H. Bairiot, J. Vliet, G. Chiarelli, J. Edwards, S. H. Nagai et al., Overview of MOX fuel fabrication achievements, 2000.

A. Feugier, T. L. De, V. Peres, and M. Gysen, Procede de fabrication de pastilles de combustible nucleaire. Google Patents, 2005.

. Guérin-yannick and . Jean, Conception et fabrication de combustibles à base d'uranium, 2008.

R. E. Lerch and R. E. Norman, « Nuclear Fuel Conversion and Fabrication Chemistry », Radiochim. Acta, vol.36, issue.2, pp.75-88, 1984.

J. J. Carbajo, G. L. Yoder, S. G. Popov, and V. K. Ivanov, « A review of the thermophysical properties of MOX and UO2 fuels », J. Nucl. Mater, vol.299, issue.3, pp.181-198, 2001.

J. Minne, « Contribution à la modélisation du couplage mécanique-chimique de l'évolution de l'interface pastille-gaine sous irradiation, 2013.

H. Stehle, « Performance of oxide nuclear fuel in water-cooled power reactors, J. Nucl. Mater, vol.153, pp.3-15, 1988.

D. Greneche, Histoire et techniques des réacteurs nucléaires et de leurs combustibles, 2017.

J. H. Evans, A. Van-veen, and K. T. Westerduin, « A TEM and TDS study of gas release from bubbles in krypton-implanted uranium dioxide, J. Nucl. Mater, vol.195, issue.3, pp.250-259, 1992.

I. L. Ray, H. Thiele, and H. Matzke, « Transmission electron microscopy study of fission product behaviour in high burnup UO2 », J. Nucl. Mater, vol.188, pp.90-95

H. Matzke and J. Spino, « Formation of the rim structure in high burnup fuel, J. Nucl. Mater, vol.248, pp.170-179, 1997.

H. Matzke, « Oxide fuel transients », J. Nucl. Mater, vol.166, issue.1, pp.165-178, 1989.

C. Guéneau, « Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U-Pu-O-C systems », J. Nucl. Mater, vol.419, pp.145-167, 2011.

H. Elbel, J. Klews, and R. Löb, « Dependence of the UO2-PuO2 pellet structure on fabrication parameters, J. Nucl. Mater, vol.153, pp.160-168, 1988.

R. Güldner and H. Schmidt, « Optimization of process parameters for the sintering of MOX fuel », J. Nucl. Mater, vol.178, issue.2, pp.152-157, 1991.

S. Berzati, « Controlling the oxygen potential to improve the densification and the solid solution formation of uranium-plutonium mixed oxides », J. Nucl. Mater, vol.447, pp.115-124, 2014.

R. J. White, S. B. Fisher, P. M. Cook, R. Stratton, C. T. Walker et al., « Measurement and analysis of fission gas release from BNFL's SBR MOX fuel », J. Nucl. Mater, vol.288, issue.1, pp.43-56, 2001.

G. Oudinet, « Characterization of plutonium distribution in MIMAS MOX by image analysis », J. Nucl. Mater, vol.375, issue.1, pp.86-94, 2008.

M. Bourgeois and «. , Retraitement du combustible -Principales opérations », Ref TIP180WEB -Génie Nucl., juill, 2000.

N. Vigier, S. Grandjean, B. Arab-chapelet, and E. F. Abraham, « Reaction mechanisms of the thermal conversion of Pu(IV) oxalate into plutonium oxide, J. Alloys Compd, pp.594-597, 2007.

«. Médiathèque, Avancées des recherches sur la séparation-transmutation et le multi-recyclage du plutonium dans les réacteurs à flux de neutrons rapides

S. Camaro, F. Audubert, P. Sorney, and E. S. Vaudez, Note technique DEC/SPUA-Ind. 0, mars, 2013.

, « Les réacteurs nucléaires à caloporteur sodium », Monographie CEA-Direction de l'Energie Nucléaire, 2014.

, « La corrosion et l'altération des matériaux du nucléaire », Monographie CEA-Direction de l'Energie Nucléaire, déc, 2008.

, « Les combustibles nucléaires », Monographie CEA-Direction de l'Energie Nucléaire, janv, 2009.

C. Mesmin, Procede de coprecipitation d'actinides et procede de preparation d'oxydes mixtes d'actinides, 2001.

S. Grandjean, A. Beres, C. Maillard, J. Rousselle, C. A. Atomique et al., Procede de coprecipitation d'actinides a des etats d'oxydation distincts et procede de preparation de composes mixtes d'actinides, 2005.

E. Collins, S. Voit, and E. R. Vedder, « Evaluation of Coprecipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials, 2011.

J. M. Dotson, C. B. Kincaid, G. E. Petersen, and I. N. Taylor, « Technical development of the COPRECAL (Coprecipitation-Calcination) co-conversion process », General Electric Co, 1980.

B. Bastide and A. Floreancig, « Procédé de fabrication de pastilles combustibles nucléaires frittées à partir de solutions précipitées à l'aide de peroxyde d'hydrogène en milieu acide, pp.10-1996

P. A. Haas, R. D. Arthur, W. B. Stines, F. N. Fabrication, P. A. Haas et al., « Development of Thermal Denitration to Prepare Uranium Oxide and Mixed Oxides for Nuclear Fuel Fabrication, 1981.

