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“Take things as they are. Punchwhen you have to punch.
Kick when you have to kick”.
Bruce Lee

“A lot of people give up just before they’re about to
make it. You know you never know when that next
obstacle is going to be the last one”.
Chuck Norris
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Resumé

Le rôle du phosphore (P) en agriculture est indéniable: le P est un nutriment essentiel dont
tous les êtres vivants ont besoin pour fonctionner, et est donc nécessaire pour maintenir les
rendements agricoles à l’échelle globale dans les années à venir. Une grande partie du P util-
isé pour fertiliser les cultures se présente sous forme d’engrais chimique et provient de mines
de roches phosphatées. Cette ressource finie est gérée de manière non-optimale: dans cer-
tains endroits du Monde, le P est utilisé de manière excessive et peut nuire à l’environnement,
alors qu’à d’autres endroits, le P apporté est insuffisant et conduit à des baisses de rendement
importantes. Cette hétérogénéité, combiné à des problématiques d’accès à la ressource, qui
dépend également de facteurs économiques et politiques, conduit à de sérieuses questions sur
les impacts potentiels du P sur la sécurité alimentaire mondiale.

Des études récentes se sont penchées sur les principaux facteurs limitant les rendements
agricoles dans le Monde, mais présentent des difficultés à séparer la contribution de ces dif-
férents facteurs, et en particulier du P. Dans un premier temps, j’ai combiné des simulations
de la distribution du P dans les sols agricoles et des simulations de croissance des céréales
dans des conditions idéales (i.e. non limitantes en eau, azote, etc.), tout en prenant en compte,
de manière fine, les mécanismes de transfert du P entre le sol et la plante. J’ai montré que
le P pourrait contribuer de manière significative à une baisse de rendement par rapport au
rendement potentiel de 22, 55 et 26 % en blé d’hiver, maïs et riz. Cette diminution n’est que
partiellement impactée quand les apports actuels de P par fertilisants chimiques sont consid-
érés et ceci s’explique principalement par l’historique du bilan en P des sols (qui a contribué à
fortement augmenter les stocks de P des sols). Cependant, la non prise en compte de certains
processus, à savoir ceux liés aux ajustements des plantes dans des conditions limitantes en P,
ont pu fortement biaisé ces estimations.

Pour mieux représenter ces processus d’ajustements, j’ai ensuite développé un modèle
d’allocation du carbone (C) et du P basé sur des principes d’optimisation d’utilisation des
ressources au sein de la plante. Le modèle est capable de simuler la réponse de la plante à une
limitation en P: augmentation du ratio racines / biomasse aérienne, diminution de la biomasse
totale et de la concentration en P. Le modèle a été testé dans un gradient de disponibilité en
P à différentes échelles (plante en hydroponie et au champ) et reproduit raisonnablement le
comportement des plantes. Malgré des hypothèses simplistes qui ne permettent pas de cap-
turer la nature exacte de l’allocation, le modèle présenté peut être introduit dans un modèle de
végétation plus physique, permettant l’étude de la limitation en P de manière plus générique.

Le couplage du modèle d’allocation idéalisé à un modèle de végétation physique a été réal-
isé en utilisant ORCHIDEE, unmodèle de végétation dynamique utilisé pour étudier les interac-
tions végétation-climat. Les paramétrisations de processus fondamentaux au sein d’ORCHIDEE
(assimilation, etc.) ont été utilisées pour piloter le modèle d’allocation en fonction de la disponi-
bilité en C et en P, et les simulations ont été comparées à deux jeux d’observations sur maïs ir-
rigué. Les résultats ont montré le potentiel de la combinaison de ces deuxmodèles pour simuler
de fonctionnement des cultures dans différents environnements. Lemodèle ainsi obtenu pourra
être utilisé pour mieux quantifier, à l’échelle mondiale, la contribution du P à la baisse de ren-
dement des cultures par rapport à leur potentiel.

Mots-clés: global, rendement, phosphore, carbone, modèle de végétation, ORCHIDEE
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Abstract

The global role of phosphorus (P) in agriculture is undeniable: P is an essential nutrient
required by all living beings to function, and thus necessary for sustaining yields worldwide
in the time to come. In global agriculture, most of the P used to grow crops comes in form of
chemical fertilizer which is mined from existing soil deposits. This in itself would not be an
issue, was it not for the way we globally (mis)manage this potentially finite resource. While
some places use P to the point of harming the environment, others do not have enough to
sustain their yields and feed themselves. Combined with uncertainties of equitable P supply
in the future which depend on economical and political factors as well, serious questions arise
on the potential impacts of P on global food security.

Recent studies have looked into the main drivers of yield worldwide, but have difficulties
separating P’ contribution, as they lack the information to do so due to their empirical nature.
As an initial step, we combined simulated global information on agricultural soil P and cereal
growth in ideal conditions, while accounting for mechanisms of soil-plant P transfer more
faithfully. We have found that P could significantly contribute to existing global production
gaps with an average yield gap of 22, 55 and 26 % in winter wheat, maize and rice; lowering
only slightly with today’s P fertilizer use. This is mainly to be due to the global P management
history or the net soil P balance up to date. But the idealized nature of the employed models
ignored other processes, namely plant adjustment in P limited environments, which have a
significant potential to change our diagnostic estimates.

To better represent plant adjustment, we have then developed an carbon (C) & P allocation
model based on optimal functioning principles. The idealized model is capable of simulating
primary plant response to a P limited environment: root-shoot ratio change, biomass and P
concentration decrease. It was compared to plant growth across a P availability gradient at
different scales (hydroponic to field) and has been found to reasonably predict observed plant
behaviour. In spite of its simplistic assumptions which do not capture the exact nature of P
flow within a plant, the idealized model could be introduced into a more physical vegetation
one to allow the study of P limitation in a generic growing environment.

The coupling of our idealized allocation model to a physical vegetation one was performed
using ORCHIDEE, a dynamic vegetation model used to study global vegetation-climate inter-
action. Its parameterizations of fundamental plant processes were used to drive our model as
function of C and P availability, and compared to two irrigated maize observation datasets. The
results have shown the potential of their combination to simulate crops in different growing
environments, which is to be used on a global scale and finally help us better understand con-
tribution of P to crop productivity globally.

Keywords: global, yield, phosphorus, carbon, vegetation model, ORCHIDEE
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Abbreviations

Elements:

Al Aluminium
C Carbon
Fe Iron
H Hydrogen
K Potassium
N Nitrogen
P Phosphorus

Compounds:

CaCo3 Calcium carbonate
CO2 Carbon dioxide
H2O Water
PO4

3– Phosphate, orthophosphate

Acronyms:

DGVM Dynamic global vegetation model
GGCM Global gridded crop model
LAI Leaf area index
RSR Root-shoot ratio
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Chapter 1

Introduction

1.1 Global agriculture and the role of P

Since the advent of modern agriculture, increasing crop yields has been the main objective
of agricultural effort worldwide. This comes as no surprise as the current world population
stands around six to seven billion, and is projected to reach nine in the next 30 years
(Godfray et al., 2010). The expected rise in the world’s population implies an increase in
global food demand, estimated to be about 75% to 100% higher than today (Royal Society of
London, 2009). One of the main ways to achieve this goal apart from fundamental changes
to our food consumption habits (Kearney John, 2010) and systems of production in place
(Tilman, 1998) is to intensify our crop production even further (Foley et al., 2011).

The push for global intensification has its roots in the ”Green Revolution”, a period of
about last 50 years when crop production tripled with only a 30% increase in cultivated
land area (Pingali, 2012). The increasewasmade possible through the adoption of improved
crop varieties that ensured higher and more stable yields (Khush, 2001). Of these, the three
most important ones are maize, rice and wheat as they comprise about 40% of total food
intake globally (FAOSTAT, 2019). With our increasing ability to grow crops, fertilizer use
(among other resources like water [H2O] and pesticides) has naturally followed suit (Fig.
1.1).

Fertilizer P comes in organic or chemical form. The organic one stems from production
and recycling of organic waste (animal or human), whereas chemical one is mined in form
of rock containing high concentrations of the ion phosphate (PO4

3– ). Organic P sources
are starting to take hold in the global agricultural P supply with at least 6-8 Mt P year−1

applied to fields globally (Smil, 2000; Liu et al., 2008). But due to the limited practicality
of organic fertilizer P use, chemical P is still the mainstay for the majority of the world
crop production (or around 10 Mt P year−1, Smil, 2000). The exploitation of earth’s rock P
reserves has begun to accelerate exponentially during the 19th century and has recently
grown to be about 13-16 Mt P year−1, driven by the increase in global consumption that
reached its peak at 16.5 Mt P year−1 in 1988 (Smil, 2000). From it, as was put into context
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Figure 1.1: Total world cereal production and fertilizer consumption from 1960 to 2016 (FAOSTAT, 2019). Values
are given relative to the ones at year 2016 when cereal production was 2.91 Gt grain, P consumption was 48.6 Mt

P, N consumption was 110.2 Mt N and K consumption was 38.7 Mt K.

by Smil (2000), the Earth’s agricultural soils received about 550 Mt P in between 1850 and
2000 which is equivalent to almost 10% of all world’s arable soil’s total P content.

The main issue with chemical P fertilizer is the finite nature of its availability in the
long term. This is due to the depletion of existing, high quality reserves which makes
further P exploration and mining economically unfeasible (Cordell, Drangert, and White,
2009). Conservative estimates by Cordell, Drangert, and White (2009) show that peak P
production should happen around 2033, although this result seems to be contested recently
(Fixen and Johnston, 2012; Kauwenbergh, M. Stewart, and Mikkelsen, 2013). One certain
thing is that P addition in global croplands is highly unbalanced and, despite a positive
global input balance, almost 30% of total arable land (MacDonald et al., 2011) experiences
a P deficit (or more P removed though harvest than added with fertilizer). To give a typical
example: European countries apply on average 25 kgP ha−1 to their fields whereas African
ones apply only 3 kgP ha−1 (Liu et al., 2008); a difference of almost tenfold…

The global issue of P becomes even more pressing once social and environmental fac-
tors come into play (Obersteiner et al., 2013; J. Elser and E. Bennett, 2011). Despite the
mentioned global P input surplus, only about 20% makes it to the final product of which
(sadly enough) almost half is spoiled or wasted, with a big part running off into H2O bod-
ies and contributing to environmental pollution via eutrophication (J. Elser and E. Bennett,
2011). But the careless use of earth’s P reserves will not be able to continue for long, as
P reserves are concentrated in a handful of countries which (combined with others’ un-
even ability to procure it) makes international diplomatic tension due to P access a real
possibility (Obersteiner et al., 2013). In spite of a grim forecast though, viable but habit
changing solutions exist in form of technological improvements, reasonable P use, recy-
cling and plant/animal genetics (Childers et al., 2011) in order to lessen our unreasonable
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dependence on new P inputs.

1.2 e P cycle: from soil to plant

P has no natural gaseous forms or little atmospheric input (P deposition via aerosolos; R.
Wang et al. 2015) that would facilitate its transfer and uptake by an ecosystem unlike other
major nutrients like C and nitrogen (N). The supply of P is thus strongly determined by
existing soil reserves that are gradually released and taken up by the biome. From there,
P cycles among various organic and inorganic pools of which the only one available for
direct uptake is the PO4

3– ion, determining P availability and ultimately the productivity
of a given ecosystem. Since the process of P release happens on geological timescales,
natural ecosystems have evolved to recycle existing P very efficiently (P. Vitousek, 1982)

The most well known framework for explaining P fate in natural soils is the model of
Walker and Syers (1976). P is primarily derived from weathering of parent soil material of
which the most common form is apatite, a calcium (Ca) PO4

3– mineral that accounts for
95% of all P in the Earth’s crust (Smil, 2000). Through the process of weathering, PO4

3–

is released and takes on forms of different availability that can be quantified using vari-
ous soil extraction techniques (Bray and Kurtz, 1945; Nelson, 1953; Olsen, 1954; Hedley,
J. W. B. Stewart, and Chauhan, 1982). Total soil P can be divided in the simplest man-
ner into three fractions : non-occluded inorganic, occluded inorganic and organic P (Fig.
1.2). Non-occluded inorganic fraction stands for one that is sorbed to various soil com-
ponents like clays, metal oxides (iron and aluminium [Fe and Al]) and calcium carbonate
(CaCo3; Gérard 2016). This fraction can be exchanged with the soil solution at varying
time-scales and finally taken up by the plant. Occluded inorganic fraction stands for plant
inaccessible forms, which are due to physical occlusion within pores of Fe and Al oxides.
Finally, organic fraction is the P bound in organic forms (phytates and nucleic acids) that
can be mineralized via phosphatase excretion and subsequently recycled by plant roots or
soil micro-organisms. Since all forms of P are subject to leaching that removes P from a
given system and unless there is a significant input from atmospheric particle deposition
(R. Wang et al., 2015), all natural systems should tend towards a ’terminal steady state’
(Walker and Syers, 1976) where P becomes progressively unavailable to plants and the
whole ecosystem P limited (P. M. Vitousek et al., 2010).

Themain principle of soil-plant P exchange is the diffusion of PO4
3– bound to different

soil constituents due to its highly reactive nature (Morel et al., 2000). Concentration of P in
soil solution depends on the sorption-desorption equilibrium, determined by physical and
chemical soil properties like pH, temperature or electrolyte concentration (Barrow, 1983).
As plants take up P, its concentration will decrease in the vicinity of the root and establish
a gradient, in turn driving the diffusion of P towards the root surface (Barber, 1995). Since
concentration of P in soil H2O is too low to provide adequate quantities via advection (0.1

3



Figure 1.2: Graphical representation of the Walker and Syers (1976) model (reproduced from the original article).
PCa stands for primary P source apatite. Poccluded and Pnon−occluded stand for inorganic P forms that are
respectively accessible or non-accessible to plants. PT stands for total soil P. e vertical dashed line represents

observed P fractions at one of the analyzed chronosequences in the original article.

- 1 mgP L−1, Achat et al., 2016) diffusion is the key determinant of P available for plant
uptake (Barber, 1995).

The mechanism of P uptake by roots is an important key for P transfer, and is most
concisely described with an uptake kinetic specific to an individual species (Barber, 1995).
These kinetics try to capture the fact that roots consist (roughly) of an outer permeable
layer where absorption of H2O and nutrients happens, and an inner part tasked with their
transport into the rest of the plant, with the two separated by an ion barrier called the
Casperian strip (Fig. 1.3). Even though root systems vary greatly among species and envi-
ronments, a common point between them is root branching which serves to increase the
root surface and subsequently the absorption of resources (Barber, 1995). Taking into ac-
count all of the physical aspects of root nutrient andH2O transfer as well as the influence of
root architecture has been subject of a long-standing inquiry. From analytical treatments
of nutrient depletion in root vicinity (Barber, 1995; Tinker and Nye, 2000; Roose and Kirk,
2009) to architectural models of root growth and branching (Dupuy, Gregory, and Ben-
gough, 2010; Pagès, 2019), as well as numerical solutions of their combined effect on root
development and P distribution in the soil column (De Willigen and van Noordwijk, 1994;
Comte, 2018) these studies demonstrate the underlying complexity of P transfer from soil
to the plant. Most importantly, upscaling of these processes to the plant and agroecosys-
tem scale is necessary if the complex nature of plant nutrition is to be studied (Hinsinger
et al., 2011).

1.3 Effects of P limitation: from plant to field

P is an essential element to all living things and as such, its reduced availability can strongly
impact growth and manifest limitation symptoms (Fig. 1.4). In crops these include stunted
growth, reduced tillering, lower leaf and grain number, delay in reproductive growth and
most notoriously the appearance of reddish or purple leaves (V. D. Fageria, 2001). This
is because P is a fundamental building block of nucleic acids, membrane lipids, energy
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Figure 1.3: Root cross section of cells and tissues involved in ion absorption (adapted from Barber 1995, page 50).

metabolites and intermediates in the photosynthetic C cycle in plants (Plaxton and Lam-
bers, 2015). Once the supply of P is limited, plants naturally respond to combat the reduced
P availability through root morphological changes (to facilitate top soil foraging and in-
crease root length), increased excretion of organic acids/enzymes (to mobilize existing
soil organic P reserves), and internal adjustments to modify the metabolism’s P use effi-
ciency (Plaxton and Lambers, 2015; Hinsinger et al., 2009). Additional strategies include
formation of cluster roots and association with mycorrhizae (Hinsinger et al., 2009) whose
function is to increase the soil volume explored by roots.

Figure 1.4: Growth of corn plants at the 0 mgP kg−1 soil (le), 50 mg P kg−1 (middle), and 175 mg P kg−1

(right) grown on a Brazilian Oxisol (reproduced from V. D. Fageria 2001, page 98)

In an agricultural system, the primary concern regarding P availability is the decrease
in harvested grain yield and quality (or concentration). Since its main mode of function
is the removal of P via grain and silage, farmers will rely mostly on additional inputs
to maintain the steady P loss. As P availability depends strongly on soil properties and
existing P reserves, the applied fertilizer will be more or less efficient (or yield gained
per nutrient applied; Valkama et al., 2009; V. D. Fageria, 2001). In general, soils with a
longer history of P addition (and thus higher soil water P concentration) will respond less

5



to additional P inputs (Valkama et al., 2009; V. D. Fageria, 2001). Furthermore, soils with
finer composition and higher organic matter content have a greater P buffering capacity,
enabling the supply of P to plants over a longer period of time (Valkama et al., 2009).
For the influence of pH, different forms of the PO4

3– ion will combine to form insoluble
compounds (with Fe and Al in acidic, and Ca in alkaline soils) and determine P recovery
from applied fertilizer, which can go down even to 10 - 20% in such soil as Brazilian Oxisols
(V. D. Fageria, 2001).

Apart from applying fertilizer, farmers employ different management practices to in-
crease soil P availability and the effectiveness of applied P (V. D. Fageria, 2001). Liming
is a common practice in acidic soils, where soil pH is increased through the addition of
Ca and magnesium rich materials which can (by forming carbon dioxide [CO2] and H2O
with H ions) reduce the P immobilization capacity of Fe and Al compounds (V. D. Fageria,
2001). The type of P fertilizer can also play an important role, with water soluble ones
being more suited to high pH (>6.0) soils as rock PO4

3– requires an adequate supply of H
ions to break it down (V. D. Fageria, 2001). Exact timing and placement can significantly
improve effectiveness of applied P. Banding is a practice of incorporating P fertilizer in the
vicinity of the planted crop (just before sowing), which tries to avoid unnecessary contact
with soil as opposed to broadcasting where fertilizer is thrown over a much larger surface
(V. D. Fageria, 2001). Other practices (to name a couple) include optimal application of
P with respect to other major nutrients (primarily N and pottasium [K]) to avoid losses
due to co-limitation by either one, as well as the use of P efficient genotypes which pro-
duce more biomass per P taken up, or have better P acquisition capabilities via better root
exploration (V. D. Fageria, 2001).

Accounting for all of the different mechanisms that modify soil-plant P transfer and
how they impact cropland productivity is a daunting task, most often performed in field
trials to separate exact contribution of each sought factor over one or many growing sea-
sons (Amanullah and Inamullah, 2016; Batten, Khan, and Cullis, 1984; Dai et al., 2013;
Dobermann et al., 1998; N. K. Fageria and Oliveira, 2014; Gallet et al., 2003; G. P. D. Jones,
Blair, and Jessop, 1989; Sahrawat et al., 1995; J. Shen et al., 2011; Takahashi and Anwar,
2007; Tang et al., 2008; Tonitto and Ricker-Gilbert, 2016; Valkama et al., 2009; van der
Velde et al., 2013; Wissuwa and Ae, 2001; L. Wu et al., 2015). In these, properties of the soil
and the harvested plant, as well as nutrient addition are tracked to construct yield curves
(Steenbjerg, 1951) for the purpose of optimizing a management practice in a specific grow-
ing environment (van Keulen, 1982). Even though many variations exist on how yield is
related to a certain property (plant, soil or other; eg. Janssen et al. 1990, Bai et al. 2013,
Morel et al. 2014) they all boil down to fitting empirical functions in order to explain plant
response (Wit 1953; Fig. 1.5)

To overcome the limited descriptive extent of any kind of empirical treatment, crop
simulations have been developed to better account for the underlying forces and their
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Figure 1.5: A depiction of the well-known “three-quadrant” method pioneered by Wit (1953). e plots describe a
hypothetical high input crop system (seen by the blue curve intersect) through rates of nutrient input (kg ha−1),
grain yield (t ha−1) and grain nutrient uptake (kg ha−1). Black dots would represent observed data. Nutrient

input rate and grain uptake could be either N, P or K.

consequences on final crop production, as well the surrounding environment (eg. Bris-
son et al. 2009; Williams et al. 1990; James W Jones et al. 2003; Keating et al. 2003; Van
Diepen et al. 1989). Crop simulations describe a dynamic system where state variables
(like leaf area index [LAI], biomass, soil water, soil nutrient pools, etc.) are driven by ex-
ternal ones (like radiation, temperature, precipitation, irrigation, nutrient addition, etc.)
and are integrated to reproduce a growing plant, most often on a daily time step (Wal-
lach, Makowski, and J. W. Jones, 2006). Since our knowledge of the individual processes
guiding crop development is substantial (leaf assimilation, transpiration, respiration, root
nutrient uptake, etc.), their combination should ideally provide a reasonable framework
for studying crop response in hypothetical growing conditions (Wallach, Makowski, and
J. W. Jones, 2006). Furthermore, the uncertainty and sensitivity of the simulated result
can easily be studied and used to perform risk analyses (Wallach, Makowski, and J. W.
Jones, 2006). The advantages of crop simulations in studying P limitation should thus be
clear, due to the intricacies of soil-plant P cycling and their possible variation in different
growing conditions; not to mention the future uncertainty of a changing climate (Asseng
et al., 2013).

1.4 P limitation in croplands: from field to the globe

Field trials (and their simulated counterparts) offer the most precise and trustworthy es-
timates of systemic effects a certain practice might have in a field of crops, but they also
depend on the very specific conditions they were obtained in, making extrapolation to
larger scales a questionable affair (van Ittersum et al., 2013). To this end, two methodolo-
gies have surfaced as a way to understand limits to crop yield on the regional and global
scale. The first one is based on a statistical description of yield response, whereas the

7



second one tries to achieve the same through crop simulation (van Ittersum et al., 2013).

Figure 1.6: e yield gap concept (adapted from van Iersum and Rabbinge 1997, page 6). Bars denote yields
which experience losses or yield gaps (∆Y ) due to sub-optimal water (∆YH2O) and nutrient (∆Ynut.)
availability, or additional presence of reducing factors like pests or disease observed in the field (∆Yreal)

To understand the effects of a certain practice and quantify its impact on crop yield,
it is useful to look at its potential to increase productivity relative to the case of it being
absent; commonly termed a ”yield gap” as in van Ittersum and Rabbinge (1997). A yield
gap is defined as the difference between the potential, limited and real yield (Fig. 1.6).
Potential yield is determined by growth-defining factors such as climate and plant genetic
makeup, and should be the maximum achievable one when all negative yield effects are
removed. Limited yield is the one experiencing losses due to a sub-optimal resource supply,
which are H2O and nutrients. Real yield is the one where all negative effects are taken
into account (resource limitation, pests, disease, etc.) and should correspond to what is
observed in the field. These terms serve to identify the most important crop, soil and
management factors limiting yields in a specific growing environment, and can serve as a
base for further economic and policy analysis (van Ittersum et al., 2013).

The yield gap concept has often been adopted by the mentioned statistical methods,
which rely on spatial and temporal datasets of major crop yield drivers: climate, irrigation
and nutrient management (van Ittersum et al., 2013). These are used to form robust em-
pirical relationships to observed yields, enabling the quantification of the main response
(Fig. 1.7) as well as the uncertainty that goes with it (D. Lobell and C. Field, 2007). For
example, spatially aggregated climate trends (of growing season temperature and precip-
itation) can explain at least 30% of year-to-year change in the world’s six most widely
grown crops (D. Lobell and C. Field, 2007). Similarly, historical temporal variation in a
region’s climate can explain up to 40% (as a global average) of the historical variability
in maize, rice, wheat and soybean yield (Ray et al., 2015). Similar links can be found for
management practice impacts, as the history of H2O and nutrient addition can explain a
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big portion of today’s global crop production, pointing to their significance in combatting
existing production gaps (Lassaletta et al., 2014; Mueller et al., 2012; Sinclair and Rufty,
2012). The main strength of these approaches is their ability to aggregate all additional
effects tied to the main input driver, which would otherwise require an elaborate experi-
ment design. But seeing as they are empirical in nature, data availability and the reduced
description of the underlying system are the main barriers to their extension and, most
importantly, extrapolation outside of the range of the environments inquired (temporal,
spatial or otherwise; D. Lobell and Burke 2010). This gap between insufficient information
and the need for knowledge on the potential impacts is the one crop simulations try to fill
in.

0 20 40 60 80 100
Average yield gap (%)

Figure 1.7: e average yield gaps for maize, wheat and rice combined (adapted from Mueller et al. 2012). e
yield gap was calculated using the potential yield, which is in turn estimated statistically via climate binning

techniques (van Wart et al., 2013)

Crop simulations from regional to global scale have been made too many too count,
but with one recent inter-comparison project standing out called The Agricultural Model
Intercomparison and Improvement Project (AgMIP; Rosenzweig et al. 2013; Elliott et al.
2015). AgMIP is an effort to better understand feedbacks of climate change on global crop
production while improving our crop simulation knowledge, with the final goal of estimat-
ing regional vulnerabilities, producing targeted risk assessment and adaptation strategies
for future cropland systems (Rosenzweig et al., 2013). At the core of its global crop yield
study, AgMIP puts a dozen of well known global gridded crop models (GGCMs) head to
head in predefined futuremanagement and climate scenarios, and looks at the implications
for the future global yield (Elliott et al., 2015). Their results are unequivocal that, in the
short term, yield increases could be observed but with long term gains turning into losses
due to mainly temperature increase (Fig. 1.8, Rosenzweig et al. 2014; Asseng et al. 2015).
But as the AgMIP collaborators readily admit, significant uncertainties exist due to the un-
derlying parametrization (mostly regarding CO2, H2O and nutrient effects) whose results
diverge quite a lot among different GGCMs (Asseng et al., 2013; Rosenzweig et al., 2014; C.
Müller et al., 2017) and which seems to happen irrespective of the amount of parametrizing
information thrown at them (Bassu et al., 2014). These problems seemingly originate from
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out-of-date concepts still serving as a base for a lot of modern crop simulations, that were
originally conceived as engineering tools rather than biological models (Passioura, 1996)
and which urgently need to integrate newer and more recent findings in plant physiology
(Rötter et al., 2011; Franklin et al., 2012; I. Prentice, 2013).

Figure 1.8: Figure reproduced from Rosenzweig et al. (2014). e plot shows relative change (%) in RCP8.5
decadal mean production for each GGCM (based on current agricultural lands and irrigation distribution) from
ensemble median for all GCM combinations with (solid) and without (dashed) CO2 effects for maize, wheat, rice

and soybean; bars show range of all GCM combinations with CO2 effects. GEPIC, GAEZ-IMAGE, and
LPJ-GUESS (GGCMs participating in AgMIP) only contributed one GCM without CO2 effects

To come back to the issue of P limitation effects on global yield, estimates have been
partially provided using statistical treatment of observed global yield by relating it to ir-
rigation intensity and chemical fertilizer (NPK) input (Mueller et al., 2012). Apart from
critically missing pieces like soil nutrient availability and losses, application of organic
fertilizer and the inability to distinguish rainfed from irrigated yield in the utilised census
data (among others; Mueller et al. 2012), the true difficulty lies in the co-linearity of the
input drivers which makes it difficult to separate their true contribution (best seen in Fig.
1.1). This should make it clear that, for the purpose of P (as mentioned in the last section)
crop simulation should ideally be a better candidate. To get to this stage though, a bet-
ter understanding of how historic use of P is needed, as well as how this might impact
agricultural soils worldwide.

