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PREFACE 
 
 

  

 

 

 

 

Vaccination is widely considered as one of the greatest achievements of the medical research. Since 

the first Edward Jenner’s development of the vaccine for the smallpox, vaccination was responsible 

for controlling and greatly reducing the spread of several deathly diseases, such as poliomyelitis, 

tetanus, pertussis, diphtheria. Nowadays, existing vaccines can be classified in seven groups in 

function of their active ingredient (named antigen): live attenuated vaccines, subunit vaccines, 

inactivated vaccines, DNA vaccines, recombinant vector vaccines, toxoid vaccines and conjugate 

vaccines. The live attenuated vaccines are known to be the most successful and effective class and 

are made by reducing the virulence of viruses or rarely of bacteria. A schematic representation of 

their production process is presented in Figure 0.1. As live attenuated vaccines are usually more 

stable in dried form (1 - 3 % of water content) than in aqueous solutions, their production process 

involves a drying step. However, vaccines are very heat labile products and can be damaged if 

processed at high drying temperatures, e.g., collapse of the product "cake" can occur, or the vaccine 

can lose its potency. Thus, due to the combined use of vacuum and low temperatures, freeze-drying 

is usually the method of choice employed for vaccine production. This process is carried in three 

successive steps: (i) the freezing of the vaccines formulation, previously filled in small glass 

containers (vials), with the consequent formation of ice crystals and a cryo-concentrated matrix; (ii) 

the primary dying, in which the ice crystals are removed by sublimation; (iii) the secondary drying, 

in which desorption of the water bound to the interstitial matrix is carried out long enough to achieve 

the target residual moisture content in the product. Due to the combined use of vacuum and low 

temperatures, this process is recognized to be a gentle method of drying, suitable for heat sensitive 

products such as vaccines. However, freeze-drying remains a time-consuming and expensive process, 

difficult to design and scale-up, which often result in product batches of non-homogeneous quality 

when operating variables are not adequately selected.  

Nowadays, vaccines safety and vaccination effectiveness gets understandably more and more public 

attention. The need of assurance of product quality resulted in more comprehensive regulatory  

"Next to clean water, no single intervention has had so 

profound effect on reducing mortality from childhood diseases 

as has the widespread introduction of vaccines." 

   - Institute of Medicine Report 
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Figure 0.1: Schematic flowchart of the production process of live attenuated vaccines 
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procedures throughout all the steps of vaccines development and production. One of the newest 

approach to enhance quality of pharmaceutical products while reducing the regulatory burden is the 

implementation of the Quality by Design initiative, proposed in the early 2000 by the US Food and 

Drug Administration. The Quality by Design philosophy states that the quality of the product should 

not be tested on the final product but built-in during the process by means of the determination of 

quality targets and of a deep understanding of how product and process interacts. One of the critical 

steps of the implementation of the Quality by Design in the production process of vaccines is the 

definition of the critical quality attributes (CQAs) of the product, that are for example in a freeze- 

dried vaccine the stability of the antigen, the final moisture content of the product and the 

pharmaceutical "elegance" of the cake. These CQAs depend on freeze-drying step, during which the 

product temperature has to be maintained below a maximum allowed value to avoid the loss of the 

porous structure of the product, i.e., product collapse. Collapse generally causes a higher final 

moisture content of the product, longer product reconstitution time and especially the loss of the 

pharmaceutical "elegance" of the cake required for product acceptance by the authorities. However, a 

product temperature too far from the optimum leads to a significant increase of the operating time 

and thus to a decrease of process efficiency. 

Optimum operating variables in freeze-drying can be defined by constructing the design space. The 

design space is a key concept of the Quality by Design, defined as the multidimensional combination 

of the input variable and process parameter that provide assurance of product quality. Construction 

of the design space can be performed by an extensive experimental campaign or by using classical 

equations of heat and mass transfer in freeze-drying, that can predict an average value of product 

temperature, sublimation rate and moisture content in the vial batch. 

Unfortunately, heat and mass transfer in freeze-drying depend not only on the operating variables of 

the process (i.e., chamber pressure, shelf temperature) but also on several factors, such as product 

properties, container geometry, equipment characteristics.  Understanding the impact that additional 

factors can have on the heat and mass transfer phenomena on vials differently located on the shelf is 

of paramount importance for predicting the product quality variability, and thus allowing to perform 

a reliable risk assessment of the process during the design and the scale-up steps. 

 

In this context, the present project was realized with the financial contribution of the pharmaceutical 

company GlaxoSmithKline Vaccines (Belgium).  
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 Outline of the thesis 

This manuscript presents in four main parts the work that was performed during the three years of 

this Ph.D. project. 

In the first part , a literature review summarizes the state of art of the mathematical modelling of 

freeze-drying process. Firstly, this review focuses on the fundamentals of freeze-drying, and 

describes the main heat and mass transfer phenomena during the different steps of the process. Then, 

attention is focused on the integration of these phenomena in mathematical models of freeze-drying 

and on how these models were previously used as tool for the design, scale-up and risk assessment of 

the process. 

The second part presents the scientific approach applied during this research for the identification 

and quantification of the main mechanisms responsible for the product quality variability in the 

process.  

The third part  is divided in six papers which report the different results obtained. In a first paper, 

the importance of the vial bottom dimensions on the heat transfer variability is analysed. The 

mechanisms responsible for the difference in heat flow rates between vials located at the periphery 

and in the centre of the shelf are investigated in a second paper by using an original 3D mechanistic 

mathematical model of heat transfer during sublimation developed in COMSOL Multiphysics. This 

model is then used in a third paper to explore the effect of the loading configurations and of different 

design elements of the equipment on the heat flow rates received by the vials during the process. 

In a fourth paper, our attention focuses on mechanisms responsible for the inter-vial mass transfer 

variability during primary drying related to product structure. Successively, the importance of the 

desorption rate variability on the distribution of the moisture content in the final product is explored 

In line with the Quality by Design initiative, the main objectives of this work 

were to (i) investigate and quantify the sources responsible for heat and mass 

transfer variability, and consequently for product quality heterogeneity, within 

the same vial batch or between batches at different scales in primary and 

secondary drying and to (ii) implement the previously studied phenomena in a 

dynamic mathematical model of freeze-drying. The developed model was then 

used to define an original approach for the prediction of the risk of failure of the 

process (expressed in terms of percentage of vials potentially rejected) and thus 

for the selection of process operating conditions leading to desired product 

quality at acceptable risk. 
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in a fifth paper. 

Then, in a sixth and last paper, a dynamic mathematical model of freeze-drying is developed 

including the previously explored mechanisms responsible for heat and mass transfer variability 

between vials. This model is then used to predict the value and distribution of product temperature, 

ice fraction and moisture content. Finally, it was proposed an original approach for the development 

of the primary and secondary drying steps of the freeze-drying process at known risk of failure, 

expressed as percentage of vials potentially rejected.  

Finally, the IV part  presents the general conclusion of the obtained results through a global analysis 

of the observed phenomena, and highlights the main future perspectives. 

At the end of this manuscript, a small glossary of specialized terms in freeze-drying is provided as a 

tool of reference for the reader. 
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NOMENCLATURE 

�� Water activity  

��  Accommodation coefficient 

� Cross sectional area (�²) 
�	 Parameter (contact conduction and radiation contribution to 
�)  

of Equation I.2.11 (�	���
�	) 
�� Parameter (gas conduction contribution to 
�)  

of Equation I.2.11 (�	���
�		���	) 
�� Parameter (gas conduction contribution to 
�)  

 of Equation I.2.11 (���	) 
�� Activation energy (�	���	
�	) 
�� Latent heat of sublimation (�	���	) 
� Visualization factor (-) 

�� Fraction of ice in the product 


 Heat transfer coefficient (�	���
�	) 
� Thickness (�) 
��  Water vapour flow rate (��	��	) 
� Pressure (��) 
��  Heat flow rate (�) 
  Mass transfer resistance (��	�	���	) 
 ! Ideal gas constant (�	
�	��"��	) 
 # Product resistance (��	�²	�	���	) 
 #$ Parameter  (initial product resistance at dried layer thickness equal to 0) of 

Equation I.2.20  (��	�²	�	���	) 
 #	 Parameters of Equation I.2.20  (��	�	�	���	) 
 #� Parameters of Equation I.2.20  (��	) 
% Time (�) 
& Temperature (
) 
&! Glass transition temperature (
) 
&!′  Glass transition temperature for maximally freeze-concentrated solutions (
) 
' Fraction of moisture content (−) 

Greek 

) Thermal conductivity (�	��		
�	) 
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*+ Free molecular flow heat transfer coefficient (�	���	
�		���	) 
, Stefan-Boltzmann constant (�	���	
�-) 

. Characteristic desorption time  (Equation I.2.21) (�)  
Subscripts and Superscript 

            0  Initial 

��/ Ambient 

0 Bottom 

1 Contact 

� Chamber 

�2 Condenser 

1"�� Collapse 

3 Dried 

34� Desorption 

45 Equilibrium 

� Frozen 

��� Gas 

6 Interface 

7 Ice 

8 Nucleation 

9 Radiation 

94� Reference 

� Stopper 

: Shelf 

�;/ Sublimation 

& Top 

< Vapour 

= Vial 
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ABBREVIATIONS 

CQA Critical Quality Attribute 

CQP Critical Quality Parameter 

DSC Differential Scanning Calorimetry 

FDM Freeze-Dry Microscopy 

ICH  

 

NIR 

International Council for Harmonisation of Technical Requirements for 

Pharmaceuticals for Human Use 

Near Infrared Reflectance 

PRT Pressure Rise Test 

QbD Quality by Design 

QbT Quality by Testing 

QTPP Quality Target Product Profile 

TDLAS Tunable Diode Laser Absorption Spectroscopy 
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I.1 Fundamentals of freeze-drying  

 
 
 
 
 

I.1.1 A process as old as time 

The world "freeze-drying" or "lyophilization" generally refers to a drying operation mainly 

performed by sublimation, which is the direct transition from frozen to gaseous state. The term 

lyophilization has origin from three ancient Greek word roots, λύω meaning “to break up, to 

dissolve”, φιλέω meaning “to love, to kiss”, and -ίζειν meaning “to make”. Lyophilisation thus 

literally means “to make solvent loving”, referred to the rapidly reabsorption of the solvent in the 

dried product (Varshney and Singh, 2015). 

The method of freeze-drying can be traced back to prehistoric times, when the Eskimos preserved 

their fishes in the cold temperatures of arctic by dehydration. Around 1250 BC, the ancient Incas 

used a rudimental version of the process by storing their crops on the mountains above Machu 

Picchu. Their food stores were frozen by the cold mountain temperatures during night, and the water 

inside slowly sublimed under the low air pressure of the high altitudes with the first sun rays 

(Varshney and Singh, 2015). 

During the different centuries, and especially during the II World War, freeze-drying was largely 

applied in pharmaceutical and medical practice to preserve blood and biological tissues. One of the 

very first applications of the freeze-drying process in vaccine production was documented in the XX 

century, with the publication of the freeze-dried formulation of the small pox vaccine in 1909.  

However, the first commercialization of a sterile dry formulation for parenteral, the "DryVax” small 

pox vaccine, took place only in the 1940s (Varshney and Singh, 2015; Riedel, 2005). 

Nowadays, freeze-drying is the method of choice in the biotechnology, pharmaceuticals, and 

biomedical industries for preserving a long list of heat sensitive products such as vaccines, bacteria, 

nanoparticles, hormones, peptides and proteins (Adams, 1991; Franks, 1998; Pikal et al., 1991; 

Fonseca et al., 2015; Hansen et al., 2015; Abdelwahed et al., 2006). The process involves three main 

steps: (i) the freezing of the product, (ii) the sublimation of the ice crystals formed and (iii) the 

desorption of the residual unfrozen water. Each of these steps is presented in detail thereafter. 
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Figure I.1.1: Schematic representation of a freeze-dryer. 
 

 

 

 

Figure I.1.2: An example of the product temperature profile during the freezing step of the 
process. Point A represents the initial point (product at 4 °C); point B represents the nucleation 
temperature &> ; point C represents the equilibrium freezing temperature	&? ; the segment C-D 
represents the freezing plateau at the equilibrium freezing temperature; point E corresponds to the 
end of the freezing step (Béal and Fonseca, 2015).   
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I.1.2 The freeze-dryer system 

The freeze-dryer, schematically presented in Figure I.1.1, is composed by several elements: the 

drying chamber, the condenser, the vacuum pump, the heating and refrigeration system, and the 

supervision and control system. The drying chamber contains usually one or more shelves, on which 

the vials are directly placed during the three steps of the process. The temperature of the shelves is 

controlled by means of a heat transfer fluid pumped through built-in channels, which is cooled down 

or heated up by the heating-refrigeration system. The shelves act as a heat exchanger, removing 

energy from the product during the freezing and supplying heat during the primary and secondary 

drying steps. The drying chamber is connected usually by a mushroom or butterfly valve to the 

condenser, cooled by a refrigeration system. Furthermore, a vacuum pump is connected to the 

condenser and used to create the vacuum into the system usually at the beginning of the primary 

drying step. Finally, one or more temperature and pressure sensors help the control system to 

maintain the selected set point values of the operating variables during the different steps of the 

cycle. 

I.1.3 The process 

I.1.3.1 The freezing step 

In pharmaceutical freeze-drying, the product formulated as aqueous solution is first filled into small 

glass containers (named vials) and then loaded directly on the pre-cooled shelves at 4 °C of the 

drying chamber before the beginning of the process. The protocol of the cycle is then implemented 

into the freeze-dryer software and the process is launched. The first step of the process is the freezing. 

An example of the product temperature profile during freezing is shown in Figure I.1.2 (Béal and 

Fonseca, 2015). First, the product temperature decreases until nucleation takes place at the nucleation 

temperature &> with the first ice crystals formation (point B, Figure I.1.2). Ice crystallization is an 

exothermic phenomenon, thus the product temperature abruptly increases to the equilibrium freezing 

point 	&? (point C, Figure I.1.2) (Béal and Fonseca, 2015). The difference between the nucleation 

temperature &> and the equilibrium freezing point 	&?  is known as degree of supercooling (segment 

BC, Figure I.1.2) (Kasper and Friess, 2011; Rambhatla et al., 2004; Searles et al., 2001b). Then, the 

product presents a constant temperature at the equilibrium freezing point, due to the equilibrium 

between the ice formation exothermic phenomenon and the heat removed from the product by the 

shelf (point CD, Figure I.1.2). As ice forms, the concentration of the unfrozen phase in contact with 

ice increases. Consequently, following shelf’s temperature decrease, the freezing temperature 

progressively drops off according to Raoult’s law (segment DE, Figure I.1.2). 
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The concomitant decrease in temperature and increase in solute concentration induces a rapid 

increase in viscosity. This process continues until the freeze concentrated solution solidifies as a 

crystalline matrix or a glass (Béal and Fonseca, 2015). 

The ice nucleation temperature and the degree of supercooling dictate the size and morphology of ice 

crystals and thus the final porosity of the dried product (i.e., the fraction of the volume of voids over 

the total volume). Due to the stochastic nature of the nucleation, a variable degree of supercooling 

can be observed. A low nucleation temperature (and high degree of supercooling) generates smaller 

and numerous ice crystals and small pores. Small pores will result in high mass transfer resistance 

during primary drying and long sublimation time. Conversely, they will lead to short desorption time 

due to high specific surface area of the dried product. 

Once completion of the freezing step, the primary drying starts. 

I.1.3.2 The primary drying step 

Primary drying is the most critical step of the process and occupies the longest portion of the total 

cycle time. It consists in the dehydration of the product by means of sublimation under vacuum of the 

previously formed ice crystals.  

At the beginning of primary drying, the condenser is cooled down to temperature lower than -50 °C 

and the pressure in the drying chamber is lowered to create the vacuum. When pressure reaches a 

value below the saturated vapour pressure of ice at the frozen product temperature, sublimation 

begins. Since sublimation is an endothermic process, the latent energy necessary for water 

sublimation is provided to the product by rising the temperature of the shelf. Thus, chamber pressure, 

shelf temperature and time are the main operating variables controlled during the primary drying.  

The water vapour generated during the sublimation process flows from the drying chamber to the 

condenser. As the temperature of the condenser coils is much lower than the ice temperature in the 

product, water removal from the sample is achieved by trapping water by condensation on the cold 

condenser coils.  

Primary drying is finished when all ice has been removed from the frozen product, and the process 

moves to the third and last step of the process, the secondary drying.  

 

I.1.3.3 The secondary drying step 

After completion of primary drying, unfrozen water is still present in the product bound to the dried 

matrix. The product appears dry, but the residual moisture content may be as high as 10-  20 % 

depending on the product (Roos, 1997). Further drying step is necessary to reduce the residual 

moisture content up to the target final value, compatible with storage stability of freeze-dried 

products. 
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Figure I.1.3: Solid-liquid state diagram for the sucrose-water system. Abbreviations: &@, eutectic 
temperature; &!’ , glass transition temperature for the maximum freeze-concentrated solution; &!, 
glass transition temperature. Point A: initial state of the product; Point B: nucleation at &>; Point C: 
equilibrium freezing point (&?); Point D: end of the freezing step, product matrix is in glassy state; 
Point E: primary drying; Point E': primary drying at a temperature higher than  &!’ ; Segment E-F: 
secondary drying. The % of sucrose is expressed as w/w. The blue line represents the equilibrium 
freezing curve, the red line represents the glass transition, the black solid line represents the 
eutectic curve (Abdelwahed et al., 2006). 
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This last phase of freeze-drying is named secondary drying and is performed by desorption of the 

unfrozen water from the remaining concentrated solute matrix.  

Desorption actually begins in a local region of the product once all the ice sublimes from that region, 

meaning that some secondary drying can occur during primary drying in different regions of the 

same sample (Pikal and Shah, 1990).  

Secondary drying is normally carried out by rising the temperature of the shelf. The chamber 

pressure is generally keep unmodified, because this step of the process was found to be pressure 

independent for pressure values below 27 Pa (Pikal et al., 1990). 

The product is maintained at this temperature for several hours to reach specified residual moisture 

content at the end of freeze drying, typically between 1 and 3 %. The final residual moisture content 

of the lyophilized product needs to be precisely controlled: high values of residual water content 

impact on the product potency and shelf life, whereas overdrying promotes the protein activity loss 

upon storage (Pikal, 1994). 

The final product, the freeze-dried product, is a solid structure with many very small pores. These 

pores create a large surface area of the lyophilisates and promote fast reconstitution of the product 

upon addition of water.  

I.1.4 The importance of amorphous formulation in freeze-drying 

Pharmaceutical freeze-dried products usually exist on the market as amorphous glassy solids 

(glasses). The use of excipients forming amorphous solids can protect the active ingredients (in 

particular proteins) against freezing and drying damages by means of two main mechanisms: (i) the 

vitrification, meaning the immobilization and isolation of the critical substances in a rigid glass, to 

reduce potential for protein aggregation and diffusion of small molecules required to initiate 

hydrolysis or oxidation; (ii) the direct interaction between protein and excipient, by means of 

hydrogen bonds between stabilizing excipients and the drug, can avoid conformation changes during 

freeze-drying (Yu, 2001). Crystalline solutes usually look more pharmaceutically elegant and are 

faster to dry, but can lead to a phase separation and loss of stabilizing power, as well as to the 

formation of slow dissolving particles, causing slow reconstitution of parenteral product  

(Akers, 2016; Yu, 2001).  

During the freeze-drying process, the formulation solution exists under various states as function of 

the temperature and solute concentration. The modification of the solution state can be illustrated by 

a state diagram, as shown in Figure I.1.3 for the water-sucrose system. The liquid/solid equilibrium 

freezing temperature (or ice melting point, blue bold line), and the glass transition temperature &! 

(red bold line) are presented.  

They respectively indicate the freezing/melting temperature and the reversible transition of a solution  
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from a rubbery into a glassy state, as a function of the matrix solute concentration. The equilibrium 

freezing point decreases when the solute concentration increases, whereas the glass transition 

temperature &! decreases when the water content in the product increases. 

Before the freezing step, the aqueous solution is in liquid state and contains a fixed concentration of 

sucrose (point A in Figure I.1.3). Then, the temperature is decreased and ice nuclei are formed at the 

ice nucleation temperature &> (point B in Figure I.1.3).  

As nucleation is an exothermic process, the product temperature rises until the equilibrium freezing 

temperature &?	  at which ice crystals formation starts (point C in Figure I.1.3). Then, the 

concentration of the solute components of the formulation is progressively increased in the interstitial 

region between the growing ice crystals and the equilibrium freezing point decreases following the 

equilibrium freezing curve (Roos and Karel, 2007; Roos, 2010; Abdelwahed et al., 2006). This 

phenomenon is referred to as "cryoconcentration".  

As the concentration increases, the solution becomes more and more viscous, thus slowing down ice 

crystallization until reaching a characteristic temperature after which no further freezing occurs. 

This temperature corresponds to the intersection of the equilibrium freezing curve and the glass 

transition curve and is called the glass transition temperature of the maximally freeze-concentrated 

solution (known as &!B) (Abdelwahed et al., 2006; Roos, 2010). 

At the end of the freezing step during freeze-drying process, the product reaches the point D in 

Figure I.1.3 and the cryoconcentrated matrix is in glassy states.  

During primary drying, the ice crystals are removed by sublimation but the concentration of 

the interstitial matrix remains constant at �!B  (point E in Figure I.1.3). However, if during 

primary drying the temperature of the product reaches a critical temperature higher than &!B 
(point E' in Figure I.1.3), loss of the pore structure is observed in the dried region adjacent 

to the ice-vapour interface is due to a decrease of viscosity of the amorphous solute phase 

(Pikal and Shah, 1990; Roos, 2010). This dynamic phenomenon, known as collapse, takes 

place at a temperature known as collapse temperature 	&�+CC  and will normally be at the 

origin of vial rejection due to the high residual water, the prolonged reconstitution times or 

simply to the lack of “elegance” of the dried cake (i.e., an “elegant” freeze-dried cake should 

have the same size and shape as the solution originally filled into the container and should be 

uniform in color and texture) (Johnson and Lewis, 2011; Pikal and Shah, 1990; Patel et al., 

2017). The &!′  and &�+CC  do not represent the same parameter. The &!′  represents the 

temperature at which the maximally cryoconcentrated matrix follows the reversible transformation 

from a solid glassy state to a viscous liquid with an increase of temperature. It is generally measured  
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using the Differential Scanning Calorimetry (DSC) on a frozen sample in closed system, thus the ice 

crystals are in close contact with the glassy phase during the analysis. In contrast, &�+CC 	 is measured 

by direct observation using the Freeze-Dry Microscopy (FDM), which simulates (at very small scale) 

the sublimation step of freeze-drying process (Fonseca et al., 2008; Pikal and Shah, 1990).  

The collapse temperature thus corresponds to the minimum temperature at which the sublimation of 

ice is accompanied by a generalized loss of the structure of the lyophilized product. As result, the 

collapse temperature &�+CC  is usually slightly higher than &!′ of about 1 - 5 °C. In the industrial 

practice, the product temperature has to be maintained below 2 - 5 °C the maximum allowed 

temperature (Tang and Pikal, 2004), to preserve the product from any damage. The &!′ can thus be 

considered a critical threshold and safety value for the product temperature during primary drying to 

be used for the process design. 

Once ice crystals are completely sublimed and secondary drying starts, &!  will increase as the 

moisture content will decreased in the product due to desorption (as shown by the red arrows and 

point F in Figure I.1.3). The critical temperature value will evolve during secondary drying 

according to the &! curve. 

I.1.5 Importance of heat and mass transfer in freeze-drying 

 

 

 

 

 

 

 

 

As evidenced from this analysis, the main constraint imposed to the freeze-

drying process is given by the product temperature, which has to be maintained 

below a maximum allowed value during the primary and secondary drying 

steps to guarantee an acceptable final product quality. However, the product 

temperature profile cannot be controlled directly but depends on the values of 

the operating variables and on several heat and mass transfer phenomena taking 

place during the process. The understanding of these mechanisms is of 

paramount importance for a rational selection of the operating variables, i.e., 

shelf temperature and chamber pressure, and thus for the design and scale-up of 

the process. 

In this regard, the most relevant heat and mass transfer mechanisms taking 

place during freeze-drying process will be described in the next section. 
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I.2 Mechanisms of heat and mass transfer in freeze-
drying  

 
 
 
 
 

 

I.2.1 Pseudo-steady state in primary drying 

In the freeze-drying of pharmaceuticals, primary drying is usually considered to be carried out under 

pseudo-steady state condition, i.e., the heat flow rate �� 	(�) received by the vials is completely used 

for the sublimation of ice crystals (Pisano et al., 2011; Pikal, 1985, 2000; Velardi and Barresi, 2008; 

Schoen et al., 1995; Pikal et al., 1984). Thus, heat and mass transfer are coupled as: 

 

�� = ��	�� FGH    Equation I.2.1 

 

with �� (�	���	) being the latent heat of sublimation. 

I.2.2 Heat transfer in freeze-drying: the vial heat transfer coefficient 

The heat flow rate received by the product bottom is proportional to the difference between the 

average temperature of the fluid circulating into the shelf 	&I (
)	and the product temperature at the 

vial bottom &J� (
): 
 

�� = 
��J� 	(&I − &J�)   Equation I.2.2 

 

where	�J� 	(�²) is the vial bottom area and 
� (�	���
�	) is the vial heat transfer coefficient.  
Due to the concavity characteristics of the vial bottom, the vial heat transfer coefficient can be 

defined as the sum of three contributions (Pikal, 2000; Pisano et al., 2011; Pikal et al., 1984; Pikal, 

1985): 

 


� = 
� + 
M +
!    Equation I.2.3 
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Figure I.2.1: Schematic representation of the heat transfer between the shelf and the vial. A zoom on 
the vial bottom is shown in the inset. The orange line represents the heat transfer by contact 
conduction (
�), the wavy red arrow the heat transfer by radiation (
M), the blue arrow the heat 
transfer by conduction through the gas (
!).  
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Each of those terms represents a different heat transfer mechanisms, as shown in Figure I.2.1:  

• 
� (�	���
�	) represents the thermal contact conduction through the contact area between 

the shelf and the vial; 

• 
M	(�	���
�	) represents the thermal radiation, between the vial and the top and bottom 

shelves; 

• 
!  (�	���
�	 ) represents thermal conduction through the gas entrapped in vial bottom 

concavity. 

Each of those heat transfer contributions will be described in the next section. 

I.2.2.1 Heat transfer by contact conduction 

The term 
� represents the heat transfer by contact conduction from the shelf to the vial bottom. Its 

contribution is independent on pressure, but it is influenced by the dimension of the contact area 

(Cannon and Shemeley, 2004; Kuu et al., 2009), which is usually very small due to the presence of 

the vial bottom concavity. Thus, the value of 
� can be significantly different in function of the vial 

type (Kuu et al., 2009). 

I.2.2.2 Heat transfer by radiation 

The radiation contribution to the heat flow rate in vials is classically described by the Stefan-

Boltzmann equation (Bird et al., 2002; Pikal, 2000; Pikal et al., 1984; Ganguly et al., 2013): 

 

��M = �M 	�	,	(&	- − &�-)    Equation I.2.4 

 

In Equation I.2.4, &		(
)	and &� (
)	are the temperatures of the surfaces involved in the radiation 

heat exchange, �M  (�²)	 is the area exposed to the radiations, 	�  is the visualization factor and  

(�	�−2	
−4) is the Stefan-Boltzmann constant.  

As presented in Figure I.2.1, all the vials on the shelf are affected by two different radiation heat 

transfer contributions during the process: between (i) the bottom shelf and the bottom of the vial and 

(ii) the top shelf and the top of the vial (Pikal et al., 1984; Pikal, 2000; Pisano et al., 2011). Thus, the 

visualization factor � can be expressed as: 

 

� = �J + �P    Equation I.2.5 

 

The emissivity factor at the bottom of the vial �J 	can be evaluated considering the definition 

proposed by Bird et al. (Bird et al., 2002), and Pikal (Pikal, 2000). For the two surfaces involved in  
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the exchange, shelf and vial, it is necessary to assume that: (i) the two surfaces are opaque and 

parallel; (ii) the area of the two surfaces involved in the exchange is equal; (iii) the absorption factor 

is equal to the emissivity factor for both surfaces; (iv) all the radiations leaving the shelf strike the 

 

vial bottom (Bird et al., 2002; Pikal, 2000). Hence, 	�J can be expressed as in Equation I.2.6: 

 

�J = 	
	QR STU�	VQR

S
TW�	V

    Equation I.2.6 

 

where 4� is the emissivity of the vial and 4I the emissivity of the shelf. Typical values of �J may be 

around 0.1 - 0.3.  In contrast, the area of the vial exposed to the top shelf is much smaller than the 

area of the shelf itself, and the visualization factor �P can be estimated as equal to the emissivity of 

the vial 4� (Pikal, 2000; Pikal et al., 1984): 

 

�P = 4�      Equation I.2.7 

 

The value of visualization factor at the vial top	is usually higher than at the vial bottom, being around 

0.84 (Pikal et al., 1984). 

 

I.2.2.3 Heat transfer by conduction through the gas 

The vials used in freeze-drying process have a bottom concavity in which some gas is contained. For 

the typical range of pressure used in pharmaceutical freeze-drying (<10 Pa),  the density of the gas is 

very low and the gas molecules collide more frequently with the solid surface as they do with other 

molecules. In this condition, the heat transfer takes place under the free-molecular or Knudsen 

regime (Pikal et al., 1984; Pikal, 2000; Brülls and Rasmuson, 2002). 

A relatively simply way of calculating the gas conduction contribution in the vial bottom is a formula 

derived by Pikal et al. (Pikal et al., 1984), from a work of Dushman and Lafferty (Dushman and 

Lafferty (eds.), 1962): 

 


! = XY	Z[
	QX\	Z[	     Equation I.2.8 

 

where �X  (��)	 is the pressure in the drying chamber whereas ��  (�	���
�		���	)	 and �� 

(���	)	are respectively equal to: 
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Table I.2.1: Most used experimental methods for the determination of the vial heat transfer coefficient 
� . 
Local methods allow the determination of 
�  in single vials, global methods lead to the determination of a 
mean value of 
�  among all the vials on the shelf.  
 

 
Method 

 

Local/Global 
method Measurement References 

 
 

Gravimetric method 
 

 
 

Local 

 
Average mass 

flow rate during 
sublimation in 

single vials 
 

 
(Pikal et al., 1984; Hottot 
et al., 2005; Pisano et al., 
2011; Hibler et al., 2012) 

 
Pressure Rise Test 

(PRT) 

 
 
 
 

Global 

 
 

Global mass 
flow rate profile 

during 
sublimation 

among all the 
vials on the 

shelf 
 

 
(Hottot et al., 2005; Tang 
et al., 2006a; Fissore et 

al., 2010)  
 

Tunable Diode 
Laser Absorption 

Spectroscopy 
(TSLAS) 

 

 
 

(Kuu et al., 2009) 
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�� = Λ+
]^

	�]^ (
�_�.	a
Pbcd )

$.a    Equation I.2.9 

 

�� = �� CeU
fcgh

     Equation I.2.10 

where Λ+ (�	���	
�		���	) is the free molecular flow heat transfer coefficient of the gas at 0 °C, 

&!�F  (
)	the temperature of the gas participating in heat conduction, calculated as the average 

between the product temperature at the sublimation interface and the shelf temperature values 

(Pisano et al., 2011), i� the accommodation coefficient, �J� (�)	is the depth of bottom curvature, 

)�jH  (�	��		
�	 ) is the conductivity of the gas at atmospheric pressure (1 atm). The 

accommodation coefficient αl will be 1 if the exchange of energy between the shelf and the gas is 

complete, 0 if there will be no exchange. The value of αl can be particularly difficult to calculate, so 

often it is estimated by regression using experimental data.  

The presence of the concavity in the vial bottom accounts for most of the resistance to conductive 

heat transfer, by reducing the points of direct contact between the vials and the shelf and thus the 

contact conduction contribution (Nail, 1980; Cannon and Shemeley, 2004; Kuu et al., 2009; Ybema 

et al., 1995). Furthermore, the value of 
� has to be characterized for different chamber pressures 

due to the dependence of the gas conduction contribution 
! on this parameter.  

The dependence of the 
� on the chamber pressure is usually described in literature by Equation 

I.2.11 (Pikal et al., 1984; Hibler et al., 2012; Pisano et al., 2011): 

 


� = �	 + XY	Z[
	QX\	Z[	    Equation I.2.11 

where �	 (�	���
�	)	is the sum of 
� and 
M. 
 

I.2.2.4 Experimental determination of mn 

The vial heat transfer coefficient 
� 	is usually calculated from experimental data by using Equation 

I.2.1 and I.2.2. The data needed for the 
�  determination are: (i) the difference between the 

temperatures of the shelf &I  and the product &J� , which are commonly determined by using 

thermocouples or other temperature sensors, (ii) the outer cross sectional area of the vial �J�, which 

can be determined from the dimensions of the container and (iii) the mass flow rate �� FGH.  

An overview of the experimental methods typically used for the evaluation of the �� FGH (��	��	)in 

the 
� determination is presented in (Table I.2.1) (Kuu et al., 2009; Tang et al., 2006a; Hibler et al., 

2012; Pisano et al., 2011; Pikal et al., 1984; Fissore et al., 2010; Hottot et al., 2005).  
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Figure I.2.2: Dependence of the vial heat transfer coefficient 
�  on the chamber pressure for 
central vials. Symbols of empty triangles represent molded vials with a depth of bottom curvature 
of 0.22 mm, empty and filled squares represent tubing vials with a maximum depth of bottom 
curvature respectively of 0.11 mm and 0.04 mm (Pikal et al., 1984). 

 

 

 
Figure I.2.3: Scheme of a batch in which the vials are classified depending on their position and 
on the additional heat transfer mechanisms involved (Pisano et al., 2011).  
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Among these, the gravimetric method appeared to be the most used one (Pikal et al., 1984; Hibler et 

al., 2012; Pisano et al., 2011; Hottot et al., 2005). Commonly, the following procedure is used to 

determine the average mass flow rate using the gravimetric method. Firstly, the vials are filled with a 

fixed amount of pure water, weighed and loaded in the drying chamber directly in contact with the 

shelf. The water is turned into ice crystals during a freezing step. Then, the pressure in the freeze 

drying chamber is reduced and the shelf temperature is increased to the selected values, so that 

sublimation of the ice can take place. Product and shelf temperature data are collected throughout this 

step. 

When approximately 30 % of the ice has sublimed, the sublimation step is stopped to avoid loss of 

contact between the ice and the vial bottom. The vials are unloaded from the equipment and 

reweighed. Finally, the loss of mass divided by the duration of the sublimation phase gives the mass 

flow rate. 

The vial heat transfer coefficient can be thus calculated from Equation I.2.1 by using the collected 

data. This procedure is repeated at different chamber pressure to characterize the dependence of 
� 

on this operating variable. An example of the variation of 
� with the pressure is shown in Figure 

I.2.2. Vials presenting different values of maximum depth of bottom curvatures were used in this 

study. In agreement with other works (Hibler et al., 2012; Pisano et al., 2011; Kuu et al., 2009), the 


� values increase with the pressure. However, this dependence is strictly influenced by the vial type, 

as the container determines the contact conduction contribution 
� through contact area �� and the 

gas conduction contribution through the depth of bottom curvature �J�.  

Furthermore, other two experimental methods are used in literature for the determination of 	
�: the 

Pressure Rise Test (PRT) and the Tunable Diode Laser Absorption Spectroscopy (TDLAS) (Table 

I.2.1). Both these methods allow to get a global mass flow rate profile among all the vials on the 

shelf during sublimation and thus to estimate a global value of 	
� from Equations I.2.1-2. Details 

on the use of the PRT and TDLAS for the determination of the  �� FGH	will be given in §I.2.3.4. In this 

case, the curve of 	
� vs. �X can be determined in only one run, by varying the chamber pressure 

during the test (Hottot et al., 2005; Kuu et al., 2009; Velardi et al., 2008). 

However, it must be observed that the gravimetric measurement is the only method that allows the 

determination of 
� 	for vials differently located on the shelf and to have a global picture of the vial-

to-vial heat transfer variability. During freeze-drying, the vials located at the periphery of the shelf 

(edge vials) present higher heat flow rates than the vials located in the centre of the shelf and 

surrounded by other vials in the same conditions (central vials) (Pikal et al., 1984; Rambhatla and 

Pikal, 2003; Velardi and Barresi, 2008; Pisano et al., 2011; Zhai et al., 2005; Gan et al., 2005). This 

position-dependent heat transfer is known as "edge vial effect" (Rambhatla and Pikal, 2003), and it is 

usually ascribed in literature to the additional radiations received by edge vials from the warmer  
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Figure I.2.4: Example of vial heat transfer coefficient experimental data (histogram) and normal 
distributions (solid line) evaluated for (B) edge vials in contact with the rail, (C) edge vials not in 
contact with the rail and (E) central vials (Pisano et al., 2011). See Figure I.2.3 for vials 
classification.  

 

 

Figure I.2.5: Comparison between experimental values of 
�  for edge vials in contact with the rail 
(B), edge vials not in contact with the rail (C) and central vials (E) , measured in two pieces of 
equipment of different size: (□) laboratory and (///) industrial scale freeze-dryer (Pisano et al., 
2011).  See Figure I.2.3 for vials classification. 
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surface of the drying chamber to which the edge vials are exposed (e.g., walls and door) (Pikal et al., 

1984; Rambhatla and Pikal, 2003; Velardi and Barresi, 2008; Pisano et al., 2011; Zhai et al., 2005; 

Gan et al., 2005). Pisano et al. (Pisano et al., 2011), classified the vials in five main groups, as shown 

in Figure I.2.3, in function of their position on the shelf and the heat transfer contributions received: 

(A) edge vials located in the corner of the shelf, (B) edge vials in contact with the rail, (C) edge vials 

not in contact with the rail, (D) vials in contact with hot vials, (E) central vials. Due to the different 

heat transfer conditions, each of those groups can present a different 
� value. In this regard, Figure 

I.2.4 shows the 
� distributions determined gravimetrically for edge vials B and C in contact and not 

in contact with the rail and central vials E. The edge vials show higher values of 
�, due to the 

additional radiation contributions received by the exposition to the drying chamber walls and the rail 

(Pisano et al., 2011). 

As the radiation heat transfer is strictly related to the emissivity of the components involved in the 

exchange and the geometry of the system (Equation I.2.4-7), the 
�  values of edge vials may 

depend on the freeze-dryer used. In this regard, Figure I.2.5 shows that the 	
� values for edge vials 

located in contact and not in contact with the rail may be significantly different between a laboratory 

and a manufacturing scale freeze-dryer, whereas central vials show almost the same value (Pisano et 

al., 2011). As the characteristics of the drying chamber can vary from one equipment to another, 

differences in 
� should be evaluated between different freeze-dryers for an effective cycle transfer 

or the scale-up (Pisano et al., 2011). 

It is a common practice in literature to describe heat transfer differences between vials at the edge 

and in the centre of the shelf by variations in 
� values . However, this approach does not take into 

account that the heat flux between the shelf and the vials (described by the vial heat transfer 

coefficient 
�, Equation I.2.2) and the additional heat fluxes received by edge vials are not due to 

the same temperature differences. For example, the radiation contribution from the wall to edge vials 

is due to the temperature difference between the chamber wall and the vial, which may be 

significantly different from the temperature difference between the shelf and vial. 

I.2.3 Mass transfer in primary drying (sublimation) 

The mass transfer in primary drying is usually discussed in terms of resistance offered by a given 

barrier. Figure I.2.6 illustrates a typical profile of the partial pressure of water vapour in primary 

drying and a corresponding graph showing the relative magnitude of each resistance present in the 

system (Pikal et al., 1984; Pikal, 2000).  Considering semi-stoppered or not stoppered vials, the total 

driving force of the process can be considered equal to the difference between the equilibrium vapour 

pressure �o  (��)of ice at the sublimation front and the partial pressure of water vapour in the 

condenser chamber		�Xp (��). 
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Figure I.2.6: A typical profile of the partial pressure of water vapour during primary drying and 
the relative magnitude of the mass transfer resistances present in the system (Pikal, 2000). 
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Thus, the mass flow rate �� FGH	 can be defined as: 

 

�� FGH	 = (Zq�Z[r)
s                           Equation I.2.12 

 

As shown in Figure I.2.6, the total mass transfer resistance can be described as the sum of each 

component resistance in series, which are (i) the dried product, (ii) the stopper and (ii) the chamber-

to-condenser pathway. Thus,    (��	�	���	)	can be expressed as (Pikal et al., 1984; Pikal, 2000): 

 

 =  # +  F +  Xp    Equation I.2.13 

 

where	 F (��	�	���	)	is the stopper resistance,  Xp (��	�	���	)	is the chamber-to-condenser 

resistance and  # (��	�	���	)	is the product resistance equal to (Pikal et al., 1984; Pikal, 2000): 

 

 # = stu
vq 	      Equation I.2.14 

 

where �o (��)	is the ice-product interface area,  t# (��	�	�²	���	)	is the area “normalized” product 

resistance.  

 

I.2.3.1 Product Resistance 

The growing dried layer exhibits the major resistance to the sublimation flow, accounting for more 

than 80 % of the total resistance, unless the filling volume or concentration of the solute is very low 

and thus there is essentially no dried layer (Pikal, 2000). The resistance due to the product dried layer, 

known as product resistance  t#, is classically defined as (Pikal et al., 1984; Pikal, 2000): 

 

 t# = vq(Zq�ZwU)
j� dxh	                             Equation I.2.15 

 

with �yU  (��) equal to the partial pressure of the vapour into the vial headspace. If the stopper is not 

present, �yU  (��) is assumed equal to the partial pressure of the vapour into the drying chamber.   
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I.2.3.2 Stopper Resistance 

Elastomeric stoppers are usually partially inserted into the vial necks before the process. They 

usually present one or several openings depending on the stopper design, which allow the outgassing 

of water vapour during the drying step (Akhilesh and Babu, 2010).  

After the process, the stoppers are fully inserted in the vial neck directly into the freeze-dryer by 

moving the shelves, to guarantee the safety and sterility of the product (Akhilesh and Babu, 2010). 

The presence of the stopper impose another resistance to the mass flow rate (namely  F), which can 

be defined as (Pikal, 2000; Pikal et al., 1984): 

 

 F = (ZwU	�Zw[ 	)
j� dxh	                             Equation I.2.16 

 

with �y[  (��) equal to the partial pressure of the vapour into the drying chamber, usually considered 

to be equal to the chamber pressure during primary drying as mostly water vapour is supposed to be 

present in the drying chamber.  

The stopper resistance has a small contribution on the total heat transfer resistance, which also 

depends on the dimension of the vent. In a work of  Pikal et al. (Pikal et al., 1984), 	 F was found to 

account to the total mass transfer resistance for 3 - 10 % in function of the dimension of the opening 

(0.2 to 0.4 cm). 

I.2.3.3 Mass transfer from chamber-to-condenser 

The resistance due the chamber-to-condenser pathway  Xp	 is classically defined as (Pikal, 2000; 

Pikal et al., 1984): 

 

 Xp = (Zw[�Zw[r)
j� dxh	     Equation I.2.17 

 

where �y[r  (��) the partial vapour pressure in the condenser, usually determined by the condenser 

temperature. In a work of Pikal et al. (Pikal et al., 1984), the resistance due to the chamber to 

condenser pathway was found to be in the same order of magnitude of the stopper resistance, and to 

account for 3 - 6 % to the total mass transfer resistance. 

In Equation I.2.17,  Xp  is defined as a constant parameter. However, experimental evidences 

showed the value of  Xp may strongly vary in function of the total pressure and of the sublimation 

flux, which should be obviously impossible (Trelea et al., 2015). Recently, Trelea et al.  (Trelea et al., 

2015) developed a 1D mathematical model of the mass transfer between the chamber and the  
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condenser based on the mass transfer theory in binary gas mixtures (water vapour and inert gas). This 

model explained the apparent variation of  Xp  with the sublimation rate as due to the mutual 

diffusion of vapour and inert gas. Thus, a more detailed description of the vapour transfer between 

the freeze-drying chamber and the condenser should be preferred to the mass transfer resistance 

approach proposed in Equation I.2.17 to predict the partial vapour pressure and the sublimation flux 

during the process. 

I.2.3.4 Experimental determination of z{ 

Mass transfer resistance can be evaluated from Equation I.2.12 knowing (i) the equilibrium vapour 

pressure at the ice-vapour interface and (ii) the partial vapour pressure in the condenser, usually 

determined by Clausius Clapeyron equation from the ice and the condenser temperatures, and (iii) the 

mass flow rate.  

However, the resistance due to the chamber to condenser pathway is usually neglected, and the 

product resistance together with the stopper resistance can be determined as: 

 

 F + �o # = (Zq�Zw[)
j� dxh	                   Equation I.2.18 

 

Furthermore, as the stopper offers only a small resistance if compared with the product dried layer, 

this contribution is often neglected or included into  # (Oddone et al., 2014; Overcashier et al., 1999; 

Konstantinidis et al., 2011). Thus, Equation I.2.18 becomes: 

 

 t# = vq(Zq�Zw[)
j� dxh	     Equation I.2.19 

 

The following experimental procedure is used for the determination of the mass transfer resistance. 

The vials are first filled with the selected amount of solution and loaded on the shelf. Then, freezing 

is carried following the selected protocol. After completion of the freezing step, the sublimation starts. 

The equilibrium vapour pressure at the ice-vapour interface �o  is usually determined by Clausius 

Clapeyron equation from product temperatures, monitored by using sensors such as thermocouples. 

Furthermore, the mass flow rate profile during sublimation is usually measured by using online 

methods. 

The most common are:  

• The microbalance: Firstly used by Pikal et al. (Pikal et al., 1983), the microbalance is a small 

balance provided of a holding arm on which one vial is loaded. The balance is placed on the 

shelf and the holding arm lifts the vial for weighing at fixed time intervals (e.g., about 10  
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min) during the process. Then, the vial is lowered back on the shelf and released from the 

holding arm. The difference of vial mass between two consecutive weightings gives the 

water loss due to sublimation. Finally, the mass flow rate profile can be calculated from the 

mass losses divided by the time intervals.  

• The pressure rise test (PRT): The pressure rise test is carried out by closing the valve in the 

duct connecting the drying chamber to the condenser for a short time interval (e.g., 30 sec) 

during sublimation. The pressure in the chamber increases due to the accumulation of the 

water vapour. Then, the pressure rise data can be analysed by one of the several algorithms 

developed in literature for the determination of the mass flow rate rate (Milton et al., 1997; 

Tang et al., 2006a; Velardi et al., 2008; Hottot et al., 2005). 

• The Tunable Diode Laser Absorption Spectroscopy (TDLAS): TDLAS is a non-invasive 

spectroscopic method which mainly consists in the generation of a laser beam by a NIR-

Laser launched through the chamber-condenser pathway. The absorption spectrum is 

recorded and allows accurate measurement of the vapour concentration and of the vapour 

mass flow rate in the duct connecting the freeze drying chamber with the condenser (Kuu et 

al., 2006; Gieseler et al., 2007). 

The described methods are effective in measuring the mass flow rate evolution in time, and then the 

product resistance from Equation I.2.19. However, it has to be remarked that the measured mass 

flow rate will be either a local value (e.g., when the microbalance is used) or an average value over 

all the vials on shelf (e.g., for PRT or TDLAS), and will not give information on the mass transfer 

variability between the vials. These methods also become unreliable towards the end of the 

sublimation step where mass flow rate variation is due to other causes than product resistance 

variation, such as curved sublimation interface or loss of thermal contact between the frozen part of 

the product and the vial.  

The product resistance calculated from Equation I.2.19, is usually presented in function of the 

product dried layer thickness and often described by the following empirical formula (Overcashier et 

al., 1999; Fissore and Pisano, 2015; Pikal, 2000; Pikal et al., 1983; Kuu et al., 2006; Bosca et al., 

2013). 

 t# =  t#$ +
stuSC|
	QstuYC|

     Equation I.2.20 

 

 where  t#$(��	�²	�	��−1), 	 t#	  (��	�	�	���	)	 and  t#�  (��	) are empirical coefficients to be 

determined from experimental data. The non-zero intercept ( t#$) accounts for a non-null resistance 

of the top layer, the exact origin of which remains still unclear.  
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Figure I.2.7: Comparison for the area normalized resistance ( #�) in kPa m² s h-1 for 5 % sucrose 
(SU in the legend) and 3 % mannitol/2 % sucrose (MAN_SU in the legend) processed with 
controlled and uncontrolled nucleation (Konstantinidis et al., 2011). 
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In some works (Pikal et al., 1984; Pikal and Shah, 1990), the evolution of  t#  in function of �� 

(�)	was expressed as a linear relation ( t#�=0). The characteristic evolution of  t# with the dried 

layer thickness strongly depends on the product structure (i.e., solid solution and voids left after the 

ice crystals have sublimed), which is dictated by the freezing step. A higher value of nucleation 

temperature and degree of supercooling during the freezing led to bigger ice crystals and dried pores, 

and can affect the mass transfer resistance during the primary drying step (Searles et al., 2001b; 

Kasper and Friess, 2011). 