M. Koizumi, « Development of a Process for Co-Conversion of Pu-U Nitrate Mixed Solutions to Mixed Oxide Powder Using Microwave Heating Method », J. Nucl. Sci. Technol, vol.20, issue.7, pp.529-536, 1983.

K. J. Notz and P. A. Haas, « Properties and thermal decomposition of the double salts of uranyl nitrate-ammonium nitrate », Thermochim. Acta, vol.155, pp.283-295, 1989.

H. Oshima, « Development of Microwave Heating Method for Co-Conversion of Plutonium-Uranium Nitrate to MOX Powder », J. Nucl. Sci. Technol, vol.26, issue.1, pp.161-166, 1989.

G. Loubert, Etude de la précipitation quantitative de l'uranium et du plutonium sans rédox par de nouveaux ligands organiques, 2018.

N. Hibert, Synthèse et caractérisations structurales de complexes à base de ligand peroxyde de plutonium, 2020.

M. Leblanc, « Synthèse par dénitration thermique avancée, en présence d'additifs organiques, d'oxydes d'actinides dédiés à la fabrication de MOx, GEN IV), 2019.

G. T. Seaborg, Overview of the Actinide and Lanthanide (the f ) Elements », vol.61, pp.115-122, 1993.

R. D. Shannon, « Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, vol.32, issue.5, pp.751-767, 1976.

F. David, Thermodynamic properties of lanthanide and actinide ions in avueous solution, J. Common Met, vol.121, pp.27-42, 1986.

J. N. Cross, E. M. Villa, S. Wang, J. Diwu, M. J. Polinski et al., Structures, and Spectroscopic Properties of Plutonium and Americium Phosphites and the Redetermination of the Ionic Radii of Pu(III) and Am(III) », Inorg. Chem, vol.51, pp.8419-8424

B. Arab-chapelet, S. Grandjean, G. Nowogrocki, and F. Abraham, Synthesis and characterization of mixed An(IV)An(III) oxalates (An(IV) = Th, Np, U or Pu and An(III) = Pu or Am) », J. Nucl. Mater, vol.373, pp.259-268, 2008.

F. Abraham, B. Arab-chapelet, M. Rivenet, C. Tamain, and E. S. Grandjean, « Actinide oxalates, solid state structures and applications, Coord. Chem. Rev, pp.28-68, 2014.

M. C. Stennett, C. L. Corkhill, L. A. Marshall, and N. C. Hyatt, « Preparation, characterisation and dissolution of a CeO2 analogue for UO2 nuclear fuel, J. Nucl. Mater, vol.432, pp.182-188, 2013.

L. De-almeida, S. Grandjean, N. Vigier, and F. Patisson, « Insights into the Thermal Decomposition of Lanthanide(III) and Actinide(III) Oxalates -from Neodymium and Cerium to Plutonium », Eur. J. Inorg. Chem, vol.2012, pp.4986-4999, 2012.

H. S. Kim, C. Y. Joung, B. H. Lee, J. Y. Oh, Y. H. Koo et al., Applicability of CeO2 as a surrogate for PuO2 in a MOX fuel development », J. Nucl. Mater, vol.378, issue.1, pp.98-104, 2008.

D. Horlait, « Dilatometric study of U1?xAmxO2±? and U1?xCexO2±? reactive sintering », J. Nucl. Mater, vol.441, issue.1, pp.40-46, 2013.

C. Lopez, X. Deschanels, J. M. Bart, J. M. Boubals, C. D. Auwer et al., « Solubility of actinide surrogates in nuclear glasses, J. Nucl. Mater, vol.312, issue.1, pp.76-80, 2003.

M. Mogensen, N. M. Sammes, and G. A. Tompsett, Solid State Ion, vol.129, issue.1, pp.63-94, 2000.

P. Fornasiero, G. Balducci, J. Ka?par, S. Meriani, R. D. Monte et al., « Metal-loaded CeO2-ZrO2 solid solutions as innovative catalysts for automotive catalytic converters, Catal. Today, vol.29, pp.47-52, 1996.

J. Ka?par, P. Fornasiero, and M. Graziani, Use of CeO2-based oxides in the three-way catalysis, Catal. Today, vol.50, issue.2, pp.285-298, 1999.

A. Trovarelli, C. De-leitenburg, M. Boaro, and G. Dolcetti, « The utilization of ceria in industrial catalysis, Catal. Today, vol.50, issue.2, pp.353-367, 1999.

H. C. Yao and Y. F. Yao, « Ceria in automotive exhaust catalysts, J. Catal, vol.86, issue.2, pp.254-265, 1984.

E. Mamontov, T. Egami, R. Brezny, M. Koranne, and E. S. Tyagi, « Lattice Defects and Oxygen Storage Capacity of Nanocrystalline Ceria and Ceria-Zirconia », J. Phys. Chem. B, vol.104, pp.11110-11116, 2000.

V. D. Kosynkin, « The study of process production of polishing powder based on cerium dioxide, J. Alloys Compd, pp.421-425, 2000.

A. Katelnikovas, « Photoluminescence in sol-gel-derived YAG:Ce phosphors, J. Cryst. Growth, vol.304, issue.2, pp.361-368, 2007.

