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In the last 10 years, the prevalence of alternative splicing has been completely re-evaluated. Recent reports claim 
that more than 90% of multi-exon genes produce at least two splicing variants1,2. The depth at which transcrip-
tomes can be sampled with next generation sequencing techniques opens the possibility not only to annotate 
splicing variants in various conditions, but also to detect which transcripts are differentially spliced across patho-
logical and physiological conditions.

This growing interest in splicing both as a fundamental process and because of its implication in pathologies3–5 
has been accompanied by an increasing number of methods aiming at analyzing RNAseq datasets6–8. The ultimate 
goal of these methods is to identify and quantify full-length transcripts from short sequencing reads. This task is 
particularly challenging and recent benchmarks show that all methods still make a lot of mistakes9. The difficulty 
of reconstructing full-length transcripts (isoform-centric approaches) also prompted a number of authors to 
focus on identifying exons that are differentially included within transcripts (exon-centric approaches)10–13.

Whether they are exon- or isoform-centric, methods to study splicing from RNAseq data can further be 
divided in two main categories14. The mapping-first approaches first map the reads to the reference genome and 
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the mapped reads are then assembled into exons and eventually transcripts. In contrast, assembly-first approaches 
first assemble the reads based on their overlaps. The assembled sequences (corresponding to sets of exons) are 
then aligned to the reference genome.

Mapping-first approaches have been the most used so far, essentially because they were the first to be devel-
oped and because they initially required less computational resources. De novo assembly methods were also 
thought to be restricted to non-model species, where no (good) reference genome is available, and they seemed 
to be inadequate when an annotated reference genome is available.

Recent progress in de novo transcriptome assembly is clearly changing this view, and the argument of the 
heavier computational burden does not hold anymore.

The application of de novo assembly to human RNAseq datasets however still remains rare, although some 
studies have already shown its potential to detect novel biologically relevant splicing variants15,16.

The generalization of de novo assembly approaches for studying splicing in human seems to be mostly impeded 
by the lack of a clear evaluation of its potential interest in comparison to more traditional mapping-based 
approaches.

This is the gap we aim at filling with the work presented here.
To achieve this goal, we performed a systematic evaluation of an assembly-first and a mapping-first approach 

on two RNAseq datasets.
As a first step, we compared pipelines that we developed in parallel, namely KisSplice and FaRLine, because 

we could easily control their parameters. Any difference between the predictions that is solely due to a parameter 
setting could be fixed easily, which enabled us to obtain a precise understanding of the irreducible differences 
between the two approaches.

In a second step, we confirmed the generality of our findings by benchmarking our methods against Cufflinks6, 
MISO11 and Trinity17, which are widely used pipelines.

A significant part of our work has been to manually dissect a number of cases found by only one of the two 
methods. This enabled us to go beyond a simple qualitative description and provide the community with a precise 
understanding of which cases are overlooked by each type of method, and where new methods are needed.

All the software and step-by-step protocols presented in this work are freely available at http://kissplice.prabi.
fr/pipeline_ks_farline. This should facilitate the reproducibility of our work, and applications to other datasets.

From a general point of view, the combination of approaches we propose should enable to improve 
splicing-related transcriptomic analyses in physiological and pathological situations.

S  and F . Figure 1 presents schematically the two pipelines that we developed and com-
pared. A detailed description of each step is given in the Methods section. In the assembly-first approach, a De 
Bruijn graph is built from the reads. Alternative splicing events, which correspond to bubbles in this graph are 
enumerated and quantified by KisSplice. Each path is then mapped on the reference genome using STAR and the 
event is annotated by KisSplice2RefGenome, using the EnsEMBL r75 annotations as an evidence. Importantly, 
exons not present in the annotations can be identified by this approach. In the mapping-first approach, reads 
are aligned to the reference genome using TopHat2. Mapped reads are then analyzed by FaRLine, using the 
EnsEMBL r75 annotations as a guide.

We also tested STAR instead of TopHat2 for the mapping-first pipeline, and found that our main results were 
essentially unchanged (see Methods).

Quantification of splicing variation is performed similarly in the two pipelines. Only junction reads are con-
sidered. Exonic reads are not considered, for reasons exposed in Methods. For the inclusion isoform, there are 
two junctions to consider. We calculate the mean of the counts of these two junctions.

The differential analysis is performed by a common method for the two approaches: kissDE, which tests if the 
relative abundance of the inclusion isoform has changed significantly across conditions.

Overall, we developed and adapted jointly these two pipelines in order to minimize the discrepancies that 
could complicate the comparison.

Applying KisSplice and 
FaRLine to the same RNAseq datasets generated by the ENCODE consortium (SK-N-SH cell lines treated or 
not with retinoic acid), we noticed that 68% of the alternatively skipped exons (ASE) identified by KisSplice 
were also identified by FaRLine and that 24% of ASEs identified by FaRLine were also identified by KisSplice 
(Fig. 2A). This observation highlights that the mapping-first approach predicts a much larger number of events. 
This difference in sensitivity is due to the fact that while mapping-first approaches require that each exon junction 
is covered by at least one read, assembly-first approaches require overlapping reads across the entire skipped exon. 
Therefore, it can be anticipated that low abundant isoforms, that are covered by few reads, will be reported by 
mapping, but not by the assembly-first approach. Supporting this prediction, we observed that for ASEs reported 
only by FaRLine, the number of reads supporting the minor isoform is much lower than in the other categories 
(Fig. 2 B). The same results were obtained using another RNAseq dataset representing MCF-7 cells expressing or 
not the DDX5 and DDX17 splicing factors (Supplementary Figure S1).

Having clarified that rare variants are better handled by the mapping-first approach, we decided to filter them 
out, in order to analyse other differences between the two approaches. Experimental validations by RT-PCR that 
we performed on rare variants stratified by read support enabled us to clarify that both an absolute and a relative 
cutoff on the number of reads are required to discriminate variants which can be validated from those which 
cannot. Indeed, out of the 48 tested cases, we were able to validate 41 (Supplementary Figure S9). The non vali-
dated cases indeed corresponded to cases supported by fewer reads. However, what really departed them from 
the validated cases was their lower relative abundance (Supplementary Figure S10, Supplementary Table 1). In the 



www.nature.com/scientificreports/

3SCIENTIFIC REPORTS | (2018) 8:4307

remaining of our work, we chose to use both criteria and we filtered variants supported by less than 5 reads, and 
less than 10% compared to the major isoform.

As expected, the proportion of candidates reported simultaneously by both methods increased significantly. 
Approximately 70% of predicted skipped exons were indeed found by both approaches after filtering lowly 
expressed isoforms. (Fig. 2C, Supplementary Figure S1C).

Furthermore, the estimation of their inclusion rates was consistent across the two approaches (R2 > 0.9)).
Beyond the overall concordance of the two approaches in detecting common splicing events, a number of 

candidates remained reported by only one approach. Since many of them have a highly-expressed minor isoform 
(supported by more than 100 reads) (Fig. 2D, Supplementary S1D), the failure of one approach to detect them is 
likely not due to a lack of coverage.

For events only found by one approach, we patiently dissected the reasons why they could have been missed 
out by the other approach. This enabled us to define 4 main categories which cover 70% of the cases (Fig. 3A) The 
remaining 30% of cases did not fit into clearly defined biological categories. We however classified them using 
methodological criteria. The full list of categories is presented in Supplementary Table 2. For each of the 4 main 
categories, we selected cases to validate experimentally. All 34 RT-PCR validations were successful and are pre-
sented in Supplementary Figure S11 confirming that these events are not false positives.

The first category corresponds to cases 
that were missed out by the mapping-first approach and corresponds to alternative splicing events involving novel 
exons or novel combinations of existing exons.

Figure 1. The two pipelines compared in this study: KisSplice and FaRLine. The first step of KisSplice is to 
assemble the reads and extract the splicing events. These events are then mapped back to the reference genome 
and classified by event type. The annotated and quantified events are then used for the differential analysis 
between the biological conditions. In contrast, the first step of FaRLine is to map the reads on the reference 
genome. From this mapping, annotated and quantified events are extracted. Finally, the differential analysis is 
done with the same method as in the KisSplice pipeline.
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There are two reasons to explain why the mapping-first approach does not detect these events. First the map-
per may fail to map the reads, or map them to an incorrect location, as junction discovery using short reads is 
a challenging task. Second, even in the case where the mapper succeeds, FaRLine may fail to report the event 
because it relies on annotations. Among these 1864 cases, we distinguished 3 sub-categories of errors due to the 
annotation. Either the exon is unannotated (30%), one of its flanking exon is unannotated (13%) or both exons 
are annotated but no transcript combining them was annotated (57%).

The assembly-first approach, KisSplice, does not consider annotations, and an interesting resulting advantage 
is that novel junctions have the same chance to be assembled as known junctions. Mapping assembled novel junc-
tions to the genome is indeed less challenging than read mapping because the assembled sequences are longer.

More importantly, the ability of KisSplice to identify novel splicing events comes from the fact that it intro-
duces known annotations as late as possible in its pipeline (see Methods). Annotations are used as an evidence, 
not as a filter. AS events involving novel splice sites are clearly identified as such, and can be specifically tested and 
experimentally validated. More than 99% of the novel splice sites were canonical splice sites (GT-AG).

As an example, the HIRA gene contains a novel exon, whose inclusion is supported by at least 20 reads on each 
junction (Fig. 3B, Supplementary Figure S8A). This case was overseen by the mapping-first approach, FaRLine. 

Figure 2. Comparison of the ASE identified by the assembly-first and mapping-first pipelines. (A) Venn 
diagram of ASEs identified by the two pipelines. FaRLine detected many more events than KisSplice. 68% of 
ASE found by KisSplice were also found by FaRLine and 24% of ASE detected by FaRLine were also found 
by KisSplice. (B) Boxplot of the expression of the minor isoform in the 3 categories defined in the Venn 
diagram of panel A: ASE identified only by FaRLine, ASE identified by both pipelines and ASE identified only 
by KisSplice. The number of reads supporting the minor isoform of the ASE identified by FaRLine is overall 
much lower. Many isoforms are supported by less than 5 reads. (C) Venn diagram of ASEs identified by the two 
pipelines after filtering out the poorly expressed isoforms (less than 5 reads, or less than 10% of the number of 
reads supporting both isoforms). The common events represent a larger proportion than before filtering: 77% 
of the ASE identified by FaRLine and 69% of the ASE identified by KisSplice. (D) Boxplot of the expression of 
the minor isoform in the 3 categories defined in the Venn diagram of panel C: ASE identified only by FaRLine, 
ASE identified by both pipelines and ASE identified only by KisSplice. The distribution of the number of reads 
supporting the minor isoform is similar for the 3 categories with highly expressed variants in each category.
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The panel B of the Supplementary Figure S8 shows an example of an ASE not reported by FaRLine because the 
included exon was not present in the transcripts.

The second category of splicing events identified by only one approach corresponds to recent gene duplica-
tions. Untangling the relation between alternative splicing and gene duplication is a difficult topic, subject to 
debate18,19. It is indeed difficult to assess the amount of alternative splicing that occurs within paralogous genes. 
With the mapping-first approach, the reads stemming from recent paralogs are classified as multi-mapping reads. 
FaRLine, like the vast majority of mapping-first pipelines, discards these reads for further analysis, as their pre-
cise location cannot be clearly established. This results in silently underestimating alternative splicing in recent 
paralog genes. Note that setting the mapper to keep multi-mapping reads in the analysis leads to overestimating 
alternative splicing, as all members of the family will be predicted as alternatively spliced. In opposition, de novo 
assembly can faithfully state that a family of recent paralogs collectively produce two isoforms that vary in their 
sequence. However, whether the two isoforms are produced from the same locus or from different loci remains 
undetermined. KisSplice detects these cases of putative AS in paralog genes. Figure 3C illustrates the case with 

Figure 3. (A) Main categories explaining why some exons are detected by only one method. (B) The exon in 
intron 8 of the HIRA gene is an example of an exon not annotated in EnsEMBL r75. This event was identified by 
KisSplice but not by FaRLine. (C) RASA4 and RASA4B are 2 paralog genes. KisSplice detected 2 isoforms that 
could be produced by these 2 genes. FaRLine did not detect any event in either of these genes. The exon skipped 
is exon 18 in RASA4 (corresponding to exon 17 in RASA4B). The third band on the RT-PCR is the inclusion 
of another exon in the intron 18 of RASA4. (D) Exon 2 of the RAB5C gene is an example of exon skipping 
overlapping an Alu element identified only by FaRLine. The events in panel B to C were validated by RT-PCR. 
(E) The RPAIN gene contains a complex event with a lowly expressed isoform. This weakly expressed isoform 
was not identified by KisSplice, while the other isoforms were identified by both approaches.



www.nature.com/scientificreports/

6SCIENTIFIC REPORTS | (2018) 8:4307

genes RASA4 and RASA4B. Exon 18 in RASA4 (denoted as exon 17 in RASA4B) was detected to be skipped. 
The exclusion isoform is supported by 160 reads, while the inclusion isoform is supported by 400 reads. The 
mapping-first approach did not detect either of these isoforms at all. Another example from this category is pre-
sented in Supplementary Figure S2C.

The third category of splicing events identified by only one approach corresponds to cases that are missed 
out by the assembly-first approach. Out of the 1663 cases belonging to this category, a large fraction (21%) cor-
responds to cases where the skipped exon overlaps a repeat, notably Alu elements. Alu are transposable elements 
present in a very large number of copies in the human genome20. Most of these copies are located in introns and 
a number of them have been exonised21,22. The reason why the mapping-first approach is able to identify these 
cases is because even though the reads partially map to repeated sequences, the boundaries of these exons are 
unique and annotated. Hence the mapper, if set properly, can map these reads to unique annotated exon junctions 
and is not confused by multiple mappings. Importantly, if the annotations are not provided to the mapper, it will 
be confused by multiple mappings and will not be able to map the read to the correct location (Supplementary 
Figure S7). Figure 3D and Supplementary Figure S2D represent two RT-PCR validated Alu-derived exons identi-
fied by the mapping-first approach. The assembly-based approach fails to detect most of these events. The reason 
is that, although they do form bubbles in the DBG generated by the reads, these bubbles are highly branching 
(supplementary figure http://kissplice.prabi.fr/sknsh/graph_RAB5C_distance_3.html23). Enumerating branch-
ing bubbles is computationally very challenging, and may take a prohibitive amount of time. In practice, we 
restrict our search to the enumeration of bubbles with at most 5 branches (Supplementary Figure S12A).

The fourth category of splicing events identified by only one approach corresponds to cases where more 
than two splicing isoforms locally coexist, and one of them is poorly expressed compared to the others. The 
RPAIN gene is a good illustration of such cases (Fig. 3E), as exons 5 and 6 of RPAIN may be skipped and the 
intron between exons 4 and 5 may be retained. While both methods successfully reported the skipping of exon 
6, with exons 5 and 7 as flanking, FaRLine additionally reported the skipping of the same exon, but with exons 
4 and 7 as flanking exons. The reason why KisSplice did not report this case is because the junction between 
exons 4 and 6 is relatively weakly supported. More specifically, this junction is supported by only 55 reads, which 
accounts for less than 2% of the total number of reads branching out from exon 4. Transcriptome assemblers, 
like KisSplice, usually interpret such relatively weakly supported junctions as sequencing errors or spurious 
junctions in highly-expressed genes, therefore disregarding them in the assembly phase (see Supplementary 
Methods). Supplementary Figure S2E shows another example of a complex event not correctly handled by 
KisSplice because there were locally more than 5 branches.

Beyond the tasks of identifying exon skip-
ping events, a natural question which arises when two conditions are compared is to assess if the exon inclusion 
rate significantly changed across conditions.

In order to test this, we took advantage of the availability of replicates for both the SK-N-SH cell line and the 
same cell line treated with retinoic acid. For each detected event, we tested with kissDE24, whether we could 
detect a significant association between one isoform and one condition. Focusing on those condition-specific 
events, we again partitioned them in events reported by both methods, by FaRLine only and by KisSplice only. 
As shown in Fig. 4, the majority of condition-specific events were detected by both approaches. This is the case 
for instance of exon 22 of gene ADD3 which is clearly more included upon retinoic acid treatment (Fig. 4C), 
with a DeltaPSI of 27%. The estimation of the DeltaPSI is overall very similar across the two approaches (Fig. 4B) 
with a correlation of 0.94. The outliers essentially correspond to ASE with several alternative donor/acceptor 
sites. KisSplice considers these events as different exons while FaRLine considers them as an unique exon, and 
sums up all the incoming (resp. outgoing) junction counts. Hence, the read counts will differ. Supplementary 
Figure S8D gives an example.

When focusing on condition-specific events, the proportion of events predicted by only one method 
increased, for two main reasons. First, some ASE annotated by both approaches were predicted to be differentially 
included only by one method. This is again due to differences in the quantification of the inclusion rate, especially 
for ASE with multiple 5′ and 3′ splice sites. Second, some of the exons that were missed out by one method at the 
identification step happened to be condition specific. This is the case of an exon in NINL intron 5 (Fig. 4D), only 
identified by KisSplice because it was not annotated. This is also the case of SAR1B exon 3 (Fig. 4E), only iden-
tified by FaRLine because it overlaps with an Alu element. The analysis of the MCF-7 RNAseq dataset gave very 
similar results (Supplementary Figure S3).

The observation that many of the AS events that were annotated only by one method are differentially regu-
lated across conditions confirms that these AS events should not be discarded from the analysis. Focusing only on 
AS events annotated by one approach may lead to miss splicing events which are central in the biological context.

In a first step, we picked FaRLine and KisSplice as examples of a 
mapping-first and an assembly-first approach respectively. Clearly, there are other published methods in both 
categories. MISO is probably the most widely used to annotate AS events. We therefore ran it on the same datasets 
to check how its predictions overlapped with ours. As shown in Fig. 5A (SK-N-SH dataset), 77% of predictions 
made by MISO were common to both FaRLine and KisSplice, 18% were only common with FaRLine, 2% were 
only common to KisSplice and the remaining 3% were specific to MISO. The overlap between the different 
methods was very similar when the MCF-7 RNAseq dataset was used (Supplementary Figure S4A). Overall, 
almost all candidates predicted by MISO were also predicted by FaRLine. This large overlap with FaRLine was 
expected, because both are mapping-first approaches. This also shows that the differences between mapping- and 
assembly-first approaches reported above are not limited to one mapping-first approach.
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Besides exon-centric approaches, which aim at finding the differentially spliced exons, there is also a number 
of published methods which are isoform-centric and have the more ambitious goal to reconstruct full-length 
transcripts at the expense of underestimating alternative splicing.

The most widely used mapping-first and isoform-centric approach is Cufflinks6 that we compared to FaRLine 
using the same dataset. As shown in Fig. 5B (and Supplementary Figure S4B), we found that the vast majority of 
ASE were predicted by both approaches.

Finally, we compared KisSplice to one of the most widely used de-novo transcriptome assembler, Trinity17. 
As shown in Fig. 5D (and Supplementary Figure S4D), most ASE found by Trinity were also found by KisSplice. 
However, KisSplice was significantly more sensitive. The goal of Trinity is to assemble the major isoforms 

Figure 4. (A) Condition-specific variants identified by FaRLine, KisSplice or both methods. Within dashed 
lines are events identified by both approaches but detected as condition-specific by only one approach. (B) 
DeltaPSI as estimated by KisSplice and FaRLine, for events identified by both methods. The red dots represent 
complex events for which KisSplice found at least 2 ‘bubbles’. (C) Exon 22 of the ADD3 gene is an example of 
regulated ASE identified by both approaches. (D) A new exon in intron 5 of NINL gene is identified only by 
KisSplice. The inclusion of this exon is differentially regulated between the 2 experimental conditions. (E) 
Because exon 3 of the SAR1B gene is an exonised Alu element, only FaRLine identified this event. Moreover 
this exon is significantly more included in the treated cells (SK-N-SH RA) compared to the control cells.
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for each gene, it therefore largely under-estimates alternative splicing, especially inclusion/exclusion of short 
sequences.

For completeness sake, we also provide an all-vs-all comparison (Supplementary Figure S5). An interac-
tive version of this Figure is available at http://kissplice.prabi.fr/pipeline_ks_farline/. The list of events found 
by any used method can be retrieved from this interactive figure and analysed in IGV, to reproduce the sashimi 
plots of the paper. The general conclusions from these comparisons is that there is a clear distinction between 
mapping-first and assembly-first approaches, and between exon-centric and isoform-centric approaches, the lat-
ter being less sensitive.

De novo assembly is usually applied to non-model species where no (good) reference genome is available. We 
show here that even when an annotated reference genome is available, using assembly offers a number of advan-
tages. We named this approach “assembly-first” because it does use a reference genome, but as late as possible in 
the process, in order to minimize the a priori on which exons should be identified.

Using this strategy, we identified novel alternatively skipped exons, which were not identified by traditional 
read mapping approaches (Fig. 3 and Supplementary Figure S2). While it is believed that the human genome is 
fully annotated, it is important to underline that we have not yet established a final map of the parts of the genome 
that can be expressed. It can be anticipated that sequencing of single-cells from different parts of the body will 
lead to the discovery of a huge diversity of transcripts and that a substantial number of new exons will be dis-
covered. An example is the case of unannotated skipped exons which overlap with repeat elements. We cannot 
exclude that this category is currently largely under-annotated.

We also showed that assembly-first approach has the ability to detect splicing variants within recently dupli-
cated genes (Fig. 3 and Supplementary Figure S2). This is because mapping approaches discard reads which map 
to multiple genomic locations. Identification of such splicing variants produced from different genomic regions 

Figure 5. (A) 77% of ASE identifed by MISO are also annotated by FaRLine and KisSplice. 18% of MISO’s 
ASE are also annotated by FaRLine while only 2% of MISO’s ASE are also annotated by KisSplice. Finally, 
only 3% of these ASEs are only annotated by MISO. (B) Most of the events annotated by Cufflinks are identified 
by FaRLine. (C) GTF2I exon 13 is an example of an ASE annotated by FaRLine but not by Cufflinks. Indeed, 
Cufflinks only identified the isoform corresponding to the exon inclusion. (D) Most of the events annotated by 
Trinity are also annotated by KisSplice. But half of the ASE annotated by KisSplice are not annotated by the 
global assembler Trinity. (E) KisSplice annotates an ASE in the RFWD2 gene, while Trinity only identified the 
isoform corresponding to the exon inclusion. The events in panels C and E have been validated by RT-PCR.
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sharing sequence similarities (e.g. paralog genes, pseudogenes) is however very important, since splicing variants 
generated from paralogous genes but also from pseudogenes may have different biological functions25.

Conversely, we showed that some ASE were detected only by the mapping-first approach. As shown in 
Fig. 2 (and Supplementary Figure S1), we observed that the mapping-first approach has a better ability to detect 
lowly-expressed splicing variants. Although such lowly-expressed splicing variants are often considered as 
“noise” or biologically non relevant, caution must be taken with such assumptions for several reasons. First, 
mRNA expression level is not necessarily correlated with protein expression level. Second, as observed from 
single-cell transcriptome analyses, some mRNAs can be expressed in few cells, within a cell population (e.g. 
they are expressed at a specific cell cycle step) and may therefore appear to be expressed at a low level in total 
RNAs extracted from a mixed cell population26. Therefore, computational analysis should not systematically dis-
card lowly-expressed splicing variants and filtering these events should depend on the biological questions to be 
addressed.

We also observed that the mapping-first approach better detects exons corresponding to annotated-repeat 
elements (Fig. 3 and Supplementary Figure S2). While it has been assumed for a long time that repeat elements 
are “junk”, increasing evidences support important biological functions for such elements. For example, repeat 
elements like Alu can evolve as exons and the presence of Alu exons in transcripts has been shown to play impor-
tant regulatory functions22,27.

When two methods give non-overlapping predictions, the temptation could be to focus on exons found by 
both approaches and to discard the others. We argue that this is not the best option, because approach-specific 
cases can be validated experimentally, and also because many of them correspond to regulated events, i.e. the 
inclusion isoform is significantly up or down regulated depending on the experimental condition.