The issue of P impact on agricultural soils on regional to global scale has been subject
of current research, where the temporal and spatial variation of the P input/output balance
or the various soil P fractions have been studied (S. Z. Sattari et al. 2012; Bouwman et al.
2013; Ringeval et al. 2017; J. Zhang et al. 2017). Much of this work had been sparked
by MacDonald et al. (2011) who looked into recent worldwide agricultural P use balance
(year 2000) and found that, in spite of a global P surplus (fertilizer P input greater than P
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removal via crop harvest) almost 30% of total cropland area experiences a P deficit (Fig.
1.9). Subsequently, S. Z. Sattari et al. (2012) relied on national and regional census data to
distinguish the temporal evolution of soil P inputs and outputs, and how these might affect
soil P fractions via a simple soil P cycling model. Bouwman et al. (2013) allowed for the
spatial extension of the same, by providing globalmaps of agricultural soil P balance during
the 20th century. These results have been used to drive further modelling studies like
Ringeval et al. (2017) and J. Zhang et al. (2017) who estimated the global spatio-temporal
evolution of various soil P fractions using soil P cycling models, thus providing a suitable
base for investigating global crop P limitation by statistical or crop simulation approaches.

Figure 1.9: Distributions of P surpluses and deficits by quartiles shown as percent of total cropland area in each
continent and as percent of global cropland area. Reproduced from MacDonald et al. (2011).

In crop simulations, the plant-soil nutrient cycle is typically described using a soil
transformation and a plant uptake module (Brisson et al., 2009; C. A. Jones et al., 1984)
which interact to reproduce the long term effects of nutrient availability on crop yield.
While the form of the soil nutrient module is quite similar to ones mentioned before (S. Z.
Sattari et al., 2012; Ringeval et al., 2017; J. Zhang et al., 2017), the plant one relies on an
empirical description of nutrient requirement at different development stages (Lemaire,
1997; Stockle and Debaeke, 1997). To reconcile the two, stress functions are computed
on the basis of soil nutrient supply and plant nutrient demand while taking into account
internal or external factors (like plant nutrient status or soil quality; respectively) and ap-
plied to different time-integrated quantities (like LAI or biomass change) to limit plant
growth (Brisson et al., 2009; C. A. Jones et al., 1984). The most astonishing thing is that
an actual mechanism for root growth and nutrient uptake is seldom used, or at least one
which provides direct feedback on plant growth (E. Wang and Smith, 2004). Root mass is
instead diagnosed using prescribed allocation patterns (similar to plant nutrient demand)
and subsequently modified according to soil properties to reproduce observed root pro-
files (E. Wang and Smith, 2004). This (quite heavily parametrized) approach stems from
the mentioned field-scale models and encounters significant difficulties once applied to
regional and global scales, where it has been shown that soil-type induced yield variabil-
ity can outweigh even the inter-annual one (Folberth et al., 2016). This points not only to

11



the need of more soil information (Folberth et al., 2016) but yet again to the urgent need
of more up-to-date concepts in simulating crop yields worldwide (Passioura, 1996; Rötter
et al., 2011; Franklin et al., 2012; I. Prentice, 2013); especially for the purpose simulating P
limitation.

A good candidate for studying P limitation in a more general fashion are dynamic
vegetation models (DGVMs) which simulate plant growth as a product of fundamental
physiological processes (Ball, Woodrow, and Berry, 1987; Farquhar, von Caemmerer, and
Berry, 2001). These are combined with models of surface H2O, energy and C exchange
(Krinner et al., 2005) to describe the complete atmosphere-biosphere coupling and study
global change impacts, mostly in natural eco-systems (C. Peng, 2000). In DGVMs, the im-
portance of modelling P limitation has duly been recognized (Reed, X. Yang, andThornton,
2015) with research on the subject steadily moving forward (Y. P.Wang, Houlton, and C. B.
Field, 2007; Q. Zhang et al., 2011; Goll et al., 2012; X. Yang et al., 2014; Goll et al., 2017;
Sun et al., 2017). Even though these models look at the complete atmosphere-biosphere
coupling, they recently try to answer the same fundamental question: how will P ulti-
mately dictate a system’s productivity and how will this play out in the future? (Reed, X.
Yang, and Thornton, 2015). Thus, their generic nature should allow for the inclusion of an
agricultural soil P model like the one of Ringeval et al. (2017) which, combined with a root
P uptake model like the one of De Willigen and van Noordwijk (1994), could enable the
study of P limitation in crops on a global scale; in the past, present and the future.
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1.5 Motivation, objectives, questions

Taking into account the previously highlighted issues and knowledge gaps, coupled with
the potential of P to impact global agriculture, the basic driving question is how mu
does P contribute to world crop production limits? But to arrive to this answer, we need
to establish the necessary minimum needed to explain plant response to a anging P
environment. This could be done by formulating a system that describes soil-plant P trans-
fer more faithfully, in which a plant responds to and evolves as function of P availability.
Only if the previous item has been acceptably addressed, can we implement models of
crop response to P limitation. Once this model has been verified against observed crop
growth in different P availability conditions, we can attempt to estimate current effects
and make projections of P management impact in crops worldwide.

To go about this, we should first have a tentative look at current global P limitation
using existing soil P and crop yield information, and identify potential solutions to improve
the representation of the P cycle and ultimately its limitation. Sincemodels of soil P cycling
and root P uptake already contain a sound conceptual basis, we should focus on a way
to couple the two by relying less on an empirical description (common in today’s crop
simulations) and more on current physiological concepts of plant nutrient use. This should
result in a hypothetical plant model, which should be developed and tested on observed
growth in varying P conditions. The hypothetical model should then be integratedwithin a
more physically based one to allow the study of real crop systems. Finally, global limitation
due to P management should be investigated.

All of the above summarized, the questions are following:

• How much can current soil P availability limit today’s cereal production?

• How can we model the impacts of P availability on plant growth?

• How can we enable the study of P limitation in crops using the previous model?

• What are the consequences of historical and future P management scenarios on
global cereal yield?
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1.6 Outline

The following dissertation will consider the previously mentioned questions through the
following structure:

• Chapter 2 diagnoses global P limitation in cereals using existing simulated informa-
tion on soil P (Ringeval et al., 2017) and crop yield (X. Wu et al., 2016), while combin-
ing them through a mechanistic description of the underlying P transfer processes
(DeWilligen and van Noordwijk, 1994). Results and their uncertainty are evaluated,
while trying to identify key components which need to be taken into account when
combining the two models (soil and crop one).

• Chapter 3 dealswith applying the physiological concepts of optimal functioning (De-
war et al., 2009) to annual plant growth, resulting in a conceptual allocation model
that is evaluated against observed maize field data and a set of hydroponic studies.
The aim here is to provide a parsimonious and transparent basis for studying C & P
interaction in plants, which is to be coupled to a more physically driven vegetation
model to allow the study of P limitation in a generic growth environment.

• Chapter 4 deals with implementing the previously developed allocation model to a
physically driven one (Krinner et al., 2005) and evaluates it against observed field
maize trials in two temperate sites. The results, current model short-comings and
future opportunities are discussed for the application of optimal functioning princi-
ples in DGVMs, and their use in studying P limitation in crops worldwide.

• Chapter 5 wraps up the findings of the work so far, discusses their implications
(particularly with respect to the initial findings) and provides some thoughts on
how to approach and understand crop P limitation effects globally.
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Abstract

Phosphorus (P) is an essential element for plant growth. Low P availability in
soils is likely to limit crop yields in many parts of the world, but this effect has never
been quantitatively assessed at the global scale by process-based models. Here we
attempt to estimate P limitation in 3 major cereals worldwide for the year 2000 by
combining information on soil P distribution in croplands and a generic crop model,
while accounting for the nature of soil-plant P transport. As a global average, the dif-
fusion limited soil P supply meets the crop’s P demand corresponding to the climatic
yield potential. This is due to the large amount of legacy soil P in highly fertilized
areas. However, when focusing on the spatial distribution of P supply vs. demand,
we found strong limitation in regions like North and South America, Africa and East-
ern Europe. Integrated over grid-cells where P supply exactly meets or is lower than
potential P demand, the global yield gap due to P limitation is estimated to be 22, 55
and 26 % in wheat, maize and rice. Assuming that a fraction (20%) of the annual P
applied in fertilizers is directly available to the plant, the global P yield gap lowers by
only 5 – 10 % underlying the importance of the existing soil P supply in sustaining
crop yields. The study offers a base for exploring P limitation in crops worldwide, but
with certain limitations remaining. These could be better accounted for by describing
the agricultural P cycle with a fully coupled and mechanistic soil-crop model.
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2.1 Introduction

Phosphorus (P) is recognised as one of the foremost concerns for global crop production
(Cordell, Drangert, and White, 2009) because as a macro-element, it is indispensable for
plant function and thus growth. P is a relatively immobile element compared to carbon (C)
and nitrogen (N) as it reacts with soil constituents that buffer its availability to plants, and
through time becomes unavailable altogether (Filippelli, 2002; Sample, Soper, and Racz,
1980). In agriculture, natural levels of P in most soils are not adequate to sustain crop
production in the long-term, so additional inputs in form of chemical fertilizer or manure
are needed. Depending on the access to fertilizer (chemical or manure) P management
in agricultural systems shows a wide variety of outcomes (P. M. Vitousek et al., 2009)
ranging from soil nutrient depletion and degradation on one extreme, to fertilizer over-
consumption and pollution of water resources on the other.

These issues have recently been highlighted in studies (MacDonald et al., 2011; Mueller
et al., 2012) showing the imbalance of nutrient flows in croplands globally. Looking at the
soil’s P budget, 30% of the worldwide cropland area experiences a P deficit (MacDonald
et al., 2011) despite a global positive P balance. Even more, it has been estimated that
around 70% of underachieving areas could resolve their yield losses by solely focusing
on nutrient limitation and not irrigation infrastructure (Mueller et al., 2012). These studies
give a strong case for P mismanagement on the global scale, but how this ultimately affects
yields requires further attention.

Nutrient limitation in crops is most commonly estimated in field trials (Dai et al., 2013;
Dobermann et al., 1998; Gallet et al., 2003; Shen et al., 2004; Takahashi and Anwar, 2007;
Tonitto and Ricker-Gilbert, 2016; Valkama et al., 2009; Wissuwa and Ae, 2001), where the
crop yield is recorded and related to soil nutrient availability or the amount of applied fer-
tilizer. It is often shown that P addition can significantly increase yields, especially through
its interaction with N (V. D. Fageria, 2001). These studies give a precise measure of nutri-
ent requirement, but the variety of experimental conditions makes a general estimate of
P limitation hard to obtain, especially when dealing with the issue globally. More impor-
tantly, yield increases due to P are highly dependent on the properties of the soil under-
neath. Soil texture and organic content play a significant role (Tonitto and Ricker-Gilbert,
2016; Valkama et al., 2009) by changing the P buffering capacity of the soil, whereas soil
metal or carbonate content (J. Shen et al., 2011; Takahashi and Anwar, 2007) determines
the effectiveness of applied fertilizer through formation of less available P compounds. P
availability, which is intimately tied with the soil, is thus an important factor in sustaining
crop yields.

Nutrient limitation manifests most importantly as a loss of yield, termed a yield gap
(van Ittersum and Rabbinge, 1997). To estimate it on a global level, a set of methodologies
are usually employed as summarised by van Ittersum et al. (2013). They are broadly cate-
gorised into statistical and crop-modelling approaches. Statistical approaches rely on yield
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census data of varying size, which are then combined with global data (e.g. climate, fer-
tilizer inputs, irrigation area). Based on climate binning techniques, they divide the world
into contingent areas of similar growth environment, looking at main drivers of yield vari-
ation within. On the other hand, global gridded crop models (GGCMs) simulate growth
and yield using relatively generic parametrizations and calibrated parameters to mimic the
effects of genetics (e.g. maximum leaf area index and harvest index). These models can be
run globally on a grid, forced by daily weather and management-related data (eg. planting
date, sowing density, irrigation, annual fertilizer application). Only a few GGCMs partic-
ipating in inter comparison projects have an explicit representation of nutrient cycling in
soils and plants (Rosenzweig et al., 2014) and their parametrization remains rather coarse,
with no representation of key process such as the limitation of root uptake by soil P dif-
fusion. Moreover, the use of crop models to estimate limitation due to soil P globally has
been limited by a lack of information on the distribution of P in agricultural soils.

Recent attempts (Ringeval et al., 2017; J. Zhang et al., 2017) have simulated the evolu-
tion of P in agricultural soils, by combining spatially explicit datasets on soil P inputs/outputs
and a soil P dynamics model. Such data can be combined with GGCMs output of potential
yield, to assess the yield limitation due to insufficient P supply compared to the potential
crop P demand. Here we attempt to diagnose P limitation due to soil P status in three major
cereals in the world (wheat, maize and rice) for the year 2000, by combining the outputs
of a generic GGCM known as ORCHIDEE-CROP (X. Wu et al., 2016) and an agricultural
soil P model (Ringeval et al., 2017), while accounting for the mechanism of soil to plant P
transfer by diffusion (De Willigen and van Noordwijk, 1994).

2.2 Methods

2.2.1 Overview

Quantifying P limitation on yield is attempted using a supply vs. demand approach (Fig.
2.1). Crop P demand is the P needed to achieve a certain level of yield, which is in our case
the potential one or one that is limited only by climate (temperature, light) and genetic
make-up. On the other hand, the soil P supply is derived from the soil P availability by
accounting for the diffusive nature of P transport at the soil-root boundary.

To estimate crop P demand we used ORCHIDEE-CROP (X. Wu et al., 2016, red box in
Fig. 2.1), a GGCM that simulates plant growth in irrigated conditions without any other
stress (nutrients, pests or weeds) at 0.5o resolution over the globe. From the modelled
crop carbon pools, we derive spatially explicit estimates of P demand using three different
approaches described in the following sections. To estimate soil P supply we used an
agricultural soil P dynamics model (Ringeval et al., 2017), which gives the amount of soil
P available for plant uptake (blue in Fig. 2.1). Because the soil P supply is determined both
by soil P availability and the plant’s ability to take it up, a model of root uptake (green box
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Figure 2.1: Information flow diagram describing the methodology of this study. e red and blue rectangles
delineate the main sources of data, and correspond to carbon and phosphorus respectively. e box in green

delineates the root uptake model, which acts as an interface for P in soil that is available for plant uptake. ese
three (colored) boxes form the basis for estimating potential crop P demand and soil P supply, and finally P

limitation. An additional sensitivity test takes into account fertilizer P (chemical + manure) in addition to soil P
supply (doed line)

in Fig. 2.1) was employed to compute potential P uptake by plants. By comparing crop
P demand to soil P supply, the limitation to crop production due to soil P status can be
quantified. Additionally, a scenario with an improved soil P supply is carried out, which
assumes that a part of the fertilizer P inputs (chemical and manure) could be incorporated
into crop biomass (dotted line in Fig. 2.1).

2.2.2 Crop P demand

P demand is diagnosed from the different plant C pools simulated by ORCHIDEE-CROP:
leaf, grain, stem and root (the model has also a pool for carbohydrate reserves, which
is assumed to contain no P). The simulations used here were performed following the
ISIMIP2a protocol (Warszawski et al., 2014) assuming no stress occurs (water, nutrient,
weed, pests). To estimate P demand we used 3 different methods: an empirical relationship
between yield and uptake (QUEFTS), P harvest index (PHI) and stoichiometric ratios (C:P).
These methods provide us information on the amount of P needed to achieve a certain
biomass or yield at maturity. When searching for methods to infer crop P demand, we have
tried to pick ones whose data encompasses a wide range of growing conditions (genetic
variety, geographic location, etc.) to obtain a general and a robust estimate. Additionally,
the use of multiple methods allows us to give a range of possible values and account for
their inherent bias. Details of the crop model and estimation of P demand are detailed in
the following sub-sections.
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ORCHIDEE-CROP

Crop biomass pools are simulated by ORCHIDEE-CROP (X. Wu et al., 2016), a version of
the ORCHIDEE dynamic global vegetation model (Krinner et al., 2005) modified to sim-
ulate phenology, temporal evolution of LAI and C allocation (including grain filling that
determines yield) of crops by integrating some parameterizations of the generic cropmodel
STICS (Brisson et al., 2009). The model has been calibrated and evaluated for maize and
winter wheat in temperate areas (X.Wu et al., 2016), and extended to include rice (X.Wang
et al., 2017).

The simulated crop growth is divided into seven development stages (e.g. emergence,
vegetative growth, grain filling, etc.). The timing and duration of each stage is calcu-
lated based on development units, which describe the physiological requirements of crops.
These development units are calculated as growing degree days weighted by limiting func-
tions to account for photoperiodism and vernalization. LAI is the primary driver of canopy
photosynthesis, and is described by a logistic curve depending on the plant phenology
stage. LAI is used in conjunction with the leaf-scale models for C3 and C4 plants used in
ORCHIDEE (Krinner et al., 2005) to determine gross primary productivity (GPP). Carbon
assimilates fromGPP are distributed daily to leaves, stem, grain, roots and reserves. A frac-
tion of GPP and biomass is used for maintenance and growth plant respiration, to calculate
net primary productivity (NPP). The priority of C allocation changes in the model with the
plant development stage, and reflects different resource use strategies. ORCHIDEE-CROP
also has water and nutrient modules, whose purpose is to regulate plant growth. Water
uptake is modelled as a function of plant transpiration and root water availability using
a detailed and realistic multilayer soil hydrological model (M. Guimberteau et al., 2014).
The nutrient component is highly idealized: it considers only N, whose soil-plant budget
is not explicitly simulated. Instead, leaf-scale photosynthetic capacity is increased with N
fertilizer addition through an empirical relationship, with no feedbacks to C allocation.

The crop simulations used here follow the protocol set out by “TheGlobal Gridded Crop
Model Intercomparison” (GGCMI) project (Elliott et al., 2015). It specifies crop species,
their management and a set of inputs (gridded climate and crop management data) to
insure comparability among different models. The most important crops are maize, rice
and wheat as they comprise 43% of total global food intake (Elliott et al., 2015). The output
used to calculate crop biomass pools in this study were the mean monthly values, which
were simulated with a daily time-step at a 0.5o resolution globally with irrigated conditions
in the year 2000. Irrigated conditions were simulated by setting the soil moisture to field
capacity everywhere. Nwas assumed non-limiting by setting a highN fertilizer application
rate (150 kg N/ha) everywhere.
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QUEFTS, PHI and C:P ratios

QUEFTS (Janssen et al., 1990) is an empirical model used to estimate yield response ac-
cording to fertilizer inputs and soil fertility. It was developed to provide advice on optimal
nutrient application in tropical soils in a simple and robust way, and has been extensively
used to characterize cereal production worldwide (S. Sattari et al., 2014). It consists of
four different steps, which define the supply and demand of the three nutrients mostly
widely used in agriculture (N, P and K) to give a final yield estimate. The model sections of
interest in this study are the optimal nutrient supply combinations and the uptake-yield
curves (details in section B.1.2). The latter one provides the yield response depending on
the potential yield as function of the plant uptake of P. In our calculation, the yield poten-
tial is defined as the ORCHIDEE-CROP simulated yield (irrigated and high N application
everywhere). We calculated the crop P demand as the P uptake which enables the crop to
achieve 95% of the yield potential. Hereafter, this crop P demand is called PQUEFTS

demand (kgP
ha−1 yr−1).

The PHI method is based on a combination of the grain yield simulated by ORCHIDEE-
CROP (Ygrain) and parameters derived from literature corresponding to 1) the ratio of P
contained in grain vs. P in the aboveground biomass (known as P harvest index or PHI)
and 2) P concentrations in plant organs. With this method, the total P demand (PPHI

demand,
kgP ha−1 yr−1) is computed by distinguishing the P demand in shoot (Pshoot, kgP ha−1

yr−1) and root (Proot, kgP ha−1 yr−1) as follows:

PPHI
demand = Pshoot + Proot =

P%,grain · Ygrain
PHI

+ P%,root · Yroot (2.1)

WhereP%,grain andP%,root are grain and root P concentrations expressed as the amount
of P ber gram of plant biomass (gP g−1 biomass), respectively. PHI (kgP grain kgP−1

shoot) is the P harvest index. We have included the root biomass to avoid underestimating
the P demand, even though this method should rely on grain only. Crop specific values
for P concentrations are taken from literature and correspond to values at plant maturity
(references in SI Table B.1). Both PHI and HI were taken from a study (Duivenbooden,
1992) compiling fertilizer trial data on nutrient uptake and yield response, coming from a
multitude of climatic and socio-economic environments. Values were derived from field
experiments in stressed conditions, focusing on the linear part of the uptake-yield curve
when nutrient use efficiency is maximal. Consequently, the PHI method gives us an esti-
mate of the minimum amount of P required to achieve a certain grain yield.

The C:P ratios method relies on the stoichiometry of crop tissue (grain, stem, leaf and
roots) at maturity based on data found in literature, in combination with the magnitude of
each crop C pool given by ORCHIDEE-CROP at harvest. This method has been used for
projecting future P demand (Peñuelas et al., 2013) in natural ecosystems, with models that
do not describe the P cycle and its constraints on primary productivity. The P demand for
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the whole plant was calculated as follows:

PC:P
demand =

∑
i

P%,i
C%,i

· Ci (2.2)

Where P%,i and C%,i are the P and C concentration of a biomass pool (g P,C g−1

biomass), respectively. Ci is the amount of carbon in that pool (gCm−2) given byORCHIDEE-
CROP. The different C pools considered here are Cleaf Cgrain, Cstem and Croot. Concen-
tration values were obtained from literature (SI Table B.2) for crops, corresponding to plant
maturity. If a nutrient factorial design existed, values were taken from the most nutrient
limited one (usually the control experiment) to avoid bias in concentrations due to luxury
consumption.

2.2.3 Soil P supply

The soil P supply is determined by two factors: the amount of plant available P in the soil
and the plant ability to take it up. The first factor was provided by a modelling approach
(Ringeval et al., 2017) simulating the yearly evolution of soil P status during the 20th cen-
tury. The second factor, or the ability of a crop to take up P, is determined by the plant
root system and the nature of P transport in soil solution. Uptake of P depends almost
exclusively on diffusion (Barber, 1980), as concentrations are often too low to provide P
by mass flow (or advection). A model of root uptake describing the diffusive flux of P in
the root vicinity was thus employed (De Willigen and van Noordwijk, 1994).

Agricultural soil P

The global distribution of plant available P was given by a modelling approach (Ringeval
et al., 2017) that combined global datasets describing the drivers of P cycle and a soil P
dynamics model. The soil P dynamics model is based on the Hedley fractionation con-
cept (Hedley, J. W. B. Stewart, and Chauhan, 1982), where P is distributed among various
pools of different chemical extractability. These pools interact on different time-scales,
and correspond to flows of P between mobile forms at a biological level (mineralization,
immobilization, uptake) and highly stable or ‘occluded’ forms of P which are unavailable
to plants (Cross and Schlesinger, 1995; Walker and Syers, 1976). From a global vegetation
or crop modelling perspective, this representation has emerged favourably in attempts to
include nutrient limitation (Goll et al., 2017; Y. P. Wang, Law, and Pak, 2010; X. Yang et al.,
2014) on plant development.

The soil P dynamics model combines multiple sources of spatially explicit data which
are deemedmain drivers of the P cycle: soil biogeochemical background, soil inputs/outputs
resulting from farm practices (chem. fertilizer, manure, crop uptake and residues), land
use and land cover change, soil temperature and humidity, losses through erosion, atmo-
spheric deposition and soil-order dependent buffering capacity (Ringeval et al., 2017). The
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soil P model calculates bulk transformations in the first 30 cm with a yearly time step from
1900 to 2005, separating crop and pasture landuse at 0.5o resolution globally. The differ-
ent P pools are (from the most to the least mobile): labile inorganic, labile/stabile organic,
secondary mineral, apatite and occluded P. The only pool used to calculate the supply of
P in our approach is the labile inorganic pool (PILAB), consisting of water soluble, resin
and bicarbonate inorganic Hedley fractions. In the model, PILAB is used as proxy of the
plant available P. It depends strongly on farm soil inputs/outputs and is assumed to be
in equilibrium with P bound on secondary minerals (PSEC ) at a yearly time scale. Here,
we assume no interaction between PILAB and PSEC during the growing season. Thus,
PILAB represents plant available P at the beginning of the growing season, before fertilizer
is applied and a new equilibrium with PSEC is formed.

We used gridded PILAB estimates for the year 2000 (Fig. B.3) which consist of 30
different simulations according to the uncertainty analysis of the original study (Ringeval
et al., 2017). In the analysis, all of the previously mentioned drivers varied (except land
use change) within a predefined range to estimate how each driver’s uncertainty affects
the spatial distribution of PILAB .

Potential root P uptake

The potential root uptake model (De Willigen and van Noordwijk, 1994) describes roots as
a system composed of parallel and vertically placed root cylinders, which are uniformly
distributed in the soil column and take up nutrients at the same constant rate. Every
single root has a cylinder of influence whose radius depends on total root density. By
assuming uniform water flow across this cylinder of influence, the authors (De Willigen
and van Noordwijk, 1994) found an analytical solution describing solute transport in a
homogeneous soil medium. We use a special case of this solution, when concentration at
root surface reaches zero and uptake of P is the same as the rate at which it diffuses there.
The root uptake model enabled us to calculate the potential root P uptake (Puptake, kgP
ha−1) determined by soil P availability and the crop root system:

Puptake =
12∑
i=1

π · z · Lrv,i ·D · ρ
2 − 1

G(ρ)
· CP (2.3)

Where ∆z is soil depth (cm), Lrv is monthly root length density (cm cm−3), D is the
coefficient of P diffusion (cm2 day−1], CP is the mean concentration of orthophosphate
ions in soil solution in the top 30 cm (mgP L−1), ρ is a dimensionless ratio of soil cylinder
to root radius andG(ρ) a dimensionless geometric function related to uptake by diffusion
only. Lrv was calculated from ORCHIDEE-CROP monthly root biomass values with spe-
cific root length (SRL), which was held constant. SRL varies during the vegetative stage,
but this effect was deemed negligible compared to seasonal changes in root biomass and
the root-shoot ratio. SRL as well as root diameter values were taken at maturity stage. D
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was computed by a ‘constant slope impedance factor’ model (Olesen et al., 2001) to mimic
decreased diffusivity in porous media. This effect is due to the amount of water filled
pore space, which determines the diffusion path length. Further details on estimation of
ρ, G(ρ), Lrv and D can be found in the SI section B.1.3.

CP (mgP L−1) was derived from PILAB (mgP kg−1 soil) thanks to an empirical re-
lationship fitted from a database (Achat et al., 2016) compiling isotopic dilution measure-
ments (providing orthophosphate concetration in soil solution) and Hedley measurements
(providing PILAB) in various ecosystems (forests, croplands and grasslands). It was cal-
culated using a Freundlich-type equation, which describes the soil solution equilibrium:

PILAB = a · Cb
P (2.4)

Where a and b varied as a function of soil-order (details in SI section B.1.4) to roughly
account for the sensitivity of sorption/desorption to soil properties like pH, oxide concen-
tration, etc. In our approach, we assumed that CP is constant during the growing season
(given the fact that PILAB is computed at a yearly time-step) and thus not modified by the
here computed potential plant uptake (Eq. 2.3). A map of bulk density (Hengl et al., 2014)
was used to convert PILAB from kgP ha−1 to mgP kg−1 soil as needed in Eq. 2.4.