Dimensions of the ice crystals can be increased (i) by introducing an annealing step during the 

freezing, which consists in maintaining the samples at subfreezing temperature for a period of time 

(Searles et al., 2001a; Lu and Pikal, 2004; Hottot et al., 2005), or (ii) by controlling the ice nucleation 

(e.g., by inducing nucleation at the desiderate temperature using ultrasounds, vacuum, nucleation 

agents) (Passot et al., 2009; Oddone et al., 2014; Konstantinidis et al., 2011). 

As example, Figure I.2.7 shows the evolution of the product resistance with the dried layer thickness 

for two products, a sucrose solution and a mannitol + sucrose solution, processed with and without 

controlled nucleation (Konstantinidis et al., 2011). In this work (Konstantinidis et al., 2011), ice 

nucleation was simultaneously induced in all the vials at the desired temperature by manipulating the 

chamber pressure of the freeze dryer during the freezing step. Both tested products processed under 

controlled nucleation showed a higher nucleation temperature, bigger radius of dried pores and a 

lower value of product resistance than products processed with uncontrolled nucleation 

(Konstantinidis et al., 2011). In agreement with previous works (Searles et al., 2001b; Oddone et al., 

2014), this study confirmed that the ice crystal morphology exerts considerable control over the 

vapour transfer from the ice interface to the top of the dried product layer (Kochs et al., 1991; Searles 

et al., 2001b). 

Furthermore, the glass transition temperature of the product formulation (&!B)	  and the collapse 

temperature (&�+CC)	 can play a role in the definition of   t#. Dried product resistance data had shown 

a significant temperature dependence as the product temperature becomes higher than &!B  and 

approaches &�+CC in primary drying. Figure I.2.8 well illustrates this phenomenon for a 5 % sucrose 

solution (Fissore and Pisano, 2015). At product temperatures lower or very close to the &!B	 (-34.8 °C), 

 t# increases with the dried layer thickness	�� (Figure I.2.8A, D and I.2.8B, E). In contrast, for a 

product temperature higher than &!B, the magnitude of the product resistance is reduced dramatically, 

as well as its dependence on the �� (Figure I.2.8C and I.2.8F) (Fissore and Pisano, 2015). 

This dependence of the product resistance on the product temperature is due to the so-called 

"microcollapse", that is the development of larger pores holes in the dried material at temperature 

higher than &!B, as shown in Figures I.2.8G, I.2.8H and I.2.8I (Fissore and Pisano, 2015). 
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Figure I.2.8: Comparison between the values of product temperature at the bottom of the container 
(A, B, C) with the product resistance (D, E, F) and the cake structure (G., H, I), respectively. 
Operating conditions are reported on the figure (Fissore and Pisano, 2015).  
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I.2.4 Mass transfer in secondary drying 

The third and last step of the freeze-drying process is the secondary drying, which governs the final 

moisture content of the product and thus its stability in time. During this step, the product moisture 

content is further decreased through desorption of the non-frozen water. In case of most 

pharmaceutical products, the target moisture content is very low (e.g., 1 - 3 %), and thus secondary 

drying step may occupy a significant fraction of the process duration (Pikal, 1994). However, despite 

its importance, only an handful of publications focused on the understanding of secondary drying and 

on its optimization (Sadikoglu et al., 1998; Pisano et al., 2012; Fissore et al., 2011b; Schneid et al., 

2011; Pikal et al., 1990; Sheehan and Liapis, 1998; Lopez-Quiroga et al., 2012; Pikal et al., 2005).  

The removal of bound water from the dried matrix to the vial headspace during secondary drying 

involved two main steps: (i) the mass transfer from the solid matrix surface to the pore channel and 

(ii) the vapour phase transport through the pores of the dried cake (Pikal et al., 1990).  

Contrary to primary drying, the vapour transport in the dried cake was verified to be not rate-limiting, 

because drying rate resulted to be insensitive to chamber pressure variations for pressures lower than 

27 Pa and to cake thickness at constant specific surface area (Pikal et al., 1990). Thus, the rate-

determining step is considered to be the desorption of water from the pore surface in most of the 

works on secondary drying (Pikal et al., 1990; Velardi and Barresi, 2008; Lopez-Quiroga et al., 2012; 

Pisano et al., 2012; Schneid et al., 2011; Fissore et al., 2011b). 

Figure I.2.9 shows a typical example of the moisture content evolution during secondary drying 

(Schneid et al., 2011). The decrease of the moisture content ' (��	���		�/	)	proceeds usually along 

two different kinetics: a first fast desorption, with a sharply decreasing of ', and a slower one for 

lower value of ' approaching a plateau (Pikal et al., 1990). The evolution of the product moisture 

content '  in time during secondary drying is typically described as a single desorption kinetics 

(Lopez-Quiroga et al., 2012; Pisano et al., 2012; Pikal et al., 2005; Fissore et al., 2015): 

 

��
�� =

	
� ('@� − ')     Equation I.2.21 

 

where ' is the fraction of water per total product, '@� (��	���		�/	)	is the equilibrium moisture 

content at a given water activity (��), which can be calculated from the sorption isotherm (Lopez-

Quiroga et al., 2012; Passot et al., 2012), and . (�) is the characteristic desorption time which 

depends on the product temperature through an Arrhenius type equation (J.H. de Boer, 1953): 

 

. = .M@?4
��c�b(

S
�eU�

S
�eU�T�

)
    Equation I.2.22 
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Figure I.2.9: Residual moisture content evolution of a BSA/sucrose solution during a secondary 
drying step performed at 0 °C (Schneid et al., 2011).  
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where &J�  (
) is the product temperature, ��  (�	���	
�	)	 is the activation energy,  ! 

(�	
�	��"��	)	 is the ideal gas constant and .M@?  (�) is the characteristic desorption time at a 

reference temperature &J��T� 	(
).  
Furthermore, Trelea et al. (Trelea et al., 2016) recently developed a multilayer desorption model 

based on the idea that that moisture fractions in different physical states can present different 

desorption kinetics and thus different characteristic desorption times .. This model (Trelea et al., 

2016) accurately describes the evolution of the moisture content during secondary drying by two 

distinct desorption kinetics, which were assimilated to moisture present as monolayer and as 

multilayer. Results showed that the desorption of the multilayer was significantly faster than the 

multilayer, being the ratio of characteristic desorption times (monolayer/multilayer) almost 30. 

I.2.5 Limits in the use of the classical equations of freeze-drying process 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

In this section, the classical heat and mass transfer equations used to physically 

describe the primary and secondary drying steps of the freeze-drying process 

were presented. The two main physical parameters can be identified: (i) the vial 

heat transfer coefficient  
�, used to describe the heat transfer from the shelf to 

the vial, and (ii) the product resistance  # , imposed from the dried product 

layer to the mass flow rate. A correct determination of these parameters 

together with the use of the presented equations can predict more or less 

accurately the critical process parameters (e.g. product temperature, sublimation 

rate). However, this approach has some limitations: it cannot represent the 

dynamic aspects of the process, and it does not adequately describe the physical 

mechanisms responsible for heat and mass transfer variability among the vials. 

In the past years, research in freeze-drying focused on the development of 

several mathematical models to provide new insights in the understanding of 

process as well as useful tools for the cycle design and scale-up. 

In this regard, a review of the main mathematical models of freeze-drying will 

be outlined in the next session. 
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I.3 Mathematical modelling of freeze-drying 

 
 
 
 
 

A number of more or less sophisticated freeze-drying models have been developed in literature to 

predict the process parameters (e.g., product temperature, sublimation rate, desorption rate) and to 

describe the progress of the primary and secondary drying steps (Pikal and Shah, 1990; Pikal, 1985; 

Velardi and Barresi, 2008; Zhai et al., 2005; Gan et al., 2005; Brülls and Rasmuson, 2002; Ybema et 

al., 1995; Pisano et al., 2012; Sheehan and Liapis, 1998; Lopez-Quiroga et al., 2012; Pikal et al., 

2005; Liapis and Litchfield, 1979; Liapis and Bruttini, 1994; Millman et al., 1985; Sadikoglu and 

Liapis, 1997; Mascarenhas et al., 1997; Trelea et al., 2007; Hottot et al., 2006). Table I.3.1 resumes 

the characteristics of the main mathematical models of freeze-drying process published in literature. 

In Table I.3.1, D represents the spatial dimensions of the model (1D, only balances along the axial 

direction are considered; 2D, balances along the axial and radial directions are considered; no 3D 

model were developed at the present state for the freeze-drying process). Usually, two different 

approaches were used to describe the process: the pseudo-steady state and the dynamic state. 

(Text continues on page 61) 
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Table I.3.1: Summary of the main mathematical models describing the freeze-drying process. D: dimension. (Continued) 

Model 
(Reference) 

Condition D Geometry Product Steps 
described 

Heat transfer 
between the shelf 

and the vial 

Additional 
heat transfer 
contributions 

Inclusion 
of z� and 
z��  

Scope of the 
model 

(Liapis and 
Litchfield, 

1979) 
 

Dynamic 
state 

1D 

Slab of 
product 

placed on a 
sample 
holder 

- 
Primary 
drying 

The product was 
insulated at the 

bottom and at lateral 
walls from the 

sample holder. Heat 
flux was fixed, 

received at the top of 
the product. 

Not described 
Not 

included 

Definition of 
optimal control 

policy. Pseudo-
steady state 

(Millman et 
al., 1985) 

Dynamic 
state 

1D 
Slab of 
product  

Skim milk 
Primary and 
secondary 

drying 

Heat transfer by 
radiation or gas 

conduction at the 
product bottom, 

and/or by radiation at 
the product top. 

Not described 
Not 

included 

Study 
operational 

policies that can 
reduce the 

drying times. 

(Pikal, 1985) 
Pseudo-

steady state 
1D Vial 

- KCl solution 
- Povidone 

solution 
- Mannitol 
solution 

- DOBUTREX 
solution 

Primary 
drying 

Heat transfer to the 
vial by contact 

conduction, radiation 
and conduction 
through the gas. 

Not described 

Rs and 
RCN are 
included 

in the 
model 

Process control 
and 

optimization. 
The model was 
widely used in 

literature for the 
definition of the 

"classical" 
design space of 
primary drying. 

 
 

 



                                                                                                      
LITERATURE REVIEW                                                                                                                                                                            I.3 Mathematical modelling of freeze-drying  

 

- 54 - 

 

Table I.3.1: Summary of the main mathematical models describing the freeze-drying process. D: dimension. (Continued) 

Model 
(Reference) 

Condition D Geometry Product 
Steps 

described 

Heat transfer 
between the shelf 

and the vial 

Additional 
heat transfer 
contributions 

Inclusion 
of z� and 
z��  

Scope of the 
model 

(Pikal et al., 
1990) 

Dynamic 
state 

1D Vial 

- Mannitol 
solution 

- Moxalactam 
disodium/manni

tol solution 
- Povidone 

solution 

Secondary 
drying 
(mass 

transfer) 

- - 
Not 

included 

Study of the 
drying kinetics 
in secondary 

drying. 

(Liapis and 
Bruttini, 1994)  

Dynamic 
state 

1D 

Slab of 
product 

placed on a 
tray 

- Cloxacillin 
Monosodium 

Salt 
- Skim milk 

 
 

Primary and 
secondary 

drying 

Heat transfer by 
radiation, gas 
conduction or 

convection at the 
product top, by gas 

conduction and 
radiation at the 
product bottom.  

Not described 
Not 

included 

Describe 
primary and 
secondary 

drying stages of 
the freeze-
drying of 

pharmaceutical 
crystalline and 

amorphous 
products. 

(Ybema et al., 
1995) 

Pseudo-
steady state 

1D Vial 
Pure water 
Mannitol 
solution 

 
 
 

Primary 
Drying 
 (mass 

transfer is 
neglected) 

 
 
 

 
 
 

Heat transfer by gas 
conduction at the vial 

bottom 
 
 
 

Not described 
Not 

included 

Calculation of 
the sublimation 

rate at any 
pressure or shelf 

temperature 
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(Sadikoglu 
and Liapis, 

1997) 

Dynamic 
state 

1D 

Slab of 
product 

placed on a 
tray 

Skim milk 
Primary and 
secondary 

drying 

 
 
 

Heat transfer by gas 
conduction and 
radiation to the 

product bottom, by 
radiation, gas 
conduction or 

convection to the 
product top. 

Not described 
Not 

included 

Describe the 
dynamic 

behaviour of the 
primary and 
secondary 

drying stages of 
the freeze-
drying of 

pharmaceuticals 
in trays. 

(Mascarenhas 
et al., 1997)  

Dynamic 
state 

2D 

Slab of 
product 

placed on a 
tray 

- Skim milk 
- Bovine 

Somatotropin 
BST protein 

Primary and 
secondary 

drying 

Specific heat fluxes 
were imposed. 

Considered  
Not 

included 

Used to 
calculate the 

variation of the 
partial pressure 
of water vapour, 
the temperature, 

and the 
concentration of 

sorbed water. 

(Sheehan and 
Liapis, 1998) 

Dynamic 
state 

2D Vial Skim milk 
Primary and 
secondary 

drying 

Heat transfer by gas  
conduction at the vial 
bottom, by radiation 

at the vial top. 

Radiation heat 
flux from the 
walls of the 

drying 
chamber and 
the bottom 

heating plate 

Not 
included 

Describe the 
primary and 
secondary 

drying stages of 
the 

lyophilisation of 
a 

pharmaceutical 
product in vials 

for different 
operational 

policies. 
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Table I.3.1: Summary of the main mathematical models describing the freeze-drying process. D: dimension. (Continued) 

Model 
(Reference) 

Condition D Geometry Product Steps 
described 

Heat transfer 
between the shelf 

and the vial 

Additional 
heat transfer 
contributions 

Inclusion 
of z� and 
z��  

Scope of the 
model 

(Schoen et 
al., 1995) 

Pseudo-
steady state 

1D Vial Glycine in water 
Primary 
drying 

Heat transfer by 
contact and gas 

conduction at the vial 
bottom. 

Not described 
Not 

included 
Process design 
and scale-up. 

(Brülls and 
Rasmuson, 

2002) 

Dynamic 
state 

2D Vial Pure water 
Heat transfer 
during the 
process 

Heat transfer by 
radiation and gas 

conduction at the vial 
bottom. The top of 

the vial was 
considered to be 
insulated by the 

stopper.  

Additional 
heat transfer 

from the walls 
of the freeze-

dryer was 
considered and 
experimentally 

determined. 

Not 
included 

Predict the 
impact on the 

heat transfer of 
the vial 

characteristics 
(glass, 

geometry), the 
total chamber 
pressure, the 
filling height, 

and the position 
of the vial of the 

shelf. 

(Zhai et al., 
2005) 

Dynamic 
state 

2D 

 
 
 
 
 

Vial 
 
 
 
 
 

Pure water 
Primary 
drying 

Heat transfer by gas 
conduction at the vial 

bottom. 

 
Heat transfer 
by radiation 

from the 
drying 

chamber walls 
to the vial side 

 
 

Not 
included 

Understanding 
heat and mass 
transfer during 
primary drying. 
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(Gan et al., 
2005) 

(Based on 
the work of 
(Sheehan 

and Liapis, 
1998)) 

Dynamic 
state 

2D Vial Not specified 
Primary 
drying 

As in (Sheehan and 
Liapis, 1998) 

 
 
 

Heat transfer 
by radiation 

from the 
chamber and 

(if present) the 
tray side. This 
contribution 

was evaluated 
in function of 
the position of 
the vial on the 

shelf. 

Not 
included 

Study the 
dynamic 

behaviour of a 
freeze-drying 
system in case 

of trays with and 
without lateral 

sides. 

(Pikal et al., 
2005) 

Dynamic 
state 

2D Vial Sucrose solution 
Primary and 
secondary 

drying 

Heat transfer by 
contact conduction, 
gas conduction and 
radiation at the vial 

bottom, and radiation 
at the vial top (if 

stopper is present, 
then the top of the 

vial is considered as 
insulated) 

Radiation heat 
transfer from 

the drying 
chamber walls 

Rs and 
RCN are 
included 

in the 
model 

Prediction of 
product 

temperature and 
moisture 
content. 

(Hottot et 
al., 2006)  

Dynamic 
state 

2D Vial 

 
Bovine serum 
albumin BSA 

aqueous 
formulation 

 
 

Freezing and 
primary 
drying 

Heat transfer by 
contact and gas 

conduction at the vial 
bottom. 

Heat transfer 
by radiation 

and convection 
from the 
drying 

chamber 

Not 
included 

Describe the 
product 

temperature and 
sublimation 

front velocities. 
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Table I.3.1: Summary of the main mathematical models describing the freeze-drying process. D: dimension.  (Continued) 

Model 
(Reference) Condition D Geometry Product Steps 

described 
Heat transfer between 
the shelf and the vial 

Additional 
heat transfer 
contribution

s 

Inclusion 
of z� and 
z��  

Scope of the 
model 

(Trelea et 
al., 2007) 

Dynamic 
state 

1D Vial 

- Sucrose and 
Tris-HCl 
solution 

-PVP, Sucrose 
and Tris-HCl 

solution 

Primary 
and 

secondary 
drying 

Heat transfer by contact 
conduction, radiation and 
conduction through the 
gas at the vial bottom, 
radiation at the vial top 

Not 
described 

Rs and 
RCN are 

included in 
the model 

Optimization of 
freeze-drying 

cycles. 

(Velardi and 
Barresi, 
2008) 

Dynamic 
state 

(Detailed 
model) 

1D 
 

Vial 
 

Bovine serum 
albumin BSA 
buffered with 
tris-HCl 0.1M 

 

Primary 
and 

secondary 
drying 

Heat transfer by 
convection and radiation 
at the vial bottom, and by 
radiation at the vial top. If 
the stopper is present, the 
vial top is considered as 
thermally insulated. Heat 

transfer along the vial 
walls was also described. 

Radiation 
heat transfer 

from the 
drying 

chamber 
walls 

Not 
included 

Description of 
the primary and 

secondary 
drying step. 

Pseudo-
steady state 
(Simplified 

model I) 

Primary 
drying 

Heat exchanged by 
convection and radiation 

at the vial bottom. 

Not 
described 

Not 
included 

To design 
model-based 

algorithms for 
optimization and 

control of the 
process. The 
model was 

widely used in 
literature for the 
definition of the 
design space of 
primary drying. 

Pseudo 
steady state 
(Simplified 
model II) 

Primary 
drying 

As for the detailed model 
Not 

described 
Not 

included 
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(Pisano et 
al., 2012) 

Dynamic 
state 1D Vial Sucrose solution 

Secondary 
drying 

Heat transfer by contact 
conduction, radiation and 
conduction through the 
gas at the vial bottom, 

radiation at the vial top. 

Not 
described 

Not 
included 

To develop a 
design space for 

secondary 
drying. 

(Lopez-
Quiroga et 
al., 2012) 

Dynamic 
state 

1D 
 

Slab of 
product 

Skim milk 

Primary 
and 

secondary 
drying 

Heat transfer by 
convection at the vial 

bottom, and radiation at 
the vial top. 

 

Not 
described 

Not 
included 

Define 
operational 

conditions for 
minimizing 

freeze-drying 
cycle time while 

preserving 
product quality. 

(Mortier et 
al., 2016) 

Dynamic 
state 

1D 
 

Vial 
Model 

formulation 
Primary 
drying 

Heat transfer by contact 
conduction, radiation and 
conduction through the 
gas at the vial bottom, 

radiation at the vial top. 
Described as in (Fissore et 

al., 2011a) 

Impact of the 
"Edge vial 

effect" 
included in 

the 
uncertainty 

analysis 

Not 
included 

Perform 
uncertainty 

analysis for the 
determination of 

the dynamic 
primary drying 
Design Space 

for 
pharmaceutical 
freeze-drying 
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I.3.1 Pseudo steady state mathematical modelling 

The pseudo-steady state is often employed in literature to describe the primary drying step (Pikal, 

1985; Schoen et al., 1995; Liapis and Litchfield, 1979; Velardi and Barresi, 2008; Ybema et al., 

1995). Under this condition, the amount of heat entering into the product is assumed to be completely 

devoted for the sublimation of the ice crystals and energy used for changes in product temperature 

can be considered as negligible. Pseudo-steady state models are described using algebraic equations, 

not very time-consuming to be solved, and thus suitable for the process control. A pioneering 

mathematical model of freeze-drying in pseudo-steady state was developed by Liapis and Litchfield 

(Liapis and Litchfield, 1979) starting from a more complex dynamic model, in order to define the 

optimal control polices of the freeze-drying cycles. However, the model described a system which is 

not normally encountered in pharmaceutical freeze-drying, constituted by a slab of product located in 

an insulating sample holder and heated in the top by a infrared lamp. Successively, Pikal (Pikal, 1985) 

developed a model to describe the primary drying step of freeze-drying, which considered a moving 

planar interface between the dried and frozen product layers. This theoretical model assumed the 

pseudo-steady state for heat and mass transfer during sublimation, except for a time dependence of 

the thickness of dried product layer formed above the ice-vapour interface. Pikal (Pikal, 1985) stated 

that, based on experimental findings, the pseudo-steady state is usually achieved after 30 min of a 

change in the shelf temperature, and thus it can be applied to the primary drying step which usually 

takes many hours to complete. The heat exchanged between the shelf and the vial bottom was 

described in terms of vial heat transfer coefficient 
�, depending on the contact conduction between 

the vial bottom and the shelf, the radiation from the bottom and top shelf, and the conduction through 

the gas entrapped in the vial bottom curvature. The sublimation rate was assumed to be limited by a 

resistance   given by the sum of three contributions given by the dried product layer, the stopper and 

the pathway between the chamber and the condenser.  

The two model parameters 
� and   can be determined by laboratory experiments, and the precision 

of their estimation is of paramount importance for the prediction of the critical process parameters 

given by the model. The model can be thus used for the cycle development and optimization by 

knowing some additional information, such as the critical temperature of the product. The model 

proposed in the work of Pikal (Pikal, 1985) was largely applied in successive works for the process 

design and control and it is nowadays classically employed to describe the heat and mass transfer in 

primary drying (e.g., in (Overcashier et al., 1999; Ganguly et al., 2013; Hibler et al., 2012; 

Rambhatla and Pikal, 2003; Rambhatla et al., 2004; Tsinontides et al., 2004; Tang and Pikal, 2004)). 

In contrast with the results proposed by Pikal (Pikal, 1985), who stated the importance of the growing 

dried layer thickness during sublimation, Ybema (Ybema et al., 1995) found that the mass transfer 

was not limiting during this step.  
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A model was proposed, describing the heat transfer during primary drying as a series of resistance 

between the shelf and the interface (vial bottom curvature, glass vial, and frozen product). 

Furthermore, Ybema (Ybema et al., 1995) identified in the vial bottom curvature the major resistance 

to the heat transfer during the process, at it limits the direct contact between the shelf and the vial. 

Later on, Velardi and Barresi (Velardi and Barresi, 2008) developed two simplified models of 

primary drying in pseudo-steady state conditions, taking as starting point a detailed dynamic model 

of the process. The so-called "simplified model I" represented the heat and mass transfer during the 

sublimation step considering only a mass balance into the dried layer and a heat balance into the 

frozen product layer. The heat transfer in the dried layer and along the vial walls was considered as 

negligible, thus this model is not suitable to describe the additional heat by radiation from the rail or 

the chamber walls received by edge vials. 

The "simplified model II" was developed considering both the heat transfer in the dried and frozen 

layer as well as in the vial walls.  

However, the radiation heat transfer from the drying chamber walls to the lateral walls of the vials 

was not taken into account. The mass transfer was simulated as in the simplified model I, without 

taking into account the impact of the stopper and chamber resistances. The "simplified model I", 

simpler than the "simplified model II", was found to be sufficient to monitor, control and optimize of 

freeze-drying process. Conversely, the "simplified model II" allowed to take the advantage of the 

temperature measurements on the vial wall and was used for  development of soft sensors to monitor 

sublimation during the process (Barresi et al., 2009b). 

I.3.2 Dynamic mathematical modelling 

In literature, several mono and bi-dimensional mathematical models of freeze-drying in dynamic 

state have been developed to describe transient phenomena during the process (Liapis and Litchfield, 

1979; Millman et al., 1985; Pikal et al., 1990; Liapis and Bruttini, 1994; Sadikoglu and Liapis, 1997; 

Mascarenhas et al., 1997; Sheehan and Liapis, 1998; Brülls and Rasmuson, 2002; Zhai et al., 2005; 

Pikal et al., 2005; Hottot et al., 2006; Trelea et al., 2007; Velardi and Barresi, 2008; Lopez-Quiroga 

et al., 2012; Pisano et al., 2012), e.g., the shape and velocity of the moving ice vapour interface and 

the moisture content evolution during the secondary drying step.  

Most of the first models developed in dynamic state (Liapis and Litchfield, 1979; Millman et al., 

1985; Liapis and Bruttini, 1994; Sadikoglu et al., 1998; Mascarenhas et al., 1997) described the 

freeze-drying of a slab of a product contained in tray, often skim milk, heated either by an infrared 

source or by the bottom shelf. Then, Sheehan et Liapis (Sheehan and Liapis, 1998) developed a bi-

dimensional dynamic mathematical model to describe the progress of primary and secondary drying 

performed in an individual vial.  
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The model included over 30 parameters, most of which had to be determined anew as related to the 

product formulated, which complicate its use for process design and control.  

However, the model of Sheehan et Liapis (Sheehan and Liapis, 1998) took into account the radiation 

contribution of the drying chamber walls to the lateral side of the vial located at the periphery of the 

shelf, which was often neglected in previous works. This model (Sheehan and Liapis, 1998) was 

successfully used by Gan et al. (Gan et al., 2005) to study the effect of the presence of the tray sides 

on the drying time and moisture content in vials differently located on the shelf.  

The study of Gan et al. (Gan et al., 2005) is remarkable as it precisely investigated the additional heat 

transfer received by the lateral walls of edge vials. This heat transfer contribution was included in 

some other works by using different approaches (Zhai et al., 2005; Hottot et al., 2006; Pikal et al., 

2005; Brülls and Rasmuson, 2002). For example, Brülls and Rasmudson (Brülls and Rasmuson, 2002) 

developed a bidimensional model taking into consideration the heat transfer from the environment to 

the lateral vial walls, but the responsible phenomena were not theoretically described and this 

contribution was experimentally evaluated. In the bidimensional model developed by Zhai et al. 

(Zhai et al., 2005), the effect of radiation heat transfer was studied, but the model was used to 

simulated only pure ice and the presence of the dried layer of the product was not considered. Finally, 

Hottot et al. (Hottot et al., 2006) included the heat transfer by radiation and convection from the 

drying chamber environment to the vial walls, but the importance of this contribution was not 

estimated. 

The multi-dimensional models developed (Sheehan and Liapis, 1998; Pikal et al., 2005; Zhai et al., 

2005; Gan et al., 2005; Hottot et al., 2006) can precisely describe the heat and mass transfer 

phenomena, but are often not suitable for process control and real time applications, as they are quite 

complex and time-consuming to solve. More recent publications focused on the development of 

simplified and control-oriented models.  

In particular, Trelea et al. (Trelea et al., 2007) proposed a monodimensional model, which was 

successfully used for the optimization of the freeze-drying cycles based on the monitoring of process 

parameters relevant for product quality, such as the product temperature and glass transition 

temperature at critical points to assess product stability, and the residual moisture content. Velardi 

and Barresi (Velardi and Barresi, 2008) developed also a dynamic mono-dimensional model, which 

introduced the transient energy balance to describe the heat transfer in the vial glass. However, this 

detailed dynamic model was not directly used for process control purposes, but was simplified in the 

two pseudo-steady state models which were previously discussed (§I.3.1). The models of Trelea et al. 

(Trelea et al., 2007) and Velardi and Barresi (Velardi and Barresi, 2008) were based on a systematic 

separation of slow and fast dynamics of the process. 
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 In the work of Lopez-Quiroga et al. (Lopez-Quiroga et al., 2012), characteristic times of freeze-

drying dynamics were determined and a monodimensional simplified mathematical model was 

defined (Millman et al., 1985; Liapis and Bruttini, 1994; Mascarenhas et al., 1997; Sadikoglu and 

Liapis, 1997; Liapis and Litchfield, 1979). Simplification of the model equations was based on a 

time-scale reduction approach, which allowed to focus just on the phenomenon of interest, i.e., the 

time dependent product temperature distribution in the dried layer, and to neglect mechanisms 

occurring at faster scales (e.g., heat and mass transfer in the water vapour). The model was then used 

for the optimization of the process by defining optimum operating variables profiles (i.e., chamber 

pressure and shelf temperature).  

I.3.3 Mathematical modelling for process control and product quality 
assurance  

 
 
 
 
 
 

 

 

 

 

 

 

 

Mathematical models of the freeze-drying process can be developed for 

different purposes. Firstly, they can provide new insights on heat and mass 

transfer phenomena taking place during the sublimation and desorption steps. 

Multi-dimensional dynamic models usually describe precisely the physical 

mechanisms, although they are more complex to be solved. In contrast, mono-

dimensional dynamic or pseudo-steady state models are usually employed for 

process control purpose, as less time-consuming to be solved. These models can 

predict key process parameters, such as the product temperature and the 

sublimation rate, and can be then used to select operating variables (i.e. shelf 

temperature, chamber pressure, operating time) to guarantee an acceptable 

product quality (e.g. avoid collapse of the cake maintaining the product 

temperature below the critical value; reach the target value of final moisture 

content in the product). In this regard, mathematical modelling is an integral 

part of the "Quality by Design" approach, which enhance the understanding of 

the process and product relationship for assuring product quality in 

pharmaceutical industry. The "Quality by Design" philosophy and its 

implementation in the freeze-drying process will be discussed in the following 

section. 
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I.4 Quality-by-Design in freeze-drying process 

 
 
 
 
 

I.4.1 What is the "Quality-by-Design"? 

Traditionally, the quality of pharmaceutical drugs is tested on the final product following a regulatory 

framework known as Quality-by-Testing (QbT). In this system, product quality and performance are 

ensured by performing extensive tests on the raw material and on the final product, and by using a 

fixed formulation and manufacturing process fully described in the marketing authorization dossier. 

However, this framework has several drawbacks. Firstly, QbT gives no attention on how the design 

of the product formulation and of the manufacturing process can ensure product quality; the causes 

responsible for product quality variability and/ or failure are not well investigated; finally, the 

regulatory burden imposed on manufacturers for executing even minor modifications to the 

manufacturing process inhibits continuous improvement and optimization (Yu, 2008). 

The concept of pharmaceutical Quality by Design (QbD) was firstly introduced in the 8 Guidance on 

Quality of the International Council for Harmonisation of Technical Requirements for 

Pharmaceuticals for Human Use (ICH Q8) with the following idea: “the quality cannot be tested into 

the product, but it should be built into it” (Food and Drug Administration, 2009). The Food and Drug 

Administration defined the Quality by Design as a systematic approach to pharmaceutical product 

development that begins with predefined objectives and emphasizes product and process 

understanding and process control, based on sound science and quality risk management (Nail and 

Searles, 2008; Mockus et al., 2011; Yu, 2008; Food and Drug Administration, 2009). In contrast with 

the Quality by Testing approach, the Quality by Design enhances the assurance of safe, effective 

drug supply to the consumer, and it promises to significantly improve the manufacturing quality 

performance (Yu, 2008).  

The use of this new approach should offer a reduced manufacturing costs, a greater speed to market, 

a better allocation of the resources and reduced regulatory burden. Figure I.4.1 shows a schematic 

overview of the implementation of the Quality by Design initiative in a pharmaceutical process. A 

preliminary step for a successful implementation of the QbD in pharmaceutical freeze-drying is the 

definition of the quality target product profile (QTPP), which describes the design criteria of the  
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Figure I.4.1: Roadmap for the implementation of the Quality-by-Design approach in 
pharmaceutical processes.  
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product for quality, safety and efficacy and forms the basis for its development (Food and Drug 

Administration, 2009). The QTPP could include for example the dosage, the container system, the 

drug quality criteria (e.g., potency). Once QTPP has been defined, the next step is to identify the 

relevant critical quality attributes (CQAs). The CQAs are the physical, biological, chemical and 

biological properties of a product that should remain within an appropriate limit, range or distribution 

to assure the desiderate product quality (Food and Drug Administration, 2009). The CQAs (and thus 

the quality of the product) are related to the manufacturing process through the critical process 

parameters (CPPs). The CPPs are the process parameters whose variability has an impact on one or 

more CQAs of the product and therefore should be monitored or controlled to ensure that the process 

produces the desiderate quality (Food and Drug Administration, 2009). Thus, based on the acceptable 

range of CQAs, the risk assessment of the process can be performed by constructing the design space 

of CPPs. The design space is defined as "the multidimensional combination of input variables and 

process parameters that have been demonstrated to provide assurance of product quality" (Food and 

Drug Administration, 2009). The design space is strongly dependent on the product and the 

equipment considered. It is usually proposed by the applicant and it is subject to regulatory 

assessment and approval. Working within the FDA approved design space is not considered as a 

change, whereas a movement out of the design space is considered as a change and requires a 

regulatory post-approval change process. 

The design space for pharmaceutical products can be constructed either through extended 

experimental campaign at pilot scale or by using mathematical modelling. Successively, a control 

strategy is defined in order to ensure that a product of required quality is produced consistently. In 

this regards, the sources of variability that can have an impact on product quality should be identified, 

appropriately understood, and subsequently controlled. Understanding sources of variability and their 

impact on the process and product quality can provide an opportunity to minimize the controls and 

the need for end-product testing (Food and Drug Administration, 2009). Finally, throughout the 

product lifecycle, the companies have opportunities to evaluate and implement innovative approaches 

to improve product quality, such as the redefinition of the design space after gaining additional 

process knowledge (Food and Drug Administration, 2009). The implementation of the QbD in 

pharmaceutical process is also assisted by the use of the Process Analytical Tools (PAT). The FDA 

defined the PAT as a system for designing, analyzing, and controlling manufacturing through timely 

measurements (i.e., during processing) of critical quality and performance attributes of raw and in-

process materials and processes with the goal of ensuring final product quality (Food and Drug 

Administration, 2009). The PAT are used to monitor one or more CPPs during the process, and thus 

can be used for the understanding and control of the process, as well as the development of robust 

process well-away from the edges of failure.  
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Figure I.4.2: Schematic representation of the design space construction for the freeze-drying 
process. The red solid line represents the maximum allowed product temperature, the blue dashed 
line the maximum equipment capability. The yellow area represents the safe zone of the process. 
Black point #1 represents the optimal condition for the cycle design  (Nail and Searles, 2008).  
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I.4.2 Quality-by-Design in freeze-drying process 

I.4.2.1 The "classical" design space for primary drying 

The design space of the freeze-drying process is usually identified with the design space of the 

primary drying, as it is the most studied and time consuming step of the process. A paper published 

by Chang et Fischer (Chang and Fischer, 1995) firstly proposed a graph which suggested an approach 

for the definition of the Design Space for the primary drying step of the freeze-drying process.  

This graph, schematically represented in Figure I.4.2A (Nail and Searles, 2008), illustrates the 

relationship of two critical parameters of the process (product temperature and sublimation rate) with 

the process operating variables (chamber pressure and shelf temperature) at a specific time of the 

process. In order to define the safe area of the design space, specific constraints have to be 

considered. The first one is the maximum allowed product temperature and it is shown in Figure 

I.4.2B as a red bold line. The product temperature strongly influences the product quality, as a 

temperature higher than the maximum allowed value led to the collapse of the product cake. 

Furthermore, equipment constraints have to be considered to design the process and the sublimation 

rate should not become higher than the maximum capability of the equipment at a given chamber 

pressure (represented by the blue dashed line in Figure I.4.2C). When the sublimation rate becomes 

higher than the maximum equipment capability, the chamber pressure rises above the set point and 

the process runs out of control. This is explained in the literature by the maximum speed at which the 

water vapour can flow in the duct from the chamber to the condenser is the velocity of sound, which 

can be reached at high sublimation rates due to low pressure and high volume of vapour (Searles, 

2010b; Patel et al., 2010a). Under this specific condition, the vapour flow rate becomes independent 

of the pressure on the condenser side of the duct connecting the chamber and the condenser, situation 

termed as “choked flow”. The equipment capability depends on the duct geometry between the 

chamber and the condenser and on the condenser performance (Patel et al., 2010a). Once these 

process constraints are established, the safe area for the selection of the operating can be identified as 

the yellow area shown in Figure I.4.2D (Nail and Searles, 2008; Patel and Pikal, 2013). Optimization 

of the freeze-drying process is performed when the selected operating variables leads to the highest 

possible sublimation rate  (and thus to the shortest drying time). In Figure I.4.2D, optimal conditions 

can be found close to the apex of the safe area of the design space (point  #1). 

Construction of the freeze-drying design space based on experimental investigations would require 

multiple runs and would be very expensive and time consuming (Chang and Fischer, 1995; Nail and 

Searles, 2008). For this reason, freeze-drying mathematical models are often used (Pisano et al., 2013; 

Fissore et al., 2011a; Koganti et al., 2011; Giordano et al., 2011; Oddone et al., 2014).  The 

advantages of the use of the models are the reduced experimental costs, the better risk assessment of  
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How to calculate the “classical” design space for primary drying 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure I.4.3: Steps for the calculation of the classical design space for primary drying. The 
pressure at the ice-vapour interface �o is usually calculated from the product temperature by using 
the Clausius Clapeyron relation.  
 

1.Fix a range of values of &I and  �X        
 

3. The isotherms of shelf temperature  &J� 
are thus determined  
 

2. For each set of  &I and  �X  solve 
 the system of Equations I.2.1-2, 
 I.2.11, I.2.19 to calculate &J�and ��  
  

4.Fix a range of values of &J� and  �X        
 

5. For each set of 	&J� and  �X solve  
the Equation I.2.19  
 

6. The isotherms of product temperature are 
thus determined  
 

7.Add the process constraints (i.e., maximum 
allowable product temperature and capability 
of the equipment)  
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the process and the possibility of deeply explore the relation between operating variables and process 

parameters. 

In this regard, pseudo-steady state model proposed by Pikal (Pikal, 1985) is classically used to 

construct the design space of primary drying. The two main parameters of the model are 
� and  #, 

which can be experimentally determined as proposed in §I.2.2.4 and §I.2.3.4. The resistances due to 

the stopper and to the chamber to the condenser pathway are usually neglected, as significantly lower 

than  #. An average 
� value for vials located at the centre of the shelf and the maximum value of 

 #, usually observed close to the end of sublimation, are considered for the calculations. The main 

steps and equations used for the classical design space calculation are reported in Figure I.4.3.   

However, the use of this model for the definition of the design space presents two important 

drawbacks: (i) the evolution of the design space with time, mainly due to  #  variation, is not 

considered, and (ii) the design space is based on an average vial behaviour, whereas usually the vial 

batch is not uniform and border vials receive higher heat fluxes. 

The use of dynamic models or the evaluation of the process uncertainty have been used in recent 

works (Fissore et al., 2011a; Giordano et al., 2011; Pisano et al., 2013; Mortier et al., 2016) to 

improve the definition of the design space.  

I.4.2.2 Dynamic design space of primary drying 

The design space for primary drying is classically constructed by considering the maximum value of 

the product resistance  #, which leads to the calculation of the design space based on the highest 

values of product temperature during the process. However, for most of the products, the product 

resistance and the product temperature dynamically increases with the dried layer thickness along 

with the progress of sublimation. Due to the evolution of these parameters, the design space also 

varies during the process. 

The first time-varying design space was designed by Fissore et al. (Fissore et al., 2011a), based on 

the mathematical model of Velardi and Barresi (Velardi and Barresi, 2008). In this work (Fissore et 

al., 2011a), the evolution of product resistance  #  with the dried layer was experimentally 

determined and calculation of several design spaces was performed at different process times  

(expressed as evolution of 
C|
C�, with �$ being the initial product thickness). An example of the resulting 

time-varying design space is shown in Figure I.4.4 for a 5 % w/w mannitol solution. The x and y 

coordinates were set to be the chamber pressure and shelf temperature, respectively (conversely to 

the classical design space, where the y coordinate was the sublimation rate). The solid line represents 

the constraint imposed by the maximum product temperature, the dashed line the constraint imposed 

by the maximum equipment capability.  
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Figure I.4.4: Effect of the constraints imposed by product temperature (solid line) and dryer 
capacity for mass flux (dashed line) on the design space of mannitol solution (Fissore et al., 

2011a). Marker represents the mass flux as in the legend. Graphs: (a) 
C|
C|�

= 0.01; (/) C|
C|�

=
0.55; (1)	 C|C|� = 0.99. 
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The area enclosed below these curves for a certain values of  
C|
C� represented the "safe area" of the 

design space at that time instant. As sublimation proceeded in primary drying, the dried layer 

thickness and the product resistance  # increased, the design space "shrinked" in time and the area 

available for the selection of the operating variables became smaller (Fissore et al., 2011a).  

This led to conclude that time modifications need to be accounted in the design space, especially for 

those products whose resistance changes significantly in primary drying. The optimal value of 

operating conditions (to maximize the sublimation rate and reduce drying time) are given by the red 

point #1. In order to optimize the process (i.e., to obtain the highest possible sublimation rate 

throughout the primary drying step and thus the shortest drying time), &I	and �X values should be 

dynamically updated during the cycle. Operating variable values need to be modified in time 

accordingly to the design space "shrinkage", to avoid the fall of the set points outside of the space.  

I.4.2.3 Risk assessment of the primary drying step  

The parameters used in the models for the construction of the design spaces (e.g., 
�,  #) can be 

affected by a degree of uncertainty and variability due for example to measurement errors or to 

uncontrolled physical phenomena taking place during the process. Thus, the consideration of the 

parameter uncertainty into the mathematical models used for the design space is of paramount 

importance to estimate the risk of failure of the process. In this regards, uncertainty analysis is often 

performed by "interval mathematics". The main assumption of this analysis is that all the possible 

values of the parameter must lie somewhere within the considered interval, and thus the outputs of 

the model must lie somewhere between the lower and upper bounds of the solution interval 

(Broadwater et al., 1994). Then, the ‘sampling-based method’ is typically used in freeze-drying 

models to calculate the uncertainty of the model outputs, e.g., Monte Carlo methods, response 

surface methods (Giordano et al., 2011; Mortier et al., 2016; Pisano et al., 2013; Bosca et al., 2015). 

The Monte Carlo consists in randomly sampling model parameters from a distribution to obtain 

successively a distribution of process parameters as output.  

A first example of the use of the uncertainty analysis in freeze-drying mathematical models is the 

work of Giordano et al. (Giordano et al., 2011). The authors considered the uncertainty of two model 

parameters (
� and  #) to be distributed around their mean values according to a Gaussian density 

function. By using the model of Velardi and Barresi (Velardi and Barresi, 2008), the product 

temperature distribution was simulated and the design space was constructed for various probability 

of success, that in this work (Giordano et al., 2011) was defined as the probability that the product 
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Figure I.4.5: Example of design space of a 10 % sucrose solution calculated taking into account a 

�  and  # coefficient of variation equal to 10 %. Solid lines identify the design space boundary 
for different probability of success, whereas the dashed line identify the "classical" design space 
boundary when parameter uncertainty is not taken into account (Giordano et al., 2011).  

 

 

Figure I.4.6: Design space of a vaccines formulation evaluated at different 
C|
C|�
	and for four groups 

of vials differently located on the shelf (as previously presented in Figure I.2.3). Group B: edge 
vials in contact with the rail; Group C: edge vials not in contact with the rail; Group D: central 
vials in contact with “hot” vials; Group E: central vials. Condition #1= shelf temperature of -
15°C and chamber pressure of 8 Pa  (Pisano et al., 2013). 
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temperature remains below the maximum allowed temperature. Figure I.4.5 shows an example of a 

design space calculated by Giordano et al. (Giordano et al., 2011), for a 10 % w/w sucrose solution 

considering a 10 % of uncertainty of  
� and  #. The safe area is represented by the area below the 

curves at a fixed probability of success. It results that higher is the probability of success, smaller will 

be the safe area available for the process design. Figure I.4.5 also shows that the classical design 

space (dotted line in Figure I.4.5), calculated without considering parameter uncertainty, presents the 

biggest safe area: this points out that if the operator selects the operating variables without taking into 

account the parameters uncertainty, the product could be damaged.  

Subsequently, Pisano et al. (Pisano et al., 2013), constructed a time variant design space by taking in 

consideration the uncertainty of the parameters 
� and  # as proposed by Giordano et al. (Giordano 

et al., 2011). In this work, the quantification of the uncertainty of 
�  and  #  was based on 

experimental data. First, the 
� uncertainty was assessed. Different 
� distributions were determined 

gravimetrically for groups of vials differently located on the shelf, classified as edge vials in contact 

(B) and not in contact with the rail (C), in contact with "hot" vials (D), central vials (E). These 

experimental distributions were used to evaluate the uncertainty of  
�  for each group, that was 

expressed in terms of variance of the parameter �	 only (Equation I.2.11). Then,  # was calculated 

by using the pressure rise test. The uncertainty of  #  was expressed as 10 % of coefficient of 

variation of the parameter  #	 (Equation I.2.20), which was found to satisfactory represent the 

variability of  #  between different runs regardless the freezing protocol used. However, the 

variability of  # between vials processed in same vial batch was not investigated.  

Then, the time-variant design space for the different groups of vials was calculated as shown in 

Figure I.4.6 for a 9 % w/w vaccine formulation considering average values of the parameters. In 

agreement with the work of Fissore et al. (Fissore et al., 2011a) the design space shrinks as the dried 

layer thickness �� increases. The edge vials in contact with the shelf (group B) presented the smaller 

design space due to the higher value of 
� with respect to central vials (group E), regardless of the 

process time. The developed design space was then used to select acceptable values of operating 

variables (condition #1 in Figure I.4.6, equal to shelf temperature of about -15°C and chamber 

pressure of 8 Pa), taking as reference the central vials. Finally, the uncertainty of the parameters 
� 

and  # was used to evaluate the probabilistic distribution of the product temperature and drying time 

(defined by end of sublimation) of the different vial groups, as shown in Figure I.4.7. Only the vials 

of group B (central vial) showed a maximum product temperature lower than the critical value, and 

the drying time had to be at least 12.5 h to guarantee that all the vials had completed the primary 

drying phase. 
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Figure I.4.7: Comparison between the probabilistic distribution of the maximum product 
temperature and drying time for the four families of vials: (○) B, edge vials in contact with the rail; 

(•) C, edge vials not in contact with the rail; (∆) D, central vials in contact with “hot” vials and 
(▲) E, central vials. The dashed vertical line indicates the maximum allowable product 
temperature. A shelf temperature of -15 °C and a chamber pressure of 8 Pa were used to run the 
cycle  (Pisano et al., 2013). 
 
 

 

 

Figure I.4.8: Influence of different values for the risk of failure acceptance level on the product 
temperature at the interface &o, and therefore on the resulting dynamic design space evaluated at 
0.78 h from the beginning of primary drying for different risk of failure acceptance levels (50%, 
25%, 0.01%). Product temperature &o is represented by the colour scale  (Mortier et al., 2016). 
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The presented analysis showed that the consideration of the parameter uncertainty is a key point for 

the choice of appropriate safety margins for the maximum product temperature and for the primary 

drying duration to guarantee an acceptable product quality. A step further in the parameter 

uncertainty analysis was recently performed by Mortier et al. (Mortier et al., 2016), who included in 

a time-variant design space the uncertainty of 12 parameters in total, e.g., 
�,   #, the cross sectional 

area of the vial and the initial product thickness. Several design spaces were calculated for different 

risk of failure acceptance levels (i.e., probability that the temperature at the sublimation front of the 

product exceed the critical value). An example of the influence of the risk of failure acceptance levels 

on the dynamic design space is shown in Figure I.4.8. The "safe area" of the design space shrinks as 

the risk of failure acceptance levels becomes more conservative. In particular, the process conditions 

become extremely conservative at 0.01 % risk of failure. Mortier et al. (Mortier et al., 2016) 

concluded that only the design space built considering 0.01 % risk of failure acceptance level 

guarantee good cakes without collapse. 

In conclusion, variation in time and model parameters uncertainty should be considered into the 

design space for a successful risk assessment of the process. In this way, cycle design will be 

performed taking into account not only the optimization of the process, but also its risk of failure 

usually defined as the probability that the product temperature exceed its critical value. 

I.4.2.4 Sum-up: the design space "shrinkage" 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In summary, the design space based on product quality constraints tends to shrink due to the 

following factors: 

• Product resistance increase in time along with the progress of primary drying due to the 

increasing dried layer thickness;  

• Consideration of edge vial groups which receive additional heat fluxes respect central 

vials; 

• Including model parameter uncertainty which exhibit deviations from average 

behaviour; 

• Increasing the desired percentage of accepted vials towards 100 %. 

