par l’état |Ψ〉 que l’on cherche, et qui est supposé être un
déterminant de Slater.

Au terme d’une dérivation utilisant ces hypothèses, les équations de HF
sont obtenues:

∑

ν

 

Tαν +
A
∑

k=1

∑

µ,µ′
vαµβµ′Dµ′kD∗µk

!

Dνβ = ε
HF
α Dαβ . (iii)

Dans ces équations, D est une transformation unitaire permettant le passage
de la base d’états simple-particule initiale à la base HF, et εHF

α est l’énergie de
l’état simple-particule α.

2.3 RPA basée sur l’état de HF

Les excitations d’un système à N corps dont la dynamique est caractérisée
par un hamiltonien Ĥ sont décrites par les équations du mouvement [41]:

∀R, ∀λ ∈H ,



0
�

�

�

R, [Ĥ,Q†
λ
]
��

�0
�

= ħhωλ



0
�

�

�

R,Q†
λ

��

�0
�

, (iv)

où |0〉 est l’état fondamental du système, R un opérateur sur l’espace de
HilbertH , |λ〉 un état propre (état excité) du hamiltonien associé à l’énergie
d’excitationωλ, et Q†

λ
l’opérateur d’excitation, dont l’application à |0〉 donne

|λ〉:
¨

Q†
λ
|0〉 = |λ〉

Qλ |0〉 = 0 .

(v)

(vi)
L’objectif général de la méthode est de déterminer l’ensemble des états

excités |λ〉 et des énergies ωλ du noyau en résolvant les équations (iv).
L’hypothèse de départ de la RPA est la forme de l’opérateur d’excitation,

où seules des configurations 1p1h interviennent:

Q†
ν

:=
∑

m,i

�

Xmi(ν)α
†
mi − Ymi(ν)αmi

�

, (vii)
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avec

α†
mi := a†

mai . (viii)

Les amplitudes “X ” and “Y ” de l’opérateur d’excitation sont des inconnues
du problème.

Les équations du mouvement (iv) peuvent alors être réécrites sous la
forme matricielle suivante (équations RPA):

�

A B
B∗ A∗

��

X (ν)
Y (ν)

�

= ħhων

�

G 0
0 −G∗

��

X (ν)
Y (ν)

�

, (ix)

où A, B et G sont des blocs matriciels.
Dans ces équations, les matrices

S :=

�

A B
B∗ A∗

�

(x)

et

M :=

�

G 0
0 −G∗

�

(xi)

sont respectivement appelées matrice de stabilité et métrique, et sont her-
mitiennes.

Un état propre |ν〉 est dit stable si son énergie ħhων, telle que calculée
en résolvant l’Eq. (2.29), est réelle. Le théorème de Thouless [42] établit
l’équivalence entre la minimisation de la valeur moyenne du hamiltonien



ψ
�

�Ĥ
�

�ψ
�

par un déterminant de Slater |ψ〉 et la stabilité des solutions des
équations RPA, lorsque |ψ〉 est pris comme étant l’état fondamental dans ces
équations. Pour satisfaire cette condition de minimisation, il est nécessaire
que la matrice de stabilité S de la RPA soit positive.

Une relation de normalisation des amplitudes X et Y de la RPA peut être
obtenue en imposant l’orthonormalité des états excités:

〈λ′|λ〉 = δλλ′ . (xii)

On obtient finalement

δλλ′ =
∑

m,i,n, j

�

X ∗mi(λ
′)Xn j(λ)Gmi,n j − Y ∗mi(λ

′)Yn j(λ)G
∗
mi,n j

�

(xiii)

=
�

X †(ν) Y †(ν)
�

M
�

X (ν)
Y (ν)

�

. (xiv)
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Enfin, étant donné un opérateur à 1 corps

F̂ =
∑

α,β

〈α| F̂ |β〉 a†
αaβ ,

on établit l’expression de son amplitude de transition 〈λ| F̂ |0〉 en fonction
des amplitudes RPA:

〈λ| F̂ |0〉 =
∑

m,i,n, j

�

X ∗mi(λ) 〈n| F̂ | j〉 − Y ∗mi(λ) 〈 j| F̂ |n〉
�

G∗mi,n j . (xv)

Notons que la RPA standard repose sur l’approximation de quasiboson
(QBA), selon laquelle l’état fondamental corrélé (exact) |0〉 est approximé
par l’état de HF |HF〉 dans la construction des blocs matriciels A, B et G:




0
�

�

�

a†
i am, a†

na j

��

�0
�

= δmnδi j −δmn




0
�

�a ja
†
i

�

�0
�

−δi j




0
�

�ana†
m

�

�0
�

' δmnδi j =



HF
�

�

�

a†
i am, a†

na j

��

�HF
�

. (xvi)

Cette approximation constitue une incohérence dans le formalisme et ne
respecte pas le principe de Pauli.