2.2.4 P limitation and yield gap due to P limitation

We compare the crop P demand and the soil P supply by computing the following ratio,
hereafter called R:

Ri =
Psupply

P i
demand

(2.5)

Where is the crop P demand (kgP ha−1) and the superscript i refers to QUEFTS, PHI or
C:P ratio methods (Section 2.2.2). Psupply (kgP ha−1) is calculated in the followingmanner:

Psupply =

Puptake (I)

Puptake + 0.2 · Pfert

CI (II)
(2.6)

Case I consists of the soil P supply, calculated via the root P uptake model (Puptake,
kgP ha−1) (Eq. 2.3) and serves as a baseline of P supply. Case II includes farm P inputs
(Pfert, kgP ha−1] along with soil P supply, to include the effects of today’s P management
practice. Pfert is the labile fraction of annual fertilizer P input (chemical and manure) used
as one of the drivers of the soil P dynamics model (Ringeval et al., 2017). We assume that
only 20% of applied fertilizer P can be recovered in the same season (Balemi and Negisho,
2012), which seems to be a generous estimate according to the literature. CI (yr−1) is the
number of crop harvests per year. CI was estimated from a dataset on observed cropping
areas around the year 2000 (Portmann, Siebert, andDöll, 2010), which is defined as the ratio
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of annually cropped area to the cropland extent area excluding fallow land (Eq 2, section
3.3 in Portmann, Siebert, and Döll, 2010). The reason for using the CI parameter is to avoid
a high bias in the annual P application rate in multi cropping areas. Case I represents P
limitation due to either low soil P legacy or a biophysical limit to P diffusion, whereas case
II gives an estimate on howmuch the current fertilizer application alleviates this limitation.
Case II could be considered as a lower limit to crop P limitation where only 20% of the
applied fertilizer is incorporated into plant biomass, bypassing the diffusion+root uptake
mechanism.

We calculate the yield gap (van Ittersum and Rabbinge, 1997) due to P limitation (Ygap,P
in %) by assuming a linear relationship between the Ygap,P and the demand:supply ratio
(Eq. 2.5) as follows :

Y i
gap,P = max(0, 1−Ri) (2.7)

We restrict this computation to the case where the P supply is smaller or equal to
the P demand by assuming that plants cannot take up more P than needed during the
growing season. P limitation (and its yield gap) was computed using the ORCHIDEE-
CROP simulations performed in irrigated and high N fertilizer conditions that represent
the true yield potential (i.e. limited only by climate and genetic make up). We compared
our estimates to a globally gridded dataset (Mueller et al., 2012) on the observed yield gaps.
In this dataset, the world grid points are divided into climate bins, defined by different
pairs of growing degree days and amount of yearly precipitation. Within a climate bin,
the potential yield is defined as the area-weighted 95th percentile of the observed yield
within the same climate bin. The yield gap then is the difference of the mean and the
potential yield within the same bin. These yield gaps were expressed as fractions of their
yield potential to make them comparable with our estimates.

2.2.5 Analysis of uncertainty, commonality analysis and global averages

A Monte-Carlo (MC) method was used to estimate uncertainty in the P limitation esti-
mates. Namely, the parameters were varied around their mean in 1000 replicates accord-
ing to their standard error (SE) provided by the source literature. If SE was not provided,
we assumed it as a fraction of the mean as either 5% or 20%. In PHI (2.1) and C:P ratios (2.2)
methods, parameters/variables whose uncertaintywas considered are: nutrient concentra-
tion of the plant organs, PHI and the HI parameters. In the QUEFTS method, we varied the
parameters related to optimal nutrient uptake. In Eq. 2.3 and 2.4, an uncertainty was con-
sidered for: PILAB , Freundlich equation parameters, constant-slope impedance diffusion
parameters, SRL and root diameter. In Eq. 2.6 Pfert uncertainty was considered.

A commonality analysis (CA, Reichwein Zientek and Thompson, 2006) was used to
explain factors contributing to the spatial and the gridpoint variability of the root uptake
relation (Eq. 2.3). To determine the contribution to spatial variability, twelve monthly val-
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ues at every grid point were averaged in time, their median from 1000MC replicates taken,
log transformed and then z-scored around the global mean to form a multiple linear model
of the dependent variable Puptake with predictors Lrv , D, CP and PILAB . Similarly, to es-
timate the contribution of the predictors at every grid point, the variables were averaged
in time, log transformed and z-scored around the mean of the 1000 MC replicates. The CA
protocol determines variance belonging to all possible combinations (15=24-1) of predictor
variables. It then successively assigns unique or common (due to collinearity) variance to
each of the predictors, by combining the R2 values of each multiple linear model combi-
nation. In the spatial variability CA, 1000 bootstrap samples were taken to obtain the 95%
uncertainty interval around the global median CA coefficients. The bootstrap procedure
was not performed for the grid point uncertainty estimates.

In the following, global averages of P supply, demand and limitation are calculated
by weighting the grid-cell values with the total observed crop area (Portmann, Siebert,
and Döll, 2010), and 95% uncertainty interval is given (in brackets) to the median value of
the 1000 MC replicates. A similar technique was applied when presenting histograms of
these quantities in each grid-cell, where the contribution of every grid-cell depends on the
fraction of crop area within it. When presenting histograms, uncertainty is shown as the
68% interval around the median value of 1000 MC replicates for every grid-cell. The 68%
interval would correspond to 1 standard deviation, if the 1000 MC values at each cell were
normally distributed.

We masked and filtered some grid-cells before performing our calculation. For each
crop, we started from grid-cells where the observed crop area is non-null (Portmann,
Siebert, and Döll, 2010). We then kept grid-cells considered in the ORCHIDEE-CROP
model for which a value of PILAB is provided by the soil P dynamics model. These cri-
teria reduce the considered crop area to 78%, 71% and 63% of the observed crop area for
wheat, maize and rice respectively. Additionally, we have removed grid-cells for which
ORCHIDEE-CROP simulated no grain, as well as grid-cells where the crop model simu-
lates plants that remain in the vegetative phase during the whole growing season. The no
grain condition especially concerns wheat, since we simulated winter wheat only. In the
model, wheat has a vernalization requirement and can not grow properly in low latitudes.
Once these were removed, the final crop area covers 35%, 67% and 61% of the observed
area (Portmann, Siebert, and Döll, 2010) for wheat, maize and rice respectively.

2.3 Results

2.3.1 Potential root P uptake

Global averages of potential root P uptake are 20.2 (15.5 – 26.3), 20.9 ( 15.3 – 31.9) and 13.6
(10.5 – 16.8) kgP ha−1 respectively for wheat, maize and rice. The ranking of potential
uptake between different crops (maize ≈ wheat ≥ rice) is explained by the root biomass
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potential of each crop, maize having the highest and rice the lowest. Wheat might be
additionally biased, as our calculation concerns only 35% of the global observed wheat
area which is concentrated in areas with high soil P levels (Northern Hemisphere). Fig. 2.2
shows the spatial variability of potential root P uptake, which does not vary much among
crop species. The top 25% values consistently show up in Western Europe, South-East
Asia and Central America corresponding to high production intensity areas. Interestingly,
North America and Brazil show widespread low potential P uptake. This is explained by
low levels of PILAB (SI Fig. B.3) and high Mollisol and Oxisol coverage, with high P
sorption and hence low CP (SI Eq. 9). Other areas that show low potential P uptake such
as Africa, Eastern Europe, Argentina and Paraguay are characterized by lowPILAB levels,
likely due to negative soil P input/output balance (MacDonald et al., 2011).
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Figure 2.2: Potential root P uptake during the growing season (Puptake, kgP ha-1), determined as the median
from 1000 MC replicates. e colorbar depicts quantiles (0-25-75, 90). Rows are wheat, maize and rice.

The spatial distribution of potential uptake closely follows that of PILAB (SI Fig. B.3).
At least 80% of the spatial distribution of the potential root P uptake can be explained by
the amount of PILAB (Fig. 2.3, top). In this figure, the commonality coefficient CC12 de-
scribes common variance to variables PILAB andCP , whereas CC1 (PILAB) and CC2 (CP
) describe the additional variance not shared with the other variable. Since CP is a func-
tion of PILAB , CC 2 shows the additional variability from the fitted Freundlich equation
(Eq. 2.4), whereas CC 1 has no new information. Other variables are much less impor-
tant than Cp or PILAB in determining the spatial distribution of potential uptake. This
comes as no surprise, as high soil water content (consequence of the irrigated conditions)
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presents no obstacles to P diffusion. Another point to note is the lack of influence of root
length density (Lrv) on the spatial distribution of rice P uptake (Figure 3, top, CC4). This
is explained by the fact that the root system of rice achieves its biomass potential in most
of the considered grid-cells, thus exhibiting no climate variability in our crop simulations.
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Figure 2.3: CA of potential P root uptake (Eq. 2.3). e plots show the contribution of each of the drivers
(PILAB , CP , D, Lrv) to the spatial variability (top) and variability at each grid point (boom) of the

calculated root P uptake. Values 1 to 4 show the unique contribution not shared with others. Other combinations
(12 to 1234) show variance common to all variables within that combination. Different markers and colors
correspond to different crop species (see legend). In the top plot, errorbars show the 95% uncertainty interval

around the global median value (obtained with 1000 bootstrap samples). In the boom plot, errorbars show the
68% quantile interval around the global median value. PILAB is soil inorganic labile P, CP is P in soil solution,

D is the P diffusion coefficient and Lrv is the root length density

Uncertainty at each grid point level is mainly due to the amount of plant available P or
PILAB (Fig. 3, bottom) and is higher than variability due to other variables (CP, D, Lrv) in
70 – 80 % of the world grid points (not shown). The uncertainty shifts fromPILAB to other
variables in areas of low soil P levels such as North America, South America and Eastern
Europe (Supp. Fig. 3).

2.3.2 Crop P demand

The values of the global average of crop P demand are given in Table 2.1. We found that
the demand is larger for maize than for the two others crops (wheat and rice). In general,
we found a relative consistency between the three methods except for rice, where the C:P
ratios method leads to higher P demand compared to the PHI and QUEFTS methods. This
could be explained by the fact that QUEFTS and PHI parameters are obtained in stressed
environments where nutrient use efficiency is highest, while the C:P ratio parameters are
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Wheat Maize Rice

QUEFTS 6.6 (4.9-10.1) 14.6 (10.4-22.1) 5.5 (4.5-6.3)
PHI 7.8 (7.8-7.9) 19.0 (18.7-19.3) 6.8 (6.7-7.0)
C:P ratios 7.1 (4.6-9.9) 21.4 (18.3-24.7) 13.1 (12.2-14.0)

Table 2.1: Global average of P demand (kgP ha−1 yr−1) calculated with different methods (QUEFTS, PHI and
C:P ratios). Values in brackets are the 95% quantile interval around the median value from 1000 MC replicates.

obtained in conditions of luxury consumption (see sections Methods and Discussion).
There were some inconsistencies between the methods, especially for the C:P method.

The deviation between C:P and the two other methods was larger for rice and could be
explained by the difference in allocation between the crops. In ORCHIDEE-CROP simu-
lations, grain receives about 35% of NPP in case of rice against 65 and 50% for wheat and
maize, respectively. This tends to decrease further the contribution of grain in the demand
estimate by the C:P method for rice. This is amplified by inter-species differences in organ
P concentrations (SI Fig. B.2), which was mentioned earlier in the previous paragraph and
is further presented in the discussion.

Comparing global average values of demand (Tab. 2.1) and potential root uptake (Sec-
tion 2.3.1), we observed that the demand was not larger than the soil P supply. A different
picture emerges though, if looking at the range of these values across croplandsworldwide.
If histograms of P supply and demand are plotted side by side (Fig. 2.4), they represent the
case of most optimal redistribution of the two. In this case, only 15 – 40 % of wheat and
maize area would achieve its potential yield using soil P only and 25 – 65 % in case of rice,
which points to the inefficiency of P distribution in agricultural soils worldwide.
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Figure 2.4: Cumulative histograms of crop P demand and potential root P uptake globally [kg P ha-1]. Demand is
drawn with color, while potential root uptake is drawn in black. Each color represents a different way of

calculating P demand (blue for QUEFTS, green for PHI and red for C:P ratios). Dashed lines correspond to the
68% quantile interval around the median of 1000 MC replicates.

Lastly, the difference in the shapes of the demand and potential uptake curves (Fig.
2.4) can be explained by their respective source of spatial variability. Since the crop P
demand is calculated from the ORCHIDEE-CROP biomass pools in irrigated conditions,
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the climate determines the yield potential and subsequently the distribution shape. For
potential root P uptake, we have shown that 80% of the spatial variability is explained by
thePILAB distribution (Section 2.3.1), which in turn depends mostly on the historical farm
input/output balance and soil biogeochemical background (Ringeval et al., 2017).

2.3.3 P limitation and yield gap

The global average of the supply:demand ratio showed that the world soil P supply by
itself is largely adequate in satisfying crop P demand. The three demand methods give an
average of 160 (81 –473) % in wheat, 132 (55 – 263) % in maize and 205 (69 – 544) % in rice.
By adding P from fertilizer the global average increases to 182 (98 – 514) % in wheat, 155
(72 – 299) % in maize and 278 (96 – 624) % in rice. The differences among species are due
to their geographic location as mentioned in section 2.3.1. Even though the addition of
fertilizer increases the amount of available P, it is hard to distinguish the increase due to
high uncertainty of the initial PILAB data.

A clearer picture of global P limitation is presented when looking at the spatial distri-
bution of the supply:demand ratio (Fig. 2.5, focusing on the QUEFTS method; see SI Fig.
B.5 for the PHI and C:P based ones). The soil supply only sustains the demand of P for
potential yields in certain parts of the world like South-East Asia, Western Europe, Cen-
tral America, Ethiopia and Oceania. By contrast, large parts of Central Asia, Africa, North
and South America experience severe limitation that needs to be amended with additional
inputs to increase yields. These areas have a known low soil P supply, due to high sorption
capacity (Mollisols in North America, Oxisols in Brazil) and historically low to negative P
balance (Ringeval et al., 2017) (Central Asia, Africa). When including fertilizer P from the
current year in the supply, the limitation is somewhat relieved except in the western part
of North America, Africa, Central Asia and southern South American states (Argentina,
Paraguay and Uruguay).

The histogram of the yield gap is plotted in Fig. 2.6 (top row). We found that on average
52 – 57 % of wheat area, 69 – 79 % of maize area and 36 – 63 % of rice area shows a yield gap
due to P limitation in some form. Differences between the three crops aremainly explained
by their geographic location. Maize is the most limited crop because its potential biomass
is higher in ORCHIDEE-crop, leading to an higher demand (Section 2.3.2) but also because
it is grown all over the world, including in areas of low soil P supply (Central Asia and
Africa). Wheat limitations are in between those from maize and rice because wheat is
grown mostly in northern latitudes, where soil P supply is relatively higher. Rice shows
the lowest P limitation because its production is highly concentrated in South-East Asia,
an area with high levels of soil P supply (Fig. 2.2).

The overall uncertainty is large and comparable across species (except for rice) and
across methods. Because the potential P uptake is common to all crops/methods, this
points to the uptake as the main determinant of the yield gap uncertainty. Since the un-
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Figure 2.5: Spatial distribution of the R ratio (supply:demand; %) calculated using the QUEFTS method to
estimate the demand. e ratio is provided when only the soil P supply is considered (case I in Eq.6 ; le column)

as well as when both soil P supply and fertilizer P are considered (case II in Eq.6; right column). Rows are
different species (top to boom: wheat, maize, rice). SI Fig. B.5 show ratios for PHI and C:P methods.

certainty in the potential root P uptake is largely explained by PILAB (Fig. 2.3, bottom),
this uncertainty can be traced back to the uncertainty of the main drivers in the PILAB

pool, which are the history of farm inputs/outputs and the soil biogeochemical background
(Ringeval et al., 2017). For rice, there is a notable difference between the three limitation
methods (Fig. 2.6, top right) which is due to differences between the methods to estimate
the demand (as explained in Section 2.3.2). Adding P from fertilizer to the potential root P
uptake, the total area experiencing P limitation decreases to 43 – 46 % for wheat, 65 – 72
% for maize and 23 – 50 % for rice (dashed lines in Fig. 2.6, bottom row). But as mentioned
earlier, the decrease in limitation is hardly noticeable due to variability of the initialPILAB

data.
Based on our different estimates, the global average of the P yield gap is 22 (18–28)

% in wheat, 55 (47–66) % in maize and 26 (18–46) % in rice. Amended with fertilizer P,
the yield gap drops to 17 (14 – 21) % in wheat, 46 (36 – 55) % in maize and 15 (10 – 32) %
in rice. Comparing our P yield gap estimates to the ones observed (Mueller et al., 2012)
(black lines in Fig. 2.6, bottom), we found that P limitation explains only a portion of the
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Figure 2.6: Cumulative histrogram of the P yield gap in irrigated simulations (%). Upper figures show the global
P limitation (due to potential root uptake P) calculated with different P demand methods. Full lines are the
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limitation due to root uptake P (full colored line) amended with fertilizer P (dashed colored lines). Additionally,

the yield gap from Mueller et al., 2012 (black line with circles) is ploed for comparison.

observed yield gap. The difference could be due to us considering only P as the limiting
factor, whereas the observed yield gaps includes all of the macro-nutrients (NPK) as well
as contributions from irrigation, weed, pests and disease.

2.4 Discussion

We have investigated how soil P supply can lead to P limitation of crop yields, by com-
bining data on the current global distribution of agricultural soil P and an idealized crop
simulation, while accounting for the basic nature of plant-soil transfer of P. Whereas pre-
vious studies estimate the global nutrient yield gap through statistical approaches (Mueller
et al., 2012), our diagnostic approach aims to represent more explicitly key variables and
processes involved in the P limitation, namely the cropland soil P, soil P diffusion and root
uptake. We showed that P is a key factor of yield gap at the global scale with estimated
global yield gap due to P of 22, 55 and 26 % for wheat, maize and rice, respectively. Al-
though the global average of the potential soil P supply is larger than P demand, due to
the amount of soil legacy P in highly fertilized areas, we found that a significant portion of
cropland area has soil P levels too low to sustain the climate potential yield. These results
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corroborate the heterogeneity of today’s global P management practice and its potential
impacts on food production (Mueller et al., 2012; MacDonald et al., 2011) which need to be
dealt with a comprehensive set of global measures like: more equitable access to fertilizer
P, P redistribution and reducing Pwaste through technological improvements (Obersteiner
et al., 2013; Tilman et al., 2011)

Soil P availability plays a more important role than current fertilizer application, ac-
cording to our results. A sensitivity test, where we assumed that 20% of the annual applied
P in fertilizer is directly incorporated into crop biomass showed that P limitation can be
relieved only slightly, with a global yield gap reduction of 5 – 10 %. This small allevi-
ation suggests, as mentioned in the previous paragraph, that the spatial distribution of
current fertilizer application is relatively non-optimal. Surprisingly, we found significant
P limitation in intense production areas (e.g. North America, Brazil) even in our fertilizer
sensitivity test. Even though these areas largely consist of high-fixing P soils (Roy et al.,
2016), we suspect the P limitation stems from the nature of the models used. One expla-
nation is the simplicity of the root uptake model, which does not include some key pro-
cesses that increase P acquisition (Hinsinger et al., 2011) like root branching/architecture,
exudates/phosphatase and mycorrhizae association. Another reason for the severe P lim-
itation in high production areas could be the bulk nature of the soil P model, which ho-
mogeneously mixes the fertilizer P in the first 30 cm. In reality, plant nutrient uptake can
be increased (G. W. Randall and Hoeft, 1988) through a practice called banding, whereby
fertilizer is placed close to the roots to increase its efficiency, especially in soils with low
P levels and high fixing capacity (G. W. Randall and Hoeft, 1988). This shows that simple
bulk flow calculations might not be sufficient in diagnosing P limitation, and that a more
process oriented description of P exchange is needed.

Global yield gaps have so far been studied (Licker et al., 2010; Mueller et al., 2012; Neu-
mann et al., 2010) in a spatial manner using globally gridded yield census data (Monfreda,
Ramankutty, and Foley, 2008) and relating it to crop management information. These
provide a robust picture of current limitation in world’s crop production, and can be a
valuable knowledge source for targeted regional management. But the strength of these
approaches, which is in dealing with aggregated effects of agricultural practices, is also a
limit if one wants to take a closer look at each limiting factor. Irrigation and nutrient appli-
cation are strongly related to yield variation globally (Mueller et al., 2012), but separating
their contribution remains a problem, since these factors exhibit a high degree of correla-
tion. A more process-based approach would enable us to isolate the effects of P limitation
from others (like water and N). However, the use of a generic crop model gives estimates
that are partly disconnected from reality, and makes the comparison with the observed
yield gap difficult. The parametrization of crop models against rich data sources for lo-
cal climate and soil conditions, for example the GYGA project (van Ittersum et al., 2013),
would allow both distinction of the limiting factors and connection to a local context.
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Our estimates contain considerable uncertainty, which is mainly due to the amount of
plant available P in soil (PILAB) variable. In the source of thePILAB information (Ringeval
et al., 2017), the uncertainty stems from the soil’s biogeochemical history which is poorly
constrained by the original data (X. Yang et al., 2013). Apart from this, there are notable
differences across the three P demand methods (Tab. 2.1 and Figure 2.4). In PHI and
QUEFTS, the estimates are based on traditionally measured quantities of aboveground nu-
trient off take, and provide comparable values as they incorporate data from a large set of
growing environments (Duivenbooden, 1992; S. Sattari et al., 2014). Measurement of C:P
ratios in plant organs (references given in SI Table B.2) does not seem to be a common
practice in agriculture, given by the fact that we are using literature from year 1934 for
maize (Latshaw and Miu, 1934). For rice, the data comes from an experiment in highly
fertilized soil (average application of 240 kgN ha−1, 120 kgP2O5 ha−1 and 120 kgK2O ha−1

annually; Ye et al., 2014) and leads to a notable P demand bias compared to the other two,
possibly due to luxury consumption even in the nutrient omission plot. The scarcity of C:P
ratio data in agriculture might serve as a call for more experimental inquiry, as ecosystem
models move towards a description of the plant’s carbon cycle which include the effects of
nutrient availability (Goll et al., 2017; Y. P. Wang, Law, and Pak, 2010; X. Yang et al., 2014).

This study is a step towards a process-based assessment of the P limitation in agricul-
tural ecosystems. However, to arrive to these estimates, a number of broad assumptions
and constraints had to be considered: missing representation of the plant response to P
limitation, rudimentary description of P in soil solution, and linear reduction of yield ac-
cording to the supply:demand ratio. Firstly, P limitation affects C allocation during plant
development (A. Mollier and S. Pellerin, 1999), redirecting assimilates to roots instead of
leaves to increase the plant’s P foraging ability. The consequence is a lower shoot biomass
which demands less P, but also relatively greater roots with higher capacity for P uptake.
Secondly, our description of the soil solution at an annual time-step is simple (Eq. 2.4),
with a relation that describes the long term equilibrium between soil solution and sorbed
P without any seasonal change; this limitation is evident in our treatment of fertilizer P
(Eq. 2.6). When added to PILAB prior to the computing the CP - PILAB equilibrium, the
additional P has no effects on the simulated potential uptake (not shown). This points to
the importance of transient and short-term effects in fertilizer P sorption (Barrow, 1983), a
process that is highly dependent on soil composition and chemical properties. Finally, we
calculated the yield gap as a linear decrease according to the supply:demand ratio, which
is not an unreasonable simplification. Studies looking at the effects of nutrient deficiency
show that (Amanullah and Inamullah, 2016; Batten, Khan, and Cullis, 1984; N. K. Fage-
ria and Oliveira, 2014) the harvest index stays relatively stable at low P additions, with
greater variability due to genetics and climate. However, this might not be true in ex-
treme situations (Sahrawat et al., 1995), where allocation to grain might be disrupted to
insure functioning of other plant parts.
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Theabove-mentioned issues could be tackled by coupling the soil P dynamics (Ringeval
et al., 2017) and the ORCHIDEE-CROP model (X. Wu et al., 2016). For example, a dynamic
representation of P stress on a daily basis would allow us to simulate the interaction of P
with other factors, notably water and N. Furthermore, physiological responses to P stress
could be simulated such as a decrease in leaf area index (Plénet et al., 2000) or change
in the shoot:root ratio (A. Mollier and S. Pellerin, 1999), which would influence the final
grain yield and more faithfully describe yield loss. Exchange of P between the soil and
crop through crop uptake/residues, fertilizer application and their incorporation into the
soil, would allow us to model long-term effects of P management on crop yields. We
surmise that, by properly accounting for the flow of P between the soil and plant, more
accurate estimates and a better understanding of P limitation in agricultural ecosystems is
possible, which are needed in the face of the growing phosphorus issueworldwide (Cordell,
Drangert, and White, 2009; Obersteiner et al., 2013; Peñuelas et al., 2013).
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Abstract

Phosphorus (P) is the second most important nutrient after nitrogen (N) and can
greatly diminish plant productivity if P supply is not adequate. Plants respond to soil
P availability by adjusting root biomass to maintain uptake and productivity due to P
use. In spite of our vast knowledge on P effects on plant growth, how to functionally
model enhanced root biomass allocation in low P environments is not fully explored.

We develop a dynamic plant model based on the principle of optimal carbon (C)
and P allocation to investigate growth and functional response to contrasting levels of
soil P availability. By describing plant growth as a balance of growth and respiration
processes, we optimize C and P allocation in order to maximize leaf productivity and
drive plant response. We compare our model to a field trial and a set of hydroponic
experiments which describe plant response at varying P availabilities.

The model is able to reproduce long-term plant functional response to different P
levels like change in root-shoot ratio (RSR), total biomass and organ P concentration.
But it is not capable of fully describing the time evolution of organ P uptake and cy-
cling within the plant. Most notable is the underestimation of organ P uptake during
the vegetative growth stage which is due to the model’s leaf productivity formalism.

In spite of the model’s parsimonious nature, which optimizes for and predicts
whole plant response through leaf productivity alone, the optimal growth hypothesis
can provide a reasonable framework for modelling plant response to environmental
change that can be used in more physically driven vegetation models.
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3.1 Introduction

Plants respond to low P supply by growing more roots (Marschner, Kirkby, and Cakmak,
1996) as they are responsible for its uptake. Depressing the shoot C allocation and pref-
erential partitioning of assimilates to roots is a well documented phenomenon at low P
availability (Fredeen, Rao, and Terry, 1989; Rychter and D. D. Randall, 1994). The impor-
tance of nutrient control on C allocation between shoots and roots is evenmore clear under
magnesium (Mg) and potassium (K) limitation (Cakmak, Hengeler, and Marschner, 1994)
since they have a direct role in assimilate transport from leaves and can disrupt the plants’
mechanism to counter reduced P availability. Once P supply is limited, plants exhibit lower
leaf surface (Fredeen, Rao, and Terry, 1989) and reduced photosynthetic capacity (Fredeen
et al., 1990) all of which contribute to reduction of productivity and total plant biomass.
Another important point is the stoichiometric flexibility of plant tissue (J. J. Elser et al.,
2010) as a response to environmental change; especially to change in nutrient availability.
Since plant size and nutrient concentration are strongly connected due to the underlying
machinery that drives growth (G. I. Ågren, 2008) representing stoichiometry change is a
crucial step when coupling the C and nutrient cycles.

