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grande disponibilité et nos nombreuses discussions !

Je remercie également les membres de mon jury pour le temps qu’ils m’ont consacré
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et constructives m’ont permis d’améliorer ce manuscrit et de valoriser mon travail.
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Chapter 1

Introduction

This thesis focuses on new methods, based on Interval Analysis, able to deal with
constraints that involve uncertain sets. Many engineering problems, such as robot
localization, global motion path-planning or control, can be modeled by constraint
networks. A Constraint Network (CN) is composed of a set of variables that belong
to some domain and which must satisfy a given number of elementary facts and
rules: so-called constraints. In classical formulations [Mackworth, 1977], variables
are vectors of real numbers and domains are subsets of Rn.

In this manuscript, we consider a larger class of problems that involve subsets
of Rn as variables too. As the main application, we deal with the Simultaneous
Localisation And Mapping (SLAM) problem in unstructured environments, i.e that
cannot be described by geometrical features. Sensor readings will not be depicted
by a model that can be described by parameters of R but directly by shapes or
subsets of Rn.

The uncertainties will then be handled, in a set-membership approach, by an
interval of sets called Thick Set.

1.1 Motivation and background

Autonomous vehicles are used in support of humans to perform dull, dirty and
dangerous tasks. The more dangerous and challenging the environment, the more
autonomous they must be.

To be fully autonomous, vehicles must be able to perform long-term and long-range
missions with little or no human intervention. They must position themselves
with meaningful and reliable bounds on their positioning uncertainty that can be
used for decision-making purposes. For instance, in the context of seabed mapping
using an Autonomous Underwater Vehicle (AUV), the positioning uncertainty must
be monitored, in order to assess that the mission requirements are successfully

7



Chapter 1. Introduction

achieved. This can concern the assessment of the covered area by the vehicle before
returning to the mother-ship, or that the positioning errors on payload data are
acceptable with respect to the mission requirements. If not, the initial plan must
be modified and specific actions need to be taken.

To localize itself, a modern autonomous vehicle relies on an Inertial Navigation
System (INS) that merges proprioceptive measurements (acceleration, velocity,
attitude, depth, . . . ) in order to continuously determine, via dead reckoning
methods, the position, orientation and velocity of the vehicle. INS provides a good
short-term accuracy but accumulates errors that grow unbounded with time and
distance traveled. Consequently, this drift needs to be fixed with, for instance,
data from Global Navigation Satellites Systems (GNSS). However, even if these
systems can provide a centimeter position accuracy, they are not always available
and remain sensible to jamming and spoofing. Another solution is to use physical
features of the environment observed by embedded sensors, such as camera, LIDAR
or sonar, to provide an onboard, real-time estimated, positioning solution.

1.1.1 Mapping

Environments, structured or not, are composed of features which are gathered in
a map. In this thesis, structured environments are taken to mean terrains that
can be described by geometric structures such as lines, segments, landmarks, . . . .
For instance, man-made environments are generally structured. On the contrary,
unstructured environments are composed of shapes that cannot be parameterized.
This is the case of underwater environments since there are few natural occurring
geometrical landmarks.

It exists several methods to depict the environment, but according to [Thrun, 1998]
two main representations are commonly considered: topological and metric maps.

A topological map refers to a map that has been simplified so that only vital infor-
mation remains and unnecessary details have been removed. Only the neighborhood
relation between places is maintained. The tube map of the Paris underground is
an example of such representation where only the connections between stations are
depicted without considering scales and distances.

On the contrary, metric maps assign coordinates to objects of the environment that
allows computing distances or angles between them. This representation can be
classified into two categories [Thrun, 2002], which are referred to as feature-based
map and location-based map.

1.1.1.1 Feature-based maps

Feature-based maps are composed of a set of features together with their Cartesian
location. The map has a parametric structure where the features are points,

8



1.1. Motivation and background

segments, corners, or any other parametric shapes [Castellanos et al., 2001]. In the
case of the SLAM problem, feature parameters are included among state variables
[Dissanayake et al., 2001, Montemerlo et al., 2003] and are estimated concurrently
with the pose of the vehicle. Probabilistic methods such as Kalman filtering,
Bayesian estimation or particle filtering [Thrun, 2002] can be used. Interval-based
methods have also been proved to be efficient to solve the feature-based SLAM [Le
Bars et al., 2010, Jaulin, 2016].

However, geometrical features are spatially localized and do not include information
on their environment. A particular attention must be paid when solving data
association ambiguities between measurements and features [Neira and Tardos,
2001]. Loop closure methods [Ho and Newman, 2006, Aubry et al., 2013], that
aim at finding places that have been previously visited, can provide a prior data
association. This critical point made the localization of featured map a challenging
problem in complex and unstructured environments like these faced in outdoor or
underwater domains.

1.1.1.2 Location-based maps

On the contrary, location-based maps offer a label to any location in the world.
A classical location-based map representation is known as occupancy map [Elfes,
1987] (also called pose-based map). They assign to each point of the world an
occupancy value (a Boolean number or a probability of occupancy) that specifies
whether or not a pose is occupied by an obstacle. For computational reasons,
occupancy maps are most of the time based on a regular grid. Each cell of the grid
stores the probability, between 0 and 1, to be occupied by an obstacle. The main
difficulty with a grid-based representation is to correctly handle both the sensor
and the pose uncertainties when updating the grid. This is especially the case
when the map is only perceived through sensors, such as sonars [Thrun, 2003] or
cameras, that partially observe the environment. To handle this difficulty properly,
we introduce the notion of shape.

Shape. A shape is a subset of Rq, where q is smaller than the dimension of the
workspace. In this thesis, a shape will always be a subset of dimension 2. A shape
corresponds to a part of the environment that is captured by some sensors of
the robot. As shapes may be uncertain, we will also introduce shape intervals (a
particular case of thick sets) to represent this uncertainty in a set-membership
framework. A shape separates the environment into two complementary parts,
associated with physical features that can be measured by vehicle’s sensors.

For examples, these features can be:

• the part of the space that can be proved to be free of obstacle. For instance,
from range measurements acquired by laser or sonar sensors;

• contour map from Digital Elevation Map (DEM) that can be used to partition

9



Chapter 1. Introduction

the space based on a given elevation value;

• segmented images based on texturing information. For instance, from data
collected by a side scan sonar, which provides an acoustic image of the seabed,
it is possible to partition the space based on homogeneity properties [Picard
et al., 2015] or a seabed classification [Leblond et al., 2005].

Given a particular feature, labeled as a class A, the notion of uncertain shape,
called shape interval, allows us to classify the space into three categories: (1)
parts that can be classified for sure as A, (2) those that can be classified as not
A and (3) parts where nothing can be said, called the penumbra. From the raw
image, Figure 1.1a, a segmentation algorithm separates the mud (darker area) and
non-mud area. The boundaries, between these two classes, cannot be detected
accurately and are assumed to be enclosed in the penumbra. The area outside the
image, which has not been observed, also belongs to the penumbra. The second
part of this manuscript deals with the interval shape (or thick set) representation.

(a) Side scan sonar image (b) Shape Interval or thick set represen-
tation

Figure 1.1: The raw image 1.1a is segmented and interpreted as an uncertain shape
1.1b.

1.1.2 Shape based localization and mapping

From the previous set-based map representation, the localization problem needs
to be defined. From a theoretical point of view, a localization problem can be
described by the following set of equations.

ẋ(t) = f (x(t),u(t)) (evolution equation)
Z(t) = g(x(t),M) (observation equation)
x(0) ∈ X0 (initial state)

(1.1)

where t ∈ R is the time, x ∈ Rn is the state vector of the vehicle, u ∈ Rm is the
input vector (in general associated with proprioceptive sensors), f : Rn×Rm → Rn

is the evolution function. The set M is the map which is a subset of Rq, where q is
the dimension of the workspace (two or three in practice). The map M corresponds
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1.1. Motivation and background

to a simplified representation of the environment. The extension to maps composed
of several classes is considered as trivial and is not treated in our formalism, for
clarity. The set Z(t) ⊂ Rr, where r ≤ q, is a shape that represents a view of the
map M, is collected by some exteroceptive sensors (for instance a camera, a sonar,
a telemeter) and expressed in the robot frame. In practice, due to the uncertainties,
the measurement process does not provide us Z (t) directly, but an interval shape
[Z] (t) containing Z (t). The fact that the measurement corresponds to a shape
instead of a vector is not classical in the SLAM community and is related to the
location-based SLAM formalism. The treatment of the shape-SLAM is the main
goal of this thesis. The observation function g : Rn × Rq → Rr links the measured
shape Z(t) to the map M. The initial state at t = 0 is known to belong to an initial
domain X0 ⊂ Rn. The functions f and g may be non-linear and uncertain.

With respect to the unknowns of the problem, three cases can be considered: the
initial localization, the position tracking, and the Simultaneous Localization And
Mapping problem.

The initial localization problem corresponds to the situation where only the map M
is available and the initial state must be recovered. In the probabilistic context, in
the specific case where the shape Z(t) is a vector of Rq or geometric features, this
problem has been successfully addressed with Particle Filter (PF) methods such
as Monte Carlo Localization (MCL) [Dellaert et al., 1999] or Rao-blackwellised
Particle Filter (RBPF). However, proving the convergence and robustness of these
algorithms remains a challenging task. On the contrary, interval methods [Jaulin
et al., 2001a, Clérentin et al., 2008, Gning, 2006, Langerwisch, 2014] have been
proved to be able to deal efficiently with this situation. The thesis [Guyonneau
et al., 2013] provides an overview of set-membership methods applied to global
localization.

The pose tracking problem arises when both the map M and the initial condition X0
are known. It consists of keeping track of the vehicle’s current position by matching
sensor readings with the map. It can be regarded as a special case of the initial
localization problem where the search space is restricted. Probabilistic methods,
such as the Kalman filter [Kalman, 1960] in the linear case, or the particle filter
[Jensfelt and Christensen, 2001] in the non-linear case, have been used for a long
time. However, due to changes in the environment or sensor reading uncertainties,
the tracked solution can be lost. These algorithms may diverge and need to be
initialized with a new starting position, that needs to be found.

Finally, the situation where M needs to be estimated corresponds to the SLAM
problem[Leonard et al., 1992]. For an autonomous robot, moving in an unknown
environment, the SLAM problem is to build a map while simultaneously using
it to compute its location. Note that the map is built relatively to the initial
state which, if undetermined, is fixed arbitrarily. A significant amount of work has
been completed around this topic, still subject to further research [Leonard et al.,
2002, Thrun, 2002].

11
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Underwater SLAM [Hidalgo and Braunl, 2015] and terrain based navigation [Melo
and Matos, 2017] remain challenging topics for autonomous underwater vehicles
in long-term operations due to the limitations of subsea localization sensors and
real-time payload exploitation. For these reasons, set-membership methods will be
used since shape measurements are difficult to be handled by probabilistic methods.
A vector of R can be easily modeled by a random variable, but it is not the case
for a subset of Rn. Some formulations of the SLAM problem have been proposed
using Random Finite Sets [Molchanov, 2005b, Mullane et al., 2011] but remains
limited to punctual features.

1.1.3 Probabilistic and set-membership approaches

In this thesis, the set-membership approach has been chosen to deal with localization
issues. The following paragraph highlights the main difference between probabilistic
methods and set-membership ones.

Probabilistic methods are largely used in mathematics and engineering and has
been proved to be efficient. A random vector x of Rn is described (or encoded)
using a density probability function: π : Rn −→ R+, such as

∫
Rn π(x)dx = 1. The

variable is contained in a set X = {x ∈ Rn | π(x) 6= 0}, called support, which also
provides a description of how this variable is spread over X.

With a set membership approach, the variable is only represented by a set such as
x ∈ X. The domain X can enclose inconsistent values, but all consistent values for
x should be inside of X. Consequently, the set-membership representation is poorer
than the probabilistic approach but needs little knowledge about the statistical
properties of variables and allows to handle a larger class of problems.

The following example explains the difference between the two approaches.

Example 1.1. Let us take three random variables x, y, z of R linked with the
constraint z = x+ y. From statistical properties on x and y, we aim at deducing
those of z with probabilistic and set membership methods.

Probabilistic approach. Assume that x and y are uniform such as π(x) = 1/5
over [0, 5] and π(y) = 1/2 over [1, 3]. Computing z requires the knowledge of
the joint probability density for x and y. Assume for instance that x and y are
independent, so the density of the couple is uniform with π(x, y) = 1/10 over the
box [0, 5]× [1, 3]. The Probability Density Function (PDF) for z is given by:

π(z) =
∫
R
πx(x) · πy(z − x)dx (1.2)
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Figure 1.2: Density probability function of random variable x and y.

which gives us:

π(z) = 0 if z ≤ 1, (1.3)

π(z) = 1
10(z − 1) if z ∈ [1, 3], (1.4)

π(z) = 1
5 if z ∈ [3, 6], (1.5)

π(z) = 1
10(−z + 8) if z ∈ [6, 8], (1.6)

π(z) = 0 if z ≥ 8. (1.7)

The function π(z) is depicted on Figure 1.2. Note that the integral calculus is
generally much harder even in the particular cases where x and y are Gaussian or
uniform.

Set-membership approach. The uncertainty associated to x et y is given by
intervals: [x] = [0, 5] and [y] = [1, 3]. The random variable z = x+ y is contained
in the interval [z] = [0 + 1, 5 + 3] = [1, 8]. So the set membership approach leads to
an easier computation with less hypotheses.

Note that representing a random vector x by a set X does not mean that its density
function π(x) is uniform over X. It only supposes that x is in X or, in other words,
that the support of π(x) is included in X. In the Example 1.1, the random variable
z is described by the interval [1, 8] but is not uniform on [1, 8].

As illustrated by the Example 1.1, the computation of π(z) is possible because the
PDF has been assumed to be uniform and with a linear dependency between x, y
and z. When the relation between variables is non-linear, Equation 1.2 becomes
hard to solve in the general case. Moreover, the independence between variables
must always be assumed mainly because the join law between variables is rarely
available or because it does not correspond to the reality. It frequently happens
when dealing with data from real sensors. However, when probabilistic properties
are well-known, for instance when the problem is linear Gaussian, probabilistic
methods are efficient and outperform largely set-membership methods.

In other cases, strong hypothesis must be done over the probabilistic properties of
the problem and no proof can be done on the results. Filters, such as extended
Kalman filters or particle filters, can converge to false or inconsistent values without
raising any error. For this last point, interval methods allow to correctly, with
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realistic hypothesis, handle uncertainties.

In this manuscript, probabilistic methods will not be presented or compared.
With respect to the bounded error hypothesis, set-membership methods provide
reliable and guaranteed results. They can be used concurrently with probabilistic
approaches to find the best estimate that lays into a guaranteed solution set. In
other words, the hard part of strongly non-linear problems, such as data association
or initial localization, can be made using interval analysis. Once done, probabilistic
approaches can be used to efficiently find the best solution that lies in a guaranteed
domain of validity.

1.2 Contributions and Outlines

The main contribution of this thesis is to consider that both the map and ob-
servations can be described by shapes, associated with physical features of the
environment. We aim at tackling both initial localization and SLAM problems
through a formalism that is not commonly used in the literature. For that purpose,
the notion of interval shape is introduced, with its associated arithmetics and the
definition of the uncertain set inversion problem. A specific contractor is developed
to solve the so-called shape registration and carving problem.

Another contribution concerns a way to build minimal contractors and separators
consistent with equations of the form y = f(x). It allows us to introduce minimal
operators associated with the change from polar to cartesian coordinates when
range and bearing measurements are collected.

In this manuscript, we chose to only focus on the shape-based SLAM. For this
reason, two main contributions, not directly related to the SLAM problem, have
been placed in Appendix A and B. The first one is dedicated to a specific algorithm
that solves the uncertain transformation of an interval shape when the uncertain
function can be enclosed by an interval of functions. The contribution is dedicated
to the characterization of the area explored by a robot when the dimension of the
visible space at time t is smaller than that of the workspace. Both of them have
required a huge amount of work and helped us to mature the concepts needed to
properly formalise and solve the Shape SLAM problem.

This thesis is decomposed into two parts. The first one, from Chapters 2 to 4, is
dedicated to the classical interval analysis used to solve problems involving variables
that are vectors of Rn. The second part, composed with Chapters 5 and 6, focuses
on constraints that involve shapes as variables.

In Chapter 2, basic notions of interval analysis and contractors are introduced. A
special focus on the separator operator is done in this chapter. This operator, intro-
duced in [Jaulin and Desrochers, 2014], allows simple and efficient set manipulation
and characterization.
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In Chapter 3, we introduce a new theorem that can be used to build minimal
contractors consistent with equations, and another new theorem to derive an
optimal separator from a minimal contractor. As an application, we focus on
the polar constraint associated with the change between Cartesian coordinates
and Polar coordinates. We illustrate our method on the localization problem of
an actual underwater robot where both range and goniometric measurements of
landmarks are collected. The material of this chapter is published in [Desrochers
and Jaulin, 2016a].

In Chapter 4, a new type of constraint is introduced, that links shapes via a trans-
formation depending on some parameters. Based on the Polar separator, introduced
in Chapter 3 that allows handling sectoral sensor, a first initial localization problem
on an unstructured map is presented. This chapter makes the transition from
classical constraint networks to shape-valued constraint networks where variables
become shapes. This work is published in [Desrochers and Jaulin, 2017c].

Chapter 5 deals with intervals of shapes, which is a particular type of Thick Sets.
Shape intervals provide an interval based representation of uncertain shapes. An
uncertain shape Y is bracketed between an inner shape Y− and an outer shape Y+.
After defining operations that can be applied to shape intervals, tools used to deal
with constraint networks involving shapes as variables are introduced. A special
focus is done on the set inversion problem involving an uncertain function that
depends on parameters. The shape registration constraint, presented in Chapter 4
is then extended to the uncertain case.

Chapter 6 deals with the SLAM problem where the observations are not based on
scalar values or equations, but are subsets of Rn. Two applications are considered.
In the first one, the initial localization problem presented in Chapter 4 is extended
to the context of the SLAM, where the map needs also to be estimated. In the
second application, measurements taken by an imaging sensor are depicted by an
uncertain shape. A SLAM method, based on this set-membership representation is
then illustrated. This chapter summarizes the targeting application of this thesis.

Chapter 7 concludes this thesis.

Appendix A deals with the set inversion problem X = f−1(Y) in the case where
the function f : Rn → Rm and the set Y are both uncertain. The uncertainty is
treated under the form of intervals. More precisely, for all x, f(x) is inside an
interval of functions [f ](x) and the uncertain set Y is depicted by a thick set. The
introduction of new tools such as thick intervals and thick boxes will allow us to
propose an efficient algorithm that handles the uncertainty of sets in an elegant
and efficient manner. Some elementary test-cases that cannot be handled easily
and properly by existing methods show the efficiency of the approach. This work
is published in [Desrochers and Jaulin, 2017d].

Appendix B deals with the guaranteed characterization of the part of the space
that has been explored by a robot. The main difficulty of the problem is to
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take into account the uncertainty associated with the trajectory and the fact that
the dimension of the visible space at time t may be smaller than that of the
workspace. An example involving an experiment made with an actual underwater
robot is presented in order to illustrate the efficiency of the approach (published in
[Desrochers and Jaulin, 2017b]).

1.3 PyIbex: an Interval Library

To support and capitalize the developments done during this thesis, a Python
library called pPyIbex has been developed. The source code is available on GitHub
at

https://github.com/benEnsta/pyIbex.

Based on the contractor programming library ibex-lib, it aims at providing a python
interface to basic functionality, such as interval, contractor, separator, and adds
extra-modules dedicated to tools introduced in this thesis.

PyIbex is presented as a multi-platform Python module. It was used by IAMOOC,
a MOOC on Interval Analysis with application to parameter estimation and robot
localization.

The documentation and examples are given in

http://benensta.github.io/pyibex

The figures of the manuscript are generated using VIBes [Drevelle and Nicola,
2014].
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Chapter 2. Interval Analysis

2.1 Introduction

Our choice is to address robotic problems with set-membership methods. Basically,
the solution of the problem, such as the estimating of the position of the robot,
is characterized by a set defined by non-linear constraints. This set needs to be
represented by an over approximation which can be manipulated by the computers.
As illustrated in Figure 2.1, in a set membership framework, several approximations
can be found in the literature such as zonotopes or polyhedral enclosures [Combastel,
, Walter and Piet-Lahanier, 1989], ellipsoids [Rokityanski and Veres, 2005], intervals
or subpavings [Jaulin and Walter, 1993c]. In this thesis, we will focus on the last
representation which is related to interval analysis.

x2

x1

X

(a) Polyhedral enclosure

x2

x1

X

(b) Ellipsoidal enclosure

x2

x1

X

(c) Subpaving enclosure

Figure 2.1: Examples of different set-membership enclosures of a set X.

Interval analysis has become over the past few years a strong alternative to tradi-
tional probabilistic approaches [Thrun and Montemerlo, 2005] to solve complex
non-linear systems of equations.

Interval analysis makes it possible to characterize a set of Rn defined by constraints.
For instance, the set may correspond to:

• the set of all parameters that are consistent with some interval measurements
[Lévêque et al., 1997, Gning and Bonnifait, 2006, Kreinovich et al., 1997,
Gning et al., 2013, Chabert and Jaulin, 2009a],

• to the set of all configuration vectors such that a robot does not meet any
obstacles [Porta et al., 2007, Jaulin, 2001], to the set of all parameter vectors of
a controller such that the closed loop system is stable [Wan et al., 2009, Didrit
et al., 1995],

• to set all calibration parameters [Daney et al., 2006, Ramdani and Poignet,
2005]

• to attractors of dynamical systems [Tucker, 1999].
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2.2. Set Theory

More formally, a mathematical problem can be formulated by means of a Constraint
Network (CN) where a set of variables, that belong to some domains, must satisfy
simultaneously a given number of elementary facts and rules: so-called constraints
[Mackworth, 1977].

A CN is defined as a triple 〈X,D,L〉 where

X = {x1, . . . , xn} is a set of variables,
D = {X1, . . . ,Xn} is a set of the respective domains of values, and
L = {L1, . . . ,Lm} is a set of constraints.

The problem to be considered here is to find the smallest sub-domains of the Xi for
variables xi consistent with all constraints. Note that, in this part, variables are
real numbers or vector of Rn and domains are intervals, boxes, or sets. Later, the
class of variables to be handled will be extended: they could correspond to shapes
and their domains will be shape intervals.

Remark 2.1. In the literature, there exists a confusion between Constraints Networks
(CN) and Constraint Satisfaction Problem, or CSP for short. Stress that a CSP is
composed of a CN (which is the model) and a question. Solving a CSP is done by
providing a solution of the corresponding CN, which is not exactly what we want
to do here. Instead, we want to find an enclosure of all solutions of the CN.

The purpose of this chapter is to familiarize the reader with interval analysis
concepts. In the first section, elementary notions on set theory are introduced.
Then, in Section 2.3, basics of interval arithmetic are provided. In order to get an
inner and an outer approximation of sets defined with constraints, contractors and
separators are presented in Section 2.4. With respect to the applications of this
manuscript, common separators associated to images, subpavings or polygons are
introduced in Section 2.5. We will also give two applications illustrating how these
operators can be combined to solve robotics problems.

2.2 Set Theory

The fundamental notion that is used at the heart of this thesis is the notion of
set. A set is a well-defined collection of distinct objects. The objects that make up
a set (also known as the set’s elements or members) can be anything: numbers,
people, letters of the alphabet, graphs, other sets, and so on. The set theory, that
aims at studying sets, was developed at the end of the 19th century by George
Cantor and Richard Dedekind [Cantor, 1847]. In this manuscript, sets are denoted
in blackboard bold font (mathbb). The set of real numbers is denoted R.
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A B

(a) A ∩ B.

A B

(b) A ∪ B.

A B

(c) A \ B.

Figure 2.2: Intersection, union and difference of two sets.

2.2.1 Operations

Set theory begins with a fundamental binary relation that defines whether or not an
element a belongs to a set A, denoted by a ∈ A. From that relation, we are mainly
considering sets composed of real numbers defined from predicates or constraints.
For instance, the set of positive real numbers, commonly denoted by R+ is defined
by:

R+ = {x ∈ R | x ≥ 0} . (2.1)

Two special sets must be considered: the empty set denoted by ∅ that contains no
element and the universe, denoted Ω that contains all elements. Basic operations
on sets used in this manuscript are now introduced.

The complement of a set A, denoted A is:

A = {x ∈ Ω | x /∈ A} . (2.2)

Given two sets A and B, the inclusion between sets is defined by:

A ⊂ B⇔ ∀x ∈ A, x ∈ B. (2.3)

The equality between two sets is then defined by:

A = B⇔ (A ⊂ B ∧ B ⊂ A) . (2.4)

where ∧ stands for the logical and operator. The logical or is denoted ∨. Complex
sets are defined from binary operations such as:

Intersection A ∩ B = {x | x ∈ A ∧ x ∈ B}.

Union A ∪ B = {x | x ∈ A ∨ x ∈ B}.

Difference A \ B = {x | x ∈ A ∧ x /∈ B} = A ∩ B.

Cartesian product A× B = {(x, y) | x ∈ A ∧ y ∈ B}.

Figure 2.2 illustrates the intersection, union and difference of two sets.

In this thesis, a special intersection called the relaxed-intersection [Jaulin, 2009]
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will be used. It allows solving inconsistent CN by relaxing a small number of
constraints. In the context of parameter estimation, it makes it possible to be
robust to a given number of outliers (erroneous measurements).

Consider N sets X1, . . . ,XN of Rn. The q−relaxed intersection denoted by
{q}⋂ Xi

is the set of all x ∈ Rn which belong to all Xi’s, except q at most. Figure 2.3
illustrates this notion for N = 6 and q = 2, 3, 4. The relaxed intersection can
be formulated in term of unions of intersections. For three sets X1, X2, X3, the
1-relaxed intersection is defined by:

{1}⋂
Xi = (X1 ∩ X2) ∪ (X1 ∩ X3) ∪ (X2 ∩ X3). (2.5)

Figure 2.3: q-relaxed intersection of 6 sets for q=2 (red), q=3 (green), q=4 (blue) ,
q=5 (yellow)

2.2.2 Set image

Given a function f : A→ B and A1 ⊂ A, the direct image by f of A1 is defined by:

f(A1) = {f(x) ∈ B | x ∈ A1} (2.6)

The reciprocal image by f of B1 ⊂ B is then:

f−1(B1) = {x ∈ A | f(x) ∈ B1} (2.7)

A canonical problem for which interval analysis has been proved to be efficient is
the Set Inversion Problem. Let f be a function from Rn to Rm (possibly non-linear)
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and Y be a subset of Rm. The Set Inversion problem aims at characterizing the
reciprocal image of Y by f :

X = {x ∈ Rn|f (x) ∈ Y} = f−1 (Y) (2.8)

2.2.3 Link with interval analysis

Elementary sets can be defined by constraints and combined in order to build more
complex ones. The interval analysis framework provides algorithms and operators,
such as contractors and separators, that makes it possible to compute, combine
and represent sets of Rn that are defined by constraints. The following sections
introduce these tools.

2.3 Interval Analysis

Interval Analysis was first developed to quantify the error on numerical compu-
tations [Moore, 1966]. In computers, real numbers are usually represented by
floats with limited significant digits. This limitation leads to a small error that
can drastically propagate and increase along successive operations. For instance,
the decimal number "0.1" cannot be represented exactly in 32-bits floating-point
pricision (8 bits exponent and 23 bits mantissa) in a computer. But it can be
enclosed between two numbers such as:

0.0999999940395355224609375 < 0.1 < 0.100000001490116119384765625

Interval methods make it possible to enclose numerical and physical uncertainty,
providing a rigorous theoretical framework. In this thesis, we will not focus on
this low level uncertainty, which is absorbed by interval libraries such as filib++
[Lerch et al., 2006], gaol [Goualard, 2008],. . . , but we will use interval analysis
to manipulate the uncertainty on input parameters. For instance, a range sensor
returns a distance, with an error, that will be represented by an interval. This
section summarizes the basics of interval analysis. For a more detailed introduction,
see [Jaulin et al., 2001b].
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2.3.1 Interval arithmetics

2.3.1.1 Intervals

An interval, denoted by [x], is a closed and connected subset of R defined by a
lower bound, denoted by x−, and upper bound, denoted by x+, such that:

[x] =
[
x−, x+

]
=
{
x ∈ R, x− ≤ x ≤ x+

}
. (2.9)

An interval [x] containing a single element is called a degenerate interval or a
singleton. It is denoted with brackets {x}. The width w of an interval is defined
by w ([x]) = x+ − x−. For two intervals [x] and [y] of Rn and an operator � ∈
{+,−, ·, /}, we define [x] � [y] as the smallest interval containing all feasible values
for x � y when x ∈ [x] and y ∈ [y]:

[x] � [y] = [{x � y|x ∈ [x], y ∈ [y]}] (2.10)

where [.] denotes the convex hull. The convex hull of a set A ⊂ R is the smallest
interval that contains A.

Example 2.1. We have

[−1, 5] ∩ [−3, 2] = [−1, 2] (2.11)
[−3, 3] ∪ [4, 10] = [−3, 10] (2.12)
[−3, 3]− [4, 10] = [−13,−1] (2.13)

w([−2, 9]) = 11 (2.14)

2.3.1.2 Boxes

An interval vector [x] of Rn, or a box for short, is a Cartesian product of n intervals.
The set of all boxes of Rn is denoted by IRn.

[x] = [x1]× [x2]× · · · × [xn]. (2.15)

In this thesis, the width of a box [x] ∈ IRn is defined by:

w([x]) =

√√√√ n∑
i=1

w([xi])2 (2.16)

This definition differs from the classical one which considers the length of the
largest interval along all dimensions:

w∞ ([x]) = max
1≤i≤n

w([xi]). (2.17)

25



Chapter 2. Interval Analysis

1 2 3 4 5

1

2

3

4

[x] = [1, 4]× [1, 3]

x1

x2

(a) Box 1: w∞([x]) = 3, w([x]) =
√
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(b) Box 2: w∞([x]) = 3, w([x]) =
√

10

Figure 2.4: Boxes representation and comparison. The two boxes have the same
width (w∞) even if the area of the right one is smaller.

The first definition is preferred because, for two boxes [x] and [y], it satisfies the
following relation :

{
[x] ⊂ [y]
[x] 6= [y] ⇒ w([x]) < w([y]). (2.18)

which is not true from w∞. Consequently, it will be used to compare the accuracy
of the approximation given by the proposed algorithms. This is illustrated in Figure
2.4 where w and w∞ are compared.

Basic operations on real numbers or vectors can be extended to intervals by
considering interval computations on each component of the box and to vector
operations such as dot or cross products.

Example 2.2. For instance, with [x] = [1, 2]× [2, 9] and [y] = [−1, 2]× [−5, 5] we
have:

[x] + [y] = [0, 4]× [−3, 14] (2.19)
[x] · [y] = [−47, 49] (2.20)
w([x]) =

√
50 (2.21)

w∞([x]) = 7 (2.22)

where · denotes the product.

2.3.2 Inclusion function

One of the purposes of interval analysis is to provide, for a large class of functions
f , a fast and accurate way to compute a box which encloses the direct image of a
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box by f . This operator is called an inclusion function of f and is now introduced.

2.3.2.1 Definition and properties

Consider f : Rn → Rm. For any subset X of Rn, the image set of f is defined by:

f(X) = {y ∈ Rm | ∃x ∈ X,y = f(x)} . (2.23)

An inclusion function [f ]:IRn → IRm of f : Rn → Rm is a function which satisfies:

∀ [x] ∈ IRn, f ([x]) ⊂ [f ] ([x]) . (2.24)

Thanks to interval arithmetic, and its implementation, the evaluation of an inclusion
function provides a robust and reliable result taking into account round-off errors,
imprecision on input data, numerical truncation, etc. To illustrate the notion of
inclusion function, let us take f from R2 to R2 and a box [x] ∈ IR2. The image
set f([x]), in gray on Figure 2.5, can have any shape, be non convex and even
disconnected. The inclusion function [f ] of f makes it possible to compute a box
[f ]([x]) guaranteed to contain f([x]).

An inclusion function [f ] of f is said to be inclusion monotonic if:

[x] ⊂ [y]⇒ f([x]) ⊂ f([y]). (2.25)

Consequently, [f ] is minimal if for any [x], [f ]([x]) is the smallest box that contains
f([x]). The minimal inclusion function for f is unique and is denoted [f]∗.

Enclosing the image set by a box axis-aligned introduces pessimism that can be
seen as the set of extra points that belong to [f ]([x]) but not to the image set f([x]).

The two main causes of pessimism are the multiple occurrences of variables in the
expression of f , that can be balanced by formal simplification [Araya et al., 2008]
and the wrapping effect. This over-estimation can be reduced [Chabert and Jaulin,
2007] by using specific inclusion functions, multi-precision arithmetic [Revol and
Rouillier, 2005], Taylor extensions [Berz and Makino, 1998], Bernstein expansions
for polynomials [Garloff, 1985], etc.

An inclusion function [f] is convergent if, for any sequence of nested boxes [x](k)

lim
k→∞

w ([x](k)) = 0⇒ lim
k→∞

w ([f ]([x](k))) = 0. (2.26)

[f] is said to be thin if, for any degenerate interval vector [x] = {x} we have
[f ]([x]) = f({x}). In other words, the image of a singleton should be a singleton.
This is not always the case. In Chapter 5 and Appendix A, we will consider
specific methods to deal with thick functions. These thick (i.e., non thin) functions
associate to an element of Rn, not a point, but a box of IRm.

27



Chapter 2. Interval Analysis

x1

x2

[x1]

[x2]

[x] = [x1]× [x2]

y1

y2

f([x])

[f]∗([x])

[f]([x])f(x)

Figure 2.5: The image of the box [x] by the function f , which is not necessarily
a box, is depicted by the gray area. The dotted area represents the pessimism
induced by [f ] with respect to [f ]∗. The function f is thin because the image f(x)
of x is a point.

2.3.2.2 Natural inclusion function

For any function obtained by the composition of elementary operators such as
+,−, ·, /, cos, sin, exp, . . . , a natural inclusion function can be built by replacing
these operators by their interval counterpart.