Reduction of the safe zone in the design space is in opposition with process duration 

optimisation which favours high sublimation rates and consequently high shelf temperatures and 

low chamber pressures. High shelf temperatures increase the risk of product collapse (Figure 

I.4.5) while low chamber pressures reduce equipment capability (Figure I.4.2). 

 



 
LITERATURE REVIEW                                                                I.4 Quality-by-Design in freeze-drying process 

 

- 82 - 

 

 
 
 
 
 
 
 
 
 
 

 
Figure I.4.9: Secondary drying design space of a 5% sucrose solution calculated in case an initial 
moisture content of 6 % and the target moisture content between 1 and 2% (Pisano et al., 2012). 
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I.4.3 Design space for secondary drying  

The design space for secondary drying can be defined as the set of operating variables (i.e., 

temperature of the shelf and duration of the secondary drying) that allows to reach the target value of 

residual moisture in the product while maintaining the product temperature below the glass transition 

temperature for dried product &!. Despite the importance of this step on controlling the final moisture 

content of the product, only Pisano et al. (Pisano et al., 2012) proposed an approach for the 

calculation of the secondary drying design space. An example is shown in Figure I.4.9 for 5 % w/w 

aqueous sucrose solution. In this model, evolution of moisture content and product temperature with 

time is described and requires the experimental determination of three model parameters, i.e., the vial 

heat transfer coefficient 
�, the product moisture content at the beginning of the secondary drying 

and the characteristic desorption time (Equation I.2.21). Then, the design space can be calculated by 

considering the combination of shelf temperature and drying time which led to a product temperature 

lower than &!  and an acceptable final moisture content. Considering a target moisture content 

between 1 and 2 %, the safe area in the design space is represented by the gray area limited by the 

solid lines in Figure I.4.9. The dashed lines in Figure I.4.9 limits the portion of the design space 

where the constraint on the maximum value of product temperature was not satisfied.  

Pisano et al. (Pisano et al., 2012), also verified the impact of 
� variability and moisture content 

variability at the beginning of the secondary drying step on the design space. Different values of 
� 

did not have an impact on the design space area. Conversely, the safe area of the design space 

calculated from lower values of initial moisture content is bigger than the one calculated from higher 

values of moisture content.  

The design space can be used to optimize the secondary drying by selecting the value of shelf 

temperature &I	that allows minimizing the desorption time %�@F. Furthermore, as the critical product 

temperature depends on the moisture content, the process can be further optimized using different 

set-points for the shelf temperature during secondary drying, in such a way that product temperature 

is always close to the limit value as drying goes on.  

 

1.1. A summary of mechanisms responsible for product heterogeneity 

The final objective of designing a freeze-drying process is to guarantee product quality within the 

batch and between different batches. However, different sources of variability present in primary 

drying can cause a final product quality heterogeneity (i.e., collapse of the product due to a product 

temperature higher than the critical one during primary or secondary drying, and final moisture 

content higher than the target value).  

The four main sources are:  
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 (i) the edge vial effect: the additional heat mechanisms present at the border of the shelf can cause 

different product temperature and moisture content profiles in edge and central vials during primary 

drying.  

(ii) the modification of cake structure during the freezing step: vials differently located on the shelf 

can present a different temperature of nucleation and degree of supercooling. As consequence, the 

porous structure of the dried matrix will not be homogeneous within the vial batch, with 

consequences on mass transfer resistance in primary drying and desorption kinetics in secondary 

drying (Rambhatla et al., 2004; Passot et al., 2009; Searles et al., 2001b; Konstantinidis et al., 2011); 

(iii) the vial geometry variability: due to production limits, vial bottom dimensions may be different 

from one vial to the other. This vial geometry distribution can cause variability of the heat transfer in 

the batch.  

(iv) local shelf temperature variability and pressure gradient in the drying chamber could have a 

more or less marked effect on the batch heterogeneity, depending on the freeze-dryer characteristics 

(Rasetto et al., 2008). 

These un-controlled phenomena cause variability in the heat and mass transfer and thus distributions 

of the product temperature and moisture content profiles, of the sublimation and desorption rates. 

Thus, when the primary and secondary drying steps are designed (in terms of shelf temperature, 

chamber pressure and time), those mechanisms should be taken into consideration.  

However, the prediction of critical process parameters such as product temperature, sublimation rate 

and desorption rate through the mathematical model is often based on the simulation of only average 

value of the model parameters of heat and mass transfer, which does not adequately represent the 

complex distribution of the variables in the batch. Only the edge vial effect is often taken into 

account in mathematical models (e.g., (Velardi and Barresi, 2008; Brülls and Rasmuson, 2002; 

Hottot et al., 2006; Gan et al., 2005)) whereas cake structure variability as well as vial geometry 

variability were not considered, probably due to the difficulty in the experimental quantification. The 

prediction of product temperature and sublimation rate without taken into account the sources of 

variability can lead to: 

1. An erroneous prediction of critical process parameters, such as the product temperature or 

the desorption rate. Heat and mass transfer variability needs to be considered to correctly 

predict the product temperature and moisture content profile distribution in the batch. As 

example, edge vials could present a higher product temperature than central vials due to the 

edge vial effect. If the edge vial effect is not considered and the process run at product 

temperature closed to the critical one (&!′), collapse in edge vials can occur. 
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2. An erroneous detection of the end-point of primary and secondary drying. Inter-vial mass 

and heat transfer heterogeneity causes a distribution of the product temperature, sublimation 

and desorption rates in the vial batch. Regarding the duration of primary drying, vials can 

end the sublimation at different moments. A more conservative cycle would increase the 

already long process time, but an early start of the secondary drying step, followed by the 

increasing of the shelf temperature, can cause the collapse of the vials in which the 

sublimation is still ongoing. Furthermore, a short duration of the secondary drying step will 

lead to a higher value of moisture content than the target one, which will affect the shelf life 

and the stability of the product. 

3. An erroneous scale-up process. Some mechanisms causing product heterogeneity (e.g., heat 

transfer by radiation from the drying chamber walls to the edge vials) are dependent on the 

characteristics of the equipment in which the cycle is run (e.g., emissivity of the walls). 

Product temperature and sublimation rates distribution over the batch can change from one 

equipment to another, causing a very poor prediction for the scale-up process. 

Deep theoretical understanding together with precise experimental quantification of the phenomena 

causing heat and mass transfer variability in primary drying could lead to a better prediction of the 

product quality heterogeneity in the final batch. 

I.4.4 Motivations of this project 

 

 

 

 

 

 

 

The main aim of this literature review was to remark the importance of the mathematical modelling 

in process design and control, as well as in the description of the heat and mass transfer phenomena 

taking place during the freeze-drying process. However, there is still a lack of use of the modelling 

for understanding of physical mechanisms responsible the product quality variability during the 

process. A correct definition and quantification of those mechanisms could led to a precise 

prediction of the variability of the critical process parameters, and thus to the definition of safety 

margins for the cycle development. 

In this regards, the present thesis focused on the qualitatively and quantitatively investigation of 

four sources of product quality variability, previously identified in the review: (i) the variability of 

the vial geometry, (ii) the edge vial effect, (iii) the modification of cake structure during the 

freezing step. Mathematical modelling, together with the experimental analysis, was used as 

powerful tool to describe the physical mechanisms and for the prediction of the impact of on the 

product quality, through prediction of the product temperature. These mechanisms were then 

included in a dynamic mathematical model finalized to the development of freeze-drying cycles at 

a known risk of failure, expressed in term of vials potentially rejected. 
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II.1 Scientific questions 

 
 
 
 
 

The main aim of the present Ph.D. thesis was to characterize the sources responsible for product 

quality variability in freeze-drying process within the same batch and from batch to batch in ordinary 

production and during scale-up, to quantify their relative importance on the risk of product rejection. 

Based on this analysis, a new approach for the freeze-drying cycles design will be developed in 

accordance with the Quality by Design concept described in the 8th Guidance on Quality of the 

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human 

Use (ICH Q8).  

These objectives were associated with the following two research questions: 

• Q1: Which are the main sources responsible for product quality heterogeneity in freeze-drying 

process? How to quantify them?  

• Q2: How the sources responsible for product quality heterogeneity can be taken into account in 

the freeze-drying cycle design? 

Figure II.1.1 schematically represents the scientific approach that was used to answer to the 

previously listed questions. An overview of formulated hypotheses and the main methods used for 

the research will be presented in the following section.  
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Figure II.1.1: Schematic representation of the scientific approach used in this project.  
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II.2 Experimental strategy 

 
 
 
 
 

II.2.1 Identification and quantification of the mechanisms responsible for 
product quality heterogeneity in freeze-drying process 

This research has its starting point in the identification of the mechanisms responsible for product 

quality variability during the different steps of the process. The product quality is usually defined in 

terms of critical attributes, such as the aspect of the product cake and the residual moisture content. 

These attributes mainly depend on critical product parameters, such as the product temperature, the 

sublimation rate and the desorption rate of the product, which are in turn governed by heat and mass 

transfer phenomena taking place in the drying chamber during the cycle. Based on a preliminary 

analysis of previous published works (Part I, Literature Review ), three sources were identified as 

responsible for the variability of the product temperature and moisture content: (i) the variability of 

the container dimensions, (ii) the position dependent heat transfer ("edge vial effect"), (iii) the 

modification of cake structure during the freezing step, which led to variability of the product 

resistance to the mass transfer during primary drying and of the specific surface area available for 

desorption during secondary drying. 

The variability of the container dimensions is mainly due to limits in the container production 

process to reproduce exactly the same dimensions between one vial to another. Since the heat transfer 

between the shelf and the vial strictly depends on the vial bottom geometry, variability of the vial 

bottom dimensions could influence this heat contribution through the vial heat transfer coefficient 
�. 

In order to verify this hypothesis, variability of the shelf-vial contact area and the depth of bottom 

concavity were firstly quantified within one set of 120 vials. The obtained vial dimension 

distributions were then used to reproduce vial heat transfer coefficient distributions for vials located 

in the centre of the shelf and not affected by the border heat transfer. Then, the impact on the product 

temperature of the resulting heat transfer variability was assessed. The results of this investigation are 

reported in Paper III.1 .  

 

The "edge vial effect" is widely known to be the main source of heat transfer variability within the 

vial batch. Vials located at the border of the shelf are known to receive additional heat flux compared 
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to central vials, and radiation from walls and door are often considered to be mainly responsible for 

this phenomenon. In order to deeply investigate this effect, a 3D mechanistic mathematical model of 

the heat transfer in edge and central vials was developed by using the software COMSOL 

Multiphysics, described in detail in Paper III.2 . Then, the developed model was used to predict the 

heat transfer variability for different vial loading configurations and equipment characteristics (i.e., 

thermal characteristic of the freeze-dryer, distances between the shelves and between the wall and the 

shelf). The results obtained in this analysis are reported in Paper III.3 . 

 

Furthermore, the variability of the mass transfer during primary drying was investigated. Firstly, the 

importance of the presence of the stopper into the vial neck and of the freezing protocol on the 

sublimation rate was assessed. To this end, freeze-drying cycles were performed with vials partially 

stoppered or not stoppered, and using two different freezing protocols, i.e., with and without 

controlled nucleation. Then, the product resistance variability (expressed in terms of standard 

deviation) was evaluated for cycles performed with and without controlled nucleation by using two 

experimental methods: the pressure rise test and the gravimetric method. The obtained product 

resistance distributions were used to quantify the impact of the mass transfer variability on the 

product temperature. A 5 % sucrose solution was used throughtout the study. The results of this 

analysis are reported in Paper III.4 .  

 

Finally, the role of the desorption kinetics on the moisture content variability in secondary drying 

was explored. A second order desorption kinetics was used to describe the moisture content evolution 

of a sucrose formulation during secondary drying. Controlled and uncontrolled nucleation were used 

during the freezing step. Then, the value and variability of the characteristic desorption time and their 

dependence on product temperature and on the freezing protocol were assessed, and used to calculate 

moisture content distributions during secondary drying. A 5 % sucrose solution was used throughtout 

the study. The results are presented in Paper III.5 .  

II.2.2 Complete mathematical model including all considered sources of 
variability 

Once that the relative importance of several mechanisms on the product heterogeneity was 

theoretically and experimentally quantified, distributions of relevant physical parameters were 

included in a multi-vial, dynamic mathematical model describing the heat and mass transfer during 

the sublimation and desorption steps of the freeze-drying process. This model was then used to 

develop a new approach for the design of the primary and secondary drying steps of the freeze-drying 

process at known risk of failure, by considering four main constraint: the maximum allowed product 
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temperature during primary and secondary drying, the completion of the sublimation step, the target 

final product moisture content. The risk of failure of the process was estimated in term of percentage 

of vials potentially rejected. This multi-vial, dynamic developed model is described in Paper III.6 .   

 

 

 

 

 

 

 

In conclusion, the original approach proposed in this project consisted in (i) a 

systematic quantification of the variability of heat and mass transfer 

mechanisms relevant for product quality, and (ii) in the integration of these 

mechanisms in a new multi-vial, dynamic mathematical model to define a new 

approach for the development of freeze-drying process at known risk of failure. 
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III.1 How vial geometry variability influences heat 
transfer and product temperature during freeze-drying 

 
The present study was published on the Volume 106(3) (March 2017) of  

the Journal of Pharmaceutical Science 

 
 

III.1.1  Context and objectives 

Usually vaccines intended to be freeze-dried are processed within glass containers named vials. The 

vials usually presents a "champagne bottle"  geometry, with a small concavity in the bottom to 

improve the stability of the vial on the shelf and to reduce the container breakage. Vials on the shelf 

are known to receive only the heat flow from the top and bottom shelves through three main 

mechanisms: (i) the contact conduction between the shelf and the vial, (ii) the radiation from the top 

and bottom shelves and (iii) the conduction through the gas present in the vial bottom concavity. The 

heat transfer via contact conduction and conduction through the gas are respectively influenced by 

the contact area between the shelf and the vial and the depth of vial bottom curvature in which the 

gas is entrapped. The presence of a vial bottom curvature limits the heat transfer by reducing the 

points of direct contact between the vial and the shelf, and represents the major resistance to the heat 

transfer. Furthermore, due to production limits, the vial bottom dimensions may vary between vials 

within the same batch and can influence the variability of the heat transfer and thus of the product 

temperature. 

 

 

 

 

 

 

 

 

 

 

Objective 
The purpose of the present study was to quantify the importance of the 

variability of two relevant geometrical dimensions of the vial bottom, i.e. 

contact area between the shelf and the vial and depth of bottom curvature, on (i) 

the variability of heat transfer between the shelf and the vial through predictions 

of vial heat transfer coefficient 
y  distributions and then on (ii) the final 

product quality heterogeneity through prediction of the product temperature 

distributions. 
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ABSTRACT 

Vial design features can play a significant role in heat transfer between the shelf and the product and, 

consequently, in the final quality of the freeze-dried product. Our objective was to investigate the 

impact of the variability of some geometrical dimensions of a set of tubing vials commonly used for 

vaccine production on the distribution of the vial heat transfer coefficients (
y) and its potential 

consequence on product temperature. Sublimation tests were carried out using pure water and eight 

combinations of chamber pressure (4 to 50 Pa) and shelf temperature (-40 °C and 0 °C) in two 

freeze-dryers. 
y values were individually determined for 120 vials located in the center of the shelf. 

Vial bottom curvature depth and contact area between the vial and the shelf were carefully measured 

for 120 vials and these data were used to calculate 
y distribution due to variability in vial geometry. 

At low pressures commonly used for sensitive products (below 10 Pa), the vial-shelf contact area 

appeared crucial for explaining 
y heterogeneity and was found to generate, in our study, a product 

temperature distribution of approximately 2 °C during sublimation. Our approach provides 

quantitative guidelines for defining vial geometry tolerance specifications and product temperature 

safety margins. 

 

KEYWORDS 

 Freeze drying/lyophilization; amorphous; drying; vaccines; distribution; vial heat transfer coefficient; 

sublimation rate; vial design; inter-vial heterogeneity. 
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INTRODUCTION 

Nowadays, freeze-drying is an essential and valuable preservation method to ensure the long-term 

stability of the growing list of biopharmaceuticals such as antibodies, hormones, vaccines, 

therapeutics peptides and proteins. This method makes it possible to remove the majority of water at 

temperatures far below 0 °C (usually between -40 °C and -20 °C) by sublimation, the phase transition 

from ice to water vapour (Jennings, 1999). 

Due to the really low temperature and pressure typically used, freeze-drying remains a time 

consuming process often difficult to control and scale-up. The US Food and Drug Administration has 

recently proposed a new regulatory philosophy to manage product quality: the Quality by Design 

(QbD) initiative. Quality will be no more tested into the product but designed into the process. The 

QbD approach is based on pre-defined quality targets and on a deep understanding of how 

formulations and process interact to influence critical quality attributes of pharmaceutical products 

(Nail and Searles, 2008). In contrast to tablets, products intended to be freeze-dried are conditioned 

in their final packaging system (vial or syringe) before the process (Franks, 1998). The vial thus 

directly influences the freeze-drying process and impacts final product quality (Hibler et al., 2012; 

Pikal et al., 1984). Furthermore, since the capacity of a manufacturing freeze-dryer can easily reach 

100 000 vials, ensuring uniform product quality attributes (potency of the active ingredient, residual 

moisture content, visual aspect of the freeze-dried cake) within the entire batch represents a real 

challenge. Any variation in the design of the packaging system or other parameters could result in 

product quality variation.  

Product temperature is a key process parameter governing an important critical product quality 

attribute, the visual aspect of the freeze-dried cake, which in turn could influence the residual 

moisture, the stability of the active ingredient and the reconstitution time (Johnson and Lewis, 2011). 

During the process the product temperature should be maintained below a critical value 

corresponding to the glass transition temperature in amorphous product (Hibler and Gieseler, 2012; 

Franks, 1998). However, the product temperature profile cannot be directly controlled and depends 

on the process operating variables (i.e.,, shelf temperature, chamber pressure) and on the heat transfer 

through the container (e.g.,, vial) (Hibler and Gieseler, 2012; Pikal, 2000; Hibler et al., 2012). 

Knowledge of the heat transfer characteristics of the vial and the uniformity or non uniformity of this 

property within vial arrangement inside a freeze-dryer is thus essential to be able to predict final 

quality of the product batch. Several authors have reported that the heat transfer rate between the 

shelf and the product is dependent on the vial position on the shelf (Pikal et al., 1984; Rambhatla and 

Pikal, 2003; Hibler et al., 2012; Pisano et al., 2013; Pikal et al., 2016; Pisano et al., 2011). Pikal et al. 

(Pikal et al., 1984), showed that the vials located at the periphery of the shelf exhibited sublimation 

rates 15 % higher than vials located in the center. This phenomenon, referred to as "edge effect", has 
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been ascribed to additional heat transfer by radiation from walls and doors (Rambhatla and Pikal, 

2003; Hibler et al., 2012; Pikal, 2000; Pikal et al., 1984, 2016). The higher heat flow rate of these 

periphery vials could lead to product collapse due to increased product temperatures during the 

primary drying phase. Furthermore, Pisano et al. (Pisano et al., 2013), recently observed a normal 

distribution in the vial heat transfer coefficient evaluated for vials located in the center of the shelf. 

The design of the vial also strongly influences the heat transfer efficiency between the shelf and the 

product (Pikal et al., 1984; Hibler and Gieseler, 2012; Hibler et al., 2012; Nail, 1980; Ybema et al., 

1995; Brülls and Rasmuson, 2002; Pisano et al., 2011). Considering that the vials are placed directly 

on the shelf, the heat flow transferred to the product can be described by three parallel mechanisms: 

conduction from the shelf surface to the vial via points of direct contact between the vial bottom and 

the shelf, conduction through the vapour entrapped in the vial bottom concavity and radiation (Pikal 

et al., 1984; Pikal, 2000; Pisano et al., 2011). Heat transfers via contact conduction and conduction 

through the gas are influenced, respectively, by the dimension of the contact area between the shelf 

and the vial and the depth of bottom curvature in which the gas is entrapped (Pikal et al., 1984; Pikal, 

2000; Pisano et al., 2011). Several studies (Nail, 1980; Cannon and Shemeley, 2004; Kuu et al., 

2009) have demonstrated that the vial bottom curvature limits the heat transfer and, thus, the 

sublimation flow rate that determines the duration of the primary drying. The concavity of the vial 

bottom limits the direct surface contact between the vial and the shelf, accounting for most of the 

resistance to conductive heat transfer (Cannon and Shemeley, 2004; Ybema et al., 1995). In 

pharmaceutical freeze-drying conditions, contact conduction is more efficient than gas conduction, 

and an increase in the contact area leads to a significant increase in the total heat transfer (Pikal et al., 

1984; Ybema et al., 1995). 

Our objective was to quantitatively investigate the role of vial geometry distribution on heat transfer 

heterogeneity and subsequently on product quality by predicting product temperature distribution 

during the primary drying step induced by variability in vial dimensions. Proposing an approach to 

understand how vial design and operating variables interact to influence product quality is 

completely in the scope of the QbD approach. 

In the present study, only vials located in the center of the shelf and surrounded by other vials in the 

same conditions were considered so as to avoid any heterogeneity due to the additional border heat 

transfer. The analysis of the heterogeneity was conducted in terms of vial heat transfer coefficient 

(
y) distributions. Based on theoretical analysis (Pikal, 2000; Pikal et al., 1984; Pisano et al., 2011), 

attention was focused on the role of two vial dimensions, the bottom curvature depth and the contact 

area between the bottom vial and the shelf. 
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Figure III.1.1  Vial arrangements in (1) LYO A and (2) LYO B. Gravimetrically-analyzed vials are marked 
with the letters M and N for LYO A and B, respectively. Vials in which wireless temperature probes were 
located are marked with the letter P. All vials were filled with 1.8 mL of pure water. 
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Two shelf temperatures (-40 °C and 0 °C) and six chamber pressures (4, 6, 9, 15, 40 and 50 Pa) were 

tested in two freeze-dryer pilot plants of similar shelf emissivity to assess the impact of these 

operative variables on the heat transfer heterogeneity among central vials. Finally, as example of 

practical application of our work for assessing the pharmaceutical product quality, the impact of the 

central vial 
y variability on product temperature was evaluated. 

Product temperature distributions for a 5 % sucrose solution were calculated from the simulated 
y 
distributions based on the vial geometry for several operating variables.   

 

MATERIALS AND METHODS 

 Materials 

Siliconized glass tubing vials (3 mL) were provided by Müller + Müller (Holzminden, Germany). 

These vials are routinely used in commercial manufacturing. Distilled water was used throughout the 

experiments.  

Two pilot scale freeze-dryers differing mainly by their size, the type of valve connecting the drying 

chamber to the condenser and their age were used for this study:  

- a LyoVac GT6 (Finn-Aqua Santasalo-Sohlberg SPRL, Brussels, Belgium), referred to as LYO A. It 

included 5 shelves with an area of 0.14 m² each, a distance between shelves of 56 mm, a drying 

chamber volume of 0.061 m3 and a butterfly valve between the chamber and the condenser.  

- an Epsilon 2-25D (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany), 

referred to as LYO B. It included 7 shelves with an area of 0.27 m² each, a distance between shelves 

of 55 mm, a drying chamber volume of 0.38 m3 and a mushroom valve between the chamber and the 

condenser.  

The pressure in the freeze-dryer chamber was monitored by a capacitive manometer. Since it was not 

technically possible to install thermocouples in the drying chamber of the two freeze-dryers, Tempris 

wireless sensors (IQ Mobil Solution GMbH, Holzkirchen, Germany) were positioned in the bottom 

center of selected vials (Figure III.1.1 ) to record ice temperature during the experiments. The 

obtained signal was used to define the sublimation starting point. 

 

 Ice sublimation experiments 

All experiments were performed using a 1.8 mL fill volume of distilled water (filling height: 11 mm). 

No stopper was inserted into the vial neck. The middle shelf was fully covered by filled vials for all 

runs, corresponding to a total of 540 vials in LYO A and 950 vials in LYO B. Bottomless trays were 

used. The vials were quickly loaded on the pre-cooled shelf at -50°C. The presence of a dry laminar 

flow in front of the freeze-dryer door made it possible to control the air relative humidity and thus to 

limit condensation on the shelves. 
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Table III.1.1. Vial dimensions, physical properties and emissivities used in this study 

 

Symbol Significance Value ± SD Units 

�� Outer bottom area of the vial (2.07 ± 0.37) 10-4  �� 

��� Inner bottom area of the vial (1.78 ± 0.29) 10-4  �� 

�� Vial-shelf contact area  (1.67 ± 0.40) 10-4  �� 

� 
Mean bottom curvature deptha (1.23 ± 0.34) 10-4  � 

∆� 
Latent heat of sublimation of ice 2763.3 ��	���	 

���� Molecular conductivity of the 
water vapour at ambient 

pressure 

0.025 �	��		
�	 

���� Ice heat conductivity 2.23 �	��		
�	 

σ Stephen-Boltzmann constant 5.670367×10−8 �	���	
�- 

z{ Product resistance  
for 5% w/w sucrose solution 
(Konstantinidis et al., 2011) 

124.8 ���	�	�²	���	 

�� Vial emissivity 0.78 Dimensionless 

�� Shelf emissivity 0.18 Dimensionless 

 � 

Visualization factor  
at the bottom of the vial 

(Equation III.1.10) 
0.16 Dimensionless 

     aCalculated as reported in the Appendix 
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After a freezing step of 2 hours, the pressure was decreased and the shelf temperature was increased 

by 1 °C/min. Experiments were carried out at 4, 6, 9, 15, 40 and 50 Pa with a shelf fluid inlet 

temperature of 0 °C, and at 4 and 6 Pa with a shelf fluid inlet temperature of -40 °C. The run 

performed at 0 °C and 6 Pa was repeated three times. The cycles were run long enough to dry up to 

20-25 % of the initial fill volume. Subliming a larger quantity of ice could lead to loss of contact 

between the vial and the ice, introducing uncertainty in the analysis.  

The sublimation rate �� 	was measured gravimetrically for each vial and calculated as the mass loss 

divided by the period of sublimation. A total of 100 vials, placed in the centre of the shelf and 

surrounded by other vials in the same conditions, were individually weighed before and after the 

experiment on a precision scale (± 0.001 g; Mettler Toledo, Zaventem, Belgium). Sublimation time 

was measured from the moment when shelf temperature exceeded product temperature, meaning that 

there was a net heat flux from the shelf towards the vials. The arrangement of the weighed vials 

within the shelves is shown in Figure III.1.1  for the two freeze-dryers. 

 

 Measurement of emissivity of the vial and of the shelf 

Emissivity measurements were performed by Themacs Ingénierie (Champs sur Marne, France). The 

glass vial emissivity was determined using a Fourier transform infrared spectrophotometer (Frontier, 

Perkin Elmer, Roissy, France) equipped with a Pike integrant sphere (Pike Technologies, Fitchburg, 

WI, USA). The measured emissivity varied from 0.78 to 0.80 within the range of temperatures tested 

(from -48 °C to 27 °C). Thus, a constant value corresponding to the average observed product 

temperatures (between -48 to -24 °C) was used in the data analysis, as reported in Table III.1.1. 

The shelf emissivity was measured using the emissometer EM-2, making it possible an in situ 

measurement (Monchau et al., 2013). The emissivity value of the shelves of LYO B was 0.18 ± 0.06 

(Table III.1.1.). Measurements were carried out on several pilot and production freeze-dryers and 

shelf emissivity values in the range of 0.18-0.3 were obtained. Considering the relative standard 

deviation of the method (0.06), the measured values are in agreement with values reported in 

literature (Pikal et al., 1984). 

 

 Dimensional analysis of a batch of vials 

The dimensions of 120 vials were precisely measured by the specialized company Precis&Mans (Le 

Mans, France) using the micrometer Mitutoyo 3D (Mitutoyo Europe GmbH, Neuss, Germany). The 

following geometrical parameters were determined with a precision of 0.003 mm: the inner and outer 

bottom radius and the maximum bottom curvature depth. These values were used to calculate 

additional vial dimensions: outer and inner vial bottom area, vial shelf contact area (��) (named 

radius-based contact area in Table III.1.1.) and mean bottom curvature depth (�) (Appendix).  



 
RESULTS AND DISCUSSION                                                                                III.1 Vial geometry variability 

- 108 - 

 

Furthermore, the vial-shelf contact area was also estimated using the imprint method proposed by 

Kuu et al. (Kuu et al., 2009) and Hibler et al. (Hibler et al., 2012). The vials were gently placed on an 

inkpad and then on a sheet of white paper. ImageJ v.1.49 software (National Institutes of Health, 

Bethesda, MD, USA) was used for the determination of the vial-shelf bottom contact area in pixels 

from the imprint images. The scale factor of pixels in mm2 was determined by evaluating the number 

of pixels of a black shape of known area and was equal to 0.0153 mm2 pixel-1. The mean value and 

the relative standard deviation of these geometrical dimensions are reported in Table III.1.1. The 

two methods used for evaluating the vial-shelf contact area gave similar mean values: 16.7 mm² for 

the imprint method and 17.8 mm² for the dimensional analysis.  

However, the coefficient of variation of these methods appeared different and significantly higher for 

the imprint method (23.9 % versus 12.0 % for the dimensional analysis). The values of contact area 

determined using this latter method were selected for the analysis considering that this method better 

accounts for intimate contact between vial and shelf. 

 

THEORY AND DATA ANALYSIS 

 Evaluation of the vial heat transfer coefficient 
y based on experimental data 

As widely reported in literature (Pikal et al., 1984; Pikal, 2000; Pisano et al., 2011; Hibler et al., 

2012), the vial heat transfer coefficient 
y was calculated using the following equation: 

 


y = ¡�
vh(Pd�Ph) =

∆¢	j� 	
vh(Pd�Ph)   Equation III.1.1 

 

where ��  is the heat flow received by the vial, �H  is the outer vial bottom area, 	&F  is the average 

temperature between the inlet and outlet shelf fluid temperatures, &H  is the bottom product 

temperature, ∆� is the latent heat of sublimation and ��  is the sublimation rate.  

Since it was not possible to implement thermocouples in the freeze-dryer pilot plant to have a precise 

measurement of the product temperature, &H was theoretically determined as: 

 

�� = fq^T
£q^T �o>(&H − &o)     Equation III.1.2 

 

where 	)o�@	is the ice thermal conductivity,	�o> is the inner bottom area of the vial, ¤o�@ is the ice 

thickness and &o is the ice-vapour interface temperature. The ice thickness was estimated as the mean 

between the initial and final ice thickness values (calculated using the amounts of initial and 

sublimed ice). 
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No stopper and pure water were used in this study in order to assume that the partial pressure of 

vapour at the sublimation interface was equal to the chamber pressure. The temperature at the ice-

vapour interface &o 	was thus calculated as a function of the interface pressure �o 	using the Clausius-

Clapeyron relation (Trelea et al., 2007): 

 

&o = ¥	�¦.¥
�§.§¦	��¨©(Zq	)    Equation III.1.3 

 

The &H value calculated was compared to the product temperature value given by the Tempris probe 

and an excellent agreement between experimental and theoretical data was observed. 

 

 Theoretical description of the vial heat transfer coefficient 
y 

The main objective of this work was to quantify the impact of vial dimensions distribution on heat 

transfer variability and its resulting consequence on product temperature. To this end, the vial heat 

transfer coefficient need to be theoretically expressed in function of specific vial dimensions.  

The vial heat transfer coefficient 
y can be described as the sum of three contributions (Pikal, 2000; 

Pikal et al., 1984; Pisano et al., 2011): 

 


y = 
� +
! + 
M    Equation III.1.4 

 

where 
� represents  the thermal contact conduction between the shelf and the vial via the direct 

contact area,	
!  the thermal conduction through the gas entrapped in the vial bottom curvature 

and	
M the thermal radiation between the vial and the top and bottom shelves.  

 

 Heat transfer by thermal contact conduction 
� 
The expression of 
�  has been discussed in the literature by only a few authors (Cannon and 

Shemeley, 2004; Kuu et al., 2009),. Kuu et al. (Kuu et al., 2009), proposed an evaluation of this 

parameter and showed that the larger the contact area is, the larger the value of the contact 

conduction coefficient will be. Thus, 
� can be assumed to be proportional to the contact area (�� , 
evaluated by the imprint test method) through an empirical constant (�	): 
 

 
� = �		��    Equation III.1.5 

 

 Heat transfer by conduction through the gas 
! 

The coefficient 
!, representing the contribution of the conduction through the gas in 
y, can be 
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expressed as (Pisano et al., 2011; Pikal et al., 1984): 

 


! = XY	Z[
	Q [Y	ª

«cgh	Z[
	    Equation III.1.6  

 

where �X is the chamber pressure, )�jH is the molecular conductivity of the water vapour at ambient 

pressure, � is the mean vial bottom curvature depth calculated as reported in the Appendix, and the 

coefficient �� is equal to: 

 

�� = Ʌ+
α

��α
R�_�.	aPbcd V

$.a
    Equation III.1.7 

 

where Ʌ+ is the free molecular heat conductivity of the gas at 0 °C, &!�F is temperature of the gas 

participating to heat conduction, calculated as average between the product temperature at the 

sublimation interface and the shelf temperature values (Pisano et al., 2011), and i�  is the 

accommodation coefficient.  

 

 Heat transfer by thermal radiation 
M 
The heat transfer by radiation between the shelf and the vial ��MF®@C?can be described by the Stephen-

Boltzmann equation (Pikal, 2000; Pikal et al., 1984; Bird et al., 2002): 

 

��MF®@C? = �M 	ℱ	,	(&F- − &H-)    Equation III.1.8 

 

where �M is the area exposed to the radiation from the shelves to be considered equal to the vial 

bottom area �H , 	ℱ  is the visualization factor and ,  the Stephan-Boltzman constant. After 

mathematical rearrangement, Equation III.1.8  can be expressed as: 

 

��MF®@C? = �M 	ℱ	,	°&F- − &H-± = �H 	ℱ	,(&F + &H)(&F� + &H�)(&F − &H) 
 Equation III.1.9 

 

Thus, the heat transfer coefficient 
M for thermal radiation can be defined as: 

 


M = ℱ	,	(&F + &H)(&F� + &H�)    Equation III.1.10 
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During the process, central vials are affected by two different radiative heat transfer contributions: 

between (i) the shelf below the vial and the vial bottom, and (ii) the shelf above the vial and the top 

of the vial (Pikal, 2000; Pikal et al., 1984; Pisano et al., 2011). Hence, the visualization factor will be 

the sum of two terms: 

 

ℱ = ℱH + ℱ�+#     Equation III.1.11 

 

The visualization factor at the bottom of the vial ℱH	can be evaluated considering the definition 

proposed by Bird et al. (Bird et al., 2002) and Pikal (Pikal, 2000) for the heat transfer by radiation 

between parallel surfaces:  

 

ℱH = 	
	Q² STw�	³Q²

S
Td�	³

    Equation III.1.12 

 

where 4y and 4F are the emissivities of the vial and shelf, respectively.  

Considering vials located in the centre of the shelf and surrounded by other vials in the same 

conditions, it is possible to assume that (i) the vial area exposed to the top shelf is much smaller than 

the area of the shelf and (ii) the vial top does not receive radiations from the side walls of the 

chamber. Thus, the visualization factor between the top of the vials and the shelf  ℱ�+#  can be 

estimated equal to the emissivity of the vial (Pikal, 2000; Pikal et al., 1984). 

 

ℱ�+# = 4y     Equation III.1.13 

 

In agreement with the literature, the visualization factor at the vial top (equal to 0.78; Table III.1.1) 

is higher than the one at the vial bottom (equal to 0.16; Table III.1.1) (Pikal et al., 1984). 

 

 Dependence of the vial heat transfer coefficient on vial geometry  

Equations III.1.4, III.1.5 and III.1.6  were combined to highlight the dependence of 
y 	on the 

contact area (��), and bottom curvature depth (�):  
 


y = �		�� +
M + XY	Ẑ
	Q ª

«cgh	XY	Ẑ
		  Equation III.1.14 
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The term 
M was calculated from Equations III.1.10-13 for each experimental condition.  

Coefficients �	  and ��  were determined by fitting Equation III.1.14  in a least-squares sense to 

experimental 
y values determined by the gravimetric method. Calculations were performed with 

Matlab R2014b software equipped with the Statistics Toolbox (The Mathworks Inc., Natick, MA, 

USA). The bottom curvature depth � and contact area ��	were evaluated from dimensional analysis 

of the vial and imprint test, respectively. 

 

 Calculation of 
y distributions based on vial geometry  

Two vial dimensions influence heat transfer: the contact area (��) and the mean bottom curvature 

depth (�). The absence of correlation between the two geometrical dimensions � and ��  was verified 

by calculating the correlation factor together with its statistical significance (p-value > 0.5). It was 

thus possible to independently evaluate the impact of those parameters on 
y . Using Equation 

III.1.14 , three 
y  distributions based on vial dimension variations were simulated: (i) curvature-

based (�  in Equation III.1.14); (ii) contact area-based (��  in Equation III.1.14); and (iii) their 

combination. The curvature-based 
y distribution was obtained by evaluating Equation III.1.14 with 

the 120 measured values of the mean bottom curvature depth (� ), while the contact area was 

maintained constant at its mean value. The contact area-based 
y  distribution was obtained by 

evaluating Equation III.1.14 with the 120 measured values of the imprint-based contact area (��), 
whereas the bottom curvature depth was maintained constant at its mean value. Plugging both 

measured � and ��  values into Equation III.1.14 gave the combined contact area and curvature-

based 
y distribution. The calculation was repeated for all the studied chamber pressures and shelf 

temperatures. Chi-square goodness-of-fit tests were performed on the simulated 
y  distributions, 

establishing that the sample data were consistent with a normal distribution at a 0.05 significance 

level. 
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Figure III.1.2.  Vial heat transfer coefficient (
v) values vs. chamber pressure (��). The markers refer to the 
v 
average values measured in LYO A and B at -40°C and 0°C. The lines correspond to the values calculated with 
Equation III.1.14 with the data obtained from LYO A, B and their combination.  Error bars represent standard 
deviations. 
 

 

 

Table III.1.2: Heat transfer model coefficients evaluated by fitting Equation III.1.13 to data obtained in (A) 
LYO A, (B) LYO B and (C) combining both sets of data (mean ± standard error). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set of 

coefficients 
Data 

�´   

 µ		m�´	��¶ 

�·	
µ	��·	m�´	¸��´ 

A LYO A (2.15 ± 0.30) 105  0.630 ± 0.027 

B LYO B (2.25 ± 0.34) 105   0.706 ± 0.032  

C Combination of 
data from LYO A 

and B  

(2.20 ± 0.27) 105   0.667 ± 0.025 
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RESULTS AND DISCUSSION 

 Impact of equipment on 
y 

Vial heat transfer coefficient 
y of 100 vials located in the centre of the shelf was experimentally 

determined for different chamber pressures (4 to 50 Pa), shelf temperatures (-40 °C and 0 °C) and 

freeze-dryers (LYO A and LYO B). Figure III.1.2  illustrates the evolution of the average value of 


y  with pressure. Equation III.1.14 was fitted with the experimental data and the resulting 

coefficients �	 and �� are presented in Table III.1.2  for the data obtained in LYO A, LYO B and 

their combination. The accommodation coefficient i�  was also calculated from Equation III.1.7 , 

considering an average value of the gas temperature obtained under the different operating conditions 

tested (&!�F  = -35 °C). The obtained values of the accommodation coefficient appear to be in 

agreement with data in literature (Pikal, 2000). 

In Table III.1.2, LYO A and LYO B exhibited a similar value of the �	 coefficient that is related to 

the contact area coefficient 
� (Equation III.1.5 ), but distinct values of the ��  coefficient that is 

related to 
! (Equation III.1.6 ). LYO B exhibited a slightly higher accommodation coefficient then 

LYO A, probably due to a different finish of the freeze-dryer shelf material.  

When considering pressure values lower than 10 Pa (Figure III.1.2 ), the 
y values obtained in the 

two freeze-dryer appeared similar. This result was confirmed also by Pisano et al. (Pisano et al., 

2011), who reported no significant difference in 
y value of central vials processed in a pilot and 

manufacturing freeze-dryer at a pressure of 10 Pa. For pressure value higher than 10 Pa, the influence 

of freeze-dryer configuration became significant with slightly higher values obtained in LYO B 

(Figure III.1.2 ). At 50 Pa, the 
y value was approximately 8 % higher in LYO B than in LYO A. 

Considering the different values of �� coefficient, the 
y difference between freeze-dryers at high 

pressure can thus be ascribed to the increased rate of heat transfer through the gas over the total heat 

flow.  

However, the physical origin of the differences in the pressure-dependent component of 
y remains 

unclear. Possible hypotheses include: (i) differences in the shelf surface finish that could induce 

differences in the gas-shelf heat transfer through the accommodation coefficient (Pikal, 2000) 

(Equation III.1.6-III.1.7 ) as well as (ii) differences in the gas convection conditions, a mechanism 

responsible for a small part of the pressure-dependent heat transfer (Ganguly et al., 2013). These 

results suggest that small differences between devices might become more apparent at high pressures. 

When considering only vials not exposed to edge effect a cycle designed with low operating pressure 

(below 10 Pa) could therefore be more suitable for safe scale-up. However the behavior of the edge 

vials located at the periphery of the shelf or in contact with metallic band need also to be considered 

and some elements were recently proposed by Pikal et al. (Pikal et al., 2016), to investigate the 

impact of the freeze-dryerc onfiguration. 
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Figure III.1.3.  Relative importance of the heat transfer coefficients by contact conduction (
�), radiation (
M) 
and conduction through the gas (
!) as percentages of the total heat transfer coefficients (
y). Average values 
of the contact area (��) and mean bottom curvature depth (�) were considered in this calculation. The set of 
coefficients C (Table III.1.2.) was used to evaluate 
� and 
! . 
 

 

 
Figure III.1.4. Influence of the shelf temperature on the vial heat transfer coefficients 
y . 
y  values were 
evaluated at different shelf temperatures and chamber pressures (a) from experimental data obtained in LYO A 
and B and (b) from the coefficients 
� , 
M  and 
!, calculated using Equations III.1.5, III.1.6  and III.1.10. 
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 Impact of chamber pressure and shelf temperature on 
y 

As reported in the literature and shown in Figure III.1.2 , chamber pressure had a strong impact on 


y (Pikal, 2000; Pikal et al., 1984; Pisano et al., 2011; Nail, 1980; Hibler et al., 2012; Brülls and 

Rasmuson, 2002). The vial heat transfer coefficient increased approximately four times between 4 

and 50 Pa. At the vial bottom, the presence of the curvature limits the intimate contact between the 

shelf and the vial and create an empty space between the shelf and the vial that acts as an insulator 

(Nail, 1980; Cannon and Shemeley, 2004; Kuu et al., 2009). At very low pressures typically used in 

the process, the heat transfer contribution by gas convection is usually neglected (Pikal et al., 2016), 

whereas the contribution of gas conduction has to be considered. This heat transfer mechanism, 

represented by the coefficient 
! , is dependent on the chamber pressure and increases when 

increasing pressure, as shown in Equation III.1.6  (Pikal, 2000; Pikal et al., 1984; Pisano et al., 2011; 

Brülls and Rasmuson, 2002). Figure III.1.3  shows the relative contributions of 
�, 
M and 
! on the 

total 
y, calculated using the set C of the fitting coefficients reported in Table III.1.2.  The 
� and 
M 
contributions go from about 30 % at 4 Pa to 10 % at 50 Pa, whereas the 
! contribution goes from 

about 25 % at 4 Pa to 80 % at 50 Pa.  

A moderate effect of shelf temperature on 
y  was expected theoretically due to 
M  (Equation 

III.1.10 ) and to 
!	through the gas temperature (Equations III.1.6- 7). Figure III.1.4A  displays the 

influence of shelf temperature on 
y. Differences in 
y values due to temperature remained within 

the standard deviation when considering pressure values lower than 10 Pa and when the contribution 

of 
! in the total 
y is moderate (around 25 %, Figure III.1.3 ).  

In order to clarify the impact of the shelf temperature, the contributions of the single coefficients 
�, 

M and 
! on 
y were calculated for two shelf temperatures (25 °C and -25 °C) and three chamber 

pressures (4, 6 and 50 Pa), as show in Figure III.1.4B . The contact conduction coefficient		
� does 

not depend on the shelf temperature (Equation III.1.5 ) and thus has a constant contribution in 
y for 

all the temperatures tested. The radiative coefficient 
M  depends on the third power of the shelf 

temperature and increases by about 1	�	���	
�	  between -25 °C and 25 °C for all pressures 

considered.  

The gas conduction coefficient 
!  depends on the gas temperature and decreases by 0.1-

0.2	�	���	
�	  at low pressures (4-6 Pa) and by 1.1	�	���	
�	  at 50 Pa, between the two 

considered values of shelf temperature.  

When increasing shelf temperature, the increase of 
M is partly compensated by the decrease of 
!. 

These results confirm that the dependence of		
y on the shelf temperature is negligible, especially if 

compared with the role played by the chamber pressure. Pisano et al. (Pisano et al., 2011), and Hottot 

et al. (Hottot et al., 2005), reported similar 
y values for different shelf temperature conditions.   
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Figure III.1.5.  Experimentally-measured distribution of the vial heat transfer coefficients at 4 Pa (a), 6 Pa (b), 
9 Pa (c), 15 Pa (d), 40 Pa (e) and 50 Pa (f). Data of LYO A and LYO B at different shelf temperatures (0°C and 
-40°C) were combined. 

 

 

 

Figure III.1.6  Calculated 
y normal distributions: curvature-based (dashed green line – -), contact area-based 
(dotted red line - - -) and combined curvature and contact area-based (solid black line —) at 4 Pa (a), 6 Pa (b), 
(c) 9 Pa (c), 15 Pa (d), 40 Pa (e) and 50 Pa (f).  
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 Inter-vial heat transfer heterogeneity and the role of vial dimensions 

Figure III.1.5  presents the experimentally observed distributions of the vial heat transfer coefficient 

data of central vials at six chamber pressures. Since temperature- and equipment-induced variations 

were minor, data obtained in LYO A and B and for the two shelf temperatures were merged.  

A significant variability in the 
y  values evaluated for central vials was observed, the standard 

deviation increasing with pressure from 0.84 to 2.46	�	���	
�	. The values of standard deviation 

corresponded to coefficient of variation comprised between 4 and 8 % depending on the operating 

conditions. The measurement error associated to the determination of 
y was evaluated as the sum of 

the individual measurement accuracy of each parameter entering in the calculation of 
y (Equation 

III.1.1 ). The measurement uncertainty was estimated to be ~ 1 %. This value is in agreement with the 

value reported by Pikal et al. (Pikal et al., 1984), who reported an uncertainty value of ~1.2 %. The 

measurement uncertainty alone did not allow to completely explain the variability of the 
y data. An 

external factor responsible for inter-vial heat transfer heterogeneity had thus to be considered. 

Attention was focused on the container: the geometrical difference among the vials was considered as 

a possible source of the heat transfer heterogeneity. This variability in the vial dimensions can be due 

to production limits and could change as a function of the container model and provider. For the 

tested vial set, the coefficient of variation was approximately 27.7 % for the mean bottom curvature 

depth (�) and 23.9 % for the imprint-based contact area (��). Hence, the effect of the variability of 

these geometrical dimensions on 
y was evaluated as proposed in the Theory and data analysis 

section using the set of coefficients C reported in Table III.1. 2. 

Figure III.1. 6 displays the simulated distributions of 
y based on the vial bottom dimensions. These 

distributions showed a trend and range of 
y  values similar to the experimental ones. At low 

pressure, 
y variability is almost completely due to the contact area variability. The importance of 

the contact area on the 
y value was also confirmed by Pikal et al. (Pikal et al., 1984), and Cannon et 

al. (Cannon and Shemeley, 2004). Regarding the vial bottom curvature, the importance of its 

variability increased when the pressure rose. This is due to the coefficient 
! that plays a major role 

in the total value of 
y at 40 and 50 Pa, as shown in Figure III.1.3 . The role of the bottom curvature 

dimension was previously investigated by Brülls and Radsmuson (Brülls and Rasmuson, 2002) and 

Cannon et al. (Cannon and Shemeley, 2004). Brülls and Radsmuson (Brülls and Rasmuson, 2002) 

have shown that the bottom curvature has an impact on the heat transfer only at chamber pressures 

higher than 30 Pa. This conclusion was confirmed by Cannon et al. (Cannon and Shemeley, 2004), 

who found that bottom curvature had little impact when considering low pressure (< 27 Pa). Our 

results agree with these conclusions (Brülls and Rasmuson, 2002; Cannon and Shemeley, 2004), 

confirming that the variability of the bottom curvature depth has to be taken into consideration only if 

cycles at high chamber pressure are performed (> 30 Pa).  
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Figure III.1.7.  Coefficients of variation of experimentally-measured 
y 	distribution (LYO A and B; light bars) 
and calculated (combined contact area and curvature-based) 
y  distribution (dark bars) and at different 
pressures. 
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Figure III.1.7  displays the coefficient of variation of the experimental and calculated 


y	 distributions at different pressures. For the experimental distributions, the coefficient was 

calculated as an average between the LYO A and B datasets. The trend of the observed coefficient of 

variations for both experimental and simulated 
y distributions decreased from approximately 9 % to 

4 % when increasing the chamber pressure. The variability of the experimental 
y 	distributions is 

completely explained by the geometrical variability at low pressures (i.e.,, 4, 6 Pa), whereas at higher 

pressures, the experimental coefficient of variation appears to be slightly higher than the one 

calculated based on vial geometry. It is thus possible that other sources of variability should be taken 

into consideration, for example convection in the drying chamber could play a role if higher 

pressures are considered (Ganguly et al., 2013). 