L. Truffault, « Application of nanostructured Ca doped CeO2 for ultraviolet filtration », Mater. Res. Bull, vol.45, issue.5, pp.527-535, 2010.

A. S. Karakoti, Nanoceria as antioxidant: Synthesis and biomedical applications », JOM, vol.60, pp.33-37, 2008.

E. S. Putna, J. Stubenrauch, J. M. Vohs, and R. J. Gorte, « Ceria-Based Anodes for the Direct Oxidation of Methane in Solid Oxide Fuel Cells, Langmuir, vol.11, pp.4832-4837, 1995.

H. Inaba and H. Tagawa, « Ceria-based solid electrolytes, Solid State Ion, vol.83, issue.2, pp.1-16, 1996.

Y. Zhou and M. N. Rahaman, Effect of redox reaction on the sintering behavior of cerium oxide, vol.45, pp.3635-3639, 1997.

E. Matijevi? and W. P. Hsu, « Preparation and properties of monodispersed colloidal particles of lanthanide compounds. I. Gadolinium, europium, terbium, samarium, and cerium(III), J. Colloid Interface Sci, vol.118, issue.2, pp.506-523, 1987.

P. Chen and I. Chen, « Reactive Cerium(IV) Oxide Powders by the Homogeneous Precipitation Method, J. Am. Ceram. Soc, vol.76, issue.6, pp.1577-1583, 1993.

P. Chen and I. Chen, Sintering of fine oxide powders: I, microstructural evolution, J. Am. Ceram. Soc, vol.79, pp.3129-3141, 1996.

S. Nakane, T. Tachi, M. Yoshinaka, K. Hirota, and O. Yamaguchi, « Characterization and sintering of reactive cerium(IV) oxide powders prepared by the hydrazine method, J. Am. Ceram. Soc, vol.80, pp.3221-3224, 1997.

J. Li, T. Ikegami, Y. Wang, and T. Mori, « Reactive ceria nanopowders via carbonate precipitation, J. Am. Ceram. Soc, vol.85, issue.9, pp.2376-2378, 2002.

M. A. Gabal, S. A. Elroby, and A. Y. Obaid, « Synthesis and characterization of nano-sized ceria powder via oxalate decomposition route, Powder Technol, vol.229, pp.112-118, 2012.

J. Li, T. Ikegami, J. Lee, and T. Mori, « Characterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method, Acta Mater, vol.49, issue.3, pp.419-426, 2001.

Y. C. Zhou, « Hydrothermal synthesis and sintering of ultrafine CeO2 powders, J. Mater. Res, vol.8, issue.7, pp.1680-1686, 1993.

M. Hirano and E. Kato, « Hydrothermal synthesis of cerium(IV) oxide », J. Am. Ceram. Soc, vol.79, issue.3, pp.777-780, 1996.

M. Hirano and E. Kato, « The hydrothermal synthesis of ultrafine cerium(IV) oxide powders », J. Mater. Sci. Lett, vol.15, pp.1249-1250, 1996.

M. Hirano, T. Miwa, and M. Inagaki, « Low-temperature direct synthesis of nanoparticles of fluorite-type ceria-zirconia solid solutions by "Forced cohydrolysis" at 100°C, J. Solid State Chem, vol.158, issue.1, pp.112-117, 2001.

Y. Zhou, R. J. Phillips, and J. A. Switzer, « Electrochemical synthesis and sintering of nanocrystalline cerium(IV) oxide powders », J. Am. Ceram. Soc, vol.78, issue.4, pp.981-985, 1995.

N. Guillou, J. P. Auffrédic, and D. Louër, « Thermal behavior and crystal structure of ceric and cerous rubidium nitrates, J. Solid State Chem, vol.122, issue.1, pp.59-67, 1996.

N. Guillou, L. C. Nistor, H. Fuess, and H. Hahn, Microstructural studies of nanocrystalline CeO2 produced by gas condensation, vol.8, pp.545-557, 1997.

X. Yu, F. Li, X. Ye, X. Xin, and Z. Xue, « Synthesis of cerium(IV) oxide ultrafine particles by solidstate reactions, J. Am. Ceram. Soc, vol.83, issue.4, pp.964-966, 2000.

T. Mokkelbost, I. Kaus, T. Grande, and M. Einarsrud, « Combustion synthesis and characterization of nanocrystalline CeO 2-based powders, Chem. Mater, vol.16, pp.5489-5494, 2004.

D. Chung, E. Kim, E. Lee, and J. Yoo, « Solubility of Rare Earth Oxalate in Oxalic and Nitric Acid Media, J. Ind. Eng. Chem, vol.4, pp.277-284, 1998.

W. Hummel, G. Anderegg, L. Rao, I. Puigdomenech, and O. Tochimaya, Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr With Selected Organic Ligands, 2005.

A. Magrez, M. Caldes, O. Joubert, and M. Ganne, « A new 'Chimie Douce' approach to the synthesis of Sr1?xLa1+xAl1?xMgxO4 with K2NiF4 structure type, Solid State Ion, vol.151, pp.365-370, 2002.

A. Douy, « Polyacrylamide gel: an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses, Int. J. Inorg. Mater, vol.3, issue.7, pp.699-707, 2001.

H. Wang, L. Gao, W. , and Q. Li, Preparation of nanoscale ?-Al2O3 powder by the polyacrylamide gel method, vol.11, pp.1263-1267, 1999.