In conclusion, combining mapping- and assembly-first approaches allows to detect a larger diversity of splic-
ing variants. This is very important towards the in depth characterization of cellular transcriptome although other 
approaches are further required to analyze their biological functions.

From a computational perspective, a number of challenges are still ahead. The co-development of two 
approaches enabled us to narrow down the list of difficult instances not properly dealt with by at least one 
approach, but we cannot exclude that some categories are still missed out by both approaches. The categories of 
challenging cases that we defined in Fig. 3: lowly-expressed variants, exonised Alu, complex splicing variants, par-
alogs have been overlooked up to now. Possibly because they are much harder to detect, they have been assumed 
to play a minor role in transcriptomes, but more recent studies however argues the opposite.

For exonised ALUs, paralog genes and genes with complex splicing patterns, the possibility to sequence longer 
reads with third generation techniques28,29 should prove very helpful. The number of reads obtained with these 
techniques is however currently much lower than with Illumina, thereby preventing their widespread use for dif-
ferential splicing, for which the sequencing depth, and not so much the length of the reads, is the critical parame-
ter which conditions the statistical power of the tests. In the coming years, methods combining second and third 
generation sequencing should enable to obtain significant advances in RNA splicing.

Figure 1 shows the two pipelines that we are comparing. While STAR and TopHat 
are third-party softwares, we developed the other methods ourselves. KisSplice was first introduced in Sacomoto 
et al.13. The novelty here is that its usage is now possible in the case where a reference genome is available, which 
required specific methodological developments implemented in the newly released KisSplice2RefGenome 
software. kissDE was first introduced in Lopez-Maestre et al.24 in the context of SNPs for non-model species. 
We present here its extension for alternative splicing. FaRLine is a new mapping-first pipeline, that we intro-
duce in this paper. It is the RNAseq pipeline associated to the FasterDB database30 and was already successfully 
applied to the analysis of the effect of metformin treatment on myotonic dystrophy type I (DM1) with a valida-
tion rate of 95%31. Specifically, 20 cases of ASE regulated by the metformin treatment were tested, and 19 were 
validated. In this paper, we provide additional validations of FaRLine with similar validation rates (36 out of 38), 
Supplementary Figure S19.

For the sake of self-containment, we explain all methods here.

KisSplice. KisSplice is a local transcriptome assembler. As most short reads transcriptome assemblers8,17,32, it 
relies on a De Bruijn graph (DBG). Its originality lies in the fact that it does not try to assemble full-length tran-
scripts. Instead, it assembles the parts of the transcripts where there is a variation in the exon content. By aiming 
at a simpler goal, it can afford to be more exhaustive and identify more splicing events. The key concept on which 
KisSplice is built is that variations in the nucleotide content of the transcripts will correspond to specific patterns 
in the DBG called bubbles (Supplementary Figure S13). KisSplice’s main algorithmic step therefore consists in 
enumerating all the bubbles in the graph built from the reads. Examples of bubbles in the DBG and explanation 
of the parameters used to filter out sequencing errors and repeat-induced bubbles are given in Supplementary 
Methods.

Annotating the events with KisSplice2RefGenome. KisSplice outputs bubbles in the form of a pair of 
fasta sequences. Clearly, such information is insufficient to analyse alternative splicing for model species. 
KisSplice2RefGenome enables to provide for each bubble: the gene name, the AS event type, the genomic coor-
dinates and the list of splice sites used (novel or annotated).

Bubbles found by KisSplice are mapped to the reference genome using STAR, with its default settings, which 
means that in the case of multi-mappings, STAR reports all equally best matches. The mapping results are then 
analysed by KisSplice2RefGenome. Bubbles are classified in sub-types depending on the number of blocks 
obtained when mapping each path of the bubble to the genome (Supplementary Figure S14). For exon skipping, 
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the longer path of the bubble corresponds to 3 blocks, while the lower path corresponds to 2 blocks. The splice 
sites are located and compared to the annotations. Events with novel splice sites are reported explicitly as such in 
the output of the program.

In the case where the bubble corresponds to a genomic insertion or deletion, it exhibits a specific pattern in 
terms of block numbers (one block for one path and two blocks for the other) and is reported separately.

The criterion of the number of blocks is discriminative in most cases. However, there is a possible confusion 
between intron retentions and genomic deletions, since in both cases, the longer path will map into one block 
and the lower path in two blocks. In this case, we also use the distance between the blocks, and introduce a 
user-defined threshold, which we set to 50nt, below which the bubble is classified as a genomic deletion, and 
above which it is classified as an intron retention.

In the special case where the exon flanking the AS event is very short (less than k nt), the number of blocks is 
increased for both paths, but the difference of number of blocks remains unchanged.

In the special case where there is a genomic polymorphism located less than k nt apart from the AS event, 
KisSplice will report several bubbles (possibly all combinations of genomic and transcriptomic variants). This 
redundancy is removed in KisSplice2RefGenome where the primary focus in on splicing.

In the case where the bubble maps to two locations on the genome, a distinction is made between the case 
of exact repeats where both paths map to both locations and inexact repeats where each path maps to a distinct 
location (Supplementary Figure S12B). The cases of exact repeats correspond to recent gene duplications.

FaRLine. FasterDB EnsEMBL r75 annotation: FasterDB RNAseq Pipeline, FaRLine, uses the FasterDB-based 
EnsEMBL r75 annotation database. FasterDB is a database containing all annotated human splicing variants30.

Each transcripts present in the FasterDB, is composed of a succession of exons, that we call transcript exons 
(represented in blue in Supplementary Figure S15). The genomic exons (represented in red in Supplementary 
Figure S15) are defined by projecting the transcript exons. First, the transcript exons are grouped by position. 
Then each group of exons defines a projected exon with the following rules:

The start is the leftmost start of the non-first-exon of the group.
The end is the rightmost end of the non-last-exon of the group that ends before the start of the next group of 
exons.

When the most frequent event annotated in the transcripts is an intron retention, the projected genomic exon 
is defined as a combination of the two exons flanking the retained intron. In Supplementary Figure S15, the exons 
5 and 6 and the intron 5 are considered as one unique exon. As events included within one exon are not tested, 
this results in some events being missed.

Mapping: The first step of FaRLine is to map the reads to a reference genome. This step is done using 
Tophat-2.0.116. tophat–min-intron-length 30–max-intron-length 1200000\-p 8 [–solexa1.3-quals for Sknsh_rep1 
and Sknsh_rep2]\–transcriptome-index

A transcriptome index has been built by TopHat using EnsEMBL r75 annotations in gtf format. When a 
transcriptome index is used, the mapping steps are modified: instead of aligning first to the genome, which 
is the default behavior, TopHat uses Bowtie to align the reads to the transcript sequences first, then align the 
remaining unmapped reads to the genome. Minimal and maximal intron lengths have been modified (default 
70 and 500000) to maximize the number of junctions detected, according to the statistics provided by FasterDB 
EnsEMBL r75 annotations.

The resulting alignment files have been filtered using samtools 0.1.1933.
Samtools view -F 260 -f 1 -q 10 -b
With this step, only the primary alignments are kept. The minimum read alignment quality was set up so that 

multi-mapping reads were removed from the alignment file.
Annotation and quantification of alternative splicing events: For each gene, all the reads with at least one 

base overlapping the gene from the start to the end coordinates are retrieved. CIGAR strings are then used to 
find the alignments blocks. Junction reads are identified by the presence of at least one’N’ letter in the CIGAR. 
Junction reads were filtered if:

More than 10% of soft-clipping was detected in the alignment (it should not be the case with TopHat).
An indel was close to the junction site, as it would make the junction position uncertain.

Junction read alignments are then processed block by block sequentially from left to right. Alignment blocks 
under 4 bp on read extremities are removed from the reads as we considered it is not sufficient to identify cor-
rectly the mapping localization. Then each block is compared to FasterDB annotations to check if the block 
boundaries correspond to known exons annotated in FasterDB, or to a putative new acceptor or donor site. First 
and last alignment blocks for each read must overlap one and only one exon for a read to be considered. For the 
inner blocks, if alignment blocks map to a succession of exons and introns, it is considered as an intron retention. 
For the acceptors and donors, we also added a supplementary filter. If a new donor is identified within a junction, 
we check if the junction also has an acceptor identified of the same length +/−1bp on the other side of the junc-
tion, showing most probably a problem of mapping. Once all the blocks are identified, the block annotations are 
used to annotate putative alternative splicing events: alternative skipped exon, multiple exon skipping, acceptor, 
or donor sites.

Once all the junction reads are processed, the alternative splicing events identified are pooled and the reads 
participating to each event are quantified, as well as the known exon-exon junction. If an exon-exon junction 



www.nature.com/scientificreports/

1 1SCIENTIFIC REPORTS | (2018) 8:4307

is annotated with multiple known acceptors and/or donors, all the possible junction reads are quantified and 
summed up. To fasten the quantification step, a junction coordinate file with the corresponding read numbers is 
produced from the read alignment using the same filters than described above and will be used for all the quanti-
fication tools: junction, exon skipping, acceptor and donor.

A challenge in defining the alternative skipped exon events is to identify the flanking exons. In the first version 
of FaRLine, these flankings exons were defined as the closest annotated genomic exons. This rule led to miss a lot 
of ASE events. Therefore, to define the flanking exons, we now use the information contained in the transcripts 
and in the reads. We consider each junction which skips an exon and is covered by at least one read. If this junc-
tion is annotated in the transcripts, we extract all annotated events containing this junction. Else, we annotate 
the event with the longest covered inclusion isoform. It allows FaRLine to be more robust to the incompleteness 
of the annotation compared to other methods, like MISO (Supplementary Figure S6). Panel C of Supplementary 
Figure S8 gives an example of an ASE reported by FaRLine but not by MISO because the exclusion isoform is not 
annotated in the transcripts.

Comparison with STAR: We also mapped the reads with STAR, ran FaRLine on these alignments and com-
pared the predicted skipped exons with KisSplice. The main results are similar to what we found with TopHat. 
Indeed, without any filter, 69% of ASE annotated by KisSplice are also found by FaRLine and 24% of FaRLine’s 
event by KisSplice (compared to 68% and 24% respectively for the mapping with TopHat). When we filter out 
the events with an unfrequent variant, we show that approximately 70% of predicted ASE are found by both 
approaches.

Quantification and differential analysis. Both pipelines perform ASE detection and quantification. The quanti-
fication step was done similarly in the two pipelines where only the junction reads were taken into account. To 
evaluate if using exonic reads in the quantification could increase the accuracy of our methods, we ran KisSplice 
on the MCF-7 dataset with the option –exonic reads set to on. In doing so, only the inclusion rate of the AS 
events changes. When comparing usage of only junction reads to usage of both junction and exonic reads, we 
observed that the p-values calculated strongly correlate as shown in Supplementary Figure S16. We found that 
some AS events became significant upon the addition of exonic reads but the opposite also happened. Inspection 
of these events revealed that many are borderline cases, where the p-value is close, but slightly above 5%. A man-
ual inspection of the AS events with a very different p-value upon addition of exonic reads revealed that they cor-
respond to exons overlapping alternative first or last exons (see STARD4, Supplementary Figure S17A) or novel 
exons located in poorly spliced introns (see PANK2 and PRRC2B, Supplementary Figure S17 B and C). Overall, 
we concluded that exonic reads can bring some statistical power in cases where the skipped exon does not overlap 
with any other event. In case of more complex events, exonic reads tend to “pollute” the pairwise comparison.

The last step of the pipelines is the differential analysis of the expression levels of the variants. This task is per-
formed using the kissDE24 R package, which takes as input a table of read counts as in Supplementary Figure S18, 
and outputs a p-value and a DeltaPSI (Percent Spliced In).

Our statistical analysis adopted the framework of count regression with Negative Binomial distribution. We 
considered a 2-way design with interaction, with isoforms and experimental conditions as main effects. Following 
the Generalized Linear Model framework, the expected intensity of the signal was denoted by λijk and was decom-
posed as:

λ μ α β αβ= + + +log ( ) (1)ijk i j ij

where μ is the local mean expression of the gene, αi the contribution of splicing variant i on the expression, βj the 
contribution of condition j to the total expression, and (αβ)ij the interaction term. The target hypothesis was 

αβ ={ }H : ( ) 0ij0  i.e. no interaction between the variant and the condition. If this interaction term is not null, a 
differential usage of a variant across conditions occurred. The test was performed using a Likelihood Ratio Test 
with one degree of freedom. To account for multiple testing, p-values were adjusted with a 5% false discovery rate 
(FDR) following a Benjamini-Hochberg procedure34.

In addition to adjusted p-values, we report a measure of the magnitude of the effect. The measure we provide 
is based on the Percent Spliced In (PSI):

=
+

PSI counts
counts counts (2)condition

variant

variant variant

1

1 2

If counts for a variant are below a threshold, then the PSI is not calculated. This prevents from over-interpreting 
large magnitudes derived from low counts. When several replicates are available for a condition, then a PSI is 
computed for each replicate, and we calculate their mean.

Finally, we output the DeltaPSI:

= −DeltaPSI PSI PSI (3)condition condition1 2

unless one of the mean PSI of a condition could not be estimated. The higher the DeltaPSI, the stronger the effect. 
In practice, we consider only DeltaPSI larger than 0.1, a threshold below which it is difficult to perform any exper-
imental validation.

We downloaded a total of 959 M reads from http://genome.crg.es/encode_RNA_dash-
board/hg19/35. They correspond to long polyA+ RNAs generated by the Gingeras lab, and are also accessible 
with the following accession numbers (ENCSR000CPN - SRA: SRR315315, SRR315316 and ENCSR000CTT 
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-SRA: SRR534309, SRR534310). For cell lines treated by retinoic acid, the reads were 76nt long, while they were 
100nt long for the non treated cells. Hence we trimmed all reads to 76nt.

MCF-7 were transfected (two biological replicates) with siRNA targeting both DDX5 and 
DDX17 RNA helicases, and total RNA were extracted as described previously36. cDNA synthesis was made 
using the TruSeq Stranded Total RNA protocol after Ribo-Zero Gold-mediated elimination of ribosomal RNA 
(Beckman Coulter Genomics). High throughput sequencing (2 × 125 bp) was carried out on an Illumina HiSeq 
2500 platform (Beckman Coulter Genomics), generating between 45 and 50 millions of paired-end pairs of reads. 
Raw datasets are available on GEO under the accession number GSE94372.

Reads were trimmed according to standard quality control filters using prinseq37 and adapter were removed 
using cutadapt38. The resulting reads had length between 25 and 125nt. Because MISO is unable to deal with reads 
of unequal length, we selected only reads with length larger than 100nt (87% of the reads) and trimmed longer 
reads to 100nt.

FaRLine 
took 45 hours and 10 Go of RAM. The time-limiting step was TopHat2, which took 41 hours, even parallelised on 
8 cores. When STAR was tested instead of TopHat2, it took 4 hours, but 30 Go of RAM. KisSplice took 30 hours 
and 10 Go of RAM. The RAM-limiting step was STAR which took 30Go of RAM. All the steps of the pipelines can 
be reproduced using the following tutorial:

http://kissplice.prabi.fr/pipeline_ks_farline.

SK-N-SH cells were purchased from the American Type Culture Collection 
(ATCC) and cultured using EMEM medium (ATCC) complemented with 10% FBS (Thermo Fisher Scientific). 
Cells were differentiated for 48 h using 6 μM of all-trans retinoic acid (Sigma-Aldrich).

After harvesting, total RNA were extracted using Tripure isolation reagent (Sigma-Aldrich), treated with 
DNase I (DNAfree, Ambion) for 30 min at 37 °C and reverse-transcribed (RT) using M-MLV reverse transcriptase 
and random primers (Invitrogen). Before PCR, all RT reaction mixtures were diluted at 2.5 ng μL of initial RNA. 
PCR reactions were performed using GoTaq polymerase (Promega).

MCF7 cells were cultured as described in36. RT-PCRs were performed using the same protocol as for SK-N-SH 
cells.
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Supplementary methods :

KisSplice

Alternative splicing events are bubbles in the DBG

Supplementary figure S13 gives a schematic example of two alternative transcripts which differ by the inclusion of one exon.

For the sake of simplicity, the example is given for words of length 3, but the reasoning holds for any word length. Each distinct

word of length k is called a k-mer and corresponds to a node of the DBG. There is a directed edge from a node u to a node v if

the last k−1 nucleotides of u are identical to the first k−1 nucleotides of v. Each transcript will therefore correspond to a path

in the DBG. A pair of internally node-disjoint paths with a common source and target is called a bubble. The smaller path of

the bubble corresponds to the exclusion isoform and is composed of all k-mers which overlap the junction between the exons

flanking the skipped exon. It is therefore usually composed of k−1 k-mers. In the special case where the skipped exon shares a

prefix with its 3’ flanking exon, or a suffix with its 5’ flanking exon, then the lower path is composed of less than k−1 k-mers

and the k-mer which is the source (resp. target) does not correspond anymore to an exonic k-mer, but to a junction k-mer.

In practice, the DBG is built from the reads, not from the transcripts. The reads stem from possibly all genes expressed in

the studied conditions.

Two difficulties arise: reads contain sequencing errors, and repeats may be shared across genes.

Dealing with sequencing errors

As originally described in1 and later in2, sequencing errors generate recognisable structures in De Bruijn graphs, which can be

identified and removed. Their systematic removal however prevents assemblers from studying SNPs. A compromise consists in

discarding rare k-mers from the graph. This is the strategy we use in KISSPLICE, where we remove all k-mers seen only once.

This idea is however not sufficient in the context of transcriptome assembly, where the coverage is very uneven and mostly

reflects expression levels. For highly expressed genes, several reads may have errors at the same site, generating k-mers with a

coverage larger than an absolute threshold. We therefore also use a relative cut-off, which we set to 2%. These cut-offs we

introduce to remove sequencing errors have an impact on the running time and on the sensitivity. Decreasing them allows to

discover rarer isoforms, at the expense of a longer running time.

Dealing with repeats

Repeats are notoriously difficult to assemble in DNAseq data, and were initially thought to be much less problematic in RNAseq,

since they are mostly located in introns and intergenic regions. In practice, mRNA extraction protocols are not perfect, and a

fraction of pre-mRNA remains (typically 5% for total polyA+ RNA3). Each intron is covered by few reads, but if a repeat is

present in many introns, then this repeat will obtain a high coverage. If, in addition, the multiple copies of the repeat are not

identical, the repeat family will correspond to a very dense subgraph in the De Bruijn graph built from the reads. The traversal

of such subgraph to enumerate all the bubbles it contains is long and mostly fruitless, although some true AS events flanked by
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repeats may be trapped in these subgraphs. We showed in4 that an effective strategy to deal with this issue is to enumerate only

bubbles which have at most b branches. In practice, we set b to 5. Increasing b will increase the running time, but allow to find

more repeat-associated alternative splicing events. Bubbles which do not correspond to true AS events can be filtered out at the

mapping step.

MISO

MISO5 was run in ”exon-centric” mode with default parameter. We first generated from the EnsEMBL r75 gff file the

alternative event annotation file requested by MISO using rnaseqlib. The mapping step was done exactly the same as for

FARLINE with Tophat-2.0.116, except that the replicates of each condition were merge together because MISO does not accept

biological replicates. We then run all MISO scripts with default parameters. Finally, we filtered the differentially changing

events with the filter_events script using the following parameters :

--num-sum-inc-exc 10 --delta-psi 0.1 --bayes-factor 20.

Cufflinks

Cufflinks6 was run on the same alignment files used in FARLINE using annotation as a guide with the following parameters :

-g <EnsEMBL r75 gff file> -b <hg19 genome> -u -p 16.

When an annotation is given as a guide to Cufflinks, some faux-reads are introduced to support all transcripts present in the

annotation. Because it can annotate transcripts even if there are not expressed in the samples, for the rest of the analysis, we

decide to consider only the reconstructed transcripts supported by real reads.

Then, the AS events were retrieved from the reconstructed transcripts using the FARLINE annotation script.

Trinity

Trinity7 was run with the following parameters :

--max_memory 110G --CPU 16 --min_kmer_cov 2 --seqType fq --SS_lib_type RF. In order to re-

trieve the bubbles from Trinity’s output file, we parsed the transcripts’ headers by firstly partitioning the reconstructed

transcripts into disjoint sets, where each set is a predicted gene. Then, for each such set, the bubbles were found by processing

the nodes’ identifiers used to build each isoform.
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Figure S1. Comparison of the ASE identified by the assembly-first and mapping-first pipelines on MCF-7 dataset. A) Venn

diagram of ASEs identified by the two pipelines. FARLINE detected many more events than KISSPLICE. 63% of ASE found by

KISSPLICE were also found by FARLINE and 32% of ASE detected by FARLINE were also found by KISSPLICE. B) Boxplot

of the expression of the minor isoform in the 3 categories defined in the Venn diagram of panel A: ASE identified only by

FARLINE, ASE identified by both pipelines and ASE identified only by KISSPLICE. The number of reads supporting the minor

isoform of the ASE identified by FARLINE is globally much lower. Many isoforms are supported by less than 5 reads. C) Venn

diagram of ASEs found by the two pipelines after filtering out the poorly expressed isoforms. The common events represent a

larger proportion than before filtering: 86% of the ASE annotated by FARLINE and 70% of the ASE annotated by KISSPLICE.

D) Boxplot of the expression of the minor isoform in the 3 categories defined in the Venn diagram of panel C: ASE identified

only by FARLINE, ASE identified by both pipelines and ASE identified only by KISSPLICE. The distribution of the number of

reads supporting the minor isoform is similar for the 3 categories with highly expressed variants in each category.
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Figure S2. A) Main categories identified explaining why some exons are detected by only one method. Numbers for MCF-7

dataset. B) The exon in intron 3 of the DIP2A gene is an example of an exon not annotated in EnsEMBL r75. This event was

identified by KISSPLICE but not by FARLINE. C) PDPK1 and PDPK2 are 2 paralog genes. KISSPLICE detected 2 isoforms

that could be produced by these 2 genes. FARLINE did not detect any event in either of these genes. The exon skipped is exon

15 in PDPK1 (corresponding to exon 7 in PDPK2). C) Exon 7 of the SUGT1 gene is an example of exon skipping overlapping

an Alu element identified only by FARLINE. The events in panel A to C were validated by RT-PCR. E) The KPNA1 gene

contains a complex event with more than 5 branches inside the bubble. This event was detected by FARLINEbut not by

KISSPLICE
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Figure S3. A) Condition-specific variants found by FARLINE, KISSPLICE or both methods in MCF-7 dataset. Within

dashed lines are events identified by both approaches but detected as condition-specific by only one approach. B) DeltaPSI as

estimated by KISSPLICE and FARLINE, for events identified by both methods. The red dots represent complex events for

which KISSPLICE found at least 2 ’bubbles’. C) Exon 2 of DROSHA is an example of regulated ASE found by both

approaches. D) A new exon in intron 10 of the DDX26B gene is found only by KISSPLICE. The inclusion rate of this exon is

differentially regulated between the 2 experimental conditions. E) Because exon 7 of the SUGT1 gene is an exonised Alu

element, only FARLINE identified this event. Moreover this exon is significantly more included in the control cells (expressing

DDX5 and DDX17) when compared to the DDX5/DDX17 depleted cells.
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Figure S4. A) 81% of ASE found by MISO are also annotated by FARLINE and KISSPLICE. 14% of MISO’s ASE are also

annotated by FARLINE while only 2% of MISO’s ASE are also annotated by KISSPLICE. Finally, only 3% of these ASEs are

only annotated by MISO. B) Most of the events annotated by Cufflinks are found by FARLINE. C) BCAR1 exon 19 is an

example of an ASE annotated by FARLINE but not by Cufflinks. Indeed, only the inclusion isoform was identified by Cufflinks.