These considerations can guide the selection of the container as a function of the variability of the 

vial dimensions. The results obtained show that at low chamber pressure (i.e.,, 4, 6, 9, 15 Pa), it is 

important to assess the variability of the contact area between the vial and the shelf, whereas for 

cycles performed at high pressure (i.e.,, 40, 50 Pa), the variability of the bottom curvature depth 

becomes a relevant parameter.  Consequently, for pharmaceutical processes that are usually carried 

out at pressures lower than 10 Pa, the contact area needs to be taken into account more than the 

bottom curvature depth.  

 

 Impact of m� heterogeneity on the product temperature distribution  within a 

 batch of vials located in the centre of the shelf and not exposed to edge  effect 

In the case of freeze-drying, product temperature is one of the most important critical quality 

parameters. During the process, product temperature must be maintained close to a limit value (i.e.,, 

glass transition temperature for amorphous products, &!) in order to optimize the process time but not 

to exceed it so as to guarantee the visual aspect of the cake and the product quality. The vial-to-vial 

heat and mass transfer heterogeneity during the sublimation step causes variability in the product 

temperature. Considering a constant and fixed value of mass transfer resistance, it would be 

interesting to estimate the product temperature distribution during the primary drying step resulting 

only from the variability in vial geometry. 

Product temperature distributions were thus evaluated considering the contact area and curvature-

based 
y distributions. For this analysis, a 5 % w/w sucrose solution was considered, processed at -

25 °C and four different pressures (4, 6, 9 and 15 Pa). Relevant data concerning product resistance 

and glass transition temperature (-32 °C) were found in the literature (Konstantinidis et al., 2011). As 

expected, product temperature increased from 4 Pa to 15 Pa because of the higher value of the vial 

heat transfer coefficient and higher ice sublimation temperature.  
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Figure III.1.8.  Product temperature distributions obtained from the contact area and curvature-based 
distribution for a 5 % w/w sucrose solution processed at a shelf temperature of -25 °C and four chamber 
pressures: (a) 4 Pa, (b) 6 Pa, (c) 9 Pa and (d) 15 Pa. 
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The variability of the product temperature was estimated to be approximately 0.9 °C at 15 Pa and as 

large as 2.2 °C at 4 Pa, considering ± 3 times the standard deviation that includes 99 % of the vials 

(Figure III.1.8 ). A practical implication of these results is that, at the low pressures commonly 

encountered in vaccine freeze-drying, a temperature safety margin of approximately 2 °C has to be 

considered with respect to cycles designed on the basis of an average 
y  value and to vials not 

exposed to edge effect.  

Vials located at the periphery of the shelf (i.e.,, edge vials) receive additional heating due to the 

radiation from the chamber walls and the contact with the metallic guardrail. Thus, edge vials present 

a higher sublimation rate and a higher product temperature respect central vials (Pikal et al., 1984). 

Tang et al. (Tang et al., 2006b), reports that the temperature difference between edge vials and 

central vial can be up to 2 °C at a shelf temperature of 20 °C and up to 4 °C at -30 °C for a chamber 

pressure of about 10 Pa. Depending on the operating conditions of the process, the safety product 

temperature margin resulting from variability in vial dimensions could be in the same order of 

magnitude than the safety margin imposed by the "edge effect". 

 

CONCLUSIONS  

Implementation of the Quality by Design initiative require a precise definition of the acceptable 

range for all product and process parameters ensuring the fulfilment of the critical quality attributes 

of the final product. The impact of any variation of these parameters on the final quality need to be 

quantified in advance. In this work, the effect of the variability of geometrical dimensions observed 

within a batch of vials (i.e.,, contact area between the shelf and the vial and the mean bottom 

curvature depth) on product quality was explored. The product quality was evaluating by predicting 

the product temperature knowing the vial heat transfer coefficient 
y . An original approach was 

proposed to calculate 
y distribution based on geometrical dimensions when considering a batch of 

vials located in the center of the shelf not exposed to any edge effect. The impact of freeze-dryer 

configuration and operating conditions was also considered. When considering low pressure (< 10 

Pa), commonly used for freeze-drying biopharmaceuticals, the influence of freeze-dryer 

configuration and shelf temperature on heat transfer characteristics can be neglected and 
y 
distribution is completely explained by the contact area distribution. Furthermore the variability of 

vial dimension results in the definition of a product temperature safety margin of 2 °C. However, 

additional sources of variability need to be included in QbD approach. In particular, a study focused 

on the variability between edge and central vials and its role in cycle scale-up is presently ongoing. 
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III.1.3 Take-home message 

 

 

 

 

 

 

 

 

 

 

 

 

Differences in the geometry of the vials nearly explain the heat transfer variability in vials located in 

the centre of the shelf. However, vials located at the periphery of the shelf and exposed to other 

components of the drying chamber (e.g., walls, rail) receive a heat flow rate significantly higher than 

central vials. The mechanisms responsible for the differences in heat transfer between peripheral and 

central vials will be explored in the following paper.  

� The main result of this work showed that, for vaccine production typically 

carried at pressures lower than 10 Pa, the variability of the contact area 

between the shelf and the vials should be taken into account more than the 

bottom curvature depth in the selection of the vial as it strongly influences 

the heat transfer at low chamber pressure (< 30 Pa). Conversely, the 

variability of the bottom curvature depth becomes relevant only in cycles 

performed at higher chamber pressure (>30 Pa). 

� For pressure values typically used in pharmaceuticals freeze-drying (<10 

Pa), the variability of the contact area between the shelf and the vial and the 

depth of bottom curvature can lead to a product temperature safety margin 

of about 2 °C. 
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III.2 3D mathematical modelling to understand atypical 
heat transfer observed in vial freeze-drying 

 
The present study was published on the Volume 126 (November 2017) of  

the Applied Thermal Engineering journal 

 
 

III.2.1 Context and objectives  

It is know that the heat flow rates received by the vials during freeze-drying are sensitive to the 

position of the vials on the shelf, and may be also significantly different between one equipment and 

another. Vials located at the periphery of the shelf (named edge vials) usually receive a higher heat 

flow rate than central vials. This phenomenon, named edge vial effect, is classically ascribed in 

literature to the exposition of the edge vials to the additional radiations from the warmer chamber 

surfaces (e.g., chamber wall). Consequently, edge vials can present a higher product temperature than 

central vials due to the edge vial effect. If the process runs close to the critical product temperature, 

edge vials can collapse leading to differences in the final product quality within the vial batch and 

rejection of a part of the vials.  

Usually, characterization of the heat transfer variability between edge and central vials is performed 

through experimental evaluation of the vial heat transfer coefficient 
y in these two groups of vials. 

However, mathematical models of heat transfer during freeze drying can precisely predict the heat 

flow rates variability in vials differently located on the shelf with a significantly reduced 

experimental effort, and can help the understanding the mechanisms responsible for it. 

 

 

 

 

 

 

Objective 
The aim of this work was to develop a 3D, steady state mechanistic model using 

the modelling software COMSOL Multiphysics in order to (i) simulate the heat 

transfer phenomena during the sublimation step in vials located on the shelf more 

or less close to the chamber walls and thus (ii) to predict the relative importance 

of the different heat transfer mechanisms on the total heat transfer received by 

edge vials. 



 
RESULTS AND DISCUSSION                         III.2 3D mathematical modelling of heat transfer in freeze-drying                            

- 128 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 
RESULTS AND DISCUSSION                         III.2 3D mathematical modelling of heat transfer in freeze-drying                            

- 129 - 

 

III.2.2 Paper 

 
TITLE 

3D mathematical modelling to understand atypical heat transfer observed in vial freeze-drying 

 

AUTHORS 

B. Scutellà1,2, A. Plana-Fattori3, S. Passot1, E. Bourlès2, F. Fonseca1, D. Flick3, I.C. Trelea1  

 

AFFILIATIONS 
1 UMR GMPA, AgroParisTech, INRA, Université Paris Saclay, 78850 Thiverval-Grignon, France 
2 GSK Vaccines, Rixensart, Belgium 
3 UMR Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, 91300 Massy, 

France 

 

ABSTRACT 

In pharmaceutical freeze-drying, the position of the product container (vial) on the shelf of the 

equipment constitutes a major issue for the final product quality. Vials located at the shelf edges 

exhibit higher product temperature than vials located at the centre, which in turn often results in 

collapsed product. A physics-based model was developed to represent heat transfer phenomena and 

to study their variation with the distance from the periphery of the shelf. Radiation, conduction 

between solids, and conduction through low-pressure water vapour were considered. The modelling 

software package COMSOL Multiphysics was employed in representing these phenomena for a set 

of five vials located at the border of the shelf, close to the metallic guardrail. Model predictions of 

heat fluxes were validated against experimental measurements conducted over a broad range of shelf 

temperatures and chamber pressures representative for pharmaceutical freeze-drying. Conduction 

through low-pressure water vapour appeared as the dominant mechanism explaining the additional 

heat transfer to border vials compared to central ones. The developed model constitutes a powerful 

tool for studying heterogeneity in freeze-drying while reducing experimental costs. 

 

HIGHLIGHTS 

• A 3D mathematical model of heat transfer in freeze-drying is proposed. 

• The role of several heat transfer mechanisms is explored. 

• Knudsen effect is considered for conduction inside low-pressure water vapour. 

• Radiation heat transfer is evaluated using the surface-to-surface model. 



 
RESULTS AND DISCUSSION                         III.2 3D mathematical modelling of heat transfer in freeze-drying                            

- 130 - 

 

• Atypical heat transfer is explained mainly by gas conduction rather than radiation. 

 

KEYWORDS 

 Lyophilization, edge vial effect, radiation heat transfer, Knudsen conduction, low-pressure gas, 

vacuum heat transfer. 
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NOMENCLATURE 

A Area (�²) 
4 Emissivity  

� Visualization factor  

∆� Latent heat of sublimation (�	���	) 
��  Mass flow rate 	(��	��	) 

 Heat transfer coefficient (�	���
�	) 
�	 Thickness (�) 
� Mass of the vial (��) 
� Pressure (��) 
��  Heat flow rate (�	��	) 
5	 Heat flux (�	���	��	) 
& Temperature (°�) 
%	 Sublimation time (�) 

Greek symbols 

i Semi-empirical constant 

δ Average vial bottom concavity thickness (�) 
Ʌ+ Free molecular flow heat transfer coefficient (�	���	
�		���	) 
) Thermal conductivity (�	��		
�	) 
, Stefan-Boltzmann constant (�	���	
�-) 

Subscripts 

1,2 Body 1 and 2 

BS 

BV 

Bottom shelf 

Bottom vial 

c Heat transfer by conduction (general) 

C Chamber 

cc 

CV 

Heat transfer by contact conduction between solids 

Contact between the shelf and the vial 

G Glass 

i Interface 

I Ice 

IN, FIN Before and after sublimation 

Kn Knudsen  

r Heat transfer by radiation 
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R Rail 

S Shelf 

TS Top shelf 

V Vial 

W Wall 

w Water vapour 
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INTRODUCTION 

Freeze-drying is a drying process involving three successive steps: freezing of the aqueous solution, 

followed by primary drying to remove ice by sublimation and, finally, secondary drying to remove 

unfrozen or sorbed water (Jennings, 1999). Due to the very low temperatures involved, freeze-drying 

process is particularly suitable for preservation of a wide variety of heat-sensitive products such as 

high-value foods, cultured microorganisms, pharmaceuticals and nanoparticles (Ratti, 2001; 

Abdelwahed et al., 2006; Tang and Pikal, 2004; Fonseca et al., 2015). This work is focused on 

pharmaceutical products (e.g., vaccines, proteins, peptides), which are usually processed in small 

containers (vials) loaded on the shelf of the equipment. During the primary drying step, the total heat 

transfer towards the sublimation interface is mainly dependent on the operating variables (shelf 

temperature, chamber pressure, step duration), but also on the vial geometry and on the position of 

the vial on the shelf (Pikal et al., 1984; Rambhatla and Pikal, 2003; Pikal et al., 2016; Scutellà et al., 

2017a). Vials located at the periphery of the shelf (named edge vials) receive an additional heat flow 

and present a product temperature up to 4 °C higher compared to vials located in the centre of the 

shelf (named central vials) and surrounded only by other vials at the same conditions (Pikal et al., 

1984; Rambhatla and Pikal, 2003; Pikal et al., 2016; Tang et al., 2006b). This atypical heat transfer 

characteristic is usually known as "edge vial effect" (Rambhatla and Pikal, 2003). 

The "edge vial effect" represents a serious issue in process control because it causes variability in 

terms of heat flow and product temperature in the vial batch (Rambhatla and Pikal, 2003). If product 

temperature exceeds a critical value (e.g., glass transition temperature for amorphous products) the 

product will lose its porous structure and then will collapse (Pikal and Shah, 1990; Barresi et al., 

2009a; Johnson and Lewis, 2011; Overcashier et al., 1999; Passot et al., 2007). Due to the additional 

heat flow received and the higher product temperature, collapse can take place in vials located at the 

periphery of the shelf rather than in central vials. For this reason, the understanding of the 

mechanisms causing the heat flow variability with respect to the position of the vial on the shelf is a 

key point for a successful process design.  

Several mono- and multi-dimensional mathematical models of freeze-drying were developed in the 

past years (Pikal, 1985; Millman et al., 1985; Gan et al., 2005; Velardi and Barresi, 2008; Hottot et 

al., 2006; Brülls and Rasmuson, 2002; Zhai et al., 2005; Trelea et al., 2007; Liu et al., 2008; Sheehan 

and Liapis, 1998), but only few of them explore the sources of the atypical heat flow rate in edge 

vials. In most of the studies (Velardi and Barresi, 2008; Zhai et al., 2005; Hottot et al., 2006; 

Sheehan and Liapis, 1998), the heat transfer by radiation from the door and walls of the drying 

chamber was considered completely responsible for the higher product temperature observed in edge 

vials. However, Gan et al. (Gan et al., 2005), and Rambhatla et al. (Rambhatla and Pikal, 2003), 
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Figure III.2.1 . Arrangement of the vials on the shelf in the drying chamber: (A) real view of the 
chamber;  (B) position of the vials weighted in the gravimetric method. Marker "C" indicate vials in 
contact with the rail, "E" vials exposed but not in contact with the rail and "M" central vials. Black 
circles represent vials in which Tempris sensors where placed to monitor ice temperature.  
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showed that the presence of the metallic rail surrounding vials also contributes to the heat transfer by 

means of contact conduction and radiation. 

Due to the very low pressures used during the process, the conduction through the gas in freeze-

drying partly takes place under Knudsen regime and it is thus dependent on the chamber pressure. 

Recently, a study of Pikal et al. (Pikal et al., 2016), showed that the conduction through the low-

pressure water vapour contained in the gap between the metallic rail and the vial could play a 

relevant role in the additional heat transfer in edge vials.  

The main objective of this work was to develop a 3D mathematical model in order to (i) predict the 

heat flow received by the vials located at the border of the shelf under different operating conditions 

and (ii) assess the relative importance of the involved mechanisms in the heat transfer, with particular 

attention to the radiation heat transfer and conduction through the low-pressure water vapour present 

in the drying chamber. The COMSOL Multiphysics software was used to design a 3D mechanistic 

mathematical model of the heat transfer during the sublimation step of the freeze-drying process. The 

geometry was defined to represent a portion of the drying chamber, including metallic rail, shelves, 

wall and an array of five vials.  

The presence of the gas in the drying chamber was considered and an original approach was used to 

represent the heat transfer through the gas in Knudsen regime near solid surfaces. The model was 

then validated with experimental data obtained from sublimation tests performed in a pilot scale 

freeze dryer at two shelf temperatures (-40 °C and 0 °C) and four chamber pressures (4, 6, 9, 15 Pa) 

covering the usual range of conditions in pharmaceutical freeze-drying. Then, the contributions of the 

individual heat transfer mechanisms were quantified specifying the effect of chamber walls, rail and 

shelves. The developed model predicted in an accurate way the heat flow rates in edge and central 

vials and can be used for investigating different vials loading configurations and the impact of 

equipment design.  

 

MATERIALS AND METHODS  

 Materials 

The experimental determination of the sublimation heat flow rates was carried out on a pilot freeze-

dryer (LyoVac GT6 Finn-Aqua Santasalo-Sohlberg SPRL, Bruxelles, Belgium; Figure III.2.1A ). 

This equipment had 5 shelves with an area of 0.14 m² each. The distance between shelves was 62 

mm whereas the distance between shelf and wall was 55 mm. Measurements of the shelf, wall and 

rail emissivity were performed by Themacs Ingénierie (Champs sur Marne, France) using the 

emissometer EM-2 (Monchau et al., 2013). The measured values are reported in Table III.2.1. 
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Table III.2.1 : Relevant thermal properties and constants used in the model  

 

Property Symbol Value Reference 

Stefan-Boltzmann constant σ 5.7 10-8  
º

j²	»¼ 

(Perry et al. 

(eds.), 1997) 

Latent heat of ice sublimation �� 2.8 106  
½
¾! 

Thermal conductivity of the rail stainless steel )s 16.5 	 ºj	» 

Thermal conductivity of the vial glass )¿ 1.1 
º
j	» 

Thermal conductivity of the water vapour at 
atmospheric pressure 

)� 2.5 10-2  
º
j	» 

(Haynes et 

al. (eds.), 

2014) 

Thermal conductivity of the ice )� 2.2  
º
j	» 

(Fukusako, 

1990) 

Ice emissivity  À� 0.98 
(Heldman 

(ed.), 2010) 

Vial glass emissivity  À� 0.78 
(Scutellà et 

al., 2017a) 

Rail stainless steel emissivity  Às 	 0.14 

Measured in 
this study 

Shelf stainless steel emissivity ÀI 0.18 

Wall stainless steel emissivity Àº 0.13 

Temperature of the wall when 	
&F = 0	°� &º 

5.7 °C 

Temperature of the wall when 	
&F = −40	°� 

0.9 °C 
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Glass siliconized tubing vials (3 mL, Müller & Müller, Holzminden, Germany) filled with 1.8 mL of 

distilled water were used. A detailed dimensional analysis of vial geometry was performed on a batch 

of 120 vials by a specialized company Precis&Mans (Le Mans, France), using the micrometer 

Mitutoyo 3D (accuracy ± 0.003mm; Mitutoyo Europe GmbH, Neuss, Germany).  

The pressure in the freeze-dryer chamber was monitored and controlled by a capacitive manometer. 

A number of six temperature wireless sensors (Tempris IQ Mobil Solution GMbH, Holzkirchen, 

Germany) were positioned in the bottom centre of selected vials to record ice temperature during the 

experiments (Figure III.2.1B ). In some tests, the temperatures of the drying chamber wall was 

measured by sticking additional sensors by means of aluminium tape. The values of the wall 

temperatures measured for shelf temperatures of -40 °C and 0 °C are reported in Table III.2.1.  

 

 Sublimation heat flow evaluation  

The sublimation heat flow was experimentally determined by following the method previously 

described by Scutellà et al. (Scutellà et al., 2017a). A number of 540 vials in hexagonal arrangement 

were loaded on the middle shelf of the freeze-dryer pre-cooled at -50 °C using a bottomless tray. 

Vials were directly in contact with the shelf and surrounded by a stainless steel rail, as shown in 

Figure III.2.1 . After a freezing step of 2 hours, the pressure was decreased and the shelf temperature 

was increased at a rate of 1 °C/min to the set point. Six sublimation tests in total were carried out:  

four at the shelf temperature of 0 °C and chamber pressures of 4, 6, 9, 15 Pa and two at the shelf 

temperature of -40 °C and chamber pressures of 4 and 6 Pa. The cycle was allowed to run long 

enough to sublimate up to 20-25 % of the initial mass of water. Subliming a larger quantity of the ice 

may lead to loss of contact between the vial and the ice, introducing uncertainty in the analysis.  

The sublimation rates were measured gravimetrically. As reported by Pisano et al. (Pisano et al., 

2011), the vials located after the second row from the border of the shelf can be considered as 

equivalent to central vials.  

Thus, a number of 100 central vials (named M in Figure III.2.1B ) and 62 edge vials, among which 

38 were in contact (C vials in Figure III.2.1B ) and 24 were not in contact with the rail (E vials in 

Figure III.2.1B ), were weighed before and after the run using a PG503-S DeltaRange balance 

(accuracy ± 0.001g; Mettler Toledo, Zaventem, Belgium).  

After the sublimation tests, the mass flow rate	��  was calculated as: 

 

�� = jÁr�jÂÁr
�      Equation III.2.1 

 

where ��p  and �Ã�p  are the initial and final masses of the vial and %  is the sublimation time 

measured from the moment when shelf temperature exceeded the product temperature, meaning that  



 R
E

SU
L

T
S A

N
D

 D
ISC

U
SSIO

N
                         III.2 3D

 m
athem

atical m
odelling of heat transfer in freeze-drying                            

- 138
 - 

 

 

            

Figure III.2.2 : Three views of the built geometry with relevant dimensions (in mm): (A) global view of 
the vials, shelves, rail and wall; (B) zoom on the vials and rail system and classification of the vials; (C) 
detail of the vial and rail geometry.  
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there was a net heat flux from the shelf towards the vials. 

In freeze-drying, pseudo-stationary state can be assumed because of the slow dynamics of the process 

(Pikal, 2000; Pikal et al., 1984; Trelea et al., 2007; Pisano et al., 2011). Under this condition, the net 

heat flow rate ��  at the sublimation interface is directly proportional to the mass flow rate �� : 

�� = ∆�	��      Equation III.2.2 

 

∆� being the latent heat of sublimation (Table III.2.1). 

MATHEMATICAL MODEL 

 Geometry 

The 3D geometry, representing a portion of the drying chamber, was built in COMSOL Multiphysics 

(Figure III.2.2A). It included wall, rail, bottom and top shelves and five vials. The geometry was 

considered to be symmetric about the x-z plane. Figure III.2.2B focuses on the hexagonal 

arrangement of vials, which were placed in direct contact with the bottom shelf. The vials located at 

the border of the shelf were alternatively in contact (vial C) and not in contact (vial E) with the rail.  

The detailed vial and rail geometry is presented in Figure III.2.2C . All the vials were made of 

borosilicate glass and were filled with pure ice. The vial bottom was designed to have an area in 

contact with the shelf and a cylindrical concavity. The thickness of this concavity δ was considered 

equal to the mean bottom curvature depth calculated by Scutellà et al. (Scutellà et al., 2017a) (0.12 

mm).  

 

 Problem statement and boundary conditions 

In this model, heat transfer during pure ice sublimation was simulated. A flat ice-vapour interface 

and a constant ice thickness were defined. The drying chamber was considered to be completely 

saturated with vapour water during sublimation. The temperatures of several surfaces were imposed: 

(i) the top and bottom shelves temperature, imposed as operating condition; (b) the wall temperature, 

determined from experimental data; (c) the ice-vapour interface temperature &o, evaluated from the 

Clausius-Clapeyron relation (Trelea et al., 2007):  

 

&o 	= ¥	�¦.¥
�§.§¦	��¨©(Zq	)    Equation III.2.3 

 

where �o 	was taken equal to the chamber pressure since no mass transfer resistance between the ice-

vapour interface and the chamber was considered.   
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Figure III.2.3 : Schematic representation (not in scale) of the main heat transfer mechanisms, 
corresponding coefficients and relevant body temperatures in the analyzed system. Radiation 
mechanisms considered in the simplified model are shown. 
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During the process, several sources contribute simultaneously to the heat transfer toward the 

sublimation interface.  

The main heat transfer mechanisms and their characteristic coefficients are schematized in Figure 

III.2.3  and can be synthesized as follows: 

1. Conduction through the gas in the drying chamber. A fictitious layer was defined, named 

Knudsen layer, which covers all the solids (i.e., ice, vial glass, rail, wall, top and bottom 

shelves), represented as a violet bold line in Figure III.2.3 . The thickness of the Knudsen 

layer 	�»> was arbitrarily set to be equal to 1/4 of the vial glass thickness;  

2. Conduction between solids. Only the conductive exchanges which were expected to be the 

most relevant were considered, i.e., (i) the conduction between the bottom shelf and the vials 

(
��U) and (ii) the conduction between the bottom shelf and the rail (
���);  

3. Radiation. A number of radiation fluxes were taken into account, as shown in Figure III.2.3 : 

• from the top (�PI→�) and bottom shelves (�JI→�) to the vials;  

• from the top shelf to the rail (�PI→s); 
• from the chamber wall to the rail (�º→s) and to the parts of the vials which face the wall 

(�º→�); 

• between the rail and the vials (E and C) facing it (�s→�);  

• between the vial internal walls and the ice (��→�). 

 

Heat transfer by convection was not considered in the model. Even if a debate is ongoing in literature 

on the importance of convection during freeze-drying (Rambhatla and Pikal, 2003; Pikal et al., 2016; 

Ganguly et al., 2013), a recent work of Pikal et al. (Pikal et al., 2016), has shown that convection can 

be considered negligible at the low pressures typically encountered during the freeze-drying of 

pharmaceuticals (usually below 10 Pa).  

Under those hypotheses, modelling heat transfer in freeze-drying involved the simultaneous solution 

of conduction in solid, in gas and radiation heat transfer equations.  

 

Heat transfer by conduction  

The heat transfer by conduction occurring inside different materials (i.e., vial glass, ice, rail, gas) was 

described by the first Fourier law (Bird et al., 2002): 

 

5Å� 	= −)	∇&     Equation III.2.4 

 

5Å� being the heat flux, ∇& the temperature gradient and ) the thermal conductivity of the materials, 

reported in Table III.2.1 
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Figure III.2.4: Schematic representation of the heat transfer resistances in the gas, as given by Equation 
III.2.6 . 
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Thermal conductivity of the gas in the drying chamber 

Usually freeze-drying of pharmaceuticals is carried out at very low chamber pressure, in a range of 4 

to 10 Pa. Under this condition, the density of the gas is very low and the gas molecules collide more 

frequently with solid surfaces than among them at distances from the solid surface lower than the free 

molecular path (equal to about 0.6 mm at 10 Pa for water vapour) (Pikal, 2000). Thus, in typical 

ranges of freeze-drying operating variables (i.e., chamber pressure < 10 Pa and shelf temperature < 0 

°C), the heat transfer regime is classified as the free-molecular or Knudsen regime near solids 

surfaces (Pikal et al., 1984; Pikal, 2000; Brülls and Rasmuson, 2002; Dushman and Lafferty (eds.), 

1962). In the present model, the heat transfer under Knudsen regime was simulated by building a 

fictitious layer (named Knudsen layer) around all solids in contact with gas.  

According to previous works of Pikal et al. (Pikal, 2000; Pikal et al., 1984), the heat transfer by 

conduction through the water vapour during freeze-drying can be described as: 

 

5� = 
�	(&	 − &�)     Equation III.2.5 

 

where 5�  is the heat flux by conduction through the water vapour, &	 and &� are respectively the 

temperatures of the two solids between which the gas is contained and 
� is the global heat transfer 

coefficient by conduction through the water vapour.  

The global resistance to heat transfer through the gas (
	
»Ç), as described in the model and shown in 

Figure III.2.4 , can be defined as (Pikal, 2000; Pikal et al., 1984): 

  

	
»Ç =

CÇ
fÇ + 2 CÈÉ

fÈÉ    Equation III.2.6 

 

In Equation III.2.6 , ��  is the distance among the two solid surfaces between which the gas is 

contained, )� 	is the water vapour thermal conductivity, �»>	is the Knudsen layer thickness whereas 

)»> is the Knudsen layer conductivity. The resistance to the heat transfer in the Knudsen layers 

(2 CÈÉ
fÈÉ) was defined by Pikal et al. (Pikal, 2000; Pikal et al., 1984) as: 

 

2 CÈÉ
fÈÉ =

	
]ɅÊZ[	     Equation III.2.7 

 

where α is a semi-empirical constant related to the quality of energy exchange between the solid 

surface and the gas and usually estimated by regression from experimental data, ɅË  is the free 

molecular flow heat transfer coefficient and �X is the chamber pressure. 
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Table III.2.2: Relevant model parameters for heat transfer  

 

Parameter Symbol Value Reference 

Free molecular flow heat transfer 
coefficient 

Ʌ+ 1.99 
º

j²	»	Z� (Pikal, 2000) 

Semi-empirical constant 

(equal to C�/Ʌ+ in Scutellà et al. 

(Scutellà et al., 2017a)) 

i 0.34  Calculated 
from data 

presented in 
(Scutellà et 
al., 2017a) 

Heat transfer coefficient by conduction 

shelf-vial 

��U  25.80 

º
j²	» 

Heat transfer coefficient by conduction 

shelf-rail 

���  10 

º
j²	» 

Evaluated in 
this study 

Visualization factor wall-rail(a) �º→s 0.07 

Visualization factor wall-vial(a) �º→� 0.12 

Visualization factor rail-vial(a) �s→� 0.13 

Visualization factor shelf-vial(a) �PI→�,	�JI→� 0.17 

Visualization factor vial-ice(b) ��→� 0.98 
(a) Parallel surfaces case (calculated from Equation III.2.11) 
(b) Black body case (��→�= À�) 
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In the present work, the coefficient i was determined considering experimental data of sublimation 

tests presented by Scutellà et al. (Scutellà et al., 2017a) (where i = ��/Ʌ+, with �� equal to 0.67). 

The determined i	value and other relevant parameters for heat transfer modelling are reported in 

Table III.2.2 .  

Thus, the thermal conductivity of the Knudsen layer )»>	was estimated from Equation III.2.7  as 

follows: 

 

)»> = 2	iɅ+�X 	�»>	    Equation III.2.8 

 

Heat transfer by contact conduction between solid bodies 

The heat flux by contact conduction between two bodies in contact (e.g., vial-shelf or rail-shelf, 

Figure III.2.3 ) can be defined as (Pikal et al., 1984): 

 

5�� = 
��	(&	 − &�)     Equation III.2.9 

 

where 5�� is the heat flux from body 1 to body 2 transmitted by contact conduction, &	 and &� are 

respectively the temperatures of the two bodies and 
�� is the heat transfer coefficient by contact 

conduction, which depends on the quality of the contact. The heat transfer coefficient by contact 

conduction between the shelf and the vial (
��U ) was evaluated from the work of Scutellà et al. 

(Scutellà et al., 2017a): a coefficient 
� (equal to 3.67 �	���	
�	) was evaluated, with reference to 

the entire vial bottom area (�J�) . In order to obtain the heat transfer coefficient by contact 

conduction applicable to the contact area only (�X�) , 
��U  was considered equal to 
� veUv[U . In 

contrast, the heat transfer coefficient by contact conduction between shelf and rail (
��s ) was 

determined by fitting model predictions to the rail temperature measured in a separate experiment. 

The values of these coefficients are reported in Table III.2.2. 

 

Heat transfer by radiation 

In the considered low-pressure environment, heat transfer by radiation is expected to play a non 

negligible role (Rambhatla and Pikal, 2003; Pikal et al., 2016). In the present model, it was 

considered that the solid surfaces are opaque, that the radiation and the absorption occur in the same 

spectral range and that the absorption and radiation of the low pressure water vapour are negligible 

(Brülls and Rasmuson, 2002; Bird et al., 2002). Thus, the heat flux by radiation 5M 	can be described 

by the Stefan-Boltzmann equation (Pikal, 2000; Bird et al., 2002): 
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Table III.2.3: Heat flow rates at the ice sublimation interface in vials C, E, M for a chamber pressure of 4 Pa 
and a shelf temperature of 0 °C versus the number of mesh elements and the maximum element size evaluated 
for a radiation resolution of 64 streams.  
 

Number of 

mesh elements 

Maximum 

element size 

[m] 

Heat flow rates [W] 

Vial C Vial E Vial M 

189 628 0.0134 0.1219 0.09522 0.08105 

259 433 0.0107 
0.1222 0.09525 0.08108 

(-0.2 %) (-0.03 %) (-0.04 %) 
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5M = �	→�	,	(&	- − &�-)    Equation III.2.10 

 

where &	 and  &� are the absolute temperatures of the surfaces 1 and 2 respectively, , is the Stefan-

Boltzmann constant and	�	→� the visualization factor between the two surfaces under consideration.  

The surface-to-surface radiation model proposed by COMSOL was used to evaluate the radiation 

heat transfer by the hemicube method. This method takes into account the shadowing effect in the 

system, automatically calculating the view factors for all the bodies present in the geometry. The 

surface-to-surface model results in very accurate computation, including all the possible 

contributions to radiation heat transfer, even if it remains time-consuming. 

Furthermore, a simplified radiation model was developed. In this model, only the main radiation 

contributions were considered, as schematized in Figure III.2.3 . Each part of the rail and vial surface 

was assumed to exchange by radiation with one of the imposed temperature surfaces (wall, shelves, 

ice interface). The visualization factors were estimated as for parallel plates (Bird et al., 2002; Pikal, 

2000): 

 

�	→� = 	
S
TSQ

S
TY�	

    Equation III.2.11 

 

The internal walls of the vials were assumed to act as a black body. The radiation rays coming from 

the top shelf are eventually trapped by the internal vial walls after several reflections. Values of the 

visualisation factors used in the simplified radiation model are given in Table III.2.2. 

 

Numerical solution  

The developed model was solved by means of Comsol Multiphysics 5.2 (COMSOL, Inc, Burlington, 

USA). This commercial software was ran on a PC, equipped with Intel(R) Core(TM) i7-490 CPUs, at 

3.6 GHz, 64-bits, with 32 Gb of RAM, under Windows 10.  

Governing equations were solved under steady-state condition by applying the finite-element 

method. The solution of the large linear system resulting from the linearization of the coupled 

equations was reached with the help of the Multifrontal Massively Parallel Sparse Direct Solver 

(MUMPS) (Amestoy et al., 2001). The relative tolerance was set to 10-5. Numerical tests were based 

on non-structured meshing (tetrahedral elements).  
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Figure III.2.5:  Comparison of experimental and simulated heat flow rates for edge vial in contact (C) and not 
in contact (E) with the rail and for central vial (M). Several combinations of shelf temperatures (-40 °C and 
0 °C) and chamber pressures (4, 6, 9, 15 Pa) were tested. Error bars in experimental data represent standard 
deviations. 
 

 

Table III.2.4:  Relative mean error (RME) and the root mean square deviation (RMSD) for the surface-to-
surface and simplified radiation models considering the vials C, E, M. 
 

 RME % RMSD [W] 

 Surface-to-Surface 

model 

Simplified 

model 

Surface-to-Surface 

model 

Simplified model 

Vial C 11 11 0.014 0.016 

Vial E 9 7 0.007 0.008 

Vial M 4 11 0.003 0.009 
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RESULTS 

 Mesh and radiation resolution sensitivity analysis 

A sensitivity test was performed since the numerical solution of the problem depends on the 

resolution adopted in discretizing the equations.  

Regarding the mesh resolution used for discretizing the conduction equations, an increase of the 

number of elements by about 40 % resulted in a weak impact on heat fluxes with a difference of 

maximum 0.2 % (Table III.2.3) for the different vials (C, E, M). The increase of the angular 

discretization applied for radiation calculations (from 64 to 4096 streams) did not modify the 

predicted values of heat fluxes (0.002 %). COMSOL simulations were thus considered robust, and 

lower values of mesh elements (189,628) and radiation streams (64) were selected to reduce 

computation time.  

 

 Model validation 

The model was validated based on sublimation experiments carried out at four chamber pressures (4, 

6, 9 and 15 Pa) and two shelf temperatures (-40 °C and 0 °C) selected in the range typically used in 

freeze-drying of pharmaceuticals. 

Figure III.2.5  displays the comparison between the mean values of the experimental heat flow rates 

toward the ice-vapour interface and their standard deviations (38, 24 and 100 vials in configuration 

C, E and M, respectively) and the model predictions for all the combinations of shelf temperature and 

chamber pressure tested.  

The agreement between measurements and model predictions was satisfactory. Deviations were less 

than 21 % of the mean heat flow rate and close to the experimental coefficients of variation of each 

vial group. For the experiments performed at a shelf temperature of 0 °C and higher pressures (9 and 

15 Pa), the simulated heat flow rates of the vial C in contact with the rail appeared to be slightly 

overestimated with respect to the mean experimental value for both radiation models. Simulated and 

experimental heat flow rates of vial E not in contact with the rail showed a good agreement, as well 

as the simulated heat flow rates of the central vial, for all 6 combinations of applied operating 

conditions.  

These results were confirmed by the calculation of the relative mean error (RME) and the root mean 

square deviation (RMSD), presented Table III.2.4 .  

Simulated heat flow rates in vial C at high shelf temperature showed higher RME and RMSD values 

than vial E and M. However, the RME values remained below 11 % for both the surface-to-surface 

model and the simplified model. The quality of the models was also statistically assessed by the 

calculation of the coefficient of determination  #M@�� . 
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Figure III.2.6:  Predicted vs. observed heat flow rates for both surface-to-surface (A, B, C) and simplified 
radiation models (D, E, F). Square, circle and triangle markers represent respectively the edge vials C, E and 
the central vials M. The 1:1 dotted line represents perfect agreement between predicted and observed value. 
The values of the coefficient of determination ( #M@�� ) are reported on the figure. 
 
 

 
Figure III.2.7 : Temperature profiles and heat fluxes in the vial in contact (view A) and not in contact (view B) 
with the rail at a shelf temperature of 0 °C and a chamber pressure of 4 Pa. White rectangles indicate the lateral 
heat fluxes in edge vials C and E. Arrow length indicates flux magnitude on a logarithmic scale, to improve the 
visualisation of smaller fluxes from top, wall and rail.  
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Figure III.2.6  presents predicted versus observed net heat flow rates for edge vials in contact (Vial 

C) and not in contact (Vial E) with the rail and for central vials (Vial M), both for the surface-to-

surface (Figure III.2.5A , B and C) and simplified radiation models (Figure III.2.5  D, E and F). The 

distribution of the data around the 1:1 line and the value of  #M@��  close to 1 confirmed the goodness 

of the simulations.  

The surface-to-surface model presented higher   #M@��  values and appeared to better predict the heat 

flow rates in both edge and central vials than the simplified radiation model. However, the 

computational time was much longer for the surface-to-surface model (about 1 h, physical memory 

30 GB) than for the simplified model (about 5 min, physical memory 6 GB). These results confirm 

that the developed models represent well not only the usually considered heat transfer from the top 

and bottom shelves but also the border heat transfer from the wall and rail to the edge vials.  

Even if the results obtained from the two models were both accurate and comparable, it was decided 

to perform the further analysis using the surface-to-surface radiation model only. 

 

Temperature profile and heat fluxes distribution  

The developed 3D geometry allowed to visualize the temperature profile and the heat fluxes in the 

modelled system. An example is given in Figure III.2.7  for the set of operating conditions (0 °C and 

4 Pa and a wall temperature equal to 5.7 °C).  

The temperature profile is represented by colour scale, whereas the heat flux distribution is 

represented by arrows whose length is proportional to the logarithm of the flux magnitude, to 

enhance the visualisation of small fluxes.  

Two different views of the system, showing the vial in contact (A) and not in contact (B) with the 

rail, are presented. The vial located at the center of the shelf (vial M) is also represented in Figure 

III.2.7A . When considering the central vial M, product received heat fluxes from the bottom and the 

top shelves (upward and downward arrows). The temperature of the ice-vapour interface was equal to 

about -50.7 °C (Equation III.2.3 ). A small temperature difference was observed inside the product 

(e.g., about 1.5 °C difference between the ice bottom and the ice-vapour interface), which was in 

agreement with experimental results. In contrast, the temperature difference between the shelf and 

the vial bottom was close to 49 °C. Due to the concave shape of the bottom, only a small portion of 

the vial bottom area was directly in contact with the shelf, whereas some gas was entrapped in the 

concavity between the shelf and the vial. Hence, the heat transfer was limited by the presence of the 

Knudsen layer, which caused an important temperature gradient between the shelf and the vial 

bottom, especially at low pressure as in this case (4 Pa). The downward arrows coming from the top 

shelf represented heat fluxes by conduction through the gas present the drying chamber and by 

radiation from the top shelf. 
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Figure III.2.8:  Heat flow rate contributions and their relative importance (in %) of the single heat transfer 
mechanisms to the total heat transfer. Results are shown for edge vials in contact (C) and not in contact (E) 
with the rail and in central vial (M) at a shelf temperature of 0 °C and two different pressures (4 and 15 Pa). 
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The edge vials (C and E) received additional lateral heat fluxes (highlighted by white rectangles in 

Figure III.2.7 ) which resulted in an increase of the temperature of the vial lateral wall when 

increasing the proximity with the rail (-48 °C for central vial M, -47 °C for vial E and -46 °C for vial 

C in contact with the rail). These lateral heat fluxes involved conduction through the gas present in 

the chamber and radiation from the rail and the wall.  

Furthermore, the heat flux received by the rail exhibiting a temperature of -23 °C depends on the 

direct contact between the rail bottom and the shelf (upward arrows from the bottom shelf) but also 

on the exposure to the chamber wall (lateral arrows) from which heat was transmitted by radiation 

and gas conduction. 

 

Relative importance of individual heat transfer mechanisms 

As shown in Figure III.2.7 , vials located in different positions on the shelf receive different heat 

transfer contributions from the wall, the rail, the shelves and the gas surrounding the vials through 

several heat transfer mechanisms (i.e., radiation, contact conduction, conduction through the gas). 

Understanding of the role played by each element of the drying chamber in the heat transfer could 

help reducing the "edge vial effect". 

Thus, using the developed model, it was possible to evaluate the relative importance of four heat 

transfer contributions: (i) heat transfer from the bottom shelf by radiation, contact conduction and gas 

conduction (the latter related to the bottom concavity of the vial); (ii) heat transfer by conduction 

through the water vapour surrounding the vial (related to the top and the lateral side of the vial); (iii) 

heat transfer by radiation from the rail; (iv) heat transfer by radiation from the top shelf, the wall and 

the internal walls of the vial. Figure III.2.8  displays the heat flow rates as well as the relative 

importance of these different elements calculated for a value of shelf temperature of 0 °C and the two 

extreme pressures in the explored range.  

The heat flow rate from the bottom shelf was the same for all vials at a given pressure, but its relative 

importance in the total heat flow rate was higher in central vials than in edge vials. For example, at 4 

Pa the relative importance of the heat transfer from the bottom shelf was about 54 % for the central 

vial M but it decreases until about 47 % for the edge vial E and about 36 % for the edge vial C. 

Furthermore, the heat flow rate from the bottom shelf increased at higher pressure by about 70 %, 

because the heat transfer by conduction through the gas entrapped in the vial bottom curvature is a 

pressure dependent mechanism.  

The conduction through the gas surrounding the vial appeared as a significant phenomenon and 

became the most important contribution to the heat transfer for the vials located at the border of the 

shelf. The edge vial C was particularly affected by the gas conduction, which contributes to the 50 % 

of the total heat flow rate, due to the proximity to the rail. 
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The heat transfer by radiation from the rail, the wall and the top shelf had a relatively minor 

contribution to the total heat flow rate: from 5.6 % to 14.3 %. The most important role was played by 

radiation from rail in vial C (about 10 % at low pressure) and followed by vial E (about 6 %). This 

result is original, as the mainstream of the literature more or less implicitly ascribed the edge vial 

effect to radiation. The limited role of radiation is supported by some previous studies (Rambhatla 

and Pikal, 2003; Gan et al., 2005), who found that the heat transfer difference between edge and 

central vials is not eliminated by the presence of a shielding rail. 

 

CONCLUSIONS 

The tri-dimensional, steady state mathematical model developed in this work successfully predicted 

the atypical heat transfer affecting the vials located at the periphery of the shelf in the freeze-drying 

process. The numerical solution of the model was validated with experimental results obtained in 

conditions relevant for pharmaceutical applications. The model made it possible to investigate the 

relative heat transfer contributions of the elements present in the drying chamber, i.e., wall, shelves 

and rail. In the range of operating conditions considered, the atypical heat transfer was mainly 

ascribed to gas conduction rather than radiation, as often stated in the literature. Furthermore, the 

radiation from the rail counts more than the radiation from the wall in the present configuration 

(height of the rail close to that of the vials). The use of rails made of a low emissivity and 

conductivity material could help in reducing the edge vial effect.  

The developed model can be used to predict the heat flow rates in edge and central vials for different 

loading configurations and equipment characteristics, providing useful information for the freeze-

drying cycle design and scale-up. 

 
  



 
RESULTS AND DISCUSSION                         III.2 3D mathematical modelling of heat transfer in freeze-drying                            

- 155 - 

 

ACKNOWLEDGMENTS 

The authors would like to thank Benoit Moreau and Yves Mayeresse (GSK Vaccines) for reviewing 

this manuscript, Vincent Ronsse (technician) and Alain Philippart (operator) (GSK Vaccines) for 

their help in the data acquisition, and Victor Rousseau and Gwenael Davaud (AgroParisTech) for 

their help in developing the model. 

 

CONFLICT OF INTEREST 

Erwan Bourlès is an employee of the GSK group of companies. Bernadette Scutellà participated in a 

postgraduate Ph.D. program at GSK Vaccines. Stephanie Passot, Fernanda Fonseca, Artemio Plana-

Fattori, Denis Flick and Ioan Cristian Trelea report no financial conflicts of interest. 

FUNDING 

This work was funded by GlaxoSmithKline Biologicals S.A., under a Cooperative Research and 

Development Agreement with INRA (Institut National de la Recherche Agronomique) via the 

intermediary of the UMR (Unité Mixte de Recherche) GMPA (Génie et Microbiologie des Procédés 

Alimentaires) at the INRA Versailles-Grignon research centre. 

AUTHORS CONTRIBUTIONS 

All authors were involved in the conception of the model and design of the study. Bernadette Scutellà 

and Erwan Bourlès acquired the data. Bernadette Scutellà, Stephanie Passot, Erwan Bourlès, 

Fernanda Fonseca and Ioan Cristian Trelea analyzed and interpreted the experimental results. 

Bernadette Scutellà, Artemio Plana-Fattori, Denis Flick, and Ioan Cristian Trelea were involved in 

the model development. All authors were involved in drafting the manuscript or revising it critically 

for important intellectual content. All authors had full access to the data and approved the manuscript 

before it was submitted by the corresponding author. 

 
 
 
 
 
 
 
 
 
 
 
 



 
RESULTS AND DISCUSSION                         III.2 3D mathematical modelling of heat transfer in freeze-drying                            

- 156 - 

 

III.2.3 Take-home message 

 

 

 

 

 

 

 

 

 

 

 

 

In the presented work, model prediction of heat flow rates in edge and central vials were shown 

considering only a single pilot freeze-dryer and one vial loading configuration. In the following paper, 

our 3D model of heat transfer in freeze-drying will be used to explore the impact of the freeze-dryer 

design on the heat transfer variability during the process.  

 

 

 

 

 

 

 

� A 3D, steady state mathematical model of heat transfer in freeze-drying was 

developed to precisely predict the heat flow rates in vials differently located 

on the shelf. The goodness of the model was confirmed by comparing 

experimental and simulated heat flow rates in edge and central vials in a 

broad range of shelf temperatures and chamber pressures. 

� The conduction through the water vapour was found to be the major 

responsible for the atypical heat transfer observed in vials located closer to 

the freeze-dryer walls. In contrast to what is usually claimed in literature, 

heat transfer by radiation from the rail and the walls have only a limited 

contribution on the total heat flow rate in edge vials in the configuration 

tested, i.e., vials partially shielded by the rail. 
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III.3 Effect of freeze-dryer design on heat transfer 

variability investigated using a 3D mathematical 
model 

 
The present study was submitted to  

the Journal of Pharmaceutical Science. 