M. Tahmasebpour, A. A. Babaluo, S. Shafiei, and E. E. Pipelzadeh, Studies on the synthesis of ?-Al2O3 nanopowders by the polyacrylamide gel method, vol.191, pp.91-97, 2009.

G. Dezanneau, A. Sin, H. Roussel, H. Vincent, and M. Audier, « Synthesis and characterisation of La1?xMnO3±? nanopowders prepared by acrylamide polymerisation, Solid State Commun, vol.121, issue.2-3, pp.133-137, 2002.

A. Tarancón, G. Dezanneau, J. Arbiol, F. Peiró, and J. R. Morante, « Synthesis of nanocrystalline materials for SOFC applications by acrylamide polymerisation, J. Power Sources, vol.118, issue.2, pp.256-264, 2003.

N. Liu, Y. Yuan, P. Majewski, and F. Aldinger, Synthesis of La0.85Sr0.15Ga0.85Mg0.15O2.85 materials for SOFC applications by acrylamide polymerization, vol.41, pp.461-468, 2006.

A. Chesnaud, O. Joubert, M. T. Caldes, S. Ghosh, Y. Piffard et al., -x ) Ge 2 x O 7+ x ? 1 -x ]O 2 (Ln = La, Cuspidine-Like Compounds Ln 4 [Ga, vol.2, pp.5372-5379, 2004.

Y. Zheng, S. Wang, Z. Wang, L. Wu, and Y. Sun, Synthesis and characterization of Ce0.8Sm0.2O1.9 nanopowders using an acrylamide polymerization process, J. Rare Earths, vol.28, issue.1, pp.92-95

X. Su, J. Zhou, G. Bai, J. Zhang, and P. Zhao, « Low temperature synthesis and characterization of YAG nanopowders by polyacrylamide gel method, Ceram. Int, vol.42, pp.17497-17502, 2016.

C. Liu, R. Yu, Z. Xu, J. Cai, X. Yan et al., morphology and luminescent properties of YAG:Ce3+ phosphor powder prepared by polyacrylamide gel method, Trans. Nonferrous Met. Soc. China, vol.17, issue.5, pp.1093-1099, 2007.

T. Chartier, Ceramic Materials, P. Boch et J.-C. Niepce, Éd. ISTE, pp.123-197, 2007.

R. Moreno, A. Salomoni, I. Stamenkovic, and S. M. Castanho, « Colloidal Filtration of Silicon Nitride Aqueous Slips, Part II: Slip Casting and Pressure Casting Performance, J. Eur. Ceram. Soc, vol.19, issue.1, pp.49-59, 1999.

F. F. Lange, Powder Processing Science and Technology for Increased Reliability, J. Am. Ceram. Soc, vol.72, issue.1, pp.3-15, 1989.

W. M. Sigmund, N. S. Bell, and L. Bergström, « Novel Powder-Processing Methods for Advanced Ceramics, J. Am. Ceram. Soc, vol.83, issue.7, pp.1557-1574, 2000.

J. A. Lewis, « Colloidal Processing of Ceramics, J. Am. Ceram. Soc, vol.83, issue.10, pp.2341-2359, 2000.

A. Krell and J. Klimke, « Effects of the Homogeneity of Particle Coordination on Solid-State Sintering of Transparent Alumina, J. Am. Ceram. Soc, vol.89, issue.6, pp.1985-1992, 2006.

A. Krell, T. Hutzler, and J. Klimke, « Transmission physics and consequences for materials selection, manufacturing, and applications, J. Eur. Ceram. Soc, vol.29, issue.2, pp.207-221, 2009.

M. A. Janney, « Method for molding ceramic powders », US4894194 A, pp.16-1990

M. A. Janney and O. O. Omatete, « Method for molding ceramic powders using a water-based gel casting, US5028362 A, pp.2-1991

M. A. Janney and O. O. Omalete, « Method for molding ceramic powders using a water-based gel casting process », US5145908 A, pp.8-1992

A. C. Young, O. O. Omatete, M. A. Janney, P. A. Menchhofer, . Gelcasting et al., J. Am. Ceram. Soc, vol.74, issue.3, pp.612-618, 1991.

A. Müller and F. Yu, Willert-Porada, « Cellulose acetate based gelcasting process for Gdcontaining ceramic bodies, J. Eur. Ceram. Soc, vol.26, issue.13, pp.2743-2751, 2006.

C. Zhang, X. Huang, Y. Yin, F. Xia, J. Dai et al., Preparation of boron carbide-aluminum composites by non-aqueous gelcasting, vol.35, pp.2255-2259, 2009.

J. Wu, X. Wang, Y. Fan, X. Shi, and W. Lu, « Microstructures and dielectric properties of Ba0.6Sr0.4TiO3-MgO ceramics prepared by non-aqueous gelcasting and dry pressing », Mater. Res. Bull, vol.46, pp.2217-2221, 2011.

L. Zhou, Y. Huang, and Z. Xie, « Gelcasting of concentrated aqueous silicon carbide suspension, J. Eur. Ceram. Soc, vol.20, issue.1, pp.85-90, 2000.