D) Most of the events annotated by Trinity are also found by KISSPLICE. However half of the ASE annotated by

KISSPLICE are not found by the global assembler Trinity. E) KISSPLICE annotates an ASE in the TIA1 gene, while Trinity

only identified the exclusion variant. The events in panels C and E have been validated by RT-PCR.
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Figure S5. Venn diagram of the comparison of the five methods : KisSplice, FaRLine, MISO, Cufflinks and Trinity, on the

SK-N-SH dataset (A) and on MCF-7 dataset (B). The total number of annotated splicing events predicted by at least one

method, with the minor isoform being supported by at least 5 reads is 10546. The largest overlaps are 2415 (all methods), 1647

(all methods but Trinity), 874 (KisSplice-Trinity), 662 (FarLine-MISO-Cufflinks). As expected, Trinity is the least sensitive

method. We also observe that the three mapping-first approaches (FarLine, MISO and Cufflinks) have a very large number of

common candidates, 662 of which are not found by the two assembly-first approaches (KisSplice and Trinity). Conversely, the

two assembly-first approaches have a very large number of common candidates, 874 of which are not found by the three

mapping-first approaches. Similar numbers are found for the MCF-7 dataset. These results support the main conclusion of this

paper.
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Figure S6. Venn diagram of the comparison of FaRLine and MISO on SK-N-SH dataset (A) and on MCF-7 dataset (B).
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Figure S7. Comparison of the mapping-first approach FARLINE with or without an annotation provided to the mapper (i.e.

with/without reference transcriptome) on the SK-N-SH dataset. A) More ASE are annotated when an annotation available.

Panels B to D show examples of events only found by the mapping-first method when an annotation is provided to the mapper.

B) The first category, represented by the SNHG17 gene, includes exons containing repeats like ALU elements. C) Genes with a

retrotransposed pseudogene, as UPF3A, represent the second category and are more difficult to find when no annotation is

available. D) Short exons (less than 20 bp), like exon 5 of the ABI1 gene, compose the third category.
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Figure S8. Examples of exon skipping inside a complex event. A) A new exon in intron 8 (black box) of HIRA gene is

reported as skipped by KISSPLICE with exons 8 and 9 as flanking exons. B) The exon 5 of SMUG1 gene is reported as skipped

by KISSPLICE with exons 4 and 7 as flanking exons. This event is not found by FARLINE because the inclusion isoform is not

annotated in the transcrits. C) Exon 12 of gene CEP104 is reported as skipped by FARLINE even if the exclusion isoform is not

present in the annotation. However, MISO does not find this exon skipping. D) Example of an exon skipping with two

alternative donor sites in ASUN gene. It is reported as one event by FARLINE and two events by KISSPLICE.
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Figure S9. RT-PCR validations of events found by both approaches in the MCF-7 dataset. 41 out of the 48 events were

validated (both the inclusion and the exclusion variant were amplified by RT-PCR). In some cases, there were additional PCR

products (marked as ’*’) suggesting the existence of additional variants.
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Figure S10. Repartition of validated and non validated ASEs according to number of reads supporting the minor isoform, and

relative frequency of the minor isoform (i.e. number or reads of the minor isoform / number of reads supporting both isoforms).

The X axis is in log scale. Most of the non validated cases have relative frequency of their minor isoform lower than 10%.
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Figure S11. RT-PCR validations of events found only by KISSPLICE (A) and only by FARLINE (B) in the MCF-7 dataset.

These ASEs were selected from the 4 main categories shown in Figure 3 and Supplementary Figure S2. All of them were

validated.
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Figure S12. Dealing with repeats in KISSPLICEand KISSPLICE2REFGENOME. A) Example of a bubble containing an Alu.

Repeated events such as Alu are expected to be present in several copies in the reads. Thus, when the graph is constructed,

edges link different copies of Alu. Because a bubble with more than 5 edges within one of its paths is not enumerated by

KISSPLICE, this case is not annotated by the assembly-first approach. B) In KISSPLICE2REFGENOME, if the two variants (i.e.

paths) both map on different copies (exact repeat), we classify it as a recent paralog. On the contrary if each variant maps on a

different locus, we consider the event as coming from an inexact repeat. This category represents mostly paralogs that have

diverged.
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Figure S13. A schematic gene with three exons producing two alternative transcripts. The De Bruijn graph built from the

sequences of the transcripts corresponds to a bubble. The upper path spells the skipped exon and its flanking junctions while

the lower path spells the junction of the exclusion isoform and has a predictable length.
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Figure S14. Classification of KISSPLICE events according to the number of blocks in which they map to the reference

genome. Paths representing variants of an event are mapped on the reference. Spliced mapping results in blocks, events are then

classified by KISSPLICE2REFGENOME according to the block mapping patterns. (Putative) splice sites are noted by SS in red.

E1 E4E2

transcripts

E3 E5 E6 E7

E1 E4E2 E3 E5-E6 E7

E1 E2 E3-E4 E5-E6 E7

E1 E4E2 E3 E5-E6 E7

E4E2 E3 E5-E6 E7

E1 E4E2 E3 E7E5-E6
FasterDB 

gene

Figure S15. FasterDB exons are defined as the projection of the longer or most frequent exon in the transcripts (except for

alternative first or last exons). The whole analysis done with FARLINE is based on these exons.
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Figure S16. Correlation of the p-values when exonic reads were taken or not into account in the quantification. Red dots and

blue dots correspond to ASE predicted to be regulated (p-value<0.05) when using junction reads and when using junction and

exonic reads respectively.
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Figure S17. Examples of AS events predicted as differentially spliced between the two conditions in the MCF-7 dataset using

junction and exonic reads, but not using only junction reads. A) Exon 6 of STARD4 is detected as an alternatively skipped exon,

but it also overlaps with an alternative last exon. B-C) Exon in intron 3 of PANK2 gene and exon in intron 18 of PRRC2B gene

are new exons found by KISSPLICE. These exons are located in poorly spliced introns.
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Figure S18. Input and output of the differential analysis. Counts for each replicate of each condition were computed by

FARLINE or KISSPLICE. These counts together with the experimental plan are the input of KISSDE. In this example, we show

counts for one single event, in practice KISSDE tests all events discovered by one method to spot the differential splicing events.

Provided that at least two replicates are available per condition, KISSDE computes p-values and DeltaPSI (ΔΨ) per event, and

results are ranked using these two metrics.
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Figure S19. Validations of ASE regulated by the depletion of DDX5 and DDX17 in MCF7 cell line. A) Correlation of the

deltaPSI computed from the RNAseq and the deltaPSI computed from the validations by RT-PCR. B) RT-PCR validations of

some of the events regulated by the depletion of DDX5 and DDX17 in MCF7 cell line.
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Abstract

kissDE is a package dedicated to the analysis of count data obtained from the quantification
of pairs of variants in RNA-Seq data.
It can be used to study splice variants, where the two variants of the pair differ by the inclu-
sion/exclusion of an exonic or intronic region. It can also be used to study genomic variants
(whenever they are transcribed), which differ by a single nucleotide variation (SNV) or an
indel.
The statistical framework is based on similar hypotheses as DESeq2 [1] and includes its nor-
malization method using geometric means. Counts are modelled using the negative binomial
distribution. We use the framework of the generalised linear model, and we test for associa-
tion of a variant with a condition using a likelihood ratio test.
This vignette explains how to use this package.
The workflow for SNPs/SNVs is fully described in Lopez-Maestre et al. [2], the workflow for
splicing is fully described in Benoit-Pilven et al. [3]
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1 Prerequisites

1.1 Use case

kissDE is meant to work on pairs of variants that have been quantified across different con-
ditions. It can deal with single nucleotide variations (SNPs, mutations, RNA editing), indels
or alternative splicing.
As kissDE was first designed to be a brick of the KisSplice [4] pipeline (web page: http:
//kissplice.prabi.fr/), the kissplice2counts function can be directly applied to the output
files from KisSplice or KisSplice2refgenome. Yet, kissDE can also run with any other software
which produces count data as long as this data is properly formatted.
kissDE was designed to work with at least two replicates for each condition, which means
that the minimal input contains the read counts of the variants for 4 different samples, each
couple representing a biological condition and its 2 replicates. There can be more replicates
and more conditions, but it is not mandatory to have an equal number of replicates in each
condition.

1.2 Install and load kissDE

In a R session, the BiocManager package has first to be installed.

install.packages("BiocManager")

Then, the kissDE package can be installed from Bioconductor and finally loaded.

BiocManager::install("kissDE")

library(kissDE)

1.3 Quick start

Here we present the basic R commands for an analysis with kissDE . These commands re-
quire an external output file of KisSplice , for example ‘output_kissplice.fa’ (which is not
included in this package). To deal with other types of input files, please refer to section
2.1. The funtions used in kissDE are kissplice2counts, qualityControl, diffExpressed

Variants and writeOutputKissDE. For each function, default values of the parameters are
used. For more details on functions and their parameters see section 2. Here we assume that
there are two conditions (condition_1 and condition_2) with two biological replicates and
we also assume that the RNA-Seq libraries are single-end.

counts <- kissplice2counts("output_kissplice.fa")

conditions <- c(rep("condition_1", 2), rep("condition_2", 2))

qualityControl(counts, conditions)

results <- diffExpressedVariants(counts, conditions)

writeOutputKissDE(results, output = "kissDE_output.tab")
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Note that the functions kissplice2counts and diffExpressedVariants may take some time
to run (see section 4.3 for more details on running time).

2 kissDE ’s workflow

In this section, the successive steps and functions of a differential analysis with kissDE are
described.

Figure 1: Schema of kissDE ’s workflow
Numbers in light blue point to the section of this vignette explaining the step.

2.1 Input data

kissDE ’s input is a table of raw counts and a vector describing the number of conditions and
replicates per condition. The table of raw counts can either be directly provided by the user
or obtained with KisSplice or KisSplice2refgenome (http://kissplice.prabi.fr/training/).
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2.1.1 Condition vector

The condition vector describes the order of the columns in the count table.
As an example, the counts are ordered as follow: the two first counts represent the two
replicates of condition_1 and the two following counts the two replicates of condition_2.
In this case, the condition vector for these 2 conditions with 2 replicates per condition, would
be:

myConditions <- c(rep("condition_1", 2), rep("condition_2", 2))

In the case where the input data contains more than 2 conditions, we advise the user to
remove samples from the analysis in order to compare 2 conditions only, because kissDEwas
uniquely tested in this context. To remove samples from the analysis the "*" character can
be used:

myConditions <- c(rep("condition_1", 2), rep("*", 2), rep("condition_3",

2))

Here, there are 3 conditions and 2 replicates per condition, but only condition_1 and
condition_3 will be considered in the analysis.
If the count table was loaded from KisSplice or KisSplice2refgenome output, the condition
vector must contain the samples in the same order they were given to KisSplice (see sections
2.1.3 and 2.1.4).

Warning: To run kissDE, all conditions must have replicates. So each condition must at
least be present twice in the condition vector. If this is not the case, an error message will
be printed.

2.1.2 User’s own data (without KisSplice): table of counts format

Let’s assume we work with two conditions (condition_1 and condition_2) and two replicates
per condition. An input example table contained in a flat file called ‘table_counts_alt_
splicing.txt’ is loaded and stored in a tableCounts object.
Comment: fpath1 contains the absolute path of the file on the user’s hard disk.

fpath1 <- system.file("extdata", "table_counts_alt_splicing.txt",

package = "kissDE")

tableCounts <- read.table(fpath1, head = TRUE)

In kissDE , the table of counts must be formatted as follows:

head(tableCounts)

eventsName eventsLength cond1rep1 cond1rep2 cond2rep1 cond2rep2

1 event1 261 105 41 15 26

2 event1 81 2 5 100 150

3 event2 207 20 17 60 58

4 event2 80 58 33 7 1

5 event3 268 53 26 19 29

6 event3 82 3 1 31 55

It must be a data frame with:
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• in rows:

• One variation is represented by two lines, one for each variant. For instance, for
SNVs, one allele is described in the first line, and the other in the second line. For
alternative splicing events, the inclusion isoform and the exclusion isoform have
one line each.

• The header must contain the column names in the flat file.

• in columns:

• The first column (eventsName) contains the name of the variation.

• The second column (eventsLength) contains the effective size of the variant in
nucleotides (bp). The effective size corresponds to the number of read mapping
positions used when estimating the abundance of a variant.
For the exclusion variant (2nd line), which should correspond to an exon-exon
junction, it corresponds to:

effectiveLengthExclu = readLength− 2 ∗ overhang + 1 1

where overhang corresponds to the minimal number of bases needed to accept
that a read is aligned to a junction.
For the inclusion variant (1st line), it corresponds to:

effectiveLengthInclu = effectiveLengthExclu+ variablePartLength 2

where variablePartLength is the length of the region only present in the inclusion
variant.
In the special case where the abundance of the inclusion variant has been estimated
using only junction reads, then the effective length of the inclusion variant is:

effectiveLengthInclu = 2 ∗ effectiveLengthExclu 3

This information is used only in the context of alternative splicing. In the context
of SNVs, it can be set to 0. It is used to assess which splice variants may induce a
frameshift (the difference of length between the inclusion and exclusion variant is
not a multiple of 3). It is also used to precisely estimate the PSI (Percent Spliced
In).

• All other columns (cond1rep1, cond1rep2, cond2rep1, cond2rep2) contain read
counts of a variant in a sample. In the example above, cond1rep1 is the number
of reads supporting this variant in the first replicate of condition_1, cond1rep2
is the number of reads supporting replicate 2 in condition_1, cond2rep1 and
cond2rep2 are counts for replicates 1 and 2 of condition_2.

2.1.3 Input table from KisSplice output

kissDE was developped to deal with KisSplice output, which is in fasta format. Below is the
first four lines of an example of KisSplice output:

headfasta <- system.file("extdata",

"head_output_kissplice_alt_splicing_fasta.txt", package = "kissDE")

writeLines(readLines(headfasta))

6



The ’kissDE’ package

>bcc_68965|Cycle_4|Type_1|upper_path_length_112|AS1_1|SB1_1|S1_0|ASSB1_0|AS2_0|

SB2_0|S2_0|ASSB2_0|AS3_0|SB3_0|S3_0|ASSB3_0|AS4_1|SB4_0|S4_0|ASSB4_0|AS5_8|SB5_

2|S5_0|ASSB5_1|AS6_13|SB6_4|S6_0|ASSB6_3|AS7_4|SB7_1|S7_0|ASSB7_1|AS8_3|SB8_1|S

8_0|ASSB8_0|rank_0.76503

CACACCAGCCATAAAAAGCGAAAGAATAAAAACCGGCACAGCCCGTCTGGCATGTTTGATTATGACTTTGAGTATGTAT

ATTAGGTTAGGCTGGGAAGTTTTTTTTAAAAAC

>bcc_68965|Cycle_4|Type_1|lower_path_length_82|AB1_21|AB2_12|AB3_12|AB4_2|AB5_5

|AB6_1|AB7_2|AB8_1|rank_0.76503

CACACCAGCCATAAAAAGCGAAAGAATAAAAACCGGCACAGGTATGTATATTAGGTTAGGCTGGGAAGTTTTTTTTAAA

AAC

Events are reported in blocks of 4 lines, the first two lines correspond to one variant of the
splicing event (or one allele of the SNV), the following two lines correspond to the other
variant (or the other allele). As for all fasta file, there is a header line beginning with the >

symbol and a line with the sequence. Each variant correspond to one entry in the fasta file.

Headers contain information used in kissDE . In the example, there are:

• elements shared by the headers of the two variants:

• bcc_68965|Cycle_4 is the event’s ID.

• Type_1 means that the sequences correspond to a splicing event. Type_0 corre-
sponds to SNVs.

• elements that are specific to a variant:

• upper_path_length_112 and lower_path_length_82 gives the length of the nu-
cleotide sequences. Upper path and lower path are a denomination for the rep-
resentation of each variant in KisSplice’s graph. For alternative splicing events,
the upper path represents the inclusion isoform and the lower path the exclusion
isoform.

• AS1_1|SB1_1|S1_0|ASSB1_0|AS2_0|SB2_0|S2_0|ASSB2_0|AS3_0| SB3_0|... and
AB1_21|AB2_12|AB3_12|AB4_2|AB5_5|... summarizes the counts found by KisS-
plice quantification step. Here KisSplice was run with the option counts set to 2.
For the upper path, we have 4 counts for each sample: AS, SB, S and ASSB. For
the lower path, we have 1 count per sample: AB. The different reads categories
are shown on Figure 2. There are 8 sets of counts because we gave 8 files in input
to KisSplice (denotated by the number before the "_" character). Each count
(denotated by the number after the "_" character) corresponds to the reads com-
ing from each file that could be mapped on the variant, in the order they have
been passed to KisSplice.

• a rank information which is a deprecated measure.

kissDE can be used on any type of events output by KisSplice (0: SNV, 1: alternative splicing
events, 3: indels,...). The user should refer to KisSplice manual (http://kissplice.prabi.fr/
documentation/) for further questions about the KisSplice format and its output.

To be used in kissDE , KisSplice output must be converted into a table of counts. This can
be done with the kissplice2counts function. In the example below, the KisSplice output
file called ‘output_kissplice_alt_splicing.fa’, included in the kissDE package, is loaded.
The table of counts yielded by the kissplice2counts function is stored in myCounts.
Comment: fpath2 contains the absolute path of the file on the user’s hard disk.
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Figure 2: Different categories of reads
In this figure, we show an example of an alternative skipped exon. AS reads correspond to reads span-
ning the junction between the excluded sequence and its left flanking exon, SB to reads spanning the junc-
tion between the excluded sequence and its right flanking exon, ASSB to reads spanning the two inclusion
junctions, S to reads entirely included in the alternative sequence and AB to reads spanning the junction
between the two flanking exons. S reads correspond to exonic reads and all other categories of reads repre-
sented here correspond to junction reads.

fpath2 <- system.file("extdata", "output_kissplice_alt_splicing.fa",

package = "kissDE")

myCounts <- kissplice2counts(fpath2, counts = 2, pairedEnd = TRUE)

The counts returned by kissplice2counts are extracted from the KisSplice header. By
default, kissplice2counts expects single-end reads and one count for each variant.
The counts parameter of kissplice2counts must be the same as the counts parameter used
to obtain data with KisSplice. The possible values are 0, 1 or 2. 0 is the default value for
both kissplice2counts and KisSplice.
The user can also specify the pairedEnd parameter in kissplice2counts. If RNA-Seq libraries
are paired-end, pairedEnd should be set to TRUE. In this case, the kissplice2counts function
expects the counts of the paired-end reads to be next to each other. If it is not the case,
an additional order parameter should be used to indicate the actual order of the counts.
For instance, if the experimental design is composed of two conditions with two paired-end
replicates and if the input in KisSplice followed this order:
cond1_sample1_readpair1, cond1_sample2_readpair1, cond2_sample1_readpair1,
cond2_sample2_readpair1, cond1_sample1_readpair2, cond1_sample2_readpair2,
cond2_sample1_readpair2 and cond2_sample2_readpair2.
The order vector should be equal to c(1,2,3,4,1,2,3,4).
An example of a paired-end dataset run with counts equal to 0 is shown in section 4.2.

kissplice2counts returns a list of four elements, including countsEvents which contains the
table of counts required in kissDE .

names(myCounts)

[1] "countsEvents" "psiInfo" "exonicReadsInfo" "k2rgFile"

head(myCounts$countsEvents)

events.names events.length counts1 counts2 counts3 counts4

1 bcc_68965|Cycle_4 112 2 1 23 8

2 bcc_68965|Cycle_4 82 33 14 6 3

3 bcc_83285|Cycle_2 180 108 47 33 36

4 bcc_83285|Cycle_2 81 2 5 100 150

5 bcc_161433|Cycle_2 127 20 17 60 58

6 bcc_161433|Cycle_2 80 58 33 7 1
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myCounts$countsEvents has the same structure as the tableCounts object in the section
2.1.2. It is a data frame with:

• in rows: One variation is represented by two lines, one for each variant. For instance
for SNVs, one allele is described in the first line and the other in the second line. For
alternative splicing events (as in this example), the inclusion and the exclusion isoform
have one line each.

• in columns:

• The first column (events.names) contains the name of the variation, using KisS-
plice notation.

• The second column (events.length) contains the size of the variant in bp, ex-
tracted from the KisSplice header.

• All others columns (counts1, counts2, counts3, counts4) contain counts for
each replicate in each condition for the variant.

2.1.4 Input table from KisSplice2refgenome output

The kissplice2counts function can also deal with KisSplice2refgenome output data, in this
case the k2rg parameter has to be set to TRUE. KisSplice2refgenome allows the annotation of
the alternative splicing events. It assigns each event a gene and a type of alternative splicing
event, among which: Exon Skipping (ES), Intron Retention (IR), Alternative Donor (AltD),
Alternative Acceptor (AltA). Interested users should refer to KisSplice2refgenome manual
for further questions about KisSplice2refgenome format and output (http://kissplice.prabi.
fr/tools/kiss2refgenome/).

In the example below, ‘output_k2rg_alt_splicing.txt’, a KisSplice2refgenome’s output
included in the kissDE package, is loaded. The kissplice2counts function uses the same
counts and pairedEnd parameters as explained in the section 2.1.3. The table of counts
yielded by the kissplice2counts function is stored in myCounts_k2rg. It has exactly the
same structure as detailed in section 2.1.3.
Comment: fpath3 contains the absolute path of the file on the user’s hard disk.

fpath3 <- system.file("extdata", "output_k2rg_alt_splicing.txt",

package = "kissDE")

myCounts_k2rg <- kissplice2counts(fpath3, counts = 2, pairedEnd = TRUE,

k2rg = TRUE)

names(myCounts_k2rg)

[1] "countsEvents" "psiInfo" "exonicReadsInfo" "k2rgFile"

head(myCounts_k2rg$countsEvents)

events.names events.length counts1 counts2 counts3 counts4

1 bcc_68965|Cycle_4 112 2 1 23 8

2 bcc_68965|Cycle_4 82 33 14 6 3

3 bcc_83285|Cycle_2 180 108 47 33 36

4 bcc_83285|Cycle_2 81 2 5 100 150

5 bcc_161433|Cycle_2 127 20 17 60 58

6 bcc_161433|Cycle_2 80 58 33 7 1
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The KisSplice2refgenome output contains information about the type of splicing events. By
default, all of the splicing events are analysed in kissDE , but it is also possible to focus on
subtypes of events. This events selection will speed up kissDE ’s running time and improve
statistical power for choosen events. To do this, the kissplice2counts function contains two
parameters: keep and remove. Both take a character vector indicating the types of events
to keep or remove. The event names must be part of this list: deletion, insertion, IR, ES,
altA, altD, altAD, alt, unclassified.
Thus, if the user is only interested in intron retention events, the keep option should be set
to c("IR"). If the user isn’t interessed in deletions and insertions, the remove option should
be equal to c("insertion", "deletion").
The keep and remove parameters can be used at the same time only if ES is part of the
keep vector. The remove vector will then act on the different types of exon skipping: multi-
exon skipping (MULTI) or exon skipping associated with an alternative acceptor site (altA),
an alternative donor site (altD), both alternative acceptor and donor site (altAD) or an
undetermined alternative splice site (alt). Thus, in this specific case, the remove vector
should contain names from this list: MULTI, altA, altD, altAD, alt.

If the user wants to analyse only cassette exon events (i.e., a single exon is skipped or
included), the following command should be used:

myCounts_k2rg_ES <- kissplice2counts(fpath3, counts = 2, pairedEnd = TRUE,

k2rg = TRUE, keep = c("ES"), remove = c("MULTI", "altA",

"altD", "altAD", "alt"))

2.2 Quality Control

kissDE contains a function that allows the user to control the quality of the data and to
check if no error occured at the data loading step. This data quality assessment is essential
and should be done before the differential analysis.