One of the main hypotheses explaining plant response to nutrient, CO2 and water
availability is that plants make optimal use of resources in order to maximize growth
(Bloom, Chapin, and Mooney, 1985). Resources are acquired by the plant and distributed
to its organs, all of which serve a different function (eg. leaves for C assimilation, roots
for nutrient uptake, stems for structural support). Investing into an organ will increase
its capacity to perform a certain function, but will necessarily incur a cost as resources
are devoted to its formation and upkeep. The plant should thus invest into an organ and
maximize the organ’s efficiency, which is the amount of functional gain per amount of
resource invested. If we assume individual plants grow as much as they can in order to
survive, there should be an optimal way to distribute resources in order to do so. Applying
this principle to the problem of nutrient limitation, a plant should grow roots (which take
up nutrients) in such a way that uptake efficiency is highest (or the least amount of roots
needed to satisfy the growth requirements). Consequently, at different nutrient availabili-
ties the plant will exert more or less effort in growing roots and thus change its root-shoot
balance.

The question of how to model C allocation due to nutrient limitation is a long standing
one (Agren andWikstrom, 1993; John H. M.Thornley, 1995; Franklin et al., 2012). Optimal
resource distribution as an approach would fall in between functional balance and teleo-
nomic ones. Functional balance states that allocation of C towards an organ will be driven
by its function (C assimilation in leaves, P uptake in roots) whereas teleonomic states that
allocation is guided with a specific goal in mind, which is maximizing productivity and
fitness. Optimal function approaches have shown promise in explaining plant response to
a changing environment (McMurtrie et al., 2008; Mäkelä, Valentine, and Helmisaari, 2008;
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Franklin et al., 2009; Dewar et al., 2009). By describing plant growth as a balance of growth
and respiration processes, the concept of optimizing (or maximising) productivity provides
a consistent framework for describing plant response to nutrient availability (Dewar et al.,
2009). Furthermore, some avenues to improve this approach are proposed (Dewar et al.,
2009) such as: extension to different time-scales, inclusion of multiple resources (energy,
water, nutrients, etc.) and developing practical methods to be included in dynamic global
vegetation models (DGVM).

Previouslymentioned optimal function approaches (Dewar et al., 2009) deal with steady
state vegetation growth. Even though this is a robust representation of ecosystem re-
sponse, a dynamical representation of the underlying processes (via a DGVM) is warranted
as vegetation growth is inherently seasonal. One of the main goals of DGVMs (Krinner
et al., 2005) is to bridge the gap between the fast (order of 1 hour) hydrologic and biophys-
ical processes of water and energy exchange on one hand and slow (order of 1 year and
more) vegetation dynamics like fire, sapling establishment, light competition, tree mortal-
ity on the other. This is achieved with the use of physical parametrizations of C exchange
through photosynthesis (Farquhar, von Caemmerer, and Berry, 2001; Collatz, Ribas-Carbo,
and Berry, 1992), stomatal conductance (Ball, Woodrow, and Berry, 1987) and respiration
models (Parton, J. W. B. Stewart, and Cole, 1988; Ruimy, Dedieu, and Saugier, 1996) which
drive vegetation growth and its interaction with the biosphere on a daily time step.

The optimal approaches mentioned so far (Dewar et al., 2009) have focused on nitrogen
(N) only. This is understandable as N is the principal nutrient required for plant structure
and metabolism functioning. Here we focus on P because its effects on plant productivity
can extend to the eco-system level, where it has been shown (James J. Elser et al., 2007)
that P has a similar potential to N across terrestrial biomes. Even more, P has the highest
potential of all major nutrients (Barber, 1995) to affect plant investment into roots (and
subsequently whole plant response) due to the physical mechanism of soil P transfer via
diffusion. Representing the effects of P limitation is thus as important as N if plant response
to a changing environment is to be investigated.

To this end, we propose a model which optimizes plant growth according to P avail-
ability as a balance of leaf productivity, root P uptake and organ respiration on a daily time
step. The goal is a consistent description of plant response like change in root-shoot ratio,
stoichiometry and total biomass. We present an optimization tool (Dantzig and Thapa,
1997) which allows for dynamic (day-by-day) modelling and could be extended to include
other growth limiting resources, as well as implemented within a more physically based
vegetation model (Krinner et al., 2005)
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3.2 Methods

3.2.1 Modelling framework

We assume C and P are the main currency for biomass growth. Leaves assimilate C and
roots take up P on a daily basis. Although C is the main resource for biomass growth, P
is needed to sustain the plant’s metabolism. Assuming that individual plants try to grow
as much as they can, a balance between the amount of leaf and root should be established
according to P availability. The problem can be translated into a optimal resource use
one: given a limited supply of C and P, how can they be distributed to grow the plant
as much as possible? To solve this problem we employ linear programming (Dantzig and
Thapa, 1997) a method which calculates the best possible outcome given a problem stated
by a system of linear equations. Linear programming is a well established theory used
in many areas of operational research (Dantzig and Thapa, 1997) where performance of a
system is maximised (like profit or units produced) given a limited amount of resources
(like construction material, capital, labour or time).

Figure 3.1: Simplified schema of the plant model. Full arrows depict C (red) and P (blue) flux directions. Black
color depicts feedbacks of different pools on gross productivity (dCday) and root P uptake (dPday). Different

leers correspond to leaf (L), root (R), stem (S) and grain(G). Dashed blue line represents grain P remobilisation.
e model additionally contains C respiratory fluxes and allometric constraints, which were not depicted here for

clarity sake and are detailed in the Methods section.

The plant is modeled as a system of linear mass-balance equations (model schema in
Fig. 3.1) describing assimilation, root uptake and respiration. The plant consists of several
organs: roots, leaves, stem and grain. Leaves take up C and roots take up P on a daily basis.
We allocate C and P to grow plant organs as much as possible while respecting constraints
in form of allometric relationships. For root P uptake, the model does not describe external
physical mechanisms that determine P supply like soil diffusion. Instead, P availability is
determined by the root P uptake rate which is simply the amount of P taken up per unit
of root biomass per time. Stated as a linear program, the maximisation objective at each
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time-step is following:

Maximize dCday (3.1)

Where dCday is daily gross productivity, which is the amount of new C that can be
allocated to different pools. dCday is proportional to leaf biomass (C∗

L) via the assimilation
rate (kCL) and is weighted by the lea’s light (LUE) and phosphorus (PUE) use efficiency:

dCday = kCL · dt · C∗
L · LUE · PUE (3.2)

LUE =
CL,max

C∗
L + CL,max

(3.3)

PUE =
P ∗
L

P ∗
L + C∗

L · ρmax
(3.4)

LUE represents saturated assimilation via leaf shading (J. H. M. Thornley, 1976)
whereas PUE represents saturated photosynthetic capacity due to leaf P concentration
(Fredeen et al., 1990). CL,max and ρmax are the leaf dry weight and P concentration at
which LUE and PUE reach half of their maximum efficiency, respectively. Equations
3.2 - 3.4 are a standard hypothesis in optimal function approaches (Dewar et al., 2009) and
are the main driver of plant response to P availability. C∗

L and P ∗
L are future leaf C and

P pools, respectively. Other pools which exist, but are not photosynthetically active are
roots (R), stems (S) and grain (G). Future pool refers to updating the current one at every
time-step. For C, updated pools are a balance (Eq.3.5) between C allocation (Eq. 3.6) and
respiration (Eq.3.7):

C∗
i = Ci + dCi − rCi (3.5)

dCday =
∑

i=L,R,S,G

dCi (3.6)

rCi = λC,i · Ci · dt (3.7)

The variables here areC∗
i (future C pool), dCi (amount of C allocated) and rCi (respired

C).Ci (current C pool) is a state variable and λCi (respiration rate) is time-invariant. Index
i denotes different organs. In the case of P, future pools are a balance (Eq.3.8) of root P
uptake (Eq.3.9), P allocation (Eq.3.10) and P remobilisation (Eqs.3.11 and 3.12):

P ∗
i = Pi + dPi −mPi (3.8)
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dPday = kCR · C∗
R (3.9)

dPday =
∑

i=L,R,S

dPi (3.10)

mPi = kmPi · Pi · dCG; i = L,R, S (3.11)

∑
i=L,R,S,G

mPi = 0 (3.12)

The variables are: P ∗
i (future P pool), dPi (P increment) and mPi (remobilised P). Pi

(current P pool) is a state variable while kCR (root P uptake rate) and kmPi (remobilised
P fraction) are time-invariant. We assume no saturating effect for root uptake (Eq. 3.9)
to reduce model complexity, assuming it can be due to external physical limitations to P
supply (eg. soil diffusion) which are not modeled here. P remobilisation flux (Eq. 3.11)
is proportional to the amount of C going towards the grain (dCG) and the fraction of the
remobilisable P (kmPi · Pi). Allometric constraints are applied on stem and grain C filling
(Eq. 3.13, 3.14) as well as on P filling of photosynthetically non-active tissue (Eq.3.15):

fCS
· dCL = dCS (3.13)

fCG
· rCS = dCG (3.14)

fPi · dPL = dPi; i = R,S (3.15)

fCS
and fCG

are the fraction of C going towards stem and grain, and are tied to the
amount of C allocated to leaf (dCL) and stem respired C (rCS) respectively. fPi is the
fraction of P going towards the photosynthetically non-active tissue (root and stem) and
is tied to the amount of leaf allocated P (dPL). Equation 3.13 follows the principle of the
pipe-theory model (Shinozaki et al., 1964). For grain (Eq. 3.14) we rely on the concept
of Iwasa and Roughgarden (1984) where grain filling is triggered once a plant reaches its
maturity. In our approach, we model grain filling as a continuous process where the grain
C flow reaches its peak when the vegetative part stops growing (or stem respiration is
highest). Equation 3.15 is a necessary assumption if we want to fill the photosynthetically
non-active pools with P, since the plant does not confer any benefit from doing so. Details
on the various variables and parameters are given in Table 3.1.
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Table 3.1: Model variables and parameters. Units correspond to values that would be expected in an agricultural
field trial. For the hydroponic studies, the units change according to the scale of the experiment to gDW pot−1

for biomass and mgP pot−1 for P. i denotes organs which are leaves (L), roots (R), stem (S) and grain (G). DW
stands for dry weight

Variable Description Unit

dCday Daily gross productivity tDW ha−1

dPday Daily root P uptake kgP ha−1

Ci Current C pool tDW ha−1

Pi Current P pool kgP ha−1

C∗
i Updated C pool tDW ha−1

P ∗
i Updated P pool kgP ha−1

dCi Daily C allocation tDW ha−1

rCi Daily C respiration tDW ha−1

dPi Daily P allocation kgP ha−1

mPi Daily grain remobilised P kgP ha−1

Constant

dt Time step day

kCL Assimilation rate tDW tDW−1 leaf day−1

kCR Root P uptake rate kgP tDW−1 root day−1

CL,max LUE half-saturation point tDW leaf ha−1

ρL,max PUE half-saturation point kgP tDW−1 leaf

fC,i=S,G C allocation fraction tDW tDW−1 leaf
λC,i=L,R,S,G C respiration rate day−1

fP,i=R,S P allocation fraction kgP kgP−1leaf
kmP,i=R,L,S Grain P remobilisation fraction tDW−1 grain day−1

3.2.2 Calibration : observations and protocol

We use the following datasets to calibrate our model with observations : a field trial and
two hydroponic studies. The field trial contains information on maize (Zea mays) shoot
biomass and organ P uptake during a whole growing season in 1996 (with an interval
of 7 to 20 days) and comes from a long-term experiment in Tartas, France (Plénet et al.,
2000) where maize response to different P input levels was recorded (3 levels, 4 repli-
cates). The hydroponic studies describe early vegetative response (within 3 to 4 weeks)
of shoot biomass, root biomass and shoot P uptake across five different P levels at ex-
periment end. They contain 7 temperate annual pasture species (Asher and Loneragan,
1967) and 5 cereal/legume ones (N. K. Fageria and Baligar, 1989). The pasture species
are subterranean clover (Trifolium subterranum), barrel medic (Medicago tribuloides), blue
lupin (Lupinus digitatus), smooth flatweed (Hypochoeris glabra), erodium (Erodium botrys),
capeweed (Cryptostemma calendula), silver grass (Vulpia myuros) and brome grass (Bro-
mus rigidus). The cereal/legume species are alfalfa (Medicago sativa), red clover (Trifolium
pratense), common bean (Phaseolus vulgaris), rice (Oryza sativa) and wheat (Triticum aes-
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tivum).
When calibrating, we use all of the available information to constrain themodel param-

eters (time and P level wise). This entails 13 time points across 12 different P experiments
(3 P levels x 4 blocks) in the field trial and only 1 time point across 5 different P experiments
for each hydroponic study. During calibration we assume the root P uptake rate kCR to
be the only parameter changing among the different P experiments as it reflects P avail-
ability. All of the other parameters are kept constant across the different P experiments.
In this manner the obtained values should be specific to the investigated species and the
environment they were grown in, where plant response depends on P availability alone.
Since we are concerned with P only, the calibrated values should correspond to growth
that is equally limited by other major abiotic factors (like water, light or N) across all dif-
ferent P experiments. For the hydroponic studies we assume a plant consisting of only
leaves and roots without allocation of P to roots. This is because aboveground biomass is
grouped into shoots in both hydroponic studies (Asher and Loneragan, 1967; N. K. Fageria
and Baligar, 1989) and no root P concentration is given in N. K. Fageria and Baligar (1989).

All of the parameters were kept constant during integration and calibrated in order
to minimize the prediction error until the incremental parameter change falls below 1%.
To start the calibration process we provide initial guess values based on maize, and as-
sume these are the same when calibrating other species. To calculate the assimilation rate
kCL we assume leaf specific leaf area (SLA) to be around 150 cm2 g DW−1 based on our
observation dataset, and refer to Kim et al. (2006) for the net assimilation rate Amax =

50 µ mol CO2 m−2 s−1. This results in kCL of approximately 1.5 gDW gDW−1 leaf day
−1 if we assume dry biomass consists of 50% C. To calculate the root P uptake rate we
use data from André et al. (1978) where average final root dry weight is 18 gDW plant−1

and total P taken up 1.71 gP plant−1 over a period of 100 days, which results in kCR of
approximately 1 mgP gDW−1 root day−1. LUE half-saturation leaf biomass CL,max was
estimated from Lindquist et al. (2005) where the average Beer-Lambert extinction rate k
was measured at 0.67 LAI−1. If we assume half of the light intensity is lost at same LAI
(LAILUE=1/2 = log(2)

k = CL,max · SLA) it gives a CL,max of around 1.5 tDW leaf ha−1

with the previously mentioned SLA. PUE half-saturation leaf concentration ρL,max was
estimated from Jacob and Lawlor (1991) where the majority of P limitation happens in the
1.8 - 7.2 mmolP m−2 range. This translates to 0.8 - 3.2 mgP gDW−1 with previously men-
tioned SLA so we assume a ρL,max value of 1 mgP gDW−1. For plant respiration we rely
on information on a whole plant basis (André et al., 1978; Vries, Witlage, and Kremer, 1979;
Vries, 1972) which aggregates contributions due to growth and maintenance respiration,
since we do not distinguish them neither. It can be found that maize respiration rates fall
in the 0.2 - 0.3 day−1 range in optimal growing conditions so we assume : 0.30 day−1 for
roots, 0.10 day−1 for leaves, 0.03 day−1 for the stem and 0.01 day−1 for the grain. Since
concentration and final mass are a product of growth and respiration and are not easily
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described by C:P ratios, we manually adjust the parameters related to allocation of C and P
towards stem and root as well as grain P remobilisation, until the modeled plant somewhat
resembled maize growth in our observation dataset. Afterwards we rely on the calibration
procedure to pinpoint the parameter values.

Table 3.2: Parameter initial guess values. For the hydroponic studies, the units change according to the scale of
the experiment to gDW pot−1 for biomass and mgP pot−1 for P. e asterix symbol (∗) signifies the parameter

was not used during calibration of hydroponic studies. DW stands for dry weight.

Variable Value Unit Description Reference

dt 0.1 day Time step -

kCL 1.5 tDW tDW−1 leaf day−1 Assimilation rate Kim et al., 2006
kCR 1.0 kg P tDW−1 root day−1 P uptake rate André et al., 1978

CL,max 1.5 tDW leaf LUE half-saturation biomass Lindquist et al., 2005
ρL,max 1.0 kgP tDW−1 leaf PUE half-saturation concentration Jacob and Lawlor, 1991

λCR 0.30 day−1 Root respiration rate André et al., 1978
Vries, Witlage, and Kremer, 1979
Vries, 1972

λCL 0.10 day−1 Leaf respiration rate ”
λCS 0.03∗ day−1 Stem respiration rate ”
λCG 0.01∗ day−1 Grain respiration rate ”

fCS 0.5∗ tDW stem tDW−1 leaf Stem C filling fraction Manually adjusted
fCG 1.0∗ tDW grain tDW−1 leaf Grain C filling fraction Manually adjusted

fPR 0.1∗ kgP root kgP−1 leaf Root P filling fraction Manually adjusted
fPS 0.8∗ kgP stem kgP−1 leaf Stem P filling fraction Manually adjusted

kmPi
0.05∗ tDW−1 grain day−1 P remobilisation coefficient Manually adjusted

CL,0 0.1 tDW leaf ha−1 Initial leaf biomass Manually adjusted
PL,0 0.1 kgP leaf ha−1 Initial leaf P Manually adjusted

Table 3.2 provides initial guess values and references for additional clarity. To calibrate
the parameters we used Scipy’s optimize package (E. Jones, Oliphant, and Peterson, 2001).
To solve the linear programming problem we linearise equations 3.2 - 3.4 and use the
package CVXOPT (Andersen, Dahl, and Vandenberghe, 2018). We integrate the model 160
days for the field trials and 30 days for the hydroponic studies. The calibrated values are
compared to our initial guess estimates in Table 3.3.

As we do not describe the soil-plant mechanisms leading to P limitation, we connect
the modeled root P uptake rate (kCR) to the observed soil solution concentration (CP )
after the calibration. This is done using a Michaelis-Menten kinetic (3.16) and results are
provided in the Supplementary Information.

kCR = aCP
· CP

bCP
+ CP

(3.16)

3.2.3 Sensitivity analysis of the modeled response

To provide a sense of each parameter’s impact on the modeled outputs we perform Sobol’s
method (Sobol, 1993) which is a global and model independent variance based sensitivity
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analysis (Nossent, Elsen, and Bauwens, 2011). Here, the output model variance (V ) is
decomposed into contributions due to each parameter input (Vi) and their interactions
with others (Vij) which allows the calculation of Sobol indices:

Si =
Vi

V
; Sij =

Vij

V
; STi = Si +

∑
i ̸=j

Sij + ... (3.17)

These are ratios of partial to total variance due to the parameter’s main effect Si (or
first order index), its interactions Sij (or second order index) or the sum of all of them
together STi (or total index). For a detailed derivation of these indices please refer to
Sobol (1993) and Nossent, Elsen, and Bauwens (2011). In our case the modeled outputs
were total plant biomass, total plant concentration and the RSR at simulation end. Sobol
sensitivity analysis was performed with the SAlib package (Herman and Usher, 2017) in
the 10% - 200% range of the initial guess values (Table 3.2) using 170 000 samples.

3.3 Results

3.3.1 Modeled plant response

The model is able to reproduce the typical growth pattern (J. H. M. Thornley, 1976) in
annual plants : an early exponential growth transitioning into steady state at maturity,
when grain filling takes place and P remobilisation occurs (Fig. 3.2, A and B).The evolution
of organ concentration is related to the dynamic of leaf LUE and PUE (Eqs. 3.3 and 3.4)
which is reflected in the evolution of the root-shoot ratio (or RSR, Fig. 3.2, C). There are
two distinct phases separated by the maximum growth point around 30 days. The plant
initially starts to grow P poor leaves, as the biomass gain due to LUE exceeds the PUE
one. As LUE decreases with self-shading, roots are progressively grown more to provide P
and sustain growth. After the maximum growth point around 30 days, the plant decreases
its RSR as the already accumulated leaf P can support additional growth. We provide the
dynamic of changing leaf LUE and PUE in Supplementary Fig. B.8 for more clarity.

Towards maturity, the RSR never falls to zero due to grain P remobilization from leaf.
The leaf P remobilisation induces a decrease in PUE and is compensated by maintaining
roots, which provide additional P to prevent it from decreasing further. This has the effect
of increasing total plant concentration due to the additional P flux into the whole plant.
Roots exhibit high P concentration towards maturity (Fig. 3.2, D) because accumulation
of P in root is driven by the amount of P going towards the leaf (Eq. 3.15) and not the
root C balance. This means that, since the plant accumulates enough P during its lifetime
to support leaf PUE, the decrease in root growth after the maximum growth point will
increase its concentration rapidly (Fig. 3.2, D). The ”jagged” nature of C allocation (best
seen in the RSR, Fig. 3.2 C) is due to the linear approximation of daily productivity (Eq.
3.2) and the optimization algorithm, which chooses to instantaneously (dt = 0.1 day) grow
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either leaf or root.

Figure 3.2: Modeled plant response with initial guess values (Table 3.2). Plots show the time evolution at high P
availability (kCR = 1.0 kgP tDW−1 root ha−1 day−1). Upper row depicts C pools (le) and P pools (right).

Lower row depicts the RSR (le) and organ concentration (right). Colors depict different plant organs.

Lowering the P availability (or the root P uptake rate kCR) has the effect of decreasing
total plant biomass as more C is devoted to the roots (seen by the increasing RSR in Fig.
3.3, C) and a decrease in leaf PUE. Across different kCR values, the RSR might seem lower
than what is usually observed (0.2 - 0.8 in Amos andWalters 2006) asCR represents active
uptake root tissue. This could be improved by adding a separate passive root C pool with
a lower respiration rate that would bring down total root concentration (Fig. 3.3, D)

3.3.2 Sobol sensitivity analysis

Looking at parameter influence on final plant biomass (Fig. 3.4, A, red) we can see assim-
ilation (kCL) and self-shading (CL,max) have the most direct effect, as they determine the
amount of C available for growth. This fact can be also be seen in the individual interaction
terms (Fig. 3.4, B) where kCL×CL,max stands out from the rest. Other contributions come
mostly from interactions by organ respiration rates (λCi), C allocation fractions (fCi), root
P uptake rate (kCR) and leaf P demand (ρL,max). For λCi and fCi, allocation of C to various
organs determines the amount of lost C due to respiration; a fixed ratio for stem and grain,
and a variable one for root (depending on kCR and ρL,max)

Looking at parameter influence on final plant concentration (Fig. 3.4, A, blue) assimila-
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Figure 3.3: Modeled plant response with initial guess values (Table 3.2). Plots show modeled values at season end
as function of root P uptake rate. Upper row depicts C pools (le) and P pools (right). Lower row depicts the RSR

(le) and organ concentration (right). Colors depict different plant organs.

tion (kCL) and leaf respiration (λCL) exert the most direct effect. Increasing kCL increases
total plant concentration as more C is available for root growth, which in turn increases
the flux of P towards leaf and the whole plant. Increasing λCL brings down total plant
concentration on the other hand, since a higher respiration rate both raises leaf P con-
centration and lowers the amount of C available for root growth, in turn lowering the P
flux to the leaf and ultimately the whole plant. The other parameters responsible for final
plant concentration are root P uptake (kCR), leaf P demand (ρL,max), C allocation fractions
(fCi), root respiration rate (λCR) and leaf remobilisation rate (kmPL). For kCR and ρL,max

this is not surprising, as increasing P availability and leaf P demand increases the overall
flux of P into the whole plant. For fCi, C allocation to non-root organs lowers the P flux
into the plant as well concentration due to enhanced growth. For λCR, it determines the
amount of P gained per C lost to root respiration. For kmPL, it is due to leaf PUE upkeep
as explained in the previous sub-section.

Parameter influence on final RSR (Fig. 3.4, A, green) is similar to one obtained for plant
concentration (Fig. 3.4, A, blue) withmore contribution due to parameter interaction. Also,
a much higher contribution of root respiration rate (λCR) can be seen, as it determines the
net root growth rate and subsequently the plant RSR.

Parameters which seemingly do not affect neither of the three modeled quantities (Fig.
3.4, A) are the amount of P allocated to roots (fPR), grain respiration rate (λCG), P remobil-
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Figure 3.4: Results of Sobol sensitivity analysis on Ctotal, ρtotal and RSR at simulation end. Upper row shows
the total contribution (coloured) and sum of all interactions (hatched) for each model parameter. Lower row

shows individual interaction contribution between each parameter. Red dots denote values that are significantly
higher than zero. Parameter description can be found in Table 3.2.

isation rates (kmPi) and initial leaf conditions (CL,0 and PL,0). For fPR, it is due to roots’
low biomass and low P allocation priority. For λCG, it is due to the grain respiration value
affecting the whole plant net C balance only slightly. For kmPR and kmPS , it is due to
non-leaf remobilisation only redistributing P among different organs. CL,0 and PL,0 only
affect the initial adjustment stage (before the max. growth point) after which biomass and
P pools are a product of C and P availability.

3.3.3 Comparison with field data

The model is able to reproduce very well the evolution of C pools during a growing sea-
son (Fig. 3.5, A and C) with discrepancies probably stemming from seasonal temperature
effects which are not present in our model (via respiration and photosynthesis). When it
comes to the observed P pools, the model is not able to reproduce the evolution of tissue
P accumulation during the vegetative stage (Fig. 3.5, B and D) due to the previously men-
tioned LUE × PUE dynamic. In the observations, it seems most of the plant P is taken up
during this period and remobilised by the grain at a later stage.

In spite of the model’s inability to predict the timing of vegetative P uptake, it manages
to predict well the final plant response at different P levels (Fig. 3.6, B). The consistency of
the response can be also be seenwhen comparing predicted root uptake rates andmeasured
soil P availability (Supplementary Fig. B.9). A part of the mismatch comes from the fact
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Figure 3.5: Modeled vs. observed time-series for the highest P input field maize experiment (block 4). Upper row
depicts root, leaf, stem and grain C pools (le) and P pools (right). Lower row depicts total plant C (le) and total
plant P concentration (right). Individual organs are depicted with different colors, where as total plant quantities

are depicted with black.

that we use the whole season to calibrate our model. The other mismatch comes at high
P availability when luxury uptake is observed (Fig. 3.6, C) but is not reproducible by our
method as the plant grows in the most frugal way possible. Additionally, concentration of
vegetative organs starts to decrease with higher P availability (Fig. 3.6, C) due to excessive
grain P remobilisation. This might be due to observations falling mostly in the luxury
uptake range, and could potentially be better constrained by having more P limited data.

The differences in calibrated and initial guess values (Table 3.3) are mainly due to dif-
ferences in the cultivar and the growth environment. The assimilation rate (kCL) should
depend on cultivar as well as temperature and the amount of light, where as LUE half-
saturation point (CL,max) depends on planting density. Even though rates of root P up-
take (kCR) and respiration (λCR) are set during calibration, they might not contain reliable
information since they are not constrained directly. λCR deviates much more than kCR

from the initial guess during calibration because its influence on the model is lower (Fig.
3.4, A). But these items should not pose a serious problem as overall influence of kCR and
λCR on the model is moderate (Fig. 3.4, A) and the simulated root mass is not grossly
misrepresented (Figs. 3.5 and 3.6). Leaf respiration (λCL) is much higher than the initial
guess, most probably due to senescence or additional temperature dependent mechanisms
which we do not account for. The same goes for stem and grain respiration rates (λCS
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Figure 3.6: Modeled vs. observed values at field maize experiment season end as function of root P uptake rate.
Leaf P remobilisation is turned on in the top row and turned off in the boom one. From le to right the columns

show C pool, P pool and concentration for leaf, stem and grain. Different organs are depicted with different
colors. Lines are modeled values and markers are observed ones.

and λCG) although λCS turns out to be lower in the end. Initial leaf biomass and P values
(CL0 and PL0) show a high degree of uncertainty as they do not impact the overall model
behaviour, but rather the initial adjustment period until the plant reaches the maximum
growth point.