Example 2.3. The natural inclusion function [f ] of f (x1, x2) = x1 · cos (x2) is:

[f ] ([x1], [x2]) = [x1] · [cos] ([x2]) (2.27)

Its evaluation is done by applying interval arithmetic. For instance:

[f ]
(
[−2, 1], [π6 ,

π
3 ]
)

= [−2, 1] · [cos]
(
[π6 ,

π
3 ]
)

= [−2, 1] · [1
2 ,
√

3
2 ]

= [−
√

3,
√

3
2 ].

(2.28)

If f is continuous, its natural inclusion function is monotonic, convergent and thin,
but generally not minimal.

2.4 Contractors and Separators

In order to characterize efficiently the domain of the variables involved in a CN
[Ceberio and Granvilliers, 2000, Araya et al., 2008], interval analysis algorithms
rely on operators called contractors and separators. These operators are able to
remove parts of a box that do not satisfy the constraints. This section introduces
these two operators.
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2.4.1 Contractors

This contractor operator, associated with a constraint, is able to reduce, or contract,
an initial box by removing parts that does not satisfy the constraint.

2.4.1.1 Definition

A contractor C is an operator IRn 7→ IRn (see e.g., [Di Loreto et al., 2007, Chabert
and Jaulin, 2009b]) such that

C([x]) ⊂ [x] (contractance)
[x] ⊂ [y] ⇒ C([x]) ⊂ C([y]). (monotonicity) (2.29)

A set X is consistent with the contractor C (we will write X ∼ C) if for all [x], we
have

C([x]) ∩ X = [x] ∩ X. (2.30)

As a consequence, a contractor CX associated with the set X is an operator able
to contract a box of Rn without removing a single point of the subset X of Rn to
which it is associated. This is illustrated by Figure 2.6.

C([x])

C∗([x])

X

[x]

[x] ∩ X

¬C([x])

Figure 2.6: Contractor consistent with the set X. The dashed blue area has been
removed by the contractor. The minimal contractor is denoted C∗ and returns the
smallest box enclosing [x] ∩ X, colored in red.

We define the inclusion between two contractors C1 and C2 as follows:

C1 ⊂ C2 ⇔ ∀ [x] ∈ IRn, C1([x]) ⊂ C2([x]). (2.31)

Two contractors C and C1 are equivalent (we will write C ∼ C1) if we have:

X ∼ C ⇔ X ∼ C1. (2.32)
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A contractor C is minimal if for any other contractor C1, we have the following
implication

C ∼ C1 ⇒ C ⊂ C1. (2.33)

If C is a minimal contractor consistent with X, then for all [x], we have C([x])∩X =
J[x] ∩ XK where J.K is the hull operator. This means that C([x]) corresponds exactly
to the smallest box that can be obtained by a contraction of [x] without removing
a single point of X. As a consequence, there exists a unique minimal contractor.

We define the negation ¬C of a contractor C as follows

¬C([x]) = {x ∈ [x] | x /∈ C([x])} (2.34)

Note that, as illustrated by the blue dashed area on Figure 2.6, ¬C([x]) is not a box
in general, but a union of boxes. As a consequence, the negation of a contractor is
not a contractor. This is a problem which will motivate later the introduction of
separators.

2.4.1.2 Building contractors

Contractors can be built for a large class of constraints. When constraints are
defined by equations and inequalities, such that f(x) ∈ [y], a contractor based on
an inclusion function [f] of f can be easily built. Given a box [x], it is defined by:

C([x]) =
{
∅ if [f]([x]) ∩ [y] = ∅
[x] otherwise (2.35)

This binary contractor contracts to the empty set every box such as [f]([x])∩ [y] = ∅.
Of course, this contractor is not minimal.

An efficient improvement is the forward/backward contractor also called HC4-revise
[Messine, 2008, Benhamou et al., 1999]. The principle is to evaluate f(x) using
interval arithmetic (forward step) but instead of only considering the result of the
intersection with [y] it retro-propagates the information to the initial domains.
This is illustrated by the following simple example.

Example 2.4. Given three variables x ∈ [x], y ∈ [y] and z ∈ [z], the contractor
for the constraint z = x− y is given by:

C− :

 [z]
[x]
[y]

 =

 [z] ∩ ([x]− [y]) forward step
[x] ∩ ([z] + [y]) backward step
[y] ∩ ([x]− [z])

 (2.36)

For instance C−([4, 5], [0, 3], [−2, 2]) = ([4, 5], [2, 3], [−2,−1])
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2.4.1.3 Contractors algebra

Contractors can be combined to solve systems of constraints. If C1 and C2 are two
contractors, we define the following operations s[Chabert and Jaulin, 2009b]:

(C1 ∩ C2)([x]) = C1([x]) ∩ C2([x]), (2.37)
(C1 t C2)([x]) = C1([x]) t C2([x]), (2.38)
(C1 ◦ C2)([x]) = C1 (C2([x])) , (2.39)

C∞1 ([x]) = C1 ◦ C1 ◦ C1 ◦ · · · ◦ C1([x]). (2.40)

where t is the union hull defined by

[x] t [y] = J[x] ∪ [y]K . (2.41)

Based on this formalism, primitive contractors can be combined in order to build
more complex ones. Generally, these elementary contractors are built from dedicated
algorithms.

Example 2.5. In order to illustrate the use of contractors, we consider the example
of the goniometric localization of a robot. This problem consists in using angles
measured between beacons, whose position is known, and the robot for localization.
Let us consider the situation, depicted on Figure 2.7 with two beacons m1 and m2.
We call bearing the angle θi between the vehicle and the beacon mi, measured with
respect to the x-axis direction. The measurements, taken with an uncertainty ∆θ
of 3◦, i.e. [θi] ∈ [θi −∆θ, θi+∆θ], are θ1 = 45◦ and θ2 = 120◦.

Recall that two vectors u,v of R2 are colinear if their determinant is equal to zero,
in other words if det(u,v) = 0. Thus, for each beacon mi = (mi

1,m
i
2)ᵀ, we have

the relation:
det

((
mi

1 − x1
mi

2 − x2

)
,

(
cos(θi)
sin(θi)

))
= 0. (2.42)

The set of feasible positions for the vehicle is defined by:

Xi =
{
x ∈ R2 | ∃θi ∈ [θi], (mi

1 − x1) · sin(θi)− (mi
2 − x2) · cos(θi) = 0

}
. (2.43)

These sets are depicted on Figure 2.7. Using a forward/backward propagation
algorithm, an elementary contractor Ci consistent with Xi can be built. With two
beacons, the position belongs to the intersection of the Xi and the contractor C
consistent with the solution set X is then:

X = X1 ∩ X2 (2.44)
∼ C = C2 ◦ C1 (2.45)

When we use contractors, we are looking for boxes as small as possible. For that
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Figure 2.7: Goniometric localization

purpose, C is iteratively composed, denoted C∞ = C ◦ C ◦ · · · ◦ C, in order to reach
the fixed point. Since all contractors used are monotonic, it can be proved that
the iterated composition C∞ will always converge to the greatest box [z], such that
C∞([z]) = [z], regardless the order of the contractors in composition [Montanari
and Rossi, 1991].

Given an initial box [x0] = [−4, 6]2, Figure 2.8 illustrates, step by step, the
propagation process. On Figure 2.8a, the contraction C([x0]), depicted by the
orange box, is decomposed. The blue dashed area has been removed by C1, the cyan
one by C2. The yellow box, on Figure 2.8b, shows the contraction done by applying
C again on the orange box. This process is repeated until no more contraction
happens anymore. The final result is shown on Figure 2.8c.

Now, in our case, with respect to the configuration of angles θ1 and θ2, the
propagation process provides an enclosure of the solution set that is pessimistic. If
a thinner approximation is required, a classical solution to reduce this pessimism is
to bisect (split into two parts) this box, and appling C∞ again on each sub-boxes.
This process is illustrated in Figure 2.8c. This procedure can be recursively used
until the width of resulting subboxes are smaller than a given threshold. It produces
the subpaving (union of non-intersecting boxes) that encloses X as depicted in
Figure 2.8d

This algorithm, which classifies the space, will be detailed in Section 2.4.2. The
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(b) C1 ◦ C2 ◦ C1([x0])
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(c) Bisection and contraction
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(d) Subpaving

Figure 2.8: Illustration of the constraint propagation process. Results of contraction
are depicted by red boxes.
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main issue with this method is to choose the right number of bisections and to
characterize the pessimism introduced by the approximation. Since boxes, which
are completely included in X, are never contracted and always bisected, their
accumulations (see the yellow boxes in Figure 2.8d) lead to a huge computational
cost. This justifies the introduction of separators, that aim at providing an inner
approximation of the solution set, and the need for developing minimal contractors
in order to avoid as much as possible bisections. Note also that the formulation of
Equation (2.43) cannot be used to get an inner approximation of X and will be
reformulated in Chapter 3 in order to build a dedicated contractor.

2.4.2 Separators

Given a set X, the contractor consistent with X only provides an outer approx-
imation. If X has a non-empty volume (there exists points in X which do not
belong to its border), it can be useful to prove that a part of the initial space
belongs effectively to the solution set. For that, the complementary contractor
consistent with X needs to be considered. In order to characterize an inner and
outer approximation of the solution set, we introduce the notion of separator.

2.4.2.1 Definition

A separator S associated with the set X is an application such as

S : IRn −→ IRn × IRn

[x] 7−→ ([xin], [xout])
(2.46)

with the following properties

(i) [x] = [xout] ∪ [xin]
(ii) [xout] ∩ X = [x] ∩ X
(iii) [xin] ∩ X = [x] ∩ X

(2.47)

A separator can also be seen as a pair of contractors {S in,Sout} such that, for all
[x] ∈ IRn, we have

S in([x]) ∪ Sout([x]) = [x] (complementarity). (2.48)

A set X is consistent with the separator S (we will write X ∼ S), if

X ∼ Sout and X ∼ S in. (2.49)

where X = {x | x /∈ X}. This notion of separator is illustrated by Figure 2.9.
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X
[x]

Sout([x])

[x]

S in([x])

¬S in

¬S in

X

Figure 2.9: Illustration of a separator applied on different initial boxes. The outer
contractor removes the blue dashed area and the red dashed area is removed by
the inner contractor

We define the inclusion between two separators S1 and S2 as follows

S1 ⊂ S2 ⇔ S in
1 ⊂ S in

2 and Sout
1 ⊂ Sout

2 . (2.50)

A separator S is minimal if

S1 ⊂ S ⇒ S1 = S. (2.51)

It is trivial to check that if S is minimal then the two contractors S in and Sout are
both minimal.

2.4.2.2 Separator algebra

The algebra for separators is a direct extension of the contractor algebra [Chabert
and Jaulin, 2009b]. The main difference is that the contractor algebra does not
allow any non monotonic (or decreasing) operation. It means that, if a contractor
C is defined by an expression E of other contractors Ci, then we always have

∀i, Ci ⊂ C
′

i ⇒ E (C1, C2, . . . ) ⊂ E
(
C ′1, C

′

2, . . .
)
. (2.52)

As a consequence the complementary C of a contractor C or the restriction C1\C2
of two contractors C1, C2 (both correspond to non-monotonic operations) cannot be
defined. The main advantage of separators is that it extends the operations allowed
for contractors to non monotonic expressions. Let us now define some operations
for separators. If S = {S in,Sout} is a separator, we define the complement as

S =
{
Sout,S in

}
. (2.53)
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Table 2.1: Center and radius of rings used in figure 2.10

c1 c2 c3

center (1, 3) (4, 2) (−3,−3)
radius [3, 6] [1, 5] [3, 4]

Let us take Si = {S ini ,Souti }, we could define the following operations:

S1 ∩ S2 = {S in
1 ∪ S in

2 ,Sout
1 ∩ Sout

2 } (intersection)
S1 ∪ S2 = {S in

1 ∩ S in
2 ,Sout

1 ∪ Sout
2 } (union)

{q}⋂ Si =
{
{m−q−1}⋂ S in

i ,
{q}⋂ Sout

i

}
(relaxed intersection)

S1\S2 = S1 ∩ S2. (difference)

(2.54)

These operations are used to combine constraints. More details about separators
are given in [Jaulin and Desrochers, 2014].

The following example shows how separators can be used to manipulate sets defined
with equations.

Example 2.6. Consider the set X defined by:

X = (X1 ∩ X2) ∪ (X3 \ X1) . (2.55)

where X1,X2,X3 are three rings with center and radius defined in table 2.1. For each
set, a separator Si =

{
Ci, Ci

}
can be built using a forward/backward propagation

method. Using the separator algebra, the separator S =
{
C, C

}
consistent with X

is:
S = (S1 ∩ S2) ∪

(
S3 ∩ S1

)
. (2.56)

It will automatically apply the De Morgan rules:

C = (C1 ∩ C2) ∪
(
C3 ∩ C1

)
C =

(
C1 ∪ C2

)
∩
(
C3 ∪ C1

) (2.57)

Combined with a Paver (see next section), the separator S can be used to charac-
terize the set defined by Equation (2.55).

Separators allow us to deal efficiently with set operations by manipulating the inner
and outer approximation of sets.

2.4.3 Paver

Separators are used by pavers to characterize sets defined by constraints or set
operations. A paver is a branching algorithm which calls the separator S to classify
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Figure 2.10: Characterization of X using S defined in Equation (2.56). Circle c1 is
drawn in white, c2 in red and c3 in cyan.

parts of the search space inside or outside the solution set X associated with S.
The algorithm is given in Algorithm (2.1). Step 1 initializes a list L containing all
boxes to be studied. Step 2 takes one box [x] in L. At Step 3, the separator S is
then called to contract [x] into two boxes [xin] and [xout]. Step 4 stores ¬S in([x]),
the part of [x] that is proved to be inside X, into X− and also into X+. Step 5
computes ∂S([x]) by intersecting [xout] and [xin]. If this box is too small (i.e. with
a width smaller than ε), it is stored inside X+ and will not be studied anymore.
Otherwise, it is bisected, generally along its largest dimension, at Step 7 and stored
into L waiting to be processed. After completion of the algorithm, we have the
enclosure

X− ⊂ X ⊂ X+. (2.58)

Remark 2.2. . For the implementation, the resulting paving can be represented by
a binary tree (i.e., each node has two sons or is a leaf). The binary tree is said to
be minimal if for any node i1 (not the root) with brother i2 and father j, we have{

(i) [xin](i1) 6= ∅, [xout](i1) 6= ∅
(ii) [xin](j) ∩ [xout](j) = ([xin](i1) ∩ [xout](i1)) t ([xin](i2) ∩ [xout](i2)) ,

(2.59)
From a given tree generated by the paver, it is possible to simplify it into a minimal
tree without changing the approximation for X. This simplification can be done by
scanning all nodes of the tree upward from the leaves to the root. If for a given
node, properties (i) or (ii) of Equation (2.59) are not satisfied, then the two brother
nodes i1, i2 with the father j are reunited into a single node. The procedure has
a complexity which is linear with respect to the number of nodes of the tree. It
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Algorithm 2.1 Paver(in: [x], S, out: X−, X+)
1: L := {[x]} ;
2: while L 6= ∅ do
3: Pull [x] from L;
4: {[xin], [xout]} = S([x]);
5: Store [x] \[xin] into X− and also into X+;
6: [x] = [xin] ∩ [xout];
7: if w∞([x]) < ε then
8: store [x] in X+

9: else
10: bisect [x] and push into L the two resulting boxes
11: end if
12: end while

will allow us to drastically reduce the number of elements of the subpaving. An
illustration is provided on Figure 2.11.

Figure 2.11: Simplification of the paving generated by the paver; left: before
simplification, right: after. By convention, red boxes are proved to be inside the
solution set, blue boxes are outside, and yellow boxes are undetermined.

Remark 2.3. In the worst case, the complexity of the algorithm is exponential
with respect to the dimension n of the initial box, and terminates after less than
(w([x0])

ε
+1)n iterations. However, in practice, the number of iterations is O(A

(
1
ε

)n−1
)

where A is the area of the accumulation zone (in yellow) [Jaulin, 1994].

Remark 2.4. The area painted in red by the paver is not [xin] (or [xout]) but [x]\[xin]
which corresponds to the part of the initial box which has been removed by the
inner contractor.

Example 2.7. Consider the set

X =
{
x ∈ R2, (x1 − 2)2 + (x2 − 2.5)2 ∈ [1, 1.5]2

}
(2.60)

which corresponds to a ring centered in (2, 2.5). The minimal contractor CX
consistent with X can be built using a forward-backward constraint propagation.
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Figure 2.12: Pavings associated to Example 2.7, Left: paving obtained using the
contractor, Right: paving obtained using the separator. Red boxes belong to X
(the ring); blue boxes are outside of X. No conclusion can be given on the yellow
boxes.

Using a paver, this contractor is then used to obtain an outer approximation for
X. This is illustrated by Figure 2.12 (left) where CX removes parts of the space
outside X (painted blue). But due to the consistency property, see Equation (2.30),
CX has no effect on boxes included in X. A box partially included in X cannot be
eliminated and is bisected, except if its length is larger than a given value ε.

A separator consistent with X makes it possible to get an inner approximation.
We are now able to quantify the pessimism introduced by the set inversion and
to prove the existence of solutions. In a computational point of view, the paver
becomes faster since the accumulation area is of dimension 1, instead of 2.

2.4.4 Inversion of separators

As it has been introduced previously, a set can be represented by its associated
separator. The inversion of a separator will make it possible to get a separator for
the inverse image of a set by a function. The inverse of a set Y ⊂ Rn by a function
f : Rn → Rm is defined as

X = f−1 (Y) = {x | f (x) ∈ Y} . (2.61)

The function f can be a translation, rotation, dilation, projection, or any other
function. If CY is a contractor for Y, a contractor CX for X can be defined using
a generalization of the forward-backward contractor as shown in [Chabert, 2013].
The contractor CX is called the inverse of CY by f and we write CX = f−1 (CY). If
SY is a separator associated with a set Y, we define the inverse of the separator SY
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as follows
f−1 (SY) =

{
f−1(S in

Y ), f−1(Sout
Y )

}
. (2.62)

Theorem 2.1. The separator f−1 (SY) is a separator associated with the set X =
f−1 (Y), i.e.,

f−1 (Y) ∼ f−1 (SY) . (2.63)

Proof. We have :

Y ∼ {S in
Y ,Sout

Y }
⇔ Y ∼ Sout

Y , Y ∼ S in
Y (see 2.49)

⇒ f−1 (Y) ∼ f−1(Sout
Y ), f−1

(
Y
)
∼ f−1(S in

Y ) (see [Chabert, 2013])
⇔ f−1 (Y) ∼ f−1(Sout

Y ), f−1 (Y) ∼ f−1(S in
Y )

⇔ f−1 (Y) ∼ {f−1(S in
Y ), f−1(Sout

Y )} (see ((2.49)))
⇔ f−1 (Y) ∼ f−1 (SY) (see (2.63))

(2.64)

which terminates the proof.

The following example shows how the inversion of a separator can be used.

Example 2.8. Consider the polygon M defined on Figure 2.13a, for which a
separator can be built (see Section 2.5.1 for more details) and a rotation of an
angle of π

4 denoted Rπ
4
. Figure 2.13b depicts the set Rπ

4
(M) computed using

Theorem 2.1. Figure 2.13c shows how separators can be combined to compute the
set Rπ

4
(M) ∩M.
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Figure 2.13: Illustration of the inversion of separators. The polygon in (a) is rotated
of an angle of π

4 in (b) and intersected with M in (c).

2.5 Dedicated Contractors and Separators

A contractor can be used to represent an information we have on a vector of Rn.
This information can be an equation or an inequality, but it can also come from
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S

[∆x] = C∆S([x])

?? [x2][x1]

(a) Boundary contraction using C∆S

S

[∆x] = C∆S([x])

TS(x1) = true

TS(x2) = false

[xin]
[xout]

(b) Subboxes classification

Figure 2.14: Illustration of boundary-based separator. An initial box is contracted
using C∆S (left). On each removed part of the initial box, a point is tested and,
by continuity, the subbox is classified (right). Note that, for the illustration, both
[xin] and [xout] have been enlarged.

a database. For instance, it can be the map of the surrounding environment or
the shape of an object. This is an important point in our SLAM context where
we have to combine equations (coming from observations or the evolution of the
robot) with some other knowledge coming from a database. We will illustrate the
principle by building some dedicated separators associated to data sets.

2.5.1 Boundary-based separator

Sometimes, isolating explicitly the corresponding inner and outer contractor associ-
ated to a set S is not so easy. However, if a contractor on the boundary of S and a
test which is able to prove that a given point is inside or outside S are available, it
is still possible to build a separator using the following boundary-based approach.
Given a contractor C∆S on the border of set S, and a test TS such that, for x ∈ Rn

TS(x) =
{
true if x ∈ S
false otherwise (2.65)

the boundary-based separator S∆S works as follows. It first contracts an input box
[x] with respect to the boundary of S using C∆S (see Figure 2.14a). Then, the test
is used on a point of each subbox of ¬C∆S([x]) to determine if it belongs or not to
S. As illustrated on Figure 2.14b, the box [x1] is classified inside S using point x1
and the same is done for [x2] outside. The result of the separation is then

S∆S([x]) = {[xin], [xout]}
= {[∆x] ∪ [x2], [∆x] ∪ [x1]} . (2.66)

This method is now applied in order to build a separator associated to a polygon.
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2.5.1.1 Polygon separator

Two-dimensional structured environments, such as rooms or buildings, can be
described by a set of segments that forms a closed polygon, convex or not, with
eventually holes inside. When a polygon is convex, this set is described by a system
of linear inequalities that can be solved with linear solvers. When not, this method
cannot be applied and the boundary-based approach can be used instead. We will
now introduce how to build a separator for general polygons of R2.

Contractor on the border

Consider an oriented segment [a,b] where (a,b) ∈ R2. The point m is in the
segment if it satisfies the two following equations{

det (b− a, a −m) = 0
min (a,b) ≤m ≤ max (a,b) . (2.67)

A general polygon P is composed of N oriented segments. The border ∆P of the
polygon satisfies the following constraint:

∆P =
{
m ∈ R2, ∃i ∈ [[1, N ]], m ∈ [ai,bi]

}
. (2.68)

Let us take Cai,bi as a contractor for the segment [ai,bi]. The contractor for ∆P is:

C∆P =
N⋃
i=1
Cai,bi . (2.69)

This contractor is illustrated on Figure 2.15a. As expected, it only focuses on the
border of the polygon.

Remark 2.5. Because the union of minimal contractors is minimal (see Proposition
3.1), C∆P is a minimal contractor for the border of the polygon P .

Test: point in polygon

To identify if a point is inside a polygon, we will use the Winding Number [Krantz,
2012] which represents the total number of times that a curve travels counterclock-
wise around the point. The winding number depends on the orientation of the
curve, and is negative if the curve travels around the point clockwise. Let us take
a polygon P with vertices V1, V2, . . . , Vn = V1 and m a point not on the border of
P . The winding number is defined by:

wn(m,P) = 1
2π

n∑
i=1

θi = 1
2π

n∑
i=1

arccos
(

(Vi −m).(Vi+1 −m)
‖(Vi −m)‖‖(Vi+1 −m)‖

)
(2.70)
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(b) Polygon separator

Figure 2.15: The union of contractors on segments is applied to characterize the
border of the polygon (a). A test is then applied on a point on each box removed
by the contractor to classify the box inside or outside the polygon (b).

So, as shown in Figure 2.16, if m is outside P we will have wn(m,P) = 0, otherwise
if m is inside, wn(m, P ) = 1.

Remark 2.6. Faster algorithms that avoid the use of trigonometric functions can be
found in [O’Rourke, 1998].

Finally, we build a separator SP for the polygon P . Figure 2.15b shows the set X
(in red) of all points inside the polygon.

Since this approach is generic, this type of separator can be extended to any set
for which its border can be described by a union of elementary curves. The main
difficulty is to find an efficient test to check whether a point belongs or not to the
set.

2.5.2 Separator on subpavings

Data sets can also be stored in the form of a subpaving, i.e. a union of non-
overlapping boxes generally organized as a binary tree, which represents an inner
and an outer approximation of a set. From a given subpaving, a separator (or
contractor) can be defined. Considering that each node Nj has two sons Ni1 and
Ni2 , Algorithm 2.2 allows to separate a box [x] into [xin] and [xout] in a recursive
manner.

The complexity of such an algorithm is O(log(n) +m) where n is the number of
nodes and m is the number of nodes intersecting the initial box [de Berg et al.,
2008].
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(a) wn(m, P ) = 1
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θ34

θ41

θ12

θ23

(b) wn(m, P ) = 0

Figure 2.16: In figure (a) m is inside P so T (m) = true and in figure (b) m is
outside P and the test is false

Algorithm 2.2 separate(in: N , [x], out: [xin], [xout])
1: if [x] = ∅ or N is a leaf then

Return {[xin(j)] ∩ [x], [xout(j)] ∩ [x]}
2: end if
3: [x] = [x] ∩ [xin(j)] ∩ [xout(j)]
4: {[xin1 ], [xout1 ]} = separate(Ni1 , [x])
5: {[xin2 ], [xout2 ]} = separate(Ni2 , [x])
6: Return {[xin(j)] ∪ [xin1 ] ∪ [xin2 ], [xout(j)] ∪ [xout1 ] ∪ [xout2 ]}

Note that any subpaving built using a paver can be simplified into a minimal
subpaving (see Equation (2.59)) and used as a separator. Consequently, the results
of long-running algorithms can be saved efficiently for future use.

2.5.3 Separator from images

An unstructured dataset X can be described by an occupancy grid, represented as
a binary image, denoted i, in which the value of each pixel is 1 if it belongs to X, 0
otherwise. The image contractor and separator are now introduced.

2.5.3.1 Image contractor

The image contractor was first introduced in [Sliwka, 2011, Guyonneau et al., 2013].
This contractor is based on the summed area table (also known as integral image),

44



2.5. Dedicated Contractors and Separators

denoted I, widely used in computer vision [Viola and Jones, 2001] and defined by:

I (n1, n2) =
∑
n′1≤n1
n′2≤n2

i (n′1, n′2) . (2.71)

Using the integral image, the number of 1-valued pixels contained in any rectangular
region can be computed in four operations. Let φ be the function which returns
the number of occupied cells in a given box [n] = [n−1 , n+

1 ]× [n−2 , n+
2 ] of IN aligned

on the grid. Let A = (n−1 , n−2 ), B = (n+
1 , n

−
2 ), C = (n+

1 , n
+
2 ), D = (n−1 , n+

2 ) be the
coordinates of its corners, we have:

IN2 −→ N
φ ([n]) 7−→ I(A) + I(C)− I(B)− I(D) (2.72)

On Figure 2.17a, the box contains two black pixels, so φ ([n]) = 2. From an initial
box [n0], the image contractor aims at finding the smallest box [n] included in [x0]
which contains exactly the same number of 1-valued pixels, i.e, φ([n0]) = φ([n]).
Denote by Ci the image contractor associated to the image i. Consider [n] ∈ IN2

and Ci([n]) = [m] that satisfies:

L :



m−1 = max(x ∈ [m1], φ([m−1 ;m]× [m2]) = 0)
m+

1 = min(x ∈ [m1], φ([m;m+
1 ]× [m2]) = 0)

m−2 = max(x ∈ [m2], φ([m1]× [m−2 ;x]) = 0)
m+

2 = min(x ∈ [m2], φ([m1]× [m;m+
2 ]) = 0)

(2.73)

The min and max can be computed using a dichotomy, which has a logarithmic
complexity.

n1

n2
A B

CD

[n]

(a) φ function evaluation

n1

n2
A B

CD

A’ B’

C’D’

C([n])

(b) Contraction of the box

Figure 2.17: Image contractor
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To apply a continuous contractors on a data set described by a geo-referenced
image, world continuous coordinates must be converted into discrete image ones.
Let x0 be the coordinate of the top-left corner and ε = (εx, εy) the horizontal
and vertical pixel size. The change between image coordinate [n] to workspace
coordinates [x] is

[x] = x0 + [n] · ({0} ∪ {ε}) (2.74)

Remark 2.7. Because of the image convention, with vertical axis oriented downward,
the value of εy is negative and ({0} ∪ {ε}) is equal to [0, εx]× [εy, 0].

Remark 2.8. When a set X is digitized as an image, one valued pixel must describe
an over approximation of X in order to keep the consistency property of the
contractor. Consequently, the contractor is minimal with respect to the image but
not with respect to X itself.

Remark 2.9. The image integral can be generalized to the n-dimensional case
[Tapia, 2011]. In particular, the image contractor has been extended to the three-
dimensional case in [Desrochers et al., 2015] to handle spacial occupancy grids,
built from a 3D dense point clouds.

2.5.3.2 Image separator

A separator can be built using two complementary image contractors. Figure˜2.18
shows how, from a digitized set X, images representing an upper and lower approx-
imations of X can be used to build the separator.

X
∆X
X−

n2

n1

(a) Digitization of set X

n2

n1

(b) Image used by Sout

n2

n1

(c) Image used by Sin

Figure 2.18: Image approximation of the set X, orange dashed . Black pixels, which
are completely included in X, belong to a lower approximation X−. The upper
approximation X+ = X− ∪∆X contains black pixels and those which intersect the
boundary of X. The outer contractor will be built using the left image while the
inner contractor will be built using the complementary of X− (right one).
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2.5. Dedicated Contractors and Separators

Remark 2.10. The image separator, as well as the image contractor, has a very high
speed of execution regardless the size of the input box. It only involves sums and
differences of integer numbers. However, data are discretized on a regular grid and
a trade off needs to be found between the storage space, the size of area, and the
resolution of the grid. On the contrary, a subpaving can have better accuracy on
the border of a set with a smaller memory footprint but with an high access cost.

Remark 2.11. The separators on images and subpaving are minimal with respect
to the dataset. But, they are not minimal when approximated by an image or a
subpaving. As illustrated by Figure 2.18a, the true border of the set, in orange, is
enclosed by the gray pixels that introduce pessimism.

2.5.4 Differential contractor on tube

In the formalism presented in the introduction, the evolution of the state of the
robot x(t), t ∈ R, is assumed to be constrained by a differential equation such as

ẋ(t) = f (x(t)),u(t)) . (2.75)

where u(t) is the input of the system. The temporal evolution of a variable x
is described by a trajectory, denoted by x(.) : R → Rn. When this trajectory is
uncertain, interval analysis makes it possible to enclose it in a Tube, which is an
interval of trajectories.

The contractors and separators, introduced previously, are mainly dedicated to
constraints that can be applied at a given time t. Now, we present briefly the tools
needed to deal with an uncertain trajectory, constrained by a differential equation.

A tube [x](.) as defined in [Le Bars et al., 2012, Bethencourt and Jaulin, 2014], is an
interval of trajectories [x−(.),x+(.)] such that ∀t,x−(t) ≤ x+(t). A trajectory x(.)
belongs to the tube [x](.) if ∀t,x(t) ∈ [x](t). Figure 2.19 provides an illustration of
a tube. It is important not to make the confusion between x(.) which is a trajectory
and x(t) which is a vector of Rn.

[x](.)

x+(.)

x−(.)

x(.)

[x]

t

x(t1)

t1

Figure 2.19: A tube [x](.), in grey, enclosing a trajectory x(.)
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In this thesis, tubes are mainly used to propagate a contraction, done at a given
time step, to the whole trajectory. For that purpose, a dedicated contractor,
denoted C d

dt
, has been developed in [Rohou et al., 2017]. It is associated to the

following constraint: 
ẋ(.) = u(.)
x(.) ∈ [x](.)
u(.) ∈ [u](.)

(2.76)

The contractor C d
dt

allows us to contract the tube [x](.) with respect to its derivative
u(.) enclosed by a tube [u](.).

Remark 2.12. In the initial definition proposed in [Rohou et al., 2017], the contractor
C d
dt

requires the derivative of the tube as an argument. It is written as

[x](.) := C d
dt

([x](.), [u](.)). (2.77)

Now, since the tube [u](.) cannot be contracted with this contractor (the proof
can be found in the corresponding article), we choose to simplify the notation by
omitting the last argument. The tube [u](.) enclosing the derivativeis handled as
an implicit parameter of the contractor.

Example 2.9. In order to illustrate how tubes are used, we consider the following
example: 

ẋ(t) = u(t)
z1 = x(t1)

x(0) ∈ [−3, 3]
z1 ∈ [2.2, 2.8]

(2.78)

where u(.) is assumed to belong to a bounded tube [u](.), depicted in Figure 2.20b,
and defined by:

∀t > 0, [u](t) = 4 · sin(t− 5) + (t− 3.3) · [−0.1, 0.1]. (2.79)

In our robotics applications, [u](.) is built from proprioceptive measurements, such
as the speed or the angular velocity of the robot.

Figure 2.20a shows, in light gray, the result of C d
dt

applied on a tube [x0](.) defined
by ∀t > 0, [x0](t) = [−∞,∞] and [x0](0) = [−3, 3]. Only trajectories which are not
consistent with the differential equation and the initial conditions are removed.

In the same way, a local information, such as x(t1) = z1, can be propagated using
C d
dt

to the whole trajectory. This is illustrated by the dark grey tube on Figure 2.20a.
The light grey tube is contracted in order to be consistent with the observation
[z1]. Note that contracting a tube at a given time step is not as trivial as doing
[x](t1) := [x](t1) ∩ [z](t1). It requires the use of a specific contractor which is not
presented here. More details on tubes can be found in [Rohou, 2017]. In this thesis,
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t1

[z](t1)

−5
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t

[x](.)

(a) Tube [x](.)

−4

−2

2

4

t

[u](.)

(b) Tube [u](.)

Figure 2.20: Illustration of C d
dt

. The left figure shows the tube [x](.) after the first
call of C d

dt
(light gray) and after using with [z](t1) (dark gray).

when we manipulate tubes, we use the open-source library called tubex-lib available
at:

• http://www.simon-rohou.fr/research/tubex-lib

2.6 Applications

We now consider two classical applications that will illustrate how interval analysis,
and mainly separators, can be used to solve robotics problems. The first application,
taken from [Jaulin and Desrochers, 2014], deals with path-planning problems. The
second one deals with the initial localization problem using a scanning laser range-
finder on a map defined by a polygon.