3 Une approche au-delà du champ moyen comme point
de départ: SRPA

3.1 Formalisme

La RPA a été employée avec succès dans le passé pour décrire les états de
basse énergie des noyaux et les résonances géantes. Cependant, ce modèle
ne permet pas de fournir une description réaliste de la largeur de spreading
et de la fragmentation des excitation. Il est en effet nécessaire d’inclure des
configurations plus complexes que les configurations 1p1h.

Une possibilité est l’inclusion de configurations 2p2h, ce qui est le cas
de la SRPA. L’espace des configurations est ainsi considérablement étendu,
limitant les applications de la SRPA à des calculs à fortes approximations par
le passé [50–54].

Récemment, des applications de la SRPA ont pu être réalisée en réduisant
de manière importante l’usage d’approximations [55–60].
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Comme dans le cas de la RPA, nous dérivons les équations de la SRPA
à partir des équations du mouvement (iv). L’opérateur d’excitation s’écrit
désormais

Q†
ν

:=
∑

m,i

�

Xmi(ν)α
†
mi − Ymi(ν)αmi

�

+
∑

m, n>m
i, j>i

�

Xmni j(ν)α
†
mni j − Ymni j(ν)αmni j

�

,

(xvii)

avec

α†
mi := a†

mai , (xviii)

α†
mni j := a†

ma†
na jai . (xix)

Avec cette hypothèse, la réécriture des équations du mouvement sous forme
matricielle aboutit à des équations de la même forme que celles de la RPA
(Eq. (ix)), où les blocs matriciels sont cependant de taille bien supérieure du
fait de l’inclusion des configurations 2p2h.

La relation de normalisation s’écrit alors

δλλ′ '
∑

m,i,n, j

�

X ∗mi(λ
′)Xn j(λ)Gmi,n j − Y ∗mi(λ

′)Yn j(λ)G
∗
mi,n j

�

+
∑

p, m, k, i,
q>p, n>m,

l>k, j>i

�

X ∗pqkl(λ
′)Xmni j(λ)Gpqkl,mni j − Y ∗pqkl(λ

′)Ymni j(λ)G
∗
pqkl,mni j

�

.

(xx)

Afin d’établir l’Eq. (xx), les deux approximations suivantes ont été utilisées:

1.
∀(α,β ,γ,δ), ραβγδ = ραγρβδ −ραδρβγ , (xxi)

où les éléments de matrices de densité à 1 et 2 corps sont respective-
ment définis par

ραβ := 〈0| a†
β

aα |0〉 , (xxii)

et
ραβγδ := 〈0| a†

γa
†
δ
aβaα |0〉 . (xxiii)

2.
∀(α,β), ραβ = δαβ nα , (xxiv)

où nα est le nombre d’occupation de l’état simple-particule α.

Avec ces approximation, l’expression de l’amplitude de transition 〈λ| F̂ |0〉
d’un opérateur F̂ est identique à celle de la RPA (Eq. (xv)).
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3.2 Inconvénients de la SRPA standard

La forme standard de la SRPA présente d’importants problèmes, qui peuvent
être liés aux possibles instabilités ainsi qu’à l’usage d’EDFs.

Problèmes liés aux instabilités

Des instabilités peuvent survenir en SRPA, provenant du fait que la condi-
tion garantissant la positivité de la matrice de stabilité de la SRPA est plus
complexe qu’en RPA, en raison de la présence des configurations 2p2h [67].
En effet, le fait de choisir l’état fondamental comme étant l’état de HF ne
garantit pas que la matrice de stabilité est positive, contrairement au cas de
la RPA (théorème de Thouless).

La présence d’instabilités en SRPA est possible également avec des inter-
actions sortant du cadre des EDFs.

Les instabilités sont notamment visibles par un décalage des spectres
d’excitation de plusieurs MeVs vers les basses énergies, comparé aux spectres
obtenus en RPA.