The qualityControl function takes as input a count table (see sections 2.1.2, 2.1.3 and
2.1.4) and a condition vector (see section 2.1.1):

qualityControl(myCounts, myConditions)

It produces 2 graphs:

• a heatmap of the sample-to-sample distances using the 500 most variant events (see
left panel of Figure 3)

• the factor map formed by the first two axes of a principal component analysis (PCA)
using the 500 most variant events (see right panel of Figure 3)

These two graphs show the similarities and the differences between the analyzed samples.
Replicates of the same condition are expected to cluster together. If this is not the case, the
user should check if the order of the samples in the count table and in the condition vector
is the same. If it is, this could mean that a sample is contaminated or has an abnormality
that will influence the differential analysis. The user can then go back to the quality control
of the raw data to solve the problem or decide to remove the sample from the analysis.

In the heatmap plot, the samples that cluster together are from the same condition. In the
PCA plot, the first principal component (PC1) summarize 90.2% of the total variance of the
dataset. This first axis clearly separates the 2 conditions.
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Figure 3: Quality control plots
Left: Heatmap of the sample-to-sample distances. Right: Principal Component Analysis.

The created graphs can be saved by setting the storeFigs parameter of the qualityControl

function to TRUE (then graphs are stored in a ‘kissDEFigures’ folder, created in a temporary
directory, which is removed at the end of the user R session) or to the path where the user
wants to store his/her graphs. We recommend to use this parameter when the qualityCon

trol function is used in an automatized workflow.

To customize the PCA plot, the data frame used for this plot can be extracted by setting the
option returnPCAdata to TRUE as follows:

PCAdata <- qualityControl(myCounts, myConditions, returnPCAdata = TRUE)

2.3 Differential analysis

When data are loaded, the differential analysis can be run using the diffExpressedVariants

function. This function has two mandatory parameters: a count table (countsData parameter,
see sections 2.1.2, 2.1.3 and 2.1.4) and a condition vector (conditions parameter, see section
2.1.1).

In the example below, the differential analysis results are stored in the myResults object:

myResults <- diffExpressedVariants(countsData = myCounts,

conditions = myConditions)

The diffExpressedVariants function has three parameters to change the filters or the flags
applied on the data, one parameter to indicate if the replicates are technical or biological,
and one parameter to indicate how many cores should be used :

• pvalue: By default, the p-value threshold to output the significant events is set to 1.
So all variants are output in the final table. This parameter must be a numeric value
between 0 and 1. Be aware that by setting pvalue to 0.05, only events that have been
identified as significant between the conditions with a false discovery rate (FDR) � 5%
will be present in the final table. A posteriori changing this threshold will require to
re-run the differential analysis.

• filterLowCountsVariants: This parameter allows to change the threshold to filter low
expressed events before testing (as explained in section 3.3). By default, it is set to 10.
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• flagLowCountsConditions: This parameter allows to change the threshold to flag low
expressed events (as explained in section 3.6). By default, it is set to 10.

• technicalReplicates: Boolean value indicating if the user is working with technical
replicates only (we do not advise users to mix biological and technical replicates in
their analyses). If this parameter is set to TRUE, the counts will be modeled with a
Poisson distribution. If it is equal to FALSE, the counts will be modeled with a Negative
Binomial distribution. For more information, see section 3.2. By default, this option is
set to FALSE.

• nbCore: An integer value indicating how many cores should be used for the computa-
tion. This parameter should be strictly lower than the number of core of the computer
(nbCore < nbr computer cores −1). By default, this parameter is set to 1, meaning
that the computation are not parallelized.

The diffExpressedVariants function returns a list of 6 objects:

names(myResults)

[1] "finalTable" "correctedPVal" "uncorrectedPVal"

[4] "resultFitNBglmModel" "f/psiTable" "k2rgFile"

The uncorrectedPVal and correctedPval outputs are numeric vectors with p-values before
and after correction for multiple testing. resultFitNBglmModel is a data frame containing
the results of the fitting of the model to the data. k2rgFile is a string containing either the
KisSplice2refgenome file path and name or NULL if no KisSplice2refgenome file was used
as input. For explanations about the finalTable and f/psiTable outputs, see section 2.4.1
and section 2.4.2, respectively.

To visualize the distribution of the p-values before the application of the Benjamini-Hochberg
[5] multiple testing correction procedure, the histogram of the p-values before correction can
be plotted by using the following command:

hist(myResults$uncorrectedPVal, main = "Histogram of p-values",

xlab = "p-values", breaks = 50)

Because the dataset used here is small (∼ 100 lines), the histograms of the two complete
datasets presented in the case studies (section 4) are represented. As expected, the histograms
show a uniform distribution with a peak near 0 (Figure 4).

Figure 4: Distribution of p-values before correction for multiple testing
Left: for the complete dataset presented in section 4.2. Right: for the complete dataset presented in sec-
tion 4.1.
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2.4 Output results

2.4.1 Final table

The finalTable object is the main output of the diffExpressedVariants function. The first
3 rows of the myResults$finalTable output are as follows:

print(head(myResults$finalTable, n = 3), row.names = FALSE)

ID Length_diff Variant1_condition_1_repl1_Norm

bcc_83285|Cycle_2 99 86

bcc_68965|Cycle_4 30 2

bcc_135201|Cycle_433392 104 80

Variant1_condition_1_repl2_Norm Variant1_condition_2_repl1_Norm

50 36

1 25

56 31

Variant1_condition_2_repl2_Norm Variant2_condition_1_repl1_Norm

38 2

8 26

35 2

Variant2_condition_1_repl2_Norm Variant2_condition_2_repl1_Norm

5 108

15 6

1 31

Variant2_condition_2_repl2_Norm Adjusted_pvalue Deltaf/DeltaPSI lowcounts

158 0.00e+00 -0.770 FALSE

3 7.93e-10 0.703 FALSE

58 0.00e+00 -0.696 FALSE

The columns of this table contain the following information:

• ID is the event identifier. Each event is represented by one row in the table.

• Length_diff contains the variable part length in a splicing event. It is the length
difference between the upper and lower path. This column is not relevant for SNVs.

• Variant1_condition_1_repl1_Norm and following columns contain the counts for each
replicate of each variant after normalization (raw counts are normalized as in the DE-
Seq2 Bioconductor R package, see details in section 3.1). The first half of these
columns concerns the first variant of each event, the second half the second variant.

• Adjusted_pvalue contains p-values adjusted by a Benjamini-Hochberg procedure.

• Deltaf/DeltaPSI summarizes the magnitude of the effect (see details in section 3.7).

• lowcounts contains booleans which flag low counts events as described in section 3.6.
A TRUE value means that the event has low counts (counts below the chosen threshold).

In the finalTable output, events are sorted by p-values and then by magnitude of effect
(based on their absolute values), so that the top candidates for further investigation/validation
appear at the beginning of the output.

Warning: When the p-value computed by kissDE is lower than the smallest number greater
than zero that can be stored (i.e., 2.2e-16), this p-value is set to 0.
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To save results, a tab-delimited file can be written with writeOutputKissDE function where
an output parameter (containing the name of the saved file) is required. Here, the myResults

output is saved in a file called ‘results_table.tab’:

writeOutputKissDE(myResults, output = "kissDE_results_table.tab")

Users can choose to export only events passing some thresholds on adjusted p-value and/or
Deltaf/DeltaPSI using the options adjPvalMax and dPSImin of the writeOutputKissDE func-
tion. For example, if we want to save in a file called ‘results_table_filtered.tab’ only
events with the adjusted p-value � 0.05 and the Deltaf/DeltaPSI absolute value � 0.10, the
following command can be used:

writeOutputKissDE(myResults, output = "kissDE_results_table_filtered.tab",

adjPvalMax = 0.05, dPSImin = 0.1)

If the counts table was built from a KisSplice2refgenome output with the kissplice2counts

function, running the writeOutputKissDE will write a file merging results of differential anal-
ysis with KisSplice2refgenome data. As previously explained (section 2.4.1), users can choose
to save only events passing thresholds:

writeOutputKissDE(myResults_K2RG, output = "kissDE_K2RG_results_table.tab",

adjPvalMax = 0.05, dPSImin = 0.1)

2.4.2 f/PSI table

The f/psiTable output of the diffExpressedVariants function contains the f values for
SNV analysis or PSI values for alternative splicing analysis (see details and computation in
section 3.7) for each event in each sample. The first three rows of the f/psiTable output of
the myResults object (created in the section 2.3) look like this:

ID condition_1_repl1 condition_1_repl2 condition_2_repl1

1 bcc_100903|Cycle_0 0.00984 0.0195 0.00607

2 bcc_108176|Cycle_0 0.03805 0.0614 0.03844

3 bcc_120508|Cycle_0 0.94526 0.9477 0.96531

condition_2_repl2

1 0.0119

2 0.0296

3 0.9414

This output can be useful to carry out downstream analysis or to produce specific plots (like
heatmap on f/PSI events). To use this information with external tools, this table can be
saved in a tab-delimited file (here called ‘result_PSI.tab’), setting the writePSI parameter
to TRUE in the writeOutputKissDE function:

writeOutputKissDE(myResults, output = "result_PSI.tab", writePSI = TRUE)

3 kissDE ’s theory

In this section, the different steps of the kissDE main function, diffExpressedVariants, are
detailed. They are summarized in the Figure 5.
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Figure 5: The different steps of the diffExpressedVariants function
Numbers in light blue point to the section of this vignette explaining the step.

3.1 Normalization

In a first step, counts are normalized with the default normalization methods provided by
the DESeq2 [1] package. The size factors are estimated using the sum of counts of both
variants for each event, which is a proxy of the gene expression. By using this normalization,
we correct for library size, because the sequencing depth can vary between samples.

3.2 Estimation of dispersion

A model to describe the counts distribution is first chosen. When working with technical
replicates (technicalReplicates = TRUE in diffExpressedVariants), the Poisson model
(model M(φ = 0)) is chosen in kissDE .
When working with biological replicates (technicalReplicates = FALSE in diffExpressed

Variants), the Poisson distribution’s variance parameter is in general not flexible enough to
describe the data, because replicates add several sources of variance.
This overdispersion is often modeled using a Negative Binomial distribution. In kissDE ,
the overdispersion parameter, φ, is estimated using the DSS R package [6, 7, 8, 9] (model
M(φ = φi

DSS).
The DSS package (and, to our knowledge, every other package estimating the overdispersion
of the Negative Binomial model) is suited for differential expression analysis (one count per
sample). In differential splicing and SNV analysis, two counts (one for each splice variant or
allele) are associated with each sample. In order to mimic gene expression, the overdispersion
parameter φ is estimated on the sum of the splice variant or allele counts of each sample.
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3.3 Pre-test filtering

If global counts for both variants are too low (option filterLowCountsVariants), the event
is not tested. The rationale behind this filter is to speed up the analysis and gain statistical
power.
Here we present an example to explain how filterLowCountsVariants option works. Let’s
assume that there are two conditions and two replicates per condition. filterLowCountsVari

ants keeps its default value, 10.

Condition 1 Condition 2 Sum by variant
replicate 1 replicate 2 replicate 1 replicate 2

Variant 1 2 1 3 2 2+1+3+2=8 < 10
Variant 2 8 0 1 0 8+0+1+0=9 < 10

Table 1: Example of an event filtered out before the differential analysis, because less than 10 reads
support each variant

In this example (Table 1), the two variants have global counts less than 10, this event will
be used to compute the overdispersion, but will not be used to compute the models. It will
neither appear in the result table.

3.4 Model fitting

Then we design two models to take into account interactions with variants (SNVs or alter-
native isoforms) and experimental conditions as main effects. We use the generalised linear
model framework. The expected intensity λijk can be written as follows:

M′ : log λijk = μ+ αi + βj 4

M∞ : log λijk = μ+ αi + βj + (αβ)ij 5

where μ is the local mean expression of the transcript that contains the variant, αi the effect
of variant i on the expression, βj the contribution of condition j to the total expression, and
(αβ)ij the interaction term.

To avoid singular hessian matrices while fitting models, pseudo-counts (i.e., systematic ran-
dom allocation of ones) were considered for variants showing many zero counts.

3.5 Likelihood ratio test

To select between M′ and M∞, we perform a Likelihood Ratio Test (LRT) with one degree
of freedom. In the null hypothesis H0 : {(αβ)ij = 0}, there is no interaction between variant
and condition. For events where H0 is rejected, the interaction term is significant to explain
the count’s distribution, which leads to conclude to a differential usage of a variant across
conditions. p-values are then adjusted with a 5% false discovery rate (FDR) following a
Benjamini-Hochberg procedure [5] to account for multiple testing.
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3.6 Flagging low counts

If in at least n− 1 conditions (be n the number of conditions ≥ 2) an event has low counts
(option flagLowCountsConditions), it is flagged (TRUE in the last column of the finalTable

output).
In the example Table 2, we can see that the counts are quite contrasted, variant 1 seemed
more expressed in condition 2 and variant 2 in condition 1. Moreover, this event has enough
counts for each variant not to be filtered out when the filterLowCountsVariants parameter
is set to 10:

Condition 1 Condition 2 Sum by variant
replicate 1 replicate 2 replicate 1 replicate 2

Variant 1 1 0 60 70 1+0+60+70=131 > 10
Variant 2 5 3 10 20 5+3+10+20=38 > 10

Sum by condition 9 < 10 160 > 10

Table 2: Example of an event flagged as having low counts, because less than 10 reads support this
event in the first condition

However, in n−1 (here 1) condition, the global count for one condition is less than 10 (9 for
condition 1), so flagLowCountsConditions option will flag this event as ’Low_Counts’. This
event may be interesting because it has the potential to be found as differential. However, it
will be hard to validate it experimentally, because the gene is poorly expressed in condition
1.

3.7 Magnitude of the effect

When a gene is found to be differentially spliced between two conditions, or an allele is found
to be differentially present in two populations/conditions, one concern which remains is to
quantify the magnitude of this effect. Indeed, especially in RNA-Seq, where some genes are
very highly expressed (and hence have very high read counts), it is often the case that we
detect significant (p-value � 0.05) but weak effects.

When dealing with genomic variants, we quantify the magnitude of the effect using the
difference of allele frequencies (f) between the two conditions. When dealing with splicing
variants, we quantify the magnitude of the effect using the difference of Percent Spliced In
(PSI) between the two conditions. These two measures turn out to be equivalent and can be
summarized using the following formula:

PSI = f =
#counts ∗ _variant1

#counts ∗ _variant1 +#counts_variant2
6

ΔPSI = PSIcond1 − PSIcond2 7

Δf = fcond1 − fcond2 8

In this formula, #counts ∗ _variant1 correspond to the normalized number of reads of the
variant1, itself normalized for the variant length. Indeed, by construction, variant1 always
have a length greater than or equal to the variant2. That’s why we divide the normalized
number of reads of the variant1 by the ratio of the length of the variant1 and the variant2.
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The ΔPSI/Δf is computed as follows:

• First, individual (per replicate) PSI/f are calculated. If counts for both upper and lower
paths are too low (< 10) after normalization, the individual PSI/f are not computed.

• Then mean PSI/f are computed for each condition. If more than half of the individual
PSI/f were not calculated at the previous step, the mean PSI/f is not computed either.

• Finally, we output ΔPSI/Δf. Unless one of the mean PSI/f of a condition could not
be computed, ΔPSI/Δf is calculated subtracting one condition PSI/f from another.
ΔPSI/Δf absolute value vary between 0 and 1, with values close to 0 indicating low
effects and values close to 1 strong effects. Note that the conditions are ordered
alphabetically, and that kissDE substract the condition coming first in the alphabet to
the other.

4 Case studies

To detect SNVs (SNPs, mutations, RNA editing) or alternative splicing (AS) in the expressed
regions of the genome, KisSplice can be run on RNA-seq data. Counts can then be analysed
using kissDE . We present two distinct case study with kissDE : analysis of AS events and
analysis of SNVs.

4.1 Application of kissDE to alternative splicing

This first example corresponds to the case of differential analysis of alternative splicing (AS)
events. The sample data presented here is a subset of the case study used in [3] (http:
//kissplice.prabi.fr/pipeline_ks_farline/).

4.1.1 Dataset

The data used in this example comes from the ENCODE project [10]. The samples are from a
neuroblastoma cell line, SK-N-SH, with or without a retinoic acid treatment. Each condition
is composed of two biological replicates. The data are paired-end.

In a preliminary step, KisSplice has been run to analyse these two conditions. Results from
KisSplice (type 1 events) were then mapped to the reference genome with STAR [11] and
analyzed with KisSplice2refgenome. KisSplice2refgenome enables to annotate the AS events
discovered by KisSplice. It assigns to each event a gene and a type of alternative splicing
(Exon Skipping (ES), Intron Retention (IR), Alternative Donor (AltD), Alternative Acceptor
(AltA), . . . ).
For further information on these tools (KisSplice and KisSplice2refgenome), please refer to
the manual that can be found on this web page: http://kissplice.prabi.fr/.

The output file of KisSplice2refgenome is a tab-delimited file that stores the annotated
alternative splicing events found in the dataset. Below is an extract of this file (the first 3
rows and first 10 columns), where each row is one alternative splicing event of our data:
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Gene_Id Gene_name Chromosome_and_genomic_position Strand Event_type

ENSG00000163875 MEAF6 chr1:37962165-37967445 - ES

ENSG00000117620 SLC35A3 chr1:100435679-100459133 + ES

ENSG00000125814 NAPB chr20:23375598-23383670 - ES

Variable_part_length Frameshift_? CDS_? Gene_biotype

30 No Yes protein_coding

99 No Yes protein_coding

47 Yes Yes protein_coding

number_of_known_splice_sites/number_of_SNPs

all_splice_sites_known_(4_ss)

all_splice_sites_known_(4_ss)

all_splice_sites_known_(4_ss)

4.1.2 Load data

The kissplice2counts function allows to load directly the KisSplice2refgenome output file
(here called ‘output_k2rg_alt_splicing.txt’) into a format compatible with kissDE ’s main
functions.
Comment: fileInAS contains the absolute path of the file on the user’s hard disk.
The k2rg parameter is set to TRUE to indicate that the file comes from KisSplice2refgenome and
not directly from KisSplice. As these samples are paired-end, the pairedEnd parameter is set
to TRUE. The counts parameter must be set to the same value (i.e., 2) used in KisSplice and
KisSplice2refgenome to indicate which type of counts are given in the input. Here the exonic
reads are not taken into account (exonicReads = FALSE). Only junction reads will be used
(see Figure 2).

The table of counts is stored in a myCounts_AS object (for a detailed description of its
structure, see section 2.1.4):

fileInAS <- system.file("extdata", "output_k2rg_alt_splicing.txt",

package = "kissDE")

myCounts_AS <- kissplice2counts(fileInAS, pairedEnd = TRUE, k2rg = TRUE,

counts = 2, exonicReads = FALSE)

head(myCounts_AS$countsEvents)

events.names events.length counts1 counts2 counts3 counts4

1 bcc_68965|Cycle_4 112 2 1 23 8

2 bcc_68965|Cycle_4 82 33 14 6 3

3 bcc_83285|Cycle_2 180 105 41 15 26

4 bcc_83285|Cycle_2 81 2 5 100 150

5 bcc_161433|Cycle_2 127 20 17 60 58

6 bcc_161433|Cycle_2 80 58 33 7 1

To perform the differential analysis, a vector that describes the experimental plan is needed. In
this case study, there are two replicates of the SK-N-SH cell line without treatment (SKNSH)
followed by two replicates of the same cell line treated with retinoic acid (SKSNH-RA). So
the myConditions_AS vector is defined as follows:

myConditions_AS <- c(rep("SKNSH", 2), rep("SKNSH-RA", 2))
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4.1.3 Quality control

Before running the differential analysis, we check that the data was loaded correctly, using
the qualityControl function.

qualityControl(myCounts_AS, myConditions_AS)
SK

N
SH

_r
ep

l2

SK
N

SH
_r

ep
l1

SK
N

SH
−R

A_
re

pl
2

SK
N

SH
−R

A_
re

pl
1

SKNSH_repl2

SKNSH_repl1

SKNSH−RA_repl2

SKNSH−RA_repl1

0 0.05 0.15
Value

Color Key

●

●

●

●

−0.2

0.0

0.2

−1.0 −0.5 0.0 0.5 1.0
PC1 (88.6%)

PC
2 

(6
.7

%
)

group

●

●

SKNSH

SKNSH−RA

Figure 6: Quality control plots on alternative data
Left: Heatmap of the sample-to-sample distances for the alternative splicing dataset. Right: Principal Com-
ponent Analysis for the alternative splicing dataset.

On both plots returned by the qualityControl function (Figure 6), the replicates of the
same condition seem to be more similar between themselves than to the samples of the
other condition. On the heatmap (left of Figure 6), the samples of the same condition
cluster together. On the PCA plot (right of Figure 6), the first principal component (which
summarises 88% of the total variance) clearly discriminates the two conditions.

4.1.4 Differential analysis

The main function of kissDE , diffExpressedVariants, can now be run to compute the
differential analysis. Outputs are stored in a myResult_AS object (for a detailed description
of its structure, see section 2.4.1) and the result for the first three events is given below:

myResult_AS <- diffExpressedVariants(myCounts_AS, myConditions_AS)

head(myResult_AS$finalTable, n = 3)

ID Length_diff

bcc_83285|Cycle_2 bcc_83285|Cycle_2 99

bcc_52250|Cycle_0 bcc_52250|Cycle_0 160

bcc_135201|Cycle_433392 bcc_135201|Cycle_433392 104

Variant1_SKNSH_repl1_Norm Variant1_SKNSH_repl2_Norm

bcc_83285|Cycle_2 84 44

bcc_52250|Cycle_0 10 24

bcc_135201|Cycle_433392 40 29

Variant1_SKNSH-RA_repl1_Norm

bcc_83285|Cycle_2 17

bcc_52250|Cycle_0 15

bcc_135201|Cycle_433392 19
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Variant1_SKNSH-RA_repl2_Norm Variant2_SKNSH_repl1_Norm

bcc_83285|Cycle_2 28 2

bcc_52250|Cycle_0 14 2

bcc_135201|Cycle_433392 27 2

Variant2_SKNSH_repl2_Norm Variant2_SKNSH-RA_repl1_Norm

bcc_83285|Cycle_2 5 110

bcc_52250|Cycle_0 0 19

bcc_135201|Cycle_433392 1 32

Variant2_SKNSH-RA_repl2_Norm Adjusted_pvalue

bcc_83285|Cycle_2 162 0.00e+00

bcc_52250|Cycle_0 24 1.63e-06

bcc_135201|Cycle_433392 59 1.88e-13

Deltaf/DeltaPSI lowcounts

bcc_83285|Cycle_2 -0.809 FALSE

bcc_52250|Cycle_0 -0.746 FALSE

bcc_135201|Cycle_433392 -0.715 FALSE

The first event in the myResult_AS output has a very low p-value (Adjusted_pvalue column,
less than 2.2e-16) and a very contrasted ΔPSI (Deltaf/DeltaPSI column, equal to -0.804)
close to the maximum value (1 in absolute). This gene is differentially spliced. When the
SK-N-SH cell line is treated with retinoic acid, the inclusion variant becomes the major
isoform.

4.1.5 Export results

In order to facilitate the downstream analysis of the results, two tables are exported: the
result table (myResults_AS$finalTable object, see section 2.4.1) is saved in a ‘results_
table.tab’ file and the PSI table (myResults_AS$�f/psiTable�, see section 2.4.2) is saved in
a ‘psi_table.tab’ file. Here are the commands to carry out this task:

writeOutputKissDE(myResults_AS, output = "results_table.tab")

writeOutputKissDE(myResults_AS, output = "psi_table.tab", writePSI = TRUE)

4.2 Application of kissDE to SNPs/SNVs

This second example present an analysis of SNPs/SNVs done with kissDE on RNA-Seq data
from a subset of the case study presented in [2] (http://kissplice.prabi.fr/TWAS/).
The original purpose of this study was to demonstrate that the method can deal with pooled
data (i.e. individuals are pooled prior to sequencing). Pooling can be used to decrease the
costs. It is also sometimes the only option, when too few RNA is available per individual. The
method can in principle be used on unpooled data, polyploid genomes, and for the detection
of somatic mutations, but has for now only been evaluated for the detection of SNPs/SNVs
in pooled RNAseq data.
In the remaining, we use the term SNV, which designates a variation of a single nucleotide,
without any restriction on the frequency of the two alleles. The term SNP is indeed classically
used for variants present in at least 1% of a population.
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4.2.1 Dataset

The dataset comes from the human GEUVADIS project. Two populations were selected:
Toscans (TSC) and Central Europeans (CEU). For each population, we selected 10 individu-
als, which are pooled in two groups of 5. Each group corresponds to a replicate for kissDE .
The conditions being compared are the populations.