2.6.1 Application to path planning

The goal of path planning is to find a collision-free path for a robot in a given
space with obstacles. The issue of path planning in a known environment has
been addressed since many years (see, e.g., [Laumond, 1986, Lozano-Perez, 1981,
Ó’Dúnlaing and Yap, 1985, Koditschek, 1987]) and can easily be combined with
set-membership techniques to take into account some uncertainties [Ceccarelli
et al., 2006]. Most approaches are based on the concept of configuration space
(C-space). Each coordinate of the C-space represents a degree of freedom of the
object. An example of such robots are industrial robots which are kinematic chains
of adjacent links are connected by n prismatic or rotary joints, each with one degree
of freedom. The positions and orientations of each link can be characterized by
n real numbers, which are the coordinates of a single n-dimensional point in the
C-space [Lozano-Perez, 1983]. The feasible configuration space M is the subset
of the C-space corresponding to feasible configurations of the robot. Partitioning
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4

2

1

x1

x2

f2(x)

f3(x)

Y

Figure 2.21: Two-dimensional wire loop game. For a feasible configuration (x1, x2),
as represented here, the gray segment should cross the wire. Is it possible to follow
the circular path ?

the C-space with subpavings makes it possible to solve the problem using graph
algorithms [Brooks and Lozano-Perez, 1985, Jaulin, 2001].

The objective of this application (extracted from [Jaulin and Desrochers, 2014]) is
to show how separators could solve the path planning problem on a simple example
which is a 2D version of the wire loop game. This game involves a metal loop on a
handle and a length of curved wire (see Figure 2.21). The player holds the loop
in one hand and attempts to guide it along the curved wire without touching it.
In our 2D version of this game, the player is an articulated robot with two rotary
joints and the loop is a segment. The curved wire corresponds to the boundary of
a set Y with an inside (grey in the figure) and an outside part. The length of the
first and second arms are 4 and 2, respectively. The length of the loop is 1. The
feasible configuration space is

M = {(x1, x2) | f2 (x) ∈ Y and f3 (x) /∈ Y} = f−1
2 (Y) ∩ f−1

3

(
Y
)
, (2.80)

where
f` (x) = 4

(
cosx1
sin x1

)
+ `

(
cos (x1 + x2)
sin (x1 + x2)

)
, ` ∈ {2, 3} . (2.81)

If SY is a separator associated with Y (built as explained in Section 2.5.1), then a
separator for M is

SM = f−1
2 (SY) ∩ f−1

3

(
SY
)
. (2.82)

The paver is able to approximate the feasible configuration space as illustrated by
Figure 2.22a. A graph-based method is able to compute a feasible path (see the
black path of the figure) which corresponds to a solution of our wire loop game.
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(a) Feasible configuration space
(b) Path of the robot in the world frame

Figure 2.22: . A path, corresponding to one solution of the wire loop game, is
represented. The corresponding motion in the world space is depicted on Figure
2.22b.

The minimality of the resulting subpaving is illustrated by the fact that each patch
of the subpaving intersects the boundary of the solution set.

The corresponding motion in the world space is depicted on Figure 2.22b.

Remark. For our example, the set to be characterized is given by M = f−1
2 (Y) ∩

f−1
3

(
Y
)

and the separator is obtained by the same expression SM = f−1
2 (SY) ∩

f−1
3

(
SY
)
. If we separate this expression, we get the contractor counterpart

{
S in
M = f−1

2 (S in
Y ) ∪ f−1

3 (Sout
Y )

Sout
M = f−1

2 (Sout
Y ) ∩ f−1

3 (S in
Y ). (2.83)

The separator formalism thus makes it possible to get directly the separator from
the expression of the set that we want to characterize. This was not possible using
contractor algebra which does not allow any decreasing operation. With contractors,
the user has to rewrite the complementary expression. Moreover, the separator
algebra requires less computations since a part of the common computation made
for S in

M and Sout
M is factorized.

2.6.2 Simple static map-based localization

A simple localization problem within an initial 2D map illustrates how separator
operations can be used to compute the position of a robot. In order to build an
inner and outer contractor, the map must divide the space into two complementary
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sets, with non-zero volume: M (gray in Figure˜2.23a) and M. Measurements will
belong to the border of M. In our case, the map is composed of a non-convex
polygon with a hole, which for instance represents a room. The robot R is equipped
with a laser sensor which returns the distance di ∈ [d−i , d+

i ] between R and the
nearest obstacle in a given direction αi. At a given time step, N measurements
are acquired with outliers. An outlier is defined as a measurement that is not
consistent with the bounded error model used. The full situation is depicted on
Figure 2.23a.

We also denote by ai (sresp. bi) the nearest (resp. furthest) impact point associated
with the distance d−i (resp. d+

i ). The parametrization is shown in Figure˜2.23b.
The goal of this problem is to estimate the position x = (px, py)ᵀ of the robot
on the map. Its heading θ is assumed to be known and is not estimated in this
example and the uncertainty on αi is assumed to be negligible.

Let f(x, α, d) be the function which translates the point x by a distance d in the
direction given by α + θ. Let fi−(x) = f

(
x, αi, d−i

)
(resp. fi+(x) = f

(
x, αi, d+

i

)
)

be the function which transforms the x into ai (resp. bi). The set Xi of feasible
configurations consistent with the ith measurement is the set of all x such that the
point ai belongs to M and bi belongs to M given by:

Xi = {x ∈ Rn|fi−(x) ∈M and fi+(x) /∈M}
ie. Xi = f−1

i− (M) ∩ f−1
i+

(
M
) (2.84)

Given SM associated with M, the separator Si consistent with Xi is:

Si = f−i (SM) ∩ f+
i (SM) (2.85)

Without outliers, the feasible solution set must be consistent with the intersection
of all Xi. However, when dealing with outliers, this intersection is often empty. To
solve this issue, the q-relaxed intersection is used to compute the set of feasible
positions compatible with at least N − q measurements.

X =
{q}⋂
i

Xi ∼
{q}⋂
i

Si (2.86)

In this test case, 56 ranges are used with an uncertainty of +/- 0.1 meter. Results
of the set inversion are shown in Figure 2.24 with q = 15. Because measurements
are redundant and accurate, the solution set is small.

Finding automatically the number of allowed outliers is a hard task. Algorithms
such as GOMNE (Guaranteed Outlier Minimal Number Estimator) can be used
[Jaulin et al., 2002]. Roughly, a series of set inversion are performed with an
increasing value of q until the solution set becomes not empty. An application with
3D data can be found in [Desrochers et al., 2015].
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(a) Initial situation (b) Modeling and parameters

Figure 2.23: Initial situation, the laser sensor returns 56 measurements with 15
outliers (dashed lines)

Figure 2.24: Resulting sub-pavings of the set inversion for q = 15. Dark gray boxes
belong to X− and light gray boxes are in ∆X. The black circle is the theoretical
position of the robot
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2.7 Conclusion

In this chapter, the interval analysis theory was introduced in the context of
robotics localization. Many solution sets that may correspond to the position of a
robot can be decomposed into a combination of unions, intersections, projections or
inversions of elementary sets. Using operators such as contractors and separators,
these sets can be characterized using interval analysis. For that purpose, constraint
propagation and bisections mechanisms are combined inside an algorithm, called a
paver, in order to get an inner and an outer approximation of a solution set. Now
the performance of the paver relies on the efficiency of the elementary operators
that are used. We introduced some dedicated contractors and separators associated
to datasets which has been illustrated on two robotics examples. In the next
chapter, another contractor and separator will be introduced to deal with the polar
constraint, often met in localization when angle and bearing are measured.
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Chapter 3. Polar Separator

3.1 Introduction

In the previous chapter, interval analysis tools have been introduced. These
tools, such as contractors and separators, are used to solve rigorously complex
problems involving uncertainties and nonlinear equations [Ceberio and Granvilliers,
2000, Kreinovich et al., 1997]. Coupled with a Paver, they allow computing an
inner and an outer approximation of a set defined by constraints.

Contractor programming relies on a catalog of elementary contractors. Most of
the time, these elementary contractors are built using interval arithmetic [Moore,
1966]. Then, by combining all these elementary contractors, we can construct a
more sophisticated contractor consistent with the solution set of the problem we
want to solve. The principle can be extended to separator programming [Jaulin
and Desrochers, 2014] in order to compute an inner and an outer approximation of
the solution set.

Now, combining contractors introduces a pessimism which has to be balanced by
additional bisections performed by the paver. For more efficiency, it is important
to extend the catalog by adding some new specific contractors.

The following example motivates briefly the advantage of using a dedicated and
minimal contractors or separators.

Example 3.1. The set X = f−1([y]) with [y] = [3, 5] and:

f(x) = x2
1 + |2x2| − x1 (3.1)

can be characterized using two different separators. The first one S is built from
the natural inclusion function of f . Because the variable x1 appears twice, neither
this inclusion function is minimal nor S. The second separator S∗ is built after
changing the expression of f into:

f ∗(x) = (x1 −
1
2)2 − 1

4 + |2x2| (3.2)

in which multiple occurrences of x1 have been removed. This leads to a minimal
inclusion function and to the minimal separator. Figure 3.1 shows the resulting
subpaving using S (left) and S∗ (right). The minimal behavior of S∗ can be observed
by the fact that each box touches the border of X. The number of bisections is
also smaller when using a minimal separator. In this case, 839 bisections have been
required to get the left subpaving while the right one requires 593 bisections only.
The first outer approximation of the minimal separator, depicted by dashed white
boxes, is more accurate. This point is critical when dealing with high dimensional
problems, for which bisections need to be avoided. The more efficiently a separator
is, the better the final approximation will be.

To be as efficient as possible, minimal separators, and therefore contractors, must
be used when available. As illustrated by the previous example, they lead to
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Figure 3.1: Resulting subpaving of Example 3.1 with S (left) and S∗ (right). The
dashed white box encloses the solution set and is obtained after the first call of the
separator. It represents the outer approximation of the solution set and is more
accurate with S∗. All sides touch the border of X. This is not the case with S
where the pessimism has to be balanced with additional bisections.

an accurate outer approximation and reduce the number of bisections needed to
compute an inner and an outer approximation of the solution set. This justifies
the need for developing specific operators dedicated to our problems.

In this chapter, we propose some new theorems in order to build more easily optimal
contractors/separators consistent with equations often used, for instance, in the
field of robotics [Kieffer et al., 1999, Daney et al., 2006, Langerwisch and Wagner,
2012]. As an application, we will consider the polar constraint associated to the
change of coordinates between Cartesian and polar form [Candau et al., 2006]. This
constraint is essential for solving the localization of robots when both goniometric
and/or distance measurements are available [Colle and Galerne, 2013, Di Marco
et al., 2001]. Robotics applications, given in Section 3.4, will illustrate the use of
the polar separator.

3.2 Building Minimal Contractors

Building minimal contractors for sets, defined by inequalities, can sometimes be
done using interval based methods [Araya et al., 2008]. In the special case where
each variable occurs only once in the expression and when all involved operators
are continuous, for instance with the constraint a + sin (b+ c · d) = 0, a simple
interval evaluation followed by a backward propagation in the syntactic tree of
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the constraint provides a minimal contraction [Benhamou et al., 1999]. When the
constraint is monotonic with respect to all variables, then again, it is possible to
reach the minimality [Chabert and Jaulin, 2009c]. In this section, we propose some
new results that will allow us to extend the class of constraints for which we can
provide a minimal contractor.

3.2.1 Transformations of contractors and separators

We now present some results obtained in [Sliwka, 2011] and [Herréro, 2006] about
the symmetries and the minimality of contractors. These results will be used in
the next part to get the minimal contractor for specific constraints.

Proposition 3.1. If C1 and C2 are the two minimal contractors consistent with X1
and X2 then C1 t C2 is the minimal contractor consistent with X1 ∪ X2.

Proof. The minimal contractor consistent with X1 ∪ X2 is

J(X1 ∪ X2) ∩ [x]K = J(X1 ∩ [x]) ∪ (X2 ∩ [x])K ((A ∪ B) ∩ C = (A ∩ C)∪ (B ∩ C))
= JJX1 ∩ [x]K ∪ JX2 ∩ [x]KK (JA ∪ BK = JJAK∪ JBKK )
= JX1 ∩ [x]K t JX2 ∩ [x]K ( J[x] ∪ [y]K = [x] t [y] )
= C1 ([x]) t C2 ([x]) (minimality of C1 and C2)

(3.3)
which terminates the proof.

Definition 3.1. A bijective function f : Rn → Rn is box-conservative if for all
A ⊂ Rn,

f (JAK) = Jf (A)K . (3.4)

Proposition 3.2. If f is box conservative so is f−1.

Proof.

f−1 (JAK) = f−1 (Jf ◦ f−1 (A)K) (f is bijective)
= f−1 ◦ f (Jf−1 (A)K) (f is box conservative)
= Jf−1 (A)K .

(3.5)

Example 3.2. A rotation from R2 to R2 of angle α is box-conservative iff α =
k · π2 , k ∈ Z.

Definition 3.2. If f : Rn → Rn is a bijective function, we define the image by f of
a contractor as follows:

f (CX) = f ◦ CX ◦ f−1. (3.6)
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This new definition will make it possible to extend the contractor algebra to more
complex operations. For instance (f0 t f1 t f2) (CX) defines the following contractor

[x] 7→ CX ([x]) t
(
f ◦ CX ◦ f−1 ([x])

)
t
(
f2 ◦ CX ◦ f−2 ([x])

)
. (3.7)

This contractor is consistent with the set X ∪ f (X) ∪ f ◦ f (X), as shown at least
partly by the new following proposition.

Proposition 3.3. Define a set X for which we have a minimal contractor CX. If f
is box-conservative, then f (CX) is the minimal contractor for f (X).

Proof. The minimal contractor for f (X) is [x] 7→ Jf (X) ∩ [x]K. Now,

Jf (X) ∩ [x]K = f ◦ f−1 (Jf (X) ∩ [x]K) (f is bijective)
= f (Jf−1 ◦ f (X) ∩ f−1 ([x])K) (f−1 is box conservative)
= f (JX ∩ f−1 ([x])K) (f−1 ◦ f (X) = X)
= f (CX (f−1 ([x]))) (minimality of CX)
= (f (CX)) ([x]) (definition of f (CX) )

(3.8)
Thus f (CX) = f ◦ CX ◦ f−1 is the minimal contractor for f (X).

Corrolary 1. If f is box conservative and if I is the identity function, from
Proposition 3.3, the minimal contractor for the set X∪f (X) is (I t f) (CX).

Proof. The minimal contractor consistent with X∪f (X) is

J(X ∪ f (X)) ∩ [x]K = J(X ∩ [x])∪ (f (X) ∩ [x])K ((A ∪ B)∩C = (A ∩ C)∪ (B ∩ C))
= JX ∩ [x]Kt Jf (X) ∩ [x]K ( JA ∪ BK = JAKt JBK )
= CX ([x]) t f (CX) ([x])
= (CXtf (CX)) ([x])
= ((I t f) (CX)) ([x]) .

(3.9)

Corrolary 2. If f is box-conservative and if SX = {S in
X ,Sout

X } is the minimal
separator for X, then the minimal separator for f (X) is

f (SX) =
{
f ◦ S in

X ◦ f−1, f ◦ Sout
X ◦ f−1

}
. (3.10)

Proof. This is a direct consequence of Proposition 3.3.

Example 3.3. Let us consider the set X defined in Example 2.7, and the following
box-conservative function:

f (x) =
( √

3− x2
x1

)
. (3.11)
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(b)X ∪ f (X) ∪ f2 (X)

Figure 3.2: The transformation of a minimal separator by a box-conservative
function is minimal.

From a minimal separator for the set X as defined in Example 2.7, Corollary 2
allows us to obtain minimal separators consistent with the sets X ∪ f (X) and
X ∪ f (X) ∪ f2 (X). Corresponding subpavings are depicted on Figure 3.2.

3.2.2 Minimal contractors

We consider here an equation of the form y = f(x). The following new theorem
defines a way to build minimal contractors for this equation.
Theorem 3.1. The minimal contractor consistent with S = {(x,y) | y = f (x)},
where f : Rn → Rp, is

CS
(

[x]
[y]

)
=
(

J[x] ∩ f−1 ([y])K
J[y] ∩ f ([x])K

)
. (3.12)

Proof. Define x6=i = (x1, . . . , xi−1, xi+1, . . . , xn) and [x6=i] = [x1] × · · · × [xi−1] ×
[xi+1]× · · · × [xn] where the [xi]’s are the interval components of the box [x]. The
optimal contraction for xi is

J{xi ∈ [xi] | ∃x6=i ∈ [x6=i] ,∃y ∈ [y] ,y = f (x)}K (3.13)

=
r{
xi ∈ [xi] ,∃x6=i ∈ [x6=i] ,x ∈ f−1 ([y])

}z
(3.14)

=
r

projxi
(
[x] ∩ f−1 ([y])

)z
. (3.15)

where the projection operator projxi will be defined in Chapter 4. Now, since for
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any subset of Rn:

JAK =
q
projx1 (A)

y
× · · · ×

q
projxn (A)

y
, (3.16)

we get
q
[x] ∩ f−1 ([y])

y
=

r
projx1

(
[x] ∩ f−1 ([y])

)z
× · · · ×

r
projxn

(
[x] ∩ f−1 ([y])

)z
.

(3.17)
Let us apply the same reasoning with yi. The optimal contraction for yi is

J{yi ∈ [yi] | ∃y6=i ∈ [y6=i] ,∃x ∈ [x] ,y = f (x)}K (3.18)
= J{yi ∈ [yi] | ∃y6=i ∈ [y6=i] ,y ∈ f ([x])}K (3.19)
=

q
projyi ([y] ∩ f ([x]))

y
. (3.20)

Thus,

J[y] ∩ f ([x])K =
q
projy1 ([y] ∩ f ([x]))

y
× · · · ×

r
projyp ([y] ∩ f ([x]))

z
. (3.21)

As a consequence, CS corresponds to the minimal contractor consistent with S.

3.2.3 Polar contractor

The results given in the previous section are applied here to build a minimal
contractor for the polar set defined by:

Π =
{
p = (x, y, ρ, θ) ∈ R4 | (x, y) = π(ρ, θ)

}
(3.22)

where
π

(
ρ
θ

)
=
(
ρ cos θ
ρ sin θ

)
(3.23)

is the polar function. Define
Π0 = [p0] ∩ Π. (3.24)

with
[p0] = R+ × R+ × R+ ×

[
0, π4

]
. (3.25)

On [p0], we have (
x
y

)
= π

(
ρ
θ

)
⇔
{
ρ =

√
x2 + y2

θ = atan( y
x
) (3.26)

i.e., (
ρ
θ

)
=π−1

(
x
y

)
=

( √
x2 + y2

atan( y
x
)

)
. (3.27)
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Figure 3.3: Illustration of the polar contractor. Left: before contraction, Right:
after contraction.

From Theorem 3.1, the minimal contractor for Π0 is

CΠ0

(
[x]× [y]
[ρ]× [θ]

)
=

(
J[x]× [y] ∩ π ([ρ]× [θ])K

J[ρ]× [θ] ∩ π−1 ([x]× [y])K

)
(3.28)

Figure 3.3 illustrates the contraction of five different boxes [x]× [y]× [ρ]× [θ]. The
light gray pies is the initial domain for [ρ] and [θ] while the dark gray pies are the
resulting domains obtained after contraction. For instance, the box [x1]× [y1]×
[ρ]× [θ] on the left is contracted into the box [x1]× [y1]× [ρ1]× [θ1] on the right.

The minimal contractor CΠ for Π can be deduced from CΠ0 using the following
proposition.

Proposition 3.4. Define the following symmetries

σ1 : (x, y, ρ, θ) →
(
y, x, ρ,

π

2 − θ
)

(3.29)

σ2 : (x, y, ρ, θ) → (x,−y, ρ,−θ) (3.30)
σ3 : (x, y, ρ, θ) → (−x, y, ρ, π − θ) (3.31)
σ4 : (x, y, ρ, θ) → (x, y,−ρ, π + θ) (3.32)
γ : (x, y, ρ, θ) → (x, y, ρ, θ + 2π) . (3.33)

A minimal contractor for Π is

CΠ =
(⊔

i

γi ◦ (I t σ4) ◦ (I t σ3) ◦ (I t σ2) ◦ (I t σ1)
)

(CΠ0) . (3.34)

Proof. By composing transformation functions, the initial domain, restricted to
R+×R+×R+×[0, π4 ] is extended to R4. We have

62



3.3. Building Minimal Separators

CΠ0∼R+ × R+ × R+ ×
[
0, π4

]
∩ Π (3.35)

(I t σ1) CΠ0∼R+ × R+ × R+ ×
[
0, π2

]
∩ Π (3.36)

(I t σ2) ◦ (I t σ1) CΠ0∼R+ × R× R+ ×
[
−π2 ,

π

2

]
∩ Π (3.37)

©i∈{3,2,1} (I t σi) CΠ0∼R× R× R+ × [−π, π] ∩ Π (3.38)
©i∈{4,3,2,1} (I t σi) CΠ0∼R× R× R× [−π, π] ∩ Π (3.39)⊔

i

γ ◦©i∈{4,3,2,1} (I t σi) CΠ0∼Π. (3.40)

The minimality is a consequence of the fact that all transformations are box-
conservative.

3.3 Building Minimal Separators

The previous section introduced a new way to build a minimal contractor related
to constraints which are built by composition of elementary constraints and box-
conservative transformations. We now extend these results to build minimal
separators.

3.3.1 Minimal separators

Consider the set
X = {x | f (x) ∈ Y} = f−1 (Y) , (3.41)

where f is a function mapping Rn into Rm. We assume here that Y is a subpaving
(a finite union of boxes) which may overlap, i.e.,

Y =
⋃
i

[yi] . (3.42)

Since Y is a subpaving, its complementary set Y is also a subpaving. For instance,
in Figure 3.4, we have

Y = [1, 2]× [1, 3] ∪ [3, 4]× [1, 3]
Y = (R× [3,∞]) ∪ (R× [−∞, 1])

∪ ([−∞, 1]× [1, 3]) ∪ ([2, 3]× [1, 3])
∪ ([4,∞]× [1, 3]) .

(3.43)

Definition 3.3. Consider a contractor C([x], [y]). We define the partial contractor
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Figure 3.4: Y in gray and Y can be represented by the union of boxes

with respect to x as the projection of the box C([x], [y]) onto x, i.e.,

∂xC([x], [y]) = [a] and ∂yC([x], [y]) = [b] , (3.44)
where ([a], [b]) = C([x], [y]). (3.45)

Theorem 3.2. Denote by C ([x] , [y]), the minimal contractor consistent with the
constraint f (x) = y. If Y is a subpaving, then the minimal separator consistent
with the set X = f−1 (Y), is

S ([x]) =
{
S in,Sout

}
([x]) =


⊔

[y]∈Y

∂xC ([x] , [y]) ,
⊔

[y]∈Y
∂xC ([x] , [y])

 . (3.46)

Proof. To prove that S is minimal, it suffices to prove that the two contractors S in

and Sout are minimal. Let us first prove that Sout is minimal. Define

X = {x | f (x) ∈ Y} = f−1 (Y) . (3.47)

For a given box [x], the minimal contractor yields JX∩ [x]K. Now

JX∩ [x]K = Jf−1 (Y)∩ [x]K (definition of X)
=

q
f−1(⋃[y]∈Y [y])∩ [x]

y
(definition of Y)

=
r(⋃

[y]∈Y f−1([y])
)
∩ [x]

z
(f−1(A ∪ B) = f−1 (A) ∪ f−1 (B) )

=
q⋃

[y]∈Y (f−1([y])∩ [x])
y

((A ∪ B) ∩ [x] = (A ∩ [x])∪ (B ∩ [x]))
=

q⋃
[y]∈Y Jf−1([y])∩ [x]K

y
( JA ∪ BK = JJAK ∪ JBKK )

=
q⋃

[y]∈Y ∂xC ([x] , [y])
y

(minimality of C[y])
= ⊔

[y]∈Y ∂xC ([x] , [y]) (definition of t )
= Sout ([x]) .
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Let us now prove that S in is minimal. Define

X = {x | f (x) /∈ Y} = f−1
(
Y
)
. (3.48)

A reasoning, similar to the first part of the proof, gives us
q
X∩ [x]

y
=

⊔
[y]∈Y

∂xC ([x] , [y]) = S in ([x]) , (3.49)

which terminates the proof.

Remark 3.1. This theorem shows that getting the optimal set inversion mostly
depends on the function f and not on Y. As a consequence, it is worthwhile to
spend time to compute optimal contractors for the constraint f (x) = y in order to
derive minimal separator for f (x) ∈ Y.

3.3.2 Polar separator

We consider the problem of approximating the projection of Π (see Equation (3.22))
along the (ρ, θ) plan defined by:

[ρ]× [θ] ∩ π−1 ([x]× [y]) . (3.50)

Let CΠ be the minimal polar contractor consistent with Π. From Theorem 3.2, the
minimal separator consistent with this set is

S [x],[y]
π ([ρ], [θ]) =


⊔

[x1]×[y1]∈[x]×[y]

∂ρθCΠ ([x1], [y1], [ρ], [θ]) , ∂ρθCΠ ([x], [y], [ρ], [θ])

 ,
(3.51)

where [x]× [y] is a subpaving corresponding to the complement of the box [x]× [y].
Here, [x], [y] are the parameters of the separators and the contractions operate
on the box [ρ]× [θ]. The same reasoning applied on ρ and θ, concludes that the
minimal separator consistent with the set:

[x]× [y] ∩ π ([ρ]× [θ]) (3.52)

is given by

S [ρ],[θ]
π−1 ([x], [y]) =


⊔

[ρ1]×[θ1]∈[ρ]×[θ]

∂xyCΠ ([x], [y], [ρ1], [θ1]) , ∂xyCΠ ([x], [y], [ρ], [θ])

 .
(3.53)

65



Chapter 3. Polar Separator

−3 −2 −1 1 2 3 4

1

2

3

4

5

x

y

−3 −2 −1 1 2 3 4

1

2

3

4

5

x

y

Figure 3.5: Action of the two separators defined as the projection of the polar
contractor. The initial domains for (x, y) and (ρ, θ) are represented by the large
rectangle and the large pie. Red boxes and pies belong to solutions sets while those
in blue do not

where [ρ]× [θ] is a subpaving corresponding to the complement of the pie [ρ]× [θ].
The efficiency of these two separators are illustrated on Figure 3.5 with the initial
intervals taken as [x] = [−3, 4], [y] = [1, 2], [ρ] = [2.1, 4] and [θ] = [ π12 ,

3π
4 ]. The

minimality of the separators can be observed by the fact that each box intersects
the border of the pie in Figure 3.5 (left) and each pie intersects the boundary of
the box in Figure 3.5 (right).

3.4 Application to Localization

Sensors returning range and goniometric measurements of a given landmark, such
as sonar or LIDAR, are commonly used in robotics for localization. When measure-
ments are related to some landmarks, the problem can be modeled using the polar
constraint [Guyonneau et al., 2013]. Now, we propose examples of localization to
illustrate the efficiency of the polar separator.

3.4.1 Static localization

3.4.1.1 Localization with one landmark

Consider one landmark at a known position m = (m1,m2). One robot at position
x = (x1, x2) is able to measure the distance y1 to m and the direction y2 of m
in the local reference frame with an interval accuracy. In this example, we take
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Figure 3.6: Approximation of X using the minimal separator (Left) and by using a
classical forward-backward separator (Right). The initial domain is X0 = [−6, 4]2.

[y] = [4, 6]×
[
− π

12 ,
π
4

]
. The set X of feasible x is:

X = {x ∈ R2 | ∃y ∈ [y] ,m− x = π(y)}
= {x ∈ R2 |m− x ∈ π([y])}
= gm ◦ π ([y]) .

(3.54)

where π is defined in Equation (3.23) and

gm (x) = m− x. (3.55)

which is box-conservative. From Corollary 2, the minimal separator Sm, associated
with landmark m, consistent with X is

Sm = gm ◦ S [y]
π−1 . (3.56)

where S [y]
π−1 is the minimal separator defined in Equation (3.53).

Figure 3.6 shows the results of the set inversion using our minimal separator
(left) and a forward-backward separator (right). Note that the new Theorem 3.2
has to be used in order to be able to get an inner approximation, even with the
forward/backward contractor.

3.4.1.2 Example with several landmarks

Assume now that we have 3 landmarks mi. The measurements [yi] and the position
of the landmarks are given in Table 3.1. The feasible set X is now

X = ⋂
i

gmi
◦ π ([yi]) . (3.57)
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Table 3.1: Range and bearing measurements of the three landmarks

landmarks 1 2 3
m1 6 -2 -3
m2 12 -5 10

[y1](m) [11, 12] [8, 10] [5, 7]
[y2](◦) [14, 100] [-147, -75] [63, 150]

Figure 3.7: Paving obtained using the polar separator. The dashed white box is
the result of the first call of a forward/backward separator

The corresponding separator S is

S =
⋂
i

gmi
◦ S [yi]

π−1 . (3.58)

The paving obtained using S is shown in Figure 3.7. The white dashed box
correspond to the result of the first call of the forward/backward separator and is
bigger than the one obtained with S.
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Figure 3.8: VAMA (Véhicule Anti Mine Autonome), an AUV owned by DGA TN.

3.4.2 Underwater localization

We now illustrate the efficiency of the polar separator on a data-set extracted
from a mission performed by the actual AUV (Autonomous Underwater Vehicle)
VAMA (see Figure 3.8) in the Road-stead of Brest (France, Brittany), July 18,
2015. We focus on the transit phase of the mission where the AUV follows a set of
waypoints in order to reach its mission area. During this phase, ranges and bearings
yk = (yk1 , yk2) between the ship at position m = (m1,m2) and the AUV at time k
are periodically measured using an ultra short baseline (USBL) and then sent to
the robot through an acoustic communication. We assume that no communication
delays exists. Moreover, thanks to the pressure sensor, the robot can measure its
depth and the localization problem can be easily projected on the two-dimensional
horizontal plane.

An estimated reconstitution of the part of the mission made by VAMA that will
be used here is depicted on Figure 3.9. The motion of the robot is assumed to be
described by the discrete-time state equation:

x(k + 1) = ϕk(x(k)) = x(k)+
(

cosψ(k) − sinψ(k)
sinψ(k) cosψ(k)

)
· dt · v(k), (3.59)

where x(k) corresponds to the 2D coordinates of the center of the robot at time
k expressed in an absolute inertial frame, ψ(k) is the heading and v(k) is the
horizontal speed vector of the robot expressed in its own coordinate system. The
speed and heading are measured using a MEMS IMU (Xsens Mti) and are assumed
to be known with an uncertainty of ±0.05m.s−1 and ±1◦. The range is measured
with an accuracy of ±1% and the bearing with an accuracy of ±2◦.
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10m

Ship

Figure 3.9: Part of the trajectory of VAMA. The robot changes its direction when
it reached one way-point.

As a state estimator, we propose to compute the set Xk of feasible states x consistent
with the last ī measurements. It is given by

Xk =
{
x ∈ R2 | ∀i ∈ {0, ī},∃y ∈ [yi] ,mk−i −ϕk:k−i (x) = π(yk−i)

}
(3.60)

where ϕk1:k2 is the flow defined as follows{
ϕk1:k2 = ϕk2−1:k2 ◦ · · · ◦ϕk1:k1+1 if k2 ≥ k1
ϕk1:k2 = ϕ−1

k2:k1 otherwise. (3.61)

We have

Xk = ⋂
i∈{0,̄i}

{
x ∈ R2 | ∃y ∈ [yk−i] ,mk−i −ϕk:k−i (x) = π(y)

}
= ⋂

i∈{0,̄i}

{
x ∈ R2 |mk−i −ϕk:k−i (x) ∈ π([yk−i])

}
= ⋂

i∈{0,̄i}ϕk−i:k ◦ gmk−i ◦ π ([yk−i]) .
(3.62)

where gmk−i is the function associated with the position of the k − ith landmark,
defined in Equation 3.55. The corresponding separator is

SXk =
⋂

i∈{0,̄i}
ϕk−i:k ◦ gmk−i ◦ S

[yk−i]
π−1 . (3.63)

For an implementation of the observer, Equation (3.63), S [yk−i]
π−1 can either be the

minimal polar separator or a separator based on a classical forward/backward
propagation. For a comparison, let us first apply the separator SXk on the initial
box [x0] = [−∞,∞]2 for all k without bisection and with ī = 0. As expected,
no inner contraction occurs. The diameters of boxes [xk], which enclose Xk, are
depicted in Figure 3.10 in blue. It also shows the diameter of the boxes [xk] that are
obtained with a forward/backward separator (green). The peak, between t = 40s
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Figure 3.10: Diameter of the boxes[xk] obtained by the minimal polar separator
(blue) and the forward/backward separator (green). The green peak can be
explained by the fact that the forward/backward contractor is less efficient when
the angle between the measured angles are almost π

4 .

and t = 60s, arises when the measured angles are close to π
4 . We conclude that the

forward/backward separator is indeed more pessimistic, which is consistent with
the fact that the polar contractor is minimal (see also the video in [Desrochers and
Jaulin, 2016a]).

Figure 3.11 shows an approximation of Xk for ī = 5 and t = 55 sec. Since there
is an acoustic measurement every 5 sec and since the sampling time is δ = 0.1 sec,
a synchronization of all the data (not discussed here) had to be done. The
correspondence between k and t is k = 5 · t.

To be robust with respect to outliers, we may allow the observer to relax on the
time window of length ī at most q outliers [Desrochers et al., 2015]. The solution
set Xk becomes:

Xk =
{q}⋂

i∈{0,̄i}
ϕk−i:k ◦ gmk−i ◦ π ([yk−i]) (3.64)

where the q-relaxed intersection [Jaulin and Walter, 2002, Carbonnel et al., 2014]
is used. The associated separator becomes

SXk =
{q}⋂

i∈{0,̄i}
ϕk−i:k ◦ gmk−i ◦ S

[yk−i]
π−1 . (3.65)

The result obtained using this observer for q ∈ {0, 1, 2} are illustrated on a video
given in [Desrochers and Jaulin, ].
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Figure 3.11: Localization of the robot for t = 55 sec. Each of the blue pies
corresponds to all feasible positions of the robot associated with one measurement.