3.3.4 Comparison with hydroponic studies

The general form of plant response to P availability is reproduced well : an increase in
shoot biomass, shoot fraction and concentration (Fig. 3.7) with increasing P in the nutrient
solution (Supplementary Fig. B.10). Some discrepancies remain due to toxicity effects and
luxury uptake, which are present in observations but are not reproducible by the model.
They can be seen at high shoot P concentration (Fig. 3.7, A and B) when shoot biomass
remains the same or starts to decline, contrary to the model which in principle has no limit
to growth. P toxicity effects are usually linked to interactions with zinc (Zn, Loneragan
et al., 1979) where Zn transport from root to shoot is inhibited and Zn deficiency is induced
which could be be represented in our model by a form of P control on Zn uptake. Luxury
uptake of P luxury can not be reproduced as mentioned previously, because the plant is
grown in the most P efficient way possible.

The calibrated values are different from the initial guess values as expected (Table 3.3)
due to species diversity and differences in the growing environment as mentioned before.
The values obtained are quite similar to ones from the maize field trial (Table 3.3) with the
exception of root respiration rate (λCR) which is two to three times higher (0.3 - 0.6 day−1

for hydroponics vs. 0.14 day−1 for field maize). This might be due to the experiment nature
that looks at initial vegetative growth only, where younger roots expend much more C.
Additionally, all of the calibrated parameters show a high degree of uncertainty which is
due to a relatively small number of observations (information at experiment end only).
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Table 3.3: Calibrated values for both the field trial and the hydroponic studies. Values for hydroponic studies are
given as an average over all species. All parameters were kept the same across different P levels except kCR

which reflects P availability (minimum and maximum provided here). Parameter description can be found in
Tables 3.1 and 3.2. Refer to Supplementary Tables B.4 and B.5 for per-species hydroponic values and a complete

set of kCR values.

Parameter Initial guess Calibrated values ± std. error

Field trial Hydroponic studies

kCL 1.5 1.71 ± 0.11 1.65 ± 0.93

kCR min 1.0 0.83 ± 0.09 0.09 ± 0.69
kCR max 1.0 1.84 ± 0.20 1.52 ± 0.83

CL,max 1.5 0.90 ± 0.09 0.64 ± 0.38
ρL,max 1.0 1.09 ± 0.09 1.56 ± 0.59

λCR 0.30 0.14 ± 0.03 0.41 ± 0.57
λCL 0.10 0.16 ± 0.02 0.11 ± 0.24
λCS 0.03 0.01 ± 0.01 -
λCG 0.01 0.02 ± 0.01 -

fCS 0.5 0.40 ± 0.05 -
fCG 1.0 2.36 ± 0.21 -

fPS 0.8 1.56 ± 0.07 -
fPR 0.1 0.04 ± 0.09 -

kmPL 0.05 0.06 ± 0.01 -
kmPR 0.05 0.25 ± 0.12 -
kmPS 0.05 0.07 ± 0.01 -

CL,0 0.1 0.01 ± 0.03 0.09 ± 0.47
PL,0 0.1 0.03 ± 0.02 0.06 ± 0.60

3.4 Discussion

According to themodel results, the effects of P limitation on plants can largely be described
as a compromise between root and leaf growth combined with changing efficiency of leaf P
use. In situations of low P supply, plants devote relatively more C to roots at the expense of
shoot to sustain plant P demand. This sets the stage for P limitation as lower leaf biomass
translates into a lower biomass potential. Increasing the P availability will increase the
plant’s ability to grow due to higher leaf concentration, but the efficiency of this gain
decreases as more roots are needed to sustain additional growth.

The model itself does not attempt to include all of the mechanisms that modulate C
and P availability which could render it into a fully-fledged vegetation one ( Krinner et
al., 2005; Mäkelä, Valentine, and Helmisaari, 2008; McMurtrie et al., 2008; Franklin et al.,
2009). Instead, it tries to describe plant response by relying on the functional role of dif-
ferent plant organs (which are acquisition of C in leaves and P in roots). These are simply
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Figure 3.7: Modeled vs. observed shoot biomass (top row) and root-shoot ratio (boom row) versus shoot P
concentration. Results show the response at at hydroponic experiment end. Le column depicts grass species
(Asher and Loneragan, 1967). Right column depicts cereals and legumes (N. K. Fageria and Baligar, 1989).

expressed as resource uptake rates (the leaf assimilation rate kCL and root P uptake rate
kCR) to facilitate comprehension, whereas in reality they are strongly modified by the
plant’s environment. Leaf assimilation depends on temperature, incoming radiation and
CO2 partial pressure (Berry and Bjorkman, 1980) as well as water availability (Hsiao, 1973).
Root P uptake depends on the properties and the amount of P in the underlying soil, as well
as the physiological and physico-chemical limits to P transport (Barber, 1995). Inclusion of
these processes via known mechanistic models like Farquhar’s photosynthesis (Farquhar,
von Caemmerer, and Berry, 2001) or Barber’s P diffusion one (Barber, 1995) would enable
this approach to be extended to a multitude of growing environments. But the generaliza-
tion and the additional level of detail would not necessarily improve the model’s ability to
reproduce plant behaviour which, in essence, only tries to describe how to allocate C and
P between root and leaf.

Additionally, most of the model response rests on the shoulders of leaves (Fig. 3.4, A)
which is not surprising as the whole concept of optimal functioning revolves around max-
imizing leaf productivity. This is a serious drawback of the approach because plants posses
a multitude of architectural and development strategies to cope with reduced P availability
(Niu et al., 2012; Plaxton and Lambers, 2015). Architectural ones (Niu et al., 2012) include
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increased top-soil foraging, lateral root growth promotion, root length density increase
and cluster root formation. The first two could be modeled using a 2-dimensional root
model (Heinen, Alain Mollier, and Willigen, 2003) but require a vertical description of
soil P fractions instead of a bulk soil P quantity. The latter two (dealing with root length
density) could be attempted by implementing different root orders with varying C respi-
ration and loss rates. Development strategies (Plaxton and Lambers, 2015) include root
exudation of acids and enzymes, mycorrhizal association, lowering the metabolic cost of
photosynthesis and increasing P remobilisation efficiency/seed P content among others.
But these require a much more complex description of soil P chemistry, as well as a full
accounting of C costs and benefits for each of the underlying processes. Nevertheless, we
foresee no fundamental issues with their implementation which we avoid here to facilitate
comprehension of the model and its results.

Our approach is similar to previous optimal function ones (McMurtrie et al., 2008;
Mäkelä, Valentine, and Helmisaari, 2008; Franklin et al., 2009) where plant productivity
is modified by leaf nutrient concentration and allocation among different organs opti-
mized in order to reach maximum growth. This assumption provides a reasonable starting
point for describing plant physiological and functional response, but overlooks the fact
that leaves are the only ones impacted by the PUE assumption (Eq. 3.4). According to this
hypothesis (which is driven by leaf concentration alone) there is no benefit from investing
P into non-assimilating organs. To overcome this, allocation of P is linked via stoichiom-
etry constraints (Eq. 3 in Franklin et al., 2009) or directly to the leaf concentration (Eq. 8
in Mäkelä, Valentine, and Helmisaari, 2008). We follow the second approach, where filling
of non-assimilating organs is driven by the leaf P flux (Eq. 3.15). An answer to this issue
might be to increase model complexity like in Thornley’s transport-resistance approach
(John H. M. Thornley, 1995) where a plant is described as a network of nutrient and C
exchanging organs, whose individual growth is determined by the labile (or exchanged)
substrate concentration. But the problem using this approach is the reliance on parameters
which are seldom measured (G. Ågren and Franklin, 2003) like rates of nutrient produc-
tivity, substrate utilization rates and transport resistances.

One notable difference between our model and some of the mentioned studies (Mäkelä,
Valentine, and Helmisaari, 2008; Franklin et al., 2009) is the lack of maintenance respira-
tion due to P. Maintenance respiration is defined as a C cost deducted from gross primary
productivity (GPP) to support the nutrient’s metabolic activity. For N, this cost is related
to protein turnover which requires energy for replacement and repair (Ryan et al., 1996)
where as for P the cost could be related to formation of nucleic acid and triose phosphate
(Rowland et al., 2017). We chose not to implement this process primarily because the avail-
able information is confined to forest eco-systems in tropical and sub-tropical area (Meir,
Grace, and Miranda, 2001; Rowland et al., 2017) which are not studied here. On a con-
ceptual level, this assumption is not necessary to elicit plant response to varying nutrient
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availability. The decreasing P efficiency (via the PUE kinetic, Eq. 3.4) is a sufficient condi-
tion, where additional C gains are more andmore expensive due to increasing requirement
for root growth. Introducing additional C costs due to P maintenance respiration should
modify only the final C balance at different P levels, but separating P contributions to
maintenance respiration is difficult at this point due to dearth of data as mentioned.

In spite of some short-comings, optimal function approaches provide a sensible de-
scription of plant development that relies less on empirical constraints (like potential leaf-
area curves, thermal sum driven phenology and prescribed allocation patterns) which are
often employed in eco-physiological models (Sönke Zaehle and Dalmonech, 2011; Rosen-
zweig et al., 2014). Even though seasonal dynamics of P allocation are not captured well,
it might not be a critical issue as final distribution of P among plant organs should have
an effect on long-term P cycling (P. M. Vitousek et al., 2010) and can be captured well by
final plant concentration. What is more important is the representation of C phenology,
as it has a more direct connection to the plant’s energy and water balance. This paves way
for connection to the plant’s metabolism that is strongly moderated by temperature and
water availability (Berry and Bjorkman, 1980; Atkin and Tjoelker, 2003; Hsiao, 1973).

For temperature, this should be pretty straightforward by moderating rates of assimi-
lation (kCL, Table 3.1) and respiration (λCi, Table 3.1) via known mechanistic or empirical
relationships (Berry and Bjorkman, 1980; Atkin and Tjoelker, 2003). For water, an in-
creased level of complexity is warranted. The main mechanism of plant response to water
stress is the regulation of stomata closure to maintain internal water potential (Hsiao,
1973). Even though a multitude of physiological symptoms emerge in water stressed con-
ditions (Hsiao, 1973) the most pertinent one is the loss in photosynthetic capacity due to
a decrease in leaf CO2 flux with stomata closure. This presents two avenues to modify
plant productivity, either by increasing root water uptake or decreasing leaf transpiration.
Increasing root uptake will increase C costs due to root growth and maintenance, where as
decreasing leaf transpiration will decrease C gains through lower assimilation capacity as
mentioned before. One way to approach this problem is to prioritize water by prescribing
stomate behaviour at different water levels, and then optimize C allocation to maximize
nutrient driven productivity like in McMurtrie et al., 2008. But taking into account both
of these strategies requires additional links via the assimilation rate kCL and the plant’s
water balance, that can not be captured by a simple resource use kinetic typically utilised
in optimal function approaches (Dewar et al., 2009).

So far we tacitly assume P limitation can be treated in the same way as N. Even though
this is not justified physiologically, the observed functional response of root biomass change
(Poorter et al., 2012) can serve as an argument for it. From a leaf productivity perspective
the primary role of N is to provide the enzymes that catalyze photosynthesis where as for
P, it is the ribosomes that allow their formation (G. I. Ågren, 2008). Decreasing availability
of both N and P should have an effect on leaf photosynthetic efficiency and drive plant re-
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sponse. This is what our PUE kinetic (Eq. 3.4) tries to achieve similar to the other N based
studies (Dewar et al., 2009). Furthermore, their interaction could be attempted by weigh-
ing gross productivity (Eq. 3.2) with individual resource use kinetics ones like our PUE
one (Eq. 3.4). It is very likely though that caveats encountered here would be even more
pronounced with multiple limiting factors, since plant response is driven by leaf alone.

Our model could be integrated within a dynamic vegetation model (Krinner et al.,
2005) where growth can be driven by a more physical description of underlying plant
processes. In our approach, assimilation and root uptake are directly connected to leaf
and root biomass. These could be transformed to leaf area index and root length density,
making them amenable to explicit photosynthesis (Farquhar, von Caemmerer, and Berry,
2001) and soil-root diffusion (Barber, 1995) parametrizations. Furthermore, connection to
the underlying soil can be done via a soil P model (Y. P. Wang, Houlton, and C. B. Field,
2007; Ringeval et al., 2017). Such coupling could help us investigate effects of P limitation in
eco-systems (Peñuelas et al., 2013) while accounting for plant adjustment and investigate
long term effects of P cycling (Goll et al., 2012; Ringeval et al., 2017).
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Abstract

The knowledge on how global crop production will respond to a changing envi-
ronment is direly needed, as research points to an uncertain future, putting into ques-
tion our capacity to adapt to the coming times. Impacts of climate and management
are unquestionable to this date, but how their interaction will steer global production
requires a more comprehensive look. To this end, we describe a crop model based
on optimal functioning (OF) principles, which we combine with a generic vegetation
one (ORCHIDEE) and apply it to the issue of phosphorus (P) limitation, for which it
has already been shown a great potential to contribute to existing global production
gaps.

OF framework tries to model plant response based on growth resource avail-
ability, which in our case are carbon (C) and P. Combining ORCHIDEEs physical
parametrizations with OF allows for a dynamic feedback of plant growth to a chang-
ing environment, which we compare to two irrigated monoculture maize systems
(Nebraska,USA and Tartas,France). Additionally, we qualitatively compare the per-
formance of the OF version to the original one over a climate gradient.

OF is largely capable of capturing the evolution of different C pools in a growing
season, but not so for P. This is due to the parsimonious nature of its underlying
hypotheses, which center on leaf productivity alone. Additional improvements need
to be made, most notably the inclusion of water (H2O) effects and a complete soil
P cycling module. But in spite of these processes missing, a consistent framework
is provided for simulating hypothetical future scenarios which could potentially be
extended to the global scale.
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4.1 Introduction

Quantification of global crop productivity is of great importance, especially in light of
recent global change, as agricultural systems all over are exposed to a multitude of factors
determining food security for the near future (Foley et al., 2011; Wheeler and Braun, 2013).
Today’s limits to the majority of world crop production can be explained in large part by
climate trends and variability (D. Lobell and C. Field, 2007; Ray et al., 2015), as well as
employed management practices (Mueller et al., 2012; Sinclair and Rufty, 2012; Lassaletta
et al., 2014) all of which points to the climate-management interaction as themain driver of
crop production to this date. But assessment of their combined historical effects and how
these will play out in the future is needed, as research points to ”a looming and growing
agricultural crisis” (Ray et al., 2013).

The previously mentioned estimates are based on statistical approaches, which work
by establishing strong empirical links with main drivers of yield response (climate, irri-
gation and nutrient addition) and permit a robust accounting of their implicit means of
action (D. Lobell and C. Field, 2007). But the simplified nature of treating aggregate effects
on crop yield might overlook other mechanisms that could relieve limitation (like plant
adjustment or existing nutrient reserves) and whose information on a global scale is not
easily obtainable, restricting the use of such relationships to the range of environments
and periods inquired. A useful counterpart to statistical approaches are global gridded
crop models (GGCMs) which include parametrization of plant-soil processes and manage-
ment effects, allowing a more integrated description of crop growth that can be extended
to hypothetical scenarios (Deryng et al., 2014; Rosenzweig et al., 2014).

An example highlighting the need for a more elaborate description of limitation in
crops is phosphorus (P), a major plant nutrient (N. K. Fageria, 2009). Distribution of P in
global cropland is highly unbalanced (MacDonald et al., 2011) and its availability to crops
strongly determined by soil properties and history of P input (Ringeval et al., 2017) due
to the nature of soil-plant P exchange (Barber, 1995). The issue of P (as with any other
growth limiting resource) beckons for a deeper look into crop limitation mechanisms and
how a plant reacts to them, if we are to have a clearer picture of crop production today
and in the future.

In the case of nutrient limitation, or specifically P in ours, the primary plant response
is reallocation of carbon (C) towards roots to change its root-shoot ratio (RSR) and coun-
teract the decreased P supply (Marschner, Kirkby, and Cakmak, 1996). Since P serves an
important role in the plant’s metabolism (Plaxton and Lambers, 2015) lowering the P sup-
ply will necessarily impact growth and ultimately crop yield. One of the ways to model
plant adjustment to nutrient limitation is the optimal functioning (OF) approach (Dewar
et al., 2009) where a plant is described as a set of organs serving a certain function (assim-
ilation of C in leaves, uptake of P in roots). The activity of each organ is guided with one
goal in mind: maximising plant productivity as a proxy for individual fitness. Even though
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a simplistic view of plant behaviour (John H. M. Thornley, 1995; Franklin et al., 2012), OF
approach provides a parsimonious and transparent way of modelling plant adaptation to
nutrient availability and environmental change (Dewar et al., 2009).

Accounting for climate effects on plant growth is possible using well establishedmech-
anistic relationships of processes like photosynthesis (Farquhar, vonCaemmerer, and Berry,
2001), transpiration (Ball, Woodrow, and Berry, 1987) and respiration (Ruimy, Dedieu, and
Saugier, 1996). These are an integral part of dynamic global vegetation models (DGVMs,
C. Peng, 2000) which try to capture the surface exchange of C, water (H2O) and energy for
the purpose of vegetation-climate feedback modelling. To this end we rely on the model
ORCHIDEE (Krinner et al., 2005) and combine it with OF principles to model plant growth
as function of C and P availability. By employing a generic description of the underlying
mechanisms we hope to enable the study of C x P interaction in a multitude of environ-
ments, which is to be used on a global scale.

4.2 Methods

4.2.1 ORCHIDEE description

The employed DGVM is an improved version of ORCHIDEE (Matthieu Guimberteau et al.,
2018) which consists of two main parts. The first one deals with short-term processes (30
minutes) of hydrologic/thermal exchange and photosynthesis. The second one deals with
long-term processes (1 day to 1 year) of C respiration, allocation, plant phenology and
plant community dynamics. The improved version (Matthieu Guimberteau et al., 2018)
focuses on the parametrization of high-latitude processes like: permafrost physics, snow
melting/insulation and soil organic C feedback on soil physical properties. Most of these
processes are turned off for this work (as we model irrigated maize in a temperate climate)
so we shall focus on ones that are directly coupled to the proposed OF approach. For
an exhaustive description of other parametrizations please consult the mentioned refer-
ences: Krinner et al. (2005) for the original and Matthieu Guimberteau et al. (2018) for the
improved one.

ORCHIDEEs main paradigm is the use of plant functional types (PFTs) of which there
are 13 (bare soil, 8 types of forests, 2 types of grasses and 2 types of crops). These PFTs
occupy a certain fraction of every simulated grid point and determine parameter values
for all underlying parametrizations. As we simulate irrigated maize monoculture, we pre-
scribe the entire area as maize PFT and do not change it. During simulation, we rely on
ORCHIDEE parametrizations to drive plant growth and optimally allocate C in the OF
version. For this we need several ORCHIDEE calculated quantities: the flux of C via as-
similation and respiration, and the flux of P via root P uptake.

In ORCHIDEE, C4 species assimilation rate (A, µmolCO2 m−2 s−1) is calculated using
photosynthesis/stomatal models (Collatz, Ribas-Carbo, and Berry, 1992; Ball, Woodrow,
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and Berry, 1987) and leaf area index (LAI) to calculate gross primary production (GPP).
This is done every 30 minutes to account for changes in H2O availability and temperature,
and summed up each day to produce daily GPP (gC m−2 day−1) as available C for plant
respiration and growth. LAI is connected to leaf biomass via constant specific leaf area
(SLA) and a Beer-Lambert extinction law is used to calculate the effective assimilation rate
of an expanding canopy:

I(x) = I0 · e−k·x (4.1)

GPP ∝
∫ LAI

0
A(I)dx (4.2)

A is the leaf photosynthetic rate (µmolCO2 m−2 s−1), LAI the leaf area index (-), k
the light extinction rate (LAI−1), I0 the incident radiation at canopy top (W m−2) and x

is the cumulative canopy LAI (-). Effects of H2O, nitrogen (N) and leaf age can additionally
be taken into account, but are disabled here since we assume the plant not to be limited
by neither.

In ORCHIDEE, total plant respiration is calculated as the sum of maintenance and
growth respiration. Maintenance respiration rates (λi) are calculated as a linear function
of temperature (Ruimy, Dedieu, and Saugier, 1996):

λCi = λ0 · (1 + λTi · T ); i = R,L, S,G,X (4.3)

λCi is the organ respiration rate (day−1), λ0 is the respiration rate at zero degree Cel-
sius (day−1), λTi is the change in respiration rate with annual temperature (day −1 Co−1)
and T is temperature in Celsius. Index i denotes organs : roots (R), leaves (L), stem (S),
grain (G) and reserve (X). Maintenance respiration can use up to 80% of available as-
similates, after which plant biomass is spent (or removed) to satisfy maintenance costs.
The remaining assimilates are used to grow plant organs, from which growth respiration
is deducted using a fixed ratio (28%). For OF purposes, we turn growth respiration off
and model total plant respiration using only the maintenance calculated rates (Eq. 4.3) as
growth respiration is calculated during allocation (described below).

C allocation in the original ORCHIDEE is performed using prescribed allocation frac-
tions as function of light, H2O and N availability. Since considerable changes were intro-
duced in ORCHIDEE (see Eqs. A29 - A41 in Krinner et al. 2005), we present the allocation
scheme in it’s original form for clarity sake (Friedlingstein et al., 1999):

fR = 3 · r0 ·
L

L+ 2 ·min(W,N)
(4.4)

fS = 3 · s0 ·
min(W,N)

2 · L+min(W,N)
(4.5)
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fL = 1− fR − fS (4.6)

fR, fS and fL are allocation fractions for roots, stems and leaves. L, W and N are
scalars (0.1 - 1.0) representing light, H2O and N availability. r0 and s0 are root and stem
allocation fractions in unlimited conditions (or when L, W and N are equal to one). We
circumvent this step in our version, as C and P are allocated using OF principles.

Nutrient availability in ORCHIDEE is prescribed as an empirical function of soil hu-
midity and temperature for N only. Since we are interested in P and no explicit description
of plant-soil nutrient cycling exists, we prescribe P availability as a constant root uptake
rate while N (like H2O) is considered to be not limiting.

ORCHIDEE describes rules for growth initiation based on meteorological criteria like
temperature sums or moisture thresholds, but we use prescribed initiation days to repre-
sent planting dates (as we simulate monoculture maize)

4.2.2 Optimal functioning implementation

We provide a schematic depicting how the previously mentioned processes are coupled
to the optimization process (Fig. 4.1). Within ORCHIDEE, respiration rates (λi) and GPP
(GPPday) are calculated using plant biomass (Cplant) and LAI (LAI) on a daily basis.
These values are passed to the optimization routine to allocate C and P. Since there is no
feedback of plant P (Pplant) on ORCHIDEE parametrizations, Pplant is considered only
within the optimization routine. Following optimal allocation, Cplant, Pplant and LAI are
updated before the next time-step, when the whole process repeats. λi are passed directly,
whereasGPPday includes leaf shading effects (Eqs. 4.1 and 4.2) which are removed before
optimization is performed.

In the optimization routine, we describe the plant as a set of organs (root, leaf, stem,
grain and reserve) where leaves and roots acquire respectively C and P.These are allocated
in order to maximize leaf productivity (dCday) limited by self-shading (LUE) and leaf P
status (PUE) in the form of a Liebig’s law of minimum:

Maximize(dCday) (4.7)

dCday ≤ kCL · CL,max · LUE · dt (4.8)

dCday ≤ kCL · CL,max · PUE · dt (4.9)

LUE =
C∗
L

C∗
L + CL,max

(4.10)
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Figure 4.1: Schematic of optimal allocation within ORCHIDEE. Arrows show feedbacks between ORCHIDEE (red)
and the optimization routine (blue) from one time-step to the other.

PUE =
P ∗
L

P ∗
L + C∗

L · ρL,max
(4.11)

dCday is the daily GPP (gC m−2) and kCL the potential leaf assimilation rate (gC gC−1

day−1). CL,max and ρL,max are leaf biomass (gC m−2) and P concentration (mgP gC−1) at
whichmaximum leaf productivity is halved. C∗

L andP ∗
L are updated leaf biomass (gCm−2)

and P (mgP m−2). dt is the optimization time-step (1 day). kCL is calculated by dividing
ORCHIDEEsGPP with current leaf biomass (CL) after shading effects have been removed
(Eq. 4.1 and 4.2).
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Figure 4.2: Relative leaf productivity (le) and YL use efficiency (Y UE, right) where YL is a generic
leaf-dependent element. Dark line represents the form used in our work (Eqs. 4.10 and 4.11). Potential

productivity rate is depicted with a full red line and a dashed one when quartered. dCday,max is maximum leaf
productivity in fully unlimited conditions equal to kCL · CL,max
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The mechanism of LUE and PUE interaction is depicted in Fig. 4.2 where leaf pro-
ductivity is drawn as a function of a generic leaf-dependent element (YL) which in our
case areCL and ρL. Low YL availability equates to low productivity but also to highest ef-
ficiency of YL use (Y UE) when the production rate is highest. Leaf productivity increases
with YL (but with decreasing Y UE) the limit of which converges to kCL · CL,max · dt;
the maximum leaf productivity in fully unlimited conditions. The rest of the optimization
describes the flow of C and P in the plant using the following set of equations. For C these
are:

C∗
i = Ci + dCi − rCi (4.12)

dCday =
∑

i=L,R,S,G,X

dCi (4.13)

rCi = λCi · Ci · dt (4.14)

C∗
i is the updated C pool as a balance of allocated C (dCi) and respired C (rCi). Ci is

the current C pool and λCi is the respiration rate. Index i denotes different organs. For P,
the equations are following:

P ∗
i = Pi + dPi −mPi (4.15)

dPday = kCR · C∗
R · dt (4.16)

dPday =
∑

i=L,R,S,X

dPi (4.17)

mPi = kmPi · Pi · dt; i = L,R, S (4.18)

∑
i=L,R,S,G

mPi = 0 (4.19)

P ∗
i is the updated P pool of each organ i, which a balance allocated P (dPi) taken up

by the roots (dPday), and remobilised P (mPi). Pi is the current P pool, kCR is the root
P uptake rate and kmPi is the P remobilisation rate. Index i denotes different organs.
We assume no saturating effect for root uptake (Eq. 4.16) to reduce model complexity,
assuming it can be due to external physical limitations to P supply (eg. soil diffusion) which
are not modeled here. Allometric constraints are applied on stem and grain C filling, as
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well as on P filling of non-assimilating tissue:

fCS
· dCL = dCS (4.20)

fCG
· rCS = dCG (4.21)

fPi · dPL = dPi; i = R,S (4.22)

fCS
and fCG

are the fraction of C going towards stem and grain, and are tied to the
amount of C allocated to leaf (dCL) and stem respired C (rCS) respectively. fPi is the
fraction of P going towards the photosynthetically non-active tissue (root and stem) and
is tied to the amount of leaf allocated P (dPL). Equation 4.20 follows the principle of the
pipe-theory model (Shinozaki et al., 1964). For grain (Eq. 4.21) we rely on the concept
of Iwasa and Roughgarden (1984) where grain filling is triggered once a plant reaches its
maturity. In our approach, we model grain filling as a continuous process where the grain
C flow reaches its peak when the vegetative part stops growing (or stem respiration is
highest). Equation 4.22 is a necessary assumption if we want to fill the photosynthetically
non-active pools with P, since the plant does not confer any benefit from doing so. Details
on the various variables and parameters are given in Table 4.1.