 
 

III.3.1 Context and objectives 

The use of the 3D mathematical model of heat transfer in freeze-drying previously developed in 

Paper III.2  allowed to identify two main mechanisms responsible for the heat transfer variability 

between edge and central vials:  (i) the conduction through the gas present in the drying chamber and 

(ii) the radiations from the rail and the walls. However, these heat transfer contributions can be 

strongly influenced by the vial loading configuration used and by the thermal characteristics and the 

dimensions of the drying chamber components (e.g., walls, shelves). As these features may change 

from one freeze-dryer to another, prediction of their impact on the heat transfer phenomena during 

the process is paramount importance for a successful cycle transfer or scale-up. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Objective 
Our 3D mathematical model was used in the present study to investigate the 

importance of several design elements of the equipment on the inter-vial heat 

transfer variability, such as the vial loading configuration, the thermal 

characteristics of the rail, the wall and shelf emissivity and the distance between 

the shelves and between the shelf and the wall. 
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ABSTRACT 

During the freeze-drying process, vials located at the border of the shelf usually present 

higher heat flow rates that, in turn, result in higher product temperatures than vials in the 

center. This phenomenon, referred to as edge vial effect, can lead to product quality 

variability within the same batch of vials and between batches at different scales. Our 

objective was to investigate the effect of various freeze-dryer design features on heat transfer 

variability. A 3D mathematical model previously developed in COMSOL Multiphysics and 

experimentally validated was used to simulate the heat transfer of a set of vials located at the 

edge and in the center of the shelf. The design features considered included the loading 

configurations of the vials, the thermal characteristics of the rail, the walls and the shelves, 

and some relevant dimensions of the drying chamber geometry. The presence of the rail in 

the loading configuration and the value of the shelf emissivity strongly impacted the heat 

flow rates received by the vials. Conversely, the heat transfer was not significantly 

influenced by modifications of the thermal conductivity of the rail, the emissivity of the 

walls or by the geometry of the drying chamber. The model developed turned out to be a 

powerful tool to predict the heat transfer variability between edge and central vials for cycle 
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development and scale-up and to compare various freeze-dryer design features. 
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Freeze drying/lyophilisation, vaccines, injectables, amorphous, mathematical model, processing. 
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INTRODUCTION 

The freeze-drying process is widely used today in the pharmaceutical industry as an essential step for 

extending the product shelf life of several parenteral drugs and biologicals. Due to the combined use 

of vacuum and low temperatures, this process is recognized to be a gentle method to convert 

solutions of heat labile drugs, such as vaccines, into solid forms with sufficient stability for shipping 

and long-term storage (Hansen et al., 2015; Pikal, 1994). 

The objective of designing a freeze-drying cycle is to guarantee a high and consistent product quality 

within the vial batch and from different batches that could be manufactured in various freeze-dryers 

(Patel et al., 2010b; Tchessalov et al., 2007; Kremer et al., 2009; Fissore and Barresi, 2011). Since 

the product quality is known to be highly correlated to the product temperature, the product thermal 

history should be as similar as possible between vials and between cycles run at pilot and commercial 

scales (Tchessalov et al., 2007).  However, product temperature profile depends not only on the 

process operating conditions (i.e., chamber pressure and shelf temperature) but also on the position-

dependent heat transfer (Rambhatla and Pikal, 2003; Pikal et al., 2016; Pisano et al., 2011). Vials on 

the shelf may be approximately divided into two groups: vials located at the periphery of the shelf 

(referred to as "edge vials") and vials located in the center (referred to as "central vials"). Edge vials 

usually receive an additional heat flow rate and present a product temperature higher than central 

vials of up to 4 °C (Rambhatla and Pikal, 2003; Pikal et al., 2016; Pisano et al., 2011; Tang et al., 

2006b). This heat transfer variability, known as the "edge vial effect", could be a serious problem in 

process design if not accurately predicted, since edge vials are likely to collapse if the product is 

processed at a temperature close to the limit (e.g., glass transition temperature for amorphous 

products) (Rambhatla and Pikal, 2003). Furthermore, differences in heat transfer may exist among 

the edge vials. In this regard, Pisano et al. (Pisano et al., 2013, 2011) proposed an effective sub-

classification of the edge vials according to their positions on the shelf (e.g., vial located at the corner 

or at the sides of the shelf ) and also to the heat transfer mechanisms involved (i.e., radiation from the 

walls, contact conduction from the rail, contact conduction from hotter vials). Such classification was 

used for the characterization of the inter-vial heat transfer variability within the same batch, which 

was performed by determining gravimetrically the vial heat transfer coefficient 
� for each group of 

vials at different pressures (Pisano et al., 2011). No relationship has been reported between the 
� 

value for central vials and the freeze-dryer unit (Pisano et al., 2011; Scutellà et al., 2017a). In 

contrast, the 
� values for the edge vial groups should be separately evaluated in every freeze-dryer 

used, as they could depend on the characteristics of the freeze-dryer and on the loading configuration, 

e.g., presence or not of the rail. This evaluation may require considerable experimental investment in 

terms of time and costs (Fissore and Barresi, 2011; Pikal et al., 2016; Pisano et al., 2011). 

 



 
RESULTS AND DISCUSSION                                III.3 Effect of freeze-dryer design on heat transfer variability  

- 164 - 

 

 

 

 

 

 

 

Figure III.3.1 : Vial arrangement used for experimental validation in the freeze-dryer. Edge vials 
C and E are respectively in contact and not in contact with the rail and located at the periphery of 
the shelf; edge vials B and D are respectively in contact and not in contact with the rail and located 
in the middle of the shelf; vials M are located in the centre of the shelf and surrounded by other 
vials in the same conditions. Black circles represent the vials in which Tempris probes were placed 
to monitor the product temperature. 
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Mathematical models of heat transfer during freeze-drying can be used to predict heat flow rates in 

vials differently located on the shelf and to investigate the mechanisms responsible for the heat 

transfer variability between edge and central vials. However, only few models or algorithms have 

been presently proposed to predict the heat transfer in edge vials processed with different loading 

configurations or in different dryers (Gan et al., 2005; Pikal et al., 2016; Scutellà et al., 2017b). 

Recently, we have developed a 3D mechanistic model of the heat transfer in the drying chamber 

during sublimation by using the COMSOL software (Scutellà et al., 2017b). It allowed to precisely 

simulate the radiation heat transfer from the drying chamber components (walls, shelves, rail) as well 

as the conduction through the gas surrounding the vials. As the logical continuation of our previous 

work (Scutellà et al., 2017b), the present article is devoted to the assessment of selected factors that 

drive heat transfer inside a freeze-dryer unit, including the vial loading configuration, the geometry 

and the thermal properties of the freeze-dryer chamber. 

 

MATHEMATICAL MODEL 

The freeze-drying process can be carried out using several vial loading configurations, in which the 

vials may receive different heat flow rates depending on the heat transfer mechanisms involved. As 

an example, Figure III.3.1  illustrates a typical scenario, in which two vial batches are loaded on the 

shelf using two bottomless trays. Three main groups of vials can be identified: (i) vials located at the 

periphery of the shelf and exposed to the wall and the rail (marked in light colours respectively as C 

and E in Figure III.3.1 ), (ii) vials located in the middle of the shelf and exposed to the rail (marked 

in dark colours respectively as B and D in Figure III.3.1 ) or (iii) vials located in the centre of the 

tray and surrounded by other vials in the same conditions (vials M). The 3D mathematical model of 

vial freeze-drying fully described by Scutellà et al. (Scutellà et al., 2017b) was used to predict the 

heat flow rates received by the vials in different configurations. The model describes the heat transfer 

phenomena that take place during sublimation in the drying chamber for a set of 5 representative 

vials. It was developed using the software COMSOL Multiphysics, which is able to precisely 

compute the radiation, contact and gas conduction heat flow rates in the considered system. The 

reference configuration is shown in Figure III.3.2A . It included the drying chamber wall, bottom and 

top shelves, rail and five vials arranged in a hexagonal configuration. Edge vials were placed 

alternatively in contact (vial C) and not in contact with the rail (vial E). The vial placed after the 

second row from the border of the shelf was considered to be a central vial (vial M). The rail in the 

reference configuration was designed to partially shield the edge vials C and E. The vial bottom was 

designed to have an area directly in contact with the shelf and a cylindrical concavity. All the vials 

were filled with 1 cm of ice.  

The main heat transfer mechanisms considered in the model were: 
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Figure III.3.2 : Loading configurations studied in this work and typically used in freeze-drying process: (A) 
edge vials "partially shielded by the rail", named PS; (B) vials "partially exposed to the rail and located in the 
middle of the shelf", named PS'; (C) edge vials "totally shielded by the rail", named TS; (D) edge vials "totally 
exposed to the wall", named TE. In function of their positions, the vials are classified as edge vial C and E or B 
and D and central vial M.   
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(a) Contact conduction. The contact conduction between the shelf and the vials and the shelf and the 

rail was simulated; 

(b) Conduction through the gas. The conduction through the low-pressure water vapour entrapped in 

the vial bottom concavity and surrounding the vial in the drying chamber was taken into account in 

the model; 

(c) Radiation. The surface-to-surface radiation model proposed by COMSOL was used to simulate 

the radiation heat transfer inside the system. This method automatically includes all the possible 

contributions to radiation heat transfer in the drying chamber and calculates the view factors for all 

the bodies present in the geometry, resulting in very accurate computation. 

Four different vial loading configurations were studied in this work: 

-Edge vials "partially shielded by the rail" (PS): This configuration was originally described by 

Scutellà et al. (Scutellà et al., 2017b), and is shown in Figure III.3.2A . Vials are arranged on a tray 

surrounded by a metallic rail (known as "bottomless tray") and loaded on the freeze-dryer shelf. 

Then, the bottom of each tray is removed but the metallic rail remains. If the height of the rail is 

lower than the total height of the vial, edge vials C and E are partially exposed to the chamber wall. 

In the simulated configuration, the height of the rail was 2.2 cm whereas the height of the vial was 3 

cm. Thus, the rail shielded approximately 70 % of the vial height (Figure III.3.2A ); 

- Vials "partially exposed to the rail and located in the middle of the shelf" (PS'): Depending on the 

dimension of the shelf, several "bottomless trays" may be loaded on the same shelf of a freeze-dryer. 

In this case, one of the rail sides is not exposed to the wall, but to the rail of another tray, as shown in 

Figure III.3.2B . In the present configuration, vials B and D represent vials partially exposed to the 

rail and placed alternatively in contact (vial B) and not in contact with the rail (vial D); 

-Edge vials "totally shielded by the rail" (TS): In the "bottomless tray" configuration, if the height of 

the rail is equal to the height of the vials, only the rail is directly exposed to the chamber wall, as 

shown in Figure III.3.2C ; 

-Edge vials "totally exposed to the wall" (TE): In manufacturing freeze-dryers, auto-loading systems 

of vials are often used. Here, the vials are loaded directly on the shelves, without the aid of any tray 

or rail, as represented in Figure III.3.2D . In this configuration, the lateral walls of the edge vials (C 

and E) are completely exposed to the heat transfer from the wall. 

 

EXPERIMENTAL   

An experimental procedure similar to the one proposed by Scutellà et al. (Scutellà et al., 2017b), was 

used to validate the simulated results of the PS and PS' configurations. Sublimations tests were 

carried out in the pilot freeze-dryer Epsilon 2-25D (Martin Christ Gefriertrocknungsanlagen GmbH, 

Osterode am Harz, Germany). 
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Table III.3.1:  Thermal properties and relevant dimensions of the freeze-dryer used 
 

Characteristic Value 

Number of shelves 7 

Area of each shelf 0.27 m² 

Distance between shelves 0.06 m 

Distance between  

the wall and the shelf 
0.11 m 

Thermal conductivity of the rail 16.5 W m-1 K-1 

Emissivity of the walls and the rail 0.13a 

Emissivity of the shelf 0.18b 

Emissivity of the vial glass 0.78b 

a Evaluated in this study 
b Scutellà et al. (Scutellà et al., 2017a)  
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Relevant geometrical dimensions and thermal properties of the freeze-dryer are reported in Table 

III.3.1 . The pressure in the drying chamber was monitored by a capacitive manometer, whereas the 

product temperature was monitored using six Tempris wireless sensors (IQ Mobil Solution GMbH, 

Holzkirchen, Germany), placed in the bottom centre of selected vials (Figure III.3.1 ).  

A number of 1076 glass siliconized tubing vials of 3 mL (Müller & Müller, Holzminden, Germany) 

were arranged in two bottomless trays and surrounded by a stainless steel rail shielding 70 % of the 

vial lateral walls, as shown in Figure III.3.1 . Vials were filled with 1.8 mL of distilled water, and 

loaded on the middle shelf of the freeze-dryer. The bottom metallic trays were removed, to allow the 

direct contact of the vials bottom with the shelf. After loading, a freezing step of 2 h at -50 °C was 

performed. Then, the pressure was decreased and the shelf temperature was increased by 1 °C min-1 

to the set point, starting the sublimation step. 

Two sublimation experiments were carried out at 4 Pa with a shelf fluid inlet temperature of 0 °C and 

-40 °C. The tests were ended after sublimation of about 20 % of the ice.  

Sublimation time was measured from the moment when shelf temperature exceeded product 

temperature, meaning that there was a net heat flow rate from the shelf towards the vials (Scutellà et 

al., 2017b). 

Sublimation rates were measured gravimetrically. A number of 226 vials, located as shown in Figure 

III.3.1 , were weighed before and after the runs using a PG503-S DeltaRange balance (accuracy 

±0.001 g; Mettler Toledo, Zaventem, Belgium). The heat flow rates �� 	were calculated as: 

 

�� = jÁr�jÂÁr
� ��    Equation III.3.1 

 

where ��p and �Ã�p are the masses of the vial respectively before and after sublimation, % is the 

sublimation time and �� is the latent heat of sublimation. 

RESULTS AND DISCUSSION  

 Effect of the rail position on the shelf on heat flow rate received by the 

 vials: comparison between PS and PS' configurations  

In a manufacturing environment, several bottomless trays may be placed on the same shelf of the 

freeze dryer (Figure III.3.1 ). Thus, vials located either at the edge or in the middle of the shelf are 

exposed to the rail as shown in the PS and PS' configurations, respectively. The effect of the rail in 

the PS and PS' vial loading configurations was assessed both by predicting the heat flow rates in edge 

(vials C, E, B and D) and central vials (vials M) using the COMSOL model and by performing 

sublimation tests in the freeze-dryer at a chamber pressure of 4 Pa and two shelf temperatures of 0 °C 

and -40 °C. Comparison of experimental data and simulations is shown in Figure III.3.3 .  
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Figure III.3.3 : Experimental (red bars) and simulated (white bars) heat flow rates in vials C, E, B, D and 
M in the PS configuration (Figures A and C) and in the PS' configuration (Figures B and D) at a chamber 
pressure of 4 Pa and two shelf temperatures of 0 °C and -40 °C. Error bars represent experimental standard 
deviations. PS: edge vials partially shielded by the rail; PS': vials partially exposed to the rail and located 
in the middle of the shelf. Significance of the abbreviations of vials C, E, B, D and M is reported in Figure 
III.3.1 . 

 

Figure III.3.4 : Heat flow rates received by edge vials C and E or B and D (Qedge) relative to the heat flow 
rate received by central vial M (Qcentre), evaluated for the four different loading configurations studied (TE, 
PS, TS, PS') and for two combinations of shelf temperature and chamber pressure: (A) 0 °C and 4 Pa, (B) -
40 °C and 4 Pa. TE: edge vials totally exposed to the wall; PS: edge vials partially shielded by the rail; TS: 
edge vials totally shielded by the rail; PS': vials partially exposed to the rail and located in the middle of 
the shelf. Significance of the abbreviations of vials C, E, B, D and M is reported in Figure III.3.1 . 
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The model satisfactorily predicted the experimental heat flow rates received by vials C, E, B, D and 

M in the PS configuration and in the PS' configuration, for all the operating conditions applied 

(relative mean error of about 13 % in both configurations). 

However, the predicted heat flow rates (white bars) of the vials in contact with the rail (vials C and 

B) appeared to be slightly higher at high shelf temperature (0 °C) than the mean experimental value 

(red bars). Possible hypotheses on the origins of these differences include the following: (i) an 

experimental value of the wall temperature different than the one estimated by Scutellà et al. 

(Scutellà et al., 2017b) and used in the model (Table III.3.1), which could impact on the estimation 

of the radiation and gas conduction in the drying chamber in the PS configuration, and (ii) a different 

position of the vial C and B on the shelf during the experiments respect the simulated ones (e.g., 

bigger distance between the rail and the vial), which may impact on the evaluation of the radiation 

and gas conduction between the rail and the vial in the PS and PS' configurations. 

When considering shelf temperature of 0 °C (Figure III.3.3A and III.3.3B ), the vials located at the 

vicinity of the rail, in contact (vials C and B) and not in contact (vials E and D) exhibited similar 

values of heat flow rate, regardless of the position of the rail on the shelf. When decreasing shelf 

temperature at -40 °C (Figure III.3.3C and III.3.3D ), lower values of heat flow rates were observed 

for vials in the PS' configuration than for vials in the PS configuration, in particular for the vials in 

direct contact with the rail (vials B and C). The rail appeared thus to have a significant effect in heat 

transfer in vials located close to it, regardless of the position of the rail on the shelf. However, the 

effect of the position of the rail is dependent on process conditions, in particular on the shelf 

temperature.  

Vials located at the middle of the shelf and in the vicinity of rail (vials B and D) could thus be 

considered as edge vials and the prediction of their heat flow rates appears as extremely valuable for 

cycle transfer between freeze-dryers of different size.  

 Effect of the vial loading configuration on the edge vial effect 

Figure III.3.4  presents the relative importance of the heat flow rate received by edge vials compared 

to the heat flow rate received by central vials (vial M) (expressed as the heat flow rate ratio �@�!@/
��@>�M@). Four different vial loading configurations were investigated: edge vials partially shielded 

by the rail (PS), vials partially exposed to the rail and located in the middle of the shelf (PS'), edge 

vials totally shielded by the rail (TS) and vials totally exposed to the wall (TE). The simulations were 

run at chamber pressure of 4 Pa and two shelf temperatures, 0 °C and -40 °C.  

Regardless of the loading configuration, vials in contact with the rail (vial C or B) exhibited a heat 

flow rate at least 30 % higher than central vials M. In contrast, the additional heat flow rate received 

by vials not in contact with the rail (vial E or D) compared to central vial M was lower than 10 %. 
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Figure III.3.5 : Relative importance of various heat transfer mechanisms with respect to the total heat flow 
rate in four different loading configurations (TE, PS, TS) and at a chamber pressure of 4 Pa and a shelf 
temperature of -40 °C. TE: edge vials totally exposed to the wall; PS: edge vials partially shielded by the 
rail; TS: edge vials totally shielded by the rail. Significance of the abbreviations of vials C, E, B, D and M 
is reported in Figure III.3.1 . 
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Furthermore, when considering shelf temperature of 0 °C (Figure III.3.4A ), the vial loading 

configuration did not show a significant impact on the heat transfer ratio between edge and central 

vials (about 35 %), slightly higher (about 40 %) for the TE configuration. The influence of the 

loading configuration was more visible at low shelf temperatures (-40 °C, Figure III.3.4B ). As the 

height of the rail increased (between TE, PS and TS configurations) the heat transfer ratio between 

edge vial C in contact with the rail and central vial M decreased. 

Furthermore, when decreasing shelf temperature, the value of the heat flow rate ratio �@�!@/��@>�M@ 
increased in vial C for vial loading configurations including wall (TE, PS and TS), which was 

ascribed to an increased contribution of heat transfer by radiation (e.g., from 10 % at 0 °C to 20 % at 

-40 °C in configuration TE).  

The vial B in PS' configuration showed the lowest value of heat flow rate ratio, as it was located in 

the middle of the shelf and thus it was not exposed to the radiation contribution from the wall. In 

order to better understand the effect of both vial position and loading configuration, the contributions 

to heat transfer of the shelves, the rail and the wall were evaluated. Figure III.3.5  shows the relative 

importance of heat flow contributions of (i) heat transfer from the bottom shelf to the vial, including 

contact conduction, radiation, and gas conduction, (ii) conduction through the gas surrounding the 

sides and top of the vials, (iii) radiation from the rail and (iv) radiation from the top shelf, the 

chamber wall and other vial walls, in the four different configurations (TE, PS, TS, PS'). 

As expected, the heat flow rates from the bottom shelf played a major role on the total heat transfer 

and its relative importance decreased when distance between the vial and the rail decreased (from 

vial M to vial C). Conversely, the contribution of gas conduction increased when getting closer to the 

rail and was higher than radiation in all configurations. This finding confirmed the results of Scutellà 

et al. (Scutellà et al., 2017b), that ascribed the additional heat flow rate received by edge vials mainly 

to the conduction through the water vapour contained in the drying chamber.   

Furthermore, when considering the edge vials C and E, the use of shielding rails in the PS and TS 

configurations led to a lower contribution of radiation from the wall (represented in black in Figure 

III.3.5 ) with respect to the TE configuration. The rail contributed itself to the total heat flow rates by 

radiation heat transfer (represented in white in Figure III.3.5 ), which appeared to be significant 

especially for the edge vial C. However, total contribution of heat transfer by radiation including the 

rail, the wall, the shelves and the vial walls received by edge vials was significantly reduced when a 

shielding rail was used (PS and TS configuration compared to TE configuration).  

When considering the central vial M, the use of the rail slightly decreased the importance of the 

radiation heat flow from the top shelf, the walls and the vial walls. This effect was probably due to 

the proximity of the simulated central vial M (located in the third row of the array) to the rail and the  
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Figure III.3.6 : Heat flow rate received by edge vials C or E (Qedge) relative to the heat flow rate received by 
central vial M (Qcentre), evaluated in the TS configuration at (A) 0 °C and 4 Pa and (B) -40 °C and 4 Pa 
considering four different rail thermal conductivities. &M represents the temperature of the rail evaluated for 
each value of thermal conductivity tested. TS: edge vials totally shielded by the rail. Significance of the 
abbreviations of vials C, E and M is reported in Figure III.3.1 .  
 

Figure III.3.7: Temperature profiles and heat fluxes in the TS configuration at a shelf temperature of 0 °C and 
a chamber pressure of 4 Pa for a rail thermal conductivity of 16.5 W m-1 K-1 and emissivity of 0.13. The view 
shows the gap between the rail, the bottom shelf and the edge vials (only vial E visible). Arrow dimension 
indicates heat flux magnitude on a logarithmic scale. The white rectangle and the inset to the figure indicates 
the lateral heat fluxes from bottom shelf to edge vials. TS: edge vials totally shielded by the rail. Vial E: edge 
vial not in contact with the rail. 
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edge of the shelf. In real systems, heat transfer in central vials located far from the rail should be 

almost unaffected by the rail.  

 

 Effect of the rail thermal conductivity and emissivity on the edge vial effect 

As shown in Figure III.3.5 , the presence of the rail in the vial loading configuration allows to shield 

the edge vials from the radiation of the chamber wall, but it still has a significant impact on the edge 

vial effect through radiation and gas conduction. Thus, the understanding of the effect of the thermal 

characteristics (i.e., emissivity and thermal conductivity) of the rail on the heat transfer in edge vials 

can guide the choice of the rail material and thus the design of the freeze-drying cycle.    

Firstly, the impact of the rail emissivity on the heat transfer in edge vials was tested at a chamber 

pressure of 4 Pa in the TS configuration (totally shielded by the rail) by considering two shelf 

temperatures, 0 °C and -40 °C and a range of emissivity between 0.05 and 1. The variation of the 

emissivity of the rail did not modify the additional heat flow rates received by either the vial C or E 

(data not shown). This result is supported by the limited contribution of the radiation heat flow rates 

from the rail received by the edge vials (between 2 and 10 %, Figure III.3.5 ). 

Then, the relative importance of the heat flow rate in vial C and E compared to the one received by 

the central vial M in the TS configuration was evaluated for different values of rail thermal 

conductivity (between 0.01 and 16.5 W m-1 K-1). The thermal conductivity has an impact on the rail 

surface temperature (named &M ), which in turn will influence the conduction through the gas 

contained in the gap between the rail and the vial. The results are presented in Figure III.3.6 . A 

chamber pressure of 4 Pa and two shelf temperatures, 0 °C and -40 °C, were tested. The use of a 

material with an increasing thermal conductivity from 0.01 W m-1 K-1 to 1 W m-1 K-1 resulted in 

increasing the rail surface temperature &M to a maximum of 3 °C. The increased rail temperature  led 

to an increase of the heat flow rates ratio between edge vial C and edge vial M from 29 % to 34 % at 

0 °C and from 41 % to 45 % at -40 °C. The use of rail with thermal conductivities higher than 1 W 

m-1 K-1 did not result in a further increase of the heat flow rate ratio between edge and central vials. 

The effect of the rail thermal conductivity on the heat transfer was thus limited but not completely 

negligible for vial C. In contrast, the edge vial E was not affected by the thermal conductivity of the 

rail in the whole range tested, regardless of the shelf temperature considered. The limited effect of the 

rail thermal conductivity can be explained from the visualization of the heat fluxes in the system. 

Figure III.3.7  presents a view of the drying chamber, in which is shown the gas contained in the gap 

between the rail, the bottom shelf and the edge vials (only vial E visible). The temperature is 

represented by the colour scale, whereas heat fluxes are represented by arrows, whose dimension is 

proportional to the flux magnitude on a logarithmic scale. A rail thermal conductivity of 16.5 W m-1 

K-1 and an emissivity of 0.13 at 4 Pa and 0 °C were tested. The heat fluxes directed to the lateral side  
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Figure III.3.8 : Heat flow rates evaluated for edge vials C (dashed line) and E (dotted line) and for central vial 
M (solid line) in the TE configuration at 0 °C and 4 Pa for (A) different wall emissivities and (B) distances 
between the wall and the shelf. Vertical dotted lines represent the values characteristic of the freeze-dryer used. 
TE: edge vials totally exposed to the wall. Significance of the abbreviations of vials C, E and M is reported in 
Figure III.3.1. 

 

 
Figure III.3.9 : Heat flow rates evaluated for edge vials C (dashed line) and E (dotted line) and for central vial 
M (solid line) in the TE configuration at 0 °C and 4 Pa for (A) different shelf emissivities and (B) for different 
distances between the top and bottom shelves. Vertical dotted lines represent the values characteristic of the 
freeze-dryer used. TE: edge vials totally exposed to the wall. Significance of the abbreviations of vials C, E, 
and M is reported in Figure III.3.1 . 
 



 
RESULTS AND DISCUSSION                                III.3 Effect of freeze-dryer design on heat transfer variability  

- 177 - 

 

of the vials were mainly coming from the bottom shelf area between the vials and the rail (upward 

arrows) through gas conduction, as evidenced by the white rectangle and the inset. Thus, the rail’s 

contribution to the lateral flux by gas conduction received by edge vials was small and modifications 

of the rail conductivity had only a limited impact on the lateral heat flux. 

 

 Effect of the equipment dimensions and emissivity on the heat transfer in the 

 drying chamber 

During scale-up, the cycle is transferred from pilot to commercial freeze-dryers which can have 

different dimensions (e.g., distances between the shelf and the wall and between shelves). 

Furthermore, measurements in several freeze-dryers of different scales have shown that the wall and 

shelf emissivity can vary in a range of 0.04-0.4. These features may modify the heat flow rates 

received by the vials respectively by gas conduction and radiation.  

Figure III.3.8  shows the heat flow rates received by vials C, E and M at 4 Pa and 0 °C in the TE 

configuration (totally exposed) considering different wall emissivities and different distances 

between the shelves and the wall. The dotted vertical lines represent the values for the freeze-dryer 

considered for the simulation (Table III.3.1). A variation of the wall emissivity between 0.01 and 0.5 

resulted in an increase of the heat flow received by vials C, E and M of about 2, 4 and 5 %, 

respectively (Figure III.3.8A ).  

The heat flow rates in edge vials C decreased by about 5 % when the distance between the shelves 

and the wall increased from 3.5 cm to 20 cm (Figure III.3.8B ), whereas vial E and M were not 

significantly affected. The variations of heat flow rate due to the wall emissivity and the distance 

between wall and shelves appears to have a minor impact on heat transfer, within measurement error 

and modelling uncertainty; 

Figure III.3.9   presents the heat flows received by the vials C, E and M at a pressure of 4 Pa and a 

shelf temperature of 0 °C in the TE configuration considering different shelf emissivities and 

different distances between the top and bottom shelves. An increase of the shelf emissivity from 0.01 

to 0.5 caused an increase of the heat flow of about 5 % in vial C, 13 % in vial E and 15 % in vial M 

(Figure III.3.9A ). However, considering a shelf temperature of -40 °C, the increase of shelf 

emissivity would led to a less significative increase (maximum 6 %) of the heat flow rate in 

edge and central vials (data not shown). The impact of the shelf emissivity on the heat flow rates 

appeared to be more important than the wall emissivity for all the simulated vials C, E and M. This 

result pointed out that a variation of the shelf emissivity between one freeze-dryer and another cannot 

be neglected, and a precise thermal characterization (i.e., emissivity measurement) of the equipment 

may be necessary before performing scale-up. Furthermore, the heat flow decreased by about 5 % in 

all considered vials when the distance between the shelves increased from 3.5 cm to 10 cm (Figure 
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III.3.9B ). Further increase of the distance (up to 20 cm) did not have any significant impact on the 

heat transfer. These results can be explained by a decrease of the gas conduction flow and of the view 

factor relevant to radiation at distances between the shelves higher than about 10 cm.  

 

CONCLUSIONS 

In the present work, the 3D COMSOL model previously developed by our group was used to predict 

the impact of several factors on the variability of heat transfer between edge and central vials, such as 

the vial loading configurations, the thermal properties of the rail, the walls and the shelves and some 

characteristic dimensions of the drying chamber (i.e., distance between the shelf and the wall and 

distance between shelves). The analysis revealed that the loading configuration plays a significant 

role in the heat transfer variability between edge and central vials. The use of a rail shielding more 

than 70 % of the lateral side of vials located at the periphery of the shelf was found to significantly 

reduce the edge vial effect. However, the rail itself contributes to the heat transfer and its contribution 

has to be considered when it is present in the middle of a shelf, i.e., when several trays are used on a 

same shelf. 

Furthermore, among the different thermal properties of the drying chamber components (rail, walls, 

shelves), the emissivity of shelf was found to significantly increase the heat flow received by both 

edge and central vials. Thus, a precise measurement of shelf emissivity is recommended to predict 

the heat transfer modification between equipments presenting different finish of the shelves. Among 

the explored geometric dimensions of the freeze-dryer, a distance between shelves less than about 5 

cm slightly increased the heat transfer while the distance between shelves and walls had a negligible 

effect in the considered range. 

The present model revealed to be a powerful tool, to be used during the cycle design and scale-up 

process to predict the heat transfer variability between edge and central vials, but also between 

different freeze-dryers.  
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III.3.3 Take-home message  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In these first Papers III.1-3, the mechanisms responsible for the heat transfer variability in vials 

differently located on the shelf were investigated. Vial geometry variability was found to be the main 

responsible for the heat transfer difference among vials located in the centre of the shelf. Furthermore, 

the use of a newly developed 3D mathematical model of heat transfer in freeze-drying identified the 

conduction through the gas in the drying chamber as the main responsible for the edge vial effect, 

rather than radiation from the chamber walls as usually stated.  

The combination of these mechanisms may lead to significant differences of the product thermal 

history within the vial batch, and thus their predictions can help the design and scale-up of the freeze-

drying cycles. However, variability of the mass transfer in the vial batch also may lead to differences 

in the product temperature and thus in the final product quality between vials. Identification and 

quantification of the mechanisms responsible for the mass transfer variability during primary and 

secondary drying will be the goal of the next Papers III.4-5. 

� The vial loading configuration resulted to highly influence the heat transfer 

in edge vials. The presence of the rail reduced the additional heat flow rate 

received by edge vials, although it contributed to the heat transfer by gas 

conduction and radiation.  

� Furthermore, the emissivity of the shelf was found to be the thermal 

property of the equipment that mainly impacted the heat transfer in both 

edge and central vials.  

� The heat transfer in edge and central vial was not significantly influenced 

by the thermal characteristics of the rail, the emissivity of the walls and the 

geometry of the drying chamber. 

� Our 3D mathematical model of heat transfer in freeze-drying revealed to be 

a powerful tool to predict the heat transfer variability between vials and 

between different equipments. 



 
RESULTS AND DISCUSSION                                III.3 Effect of freeze-dryer design on heat transfer variability  

- 181 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
RESULTS AND DISCUSSION                                                                          III.4 Product resistance variability                                                       

- 182 - 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
RESULTS AND DISCUSSION                                                                          III.4 Product resistance variability                                                       

- 183 - 

 

 

III.4 Determination of the product resistance variability 
and its influence on the product temperature in 
pharmaceutical freeze-drying 

 
The present study was submitted to  

the European Journal of Pharmaceutics and Biopharmaceutics. 

 
 

III.4.1 Context and objectives 

During primary drying, the sublimed water vapour has to overcome three main barriers to go from 

the product interface to the condenser: the dried product layer, the elastomeric stopper (if present) 

and the pathway from the chamber and the condenser. Among these three barriers, the dried product 

layer is known to greatly limit the mass transfer during sublimation. The product resistance is 

influenced by the dimensions of the dried pores left after ice crystals sublimation, which in turn 

depends on the value of nucleation temperature during the freezing step. Furthermore, nucleation is a 

stochastic phenomenon and thus ice crystals of different size may form among vials processed 

following the same freeze-drying protocol, leading to differences in the mass transfer during 

sublimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Objective 
The main objective of the following study was to investigate and quantify the 

product resistance variability and its impact on the product quality, through 

predictions of product temperature distributions, by the combined use of two 

experimental methods: the pressure rise test and the gravimetric method. 
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III.4.2 Paper 
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ABSTRACT 

During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects 

product temperature, and consequently, the final product quality. The main objective of this study 

was to evaluate the variability of the mass transfer resistance due to the dried product layer ( #) in a 

manufacturing batch of vials, and its potential effect on the product temperature, from data obtained 

in a laboratory freeze-dryer. Freeze-drying cycles were run at -25 °C and 10 Pa in a pilot scale 

equipment using two different freezing protocols. Five repetitions of each condition were performed. 

Pressure rise test (PRT) and gravimetric methods were applied as complementary approaches to 

estimate  #. PRT method allowed to estimate variability of the evolution of  # with the dried layer 

thickness between different experiments whereas the gravimetric method determined  # variability at 

a fixed time within the vial batch. Based on product resistance distribution calculated from PRT 

method, a product temperature safety margin of about ± 5 °C was defined for a product dried layer 

thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due 

to mass transfer variability based on product temperature distributions in cycle design and scale-up. 

 
KEYWORDS 
lyophilization, drying, mass transfer, product resistance, sublimation rate, controlled nucleation, 

heterogeneity, distribution, pressure rise test 
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NOMENCLATURE 

� Cross sectional area (�²) 
3� Degrees of freedom 

�� Latent heat of sublimation (�	���	) 

� Vial heat transfer coefficient (�	���
�	) 
� Layer thickness (�) 
� Water vapour mass (��) 
Îº Molecular weight of water (��	��"��	) 
2�  Number of vials 

� Pressure (��) 
� Heat flow rate (�) 
 ! Ideal gas constant (�	
�	��"��	) 
 # Product resistance (��	�²	�	���	) 
:Ï Standard deviation 

:� Standard error 

%FGH Sublimation time (�) 
& Temperature (
) 
= Volume (��) 

Greek 

) Thermal conductivity (�	��		
�	) 
Ð Product density (��	���) 

Subscripts 

           0,1  Index of parameters in Equation III.4. 5 

0 Vial bottom 

� Chamber 

3 Dried 

� Frozen 

6 Interface 

8 Nucleation 

: Shelf 

= Vial 
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INTRODUCTION 

Freeze-drying is a soft-drying process which consists in the dehydration of the frozen product first by 

under-vacuum sublimation and then by desorption. Due to the use of very low temperature and 

pressure, freeze-drying is currently the method of choice in the pharmaceutical industry for the 

preservation of heat sensitive products such as vaccines, proteins or micro-organisms (Hansen et al., 

2015; Adams, 1991; Fonseca et al., 2015). Several quality attributes of these product, e.g., the 

elegance of the dried cake, the reconstitution time and the moisture content, are governed by the 

temperature profile during the sublimation step (Johnson and Lewis, 2011; Patel et al., 2017; Pikal 

and Shah, 1990). If the temperature of the sublimation interface exceeds a critical value, i.e., collapse 

temperature, the product may experience abrupt loss of quality due to the collapse of its structure 

(Pikal and Shah, 1990; Johnson and Lewis, 2011). 

The thermal history of the product cannot be directly controlled but is governed by the heat and mass 

transfer taking place during the process. Theoretical models of these phenomena are nowadays 

largely used to predict critical process parameters, as the product temperature, for process design and 

scale-up (Trelea et al., 2007; Velardi and Barresi, 2008; Giordano et al., 2011; Lopez-Quiroga et al., 

2012; Pikal et al., 2005). Freeze-drying models often involve the determination of heat and mass 

transfer parameters, such as the vial heat transfer coefficient 
� and the mass transfer resistance due 

to the product  # (Pikal et al., 1984; Giordano et al., 2011; Pisano et al., 2013; Trelea et al., 2007; 

Pikal et al., 2005). The correct evaluation of these model parameters and their variability is of 

paramount importance for a reliable prediction of the product temperature within the batch and 

between different freeze-dryers. 

The vial heat transfer coefficient 
� is characteristic of the container, and depends on the chamber 

pressure and on the dimensions of the vial bottom geometry. Its determination is usually performed 

by the gravimetric method (Pikal et al., 1984; Pisano et al., 2011; Scutellà et al., 2017a; Hibler et al., 

2012), which allows to have a detailed picture of the variability of this parameter among the vials on 

the shelf. In contrast, the product resistance  # is characteristic of the formulation, and its value does 

not remain constant during sublimation as it is due to the growing dried layer thickness. 

In literature, several methods were developed to measure the evolution of the product resistance with 

the dried layer thickness from the estimation of the mass flow rate value, such as the microbalance 

(Pikal et al., 1983; Xiang et al., 2004), the pressure rise test (PRT) (Fissore et al., 2010; Oddone et 

al., 2014; Tang et al., 2006a), the tunable diode laser absorption spectroscopy (TDLAS) (Kuu et al., 

2011). Product resistance was also determined from the product temperature profile recorded by 

thermal sensors during the process by using mathematical models and soft sensors (i.e., software 

sensors) (Kuu et al., 2006; Bosca et al., 2013). Some of these techniques, such as the PRT and the 

TDLAS, allow to evaluate a global value of the product resistance in the vial batch, starting from 
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global measurement of the mass flow rate. Other methods allow to determine product resistance 

evolution in one vial (such as the microbalance) or in a limited number of vials (for example the use 

of thermocouples). Thus, the determination of the variability of the product resistance within a 

manufacturing batch of vials remains particularly challenging.  

The product resistance value and variability is directly influenced by the freezing step. Some authors 

(Searles et al., 2001b; Searles, 2010a; Konstantinidis et al., 2011; Oddone et al., 2014, 2016) have 

evidenced a direct correlation between nucleation temperature, ice crystal size, and mass transfer 

during primary drying. It was found that high values of nucleation temperature generate few and 

large ice crystals, which upon sublimation in primary drying leave larger pores and smaller specific 

surface area than low values of nucleation temperature. The dimension of the pores dramatically 

influences the resistance of the product due to the dried layer, and thus the sublimation rate (Searles, 

2010a; Searles et al., 2001b).  

Furthermore, the stochastic nature of nucleation temperature leads to different kinetics of sublimation 

within a same vial batch (Searles et al., 2001b; Searles, 2010a; Oddone et al., 2014; Passot et al., 

2009; Oddone et al., 2016), resulting in potentially high vial to vial variability that poses significant 

problems in achieving product quality homogeneity.  

In the present work, an original approach was proposed to estimate the variability of the product 

resistance  # in a manufacturing batch of vials during the primary drying step starting from data 

obtained at laboratory scale. Freeze-drying cycles were performed using a 5 % sucrose solution at 10 

Pa and -25 °C in a laboratory scale freeze-dryer. Two different freezing protocols were used, i.e., the 

nucleation of ice crystals was either spontaneous or controlled using the nucleation agent Snomax. 

Five repetitions of each condition were carried out, in order to evaluate the product resistance 

variability between different laboratory scale batches. Furthermore, two additional cycles were 

carried with partially stoppered vials, to study the effect of the presence of the stopper on the product 

resistance. Two experimental methods were used for the determination of the product resistance: (1) 

a global one, namely the pressure rise test (PRT), to evaluate the average evolution of the product 

resistance with the dried layer thickness in single batches, and (2) a local one, namely the gravimetric 

method, to evaluate the variability of the mass loss at a given time of sublimation between single 

vials. The combination of the data provided by these methods was used to estimate the variability of 

the product resistance in a manufacturing batch of vials. Finally, the effect of  #	variability on the 

product quality was quantified by calculating the product temperature distribution and by assessing 

the risk of failure (potential percentage of rejected vials) of the process during the sublimation step. 
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Figure III.4.1: Arrangement of the vials on the shelf. Symbols: black circle, vials in which the 
thermocouples are located; Letter ‘M’, gravimetrically-analyzed vials. All vials were filled with 
1.8 mL of the selected product.  

 

 

 

Table III.4.1: Description of the freeze-drying cycles performed in this study.  

 

Description 
PRT method Gravimetric+PRT 

method 

Vials filled with sucrose solution and processed 

without stoppers (S5) 

S5-1 

S5-2 

S5-3 

S5-4 

S5-5 

Vials filled with sucrose solution and processed with 

partially inserted stoppers (S5s) 

S5s-1 

S5s-2 

 

Vials filled with sucrose solution + 0.1% of Snomax 

to control the nucleation and processed without 

stoppers  (S5cn) 

S5cn-1 

S5cn-2 

S5cn-3 

S5cn-4 

S5cn-5 
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MATERIALS AND METHOD 

 Materials 

Siliconized 3 mL tubing vials (Müller + Müller, Holzminden, Germany) filled with a 5 % w/w 

aqueous sucrose solution were used throughout this study.  

The experiments were carried in the REVO laboratory scale freeze-dryer (Millrock Technology, 

Kingston, United States), equipped with three temperature controlled shelves and a condenser 

connected with the drying chamber by a butterfly valve. The drying chamber had a volume of 0.12 

m3. Two pressure gauges, a capacitive manometer (MKS) and a thermal conductivity gauge (Pirani) 

were used to monitor the pressure in the chamber. In order to monitor the product temperature during 

the cycles, a number of 7 T-type Thermocouples were placed in the bottom centre of selected vials 

(Figure III.4.1 ). The accuracy of the product temperature measurement was estimated at ± 0.5 °C. 

  

 Freeze-drying cycles 

A number of 204 vials were arranged in hexagonal clusters (Figure III.4.1 ) in a bottomless tray and 

filled with 1.8 mL of the sucrose solution (i.e., 10 mm of filling height). In order to minimize the 

additional heat transfer at the border of the shelf, the vial batch was fully shielded by a polystyrene 

rail covered by aluminium tape. Three experimental conditions were investigated, as presented in 

Table III.4.1 : vials filled with sucrose solution and processed without stoppers and with spontaneous 

nucleation (S5); vials filled with sucrose solution and processed with stoppers and with spontaneous 

nucleation (S5s); vials filled with sucrose and nucleating agent Snomax solution and processed 

without stopper and with controlled nucleation (S5cn).  

Freeze-drying cycles with spontaneous nucleation (referred as S5) were performed in two successive 

steps: (1) a freezing step, performed firstly by cooling the shelf at 3 °C min-1 from ambient 

temperature to -50 °C and then by holding the vials for 2 h at -50 °C, and (2) a sublimation step, 

carried out at a shelf temperature of -25 °C (heating rate of about 2.5 °C min-1) and a chamber 

pressure of 10 Pa. When controlled nucleation was applied, 0.1 % of the nucleation agent Snomax 

(Snomax LLC, Englewood, CO, US), an active protein derived from Pseudomonas Syringae, was 

added in the sucrose solution and the following freezing protocol was applied. The shelf temperature 

was first decreased from ambient temperature to -4 °C at about 3 °C min-1, then maintained at -4 °C 

for 1 hour to initiate ice nucleation and finally decreased to -50 °C at 3 °C min-1. During all the 

performed cycles (S5, S5s and S5cn), pressure rise tests (PRT) were performed to determine the mass 

flow rate. The PRT consisted in closing the valve between the drying chamber and the condenser at 

specified moments for a short time period of about 30s. The manometric pressure was recorded 

during the PRT every 0.1 s by a specially designed software. Some cycles (two of each condition 

without stopper) were stopped at about 30 % of the total sublimation time and the sublimed ice mass 
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Table III.4.2 : Vial and freeze-dryer dimensions, physical properties and parameters used in this 
study 
 

Symbol Significance Value ± SD Units 

�nÑ Outer bottom area of the vial 2.07 10-4  �� 

�� Inner bottom area of the vial 1.78 10-4  �� 

∆� 
Latent heat of sublimation of ice 2.8 106 �	���	 

mn Vial heat transfer coefficienta 

 
13.30 ± 0.885 �	���	
�	 

�Ò Ice thermal conductivity 2.23 �	��		
�	 

Ó 
Product density 917 ��	��� 

zÔ 
Ideal gas constant  8.314 103 �	
�	��"��	 

Õ� 
Temperature of the drying chamber 242 
 

Öµ 
Water molecular weight 18 ��	��"��	 

n� Volume of the drying chamber 0.12 �� 

SD, standard deviation. 
a Evaluated from Scutella et al. (Scutellà et al., 2017a) 
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in 50 central vials (marked with the letter M in Figure III.4.1 ) was determined by the gravimetric 

method, as proposed by Scutella et al. (Scutellà et al., 2017a). The selected vials were weighed 

before and after the cycle, and the water loss was calculated as difference between initial and final 

vial mass. Sublimation time was measured from the moment when shelf temperature exceeded 

product temperature, meaning that there was a net heat flux from the shelf towards the vials.  

A summary of all the experiments performed is presented in Table III.4.1.  

 

THEORY AND DATA ANALYSIS 

 Theoretical description of the product resistance 

 Evaluation of the product resistance from the mass flow rate 

As widely reported in literature (Pikal, 2000; Pikal et al., 1984; Overcashier et al., 1999; Fissore and 

Pisano, 2015; Bosca et al., 2013; Kodama et al., 2013), the product resistance  #	can be calculated 

as:  

 

 # = vq(Zq�Zw[)
j�      Equation III.4.1 

 

where ��  is the mass flow rate, �o is the sublimation interface area, �yX is the partial pressure of the 

vapour in the drying chamber, usually assumed equal to the total chamber pressure during the 

sublimation step, and �o  is the vapour pressure at the sublimation interface, calculated using the 

Clausius-Clapeyron relation (Scutellà et al., 2017a): 

 

�o = exp�
ÚS\Û.Ú
�q Q�§.§¦	�

    Equation III.4.2 

 

In Equation III.4.2 , &o  is the product temperature at the sublimation interface theoretically 

determined as follow: 

 

	�� = �o f�C� (&o − &J�)    Equation III.4.3 

 

where )? is the conductivity of the frozen layer, �o is the sublimation interface area, considered equal 

to the internal cross sectional area of the vial, �?	is the frozen dried layer thickness, evaluated as the 

difference between the initial product thickness and the dried layer thickness at given time,	��  is the 

heat flow rate, equal to the mass flow rate times the latent heat of sublimation (∆��� ) considering the  
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Figure III.4.2: Schematic flow of the strategy used to determine the product resistance variability 
by using the PRT and the gravimetric methods.  

 

 

 

Figure III.4.3 : Example of the increase of the chamber pressure in time during a PRT performed 
in the freeze-drying cycle S5-1. 
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pseudo-steady state during sublimation, and &J�  is the product temperature at the vial bottom, 

calculated as (Pikal et al., 1984; Scutellà et al., 2017a): 

 

�� = �J� 	
�(&J� − &I)    Equation III.4.4 

 

where �J� is the vial bottom area, considered equal to external cross sectional area of the vial, &I is 

the temperature of the shelf, evaluated as the average between the inlet and outlet shelf fluid 

temperatures, and 
� is the vial heat transfer coefficient evaluated as proposed by Scutella et al. 

(Scutellà et al., 2017a). 

All relevant physical product properties and parameters used are reported in Table III.4.2.  

Dependence of the product resistance on the dried layer thickness �� 

The product resistance  # can be described as a linear function of the dried layer �� (Pikal et al., 

1984; Pikal and Shah, 1990): 

 

 # =  #$ +  #S��    Equation III.4.5 

 

where  #�  and  #S are coefficients determined by data regression. The evolution of dried layer 

thickness in time (
�C|
�� ) can be calculated as: 

 

�C|
�� =

	
Ü	vq�� 	    Equation III.4.6 

 

where Ð is the density of the product (assumed equal to the density of the ice).  

Experimental evaluation of z{ and calculation of z{ distribution 

Figure III.4.2  schematically represents the strategies used to evaluate the variability of the product 

resistance. Two experimental methods were used: the pressure rise test and the gravimetric methods. 