3.4.3 Initial localization from known map

3.4.3.1 Feature-based localization

A feature-based localization problem can be formalized as follows
ẋ(t) = f (x(t),u(t)) (evolution equation)

g(x(t),y(t)) ∈M (observation constraint)
x(0) ∈ X0 (initial state)

(3.66)

where x is the unknown state vector, y an exteroceptive measurement vector, u
a proprioceptive measurement vector. It is known that for all t, u(t) ∈ [u] (t)
and y(t) ∈ [y] (t). The set M is a map, assumed to be known. Equivalently, the
observation constraint can then be written as

∃m(t) ∈M |m(t) = g(x(t),y(t)).

If we take into account the uncertainty on y, we can say that the state vector x(t)
is consistent with the interval measurement [y] (t) if

∃m(t) ∈M,∃y(t) ∈ [y] (t) |m(t) = g(x(t),y(t)).

The existential quantification ∃m(t) ∈M highlights the requirement of solving the
so-called data association problem which aims at finding which point of the map
is associated with the measurement vector y. For us, M is composed with finite
number of isolated points and we deal with the initial localization problem on a
field of point landmarks that are indistinguishable. All measurements have the
same aspect and cannot be associated directly with a particular point of the map.
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This problem frequently arises when acoustic sensors are used to detect underwater
environmental features [Fallon et al., 2013].

Remark. The observation constraint differs from the shape-based observation
constraint given by Z(t) = g(x(t),M) as given in Chapter 2. For the shape
observation, the measurement is a shape Z whereas here it is a vector y. This
is consistent with the classical feature-based localization. We have chosen here
to consider the more classical feature-based localization to illustrate the use of
the polar contractor described in this chapter. Later, it will be used in problems
involving shape measurements.

3.4.3.2 Problem

We consider a robot moving on a plane, the motion of which is described by the
state equation

ẋ(t) = f (x(t)),u(t)) =


(

cos(ψ(t)) − sin(ψ(t))
sin(ψ(t)) cos(ψ(t))

)
· v(t)

ω(t)


The state vector is x = (px, py, ψ), where p = (px, py) is its position and ψ is its
heading. The input vector is u = (vx, vy, ω), where v = (vx, vy) is the horizontal
speed in the vehicle frame, measured for instance with a Doppler Velocity Log
(DVL) (in case of an underwater robot), and ω(.) is the angular velocity measured
by gyroscopes.

At some times ti ∈ T, the robot collects the range-bearing vector y (ti) =
(ρ(ti), ϕ(ti))T to a landmark m(ti) = (mx(ti),my(ti))T which belongs to the map
M, composed of a collection of georeferenced points. This leads to the following
constraint

∃m ∈M,m = g (x(ti),y(ti)) (3.67)

with

g(x(ti),y(ti)) =
(
px(ti)
py(ti)

)
+ ρ(ti) ·

(
cos(ψ(ti) + ϕ(ti))
sin(ψ(ti) + ϕ(ti)

)
. (3.68)

The localization problem is thus described by the following set of equations:
ẋ(t) = f (x(t),u(t))

m(ti) = g(x(ti),y(ti))
m(ti) ∈M
x(0) ∈ X0

(3.69)

where the trajectory x(.), and the landmark associated to the measurements taken
at time ti both need to be estimated. It can be decomposed into the following
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constraint network: 

(i) ẋ(.) = f(x(.),u(.))
(ii) m(ti) ∈M
(iii) ai = m(ti)− p(ti)
(iv) αi = ψ(ti) + ϕ(ti)

(v) ai = ρ ·
(

cos(α(ti))
sin(α(ti))

) (3.70)

where a contractor can be defined for each constraint. In particular, the contractor
C d
dt

(see Section 2.5.4) will be used to contract the tube [x](.) with respect to
(i). The map can be depicted by a subpaving, or by an image, for which a
contractor introduced in Section 2.5.2 can be used. For any box [x] ∈ IR2 , this
contractor returns the smallest box which contains all landmarks included in [x].
And the constraint (v) corresponds to the polar one where the minimal contractor,
introduced in Section 3.2.3 can be used. The other contractors can be built as
explained in Example 2.4.

3.4.3.3 Test-case

Consider an AUV starting its mission with a huge position uncertainty. This
can happen during a dive in deep water [McPhail, 2009] or when, for discretion
purposes, a long-range underwater transit phase is required to reach the working
area.

For operational reasons, no external positioning system, such as acoustic beacons or
USBL, are deployed. We assume that a part of the mission area has been previously
mapped during a previous survey and this area is large enough to be reached by
the AUV. The corresponding map M describing this area is modeled by a set of
280 point landmarks.

Our robot performs a small mission pattern as depicted in Figure 3.12. It senses
its environment using a imaging forward-looking sonar oriented toward the seabed,
the scope of which is represented by the blue pie. Every three seconds, it is able to
measure the distance and bearing between its pose to some landmarks that range
between 10 and 70 meters. The positions of the detected landmarks are depicted
by green dots. The 90 red segments represent the measurements. Note that only a
small number of mapped landmarks have been detected.

Only the 2D position of the robot and its heading need to be estimated since other
state variables (roll, pitch, altitude, depth) are directly measured.

Assumptions. For simplicity, the fact that only landmarks inside the pie are seen
by the AUV is not taken into account by the method. Moreover, in an underwater
context, the detected landmarks cannot be distinguished from the others, since for
instance, two different rocks can have the same aspect and dimension. Moreover,
the landmark detection process is sensitive to change in the point of view of the
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sensor, some landmarks of the map cannot be seen during the survey. Thus, no
reliable data associations based on the shape of the landmarks can be assumed.
Moreover successive measurements corresponding to the same landmark could be
associated by the sonar tracking system. Again, we consider this matching as non
reliable and it will not be used for the localization.
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Figure 3.12: The simulated environment for initial localization. The trajectory of
the AUV is depicted by the blue lines. Its starting point is drawn by the red dot.
The map is composed of 230 landmarks represented by black dots.

This example aims at providing a practical illustration of how the constraint
propagation methods can be used to find the set of feasible initial states of the
vehicle and to solve the data association problem without using a combinatorial
algorithm. Once these two issues are solved, any classical localization method, such
as an EKF, can be used to get a more accurate estimate of the trajectory. The
filter is initialized with a reliable starting point and only updated with observations
which are correctly associated.

3.4.3.4 Results

Given [x(0)], . . . , [x(kmax)] a set of boxes enclosing the state trajectory of the robot.
All boxes are initialized to R2 × [−π, π]. The initial heading is assumed to be
known with an accuracy of ±10 degrees. Table 3.2 shows bounds used to quantify
the errors on sensor readings. The map M is composed of 280 landmarks, and 90
observations have been done during the whole mission.
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data description uncertainty unit
ψ(0) initial heading [−10, 10] deg
v(t) linear speed [−0.05, 0.05]×2 m.s−1

ω(t) angular velocity [−0.001, 0.001] deg.s−1

ρ(t) range ρ(t) · [−0.01, 0.01] m
ψ(t) azimuth [−1, 1] deg

Table 3.2: Uncertainties on data used for the application.
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Figure 3.13: w([p]) with respect to the iteration number.

Figure 3.15 shows the final trajectory obtained after 12 iterations in less than 1
minute on i7-5600U CPU@2.60GHz.

In Table 3.3, for each iteration, the times needed to contract the whole trajectory are
given. This time is constant at each iteration. During the constraint propagation
process, the thinner the trajectory, the smaller the number of landmarks contained
in [m](ti), and vice versa. As an indicator, Columns 3 (resp. 4) of Table 3.3 shows
the minimal (resp. maximal) number of landmarks contained in [m](ti) among all
measurements. The last column corresponds to the number of correct associations,
i.e, when [m](ti) contains a single landmark. Figure 3.13 shows diameters of
boxes along the trajectory for different iterations which illustrates the constraint
propagation process. The constraint propagation methods is shown to be powerful
in situations involving a huge number of possible data associations. In comparison,
existing method [Fallon et al., 2013] often meet difficulty when both the initial
position and the data associations are unknown.

3.5 Conclusion

Contractor-based techniques are particularly attractive when solving engineering
applications, due to the fact that they can handle and propagate uncertainties in a
context where the equations of the problem are non-linear and non-convex. Now,
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Figure 3.14: w([θ]) with respect to the iteration number. The peaks in the graph
are due to the wrapping effect when the vehicle turns.
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Figure 3.15: Final trajectory with a correct estimation of the initial position and
landmarks association. The true trajectory, in blue, belongs to the red tube.
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# time(s) #min #max #ok
1 2.61 202 230 0
2 2.65 27 81 0
3 2.99 22 75 0
4 2.77 15 73 0
5 2.62 11 71 0
6 2.48 4 71 0
7 2.33 2 68 0
8 2.02 1 29 10
9 2.61 1 6 64
10 2.44 1 3 82
11 2.41 1 2 88
12 2.40 1 1 90

Table 3.3: Time needed to contract the whole trajectory for each iteration. #min
(resp. #max) is the smallest (resp. greatest) number of elements of [m](ti) among
all measurements. #ok denotes the number of good associations. The computing
time is nearly constant.

the performances of paving methods are extremely sensitive to the accuracy of the
contractors that are associated with the equations. One of the equations often met
in practice is the polar equation which links Cartesian to polar coordinates.

In this chapter, we proposed two new theorems that could help to build more
easily minimal contractors and separators consistent with some specific constraints.
These theorems allowed us to build the minimal contractor and a minimal separator
for the important polar constraint, which was not done before, to our knowledge.

The efficiency of these new operators and their ability to get an inner and outer
approximation of the solution set was illustrated on the problem of the localization
of a robot when both goniometric and range measurements are collected. In the
next chapter, the polar contractor will be intensively used in the context of the
shape-based localization that fits the formalism presented in the introduction of
this thesis.
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Shape-based Localization
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4.1 Introduction

In the previous chapter, a dedicated separator, associated with the polar constraint,
has been introduced. It allows characterizing a set defined by angles and distances.
The efficiency of this separator has been illustrated with localization problems in
structured environments composed of landmarks. The variables of these problems
are the landmark positions, the pose of the vehicle and the measurements ρ and
φ. These variables are all real numbers. The domain which contains feasible
values was computed using the polar separator. The objective of this previous
chapter was to illustrate how minimal contractors / separators could be built
for a constraint that is important in our localization context. Now, the existing
catalog of primitive contractors built for dedicated geometrical constraints should
be extended to incorporate all constraints that could be useful in a robotics context.
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Figure 4.1: Example of a shape registration problem associated with the constraint
f(p,A) ⊂ B. The feasible set P corresponds to the parameters of the function f
such as the transformation of the shape A is included in B.

Implementing these specific primitive contractors will allow us to be more efficient
by limiting the decompositions (which yields pessimism).

In this chapter, we will assume that both the map M and measurements Yi are
subsets of Rq, or shapes, where q is the dimension of the map (2 or 3 in practice).
We also assume that shapes are perfectly known; i.e. they are thin sets. In the
next chapters, this will not be the case since the shape will become uncertain, and
we will introduce the notion of interval shape.

This chapter deals with a new type of constraint, called shape-registration. Given
two shapes A ⊂ Rn, B ⊂ Rm and p ∈ Rp linked by a constraint L that depends on
a parameter p ∈ Rp, the shape-registration problem aims at finding the set P of
parameter vectors consistent with L. For instance, it may correspond to finding the
parameter vectors p ∈ P of a non linear transformation f such that f(p,A) ⊂ B.
This is illustrated by Figure 4.1.

These problems are related to the registration of points cloud, generally done
by Iterative Closest Points methods [Pomerleau et al., 2015], images [Zitova and
Flusser, 2003] and surfaces [Audette et al., 2000]. But we are in a set-membership
context.

As the main illustration, the localization problem of a robot with sonar range-finder
in an unstructured environment is handled. This problem is considered as difficult
due to the fact that the sonar returns a measurement under the form of an impact
point inside an emission cone. This specific type of measurement makes the problem
partially observable. Moreover, our environment is not represented by geometric
features such as segments or disks, but by a shape which cannot be translated into
analytical constraints. Now, as shown in Figure 2.5, an unstructured map can be
cast into a contractor form which allows us to use contractor/separator algebra.

Here, we propose first to use a separator-based method to perform a reliable
simulation necessary to generate realistic data (see [Taha et al., 2015] for a survey
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on reliable simulation). Then, once these data have been generated, we consider the
inverse problem, i.e., the robot localization with large-cone sonar measurements in
an unstructured map. This problem has never been considered yet, to our knowledge,
at least in an unstructured environment (see e.g., [Jaulin et al., 2000, Kieffer et al.,
1999, Jaulin et al., 2002, Lévêque et al., 1997, Colle and Galerne, 2013] in the case
where the map is made with geometrical features). We will also show the link with
Minkowski operations and propose separator counterparts for these operations.

Section 4.2 presents the concept of shape registration and shows that it can be
interpreted as a set projection problem. The principle is illustrated on a localization
problem. Section 4.3 proposes to formulate the Minkowski operations as a specific
shape registration problem where the transformations correspond to translations.
Section 4.4 illustrates the application of the Minkowski operation to the problem
of localization of a robot in an unstructured environment. Section 4.5 concludes
the chapter.

4.2 Shape Registration as a Projection

Many sets that are defined with quantifiers can be described in terms of projection,
inversion, complement, and composition. The projection operator is now defined
with its associated separator.

4.2.1 Projection of separators

Definition 4.1. Given X ⊂ Rn and Y ⊂ Rp. If Z = X× Y, then the projection of
a subset Z1 of Z onto X (with respect to Y) is defined as:

projX(Z1) = {x ∈ X | ∃y ∈ Y, (x,y) ∈ Z1} . (4.1)

Figure 4.2 illustrates the projection of a set along the X dimension.

When a separator is available for Z1, it is possible to define a separator consistent
with projX(Z1) based on the following theorem.

Definition 4.2. Consider a separator S([x], [y]) = {S in([x], [y]),Sout([x], [y])}, the
projection of S is defined by :

projx(S)([x]) =

 ⋂
y∈[y]

∂xS in([x], [y]),
⋃

y∈[y]
∂xSout([x], [y])

 (4.2)

Theorem 4.1. Given a separator S associated to Z, we have:

projx(Z) ∼ projx(S). (4.3)
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Y

X

Z1

projX (Z1)

Figure 4.2: Set projection

Proof. To prove 4.3, we must prove that the outer contractor is consistent with
projx(Z) and the inner with its complement. We have:

projx(Z) = {x | ∃y ∈ [y], (x,y) ∈ Z} (4.4)
=

⋃
y∈[y]
{x, (x,y) ∈ Z} (4.5)

∼
⋃

y∈[y]
∂xSout (4.6)

Similarly, since Z ∼ S in, we have:

projx(Z) = {x | ∃y ∈ [y], (x,y) ∈ Z} (4.7)
= {x | ∀y ∈ [y], (x,y) 6∈ Z} (4.8)
=

⋂
y∈[y]

{
x, (x,y) ∈ Z

}
(4.9)

∼
⋂

y∈[y]
∂xS in (4.10)

that ends the proof.

The implementation of the projection of separators is based on Proj-Union and
Proj-intersection algorithms described in [Chabert and Jaulin, 2009b]. Roughly, the
initial domain [y] is split into a list of small intervals [yi]. For the outer contraction,
each sub-domain [x]× [yi] is contracted using the outer contractor ∂xSout([x], [yi])
and the hull of the results is returned. For the inner contraction, a sequence of
points yi are sampled from [yi] and ∂xS in is enforced on [x]×{yi}. The intersection
of the results is returned.
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In practice, many tricks are used to limit the number of separations. A specific
implementation that tried to take advantage of the complementarity of the inner
and outer contractions of S has been done. The implementation provided in pyIbex
fits the generic separator formalism which can be used with border-based separators.
It does not rely on explicit inner and outer contractors. Note that the proposed
projection algorithm assumes that set Z has a non-empty volume in order to define
an inner contractor.

4.2.2 Shape registration

In this section, we formulate the shape registration as a set projection. Consider a
function

f :
{

Rn × Rp −→ Rm

(a,p) −→ f(a,p) (4.11)

For a given p ∈ Rp, A ⊂ Rn, B ⊂ Rm we shall use the following notations:

f(A,p) = {b|∃a ∈ A, b = f(a,p)}
f−1(B) = {z = (a,p) |∃b ∈ B, b = f(a,p)} (4.12)

Consider the set defined by :

P = {p ∈ Rp | f(A,p) ⊂ B}. (4.13)

The vector p corresponds to a parameter vector associated to a transformation.
A transformation vector p is consistent if after transformation of A it is included
inside B. We have

f(A,p) ⊂ B
⇔ ∀a ∈ A, f(a,p) ∈ B
⇔ ¬∃a ∈ A, f(a,p) ∈ B
⇔ ¬∃a ∈ A, (a,p) ∈ f−1

(
B
)

⇔ ¬∃a, (a,p) ∈ A× Rp ∧ (a,p) ∈ f−1
(
B
)
.

(4.14)

As a consequence,
P = projp{(A× Rp) ∩ f−1

(
B
)
}. (4.15)

Therefore, if we have separators SA,SB for A,B then a separator SP for P can be
obtained using the separator algebra [Jaulin and Desrochers, 2014]. It is given by

SP = projp{(SA × SRp) ∩ f−1
(
SB
)
}. (4.16)

Combining this separator with a paver, we are able to obtain an inner and outer
approximation of P.
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Remark 4.1. The same method applies to build the separator consistent with the
sets:

P= = {p ∈ Rp, f(A,p) ∩ B = ∅} (4.17)
=
{
p ∈ Rp, f(A,p) ⊂ B

}
(4.18)

or P6= = {p ∈ Rp, f(A,p) ∩ B 6= ∅} (4.19)
= P= (4.20)

4.2.3 Example

A robot at position (0, 0) is inside an environment defined by the map

M = {x ∈ R2 | x1 < 5 or x2 < 3}. (4.21)

It emits an ultrasonic sound in the cone with angles π
4 ±

π
24 . For a simulation

purpose, we want to compute the distance d returned by the sonar. This distance
corresponds to the shortest distance inside the emission cone to the complement of
the map:

d = inf{d | f(S1, d) ∩M 6= ∅}, (4.22)

where f(x, d) = d · x is the scaling function and S1 is the unit cone defined by

S1 = {(x, y) | x2 + y2 < 1 and atan2(y, x) ∈ [5π24 ,
7π
24 ]}. (4.23)

Recall that for this type of set, a minimal separator has been introduced in Chapter
3. Equivalently, we have

d = sup{d | f(S1, d) ⊂M}. (4.24)

To solve our problem, we first characterize the set:

D = {d | f(S1, d) ⊂M}. (4.25)

which corresponds to a registration problem. We get

[0, 6.2988] ⊂ D ⊂ [0, 6.3085]. (4.26)

The situation is depicted on Figure 4.3. As a consequence, the true distance d
returned by the sensor satisfies d ∈ [6.2988, 6.3085]
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Figure 4.3: The map M is represented by the white space outside the hatched area
while the unit pie S1 is painted in gray. The red pie represents the lower upper
bound of D which almost touches the border of the map.

4.3 Minkowsky Sum and Difference

The elementary inclusion shape registration defined by Equation (4.13) has been
illustrated in the previous section. Our aim is to derive efficient shape registration
algorithms, based on Minkowski operations, to deal with the special case where
the transformations are translations.

Minkowski operations are used in morphological mathematics to perform dilation
or inflation of sets. As it will be shown in Section 4.4, it can also be used for a
localization purpose. Efficient algorithms (see [Shoji, 1991]) have been proposed to
perform Minkowski operations with sets represented by subpavings. In this section,
we show that Minkowski sum and difference can be seen as a shape registration
problem. This will allow us to build separators for these Minkowski operations.
In the next paragraphs, Minkowski difference and addition are defined with their
associated separators. This will be always true for our applications.

4.3.1 Minkowski difference

Definition 4.3. Given two sets A ∈ P(Rn), B ∈ P(Rn), the Minkowski difference
[Najman and (Eds), 1000], denoted 	, is defined by

B	 A = {p | A + p ⊂ B}. (4.27)

Proposition 4.1. Given two separators SA and SB for A and B. The Minkowski
difference of two separators, defined by

SB 	 SA = projp{(SA × SRn) ∩ f−1
(
SB
)
}. (4.28)

where f(p, a) = a + p, is a separator for B	 A.
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Proof. Computing the Minkowski difference can be seen as a specific shape regis-
tration problem where f(p, a) = a + p , i.e., the transformation corresponds to a
translation of vector p. As a consequence,

B	 A = projp{(A× Rp) ∩ f−1
(
B
)
}. (4.29)

According to Equation (4.16) a separator can thus be built for B	A and a paver is
then able to characterize B	 A. The following example illustrates the Minkowsky
difference of a circle by a box.

Example 4.1. Let A be a rectangle of side’s length of 4 x 2, and B be a disk of
radius 5. The resulting solution set B	 A is depicted in Figure 4.4.
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Figure 4.4: Minkowski difference of the disk B and the rectangle A

4.3.2 Minkowski addition

Definition 4.4. Given two sets A ∈ P(Rn), B ∈ P(Rn), the Minkowski sum,
denoted by ⊕, is defined by:

A⊕ B = {a + b, a ∈ A,b ∈ B}. (4.30)

Proposition 4.2. Given two separators SA and SB for A and B. The Minkowski
sum of two separators defined by

SA ⊕ SB = SB 	−SA. (4.31)

is a separator for A⊕ B.
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Proof. We have:

A⊕ B = {p | ∃a ∈ A,∃b ∈ B,p = a + b}
= {p | ∃a ∈ A,∃b ∈ B,p− a = b}
= {p | (p− A) ∩ B 6= ∅}
= {p | (p− A) ∩ B = ∅}
= {p | (p + (−A)) ⊂ B}(see Eq 4.27)
= B	−A.

(4.32)

Thus, a separator for the set A⊕ B is SB 	−SA.

Example 4.2. Consider a triangle A and a square B. The Minkowski addition
A⊕B is shown on Figure 4.5.

A B

A⊕ B

Figure 4.5: Minkowski sum of a square B and a triangle A computed using a set
membership algorithm.

4.4 Localization in an Unstructured Environment

Consider a robot R at position p = (p1, p2) in an unstructured environment
described by the set M. We assume that the heading θ of R is known with a good
accuracy (for instance, by using a compass) and does not need to be estimated.
The robot is equipped with several sonars which return the distance between the
robot and the map with respect to their emission cone. This section deals with the
localization of the robots using a shape registration method. Several authors have
already studied this problem using interval analysis [Lévêque et al., 1997, Meizel
et al., 2002, Colle and Galerne, 2013] but in an environment made with segments.

Each sensor emits an acoustic wave in its direction αi which propagates inside a
cone of half angle γ corresponding to the aperture of the beam. By measuring
the time lag between the emission and the reception of the wave, reflected by the
map, an interval [di] = [d−i , d+

i ] contains the true distance di to the nearest obstacle
which lies in the scope of the sensor can be obtained. The situation is depicted
in Figure 4.6. The area swept by the wave between 0 and di is free of obstacles
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whereas the map is hit by the wave at distance di. Define

Si = {(x, y) | x2 + y2 < d−i and atan2(y, x) ∈ [αi − γ, αi + γ]}
∆Si = {(x, y) | x2 + y2 ∈ [di] and atan2(y, x) ∈ [αi − γ, αi + γ]} (4.33)

The set Si is called the free sector and ∆Si is called the impact pie. These sets are
depicted on Figure 4.6.

diγ

αi

(p1, p2)

M M

Si

∆Si

(p1, p2)

M M

Figure 4.6: Sensor model used by the robot. The map M, in white, corresponds to
parts of the space without obstacles.

The set of all feasible positions P consistent with [di] is

P(i) = {p ∈ R2 | (p + Si) ⊂M and (p + ∆Si) ∩M 6= ∅} (4.34)
= (M	 Si) ∩ (M⊕−∆Si).

With several measurements [di] the set of all positions consistent with all data is s

P =
⋂
i

(M	 Si) ∩ (M⊕−∆Si). (4.35)

Denote by SM, SSi , S∆Si separators for M, Si, ∆Si. Then a separator for P is

SP =
⋂
i

(SM 	 SSi) ∩ (SM ⊕−S∆Si). (4.36)

As an illustration, consider the situation described by Figure 4.7 (left), where a
robot collects 6 sonar data. The width of the intervals corresponding to the range
measurement is ±1m. The first measurement corresponding to i = 1 is painted
in green. Figure 4.7 (right) corresponds to an approximation of the set M 	 S1,
obtained using the separator SM 	 SS1 with a paver.

Figure 4.8 (left) corresponds to an approximation of the set M⊕−∆S1, obtained
using a paver with the separator SM⊕−S∆S1 . It corresponds to the set of positions
for the robot such that the impact pie ∆S1 intersects the outside of the map M.
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Figure 4.7: Left: a robot which collects 6 sonar range measurements. All free
sectors Si are included in the map M (in white) and the impact pies ∆Si in yellow
intersect M. Right: set of all positions for the robot consistent with the fact that
the free sector S1 (in green on the left picture) is inside M.

Figure 4.8 (right) corresponds to the set (M	 S1) ∩ (M⊕−∆S1), i.e., it contains
the position consistent with both ∆S1 and S1.

Figure 4.9 (left) corresponds to an approximation of the set P, obtained using a
paver on with the separator SP. It corresponds to the set of positions for the robot
that all six impact pies ∆Si intersect the outside of the map M and all six free
sectors are inside M. A zoom of the solution set is given in Figure 4.9 (right).
The computing time is 127 sec. and 205 boxes have been generated. Note that
obtaining an inner approximation of the solution set was not possible using existing
approaches that are not based on separators.

4.5 Conclusion

Separator-based techniques are particularly attractive when solving engineering
applications, due to the fact that they can handle and propagate uncertainties in a
context where the equations of the problem are non-linear and non-convex.

Now, this chapter extended the class of constraints by considering the shape
registration problem. For instance, the classical set inversion problem can be
described by the following constraint network

Variable: x ∈ Rn

Constraint: f(x) ∈ Y
Domain: X ⊂ Rn

(4.37)
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Figure 4.8: Left: Positions for the robot consistent with the impact pie ∆S1. Right:
Positions consistent with the free sector S1 and the impact pie ∆S1.
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Figure 4.9: Left: Set of positions P for the robot consistent with all six free sectors
Si and all impact pies ∆Si. Right: zoom around the solution set P.

where f ∈ F(Rn,Rm) and Y is a known set that comes from input data. Now, to
deal with unstructured environments, a new constraint which links sets has been
introduced 

Variable : p ∈ Rp

Constraint : fp(X) ⊂ Y
Domain: P ⊂ Rp

(4.38)

where f ∈ F(Rn × Rp,Rm) is a parametric function and X, Y are two known sets.

As illustrated by the application, this formulation allows us to deal with unstruc-
tured data sets (the shapes) that represent a part of the environment (the map) or
a measurement (area obstacle-free). Sensor readings are not described by scalars,
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with an interval as a domain, but by a shape. The goal of the next part is to
address the case where the shapes X and Y are variables of our Constraint N etwork.
This happens with the SLAM problem inwhich the map is unknown. This issue
will be discussed more deeply in Chapter 6.
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Shape Carving
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5.1 Introduction

Previous chapters introduced methods, based on interval analysis, able to solve
constraint networks that involve real numbers as variables and subsets of Rn as
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domains. They have been used to compute the set of feasible values that satisfy a
given number of constraints and have been applied to parameter estimation and
robot localization.

Now, we will consider the case where variables are subsets of Rn. This typically
appears in engineering applications when arbitrary shapes (i.e. that cannot be
parameterized) are involved or when the model used is uncertain. It corresponds, for
instance, to the reconstruction of a three-dimensional object from photos [Bottino
et al., 2003], mapping an environment from sonar measurements [Leonard and
Durrant-Whyte, 1992] or SLAM [Jaulin, 2011]. For us, the uncertainty will be
treated under the form of an interval of sets, called Thick Set, or Interval Shape in a
robotics context. More precisly, in the context of the shape-based SLAM formalism,
presented in the introduction of this manuscript, the observation equation takes
the following form

Y = f(p,X). (5.1)

where g : Rp ×Rn → Rm, p is an element of Rp, and X (resp. Y) is a subset of Rn

(resp. Rm). All variables, and in particular X and Y, of the equation are uncertain,
and need to be estimated. This is the goal of this section which aims at providing
tools and methods needed to solve the canonical problem, that we called the shape
registration and carving problem, defined in Equation 5.1.

After recalling some notions on lattices, the first section introduces the concept of
intervals of sets called Thick Set, or shape interval. This new notion will be used
as domains for set-valued variables (or shapes). Section 5.3 extends the notion
of separators to characterize thick sets. The canonical problem of set inversion is
generalized in Section 5.4 for dealing with uncertain sets, and uncertain functions.
Finally, Section 5.5 deals with contractors on thick sets and will be used to refine
the approximation of an uncertain set defined by constraints.

5.2 Thick Sets

This section recalls more advanced notions on lattices and intervals that will be
used to define the thick sets. Behind the provided mathematical background,
this section aims to underline the fact that the thick sets theory is mainly an
extension of interval analysis. Now intervals are in an infinite dimensional space
corresponding to the space of shapes.

5.2.1 Lattices

Lattices. Interval methods can be applied as soon as the set of domains for the
variables has a lattice structure [Apt, 1999]. A lattice (E ,≤) is a partially ordered
set, closed under least upper and greatest lower bounds [Davey and Priestley, 2002].
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The least upper bound of x and y is called the join and is denoted by x ∨ y. The
greatest lower bound is called the meet and is written as x ∧ y. Let us now give
three examples.

• The set (Rn,≤) is a lattice with respect to the partial order relation given
by x ≤ y⇔ ∀i ∈ {1, . . . , n} , xi ≤ yi. We have x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn)
and x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn) where xi ∧ yi = min (xi, yi) and xi ∨ yi =
max (xi, yi) .

• The set (F,≤) of the functions that map R to R is a lattice with respect to
the partial order relation given by f ≤ g ⇔ ∀t ∈ R, f (t) ≤ g (t) . We have
f ∧ g : t 7→ min {f (t) , g (t)} and f ∨ g : t 7→ max {f (t) , g (t)} .

• The set IR of closed intervals, as introduced by Moore [Moore, 1966], is a
complete lattice with respect to the inclusion ⊂. The meet corresponds to
the intersection (generally denoted by ∩) and the join corresponds to the
interval hull (generally denoted by t). For instance

[1, 4] ∩ [2,∞] = [2, 4] and [1, 4] t [8, 9] = [1, 9] . (5.2)

A lattice E is complete if for all (finite or infinite) subsets A of E , the least
upper bound ∧A and the greatest lower bound ∨A belong to E . When a lattice
E is not complete, we can add two elements corresponding to ∧A and ∨A to
make it complete. For instance, the set R is not a complete lattice whereas
R = R ∪ {−∞,∞} is. By convention, for the empty set, we set ∧∅ = ∨E and
∨∅ = ∧E .

Intervals. A closed interval (or interval for short) [x] of a complete lattice E is
a subset of E which satisfies [x] = {x ∈ E | ∧ [x] ≤ x ≤ ∨[x]} . Both ∅ and E are
intervals of E . If we denote by IE the set of all intervals of a complete lattice (E ,≤)
then (IE ,⊂) is also a lattice. For two elements [x] = [x−, x+] and [y] = [y−, y+] of
IE , we have:

[x] ∧ [y] = [x− ∨ y−, x+ ∧ y+]
[x] ∨ [y] = [x− ∧ y−, x+ ∨ y+] . (5.3)

The meet [x] ∧ [y] is called the intersection and will be denoted by [x] ∩ [y] . The
join [x] ∨ [y] is the interval hull, denoted by [x] t [y]. It should not be confused
with the classical union ∪ of two intervals.

Remark 5.1. The bracket notation is here used to denote an interval. The brackets
can be interpreted as an operator which associates to an unknown variable x, an
interval domain [x] which contains it. This operator is used when solving Constraint
Satisfaction Problems with intervals [Davis, 1987]. When we define spontaneously
an interval [x], then at the same time we define implicitly a variable x enclosed by
[x].
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X

X+

X−

Figure 5.1: Example of thick set. The dark zone is outside the X+.

5.2.2 Thick set

Denote by (P(Rn),⊂) the powerset of Rn equipped with the inclusion ⊂ as an
order relation. The set P(Rn) is a complete lattice with respect to ⊂. The meet
operator corresponds to the intersection and the join to the union. A thick set
[X] of Rn is an interval of (P(Rn),⊂). If [X] is a thick set of Rn , there exist [Yao
et al., 2008] two subsets of Rn called the lower bound X− and the upper bound X+

such that
[X] = [X−,X+]

= {X ∈ P(Rn) | X− ⊂ X ⊂ X+} . (5.4)

As illustrated on Figure 5.1, a thick set partitions Rn into three zones: the clear
zone X−, the penumbra X+\X− and the dark zone Rn\X+.

Remark 5.2. For simplicity, the clear zone is also denoted by Xin = X−, the dark
zone by Xout = X+ and the penumbra by X? = X+ \ X−.

Remark 5.3. The convention used to draw sub-paving associated with a thick set
is the following: red boxes belong to X− (clear zone), orange boxes belong to the
penumbra and blue boxes are outside X+ (dark zone).

A thick set [X] is a sub-lattice of (P(Rn),⊂), i.e., if A ∈ [X], B ∈ [X], then
A∩B ∈ [X] and A∪B ∈ [X]. The set of thick sets of Rn will be denoted by IP(Rn).
If for the thick set [X] = [X−,X+], we have X− = X+ then [X] is said to be thin. It
corresponds to a singleton in P(Rn) or equivalently a classical subset of Rn.