Figure 7: Experimental design of the SNP dataset
Each cross corresponds to an individual.

The data are paired-end. So each sample consists of 2 files. In total, 8 files have been used:
4 files for the two TSC samples and 4 files for the two CEU samples. Paired-end files from a
same sample have been given as following each other to KisSplice.

KisSplice outputs a fasta file that stores SNVs found in the dataset. Its structure is described
in section 2.1.3. The first SNV is presented below:

>bcc_44787|Cycle_421687|Type_0b|upper_path_length_131|C1_455|C2_455|C3_839|

C4_848|C5_5|C6_0|C7_39|C8_31|Q1_58|Q2_55|Q3_51|Q4_53|Q5_70|Q6_0|Q7_66|Q8_65|

rank_0.97008

CCAGAGAATCGGTCAGGGACCCCTGAGGGCCGCTGATTATTCCTATAGATGAGGAGTTTGGGGGCCGTTCCTGGGA

GCTGCTGGTACCAGTTTACAGTATTACTTCCGATGTTGGAGCTGCTTCCAGAACA

>bcc_44787|Cycle_421687|Type_0b|lower_path_length_131|C1_12|C2_14|C3_11|

C4_11|C5_18|C6_10|C7_4481|C8_4088|Q1_0|Q2_0|Q3_0|Q4_0|Q5_0|Q6_0|Q7_35|Q8_35|

rank_0.97008

CCAGAGAATCGGTCAGGGACCCCTGAGGGCCGCTGATTATTACTAGAGAAGAGGAGTTTGGGGGCCGTTCCTGGGA

GCTGCTGGTACCAATTTACAGTATTACTTCCGATGTTGGAGCTGCTTCCAGAACA

Events are reported in 4 lines, the two first represent one allele of the SNV, the two last the
other allele. Thus the sequences only differ from each other at one position which corresponds
to the SNV, here A/C in the center of the sequence (at position 42).

Because KisSplice was run with the default value of the counts parameter (i.e., 0), the counts
have the following format C1_x|C2_y|...|Cn_z. In this example, there are 8 counts because
we input 8 files. Each count corresponds to the reads coming from each file that could be
mapped on the variant, in the order they have been passed to KisSplice. This information is
particularly important in kissDE since it represents the counts used for the test.
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4.2.2 Load data

The first step is to convert this fasta file (here called ‘output_kissplice_SNV.fa’) into a
format that will be used in kissDE main functions, thanks to the kissplice2counts function.
Comment: fileInSNV contains the absolute path of the file on the user’s hard disk.
Due to paired-end RNA-Seq data, the pairedEnd parameter was set to TRUE.

This conversion in a table of counts is stored in the myCounts_SNV object (for a detailed
description of its structure, see section 2.1.3) and can be done as follows:

fileInSNV <- system.file("extdata", "output_kissplice_SNV.fa",

package = "kissDE")

myCounts_SNV <- kissplice2counts(fileInSNV, pairedEnd = TRUE)

head(myCounts_SNV$countsEvents)

events.names events.length counts1 counts2 counts3 counts4

1 bcc_44787|Cycle_421687 131 910 1687 5 70

2 bcc_44787|Cycle_421687 131 26 22 28 8569

3 bcc_44787|Cycle_421701 139 389 3349 2 149

4 bcc_44787|Cycle_421701 139 88 31 29 8821

5 bcc_100871|Cycle_3 107 0 10 0 0

6 bcc_100871|Cycle_3 107 3 1 13 10

To perform the differential analysis, a vector with the conditions has to be provided.
In the example, there are two replicates of TSC and two replicates of CEU, thus the condition
vector myConditions_SNV is:

myConditions_SNV <- c(rep("TSC", 2), rep("CEU", 2))

4.2.3 Quality control

Before running the differential analysis, we recommand to check if the data was correctly
loaded, by running the qualityControl function.

qualityControl(myCounts_SNV, myConditions_SNV)
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Figure 8: Quality control plots on SNV data
Left: Heatmap of the sample-to-sample distances on SNV data. Right: Principal Component Analysis on
SNV data.
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On both plots outputed (Figure 8), the replicates of the same condition seem to be more
similar between themselves than to the samples of the other condition. On the heatmap (left
of Figure 8), the samples of the same condition cluster together. On the PCA plot (right of
Figure 8), the first principal component (which summarises 88% of the total variance) clearly
discriminates the two conditions.

4.2.4 Differential analysis

The main function of kissDE , diffExpressedVariants, can now be run to compute the
statistical test.
Outputs are stored in a myResult_SNV object (for a detailed description of its structure, see
section 2.4.1) and the result for the first three events is printed:

myResult_SNV <- diffExpressedVariants(myCounts_SNV, myConditions_SNV)

head(myResult_SNV$finalTable, n = 3)

ID Length_diff

bcc_44787|Cycle_320265 bcc_44787|Cycle_320265 0

bcc_100871|Cycle_3 bcc_100871|Cycle_3 0

bcc_44787|Cycle_421687 bcc_44787|Cycle_421687 0

Variant1_CEU_repl1_Norm Variant1_CEU_repl2_Norm

bcc_44787|Cycle_320265 2014 1172

bcc_100871|Cycle_3 0 0

bcc_44787|Cycle_421687 5 72

Variant1_TSC_repl1_Norm Variant1_TSC_repl2_Norm

bcc_44787|Cycle_320265 0 2

bcc_100871|Cycle_3 0 10

bcc_44787|Cycle_421687 959 1672

Variant2_CEU_repl1_Norm Variant2_CEU_repl2_Norm

bcc_44787|Cycle_320265 23 181

bcc_100871|Cycle_3 12 10

bcc_44787|Cycle_421687 25 8836

Variant2_TSC_repl1_Norm Variant2_TSC_repl2_Norm

bcc_44787|Cycle_320265 179 853

bcc_100871|Cycle_3 3 1

bcc_44787|Cycle_421687 27 22

Adjusted_pvalue Deltaf/DeltaPSI lowcounts

bcc_44787|Cycle_320265 0.00e+00 -0.926 FALSE

bcc_100871|Cycle_3 1.46e-04 0.909 FALSE

bcc_44787|Cycle_421687 1.85e-05 0.892 FALSE

The first event in the myResult_SNV output has a low p-value (Adjusted_pvalue column,
equal to 8.63e-13) and a very high absolute value of Δf (Deltaf/DeltaPSI column, equal to
-0.926) close to the maximum value (1 in absolute). This SNP would typically be population
specific. One allele is enriched in the Toscan population, the other in the European population.

4.2.5 Export results

We consider as significant the events that have an adjusted p-value lower than 5%, so
we set adjPvalMax = 0.05. Results passing this threshold are saved in a ‘final_table_
significants.tab’ file, with the writeOutputKissDE function, as follows:
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writeOutputKissDE(myResults_SNV, output = "final_table_significants.tab",

adjPvalMax = 0.05)

4.3 Time / Requirements

The statistical analysis function (diffExpressedVariants) is the most time-consuming steps.
Here is an example of the running time of this function on the two complete datasets presented
in the case studies(section 4). The time presented were evaluated on a desktop computer
with the following caracteristics: Intel Core i7, CPU 2,60 GHz, 16G RAM.

Dataset Options Number of Running time of
events diffExpressedVariants

AS data
counts=2,

59132 17mpairedEnd=TRUE

k2rg=TRUE

SNV data counts=0, 64824 18m
pairedEnd=TRUE

Table 3: Profiling
Running time of the principal function of kissDE (diffExpressedVariants) for two datasets (AS dataset
from the ENCODE project [10] described in section 4.1 and SNV dataset from the GEUVADIS project [12]
described in section 4.2).

To reduce even more the running time of diffExpressedVariants, the parameter nbCore

can be used to parallelize the most time-consuming step of this function (for more detailed
explanation on this parameter see section 2.3).

5 Session info

sessionInfo()

R version 3.6.0 (2019-04-26)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 18.04.2 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.10-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.10-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
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[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] kissDE_1.5.0

loaded via a namespace (and not attached):

[1] bitops_1.0-6 matrixStats_0.54.0

[3] DSS_2.33.0 bit64_0.9-7

[5] doParallel_1.0.14 bsseq_1.21.0

[7] RColorBrewer_1.1-2 GenomeInfoDb_1.21.0

[9] tools_3.6.0 backports_1.1.4

[11] R6_2.4.0 KernSmooth_2.23-15

[13] rpart_4.1-15 HDF5Array_1.13.0

[15] Hmisc_4.2-0 DBI_1.0.0

[17] lazyeval_0.2.2 BiocGenerics_0.31.0

[19] colorspace_1.4-1 permute_0.9-5

[21] nnet_7.3-12 tidyselect_0.2.5

[23] gridExtra_2.3 DESeq2_1.25.0

[25] bit_1.1-14 compiler_3.6.0

[27] Biobase_2.45.0 htmlTable_1.13.1

[29] DelayedArray_0.11.0 labeling_0.3

[31] rtracklayer_1.45.0 caTools_1.17.1.2

[33] scales_1.0.0 checkmate_1.9.1

[35] genefilter_1.67.0 stringr_1.4.0

[37] digest_0.6.18 Rsamtools_2.1.0

[39] foreign_0.8-71 R.utils_2.8.0

[41] rmarkdown_1.12 aod_1.3.1

[43] XVector_0.25.0 base64enc_0.1-3

[45] pkgconfig_2.0.2 htmltools_0.3.6

[47] limma_3.41.0 BSgenome_1.53.0

[49] htmlwidgets_1.3 rlang_0.3.4

[51] rstudioapi_0.10 RSQLite_2.1.1

[53] DelayedMatrixStats_1.7.0 BiocParallel_1.19.0

[55] gtools_3.8.1 R.oo_1.22.0

[57] acepack_1.4.1 dplyr_0.8.0.1

[59] RCurl_1.95-4.12 magrittr_1.5

[61] GenomeInfoDbData_1.2.1 Formula_1.2-3

[63] Matrix_1.2-17 Rcpp_1.0.1

[65] munsell_0.5.0 S4Vectors_0.23.0

[67] Rhdf5lib_1.7.0 R.methodsS3_1.7.1

[69] stringi_1.4.3 yaml_2.2.0

[71] SummarizedExperiment_1.15.0 zlibbioc_1.31.0

[73] gplots_3.0.1.1 rhdf5_2.29.0

[75] plyr_1.8.4 grid_3.6.0

[77] blob_1.1.1 gdata_2.18.0

[79] parallel_3.6.0 crayon_1.3.4

[81] lattice_0.20-38 Biostrings_2.53.0

[83] splines_3.6.0 annotate_1.63.0

[85] locfit_1.5-9.1 knitr_1.22

[87] pillar_1.3.1 GenomicRanges_1.37.0

[89] codetools_0.2-16 geneplotter_1.63.0
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[91] stats4_3.6.0 XML_3.98-1.19

[93] glue_1.3.1 evaluate_0.13

[95] latticeExtra_0.6-28 data.table_1.12.2

[97] BiocManager_1.30.4 foreach_1.4.4

[99] gtable_0.3.0 purrr_0.3.2

[101] assertthat_0.2.1 ggplot2_3.1.1

[103] xfun_0.6 xtable_1.8-4

[105] survival_2.44-1.1 tibble_2.1.1

[107] iterators_1.0.10 GenomicAlignments_1.21.0

[109] AnnotationDbi_1.47.0 memoise_1.1.0

[111] IRanges_2.19.0 cluster_2.0.9

[113] BiocStyle_2.13.0
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ABSTRACT

Minor intron splicing plays a central role in human embryonic development and survival. Indeed, biallelic mutations in
RNU4ATAC, transcribed into the minor spliceosomal U4atac snRNA, are responsible for three rare autosomal recessive
multimalformation disorders named Taybi–Linder (TALS/MOPD1), Roifman (RFMN), and Lowry–Wood (LWS) syndromes,
which associate numerous overlapping signs of varying severity. Although RNA-seq experiments have been conducted
on a few RFMN patient cells, none have been performed in TALS, and more generally no in-depth transcriptomic analysis
of the ∼700 human genes containing a minor (U12-type) intron had been published as yet. We thus sequenced RNA from
cells derived from five skin, three amniotic fluid, and one blood biosamples obtained from seven unrelated TALS cases and
from age- and sex-matched controls. This allowed us to describe for the first time themRNA expression and splicing profile
of genes containing U12-type introns, in the context of a functional minor spliceosome. Concerning RNU4ATAC-mutated
patients, we show that as expected, they display distinct U12-type intron splicing profiles compared to controls, but that
rather unexpectedly mRNA expression levels are mostly unchanged. Furthermore, although U12-type intron missplicing
concerns most of the expressed U12 genes, the level of U12-type intron retention is surprisingly low in fibroblasts and
amniocytes, and much more pronounced in blood cells. Interestingly, we found several occurrences of introns that can
be spliced using either U2, U12, or a combination of both types of splice site consensus sequences, with a shift towards
splicing using preferentially U2 sites in TALS patients’ cells compared to controls.

Keywords: MOPD1; RNU4ATAC; minor splicing; U12-type introns; RNA sequencing; intron retention

INTRODUCTION

Pre-mRNA splicing is a crucial step that needs accu-
rate execution for proper eukaryotic gene expression.
Multiexonic pre-mRNA species can be spliced in a variety

of ways as one or several exonsmay be skipped, introns re-
tained or spliced with alternative donor or acceptor sites,
either as part of a physiological process named alterna-
tive splicing or as the result of anomalies in the splicing
process. Splicing misregulation may occur during cell
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proliferation, differentiation, survival or death, and is well
documented in the context of numerous human diseases
(Scotti and Swanson 2016).
Two types of introns coexist in the genome of most eu-

karyotes, major andminor introns (respectively also named
U2- and U12-type introns) (Burge et al. 1998; Sheth et al.
2006). U12-type introns were first discovered due to their
unusual AT-AC dinucleotide donor and acceptor splice
sites and believed to harbor exclusively these sequences
(Jackson 1991). They are now computationally identified
based on their specific donor splice site and branch point
sequence (BPS) consensus sequences, the latter being lo-
cated within a specific window of 10–13 nt before the ac-
ceptor splice site (Dietrich et al. 2001a, 2005). In 2007,
these criteria enabled to identify 695 introns of the
U12-type in the human genome, thus representing <1%
of all human introns (Alioto 2007). It turned out that 70%
of these introns had the classical GT-AG termini.
Each type of intron is spliced by a distinct nuclear ma-

chinery: the major, or U2-dependent, spliceosome, and
the minor, or U12-dependent, spliceosome. Both contain
two small nuclear ribonucleoproteins (snRNPs) involved
in intron recognition (respectively, U1 and U2, and
U11/U12 di-snRNPs) and three snRNPs involved in the cat-
alytic reaction (respectively, U4/U6.U5 and U4atac/U6atac.
U5 tri-snRNPs), U5 being the only snRNA shared between
the two spliceosomes. While major spliceosome- and
minor spliceosome-specific snRNAs have divergent se-
quences, they share a similar secondary structure (Tarn
and Steitz 1996). Spliceosome specificity relies mostly on
splice sites recognition by the major U1 and U2 snRNPs
or the minor U11/U12 di-snRNP, and protein composition
of the two spliceosomes is highly similar apart from seven
proteins which are specific to the minor spliceosome
(Schneider et al. 2002).
Minor splicing conservation through evolution implies

an important role for this cellular process, but amore direct
evidence of its central role came with the identification
of mutations in a component of the minor spliceosome in
patients afflicted with a severe developmental disease.
Indeed, an autosomal recessive disorder named microce-
phalic osteodysplastic primordial dwarfism type 1 (MOPD1,
OMIM 210710) or Taybi–Linder syndrome (TALS) was
found by our team and others to be due to biallelic muta-
tions in the gene transcribed into U4atac, RNU4ATAC
(Edery et al. 2011; He et al. 2011). This very rare syndrome
is characterized by multiple malformations including
severe microcephaly and cortical brain malformations
(neuronal migration defects), corpus callosum agenesis/
dysgenesis, cerebellar vermis hypoplasia, intellectual dis-
ability, dysmorphic features, sparse or absent hair, dry
skin, short stature and bone anomalies. It leads to early un-
explained death occurring within the first three years of life
inmore than 70% of the cases. Interestingly, other very rare
congenital disorders, namely Roifman syndrome (RFMN,

OMIM 616651) and Lowry–Wood syndrome (LWS, OMIM
226960) have also been recently attributed to biallelic
RNU4ATAC mutations (Merico et al. 2015; Farach et al.
2018). Both RFMN and LWS have features overlapping
with TALS (i.e., microcephaly, intellectual deficiency,
growth retardation, skeletal dysplasia) but these disorders
are not associated with early mortality, they do not include
visible structural brain anomalies, and they have less pro-
nounced microcephaly and growth retardation. Of note,
RFMN cases exhibit a specific antibody deficiency that is
the hallmark of this rare immunodeficiency syndrome.
The U4atac/U6atac bi-molecule has a Y-shaped struc-

ture which consists of two intermolecular stems, stem I
and stem II, separated by a secondary U4atac structure
called the 5′ stem–loop. The U4atac terminal region also
contains a 3′ stem–loop and a Sm protein-binding site
(for review, see Turunen et al. 2013). To date, mutations
have been identified at the homozygous or compound
heterozygous states in RNU4ATAC in 53 TALS, 14 RFMN
and 5 LWS patients or fetuses (from 30 TALS, 10 RFMN,
and 4 LWS families, respectively) (Ferrell et al. 2016;
Putoux et al. 2016; Bogaert et al. 2017; Dinur Schejter
et al. 2017; Farach et al. 2018; Hallermayr et al. 2018;
Heremans et al. 2018; Lionel et al. 2018; Shelihan et al.
2018; Wang et al. 2018; Shaheen et al. 2019). Quite clear,
although preliminary, phenotype–genotype correlations
stand out across the growing number of cases: Early death
in TALS patients (usually before 3 yr of age) is associated
with homozygosity for the most common pathogenic vari-
ant, g.51G>A, located in the 5′ stem–loop which contains
most of the TALS mutations; RFMN is always associated
with the location of at least one of the two mutations in
Stem II, a region never found mutated in TALS patients.
While germline mutations in genes encoding core pro-

tein components of the spliceosome had been already in-
volved in genetic diseases (some forms of retinitis
pigmentosa and rare craniofacial, skeletal and skin disor-
ders), U4atacwas the first spliceosomal snRNA inwhichmu-
tations were identified (for reviews, see Padgett 2012;
Vermaet al. 2018). Since then,mutations inRNU12wereas-
sociated with early onset cerebellar ataxia in a large
consanguineous family (Elsaid et al. 2017). Mutations in
spliceosome components are expected to cause global
splicing dysregulation that should manifest in most, if not
all tissues, an assumption difficult to reconcile with the
highly restricted phenotypes observed in spliceosomop-
athies. Despite recent technological advances allowing
in-depth analyses at the transcriptomic level, very few
RNA-seq studies have been performed in these patholo-
gies, precluding comprehensive description of the molec-
ular events associated with the identified mutations. There
is now a total of three published analyses of RNA-seq data
from RFMNpatients that revealedmassive U12-type intron
retention (IR), but each study focused on only two patients
and was restricted to a single cell type, either mononuclear
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blood cells or megakaryocytes (Merico et al. 2015; Dinur
Schejter et al. 2017; Heremans et al. 2018). In contrast,
the transcriptomic profile of TALSpatients has not beende-
scribed yet.

We present here for the first time the analysis of RNA-
seq data sets performed on cells derived from skin biop-
sies, amniotic fluids and peripheral blood taken from seven
unrelated TALS cases carrying various RNU4ATAC muta-
tions and 13 control individuals matched for tissue, age
and gender, hence providing the first whole genome splic-
ing pattern and expression data for this disease. The thor-
ough analysis of this unique data set enables us to study
howminor splicing is carried out in physiological and path-
ological conditions, in various cell types, and sheds new
light on this cellular process.

RESULTS

Presentation of RNA-seq data generation
and analysis

Biological samples

A total of nine biological samples, that is, five skin, three
amniotic fluid and one peripheral blood biospecimens,
were obtained from seven unrelated previously published
TALS cases (Table 1). This represents the largest collection
of TALS samples, to the best of our knowledge. Among
these seven cases, four (three children, one fetus) are ho-
mozygous for the most common RNU4ATAC mutation,
g.51G>A, and three (one child, two fetuses) are com-
pound heterozygous for g.50G>C;g.51G>A, g.40C>T;
g.124G>A, and g.51G>A;g.124G>A, respectively. All
the affected children died before the age of three, regard-
less of their mutation(s). Importantly, two different biospe-
cimens were obtained for two g.51G>A homozygous
patients, skin and blood for one child and maternal amni-
otic fluid and skin for the other. Biological samples (eight
skin, four amniotic fluid, and one peripheral blood sam-
ples) were also obtained from 13 age- and sex-matched
controls (Table 1).

RNA-seq protocol

We extracted total RNA from fibroblasts (derived from the
skin biopsies), amniocytes (derived from the amniotic flu-
ids), and lymphoblastoid cell lines (LCL, established by
EBV immortalization of B lymphocytes obtained from
blood samples). RNA-seq data were then generated
in two experimental setups by Illumina sequencing of
(1) poly(A)-selected, non strand-specific sequencing librar-
ies (100 nt paired-end reads) on three patient samples in
the pilot study; (2) poly(A)-selected, strand-specific se-
quencing libraries (75 nt paired-end reads) in the extended
study. The extended study was technically more compre-
hensive and comprised all the samples which had been

sequenced in the pilot study. Consequently, we will pre-
sent and discuss the results obtained in this latter study
only. However, in the LCL in-depth analysis, we also used
the data set of our pilot experiment as a technical replicate,
in order to make up for the lack of biological replicates.

Data sets analysis

Ouranalysis of these24 transcriptomes (ninepatient and13
control data sets from the extended study; one patient and
one control LCL data sets from the pilot study) examined
bothgeneexpression and splicingalterationswith a special
focus on IR. To this aim, we set up three bioinformatic pipe-
lines (see Materials and Methods), that is, a bioinformatic
pipeline that uses a recently developed mapping-first ap-
proach dedicated to accurate IR detection, IRFinder
(Middleton et al. 2017), and two other pipelines that allow
us to identify other types of alternative splicing events,
one with a mapping-first approach, vast-tools (Tapial et al.
2017), and the other with an assembly-first approach that
we previously reported to have the ability to detect the
use of unannotated splice sites, KisSplice (Benoit-Pilven
et al. 2018a). Statistical significance of the results obtained
with these three pipelines was determined using the same
analytical tool, kissDE (Benoit-Pilven et al. 2018b), which al-
lows the identification of significant changes in relative in-
tron or exon inclusion across conditions. To quantify the
magnitude of the changes, we computed the Percent
Spliced In (PSI) metric, which is the ratio of the reads includ-
ing the intronover the sumof the reads including or exclud-
ing it, for each intron and each condition. This metric
provides values close to 100% for fully retained introns
and to 0% for fully spliced introns. The PSI metric was also
used for quantifying other types of alternative splicing
events (see Materials and Methods). The difference be-
tween conditions, ΔPSI = PSI_Patients−PSI_Controls, is a
measure of the magnitude of the splicing alteration; the
signof thismetric indicates inwhich condition the retention
is more frequently seen (patients for positive values or con-
trols for negative values), and its absolute value indicates
the level of the difference (the closer to 100%, the higher
the difference).