Problèmes liés aux EDFs

Les paramètres des interactions effectives, dont les EDFs dérivent le plus
souvent, sont ajustées sur des grandeurs mesurées des noyaux, en général
à l’aide de modèle de champ moyen. Par conséquent, ils tiennent compte
implicitement de corrélations, qui sont également inclues de façon explicite
par l’inclusion des configurations 2p2h en SRPA. Ainsi, il y a un risque de
double comptage de corrélations.

De plus, certaines interactions largement utilisées, telles que les interac-
tions de Skyrme et de Gogny, contiennent des termes de portée nulle, qui
peuvent être à l’origine de divergences ultraviolettes (dépendance des résul-
tats en le cutoff sur les configurations 2p2h).

4 Une correction de la SRPA: SRPA avec soustraction

4.1 Principe de la SRPA avec soustraction

La procédure de soustraction a été introduite par Tselyaev [79] dans le mod-
èle de quasi-particle-time-blocking approximation (QTBA), comme moyen
de résoudre le problème posé par les états fallacieux (spurious states). Il a
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montré par la suite [68] que cette procédure permettait d’éviter le problème
de double comptage des corrélations dans une catégorie de modèles au-delà
de la RPA utilisant des EDFs. Ces modèles, dont la SRPA fait partie, peuvent
être exprimés formellement comme des problèmes de type RPA où la matrice
de stabilité dépend de l’énergie d’excitation.

La même étude montre que les problèmes d’instabilités dans ces modèles
sont aussi résolus par la soustraction. Les EDFs sont construites dans un es-
prit de DFT, selon lequel la réponse RPA est considérée comme la réponse
statique exacte. Par conséquent, la polarisabilité statique en RPA (qui est
proportionnelle au moment inverse pondéré en masse mRPA

−1 ) est considérée
comme la polarisabilité statique exacte. Dans cet esprit, étant donné un
problème au-delà de la RPA, noté RPA’, tel que mentionné supra, la soustrac-
tion consiste à imposer l’égalité du moment inverse du modèle RPA’ à celui
de la RPA:

mRPA′

−1 = mRPA
−1 , (xxv)

ce qui se traduit également par l’égalité suivante des matrices de stabilité:

S RPA′(0) = S RPA . (xxvi)

Pour satisfaire cette condition, il suffit en pratique d’imposer que les blocs
A11 et B11 (relatifs au couplage des configurations 1p1h entre elles) de la
SRPA soient soustraits de la self-energy à énergie nulle, de sorte que ces
blocs en SRPA soustraite (SSRPA) s’écrivent

AS
11 := A11 −WA(0) , (xxvii)

BS
11 := B11 −WB(0) . (xxviii)

4.2 Résultats: Polarisabilité et réponse dipolaire de 48Ca

Ce travail [82] a constitué la première application de la SSRPA à l’étude de
la réponse et de la polarisabilité dipolaire de 48Ca. Cette dernière grandeur
a d’importantes implications, notamment dans la description de l’épaisseur
de peau neutronique pour les noyaux riches en neutrons, ou dans l’étude des
étoiles à neutrons.

Des analyses expérimentales de la réponse dipolaire de 48Ca ont suggéré
l’importance de modèles au-delà du champ moyen pour décrire la région
de basse énergie du spectre [91, 92], et de récentes mesures ont été effec-
tuée également dans la région des résonances géantes [95, 96], motivant la
présente étude.
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Les calculs effectués au cours de cette étude ont employé deux paramétri-
sations de l’interaction de Skyrme: SLy4 [99–101] et SGII [16, 17]. Comme
les autres applications présentées dans ce manuscrit, les termes J2, où J est
la densité spin-orbit, n’ont pas été inclus.

L’analyse des résultats a montré que les états d’énergie inférieure à 10
MeV ont une position en énergie et une magnitude correspondant mieux aux
valeurs expérimentales en SSRPA qu’en SRPA sans soustraction. Ces résultats
étaient davantage satisfaisants avec SGII qu’avec SLy4. La strength intégrée
et la strength intégrée pondérée en énergie sont également améliorées dans
cette région d’énergie par l’usage de la soustraction.

Concernant la région d’énergie de la résonance géante, une largeur et
fragmentation bien plus réaliste en SSRPA qu’en RPA a été obtenue, ainsi
qu’une correction, bien que partielle, du décalage énergétique lié aux insta-
bilités en SRPA standard. Nous avons observé également une reproduction
réaliste de la pente de la polarisabilité dipolaire dans la région de la réso-
nance géante, obtenue avec la SSRPA, comparée à la pente trop forte obtenue
en RPA et avec un ensemble de calculs de type coupled-cluster.