Remark 5.4. Other possibilities to represent vagueness exist in the literature such
as Fuzzy Sets [Dubois and Prade, 2015] or Fuzzy Interval used in fuzzy control
[Galichet and Foulloy, 1995, Boukezzoula et al., 2004]. The closest definition,
provided by Equation (5.4), is the one used to define the Rough Set [Pawlak, 1992].
In the Rough-set model, a given set is represented by a pair of ordinary sets called
the lower and upper approximations. The approximation space is constructed
based on an equivalence relation defined by a set of attributes. On the contrary,
the thick set representation, also called i-set in [Jaulin, 2012] or interval-set [Yao
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et al., 2008, Gervet, 1997], is simply defined as an interval of sets. According to
[Yao and Li, 1996], rough-set and thick set models are different extensions of set
theory. More precisely with the rough-set theory, the domain of a random variable
is described by a membership function which is also uncertain. We can talk about
a modelization of the uncertainty of the uncertainty. On the contrary, with the
thickset model, the variable is a subset of Rn and its domain is handled with the
classical interval formalism.

The rough-set model introduces two additional set-theoretic operators based on an
equivalence relation on the universe while the thick set model extends the standard
set-theoretic operators like intersection, union or complement.

5.2.3 Operations

Some operations which can be applied on thick sets are now defined. Since thick
sets are intervals of sets, two types of operators can be considered: extension of
classical set operations to elements of thick sets and operations on intervals of sets.

The first class extends binary operators on subsets of Rn which correspond to
classical operations on vectors of Rn (in the Minkowsky sense). If � is a binary
operator in Rn (such as +,−, the multiplication when n = 1, the vector product
when n = 3), this extension is:

[A] � [B] = {A � B,A ∈ [A] ,B ∈ [B]} . (5.5)

The second class is composed of binary operators such as � ∈ {∪,∩,×, \, . . . }
where × is the Cartesian product, \ is the restriction (or trim) operator, for subsets
of Rn that do not correspond to any extension of operators in Rn.

Given a collection {Xi}i∈I of subsets of Rn, we denote by � {Xi,i ∈ I} the smallest
thick set which encloses all Xi, i ∈ I. We have:

� {Xi,i ∈ I} =
⋂
i∈I

Xi,
⋃
i∈I

Xi

 . (5.6)

It is possible to extend the operators to thick sets as follows:

[A] � [B] = � {C,∃A ∈ [A] ,∃B ∈ [B] ,C = A � B} . (5.7)
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From the monotony of the following operators, we have:

[A] ∩ [B] =
[
A− ∩ B−,A+ ∩ B+

]
(5.8)

[A] ∪ [B] =
[
A− ∪ B−,A+ ∪ B+

]
(5.9)

[A]× [B] =
[
A− × B−,A+ × B+

]
(5.10)

[A] \ [B] =
[
A− \ B+,A+ \ B−

]
(5.11)

[A]⊕ [B] =
[
A− ⊕ B−,A+ ⊕ B+

]
(5.12)

If f is a function from Rn to Rm the image of the thick set [A] ⊂ P(Rn) by f is
defined as:

f([A]) = �
{
f(A),A ∈

[
A−,A+

]}
=
[
f(A−), f(A+)

]
. (5.13)

For example, the following illustrates the two types of intersections that can be
defined:

[X] ∩ [Y] = {Z ∈ P(Rn) |Z = X ∩ Y,X ∈ [X] ,Y ∈ [Y]}
[X] u [Y] = {Z ∈ P(Rn) |Z ∈ [X] ,Z ∈ [Y]}. (5.14)

The first ∩ corresponds to the extension to IP(Rn) of the intersection in P(Rn)
whereas the second u corresponds to the intersection in IP(Rn). Therefore

X ∈ [X] ,Y ∈ [Y] ⇒ X ∩ Y ∈ [X] ∩ [Y]
Z ∈ [X] ,Z ∈ [Y] ⇒ Z ∈ [X] u [Y] . (5.15)

As shown in [Jaulin, 2012], we have:

[X] ∩ [Y] = [X− ∩ Y−,X+ ∩ Y+]
[X] u [Y] = [X− ∪ Y−,X+ ∩ Y+] . (5.16)

The same type of relations applies to the union

[X] t [Y] = [X− ∩ Y−,X+ ∪ Y+]
[X] ∪ [Y] = [X− ∪ Y−,X+ ∪ Y+] (5.17)

Comparisons between ∩,u,∪ and t are depicted in Figure 5.2.

5.3 Thick Separators

To characterize a thin set using a paver, we may use a separator inside a paver.
As for operations on sets, separators can be immediately generalized to thick sets.
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Figure 5.2: Illustration of the two different types of operators on thick sets.

101



Chapter 5. Shape Carving

Now, the penumbra as a non-zero volume and, for efficiency reasons, it is important
to avoid any accumulation of the paving deep inside the penumbra.

5.3.1 Definition

A thick separator [S] for the thick set [X] is an extension of the concept of separator
to thick sets. As illustrated by Figure 5.3, a thick separator is a 3-uple of contractors{
S in,S?,Sout

}
such that, for all [x] ∈ IRn

S in([x]) ∩ Xin = [x] ∩ Xin

S?([x]) ∩ X? = [x] ∩ X?

Sout([x]) ∩ Xout = [x] ∩ Xout

(5.18)

As for separators, which are built in practice from a pair of two complementary
contractors, thick separators can be built from a pair of classical separators. Given
separators S− =

{
S−in,S−out

}
consistent with X− and S+ =

{
S+
in,S+

out

}
consistent

with X+, the thick separator [S] consistent with [X] is:

[S] =
{
S−out,S−in ∪ S+

out,S+
in

}
(5.19)

Proof. This is a direct consequence of definitions of S−, and S+. We have

S−out ∼ X− = Xin (5.20)
S+
in ∼ X+ = Xout (5.21)

S−in ∪ S+
out ∼ X− ∩ X+ = X? (5.22)

The following example illustrates how a thick set can be defined from a grayscale
image and characterized using a thick separator.

Example 5.1. We consider the problem of characterizing a thick set [X] defined
from the ternary images depicted in Figure 5.4a. We assume that white pixels
belong to X−, white and gray pixels belong to X+ and black pixels do not belong
to [X]. Using the image separator introduced in Section 2.5.3 on page 44, it is
possible to build a thick separator [S] for [X]. The result of the characterization of
[X] is depicted in Figure 5.4b.

5.3.2 Algebra

Algebra for thick separators is defined in the same manner than what has been
done for contractors [Chabert and Jaulin, 2009b] or for separators [Jaulin and
Desrochers, 2014]. The main motivation is to provide methods to compute with
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5.3. Thick Separators

X+X−

S in([x])

Sout([x])

S?([x])

Figure 5.3: Thick separator. Sout is consistent with X+, S in with X− and S? with
X? = X+ \ X−.

(a) Gray-scale image (b) Resulting subpaving

Figure 5.4: Characterization of [X] using a paver defined by a grayscale image.
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Chapter 5. Shape Carving

thick sets. We only focus on the intersection of thick separators but a similar
reasoning can be done to define other operations, introduced in Section 5.1, such
as the union, restriction, squared intersection, exclusive-or, or relaxed intersection
[Desrochers and Jaulin, 2016b].

Intersection

Consider two thick sets [X] = [X−,X+] and [Y] = [Y−,Y+] with their associ-
ated thick separators [SX] =

{
S inX ,S?

X,SoutX

}
and [SY] =

{
S inY ,S?

Y,SoutY

}
. A thick

separator for the thick set

[Z] =
[
Z−,Z+

]
= [X] ∩ [Y] =

[
X− ∩ Y−,X+ ∩ Y+

]
. (5.23)

is

[SZ] =
{
S inZ ,S?

Z,SoutZ

}
=

{
S inX ∩ S inY ,

(
S?
X ∩ S inY

)
t
(
S?
X ∩ S?

Y

)
t
(
S inX ∩ S?

Y

)
,SoutX t SoutY

}
.

(5.24)

Proof. We have

Zin = Z− = X− ∩ Y−
= Xin ∩ Yin

Z? = Z+\Z− = X+ ∩ Y+\(X− ∩ Y−)
= X+ ∩ Y+ ∩ X− ∩ Y−
= X+ ∩ Y+ ∩

(
X− ∪ Y−

)
=

(
Xin ∪ X?

)
∩
(
Yin ∪ Y?

)
∩
((
Xout ∪ X?

)
∪
(
Yout ∪ Y?

))
=

(
X? ∩ Yin

)
∪
(
X? ∩ Y?

)
∪
(
Xin ∩ Y?

)
Zout = Z+ = X+ ∩ Y+

= X+ ∪ Y+

= Xout ∪ Yout.

From the separator algebra, we get that a contractor for Zin is S inZ = S inX ∩ S inY , a
contractor for Zout is SoutZ = SoutX t SoutY and a contractor for Z? is

S?
Z =

(
S?
X ∩ S inY

)
t
(
S?
X ∩ S?

Y

)
t
(
S inX ∩ S?

Y

)
. (5.25)

Remark 5.5. In the case where [SX] =
{
S−X ,S+

X

}
and [SY] =

{
S−Y ,S+

Y

}
, the separator

consistent with Equation (5.2) is

[SZ] =
{
S−X ∩ S−Y ,S+

X ∩ S+
Y

}
. (5.26)
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5.4. Uncertain Set Inversion

The proof is a direct consequence of Equation (5.9). We have

S−X ∩ S−Y ∼ X− ∩ Y− and S+
X ∩ S+

Y ∼ X+ ∩ Y+.

5.4 Uncertain Set Inversion

The canonical problem of the set inversion X = f−1(Y) is well formalized and many
algorithms, such as the ones presented in Chapters 2 and 3, are commonly used
to solve it. In this section, we extend this problem to the thick set case where
both Y and f are uncertain. A first theorem is given in order to provide a generic
formulation of the uncertain set inversion problem.

However, in the general case, this problem is hard to solve. In order to provide
explicit methods for solving this problem, assumptions on the nature of f have to
be made. When f depends on an uncertain parameter vector p ∈ Rp, a method
for dealing with the set inversion problem is proposed in this section. It allows
handling uncertain nonlinear transformations such as rotations of an angle which
belongs to a given interval. The introduced method mainly relies on the projection
of separator, presented in Section 4.2.1, which can be slow when dealing with a
high-dimensional parameter space. On the contrary, when f is assumed to belong
to an interval of functions, a dedicated and more efficient method is introduced in
Appendix A. Note also that this appendix, published in [Desrochers and Jaulin,
2017d], contains additional examples which have motivated the need for developing
specific algorithms.

5.4.1 Problem statement

Given a function f : Rn → Rm and a set Y ⊂ Rm, set inversion aims at bracketing
from inside and outside the set

X = f−1(Y). (5.27)

This formalism has been used for more than 20 years with interval methods to
solve problems in bounded-error parameter estimation [Vehi et al., 1997], robot
localization [Meizel et al., 2002, Colle and Galerne, 2013, Drevelle and Bonnifait,
2013] and robust control [Malti et al., 2011, Herrero et al., 2005, Jaulin and Walter,
1993a]. Most interval algorithms for set-inversion alternate some interval tests or
contractions [Chabert and Jaulin, 2009b] to certify that a box (i.e., a Cartesian
product of intervals) is inside or outside the solution set X and bisect the boxes for
which no conclusion can be reached.

In the case where both f and Y are uncertain, a relaxation of the resulting
uncertain constraints can be performed by adding quantifiers as made in [Goldsztejn,
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y

x

y

x∈

Figure 5.5: The thin set X (which is not a ring and even not connected) drawn in
red on the left belongs to the thick set [X] on the right. [X] contains all sets that
enclose the red ring and which do not intersect the blue zone.

2006, Kreinovich and Shary, 2016] for the linear case or by allowing a given number
of constraints to be unsatisfied [Carbonnel et al., 2014]. A set inversion problem
can be written as

X = f−1(Y), f ∈ F and Y ∈ [Y] . (5.28)

where [Y] is a thick set and F is a set of functions, i.e, a subset of F(Rn,Rm). For
instance, F can be the set of all periodic functions, the set of positive functions, or
a tube seen as an interval of functions from R to Rm.

The set X is said to be a feasible solution if

∃f ∈ F,∃Y ∈ [Y] , X = f−1(Y). (5.29)

The set of all feasible solutions is not a thick set in general as illustrated by the
following example. Solving a thick set-inversion problem will amount to finding
the smallest thick set which encloses all feasible solutions for Equation (5.28).

Example 5.2. Let f(x) = x2
1 + x2

2 be a thin function from R2 to R, and Y be a
set such that [2, 3] ⊂ Y ⊂ [1, 4]. If X = f−1(Y), we have:

f−1 ([2, 3]) ⊂ X ⊂ f−1 ([1, 4]) . (5.30)

Now, all feasible X correspond to centered rings and it is clear that the inclusion
(see Equation (5.30)) contains other types of sets as illustrated by Figure 5.5.

5.4.2 Set inversion theorem

The set inversion problem which involves an uncertain set and an uncertain function
f is solved using the following theorem:
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5.4. Uncertain Set Inversion

Theorem 5.1. Given F ⊂ F(Rn,Rm) and the thick set [Y] = [Y−,Y+], the smallest
thick set which encloses all sets X such that

∃f ∈ F, ∃Y ∈ [Y] | X = f−1(Y). (5.31)

is the thick set [X] = [X−,X+] where

X− = ⋂
f∈F

f−1(Y−),

X+ = ⋃
f∈F

f−1(Y+). (5.32)

Proof. Denote by {Xi}i∈I the set of all solutions of Equation (5.31). The smallest
thick set [X] containing {Xi}i∈I is the thick set

[X] =
⋂
i∈I
{Xi},

⋃
i∈I
{Xi}

 . (5.33)

Now, for each Xi ∈ {Xi}i∈I,

∃fi ∈ F, ∃Yi ∈ [Y] | Xi = f−1
i (Yi). (5.34)

Thus, [X] is given by ⋂
f∈F

⋂
Y∈[Y]

f−1(Y) , ⋃
f∈F

⋃
Y∈[Y]

f−1(Y)
 . (5.35)

Now, since f−1 is monotonic with respect to the inclusion ⊂, we get

[X] =
⋂

f∈F
f−1(Y−), ⋃

f∈F
f−1(Y+)

 . (5.36)

Remark 5.6. Theorem 5.1 provides the exact formulation of the thick set inversion
problem and defines the corresponding two sets we want to compute, i.e., the two
sets X− and X+ as defined by Equation (5.32). The main difficulty is to get an
inner approximation of the penumbra X+\X−.

Existing interval methods can still be used to deal with this type of uncertainty,
but they accumulate inside the penumbra. This accumulation makes these methods
inefficient, since they spend most of the computation time to test tiny boxes that
are deep inside the penumbra, without proving that they are effectively in the
penumbra. Consequently, specific algorithms have to be developed.

As it is illustrated by the next example, when F contains a single function f from
Rn to Rm, from Equation (5.13), the smallest thick set solution is
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(a) [Y] as an image (b) [X] = f−1([Y])

Figure 5.6: Left: [Y]. Right: [X] = f−1([Y]).

[X] =
[
f−1(Y−), f−1(Y+)

]
, (5.37)

where classical set inversion algorithms can be used.

Example 5.3. Consider [Y] as depicted in Figure 5.6, and the function f : R2 → R2

defined by:

f(x) =
(
x1 sin(x1 + x2)
x2 cos(x2 − x1)

)
. (5.38)

The result of the set inversion [X] = f−1([Y]) is given by Figure 5.6. The thick
separator, used by the paver, is built from a pair of separators consistent with the
two classical set inversion problems: f−1(Y−) and f−1(Y+).

When F is a set of functions that depend on a parameter, elimination of quantified
parameters can be done using projection algorithms (see Section 4.2.1 on page 81).
This case is discussed in the next section. However, it requires additional bisections
along the parameter space that become costly when dealing with high dimensional
parameters.

On the contrary, when F can be described by an interval of functions, called a Thick
Function, a new algorithm has been developed to compute the solution set without
bisecting inside the parameter space. This method is discussed in Appendix A.
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5.5. Shape Registration and Carving

5.4.3 Set inversion with parametric function.

We consider here the case where f depends on a parameter vector p ∈ [p] ⊂ Rp.
The function should thus be written as f(x,p), but for simplicity of notation, we
will often write fp(x). For simplicity, the set inversion problem will be written as:

[X] = f[p]([Y]) (5.39)

From Theorem 5.1, the bounds of the smallest thick set [X−,X+] are defined by:

X− =
⋂

p∈[p]
f−1
p (Y−) =

{
x|∀p ∈ [p], fp(x) ∈ Y−

}
(5.40)

X+ =
⋃

p∈[p]
f−1
p (Y+) =

{
x|∃p ∈ [p], fp(x) ∈ Y+

}
. (5.41)

Using the notion of projection introduced in Section 4.2, it is possible to build
separators S−, consistent with X−, and S+ consistent with X+. Then the thick
separator consistent with [X] can be defined and used inside a paver to characterize
the solution set.

The following example illustrates the set inversion with the uncertain parametric
rotation of a box of R2. It compares a sampling method used to guess the shape
of the solution set, the classical set inversion algorithm which accumulates in the
penumbra and the proposed set inversion using separators.

Example 5.4. Let Rθ be a rotation of an angle θ ∈ [π6 ,
π
3 ] and [y] = [0, 3]× [4, 5].

The solution of the set inversion problem:

[X] = R[θ]([y]) (5.42)

is depicted in Figure 5.7 with and without the use of projections. The classical
interval methods, on Figure 5.7b, accumulate in the penumbra and add a lot of
pessimism. Both the red and blue areas are smaller than the true one, drawn in
Figure 5.7c.

5.5 Shape Registration and Carving

Previous sections have defined the notions of thick sets and algorithms for solving
the uncertain set inversion problem. As defined in the introduction, when a set
is used as a variable of our constraint network we call it a shape. It belongs to a
domain that we called an interval shape. In this section, the problem of the shape
registration, presented in Chapter 4, is extended to the case where the shapes are
not thin anymore and are uncertain. This problem is defined by the following
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(a) sampling method
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(b) classical set inversion
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(c) projection algorithm

Figure 5.7: The result of the set inversion using a sampling method along the
parameter space is depicted in Figure 5.7a. For each θ ∈ [θ], the image of the red
box by the rotation of an angle −θ is drawn using a transparency effect. It makes it
possible to guess sets X−, X+. Figure 5.7b: the result with classical methods where
the penumbra is not characterized. Figure 5.7c: the result of the set inversion using
projection algorithms.

shape-valued constraint network : 
f(A) = B
A ∈ [A]
B ∈ [B]
f ∈ F

(5.43)

Two sub-problems have to be considered in order to contract all domains of the
involved variables. The registration problem which aims at finding the smallest
set of functions, included in F, compatible with the constraint f(A) = B, A ∈ [A]
and B ∈ [B]. And, the carving problem which intends at refining the thick set
approximation of [A] and [B] for a given set of functions F.

For that purpose, the notion of contractor on thick sets is introduced in this section
with some elementary contractors dedicated to Equation 5.43. Then the shape
registration problem, presented in Section 4.2.2, will be extended to the thick set
case. Finally, this section ends with an example which illustrates the method.

5.5.1 Contractor on thick sets

Since Thick Sets are intervals of sets, it is possible to define contractors for them
in the same way as introduced in Section 2.4.1.1.
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A contractor on a thick set is an operator from IP(Rn) to IP(Rn) such as :

C([X]) ⊂ [X] (contractance)
[X] ⊂ [Y] ⇒ C([X]) ⊂ C([Y]) (monotonicity) (5.44)

The effect of a contraction on a thick set is illustrated on Figure 5.8. A contraction of
the lower bound corresponds to an inflation of the under approximation (Fig. 5.8c).
Similarly, decreasing the upper bound of [X] contracts the upper approximation
(Fig.5.8b). Since thick sets are interval of P(Rn), it is only possible to move its
bounds and have an outer contraction.

X X+
IP(Rn)X−

(a) initial domain

X X+
IP(Rn)X−

(b) lower contraction

X X+
IP(Rn)X−

(c) upper contraction

Figure 5.8: Illustration of contractor applied on a thick set. Recall that a thick set
is an interval of P(Rn). The thin set X, delimited by the dashed line, is a singleton
in this space.

5.5.2 Shape carving

The specific primitive contractors on thick sets are now presented. They will allow
to contract shape domains of Equation (5.43).

Constraint A ⊂ B

Since the equality between two sets can be decomposed into two inclusion con-
straints, we consider the following proposition:

Proposition 5.1. Given A ∈ [A], B ∈ [B], the minimal contractor associated with
the constraint A ⊂ B is:

C⊂
(

[A]
[B]

)
=
(

[A] u ([B] \ ([∅,Rn]))
[B] u ([A] ∪ ([∅,Rn]))

)
(5.45)
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or equivalently:

C⊂
(

[A]
[B]

)
=
(

[A−,A+ ∩ B+]
[B− ∪ A−,B+]

)
(5.46)

Proof. The proof can be found in [Jaulin, 2012].

This contractor is illustrated in Figure 5.9.

JBKJAK

(a) [A] and [B]

JAK

(b) [A] u ([B] \ [∅,Rn])

JBK

(c) [B] u ([A] ∪ [∅,Rn])

Figure 5.9: Contraction with respect to the constraint A ⊂ B.

5.5.2.1 Constraint f(A) = B

We have the following theorem:

Proposition 5.2. Given A ∈ [A], B ∈ [B], the minimal contractor associated with
the constraint f(A) = B where f is bijective is :

Cf

(
[A]
[B]

)
=
(

[A] u f−1([B])
[B] u f([A])

)
=
(

[A− ∪ f−1(B−),A+ ∩ f−1(B+)]
[B− ∪ f(A−),B+ ∩ f(A+)]

)
(5.47)

Proof. The proof can be found in [Jaulin, 2012].

Finally, using the thick set inversion algorithm, introduced in Section 5.4 , the
previous contractor can be extended to the case where f is uncertain, i.e., f ∈ F ⊂
F(Rn,Rm).

Proposition 5.3. Given A ∈ [A], B ∈ [B], f ∈ F the minimal contractor associated
with the constraint f(A) ⊂ B is :

CF
(

[A]
[B]

)
=
(

[A] u F−1([B])
[B] u F([A])

)
(5.48)

where F−1([B]) is the result of the set inversion as formalized in Section 5.4.
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Proof. The proof is a direct consequence of Theorem 5.1 and Proposition 5.1.

In this section, only contractors needed to define the shape carving problem have
been considered. Other contractors, such as those associated to the constraint
A ∩ B = ∅, can be found in [Jaulin, 2012], but are not needed for solving the
Shape-based SLAM presented in the next chapter.

5.5.3 Shape registration and carving

The shape registration problem, introduced in Chapter 4.2, is now extended to the
uncertain case by taking into account that the shapes involved in the transformation
are not thin anymore. Given two shapes linked by a function f that depends on a
parameter vector p ∈ Rp, the following propositions make it possible to contract
the domain for the variables (parameters ans shapes).

5.5.3.1 Constraint fp(A) ⊂ B

The following proposition allows to build a contractor, and even a separator, able
to characterize an outer approximation of the set of feasible parameters associated
to the constraint fp(A) ⊂ B.

Proposition 5.4. Given f : Rn × Rp → Rm, A ∈ [A] and B ∈ [B], we have:

{p ∈ Rp, f(A,p) ⊂ B} ⊂
{
p ∈ Rp, f(A−,p) ⊂ B+

}
(5.49)

Proof. For A ∈ [A], and B ∈ [B],

{p, f(A,p) ⊂ B} = {p,∀a ∈ A, f(a,p) ∈ B} (5.50)
B⊂B+

⊂
{
p,∀a ∈ A, f(a,p) ∈ B+

}
(5.51)

A−⊂A
⊂

{
p,∀a ∈ A−, f(a,p) ∈ B+

}
(5.52)

⊂
{
p, f(A−,p) ⊂ B+

}
(5.53)

As a consequence, given p ∈ [p] the contractor Cf⊂ associated to the constraint
f(A,p) ⊂ B, A ∈ [A], B ∈ [B] is :

Cf⊂([p], [A] , [B]) = [p] ∩
r
projp

{
(A− × Rp) ∩ f−1(B+)

}z
. (5.54)
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where J.K denotes the convex hull.

Remark 5.7. In the case where fp is bijective, the constraint fp(A) = B can be
decomposed into {

fp(A) ⊂ B
f−1
p (B) ⊂ A (5.55)

for which Proposition 5.1 can be used twice. This leads to the following contractor:

Cf=([p], [A] , [B]) = Cf⊂([p], [A] , [B]) ∩ Cf−1⊂([p], [B] , [A]). (5.56)

5.5.3.2 Constraint fp(A) ∩ B 6= ∅

The disjoint constraint is also extended to the uncertain case. It has been used in
the application of Chapter 4 to handle the impact area of sonar sensors.

Proposition 5.5. Given f : Rn × Rp → Rm, A ∈ [A] and B ∈ [B], we have:

{p ∈ Rp, f(A,p) ∩ B 6= ∅} ⊂
{
p ∈ Rp, f(A+,p) ∩ B+ 6= ∅

}
(5.57)

Proof. Given A ∈ [A], and B ∈ [B], we have:

{p ∈ Rp, f(A,p) ∩ B 6= ∅} = {p,∃a ∈ A, f(a,p) ∈ B} (5.58)
B⊂B+

⊂
{
p, ∃a ∈ A, f(a,p) ∈ B+

}
(5.59)

A⊂A+

⊂
{
p, ∃a ∈ A+, f(a,p) ∈ B+

}
(5.60)

As a consequence, the contractor Cf 6= associated to the constraint f(A,p) ∩ B 6= ∅,
A ∈ [A], B ∈ [B] is :

Cf 6=([p]) = [p] ∩
[
projp

{
(A+ × Rp) ∩ f−1(B+)

}]
. (5.61)

5.5.4 Application

As a preamble of applications presented in Chapter 6, the problem of Shape
Registration And Carving (SRAC) is now considered. This situation corresponds,
for instance, to a situation where a shape has partially been seen from two different
positions. The transformation to move, from one point of view to another, depends
on some parameters to be estimated. The goal of the shape registration and carving
is to reduce the set of feasible parameters (registration) and contract observed
shapes (carving).
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Given two shapes A ∈ [A], B ∈ [B] linked by a bijective function fp that depends
on a parameter vector p ∈ [p], the SRAC problem is described by the following
SVCN:


fp(A) = B
A ∈ [A]
B ∈ [B]
p ∈ [p]

(5.62)

From Proposition 5.4 a contractor can be built to contract the feasible parameter
box [p]. Then Proposition 5.1 is used to contract [A] and [B] with respect to f[p].
The contraction procedure is given by Algorithm 5.1.

Algorithm 5.1 SRAC(in: f , inout: [p], [A], [B])
1: [p] := Cf=([p], [A] , [B]) (see Proposition 5.4)

2:

(
[A]
[B]

)
:= Cf[p]

(
[A]
[B]

)
(see Proposition 5.1)

Example 5.5. Consider the two thick sets [A] and [B], depicted in Figure 5.10a
and 5.10b, that are approximations of the same ellipse but from different positions.
The transformation between these two views is defined by:

fp(x) =
(
p1
0

)
+
(

cos p2 − sin p2
sin p2 cos p2

)
· x (5.63)

The initial domain for [p] is [0, 4]× [−2, 2]. Figure 5.11 shows the result of the set
inversion using a separator.

Remark 5.8. From Equation (5.4), only an outer approximation of the set of feasible
parameters can be computed. However, due to the huge pessimism introduced
by f , bisections are needed. The use of the separator, which provides an inner
approximation, allows us to save computation time. It avoids useless bisections
inside the solution set.

After the contraction, we obtained [p] = [2.65113, 2.90901]× [−1.14117, −0.95238]
which contains the theoretical value p∗ = (2.8,−1) used to generate the images.
This result is used to contract the thick set approximation. Figure 5.10 shows these
sets after the contraction.
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(c) [A] u f−1
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(d) [B] u f[p]([A])

Figure 5.10: Shape registration and carving. The initial set is approximated by
5.10a and 5.10b. Using the results of the carving process, the parameter box [p]
(see Figure 5.11) has been contracted using Proposition 5.4. Then Proposition 5.1
is used to contract [A] (5.10c) and [B] (5.10d).
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Figure 5.11: Contractions in the parameter space. The red box is [p] =
[2.65113, 2.90901]× [−1.14117, − 0.95238]
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5.6 Conclusion

This chapter introduced the notion of interval of sets, called thick set. The thick
set object is used as domains associated with set-valued variables (or shapes) that
appear in our shaped-valued constraint network.

As an elementary constraint, the uncertain set inversion problem has been formal-
ized. When the function can be parametric, a generic method that relies on the
projection operator has been provided. This method can handle any non-linear
function, but at a high computational cost.

Then, it has been used to extend the shape registration problem, introduced in the
previous chapter, to the case where the shapes are also uncertain and need to be
estimated. For that purpose, the carving problem, that aims at contracting their
domains, has been introduced. Based on the notion of contractors on thick sets,
which has been defined, a specific contractor applied to this problem was introduced.
This contractor will be intensively used as a basic operator by applications presented
in Chapter 6.

However, computing the set inversion with an uncertain function can be resource
demanding and specific methods need to be developed in order to avoid bisections
as much as possible. This is the goal of Appendix A, which introduces algorithms
able to deal with the set inversion problem for which the uncertain function is
described by an interval of functions.

This chapter concludes the presentation of the theoretical tools that have been
developed. These tools will be used in a robotics context in order to solve the
shape-based SLAM problem. Note that Appendix B provides another application
of interval shapes. It focuses on a method able to deal with the guaranteed
characterization of the part of the space that has been explored by a robot when
the dimension of the visible space at time t may be smaller than that of the
workspace.
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6.1 Introduction

The previous chapters have introduced all tools and algorithms needed to deal with
the targeted applications of this manuscript. The main goal of this thesis is to
provide an interval-based method to handle the SLAM problem in an unstructured
environment (or Shape-based SLAM). In Chapter 4, the localization problem was
first solved, but the map was assumed to be known without uncertainty. To tackle
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this issue, Chapter 5 introduced the notion of thick set, and defined a method to
deal with the shape registration and carving problem. For the particular case of
the translation, Appendix A introduces a method for solving the thick set inversion
problem.

In the first section, a generic formulation of the shape-based SLAM is presented
with a focus on how shapes are built from measurements. With respect to how a
sensor reading is translated into a shape, two categories of interval shapes can be
defined. For the first one, the shape provides an inner and an outer approximation
of a part of the map. This allows us to formulate, in Section 6.3, the shape-based
SLAM with inter-temporal constraints. As a direct application, we propose an
efficient algorithm able to deal with the bathymetric SLAM problem. On the
contrary, using sensors that only provide an inner approximation of the map, such
as those used in Chapter 4, a different formulation will be needed. This formulation,
called the Dig-SLAM problem, is introduced in Section 6.4. Section 6.5 concludes
this chapter.

6.2 Problem Statement

In this section, the general formalism of the SLAM problem where both the map and
measurements are shapes is given. Based on the thick-set contractors introduced
in Chapter 5, a generic resolution method is then presented. The last part of this
section focuses on the definition and the representation of physical features of the
environment by shapes.

6.2.1 Formalism

A generic pose-based simultaneous localization and mapping problem can be
described by:


ẋ(t) = f(x(t),u(t)) (evolution equation)
Z(t) = gx(t)(M) (map equation)
x(0) = x0 (initial position)

(6.1)

where t ∈ [t] ⊂ T is the time, x ∈ Rn is the state vector, u ∈ Rm is the input
vector (in general associated with proprioceptive sensors), f : Rn × Rm −→ Rn is
the evolution function and x0 is the initial state at t = 0. The set M is a subset
of Rq, where q is the dimension of the map (two or three in practice). The shape
Z(t) ⊂ Rr is an exteroceptive measurement collected by the robot (for instance by
a camera, sonar, telemeter, . . . ), and expressed in the robot frame. The function
g : Rn × Rq −→ Rr is the map function, which links the observed local shape Z(t)
to the global map M with respect to the state of the vehicle x(t). For a given state
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vector x(t), g is assumed to be bijective i.e

∀m ∈ Rq,gx(t) ◦ g−1
x(t)(m) = m (6.2)

Note that, most geometrical transformations, such as rotations, translations or
dilations, are bijective functions that can be parametric.

In order to fit the set-membership formalism used in this thesis, the SLAM problem
is handled by the following hybrid constraint network



Variables: x(·), M, Z(ti)
Constraints:

1. ẋ(·) = f (x (·) ,u (·))
2. Z(ti) = gx(ti)(M)

Domains: [x](·), [M], [Z] (ti)

(6.3)

where measurements are taken at time ti ∈ T, and inputs of the system u(t) are
assumed to be known and to belong to a bounded tube [u](.). Recall that the
set-valued variables Z(ti) are shapes. Their domains, defined by thick sets, are
called thick shapes.

6.2.2 Generic resolution

Solving the SLAM problem implies generally to estimate both the trajectory and
the map. The CN of Equation (6.3) is composed of two constraints for which
contractors C d

dt
, CSRAC have been defined.

The first contractor C d
dt

, defined in Section 2.5.4 on page 47, contracts the tube
[x](t) with respect to the evolution equation ẋ(t) = f(x(t),u(t)) and the initial
condition x0.

Then, the Shape Registration And Carving contractor CSRAC , introduced in Sec-
tion 5.5.4 on page 114, is used to contract[x](t), the map, and the shape interval
[Z(t)]. Algorithm 6.1 provides a solution for solving the SLAM problem.

Note that this formulation is generic and, with respect to the nature of the
measurements, needs to be adapted. Example of data that can be described by
shapes are now given.

121



Chapter 6. Shape-based SLAM

Algorithm 6.1 Explicit shape-based SLAM
1: [M] = [∅,Rq]
2: [x](0) = x0
3: repeat
4: [x](.) := C d

dt
([x](.))

5: for ti in T do
6: CSRAC([x](ti), [Z] (ti), [M])
7: end for
8: until no more contraction on [x](.)

P (Rq)

Z = [Z−,Z+]

(a) Double-sided observed shape

P (Rq)

Z = [Z−,Rq]

(b) One-sided observed shape

Figure 6.1: Observed thick shapes.

6.2.3 Shape-based measurements

As it has been said in the introduction of this manuscript, the map representation,
based on subsets of Rn, fits into the location-based map framework. Each position
of the world is assumed to belong, or not, to a set (or shape) associated with a
physical feature of the environment.