All U12-type intron alternative splicing events identified
in patients’ cells are reported in Supplemental Table S1
and described in details in Supplemental Table S2. The
processed underlying data can be explored in a Shiny
Interface at http://lbbe-shiny.univ-lyon1.fr/TALS-RNAseq/.

Expression levels and splicing efficiency of U12
genes in control fibroblasts, amniocytes and LCL

Global mRNA expression levels of U12 genes in control
cell types

To date, despite the large number of transcriptomic stud-
ies performed in human tissues and cell types, the spatial
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and temporal pattern of expression of the transcribed
genes containing at least one U12-type intron (hereafter
called U12 genes, while U2 genes are those not contain-
ing any U12-type intron) has never been described and
is largely unknown. We therefore first evaluated which
U12 genes were expressed in the eight fibroblast, four
amniocyte and one LCL samples derived from control chil-
dren and fetuses to set the frame of reference for the com-
parison with TALS patients. We based our analysis on the
set of 699 genes containing at least one U12-type intron
that we identified in the human genome through a com-
putational scan of the latest annotation of the GRCh37
assembly (Ensembl Release 75) with a U12-type intron an-
notation tool (Alioto 2007) (846 minor introns annotated in

total, Supplemental Table S3), and fixed a threshold for
expression at a mean of 5 Transcripts Per Million (TPM)
both for U2 and U12 genes. Among these 699 genes,
528 (76%) are expressed in at least one cell type in our
control data sets and 427 (61%) are expressed in the three
of them, suggesting that the majority of the U12 genes are
expressed in various cell types (Supplemental Fig. S1A).
The distribution of the expression levels of U12 genes is
highly similar between the three cell types and shows a
peak at around 30 TPM (Supplemental Fig. S1B).
However, we found that the mean number of transcripts
per U12 gene was higher in the LCL than in amniocytes
and fibroblasts (56, 51 and 48 TPM, respectively). When
considering U2 genes, an extra peak of genes expressed

TABLE 1. Description of the samples analyzed by RNA-seq

Biological
sample

Analyzed
cells

RNA-seq
experiment(s)

RNU4ATAC
pathogenic
variants

Age at
sample

collection
Age at
death Gender

Patient
identification

TALS
collection

Skin biopsy Fibroblasts Pilot study+
Extended
study

g.51G>A ;
g.51G>A

2 mo 28 mo F TALS6 (Edery
et al. 2011)

g.51G>A ;
g.51G>A

10 mo (post-
mortem)

10 mo M TALS2 (Edery
et al. 2011)

- 2 mo - F -
- 21 mo - M -

Extended
study

g.51G>A ;
g.51G>A

4 mo 7 mo F TALS4 (Edery
et al. 2011)

g.50G>C ;
g.51G>A

29 mo 29 mo F TALS10 (Edery
et al. 2011)

g.40C>T ;
g.124G>A

30 GW (post-
mortem)

30 GW (TOP) M Fetus 3 (Putoux
et al. 2016)

- 7 mo - F -
- 39 mo - F -
- 3 yr - F -
- 26 GW - M -
- 12 mo - M -
- 12 d - M -

Amniotic
fluid

Amniocytes Extended
study

g.51G>A ;
g.124G>A

21 GW 21 GW (TOP) F Fetus 2 (Putoux
et al. 2016)

g.51G>A ;
g.51G>A

25 GW 25 GW (TOP) F Fetus 1 (Putoux
et al. 2016)

g.51G>A ;
g.51G>A

20 GW 10 mo M TALS2 (Edery
et al. 2011)

- 21 GW - F -
- 25 GW - F -
- 22 GW - M -
- 26 GW - M -

Peripheral
blood

LCL Pilot study+
Extended
study

g.51G>A ;
g.51G>A

2 mo 28 mo F TALS6 (Edery
et al. 2011)

- 2 mo - F -

RFMN
collection

Peripheral
blood

MBC Merico et al.
2015

g.13C>T ;
g.37G>A

38 yr - M k1.p2 (Merico
et al. 2015)

g.13C>T ;
g.48G>A

21 yr - M k2.p3 (Merico
et al. 2015)

g.13C>T ; - 43 yr - M -
g.13C>T ; - 67 yr - M -
g.13C>T ; - 57 yr - M -

M, male; F, female; GW, gestational weeks; TOP, termination of pregnancy; LCL, lymphoblastoid cell line; MBC, mononuclear blood cells.
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at a level <1 TPM is seen (Supplemental Fig. S1B); this
bimodal distribution has already been reported and
most likely corresponds to noise from the transcriptional
machinery (Hebenstreit et al. 2011). Principal component
analysis (PCA) of the expression levels of U12 and U2
genes demonstrated that the control transcriptome data
sets partitioned depending on the cell type
(Supplemental Fig. S1C), indicating that the U12 genes ex-
pression level pattern is specific to each cell type. Gender
or prenatal vs. post-natal origin of the skin biopsies from
which fibroblasts were derived did not strongly influence
U2 and U12 genes expression level patterns
(Supplemental Fig. S1C).

Global U12- and U2-type intron retentions
in U12 genes

After examining mRNA expression levels, we focused on
introns and their splicing efficiency in fibroblasts, amnio-
cytes and LCL by analyzing the extent of IR using PSI val-
ue calculations. To alleviate potential biases due to the
large difference in the number of U2 and U12 genes,
we chose to restrict the analysis comparing U12- and
U2-type intron splicing efficiency to introns located in
U12 genes. In order to obtain robust PSI estimations,
we focused on intronic regions with sufficient read cover-
age (i.e., number of exon-intron+exon–exon junction
reads ≥10 in at least 4/8 fibroblast, 2/4 amniocyte, and
the LCL control samples). The few annotated introns
that were never found spliced out in our data sets were
also removed (see Materials and Methods). The analysis
was performed on a set of 366 U12-type introns and
1887 U2-type introns scattered in 337 U12 genes with a
mean expression of at least 5 TPM in each cell type. We
found that the mean PSI for the U12-type introns is 2.2%
(median=0.7%) in fibroblasts, 2.7% (median=0.9%) in
amniocytes and 4.4% (median= 2.0%) in LCL, whereas
the mean PSI for the U2-type introns are respectively
3.9% (median=1.1%), 4.7% (median=1.5%), and 4.8%
(median=1.5%) in these cells. In contrast with a previous
result obtained with HEp-2 cells (Niemela et al. 2014),
we did not observe in our data sets that U12-type
introns were spliced less efficiently than their neighboring
U2-type counterparts. We further observed that splicing
was most efficient in fibroblasts, and that U12-type intron
splicing was less efficient in LCL (Supplemental Fig. S2A).
PCA of the PSI values for U12- and U2-type introns also
separated cell types, although less clearly than expression
values as one of the four amniocyte data sets segregated
with fibroblasts consistently in both U12- and U2-type
introns analyses (Supplemental Fig. S2B). We noticed
that the LCL data set singled out in PCA of U12-type IR,
as it does in PCA of U12 gene expression levels, a finding
confirmed when incorporating the pilot study data set in
the analyses.

U12-type intron alternative splicing

Besides IR, more complex patterns of U12-type intron
alternative splicing have on some occasions also been
observed, although less frequently than for U2-type in-
trons (Levine and Durbin 2001; Chang et al. 2007). To
identify these events in our data sets we used both a map-
ping-first approach (vast-tools) and an assembly-first
approach (KisSplice), as we previously showed that these
approaches were complementary (Benoit-Pilven et al.
2018a). We focused on events with sufficient read cover-
age (same filter as that used for IR) and with exon–exon
junctions covered by an average of at least five reads.
We found 9 U12 genes for which a total of 10 complex
minor splicing patterns were observed through the use
of alternative U12 splice sites in all control data sets. In
9/10 cases, an alternative U12 acceptor site was used,
leading to exon skipping in a few instances, while in the re-
maining one, both alternative U12 donor and acceptor
sites were used. The use of the least common donor
and/or acceptor splice sites was supported by more than
10% of the reads in all three cell types for six of these
events, indicating that they are not marginal. It should be
noted that half of the splicing events produced alternative
forms considered as noncoding in databases because they
contain premature termination codons (PTCs).

U12/U2 splice site switching

Most interestingly, we also found U12-type introns for
which nearby U2 splice site(s) were sometimes favored
over U12 splice site(s), probably in the context, in most cas-
es, of a switch from the minor to the major spliceosome for
splicing the intron. This phenomenon was first described
for the D. melanogaster prospero gene (Scamborova
et al. 2004); lately, the existence of these introns called
U2/U12-type twintrons was extended to several other
U12 genes in different species, including humans (for re-
view, see Hafez and Hausner 2015). We identified 21 of
such alternative events comprising or not the skipping of
an exon in 16 U12 genes. In four of these events, both
U2 alternative donor and acceptor splice sites were used.
In 10 of them, a U2 alternative donor site was used in com-
bination with the U12 acceptor site, and in the remaining
seven, a U12 donor was used with an alternative U2 accep-
tor site. Such mixed patterns had not yet been observed,
to the best of our knowledge. In 13/21 cases, the least
abundant form representedmore than 10% of all the reads
in all three control cell types. A striking example of this sit-
uation was observed for the CCDC84 gene (Supplemental
Fig. S2C), for which the transcripts derived from the use of
U12 splice sites (producing PTC-containing transcripts) or
U2 donor and U12 acceptor splice sites (coding the full
length protein of unknown function) are found in similar
abundance. Hence, the type of splice sites selected to re-
move this intron from theCCDC84 pre-mRNA can regulate
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the amount of the full length protein which is produced
without changing the transcriptional expression level of
the gene.
Overall, beyond the description of these novel mecha-

nisms, this first global analysis of U12-type intron splicing
in cells from control children and fetuses provides a refer-
ence for studying the consequences of RNU4ATAC bial-
lelic mutations on the transcriptome of cells derived from
TALS patients.

Global impact of RNU4ATAC biallelic mutations on
transcriptomes of fibroblasts, amniocytes and LCL
derived from TALS patients

U12 mRNA expression levels in patients and controls

The PCA performed on either U2 or U12 genes expression
levels (TPM measures) in the 22 data sets of the extended
RNA-seq study (nine patient and 13 control samples) sepa-
rated cell types again but failed to separate patients from
controls (Supplemental Fig. S3). The fact that we did not
see any global impact of RNU4ATAC mutations on U12
gene expression levels using PCA was surprising because
one could expect that IR would trigger transcript degrada-
tion through quality control pathways, which would in turn
lower their amount. These quality control pathways dealing
with transcripts with retained introns could be the Non-
sense Mediated mRNA Decay (NMD) acting in the cyto-
plasm (Wong et al. 2013, 2016), or could include both
exosome-mediated mRNA turnover following nuclear
sequestration, and NMD (Braunschweig et al. 2014).
More specifically, U12-type IR have been shown to lead
to nuclear retention and nuclear decay by the RNA exo-
some (Niemela et al. 2014). In order to investigate U12
genes expression levels further, we ran DESeq2 on the fi-
broblast data sets from controls and patients to identify dif-
ferentially expressed (DE) genes (i.e., genes for which the
number of produced polyA+ mRNAs differs). Using stan-
dard cutoffs, that is, False Discovery Rate (FDR)≤5% and
|log2(FC)|≥1, we found only 13 DE genes (eight up-, five
down-regulated), none of them containing any U12-type
intron. The same analysis performed in the patient amnio-
cyte data set collection produced a list of 32 DE genes
(11 up-, 21 down-regulated), again all U2 genes, and all
different from those identified in fibroblasts except one
[RP11-305K5, log2(FC) = 1.6]. To evaluate the biological
relevance of these DE genes, we calculated how many
were identified in our RNA-seq fibroblast data sets in every
possible combination of patients and age- and sex-
matched controls and found that this numbermarkedly de-
creased with the increasing number of patient samples
(Supplemental Fig. S4). This pattern is similar to that
obtained with false negative results in a study evaluating
the number of biological replicates needed to ensure
detection of valid significantly differentially expressed

genes (Schurch et al. 2016). We therefore conclude that
the DE genes we identified here are likely not associated
to the pathology itself.

U12-type intron splicing in patients and controls

When performing PCA on U12-type IR levels using PSI val-
ues, we observed a clear partitioning of the patients and
the controls, as expected, while the same analysis on U2-
type IR failed to separate patients from controls (Fig. 1,
top and bottom left). Axis 1 of the U12-type IR PCA (PC1:
88% of the variance) was essentially supported by LCL,
showing that this cell type has a specific “sensitivity” to de-
fects in U12-type intron splicing. Nevertheless, even when
removing LCL data from the analysis, we find that the par-
tition between patients and controls remains clear (Fig. 1,
bottom right).Wecan thus conclude from the PCAanalyses
that U12-type intron splicing appears indeed globally
altered in TALS patients, and that the splicing default
appears somehow different in the LCL compared to
fibroblasts and amniocytes. We next looked into more de-
tails at the global splicing anomalies associated with
RNU4ATAC mutations in each cell type.

Splicing efficiency of U12- and U2-type introns
in fibroblasts and amniocytes derived from
TALS patients

Because the separate analysis of TALS fibroblasts and
amniocytes produced similar results, we present them to-
gether. The fibroblast data sets (F) were obtained from
three homozygous g.51G>Apatients, two compoundhet-
erozygousg.51G>A;g.50G>Candg.40C>T;g.124G>A
patients and eight controls; the amniocyte data sets (A)
from two homozygous g.51G>A patients, one compound
heterozygous g.51G>A;g.124G>A patient and four
controls.

U2-type intron retentions

As expected, the mean PSI values for the U2-type introns
passing our filters (seeMaterials andMethods) were similar
in patients and controls [respectively 4.6% vs. 4.3% (F) and
5.1% vs. 5.2% (A)], suggesting that the TALS patients’ cells
exhibit unchanged U2-type intron splicing profiles.
Indeed, a very small fraction of U2-type introns were found
markedly retained (ΔPSI≥ 10% and FDR≤ 5%) in patients:
79 out of 54922 (F); 133 out of 59255 (A). Only eight of
them were found in both data sets, six of which occurring
in U12 genes. As the current annotation is conservative
and splice sites that show poor homology with U2- and
U12-type intron consensus sequences tend to be consid-
ered U2-type, we suspected that some of the retained
“U2-type introns” could be misclassified and should be re-
classified as U12-type introns. Indeed when examining
them, we identified four introns with non consensus splice
site sequences located within the RECQL5, DERL2,
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KIAA0556 and LZTR1 genes (Fig. 2 left, red dots;
Supplemental Table S3; Supplemental Fig. S5). For these
atypical donor or acceptor splice site sequences, at least
one score regarding both U12- and U2- type introns is in-
ferior to −1 (scores are log-likelihood ratios: A sequence
with a negative score resembles more the background se-
quence than the consensus one). Such borderline cases
are difficult to classify, and depending on the genome an-
notation used, their score slightly increases or decreases,
causing the classifier to call them U12 or U2. Of note,
they were originally classified as U12- or U2/U12-types in
U12db (which uses U12 classification scripts, genomic se-
quences and annotations of 2007), not only in humans

but also in macaques and chimpanzees for RECQL5 and
in many other species including zebrafish and mouse for
DERL2, LZTR1, and KIAA0556. The fact that these introns
are markedly retained in TALS samples strongly suggests
that they are genuine U12-type introns, consistent with
their higher scores for U12 compared to U2 splice site se-
quences. We thus propose to reclassify them as U12-type
introns.

U12-type intron retentions

PSI computation was achieved for 482 (F) and 430 (A) U12-
type introns, including the four introns that we previously

FIGURE 1. Patterns of U2- and U12-type IRs in TALS patient and control cells. Principal component analyses of themost variable mean PSI values
of U2- and U12-type introns are presented. PCA for U12-type introns was performed with (left) and without the LCL data sets (right). Fibroblasts,
amniocytes and LCL were derived from tissues taken from control or TALS fetuses and children. The sex of the donor fromwhich was derived each
sample is indicated (M, Male; F, Female), as well as the RNU4ATAC mutation(s) for the patients’ samples. (ns) not significant (the percentage of
variance explained by the axis is smaller or equal to the percentage of variance expected by chance, see Materials and Methods).

Cologne et al.

1136 RNA (2019) Vol. 25, No. 9

Cold Spring Harbor Laboratory Press on September 25, 2019 - Published by rnajournal.cshlp.orgDownloaded from 



reclassified as U12. As expected, we found that the mean
PSI was higher for patients (∼6%) than for controls (∼3%) in
both fibroblasts and amniocytes (Table 2; Fig. 2, right), tes-
tifying that minor splicing was indeed impaired in patients.
Of note, mean PSI were higher in fibroblasts derived from
the two RNU4ATAC compound heterozygous patients
(Fig. 2A right, last two boxplots; Supplemental Table S4)
than in the homozygous patients. However, surprisingly,
the magnitude of the effect was limited. As a matter of
fact, the vast majority of U12-type introns were statistically
significantly misspliced (FDR<5%), but most of them were
only marginally affected (ΔPSI < 10%) (Table 2). The larger
fraction of statistically significant U12-type IR observed in
fibroblasts compared to amniocytes is most likely due to

the larger patient/control sample set in the former (13 vs.
7, respectively), hence increasing the statistical power
and enabling us to find more statistically significant small
effects.

Concomitant U12- and U2-type intron retentions

For some U12-type IR, we noticed that the 5′ or 3′ neigh-
boring U2-type intron was also retained. The example of
the DYNC1LI2 gene is given in Figure 3, top. The analysis
of the 55 (F) and 33 (A) U12-type marked IR revealed
respectively nine and three instances of concomitant
U12- and neighboring U2-type IRs suggesting that the
missplicing of some U12-type introns could lead to the

FIGURE 2. Comparison of U2- and U12-type IR levels in TALS patient and control cells. Analysis of the (A) fibroblast data sets or (B) amniocyte
data sets. (Left panels) Plots of the mean U2- and U12-type IR levels expressed with the Percent Spliced In (PSI) metric and obtained for the pa-
tients’ versus the controls’ data sets (PSI-plots). Each circle represents an intron: the color indicates its type (U12∗ means U2-type intron proposed
to be reclassified as U12-type in this study), the size indicates the amount of the corresponding transcript, and the filing status indicates the sig-
nificance of the IR level (filled circle: FDR≤ 5%; unfilled circle: FDR>5%). The intron position respective to the line indicates whether the intron is
more retained in patients (above the line) or controls (below the line). The further a point is from this line, the greater the intron’s ΔPSI. (Right
panels) Boxplots of U2- and U12-types intron PSI values of each patient’s and control’s data set (PSI-boxplots). Mean values are represented
as black dots. The numbers of U2- and U12-type introns indicated correspond to those with robust PSI estimation and sufficient coverage in
each sample.
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retention of the 5′ or 3′ adjacent U2-type intron. The scores
of the splice sites of these U2-type introns are not different
from those of the other U2-type introns, and they have
weak U12 splice site scores (Supplemental Fig. S5, black
points). Interactions between the minor and the major spli-
ceosomes have already been suggested (Wu and Krainer
1996; Lewandowska et al. 2004; Tapial et al. 2017;
Horiuchi et al. 2018), and our study provides additional ob-
servations further supporting this hypothesis.

Fibroblasts and amniocytes obtained from the same
patient

We took advantage of the availability of both amniocytes
and post-natal fibroblasts for a homozygous g.51G>A pa-
tient to assess U12- and U2-type IR in the same genetic
background: This analysis revealed that the mean PSI
and the PSI distributions of both U2- and U12-type introns
were similar in these two cell-types (Supplemental Fig. S6,
left).

Other types of U12-type intron alternative splicing

Vast-tools and KisSplice identified respectively four and
two U12/U2 splice site switchings in the fibroblast and
amniocyte data sets, all of them in favor of the use of U2
splice sites in TALS patients. In particular, both cell types
exhibited the same splice site switching event in the
CCDC84 gene (shown for the fibroblast data sets in Fig.
3, bottom). The balance of the transcripts derived from
the use of either the U12- or the U2-type splice sites ob-
served in controls (∼65%/35%, respectively) was strongly
shifted toward the U2 sites-derived coding transcript in
TALS patients (∼15%/85%) in both cell types, hence prob-
ably increasing the abundance of the functional full-length
protein.

TABLE 2. Summary of the U12-type introns results from TALS and RFMN patients’ data sets compared to controls’ data sets

Data sets TALS fibroblasts TALS amniocytes TALS LCL RFMN MBC

Number of patients versus controls 5 versus 8 3 versus 4 1×2 versus 1×2 2 versus 3

Number of tested U12-type introns 482 430 480 285
Mean PSI patients versus mean PSI controls 6.7% versus 2.4% 6.4% versus 3.3% 27.5% versus 4.8% 28.7% versus

6.0%
Number of not retained or not significantly retained
(FDR>5%) U12-type introns

100 242 12 17

Number of significantly retained (FDR≤ 5%) U12-type
introns

382 188 468 268

Number of marked (|ΔPSI|≥10%) and significantly retained
(FDR≤5%) U12-type introns

55 33 370 208

Mean ΔPSI 17.8% 17.5% 27.6% 28.9%

x2, technical replicates.

FIGURE 3. Alternative splicing of U12-type introns in TALS patients’
fibroblasts. Sashimi plots showing a U2-type intron/U12-type intron
coupled retention in theDYNC1LI2 gene (top) and aminor/major spli-
ceosome switching event in the CCDC84 gene (bottom). The y-axis
corresponds to the mean coverage of each base of the genomic coor-
dinates (x-axis). Reference annotations are given on the lowest part of
the figure, with annotated exons and introns shown as thick and thin
horizontal lines, respectively. U12 and U2 splice sites are marked
with yellow and black vertical bars, respectively. Splice junction reads
are drawn as arcs connecting a pair of exons. Mean percentage of
reads supporting the splicing of either the U12- or U2-type intron
are indicated in yellow and black boxes, respectively.
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Splicing efficiency of U12-type introns in LCL derived
from a TALS patient

The PCA analysis of PSI values obtained with our RNA-seq
study showed that in TALS patients, the pattern of U12-
type IR in the LCLmarkedly differed from that seen in fibro-
blasts and amniocytes (Fig. 1, bottom left). Analysis of the
data sets from two TALS LCL technical replicates revealed
that U2-type intron splicing was globally unaffected (mean
PSI: 4.9% vs. 4.8% for the patient and the control, respec-
tively), while U12-type intron splicing was severely affect-
ed. Indeed, the mean ΔPSI obtained from TALS patient
and control data sets was 19.7% in the LCL, compared to
4.4% and 3.1% in fibroblasts and amniocytes, respectively
(Table 2). Looking into further details, we found that 98%
of the 480 U12-type introns with a sufficient number of
reads for the analysis were more retained in the TALS
than in the control LCL sample and that, strikingly, 79%

(370/468) of these retentions had a ΔPSI≥10%, as seen
when comparing Figure 4A with Figure 2. Other types of
U12-type intron alternative splicing were also far more fre-
quent [69 U12/U2 splice site switching vs. 4 (F) and 2 (A)].
On the other hand, a high level of U2-type IR was not ob-
served, ruling out a sequencing or sample preparation
problem. The highmagnitude of the U12-type intron splic-
ing defects observed in the LCL of the TALS patient was
also unlikely to be due to individual particularities because
the comparison in this patient of the mean PSI values ob-
tained for U12-type introns in the LCL versus the fibroblast
data sets revealed a marked difference (Supplemental Fig.
S6, right). We also found more adjacent U12- and U2-type
IRs [18 vs. 9 (F) and 3 (A)], among which two, in DYNC1LI2
and DERL2, were common to all cell type data sets.
The high U12-type IR observed in the present work

in the TALS LCL were reminiscent of the massive dereg-
ulation of U12-type intron splicing reported in the

FIGURE 4. Comparison of U12-type IR levels in TALS and RFMNpatient and control blood cells. Analysis of the (A) TALS LCL (lymphoblastoid cell
line) data sets or (B) RFMN MBC (mononuclear blood cells) data sets. The TALS patient’s and control’s LCL data sets consist of two technical
replicates for each. (Left panels) U12-type intron PSI-plots obtained for the patients’ versus the controls’ data sets. (Right panels) U12-type intron
PSI-boxplots of each patient’s and control’s data set. Legend as in Figure 2.
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transcriptomes of blood cells derived from six RFMN pa-
tients belonging to six families (Merico et al. 2015; Dinur
Schejter et al. 2017; Heremans et al. 2018). In order to in-
vestigate further the extent of similarity of U12-type intron
splicing patterns in blood cells derived from patients with
these two RNU4ATAC-associated pathologies, we reana-
lyzed with the pipelines that we set-up for our study the
raw data of the transcriptomic sequences of mononuclear
blood cells (MBC) taken from two unrelated RFMN pa-
tients (Merico et al. 2015), along with that of three of their
heterozygous unaffected relatives (brothers or father of the
patients). Different expression and splicing profiles were
expected as TALS and RFMN are distinct pathologies
and, besides the cells’ common tissue’s origin (blood),
MBC and LCL have marked differences, that is, all types
of mononuclear blood cells are present in MBC, while
LCL consists of B lymphocytes only, furthermore immortal-
ized by EBV infection, which has been shown to impact
gene expression (Lopes-Ramos et al. 2017). Besides, the
age at which the blood samples were obtained widely dif-
fers between the two studies (babies vs. adults) and the
TALS patient and her control are female while the RFMN
patients and their controls are male (Table 1). Finally, an-
other important difference was that the TALS data sets
were sequenced with higher depth compared to RFMN
data sets (125 vs. 47 million of mean aligned reads).