Table 4.1: Optimal allocation variables and constants. i denotes different organs : leaves (L), roots (R), stem (S),
grain (G) and reserve(X).

Variable Description Unit

kCL Potential assimilation rate gC gC−1 leaf day−1

dCday Daily gross productivity gC m−2

dPday Daily root P uptake mgP m−2

Ci Current C pool gC m−2

Pi Current P pool mgP m−2

C∗
i Updated C pool gC m−2

P ∗
i Updated P pool mgP m−2

dCi Daily C allocation gC m−2

rCi Daily C respiration gC m−2

dPi Daily P allocation mgP m−2

mPi Daily P remobilised mgP m−2

Constant

dt Time step day

kCR Root P uptake rate mgP gC−1 root day−1

CL,max LUE half-saturation point gC leaf m−2

ρL,max PUE half-saturation point mgP gC−1 leaf

fC,i=S,G C allocation fraction gC gC−1 leaf
λC,i=L,R,S,G C respiration rate day−1

fP,i=R,S P allocation fraction mgP mgP−1leaf
kmP,i=R,L,S P remobilisation fraction gC−1 grain
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4.2.3 Calibration with observations and ORCHIDEE comparison

We use two different datasets to calibrate our model, both of which describe growth of ir-
rigated monoculture maize in a temperate environment (with information given every 7 to
14 days). The first one comes from an eddy-covariance site in Nebraska, United States (B.
Peng et al., 2018) and the other from a long-term fertilization experiment in Tartas, France
(Plénet et al., 2000). The Nebraska dataset contains information on aboveground biomass
allocation, LAI and C exchange (GPP and ecosystem respiration) for a single site in the pe-
riod 2003-2012, with management conditions assumed to be constant. The Tartas dataset
contains information on LAI, aboveground biomass and P allocation for 3 different sites
in the year 1996, with each site having a different P management history (3 P levels). Due
to the nature of information availability in each dataset, Nebraska should better constrain
the C portion of the model whereas Tartas should better constrain the P one. The above-
ground organs are leaves, stems and grain. No below ground plant information is given
in neither dataset, although Tartas contains information on soil solution P concentration
(CP ). To extract plant respiration (Rplant) from the Nebraska dataset, we model ecosystem
respiration (Reco) as a linear function of observed GPP (GPP ) and air temperature (T ),
while subtractng the soil terms (asoil and bsoil):

Reco = Rsoil +Rplant = (asoil + bsoil · T ) + (bGPP ·GPP + ε) (4.23)

We provide a figure (SI Fig. B.11) to show the effect of removing soil respiration using
Eq. 4.23.

When calibrating, we use all of the available information to constrain the model pa-
rameters. This entails 115 time points for Nebraska and 13 time points across 12 different
P experiments in Tartas (3 P levels x 4 blocks). For Tartas, we assume the root P uptake
rate (kCR) to be the only parameter changing among the different P experiments as it re-
flects P availability. All of the other parameters are kept constant. In this manner the
obtained values should be specific to the maize variety, where plant response depends on
seasonal change in meteorological conditions and P availability in case of Tartas. The final
calibrated values should correspond to growth that is equally and weakly limited by other
major abiotic factors like H2O, light or N across experiments for each dataset (different
years in Nebraska and P levels in Tartas).

To solve our system we linearise Equations 4.8 - 4.11 and solve it daily using the linear
programming package GLPK (Makhorin, 2001). To calibrate parameter values we mini-
mize the mean squared error using the Levenberg-Marquardt algorithm (Moré, 1978) im-
plemented within Scipy’s optmize package (E. Jones, Oliphant, and Peterson, 2001). The
parameter list and the initial guess values are given for Nebraska and Tartas in SI Tables
B.6 and B.7, whereas final calibrated ones are given in SI Tables B.8 and B.9.

We compare the original and the OF versions along a climate gradient (depicted in SI
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Fig. B.14) using Nebraska calibrated parameters. To make the two versions comparable
we remove growth respiration, the internal LAI cap (equal to 2.5), as well as implicit N and
age effects from the original one. In this manner, the only differences are due to the LUE

shape (exponential vs. a Michaelis-Menten one) and the C allocation scheme (prescribed
vs. optimal).

Additional comparison of the modeled result (using Nebraska calibrated parameters)
is made to observations using Mueller et al. dataset (2012) which contains globally gridded
statistical estimates of the maize yield potential. We qualitatively compare zonal means to
assess yield climate response (due to rainfall, temperature and light) since zonal means
should remove horizontal management variability (in irrigation intensity and nutrient
availability). The Mueller et al (2012) maize yield potential is depicted in SI Fig. B.16.

4.3 Results

4.3.1 Comparison with Nebraska
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Figure 4.3: Nebraska observed vs modeled C pools.

Looking at modelled C pools (Fig. 4.3) the model seems to capture the overall be-
haviour, even though discrepancies remain in form of biases and offsets in time. This can
best be seen with the grain C pool, which is significantly underestimated at season end
due to either model misrepresentation or constant planting dates. Grain filling (Eq. 4.21)
is prescribed in a continuous fashion and simulates a grain C pool that exists from the
beginning, whereas reproductive growth starts at a later stage in the observations. For
the planting dates, a better agreement could be achieved by having different planting days
each year, as modeled bias follows closely the observed one (SI Fig. B.12)

Looking at modelled C exchange (Fig. 4.4) the model seems to capture the overall
behaviour again but with slight biases as mentioned previously. These could either be due
to variable planting dates or the way respiration is modeled. In our model, we have kept
the temperature response of the respiration rate linear (Eq. 4.3) where as it might be more
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suitable to have it exponential (Atkin and Tjoelker, 2003) as respiration rates during the
final growth stages seem to be over-estimated.
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Figure 4.4: Nebraska observed vs modeled C exchange. Rplant is not a true observation, but is modeled using Eq.
4.23

4.3.2 Comparison with Tartas

In Tartas, the model gives satisfactory results for C but less so for P (Fig. 4.5). For P, most
notable is the underestimation of plant P concentration due to theLUE xPUE interaction
which (during initial plant growth) prefers to grow bigger leaves instead of supplying them
with more P. Nevertheless the total plant P concentration settles to a value which is closer
to the observed one by the time the plant is harvested (Fig. 4.5, lower right).
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Figure 4.5: Tartas observed vs. modelled time-series for block 4 in the highest P level experiment.

The model is able to predict final plant response to P availability (Fig. 4.6) although
biases exist due to the mentioned LUE x PUE interaction. Also, most of the observed
data falls in the luxury uptake range, which does not permit the model to be constrained
in truly P limited conditions. This can best be seen by underestimated P concentration in
vegetative organs at high P availability (SI Fig. B.13). The RSR is much lower that observed
(around 0.2 in Amos andWalters, 2006) because we model actively absorbing roots. As the
modeled plant leaf P can support additional growth after the maximum growth point, the
plant stops supplying root C and they quickly die off (Fig. 4.5, left-most panel).
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Figure 4.6: Tartas reponse to P availability as function of root P uptake rate kCR.

4.3.3 Comparison between Nebraska and Tartas

Looking at parameter values after calibration (Table 4.2) most of them are surprisingly
close, with differences stemming from the employed maize variety and the nature of the
data used (containing information on either plant P uptake or NEE, apart from above-
ground biomass). In Tartas, parameters related to the NEE (VC,max, λT,i and CL,max)
acquire higher values but with organ growth remaining similar (Fig. 4.5, upper left) since
the increase in C assimilation is compensated by increased respiration. If we were to have
information on Tartas NEE, these values would be better constrained and probably de-
crease as in Nebraska. In Nebraska, a similar effect can be found for certain P parameters
(fPi and kmPi) which acquire much lower values, since no information exists to directly
constrain them.

4.3.4 Comparison with original ORCHIDEE

Even though the growing season GPP and Rplant averages are similar across the two
versions, their cumulative balance amounts to a significantly different plant biomass (Fig.
4.7, top row). The reason for this can be either the way LUE is parametrized (exponential
vs. Michaelis-Menten) or how C is allocated (prescribed vs. optimal). It is very likely
that the allocation scheme is the culprit though, since the average GPP across latitudes
deviates much more than Rplant (Fig. 4.7, top row). This means the average productivity
is the same for either the exponential or Michaelis-Menten LUE function.

The reason for the Rplant differences stems from the way C is allocated in the original
version, which might not be the most effective in the sense of plant productivity. This
can clearly be seen in Cplant and Cleaf differences where (in spite of a larger final Cleaf )
the original version produces a smaller plant (Fig. 4.7, two right columns). This might
be improved by calibrating the different terms in the Friedlingstein et al. (1999) allocation
scheme which was not done here (Eqs. 4.4 - 4.6).

Due to H2O stress removal in both of the versions, plant biomass could further increase
towards the equator whereas observed potential maize yield shows a sharp decline below
40o latitude (SI Fig. B.16). Similarly at higher latitudes, simulated maize yield decreases
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Table 4.2: Comparison of Nebraska and Tartas calibrated values. Only minimum and maximum kCR values are
given for Tartas. Refer to SI Tables B.8 and B.9 for the full parameter sets and their error estimates.

Variable Description Units Initial guess Nebraska Tartas

VC,max Max. carboxylation rate µmol C m−2 s−1 60 49.3 94.2
SLA Specific leaf area m2 gC−1 0.03 0.031 0.032
λ0 Respiration rate at 0 Co day−1 0.03 0.026 0.041
λTL Leaf respiration temperature slope Co −1 0.02 0.063 0.034
λTR Root ” Co −1 0.02 0.014 0.083
λTS Stem ” Co −1 0.005 0.005 0.005
λTG Grain ” Co −1 0.0001 0.0002 0.0006
λTX Reserve ” Co −1 0.0001 0.0002 0.0010

kCR Root P uptake rate mgP gC−1 root day−1 0.10 0.99 0.50 - 0.93
CL,max LUE half-saturation biomass gC m−2 60 52.1 98.9
ρL,max PUE half-saturation concentration mgP gC −1 1 3.28 3.54
fCG Grain C filling fraction - 2 1.16 1.95
fCS Stem C ” - 1 0.15 0.80
fPR Root P ” - 0.1 0.15 0.07
fPS Stem P ” - 0.1 0.89 1.21
kmPL Leaf P remobilisation rate - 0.01 0.002 0.016
kmPR Root P ” - 0.01 0.002 0.009
kmPS Stem P ” - 0.01 0.019 0.016
tini Planting date day of year 120 132 121

much more than the observed one (SI Fig. B.16) which could be due to parameters being
suited for temperate climates only.

4.4 Discussion

Simulating plant growth using DGVM parametrization of photosynthesis and respiration
(Krinner et al., 2005; Matthieu Guimberteau et al., 2018) while applying the OF principle
to allocate C and P (Dewar et al., 2009), a generic framework for simulating P limitation in
crops is provided. Here, we calibrate our model using two different irrigated maize field
trials (in Nebraska and Tartas) and show the DGVM-OF combination to be largely capable
of capturing climate and nutrient management effects in irrigated monoculture systems.
But in spite the model’s ability, plenty of room is left for its improvement.

Firstly, partial data availability prevents us from properly constraining the model. In
Nebraska, information on organ P accumulation is missingwhereas in Tartas, it is the plant
respiration one (through NEE). This results in significantly different model parameter val-
ues (Table 4.2) which might also not be realistic. Two options present itself to counteract
this: either by constraining the parameter search space, or initiating values for one exper-
iment by the other one after it has been calibrated. Both of these approaches are not truly
desirable, as they predetermine model performance in a self-fulfilling manner. The sole
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Figure 4.7: Mean latitude response of time averages (upper row) and the time series across 3 different locations
(lower row) of original vs. optimally allocated ORCHIDEE.

reason why (for example) Tartas Vc,max and λi parameters acquire much higher values is
because the model’s net C balance is the main determinant of plant biomass (Chapter 3).
Since there is no direct information to constrain neither plant respiration nor leaf assimila-
tion in Tartas, the calibration software naively finds the most error minimizing parameter
combination which can lie well outside the range of normally observed values. We sur-
mise the same issue would happen with the original ORCHIDEE version, but which is yet
to be seen as the calibration protocol was not followed in its case (detailed more in the 4th
paragraph below this one).

The arbitrary nature of calibrated parameter values would seem concerning, as the
point of aDGVM is to explain growth in a universalmanner, and not rely on an experiment-
by-experiment basis. But as highlighted before, data availability is the true constraint.
Even though plenty of crop growth references exist, we have found only B. Peng et al.
(2018) to provide information necessary for DGVM calibration (GPP and NEE). A similar
conclusion goes for the P uptake dataset (Plénet et al., 2000) which was communicated in-
ternally. The need for appropriate and quality data is unquestionable (van Ittersum et al.,
2013) and only when one has access to it, can the results truly be extrapolated to the global
scale.

Most obviousmodel shortcoming is the lack of a soil Pmodulewhichwe do not include,
as its implementation requires a separate model on it’s own (Barber, 1995; Ringeval et al.,
2017; X. Yang et al., 2014). Instead, wemodel P availability with a constant root uptake rate
which is a sufficient requirement to explain basic plant response (Iwasa and Roughgarden,
1984). To make our model more mechanistic (or to account for soil properties and its P
status) we could use a saturating function of soil P concentration (provided in the Tartas
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dataset). But the addition of a few soil related parameters would not fundamentally change
how our model behaves, since plants should respond to what they can acquire, irrespective
of the composition or the chemical profile of the soil underneath. Additionally, long term
plant-soil P cycling demands a higher degree of soil model complexity such as had been
done for natural vegetation in ORCHIDEE (Goll et al., 2017), but which was not used as a
starting point for this work.

Even though versions of ORCHIDEE including crop LAI phenology (X. Wu et al., 2016)
and the P cycle (Goll et al., 2017) exist, we chose not to build on top of them as the under-
lying assumptions do not fit OF principles. In the crop LAI version (X. Wu et al., 2016) a
typical crop-modelling approach is employed (Wallach, Makowski, and J. W. Jones, 2006)
where a potential LAI curve is prescribed as a function of a temperature sum (or growing
degree days). Even though it makes for a robust empirical description of LAI growth, the
plant’s net C balance and growth are calculated independently from it because LAI is a
completely separate entity. In the OF approach, leaves and LAI (via SLA) are grown as a
response to plant needs and resource availability. For the P cycle version (Goll et al., 2017)
the main issue is the different conceptual approach to allocation, where C is distributed
in order to maintain an optimal leaf concentration (Eq 18, Text S1, S. Zaehle and Friend,
2010) instead of it being a product of plant’s internal limits to productivity; or what OF
tries to achieve when maximising leaf productivity as a function of leaf P.

Comparison between the original and the OF version was done, with only differences
due to the LUE function (exponential vs. Michaelis-Menten) and C allocation scheme
(Friedlingstein et al., 1999). To make the two even more comparable, the LUE term (Eq.
4.10) should be modeled with a saturating exponential in the optimal version, and the
various allocation constants calibrated in the original one (Eqs. 4.4 - 4.6) apart from the
assimilation and respiration ones. We surmise that (in the original version) the plant C
balance should be captured much better, but not the P one. Firstly, there are no allocation
rules to distribute P among different organs, although this can be dealt with fixed P alloca-
tion fractions like we do here. But more importantly, the root allocation fraction in Eq. 4.4
will result in P uptake regardless of plant needs. How this will affect plant P concentration
and productivity is yet to be seen.

Biases and time offsets in the modeled result stem from model misrepresentation. For
example, the grain filling mechanism (Eq. 4.21) prescribes a grain C pool that exists since
growth initiation, whereas a more appropriate waywould be to trigger it during the season
like in Iwasa and Roughgarden (1984). For this purpose, linear programming (Dantzig and
Thapa, 1997) could serve as a suitable method since it allows optimization of discrete values
in order to simulate decisions (1 for yes and 0 for no). But how to implement this strategy
consistently within the OF framework requires more attention.

Another model misrepresentation comes in form of underestimating plant P concen-
tration during initial growth (Fig. 4.5). We found this to be due to the PUE term which
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depends on leaf concentration (Eq. 4.11). If the generic YL productivity element (Fig. 4.2)
in the PUE term is described as the total leaf P amount or PL (mgP m−2) instead of leaf P
concentration (ρL), leaf P concentration settles to a constant value which does not change
in alternative growing conditions and could be closer to the observed ones (SI Fig. B.15).
The main issue with this approach is the apparent disconnect of leaf C and P (from a phys-
iological standpoint) as both contribute to leaf productivity separately. But this just shows
that OF principle does not exactly describe the specific internal mechanisms of plant ad-
justment. Instead, it tries to describe the general principle of matter flow and organization
(C and P) that insures maximum plant productivity.

Introducing variable planting dates would decrease model error in Nebraska, but the
discrete nature of the planting date variable (expressed in days) introduces difficulties for
the calibrating software (E. Jones, Oliphant, and Peterson, 2001). Since days are integers,
the modelled error stays the same once the searching step falls below 1 day. When this
happens, other variables (continuous) are adjusted towards a lower error value and usu-
ally converge to a combination that is not the most optimal one. This issue becomes com-
pounded once 10 different planting days are introduced. But in spite of a constant planting
date across all years, the model still provides reasonable results (Fig. 4.4)

Self shading effects were modeled via the LUE function (Eq. 4.10) which mimics the
decreasing efficiency of light capture in an expanding canopy. A more mechanistic way of
describing this phenomenon would be to simulate vertical discretization via multiple stem
and leaf C pools, with different layers capturing less light the further they are away from
the canopy top. This would not only simulate the Beer-Lambert law more faithfully (Eq.
4.1), but would also allow the optimization principle to extend to the vertical organization
of C as leaves and stem would be grown to capture C in the most efficient manner. Plant-
ing density effects could also be modeled via changes to the light attenuation coefficient,
although the exact details on how to go about it (apart from an empirical relation) need to
be investigated.

One of the most important mechanisms that is overlooked is the impact of H2O avail-
ability. We avoid this by turning off H2O limitation effects due to the potential complex-
ity of the underlying regulation processes (Hsiao, 1973) that are not easily extendible to
the OF principle in current ORCHIDEE form. The way this is done is by solving a set
of equations that couple leaf photosynthesis (Farquhar, von Caemmerer, and Berry, 2001;
Collatz, Ribas-Carbo, and Berry, 1992) and stomata opening (Ball, Woodrow, and Berry,
1987) while being forced with an empirical stress factor based on soil H2O availability (Eq.
A11 in Krinner et al., 2005). To explain in more detail, current soil H2O availability de-
termines the H2O limited VC,max and the stomatal conductance slope. The H2O limited
VC,max is then used to solve the photosynthesis-stomata equations to calculate leaf assim-
ilation after which C is assimilated, H2O transpired and soil H2O updated. This makes for
an elegant way to couple H2O transpiration and C assimilation, but does not truly provide
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feedback for root growth as it is prescribed separately (Eqs. 4.4 - 4.6). Though, the lack of
a dynamic root feedback seems to be a common thread in most of today’s DGVMs (Farrior
et al., 2015).

To make the plant H2O response in line with OF principles, the costs and benefits of
different actions need to be taken into account. To model this, internal plant H2O status
needs to be tracked, to which leaf assimilation can be tied. This presents two options to
affect plant productivity: either by increasing plant H2O potential through root growth or
maintaining it through stomata closure. The first response would be triggered in increased
CO2 environments, where the fertilization effect supplies extra carbon for root growth,
increasing the internal H2O potential via enhanced H2O uptake. The second response
would be triggered in abundant H2O conditions when stomata closure reduces plant H2O
intake, and where the assimilated C needs not be wasted on root growth. Both of these
mechanisms serve tomaintain productivity in conditionswhere either of the two resources
are abundant or lacking, and make for a more consistent description of plant response to
H2O availability. This approach should also be in line with the work of I. C. Prentice
et al. (2014) who model stomatal response as a product of minimizing carboxylation and
transpiration costs in leaves, and are able to predict leaf traits in differing climates.

Furthermore, effects of root architecture could be introduced from a functional stand-
point, as different root orders have specific tasks in resource acquisition (McCormack et
al., 2015). Explained in the most general manner (based on Fig. 4 in McCormack et al.,
2015), low root orders are tasked with resource absorption and have high maintenance
costs, whereas higher root orders are tasked with resource transport and have progres-
sively lower costs. ORCHIDEE describes the temperature and H2O soil profile across 11
layers in the improved version (Matthieu Guimberteau et al., 2018), which permits the in-
troduction of root functional role effects across it. Multiple root orders for each soil layer
could be simulated, with differing transport and absorptive capacities while connecting
them vertically through allometric ratios (similar to the stem-leaf ratio employed in Eq.
4.20). This could be possible for H2O but not for P, due to the bulk nature of currently
implemented soil P models (X. Yang et al., 2013; Ringeval et al., 2017; Goll et al., 2017).

To conclude, OF provides a simple and a robust way to integrate different mechanisms
of plant adjustment to its growing environment (Dewar et al., 2009). By combining it
with a DGVM that contains mechanistic parametrization of main plant growth drivers
(Krinner et al., 2005), a consistent framework is provided for simulating historical and
future scenarios of global crop management. This can be applied to the issue of P in global
cropland (MacDonald et al., 2011; Ringeval et al., 2017) and its contribution to limits in
world crop production investigated.
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Chapter 5

Discussion

5.1 Results summary and their place in current resear

In this work we have tried to tackle the issue of P availability on worldwide crop produc-
tion, with special focus on three staple cereals: maize, wheat and rice. While we might
have fallen short of our initial goals (Chapter 1) of which the crown one was separating P’
contribution to global crop production today and in the future, we have provided an initial
glimpse into the matter (Chapter 2) and followed up with necessary simulation tools to
study the issue in a more complete and fundamental manner (Chapters 3 and 4).

Our initial work diagnosed today’s P limitation in cereals worldwide, where existing
simulated estimates of soil available P (Ringeval et al., 2017) were combined with poten-
tial crop growth (X. Wu et al., 2016) through a more realistic description of soil-plant P
transfer (De Willigen and van Noordwijk, 1994). These results showed, albeit in a con-
strained manner, the significant potential of existing soil P reserves to limit global cereal
production; in line with (MacDonald et al., 2011; Mueller et al., 2012) and as an extension
of research up to that point (Bouwman et al., 2013; Ringeval et al., 2017). The obtained
results contained considerable uncertainty due to poorly constrained initial data sources
(Ringeval et al. 2017; and similar to Folberth et al. 2016) but more importantly, key issues
in form of process misrepresentation were identified that need to be taken care of when
coupling the two models (soil and crop one). Since models of soil P dynamics and root
uptake already contained a sound conceptual basis, we’ve decided to focus on plant ad-
justment to P limitation as it should have an impact on crop development and ultimately
grain yield.

The coupling of soil P availability and plant growth was done by developing an ideal
C & P allocation model that shies away from standard (and highly parametrized) ways
in crop simulation (Stockle and Debaeke, 1997), and instead relies on more modern and
fundamental concepts in plant physiology (Franklin et al., 2012); more specifically the
optimal functioning one (Dewar et al., 2009). Using optimal functioning, plant response
at different P availabilities has been reproduced, where organ growth and subsequently
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yield are a product of internal limits to productivity rather than a simple supply/demand
balance (as in Chapter 3). In spite of the allocation model’s parsimonious nature, which
can not explain the exact nature of C & P flow during a growing cycle, it provides a much
simpler and more transparent way of simulating crop P limitation.

The C & P allocation model was then implemented into the dynamic vegetation model
ORCHIDEE (Krinner et al., 2005) containing parametrizations of fundamental plant growth
processes (Farquhar, von Caemmerer, and Berry, 2001; Ball, Woodrow, and Berry, 1987;
Ruimy, Dedieu, and Saugier, 1996), which allows its extension to any kind of growing envi-
ronment (in principle). Themodel was evaluated at two different field sites, and has shown
potential in reproducing observed growth in spite of key pieces missing; most notably a
soil P module. Ways of improving the new vegetation model, as well as the extension
of the optimal function principle (Dewar et al., 2009) to other plant-soil-atmosphere pro-
cesses is proposed (concerning reproductive timing, canopy effects, root functional roles
and water use regulation) which could go towards a more biologically and physically con-
sistent description of crop growth. This model would be a useful addition to the already
existing attempts (Y. P. Wang, Houlton, and C. B. Field, 2007; Y. P. Wang, Law, and Pak,
2010; Goll et al., 2012; X. Yang et al., 2014; Goll et al., 2017) at deciphering P’ role in future
eco-systems (Reed, X. Yang, andThornton, 2015) but one which is focused on crops, as the
future of P management and its impact on global food production remain largely uncertain
(Cordell, Drangert, and White, 2009; J. Elser and E. Bennett, 2011; MacDonald et al., 2011;
Peñuelas et al., 2013; Obersteiner et al., 2013; Makowski et al., 2014).

5.2 Plant adjustment effects on global P limitation

To show the potential effect of plant adjustment (Chapter 3) on our global P limitation
estimates (Chapter 2), we performed a simulation using the ideal OF allocation model and
mapped the responses of either a linear or quadratic yield model to it (Fig. 5.1). The
linear model corresponds to the C:P ratio and PHI estimates, while the quadratic model
corresponds to the QUEFTS ones (Chapter 3). The OF response curve was obtained using
the initial guess calibration values (Table 3.2) and simulating over a range of kCR values
(similar to Fig. 3.3, panel A and B).The biomass potential was chosen as total plant biomass
at kCR = 1, which is far away from P limited range when RSR starts to decrease (Fig. 3.3).
The OF yield response curve is then simply scaled across all kCR values (or P availabilities)
with respect to total plant C and P at kCR = 1 (Fig. 5.1).

Taking a much higher kCR value (eg. ten times higher) puts more weight on more P
limited growth (SI Fig. B.17), but changes the OF curve shape only slightly. Furthermore,
the conceptual model does not have limits to biomass production as there are no limits to
kCR increase. This can be seen by the increasing OF curve after the Psupply/Pdemand = 1
point in Fig. 5.1. In reality, P diffusion kicks in as a physical limit to P transport from the
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Figure 5.1: Yield limitation curves for a linear, quadratic and OF adjustment model as function of P supply and
demand. Global P limitation estimates from Chapter 2 follow a similar paern as the blue (C:P ratios and PHI)
and red (QUEFTS) curves. Black curve describes a response curve following OF allocation as in Chapter 3. Right

plot shows the underestimation of the linear or quadratic model relative to the OF one.

soil; as was done in Chapter 2 when calculating the potential root P uptake. If we were to
implement a similar mechanism in the hypothetical model, the OF curve would asymptot-
ically approach the intersection curve instead of reaching it at Psupply/Pdemand = 1 (Fig.
5.1). Similarly, we chose the initial guess values to construct the OF curve solely for sim-
plicity sake. Introducing additional complexity for these rule-of-thumb estimates (which
would require significant parametrization and sensitivity testing) should not be necessary
since the initial P limitation estimates already contain significant uncertainty.
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Figure 5.2: Cumulative histogram of the P yield gap (%) in irrigated simulations as function of potential soil P
supply only. is figure is similar to the boom row in Fig.2.6 except for the dashed lines, which (here) represent

adjustment due to OF. Lines represent the 1000 MC sample median.