This shape is perceived by the embedded sensors of the robot. From raw data, we
suppose that an algorithm is able to characterize an initial domain depicted by a
thick shape. This initial domain has to take into account the uncertainty of the
data acquisition process and the scope of the sensor.

Now, with respect to the map and the geometry of the sensor, two types of thick
shapes need to be considered. The double-sided observed shape, for which we
measure both an inner and outer approximation, and the one-sided observed shape,
where only an inner approximation can be measured. These shapes are described
in Figure 6.1

6.2.3.1 Double-sided observable shape

A double-sided observable shape can be defined when both M and M can be
measured. More formally, its interval shape approximation [Z] = [Z−,Z+] satisfies:{

Z− ⊂M
Z+ ⊂M (6.4)
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6.2. Problem Statement

This is illustrated by Figure 6.2. The map M is defined by the dashed area and
the scope of the sensor, denoted by V, is depicted by the dotted black rectangle.
We assume that from sensor’s data, it is possible to get an inner approximation Z−
(in red) of M and Z+ (in blue) of M that ranges in the scope of the sensor. Since
robustly detecting the transitions between M and M can be a challenging task,
these transitions are enclosed inside the penumbra. The area, outside the scope of
the sensor that has not been observed also belongs to the penumbra.

R0

M

V

R0

Z+

Z+

Z−

Figure 6.2: Double-sided observable shape. On the left-hand side, the map M is
depicted by the dashed black lines. The black rectangle delimits the scope of the
sensor which is the area that can be sensed by the vehicle. On the right-hand
side, the thick shape [Z] which encloses the map i.e Z− ⊂M ⊂ Z+. The transition
between M and M belongs to the penumbra as well as all spaces that have not
been observed, i.e. outside the scope of the sensor.

For instance, an airborne lidar measures distances between its carrier and the
ground. These measurements, merged together into a local Digital Elevation Map
(DEM), split the space into three areas:

• The shape Z− that represents the space between the plane and the ground
which is free of obstacles.

• The shape Z+ that corresponds to the parts of the space below the ground
which are assumed to be occupied.

• The shape Z+ that is composed of unobserved areas and the uncertainty of
the bottom detection at the interface air/ground.

In this case, the DEM is represented as a shape of R3.

In Section 6.3, a new algorithm based on inter-temporal constraints will be intro-
duced. It will take advantage of the fact that both M and M can be observed.

123



Chapter 6. Shape-based SLAM

6.2.3.2 One-sided observed shapes

With partially observed shapes Z, the interval shape approximation only provides
an inner view of the map, i.e., Z ∈ [Z−,Rq] . It mainly happens when dealing
with occupancy maps that separate free from occupied area sensed with ranging
sensors. From distance readings, it is only possible to measure the free area
between the vehicle and the nearest obstacle that lies within the scope of the sensor.
Consequently, nothing can be inferred from the nature of the map outside this area.
Figure 6.3 illustrates this concept with a pair of ultrasonic sensors. The regions
of the working space that have not been sounded belong to the penumbra. Note
that, the areas of the impact point, denoted ∆Z, have to be used for localization
purpose.

This situation corresponds to the application introduced in Chapter 4. The Section
6.4 will extend this application to the SLAM problem.

∆Z

M

R0

[Z] =
[
Z−,R2

]
M

R0

Figure 6.3: Occupancy based representation. On the left-hand side, the map is
represented by the white area and obstacles are depicted in dashed black lines.
Two sonar measurements are shown. For each of them, the impact point lies in a
sector ∆Z. Since its position cannot be determined precisely, it makes this type of
measurement partially observable. The thick shape associated to the measurements
is drawn on the right side. The sounded part of the space, in red, is free from
obstacles and belongs to Z−. Since nothing can be said about the nature of the
environment sensed at a distance greater than the one measured, all the remaining
space belongs to the penumbra.

6.3 Shape-based SLAM

The previous section introduced a general method to handle the SLAM problem
with shapes. The proposed algorithm updates sequentially the trajectory, the map
and the measurement shapes. However, building and updating large maps can be
difficult and requires a lot of computing time. It involves solving many set inversion
problems for which a specific algorithm has been introduced in Appendix A.
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Sometimes, the map generated by the SLAM algorithm, is not a required output
of the problem. Only the pose estimation is expected. In this situation, when
shapes can be fully observed, the formalism of Equation (6.1) can be simplified.
An inter-temporal formulation can be used to remove the map as a variable of the
problem.

6.3.1 Inter-temporal SLAM

An inter-temporal constraint [Le Bars et al., 2012, Bethencourt and Jaulin, 2014]
links two observations of the same object, taken at two different times. It can be
somehow related to Graph SLAM methods [Thrun and Montemerlo, 2005] where
reformulations and substitutions are performed to reduce the complexity of the
problem.

The main idea behind this approach is to only consider transformations between
two measurements, instead of between a measurement and the map.

Given two times (t1, t2) ∈ T2, the map equation can be changed into{
gx(ti) (Z(ti)) = M
gx(tj) (Z(tj)) = M ⇔ gx(ti) (Z(ti)) = gx(tj) (Z(tj)) (6.5)

Now, in order to fit the shape transformation framework, we assume that the
relation between the shapes Z(ti) and Z(tj) can be expressed by a function hpij
that depends on a parameter pij. This parameter links the states of the system
between times ti and tj . This link is defined by a function ψ. From Equation (6.5),
we have:

Z(ti) = g−1
x(ti) ◦ gx(tj) (Z(tj)) (6.6)

⇔
{

Z(ti) = hpij(Z(tj))
pij = ψ(x(ti),x(tj))

(6.7)

For instance, in the translation invariant case where gx(z) = z + x, we have

g−1
x(ti) ◦ gx(tj)(z) = x(tj)− x(ti) + z (6.8)

which becomes:

hpij(z) = pij + z (6.9)
pij = φ(x(ti),x(tj)) = x(tj)− x(ti) (6.10)
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The SLAM problem is transformed into the following CN:

Variables: x(·), M, Z(ti),pij
Constraints:

1. ẋ(·) = f (x (·) ,u (·))
2. Z(ti) = hpij (Z(tj))
3. pij = φ(x(ti),x(tj))

Domains: [x](·), [M], [Z] (ti), [pij]

(6.11)

where (ti, tj) ∈ T2 are times of measurements.

Algorithm 6.2 describes the propagation process used to solve the CN. As before,
the trajectory is contracted using C d

dt
(line 4). For all pairs (ti, tj) ∈ T2, a two-step

contraction process is used. Line 6, CSRAC contractor is used to contract [pij]
with respect to constraint 2. of CN (6.11). Line 7, the contractor Cφ is used to
propagate this information to the involved states. It can be built using classical
forward-backward propagation methods. For instance, the contractor defined in
Example 2.4 can be used for Equation (6.10).

Algorithm 6.2 Shape-based SLAM
1: [x](0) = x0
2: [pij] := [−∞,∞]n
3: repeat
4: [x](.) := C d

dt
([x](.))

5: for (ti, tj) in T2 do
6: CSRAC ([pij], [Z(ti)] , [Z(tj)])
7: Cψ([x(ti)], [x(tj)], [pij])
8: end for
9: until no contraction on [x](.)

This is illustrated by Figure 6.4 where two shapes are registered. Roughly, a given
parameter vector is feasible if all red areas do not intersect the blue ones. The
contractor based approach will guarantee that no feasible parameter vector will
be removed. Consequently, this contractor can be applied to any pair (ti, tj) ∈ T2,
without taking particular precaution.

6.3.2 Bathymetric SLAM

In order to illustrate the behavior of Algorithm 6.2, we consider a simulated test
case that involves an AUV able to sense its environment using a multi-beam echo
sounder. The vehicle made a survey pattern at a speed of 4 knots (around 2 m.s−1)
and covered an area of 600m2 in 40 minutes. The AUV is equipped with an INS
coupled with a DVL that provides speed and heading data every 0.1 seconds. Every
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R0 R0

Figure 6.4: Example of the inter-temporal registration between two measurements.

25 seconds (around 40 meters), the last 30 seconds (75m) of bathymetric data are
processed in order to build a local Digital Elevation Map (DEM). This DEM is
segmented based on one or several elevation thresholds. The short-time positioning
drift during this time window is assumed to be negligible with respect to data
uncertainty. The attitude (roll, pitch and heading), depth and altitude of the AUV
are directly measured. Their uncertainties are taken into account when the DEM is
built. Consequently, only the horizontal position of the robot needs to be estimated.
If this hypothesis is not acceptable, the method presented in Appendix B can be
used to build a visibility mask in order to only take into account reliable data.

Figure 6.5 provides a simulation of the AUV trajectory on an unknown map. This
map, associated to bathymetric data, splits the space into two complementary sets.
A DEM can be seen as a shape of R3, which separates points above the seabed
from those which are below. Now, in order to illustrate the proposed method, we
choose to discretize it into a series of shapes of R2: M1,M2, . . . ,Mm based on level
sets extracted from the original DEM. The SLAM problem is then described by
the following equations:


ẋ(t) = f (x(t),u(t)) (evolution equation)
Zj(t) = g(x(t),Mj) (observation equation)
x(0) ∈ X0 (initial state)

Now, combining several shapes associated to different level sets can be trivially done
using the constraint network formalism. We consider only the shape associated
with one level set. For instance, the white area corresponds to points with an
elevation value that ranges between 10 and 13 meters. The black one corresponds
to elevation values that are outside this interval. An example of a measured thick
shape is given in Figure 6.5b.
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x(t2)

x(t1)

x(ti)

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

x

y
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(b) [Z] (ti)

Figure 6.5: The map in black and white classifies the area into two complementary
classes. The AUV starts at the center of the area and makes a survey pattern. On
each yellow triangle, a measurement is taken. An example is shown on the right
sub-figure which corresponds to the yellow AUV at time ti. Note that the area
which has not been sensed belongs to the penumbra. The scope of the sensor is
depicted by the red rectangles. The measurements of the two red AUV, have been
taken as an example to illustrate the inter-temporal contraction.
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(b) [Z] (t2)

Figure 6.6: Thick shapes taken at times t1 = 4 min 15 s and t2 = 26 min 30 s.
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This SLAM problem is described by the following equations: ẋ(t) =
(

cosψ(t) − sinψ(t)
sinψ(t) cosψ(t)

)
· v(t) t ∈ R

Z(ti) = M− x(ti) ti ∈ T ⊂ R
(6.12)

where the state vector x = (px, py)ᵀ is the horizontal position of the AUV. The
inputs are its horizontal speed vector v(t) and its headings ψ(t). The quantities
v(t) and ψ(t) are measured every 0.1 seconds with an error of 0.02 m.s−1 and 0.05◦
respectively. The initial state is assumed to be known and taken at x0 = (0, 0)T .
Since the heading of the vehicle is known with a good accuracy, only translations
are considered between the observation shapes and the map. This is modeled by
the following system of equations:

Variables: x(·), M, Z(ti),pij
Constraints:

1. ẋ(·) = f (x (·) ,u (·))
2. Z(ti) = Z(tj) + pij
3. pij = x(tj)− x(ti)

Domains: [x](·), [M], [Z] (ti), [pij]

(6.13)

where Algorithm 6.2 can be used.

The propagation process is now illustrated. The initial tube, which encloses the
true trajectory is depicted in red on Figure 6.7. It was obtained by integrating
the differential equation, from the initial vector x0, using the contractor C d

dt
. The

diameter of the tube is shown on Figure 6.7b. Since, only the proprioceptive
measurements are used, its diameter grows almost linearly with time. In order to
reduce the position drift, all pairs (ti, tj) ∈ T are registered.

The improvement obtained after a pair registration is illustrated with the two
measurements, acquired by the two red AUV in Figure 6.5. These measurements,
acquired at times t1 = 4 min 15 s and t2 = 26 min 30 s are depicted in Figure
6.6. The contractor CSRAR is first used to estimate the translation vector between
these two thick shapes. The values of the translation parameter vector before and
after the contraction are given in Table 6.1. Then, the contractor C− is enforced
on the states at t1, and t2. Finally, the contractor C d

dt
is called to propagate the

contractions on [x](ti) and [x](tj) to the whole trajectory. The result is shown by
the green tube on Figure 6.7.

After 10 iterations Algorithm 6.2 stopped in less than 5 minutes. The resulting
tube is shown on Figure 6.8 with its diameter. The position uncertainty remains
bounded during the mission which is the expected result.
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(a) Tubes which enclose the AUV trajectory
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(b) Tube diameter, the vertical lines correspond to times t1
and t2 used to illustrate the algorithm.

Figure 6.7: Illustration of the contraction between timest1 and t2. The initial tube,
in blue, is contracted into the red one.
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[x](t1) [x](t2) [p12] w ([p12])

before [−156.7,−154.3]
×[31.2, 36.6]

[−200,−174.7]
×[92.6, 107.7]

[−43.3,−20.3]
×[61.2, 71.1] 25.04

after [−156.7,−154.3]
×[31.2, 36.6]

[−192.1,−181.8]
×[93.8, 105.9]

[−37.8,−25.2]
×[61.2, 71.1] 16.02

Table 6.1: Shape registration. The two thick shapes, depicted on Figure 6.5, are
registered using the contractor CSRAC . Then the contractor C− is used to contract
the states at t1 and t2. Note that only a contraction along the y-axis has been done
which is consistent with the shapes used.
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(a) Final tube which encloses the true trajectory.
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(b) Final situation. The initial diameter of the tube is in red.

Figure 6.8: Final result after contraction
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6.3.3 Discussion

The proposed method provides a way to deal with the SLAM problem where the
observations and the map can be observed from double-sided (inside and outside).
Thanks to the thick shape model, an efficient algorithm, based on inter-temporal
constraints, has been proposed. It allows localizing the vehicle without explicitly
building the map.

In the simulation, only the shape constraint, that links a given map representation
with the measurement shape, has been used. Since the formalization of the problem
fits the constraint network framework, additional constraints can be combined to
improve the efficiency of the constraint propagation process.

Another improvement is to avoid testing all the pairs (ti, tj). Using the thick set
inversion algorithm, it is possible to define a test, based on the scope of the sensor,
which checks if two shape-measurements overlap or not. For two visibility sets V(ti)
and V(tj) and a translation vector [pij], the following thick set is considered:

[X] = [V] (ti) ∩ ([V] (tj) + [pij]) (6.14)

If X+ = ∅, the two measurements do not overlap and the pair (ti, tj) should not
be tested anymore. Else if X− 6= ∅, they overlap for sure. This information can
be used, as in [Jaulin, 2016], to merge and associate data. In the last case, where
[X] = [∅, X+], the translation is too uncertain to conclude and the pair must be
tested.

If the measurement shapes [Z](ti) are accurate enough, they do not need to be
contracted. Consequently, only the transformation between two thick shapes needs
to be estimated, which simplifies the contractor CSRAR. This hypothesis is done for
this test case since we considered that bathymetric measurements are reliable and
accurate.

Finally, the proposed method needs to be validated with real data. With respect
to the targeted application, the specific process, that converts raw sensor data to
thick shapes, needs to be developed.

6.4 Dig SLAM

The previous section deals with double-sided observable shapes that provide an inner
and an outer observation of the map. In this section, the case of sensors that provide
one-sided shape observation of the environment is discussed. This corresponds to the
extension of the localization problem in an unstructured environment, introduced
in Chapter 4.4, to the SLAM context.
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6.4.1 Formulation of the Dig-SLAM

We consider the problem taken from [Jaulin, 2011], where a robot is moving in its
environment and uses an omnidirectional range sensor to sense the free area around
him. At a given time t, this sensor measures two sets: the free zone, denoted
by Z(t), which represents the area in the scope of the sensor free of obstacles,
and the impact zone, denoted ∆Z(t) which is the border of Z(t) and contains the
impact point. Note that measurements from most rangefinders (laser, infrared,
ultrasound-based) can be cast into such two sets. Some examples are given in
Figure 6.9.

This problem fits the formalism defined in this thesis and is modeled by:


ẋ(t) = f (x(t),u(t)) (evolution equation)
Z(t) = gx(t)(M) (observation equation)
x(0) ∈ X0 (initial state)

(6.15)

where M depicts the set of points in the working space which are free of obstacles
and Z(t) is the space dug by the measurement taken at time t. With respect to
the uncertainty of the sensor, the measurement is changed into an interval shape
[Z] = [Z−,Z+] with Z+ = R2. This corresponds to a one-sided observable shape,
defined in Section 6.2.3.2.

The function g : R2 ×R2 → R2 is a transformation that links the local observation
Z(t), expressed in the robot frame, to the map. For instance, in the translation
invariant case, g is defined by:

gx(t)(m) = m− x(t). (6.16)

Now, in order to take into account the fact that the impact zone ∆Z intersects the
map, the following constraint needs to be considered:

∆Z ∩ gx(t)(M) 6= ∅. (6.17)

In order to use the contractors previously introduced, the Dig-SLAM problem is
formalized by the following constraint network:



Variables: x(·), M, Z(ti)
Constraints:

1. ẋ(t) = f (x (t) ,u (t))
2. Z(t) = gx(t)(M)
3. ∆Z(t) ∩ gx(t)(M) 6= ∅

Domains: [x](·), [M], [Z] (t) = [Z(t),Rq], [∆Z] (t) = [∅,∆Z(t)]

(6.18)
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d(t) Z−

∆Z− d(t)

Z−

∆Z− d(t)

Z− ∆Z−

(a) (b) (c)

Figure 6.9: Examples of measurements which can be converted into interval shapes
[Z] = [Z−,Z+] with Z+ = R2. The dotted area represents the free space Z− and
the light gray the impact zone ∆Z(t). (a) an omni-directional rangefinder, where
the impact point lies on a circle and the free space is a disk. (b) an ultrasonic
rangefinder where Z− is a sector and ∆Z(t) is an arc. (c) represents the area swept
by a laser rangefinder pointing perpendicularly to the path of the robot where
methods introduced in Appendix B can be used. The set ∆Z(t) is depicted by a
curve.

where

1. describes the evolution of the robot with respect to its inputs using the
evolution function.

2. corresponds to the measured free zone that must be inside the map.

3. corresponds to the impact zone that must intersect the border of the map.

However, because of the nature of [Z] and the fact that [M] needs to be estimated,
Equation (2) of (6.18) can only be used to contract the inner approximation of the
map. The following development justifies the need of considering the impact zone.

Given [M] = [∅,Rq] the initial map, a measurement [Z] (t) = [Z(t),Rq] and a box
[x](t). The contractor CF defined in Proposition 5.3 on page 112 applied on [Z] and
[M] leads to :

Cg[x](t)

(
[Z]
[M]

)
=

(
[Z] u g[x](t) ([M])

[M] u g−1
[x](t) ([Z] (t))

)
(6.19)

=
 [

Z ∪ g[x](t) (∅) ,Rq ∩ g[x](t) (Rq)
][

∅ ∪ g−1
[x](t) (Z) ,Rq ∩ g−1

[x](t) (Rq)
]  (6.20)

=
(

[Z,Rq][
g−1

[x](t) (Z) ,Rq
] ) (6.21)

Consequently, only M− can be contracted and M+ will remain undefined. This
approximation is called on [Jaulin, 2011] the dig zone and represents the part of
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the free space that has been proved free of obstacles by the vehicle.

The registration contractor, defined by Proposition 5.4 needs an outer approximation
of the map in order to contract the parameter’s domain. This is why, Equation 3
of CN (6.18) needs to be used with Proposition 5.5 on page 114. We define the
contractor

C 6=g
(
[x](ti),∆Z(ti),M−

)
= [x](ti) ∩

r
projp

{
(∆Z(ti)× Rq) ∩ g(M−)

}z
(6.22)

The following algorithm can be used for solving the Dig-SLAM problem: Line 5,
the map is updated and Line 6, the position of the robot is contracted by taking
into account the fact that ∆Z intersects M.

Algorithm 6.3 Dig SLAM(in: T, Z(ti), ∆Z(ti), inout: [x](.))
1: [x](0) = x0
2: repeat
3: [x](.) := C d

dt
([x](.))

4: for ti in T do
5: M− := M− ∪ g−1

[x](ti) (Z)
6: [x](ti) := C 6=g ([x](ti),∆Z,M−)
7: end for
8: until no contraction on [x](.)

Note that the map needs to be explicitly built in order to contract the position of
the vehicle. This algorithm is illustrated with the following application.

6.4.2 Application: Range only SLAM in an unstructured
environment

From an academic point of view, the omnidirectional range-only posed-based SLAM
can be seen as a canonical problem. It is the simplest and most significant of a
large class of SLAM problems that are difficult to solve. The development of tools
to solve properly and efficiently this problem will be useful to solve many other
SLAM problems.

As an illustration, consider a mobile robot described by the following range-only
SLAM equations: 

ẋ1(t) = u1(t) cos(u2(t))
ẋ2(t) = u1(t) sin(u2(t))
y(t) = d(x(t),M)

(6.23)

The inputs of the system are the speed u1 and the heading u2 of the robot. The
measurement y(t) corresponds to the closest distance of the robot to the map which
could have been obtained by using an omni-directional sonar with angular aperture
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of 2π. As illustrated by Figure 6.9, the scalar measurement y(t), assumed to belong
to [y(t)] = [y−(t), y+(t)], can be cast into the interval shape [Z] = [Z−,R2], with

Z− =
{
z ∈ R2 |

√
z2

1 + z2
2 < y−(t)

}
.

which is a disk of center (0, 0), i.e. expressed in the robot frame. The impact area
∆Z is defined by

∆Z =
{
z ∈ R2 |

√
z2

1 + z2
2 ∈ [y(t)]

}
.

The quantities u1, u2 and z are measured every 0.1 s with an error of 0.001 m.s−1 ,
0.001 rad.s−1 , and 0.01m, respectively. The initial state, taken as x = (0, 0)T , is
assumed to be known. Fig. 6.10 provides a simulation of the robot moving inside an
unknown map. This map is composed by segments but this is not required by the
method. The shape of the map could be arbitrary and no parametric representation
of the map is needed.

This problem is a particular case of the generic formulation of Equation (6.1). The
translation invariant case can be expressed in terms of Minkowsky sums. It is a
generalization of the localization problem of Chapter 4. It can be described by the
following CN:

Variables: x(·), M
Constraints:

1. ẋ(·) = f (x (·) ,u (·))
2. Z(t) + x(t) ⊂M
3. (∆Z(t) + x(t)) ∩M 6= ∅

Domains: [x](·), [M]

(6.24)

which can be solved with Algorithm 6.3.

An illustration of the interval propagation method is depicted in Figure 6.12. The
propagation process stops after 4 iterations in less than 40 seconds. The code
of [Jaulin, 2011] provided by the author runs in around 90 seconds on the same
computer.

Figure 6.12 shows the computed tube with the true path in black and corresponds
to contractions of the inner approximation of the map. The true map, defined with
segments, is superimposed to show the accuracy of the inner approximation of the
map.

Figure 6.11 shows how Equation (3) of CN 6.24 is used to contract the position
with respect to the map.
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Figure 6.10: Trajectory of the robot. Feasible positions are inside the map,
delimited by the polygon. Some measurements are depicted by black circles and
correspond to the distance to the nearest obstacle around the robot. The framebox
is [−10, 10]× [−10, 10].
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Figure 6.11: Illustration of the contraction of [x](t), for t = 1230 sec. Left: M− with
a measurement ∆Z(t) depicted by the dashed circle. Right: The box [x](t) before
contraction is depicted in green. The dashed green area has been removed by the
contraction using Equation 3 of 6.24. The subpaving corresponds to M−⊕−(∆Z(t)).
The black box corresponds to [x](t) after calling C d

dt
.
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Figure 6.12: Left: Contraction on the tube [x](.) during the propagation process.
Right: Associated estimation of M−. The true map is depicted by the black
segments.
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Figure 6.13: Evolution of the width of the tube. In red before contraction, black
after calling C2 at each time, and blue after running the contractor C d

dt
. After three

iterations, no significant contraction happens. The maximal pose uncertainty is
obtained when the robot is on the left side of the map. The minimum is obtained
when it is near its starting position.
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6.4.3 Discussion

This method is efficient to solve the SLAM problem where partially observed shapes
are used to build the map and localize the map.

In the translation invariant case, the localization process is based on a dilation of
the map by ∆Z. If M− contains small holes, as it is the case in Figure 6.12, these
holes grow which limits the efficiency of the contraction process. The computation
of the inner approximation of the map must be done carefully.

Arbitrary shapes that are depicting the free space can be considered and, in a
theoretical point of view, the heading can be estimated but with a higher computing
cost.
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6.5 Conclusion

In this chapter, the Simultaneous Localization and Mapping in an unstructured
environment has been tackled using shapes. To our knowledge, this is new in
a SLAM context and this contitutes the major contribution of this thesis. This
problem is known as hard to solve due to the fact that no geometrical features can
be extracted from the measurements. We proposed a formalism that allows us to
handle rigorously nonlinearity and sensor uncertainties while keeping the guarantee
and integrity of the results, with respect to the initial hypothesis.

In order to illustrate the proposed methods, two test-cases have been considered
as examples. In the first one, the shape-based SLAM has been demonstrated on
a simulated test-case based on bathymetric data. This type of datas allows to
build a double-sided shape for which an inter-temporal-based approache has been
used. The second test-case illustrated the dig SLAM formalism which involves
sensors that are able to measure the parts of the working space which are free of
obstacles. This problem is an extension of the application presented in Chapter 4
in the SLAM context.

The thick shape representation allows us to efficiently represent sensor uncertainties
and the limit of the scope of the observation. This last point allows a paire-wise
registration without preliminary associations. Merge different sensor.

The proposed method provides a generic abstraction of sensor reading that remains
strongly bounded with physical features of the environment. The main difficulty is
to be able to find robust algorithms to transform raw data into thick shapes.

Outliers can eventually be handled using the extension of the relaxed intersection
on thick sets that has been presented in [Desrochers and Jaulin, 2016b]. The
constraint network must be reformulated in order to efficiently take advantage of
this operator.
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Chapter 7

Conclusion

This PhD thesis introduces new methods based on Interval Analysis, able to deal
with constraints that involve uncertain sets. These types of constraints are mainly
encountered in robotic applications in order to handle unstructured environments.
We proposed and illustrated a generic method that is able to solve the SLAM
problem when measurements are shapes, i.e., subsets of R2 of R3.

For that purpose, we introduced the shape registration and carving problem, where
tools, algorithms, and applications have been presented along the chapters of this
manuscript.

Summary of the Contributions

The key points of this thesis are now summarized. In Chapter 2, interval analysis
is introduced. The main point of this chapter is the introduction of separators.
Coupled with a Paver, which is a branching algorithm, separators allow to compute
an inner and an outer approximation of a set defined by constraints. Their uses
made it possible to characterize rigorously the pessimism introduced by interval-
based algorithms. This work was published in [Jaulin and Desrochers, 2014] before
the beginning of this thesis.

Now complex sets are defined by a combination of elementary ones, for which
atomic separators are available. In Chapter 3, new theorems have been introduced
in order to define a separator dedicated to the polar constraint, which is one of the
important atomic constraints used in the context of localization. This constraint,
associated with the change between Cartesian to Polar coordinates is often met in
robotics, each time range and bearing measurements are involved. This work was
published in [Desrochers and Jaulin, 2016a].

Based on the notion of projection of separators, the shape registration problem
is presented in Chapter 4. this problem consists of estimating the smallest set of
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feasible parameters of the transformation which links two sets that we called shapes.
This primitive constraint is at the center of our algorithms. A first localization
application in an unstructured environment is then tackled using the polar separator
(published in [Desrochers and Jaulin, 2017c]). Both the map and measurements
are defined by shapes which, in this chapter, are assumed to be known.

In order to handle the shape uncertainty, the notion of intervals of sets, called
a thick set, has been introduced in Chapter 5. Even if the notion of thickset is
not new in the literature, a main contribution of this thesis is its exploitation for
solving robotics problems. At the heart of the thick set theory, lies the notion of
the penumbra. The penumbra characterizes the uncertainty that comes from the
initial hypothesis of the problem. It allows us to prove that, for a box [x] inside
the penumbra, nothing can be proved for any of its elements x with respect to the
solution set.

This was illustrated in Appendix B where points that belong to the penumbra
are seen for some feasible trajectories but not for all. Without uncertainty of the
position of the vehicle, the penumbra would not have existed.

When dealing with sensor readings, the penumbra makes it possible to classify parts
of the research space for which not enough information is available to conclude
anything. Either because the area has not been sensed or because the process that
builds the thick set from measurements cannot classify this part of the space. This
can be the case with automatic segmentation algorithms.

The arithmetic and operations that can be performed on thick sets were also
introduced. Another work which has not been included in the manuscript concerns
the relaxed intersection of thick set presented in [Desrochers and Jaulin, 2016b].

The shape registration problem, introduced in Chapter 4 was extended to the
uncertain case, were variables of the constraint network are shapes and their
domains are thick sets, that we called thick shapes.

Based on the notion of contraction on thick sets, the shape carving problem has
been defined. Given two thick shapes linked by an uncertain function, it aims at
contracting the thick shapes using shape contractors. This contraction was done by
solving an uncertain set inversion problem. When the uncertain function depends
on parameters, a first method based on projection has been provided.

With respect to the SLAM problem, this constraint is mainly used to build the
map or filter the measurements.

Finally, Chapter 6 deals with our targeted application. A SLAM algorithm that
involves shapes has been introduced. The formalism, based on thick shapes, allows
us to handle efficiently unstructured environments. It has been illustrated through
two examples.
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Open-source library

A significant contribution of this work is the development by the author of the new
open-source library Pyibex, freely available at:

• http://www.ensta-bretagne.fr/desrochers/pyibex

This project gathers all the elementary tools presented in this document. The
reader will be able to process the simulated examples and build its own solvers for
the resolution of shape-based problems.

Overall Prospects

We are convinced that the proposed methods are relevant to address the SLAM
problem in complex environments. But, in order to be used, they require a way to
be tried and diffused. For that purpose, the development of the pyIbex library will
be continued in order to make the use of interval analysis in robotics applications
easier.

The shape registration problem relies mainly on the use of the projection algorithm.
Its efficiency must be improved in order to be able to handle more complex
transformations, such as the rotation.

The key point toward real applications is the processing chain that converts raw
sensor data to interval shapes. This chain needs to robustly and reliably classify
sensor outputs taking into account the notion of the penumbra. For a given set,
the classical representation binaries the world. A point must belong or not to the
shape. On the contrary, the notion of interval shape allows us to handle all data,
which cannot be reliably classified inside or outside a measurement shape. For
instance, with side scan sonar images, shadows are classified in the penumbra.

The interest of the shape carving process has not been fully demonstrated in this
manuscript. The shape carving method may be used to perform pattern recognition.
For instance, an object partially defined by an interval shape can be matched with
another one. The interval shape representation allows to only consider the reliable
parts of the initial object which are compared.

Outliers could also be taken into account by using the thick relaxed intersection.
This needs to be correctly formalized and validated on actual experiments.
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Thick Set Inversion

Contents
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . 149

A.3 Thick Intervals . . . . . . . . . . . . . . . . . . . . . . . . 151

A.4 Thick Set Inversion . . . . . . . . . . . . . . . . . . . . . 155

A.4.1 Set inversion . . . . . . . . . . . . . . . . . . . . . . . . 155

A.4.2 Thick inclusion function . . . . . . . . . . . . . . . . . 156

A.4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.4.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.5 Test-Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.1 Introduction

In this thesis, the set inversion problem X = f−1 (Y), where both f and Y are
uncertain has been introduced. In the case where f depends on a parameter, a
method has been given but it relies on projection algorithms that bisect along the
parameter space.

In this chapter, we assume that f ∈ [f ] = [f−, f+] where f−, f+ are two known
functions from Rn to Rm. We also assume that the uncertain set Y belongs to an
interval of sets, denoted by JYK. We say that [f ] is a thick function and that JYK is
a thick set. As illustrated by the following example, existing interval methods can
still be used to deal with this type of uncertainties, but they accumulate on a thick
boundary which is called the penumbra. This accumulation makes classical interval
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methods inefficient, since they spend most of the computation time to test tiny
boxes that are inside the penumbra.

Example A.1. Consider the set inversion problem X = f−1([y]) with [y] = [0, 4].
We assume that f is uncertain and that we only know that for all x

f(x) ∈ [f ](x) = (x1 − [a1])2 + (x2 − [a2])2 . (A.1)

with [a1] = [0, 1], [a2] = [0, 1]. Note that f is not necessarily a circular paraboloid,
and may correspond to any weird function satisfying the enclosure condition. Since,
for all x, [f ](x) is an interval of R, the function [f ] is a thick function. More
precisely, we have

[f ](x) =
[
f−(x), f+(x)

]
(A.2)

where
f−(x) = min

a∈[0,1]×[0,1]
(x1 − a1)2 + (x2 − a2)2 (A.3)

and
f+(x) = max

a∈[0,1]×[0,1]
(x1 − a1)2 + (x2 − a2)2 . (A.4)

Using a classical interval arithmetic [Moore, 1979], we can easily test if a box
[x] = [x1]× [x2] is inside or outside the solution set X:

(i) ([x1]− [a1])2 + ([x2]− [a2])2 ⊂ [y] ⇒ [x] ⊂ X
(ii) ([x1]− [a1])2 + ([x2]− [a2])2 ∩ [y] = ∅ ⇒ [x] ∩ X = ∅.

Now, we are not able conclude anything if none of these conditions is satisfied.
Figure A.1 (left) corresponds to the result of a paver based on these two tests (see
the Set Inversion algorithm recalled at Subsection A.4.1). Red boxes satisfy the
inner test (i), blue boxes satisfy the outer test (ii) and yellow boxes satisfy neither
Test (i) nor Test (ii). The yellow boxes are not bisected by the paver since they
reached the required accuracy. They cover a zone, called the penumbra, which
corresponds to the part of the plane for which both the inner test and the outer
test fail. Of course, if we were able to conclude that a box is inside the penumbra,
many bisections would have been avoided. We would thus get a picture similar to
Figure A.1 (right) which is an approximation of a thick set with the inner part
(red), the outer part (blue) and the penumbra (orange).