En conclusion, la méthode de soustraction permis d’améliorer la descrip-
tion des états de basse énergie et de la résonance géante dipolaire de 48Ca,
par rapport à la RPA et la SRPA. La reproduction réaliste de la pente de la
polarisabilité est également une indication de la description satisfaisante du
spreading.

4.3 Résultats: Réponse quadrupolaire: systématiques sur une
sélection de noyaux

Cette deuxième étude [107] a consisté à appliquer notre modèle de SRPA
avec soustraction de manière systématique à une sélection de noyaux de
masse moyenne et lourds (30Si, 34Si, 36S, 40Ca, 48Ca, 56Ni, 68Ni, 90Zr, 114Sn,
116Sn, 120Sn, 132Sn et 208Pb), de manière à analyser le centroïde et la largeur
de leur résonance géante quadrupolaire isoscalaire.

De nombreux travaux expérimentaux ont été conduits concernant cette
résonance géante, pour différents noyaux [112–118]. De plus, de récentes
expériences à haute résolution ont permis d’obtenir sa structure fine dans
40Ca, 58Ni, 90Zr, 120Sn et 208Pb [119, 120].

Nous avons effectué des calculs de RPA et SSRPA avec la paramétrisation
SLy4 de l’interaction de Skyrme.

Tout d’abord, les valeurs obtenues des centroïdes en SSRPA ont montré
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une tendance systématique à la diminution par rapport à la RPA, et ainsi
une amélioration de la reproduction des données expérimentales disponibles
dans la majorité des cas.

Ensuite, les calculs de largeurs de résonance ont montré que les valeurs
obtenues en SSRPA étaient systématiquement plus élevées qu’en RPA, té-
moignant de l’effet du couplage des configurations 1p1h et 2p2h. Ces largeurs
ont été calculées en remplaçant chaque pic des spectres discrets par une
lorentzienne, puis en ajustant une lorentzienne globale sur le spectre con-
tinu qui en résultait.

Enfin, la comparaison aux données expérimentales de structure fine de
résonance quadrupolaire a montré en général un bien meilleure reproduc-
tion dans le cas de la SSRPA que dans le cas de la RPA.

4.4 Résultats: Effets au-delà du champ moyen sur les masses
effectives

La résonance géante quadrupolaire isoscalaire est liée à la masse effective
m∗ de la matière nucléaire: d’après la théorie de Landau des liquides de
Fermi, il existe une relation linéaire entre le centroïde de cette résonance et la
quantité

p

m/m∗. Nous avons proposé dans cette étude [133] une méthode
pour la description microscopique des effets au-delà du champ moyen sur
les masses effectives de la matière nucléaire. Deux noyaux ont été étudiés:
48Ca et 90Zr.

Pour une particule d’impulsion k et d’énergie E = ħh
2k2

2m +Σk +Σk,E, avec
Σk +Σk,E est la self-energy, nous avons:

1
m∗
=

dE
dk

1

ħh2k
, (xxix)

m∗

m
=

�

1−
∂Σk,E

∂ E

�

︸ ︷︷ ︸

E-mass

·
�

1+
m

ħh2k

∂Σk

∂ k

�−1

︸ ︷︷ ︸

k-mass

. (xxx)

où la k-mass est la seule contribution au ratio m∗

m en champ moyen, et la E-
mass n’est supérieure à 1 qu’en présence de corrélations au-delà du champ
moyen.

La méthode consiste à:

1. Calculer les centroïdes et la valeur
p

m/m∗ en RPA, pour plusieurs
paramétrisations de l’interaction de Skyrme;
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2. Calculer les centroïdes en SSRPA (deux paramétrisations: SLy4 et SGII);

3. Effectuer une régression linéaire des centroïdes RPA et reporter les cen-
troïdes SSRPA sur les droites obtenues;

4. Déduire la valeur de m∗ et en extraire celle de la E-mass, qui renseigne
sur la magnitude des effets au-delà du champ moyen.