Indeed, not surprisingly given their specificities, PCA
showed that U2 andU12 gene expression levels clearly dis-
tinguished LCL from MBC; patients and controls from the
same collection of data sets grouped together related to
the first axis, which explains in both cases more than 65%
of the variance (Supplemental Fig. S7A). Concerning U2-
type IR, PCA of the mean PSI values did not separate LCL
from MBC samples, but separated four of the five MBC
samples from the LCL and the fifthMBCsamples on the first
axis (60% of the variance, Supplemental Fig. S7B, left).
These four MBC samples derived from the oldest studied
individuals (38, 43, 57, and 67 yr old, compared to 2 mo:
LCL sample and 21 yr old: fifth MBC sample), suggesting
that age may have an impact on the extent of U2-type IR
in blood cells, as previously suggested in the brain (Mazin
et al. 2013). Accordingly, we found more than 2000 U2-
type IR in the older controls compared to the younger
RFMN patients (Fig. 4B, black dots).

Concerning U12-type IR, PCA of the mean PSI values
separated TALS and RFMN patients from controls on the
first axis (79% of the variance, Supplemental Fig. S7B,
right). We did observe separation between TALS LCL
and RFMN MBC on the second axis of the PCA, but it ex-
plained only 10% of the total variance. When looking at
mean U12-type IR values, we observed a strong similarity
between the two data sets, as illustrated in Figure 4 (left,
yellow dots). Mean PSI were 28.7% in RFMN MBC and
6.0% in control MBC compared to 27.5% and 4.8% in
the TALS LCL study, respectively (Table 2), and the mean

ΔPSI was 28.9% compared to 27.6%. Because of cell-
type specificities and/or different sequencing depths be-
tween them, 140 marked U12-type IR found in TALS LCL
could not be analyzed in RFMN MBC (13 reciprocally).
After filtering them out, we found that 171 marked U12-
type IR were common to TALS LCL and RFMN MBC sam-
ples (representing 74% and 87% of them, respectively). Of
note, only one alternative U12-type intron splicing event,
the splice site switching in the uncharacterized CCDC84
gene, had high and similar ΔPSI in all the patient data
sets (TALS fibroblasts, amniocytes, LCL and RFMN MBC,
mean |ΔPSI| = 54%). Altogether, our results suggest that
the magnitude of U12-type intron splicing dysfunction
could be, firstly, quite similar in blood cells from TALS
and RFMN patients, and secondly, highly tissue-depen-
dent, trends that will need to be investigated further.

qRT-PCR validation of U12-type intron missplicing

To confirm the RNA-seq results, we determined the level
of retention of nine U12-type introns with various statisti-
cally significant mean ΔPSI values ranging from 0 to 37%
using a quantitative RT-PCR (qRT-PCR) approach on RNA
extracted from fibroblasts derived from five patients and
five age- and sex-matched controls. We found a strong
concordance between RNA-seq and qRT-PCR mean ΔPSI
values using the same metrics (r² = 0.86, Fig. 5). Of note,
even weak effects (mean ΔPSI = 6%) could be confirmed
by qRT-PCR.

FIGURE 5. Comparison of U12-type IR levels measured by qRT-PCR
and RNA-seq. Correlation between the mean ΔPSI values obtained
by qRT-PCR when testing introns from ten genes in fibroblasts de-
rived from five patients and their age- and sex-matched controls
and those obtained by RNA-seq. Error bars represent standard er-
rors of the mean in both experiments (vertical: RNA-seq; horizontal:
qRT-PCR). The linear regression is shown, together with the squared
correlation coefficient. The names of the genes whose intron was
tested are indicated. The color of gene names indicates the intron
type (U12∗: U2-type intron proposed to be reclassified as U12-type
in this study).
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Gene pathways affected in cells derived from TALS
patients

Because 97% of the U12-type introns were retained in the
TALS LCL data set, precluding classical enrichment analy-
sis, we focused our attention on identifying genes and
pathways impacted by U12-type intron missplicing on
TALS fibroblasts and amniocytes. As a preliminary study,
we first scrutinized the 26 genes with marked U12-type
IR common to both data sets (Supplemental Table S1),
and found that a high proportion of them were involved
in signal transduction (11/26), notably through Notch
(C3orf17) or Sonic Hedgehog (IFT22, TMEM107) signaling
pathways; genes involved in protein degradation were also
represented in a substantial proportion (6/26). We next
wanted to look into more details at U12 genes with
misspliced transcripts, potentially leading to reduced
level of functional proteins, taking into account all the stat-
istically significant differential U12-type IR and U12/U2
splice sites switching found in the two cell types. Toward
this goal, we performed a Gene Ontology (GO) term anal-
ysis with TopGO (Alexa and Rahnenfuhrer 2016) and
compared misspliced to correctly spliced U12 genes, us-
ing either the FDR or ΔPSI values as weights. These two
analyses revealed 34 and 12 enriched terms, respectively,
and we found, in both of them, instances related to devel-
opmental processes, response to stimulus, signaling and
interestingly, immune system processes (Supplemental
Table S5).

DISCUSSION

Transcriptome analysis by RNA-seq has tremendously en-
hanced our knowledge on gene expression and intron
splicing, shedding light on alternative splicing at a large
scale and on its relevance in various cellular contexts.
However, this technological revolution has mostly benefit-
ed to the understanding of U2-type intron splicing. On the
other hand, the U12-type introns and U12 genes, as very
small minorities, have been largely neglected, despite
their acknowledged importance in embryonic develop-
ment and survival. The few published analyses focusing
on U12-type intron splicing were conducted in plants
(Gault et al. 2017), fish (Markmiller et al. 2014), or human
cancer cells in order to study gene expression regulation
(Younis et al. 2013; Niemela et al. 2014). A few additional
studies were conducted in the context of pathologies asso-
ciated with aminor splicing defect, either due tomutations
in snRNA components of the minor spliceosome, mainly
RFMN syndrome (Merico et al. 2015; Dinur Schejter et al.
2017; Heremans et al. 2018) and early onset autosomal re-
cessive cerebellar ataxia (Elsaid et al. 2017), or in protein
components specific to the minor spliceosome, such as
observed in isolated familial growth hormone deficiency
(Argente et al. 2014), and myelodysplastic syndrome

(Madan et al. 2015). Actually, little is known about global
U12 gene expression and U12-type intron splicing in phys-
iological conditions in human cells. Therefore, we started
our study by tackling these questions in our control data
sets consisting of eight fibroblast, four amniocyte, and
one lymphoblastoid cell line (LCL) samples derived from
control fetuses and children. In these control cells, we
found that (i) ∼60% of the 699 U12 genes are consistently
expressed in the three different cell types, and (ii) the dis-
tribution of the levels of transcriptional expression of U12
genes is highly homogenous between these cell types
and peaks at around 30 TPM, as observed for U2 genes.
We also observed several occurrences of U12/U2 splice
site switching. Alternative splicing of U12-type introns us-
ing U2 cryptic donor and acceptor sites, originally de-
scribed in insects (for review, see Hafez and Hausner
2015), had already been reported in human cells as the re-
sult of U6atac snRNA inactivation (Younis et al. 2013),
knockdown of the 48K protein (Turunen et al. 2008), and
in the context of isolated familial growth hormone defi-
ciency (Argente et al. 2014), and myelodysplastic syn-
drome (Madan et al. 2015). However, this is the first time
that such alternative splicing events are found to occur
physiologically in humans. Because the consensus se-
quences for the acceptor sites of U2- and U12-type introns
are less divergent than that of the donor sites, we suppose
that the major spliceosome was used for splicing the U2
donor-U12 acceptor mixed introns and the minor spliceo-
some for the less abundant U12 donor-U2 acceptor mixed
ones.
After having determined the frame of U12 gene expres-

sion and U12-type intron splicing in the context of a func-
tional minor spliceosome, we set out to identify the
consequences of biallelic RNU4ATAC mutations within
these cell types in five fibroblast, three amniocyte and
one LCL samples derived from seven unrelated TALS pa-
tients. Rather surprisingly, we did not observe any impact
of such mutations on U12 or U2 gene expression in
fibroblasts or amniocytes derived from TALS patients, al-
though we used the tool (DESeq2) and cutoffs [FDR≤5%;
|log2(FC)|≥ 1] recommended for such a data set size (five
patients vs. eight controls) (Schurch et al. 2016). Our
previous qRT-PCR study on fibroblasts derived from two
homozygous g.51G>A TALS patients and two age- and
sex-matched controls (biosamples also included in the
present study) had shown that 12 of the 22 tested U12
genes—chosen randomly among those reported as being
expressed in the skin—presented a differential expression
(Edery et al. 2011). However, we now believe that this
previous result most likely stemmed from biological and/
or inter-individual variations that could not be correctly
modeleddue to the small numberof samples, and illustrate
the necessity to usemore stringent criteria when studying a
very small number of biological samples. Although we can-
not rule out the possibility that a number of U12 genesmay
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be slightly differentially expressed—but identifying them
would require more than 20 biological replicates (Schurch
et al. 2016)—we conclude that U12 gene expression levels,
that is, the number of poly(A)+ transcripts produced, are es-
sentially unchanged in TALS fibroblasts and amniocytes
compared to controls.

Then, we studied splicing efficiencies and found that
most U12-type introns were significantly retained in the
TALS transcriptomes whatever the cell type studied.
Hence, even though the number of poly(A)+ transcripts is
unchanged for most genes in patients’ compared to con-
trols’ cells, a fraction of them, larger in patients, contains
U12-type IR and cannot lead to functional proteins. Al-
though these IR were statistically significant, we found
that their magnitudes were small in the fibroblast and
amniocyte data sets, with only 14%and18%of the retained
U12-type introns showing a ΔPSI≥ 10%, respectively. In
contrast, these U12-type IR were much more pronounced
in the LCL data set, as 79% had a ΔPSI≥ 10%. Considering
that the overall transcript levels are unchanged but splicing
is altered, we conclude that the number of transcripts that
could be translated into functional proteins is therefore
mildly decreased in fibroblasts and amniocytes, and largely
decreased in lymphocytes. The extreme rarity of the TALS
syndromeand theprematuredeathof the children affected
with this disease did not permit us to collect additional
blood samples up to nowandhence analyze LCLbiological
replicates. Nevertheless, several lines of evidence support
the assumption that peripheral blood cells may exhibit par-
ticularly pronouncedU12-type IR: (i) This difference in U12-
type intron splicing efficiencywas clearly visiblewhen com-
paring cells derived from skin and blood taken the same
day on the same TALS child, while no difference was seen
for another TALS child between amniotic fluid taken in
utero and skin at 10 mo of age (Supplemental Fig. S6); (ii)
similar high levels of U12-type IR were observed in the
RFMN MBC and TALS LCL data sets, despite the different
pathologies, blood cell subtypes analyzed, gender and
age of the patients, and RNA-seq settings (Fig. 4); (iii) a
comprehensive analysis of IR performed on 52 human
samples from different cell and tissue types showed that
the highest percentage of retention was found in white
blood cells (>30%, compared to <5% in fibroblasts) (Braun-
schweig et al. 2014).

We observed that the competition between the major
and minor spliceosomes for splicing some introns, which
we show here for the first time to occur physiologically in
humans, is more favorable to the major spliceosome in
TALS amniocytes, fibroblasts and LCL as compared to
the situation seen in control cells. This was particularly pro-
nounced for the CCDC84 gene, thereby increasing the
amount of the full length protein of as yet uncharacterized
function.

Unexpectedly, exclusively in the TALS LCL data set (Sup-
plemental Fig. S9), we found reads for all spliceosomal

snRNAs at the exception of U6 and U6atac, an observation
also made in a previous analysis of RFMN data sets (Dinur
Schejter et al. 2017). Thiswas unexpectedbecause snRNAs
belong to the nonpolyadenylated class of RNAs, yet we
performed RNA-seq experiments on poly(A)+ RNAs. We
postulate that the accumulation of polyadenylated snRNA
precursors may have resulted from a deficient Integrator
complex,which plays apivotal role in the 3′-endprocessing
of the snRNAs transcribed by RNA Polymerase II, that is, all
snRNAs apart from U6 and U6atac (for review, see Guiro
andMurphy 2017). Integrator contains at least 14 subunits,
of which four are encoded by U12 genes, namely INTS4,
INTS7, INTS8, and INTS10, markedly differentially mis-
spliced in TALS LCL (ΔPSIINTS4=11.4%; ΔPSIINTS7=
28.6%; ΔPSIINTS8=16.5%; ΔPSIINTS10=34.1%). In contrast,
the U12-type introns of the three U12 Integrator genes ex-
pressed in the TALS fibroblast data sets had a very lowΔPSI
value (ΔPSIINTS7=2.5%; ΔPSIINTS8=1.6%; ΔPSIINTS10=
6.3%). Interestingly, mutations in INTS1 and INTS8 are
associated with impaired RNA splicing in rare recessive
neurodevelopmental syndromes with developmental de-
lay and distinctive appearance (Oegema et al. 2017). How-
ever, the absence of massive U2-type intron splicing
defects in LCL attests that despite this maturation default,
the amount of functional snRNAs of themajor spliceosome
is sufficient for efficient U2-type intron splicing and that
U12 Integrator genes missplicing is unlikely to be the
primary cause of the high magnitude of U12-type intron
missplicing in this LCL sample.

We observed that the level of IR is quite variable among
U12-type introns, even in TALS fibroblasts and amniocytes
where most introns are retained in only a marginal fraction
of transcripts. To try to understand why some U12-type in-
trons are more sensitive to a defective spliceosome than
others, we considered a number of intron features previ-
ously shown to influence IR in mammals, for example,
donor/acceptor splice site scores, GC content, intron
length (Braunschweig et al. 2014), and correlated them
with the level of U12-type intron missplicing using a linear
model (Supplemental Table S6). Among themany features
tested, only two were found to significantly correlate with
PSI values in patients. The first one is the PSI value in con-
trols (50% of the variance), whichmeans that introns poorly
spliced in controls are even more poorly spliced in pa-
tients. The second one is the gene expression level (10%
of the variance), which means that poorly expressed genes
are more subject to missplicing than the more expressed
ones, as had been previously reported for U2-type introns
(Saudemont et al. 2017). We also searched for enriched
motifs such as splicing enhancers that might bind a splic-
ing factor (Dietrich et al. 2001b) for explaining high PSI val-
ues but we were unable to identify such sequences,
leaving open the question of the remaining features caus-
ing U12-type intron “ultra sensitivity” to a defective spli-
ceosome for some of them.
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Transcriptome analyses show much promise in elucidat-
ing the pathogenesis of genetic diseases, even more in
those due to a splicing defect. However, it is well known
that expression programs for genes involved in develop-
ment are highly time- and tissue-specific, and even cell-
specific in the early stages of embryogenesis. The under-
standing of the molecular mechanisms involved in the
pathogenesis of TALS will require additional transcrip-
tomic analyses to be performed on different cell types at
various developmental or differentiation stages, hence ne-
cessitating to generate induced pluripotent stem cells
and/or develop animal models. Nevertheless, the present
finding that TALS and RFMN blood cells share a similar
pattern of U12-type IR and that the GO term analysis per-
formed on the TALS fibroblast and amniocyte data sets
showed an enrichment in immunity-linked terms suggest
that thorough investigation of TALS immune phenotype
should be carried out.

MATERIALS AND METHODS

Identification of U12-type introns in the human
genome

U12DB, the U12 Intron Database (http://genome.crg.es/cgi-bin/
u12db/u12db.cgi) released in 2006 by T. Alioto with the aim
to catalog U12-type introns of completely sequenced eukaryotic
genomes (Alioto 2007), has not been updated since its launch-
ing. We updated the list of human U12-type introns using
T. Alioto’s scoring matrices on a more recent genome annotation
[Gencode v19 (GRCh37)/Ensembl v75], the latest one at the time
of the analysis of the pilot project data sets. Out of 289,023 introns
annotated in Gencode v19, the pipeline classifies 846 of them as
U12-type introns (Supplemental Table S3). Those are located in
699 genes, of whom 105, 20, 3, and 1, respectively contained 2,
3, 4, and 5U12-type introns.Whenmore than oneU12-type intron
is present in a gene, in most cases (85/129), the coordinates of at
least two of these U12-type introns overlap, indicating that the
same U12-type intron can be spliced out using alternative U12
consensus splice sites.

Biological samples

Biospecimens were obtained from seven unrelated TALS
cases, four children (three RNU4ATAC homozygotes and one
RNU4ATAC compound heterozygote) and three fetuses (one
RNU4ATAC homozygote and two RNU4ATAC compound hetero-
zygotes), and deposited to the Lyon University Hospital Biobank
dedicated to genetic diseases for processing, storage and man-
agement (CBC Biotec of the Hospices Civils de Lyon, certified
with a specific French standard for biobanks, NF S96-900).
These biospecimens consisted of skin biopsies and amniotic fluid
from which primary fibroblasts and amniocytes were respectively
derived, and peripheral blood from which lymphoblastoid cell
lines (LCL) were established, following standard procedures. For
two children, two different types of samples were obtained: pe-
ripheral blood and skin biopsy for one, amniotic fluid during ges-

tation and skin biopsy after birth for the other. Adequate
biological samples from age- and sex-matched controls were pro-
vided by the CBC Biotec biobank. Informed written consent for
the use of these samples in research was obtained from all parents
of TALS patients, TALS fetuses and control fetuses and children.
The detailed characteristics of the analyzed samples, including
the information on whether they derived from post-mortemmate-
rial, are described in Table 1.

RNA extraction

RNA extractions were performed using the Nucleospin RNA kit
(Macherey Nagel) according to the manufacturer’s recommenda-
tions. A further round of DNase (Promega) treatment was system-
atically performed to remove any possible residual amount of
DNA. Total RNA concentration was then quantified with a
NanoDrop spectrophotometer (Nanodrop Technologies) and
RNA quality assessed using the Agilent 2100 Bioanalyzer
(Agilent). RNA integrity number (RIN) was >7 in all cases.

cDNA library preparation, high-throughput
sequencing

One to two micrograms of RNA were sent for RNA-sequencing
to IntegraGen Genomics (Evry, France), where a DNA library was
generated with the “TruSeq Stranded mRNA Sample Prep” kit
(Illumina) that comprises a step of mRNA purification using
oligo(dT) beads. A total of 28 RNA-seq experiments have
been performed at two different times: (i) A pilot study was per-
formed on a HiSeq 2000 sequencer (Illumina), yielding approx-
imately 716 million of nonstranded two time 100 bp paired-
end reads, with librairies obtained with RNA extracted from
skin fibroblasts taken on two TALS children homozygous for
g.51G>A and from the LCL derived from one of these children,
and from their matched controls (six RNA-seq experiments, see
Table 1). The reads thus obtained were analyzed as described in
the following paragraph: it showed that the extent of IR being
low, additional samples needed to be analyzed in order to ob-
tain reliable results. (ii) An extended study was later performed
on a HiSeq 4000 sequencer (Illumina), yielding approximately
2670 million of stranded two time 75 bp paired-end reads,
with librairies obtained with RNA extracted from all the samples,
including those already sequenced in the pilot study in order to
have technical replicates for some of them (22 RNA-seq experi-
ments, see Table 1). Sequencing metrics are given for each sam-
ple in Supplemental Table S7. Raw RNA-seq data are available
upon request.

qRT-PCR

cDNA synthesis was carried out with 1 μg DNA-free RNA (the
same batches as those used for RNA-seq) using GoScript
Reverse Transcription System and oligodT primers (Promega) ac-
cording to the manufacturer’s protocol. qRT-PCR was performed
using the Rotor-Gene SYBR Green PCR kit and Rotor-Gene Q
(Qiagen) according to the manufacturer’s protocol. All experi-
ments were done in three replicates.
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Bioinformatics analysis of RNA-seq data

Splicing analyses

Our three bioinformatics pipelines, shown in Supplemental
Figure S10, are composed of multiple steps executed by various
tools to achieve three goals: (i) read alignment/assembly; (ii) read
quantification; (iii) alternative splicing event quantification and
statistical analysis, with a special focus on IR.

IR identification and quantification in RNA-seq data is a difficult
bioinformatics task for multiple reasons (discussed in detail in
Vanichkina et al. 2018). To date, only four dedicated tools are
available: vast-tools (Tapial et al. 2017) (which can also detect oth-
er types of alternative splicing events); IRcall/IRclassifier (Bai et al.
2015); intEREst (Oghabian et al. 2018), and IRFinder (Middleton
et al. 2017). Their main difference lies in the intronic read quanti-
fication method: Vast-tools outputs the number of exon-intron
junctions reads, IRcall/IRclassifier the number of reads aligned
to the full intron, intEREst and IRFinder the read coverage of
specific intronic regions that do not correspond to low complexity
regions or alternative exons, hence improving precision. Further-
more, IRFinder reduces the impact of heterogeneous coverage by
discarding 60% of the intronic regions’ bases containing the high-
est and lowest covered bases, and it also outputs the number of
exon–intron junctions reads. We thus chose to use IRFinder, be-
ing the most precise tool.

IR detection and quantification method (IRFinder v1.2.0,
mapping-first)

RNA-seq read quality control was performed using FastQC
v0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Reads were mapped with STAR v2.5.0b (Dobin et al.
2013) using IRFinder’s custom STAR index of the latest annotation
of the GRCh37 assembly (Ensembl v75) and default parameters.

Splicing-supporting reads are reads aligning to an exon-exon
junction. An overhang (minimal number of bases around a junc-
tion covered by an aligned read) of five was required to consider
that any read is aligned to a junction. Hence, the number of
unique positions on a junction where a 75 bp read (in the case
of our study) can be aligned (referred to as “effective size”) is:

effective size = read length− 2× overhang+ 1

effective size = 66.

Any read fully covering one of these 66 positions will be counted
as a splicing-supporting read.

We then used two strategies to select splicing- and retention-
supporting reads depending on the number of an intron’s infor-
mative bases.