Now, when dealing with practical applications, the penumbra often exists as for
instance when we want to characterize the zone that has actually been explored
by a robot, detailed in the Appendix B, in case of partial observability [Grimson
and Lozano-Perez, 1985] or in the shape carving problem introduced in Chapter
5. Characterizing the penumbra from inside will allow us to save computing time,
but also to make the difference between the uncertainty due to the computation
and that due to the initial uncertainties of the input parameters. The objective of
this chapter is to extend set inversion to the thick case (where a penumbra exists)
and to show how to conclude that a box is inside the penumbra without bisections
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Figure A.1: Left: Classical interval methods accumulate on the thick boundary
(the penumbra). Right: the method we propose here will allow a fast treatment of
the penumbra. The frame box is [−2, 4]× [−2, 4] and the black box corresponds to
[a] .

along [f ].

The chapter is organized as follows. Section A.3 presents the new notion of thick
intervals and thick boxes to be used for solving the thick set-inversion problem.
Section A.4 generalizes the classical set-inversion algorithm to the thick case by
introducing the new notion of thick inclusion function. Section A.5 illustrates the
principle of the method on five test cases with one involving an actual underwater
robot. Section B.6 concludes the chapter.

The results in this chapter are extracted from [Desrochers and Jaulin, 2017d]. Thick
objects (functions, intervals, sets) are denoted with a double brackets notation J.K.

A.2 Problem Statement

Notation. We introduce a specific notation involving the quantifier ∀ when dealing
with thick sets. Given two thick sets JAK and JBK, we define:

(JAK ⊂ JBK)∀ ⇔ ∀A ∈ JAK, ∀B ∈ JBK,A ⊂ B
(JAK 6⊂ JBK)∀ ⇔ ∀A ∈ JAK, ∀B ∈ JBK,A 6⊂ B

(JAK ∩ JBK = ∅)∀ ⇔ ∀A ∈ JAK, ∀B ∈ JBK,A ∩ B = ∅
(JAK ∩ JBK 6= ∅)∀ ⇔ ∀A ∈ JAK, ∀B ∈ JBK,A ∩ B 6= ∅.

(A.5)

Thick function. Based on the notion of lattices, introduced in Section 5.2.1, the
definition of the intervals of function, called a thick function is now presented.

149



Appendix A. Thick Set Inversion

Denote by (F(Rn,Rm),≤) the set of all functions from Rn → Rm equipped with
the order relation ≤ defined as follows

f ≤ g⇔ ∀i ∈ {1, . . . ,m},∀x ∈ Rn, fi(x) ≤ gi(x). (A.6)

the set F(Rn,Rm) is a lattice where the meet and the join are defined by

f ∧ g(x) =


f1(x) ∧ g1(x)

...
fm(x) ∧ gm(x)

 , (A.7)

and

f ∨ g(x) =


f1(x) ∨ g1(x)

...
fm(x) ∨ gm(x)

 . (A.8)

A thick function [f ] from Rn to IRm is an interval of (F(Rn,Rm),≤). For such a
thick function [f ] , there exist two functions f− and, called the lower bound and
the upper bound such that

[f ] = [f−, f+]
= {f ∈ F(Rn,Rm) | ∀x ∈ Rn, f−(x) ≤ f(x) ≤ f+(x)} .

A thick function [f ] is a sublattice of (F(Rn,Rm),≤), i.e., if f ∈ [f ], g ∈ [f ], then
f ∧g ∈ [f ] and f ∨g ∈ [f ] . Again, if f− = f+, [f ] is said to be thin and corresponds
to a singleton ofF(Rn,Rm), or equivalently to a classical function from Rn to Rm.

Remark A.1. The class of thick functions is not so restrictive. For instance, all
set-valued functions of the form

F (x) = {f(x, a) ∈ R, a ∈ [a] ⊂ Rm} , (A.9)

where [a] is a box and where f is continuous with respect to a, are thick functions.
If now the box [a] is replaced by a disconnected set or when the function f is not
scalar anymore, the function F (x) has no reason to be a thick function.

Thick set inversion problem

A thick set inversion problem can be written as

X = f−1(Y), f ∈ [f ] and Y ∈ JYK (A.10)

where JYK is a thick set and [f ] is a thick function.

The set X is said to be a feasible solution if

∃f ∈ [f ] ,∃Y ∈ JYK , X = f−1(Y). (A.11)
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As explained in Section 5.4, when [f ] can be parametric, projection algorithm
can be used but required additional bisection along the domain of the parametric
variable. Although generic, this method induces an extra computational cost and
failed to handle efficiently high dimensional problems. To avoid this, additional
notions such as thick intervals are introduced in the following section.

A.3 Thick Intervals

Denote by IR the set of all intervals of R. A thick interval JxK (see, e.g., [Chabert
and Jaulin, 2009a]) is a subset of IR which can be written under the form

JxK = J[x−] , [x+]K
= {[x−, x+] ∈ IR | x− ∈ [x−] and x+ ∈ [x+]} . (A.12)

Here, [x−] , [x+] are two intervals containing the lower bound x− ∈ R and the upper
bound x+ ∈ R of an uncertain interval [x−, x+]. If we define the two intervals of R

[x⊂ ] =
⋂{

[x−, x+] ∈ IR | x− ∈ [x−], x+ ∈ [x+]
}
, (A.13)

and
[x⊃ ] =

⋃{
[x−, x+] ∈ IR | x− ∈ [x−], x+ ∈ [x+]

}
, (A.14)

called the subset bound and the supset bound of JxK then

JxK ⊂ {[x] ∈ IR | [x⊂ ] ⊂ [x] ⊂ [x⊃ ]} , (A.15)

with an equality if [x−] ∩ [x+] 6= ∅. As a consequence, a thick interval is not
necessarily a thick set: it is more precise or equivalently it is narrower. This can
be explained using the endpoints diagram [Kulpa, 1994] (see Figure A.2) where an
interval is seen as a point of R2. For instance, to the interval [1, 7], we associate
the point with coordinates (1, 7). The degenerated intervals, such as [2, 2], all
belong to the diagonal. This representation provides a geometrical representation
of the relation between intervals. For instance, [x] ⊂ [y] if [y] is at the top left of
[x]. The intersection between two intervals (or the interval hull) is obtained by
taking the bottom-right corner (or the top left corner) of the smallest box which
encloses the two interval points. For instance, if [x] = [1, 4] and [y] = [2, 5], the
enclosing interval box is painted red. The top left interval is [x] ∪ [y] = [1, 5]
and the bottom-right interval is [x] ∩ [y] = [2, 4]. This red box corresponds to the
thick box JaK = J[1, 2], [4, 5]K . The subset and supset bounds are [a⊂ ] = [2, 4] and
[a⊃ ] = [1, 5].

In this figure, the orange polygon corresponds to the thick interval JbK = J[3, 7], [6, 8]K.
The subset and supset bounds are [b−] = ∅ and [b+] = [3, 8]. As illustrated by the
gray zone of Figure A.2 (left), a subset-supset representation adds pessimism when
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[2,2]

[1, 7]

[3,6]

[3,8] [7,8]

lb

ub

0 1 2 3 4 5 6 7 8 9 10

JaK

JbK

Figure A.2: In the endpoints diagram, an interval is represented by a point (here
the small black disks)

the subset bound is empty, i.e., a subset-supset representation may contain more
intervals. For instance, if [b] = [4, 5], we have ∅ ⊂ [b] ⊂ [3, 8] , but [b] /∈ J[3, 7], [6, 8]K.
The corresponding lower and upper interval bounds are represented on FigureA.2
(right). Note that when the subset bound is not empty (as for the thick box JaK in
red), no pessimism is added and both representations are equivalent.

Due to this pessimism, we will prefer to use a representation based on lower-
upper bounds instead of the notation based on the subset-supset bounds. As
already seen for thick sets (see (5.16)), set membership operations such as the
union or the intersection can easily be extended to thick intervals. An extension
for all classical operators of interval arithmetic is also valid. More precisely, if
� ∈ {+,−, ·,∩,t, . . . }, we define

JxK � JyK = {[x] � [y] | [x] ∈ JxK , [y] ∈ JyK}. (A.16)

For instance, if JaK = J[1, 2], [4, 5]K and JbK = J[3, 7], [6, 8]K, we have

JaK + JbK = J[1, 2] + [3, 7], [4, 5] + [6, 8]K
= J[4, 9], [10, 13]K

JaK ∩ JbK = Jmax([1, 2], [3, 7]),min([4, 5], [6, 8])K
= J[3, 7], [4, 5]K

JaK t JbK = Jmin([1, 2], [3, 7]),max([4, 5], [6, 8])K
= J[1, 2], [6, 8]K .

An interpretation for these formulas is the following: if [a] ∈ JaK and [b] ∈ JbK then
the intervals [x] = [a] + [b], [y] = [a] ∩ [b], [z] = [a] t [b] satisfy [x] ∈ JaK + JbK,[y] ∈
JaK ∩ JbK, [z] ∈ JaK t JbK.

The following proposition shows how to compare, from a practical point of view,
two thick intervals.

Proposition A.1. Given two thick intervals JaK =J[a−], [a+]K and JbK=J[b−], [b+]K,
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we have
(i) (JaK ⊂ JbK)∀ ⇔

{
[b]− − [a]− ⊂ R− ∧
[a]+ − [b]+ ⊂ R−

(ii) (JaK 6⊂ JbK)∀ ⇔
{

[a]− − [b]− ⊂ R− ∨
[b]+ − [a]+ ⊂ R−

(iii) (JaK ∩ JbK = ∅)∀ ⇔
{

[a]+ − [b]− ⊂ R− ∨
[b]+ − [a]− ⊂ R−

(iv) (JaK ∩ JbK 6= ∅)∀ ⇔
{

[b]− − [a]+ ⊂ R− ∧
[a]− − [b]+ ⊂ R−

Proof. (i) Consider two intervals [a] and [b] of R. (i) The inclusion [a] ⊂ [b] is
satisfied iff

b− ≤ a− and a+ ≤ b+. (A.17)

Thus, the inclusion is true for all [a] ∈ JaK and all [b] ∈ JbK iff (i) is satisfied.

(ii) We have [a] 6⊂ [b] iff b− > a− or a+ > b+. Thus, the inclusion is unsatisfied for
all [a] ∈ JaK and all [b] ∈ JbK iff (ii) is satisfied.

(iii) The two intervals [a] and [b] are disjoint iff b− > a+ or a− > b+. Therefore,
they are disjoint for all [a] ∈ JaK and all [b] ∈ JbK iff (iii) is true.

(iv) The two intervals [a] and [b] overlap iff b− ≤ a+ and a− ≤ b+. Thus, they
overlap for all [a] ∈ JaK and all [b] ∈ JbK iff (iv) is true.

Example A.2. The two intervals [a] = [1, 5] and [b] ∈ JbK = J[2, 4], [3, 6]K, depicted
in Figure A.3, overlap for all feasible [b], i.e., ([a] ∩ JbK 6= ∅)∀. This can be checked
using Proposition A.1, iv:

[2, 4]− 5 ⊂ R− and 1− [3, 6] ⊂ R−. (A.18)

Note that using the subset-supset bounds, we could not reach this conclusion.
Indeed, the subset-supset approximation of JbK is

∅ ⊂ [b] ⊂ [2, 6]. (A.19)

The interval [b] = [6, 6] is consistent with this inclusion and does not intersect
[a]. The green zone represents [a] ∩ JbK, the set of all intervals [a] ∩ [b] such that
[b] ∈ JbK .
Thick boxes. Denote by IRn the set of all boxes of Rn. A thick box JxK is a set
of boxes of IRn which can be defined as

JxK =
{[

x−,x+
]
∈ IRn | x− ∈

[
x−
]

, x+ ∈
[
x+
]}

(A.20)

where [x−] and [x+] are boxes of Rn. The set of thick boxes of Rn is denoted by
IIRn. A thick box can be seen as an interval of boxes, i.e., an interval of intervals
of Rn. This is illustrated by Figure A.4 which shows four thin boxes all contained
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[1, 5]

[a]

lb

ub

1 2 3 4 5

1

2

3

4

5

6

Figure A.3: A subset-supset approximation of JbK adds pessimism and thus fails to
conclude that [a] and [b] always overlap. The green zone corresponds to the thick
interval [a] ∩ JbK.

[x−]

[x+]

Figure A.4: The four boxes (thin) all belong to the thick box JxK = J[x−] , [x+]K

in the thick box JxK = J[x−] , [x+]K . Since the two box bounds of [x−] and [x+] are
boxes of Rn, we could decompose them as the Cartesian product of n intervals:

[x−] = [x−1 ]× · · · × [x−n ]
[x+] = [x+

1 ]× · · · × [x+
n ]. (A.21)

We define the ith component JxiK of the thick box J[x−] , [x+]K as the thick interval
JxiK =

r[
x−i
]
,
[
x+
i

]z
.

The following proposition will allow us to compare two thick boxes, with respect
to the inclusion, from their interval components.

Proposition A.2. Given two thick boxes JaK=J[a−], [a+]K and JbK=J[b−], [b+]K of
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Rn, we have

(i) (JaK ⊂ JbK)∀ ⇔ ∀i ∈ {1, . . . , n}, (JaiK ⊂ JbiK)∀
(ii) (JaK 6⊂ JbK)∀ ⇔ ∃i ∈ {1, . . . , n}, (JaiK 6⊂ JbiK)∀
(iii) (JaK ∩ JbK = ∅)∀ ⇔ ∃i ∈ {1, . . . , n}, (JaiK ∩ JbiK = ∅)∀

(iv) (JaK ∩ JbK 6= ∅)∀ ⇔ ∀i ∈ {1, . . . , n}, (JaiK ∩ JbiK 6= ∅)∀
(A.22)

Proof. This proof is a direct consequence of Proposition A.1 and of the fact that

[a] ⊂ [b] ⇔ ∀i, [ai]⊂[bi]
[a] 6⊂ [b] ⇔ ∃i, [ai] 6⊂[bi]

[a] ∩ [b] = ∅ ⇔ ∃i, [ai]∩[bi] = ∅
[a] ∩ [b] 6= ∅ ⇔ ∀i, [ai]∩[bi] 6= ∅.�

(A.23)

A.4 Thick Set Inversion

This section generalizes to set inversion algorithm [Jaulin and Walter, 1993c] to
the thick case, as defined by Theorem 5.1.

A.4.1 Set inversion

Given a function f from Rn to Rm and a (thin) set Y ⊂ Rn, solving the set
inversion problem, denoted by X = f−1(Y), is classically performed using an
inclusion function [f ] : IRn → IRm of f [Moore, 1979], i.e., an interval function
such that

a ∈ [x]⇒ f(a) ∈ [f ] ([x]) . (A.24)

Most algorithms for set-inversion decompose Rn into boxes [Moore, 1992][Jaulin
and Walter, 1993c]. If a given box [x] satisfies [f ]([x]) ⊂ Y then it is proved to be
inside the solution set X. If [f ]([x]) ∩ Y = ∅ then it is proved to be outside X. If
it satisfies none of the previous tests, it is bisected until it becomes too small. A
possible implementation for set inversion is given by Algorithm A.1 which is called
Sivia (Set Inversion Via Interval Analysis) [Jaulin and Walter, 1993c].

When the algorithm terminates, we have [Jaulin and Walter, 1993c]⋃Lclear ⊂ X⋃Ldark ∩ X = ∅.

For the thick case, we have a thick function [f ] from Rn to IRm and a thick
set JYK ∈ IP(Rn). We want to compute an approximation of the set of all sets
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Algorithm A.1 Set inversion algorithm: Sivia
Input: [x], ε, Y, JfK
Output: Lclear, Ldark

1: L = {[x]}, Lclear = ∅, Ldark = ∅
2: while L 6= ∅ do

unstack L into [x]
3: if ([f ]([x]) ⊂ Y) then

push [x] into Lclear
4: else if ([f ]([x]) ∩ Y = ∅) then

push [x] into Ldark
5: else if width([x]) > ε then

bisect [x] perpendicularly to its largest side and push the two resulting
boxes inL

6: end if
7: end while

X = f−1(Y), assuming that f ∈ [f ] and Y ∈ JYK. This problem, formalized by
Theorem 5.1, is called a thick set inversion problem, denoted by

JXK = [f ]−1 (JYK). (A.25)

We propose to compute an approximation of JXK by decomposing Rn into three
subsets: the clear zone X−, the penumbra X+\X− and the dark zone Rn\X+. In
our approach, a paver performs the decomposition of Rn into boxes and a thick
extension of an inclusion function is used to classify boxes.

A.4.2 Thick inclusion function

The function JfK : IRn → IIRm is a thick inclusion function of the thick function
[f ] : Rn → IRm if

a ∈ [x]⇒ [f ] (a) ∈ JfK ([x]) . (A.26)

Theorem A.1. Consider a thick function [f ] (x) and denote by [f−] , [f+] two
inclusion functions for the bounds f−, f+ of [f ]. The function JfK : IRn → IIRm

defined by
JfK ([x]) =

r[
f−
]

([x]) ,
[
f+
]

([x])
z
, (A.27)

is a thick inclusion function for [f ] (x).

Proof. Since [f−] , [f+] are two inclusion functions for f−, f+, we have

a ∈ [x]⇒
{

f− (a) ∈ [f−] ([x])
f+ (a) ∈ [f+] ([x]) (A.28)
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[x]

x1

x2

y1

y2

[f ]

a

[f ](a)

[f−]([x])

[f+]([x])

f−(a)

f+(a)

Figure A.5: The thick inclusion function JfK ([x]) encloses all boxes [f ] (a) where
a ∈ [x].

Now, the right-hand side is equivalent to [f ] (a) ∈ JfK ([x]) . �

As illustrated by Figure A.5, the thick box JfK ([x]) encloses the set of all boxes
[f ] (a) with a ∈ [x]. The vector a ∈ [x] ⊂ R2 has an image [f ](a) which is a box of
R2 with a lower bound f−(a) and an upper bound f+(a). Using a classical interval
arithmetic, we are able to get inclusion functions [f−] and [f+] for f− and f+. The
boxes [f−] ([x]) and [f+] ([x]) contain f−(a) and f+(a). Therefore, the box [f ] (a)
is inside the thick box JfK ([x]) = J[f−] ([x]) , [f+] ([x])K.

A.4.3 Algorithm

Algorithm A.2, named ThickSivia (Thick Set Inversion Via Interval Analysis),
provides an approximation of the solution of the thick set inversion problem
JXK = [f ]−1 (JYK). The input of this algorithm are (1) the box [x] which is assumed
to be large enough to contains X+, the upper bound of JXK, (2) an accuracy
ε > 0, (3) the thick inclusion function JfK, and (4) thick set JYK. The output is
an approximation of the thick set JXK = JX−,X+K. The algorithm decomposes the
initial box [x] into four non-overlapping subpavings: (1) The inner subpaving Lclear
which contains boxes that have been proved to be inside the clear zone X−, (2) the
outer subpaving Ldark which contains boxes that have been proved to be outside
X+ (i.e., inside the dark zone), (3) the subpaving Lpenumbra which contains boxes
that have been proved to be inside the penumbra X+\X− and (4) the subpaving
made with boxes that have been rejected (for which nothing is known and with a
width smaller than the desired level of precision ε).

Remark A.2. In the algorithm, we have several tests on thick boxes that require com-
parisons on thick boxes as introduced in Section A.3. Consider for instance the test
(JfK ([x]) ∩ Y+ = ∅)∀ and assume that Y+ is made with boxes {[y] (1), . . . , [y] (k̄)}
(this will be the case in the applications presented in Section A.5). Since we have

(
JfK ([x]) ∩ Y+ = ∅

)∀
⇔ ∀k, (JfK ([x]) ∩ [y] (k) = ∅)∀ .
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Algorithm A.2 Thick set inversion algorithm: ThickSivia
Input: [x], ε, JYK, JfK
Output: Lclear, Lpenumbra, Ldark

1: L = {[x]}, Lclear = ∅, Lpenumbra = ∅, Ldark = ∅
2: while L 6= ∅ do

Unstack L into [x]
3: if (JfK([x]) ⊂ Y−)∀ then

push [x] into Lclear
4: else if (JfK([x]) ∩ Y+ = ∅)∀ then

push [x] into Ldark
5: else if (JfK([x]) ∩ (Y+\Y−) 6= ∅)∀ then

push [x] into Lpenumbra
6: else if width([x]) > ε then

bisect [x] perpendicularly to its largest side and push the two resulting
boxes in L

7: end if
8: end while

Our test amounts to checking that (JaK ∩ [b] = ∅)∀ where JaK = JfK ([x]) and
[b] = [y] (k). Therefore,

(JaK ∩ [b] = ∅)∀

⇔ ∃i ∈ {1, . . . , n}, (JaiK ∩ [bi] = ∅)∀ (see Proposition A.2)
⇔ ∃i ∈ {1, . . . , n}, b−i − [ai]+ ⊂ R− ∧ [ai]− − b+

i ⊂ R− (see Proposition A.1)
⇔ ∃i ∈ {1, . . . , n}, b−i − lb

(
[ai]+

)
≤ 0 ∧ (ub ([ai]−))− b+

i ≤ 0

where lb([ai]+) is the lower bound of the interval [ai]+ and ub([ai]−) is the upper
bound of [ai]−. We thus get Algorithm A.3. The same type of algorithm applies to
test if (JfK ([x]) ⊂ Y−)∀ or (JfK ([x]) ∩ (Y+\Y−) 6= ∅)∀ .

Algorithm A.3 Test if (JfK ([x]) ∩ Y+ = ∅)∀

Input: JaK = JfK ([x]),Y+ = {[y] (1), . . . , [y] (k̄)}
1: for k = 1 to k̄ do

[b] = [y] (k)
2: for i = 1 to n do

If b−i − lb
(
[ai]+

)
> 0 ∨ (ub ([ai]−))− b+

i > 0 then Return False.
End.

3: end for
4: end for
5: Return True
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i 1− 1
i

1 0
2 1

2
3 2

3
∞ 1

Table A.1: results of Formula A.31 for different values of i.

A.4.4 Properties

Termination

The algorithm always terminates in less than λ =
(

with([x])
ε

)dim(x)
iterations, where

[x] it the input box. The number λ is huge and corresponds to the worst case
situation where all tests fail and the algorithm returns Xclear = ∅, Xpenumbra = ∅,
Xdark = ∅. In practice, as shown in [Jaulin and Walter, 1993b] the number of
iterations is O

(
A
(

1
ε

)dim(x)−1
)

, where A is the area of the accumulation zone
which is composed here with the boundary of the penumbra.

Now, we can find some examples where the number of iterations is larger than
O
((

1
ε

)dim(x)−1
)

. Consider for instance the problem of solving f(x) < 0 where
f(x) = xi. Take an inclusion function: [f ]([x]) = [x]i + [x] − [x]. Assume that
[x] = [a, b] where a > 0. We have:

[f ] ([a, b]) =
[
ai, bi

]
+ [a− b, b− a] =

[
ai + a− b, bi + b− a

]
(A.29)

The interval is not classified by our algorithm if ai + a− b < 0, i.e., if ai < w([a, b]).
Since in our algorithm, for all interval [a, b], we have ε < w ([a, b]) (otherwise, the
interval is eliminated), we conclude that if ai < ε, or equivalently, a < ε

1
i the box

cannot be eliminated. Thus, the number of remaining yellow boxes η is of order
ε

1
i .ε−1 = ε

1
i
−1. Therefore,

log η
log ε 1

i
−1

= log η(
1
i
− 1

)
log ε

(A.30)

should converge to 1 or equivalently

lim
ε→0

log η
log ε−1 = 1− 1

i
. (A.31)

The Table A.1 illustrates this formula for different values of i.

We tried to get an experimental validation of this formula, and we obtained the
following figure which is consistent with the convergence formula. Now, even for
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tiny ε, log ε−1 is never large if we want the results in a reasonable time. It is thus
difficult to get a complete experimental validation of our formula.

Figure A.6: Experimental validation of the number of generated boxes η with
respect to ε. This figure draws log η with respect tolog ε−1 for different values of i.

Enclosure

The algorithm computes guaranteed inner and outer approximations of the solution
set of the thick set inversion problem. This is asserted by the following theorem.
Theorem A.2. The algorithm returns an approximation of the thick set inversion
problem JX−,X+K = [f ]−1 (JYK) under the form of 3 subpavings (i.e., union of
boxes): Lclear, Lpenumbra, Ldark. This approximation satisfies

(i) ⋃Lclear ⊂ X−
(ii) ⋃Lpenumbra ⊂ X+\X−
(iii) ⋃Ldark ∩ X+ = ∅.

Proof. To prove the Theorem, we need to show that, for a box [x], we have (see
Figure A.7):

(i) (JfK ([x]) ⊂ Y−)∀ ⇒ [x] ⊂ X−

(ii) (JfK ([x]) ∩ Y+ = ∅)∀ ⇒ [x] ∩ X+ = ∅
(iii) (JfK ([x]) ∩ (Y+\Y−) 6= ∅)∀ ⇒ [x] ⊂ X+\X−.

(A.32)
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Let us first prove (i). The left-hand side of (i) implies that

∀ [a] ∈ JfK ([x]), [a] ⊂ Y−. (A.33)

Take x ∈ [x] , and we show that x ∈ X−. Since x ∈ [x], we have JfK (x) ⊂ JfK ([x])
and the previous formula implies.

∀ [a] ∈ JfK (x), [a] ⊂ Y−. (A.34)

Now, JfK (x) is a singleton in IRn which contains the single box [f ] (x). Thus, (A.34)
becomes [f ] (x) ⊂ Y−, which implies

∀f ∈ [f ] , f(x) ∈ Y− (A.35)

or equivalently ∀f ∈ [f ] , x ∈ f−1 (Y−). We get

x ∈
⋂

f∈[f ]
f−1(Y−)(5.32)= X−. (A.36)

The same reasoning applies to prove (ii). For (iii), assume that the left-hand side
of (iii) is satisfied. Take one x ∈ [x] , the quantity JfK ([x]) becomes a singleton in
IRn, i.e., a box of Rn. We have

([f ] (x) ∩ (Y+\Y−) 6= ∅)
⇔ ∃f ∈ [f ] ,x ∈ f−1(Y+\Y−)
⇔ ∃f ∈ [f ] ,x ∈ f−1(Y+) ∧ x /∈ f−1(Y−)
⇔ x 6∈ ⋂

f∈[f ]
f−1(Y−) ∧ x ∈ ⋃f∈[f ] f−1(Y+).

Thus, from (5.32), we get [x] ⊂ X+\X−. �

Convergence

We now provide some convergence properties of our algorithm. We need first to
define the convergence of a thick inclusion function JfK. This convergence can be
interpreted as the continuity of the thick function JfK ([x]) around intervals [x]
which are degenerated (i.e., the box [x] is a singleton).

Definition A.1. The thick inclusion function JfK ([x]) for [f ]([x]) is said to be
convergent if for all a ∈ Rn, for all sequences of boxes [x] (k) and [y] (k), we have

dH([x](k), {a}) k→∞−→ 0
[y](k) ∈ JfK ([x] (k))

}
⇒ dH([y](k), [f ](a)) k→∞−→ 0,

where dH is the Hausforff distance between compact sets [Berge, 1963].
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[a]

x1

x2

y1

y2

Y⊃

Y⊂

[f ]

[b]

[c]

X⊃

X⊂

Figure A.7: Tests used for the thick set inversion. The box [a] is proved to be
inside the clear zone X−; The box [b] is proved to be inside the penumbra X+\X−.
The box [c] is proved to be inside the dark zone, i.e., outside X+.

Theorem A.3. For a given ε, our algorithm provides three lists Lclear(ε),Lpenumbra(ε)
and Ldark(ε). Take a point a. For ε sufficiently small we have

(i) [f ](a) ⊂ int (Y−) ⇒ a ∈ ⋃Lclear
(ii) [f ](a) ⊂ int

(
Y+
)

⇒ a ∈ ⋃Ldark
(iii) [f ](a) ∩ int (Y+\Y−) 6= ∅ ⇒ a ∈ ⋃Lpenumbra (A.37)

where int(A) denotes the interior of the set A [Berge, 1963].

Proof. The proof is by contradiction. Assume that for all ε the box containing a is
never classified. It means that there exists a sequence of boxes [x] (k) converging
to a such that none of the three tests is satisfied for all [x] (k).
(i) Since for all k, (JfK ([x] (k)) ⊂ Y−)∀ is false, there exists a sequence [y] (k) ∈
JfK ([x] (k)) such that ([y] (k) ⊂ Y−) is false. Now, since JfK is a convergent thick
inclusion function for [f ], dH([y](k), [f ](a))→ 0. Since int (Y−) is an open set, we
cannot have [f ](a) ⊂ int (Y−) .
(ii) Since for all k, (JfK ([x])(k) ∩ Y+ = ∅)∀ is false, using the same reasoning as for
(i), we get that we cannot have [f ](a) ⊂ int

(
Y+
)
.

(iii) Since for all k,(JfK ([x])(k) ∩ (Y+\Y−) 6= ∅)∀ is false, again, we conclude that
we cannot have ([f ](a) ∩ int (Y+\Y−) 6= ∅).
As a consequence, we get that if either (i), (ii) or (iii) is satisfied then a will be
classified inside one of the three lists. Moreover, from Equation (A.32), we get that
a will be classified on the right list.�

Remark A.3. For any box [y], we always have [y] ⊂ Y− or [y] ⊂ Y+ or [y] ∩
(Y+\Y−) 6= ∅. Moreover, in a generic situation, we have [y] ⊂ int (Y−) or [y] ⊂
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Figure A.8: Left: With classical intervals; Center: with subset-supset based thick
intervals; Right: with lower-upper bounds based thick intervals

int
(
Y+
)

or [y]∩ int (Y+\Y−) 6= ∅. Therefore, Theorem A.3 tells us that the part of
the search space which will not be classified are rare. Except in atypical situations,
these regions will correspond to the boundaries of the penumbra X+\X−.

A.5 Test-Cases

This section provides five test-cases to illustrate the efficiency of our method. All
these test cases solve a thick inversion problem JXK = [f ]−1 (JYK). In the figures,
all red boxes are shown to be inside the clear zone X−; all blue boxes are inside the
dark zone, i.e., outside X+; all orange boxes are proved to be inside the penumbra.
Nothing is known for the small yellow boxes.

Test-case 1. Thick translation. Consider the thick set JYK = [Y−,Y+] where
Y−,Y+ are two disks with center (0, 0) and with radius r− = 1 and r+ = 2,
respectively. Consider the thick function [f ] (x) = x− [v] where [v] = [0.7, 1.3]×
[−0.02, 0.02]. Figure A.8 represents an approximation of JXK = [f ]−1 (JYK) using
three types of intervals: the classical intervals (left), the thick intervals with a
subset-supset representation (center) and the thick intervals defined by lower-upper
interval bounds (right). These results have been obtained with ε = 0.1 and the
frame box corresponds to [−2, 4]× [−2, 4]. These figures have been generated in
2.1sec for the left figure; 0.21sec for the centered figure and 0.19 for the right figure.
As we can see on this figure, the penumbra is better (i.e., without any uncertain
boxes inside) characterized with a lower/upper bound representation for the thick
intervals.

We compared the computing time (on a processor i5-2520M@2.50GHz) and the
number of bisections with the traditional approach (which does not characterize
the penumbra) and our method. We get the table below. We observe that when ε
is small, classical methods are much less efficient due to the fact many bisections
take place inside the penumbra. This observation is also valid for all five test-cases
considered in this paper.
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Classical method Our method
ε #bisection time(s) #bisection time(s)

0.5 195 0.0003 159 0.0012
0.1 2215 0.0031 783 0.0047
0.05 8043 0.0130 1623 0.0117
0.01 470407 0.6701 13383 0.1779
0.005 1867707 2.6515 26823 0.5634
0.001 29722487 42.0044 107443 6.1724

Remark A.4. With respect to notation introduced in Chapter 4, the thick translation
can be expressed in term of Minkowsky sum and difference. From the notations
used in this test case we have:

[f ]−1 (JYK) = JYK⊕ [v] (A.38)
=

q
Y− 	 [v],Y+ ⊕ [v]

y
. (A.39)

To make the link with morphological operations, the lower set X− corresponds to
an erosion and X+ to a dilation.

Test-case 2. Tolerable-United solution sets. Consider the interval linear system
[Kreinovich and Shary, 2016](

[2, 4] [−2, 0]
[−1, 1] [2, 4]

)(
x1
x2

)
∈
(

[−1, 1]
[0, 2]

)
. (A.40)

The left-hand side corresponds to a thick function and the right-hand side corre-
sponds to a thin set. The solution set JXK = JX−,X+K has for subset bound the
tolerable solution set X− for supset bound the united solution set X+ [Goldsztejn
and Chabert, 2006] . Some techniques have been developed to approximate these
sets [Shary, 1995] in the linear case. They are mainly based on the Kaucher interval
arithmetic [Kaucher, 1980, Goldsztejn, 2005] and may be used to find boxes inside
the penumbra. Now, these methods have mainly been developed to deal with linear
interval problems and cannot be used to find boxes inside the penumbra for general
nonlinear problems as for the two following test-cases. For this example, the thick
set-inversion algorithm provides the paving of Figure A.9, in less than 0.4 sec, for
ε = 0.01.

Test-case3. Parameter estimation.Consider the parametric model

ym(x, t) = x1e
−x2t, (A.41)

where x = (x1, x2) is the parameter vector and t ∈ R is the time. At time ti, we
collect measurements yi with some interval uncertainties as written in Table A.2.
Note that one of the main difficulties of this problem is that uncertainties exist on
the independent variable (here the time) [Jaulin and Walter, 1999, Cerone, 1991].
In our formulation, the uncertainty of the ti is stored inside the model under the

164



A.5. Test-Cases

Figure A.9: Approximation of the tolerable-united solution sets of the interval
linear system of Test-case 2

form of a thick function.

i [ti] [yi]
1 [0.03, 0.06] [4, 8]
2 [0.09, 0.12] [2, 6]
3 [0.15, 0.18] [2, 5]
4 [0.21, 0.24] [1, 3]
5 [0.27, 0.3] [0, 2]

Table A.2: Measurements (ti, yi) used for estimation

The set of all feasible parameter vectors is

X = {x ∈ R2 | ∀i ∈ {1, . . . , 5},∃t ∈ [ti], x1e
−x2t ∈ [yi]}. (A.42)

If we define the thick function

[f ](x) =


x1e
−x2[t1]

...
x1e
−x2[t5]

 (A.43)

and the box
[y] = [y1]× · · · × [y5], (A.44)

then the thick set JXK = JX−,X+K = [f ]−1 (Y) is composed with the two sets

X− = {x ∈ R2 | ∀i ∈ {1, . . . , 5},∀t ∈ [ti], x1e
−x2t ∈ [yi]} (A.45)

and
X+ = {x ∈ R2 | ∀i ∈ {1, . . . , 5},∃t ∈ [ti], x1e

−x2t ∈ [yi]}. (A.46)
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Figure A.10: Representation of the thick set JX−,X+K associated to the estimation
problem. All blue boxes are outside X+ and all red boxes are inside X−. The orange
boxes (on the right figure) are outside X− and inside X+. The left Figure, obtained
with classical interval tests, do not classify any box in the penumbra. With a thick
set inversion approach, we get an inner approximation of the penumbra.