Pour les deux paramétrisation utilisée en SSRPA, nous observons une
augmentation des masses effectives m∗ par rapport aux valeurs obtenues
en RPA, ce qui est cohérent avec l’inclusion de corrélations propre à la SS-
RPA. Nous avons également évalué les erreurs théoriques de nos calculs de
masses effectives. Ces erreurs proviennent, pour le cas du champ moyen, du
fait que différentes paramétrisation de l’interaction sont utilisées. Au-delà
du champ moyen, celles-ci proviennent non seulement de l’usage de dif-
férentes paramétrisations, mais également du fait que les résultats changent
d’un noyau à l’autre. Nous avons pu montré que les erreurs théoriques au-
delà du champ moyen n’étaient cependant pas plus importantes que celles
en champ moyen.

Nous avons complété nos résultats en mettant en évidence la compression
des spectres simple-particule par l’effet des corrélations au-delà du champ
moyen, comme suggéré par de précédents travaux [75, 153].

Enfin, nous avons vérifié nos résultats précédents en calculant les valeurs
de E-mass à partir des valeurs de self-energy pour des éléments de matrices
SSRPA près de l’énergie du centroïde.

5 Extensions du modèle

5.1 Noyaux à orbitales partiellement occupées et appariement

Dans toutes nos applications précédentes des modèles de RPA et de SSRPA,
seuls des noyaux dont les orbitales sont totalement occupées ont été consid-
érés. En effets, nos outils numériques ne permettaient pas le traitement de
noyaux à orbitales partiellement occupées.

Pour ce faire, nous avons eu recours à l’approximation d’equal-filling
(EFA) en symétrie sphérique, selon laquelle, sur une orbitale de moment
cinétique total j de dégénérescence (2 j + 1), la probabilité d’occupation de
chaque état simple-particule est égale à 1

2 j+1 . Dans le cas où l’état fondamen-
tal est l’état de HF, cette approximation se traduit par la renormalisation des
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fonctions d’onde de simple-particules par un facteur
p

nα ou
p

1− nα, où nα
est le nombre d’occupation de l’état α, selon que l’état α joue le rôle, dans un
élément de matrice donné, d’état de trou ou de particule, respectivement1.

Dans nos applications pratiques de RPA et de SSRPA, l’EFA est mise en
place par l’application de tels facteurs aux éléments de matrices A et B, ainsi
que dans la relation Eq. (xv). Nous désignons par “HF-based EFA” cette méth-
ode de renormalisation.

Pour aller plus loin dans cette extension, nous avons entrepris d’estimer
les effets d’appariement, en incluant ces corrélations via les nombres d’occu-
pation apparaissant dans les expressions renormalisées par l’EFA. Nous avons
choisi pour cela de calculer les nombres d’occupation avec un modèle de
Bardeen-Cooper-Schrieffer (BCS). Dans ce modèle, la probabilité pour un
état α d’être occupé ou inoccupé est donnée par la quantité vα ou uα respec-
tivement:

v2
α =

1
2

�

1−
ε̃α

Æ

ε̃2
α −∆2

α

�

, (xxxi)

u2
α =

1
2

�

1+
ε̃α

Æ

ε̃2
α −∆2

α

�

. (xxxii)

Les relations v2
α = nα et u2

α = 1 − nα permettent ainsi, en utilisant les
expression EFA des éléments de matrices, d’obtenir des facteurs de renor-
malisation incluant des corrélations d’appariement (“BCS-based EFA”). Dans
le cas de la RPA ainsi renormalisée, les expressions des éléments de ma-
trice sont analogues à certains termes qui sont présents dans les expressions
correspondantes de la QRPA, mais d’autres termes de la QRPA ne sont pas
retrouvés. Dans le cas de la SSRPA, certains termes sont cette fois présents
en SSRPA renormalisée et non en QRPA.

Il est important de noter que cette méthode de renormalisation ne tient
pas compte de l’appariement dans l’interaction résiduelle.

Une étude expérimentale récente [156] a rapporté la première spectro-
scopie γ du noyau 52Ar, ainsi qu’une analyse des états 2+ les plus bas en
énergie sur une plage d’isotopes de l’argon pour lesquels N > 20. L’objectif
principal était de déterminer l’évolution, en dessous de Z = 20, de la ferme-
ture de couche N = 34 auparavant suggérée uniquement pour 54Ca.

1Voir aussi Ref. [155].
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Nous nous sommes intéressés à la comparaison de ces résultats avec ceux
de nos modèles HF-based et BCS-based EFA. En nous concentrant sur les
quatre noyaux 46Ar, 48Ar, 50Ar et 52Ar, nous avons calculé les énergie des états
2+ les plus bas en RPA et en SSRPA avec les renormalisations HF-based et
BCS-based EFA.