Retention-supporting reads can either be reads aligning to the
intron body or reads aligning to one of the two exon-intron junc-
tions. In general, IRFinder will use both intron body reads and
exon-intron reads. In the cases where the number of informative
bases is too low (≤40 bases or <70% of the total number of bases
of the intron, 31% of U2- and U12-type introns), for example, most
of the intron length is covered by repeats or annotated features,
IRFinder is conservative and reasonably chooses not to compute
the intronic read coverage. However, it also does not compute
exon–intron junction reads coverage. We argue that this latter
quantification could still be of interest, as although it does not in-

dicate the full intronic coverage, it still testifies that this peculiar
intron’s splice sites were not used for splicing. In other words,
exon–intron junctions quantification does not indicate the type
of the alternative splicing event (it could either be an IR or a alter-
native donor+ acceptor), but still indicates the amount of
unspliced intron. In order to force IRFinder to do the exon–intron
quantification for all introns, we rewrote a specific test in its code
(intronExclusion.pl, line 83: if ($newlen > 40 && ($newlen/$len)≥
0.7) { replaced by if ($newlen>0) }). For the special case of U12-
type introns with no informative base (167 cases), IRFinder 1.2.0
could not be run and we had to develop a custom python script
( junctionsCover2IRF.py) to do the quantification. For a given list
of introns, a read length and BAM files, this script uses samtools
view to quantify the number of aligned reads on the exon–exon
junction and the two exon–intron junctions and creates a file
formatted in the same way as a conventional IRFinder file, allow-
ing us to merge them together (Supplemental Fig. S10). In the
following analyses, the retention-supporting reads will either
be reads aligned to the intron body, or reads aligned to the
exon–intron junctions if the number of informative bases of the
intron was smaller than the effective length of the exon–intron
junction (66 nt).

The list of introns we analyze corresponds to constitutively
spliced introns, but also to alternatively spliced introns, some of
which are spliced out only in specific tissues. Out of all introns an-
alyzed, some are never seen spliced out in our data sets. We
chose not to consider them as introns as they would otherwise ar-
tificially increase IR rates. In practice, we did not analyze IR for all
introns with less than five splicing-supported reads on average in
the control samples and for each cell-type. Among the IR suffi-
ciently covered (see Filters for PSI and ΔPSI computation below),
this filters out 4687, 5468, 4469, and 3239 introns (among which
12, 13, 18, and 7 were U12-type introns) in the primary fibroblast,
amniocyte, LCL, and MBC data sets, respectively.

Alternative splicing events detection with annotation
(vast-tools v2.0.0, mapping-first)

In addition to IR, vast-tools (Tapial et al. 2017) can also detect
three other types of alternative splicing events: alternative donor,
alternative acceptor and exon skipping. Vast-tools results con-
cerning IR are not presented because >99% of the differential
U12-type IR detected by vast-tools were also found by IRFinder,
but only 35% or less of the differential U12-type IR detected by
IRFinder were also found by vast-tools. All results are however
available in the supporting shiny interface (http://lbbe-shiny
.univ-lyon1.fr/TALS-RNAseq/). Briefly, vast-tools aligns the reads
from each sample on different references (genome, exon–exon
junction,…) using BOWTIE (v1.1.2.), and then analyzes the align-
ment file to quantify the number of reads supporting the inclusion
or exclusion of an exon for each of its 213,087 possible alternative
splicing events annotated in its database.

Some introns from the vast-tools’ splicing event database were
not annotated inEnsembl v75. In order todetermine their type,we
ran T. Alioto’s scripts on these introns if both of their splice sites
were annotated in Ensembl v75. This resulted in 56 new U12-
type introns (ofwhich 55 overlappedwith a knownU12-type intron
but used a different acceptor site, Supplemental Table S3).

Because this method cannot detect alternative splicing events
which are absent from its database, we also used an assembly-first
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and annotation-free method for alternative splicing events
detection.

Alternative splicing events detection without annotation
(KisSplice v2.4.0-p1, assembly-first)

Briefly, KisSplice (Sacomoto et al. 2012) assembles the reads in a
de Bruijn graph and searches for so-called bubbles in this graph,
which correspond to alternative splicing events. The two paths of
the bubble are then mapped to a reference genome using
STARlong v2.5.0b, and the resulting alignments are processed
by KisSplice2RefGenome to annotate the event, by assigning it
notably a gene name and an AS subtype. We recently showed
(Benoit-Pilven et al. 2018a) that this assembly-first approach was
particularly adapted to identify novel splice sites. This advantage
comes at the expense of poorer performance for long and unfre-
quent variants, because de novo assembly requires more cover-
age. This is the reason why we do not use KisSplice to analyze IR.

Counts normalization, PSI/ΔPSI computation, and
differential analysis (kissDE)

IRFinder, vast-tools and KisSplice all output the number of reads
supporting the inclusion (i.e., a retained intron or exon) or exclu-
sion (i.e., a spliced intron or skipped exon) transcript in each sam-
ple and for each IR/alternative splicing event. The bioconductor R
package kissDE (https://www.bioconductor.org/packages/devel/
bioc/html/kissDE.html) (Benoit-Pilven et al. 2018b) was then used
for counts normalization, splicing event strength estimation (PSI
and ΔPSI) and differential analysis between two conditions (FDR).

Briefly, kissDE starts by normalizing the read counts for the li-
brary sizes using DESeq2, and by normalizing the inclusion-sup-
porting reads by the length of the inclusion (that can be very
large for IR events) compared to the exclusion. Then, for each
splicing event, kissDE computes a PSI for each sample. In the con-
text of this study, where several replicates are available for the pa-
tients and controls, a mean PSI is calculated for each condition,
and corresponds to the patients/controls PSI used throughout
this article. In the Results section, we also used the mean ΔPSI
of all U12- or U2-type introns in a data set. Finally, a differential
analysis is run that models counts with either a Poisson (for tech-
nical replicates) or a negative binomial (for biological replicates)
distribution, and uses the generalized linear model framework
to model the expected signal intensity. A likelihood ratio test is
used to estimate the probability of an interaction between the
splice-forms (inclusion and exclusion) and the condition. The
Benjamini–Hochberg procedure is used to account for multiple
testing and compute FDR values.

We considered an alternative splicing event statistically signifi-
cant if its FDR≤ 5%, and markedly significant if, in addition, its
|ΔPSI|≥10%.

Local expression value

The local expression (locExp) value, calculated for each intron, is
the number of reads attesting to either the inclusion or exclusion
of an intron, and is defined as:

locExp = excReads + incReads/2

locExp∗ = excReads∗ + incReads∗/2,

with excReads the number of reads on the exon–exon junction
and incReads the number of reads on both exon–intron junctions.
A star indicates library-sized normalized counts.
The main advantage of using the local expression value is that

there is no need to infer full-length transcripts and their abun-
dance, a notoriously difficult and error-prone task (Steijger et al.
2013), to derive an estimation of transcripts expression. It also
has the advantage of directly focusing on transcripts which con-
tain the exons flanking the intron of interest. In contrast, a mea-
sure of gene expression based on counting all reads falling
within the gene boundaries will also include reads stemming
from transcripts which do not overlap the intron of interest, for in-
stance in the case of alternative transcription start/end. It will also
be confronted with the difficult task of correctly estimating gene
length, in the presence of multiple alternative transcripts.

Filters for PSI and ΔPSI computation

To compute robust metrics, we apply a coverage threshold on the
local expression of an alternative splicing event. In a sample, both
the local expression and the normalized local expression values
must be ≥10 to compute the PSI value of an intron. At least half
of the patients and half of the controls must have a computed
PSI in order to have a ΔPSI estimation.

Differential gene expression analysis method
(DESeq2)

We tested if genes were differentially expressed between our two
conditions with the DESeq2 conventional pipeline (Love et al.
2014) HTSeq tool to generate gene expression values (Anders
et al. 2015).

Principal component analyses (PCA)

We used the dudi.pca function from the R package ade4 v1.7-11
(https://github.com/sdray/ade4) (Bougeard and Dray 2018) on ei-
ther a table of TPM or PSI. For each PCA, the most variable values
(up to 500) were used (as conventionally done in DESeq2) and the
first (PC1) and second (PC2) most explanatory axes were plotted.
We compared the percentage of the variance explained by each
axis of these PCA (PCAvar) to the mean of the ones obtained after
randomizing independently each row of the TPM or PSI table 100
times (randomVar). Axes with explained variance smaller or equal
to our randomized data (PCAvar≤ randomVar) are denoted with
ns (not significant) and should not be interpreted.

Intron retention validations

IR validations were carried out with RNA extracted from fibroblast
cell lines derived from patients TALS2, TALS4, TALS6 (all g.51G>
A homozygous), TALS10 (g.50G>C;g.51G>A) and TALS3
(g.40C>T;g.124G>A) and from five control children or fetuses
matched for age and gender. We tested introns with various
extent of IR (i.e., mean ΔPSI) from eight U12 genes (CLCN7:
6.5%, GPAA1: 11.4%, TMEM107: 13.7%, TMEM87A: 23.7%,
ZCCHC8: 25.1%, ENTHD2: 25.2%, HECTD2: 26.8%, RABL2A:
27.2%), one U2 gene reclassified as U12 in this study (U12∗,
RECQL5: 37.1%) and one control U2 gene that did not display
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IR (AARS: 0%). The ACTB gene (encoding β actin) was chosen as
the endogenous control. To be able to compare IR measured by
qRT-PCR to that measured by RNA-seq, we computed the mean
ΔPSI for each gene from qRT-PCR experiments as follows:

Rqi,t,C = 2C
∗tC−Cti,t,C ,

PSIi,C = Rqi,r ,C

Rqi,r ,C + Rqi,s,C
,

PSICtrl =
∑i=3

i=1 PSIi,Ctrl
3

,

DPSIi = PSIi,Patient − PSICtrl ,

DPSI =
∑i=3

i=1 DPSIi
3

,

with Ct the number of qRT-PCR cycle needed for the fluores-
cence to cross a given threshold (125), ∗ denoting the mean Ct
(from the three technical replicates) of the endogenous control
(ACTB), i the technical replicate, t the type of transcript quantified
(either r or s for transcript retaining or splicing the intron), C the
experimental conditions (eitherCtrl or Patient) and Rq the relative
quantification of the DNA with respect to the endogenous con-
trol. The RNA-seq mean ΔPSI was computed for each gene by
subtracting the PSI of each matched control/patient pair, and cal-
culating the mean.

GO terms enrichment analysis

We searched for GO terms enriched in our set of genes with U12-
type differentially spliced introns to highlight potential biological
processes specifically disrupted in patients and thus, possibly re-
lated to the phenotype. We used the topGO (Alexa and
Rahnenfuhrer 2016) (v2.30.1) R package using the genes for which
a U12-type intron alternative splicing event had been tested and a
user provided quantitative score for each gene. We performed
two different analyses using distinct scores. The first one defined
the score based on the FDR of a gene’s U12-type intron (minimum
FDR in the special case where a gene harbors multiple U12-type
introns or multiple splicing events for the same U12-type intron),
which correspond to the classical use of TopGO. Genes gain
more weight as their FDR value is close to 0. This should detect
GO terms enriched in genes with the most reproducible U12-
type intron alternative splicing events compared to unaffected
genes. The second analysis defined the score based on the |ΔPSI|
of a gene’s U12-type intron: The score is either 0 for genes with-
out any significant U12-type intron alternative splicing event or
the |ΔPSI| (maximum |ΔPSI| in the special case described above).
Genes gain more weight as their |ΔPSI| is close to 1. This should
detect GO terms enriched in genes with the highest differences
of missplicing between patients and controls compared to unaf-
fected genes. For each analysis, we used the Kolmogorov–
Smirnov test to account for the weights and we reported a GO
term as enriched if its P-value was ≤5% for either of our two
analyses.

In each analysis, the default “weight01” algorithm was used.
The following describes the parameters used to create the
topGOdata object in R: We searched for biological process

(ontology= “BP”) in the Gene Ontology DataBase version from
October 2018 (mapping= “org.Hs.eg.db”, annot= annFUN.org)
using Ensembl ID (ID= “ensembl”). The enriched GO terms
weremapped to a subset of more generic GO terms (GO slim) us-
ing the GSEABase R package v1.44.0 and the GO slim AGR sub-
set (go_slim.agr) downloaded on the GeneOntology website
(http://geneontology.org/docs/go-subset-guide/).

Features influencing U12-type IR

In order to identify features that could have an impact on the level
of U12-type IR, we used a linear model. We worked on all ana-
lyzed introns (using filters described in Materials and Methods)
in the fibroblasts data set. We wanted to explain the U12-type in-
trons’ mean PSI (mPSI) of the patients with a set of 32 explicative
variables (hereafter referred to as predictors), see Supplemental
Table S4. We used a log transformation of mPSI (Supplemental
Fig. S11A), since diagnostic plots (Supplemental Fig. S11B–E)
show that the assumptions of linear regression are much better
satisfied with this transformation. Zero values were replaced by
the minimum nonzero mPSI divided by two to guarantee that
the transformed value for zero is still lower than all other values.
For 15/32 predictors, we needed to define a major transcript for
each intron. In the case of multiple transcripts, we chose the
CCDS, as annotated in APPRIS (Rodriguez et al. 2013). In the
case of multiple CCDS, we chose the longest ORF. In case of
ties, we chose the longest transcript. We first performed a simple
linear regression to test each predictor in an independent way
[model = log(mPSI)∼predictor] using R version 3.5.1 and anova
[lm(model)], for the fitting and the variance analysis. P-values
and R-squared (R2) values (indicating the percentage of variance
explained) for each predictor are both reported in the
Supplemental Table S4. Then, we ordered the significant
(P-value≤ 5%) predictors by decreasing R2 value (predictor1, pre-
dictor2, …, predictorN). From the initial model m0= log(mPSI)∼
predictor1, we created the multiple linear regression model m∞
=m0+predictor2. We then compared these two nested models,
using a likelihood ratio test [anova(lm(m0), lm(m∞))], to decide
whether the additional predictor could be considered as signifi-
cantly associated to IR. If the P-value was ≤5% and R2≥ 1%, we
set m0=m∞, else we kept the same unchanged m0. We did
this up to predictorN to build the complete model. Each R2 value
is computed by dividing the sum-of-square of each predictor by
the sum of the sum-of-square of all predictors. The same analysis
was run to explain the U12-type introns’mean PSI of the controls.

Motif sequences analysis

In order to identify motifs enriched in differentially retained U12-
type introns compared to other analyzed U12-type introns, we
used the MEME Suite 5.0.1. software (Machanick and Bailey
2011; Bailey et al. 2015). Tested U12-type introns were separated
into two groups: candidates (n=49), for which a strong differential
IR was detected in Patients (FDR≤ 5% and ΔPSI≥10%), and un-
changed (n=45), for which no differential IR was detected in
Patients (FDR≥ 20% and |ΔPSI| < 1%). In the case of overlapping
U12-type introns, the largest one was conserved. Sequences of
each intron, with 100 bp upstream and downstream the intron,
were retrieved with bedtools’ fastaFromBed (v2.25.0).
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Sequences of introns on the minus strand were reverse comple-
mented. In order to have groups with comparable intron length,
we calculated the minimum length ratio of each sequence from
the candidates group with each sequence from the unchanged
group (minRatioLength) and we selected the sequences with a
minRatioLength≥ 0.95. This step resulted in 34 selected se-
quences in the candidates group and 39 sequences selected in
the unchanged group. With MEME, we searched for ungapped
motifs of length 8 to 50. The OOPS (One Occurrence Per
Sequence), ZOOPS (Zero or One Occurrence Per Sequence)
and ANR (Any Number of Repetitions) mode of MEME were
used (-mod oops|zoops|anr) with the “differential enrichment”
objective function (-objfun de) to detect motifs significantly en-
riched either in the candidates or in the unchanged sequences
(E-value≤5%, -evt 0.05). All other parameters were set to default
values. With DREME, we searched for small (up to 8 nt) ungapped
motifs differentially enriched in either the candidates or un-
changed sequences. The -norc option was used; other parame-
ters were set to default value.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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FIGURE S1 : Transcript levels of U12 and U2 genes in control fibroblasts, amniocytes and LCL. 

(A) Number of U12 genes expressed with a mean Transcript Per Million (TPM) value ≥ 5. (B) Distribution of non-zero mean                     
TPM of U12 and U2 genes. The dashed and solid vertical lines indicates a TPM of 5 and 30 respectively. (C) Principal                      
component analyses of U2 and U12 gene TPM values. Fibroblasts (8 samples), amniocytes (4 samples) and LCL (1 sample)                   
were derived from tissues taken from control foetuses and children. The sex of the donor from which was derived each                    
sample is indicated (M=Male, F=Female). 



 
FIGURE S2 : Splicing of U12- and U2-type introns in control fibroblasts, amniocytes and LCL. 

(A) Distribution of U12- and U2-type intron retention levels expressed with the Percent Spliced In metric (PSI) calculated for                   
U12- (n=366) and U2-type (n=1887) introns in U12 genes (n=337) on a scale of 0 to 1 (left) or a zooming in from 0 to 0.25                          
(right). Poorly spliced introns (<5 reads covering the exon-exon junction on average for each cell-type) were filtered out. (B)                   
Principal component analysis of U2- and U12-type intron mean PSI values. The same samples as in Fig. S1 were analysed.                    
The sex of the donor from which was derived each sample is indicated (M=Male, F=Female). (C) Sashimi plots showing a                    
U12/U2 splice site use switching event in the CCDC84 gene. The y-axis corresponds to the mean coverage of each base of                     
the genomic coordinates (x-axis). Reference annotations are given on the lowest part of the figure, with annotated exons and                   
introns shown as thick and thin horizontal lines respectively. U12 and U2 splice sites are marked with yellow and black                    
vertical bars respectively. Splice junction reads are drawn as arcs connecting a pair of exons. Mean percentage of reads                   
supporting the splicing of either the U12- or U2-type intron are indicated in yellow and black boxes, respectively. 



 
FIGURE S3 : Dominant patterns of U2 and U12 transcriptional gene expression in TALS patient and control cells. 

Principal component analyses of Transcripts Per Million values of U2 and U12 genes are presented. The same samples as in                    
Fig. S1 were analysed for the control set, as well as fibroblasts (5 samples), amniocytes (3 samples) and LCL (1 sample)                     
derived from tissues taken from TALS foetuses and children. The sex of the donor from which was derived each sample is                     
indicated (M=Male, F=Female), as well as the RNU4ATAC mutation(s) for the patients’ samples.  



 
 
 
 

 
FIGURE S4 : Percentage of differentially expressed genes as a function of the number of patients’ and controls’ 

datasets analysed. 
Boxplots of the percentage of differentially expressed genes identified by DESeq2 in the fibroblast datasets, using standard                 
cutoffs (FDR ≤ 5%, |log2(FC)| ≥ 2). All possible combinations of TALS patients and controls respecting sex balance were                   
tested. Two patients vs. two controls: 120 combinations; three patients vs. three controls: 220 combinations; four patients vs.                  
four controls: 140 combinations; five patients vs. five controls: 24 combinations.  



 
FIGURE S5 :  Splice sites scores for all U12- and U2-type introns. 

Each annotated intron is plotted with respect to its U12 (top) or U2 (bottom) splice site scores, as calculated with T. Alioto’s                      
present scripts. U12*-type introns: U2-type introns proposed to be reclassified as U12-type introns, namely: RECQL5,               
DERL2, KIAA0556 and LZTR1. For a better visualisation, introns without computed U2 score for the donor and/or acceptor                  
splice site(s) (sequence(s) too divergent from the consensus, score = -100 by default) were given a new score (with a jittering                     
effect) of -12.58 and -20.74 respectively, corresponding to the minimum observable score for the splice site type (donor and                   
acceptor) minus 1.  



 
 
 
 

 
FIGURE S6 : Comparison of U2- and U12-type intron retention levels in two different cell-types derived from the 

same TALS patient. 
Boxplots of U2- and U12-type intron PSI values (PSI-boxplots) of datasets obtained from two cell-types derived from the                  
same TALS patient: fibroblasts and amniocytes (left, TALS2), or fibroblasts and LCL (right, TALS6). The two patients,                 
described in Table 1, are both homozygous carriers of g.51G>A. The number of U2- and U12-type introns analysed (i.e. with                    
a sufficient coverage in each sample) are indicated.  



 

 
FIGURE S7 : Dominant patterns of gene expression and intron retention in TALS and RFMN patient and control 

blood cells.  
(A) Principal component analyses of TPM values of U2 and U12 genes, and (B) PCA of mean PSI values of U2- and                      
U12-type introns are presented. The datasets analysed are the following: 1 TALS patient’s and 1 control’s LCL datasets (two                   
technical replicates for each) and 2 RFMN patients’ and 3 related controls’ MBC datasets. The sex of the donor from which                     
was derived each sample is indicated (M=Male, F=Female), as well as the RNU4ATAC mutation(s) for the patients’ samples.                  
TPM: Transcript Per Million; LCL: lymphoblastoid cell line; MBC: mononuclear blood cells; ns: not significant (the                
explained variance of the axis is smaller or equal to the explained variance of our randomised data, see Methods). The same                     
patterns were obtained when the analyses were conducted with the LCL datasets of the extended study and those obtained for                    
unrelated individuals of the RFMN collection.  



 
FIGURE S8 : Patterns of U12-type intron retention in TALS or RFMN patient and control cells. 

PCA of the most variable mean PSI values of U12-type introns are presented. The datasets analysed are the following: 5                    
TALS patient and 8 control fibroblast datasets, 3 TALS patient and 4 control amniocyte datasets, 1 TALS patient and 1                    
control LCL datasets (two technical replicates for each) and 2 RFMN patient and 3 related control MBC datasets. The sex of                     
the donor from which was derived each sample is indicated (M=Male, F=Female), as well as the RNU4ATAC mutation(s) for                   
the patients’ samples. LCL: lymphoblastoid cell line; MBC: mononuclear blood cells; ns: not significant (the explained                
variance of the axis is smaller or equal to the explained variance of our randomised data, see Methods).  



 
 
 

FIGURE S9 : Genomic read coverage along minor and major spliceosome snRNA gene regions in control and 
TALS LCL samples. 

The read coverage from the LCL patient (red) and control (blue) datasets over each spliceosomal snRNA gene                 
region is shown. The location of each annotated snRNA gene is indicated by a thick blue line along the genome                    
position. The read coverage scale across the genomic window is indicated for the TALS LCL sample at the top left                    
or right corner of each panel. The multiple RNU1, RNU2, RNU4 and RNU6 gene copies, organised as tandem                  
arrays, are shown at a unique location, while the multiple RNU5 loci are shown (RNU5A/5B/D/E/F). RNU2-2P                
corresponds to the RNU2-1 gene in the ensembl75 version of the annotation. 
 



 
FIGURE S10 : Bioinformatics analysis overview. 

Workflow of the three pipelines used for the splicing analysis. Input read files are modelled with a red or blue file icon (fastq                       
files). Each step underwent by a sample is modelled by a red or blue arrow, corresponding to its fastq files, or by a black                        
arrow for a step underwent by all samples at once. Each gear represents a published tool or in-house python script : reads                      
alignment, reads quantification, reads assembly, statistical analysis, counts formatting (in-house scripts) and splicing events              
annotation are represented by blue, grey, yellow, green, black and red gears, respectively. Numbers indicate which main goal                  
is achieved by the tool : 1 = read alignment/assembly; 2 = read quantification on exon-exon/intron-exon junctions (noted as                   
“Junctions”) and/or on the included part of the event (noted as “Introns” for IR and “Inclusion” for other alternative splicing                    
events); 3 = PSI/ΔPSI/FDR computation. K2RG = KisSplice2RefGenome. 



 
FIGURE S11 : Linear models’ diagnostic plots. 

(A) Plots of the patient U12-type intron mean PSI (left) and log(mean PSI) (right) distribution. (B), (C), (D), (E) Diagnostic                    
plots (plot(lm(model)) of the complete model explaining the U12-type intron patient mean PSI, using either the patient and                  
controls U12-type intron mean PSI (left) or log(mean PSI) (right). (B) Residual vs. Fitted plot: equally spread residuals                  
around an horizontal line indicate linear relationship between the response variable and predictors. (C) Normal Q-Q plot:                 
residuals following a straight line indicate normal distribution. (D) Scale-Location plot: equally spread residuals around an                
horizontal line indicate homoscedasticity. (E) Residuals vs. Leverage plot: identify possibly influential outliers observations              
(outside of a dashed red line). 
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