For ε = 0.1, the thick set-inversion algorithm computes an approximation of the
thick set JX−,X+K as represented by Figure A.10. The left figure is obtained in 1.8
sec and contains 10337 boxes. The right figure is obtained in 0.2 sec and contains
2744 boxes.

Test-case 4. Communication area.Consider p marks m (i) located at position
(m1 (i) ,m2 (i)) given by Table A.3 and a robot at the position x = (x1, x2).

i 1 2 3 4
m1 (i) 1± 0.5 10± 0.5 10± 0.5 −2± 0.5
m2 (i) 3± 0.5 −1± 0.5 6± 0.5 −5± 0.5

Table A.3: Location of the marks

The robot is able to communicate with the mark m (i) if its distance to the
mark is smaller than 10m, i.e., if ‖x −m(i)‖ < 10. The communication is not
possible if the distance is larger than 20m. With a distance inside [10, 20], the
communication is uncertain. The set of all positions for the robot such that the
robot can communicate with all marks is a thick set defined by

JXK = [f ]−1 (
q
Y−,Y+y

) (A.47)

where
Y− = [0, 10]×4, Y+ = [0, 20]×4 (A.48)

and
[fi](x) = ‖x− [m](i)‖. (A.49)

Our thick inversion algorithm provides in less than 0.3 seconds, the paving repre-
sented on Figure A.11. In the example, the clear and the dark boxes could have
been obtained using existing interval algorithms. But these methods have to bisect
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Figure A.11: Thick set JXK representing the communication region. The dark zone
(blue) corresponds to position where the robot cannot communicate with all marks.
In the clear zone (red), the robot is able to communicate with all marks.

everywhere inside the penumbra. Using thick interval arithmetic, we are able to
conclude for an orange box that there is no need to bisect it.

A.6 Conclusion

This chapter deals with the set-inversion problem X = f−1(Y) in the case where
both f and Y are uncertain, i.e., f belongs to the interval of functions [f−, f+] and
Y belongs to a thick set, i.e., an interval of sets JYK = JY−,Y+K. After introducing
the new notions of thick intervals and thick boxes, a new algorithm for set inversion
has been proposed. It is able to compute a thick solution set JXK = JX−,X+K
containing all feasible solution sets.

From the computational point of view, thick intervals allow us to have a better
understanding of the uncertainty. For instance, for the set inversion problem, we
are able to detect that a box is included in the penumbra X+\X−. In this penumbra,
we can conclude that any bisection would be useless. This could not have been
detected using classical intervals. As a consequence, the accumulation zone (i.e.,
the part of the search space where tiny boxes are still bisected) for thick interval
based algorithms has a zero volume, since it corresponds to the boundary of the
penumbra. Using classical intervals instead, we could obtain similar results, but the
accumulation zone would correspond to the whole penumbra, which has a nonzero
volume. As a result, a large part of the computational burden made by traditional
interval algorithms is done on a part of the search space which has no influence on
the final result.
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To make the link with the shape registration and carving problem, the thick set
inversion algorithm allows to deal efficiently with uncertain transformations that
can be modeled by thick functions. The translation of an uncertain vector, that
will be used in applications of chapter 5, fit this definition.
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B.1 Introduction

In Appendix A, the thick set inversion problem for which the uncertain function
is described by a thick function, has been defined. A new algorithm has been
provided to efficiently characterize the penumbra and was illustrated with some
examples. In Chapter 5 a generic method, based on the projection algorithms, has
also been introduced.

Now, this chapter deals with a new method able to characterize the area explored
by a robot taking into account its trajectory uncertainty. When the dimension of
the observer space is smaller that those of the working space, previous methods
cannot be used. The temporal evolution of the vehicle need to be correctly handled
in by the set inversion algorithm.
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Behind the practical case of the characterization of the area explored by a robot,
the exposed method will allow us to compute a set that encloses the sensor data
taking into account its geometry, its positioning uncertainty and the movement of
its carrier.

It is organized as follows. Section B.2 defines the notion of explored zone and
proposes a formalization of the problem. Section B.3 extends the formalism in
order to take into account the uncertainty associated with the trajectory of the
robot. Section B.4 gives the new algorithm which encloses the explored zone Z
between two subpavings (union of boxes). An experiment involving the underwater
robot Daurade is treated in Section B.5 in order to validate the feasibility of the
approach. A conclusion is then given on Section B.6.

Note that, this chapter is extracted, almost with any changes, from [Desrochers
and Jaulin, 2017b]. The original paper was written before the thick set formalism
was clearly defined, but it helped us to better understand and define the notion of
penumbra.

B.2 Problem Statement

We consider a robot moving inside an unknown environment in a dead reckoning
manner, i.e., using the proprioceptive sensors only. As it is the case for most
industrial underwater robots, the robot is equipped with some exteroceptive sensors
(such as sonars or cameras) that are used exploration only and not for navigation.
After the mission, it has to find which part of the environment it has explored,
taking into account the uncertainty on the localization. We assume that the
interpretation of exploration sensors is not reliable enough to allow us using SLAM
techniques such as in [Leonard et al., 1992] or [Frese, 2006]. When the mission
is short and the quality of the proprioceptive sensors is good, occupancy map
techniques [Elfes, 1987] can be used to mark all points that have been observed and
a probability of being explored can be associated with each part of the space [Paull,
2013]. Now, in practice, due to the state noise, the prediction of the location of the
robot is getting less accurate, and we have to take into account these uncertainties
properly. We are in a typical situation where the uncertainty is combined with
inaccuracy [Dubois and Prade, 2015]. The unknown variable of our problem is
the explored set Z, and characterizing uncertain sets with classical probabilistic
methods requires elaborated mathematical tools such as random sets [Molchanov,
2005a]. These random sets have already been used in the context of robot mapping
(see [Mullane et al., 2011]) but the approach is limited to finite sets. In a set
membership approach, an uncertain set Z can be bracketed by two sets Z− and Z+

such that Z− ⊂ Z ⊂ Z+. This representation is particularly adapted to represent
uncertain maps [Langerwisch and Wagner, 2013]. Interval-type uncertainties can
easily be propagated through nonlinear functions (see e.g., [Gning and Bonnifait,
2006]) or nonlinear state equations, as shown in [Collins and Goldsztejn, 2008] to
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get an inner and an outer characterization of the reachable space or in [Jaulin,
2011] for SLAM involving unstructured maps.

The problem to be considered here is the characterization of the explored zone Z of
a robot. The set Z is defined by{

(i) ẋ = f (x,u) , x (0) = x0, u (t) ∈ [u] (t)
(ii) Z = ⋃

t≥0 V (x (t)) (B.1)

where (i) describes the evolution of the robot and (ii) defines the explored zone
Z. In the state equation (i) of the robot, x ∈ Rn is the state vector and u is the
input vector. In order to take into account some state noise, we assume that, for
all t, a box [u] (t) which contains u (t) is available. Moreover, the initial condition
x0 is assumed to be known. For each t, a scanner on the robot is able to observe
a part of its environment. More precisely, for each t, there exists a subset of the
environment V (x (t)) ⊂ Rq, q ∈ {2, 3} that is visible by the robot. This set is called
the visible set (see, e.g., [Guyonneau et al., 2013] in the context of localization).
Note that our robot does not use any exteroceptive sensors for state estimation,
for localization or to control its trajectory. It is only able to estimate its position
from the proprioceptive sensors u with a given bounded accuracy. Equivalently, we
consider that the scan sensors of the robot are used to collect data for exploration
that will only be analyzed after the mission by some human users. The following
examples illustrate how the visible sets could be defined in practice.

Example 1. Consider a robot, the pose of which is x = (x, y, θ), moving in a
plane. This robot is able to scan the environment up to a distance of 3 meters
in front of it inside a cone of ±π

6 rad. Therefore, the visible set V (x) contains all
z ∈ R2 which satisfy the following inequalities{

(z1 − x)2 + (z2 − y)2 ≤ 9
cos θ · (z1 − x) + sin θ · (z2 − y) ≥ cos π

6
(B.2)

Example 2. We consider the robot of Example 1 except that now, this robot is
able to scan only points that are exactly on its right at a distance in [2, 3]. Then
V (x) is the set of all z ∈ R2 such that

(z1 − x)2 + (z2 − y)2 ∈ [4, 9]
cos θ · (z1 − x) + sin θ · (z2 − y) = 0
cos θ · (z2 − y)− sin θ (z1 − x) ≤ 0.

(B.3)

Example 3. The same robot is now able to scan only points that are exactly on
its right at a distance of 3 meters. Then V (x) is the set of all z ∈ R2 such that

(z1 − x)2 + (z2 − y)2 − 32 = 0
cos θ · (z1 − x) + sin θ · (z2 − y) = 0
cos θ · (z2 − y)− sin θ (z1 − x) ≤ 0.

(B.4)
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As motivated by the following examples, we may consider three different types of
exploration.

1. Patch exploration [Drevelle et al., 2013]. The visible sets V (x) have a
dimension q, as for Example 1. In this case, dim(Z)=q and it will be possible
to compute an inner and an outer approximation of Z. This type of exploration
exists when the sensor is a camera: a 3D zone is explored for each t.

2. Sweep exploration. The visible sets V (x) have a dimension q − 1, as for
Example 2. Thus, Z has a dimension of q. Again, it will be possible [Olivier
et al., 2013] to bracket Z from both inside and outside. This is the case when
the robot is equipped with a side scan sonar, a multi-beam echo sounder or
an airborne LiDAR.

3. Pen exploration. The dimension of V (x) is smaller than q−2, as for Example
3, and thus dim(Z) ≤q − 1. It will neither be possible to get an inner
approximation for Z nor to prove that a given point is actually inside Z. This
is the case when the robot is equipped with a laser range-finder and takes
one range measurement every second.

When the whole trajectory x (t) is known, the set Z is clearly defined. Different
techniques could be thought in order to characterize the set Z. For instance,
we could use subpaving-based methods [Jaulin et al., 2001b] or occupancy grid
approaches. Now, in this paper, the trajectory of the robot is not known precisely
and the set Z becomes uncertain which makes the problem much more difficult
[Paull, 2013].

B.3 Uncertain Explored Zones

When the trajectory x (·) is uncertain, the explored zone Z cannot be approximated
with an arbitrary accuracy. In a probabilistic context, we can associate to each
z ∈ Rq a probability of being explored. Now, even if this probability can be
estimated using Monté-Carlo methods, due to the large (here infinite) dimension of
the set of trajectories to be explored, the computational burden is high which makes
probabilistic methods not so attractive. Denote by X (·), the set of all feasible
trajectories, i.e., the trajectories x (·) consistent with (B.1) and with the initial
condition x (0). It is important not to make the confusion between x (·) which is a
trajectory and x (t) which is a vector of Rn. We define the two following sets

Z− = ⋂
x(·)∈X (·)

⋃
t≥0

V (x (t))

Z+ = ⋃
x(·)∈X (·)

⋃
t≥0

V (x (t)) (B.5)

The set Z− is called the certainly explored zone or the clear zone. It corresponds
to the set of all points z of the environment that have certainly been seen by the
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Figure B.1: The space is partitioned into three zones : Z+ is the dark zone, Z−∩
Z+ is the penumbra and Z− is the clear zone

robot taking into account that its trajectory x (·) is feasible. The complementary
set Z+ of Z+ is called the certainly unexplored zone or the dark zone. The set Z+ is
called non-dark zone. Moreover, we define the penumbra as the set ∆Z = Z+\Z−
(see Figure B.1). It corresponds to the set of all z that have been seen by some
feasible trajectories and not seen by some other feasible trajectories. Figure B.1
illustrates a situation of a patch exploration where the patch is a disk. At time
t1 the robot knows that it is inside the black box. Taking this uncertainty into
account, it concludes that the dark gray zone is certainly illuminated (i.e., all
corresponding points z are certainly seen at time t1) and that all points inside the
light gray zone have possibly been seen at time t1. The unknown explored zone Z
obviously satisfies

Z− ⊂ Z ⊂ Z+. (B.6)

Note that the clear zone Z− is larger than the union of the certainly visible sets,
i.e., ⋃

t≥0

⋂
x∈X (t)

V (x)
︸ ︷︷ ︸

{z | ∃t ∀x∈X (t), z∈V(x)}

⊂ Z− =
⋂

x(·)∈X (·)

⋃
t≥0

V (x (t))
︸ ︷︷ ︸
{z | ∀x(·)∈X (·),∃t, z∈V(x)}

. (B.7)

This inclusion is due to the fact that, ∩ and ∪ do not commute in general. The
consequence of this non commutativity is illustrated by Figure B.2 where two
different trajectories for the robot are represented. The pies correspond to the set
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Figure B.2: Even if we do not know which one of the two trajectories is the true
one, we are certain that the gray set has been explored; the pies correspond to
illuminated zones.

of all z that have been seen by the robot at times t1and t2 for the two trajectories.
To characterize Z−, it is not sufficient to compute the union of all certainly visible
sets ; we also need to add all cross intersections. For instance, whatever is the true
trajectory among xa or xb, we are certain that all points of the dark gray set (at
the intersection between the two opposite pies) in the figure have been explored.
These cross intersections are not taken into account by existing methods [Drevelle
et al., 2013].

Now, for sweep exploration, the dimension of the visible sets is q − 1 and the
certainly visible sets ⋂x∈X (t) V (x) become empty. All the information about Z−
can thus only be obtained from these cross intersections, i.e., by taking into account
different t and different trajectories all together or equivalently, by considering the
right-hand side of (B.7) for the characterization of Z−.

B.4 Characterization of the Explored Zone

We now focus our attention on the sweep exploration where visible sets have the
form

V (x) = {z ∈ Rq | ϕ (z,x) = 0 and ψ (z,x) ≤ 0} . (B.8)

In this formula, ϕ : Rp × Rn → R is the visibility function which is assumed to be
continuous and ψ : Rp × Rn → R models the scope of the sensor. Examples 1, 2, 3
of Section B.2 provide an illustration of these functions.

This section proposes a new algorithm able to bracket the explored zone between
two subpavings (union of non-overlapping boxes). More precisely, the workspace
will be partitioned into 4 types of boxes: (a) the clear boxes that have been proved
to be inside Z−, (b) the dark boxes that have been proved to be outside Z+, (c)
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the penumbra boxes which are neither dark nor clear and (d) the boxes which have
not been classified yet. When a box cannot be classified, it is bisected into two non
overlapping subboxes. To ensure the convergence of the algorithm, boxes which
have a width smaller than a small given value are not bisected.

To classify boxes (clear, dark, penumbra), we need first to get a guaranteed enclosure
of the set of feasible trajectories X (·). This can be done using interval guaranteed
integration [Wilczak and Zgliczynski, 2011], [Tucker, 2002], [Revol et al., 2005].
These techniques make it possible to compute a tube (i.e., a function [x] (·) mapping
R into IRn, the set of boxes of Rn) which encloses the set of trajectories X (·). In
what follows, we shall thus assume that the trajectory x (·) is inside a tube denoted
by [x] (·). As a consequence, from (B.5), we have⋂

x(·)∈[x](·)

⋃
t≥0

V (x (t)) ⊂ Z ⊂
⋃

x(·)∈[x](·)

⋃
t≥0

V (x (t)) . (B.9)

B.4.1 Notion of logic

The presentation of the tests that will be used to classify the boxes of the workspace
requires some notions on logic, involving quantifiers. Some useful rules are now
presented. If A is a predicate, if ϕ (·) is continuous, if x (·) is a trajectory and [x] (·)
is a tube, we have

(i) ∃x (·) ∈ [x] (·) , ∀t, A (x (t))
⇔ ∀t, ∃a ∈ [x] (t) , A (a)

(ii) ∃t, ϕ (t) = 0 ∧ ψ (t) ≤ 0

⇔ ∃t1 ∃t2,
{
ϕ (t1)ϕ (t2) ≤ 0
ψ ([t1, t2]) ⊂ R−

(iii) ∀x (·) ∈ [x] (·) , ∃t, A (x (t))
⇔ ∃t, ∀a ∈ [x] (t) , A (a) .

(B.10)

B.4.2 Clarity test

The clarity test aims at proving that a box [z] has been explored whatever the
uncertainties are. This test is based on the following theorem.
Theorem B.1. Given an interval [t1, t2] ⊂ R+ and a tube [x] (·), we have :

ϕ (z, [x] (t1)) · ϕ (z, [x] (t2)) ⊂ R−
∧ ψ (z, [x] ([t1, t2])) ⊂ R−

}
⇒ z ∈ Z-. (B.11)
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Figure B.3: The fact that ϕ changes its sign inside [t1, t2] whereas ψ remains
negative implies that [z] ⊂ Z

Proof : Consider a point z ∈ Rq. The left-hand side of (B.11) is equivalent to

∀x (·) ∈ [x] (·) , (ϕ (z,x (t1)) · ϕ (z,x (t2)) ≤ 0)
∧ ψ (z,x ([t1, t2])) ⊂ R−

(B.10,ii)⇔ ∀x (·) ∈ [x] (·) , ∃t ≥ 0, ( ϕ (z,x (t)) = 0
∧ ψ (z,x (t)) ≤ 0 )

⇔ z ∈ ⋂
x(·)∈[x](·)

⋃
t≥0

{
z ∈ Rq | ( ϕ (z,x (t)) = 0

∧ ψ (z,x (t)) ≤ 0 )

}
(B.8)⇔ z ∈ ⋂

x(·)∈[x](·)

⋃
t≥0

V (x (t))
(B.9)⇒ z ∈ Z−. �

Clarity test. Given t1,t2 ≥ 0 and inclusion functions [ϕ],[ψ] for ϕ,ψ, we define
the clarity test as:

Tclarity ([z] , [x] (·)) :
{

[ϕ] ([z] , [x] (t1)) · [ϕ] ([z] , [x] (t2)) ⊂ R−
∧ [ψ] ([z] , [x] ([t1, t2])) ⊂ R−

From Theorem B.1, we have

Tclarity ([z] , [x] (·))⇒ [z] ⊂ Z−. (B.12)

An illustration of this proposition is given by Figure B.3. We choose the pairs
(t1, t2) as in the figure, i.e., such that t2 − t1 are small and such that

[ϕ] ([z] , [x] (t1)) · [ϕ] ([z] , [x] (t2)) ⊂ R−. (B.13)

Note that the test also concludes for the pair (t5, t6) but fails for (t3, t4). Since
here, the test concludes for at least one pair, we get that the whole box [z] has
been explored.
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B.4.3 Dark test

The dark test aims at proving that no point in the box [z] has been explored
whatever the uncertainties are. The dark test is based on the following theorem.
Theorem B.2. If [x] (·) is a tube, then we have

∀t ≥ 0, ∀x ∈ [x] (t) , (ϕ (z,x) 6= 0)
∨ (ψ (z,x) > 0) ⇒ z /∈ Z+ (B.14)

Proof. The proof is by contradiction, i.e., we show that assuming z ∈ Z+ implies
that left-hand side of (B.14) is false. We have

z ∈ Z+

(B.9)⇒ z ∈ ⋃
x(·)∈[x](·)

⋃
t≥0

V (x (t))

(B.8)⇔ z ∈ ⋃
x(·)∈[x](·)

⋃
t≥0

{
z ∈ Rq | ( ϕ (z,x (t)) = 0

∧ ψ (z,x (t)) ≤ 0 )

}

⇔ ∃x (·) ∈ [x] (·) ,∃t ≥ 0, ( ϕ (z,x (t)) = 0
∧ ψ (z,x (t)) ≤ 0 )

which corresponds to the negation of left-hand side of (B.14). �

Dark test. Given two inclusion functions [ϕ],[ψ] for ϕ, ψ. Define the dark test as

Tdark ([z] , [x] (·)) : ∀t ≥ 0,
{

(0 /∈ [ϕ] ([z] , [x] (t)))
∨ ([ψ] ([z] , [x] (t)) ⊂ R+) . (B.15)

From Theorem B.2, we have

Tdark ([z] , [x] (·))⇒ [z] ∩ Z+. (B.16)

An illustration of this proposition is given by Figure B.4. In the situation represented
in this figure, ∀t ≥ 0,∀x ∈ [x] (t) ,∀z ∈ [z] , eitherϕ (z,x) 6= 0or (ψ (z,x) > 0),
which means that no point inside z ∈ [z] could have been seen.

B.4.4 Penumbra test

Proving that a point z belongs to the penumbra ∆Z is difficult and not so useful.
The main interest to have an inclusion test for the penumbra is to limit the
computation burden. Indeed, if [z] ⊂ ∆Z then we will never be able to prove that
[z] ⊂ Z− or to prove that [z] ∩ Z+ = ∅, and thus there is no need to bisect. Now,
instead of proving that [z] ⊂ ∆Z, we propose here to test either the darkness test
or the clarity test always fail for all subbox of [z]. In such a case, [z] will not be
bisected. In such a situation, we shall say that [z] satisfies the penumbra test.
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Figure B.4: This configuration for the tubes [ϕ] (·) and [ψ] (·) allows us to conclude
that [z] is dark

Theorem B.3. Given x(·) ∈ [x] (·) and z ∈ [z]. If

∀t,
{
ϕ (z,x (t)) 6= 0
∨ ψ (z,x(t)) > 0 ⇒ ¬Tclarity ([x] (.) , [z]) . (B.17)

Proof. The proof is by contradiction. Assume that Tclarity ([x] (.) , [z]) is true, i.e.,{
[ϕ] ([z] , [x] (t1)) · [ϕ] ([z] , [x] (t2)) ⊂ R−

∧ [ψ] ([z] , [x] ([t1, t2])) ⊂ R−.

Since x(·) ∈ [x](·) and z ∈ [z], we get{
ϕ (z,x (t1)) · ϕ (z,x (t2)) ⊂ R−
∧ψ (z,x ([t1, t2])) ⊂ R−.

From (B.10,ii), we get that there exists t0 ∈ [t1, t2] such that

ϕ (z,x (t0)) = 0 ∧ ψ (z,x (t0)) ⊂ R−

which is inconsistent with the left-hand side of (B.17). �
Theorem B.4. Given x(·) ∈ [x](·), z ∈ [z] and t1, t2 ≥ 0. We have:

ϕ (z,x(t1)) .ϕ (z,x(t2)) ≤ 0
∧ ∀t ∈ [t1, t2], ψ (z,x(t)) ≤ 0

}
⇒ ¬Tdark ([x] (·) , [z]) . (B.18)

Proof. The proof is by contradiction. Assume that Tdark ([x] (·) , [z]) is true, i.e.,

∀t ≥ 0, 0 /∈ [ϕ] ([z] , [x] (t)) ∨ [ψ] ([z] , [x] (t)) ⊂ R+
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Since x(·) ∈ [x](·) and z ∈ [z], we get

∀t ≥ 0, 0 6= ϕ (z,x (t)) ∨ ψ (z,x (t)) > 0.

Assume now that the left-hand side of (B.18) is also true. From (B.10,ii), we get
that for a specific t0 ∈ [t1, t2] ,

ϕ (z,x(t0)) = 0 ∧ ψ (z,x(t0)) ≤ 0

which is not consistent with the previous proposition.

Penumbra test. Given t1,t2 ≥ 0, two trajectories xa (·) ,xb (·) ∈ [x] (t) and
inclusion functions [ϕ],[ψ] for ϕ,ψ. Define the penumbra test Tpenumbra ([z]) as

∀t, [ϕ] ([z] ,xa (t)) 6= 0 ∨ [ψ] ([z] ,xa(t)) > 0
[ϕ]

(
[z] ,xb(t1)

)
· [ϕ]

(
[z] ,xb(t2)

)
≤ 0

∧ ∀t ∈ [t1, t2], [ψ]
(
[z] ,xb(t)

)
≤ 0.

(B.19)

From Theorems B.3 and B.4, we get that Tpenumbra implies that neither Tclarity nor
Tdark will able to conclude anything for any subbox of [z].

B.5 Experiment

This section illustrates our sweep exploration method on a real experiment. Novem-
ber 2015, a 46 minutes mission has been performed in the Road-stead of Brest
(France, Brittany) with the underwater robot Daurade which realized a classical
survey pattern composed of a set of parallel tracks with an altitude of about 10 me-
ters. This robot (see Figure B.5) has been built by ECA robotics and used by DGA
Tn (Direction Général de l’Armement - Techniques Navales) and SHOM (Service
Hydrographique et Océanographique de la Marine) for performing REA (Rapid
Environment Assessment) studies. REA is intended to survey the environmental
conditions of a particular location in order to identify any existing or potential
dangers. In the counter mine warfare context, attention is focused on mapping
the sea floor with acoustic sensors. Daurade is equipped with a Side Scan Sonar
(Klein 5500) used to detect potential mines. With this sonar, data are recorded on
a line perpendicular to the path of the sensor and images are formed by putting
side by side these lines. Characterizing the zone seen by the sonar enters inside the
framework of sweep exploration.

For the navigation, Daurade relies on an inertial central (Phins II IXBlue) coupled
with a DVL (Doppler Velocity Log), which returns the speed with respect to the
ground. Once under the water, no GPS data are available and the estimated
position of the robot drifts with the time. A key point of REA missions is to
guarantee that the area of interest has been totally explored without any gap.
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Figure B.5: Daurade: the underwater robot used for our experiment. Photo: S.
Rohou

Assessment of the covered area is usually done manually by an operator which
looks at the sonar images. The proposed algorithm can be used to validate the
mission plan or, at the end of the mission, to check the area to be explored has
indeed been covered.

The horizontal kinematic model the robot is taken as(
ẋ1
ẋ2

)
=
(

cosψ − sinψ
sinψ cosψ

)
· v (B.20)

where (x1, x2) corresponds to the 2D coordinates of the center of the robot expressed
in an absolute inertial frame, ψ is the heading and v is the horizontal speed vector
of the robot expressed in its own coordinate system. The aperture angle of the side
scan sonar is taken as α = 80◦. This means that, with a flat seabed assumption, if
the robot has an altitude a then the sonar is able to sense the part of the environment
which is perpendicular to the robot and at a distance less than ` = a · sinα. The
horizontal online estimated trajectory is depicted on Figure B.6. Note that due to
the fact that the controller uses this trajectory for control, it looks perfect, which
is not the case for the true trajectory (dotted line) directly measured by an USBL
(Ultra-Short Base Line). Now, in our experiment, this true trajectory is neither
used for control nor for estimation of the explored zone. It is only used for the
validation of the results.

We assume that the initial position is x1 = x2 = 0. Taking the interval uncertainties
into account and using a guaranteed integration of the state equation (B.20), we
are able to compute a tube which contains the true trajectory. At the end of the
mission the position error is around 17 meters. On this experiment, our method
provides in less than 5 minutes an estimation of the explored zone as given by
Figure B.7. This result is consistent with the true trajectory obtained by the USBL
and by an observation of the sonar images.
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Figure B.6: Online estimated trajectory (plain) and true trajectory (dotted line)

Figure B.7: Enclosure of the explored area. The tube in black encloses the true
trajectory
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Consider the same experiment, but, instead of having a sweep exploration, we
assume that at each t the visible set V(t) is a disk of radius a · sinα (instead of a
segment). In this case, the explored zone can still be obtained, but we do not need
anymore to use the continuity of the trajectory. At each t ∈ {1, 2, . . . ,m} where
m = 2760, the visible set (i.e., the part of the bottom which is seen by the sonar of
the robot) is a disk of radius 50 meters around the robot, the position of which is
not exactly known. The explored zone X corresponds to the union of all patches
that have been seen:

X =
⋃

t∈[1,2,...,m}
f−1
t ([0, 50[), (B.21)

where
ft(x) =

√
(x1 − a1(t))2 + (x2 − a2(t))2 (B.22)

The complementary set of X is

X =
⋂

t∈{1,2,...,m}
f−1
t ([50,∞]) = f−1([50,∞]m),

where f(x) = (f1(x), . . . , fm(x)). The function f(x) is consistent with the intervals
[a1] (t) and [a2] (t) containing the positions of the robot iff

f(x) ∈ [f ] (x) =


√

(x1 − [a1] (1))2 + (x2 − [a2] (1))2

...√
(x1 − [a1] (m))2 + (x2 − [a2] (m))2


Since the function [f ] (x) is thick, the characterization of the thick set

[
X
]

is a
thick set inversion problem which can be characterized by algorithm presented in
Appendix A. Its complementary [X] can thus be derived. The resulting enclosure
of [X], given on Figure B.8, is computed in less than 3 minutes. Note that the
penumbra (orange) is larger in zones when the estimation of the position of the
robot is less accurate. The black tube corresponds to [a](t). From the information
given by the inertial system, for any point xo in the orange zone, it is impossible
to known if xo has been seen or not by the sonar. This ambiguity comes from the
uncertainty related to the position a(t) of the robot. Note also that Figures B.8
and B.7 look similar (which is consistent with our intuition) except near the initial
position (bottom right) where we can observe the difference between the patch
(here a disk) exploration and the sweep (here a segment) exploration.

B.6 Conclusion

This chapter has presented a new method to characterize the zone Z explored by a
mobile robot. The method only uses the proprioceptive sensors for localization,
which makes the approach reliable. The method is indeed not sensitive (i) to
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Figure B.8: Patch exploration in the case where the visible sets are disks The dark
zone (blue) has certainly been unexplored and the clear zone (red) has certainly
been explored. Here, certainly means: ’for all feasible trajectories’

outliers (which mainly occur on exteroceptive sensors), (ii) to data association
errors, or (iii) to any information resulting from an interaction between the robot
and the environment. The method can also be used before the mission in order to
guarantee that a given area will all be covered by the robot, whatever the noise
on the proprioceptive sensors are. We only need to assume that the state noise
is bounded with known bounds in order to be able to enclose the trajectory x (·)
inside a tube [x] (·).

To solve the problem, we had to introduce new interval tests to classify boxes as
clear (certainly explored), dark (certainly unexplored) or in the penumbra. This
classification requires the development of new quantifier elimination procedures,
based on four new theorems. The efficiency of the resulting algorithm has been
validated on an actual experiment made by an autonomous underwater robot.
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with application to path planning. Engineering Applications of Artificial
Intelligence, 33(0):141–147

• Desrochers, B. and Jaulin, L. (2017b). Computing a Guaranteed Approxi-
mation of the Zone Explored by a Robot. IEEE Transactions on Automatic
Control, 62(1):425–430

• Desrochers, B. and Jaulin, L. (2016a). A minimal contractor for the polar
equation: Application to robot localization. Engineering Applications of
Artificial Intelligence, 55(Supplement C):83–92

• Jaulin, L., Desrochers, B., and Massé, D. (2016). Bisectable Abstract Do-
mains for the Resolution of Equations Involving Complex Numbers. Reliable
Computing, 23(1):35–46
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gence, 249:1–18
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[Ó’Dúnlaing and Yap, 1985] Ó’Dúnlaing, C. and Yap, C. K. (1985). A ”retraction”
method for planning the motion of a disc. Journal of Algorithms, 6(1):104–111.

[Olivier et al., 2013] Olivier, M., Goubault, É., Kieffer, M., and Putot, S. (2013).
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Résumé

Cette thèse étudie le problème de la localisation et de la cartographie simultanée (SLAM),
dans des environnements non structurés, c’est-à-dire, qui ne peuvent pas être décrits
par des équations ou des formes géométriques. Ces types d’environements sont souvent
rencontrés dans le domaine sous-marin.

Contrairement aux approches classiques, l’environnement n’est pas modélisé par une
collection de descripteurs ou d’amers ponctuels, mais directement par des ensembles.
Ces ensembles, appelés forme ou shape, sont associés à des caractéristiques physiques
de l’environnement, comme par exemple, des textures, du relief ou, de manière plus
symbolique, à l’espace libre autour du véhicule.

D’un point de vue théorique, le problème du SLAM, basé sur des formes, est formalisé
par un réseau de contraintes hybrides dont les variables sont des vecteurs de Rn et
des sous-ensembles de Rn. De la même façon que l’incertitude sur une variable réelle
est représentée par un intervalle de réels, l’incertitude sur les formes sera représenté
par un intervalle de forme. La principale contribution de cette thèse est de proposer
un formalisme, basé sur le calcul par intervalle, capable de calculer ces domaines. En
application, les algorithmes développés ont été appliqués au problème du SLAM à partir
de données bathymétriques recueillies par un véhicule sous-marin autonome (AUV).

Mots-clés: analyse par intervalles, localisation, SLAM, robotique

Abstract

This thesis deals with the simultaneous localization and mapping (SLAM) problem in
unstructured environments, i.e. which cannot be described by geometrical features. This
type of environment frequently occurs in an underwater context.

Unlike classical approaches, the environment is not described by a collection of punctual
features or landmarks, but directly by sets. These sets, called shapes, are associated with
physical features such as the relief, some textures or, in a more symbolic way, the space
free of obstacles that can be sensed around a robot.

In a theoretical point of view, the SLAM problem is formalized as an hybrid constraint
network where the variables are vectors and subsets of Rn. Whereas an uncertain real
number is enclosed in an interval, an uncertain shape is enclosed in an interval of sets.
The main contribution of this thesis is the introduction of a new formalism, based on
interval analysis, able to deal with these domains. As an application, we illustrate our
method on a SLAM problem based on bathymetric data acquired by an autonomous
underwater vehicle (AUV).

Keyworks: SLAM, AUV, interval analysis, localisation
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