J. Ma, Z. Xie, H. Miao, Y. Huang, and Y. Cheng, Gelcasting of ceramic suspension in acrylamide/polyethylene glycol systems, Ceram. Int, vol.28, issue.8, pp.859-864, 2002.

J. Ma, Z. Xie, H. Miao, Y. Huang, Y. Cheng et al., Gelcasting of alumina ceramics in the mixed acrylamide and polyacrylamide systems, J. Eur. Ceram. Soc, vol.23, issue.13, pp.2273-2279, 2003.

J. Ma, Z. Xie, H. Miao, L. Zhou, Y. Huang et al., « Elimination of Surface Spallation of Alumina Green Bodies Prepared by Acrylamide-Based Gelcasting via Poly(vinylpyrrolidone), J. Am. Ceram. Soc, vol.86, issue.2, pp.266-272, 2003.

Z. Xie, Y. Cheng, and Y. Huang, « Formation of silicon nitride bonded silicon carbide by aqueous gelcasting, Mater. Sci. Eng. A, vol.349, issue.2, pp.20-28, 2003.

M. A. Janney, O. O. Omatete, C. A. Walls, S. D. Nunn, R. J. Ogle et al., « Development of Low-Toxicity Gelcasting Systems, J. Am. Ceram. Soc, vol.81, issue.3, pp.581-591, 1998.

J. Ma, « Gelcasting of alumina with a mixed PVP-MAM system, Ceram. Int, vol.31, issue.7, pp.1015-1019, 2005.

M. Potoczek, « A catalytic effect of alumina grains onto polymerization rate of methacrylamidebased gelcasting system, Ceram. Int, vol.32, issue.7, pp.739-744, 2006.

F. Zhang, T. Kato, M. Fuji, and M. Takahashi, « Gelcasting fabrication of porous ceramics using a continuous process, J. Eur. Ceram. Soc, vol.26, pp.667-671, 2006.

F. S. Ortega, P. Sepulveda, and V. C. Pandolfelli, Monomer systems for the gelcasting of foams, J. Eur. Ceram. Soc, vol.22, issue.9, pp.1395-1401, 2002.

C. Tallón, R. Moreno, M. I. Nieto, D. Jach, G. Rokicki et al., « Gelcasting Performance of Alumina Aqueous Suspensions with Glycerol Monoacrylate: A New Low-Toxicity Acrylic Monomer, J. Am. Ceram. Soc, vol.90, issue.5, pp.1386-1393, 2007.

C. Tallon, D. Jach, R. Moreno, M. I. Nieto, G. Rokicki et al., Gelcasting of alumina suspensions containing nanoparticles with glycerol monoacrylate, J. Eur. Ceram. Soc, vol.29, issue.5, pp.875-880, 2009.

K. Cai, Y. Huang, and E. J. Yang, « Alumina gelcasting by using HEMA system, J. Eur. Ceram. Soc, vol.25, issue.7, pp.1089-1093, 2005.

K. Cai, Y. Huang, and E. J. Yang, « A Synergistic Low-Toxicity Gelcasting System by Using HEMA and PVP, J. Am. Ceram. Soc, vol.88, pp.3332-3337, 2005.

I. T. Smith, « The mechanism of the crosslinking of epoxide resins by amines, Polymer, vol.2, pp.95-108, 1961.

C. Barrere and F. D. Maso, Résines époxy réticulées par des polyamines : structure et propriétés », vol.52, pp.317-335, 1997.

X. Mao, S. Shimai, M. Dong, and E. S. Wang, « Gelcasting of alumina using epoxy resin as a gelling agent, J. Am. Ceram. Soc, vol.90, issue.3, pp.986-988, 2007.

X. Mao, S. Shimai, and E. S. Wang, « Gelcasting of alumina foams consolidated by epoxy resin, J. Eur. Ceram. Soc, vol.28, issue.1, pp.217-222, 2008.

M. Dong, X. Mao, Z. Zhang, and Q. Liu, « Gelcasting of SiC using epoxy resin as gel former, Ceram. Int, vol.35, issue.4, pp.1363-1366, 2009.

S. M. Olhero, L. Garcia-gancedo, T. W. Button, F. J. Alves, and J. M. Ferreira, « Innovative fabrication of PZT pillar arrays by a colloidal approach, J. Eur. Ceram. Soc, vol.32, issue.5, pp.1067-1075, 2012.

R. Xie, D. Zhang, X. Zhang, K. Zhou, and T. W. Button, Gelcasting of alumina ceramics with improved green strength, Ceram. Int, vol.38, issue.8, pp.6923-6926

S. M. Olhero, E. Lopes, and J. M. Ferreira, « Fabrication of ceramic microneedles -The role of specific interactions between processing additives and the surface of oxide particles in Epoxy Gel Casting, J. Eur. Ceram. Soc, vol.36, pp.4131-4140, 2016.

X. Mao, S. Shimai, M. Dong, and E. S. Wang, « Investigation of New Epoxy Resins for the Gel Casting of Ceramics, J. Am. Ceram. Soc, vol.91, issue.4, pp.1354-1356, 2008.

R. Xie, K. Zhou, X. Gan, and E. D. Zhang, « Effects of Epoxy Resin on Gelcasting Process and Mechanical Properties of Alumina Ceramics, J. Am. Ceram. Soc, vol.96, issue.4, pp.1107-1112, 2013.