Looking at the cumulative histogram of the P yield gap (Fig. 5.2), a slight relief can be
noticed depending on the way yield limitation was initially modeled. The relief increases
in areas with higher yield gaps, consistent with the way the linear or square model over-
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estimate limitation relative to the OF one (Fig. 5.1, right). Once these contributions are
integrated to form a global average, OF plant adjustment shows a high potential to change
the initial estimates (Tab. 5.1). Even though it is not possible to attribute significant dif-
ferences, OF adjusted maize yield gap lowers about the same when compared to direct
fertilizer uptake (or 20% of today’s applied fertilizer; a generous estimate as explained in
Chapter 2). Although, the similarity of these two effects is probably due to the global
maize cropland extent which encompasses more low P input areas (eg. Africa). In rice and
wheat, OF adjustment has a similar or lower effect on reducing the yield gap as cultivated
area co-occurs with high P addition spots (SI Fig. B.3).

Wheat Maize Rice

Soil P supply 22 (18-28) % 55 (47-66) % 26 (18-46) %
” + P fertilizer 17 (14-21) % 46 (36-55) % 15 (10-32) %
” + OF adjusted 19 (15-26) % 47 (42-56) % 21 (15-35) %

Table 5.1: Global averages of the P yield gap (%) as function of soil P supply, soil P supply amended with P
fertilizer, and soil P supply with OF plant adjustment. Values are medians with 95% interval in the bracket.

Even though the provided global estimates are not methodologically robust, they point
out the need for a conceptually deeper description rather than increasedmodel complexity,
which often requires additional layers of observable information. In spite of their simplistic
nature though, mass balance approaches like these serve as a good motivational base for
further research as had been done for N by Hungate et al. (2003) or P by Peñuelas et al.
(2013); as was done here.

5.3 Why optimal functioning?

The need for a deeper conceptual accounting was invoked, but one which begs a very
straightforward question: how to actually go about it? Two options should present them-
selves here, corresponding to either a bottom-up or or a top-down approach (Franklin et
al., 2012). The bottom-up approach tries to describe all the minutiae of the processes in-
volved, and attempts to describe a system’s response from their collective interaction. This
approach is typically used in crop simulations and DGVMs, where the individual processes
(eg. root uptake, stomate opening, nutrient requirement) are precisely tuned and let loose
on the simulated plant during integration. On the other hand, the top-down approach
tries to look for an over-arching principle that dictates how the individual elements come
together and make the whole system function. Even though a top-down approach might
contain a very detailed process description, it is the presence of foresight (or purpose) to
plant functioning that sets it apart. For the bottom-up approach, more or less sophisticated
rules can be formulated to orchestrate the individual parts’ action, but the fact remains
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the simulated plant naively sticks to them in all circumstances. Instead, by looking for a
principle that guides plant behaviour in a reasonable way (evolutionarily, physiologically,
community-wise or other) a more autonomous system can be created, and which responds
to whatever environment it finds itself in.

For the bottom-up approach, a typical example can be shown with STICS (Brisson et
al., 2009), a crop simulation model containing much of the same apparatus employed by
the other AgMIP model candidates:

DELTAIL(I) = DELTAIdev(I) · DELTAIT (I) · DELTAIdens(I) · DELTAIstress(I) (5.1)

DELTAIdev(I) =


DLAIMAXBRUTP

1+exp(PENTLAIMAX∗(V LAIMAXP −ULAI(I))
ifULAI(I) < UDLAIMAXP

DELTAImax ·
(
1 − ULAI(I)−UDLAIMAXP

3−UDLAIMAXP

)2
ifULAI(I) ≥ UDLAIMAXP

(5.2)

DELTAIT (I) =


0.0 if TCULT (I) < TCMINP

TCULT (I) − TCMINP if TCMINP < TCULT (I) ≤ TCMAXP
TCMAXP −TCMINP

TCMAXP −TCXSTOPP
· (TCULT (I) − TCXSTOPP ) if TCMAXP < TCULT (I) ≤ TCXSTOPP

(5.3)

DELTAIdens(I) =

DENSITE(I) · DENSITE(I)
BDENSP

ADENSP ifLAI(I) ≥ LAICOMPP andDENSITE(I) ≥ BDENSP

DENSITE(I) ifLAI(I) < LAICOMPP andDENSITE(I) < BDENSP

(5.4)

DELTAIstress(I) = min(TURFAC(I), INNLAI(I)) · EXOLAI(I) (5.5)

The equations above prescribe LAI growth (only) as function of temperature, phenol-
ogy, plant density and stress. The meaning of different parts need not be understood, as
their purpose is to illustrate the underlying complexity one often needs to employ to make
the different parts work together. But if looked at closer, the equations describe an empir-
ical growth curve (Eq. 5.2) which progressively gets squashed down with each additional
stress factor (Eqs. 5.3 - 5.5). These equations can be constrained by well defined datasets
and show remarkable skill at reproducing observed yields (C. Müller et al., 2017), but once
they are taken outside of the calibration range, they encounter understandable difficul-
ties which are not easily overcome with more data (Asseng et al., 2013; Rosenzweig et al.,
2014; Bassu et al., 2014; Folberth et al., 2016; C. Müller et al., 2017). This problem was best
summarized by Passioura (1996) who wrote:

Crop simulation models … are typically flawed by being based on untestable
guesses about the processes that control growth. ey may, however, provide
useful self-education for their developers.

To overcome this seemingly arbitrary way of describing growth, where a plant con-
sists of highly interconnected but truly unrelated parts which together try to smother it
out of existence (Eq. 5.1 - 5.5), a more sensible manner would be to make a plant somehow
“decide” what to do by using the tools it already has. This is what optimal functioning tries
to do when maximizing productivity (as a proxy of individual fitness) and subjecting the
whole of plant functioning to its achievement (Dewar et al., 2009). In spite of its reason-
able basic assumptions, valid questions arise on its theoretical foundation as mentioned
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in Dewar et al. (2009): Why should plants optimize productivity, or what should they op-
timize? Do these optimization goals change in different environments? Or even more,
why should a plant optimize anything at all? Of all of the problems optimal functioning
faces, the most difficult one is not taking into account competitive interaction between
individuals, as it brings into question its feasibility in an evolutionary sense (maximising
individual fitness is not necessarily the best survival strategy; Schieving and Poorter 1999;
Anten 2005; Anten and During 2011). But in spite of these (still) theoretical considerations,
the fact remains it explains plant response as an emergent phenomenon, rather than its
prescription through a complex set of scheduling rules (Dewar et al., 2009).

Optimal functioning itself is part of a greater push towards implementingmore general
plant ecology concepts in vegetation modelling, for the purpose of predicting global eco-
system response (Franklin et al., 2012). The main issue being the over-whelming presence
of still very basic concepts behind long-term vegetation change, which obviously need to
be improved on when studying climate change impacts (Purves and Pacala, 2008; Ise et
al., 2010; Rötter et al., 2011). This is especially true since these models provide the basis
for policy implementation on a global scale (see United Nations 2019 for further details).
But not to get too ahead of ourselves (or conversely too deep into the vegetation modelling
rabbit hole), themain reason for the choice of optimal functioningwas its simplicity, which
makes prediction and analysis of nutrient impacts on crop growth much more transparent
and conceptually satisfying (I. Prentice, 2013; Stocker et al., 2016).

5.4 Complexity vs. transparency

Even though a clear methodology path was cut out from the start, where P limitation ef-
fects on a global scale were to be studied using soil P cycling and crop growth simulations,
the question begs itself: was it really necessary to go into this much mechanistic detail?
A good example to illustrate the point is Chapter 2 where, in spite of a better mechanis-
tic representation, the additional sources of uncertainty produce estimates of questionable
use. This point goes hand in hand with previous remarks, where increasing model com-
plexity necessitates more and more information. To make our point, we will focus on the
root uptake parametrization from Chapter 2 (De Willigen and van Noordwijk, 1994) as it
allows easier back-tracing of added uncertainties as opposed to the used soil P dynamics
and crop growth simulation models (Ringeval et al., 2017; X. Wu et al., 2016).

The employed root uptake model (De Willigen and van Noordwijk, 1994) is an analyt-
ical steady state solution, where nutrient mass transport equation by diffusion and advec-
tion is solved, by assuming a homogeneously distributed root mass in form of vertically
placed cylinders. The full derivation of the analytical solution can be found in DeWilligen
and van Noordwijk (1994), so here we will focus on the final utilized solution, where the
rate of nutrient uptake is equal to the diffusion transport limit within the root cylinder
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termed ”zero-sink” uptake:

Puptake =
12∑
i=1

π ·∆z · Lrv,i ·D · ρ
2 − 1

G(ρ)
· CP (5.6)

Additionally, we will repeat all of the different sources used to parametrize each of
these terms (explained in detail in SI section B.1.3) to paint a better picture of the addi-
tional complexity employed: Olesen et al. (2001), Hengl et al. (2014), Achat et al. (2016),
Duivenbooden, Wit, and Keulen (1995), Hocking (1994), Latshaw and Miu (1934), Ye et al.
(2014), Nakhforoosh et al. (2014), Li et al. (2016), and Biscani, Izzo, and Yam (2010). Again,
this is for root uptake only… Not surprisingly then, do the final estimates show such high
spread (Table 5.1) as they also include uncertainty due to the soil P and the crop simulation
models (Ringeval et al., 2017; X.Wu et al., 2016). If looking more closely at Eq. 5.6 the main
drivers of P uptake are: root mass (through root length density Lrv), soil water content
(through the diffusion coefficient D) and the amount of plant available P in soil (through
the empirical relation for soil water P concentrationCP ). This boils down to the following
equation:

Puptake(CR, Plab, θ) = k · CR · Plab ·max(θ / θ0, 0) (5.7)

Where CR is root biomass (tDW ha−1 or gC m−2) and Plab is plant available P in
soil (kgP ha−1 or mgP m−2), while θ and θ0 are soil water content and its diffusion cut-
off point (-). k is a species and soil specific conversion factor that computes Puptake (kgP
ha−1 or mgP m−2) as a measure of crop-soil specific P uptake efficiency, and is not entirely
different from the bibliography determined coefficients. With this in mind, one can simply
ask: but how do we generalize this kind of model to the global scale? An honest answer
would be that you can not. And even more, you probably should not; at least not in this
methodological form. Jumping from the field scale to the global one by relying on observed
data only, not matter how precise it might be, requires a bit of scientific faith. This was
best illustrated by one of the Referees for the Chapter 2 submitted paper who responded:

is model-based examination … depends heavily on the basic P geochemical
data … plus a whole set of P cycling and plant utilization equations. I agree
with the former quantification issues, but believe that the authors did what they
could… And for the laer modeling-heavy aspects, particularly those dealing
with plant utilization, I admit to being largely clueless

But on the other hand, using a reducedmodel form (like the one in Eq. 5.7) should allow
us to decipher robust observation datasets like FAOSTAT (2019) in a more understandable
fashion. Instead of adding more processes which require more parametrizing information
and obscure the path to the final result, maybe it would be prudent to just parametrize
a much simpler model using large scale data? Because, when looking at these transfer
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relationships on a regional to global scale, the variety of soil conditions and crop species
can not in any way be reproduced with these very precise, but still very specific estimates.
Instead, we should use the observations to constrain a kind of a macro property which,
even though it should contain significant uncertainty, would more robustly reflect the
process of soil-plant P transfer at these scales. This process simplification should also be
preferred, not because simplicity equates to more profound theoretical value (Webb, 1996),
but since it makes any subsequent analysis more reproducible and falsifiable (Hoffmann,
Minkin, and B. K. Carpenter, 1997; Baker, 2007).

5.5 Global P limitation using simpler models

One of the more appropriate approaches to estimating P limitation on a regional to global
scale using dynamic simulation is the one of S. Z. Sattari et al. (2012). The principal aim
of this work was estimating the amount of P stored in agricultural soils, as a consequence
of P management during the late 20th century. This was attempted by describing a very
simple soil cycling model consisting of two P pools (Fig. 5.3) that are mainly driven with
census data on fertilizer P application, crop yield and harvested area (FAOSTAT, 2019) with
predefined assumptions regarding P runoff/erosion, soil P weathering, P deposition and
organic P use (S. Z. Sattari et al., 2012). Very robust estimates of soil P accumulation were
obtained using this approach, but more importantly, the hysteretic nature of P buildup and
subsequent release were reproduced (Fig. 4 in S. Z. Sattari et al. 2012), normally seen by
the sudden increase in P application efficiency during the 1990s (Fig. 1.1).

Figure 5.3: e soil P cycling model used in S. Z. Saari et al. (2012). is scheme was adapted from Figure 1 in
the original paper, where details on each of the terms can also be found.

To extend this model to the study of yield limitation, an additional crop yield biomass
pool could be added and connected to the labile P one using a saturating function (similar
to J. Zhang et al. 2017) instead of a simple removal coefficient (as was done viaα in Fig. 5.3).
In this manner, more mechanistic representation of P transfer and use would implicitly be
modeled (like root uptake via P diffusion and changing plant P use efficiency) to allow a
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more faithful description of yield limitation (like in Fig. 5.1). Once a basic model form
is established, parameter inference methods should preferably be utilised (Geyer, 1992)
instead of relying on literature parameter values and errors (a common practice in mass
balance studies) since the reduced model necessarily bundles certain processes together.
But more importantly, parameter estimates and their hypothetical distributions would be
obtained, in order to estimate future trends and uncertainties in P fertilizer use and impact
on yields; the main thing we are interested in when studying P limitation on a global scale.

Modelling complex biogeochemical and climate-atmosphere phenomena using reduced-
form models is an established practice in the field of climate modelling (Claussen et al.,
2002; Ricciuto, Davis, and Keller, 2008; Meinshausen, Raper, and Wigley, 2011; Rogelj,
Meinshausen, and Knutti, 2012). The main motivation behind is the discrepancy in the
simulated output of different general circulation models (or GCMs; Ricciuto, Davis, and
Keller 2008) which, due to the their often profound complexity and a very high computa-
tional cost, makes sensitivity or uncertainty analysis of their results impractical or even
unfeasible (Claussen et al., 2002). Reduced models try to step in by describing the system
(eg. global climate or C cycle) with a limited amount of spatially aggregated state vari-
ables (like surface vegetation/soil C pools, atmospheric temperature, CO2 concentration)
which together interact through purposefully (more than less) parametrized interactions
(Claussen et al., 2002). All of this is done with the aim of reproducing systemic feed-
backs in a more intelligible and computationally faster fashion (Gasser et al., 2017), as well
as provide robust uncertainty estimates for the design of economically efficient future C
management strategies (Ricciuto, Davis, and Keller, 2008; Rogelj, Meinshausen, and Knutti,
2012).

Apart from the previously mentioned “simple model” approach, statistical treatment
is still the most straight-forward way to understanding aggregated effects of agricultural
practice on global yields (Wallach, Makowski, and J. W. Jones, 2006; D. B. Lobell, Cassman,
and Christopher B. Field, 2009; Mueller et al., 2012; Lassaletta et al., 2014). But due to the
variety of physical and biological processes involved, not to mention their interaction with
other major growth limiting resources (like H2O or N), the soil-plant P cycle should still
remain a tough problem to solve. A way around this issue could be to employ empirical
methods like machine-learning (ML) that can handle inherent complexities of ecological
systems (time lags, historical legacy effects, non-linearities, etc.) that traditional statistics
have a hard time of doing (Olden, Lawler, and Poff, 2008). Explained in the most simple
manner, MLmakes predictions based on already existing patterns in observations, without
actually prescribing explicit functional relations to do so (Alpaydin, 2010). Instead, ML
relies on sheer data quantity to approximate the underlying processes (as well as their
internal links) to produce a much more simple model; a process conveniently called “data
mining” or an analogy to the act of processing huge quantities of material to produce
minute amounts of precious ore (Alpaydin, 2010). Even though many different aspects of
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MLmethodology exist (Alpaydin, 2010), the most appropriate one for studying P limitation
would be “supervised learning” or ML regression, which works by “training” an ML model
on a known subset of data and using its predictions to extrapolate further (Alpaydin, 2010).

To apply this approach to the issue of P limitation, wewould obviously need to compile
a large database of nutrient limitation experiments similar to Valkama et al. (2009), van der
Velde et al. (2014) or Tonitto and Ricker-Gilbert (2016). The input variables should be ones
that have a direct impact on P availability (soil quality & nutrient level, fertilizer applied,
crop species, irrigation intensity, temperature, precipitation, etc.), while the output ones
should simply be grain yield and quality (or nutrient concentration). Once this model
is “trained” on a subset of the initial dataset, its capacity to explain the rest should be
tested as well as the uncertainty along it. Once the ML model is verified, global maps
of the input factors could be used (Monfreda, Ramankutty, and Foley, 2008; Portmann,
Siebert, and Döll, 2010; X. Yang et al., 2013; Bouwman et al., 2013; Hengl et al., 2014) and
extrapolate the ML model results over a wide geographical area. This point is one of the
more challenging ones for ML (as well as for statistical approaches) as global information
on some of the input factors are either not available (eg. irrigation intensity) or based on
database extrapolation techniques (basically, all of the datasets in the previous sentence).
Another foreseeable issue is initial data consolidation, as various (more or less) standard
measuring techniques are employed. This is best pictured with the numerous amount of
ways to measure soil P availability: Bray and Kurtz (1945), Nelson (1953), Olsen (1954),
Hedley, J. W. B. Stewart, and Chauhan (1982), and Morel et al. (2000).

ML regression techniques have already proven useful in extrapolating point obser-
vation sites (or often very rich sources of information) to wider spatial extents by using
remote sensing products. To cite a few, Mascaro et al. (2014) map tropical forest soil C
stocks in North Peru with sparse field-scale data by using Landsat products (Woodcock
et al., 2008). F. Yang et al. (2007) map FLUXNET GPP estimates (Baldocchi et al., 2001)
across the whole North American continent using MODIS products (Justice et al., 1998).
Stocker et al. (2018) uses similar sources (MODIS and FLUXNET) but quantifies light use
efficiency across the whole globe (or the ratio of GPP to light intensity). Both MODIS and
Landsat contain crop distribution products, which could be (for example) combined with
FLUXNET cropland sites (of which there are about a dozen; Fluxnet Network 2019). Even
though these eddy-covariance sites focus much more on surface C and H2O exchange un-
like agronomic ones, which usually provide better info on soil-plant nutrient status and
yield (needed for estimating P limitation), the existing ML methodology should be trans-
ferable if a suitable compilation of the two is made. At least, ML could be more desirable
as it seems to traverse spatial scales with much more grace (Mascaro et al., 2014; F. Yang
et al., 2007; Stocker et al., 2016).
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5.6 Global productivity, but also feasibility and impact

Throughout most of this work (if not all of it) the focus was put on managing productivity,
with two obvious factors left our: economic feasibility and environmental impact. These
two issues should form the basis of any kind of scenario analysis, not only because they
are the basic motivating points of our work, but also because they represent true limits
to implementing any kind of P management policy (E. M. Bennett, S. R. Carpenter, and
Caraco, 2001; Cordell, Drangert, and White, 2009; P. M. Vitousek et al., 2009; Peñuelas
et al., 2013; Obersteiner et al., 2013).

In Chapter 1 we mention that majority of today’s fertilizer P comes from a potentially
finite source, which is mainly due to the ever increasing costs of exploring lower qual-
ity reserves in the future (Cordell, Drangert, and White, 2009; Fixen and Johnston, 2012;
Kauwenbergh, M. Stewart, and Mikkelsen, 2013). What is is also quite concerning, is that
P availability to any country depends on its current economic value, determined by the
world’s commodity market (de Ridder, 2012; Heckenmüller, Narita, and Klepper, 2014).
It is not surprising that the founding work of most of today’s global P impact research
(Cordell, Drangert, and White, 2009) coincides with the 2008 spike in P fertiliser price
(Khabarov and Obersteiner, 2017). Specific actors and circumstances can be identified and
analyzed (Khabarov and Obersteiner, 2017), but the fact remains that world production
of P is controlled by a handful of countries (or a global cartel; Heckenmüller, Narita, and
Klepper 2014), and naturally prompts serious policy discussion on regional and global scale
(de Ridder, 2012; Weber et al., 2014; Rosemarin and Ekane, 2016).

Similar to how economical concerns have reignited our interest in the future of global
P, environmental impacts have been themain driver of global P impact research in the past;
namely eutrophication of H2O bodies (Daniel, Sharpley, and Lemunyon, 1998; Correll,
1998; Smil, 2000). Today, the discussion on P’ environmental footprint revolves mainly
around food quality (as fertilizer P contains significant amounts of cadmium, a toxic trace
element; de Ridder 2012) and especially the future of sustainable P use. While many quite
similar works exist on this topic, the majority agree this is to be done by reducing existing
losses in the P supply chain, changing our dietary habits and lessening our dependence
on additional P inputs through recycling (Childers et al., 2011; Neset and Cordell, 2012;
Chowdhury et al., 2017).

Taking all of these daunting issues into account and connecting them to the work
presented here, a logical step would be to implement our work into so called Integrated
Assessment Models (IAMs; Antle and Capalbo 2001; Weyant 2017; Ackerman et al. 2009).
IAMs attempt to quantify and reproduce complex natural and human systems, as well
as their interaction (eg. climate change and global agriculture), by integrating different
process-based models of their underlying drivers (be they physical, biological, economical,
political or otherwise; Antle and Capalbo 2001). Their final goal is to simulate behaviour
of these systems outside the observed data range, in ways that are consistent with estab-
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lished scientific understanding (Antle and Capalbo, 2001). This translates most obviously
into simulating the effects of global strategies like: lowering greenhouse gas emissions, cli-
mate change adaptation and geo-engineering (Weyant, 2017). Most importantly though,
they are used to evaluate the cost and benefit of various climate policy options to devise the
most optimal ones for the coming future (Ackerman et al., 2009). These models (like any
other ones) do not come without criticism. It seems the biggest part of it focuses on the
underlying economical hypotheses, which de-valuate near-term impacts, downplay un-
certainty of expected damage and over-estimate mitigation costs (Ackerman et al., 2009;
Pindyck, 2013).

But not to linger on the IAM criticism (primarily because it surpasses anything touched
upon in this work) and come back to the issue of P limitation, we would like to address
the potential structural IAM issues through an unfortunately specific example; GLOBIOM
(Ermolieva et al., 2015) or more specifically its crop module EPIC (Williams et al., 1990;
Balkovič et al., 2013; Folberth et al., 2016). Like the previously mentioned crop simulation
model STICS (Brisson et al., 2009), EPIC contains a similar empirical backbone (Williams et
al., 1990) which makes its use in future projections rather questionable as mentioned (Pas-
sioura, 1996; Rötter et al., 2011; Folberth et al., 2016; C.Müller et al., 2017). Usingmuch sim-
pler models of yield formation, the ad-hoc parametrization of EPIC simulations (Christoph
Müller et al., 2019) can be uncovered in form of regional fitting coefficients which exist to
improve the model’s predictive performance (Bruno Ringeval, personal communication).
While this technique should not be immediately dismissed as fitting observations can help
us better understand the current system state (eg. cultivar diversity) the need for such an
intervention puts the entire underlyingmethodology into question (Rötter et al., 2011; Pas-
sioura, 1996; I. Prentice, 2013); especially if it forms the base of any kind of future impact
study (Stolbovoy, Montanarella, and Panagos, 2007; Sylvain Pellerin et al., 2019).

While the previous criticism (or in fact, most of it up to this point) might sound quite
harsh or borderline megalomaniac, its purpose is not to single out any single methodology
over the other as the end solution to all problems. Instead, the purpose is to point out issues
which can and should be dealt with possibly simpler, and definitelymuchmore transparent
approaches.
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B.1 Chapter 2 supplementary information

B.1.1 Introduction

The supplementary information gives further detail on the following methods, which are
mentioned in the main article:

• Details of QUEFTS nutrient uptake vs. grain yield computation

• Details of potential root uptake computation

• Details of soil solution P vs. labile P computation

Additionally, figures and tables are provided which are referred to in the SI and the
main text, but were not included in the chapter.

B.1.2 QUEFTS method

QUEFTS (S. Sattari et al., 2014; Janssen et al., 1990) is an empirical approach to estimate
yield response, according to nutrient supply (NPK) and crop demand. The method is
roughly divided into an empirical and a ‘theoretical’ section, which calculate the nutri-
ent supply and crop demand to form the final yield estimate. It consists of 4 steps:

1. Computation of the soil available supply of nutrients (kgNPK ha−1) via empirical
relations

2. Building of nutrient supply vs. uptake curves, taking into account nutrient interac-
tion

3. Building of yield vs. uptake curves, estimated from previous step

4. Estimating the ultimate yield, calculated from the full combination of yield-uptake
curves

Step 1 was not used in our study, since we estimate the potential P supply ourselves.
Furthermore, the empirical relations describing the soil nutrient supply have a limited
range of validity, and are mostly suited for tropical soils. In our study, we focus on steps
2 to 4 which allow us to estimate the amount of P needed to achieve a certain yield. Step
2 entails the construction of parabolic supply vs. uptake curves, determined by observed
nutrient content of the plant aboveground part. The parameters of interest are the yield
at maximum nutrient accumulation (a) and maximum nutrient dilution (d). These corre-
spond to the “maximum” and “minimum” amount of nutrient in aboveground plant parts at
grain harvest (determined at 2.5 and 97.5 percentile level, S. Sattari et al. 2014, Table 5) for
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the three cereals, which were obtained in field trials spanning a wide variety of soils and
climates. The calculation of supply vs. uptake using the parameters a and d is following:

Uij =


Si (1) for Si < Sj · aj/di
Sj · dj/ai (2) for Si > Sj · (2 · dj/ai − aj/di)

Si − 1
4 · (Si−Sj ·aj/di)2

Sj ·(dj/ai−aj/di)
(3) for S1 > Si > S2

(B.1)

ai is the maximum nutrient accumulation (kg grain kg−1 NPK), di is the maximum
nutrient dilution (kgNPK kg−1 shoot), Uij is the uptake (kg ha−1) and Si,j the supply (kg
ha−1) of the nutrient i and j, which can be N, P or K. Optimal nutrient uptake triples (UN ,
UP and UK ) are determined from these supply vs uptake curves, which are needed for
the following steps 3 and 4. In determining the uptake triples it is assumed that uptake
efficiency (PhE) is highest:

Ui = min(εij · Uij , εik · Uik)

Maximize(PhE =
∑
i

Ui/Si)
(B.2)

εij,ik is the Levi-Civita symbol. This works by defining a range of Si values (eg. 0-200
kg N, 0-80 kgP, 0-200 kg K) with a predefined number of steps (eg. 100). For each of the
1003 Si combinations, six Uij uptake values are determined (according to Eq. B.1). We
determine the optimal UN , UK and UP by starting from a certain SP value and chose the
oneSN andSK combination (from 1002) wherePhE is the highest (Eq. B.2). With optimal
uptake triples from the previous step, we can advance to steps 3 and 4. These are closely
related, where the final yield is given depending on the amount of nutrient taken up and
the crop yield potential. Step 3 first calculates yields at maximum nutrient accumulation
Y a
i and dilution Y a

i , which are the minimum and maximum achievable yield at a certain
level of optimum nutrient uptake Ui:

Y a
i = ai · Ui

Y d
i = di · Ui

(B.3)

These estimates form the basis of the step 4 for determining the ultimate yield YU .
Here, nutrient interaction is assumed by calculating the maximum achievable yield, con-
sidering the most limiting nutrient Ymin and the water limited, climate potential yield
Ymax :
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Yi,min = εij ·min(Y a
j , Y

d
j , Ymax)

Yij = Y a
j +

(Ymin − Y a
j ) · (Ui − Y a

j /di)

Ymin/ai − Y a
j /dj

·

[
2−

(Ymin − Y a
j ) · (Ui − Y a

j /di)

(Ymin/ai − Y a
j /dj)

]
(B.4)

YU =
1

6
·
∑
i

εij · Yij

Ymax is a predefined parameter, which reflects the fact that there are genetic and cli-
matic limits to crop production in any environment. In calculating P demand, we have first
determined the optimal uptake triples using step 2 (Eqs. B.1 and B.2) and values provided
by S. Sattari et al. (2014) (Table 5 in the original paper). The range of different a and d

values allowed us to estimate their uncertainty, which was dealt with a Monte Carlo ap-
proach as mentioned in the main part of this article. With the optimal uptake triples, we
then calculated maximum and minimum achievable yields (Eq. B.3) and the ultimate yield
(Eq. B.4). The ultimate yield depends additionally on the potential yield Ymax, which was
taken at each grid point from the ORCHIDEE-CROP simulations of crop yield. Finally, P
demand was calculated as uptake which satisfies 95% of the calculated ultimate yield YU .