Evaluation of  # using the pressure rise test  

The pressure rise tests were used to determine of the mass flow rate values during the sublimation 

step of all the freeze-drying cycles performed. Figure III.4.3  shows an example of the evolution of 

the chamber pressure during a PRT. As soon as the valve between the chamber and the condenser 

was closed, the pressure inside the chamber increased, as result of the accumulation of the sublimed 
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water vapour, at first very rapidly and then more slowly when the chamber pressure approached the 

equilibrium value with the ice surface (Fissore et al., 2010).  

The initial slope of the pressure rise curve 
�Z[
�� 	was calculated by fitting the data with a 6th degree 

polynomial equation and performing the analytical derivative at the initial pressure rise time (equal to 

0). Then, 
�Z[
��  was considered directly proportional to the sublimation flow rate �� 	through the ideal 

gas law: 

 

�Z[
�� = �� sb	P[ 	pU�[ÝÞ

    Equation III.4.7 

 

where  ! is the ideal gas constant, =X is the volume of the drying chamber, &X is the temperature of 

the chamber, estimated as an average between the shelf temperature and product temperature at the 

interface (Pisano et al., 2011), Îº is the molecular weight of the water vapour and 2� is the number 

of vials. The values of the relevant physical properties used in Equation III.4.7  are reported in Table 

III.4.2 . The mass flow rate values obtained from the PRT was then used to calculate the product 

resistance evolution with the dried layer thickness by using Equations III.4.1-4. For each condition 

tested (i.e., S5 and S5cn), five curves were obtained and considered as a single set of data to fit 

Equation III.4.7  and to calculate the values and the standard errors (:�) of the parameters  #� and 

 #S. Finally, the standard deviations (:Ï) of the product resistance parameters  #� and  #S (named 

 #�ß and	 #Sß ), were calculated from the :� by considering: 

 

:Ï = :�√3�     Equation III.4.8 

 

where 3� is the number of the degrees of freedom, equal to the difference between the number of 

experimental points collected (i.e., the total number of PRTs performed during the five experiments 

for each condition) and the number of parameters ( #� and  #S for Equation III.4.5 ). Calculations 

were performed with Matlab R2014b software (The MathWorks, Inc., Natick, MA). 

Evaluation of  #	using the gravimetric method 

The variability of the product resistance in a small batch of vials (i.e., 100) was also 

evaluated by performing a variance-based sensitivity analysis. Firstly, the gravimetric 

method was used to determine the distribution of the sublimed mass at a given time 

∆�(%FGH)	among vials	in four freeze-drying cycles carried out with and without controlled 

nucleation. Differences in the sublimed mass between vials can be due to the variability of 
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the heat transfer to the vial and of the mass transfer in the dried layer. Thus, the total 

variance of the sublimed mass ∆�(%�;/)áá 2 can be expressed as the sum of the fractions of 

variance due to the heat and mass transfer parameters 
�,  #� and  #S, assuming that their 

effects are independent: 

 

∆�(%FGH)áá � = ²â∆j(�dxh)â»U ³�
�ßß
� + Râ∆j(�dxh)âsu�

V
�
 #�ß � + Râ∆j(�dxh)âsuS

V
�
 #Sßß

�
    

Equation III.4.9 
 

where 
â∆j(�dxh)

â»U 	, â∆j(�dxh)âsu�
		and 

â∆j(�dxh)
âsuS

	represent the sensitivities of ∆�(%FGH) to the parameters 
�, 

 #� and  #S respectively and were estimated using a first order Taylor expansion: 

 

â∆j(�dxh)
âãq = ∆j(�dxh)(ãqQä)�∆j(�dxh)(ãq)

ä     Equation III.4.10 

 

where åo	represents each considered parameter (
�,  #� or  #S) and æ an increment equal to 5 % of 

åo . Equation III.4.10 was solved as follow. Firstly, Equations III.4.1-6 were used to calculate the 

mass flow rate by considering the mean value of 	 #� and 	 #S previously determined using the PRT 

method, and the 
� value calculated as proposed by Scutellà et al. (Scutellà et al., 2017a) Then, the 

term ∆�(%FGH) was calculated by integrating the mass flow rate over time %FGH (sublimation time). 

The calculation was repeated considering the i-parameter incremented by æ. The sensitivity terms 

obtained for each of the considered parameters were used in Equation III.4.9  to calculate the 

standard deviation of  #S	based on the gravimetric method (named	 #Sßß ). The intra-batch standard 

deviation of 
� (
�ß )	 was considered as mainly due to the vial bottom geometry and determined as 

proposed by Scutella et al. (Scutellà et al., 2017a) (Table III.4.1). The least important term, namely 

the standard deviation of	 #� , was taken into consideration to be approximately equal to  #�ß , 

previously determined using the PRT method. Finally, normally distributed random values of  #$ 
and  #	 were used in Equation III.4.5  to calculate the product resistance distribution for a given ��. 

The software Matlab R2014b equipped with the Statistics Toolbox (The MathWorks, Inc., Natick, 

MA) was used to perform the calculations. 

 
Evaluation of the product temperature çèé	distributions 

In order to assess the impact of the product resistance variability on the final product quality, 

distributions of the product temperature &J�  were calculated at a given ��  from the previously 

determined  # distributions using Equations III.4.1-4. For this calculation, 
� was set equal to its  
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Figure III.4.4: Mass flow rates evolution in function of the dried thickness in freeze-drying tests 
of 5 % sucrose solution processed in vials without stoppers and spontaneous nucleation (S5, 
triangles), with partially inserted stoppers and spontaneous nucleation (S5s, circles) and without 
stoppers and controlled nucleation (S5cn, squares). The mass flow rates were determined by PRT 
method from Equations III.4.7. The solid lines represents the mass flow rates data range not 
affected by underestimation due to the PRT method and further considered in the analysis. 
Experiments marked with * in the legend did not show a significant difference at 0.05 level (based 
on ANOVA tests).  

 

 

Figure III.4.5: Average values of the mass flow rates within a range of dried layer thickness 
between 0.5 mm and 7 mm in case of product in vials processed without stoppers and spontaneous 
nucleation (S5), with partially inserted stoppers and spontaneous nucleation (S5s) and without 
stoppers and with controlled nucleation (S5cn).  
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mean value. Chi-square goodness-of-fit tests were performed on the product temperature 

distributions, to verify that the simulated data were compatible with a normal distribution at a 0.05 

significance level. 

 

RESULTS AND DISCUSSION 

Effect of the stopper and of the freezing protocol on the mass flow rate 

Figure III.4.4  shows the mass flow rates evolution with dried layer thickness �� determined by PRT 

method for batches of vials processed with and without stoppers and frozen following two different 

protocols (spontaneous and controlled nucleation). The mass flow rate decreased as the dried layer 

thickness increased. However, at a dried layer thickness of about 7 mm, the mass flow rate started to 

decrease dramatically. This type of behavior of PRT data was previously reported in literature and 

was ascribed to batch heterogeneity (Fissore et al., 2010). The vials in the batch completed 

sublimation progressively at different times, whereas a constant number of sublimating vials was 

continuously considered during the data analysis (2� 	in Equation III.4.7 ).  

Figure III.4.5  reports the average values of the mass flow rate during sublimation (between dried 

layer thickness of 0.5 mm and 7 mm; total layer is of 10 mm) for each freeze-dying cycle performed 

with and without partially stoppered vials and with and without controlled nucleation during the 

freezing step. ANOVA test performed at 0.05 significance level did not revealed a significant 

difference among mass flow rates in cycles S5s and S5, carried out with and without partially 

stoppered vials. The presence of the stoppers on the vials did not appear to add a significant 

resistance to the mass transfer from the ice-vapour interface to the chamber. This finding is in 

agreement with an earlier work of Pikal et al. (Pikal et al., 1984), who quantified the relative 

importance of the stopper resistance to about 3-10 % of the total mass transfer resistance, which is 

small compared to the product resistance (80-90 %). Conversely, ANOVA test performed at 0.05 

significance level showed a significant difference among mass flow rates in cycles S5s and S5cn.  

The mass flow rate resulted to be significantly higher in cycles in which ice nucleation was 

controlled during the freezing step (S5cn) than in the cycles in which ice nucleation was spontaneous 

(S5 and S5s). 

As expected, the nucleation temperature &> estimated from the thermocouple signals was found to be 

-4.12 ± 0.36 °C (coefficient of variation of 9 %), for cycles S5cn processed with controlled 

nucleation. Similarly, the nucleation temperature resulted to be -4.39 ± 2.02 °C in cycles S5 and S5s 

(coefficient of variation of about 45 %) processed with spontaneous nucleation. However, 

spontaneous nucleation is often reported to take place at temperature lower than -7 °C 

(Konstantinidis et al., 2011; Searles et al., 2001b).  
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Figure III.4.6 : Evolution of the product resistance with the dried layer thickness calculated from 
PRT data obtained in tests S5 performed with spontaneous nucleation (Figure A) and PRT data 
obtained in tests S5cn performed with controlled nucleation (Figure B). The grey area represents 
the range of  #values considering the standard deviations of  #�and	 #S (positive values only). 
Symbols: experimental data; Solid line: fitting of the experimental data with Equation III.4.5 . 

 

 

Table III.4.3: Mean ± standard deviation (SD) for the sets of coefficients  ê$	 and  ê	 (Equation 
III.4.5 ) from data of cycles S5 and S5cn. 

 

Set of 
parameters 

Pressure rise test Gravimetric method 
 ê$	[���	�	�����	] 

 ê	 
[���	�	�	���	] 

 ê	 
[���	�	�	���	] 

Mean 
SD 
 ê$ß 	 Mean 

SD 
 ê	ß 	 Mean 

SD 

 ê	ßß 	
S5 59 75 1.8 104 2.0 104 1.8 104 0.3 104 

S5cn 47 48 0.9 104 1.2 104 0.9 104 0.2 104 
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In the present work, high nucleation temperature in uncontrolled vials was probably due to the high 

particulate level present in the laboratory environment and to the presence of the thermocouples into 

the monitored vials, which acted as nucleating agent. However, the coefficient of variability was 

significantly higher in cycles in which the nucleation was not controlled (S5+S5s). The high 

variability of the nucleation temperature may result in heterogeneous product structure and increased 

variability in mass flow rates between vials of the same or different batches.                                                                                                     

 

 Determination of the product resistance variability 

The present analysis characterized the differences in mass transfer among 8 batches performed at 

pilot scale, constituted of about 200 vials each. However, manufacturing freeze-dryer often reach a 

capacity of 100,000 vials. The evaluation of the mass transfer variability within a batch of this size 

represents a real challenge. In the present work, the intra-batch mass transfer variability within a 

manufacturing batch was estimated by combining product resistance data from replicates of small 

batches processed in a laboratory scale freeze-dryer with and without controlled nucleation. To this 

end, the PRT method was used for the determination of the variability of the product resistance 

evolution with the dried layer thickness among laboratory scale batches. Finally, the gravimetric 

method was used to evaluate the inter-vial mass transfer variability of laboratory scale batch at a 

given time. The mass flow rate evolution with the dried layer thickness obtained using the PRT 

method in cycles performed with and without controlled nucleation (S5 and S5cn) were used to 

calculate the product resistance  #. Five replicates of each condition were performed. The evolutions 

of  #	with the dried layer thickness ��  are presented in Figure III.4.6 . The product resistance 

linearly increased with the dried layer thickness, regardless of the freezing protocol applied.  

Equation III.4.5  was then used to fit the product resistance data obtained from cycles S5 performed 

with spontaneous nucleation (Figure III.4.6A ), and from cycles S5cn performed with controlled 

nucleation (Figure III.4.6B ). The obtained value and standard deviation of two sets of parameters 

 #� and  #S are reported in Table III.4.3. Both the parameters  #�and	 #S	exhibited higher values 

and also higher standard deviations for cycles performed with spontaneous nucleation (data set S5) 

than for cycles performed with controlled nucleation (data set S5cn).  

The determined value of  #� appeared to be of the same order of magnitude of previously reported 

values for sucrose-based model formulation (e.g., 51.2 ���	�²	�	���			(Mortier et al., 2016) and 

10	���	�²	�	���	(Pisano et al., 2013), whereas  #S	appeared to be lower than the value determined 

by Pisano et al. (Pisano et al., 2013) (1.65 105 ���	�²	�	���	).  
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Table III.4.4: Comparison of the product resistance value  # obtained in this study with other reported in 
literature for a 5 % sucrose solution and a dried layer thickness of 5 mm. 
 

Reference Nucleation Primary drying conditions 
z{ at  �í = 5 mm 
[î¸�	�²	�	îÔ�´] 

This work 

Spontaneous Performed at a shelf 
temperature of -25 °C and a 

chamber pressure of 
10 Pa 

149 

Controlled at -4 °C 92 

(Konstantinidis 
et al., 2011) 

Spontaneous Slow shelf ramping from 
−35 °C to −10 °C at  

0.02 °C min-1, and chamber 
pressure of 13 Pa 

125 

Controlled at -3 °C 91 

(Bosca et al., 
2013) 

Spontaneous 
Performed at a shelf 

temperature of -20 °C and a 
chamber pressure of 10 Pa 

145 

(Rambhatla et 
al., 2004)a 

Controlled at -1 °C 
Controlled at -6 °C 
Controlled at -11 °C 

Performed at a shelf 
temperature of -25 °C and a 
chamber pressure of 13 Pa 

67 
77 
96 

(Fissore and 
Pisano, 2015) 

Spontaneous 
Performed at a shelf 

temperature of -30 °C and a 
chamber pressure of 5 Pa 

About 100 

a Method II (improved ice fog technique) 
 
 

 

 

Figure III.4.7: Cumulative probability of the water mass loss determined from data obtained by 
using the gravimetric method in cycles performed with spontaneous nucleation (S5, dotted line) 
and controlled nucleation (S5cn, dashed line). The standard deviation of the mass loss for the two 
sets of data is reported on the figure. 
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The range of  #	values defined by the determined standard deviations of  #� and  #S for different 

dried layer thicknesses is represented by the grey area in Figure III.4.6 (positive values only). 

Furthermore, Table III.4.4 compares the average value of the product resistance calculating by using 

Equation III.4.5  at a dried layer thickness of 5 mm with value reported in literature, for the 

conditions considered (S5 and S5cn). Regardless the freezing protocol, the determined average value 

of  # appeared to be in agreement with the other values reported and in particular with the  #	value 

reported by Bosca et al. (Bosca et al., 2013) for spontaneous nucleation and with the  #	value 

reported by Konstantinidis et al. (Konstantinidis et al., 2011) for controlled nucleation. 

The gravimetric method was then used to evaluate the variability of the mass loss at a given time 

among vials for two replicates of cycles performed with and without controlled nucleation. The 

distributions of ∆�(%FGH) are reported in Figure III.4.7 , as well as the standard deviation values of 

the mass loss ∆�ïð(%FGH). For product processed with controlled nucleation, ∆�ïð(%FGH) appeared to be 

lower than in case of product processed with spontaneous nucleation. The values of 

∆�ïð(%FGH)	determined from data obtained in cycles S5 and S5cn were then used in Equation III.4.9  

to calculate the value of standard deviation of  #S based on the gravimetric method ( ññ#S), which is 

reported in Table III.4.3. 

The standard deviation  #Sßß  based on the gravimetric method represents about 15-20 % of the 

corresponding mean value of  #S  which is comparable to the 10-25 % reported in the literature 

(Pisano et al., 2013; Mortier et al., 2016). Other studies often consider a 10 % variability for  # 

(Bosca et al., 2013; Giordano et al., 2011; Pisano et al., 2013). However, this standard deviation  #Sßß  

based on the gravimetric method is representative of the variability in a small batch of about 100 

vials. It was found to be about 5 to 6 times lower than the standard deviation  #Sß  based on the PRT 

method, which was assumed representative of larger batches with several shelves loaded with vials 

and especially of the stochastic nature of spontaneous nucleation. For the following analysis of 

product temperature distribution, this larger variability based on  #�ß 	and  #Sß 	 was used since it could 

better reflect the lack of homogeneity at manufacturing scale. 

The value and standard deviation of the model parameters  #� and  #Sdetermined by PRT method 

for cycles carried with and without controlled nucleation was then used to evaluate the distribution of 

the product resistance. The obtained cumulative distributions of  # are shown in Figure III.4.8 for a 

chamber pressure of 10 Pa and a shelf temperature of -25 °C.  

Product processed during the freezing step with spontaneous (Figure III.4.8A ) and controlled 

nucleation (Figure III.4.8B ) were considered.  Furthermore, two values of dried layer thickness �� 

were simulated, 1 mm and 5 mm (total product thickness equal to 10 mm).  
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Figure III.4.8: Cumulative distributions of the product resistance obtained from the set of 
parameters S5 (Figure A) and S5cn (Figure B). Solid and dotted bold lines represent respectively 
the product resistance distribution at 1 mm and 5 mm. Solid and dotted thin lines includes 
approximately 99 % of values of the product resistance. 

 

 

 

Figure III.4.9: Cumulative distributions of the product temperature obtained for freeze-drying 
cycles carried out with spontaneous nucleation (Figure III.4.9A ) and without controlled 
nucleation (Figure III.4.9B ). Solid and dotted lines represent the product resistance distribution at 
1 mm and 5 mm respectively. 
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The results showed that the range of the product resistance values (calculated considering ± 3 times 

the SD limited to positive values, that includes approximately 99 % of the vials) significantly 

increased with ��. In particular, product resistance values can be defined in a range of about ± 160 

kPa s m² kg-1 at 1 mm and of about ± 320 kPa s m² kg-1 at 5mm for product processed with 

spontaneous nucleation (Figure III.4.8A, calculated considering ± 3 times the SD limited to positive 

values), and from ± 119 kPa s m² kg-1 at 1 mm to about ± 200 kPa s m² kg-1 at 5mm for product 

processed with controlled nucleation (Figure III.4.8B ; calculated considering ± 3 times the SD 

limited to positive values). 

 

Impact of the product resistance variability on the product temperature distribution 

In order to optimize the primary drying step while maintaining an acceptable product quality, the 

product temperature has to be maintained close but below a critical value (e.g., glass transition 

temperature for amorphous product). The mass transfer heterogeneity due to differences in the 

product resistance among vials causes variability in the product temperature within the same batch or 

in different batches. Considering a constant value of the vial heat transfer coefficient (reported in 

Table III.4.2), the distributions of the product temperature due to the variability of the product 

resistance alone were calculated as reported in Theory and data analysis. Product resistance 

distributions previously determined for a 5 wt/wt sucrose solution processed with and without 

controlled nucleation and at -25 °C and 10 Pa during sublimation were considered, as shown in 

Figure III.4.8 . Product temperature distributions were determined for two different dried layer 

thickness, i.e., 1 mm and 5 mm and are reported in Figure III.4.9 . As expected, the value of product 

temperature increased at higher dried layer thickness, because of the higher product resistance value. 

Variability of the product temperature due to the product resistance distribution alone was estimated 

as ± 3 times the SD and was found to be approximately ± 4.5 °C at 1 mm and ± 6 °C at 5 mm for 

spontaneous nucleation (Figure III.4.9 ). If the controlled nucleation is used, the variability is ± 4.5 

°C at 1 mm and ± 5 °C at 5 mm (Figure III.4.9B ). This safety margin for the product temperature is 

significantly higher than the one estimated by Scutellà et al. (Scutellà et al., 2017a), due to the inter-

vial 
� variability in central vials, which was reported to be about ± 1 °C. Furthermore, previous 

works (Bosca et al., 2015; Pisano et al., 2013) reports product temperature margins due to the 

combined effect of the heat and mass transfer variability close to ± 3 °C, which is lower than the one 

estimated in this study.  

Based on this analysis, the risk of failure of the process can be estimated. As example, considering 

the glass transition temperature of the sucrose (-32 °C), a 2 % of the vials processed with 

spontaneous nucleation will present a temperature higher than the critical value at a dried layer 

thickness of 5 mm (Figure III.4.9 ). Conversely, no vials processed with controlled nucleation will 
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present a temperature higher than the critical value. In order to assure that all the vials will present a 

temperature lower than the critical one, the shelf temperature should be reduced at about -28 °C (for a 

constant pressure of 10 Pa).  

CONCLUSIONS 

The product resistance highly affects the value of the product temperature during the freeze-drying 

cycles. Thus, the value and variability of this parameter needs to be precisely evaluated for a reliable 

prediction of the product temperature. In this work, an original approach was proposed to estimate 

the variability of the product resistance by using two experimental methods, the pressure rise test and 

the gravimetric method. The impact on the mass transfer of the presence of the stoppers into the vial 

necks and of the freezing protocol was also considered. The presence of stoppers on the vials was not 

found to significantly modify the mass flow rate during sublimation. In contrast, the use of controlled 

nucleation during the freezing step of the freeze-drying cycle increased the mass flow rate with 

respect to cycles carried out with spontaneous nucleation and decreased its variability. 

Then, product resistance data from 5 laboratory vial batches obtained using the pressure rise test were 

combined to estimate the product resistance variability in a manufacturing vial batch, which was 

expressed in terms of standard deviation of the parameters  #� and  #S. The standard deviations of 

 #�  and  #S  determined using the PRT method in batches processed with controlled nucleation 

resulted to be lower than the variability of the resistance in batch processed with spontaneous 

nucleation. Furthermore, the gravimetric method was used to estimate the variability of the product 

resistance between vials within a laboratory batch, which was found to be several times lower than 

the one obtained from the PRT method. The product resistance distributions determined from the 

PRT method was used to calculate the product temperature distributions, which resulted in a 

definition of a safety margin of about  ± 5 °C. In order to assure the robustness of the method, an 

additional validation for the estimation of product resistance variability at manufacturing scale will 

be performed in the future. 

Finally, as an example of practical application, the presented approach was used for the evaluation of 

the risk of failure of the process due to the mass transfer variability only, expressed as a percentage 

of potential vials showing a product temperature higher than the critical value. The proposed 

approach will be used in future works to investigate the variability of the product resistance among 

vials presenting low filling volume (e.g., 0.4-0.5 ml) and processed with spontaneous nucleation in 

environmental conditions similar to those of production scale GMP (i.e., less presence of particle in 

the air). 
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III.4.3 Take-home message  

 
 

 

 

 

 

 

 

 

 

 

 

The stochastic nature of nucleation in the freezing step leads not only on different dimensions of the 

pores between vials, but also to different specific surface areas of the product available for desorption 

of the remaining unfrozen water during secondary drying. The importance of the desorption kinetics 

variability on the heterogeneity of the product moisture content will be analyzed in Paper III.5 . 

 

 

 

 

 

 

 

 

 

� The presence of the stopper on the vial neck did not strongly influenced the 

mass flow rate during sublimation. In contrast, mass transfer resulted to be 

greatly influenced by the freezing protocol.  

� The pressure rise test and the gravimetric method were used to evaluate the 

variability of the product resistance among vials (in terms of standard 

deviations of the product resistance parameters). The product resistance 

variability obtained by using the pressure rise test method was significantly 

higher than the one obtained by using the gravimetric method. 

� The determined product resistance distribution led to the definition of a 

product temperature safety margin of about ± 5 °C, to be considered during 

the cycle design and scale-up. 
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III.5 Can the desorption kinetics explain the residual moisture 
content heterogeneity observed in pharmaceuticals freeze-
drying process? 

The present study was object of an oral presentation at the Eurodrying Conference 2017 
(Liegi) and it was submitted for the Eurodrying special issue of the Drying Technology 

journal. 

 

III.5.1 Context and objectives 

During the freezing step, only a part of the water is frozen in form of ice crystals and removed by 

sublimation during primary drying. A small fraction of the water is bound to the interstitial matrix 

and removed by desorption during secondary drying. During the design of the secondary drying step, 

the shelf temperature and the operating time need to be selected in order to target the desiderate value 

of residual moisture content. The residual moisture content in the final product is one of the most 

important critical quality attribute of the freeze-dried vaccines and pharmaceuticals, as it influences 

the storage stability, the potency and shelf life of the product, and thus it has to be carefully 

controlled. However, a significant moisture content variability is often observed in the industrial 

practice between vials processed within the same batch. Understanding the mechanisms responsible 

for the moisture content distribution in the vial batch could help to perform the design of the 

secondary drying step. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Objective 
In the present work, the desorption model proposed by Trelea et al. (Trelea et 

al., 2016) was used (i) to evaluate the impact of the product temperature and 

structure on the desorption kinetics and (ii) to assess the importance of the 

desorption kinetics on the moisture content heterogeneity during the secondary 

drying step of freeze-drying process.  



 
RESULTS AND DISCUSSION                                                                         III.5 Model of desorption kinetics 

- 212 - 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
RESULTS AND DISCUSSION                                                                         III.5 Model of desorption kinetics 

- 213 - 

 

III.5.2 Paper 

 

TITLE 

Can the desorption kinetics explain the residual moisture content heterogeneity observed in 

pharmaceuticals freeze-drying process? 

 

SHORT TITLE 

Model of desorption kinetics in freeze-drying 

 

AUTHORS 

B. Scutellà1,2, E. Bourlès2, C. Tordjman1, F. Fonseca1, Y. Mayeresse3, I.C. Trelea1, S. Passot1 

 

AFFILIATIONS 
1 UMR GMPA, AgroParisTech, INRA, Université Paris Saclay, 78850 Thiverval-Grignon, France 
2 GSK Vaccines, Rixensart, Belgium 
3 GSK Vaccines, Wavre, Belgium 

 

ABSTRACT 

Residual moisture is an important factor for the long-term stability of freeze-dried 

biopharmaceuticals. Significant moisture content heterogeneity is often reported within a batch of 

vials. This work aimed at investigating the role of the desorption kinetics on the moisture content 

variability in freeze drying. In this regard, the evolution of the moisture content of a sucrose 

formulation with time was experimentally determined for different product temperatures and 

structures. Then, the value and variability of the characteristic desorption times were assessed and 

included in a mathematical model in order to predict the final moisture content distribution in 

secondary drying at specific operating conditions. 

 

KEYWORDS 

Lyophilisation, mathematical modelling, Karl-Fisher analysis, moisture content, controlled 

nucleation  
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NOMENCLATURE 

�� Water activity (��	���	)  
�, 
 GAB model parameters 

�� Activation energy (��	�"��	) 
  Constant of ideal gas (��	�"��		
�	) 
&# Product temperature (
) 
% Current time (�) 
' Moisture content (��	���			�/) 

Greek letters 

σmeas Uncertainty of the measurement method (��	���			�/) 
τ Characteristic desorption time (�) 

Subscript and Superscripts 

45 Equilibrium 

72 Initial (beginning of isothermal period during secondary drying) 

� Monolayer 

94� Reference  
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INTRODUCTION 

Freeze-drying (lyophilisation) is a drying operation widely used for stabilization of heat sensitive 

biological materials and pharmaceuticals, such as vaccines (Sadikoglu et al., 2006; Hansen et al., 

2015). This process involves three successive steps: (i) freezing, to completely solidify the product, 

(ii) primary drying, in which the frozen water is removed by sublimation under vacuum and (iii) 

secondary drying, in which unfrozen water is  removed by desorption (Jennings, 1999; Adams, 1991). 

Usually, primary drying is considered the most critical and longest step of the process. However, 

secondary drying governs one of the most important critical product quality attribute, the residual 

moisture content, which influences the product storage stability and shelf life (Pikal et al., 1990; 

Passot et al., 2012; Pikal et al., 1991; Trelea et al., 2016; Oddone et al., 2017). Targeting the 

desiderate value of final product moisture content and its homogeneity in the batch is a very 

important quality control tool. However, monitoring the desorption kinetic during secondary drying 

may be a difficult task, due to the limited availability of technical solutions to measure the moisture 

content evolution in a non invasive way (Fissore et al., 2011b; Schneid et al., 2011). In this regards, 

mathematical modelling can be useful for the prediction of the moisture content evolution during the 

process. Most of the works in freeze-drying research have been devoted to optimization of primary 

drying, and few models are available in literature for the secondary drying (Trelea et al., 2016; 

Sadikoglu and Liapis, 1997; Sahni and Pikal, 2017; Trelea et al., 2007; Mayeresse, 2008; Sadikoglu 

et al., 1998). Usually, a first order desorption kinetics is used to describe moisture content evolution 

in secondary drying (Sheehan and Liapis, 1998; Pisano et al., 2012), but recently Sahni et al. (Sahni 

and Pikal, 2017) proposed a diffusion-like fractional order model and Trelea et al. (Trelea et al., 2016) 

developed a dynamic model for desorption that accounts for monolayer and multilayer water state in 

the solid matrix, with very different desorption kinetics. Moreover, even if existing desorption 

models are able to predict the evolution of the average moisture content during the process, they do 

not give its distribution within the vial batch. Consequently, understanding the mechanisms leading 

to moisture content heterogeneity appears as a key point for ensuring reproducible final product 

quality and long-term stability.  

The main objective of this work was to assess and quantify the effect of the desorption kinetics on the 

product moisture content distribution in secondary drying. The desorption kinetics of a sucrose 

formulation was studied at various product temperatures, by testing three different shelf temperatures 

(0 °C, 20 °C, 40 °C). Ice crystal size was modulated by adding the nucleation agent Snomax, an 

active protein derived from Pseudomonas Syringae, to the product formulation. Moisture content 

variability at different times during the process was determined by stoppering selected sets of vials. 

Then, the variability of the characteristic desorption time in a set of vials was calculated, and it was 

used to quantify the contribution of desorption kinetics to the moisture content distribution.  
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Figure III.5.1 : Arrangement of the vials on the shelf. Numbered circles represent the vials in which the 
stoppers were inserted into the vial necks progressively from the end of the equilibration step to the end of the 
secondary drying. Vials in which the thermocouples were inserted are marked with the letter T. 
 

 

Figure III.5.2 : Example of temperature and pressure profiles of a freeze-drying cycle with controlled 
nucleation, indicating stoppering and sampling times (red dots). Blue solid line represents shelf temperature 
(20 °C during secondary drying in this illustration), red dashed line represents chamber pressure. 
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Finally, as example of practical application, our approach was used to predict the risk of failure of the 

secondary drying step at fixed operating time and shelf temperature, expressed in terms of percentage 

of vial with a moisture content higher than the target value.  

 

MATERIALS AND METHODS 

Materials 

A 5 % sucrose solution was used throughout the tests, prepared with distilled water and crystalline 

sucrose (VWR Chemicals Prolabo, Leuven, Belgium). The solution was processed in 3 mL 

siliconized glass tubing vials (Müller+Müller, Holzminden, Germany) for the desorption kinetics 

experiments, or in 50 mm diameter aluminium containers for the measurement variability 

experiments. Freeze-drying experiments were carried out in a pilot scale freeze-dryer (Millrock 

REVO, Kingstone, NY, US) equipped with 3 shelves and a condenser connected with the drying 

chamber by a butterfly valve. Capacitance and a thermal conductivity (Pirani) gauges were used to 

monitor the pressure in the drying chamber. Product temperature was monitored during the process 

by inserting T-type miniature thermocouples in the bottom centre of four vials. A "sample thief" 

mechanism was installed on the door of the freeze-dryer chamber to stopper selected vials. 

 

Freeze-drying procedure 

A number of 385 vials were arranged in hexagonal clusters in a bottomless tray as shown in Figure 

III.5.1 . An stainless steel rail was used to fully shield the vials from the chamber walls. The acrylic 

door of the freeze-dryer was covered by aluminium foil to avoid additional radiation from the 

external environment. The vials were filled with 1.4 mL of 5 % sucrose solution, and elastomeric 

stoppers were partially inserted in the neck of selected vials (numbered vials in Figure III.5.1 ). The 

vials were then loaded in the middle shelf of the freeze-dryer by using a metallic tray, which was 

removed immediately after to allow direct contact between the vials and the shelf during the cycle. 

Firstly, the freezing step was performed by decreasing the shelf temperature from ambient 

temperature to -50 °C at about 3 °C/min and holding the vials at constant temperature for 2 h. In 

some experiments, ice nucleation was controlled by adding 0.1 % of the nucleation agent Snomax 

(Snomax LLC, Englewood, CO, US). In this case, the freezing protocol was performed in four 

successive steps, as shown in Figure III.5.2 : (i) a shelf temperature ramp from ambient temperature 

to -4 °C at about 3 °C/min, (ii) a holding step at -4 °C for 1 h, (iii) a further shelf temperature ramp 

from -4 °C to -50 °C at about 3 °C/min and (iv) a holding step at -50 °C of 2 h. In all cases, the 

primary drying step was performed at 10 Pa and -25 °C until the end of ice sublimation, determined 

by comparative pressure measurement using capacitance and Pirani gauges (Passot et al., 2009). 
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After complete sublimation of ice crystals, an equilibration step was introduced in the cycle in order 

to reduce the moisture content heterogeneity at the end of the primary drying, as previously proposed 

(Schneid et al., 2011). This step consisted in closing the valve between the chamber and the 

condenser and holding the vials at -35 °C for about 22 h. Finally, after opening the valve to decrease 

pressure back to 10 Pa, the shelf temperature was increased at 1 °C/min and the secondary drying 

step was performed for a period of about 24 h. Three constant values of shelf temperature during the 

secondary drying were investigated in different runs: 0 °C, 20 °C and 40 °C. At defined moments 

during the secondary drying (red dots in Figure III.5.2 ), the stoppers were completely inserted into 

the neck of selected vials located in the centre of the shelf by using the sample thief (8 vials per 

sampling time). Residual moisture content in all these vials was determined after the cycle. Some of 

these vials were also analysed in order to evaluate the water activity in the product, for the sorption 

isotherm determination.  

Furthermore, additional freeze-dried sucrose samples were prepared. A number of 20 aluminium 

containers were filled with 5 mL of 5 % sucrose solution and freeze-dried by applying the same 

parameters as the cycle presented in Figure III.5.1  without the equilibration step.  

The produced samples were then used for evaluation of Karl Fisher measurement variability, as 

described in the following. 

Water activity and moisture content measurement 

The water activity in selected vials was determined by using the FMS-moisture/pressure headspace 

analyzer (Lighthouse, Charlottesville, VA, US). This non-destructive method enabled the 

measurement of water vapour in the vial headspace, by using a laser tuned to match the internal 

absorption frequency of water molecules. The amount of laser light absorbed was proportional to the 

water vapour concentration.  

The moisture content of the samples was measured by the Karl Fisher titration method using a 

Metrohom KF 756 apparatus (Villebon-sur-Yvette, France) as previously described (Passot et al., 

2012). The variability of the Karl Fisher method was determined by performing 20 moisture content 

measurements on freeze-dried sucrose samples equilibrated at a known water activity. Sample 

equilibration was performed by reducing in powder 20 g of the dried sucrose and then placing it in a 

hermetic glass box containing saturated salt solutions with water activities of 0.11 (LiCl), 0.22 

(CH3COOK) and 0.32 (MgCl2.6H2O) for one week at 25 °C.  

 

THEORY AND DATA ANALYSIS 

Sorption isotherm 

The equilibrium moisture content '@� 	 at a given water activity ��	was described using the 
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Guggenheim-Anderson-Boer (GAB) model (Passot et al., 2012; Trelea et al., 2016): 

 

'@� = �g»X	�Ç
(	�»�Ç)(	Q»�Ç(X�	))    Equation III.5.1 

 

where 'j is the monolayer moisture content, and �	and 
 are shape parameters, both determined by 

fitting in a least-squares sense the experimental data. Calculations were performed with Matlab 

R2014b software equipped with the Statistics Toolbox (The Mathworks Inc., Natick, MA, US). 

 

Desorption model 

In the present study, the model proposed by Trelea et al. (Trelea et al., 2016), was used to describe 

the desorption kinetic in secondary drying. This model is based on the consideration that moisture 

contained in biological products may exist in different states, such as mono or multilayer, which are 

more or less bound to the solid matrix. Considering the presence of 2 layers (with 1=monolayer, 

2=multilayer), the total moisture content ' in the product can be defined as the sum of the fractions 

'o contained in each layer: 

 

' = '	 + '�     Equation III.5.2 

 

Furthermore, water in different states may show a different desorption kinetic. For the i-layer this 

gives: 

 

��q
�� =

	
�q 		°'o

@� −'o±    Equation III.5.3 

 

where .o is respectively the characteristic desorption time and 'o@� the equilibrium moisture content 

of the water in the i-layer, which is determined from the sorption isotherm for a given water activity 

as proposed by Trelea et al. (Trelea et al., 2016). In steady state operating conditions (i.e., constant 

values of shelf temperature and vapour pressure), Equation III.5.3  has the solution: 

 

'o(%) = 'o@� + °'o�p − 'o@�±4
� ò
óq	   Equation III.5.4 

 

with 'o�p equal to the moisture content contained in the i-layer at the beginning of the isothermal 

period. The total initial moisture content '�p present in the product fills up successive layers until a 

maximum value. The maximum moisture content of layer 1 was successfully assumed to be equal to  
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'j (Trelea et al., 2016), determined from the GAB sorption isotherm (Equation III.5.1 ). Thus, if  

'�p	is lower or equal to 'j, moisture will be present in the product only as monolayer, whereas if 

'�p is higher than 'j  the presence of the multilayer needs to be taken into consideration in the 

desorption kinetics. 

 

Temperature dependence 

The characteristic desorption time . was assumed to depend on the product temperature &# through 

an Arrhenius type equation (J.H. de Boer, 1953): 

 

.o = .M@?q4
�	�c� (

S
�u�

S
�u�T�

)
   Equation III.5.5 

 

where �� is the activation energy,   is the ideal gas constant, .M@?  is the characteristic desorption 

time at a reference temperature &#M@? (273.15 K in this study). Average values of �� and .M@? were 

evaluated by fitting in a least-squares sense experimental data obtained as described in Materials 

and Methods section by using the software Matlab R2014b. 

 

Determination of the characteristic desorption time variability 

Equation III.5.4  states that the moisture content value and variability in time is influenced by  (i) the 

variability of the characteristics desorption times (.ôï), which depends on the desorption mechanism 

and (ii) the variability of the initial product moisture content ('�p)á, influenced by the variability of 

heat and mass transfer in primary drying. Furthermore, uncertainty of the measurement method 

,õj@�F	 may also affect the measured moisture content distribution. Based on a first order sensitivity 

analysis and assuming variability sources independent, the variance of the measured moisture content 

'(%)á� can be expressed as: 

 

'(%)á� = ∑ â�(�)
â�q

� .ôï��o÷	 + â�(�)
â�Ár

�'�pß � + ,õj@�F�  Equation III.5.6 

 

where 
â�(�)
â�q   and  

â�(�)
â�Ár 	represents the sensitivity of '(%) to the characteristic desorption times and to 

the initial value of moisture content, which can be calculated from the proposed model (Equations 

III.5.2- 5) by using a first order Taylor expansion.  

In the present study, '(%)á, '�pß  and ,õj@�F	were experimentally determined and used to calculate the 

standard deviations of the characteristic desorption times .ôï  from Equation III.5.6 .  
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Figure III.5.3 : Equilibrium moisture content of sucrose as a function of water activity. Symbols: 
experimental data, solid line: GAB model, Equation III.5.1 . 
 

 

 

 

Table III.5.1: Mean ± standard error of the GAB model parameters (Equation III.5.1 ). 

 

 Value ± Standard Error 

'j(kg kg-1 wb) 0.0278 ± 0.0016 


 1.581 ± 0.047 

� 9.10 ± 1.55 
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Then, it was possible to quantify the impact of desorption kinetics on the moisture content 

distribution as well as the relative importance of the product temperature and structure by using the 

proposed model (Equations III.5.2-5). 

 

RESULTS AND DISCUSSION 

Sorption isotherm determination 

Figure III.5.3  shows the moisture content of sucrose as a function of the water activity. The GAB 

model (Equation III.5.1 ) fits the data satisfactorily. The value of the model parameters are reported 

in Table III.5.1. The parameters 'j	 and 
  shows an uncertainty of less than 6 % whereas the 

uncertainty of the shape parameter � remained large, since Equation III.5.1  is less sensitive to this 

parameter. The obtained parameters are valid in the range of water activity 0-0.45. 
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Figure III.5. 4: Time evolution of moisture content for 5 % sucrose processed with uncontrolled (A) and 
controlled (B) nucleation at three shelf temperatures: 0 °C (blue solid line and diamonds), 20 °C (red dotted 
line and circles), 40 °C (green dashed line and squares). Symbols: experimental data, lines: multilayer model.  
 

 

Table III.5.2: Characteristic desorption times at reference temperature and activation energy (mean ± standard 
error) for product processed with uncontrolled and controlled nucleation. 
 

 Uncontrolled 

nucleation 

Controlled 

nucleation 

τùúûS (h) 56.39 ± 15.61 149.88 ± 60.89 

τùúûY (h) 3.80 ± 0.60 5.17 ± 0.86 

Eý (kJ mol1) 49.61 ± 4.97 

 

 

Figure III.5.5 : Characteristic desorption times τ	 (A) and τ� (B) in function of the product temperature 
for uncontrolled nucleation (solid line) and controlled nucleation (dotted line).  
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 Desorption kinetics 

The moisture content values at the beginning of the isothermal period ('�p)	were experimentally 

determined to be between 0.077 and 0.043 kg/kg in trials carried at shelf temperatures between 0 °C 

and 40 °C. These values appeared to be higher than the monolayer moisture content 'j (0.0278 

kg/kg wb, Table III.5.1) and thus, the moisture was considered to be also present in the product as 

multilayer. The two layers model fits quite satisfactorily the experimental data, as shown in Figure 

III.5.4 , especially in case of controlled nucleation. Two different drying kinetics, a fast initial one 

(roughly before 5 h) and a much slower subsequent one, are clearly visible and correspond 

respectively to the desorption of the multilayer (layer 2) and of the monolayer (layer 1). Determined 

desorption model parameters are reported in Table III.5.2. The characteristic desorption times for the 

mono and multilayer are quite different by a factor of almost 15 in case of uncontrolled nucleation 

and 30 in case of controlled nucleation. Furthermore, both .M@?Sand .M@?Y were found to be higher in 

case of controlled nucleation compared to uncontrolled nucleation.  

It was found that a common value of activation energy for the two layers and for the product 

processed with and without controlled nucleation adequately described the desorption kinetics. The 

determined value of the activation energy was found to be slightly higher than previous reported 

values (Trelea et al., 2016; Pisano et al., 2012). 

The obtained parameters were then used in Equation III.5.5  to describe the dependence of the 

characteristic desorption time on the product temperature and structure, as presented in Figure 

III.5.5 . 

As previously reported (Trelea et al., 2016; Pisano et al., 2012), the increase of shelf temperature 

resulted in lower characteristic desorption times and thus in a faster desorption for both controlled 

and uncontrolled nucleation. In agreement with Trelea et al. (Trelea et al., 2016), the characteristic 

desorption time for the monolayer (Figure III.5.5A ) appears to be significantly higher than the 

multilayer (Figure III.5.5B ). Furthermore, the kinetics of the uncontrolled nucleated product resulted 

to be faster than the controlled one. Controlled nucleation usually generates bigger ice crystals than 

uncontrolled nucleation, which results in a smaller specific surface area of the pores and in a slower 

desorption kinetics during secondary drying. This result points out that the desorption kinetics is 

highly dependent on both product temperature and structure, and its characterization is fundamental 

for the optimization of the secondary drying step. 
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Table III.5.3: Standard deviation of the characteristic desorption time at reference temperature for uncontrolled 
and controlled nucleation, calculated from Equation III.4.6 . 
 

 Uncontrolled 

nucleation 

Controlled 

nucleation 

τùúûSþ (h) 12.40 46.50 

τùúûYþ (h) 0.83 1.60 

 

 

 

 

 
Figure III.5. 6: Moisture content distribution after 15 h of desorption at a shelf temperature of 20 °C. Solid 
lines: uncontrolled nucleation; dotted lines: controlled nucleation. 
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 Desorption kinetics variability 

The variability of the desorption kinetics was determined as standard deviation of the characteristic 

desorption times (.M@?Sþ	and .M@?Yþ ) based on Equation III.5.6 . In this analysis, the variability of 

moisture content value due to the Karl Fisher method (,õj@�F)	was determined to be equal to 3.5 % 

(coefficient of variation) using 20 repeated measurements of samples equilibrated at different 

moisture contents. The calculated standard deviations of the parameters .M@?S 	and .M@?Y for controlled 

and uncontrolled nucleation, shown in Table III.5.3 , resulted to be quite comparable to the standard 

error of the parameters due to the fitting (Table III.5.2). This last value is higher because different 

sources of variability are mingled. The performed analysis can be used to simulate moisture content 

distributions at a specific time and shelf temperature and thus to estimate the importance of 

desorption kinetics on the success of the process for the selected operating variables. As example, 

Figure III.5.6  shows the distributions of the moisture content after 15 h from the beginning of the 

isothermal period in secondary drying for a shelf temperature of 20 °C, in case of product processed 

with and without controlled nucleation. As an illustration, considering a target moisture content 

lower than e.g., 0.015 kg/kg wb in Figure III.5.6 , the rejected vials will be about 1 % if uncontrolled 

nucleation is used. In contrast, due to the slower kinetics, the selected process time will not be 

sufficient to reach the target moisture content in most of the vials processed with controlled 

nucleation. 

 

CONCLUSIONS  

Desorption in secondary drying was found to be influenced by the product temperature and structure. 

In particular, the desorption kinetics of both mono and multilayer appeared to be faster at higher shelf 

temperature and when nucleation was not controlled during the freezing step. The variance of the 

characteristic desorption times for mono and multilayer was estimated and used to predict the 

moisture content distribution in the vial batch for a fixed shelf temperature and operating time. The 

proposed approach can be used to perform a risk assessment-based design of the secondary drying 

step, by calculating the percentage of rejected vials with a final moisture content higher than the 

target value at specific operative conditions. 
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III.5.3 Take-home message 

 

   

 

 

 

 

 

 

 

The research conducted until now was focused on the understanding and quantification of the 

mechanisms responsible for the heat and mass transfer variability during primary and secondary 

drying, and thus causing heterogeneity in the final product quality. The next and last step of this Ph.D. 

project (presented in Paper III.6 ) will consist in the implementation of all the previously studied 

mechanisms responsible for heat and mass transfer variability in a multi-vial, dynamic mathematical 

model.  

 

 

 

 

 

 

 

� The multilayer model of Trelea et al. (Trelea et al., 2016) was used to 

describe the evolution of the moisture content in the product during 

desorption in secondary drying. Desorption of the monolayer, stronger 

bound to the product matrix, resulted to be much slower than the 

multilayer.  

� The use of a higher shelf temperature during secondary drying led to a 

faster desorption of both mono and multilayer. Furthermore, desorption is 

product processed with controlled nucleation resulted to be slower than in 

product processed with uncontrolled nucleation.  

� The variability of the characteristic desorption times for mono and 

multilayer was determined and used to predict the moisture content 

distribution in the vial batch for a fixed shelf temperature and operating 

time. Finally, thus original approach was used in the design of the 

secondary drying step to evaluate the risk of failure of the process (% of 

vials rejected). 
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III.6 Multi-vial, dynamic mathematical model to design 

freeze-drying process of pharmaceuticals through a 
risk-based approach 

 
 

 

III.6.1 Context and objectives 

The ultimate aim of the application of the FDA's Quality by Design approach in freeze-drying is to 

obtain safe, effective and high quality pharmaceutical products. One of the most useful tool to pursue 

this goal is the design space, which is the multidimensional combination and interaction of input 

variables and process parameters leading to the target quality attributes within the vial batch under a 

controlled risk. Nowadays, construction of the design space is more and more often performed by 

using mathematical models, which are often based on average values of the model parameters (e.g., 

vial heat transfer coefficient, product resistance, characteristic desorption time). However, the work 

performed during this Ph.D. project (presented in Papers III.1-5) showed that several mechanisms 

are responsible for the heat and mass transfer variability during freeze-drying. These mechanisms 

were quantified and implemented into the mathematical model used to predict the variability of the 

product temperature, ice fraction and moisture content, for a more conscious selection of the 

operating conditions of freeze-drying cycles.  