X. Wang, Z. Xie, Y. Huang, and Y. Cheng, « Gelcasting of silicon carbide based on gelation of sodium alginate, Ceram. Int, vol.28, issue.8, pp.865-871, 2002.

Y. Jia, Y. Kanno, and Z. Xie, « New gel-casting process for alumina ceramics based on gelation of alginate, J. Eur. Ceram. Soc, vol.22, 1911.

J. Ma, Z. Xie, H. Miao, B. Zhang, X. Lin et al., Gelcasting of alumina ceramic components in nontoxic Na-alginate-CaIO3-PVP systems, Mater. Des, vol.26, pp.291-296, 2005.

A. J. Millán, R. Moreno, and M. I. Nieto, « Thermogelling polysaccharides for aqueous gelcastingpart I: a comparative study of gelling additives, J. Eur. Ceram. Soc, vol.22, pp.2209-2215, 2002.

S. M. Olhero, G. Tar?, M. A. Coimbra, and J. M. Ferreira, « Synergy of polysaccharide mixtures in gelcasting of alumina, J. Eur. Ceram. Soc, vol.20, issue.4, pp.423-429, 2000.

A. J. Millán, M. I. Nieto, C. Baud??, and R. Moreno, « Thermogelling polysaccharides for aqueous gelcasting-part II: influence of gelling additives on rheological properties and gelcasting of alumina, J. Eur. Ceram. Soc, vol.22, issue.13, pp.2217-2222, 2002.

I. Santacruz, M. I. Nieto, and R. Moreno, « Alumina bodies with near-to-theoretical density by aqueous gelcasting using concentrated agarose solutions, Ceram. Int, vol.31, issue.3, pp.439-445, 2005.

Y. Chen, Z. Xie, J. Yang, and Y. Huang, « Alumina casting based on gelation of gelatine, J. Eur. Ceram. Soc, vol.19, issue.2, pp.271-275, 1999.

A. J. Millán, M. I. Nieto, and R. Moreno, « Aqueous Gel-Forming of Silicon Nitride Using Carrageenans, J. Am. Ceram. Soc, vol.84, issue.1, pp.62-64, 2001.

S. B. Johnson, D. E. Dunstan, and G. V. Franks, « Rheology of cross-linked chitosan-alumina suspensions used for a new gelcasting process, J. Am. Ceram. Soc, vol.85, issue.7, pp.1699-1705, 2002.

Y. Sun, S. Shimai, X. Peng, G. Zhou, H. Kamiya et al., « Fabrication of transparent Y2O3 ceramics via aqueous gelcasting, Ceram. Int, vol.40, issue.6, pp.8841-8845, 2014.

X. Qin, « Gelcasting of transparent YAG ceramics by a new gelling system, Ceram. Int, vol.40, issue.8, pp.12745-12750, 2014.

K. Prabhakaran, S. Ananthakumar, and C. Pavithran, « Gel Casting of Alumina using Boehmite as a Binder, J. Eur. Ceram. Soc, vol.19, pp.2875-2881, 1999.

M. H. Bocanegra-bernal and B. Matovic, « Dense and near-net-shape fabrication of Si3N4 ceramics, Mater. Sci. Eng. A, vol.500, issue.2, pp.130-149, 2009.

M. D. Innocentini, R. K. Faleiros, J. Pisani, I. Thijs, J. Luyten et al., « Permeability of porous gelcast scaffolds for bone tissue engineering, J. Porous Mater, vol.17, issue.5, pp.615-627, 2010.

M. Potoczek, A. Zima, Z. Paszkiewicz, and A. ?lósarczyk, « Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose, Ceram. Int, vol.35, issue.6, pp.2249-2254, 2009.

F. S. Ortega, F. A. Valenzuela, C. H. Scuracchio, and V. C. Pandolfelli, Alternative gelling agents for the gelcasting of ceramic foams, J. Eur. Ceram. Soc, vol.23, issue.1, pp.75-80, 2003.

R. Chen, Y. Huang, C. Wang, and J. Qi, « Ceramics with ultra-low density fabricated by gelcasting: An unconventional view, J. Am. Ceram. Soc, vol.90, issue.11, pp.3424-3429, 2007.

P. Sepulveda, F. S. Ortega, M. D. Innocentini, and V. C. Pandolfelli, « Properties of highly porous hydroxyapatite obtained by the gelcasting of foams, J. Am. Ceram. Soc, vol.83, pp.3021-3024, 2000.

Y. Liu, X. Liu, H. Wei, and G. Meng, « Porous mullite ceramics from national clay produced by gelcasting, Ceram. Int, vol.27, issue.1, pp.1-7, 2001.

C. Strozi, P. Colombo, and M. Raymundo, Geopolymer foams by gelcasting, vol.40, pp.5723-5730, 2014.

Y. Rabinovitch, R. Boulesteix, and A. Maitre, Procede de fabrication de ceramiques de yag polycristallin et utilisation des ceramiques obtenues, vol.3039829, pp.10-2017
URL : https://hal.archives-ouvertes.fr/hal-01878064

X. Mao, S. Shimai, M. Dong, and E. S. Wang, « Gelcasting and Pressureless Sintering of Translucent Alumina Ceramics, J. Am. Ceram. Soc, vol.91, issue.5, pp.1700-1702, 2008.