Nos résultats, montrant l’énergie en fonction du nombre de masse, ont
montré en RPA une tendance semblable pour les deux types de renormalisa-
tion, qui était en désaccord avec la tendance des points expérimentaux. En
effectuant les calculs correspondant en SSRPA, nous avons montré première-
ment que l’inclusion des configurations 2p2h permettait d’atténuer l’écart
de tendance par rapport aux valeurs expérimentales. Deuxièmement, l’ajout
des corrélations d’appariement a engendré une augmentation de l’énergie
pour N = 34, vers un meilleur accord avec la valeur expérimentale récem-
ment mesurée.

5.2 Extension au-delà de la QBA

Ce second type d’extension a concerné la SRPA sans soustraction. La SRPA
standard fait usage de la QBA qui, comme indiqué précédemment, constitue
notamment une incohérence dans le formalisme. Certaines études ont sug-
géré le choix d’un état fondamental corrélé pour aller au-delà de cette ap-
proximation, et ainsi obtenir une alternative à la méthode de soustraction
[67, 194, 195].

En suivant un modèle de SRPA étendue développé précédemment à cette
thèse et appliqué à l’étude des agrégats métalliques [153], nous nous affran-
chissons de la QBA en utilisant des expressions des éléments de matrices RPA
et SRPA qui dépendent de la matrice de densité à 1 corps.

En supposant la matrice de densité à 1 corps diagonale, les éléments de
matrices contiennent des facteurs faisant intervenir les nombres d’occupation,
que nous autorisons à prendre des valeurs comprises entre 0 et 1 — con-
trairement au cas de la QBA, où seules les valeurs 1 et 0 sont autorisées.
Puis, l’utilisation de la number operator method [193] permet d’établir une
expression de ces nombres d’occupation en fonction des amplitudes “Y” de la
RPA, ce qui implique une procédure itérative. En effet, nous avons calculé de
manière itérative les nombres d’occupation à l’aide d’une RPA au-delà de la
QBA, jusqu’à convergence, puis nous avons utilisé ces nombres d’occupation
pour construire les éléments de matrice d’une SRPA au-delà de la QBA.

Nous avons appliqué ce modèle aux réponses monopolaire et quadrupo-
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laire de 16O. Nos résultats ont montré que la SRPA ainsi renormalisée con-
duit à un décalage des spectres vers les plus hautes énergies, par rapport à la
SRPA standard, ce qui va dans le sens d’une correction du décalage énergé-
tique dû aux instabilités. Cependant, cet effet est trop faible pour pouvoir
corriger adéquatement le décalage (effet de l’ordre de 0.5 MeV, contre un
décalage de plusieurs MeVs en général).

Ainsi cette méthode au-delà de la QBA est insuffisante pour corriger les
problèmes de la SRPA.

6 Conclusion générale et perspectives

Notre objectif initial d’améliorer la description des excitations collectives a
été atteint: nous avons mis en évidence l’importance de modèles au-delà du
champ moyen, comme la SSRPA, pour décrire de manière satisfaisante la
fragmentation et la largeur de spreading des excitations.

Nous avons montré la capacité de la SRPA avec soustraction à corriger
dans une large mesure les problèmes de la SRPA standard. Ainsi, la repro-
duction des largeurs et des centroïdes des résonances géantes, ainsi que leur
structure fine, s’en trouvent améliorées. Nous avons également pu estimer
les effets au-delà du champ moyen sur les masses effectives de la matière
nucléaire.

En second lieu, nous avons étendu nos modèles. L’usage de l’approxima-
tion d’equal-filling en SRPA avec soustraction nous a permis d’étudier des
noyaux à orbitales partiellement occupées, puis d’effectuer une estimation
des effets d’appariement. Enfin, le développement d’un modèle de SRPA
s’affranchissant de l’approximation de quasiboson a montré que les corréla-
tions obtenues par des calculs de RPA au-delà de cette approximation sont
insuffisantes pour corriger les problèmes de la SRPA standard.