 

 

 

 

 

 

 

 

 

 

 

 

Objective 
The aim of this work was to develop a multi-vial dynamic mathematical model of 

freeze-drying process, including all the previously analysed mechanisms 

responsible for heat and mass transfer variability (Papers III.1-5) during the 

process and thus for the product quality heterogeneity. The model was used to 

predict the product temperature, the ice fraction, and the moisture content 

evolution during the process for several vials in the batch, and to propose an 

approach for design of the freeze-drying cycle of pharmaceuticals at known risk of 

failure. In the near future, the model will be used for the definition of the design 

space of the process. 
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NOMENCLATURE 

�� Water activity  

� Cross sectional area (�²) 
�	 Parameter of Equation III.6.5  (�	��-
�	) 
�� Parameter of Equation III.6.5  (�	���
�		���	) 
�# Heat capacity (�	
�	) 
�� Activation energy (�	���	
�	) 
�� Latent heat of sublimation (�	���	) 
�� Mass fraction of ice in the product 


 Heat transfer coefficient (�	���
�	) 
�¿P Gordon-Taylor constant (Equation III.6.24) 

� Layer thickness (�) 
��  Water vapour flow rate (��	��	) 
� Mass of solids in the product (��) 
Îº Molecular mass of water (�	�"��	) 
2�  Number of vials 

� Pressure (��) 
��  Heat flow rate (�) 
 ! Ideal gas constant (�	
�	��"��	) 
 # Product resistance (��	�²	�	���	) 
 #$ Parameter of Equation III.6.10  (��	�²	�	���	) 
 #	 Parameter of Equation III.6.10 (��	�	�	���	) 
% Time (�) 
& Temperature (
) 
= Volume (��) 
' Fraction of moisture content 

Greek 

� Mass transfer parameter (�	���		
�	) 
�	,�� Shape parameters of Equation III.6.14  

) Thermal conductivity (�	��		
�	) 
. Characteristic desorption time (�) 
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Subscripts and Superscript 

              0 Initial 

0 Bottom 

1 Contact 

� Chamber 

�2 Condenser 

3 Dried 

34� Desorption 

45 Equilibrium 

� Frozen 

6 Interface 

7 Ice 

Î Monolayer 

� Product 

9 Radiation 

  Rail 

94� Reference 

� Solute 

: Shelf 

�;/ Sublimation 

& Top 

< Vapour 

= Vial 

� Water 

� Wall 
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III.6.2 Paper 

INTRODUCTION 

Freeze-drying is a batch process used to dry heat sensitive products by means of sublimation of the 

previously frozen product (primary drying), followed by desorption of the unfrozen water (secondary 

drying) (Jennings, 1999; Adams, 1991). Due to the use of low temperature and pressure, freeze-

drying process is often the only solution to produce pharmaceutical and biological products (e.g., 

vaccines) with acceptable characteristics of stability, shelf-life, and potency. In order to meet the 

patient needs and the regulatory requirements regarding product quality, product and process 

development department in freeze-drying process development is presently shifting from the 

traditional Quality-by-Testing (QbT) to the new Quality-by-Design (QbD) approach (Nail and 

Searles, 2008; Mockus et al., 2011; Yu, 2008), which states that the quality has to be built into the 

process by design and not only tested into final product (Nail and Searles, 2008). 

In this regard, the concept of "design space" is gaining popularity as a tool for cycle development and 

scale-up as well as for the implementation of QbD in freeze-drying of pharmaceutical products. The 

design space is defined in the guidance ICH Q8 (Food and Drug Administration, 2009) as: “the 

multidimensional combination and interaction of input variables and process parameters that have 

been demonstrated to provide assurance of quality". Design spaces can be developed for both the 

primary and secondary drying steps of the freeze-drying process. The classical design space of the 

primary drying step illustrates the relationship of two critical process parameters, the product 

temperature and the sublimation rate, with the operating variables of the process, i.e., the chamber 

pressure and shelf temperature, usually at the end of sublimation. In order to define the "safe area" of 

the design space for the process development, two specific constraints have to be considered: (i) the 

maximum capability of the equipment, that is the maximum sublimation rate supported by the 

equipment at a given pressure and (ii) the maximum allowed product temperature to avoid product 

damage (i.e., the collapse of the product cake). Furthermore, Pisano et al. (Pisano et al., 2012) 

developed a design space for the secondary drying step, which was described in terms of shelf 

temperature and operating time leading to a product temperature lower than the maximum allowed 

value and a moisture content lower than the target one.  

Recently, several mathematical models (Giordano et al., 2011; Pisano et al., 2013; Fissore et al., 

2011a; Pisano et al., 2012a; Mortier et al., 2016) were developed for the prediction of the product 

temperature, the sublimation rate and the desorption rate during freeze-drying and used for the 

calculation of the design spaces of primary drying and secondary drying. Most of these models were 

based on average values of the model parameters (e.g., product resistance, vial heat transfer 

coefficient, characteristic desorption time) over the vial batch, whereas only few of them took into 

account the uncertainty of the parameters due to differences in heat and mass transfer mechanisms  
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Figure III.6.1 : Schematic representation of heat and mass transfer during primary drying  
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between vials processed in the same or in different batches (Mortier et al., 2016; Pisano et al., 2013; 

Giordano et al., 2011). The understanding and quantification of these mechanisms responsible for 

product quality variability, previously performed in Papers III.1-5, led to a better prediction of the 

process parameters distribution and consequently of the risk of failure associated to the process.  

Our goal in the present study was to develop a multi-vial dynamic mathematical model for freeze-

drying for the process design, taking into account sources responsible for heat and mass transfer 

variability among vials, previously presented in dedicated Papers (III.1-5 ). The developed model 

was then used to predict the evolution of the product temperature, the ice fraction and the moisture 

content in about 100 vials during primary and secondary drying for three given cycles considering a 5 

% sucrose solution and a pilot freeze-dryer. 

Finally, a new risk-based approach for the design of the primary and secondary drying steps of the 

freeze-drying process was proposed, which includes the evaluation of the percentage of vials 

potentially rejected for specific combinations of operating variables. In future work, model 

predictions of the product temperature, sublimation rate and desorption rate will be validated with 

experimental data and the model will be used to construct the design space of the process.  

 

MATHEMATICAL MODEL 

 Hypotheses 

A dynamic mathematical model simulating a large number of vials during freeze-drying was 

developed based on the following assumptions: 

H1 - Heat and mass transfer mechanisms considered: Figure III.6.1  gives a schematic representation 

of the considered heat and mass transfer phenomena. Heat transfer was described to take place 

between some key points of the system: from the shelf to the top and bottom of the vial (heat flow 

contributions ��I�, Figure III.6.1 ) and from the wall and the rail to the lateral vial wall exposed to 

them (respectively heat flow contributions ��º� and ��¿�, Figure III.6.1 ). Mass transfer in primary 

drying was considered to take place from the sublimation front, through the dried product, the drying 

chamber, and finally to the condenser (mass flux ��  , dotted blue arrow in Figure III.6.1 ); 

H2 - Process dynamics: Transfer phenomena characterized by a fast dynamics, e.g., heat transfer in 

the frozen and dried layer, the mass transfer in the gas, are assumed to be in pseudo-steady state and 

thus are described by algebraic equations. Slow dynamics phenomena, e.g., sublimation front 

movement and desorption, are considered to be time dependent and are described by differential 

equations;  
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H3 - Desorption during primary drying: At the temperature commonly used in primary drying 

(usually < -10 °C for pharmaceutical products), the desorption kinetics of the water bound to the 

dried structure is very slow. Thus, desorption was not assumed to take place until completion of 

sublimation during the primary drying step, as stated by the following condition: 

 

�� �@F = 0 if ��>0    Equation III.6.1 

 

where �� �@F is the desorption flow rate and �� is the fraction of ice. Based on previous experimental 

data (Paper III.5) , an average initial moisture content of 0.07 kg/kg wb was considered at the 

beginning of secondary drying (i.e., after the shelf temperature ramp from the primary drying set 

point to the secondary drying set point). 

H4 - Sublimation interface: A flat sublimation frozen-dried layer interface was considered; 

H5 - Convection heat transfer: Convection heat transfer was not considered. A recent work of Pikal 

et al. (Pikal et al., 2016), and the use of our previous developed model of heat transfer during 

sublimation (Paper III.2 ) showed that convection can be considered as negligible at the low 

pressures typically encountered during the freeze-drying of pharmaceuticals (usually below 10 Pa);  

H6 - Presence of the stopper: Based on our previous data (Paper III.4 ) and in agreement with a 

study of Pikal et al. (Pikal et al., 1984), the presence of the stopper was considered to add negligible 

resistance and only the dried product layer was considered to impose a resistance to the water vapour 

flow rate from the sublimation interface to the drying chamber; 

H7 - Radiation phenomena: It was considered that the solid surfaces are opaque, that the radiation 

and the absorption occur in the same spectral range and that the absorption and radiation of the low 

pressure water vapour are negligible. Under these conditions, the Stefan-Boltzmann equation was 

used to describe the radiation heat transfer between selected drying chamber components and the 

vials. 

 

 Operating variables 

The shelf and the total chamber pressure were assumed to be defined by the freeze-drying protocol 

and known at any moment.  

 

 Main equations of the model 

The heat flux received during the process by the vial is assumed to mainly serve for the ice 

sublimation during primary drying and for the water desorption in secondary drying. The evolution 

of product temperature &# during primary and secondary drying for a vial can be determined as: 
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�# �Pu�� = ��I� − ∆�FGH�� FGH − ∆��@F�� �@F  Equation III.6.2 

 

where �� FGH and �� �@F are the mass flow rates respectively during sublimation and desorption, ∆�FGH 

and ∆��@F are the latent heat of sublimation and desorption, ��I� is the heat flow rate between the 

shelf and the vial, and �# is the heat capacity of the vial with the product contained therein. 

 

Heat transfer between the shelf and the vial 

The heat transfer between the shelf and the vial ��I� 	depends on the difference between shelf and 

product temperature	&I and &#, and can be expressed in term of heat transfer coefficient 
I�:  

 

��I� = 
I� 	�J�(&I − &#)    Equation III.6.3 

 

being	�J� the bottom cross sectional area of the vial. The heat transfer coefficient 
I� 	can be defined 

as:  


I� = ² 	
»U(Z[)+

CÁ(�)
fÁ ³

�	
    Equation III.6.4 

where 
CÁ(�)
fÁ  is the heat transfer resistance of the ice layer, defined as the apparent thickness of the 

frozen layer over the thermal conductivity of the frozen product, whereas 
	

»U(Z[) is the resistance to 

heat transfer through the vial bottom. The term 
�(�X), known as vial heat transfer coefficient, 

includes three heat transfer contributions (Pikal et al., 1984; Pisano et al., 2011; Hibler and Gieseler, 

2012; Scutellà et al., 2017a): (i) the contact conduction between the bottom shelf and the vial via 

points of direct contact, (ii) the radiation from the top and bottom shelves and (iii) the conduction 

through the gas entrapped in the vial bottom curvature, which will depend on the vial depth of bottom 

curvature and the chamber pressure �X. Thus, the vial heat transfer coefficient 
�(�X) will depend on 

the vial bottom dimensions (contact area between the shelf and the vial ��  and depth of bottom 

curvature	�J�) and the chamber pressure �X  as: 

	

� = �	�� +
M + XYZ[

	QXYªeU«w Z[
    Equation III.6.5 

 

In Equation III.6.5 , 
M represents the radiation contribution of the top and bottom shelf defined as: 

 


M = (�PI→� + �JI→�)(&I + &#)(&I� + &#�)   Equation III.6.6 
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with �JI→� calculated in function of the parallel plate configuration between the shelf and the vial, 

�PI→� considered to be equal to the emissivity of the vial, as defined in Paper III.1 . 

 

Mass transfer during primary drying 

During primary drying the sublimation flux can be defined by the difference between the equilibrium 

pressure at the ice-vapour interface �yo and the partial vapour pressure in the chamber �y[ : 

 

�� FGH = vq
su (�yo 	− �y[)     Equation III.6.7 

 

where �yo can be calculated from the Clausius Clapeyron equation: 

 

�yq = exp�
ÚS\Û.Ú
�u Q�§.§¦	�

    Equation III.6.8 

 

�y[ is defined as: 

 

�Zw[
�� = sb	P[

�[ 	ÝÞ
(∑ (�� FGH +�� �@F) − �� Xp)pU	    Equation III.6.9 

 

with &X  and =X  are the chamber temperature and volume,  ! is the ideal gas constant, �� Xp  is the 

mass flow rate from the chamber to the condenser and Îº is the molecular mass of the water. Only 

the mass transfer resistance of the dried layer  # was considered, which depends linearly on the dried 

layer thickness (Paper III.4)  (Pikal et al., 1984; Pikal and Shah, 1990): 

 

 # =  #� + �� #S    Equation III.6.10 

 

Finally, the fraction of ice �� 	contained in the product evolves with time as a function of the 

sublimation rate �� FGH as: 

 

���
�?Á
�� = −�� FGH    Equation III.6.11 

 

with ��� 	equal to the initial mass of ice in the product. 

 

 Mass transfer during secondary drying 
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The multilayer model, previously presented by Trelea et al. (Trelea et al., 2016), and in Paper III.5 , 

was used to describe the desorption kinetics in secondary drying. The main hypothesis of this model 

is that the moisture may be contained into the product in different layers more or less bound to the 

solid matrix, which may present different desorption kinetics. Considering the presence of 2 layers 

(with 1=monolayer, 2=multilayer), the total moisture content ' in the product can be defined as the 

sum of the moisture fractions 'o contained in each layer: 

 

' = ∑ 'o�o÷	      Equation III.6.12 

 

The desorption kinetics for the i-layer was described as: 

 

 6 = 1,2				                          ��q�� =
	
�q 		°'o

@� − 'o±                        Equation III.6.13 

 

where .o is the characteristic desorption time, and 'o@� the equilibrium moisture content of the water 

in the i-layer determined from the sorption isotherm. In this model, the equilibrium moisture content 

'@�	at a given water activity ��	was described by using the Guggenheim-Anderson-Boer (GAB) 

model: 

 

'@� = ���S�Y�Ç
(	��S�Ç)(	Q�S�Ç(�Y�	))    Equation III.6.14 

 

with 'Ý equal to the monolayer moisture content and �		and �� shape parameters of the model.  

Furthermore, the characteristic desorption time .o of each compartment is assumed to depend on the 

product temperature through an Arrhenius type equation: 

 

.o = .M@?q4
�	�c�b(

S
�u�

S
��T�)    Equation III.6.15 

 

where .M@?q is the characteristic desorption time of the i-layer at reference temperature and �� is the 

activation energy, considered equal for the two layers. 

Finally, the desorption flow rate �� �@F	can be defined as: 

 

�� �@F = �F
	

(	��)²
��
��     Equation III.6.16 
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Table III.6.1: Parameters used in the model. SD: standard deviation. Parameters for which the SD is given are 
considered as normal distributed in the model. (continued) 
 

 Symbol Value ± SD Units 

V
ia

l c
ha

ra
ct

er
is

tic
s Vial bottom area 	�J� 2.07 10-4 �² 

Vapour-product interface area �o 1.78 10-4 �² 

Vial-shelf contact area ��  (1.67 ± 0.4) 10-5 �² 

External radius of the vial 9s 16.25 10-3 �² 

Depth of bottom curvature �J� (1.23 ± 0.34)  10-4 � 

Height of the vial ��  31 10-3 � 

F
re

ez
e-

dr
ye

r 
ch

ar
ac

te
ris

tic
s Volume of the chamber =X  0.12 �� 

Height of the rail �s 22 10-3 � 

Number of vials 2�  2310 - 

Emissivity of the shelves and rail ÀI, Às 0.113 - 

Emissivity of the wall Àº 0.084 - 

Temperature of the walls &X 276 
 

P
hy

si
ca

l p
ro

pe
rt

ie
s 

an
d 

 c
on

st
an

ts
 

Latent heat of sublimation ∆�FGH 2.8 106 �	���	 
Latent heat of desorption ∆��@F 2.3 106 �	���	 

Ice conductivity )� 2.23 �	��		
�	 
Gordon-Taylor constant 

 (Equation III.6.24) 
�¿P 0.2721  

Vapour conductivity at ambient 

pressure 
)y 0.025 �	��		
�	 

Ideal gas constant  ! 8.314 ��	
�	��"��	 
Stefan-Boltzmann constant σ 5.67 10-8 �	
�-��� 
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Table III.6.1: Parameters used in the model. SD: standard deviation. Parameters for which the SD is given are 
considered as normal distributed in the model.  
 

 Symbol Value ± SD Units 

P
hy

si
ca

l p
ro

pe
rt

ie
s 

an
d 

co
ns

ta
nt

s 

Glass transition temperature of the 

solids (Equation III.6.22) 
&!,F 347 
 

Glass transition temperature of the 

water (Equation III.6.22) 
&!,� 135 
 

Glass transition temperature of 

maximally freeze-concentrated 

solution  

&!′ -32 °C 

H
ea

t t
ra

ns
fe

r 

Vial heat transfer coefficient 

parameters (Equation III.6.5 ) 

�	 2.20 105 �	��-
�	 
�� 0.667 �	���
�		���	 

Visualization factors  

for central vials 

�I→� 0.11 - 

�º→� 

�s→� 
0 - 

Visualization factors  

for edge vials 

�I→� 

�s→� 

0.11 - 

�º→�  0.08 - 

M
as

s 
tr

an
sf

er
 

Product resistance parameters 

(Equation III.6.9 ) 

 #�  59 ± 75 ���	�²�	���	 

 #S  (1.8 ± 2.0) 104 ���	�	�	���	 

Characteristic desorption time at 

reference temperature for mono (1) 

and multilayer (2) 

.M@?S  56.39 ± 12.40 � 

.M@?Y  3.80 ± 0.83 � 

Activation energy �� 49.61  ��	�"��	 
Monolayer moisture content 'Ý 0.028  ��	���	(�/) 

Parameters Equation III.6.13 
�	 1.581 - 

�� 9.10 - 

Mass transfer parameter � 4 104 �	���		
�	 
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Mass transfer from the chamber to the condenser 

The mass transfer from the drying chamber to the condenser was described by using a dynamic 

model proposed by Trelea et al. (Trelea et al., 2015), in which the mass flux from the chamber  to the 

condenser depends on the total chamber pressure �X and on the water vapour partial pressure at the 

interface in the vial (�yU) and in the condenser (�y[r) as : 

 

�� Xp = 	
�P[ ln	(

Z[�Zw[r
Z[�ZwU

)   Equation III.6.17 

 

where �  is a parameter that depends on the geometry of the pathway between the freeze-dryer 

chamber and the condenser, and &X  is the temperature of the chamber considered equal to the 

temperature of the wall. 

Values of relevant coefficients and parameters used in the model are reported in Table III.6.1. 

 

Analysis of the heat and mass transfer variability in freeze-drying 

Four sources of inter-vial product quality variability were identified:  

a) Variability of the vial geometry: The vial heat transfer coefficient between the shelf and the 

vial is influenced by two vial bottom dimensions, the shelf-vial contact area �� and the depth 

of bottom curvature �J� , as shown by Equation III.6.5 . Thus, differences in these 

dimensions among the vials can results in a variability of the heat transfer among the vials on 

the shelf. In the present study, the distributions of 
� at different chamber pressures over the 

vial batch were calculated based on the normal distributions of ��  and �J�, as previously 

proposed in Paper III.1 .  

b) Edge vial effect: It is well known that the heat flow rate received by the vials depends on the 

position of the vials on the shelf. Vials located at the periphery of the shelf receive an 

additional heat transfer by radiation from the wall and the rail (if present) and conduction 

through the gas between the chamber wall, the rail and the wall of the vials, as previously 

analyzed in Paper III.2 . This phenomenon is known in literature as edge vial effect. In the 

present study, the conduction through the gas between the chamber wall, the rail and the wall 

of the vials not taken into consideration, whereas the additional radiation heat flow rates 

from the wall and rail to the edge vials were predicted. Thus, Equation III.6.2  becomes for 

edge vials: 

 

�# �PU�� = ��I� + ��º� + ��s� − ∆�FGH�� FGH − ∆��@F�� �@F    

Equation III.6.18 
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Figure III.6.2 : Loading configuration (“bottomless tray”) of the vials on the shelf considered in 
the simulations  
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The contributions ��º� and ��s� are the radiation heat flow rates from the wall and the rail, 

defined through the Stefan-Boltzmann equation: 

 

��s� = �s→� 	,�£s(&s- − &Z-)   Equation III.6.19 

��º� = �º→� 	,�£º(&º- − &Z-)   Equation III.6.20 

 

with	�£s and �£º are the lateral area of the vial exposed to the rail and the wall: 

 

�£s = 2�	9�(ℎs)     Equation III.6.21 

�£º = 2�	9�(ℎ� − ℎs)    Equation III.6.22 

 

where 	 is equal to the fraction of vial lateral area exposed to both the wall or to the rail (if 

present). 

The terms ��º� and ��s� may be more or less important in Equation III.6.18, depending on 

the vial loading configuration used.  

As example, Figure III.6.2  shows an array of vials disposed in a typical hexagonal 

arrangement and loaded by using a "bottomless tray" configuration: a rail surrounds the vial 

batch and shields 70 % of the lateral wall of edge vials. In this configuration, the vials 

receive radiations from both the walls and the rail. Furthermore, the vials can be classified in 

four different groups: edge vials located at the corner of the shelf (H, 	 = 0.75),  edge vials 

more exposed to the wall and/or rail  (C, 	 = 0.50), vials less exposed to the wall and/or the 

rail (E, 	 = 0.30), vials located in the centre of the shelf and not exposed to the wall and rail 

(M, 	 = 0). The visualization factors between the rail and the vial �s→� and between the 

wall and the vial �º→� 	 were calculated considering the parallel plate configuration 

(according to the simplified radiation model for vial freeze-drying proposed in Paper III.2) : 

 

6 =  ,�			       �o→� = 	
S
TqQ

S
TU�	

                     Equation III.6.23 

 

where 4s,	4º	and 4� represents the emissivity of the rail, the wall and the vial glass. 

c) Variability of the mass transfer resistance: In Paper III.4  the product resistance variability 

in a large batch of vials was quantified in terms of normal distributions of the parameters  #� 
and  #S (Equation III.6.10). The normal distribution of these parameters was truncated to 

positive values. 
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Table III.6.2: Description of the cycles I, II and III simulated in this work 

 

Cycle 

Primary Drying Secondary drying 

Time �X &I 
Maximum time 

considered 
�X &I 

I 

84 h 6 Pa 

-40 °C 

45 h 6 Pa 

0 °C 

II -27 °C 18 °C 

III -10 °C 40 °C 
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d) Variability of the desorption kinetics: The variability of the desorption kinetics responsible 

for the final moisture content heterogeneity was previously quantified in terms of normal 

distributions of the characteristic desorption times at reference temperature .M@?o (Equation 

III.6.15 ), as proposed in Paper III.5 .  

All the average values and the standard deviations of relevant coefficients used in the model, reported 

in Table III.6.1, were experimentally validated in previous dedicated studies (Paper III.1-5).  

 

Prediction of the risk of the process 

The developed mathematical model was used to propose a risk-based approach for the design of the 

primary and secondary drying steps of the freeze-drying process. Firstly, the model was used to 

calculate the product temperature, ice fraction and moisture content evolution for a wide range of 

combinations of operating variables (i.e., chamber pressure and shelf temperature), considering the 

selected freeze-dryer and loading configuration. Then, the risk of failure of the primary drying step 

was calculated in terms of vials potentially rejected by considering two main constraints: (i) the 

product temperature had to be maintained below a critical value (i.e., the glass transition temperature 

of maximally freeze-concentrated solution  &!B of the selected product); (ii) the sublimation had to be 

completed at the end of primary drying, i.e., the fraction of ice had to be equal to zero. Hence, the 

range of acceptable combinations of operating variables (i.e., chamber pressure and shelf 

temperature) was identifies based on the target level of risk.  

For the design of the secondary drying step, the constraints considered were: (i) the final moisture 

content had to be equal or lower than the target moisture content and (ii) the temperature at any 

moment had to be lower than the glass transition temperature for dry product &!. The value of &! 

strongly depends on the current moisture content and was calculated by using the Gordon-Taylor 

equation as previously proposed in literature (Pisano et al., 2012; Passot et al., 2012). 

 

&! = �Pb,ÇQ¾�(	��)Pb,d
�Q¾�(	��)      Equation III.6.24 

 

where &!,�  and &!,F  are the glass transition temperature of the water and the solute and �¿P  is a 

constant. Hence, the range of acceptable combinations of operating variables (i.e., shelf temperature 

and operating time) was identifies based on the target level of risk. The chamber pressure was not 

considered for the design of the secondary drying, as it does not have a significant effect on 

desorption for the range of pressure typically used in freeze-drying (< 10 Pa) (Pikal et al., 1990). 
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Figure III.6.3: Product temperature profiles predicted during the freeze-drying cycles performed at a chamber pressure of 6 Pa and at a 
shelf temperature during the primary and secondary drying steps respectively of -40 °C and 0 °C (cycle I), -27 °C and 18 °C (cycle II) 
and -10 °C and 40 °C (cycle III). The black solid thin lines represent the corner vials (Figures A, D, G), the red dotted lines the edge vials 
C in contact with the rail (Figures A, D, G), the green dashed lines the edge vials E not in contact with the rail (Figures B, E, H), the 
black dashed lines the central vials M (Figures C, F, I), the red bold solid line the shelf temperature. The vertical dotted black lines 
represent the end of primary drying. The temperature -32°C corresponds to the glass transition temperature Tg’ of the product.  
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Numerical solution 

The developed model was solved by means of Matlab R2014b software equipped with the Statistics 

Toolbox (The MathWorks, Inc., Natick, MA). This commercial software was ran on a PC, equipped 

with Intel(R) Core(TM) i7-4600U CPUs, at 2.1 GHz, 64-bits, with 8 Gb of RAM, under Windows 

10. The function ode15s( ) in Matlab was used to solve the set of ordinary differential equations of 

the model. The analysis on the effect of the heat and mass transfer variability on the process 

parameters relevant for product quality (e.g., product temperature) during freeze-drying was 

performed by using the Monte Carlo method, which is often used in literature to simulate uncertainty 

of the parameters in mathematical model of freeze-drying (Mortier et al., 2016; Bosca et al., 2015; 

Giordano et al., 2011). This method consisted in simulation of batches of 100 vials with random 

normal distributions of the considered model parameters (�X ,�J�,  #�,  #S, .M@?	 and .M@?�). Due to 

computer limitations, the number of simulated vials (100) was significantly smaller than the actual 

number of vials in the freeze-dryer (2310, Table III.6.1). The number of simulated representative 

vials in each category (corner vial H, edge vial C in contact with the rail, edge vial E not in contact 

with the rail, central vial M; Figure III.6.2 ) was proportional to the real number in the considered 

loading configuration and their contributions to the total mass flux was weighted accordingly.   

 

Simulated system 

In the present work, the model was used to simulate freeze-drying process performed in the pilot 

freeze-dryer REVO (Millrock Technology, Kingston, United States). The equipment was constituted 

of a drying chamber equipped with three shelves and a condenser running at temperature of -75 °C. 

A number of 770 glass tubing vials (Müller + Müller, Holzminden, Germany) were supposed to be 

loaded on each shelf. The vials had a total volume of 3 mL and were all filled with 1.8 mL of 5 % 

aqueous sucrose solution. Furthermore, the vial array was surrounded by a metallic rail (shielding 70 

% of the lateral wall of the vials) and arranged on the shelf as previously shown in Figure III.6.2 . 

The shelf was considered to be at a temperature of -50 °C at the beginning of primary drying. 

Relevant characteristic of the equipment and vial geometry, as well as product properties are reported 

in Table III.6.1. Then, the evolution of product temperature, ice fraction, vapour pressure in the 

chamber and moisture content during desorption were predicted for three main cycles (named I, II 

and III), performed at a chamber pressure of 6 Pa and different shelf temperatures. The cycles are 

described in Table III.6.2. Finally, the risk of failure of primary and secondary drying, expressed as 

percentage of vials potentially rejected, was calculated for the selected product and freeze-dryer and 

for selected combinations of chamber pressure and shelf temperature. Chamber pressures between 4 

and 10 Pa and shelf temperatures between -40 °C to -10 °C in primary drying, and 0 °C and 40 °C in 

secondary drying were considered. 
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Figure III.6.4: Predicted values of ice fraction contained in the product during the primary drying step of freeze-drying cycles performed at 
a chamber pressure of 6 Pa and at a shelf temperature during the primary drying step of -40 °C (cycle I), -27 °C (cycle II) and -10 °C (cycle 
III). The black solid thin lines represent the corner vials (Figures A, D, G), the red dotted lines the edge vials C in contact with the rail 
(Figures A, D, G), the green dashed lines the edge vials E not in contact with the rail (Figures B, E, H), the black dashed lines the central 
vials M (Figures C, F, I). The vertical dotted black lines represent the end of primary drying.  
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The capability of the pilot freeze-dryer was not considered to be limiting in the selected cycles. 

 

PRELIMINARY RESULTS 

Prediction of process parameters 

Figure III.6.3  shows the simulated product temperature during the cycle I, II and III for a corner vial 

(H), edge vials in contact (C) and not in contact with the rail (E), and central vials (M). Singles lines 

represent the thermal history evolution for each simulated vial. The product temperature in edge vials 

(and especially in vials H and C) was found to be higher than in most of the central vials, as they 

received additional radiation contributions from the wall and the rail. However, the model does not 

take into account the additional conduction through the gas taking place between the chamber walls, 

the rail and the walls of the edge vials, which strongly contributes to the heat transfer variability 

between edge and central vials, as previously found in Paper III.2.  Additional heat flux received by 

the edge vials is thus underestimated in these simulations. 

When the product temperature rose and approached the shelf temperature, sublimation was 

completed as the heat received by the vials served to increase the product temperature. The abrupt 

increase of product temperature at the end of sublimation was due to the assumption of the planar 

interface, as no intra-vial heterogeneity was considered for the heat and mass transfer. Among the 

three simulated cycles, the sublimation was not completed for all vials within the fixed primary 

drying time only in cycle I performed at -40 °C (Figure III.6.3A, B and C), and it continued for the 

remaining vials during the secondary drying step at higher shelf temperature (0 °C). In contrast, in 

cycle II and III carried out at higher shelf temperatures (-27 °C and -10 °C), sublimation was 

completed within 84 h or less, and the vials approached the temperature of the shelf before the 

transition between primary and secondary drying. However, the shelf temperature and chamber 

pressure used in cycle III led to a product temperature in most of the vials above the critical value 

(i.e., above -32 °C), which may cause the collapse of the product. 

The primary drying step can be well described also by the evolution of the ice fraction in time, as 

shown in Figure III.6.4 . Sublimation can be defined as completed when no more ice is contained 

into the product (��=0). Edge vials (and especially vials C in contact with the rail) completed 

sublimation in primary drying before most of the central vials, because they were processed at higher 

product temperature. As previously evidenced by the product temperature in Figure III.6.3 , 

sublimation in cycle I carried out at lower shelf temperature (-40 °C) was not completed and ice was 

still present in most of the vials at the end of primary drying. In contrast, the ice fraction �� was found 

to approach 0 in 84 h or less in cycle II and III when higher shelf temperatures (-27 °C and -10 °C) 

were applied. 
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Figure III.6 .5: Predicted values of total chamber pressure (bold red line) and the partial vapour 
pressure (dotted black line) during the primary and secondary steps of freeze-drying cycles 
performed at a chamber pressure of 6 Pa and a shelf temperature of -40 °C and 0 °C (cycle I) , -27 
°C and 18 °C (cycle II) and -10 °C and 40 °C (cycle III).  

 
Figure III.6.6 : Predicted moisture content profile during the secondary drying step of cycles performed at a 
chamber pressure of 6 Pa and at a shelf temperature of 0 °C (cycle I), 18 °C (cycle II) and 40 °C (cycle III). 
The black solid thin lines represent the corner vials (Figures A, D, G), the red dotted lines the edge vials C in 
contact with the rail (Figures A, D, G), the green dashed lines the edge vials E not in contact with the rail 
(Figures B, E, H), the black dashed lines the central vials M (Figures C, F, I), the red bold solid line the shelf 
temperature. The vertical dotted black lines represent the beginning of secondary drying.  
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The model was also used to predict the evolution of the partial vapour pressure �y[ 	during the process 

for the three considered cycles, as shown in Figure III.6.5 . The partial vapour pressure �y[  value is 

usually close to the total chamber pressure during primary drying, as the gas in the drying chamber is 

mostly water vapour. For the cycle I (performed at low shelf temperature and chamber pressure), the 

model simulation showed that the �y[ remained lower than the total chamber pressure during primary 

drying, as the drying chamber was not saturated with water vapour. At 84 h, when the temperature of 

the shelf rose for the transition to secondary drying, sublimation continued and the equilibrium 

vapour pressure increased close to the chamber pressure values. In contrast, in cycle II and III the 

drying chamber was saturated with water vapour in primary drying and the �y[value was close to the 

total chamber pressure. At the end of primary drying, the value of �y[ decreases slowly due to the 

heterogeneity in the batch, as vials differently located on the shelf completed sublimation at different 

times. Finally, the model was used to predict the evolution of the moisture content ' in the vial batch 

during secondary drying of cycles I, II and III respectively performed at 6 Pa and at a shelf 

temperature of 0 °C, 18 °C and 40 °C. Results are shown in Figure III.6.6 . In all the simulated 

cycles, vials presented different profiles of moisture content due to the variability in the desorption 

kinetics. Figure III.6.6A, B and C shows that the target moisture content (1.5 %) was not reached in 

most of the vials within the specified secondary drying time (45 h) in cycle I. In contrast, in cycles II 

and III desorption was successfully carried within a secondary step of 45 h and all the vials reached a 

moisture content lower than the target value of 1.5 %.  

 

Risk assessment for a freeze-drying cycle  

The developed model was used to predict the risk of failure of the process in terms of percentage of 

vials potentially rejected for different combinations of operating variables (shelf temperature, 

chamber pressure, operating time). Four different risks responsible for vial rejection were considered 

in primary and secondary drying: (i) product temperature higher than the critical value (&!B) during 

primary drying; (ii) sublimation not completed at the end of primary drying; (iii) product temperature 

higher than the critical value (&!) during secondary drying; (iv) final moisture content in the product 

higher than the target value at the end of secondary drying. Based on these constraints, potential vial 

rejection of the primary and secondary drying steps were defined to select the best cycle at the 

maximum allowed risk (set in the present work as 1 %).  Figure III.6.7  shows the vial rejection for a 

primary drying step, due to a product temperature higher than 	&!B   (Figure III.6.7A ) and to the 

sublimation not completed at the end of primary drying (Figure III.6.7B ) in function of the chamber 
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Figure III.6.7 : Potential vial rejection (%) in primary drying performed at different chamber 
pressures and shelf temperatures due to (A) a product temperature higher than the critical value 
(Tg’) and (B) sublimation not completed after 84 h of primary drying. The arrows evidence the 
cycles I, II, and III.  

 

 

 

 

 
Figure III.6.8 : Potential vial rejection (%) due to (A) a product temperature higher than the 
critical value (&!) during the whole duration of the secondary drying step and (B) product moisture 
content higher than the target value (1.5 %) for different shelf temperatures and operating times. 
Red arrows evidence the cycles I, II, and III.  
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pressure and shelf temperature and for a given operating time (84 h). Typical ranges of chamber 

pressure and shelf temperature used in the pharmaceutical industry were explored, respectively 

between 4 and 10 Pa, and -40 °C and -10 °C. Figure III.6.7A  shows that, if a shelf temperature 

higher than -27 °C is used during primary drying, the vial rejection become higher than 1 % for most 

of the pressures tested. The vial rejection can be evaluated for the previously considered cycles I, II 

and III (shown by the white arrows in Figure III.6.7 ). Cycle I and II will not lead to a temperature 

higher than the critical value during primary drying, and no vials will be rejected. In contrast, in cycle 

III the product temperature will be higher than &!B for about 55 % of the vials.  

Furthermore, for the primary drying time specified (84 h), a shelf temperature higher than -30 °C has 

to be considered to avoid the presence of ice at the end of the primary drying time. The sublimation 

will be completed in all the vials in the batch in the cycles II and III, whereas ice will be still present 

in 97 % of the vials in cycle I. 

 

Figure III.6.8 presents the risk of vial rejection of the secondary drying step due to a product 

temperature higher than &! (Figure III.6.8A ) and to a final moisture content in the product higher 

than the target value of 1.5 % (Figure III.6.8B ). A range of shelf temperature between 0 °C and 40 

°C was explored, and the pressure maintained constant at 6 Pa.  

Results show that the product temperature remains below the critical value whatever the shelf 

temperature tested during the whole secondary drying step. In contrast, the use of a shelf temperature 

of 0 °C in cycle I will lead to a vial rejection of 17 % due to a high final moisture content at the end 

of the secondary drying step (i.e., 45 h), whereas all the vial processed in cycles II and III will 

present a moisture content lower than 1.5 %. Thus, cycle II appeared to be the best cycle for the 

product and equipment selected, as will result in no vial rejection in both primary and secondary 

drying. 

 

The present work presents an original approach for the definition of the risk of failure of the process, 

i.e., the evaluation of the percentage of vials potentially rejected. Previous works included the 

uncertainty of the model parameters into mathematical models to predict the variability of the process 

parameters of primary drying step (i.e., product temperature and sublimation rate) (Pisano et al., 

2013; Mortier et al., 2016; Giordano et al., 2011). However, the risk of failure of the process was 

usually defined as probability that the temperature at the sublimation front exceed the critical value 

(e.g., &!′ ).  
Moreover, to our knowledge, the impact of the variability of the desorption kinetics parameter (i.e., 

characteristic desorption time) on the risk of failure of the secondary drying step (i.e., moisture 
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content higher than the target value and/or product temperature higher than the critical value) has 

never been investigated. 

The calculation of design spaces of primary and secondary drying based on this mathematical model, 

including the percentage of vials potentially rejected (similar to those shown in Figure III.6.7  and 

III.6.8 ) could be a powerful tool for the process design and scale-up. However, further work needs be 

performed to validate model predictions by comparison with experimental data.  

 

CONCLUSIONS AND PERSPECTIVES 

In this work, a multi-vial, dynamic mathematical model of the primary and secondary drying steps of 

the freeze-drying process was developed, including the heterogeneity of process parameters due to 

vial dimensions, position on the shelf and random nucleation process. Several mechanisms 

responsible for heat and mass transfer and thus for differences in the product quality were included in 

the model, in order to predict the variability of product temperature, ice fraction and moisture content 

among the vials on the shelf. The value and the distribution of key model parameters (i.e., the vial 

heat transfer coefficient, the product resistance, the characteristic desorption time at reference 

temperature and the different view factors between the vial and the wall, the shelf and the rail), were 

experimentally validated in previous works.  

The ultimate aim of the proposed model is the process development and optimization based on a risk 

assessment approach. In this regard, as an example of practical application, the model was used to 

calculate the risk of failure of the primary and secondary drying steps for a 5 % sucrose solution 

processed in a pilot freeze-dryer, expressed in terms of percentage of vials potentially rejected. The 

risks of the process considered were: the product temperature higher than the maximum allowed 

value in primary and secondary drying, the sublimation not completed within the selected operating 

time and a moisture content value higher than the target one at the end of secondary drying. 

In the future, the number of vials simulated will be increased and the sensitivity of the predicted 

percentage of vials potentially rejected to the number of simulated vials will be assessed. The model 

will be validated at pilot scale, in order to assure the robustness of the prediction of both the critical 

process parameters (e.g., product temperature) and of the percentage of vials potentially rejected. 

Design spaces of primary and secondary drying will be then calculated, to be used for the cycle 

transfer and scale-up of the process, e.g., by simulating different vial loading configurations and 

considering different equipment characteristics (e.g., equipment capability).  
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� In this work, a multi-vials, dynamic mathematical model of freeze-

drying process (i.e. primary and secondary drying steps) was developed 

including the variability of the heat and mass transfer parameters 

previously quantified in Papers III.1 and III.4-5 (i.e. 

�� , �J�,  #� ,  #S , .M@?� , .M@?S). The additional heat transfer contribution 

by radiation from the chamber walls and the rail to edge vials was also 

considered (Papers III.2-3); 

� The model was used to predict the variability of process parameters 

(e.g. product temperature) in three freeze-drying cycles performed at 

different shelf temperatures; 

� Finally, a new approach was proposed for the risk-based design of 

primary and secondary drying steps of the freeze-drying process based 

on different constraints, i.e. maximum allowed product temperature in 

primary and secondary drying, completion of the sublimation of the ice 

crystals at the end of primary drying and value of the final moisture 

content lower than the target one at the end of secondary drying. 

� In the future, the model will be validate with experimental data and 

used for the calculation of the design space of primary and secondary 

drying at known level of risk. 
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Objectives of this study 

Vaccines continuously make a significant contribution to prevent serious diseases worldwide and to 

improve the human health. Most of the produced vaccines are stable at very low residual moisture 

content, thus their production process involves a drying step. As the formulation of the vaccines is 

very heat sensitive, this drying step is generally performed at very low temperature by means of the 

freeze-drying process. 

To address the regulatory expectations regarding the quality of the product, the Quality-by-Design 

approach proposed by the US Food and Drug Administration is more and more often implemented 

into the production process of vaccines by pharmaceutical companies. The Quality-by-Design 

philosophy is based on the idea that the quality should be built into the product during the production 

process. To achieve this goal, it is of paramount importance to understand which are the critical 

parameters of the process that impact on the critical quality attributes of the product. With regard to 

the freeze-drying step, the main parameters that influences the critical quality attributes of a vaccine 

formulation (e.g., the potency of the product, the elegance of the dried cake, the final moisture 

content) are the product temperature, the sublimation rate and the desorption rate. An accurate 

prediction of the value and variability of these critical parameters could guide the selection of the 

operating variables of the process to obtain product batch of desired quality.  

In this context, this Ph.D. work focused on: 

1. Providing new insights in the understanding and quantification of the main sources responsible for 

the variability of the critical process parameters, and thus of the heterogeneity of the quality attributes 

in the final batch of products; 

2. Using the acquired knowledge to deliver operational protocols and tools to the industrial partner 

(GlaxoSmithKline Vaccines), in order to guide the design and scale-up of the freeze-drying process 

of vaccines. 

"There are two possible outcomes: if the result confirms  

the hypothesis, then you've made a measurement. If the result 

 is contrary to the hypothesis, then you've made a discovery".  

- Enrico Fermi 
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Figure IV.1: Schematic presentation of the main results obtained in this Ph.D. project.

Freeze-drying process development: use of a dynamic mathematical model to predict 
the risk of product rejection (Paper III.6) 

 
(i) The sources responsible for heat and mass transfer variability during the process and thus 
of product quality heterogeneity, investigated in Papers I-V, were included in a multi-vial, 
dynamic mathematical model of freeze-drying.  
 
 (ii) The model was used to design the primary and secondary drying steps at a given risk of 
failure for a 5 % sucrose solution processed in a pilot freeze-dryer. The risk of failure of the 
process was expressed in terms of percentage of vials potentially rejected.  
 

Impact of the vial geometry variability on the 
heat transfer in freeze-drying process 

 (Paper III.1) 
 

(i) The heat transfer variability between the vials 
on the shelf is influenced by the vial bottom 
dimensions (shelf-vial contact area, and depth of 
vial bottom curvature); 
(ii) The variability in vial dimensions results in 
the definition of a product temperature safety 
margin of 2 °C. 

3D mathematical modelling to understand 
atypical heat transfer observed in vial freeze- 

drying (Paper III.2) 
 

(i) A 3D, steady state mathematical model of heat 
transfer in freeze-drying process was developed in 
COMSOL and experimentally validated; 
 (ii) The additional heat flux received by edge 
vials was mainly due to conduction through the 
gas taking place between the wall, the rail and the 
walls of edge vials rather than radiation from the 
walls and the rail.  

Effect of freeze-dryer design on heat transfer 
variability investigated using a 3D 
mathematical model (Paper III.3) 

 
 The 3D mathematical model of heat transfer in 
freeze-drying (developed in Paper III.2) was 
used to predict the impact of the vial loading 
configurations and of the thermal properties and 
geometry of the freeze-dryer on the heat transfer 
variability between edge and central vials. 
 

Impact of the product resistance variability on the mass 
transfer in freeze-drying process (Paper III.4) 

 
(i) The presence of stopper on the vials was not found to 
significantly modify the mass flow rate during sublimation; 
 
(ii) A new approach based on the pressure rise test was used 
to estimate the product resistance variability (expressed as 
standard deviation of product resistance parameters) in a 
manufacturing batch of vials, which resulted in the definition 
of a temperature safety margin of ± 5 °C.  

Variability of the desorption kinetics and its effect on the 
residual moisture content heterogeneity in secondary 

drying (Paper III.5) 
 

(i) Desorption in secondary drying was found to be 
influenced by the product temperature and freezing protocol.  
 
(ii) The standard deviation of the characteristic desorption 
times for mono and multilayer was estimated and used to 
predict the moisture content distribution in the vial batch for a 
given shelf temperature and operating time.  
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Main conclusions 

The variability of the critical process parameters, such as the product temperature, the sublimation 

rate and the desorption rate, is due to differences in the heat and mass transfer phenomena between 

the vials. Based on the literature review, the variability of heat and mass transfer mechanisms during 

the process was potentially ascribed to: (i) the variability of the vial bottom dimensions and the 

position of the vial on the shelf of the freeze-dryer, which could lead to differences in the heat flow 

rate received by the vials; (ii) the modification of the cake structure during the freezing step (e.g., 

dimensions of the pores, of the specific surface area), which result to difference in the sublimation 

and desorption kinetics during primary and secondary drying, respectively. These potential sources of 

heat and mass transfer variability were thus investigated, and their impact on critical process 

parameters was quantified. 

 

 Variability of the heat transfer during the freeze-drying process 

During freeze-drying process, vials receive three main heat transfer contributions from the bottom 

and top shelves: (i) by contact conduction via points of contact between the vial and the shelf, (ii) by 

radiation and (iii) by conduction through the gas entrapped in the vial bottom concavity. The contact 

conduction depends on the bottom area of the vial directly in contact with the shelf (Cannon and 

Shemeley, 2004; Kuu et al., 2009). Conversely, the conduction through the gas takes place under 

Knudsen regime in the range of low pressures typically used in freeze-drying (<10 Pa), and it 

depends on the depth of the vial bottom curvature and on the chamber pressure (Brülls and Rasmuson, 

2002; Nail, 1980; Pikal, 2000; Pikal et al., 1984; Pisano et al., 2011; Ybema et al., 1995). In 

literature, several examples of the dependence of the heat transfer (expressed in terms of vial heat 

transfer coefficient 
�) on the chamber pressure are reported (Hibler et al., 2012; Kuu et al., 2009; 

Pikal et al., 1984; Pisano et al., 2011). However, the impact of the variability of the contact area and 

of the depth of bottom curvature on the heat transfer has never been quantified. Thus, in a first part of 

this Ph.D. work, the attention was focused on investigating the impact of the vial bottom dimensions 

variability on the heat transfer in vials located in the centre of the shelf and surrounded by other vials 

in the same conditions (Paper III.1 ). The importance of freeze-dryer design and operating variables 

(chamber pressure and shelf temperature) was also investigated. In agreement with the literature 

(Hibler et al., 2012; Pikal et al., 1984; Pisano et al., 2011), the determined vial heat transfer 

coefficient 
� strongly depended on the value of chamber pressure. However, the dependence of 
� 

on shelf temperature was found to be negligible. Furthermore, no relevant differences were found 

among vial heat transfer coefficients evaluated in freeze-dryers of different design, but similar 

shelves emissivity) at chamber pressure lower than 10 Pa. Then, importance of the contact area 

between the shelf and the vial and the depth of bottom curvature on the heat transfer was determined 
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by calculating the 
�  distributions at different chamber pressures. The variability of 
�  between 

central vials was nearly completely explained by the combined variability of these two vial bottom 

dimensions. The contact area was found to highly influence the 
� distribution at chamber pressure 

lower than 30 Pa. In contrast, the bottom curvature played a non negligible role on the 
� 	distribution 

only at chamber pressures higher than 30 Pa. The results of this study can guide the choice of the vial 

design and provider. At pressures commonly used in freeze-drying of vaccines (< 10 Pa), particular 

attention should be devoted to the tolerance of the contact area between the shelf and the vial during 

the selection of the container. Furthermore, this original approach led also to the definition of a 

product temperature safety margin only due to the variability of the vial bottom geometry, quantified 

as about 2 °C, which should be taken into account during the cycle design. 

The heat transfer variability during freeze-drying process depends also on the position of the vial on 

the shelf. It is well known that vials located in the periphery of the shelf present higher heat flow 

rates than vials located in the centre. This edge vial effect is classically ascribed in literature to the 

additional radiation from the wall and the rail received by the edge vials (Pikal et al., 1984; Pisano et 

al., 2011; Rambhatla and Pikal, 2003). However, the experimental works of Rambalta et al. 

(Rambhatla and Pikal, 2003), and the mathematical model of Gan et al. (Gan et al., 2005), evidenced 

that the presence of a metallic rail surrounding the vials may play also a non negligible role in the 

heat transfer received by edge vials. Thus, a 3D mechanistic mathematical of heat transfer during 

sublimation was developed in Paper III.2  by using the software COMSOL Multiphysics in order to 

accurately predict the heat transfer variability related to the position of the vial on the shelf, and to 

understand the relative importance of the different heat transfer mechanisms on the edge vial effect. 

The model was experimentally validated for a broad range of chamber pressures (4 to 15 Pa) and 

shelf temperatures (0 °C and -40 °C). Conversely to literature, the use of this model revealed that the 

conduction through the gas taking place between the wall, the rail and the lateral walls of edge vials 

is the main mechanism responsible for the additional heat flow rate received by edge vials. Radiation 

from the walls and the rail had a minor but non-negligible contribution in the heat flow rate received 

by edge vials in the configuration considered (vials partially shielded by the rail).  