W. Xu, J. Yang, Y. Jin, and T. Qiu, « Aqueous gelcasting of yttrium iron garnet, J. Eur. Ceram. Soc, vol.33, issue.5, pp.1023-1028, 2013.

W. Chen, Y. Kinemuchi, K. Watari, T. Tamura, and K. Miwa, « Grain-oriented Bi4Ti3O12 ferroelectric ceramics prepared by magnetic alignment, J. Am. Ceram. Soc, vol.89, issue.2, pp.490-493, 2006.

J. Wu, W. Lu, W. Lei, and X. Wang, « Preparation of ZnAl2O4-based microwave dielectric ceramics and GPS antenna by aqueous gelcasting », Mater. Res. Bull, vol.46, issue.9, pp.1485-1489, 2011.

Y. Gu, X. Liu, G. Meng, and D. Peng, « Porous YSZ ceramics by water-based gelcasting, Ceram. Int, vol.25, issue.8, pp.705-709, 1999.

L. Zhang, Y. Zhang, Y. D. Zhen, and S. P. Jiang, « Lanthanum Strontium Manganite Powders Synthesized by Gel-Casting for Solid Oxide Fuel Cell Cathode Materials, J. Am. Ceram. Soc, vol.90, issue.5, pp.1406-1411, 2007.

Y. Yin, W. Zhu, C. Xia, and G. Meng, « Gel-cast NiO-SDC composites as anodes for solid oxide fuel cells, J. Power Sources, vol.132, issue.2, pp.36-41, 2004.

J. Cheng, S. Zha, J. Huang, X. Liu, and G. Meng, Sintering behavior and electrical conductivity of Ce0.9Gd0.1O1.95 powder prepared by the gel-casting process », Mater. Chem. Phys, vol.78, issue.3, pp.791-795, 2003.

M. Molenda, « Application of gelcasting process in ceria membranes formation, Solid State Ion, vol.188, issue.1, pp.135-139, 2011.

D. Guo, K. Cai, L. Li, and Z. Gui, « Application of gelcasting to the fabrication of piezoelectric ceramic parts, J. Eur. Ceram. Soc, vol.23, issue.7, pp.1131-1137, 2003.

I. Ganesh, S. M. Olhero, P. M. Torres, and J. M. Ferreira, Gelcasting of Magnesium Aluminate Spinel Powder, J. Am. Ceram. Soc, vol.92, issue.2, pp.350-357, 2009.

M. Takahashi, K. Adachi, R. L. Menchavez, and M. Fuji, « Fabrication of semi-conductive ceramics by combination of gelcasting and reduction sintering, J. Mater. Sci, vol.41, issue.7, pp.1965-1972, 2006.

P. Melard, M. Peltier, and F. Tastu, « Nouvelle composition de polissage a base de cerium et son procede de fabrication, pp.26-1986

P. Melard and F. L. Tastu, « Composition de polissage à base de cérium et son procédé de fabrication, 1984.

F. Tastu and P. Melard, Composition de polissage a base de cerium destinee au polissage des verres organiques », FR2604443A1, pp.1-1988

L. J. , -. Le, and F. Tastu, « Composition de polissage perfectionnée à base de cérium et son procédé de préparation, pp.12-1992

C. Gourlaouen, J. Heintz, C. Magnier, P. Maestro, J. Bernier et al., « Nouvel oxyde cerique, son procede de fabrication et ses applications, pp.12-1986

W. W. Wendlandt, Thermal Decomposition of Scandium, Yttrium, and Rare Earth Metal Oxalates », vol.30, pp.58-61, 1958.

V. V. Subba-rao, R. V. Rao, and E. A. , Biswas, « Thermogravimetric analysis of La, Ce, Pr and Nd oxalates in air and in carbon dioxide atmosphere, J. Inorg. Nucl. Chem, vol.27, pp.2525-2531, 1965.

K. G. Nair, V. V. Sreerajan, V. S. Nayar, and C. G. Nair, Thermal decomposition studies. Part XIII. Kinetics of the thermal decomposition of the oxalates of the rare earths, yttrium and titanium, vol.39, pp.253-266, 1980.

W. Ollendorff and F. Weigel, The crystal structure of some lanthanide oxalate decahydrates, Ln2(C2O4)3·10H2O, with Ln = La, Ce, Pr, and Nd », Inorg. Nucl, Chem. Lett, vol.5, issue.4, pp.263-269, 1969.

P. Boch and J. Nièpce, Ceramic Materials: Processes, Properties, and Applications, 2010.

S. J. Lukasiewicz and J. S. Reed, « Character and Compaction Response of Spray-Dried Agglomerate, Am. Ceram. Soc. Bull, vol.57, pp.798-801, 1978.

D. Bernache-assollant, J. Bonnet, and . Frittage, aspects physico-chimiques -Partie 1 : frittage en phase solide », juill, 2005.

M. N. Rahaman, Ceramic Processing and Sintering, 2003.

M. Caisso, R. Boulesteix, S. Picart, A. Maître, T. Delahaye et al., « Investigation of the Sintering Mechanisms for (U,Am)O2 Pellets Obtained by CRMP Process, Procedia Chem, vol.21, pp.357-364, 2016.