B.1.3 Potential root P uptake

The conceptual details of the ‘zero-sink’ uptake model (De Willigen and van Noordwijk,
1994) are given in the main article (Section 2.2.3). Here we give details about the computa-
tion of each parameter. To recap, the ‘zero-sink’ uptake relation (Eq 2.3 in the main text)
is following:

Puptake =

12∑
i=1

π ·∆z · Lrv,i ·D · ρ
2 − 1

G(ρ)
· CP (B.5)

Puptake is the cumulative root uptake during one year (kgPha−1 year−1), ∆z is soil
height (30 cm), Lrv is monthly root length density (cm cm−3), D is the coefficient of P
diffusion (cm2 day-1), CP is the mean concentration of PO4

–
3 ions in the top 30 cm (mgP

L−1), ρ ratio of soil cylinder to root radius (-] andG(ρ) a dimensionless geometric function
(-] related to uptake by diffusion only. Lrv,i is the monthly root length calculated by mul-
tiplying the ORCHIDEE-CROP root biomass with the specific root length (SRL) parameter,
which was taken at the maturity stage. Values and their standard errors are given in Ta-
ble B.3. D is the coefficient of P diffusion given by the ‘constant slope impedance factor’
model (Olesen et al., 2001). It mimics the decreased solute diffusivity in unsaturated soils,
while taking into account soil texture and bulk density. The decrease in diffusivity f is
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called impedance (-) and is the ratio of diffusivity in soil and water:

f =
DS

D0
= 1.1 · (θ − θth) (B.6)

Ds is the P diffusivity in soil (m2 s−1), D0 is the P diffusivity in water (m2 s−1), θ is
the soil water content ( m3 m−3) and θth is the diffusivity cut-off point ( m3 m−3). θ is
the modeled soil water content, and comes from the ORCHIDEE hydrology module called
SECHIBA (Krinner et al., 2005). The impedance decreases with θ, when there is less water
filled pore space and the diffusivity path (or tortuosity) increases. The soil water content
cut-off point θth is a parameter which depends on soil texture and bulk density:

θth =+ 0.81 · CF − 0.90 · CF 2

− 0.60 · ρb + 0.22 · ρ2b (B.7)

− 0.07 · SF + 0.42 +RMSEθth

CF is the clay fraction (-), SF is the silt fraction (-) and ρb is the bulk density (g
cm−3). Global soil texture and bulk density information was read from the Soilgrids1km
maps (Hengl et al., 2014). Additional error to θth was added according to it’s RMSE value
(= 0.034 m2 m−3) when performing Monte-Carlo. ρ is the normalized radius (-) and G(ρ)

is the geometry function (-) which arise in deriving the ‘zero-sink’ solution in the original
model (De Willigen and van Noordwijk, 1994). They are defined as following:

ρ =
1

R0 ·
√
π · Lrv

G(ρ) =
1

2
·
(
1− 3 · ρ2

4
+

ρ4 · log(ρ)
ρ2 − 1

)
(B.8)

R0 is the root radius (mm) andLrv is the root length density (cm cm−3). Value and their
standard errors are given in Table B.3. The procedure for calculation of P in soil solution
(CP ) is explained in the following section. For Monte Carlo estimation of uncertainty, all
of the previous parameters were varied around their mean value with their standard error.
If the standard error wasn’t provided, we assumed a CV of 5 to 20% depending on the
parameter in question (details in Tables B.1 - B.3)

B.1.4 P in soil solution

The soil P dynamic model (Ringeval et al., 2017) does not represent P in soil solution (CP ),
but only inorganic labile P (PILAB) as the plant available P.CP is needed for the potential
root uptake relation (Eq. B.5). To bridge this gap we had to use a separate database (Achat
et al., 2016) to infer the soil solution P from the labile P pool. The dataset contained results
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from Hedley fractionation studies in diverse ecosytems (forests, grasslands and croplands)
covering 379 data points. The depths of soil samples covered the profile up to a depth of 165
cm and were classified according to the USDA system. Samples deeper than 40 cm were
discarded (around 10%) since the soil P model covers only the first 30 cm. All of the data
points had measurements of either soil solution (CP , mg dm−3 of water), resin, inorganic
bicarbonate P or total inorganic labile P. Inorganic labile (PILAB , mg kg−1 of soil) was
calculated as a sum of the resin and the inorganic bicarbonate fractions if provided. CP

was taken as it was measured. These values were log transformed and a Freundlich type
relation was fitted:

log(PILAB) = a · log(CP ) + b (B.9)

When fitting the parameters, we assumed an identical slope a across all soil orders
and a soil order dependent b (Fig. B.1). The fitted parameters are aGLOBAL= 4.28145 ±
0.12071 (p<0.001) and bGLOBAL = 0.62882 ± 0.05787 (p<0.001). The soil-type dependent
bias for the b parameter (∆bSOILTY PE = bSOILTY PE - bGLOBAL) was found significant
only for Oxisols and Mollisols. The values are∆bMollisol = 0.941379 ± 0.327989 (p<0.001)
and∆bOxisol = 1.573335 ± 0.310246 (p<0.05).
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B.1.5 Supplementary Tables

Supplementary Table B.1: Parameters used to calculate P demand (kgP ha−1) with the PHI method (Section 2.2.2,
Eq. 2.1). Mean values are shown with their standard error. If a standard error wasn’t provided in the source
material, a CV of 20% was assumed. Grain information was obtained from Duivenbooden, Wit, and Keulen

(1995). Root information for wheat, maize and rice was obtained respectively from Hocking (1994), Latshaw and
Miu (1934) and Ye et al. (2014).

Description Parameter Unit Wheat Maize Rice

Grain P concentration at maturity P%,grain g kg−1 3.70 ± 0.80 2.90 ± 0.80 2.00 ± 0.80
Amount of P in grain vs the shoot PHI - 0.78 ± 0.07 0.67 ± 0.13 0.61 ± 0.13
Harvest index HI - 0.42 ± 0.12 0.44 ± 0.08 0.41 ± 0.08
Root P concentration at maturity P%,root g kg−1 1.01 1.2 1.31 ± 0.21

Supplementary Table B.2: Parameters used to calculate P demand (kgP ha−1) with the C:P ratio method (Section
2.2.2, Eq. 2.2). Mean values are shown with their standard error. If a standard error wasn’t provided in the source
material, a CV of 20% was assumed for P concentration and 5% for C concentrations. As the reference paper for

wheat didn’t contain C concentrations, we’ve assumed C concentration of 45%. Wheat, maize and rice
information was obtained respectively from Hocking (1994), Latshaw and Miu (1934) and Ye et al. (2014).

Description Parameter Unit Wheat Maize Rice

Grain P concentration P%,grain g kg−1 3.78 3.42 ± 0.34 3.58 ± 0.15
Leaf P ” P%,leaf g kg−1 0.69 2.08 ± 0.34 1.64 ± 0.14
Stem P ” P%,stem g kg−1 0.54 0.89 ± 0.22 1.64 ± 0.14
Root P ” P%,root g kg−1 1.01 1.20 ± 0.15 1.31 ± 0.21

Grain C ” C%,grain % 45.00 44.72 ± 0.50 40.37 ± 0.17
Leaf C ” C%,leaf % 45.00 41.27 ± 0.58 38.04 ± 0.27
Stem C ” C%,stem % 45.00 44.51 ± 1.05 38.04 ± 0.27
Root C ” C%,root % 45.00 42.31 38.04 ± 1.68
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Supplementary Table B.3: Values used to determine Lrv (cm cm−3), ρ and Gρ in the ’zero-sink’ uptake model
(Eq. B.5) . When assessing uncertainty, a CV of 20% was assumed for each of the variables. Wheat, maize and
rice information was obtained respectively from Nakhforoosh et al. (2014), Li et al. (2016) and Biscarini et al.

(2016).

Description Parameter Unit Wheat Maize Rice

Specific root length SRL m g−1 root 129 74 146
Root diameter droot mm 0.42 0.28 0.23
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B.1.6 Supplementary Figures
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Supplementary Figure B.1: Soil solution (CP , mg dm−3 ) vs. inorganic labile P (PILAB , mg kg−1) data used to
obtain the Freundlich type relationship (Eq. B.9). Points are measurements and solid lines are the modelled
values. Different colors represent the values for Mollisols (red), Oxisols (blue) and all other USDA soil types

(dark).
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Supplementary Figure B.2: Global values of total plant C fraction at maturity in irrigated (red) and rainfed
simulations (violet), as well as organ P concentrations used in the C:P ratio method (blue). Markers shows the

global median values with a 68% quantile interval around it. Different markers correspond to different species. P
concentration values are given in Table B.2.
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Supplementary Figure B.3: Maps of soil labile, chemical fertilizer and manure P (kgP ha−1) for the year 2000
(top to boom). Maps shows the mean value (le column) and it’s standard deviation (right column) coming
from 30 different simulations as part of the soil P model’s sensitivity test 7, where the main drivers randomly

varied in a predefined interval. Colorbars depict global quantiles (0-20-80, 95)
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Supplementary Figure B.4: Commonality analysis of the potential P root uptake (Eq. B.5). e plots show the
contribution of each of the drivers (PILAB , CP ,D, Lrv) to the spatial variability (top) and variability at each
grid point (boom) of the calculated root P uptake. Values 1 to 4 show the unique contribution not shared with

others. Other combinations (12 to 1234) show variance common to all variables within that combination.
Different markers and colors correspond to different crop species (see legend). In the top plot, errorbars show the

95% uncertainty interval of the global median (obtained with 1000 bootstrap samples). In the boom plot,
errorbars show the 68% quantile interval around the global median value.
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Supplementary Figure B.5: P limitation as a ratio of supply vs. demand (%), calculated using only the potential
soil P supply. Rows are different species (top to boom: wheat, maize, rice). Grid points without any grain were

not ploed.
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Supplementary Figure B.6: P limitation as a ratio of supply vs. demand (%), calculated using the potential soil P
supply + annual fertilizer P (chemical and manure). Rows are different species (top to boom: wheat, maize,

rice). Grid points without any grain were not ploed.
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as the ratio of mean observed 10 and the aainable yield. Aainable yield was calculated by dividing the world
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B.2 Chapter 3 supplementary information

B.2.1 Supplementary Tables

Supplementary Table B.4: Calibrated values for the maize field trial. Parameter kCR is given for each of the 12 P
experiments (3 P levels x 4 blocks) and all others kept the same. Parameter description can be found in Tables 3.1

and 3.2.

Parameter Initial guess Calibrated values ± std. error

kCL 1.5 1.7137 ± 0.1106

kCR,1 1.0 0.9101 ± 0.1017
kCR,2 1.0 0.8302 ± 0.0922
kCR,3 1.0 0.8545 ± 0.0925
kCR,4 1.0 0.8376 ± 0.0969
kCR,5 1.0 1.4577 ± 0.1673
kCR,6 1.0 1.4526 ± 0.1529
kCR,7 1.0 1.1963 ± 0.1111
kCR,8 1.0 1.4287 ± 0.1573
kCR,9 1.0 1.7878 ± 0.2064
kCR,10 1.0 1.8376 ± 0.1784
kCR,11 1.0 1.7906 ± 0.1966
kCR,12 1.0 1.8377 ± 0.1859

CL,max 1.5 0.9042 ± 0.0862
ρL,max 1.0 1.0927 ± 0.0904

λCR 0.30 0.1362 ± 0.0291
λCL 0.10 0.1608 ± 0.0141
λCS 0.03 0.0117 ± 0.0020
λCG 0.01 0.0153 ± 0.0048

fCS 0.5 0.4036 ± 0.0495
fCG 1.0 2.3523 ± 0.2097

fPS 0.8 1.5956 ± 0.0660
fPR 0.1 0.0399 ± 0.0850

kmPL 0.05 0.0584 ± 0.0081
kmPR 0.05 0.2541 ± 0.1193
kmPS 0.05 0.0686 ± 0.0096

CL,0 0.1 0.0064 ± 0.0250
PL,0 0.1 0.0298 ± 0.0180
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Supplementary Table B.5: Calibrated parameter values for the hydroponic studies. Parameter kCR is given for
each of the five P experiments and all others kept the same for each species (Asher and Loneragan, 1967;

N. K. Fageria and Baligar, 1989). Parameter description can be found in Tables 3.1 and 3.2.

Variable kCL CL,max ρL,max λCR λCL CL,0

Initial guess 1.5 1.0 1.5 0.3 0.1 0.1

Barrel medic 1.2217± 1.2479 1.4816 ± 0.9336 0.8967 ± 0.2541 0.3261 ± 0.4065 0.1195 ± 0.1727 0.0441 ± 0.2109
Brome grass 1.8221± 0.5271 0.4289 ± 0.0644 1.2571 ± 0.2453 0.4145 ± 0.1946 0.1187 ± 0.0651 0.1211 ± 0.4818
Capeweed 1.2570± 0.5783 1.6330 ± 1.1550 0.9148 ± 0.4691 0.2489 ± 1.2535 0.1224 ± 0.4597 0.0524 ± 0.8952
Clover 1.7286 ± 0.3377 0.4744 ± 0.1035 1.1299 ± 0.2715 0.4721 ± 0.1357 0.0847 ± 0.0482 0.1395 ± 0.1960
Erodium 2.0614 ± 2.4349 0.7016 ± 1.0327 1.1258 ± 1.3077 0.6225 ± 1.1166 0.0720 ± 0.3201 0.0956 ± 0.5452
Flatweed 2.0698 ± 0.6796 0.4879 ± 0.1347 2.0429 ± 0.4540 0.4136 ± 0.2458 0.1366 ± 0.1897 0.1208 ± 0.2399
Silver grass 1.7724± 0.7744 0.4667 ± 0.2487 1.4596 ± 1.0746 0.4734 ± 0.7083 0.1048 ± 0.2218 0.1309 ± 0.4042

Alfalfa 1.7676 ± 1.0372 0.4844 ± 0.1900 1.7205 ± 0.4770 0.4672 ± 0.5006 0.1132 ± 0.2824 0.1419 ± 0.4264
Bean 1.4107 ± 0.4049 0.3595 ± 0.0642 1.3110 ± 0.2805 0.5136 ± 0.3943 0.1099 ± 0.1339 0.1300 ± 0.3123
Red clover 1.5970± 1.4740 0.3258 ± 0.2304 1.9161 ± 0.7067 0.3124 ± 0.3857 0.1165 ± 0.1431 0.0873 ± 0.5166
Rice 1.4473 ± 0.9212 0.1676 ± 0.0903 3.7253 ± 1.1436 0.3411 ± 1.1679 0.1157 ± 0.6166 0.0858 ± 0.8162
Wheat 1.7524 ± 0.7460 0.6345 ± 0.2700 1.2003 ± 0.4162 0.3365 ± 0.3818 0.1091 ± 0.2223 0.0447 ± 0.5497

Variable PL,0 kCR,1 kCR,2 kCR,3 kCR,4 kCR,5

Initial guess 0.1 1.0 1.0 1.0 1.0 1.0

Barrel medic 0.0214± 0.5136 0.1588 ± 3.3886 0.6731 ± 2.0856 0.8325 ± 1.6676 1.1213 ± 1.0650 1.2884 ± 0.7138
Brome grass 0.0723± 0.2866 0.0360 ± 0.1446 0.2408 ± 0.2552 1.1367 ± 0.3647 1.3340 ± 0.4073 1.8140 ± 0.3765
Capeweed 0.0609± 0.3320 0.2978 ± 0.4454 0.4815 ± 0.5419 0.5965 ± 0.6870 0.8538 ± 0.8076 1.1816 ± 0.9310
Clover 0.1203 ± 0.2558 0.0348 ± 0.0862 0.2690 ± 0.1442 1.1347 ± 0.3132 2.2824 ± 0.6717 2.0929 ± 0.5477
Erodium 0.0415 ± 1.6314 0.0215 ± 1.1265 0.3436 ± 2.0639 0.7719 ± 2.3206 1.6700 ± 2.8556 1.8104 ± 3.0153
Flatweed 0.0961 ± 0.4203 0.0782 ± 0.1879 0.3508 ± 0.1543 0.9953 ± 0.1750 1.6565 ± 0.4316 1.4294 ± 0.2642
Silver grass 0.1066± 1.3494 0.0809 ± 0.5959 0.3281 ± 0.6141 0.7678 ± 0.4249 1.8235 ± 0.6355 1.7826 ± 0.8745

Alfalfa 0.0713 ± 0.8038 0.0259 ± 0.4894 0.2313 ± 0.4821 0.9014 ± 0.3704 1.5848 ± 0.3303 2.1503 ± 0.6900
Bean 0.0464 ± 0.1495 0.0630 ± 0.1667 0.5332 ± 0.2332 0.8130 ± 0.2835 1.2538 ± 0.3362 1.4391 ± 0.3720
Red clover 0.0719± 0.7136 0.1330 ± 0.5427 0.4411 ± 0.5719 0.6859 ± 0.4559 0.8600 ± 0.5091 1.0676 ± 0.4154
Rice 0.0468 ± 0.4628 0.0548 ± 0.8097 0.4648 ± 0.5638 1.4896 ± 0.9318 1.2552 ± 0.7613 1.2643 ± 0.8733
Wheat 0.0440 ± 0.3336 0.1627 ± 0.4041 0.2031 ± 0.4443 0.5298 ± 0.6615 0.8987 ± 1.0080 1.0202 ± 0.9067
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B.2.2 Supplementary Figures

Supplementary Figure B.8: Time evolution of leaf LUE and PUE (le) and the effective assimilation rate (k∗
CL,

right) as function of leaf biomass and concentration. Root uptake rate kCR is set to 1.0 kgP tDW−1 root ha−1

day−1.
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Supplementary Figure B.9: Predicted field trial root P uptake (kCR) vs. measured soil solution P concentration.
Different markers and colors depict different levels of P addition. Dark dashed line depicts a Michaelis-Menten

kinetic (similar to Eq. 3.16) which best describes the relationship between the two.
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Supplementary Figure B.10: Predicted hydroponic studies root P uptake (kCR) vs. measured solution P
concentration. Different markers and colors depict different levels of P addition. Dark dashed line depicts a

Michaelis-Menten kinetic (similar to Eq. 3.16) which best describes the relationship between the two.
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B.3 Chapter 4 supplementary information

B.3.1 Supplementary Tables

Supplementary Table B.6: Nebraska initial guess

Name Initial guess Variable Description Unit

VCMAX25 60 VC,max Max. carboxylation rate µmol C m−2 s−1

SLA 0.03 SLA Specific leaf area m2 gC−1

MAINT_RESP_SLOPE_C 0.03 λ0 Respiration rate at 0 Co day−1

CM_ZERO_LEAF 0.02 λTL Leaf respiration temperature slope Co −1

CM_ZERO_ROOT 0.02 λTR Root respiration temperature slope Co −1

CM_ZERO_SAPABOVE 0.005 λTS Stem respiration temperature slope Co −1

CM_ZERO_FRUIT 0.0001 λTG Grain respiration temperature slope Co −1

CM_ZERO_RESERVE 0.0001 λTX Reserve respiration temperature slope Co −1

CROPT_kCR 1 kCR Root P uptake rate mgP gC−1 root day−1

CROPT_CLmax 60 CL,max LUE half-saturation biomass gC m−2

CROPT_PLmax 1 ρL,max PUE half-saturation concentration mgP gC −1

CROPT_frCG 2 fCG Grain C filling fraction -
CROPT_frCS 1 fCS Stem C filling fraction -
CROPT_frPR 0.1 fPR Root P filling fraction -
CROPT_frPS 0.1 fPS Stem P filling fraction -
CROPT_kmPL 0.01 kmPL Leaf P remobilisation rate -
CROPT_kmPR 0.01 kmPR Root P remobilisation rate -
CROPT_kmPS 0.01 kmPS Stem P remobilisation rate -
CROPT_tini 120 tini Planting date day of year
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Supplementary Table B.7: Tartas initial guess

Name Initial guess Variable Description Unit

VCMAX25 60 VC,max Max. carboxylation rate µmol C m−2 s−1

SLA 0.03 SLA Specific leaf area m2 gC−1

MAINT_RESP_SLOPE_C 0.03 λ0 Respiration rate at 0 Co day−1

CM_ZERO_LEAF 0.02 λTL Leaf respiration temperature slope Co −1

CM_ZERO_ROOT 0.02 λTR Root respiration temperature slope Co −1

CM_ZERO_SAPABOVE 0.005 λTS Stem respiration temperature slope Co −1

CM_ZERO_FRUIT 0.0001 λTG Grain respiration temperature slope Co −1

CM_ZERO_RESERVE 0.0001 λTX Reserve respiration temperature slope Co −1

CROPT_kCR_00 0.10 kCR,1 P1, B1 root P uptake rate mgP gC−1 root day−1

CROPT_kCR_01 0.10 kCR,2 P1, B2 ” ”
CROPT_kCR_02 0.10 kCR,3 P1, B3 ” ”
CROPT_kCR_03 0.10 kCR,4 P1, B4 ” ”
CROPT_kCR_04 0.33 kCR,5 P2, B1 ” ”
CROPT_kCR_05 0.33 kCR,6 P2, B2 ” ”
CROPT_kCR_06 0.33 kCR,7 P2, B3 ” ”
CROPT_kCR_07 0.33 kCR,8 P2, B4 ” ”
CROPT_kCR_08 1.00 kCR,9 P3, B1 ” ”
CROPT_kCR_09 1.00 kCR,10 P3, B2 ” ”
CROPT_kCR_10 1.00 kCR,11 P3, B3 ” ”
CROPT_kCR_11 1.00 kCR,12 P3, B4 ” ”

CROPT_CLmax 60 CL,max LUE half-saturation biomass gC m−2

CROPT_PLmax 1 ρL,max PUE half-saturation concentration mgP gC −1

CROPT_frCG 2 fCG Grain C filling fraction -
CROPT_frCS 1 fCS Stem C filling fraction -
CROPT_frPR 0.1 fPR Root P filling fraction -
CROPT_frPS 0.1 fPS Stem P filling fraction -
CROPT_kmPL 0.01 kmPL Leaf P remobilisation rate -
CROPT_kmPR 0.01 kmPR Root P remobilisation rate -
CROPT_kmPS 0.01 kmPS Stem P remobilisation rate -
CROPT_tini 120 tini Planting date day of year
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Supplementary Table B.8: Nebraska calibrated values

Name Initial guess Calibrated values (± std. error)

VCMAX25 60 49.345800 ± 0.667849
SLA 0.03 0.030902 ± 0.000105
MAINT_RESP_SLOPE_C 0.03 0.026173 ± 0.003043
CM_ZERO_LEAF 0.02 0.063503 ± 0.015571
CM_ZERO_ROOT 0.02 0.014829 ± 0.000655
CM_ZERO_SAPABOVE 0.005 0.005452 ± 0.000210
CM_ZERO_FRUIT 0.0001 0.000213 ± 0.000431
CM_ZERO_RESERVE 0.0001 0.000203 ± NaN

CROPT_kCR 0.10 0.988825 ± 0.035788
CROPT_CLmax 60 52.099800 ± 0.647469
CROPT_PLmax 1 3.282030 ± 0.298035
CROPT_frCG 2 1.157330 ± 0.007158
CROPT_frCS 1 0.148733 ± 0.084369
CROPT_frPR 0.1 0.148733 ± 0.084369
CROPT_frPS 0.1 0.888210 ± 0.208662
CROPT_kmPL 0.01 0.002189 ± 0.000626
CROPT_kmPR 0.01 0.002443 ± 0.000000
CROPT_kmPS 0.01 0.018644 ± 0.000000
CROPT_tini 120 132.036000 ± 1.232960
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Supplementary Table B.9: Tartas calibrated values

Name Initial guess Calibrated values (± std. error)

VCMAX25 60 94.160000 ± 4.195620
SLA 0.03 0.032080 ± 0.000867
MAINT_RESP_SLOPE_C 0.03 0.041130 ± 0.007687
CM_ZERO_LEAF 0.02 0.034130 ± 0.003509
CM_ZERO_ROOT 0.02 0.082810 ± 0.012167
CM_ZERO_SAPABOVE 0.005 0.004911 ± 0.000931
CM_ZERO_FRUIT 0.0001 0.000605 ± 0.000991
CM_ZERO_RESERVE 0.0001 0.001000 ± NaN

CROPT_kCR_00 0.10 0.551200 ± 0.065082
CROPT_kCR_01 0.10 0.496700 ± 0.041635
CROPT_kCR_02 0.10 0.498500 ± 0.031745
CROPT_kCR_03 0.10 0.523700 ± 0.041312
CROPT_kCR_04 0.33 0.822100 ± 0.067137
CROPT_kCR_05 0.33 0.782800 ± 0.121015
CROPT_kCR_06 0.33 0.679600 ± 0.066054
CROPT_kCR_07 0.33 0.787200 ± 0.069152
CROPT_kCR_08 1.00 0.899600 ± 0.074646
CROPT_kCR_09 1.00 0.850800 ± 0.073362
CROPT_kCR_10 1.00 0.932300 ± 0.054426
CROPT_kCR_11 1.00 0.932000 ± 0.053944

CROPT_CLmax 60 98.910000 ± 4.519330
CROPT_PLmax 1 3.544000 ± 0.222627
CROPT_frCG 2 1.954000 ± 0.382329
CROPT_frCS 1 0.808400 ± 0.054284
CROPT_frPR 0.1 0.070440 ± 0.264154
CROPT_frPS 0.1 1.211000 ± 0.080423
CROPT_kmPL 0.01 0.016120 ± 0.002262
CROPT_kmPR 0.01 0.009299 ± 0.078614
CROPT_kmPS 0.01 0.015970 ± 0.001807
CROPT_tini 120 121.60000 ± 1.850340

129



B.3.2 Supplementary Figures
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Supplementary Figure B.11: Nebraska GPP and eco-system respiration (Reco) using Eq. 4.23
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Supplementary Figure B.12: Nebraska modeled bias (le) and the observed planting dates (right)
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Supplementary Figure B.13: Tartas modeled bias as function of root P uptake rate (kCR)
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Supplementary Figure B.14: Plot of the domain over which the original and the optimal functioning ORCHIDEE
version are compared. Red line denotes points at which the two versions’ time series were compared.
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Supplementary Figure B.15: Conceptual model result with the PUE term (Eq. 4.11) modeled with total leaf P
(PL,max, mgP m−2) instead of leaf P concentration (ρL,max, mgP gC−1)
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Supplementary Figure B.16: Maize potential yield from Mueller et al. (2012). Zonal mean values are shown with
the standard deviation.
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B.4 Chapter 5 supplementary information

B.4.1 Supplementary Figures
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Supplementary Figure B.17: Yield limitation curves for a linear, quadratic and OF adjustment model as function
of P supply and demand similar to Fig. 5.1.
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