Successively, the developed 3D mathematical model of heat transfer during sublimation was used in 

Paper III.3 to investigate the impact of design characteristics of the equipment on the heat transfer 

variability between edge and central vials, such as the vial loading configuration, the geometry and 

the thermal characteristics of the equipment. Model simulations showed that the use of the rail can 

significantly reduce the differences in heat transfer between edge and central vials, as it decrease the 

radiation contribution received by the lateral walls of edge vials. Thus, prediction of the differences 

in heat flow rate received by the edge vials can play a key role for a successful cycle transfer among 

freeze-dryers in which different vial loading configurations can be used. Furthermore, difference in 
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the emissivity of the rail and the drying chamber wall did not significantly impact the heat transfer in 

edge vials, due to the relative small importance of the radiation on the total heat transfer. In contrast, 

higher emissivity of the shelf significantly increase the heat flow rate received by both edge and 

central vials, and thus a precise measurement of shelf emissivity is recommended to predict 

modifications in heat transfer between equipments presenting different finish of the shelves.  

Relevant dimensions of the chamber, i.e., differences of the distance between the shelves and the 

distance between the shelf and the wall, did not significantly impacted on the heat transfer in edge 

and central vials for a chamber pressure of 4 Pa. This result is in agreement with the previous 

experimental data presented in Paper III.1 , where it was shown that equipment of similar emissivity 

but different dimensions did not impact on the heat transfer in central vials (via vial heat transfer 

coefficient) at chamber pressure lower than 10 Pa. 

In conclusion, the developed model revealed to be a powerful tool to be used for the prediction the 

heat transfer variability between edge and central vials in different devices during the cycle design 

and scale-up.  

 

 Variability of the mass transfer during the freeze-drying process 

Part of the work presented in this thesis concerns the evaluation of variability of the mass transfer 

during the sublimation step and its effect on the product temperature (Paper III.4 ). It is well known 

in literature that the value of the nucleation temperature influences the ice crystals size, the size of 

pores in the dried layer of the product and finally of the mass flow rate during the sublimation step 

(Konstantinidis et al., 2011; Oddone et al., 2014; Searles et al., 2001b). However, nucleation is a 

stochastic phenomenon and thus ice crystals of different size can form during the freezing step within 

different vials, which led to an inter-vial variability of the mass flow rates. The estimation of the 

mass transfer variability within a batch, especially of manufacturing size (i.e., about 100,000 vials), 

can be really difficult. Moreover, the devices available for the determination of the mass flow rate 

give usually either a global value for all the vials in the batch (e.g., the pressure rise test) or a local 

value within one or very few vials (e.g., microbalance). The value of the coefficient of variation of 

product resistance is often quantified as about 10 % and estimated in laboratory batches from the 

uncertainty of the product temperature measurement (Pisano et al., 2013) or from the variation of 

product temperature among few vials, measured by using thermocouples (Bosca et al., 2015). In this 

study, a new approach was proposed to estimate the variability of the mass transfer for a 5 % sucrose 

solution, expressed in terms of product resistance distribution, by using two experimental methods: 

the pressure rise test (PRT) and the gravimetric method. This procedure was used on freeze-drying 

cycles performed with different freezing protocols, i.e., spontaneous and controlled nucleation. A 5 % 

sucrose solution and a filling volume of 1.8 ml (filling height of 1 cm) were considered during the 
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experiments. 

Firstly, the PRT method was used to compare the impact of the presence of the stopper into the vial 

neck and of the freezing protocol on the mass transfer during sublimation. The presence of the 

stopper did not significantly modified the mass flow rate conversely to the freezing protocol. Then, 

the PRT method was used to evaluate the average product resistance evolution with the dried layer 

thickness in 5 laboratory vial batches. These data were then combined to estimate the product 

resistance variability within a manufacturing vial batch. Finally, the PRT product resistance data and 

local information provided by the gravimetric method were combined to assess the intra-batch 

product resistance variability at laboratory scale. The variability of the product resistance  (expressed 

as standard deviation of the product resistance parameters) determined by using the PRT method in 

batches processed with controlled nucleation resulted to be lower than the one determined 

considering batches processed with spontaneous nucleation. Furthermore, the variability of the 

product resistance between vials within a laboratory batch estimated by using the gravimetric method 

was found to be significantly lower than the one among different batches obtained from the PRT 

method. 

The product resistance distributions determined from the PRT method were used to calculate the 

product temperature distributions, and resulted in the definition of a safety margin of the product 

temperature of about ± 5 °C due to the mass transfer variability only. This safety margin resulted to 

be higher if compared with other value reported in literature for central vials, which were close to ± 3 

°C  and included the combined effect of the heat and mass transfer variability (Bosca et al., 2015; 

Pisano et al., 2013). A further validation of the proposed method used for the estimation of product 

resistance variability at manufacturing scale will be performed in the future. 

 

The stochastic nature of nucleation during the freezing step influences not only the dimensions of the 

pores in the dried layer thickness but also the specific surface area available for desorption during 

secondary drying (Pikal et al., 1990; Rambhatla et al., 2004). In Paper III.5 , the variability of 

desorption kinetics during secondary drying was quantified (in terms of standard deviation of the 

characteristic desorption time) and its impact on the final moisture content heterogeneity was 

evaluated. The multilayer desorption model previously proposed by Trelea et al. (Trelea et al., 2016) 

adequately described the evolution of the moisture content during the secondary drying step. In 

agreement with the results of Trelea et al. (Trelea et al., 2016), the desorption of the multilayer was 

found to be significantly faster than the desorption of the monolayer of about 30 times (for 

spontaneous nucleation). Higher values of product temperature during the secondary drying step led 

to a faster desorption kinetics for both mono and multilayer. Furthermore, the freezing protocol 

strongly impacted on the desorption kinetics. In particular, the use of controlled nucleation during the 
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freezing step led to a slower desorption kinetics than the use of spontaneous nucleation. The standard 

deviation of the characteristic desorption time was then quantified from experimental data. Finally, 

the proposed approach in this study was used to predict the moisture content distribution in final 

batch and to quantify the risk of failure of the process (expressed as percentage of vials potentially 

rejected due to a high residual moisture content).  

 

Multi-vial, dynamic mathematical model of freeze-drying 

The analysis performed in Papers III.1-5 provided a comprehensive understanding of the sources 

responsible for the heat and mass transfer variability during freeze-drying process. In the last step of 

the project (presented in Paper III.6 ), the previously investigated heat and mass transfer mechanisms 

were included in a dynamic mathematical model developed in Matlab in order to predict the value 

and distribution of the product temperature, the ice fraction and the moisture content during the 

process for different operating conditions (shelf temperature, chamber pressure, operating time) and 

for 100 vials filled with 5 % sucrose solution and differently located on the shelf of a pilot scale 

freeze-dryer. The evolution of partial vapour pressure was also predicted. 

The developed model was then used to design the primary and secondary drying steps of the process 

at specified level of risk. Four main constraints were considered: (i) a product temperature lower than 

the glass transition temperature during primary and (ii) during secondary drying, (iii) the completion 

of sublimation at given primary drying time and (iv) a moisture content value in the final product 

lower than the target value. The equipment capability was not considered to be limiting in this 

preliminary analysis. Then, acceptable combinations of the operating variables of the process were 

defined in function of the maximum allowed percentage of vials rejected. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                                                                         
GENERAL CONCLUSIONS 

 

- 270 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Perspectives 

 Short term perspectives 

The short term perspectives here proposed concern the improvement of the two mathematical models 

developed during this thesis: the 3D, static mathematical model of heat transfer during the 

sublimation step and the multi-vial, dynamic mathematical model of freeze-drying.  

 

The 3D, static mathematical model of heat transfer in freeze-drying developed by using COMSOL 

Multiphysics allows the evaluation of the heat flow rate variability between edge and central vials for 

different vial loading configurations and equipment features. However, in Paper III.3  it was 

observed that the simulated vial located in the third row of the array in the geometry of the model 

still receive a non-negligible contribution by radiation from the walls and the rail. Thus, the addition 

of other rows of vials in the original geometry of the model could allow to simulate the "real" central 

vial. 

Furthermore, the developed model simulates only pure ice. Inclusion of the product resistance into 

In line with the Quality by Design philosophy, this study provided new and 

significant contributions for the understanding of the sources responsible for 

heat and mass transfer differences during freeze-drying process, and thus of the 

final product quality variability within the same or different vial batches. The 

work performed during this Ph.D. project contributed to improve the approach 

used by the industrial partner (GSK) for the development and scale-up of 

freeze-drying cycles in two different ways: 

- By delivering experimental protocols for (i) the definition of product 

temperature safety margins due to the variability of relevant dimensions of the 

vial bottom, and to the variability of the mass transfer resistance due to the dry 

layer of the product, and (ii) for the prediction of moisture content distribution 

during secondary drying based on the variability of the desorption kinetics;  

- By developing two mathematical models of freeze-drying: (i) a 3D steady 

state mathematical model for the description of heat transfer variability between 

edge and central vials during sublimation, and (ii) a multi-vial, dynamic model 

of freeze-drying for the development of cycles at known risk of failure.  

The results obtained during the present project open several perspectives on 

short and medium-long term. 
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the model could allow to predict also the product temperature and to define a product temperature 

safety margin for the difference in heat transfer between edge and central vials. 

 

The multi-vial, dynamic mathematical model of freeze-drying developed in Matlab (Paper III.6 ) is 

very promising as it could allow the determination of design spaces of primary and secondary drying 

based on different constraints (e.g., maximum allowed product temperature, target residual moisture 

content). However, some improvements should be performed to assure the robustness of the model 

predictions. Future work should focus on two key aspects: 

- Contribution of the additional gas conduction to the edge vials: despite the inclusion of several heat 

and mass transfer mechanisms responsible for product quality variability, the additional contribution 

of conduction through the gas between the wall, the rail and the lateral walls of edge vials was not 

taken into account in this first version of the model. This heat transfer mechanism revealed to be the 

major responsible for the additional heat flow rates received by edge vials (Paper III.2 ), and thus its 

inclusion in the developed dynamic mathematical model would be important for a correct evaluation 

of the product temperature profile in edge vials. 

- Experimental validation: the physical parameters used in the model (e.g., 
�,  #, .M@?) and their 

distributions were experimentally determined in the due course of this project (Papers III.1-5). 

However, to ensure the robustness of the model and consequently of the performed risk assessment 

analysis, a further experimental validation should be performed focusing on four main points: (i) 

firstly, the proposed approach for the estimation of the product resistance variability by using the 

PRT method should be validated in a manufacturing or medium scale freeze-dryer. Furthermore, to 

fully understand the role played by the presence of the stopper into the vial neck in the mass transfer, 

experiments with and without stopper should be performed by using a low filling volume (e.g., 0.04-

0.05 ml); (ii) the distribution of product temperature profiles and of moisture content for vials 

differently located on the shelf predicted by the model should be compared with experimental data, 

for a range of chamber pressures and shelf temperatures typically used in freeze-drying of vaccines 

(e.g., shelf temperatures between -40 °C and -10 °C, and chamber pressures lower than 10 Pa). 

Validation of the partial vapour pressure decrease obtained from the Pirani gauge should also be 

considered since it is a good indicator of the overall batch heterogeneity; (iii) it would be of interest 

to quantify the importance of the desorption taking place during sublimation step in the dried layer of 

the product, in order to estimate the variability of the initial moisture content during the desorption 

step and its effect on the final moisture content heterogeneity. Furthermore, description of the 

desorption kinetics in time-varying operating conditions (e.g., shelf temperature not constant), as 

proposed by Trelea et al. (Trelea et al., 2016), will be integrated in the model in order to evaluate the 

importance of the ramp between primary and secondary drying on the desorption; (iv) the percentage 
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of vials rejected predicted by the model should be compared with the actual one. Different scenarios 

should be tested, e.g., cycle in which the product temperature is higher than the glass transition 

temperature in primary and secondary drying, moisture content higher than the target value etc. 

Visual inspection of the vials should be performed and the percentage of vial collapse and/or 

presenting a high moisture content should be evaluated. 

Finally, in order to use the model for the design and scale-up of the freeze-drying process, the 

maximum equipment capability should be considered as a constraint in the calculation of the design 

space of primary drying and equipment capability data (previously determined for various pilot and 

manufacturing scale freeze-dryers during this Ph.D. project) should be integrated into the model. 

 

Medium-long term perspectives  

- Development of an user-friendly software based on the multi-vial, dynamic mathematical model: 

Once that the model will be validated, it will be of great interest to use it for the design of freeze-

drying cycle of vaccine formulations. The selection of the operating conditions of the cycle (chamber 

pressure, shelf temperature and process time) can be performed directly from the calculated design 

spaces of primary and secondary drying in function of the risk of failure and of the level of 

optimization of the process (i.e., duration of the process). Furthermore, the model could be used to 

perform the scale-up between pilot and manufacturing scale. The proposed risk assessment-based 

design spaces could be calculated for different freeze-dryers by providing relevant information about 

the dimension of the vial batch, the equipment capability, the characteristic of the freeze-dryer (e.g., 

emissivities) and the vial loading configuration used. The comparison of the design space at pilot and 

commercial scale will allow to perform a rational choice of the process parameters for a successful 

scale-up with a significantly reduced experimental effort. Finally, an user-friendly software for the 

cycle design and scale-up could be developed based on proposed model for the less expert users. In 

conclusion, in line with the Quality-by-Design approach, the developed model/software could be 

used as smart tool to perform a risk assessment based cycle design and scale-up while guaranteeing 

the final product quality. 

 

- Describe and understand the mechanisms of collapse: the collapse of the product cake during 

primary and secondary drying due to a product temperature higher than the critical value is a 

phenomenon of paramount importance, as it led to the rejection of the vial due to lack of 

pharmaceutical elegance of the cake and high moisture content in the product. A better understanding 

of the relation between the dynamics of the cake collapse (and possibly microcollapse) and the 

product temperature appears to be important for a correct prediction of the percentage of vials 

rejected due to this phenomenon.  
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- Development of a 3D mathematical model for describing the mass transfer between the chamber 

and the condenser: it would be of great interest to deeply explore the mass transfer from the 

sublimation interface to the condenser to monitor the partial vapour pressure during the drying 

process by using COMSOL. These mass transfer phenomena were already described in a 1D 

dimensional model (Trelea et al., 2015). However, a 3D mathematical model could describe mass 

transfer in more complex geometries, where 1D assumption cannot be applied, for different operating 

conditions and/or different mixtures of inert gas and water vapour inside the chamber.  

- Investigation of the heat transfer variability in other type of containers: The experimental and 

theoretical analysis performed in this project focused on the investigation of the mechanisms 

responsible for quality heterogeneity for product processed within glass tubing vials. However, other 

type of containers are often used in pharmaceutical industries, such as syringes and dual-chamber 

cartridges. The geometry of the container could significantly change the contribution of the different 

heat transfer phenomena taking place during the process. On a long term, the strategy here proposed 

to evaluate the importance of the variability of the container dimensions could be adapted and 

applied to other types of containers. Moreover, the geometry of the 3D mathematical model of heat 

transfer in freeze-dryer developed in COMSOL could be modified in function of the geometry of the 

considered system to simulate differences in heat transfer between containers differently located on 

the shelf. 
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SMALL GLOSSARY OF FREEZE-DRYING 

 
 
 
 
 

Some of the terms recurring in freeze-drying science and often used in the present work: 

 

AMORPHOUS MATERIAL: Most of the pharmaceutical products that are freeze-dried do not 

crystallize during the freezing step but form a solid with amorphous (or glassy) interstitial structure 

with a very high viscosity. In this state, most of the biochemical reactions are stopped and the  

product stability (shelf life) is significantly increased. The temperature at which the glass exhibits a 

change in viscosity is termed the glass transition temperature.  

 

BOUND WATER: Fraction of water that is present in the formulation as essential component to 

various materials. It can be distinguished from free water by its inability to form ice crystals. This 

fraction of water is partially removed from the matrix during secondary drying, in order to produce a 

final product with a target value of moisture content. 

 

CAKE: The porous and spongy structure resulting from the freeze-drying process in a vial after 

sublimation of the ice crystals. 

 

CENTRAL VIALS: Vials located in the centre of the shelf and surrounded by other vials in the 

same conditions. 

 

CHOKED FLOW: When the sublimation rate becomes higher than the maximum equipment 

capability, the chamber pressure rises above the set point and the process runs out of control. The 

maximum speed at which the water vapour can flow in the duct from the chamber to the condenser is 

the velocity of sound, which can be reached at very high sublimation rates. Under this specific 

condition, the vapour flow rate becomes independent of the pressure on the condenser side of the 

duct connecting the chamber and the condenser. The equipment capability highly depends on the 

duct geometry between the chamber and the condenser and on the condenser performance. 

 

COLLAPSE: Viscous flow of the porous structure of the product. Collapse can happen during 

primary drying when material reaches a critical temperature known as collapse temperature, and 
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during secondary drying when the product reaches temperature higher than the glass transition 

temperature for the dried product. 

 

COLLAPSE TEMPERATURE: the temperature above which collapse occurs during primary 

drying (see Collapse). 

 

CRITICAL PROCESS PARAMETERS (CPPs): The CPPs are the process parameters whose 

variability has an impact on one or more critical quality attributes of the product and therefore should 

be monitored or controlled to ensure that the process produces the desiderate quality. Examples of 

CPPs in freeze-drying are the product temperature, the sublimation rate and the desorption rate.  

 

CRITICAL QUALITY ATTRIBUTES (CQAs): The CQAs are the physical, biological, chemical 

and biological properties of a product that should be within appropriate limits, range or distribution to 

assure the desiderate product quality. CQAs are defined in function of the Quality Target Product 

Profile. Examples of  CQAs are the aspect of the product cake, reconstitution time and the final 

moisture content. 

 

CYCLE: Sequence of the steps of the freeze-drying process, i.e., freezing, primary drying and 

secondary drying. 

 

DESIGN SPACE: The multidimensional combination and interaction of input variables (e.g., 

material attributes) and process parameters that have been demonstrated to provide assurance of 

quality. Typical coordinates of the classical design space in freeze-drying are the shelf temperature, 

chamber pressure, sublimation rate and product temperature. 

 

DESORPTION: Mass transfer mechanism through which the bound water contained in the dried 

product at the end of sublimation is partially removed during secondary drying by increasing the 

temperature of the product. 

 

EDGE VIAL EFFECT: Difference between the heat flow rate received by vials located in the 

centre of the shelf and surrounded by other vials in the same conditions, and vials located at the 

periphery of the shelf, due to position dependent heat transfer mechanisms (e.g., radiation from the 

walls to edge vials). 

 

EDGE VIALS: Vials located at the periphery of the shelf and exposed to different drying chamber 
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components, e.g., walls, rail, door. 

 

FREE WATER: Fraction of water in a solution that is not chemically or physically bound. It forms 

ice crystals during the freezing step and is has to be removed during primary drying by means of 

sublimation. 

 

FREEZING: First step of the freeze-drying process during which the solidification of the solution 

occurs. The freezing point is the temperature at which solid and liquid are in equilibrium. 

 

GLASS TRANSITION TEMPERATURE: The temperature at which the material goes from a 

glassy state to a rubbery state (see glass transition).  The value of &! depends on the concentration of 

solutes. 

 

GLASS TRANSITION: The reversible transition in amorphous materials from a hard and "glassy" 

state into a rubber-like state.  

 

NUCLEATION: The process by which the nuclei of the ice crystals are formed. Usually, nucleation 

is a stochastic phenomenon if not controlled. The use of controlled nucleation during the freezing 

step allows to increase and homogenize the nucleation temperature value. In the present work, 

controlled nucleation was performed in some experimental analysis by adding the nucleation agent 

Snomax to the initial formulation. 

 

PARENTERAL: refers to pharmaceuticals product which are administrated in other ways than by 

the alimentary tract, e.g., by injection. 

 

PRIMARY DRYING: It is the second step of freeze-drying process, and consists in removing of the 

ice crystals by sublimation. 

 

QUALITY TARGET PRODUCT PROFILE (QTPP): The QTPP define the design criteria of the 

product and forms the basis of design for its development. Considerations should include dosage, 

container system, drug quality criteria (e.g., potency). 

 

QUALITY-BY-DESIGN (QBD): A new systematic approach for product development that begins 

with predefined objectives on the product quality characteristics and emphasizes product and process 

understanding. 
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QUALITY-BY-TESTING (QBT): A regulatory framework in which product quality is ensured by 

the use of fixed product manufacturing process and by tests on the raw materials, the in-process 

materials and on the end-product.  

 

RECIPE: A recipe describes in terms of operating variables, such as shelf temperature, chamber 

pressure and operating time, the entire freeze-drying process in a stepwise manner. The recipe of a 

freeze-drying cycle is usually programmed directly into a freeze dryer control system and recorded 

electronically for recall whenever required. 

 

RECONSTITUTION: The act of adding a solvent (usually water) into the freeze-dried product, in 

order to return it to the liquid state.  

 

RESIDUAL MOISTURE: The amount of bound water that remains into the freeze dried product 

after sublimation in primary drying. The amount of residual moisture in a freeze dried product is 

reduced during secondary drying. 

 

SECONDARY DRYING: It is the third and last step of freeze-drying process and consists in 

reducing the amount of bound water (or residual moisture) in the dried product by desorption. 

 

STOPPER: The stoppers are elastomeric caps for vials, usually presenting one or two openings. A 

stopper is usually only partially inserted into the vial neck, to allow water vapour to leave the vial 

during primary and secondary drying. The vials are then completely "stoppered" (i.e., fully inserted 

into the vial neck) at the end of the process.  

 

SUBLIMATION: It is the transition from a solid to a gas phase with no intermediate liquid stage. 

Ice crystals present in the frozen product sublime in water vapour during primary drying. 

 

SUPERCOOLING: The process of cooling a liquid below its freezing point, without it becoming a 

solid. The supercooling degree is the difference between the nucleation temperature and the 

equilibrium freezing point. 

 

VACCINE: A biological product aimed to improve immunity to a specific disease. 

 

VIAL: Small glass container (available in a wide range of size) used as primary packaging in freeze-
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drying of vaccines and other parenteral products. The vials usually present a "champagne-like" 

bottom with a concavity in which gas is entrapped. 
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RÉSUMÉ SUBSTANTIEL EN FRANÇAIS 
 

 

Contexte 
La vaccination est largement considérée comme l'une des plus grandes réalisations de la 

recherche médicale. Depuis le premier développement par Edward Jenner du vaccin contre 

la variole, la vaccination a permis de réduire considérablement la propagation de plusieurs 

maladies mortelles, comme la poliomyélite, le tétanos, la coqueluche ou la diphtérie. De nos 

jours, les vaccins existants peuvent être classés dans différents groupes en fonction de leur 

ingrédient actif (antigène). Les vaccins vivants atténués sont connus pour être les plus réussis 

et efficaces. Ils sont réalisés réduisant la virulence des virus ou plus rarement de bactéries. 

En outre, ils sont généralement plus stables sous forme sèche (1-3 % de la teneur en eau) que 

dans les solutions aqueuses et donc leur procédé de production implique une phase de 

séchage. Cependant, les vaccins sont des produits très sensibles à la chaleur et peuvent être 

endommagés s’ils sont exposés à des températures de séchage élevées. 

 Ainsi, en raison de l'utilisation combinée du vide et de basses températures, la lyophilisation 

est généralement la méthode de choix utilisée pour la production de vaccins. Ce procédé de 

stabilisation se déroule en trois étapes successives: (i) la congélation de la formulation de 

vaccin, préalablement remplie dans des flacons de verre, avec formation de cristaux de glace 

et d’une matrice cryo-concentrée; (ii) dessiccation primaire, dans laquelle les cristaux de 

glace sont éliminés par sublimation; (iii) dessiccation secondaire, dans laquelle la désorption 

de l'eau liée à la matrice solide permet d’atteindre la teneur en eau résiduelle cible dans le 

produit. Malgré son utilisation importante dans l'industrie pharmaceutique, la lyophilisation 

reste un processus long et coûteux, difficile à mettre au point et à changer d’échelle, ce qui 

entraîne souvent des lots de produits de qualité non homogène. 

De nos jours, la sécurité des vaccins et l'efficacité de la vaccination attirent de plus en plus 

l'attention du public. Le besoin d'assurer la qualité du produit a conduit à des procédures 

réglementaires plus rigoureuses pour toutes les étapes du développement et de la production 

des vaccins. L'une des approches les plus récentes pour améliorer la qualité des produits 

pharmaceutiques tout en réduisant le fardeau réglementaire est la mise en œuvre de 

l'initiative "Quality by Design" (QdB, en français "Qualité par la Conception") proposée au 
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début de 2000 par la Food and Drug Administration aux États-Unis. La philosophie de 

l’approche QdB stipule que la qualité du produit ne doit pas être uniquement testée sur le 

produit final, mais intégrée au processus de production grâce à la détermination de cibles de 

qualité et à une compréhension approfondie de la façon dont le produit et le procédé 

interagissent. L'une des étapes essentielles de la mise en œuvre de la qualité par la 

conception dans le procédé de production des vaccins est la définition des "critical quality 

attributes" (CQA, en français "attributs de qualité critiques") du produit, par exemple la 

stabilité de l'antigène, la teneur finale en eau du produit le produit et l'élégance 

pharmaceutique du gâteau. Ces CQA dépendent fortement de l' étape de lyophilisation, 

pendant laquelle la température du produit doit être maintenue en dessous d'une valeur 

maximale autorisée pour éviter la perte de la structure poreuse du produit, c'est-à-dire 

l'effondrement du produit. L'effondrement provoque généralement une teneur en eau finale 

élevée du produit, un temps de reconstitution du produit long et en particulier la perte de 

l'élégance pharmaceutique du gâteau nécessaire pour l'acceptation du produit par les 

autorités et les utilisateurs. Cependant, une température du produit trop éloignée de 

l'optimum conduit à une augmentation significative du temps de lyophilisation et donc à une 

diminution de l'efficacité du processus.  

Les conditions optimales de fonctionnement d’un procédé de lyophilisation peuvent 

aujourd’hui être définies en construisant le "design space" (en français, l'espace de 

conception). Le design space, concept clé de QdB, es défini comme la combinaison 

multidimensionnelle de variables de commande (e.g. attributs du produit) et de paramètres 

du procédé qui assurent la qualité du produit. La construction du design space peut être 

effectuée par deux approches : soit par la réalisation d’une vaste campagne expérimentale, 

soit par la modélisation des phénomènes de transfert de chaleur et de matière ayant lieu 

pendant la lyophilisation, ce qui permet de prédire une valeur moyenne de la température du 

produit et de la vitesse de sublimation dans un lot de flacons. 

Malheureusement, les transferts de chaleur et de matière se produisant pendant la 

lyophilisation dépendent non seulement des conditions opératoires du procédé (e.g. de la 

pression de la chambre, de la température de l'étagère), mais aussi de plusieurs facteurs, tels 

que les propriétés du produit, la géométrie des flacons, les caractéristiques de l'équipement 

utilisé. Comprendre l'impact de ces facteurs sur les transferts de chaleur et de matière ayant 

lieu dans des flacons situés à différents endroits sur l'étagère du lyophilisateur est d'une 
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importance primordiale pour une meilleure définition du design space et pour prédire la 

variabilité de la qualité du produit. La prédiction de la qualité du produit, permet, à son tour, 

d'effectuer une analyse de risque du procédé lors de la conception et pendant les étapes de 

changement d'échelle. 

Dans ce contexte, le présent projet de thèse a été réalisé avec l’appui scientifique et financier 

de la société pharmaceutique GlaxoSmithKline Vaccines (Belgique). 

Objectif de la thèse 

L'objectif principal de ce travail était de développer une nouvelle approche pour la 

conception, l'optimisation et le changement d'échelle des cycles de lyophilisation pour un 

risque connu, conformément à l'approche Qualité by Design. À cet égard, l'attention a porté 

sur (i) l'étude et la quantification des mécanismes responsables de la variabilité des transferts 

de chaleur et de matière dans le même lot de flacons ou entre de lots, à différentes échelles, 

pendant la dessiccation primaire et secondaire et sur (ii) l'intégration des phénomènes étudiés 

dans un modèle mathématique mécanistique décrivant le procédé de lyophilisation en flacon. 

Principaux résultats 

Dans ce contexte, le présent travail s'est focalisé sur l'étude qualitative et quantitative de 

quatre sources potentiellement responsables de la variabilité des paramètres critiques du 

procédé de lyophilisation: (1) la variabilité de la géométrie du fond du flacon, responsable 

des différences observées dans le transfert de chaleur et dans la température du produit, (2) le 

rayonnement du rail utilisé pour maintenir les flacons et des parois, ainsi que la conduction 

thermique du gaz contenu entre la paroi du lyophilisateur, le rail et la paroi latérale du 

flacon, en tant que mécanismes responsables du flux de chaleur additionnel reçu par les 

flacons situés sur le bord; (3) la variabilité de la résistance produit due à la couche sèche 

formée pendant le procédé, responsable des différences de transfert de matière et de 

température pendant la dessiccation primaire et enfin (4) l'impact de la variabilité de la 

cinétique de désorption pendant la dessiccation secondaire sur l'hétérogénéité de la teneur en 

eau finale dans un batch. 

La première partie de ce travail (présenté dans la Publication III.1  dans ce manuscrit) a 

porté sur l'étude de l'impact de la variabilité des dimensions du fond du flacon (i.e. l’aire de 

contact entre l'étagère et le flacon et la profondeur de la concavité du fond du flacon) sur le 
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transfert de chaleur dans des flacons situés au centre de l'étagère et entourés d'autres flacons. 

La variabilité dans les dimensions des flacons peut être due aux conditions de production et 

dépend de la conception et du fournisseur. Ainsi, l'importance de deux dimensions du fond 

du flacon sur le transfert de chaleur a été déterminée en calculant les distributions du 
�. La 

variabilité du coefficient de transfert de chaleur du flacon 
� entre les flacons centraux a été 

presque complètement expliquée par la variabilité combinée de ces deux dimensions du fond 

du flacon. L’aire de contact a fortement influencé la distribution de 
� pour de pressions de 

chambre inférieures à 30 Pa. En revanche, la variabilité de la concavité du fond du flacon 

joue un rôle non négligeable sur la distribution de 
� uniquement à de pressions de chambre 

supérieures à 30 Pa. Ainsi, à des pressions couramment utilisé dans la lyophilisation des 

vaccins (<10 Pa), une attention particulière devrait être accordée à l’aire de contact entre 

l'étagère et le flacon pour la sélection des flacons. Par ailleurs, l'approche proposée a 

également conduit à la définition d'une marge de sécurité pour la température du produit en 

fonction de la variabilité de la géométrie du fond du flacon, qui a été quantifiée à environ ± 1 

° C. 

Dans cette première partie, seules les différences de transfert de chaleur entre les flacons 

situés au centre de l'étagère ont été considérées. Cependant, les flacons situés à la périphérie 

de l'étagère et exposés aux composants de l’enceinte de lyophilisation, tels que la paroi ou le 

rail de maintien des flacons, présentent habituellement un flux de chaleur et une température 

de produit significativement plus élevés que les flacons centraux. Ainsi, une attention 

particulière a été portée à la compréhension des mécanismes responsables des flux de 

chaleur supplémentaires reçus par les flacons du bord. 

Un modèle mathématique en trois dimensions (3D) a été développé en utilisant le logiciel 

COMSOL Multiphysics (présenté dans la Publication III.2  dans ce manuscrit), et validé 

expérimentalement pour une large gamme de pressions de chambre (4 à 15 Pa) et des 

températures d'étagère (0 ° C et -40 ° C). L'utilisation du modèle a révélé que la conduction à 

travers le gaz entre la paroi de l’enceinte de lyophilisation, le rail et la paroi latérale du 

flacon est le mécanisme dominant. Contrairement à ce qui est affirmé habituellement dans la 

littérature, le rayonnement provenant du mur et du rail a eu une contribution mineure sur le 

flux de chaleur reçu par les flacons du bord. Le modèle mathématique 3D développé a fourni 

des informations utiles concernant l'impact de certains éléments de l'équipement sur la 

variabilité du transfert de chaleur entre les flacons de bord et les flacons centraux, tels que la 
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configuration de chargement des flacons, la géométrie et la caractéristique thermique de 

l'équipement (présenté dans la Publication III.3  dans ce manuscrit). Les simulations 

réalisées avec le modèle ont montré que l'utilisation du rail peut réduire considérablement les 

différences de transfert de chaleur entre les flacons du bord et les centraux, malgré sa 

contribution au rayonnement sur les flacons du bord. Ainsi, la prédiction des différences de 

flux de chaleur reçu par les flacons de bord paraît essentielle pour réussir un transfert de 

cycle entre lyophilisateurs présentant différentes configurations de chargement de flacons. 

De plus, la différence de l'émissivité du rail et de la paroi de l’enceinte de lyophilisation n'a 

pas eu d'impact significatif sur le transfert de chaleur dans les flacons du bord. En revanche, 

une plus grande émissivité de l'étagère augmente de manière significative le flux de chaleur 

reçus par les flacons du bord et du centre. Par conséquent, une mesure précise de l'émissivité 

des étagères est recommandée pour prévoir les variations du transfert de chaleur entre les 

équipements présentant une finition différente des étagères. Le modèle développé s'est révélé 

être un outil puissant pour la prédiction de la variabilité du transfert de chaleur entre les 

flacons du bord et ceux du centre dans différents dispositifs pendant la conception du cycle 

de lyophilisation et le changement de l'échelle.  

 

La variabilité du transfert de matière pendant l'étape de sublimation et son effet sur la 

température du produit ont été également étudiés (présenté dans la Publication III.4  dans ce 

manuscrit). Tout d'abord, l'impact de la présence du bouchon dans le col du flacon et de 

l'utilisation de différents protocoles de congélation sur le flux de vapeur d'eau pendant la 

dessiccation primaire ont été étudiés. La présence du bouchon n'a pas modifié de manière 

significative le flux massique pendant la sublimation, alors que des flux massiques plus 

élevés ont été observés lorsque la nucléation a été contrôlée pendant l'étape de congélation. Il 

largement admis dans la littérature que la valeur de la température de nucléation influence la 

taille des cristaux de glace, la taille des pores dans la couche sèche du produit et le flux 

massique pendant l'étape de sublimation. Cependant, la nucléation est un phénomène 

stochastique et, par conséquent, des cristaux de glace de taille différente peuvent se former 

dans différents flacons pendant la congélation, ce qui conduit à une variabilité de flux 

massiques entre les flacons. La quantification de la variabilité de transfert de matière dans un 

lot, en particulier de taille commerciale (environ 100,000 flacons), peut être vraiment 

difficile à réaliser. De plus, les dispositifs disponibles pour la détermination du flux 
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massique donnent habituellement soit une valeur globale parmi tous les flacons dans le lot 

(e.g. le test d'élévation de pression), soit une valeur locale dans un ou dans un ou un nombre 

réduit de flacons (e.g. microbalance). 

Dans ce travail, une nouvelle approche a été proposée pour estimer la variabilité du transfert 

de matière, exprimée en termes de distribution de la résistance du produit, en utilisant deux 

méthodes expérimentales: le test de remonté de pression (PRT) et la méthode gravimétrique. 

Ces approches ont été utilisées pour des cycles de lyophilisation effectués avec différents 

protocoles de congélation, c'est-à-dire une nucléation spontanée et contrôlée. 

La méthode PRT a été utilisée pour évaluer l'évolution de la résistance du produit avec 

l'épaisseur de la couche sèche dans 5 lots de flacons de laboratoire. Ces données ont ensuite 

été combinées pour estimer la variabilité de la résistance du produit dans un lot de flacons. 

La variabilité de la résistance du produit déterminée en utilisant la méthode PRT dans des 

lots ayant subi une nucléation contrôlée a été plus faible que dans les lots avec nucléation 

spontanée. En outre, la variabilité de la résistance du produit entre les flacons au sein d’un 

même estimée en utilisant la méthode gravimétrique s'est avérée significativement inférieure 

à celle entre différents lots, obtenue à partir de la méthode PRT. Les distributions de 

résistance des produits déterminées à partir de la méthode PRT ont été utilisées pour calculer 

les distributions de température du produit et ont abouti à la définition d'une marge de 

sécurité de la température du produit d'environ ± 5 °C en raison uniquement de la variabilité 

du transfert de matière. 

 

La nature stochastique de la nucléation influence non seulement les dimensions des pores 

dans l'épaisseur de la couche sèche, mais aussi la surface spécifique disponible pour la 

désorption pendant la dessiccation secondaire. L'impact de la variabilité de la cinétique de 

désorption sur la teneur en eau du produit pendant la dessiccation secondaire a été évalué et 

exprimé en termes d'écart type du temps caractéristique de désorption (présenté dans la 

Publication III.5  dans ce manuscrit). Le modèle de désorption multicouche proposé 

précédemment a décrit de manière adéquate l'évolution l’humidité pendant l'étape de séchage 

secondaire. La désorption de la multicouche s'est révélée significativement plus rapide que la 

désorption de la monocouche. De plus, la température et la structure du produit on eu un 

impact significatif sur la cinétique de désorption. L'écart-type du temps caractéristique de 

désorption a été quantifié à partir de données expérimentales et utilisé avec succès pour 
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prédire la distribution de la teneur en eau dans le lot de produit final ainsi que le risque  

associé au procédé, exprimé en % de flacons potentiellement rejetés en raison d'une trop 

forte humidité résiduelle. 

Dans la dernière étape du projet, les mécanismes précédents de transfert de chaleur et de 

matière ont été inclus dans un modèle mathématique dynamique développé dans Matlab 

(présenté dans la Publication III.6  dans ce manuscrit) afin de prédire la température du 

produit, la pression de vapeur partielle, la fraction de glace résiduelle et les évolutions du 

taux d'humidité pour différentes conditions opératoires (température d'étagère, pression de la 

chambre, temps de séchage), pour 100 flacons remplis de solution de saccharose à 5 % situés 

aux différents endroits de l'étagère. Le modèle développé a ensuite été utilisé pour concevoir 

les étapes de séchage primaire et secondaire du processus au niveau de risque spécifié. 

Quatre contraintes principales ont été considérées comme définissant les limites de l’espace 

de conception: (i) une température du produit inférieure à la température de transition 

vitreuse pendant la dessiccation primaire et (ii) pendant la dessiccation secondaire, (iii) 

l'achèvement de la sublimation à la fin de la dessiccation primaire et (iv) une valeur de 

teneur en eau dans le produit final inférieure à la valeur cible. Le modèle développé a ensuite 

été utilisé pour concevoir les étapes de séchage primaire et secondaire du processus au 

niveau de risque spécifié.  

Perspectives 

Les perspectives à court terme ici proposées concernent l'amélioration des deux modèles 

mathématiques développés au cours de cette thèse: le modèle mathématique 3D de transfert 

de chaleur en régime permanent pour les flacons du bord de l’étagère et le modèle 

dynamique multi-flacon incluant les différentes sources de variabilité étudiées. 

Le modèle mathématique 3D du transfert de chaleur dans la lyophilisation développé à l'aide 

de COMSOL Multiphysics permet d'évaluer la variabilité du flux de chaleur entre les flacons 

du bord et centraux pour différentes configurations de chargement de flacons et de 

caractéristiques de l'équipement. Il a été observé par simulation que le flacon situé dans la 

troisième rangée reçoit encore une contribution non négligeable des parois et du rail. Ainsi, 

l'inclusion d'autres lignes de flacons dans la géométrie d'origine du modèle pourrait 

permettre de simuler des vrais flacons "centraux". Par ailleurs, l'inclusion de la résistance du 

produit, et plus généralement le transfert de matière entre le front de sublimation des flacons 
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et le condenseur, pourrait permettre de prédire également la température du produit et de 

définir une marge de sécurité en termes de température. 

Le modèle mathématique dynamique de lyophilisation développé est très prometteur car il 

permet de déterminer des design spaces basés sur l'évaluation des risques de dessiccation 

primaire et secondaire en fonction de différentes contraintes (par exemple, la température 

maximale admissible du produit, la teneur en eau résiduelle cible). Cependant, certaines 

améliorations devraient être effectuées pour assurer la robustesse des prédictions du modèle. 

Les travaux futurs devraient porter surtout sur la validation expérimentale. Les paramètres 

physiques utilisés dans le modèle (par exemple 
� ,  # ) et leurs distributions ont été 

déterminés expérimentalement au cours de ce projet. Cependant, pour assurer la robustesse 

du modèle et, par conséquent, de l'analyse de l'évaluation des risques effectuée, une 

validation expérimentale complémentaire. Tout d'abord, le profil de température du produit 

et l'évolution du taux d'eau pour les flacons situés aux différents endroits sur l'étagère prédite 

par le modèle devraient être comparés aux données expérimentales La validation de la 

pression de vapeur partielle dans la chambre à partir des données obtenues de la jauge Pirani 

devrait également être envisagée car cette grandeur décrit bien l’hétérogénéité globale des 

conditions de lyophilisation. Enfin, le pourcentage de flacons rejetés prévu par le modèle 

devrait être comparé à celui actuel. Différents scénarios devraient être testés, par exemple 

cycle dans lequel la température du produit est supérieure à la température de transition 

vitreuse pendant la dessiccation primaire et secondaire ; un taux d'eau supérieur à la valeur 

cible, etc. L'inspection visuelle des flacons doit être effectuée et le pourcentage de flacons 

s'effondrant et / ou présentent une teneur élevée en eau devrait être évalué. 
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Figure A. Side (1) and top (2) view of the vial bottom represented as a semi-spherical calotte. 
 

 

The evaluation of the mean bottom curvature depth � was performed from geometrical considerations 

on the semi-spherical calotte at the vial bottom, as represented in Figure A. 

The bottom curvature depth depends on the radius of the vial bottom as follows: 

 

�(9) =  � − �(9)    Equation A1 

 

where  � is the radius of the calotte and �(9) is the distance between the shelf and the vial bottom, 

measured normal to the vial bottom: 

 

�(9) = �( � − �j��)� + 9�    Equation A2 

 

 � can be calculated as a function of the maximum bottom curvature depth �j�� and the inner vial 

bottom radius	 o: 
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 �� =  o� + ( � − �j��)�    Equation A3 

 

The area-mean bottom curvature depth can be defined as the integral of �(9)	on the calotte, divided 

by the area: 

 

� = 	
v� �(9)	3�     Equation A4 

 

The relevant area for heat transfer by gas conduction is: 

 

� = �	 o�     Equation A5 

 

and the area element: 

 

3� = 2�	939     Equation A6 

 

Combining Equations A1-A6, �	was calculated as: 

 

� = �
sqY �

( � − �( � − �j��)� + 9�	)	9	39sq
$    Equation A7 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 
Title  : Freeze-drying of vaccines: Contribution of mathematical modelling for assessing product heterogeneity and scale-
up risks 
Keywords : drying; heat and mass transfer; scale-up; Quality-by-Design; mathematical modelling. 
Abstract: Freeze-drying is the process of choice in pharmaceutical industry for the stabilization of heat sensitive products 
such as vaccines. However, due the product pre-conditioning in individual vials, this process is difficult to design and often 
results in batches presenting a significant heterogeneity in the quality of the final product. The main goal of this Ph.D. 
project was the development of a mathematical model making it possible to predict the risk of failure when designing the 
freeze-drying process, i.e., the percentage of "rejected vials". To this end, the work focused on the understanding and 
quantification of the sources responsible for heat and mass transfer variability during the process. Firstly, the vial-to-vial 
heat transfer variability was investigated by taking the vial bottom dimensions and the vial position on the shelf of 
equipment into account. The variability of geometrical dimensions observed within a batch of vials (i.e., contact area 
between the shelf and the vial and the mean bottom curvature depth) moderately influenced the heat transfer coefficient 
distribution among vials (by less than 10 %). Secondly, a original 3D mathematical model was developed in COMSOL 
Multiphysics to explain and predict atypical heat transfer observed in vials located at the border of the shelf during the 
freeze-drying process. Conduction through low-pressure water vapour appeared as the dominant mechanism explaining the 
additional heat transfer to border vials rather than as reported in literature radiation from the walls of the drying chamber. 
Furthermore, this 3D mathematical model was used to investigate the effect of the vial loading configuration and of the 
equipment characteristics on heat transfer variability. In a second part, mass transfer variability was quantified on a 5% 
sucrose solution and by focusing on two parameters,  the resistance of the dried layer to mass transfer during sublimation 
and the characteristic desorption time. The dried layer resistance was assessed by combining complementary approaches, 
the pressure rise test and gravimetric methods. The estimated variability of the dried layer resistance was found to have a 
higher impact on the product temperature distribution than the heat transfer coefficient variability. The value and variability 
of characteristic desorption time was evaluated for different temperatures and made it possible to simulate moisture content 
heterogeneity between vials in the batch. In the last part of the work, the main quantified sources of heat and mass transfer 
variability were integrated in a mathematical model of freeze-drying process. This multi-vial, dynamic model was used not 
only to predict the evolution of product temperature and moisture content during freeze-drying for a batch of 100 vials, but 
also to estimate the percentage of vials that could potentially be rejected. The proposed approach, extended to a greater 
number of simulated vials, could be applied to calculate design spaces of the primary and secondary drying steps of freeze-
drying process at a known risk of failure. 
 
Titre  : La lyophilisation des vaccins: contribution de la modélisation mathématique à l'évaluation de l'hétérogénéité des 
produits et des risques de changement d'échelle 
Mots clés : séchage; transfert de masse et chaleur; changement d’échelle; Quality-by-Design; modélisation mathématique. 
Résumé : La lyophilisation est le procédé de choix dans l'industrie pharmaceutique pour la stabilisation de produits 
thermosensibles tels que les vaccins. Cependant, en raison du pré-conditionnement du produit dans des flacons individuels, 
ce processus est difficile à concevoir et aboutit souvent à des lots présentant une hétérogénéité significative dans la qualité 
du produit final. L'objectif principal de ce doctorat a été le développement d'un modèle mathématique pour la conception du 
processus de lyophilisation à un niveau de risque donné, c'est à dire un pourcentage de flacons potentiellement non 
conformes. Le travail a porté sur la compréhension et la quantification des sources possibles responsables de la variabilité 
des transferts de chaleur et de matière lors du processus. Dans un premier temps, la variabilité du transfert de chaleur entre 
les flacons a été étudiée en considérant les dimensions du flacon et sa position sur l'étagère de l'équipement. La variabilité 
des dimensions géométriques observées dans un lot de flacons (i.e., l'aire de contact entre l'étagère et le flacon et la 
profondeur de concavité du fond) a influencé la distribution du coefficient de transfert de chaleur entre les flacons. De plus, 
un modèle mathématique original en 3D a été développé dans COMSOL Multiphysics pour expliquer et prédire les 
transferts de chaleur atypiques observés dans les flacons situés sur les bords de l'étagère lors du processus de lyophilisation. 
Les phénomènes conductifs à basse pression au sein de la vapeur d'eau ont été reportés comme un mécanisme dominant 
expliquant ces transferts de chaleur atypiques alors que les phénomènes radiatifs liés à la présence des parois de 
l'équipement ont toujours été cités dans la littérature.  Par ailleurs, ce modèle mathématique en 3D a été utilisé pour étudier 
l'effet de la configuration de chargement du lyophilisateur et des caractéristiques de l'équipement sur la variabilité du 
transfert de chaleur. Dans un deuxième temps, la variabilité des transferts de matière a été évaluée sur une solution de 
saccharose à 5 % en considérant deux paramètres, la résistance de la couche sèche au transfert de matière pendant la 
sublimation et le temps caractéristique de désorption. La résistance à la couche sèche a été évaluée en combinant deux 
approches complémentaires,  les tests de remontée de pression et la méthode gravimétrique. La variabilité estimée de la 
résistance à la couche séchée a eu un impact plus important sur la distribution de la température du produit que la variabilité 
du coefficient de transfert de chaleur. La valeur et la variabilité du temps caractéristique de désorption ont été évaluées pour 
différentes températures et ont permis de simuler l'hétérogénéité de la teneur en eau finale entre les flacons. Dans la dernière 
partie du travail, les principales sources quantifiées de variabilité des transferts de chaleur et de matière ont été intégrées 
dans un modèle mathématique de lyophilisation. Ce modèle dynamique multi-flacons a été utilisé non seulement pour 
prédire l'évolution de la température et de la teneur en eau du produit pendant la lyophilisation pour un lot de 100 flacons, 
mais aussi pour estimer le pourcentage de flacons potentiellement non conformes. L'approche de modélisation proposée, 
étendue à un plus grand nombre de flacons simulés, pourrait être utilisée pour calculer les "design spaces" (espaces de 
travail) des étapes de dessiccation primaire et secondaire du processus de lyophilisation à un risque connu de pourcentage 
de flacons non conformes. 
 