G. A. Parks, P. L. De-bruyn, «. The, . Point, and . Charge-of-oxides1-», J. Phys. Chem, vol.66, issue.6, pp.967-973, 1962.

G. A. Parks, « The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems », Chem. Rev, vol.65, issue.2, pp.177-198, 1965.

R. H. Yoon, T. Salman, and G. Donnay, « Predicting points of zero charge of oxides and hydroxides, J. Colloid Interface Sci, vol.70, issue.3, pp.483-493, 1979.

L. A. De-faria and S. Trasatti, « The Point of Zero Charge of CeO2, J. Colloid Interface Sci, vol.167, issue.2, pp.352-357, 1994.

M. Olsson, A. Jakobsson, and Y. Albinsson, « Surface Charge Densities of Two Actinide(IV) Oxides: UO2 and ThO2, J. Colloid Interface Sci, vol.256, issue.2, pp.256-261, 2002.

M. Kosmulski, Surface Charging and Points of Zero Charge, 2009.

A. Pringuet, « Granulation d'une poudre d'anatase par voie colloïdale : étude de formulations pour l'élaboration de sphères poreuses millimétriques, 2010.

H. Sarraf and R. Herbig, « Electrokinetic sonic amplitude measurement of concentrated alumina suspensions: Effect of electrosteric stabilization, J. Ceram. Soc. Jpn, vol.116, pp.928-934, 2008.

J. Davies and J. G. Binner, « The role of ammonium polyacrylate in dispersing concentrated alumina suspensions, J. Eur. Ceram. Soc, vol.20, issue.10, pp.1539-1553, 2000.

L. H. Luo, A. I. Tok, and F. Y. Boey, « Aqueous tape casting of 10mol%-Gd2O3-doped CeO2 nano-particles », Mater. Sci. Eng. A, vol.429, issue.1, pp.266-271, 2006.

A. Akbari-fakhrabadi, R. V. Mangalaraja, F. A. Sanhueza, R. E. Avila, S. Ananthakumar et al., « Nanostructured Gd-CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting, J. Power Sources, vol.218, pp.307-312, 2012.

X. Mao, S. Shimai, S. Wang, M. Dong, and L. Jin, Rheological characterization of a gelcasting system based on epoxy resin, vol.35, pp.415-420, 2009.

F. and L. Lumia, « Développement de procédés de fabrication de combustibles UO2-PuO2 par voie liquide, 2019.

A. Costagliola, « Évaluation du comportement sous rayonnement alpha de la butyraldoxime, 2015.

J. W. Spinks and R. J. Woods, AN INTRODUCTION TO RADIATION CHEMISTRY, p.72

L. Caër and . Sophie, Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation », Water, vol.3, pp.235-253, 2011.

M. Fontanille, J. Vairon, and . Polymérisation, Tech. Ing. Plastochimie Anal. Phys.-Chim, 2009.

G. Czapski, B. H. Bielski, and N. Sutin, The kinetics of the oxidation of hydrogen peroxide by cerium(IV), vol.67, pp.201-203, 1963.

M. Kitagawa and Y. Tokiwa, « Polymerization of vinyl sugar ester using ascorbic acid and hydrogen peroxide as a redox reagent, Carbohydr. Polym, vol.64, issue.2, pp.218-223, 2006.

D. Arizmendi-cotero, R. M. Gómez-espinosa, O. García, V. Gómez-vidales, and A. Dominguez-lopez, « Electron paramagnetic resonance study of hydrogen peroxide/ascorbic acid ratio as initiator redox pair in the inulin-gallic acid molecular grafting reaction, Carbohydr. Polym, vol.136, pp.350-357, 2016.

M. B. Davies, « Reactions of L-ascorbic acid with transition metal complexes, Polyhedron, vol.11, issue.3, pp.285-321, 1992.

B. Zümreoglu-karan, The coordination chemistry of Vitamin C: An overview, vol.250, pp.2295-2307, 2006.

, Ce travail s'est focalisé sur l'étape de mise en forme du combustible en étudiant plus spécifiquement les potentialités du procédé de coulage-gélification. Cette étude a porté dans un premier temps sur un simulant non radioactif de l'oxyde mixte (U,Pu)O2, à savoir l'oxyde de cérium CeO2. Des formulations de suspensions ont été identifiés permettant leur gélification dans des moules non poreux, Ce travail se place dans le cadre du traitement-recyclage des combustibles usés pour des réacteurs nucléaires de Génération IV

, L'étude du comportement thermique des crus a permis de définir des traitements conduisant à l'élimination complète des auxiliaires organiques et à la densification quasi-complète des crus

, L'optimisation du procédé de coulage-gélification a permis d'élaborer des céramiques de CeO2 de forme annulaire répondant au cahier des charges des futurs combustibles

, L'ensemble du procédé de coulage-gélification a pu être transposé à une poudre d'oxyde mixte (U,Ce)O2 synthétisée par co-précipitation oxalique. Pour cela, les caractéristiques spécifiques de cette poudre ont été prises en compte et ont nécessité le recours à une étape de supplémentaire de désagglomération

, Mots-clefs : Oxyde de cérium, mise en forme, coulage-gélification, combustible nucléaire. Study of ceramic nuclear fuel shaping by gelcasting process. Application of cerium oxide and uranium-based systems