Plusieurs directions de développement ultérieur pourraient être suivies.
Premièrement, une prise en compte complète des corrélations d’appariement
pourrait être entreprise en SRPA avec soustraction, pour vérifier l’importance
de ces effets dans l’amélioration des résultats. Deuxièmement, le jeu d’appro-
ximations utilisé dans notre approche au-delà de l’approximation de quasibo-
son, afin d’observer la mesure dans laquelle ce type d’approche peut corriger
les problèmes de la SRPA. L’inclusion de corrélations d’appariement pourrait
aussi être envisagée dans cette approche. Enfin, les effets d’une température
non nulle pourraient être analysés.
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Titre : Description microscopique de nucléons corrélés : Propriétés collectives dans les noyaux stables et
exotiques
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Résumé : Ce travail de doctorat s’inscrit dans le
cadre des techniques adaptées à la résolution du
problème à N corps nucléaire. Il a été motivé par
la perspective d’utiliser des méthodes allant au-delà
de l’approximation de champ moyen pour améliorer
la description des spectres d’excitation des noyaux
stables et exotiques, notamment les états de basse
énergie et les résonances géantes. À cette fin, l’ap-
proche choisie est le développement de modèles
basés sur la second random-phase approximation
(SRPA) utilisée avec une procédure de soustrac-
tion. Ces développements ont pour but d’étendre le
champ d’applicabilité du modèle initial et d’inclure des
corrélations dans l’état fondamental.

Une première partie consiste en l’application de la
SRPA avec une méthode de soustraction à l’étude
de la réponse dipolaire (comprenant la polarisabi-
lité électrique dipolaire) et quadrupolaire de noyaux
de masse moyenne à lourds. Nous vérifions que la
SRPA avec soustraction corrige les problèmes ob-
servés avec la SRPA standard et améliore la descrip-
tion des spectres d’excitation, comparativement à la
random-phase approximation (RPA). Nous étudions

également les effets au-delà du champ moyen dûs à
la SSRPA avec soustraction, en exploitant la relation
entre les modes de respiration axiaux des noyaux et
la masse effective de la matière nucléaire.

Une seconde partie est dédiée à des extensions.
Premièrement, nous étendons les outils numérique
initiaux en utilisant l’approximation equal-filling (EFA)
afin de permettre les applications aux noyaux ayant
une orbitale partiellement occupée. Nous proposons
ensuite une méthode d’estimation partielle des effets
d’appariement en utilisant des nombres d’occupation
corrélés.
Une étude des moyens de renormaliser la SRPA avec
soustraction est menée en employant un modèle al-
lant au-delà de l’approximation de quasiboson. Cette
extension est également basée sur l’utilisation de
nombres d’occupation comme moyen d’inclure des
corrélations dans l’état fondamental. Nous montrons
que les corrélations obtenues par le calcul itératif en
RPA des nombres d’occupation ne sont pas suffi-
santes pour corriger les problèmes de la SRPA stan-
dard.

Title : A microscopic treatment of correlated nucleons: Collective properties in stable and exotic nuclei

Keywords : Many-body theories, Correlations between nucleons, Collective behavior in nuclei, Modern
beyond-mean-field models, Second random-phase approximation

Abstract : This Ph.D. work falls within the scope of
theoretical techniques tailored to the solution of the
nuclear many-body problem. It was motivated by the
perspective of using beyond-mean-field methods to
improve the description of excitation spectra of stable
and exotic nuclei, especially the low-energy states
and the giant resonances. The chosen path in this
direction is the development of models based on the
second random-phase approximation (SRPA) used
with a subtraction procedure. These developments
aim to extend the range of applicability of the initial
model and to include correlations in the ground state.

A first part consists in applying the SRPA used with a
subtraction method to the study of the dipole and qua-
drupole response in medium to heavy-mass nuclei,
including the electric dipole polarizability. We verify
that the subtracted SRPA corrects the problems ob-
served with the standard SRPA model and improves
the description of excitation spectra compared to the
random-phase approximation (RPA). We also study

beyond-mean-field effects that arise in the subtrac-
ted SRPA by exploiting the relation between the axial
breathing modes in nuclei and the effective mass in
nuclear matter.

A second part is dedicated to extensions.
As a first step, we extend the initial numerical tools
by employing the equal-filling approximation (EFA), to
enable applications to nuclei with partially-occupied
orbitals. We next propose a method to estimate part of
the pairing effects using correlated occupation num-
bers.
A study of possible ways to renormalize the SRPA is
carried out by employing a model which goes beyond
the quasiboson approximation. This extension also re-
lies on the use of occupation numbers as a means to
include ground-state correlations. We show that cor-
relations obtained from the computation of occupation
numbers in iterative RPA calculations are not sufficient
to address the standard SRPA drawbacks.
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