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Introduction

The thermoelectric conversion is a subject of active research. Its main appli-
cations are related to energy harvesting for autonomous power supply system
as well as heat management in particular for CPU cooling. Yet, common ther-
moelectric systems unfortunately rely on rare and toxic compounds such as
Bismuth Telluride, Lead Telluride, etc., . Their replacement by Silicon and
Germanium which are more abundant and widely used by the microelectronic
industry would be appealing. However, their intrinsic thermoelectric properties
are poor especially close to room temperature.

In order to improve the thermoelectric conversion of devices based on Si and Ge,
nanotechnologies provide new routes of optimization. Indeed, nanostructuring
can be used to tune the intrinsic properties of nanostructures by several orders
of magnitude.

In this framework, this PhD dissertation investigates the thermal properties
of recently fabricated Si and Ge polytype nanowires. They are made of quasi-
periodic sequences of cubic and hexagonal phases of Si or Ge. The presence
of many polytype interfaces is expected to be beneficial to the thermoelectric
properties. Since experimental characterizations of this nanowires are still very
challenging, developing in parallel specific numerical tools is of high importance
for developing this technology.

During this thesis, an original Monte Carlo simulator dedicated to phonon
transport have been developed. It is a full-band and 3D simulator that is able
to provide deep insights of thermal transport in complex nanodevices. As the
required “semi-empirical” parameters are computed by using ab initio data,
a large class of materials and phase can be modeled even the availability of
experimental characterization. Besides, studies performed by using Molecular
Dynamics are presented in order to parametrize semi-transparent interface
modeling in the MC code.

In §1 the context of this thesis is presented. The theoretical models used through
this work are presented in §2. The Monte Carlo and Molecular Dynamics
simulations methods are detailed in §3. In §4, our methods are validated by
studying the properties in bulk materials and thin films. §5 our implementation
of rough boundaries in the Monte Carlo simulations is presented as well as the
resulting simulations. Finally, in §6, the properties of interfaces between the
different phases of Si and Ge are investigated.



1 Context

Currently, a significant part of the worldwide produced energy is rejected as
wasted heat. In 2007, less than half of the produced energy was effectively
consumed (cf. Smith, Belles, and Simon (2011)). There is thus a strong
motivation to develop technologies that are able to harvest that large amount of
lost energy.

Thermoelectricity deals with the coupling between the flux of electrical charges
(current) and heat flux, enabling the direct conversion of thermal energy to
electrical energy. The thermal energy can be transferred in solid-state systems
by several mechanisms: lattice vibrations (related to pseudo particles called
phonons), electrons (that is the electronic part of thermal conduction) and
electromagnetic fields (i.e. by thermal radiation, cf. G. Chen (2005)). In this
thesis, we focus on the thermal transport in semiconductors. Only the lattice
vibrations are considered in this work, as other mechanisms (electronic conduction
and radiation) are negligible in the studied systems. Besides, only the thermal
part of the thermoelectric properties are studied.

At the macroscale, the thermal properties of materials can be well characterized
by the thermal conductivity that is accurately modeled by using the Fourier’s
law (Fourier 1822). However, when the device size approaches the characteristic
length scale of microscopic phenomena, the thermal properties are modified,
and new theoretical models are required. Due to the high complexity of the
nanoscale heat transport, numerical simulations have become very helpful in the
study of nanomaterials and devices.

1.1 Thermoelectricity

The main application of thermoelectricity that we consider is the harvesting of
thermal energy. While thermoelectric generators have a low efficiency with respect
to other technologies (cf. Vining (2009)), they also have several advantages.
Their mechanical simplicity makes them more reliable, and independent of
gravity or atmospheric pressure. For instance, it makes them attractive to
the spatial industry, and they have been used to power several probes and
rovers. They also can be easily miniaturized and could be embedded in a wide
range of products. By using such generators, temperature differences naturally
present in the environment can be exploited to supply low power devices such as
autonomous sensors.

Another application of thermoelectrics is the heat management. Current micro-
processor technologies are limited by heat dissipation. Indeed, the increase of
clock frequencies leads to an increase of the heat production in electrical devices
and the limits of passive heat diffusion are reached. Thermoelectric devices could
be integrated close to the sources of heat in order to extract it more efficiently
(Pop 2010; Moore and Shi 2014).

The efficiency of a thermoelectric material is characterized by its thermoelectric
figure of merit ZT', which is proportional to the Seebeck coeficient .S, the electrical
conductivity o and inversely proportional to the thermal conductivity k.
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In order to improve the conversion efficiency, ZT has to be increased. Conse-
quently, x should be reduced while S and o should be increased. However, x and
o are not independent parameters in common materials, and Z7T optimization
have remained very limited for decades (cf. Chen et al. (2003)).

Figure 1 (reproduced from Heremans et al. (2013)) shows the evolution of
the figure of merit ZT of several materials between 1940 and 2010. Constant
progress was made until 1970 when ZT of bulk materials reached a plateau. The
ZT of Bismuth Telluride was then measured around 1. Unfortunately, the best
thermoelectric materials happened to be rare and pollutant. This makes difficult
their widespread use.

A thermoelectric device based on Si and Ge would be a better candidate, as they
are abundant and compatible with the current fabrication technologies. However
bulk Si and Ge ZT are too low to allow interesting thermoelectric applications.
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Figure 1: Evolution of the maximum ZT over time. Reproduced from (Heremans
et al. 2013).

The pioneering work of Hicks and Dresselhaus (1993) opened new research direc-
tions by demonstrating that nanostructures could be used to significantly enhance
the thermoelectric efficiency. Following this research trend, this work focuses
on the reduction of the thermal conductivity, which is required for improving
thermoelectric energy conversion (G. Chen 2005) by using nanostructuring.

Indeed, the characteristic length of electron transport, called the electron mean
free path [, ;,, is usually much smaller than those involves in thermal transport
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referred as ¥, fph. Moreover, boundary scattering mechanisms become significant
in nanostructures (Ziman 2001; Peierls 1929) in which a reduction of the two
previous characteristic lengths can be achieved. Thus, designing a nanostructure
with an intermediate length L (I7,,, < L < lf’nfph) ) would have a greater
impact on the phonon transport than on the thermal one. Finally, ratios of
and thus ZT higher than its bulk counterpart can be achieved. Experimental
measurements in Silicon nanowires of appropriate diameters (Qiu et al. 2015)
i.e. on the order of 100 nm, have already demonstrated a large reduction of the
effective thermal conductivity (Li et al. 2003; Boukai et al. 2008; Hochbaum et
al. 2008), down to 2 orders of magnitude lower than the bulk conductivity. As
the related electrical conductivity reduction is weak, ZT values higher than 1
have been demonstrated (cf. Akiyama et al. (2017)).

Several other nanostructures have been investigated, e.g. nanofilms, superlattices
(Hu and Poulikakos 2012; Mu et al. 2015), core-shell structures (Hu et al. 2011),
phononic crystals (Yu et al. 2010), nanowire networks (Verdier, Lacroix, and
Termentzidis 2018). The thermal conductivity can also be reduced by alloying
(Garg et al. 2011) or partial amorphization (Donadio and Galli 2009) of materials.

Recently, Vincent et al. (2014) developed an original method for fabricating
nanowires composed of a quasi-periodic stacking of cubic and hexagonal phases
of Si or Ge. Images of a Ge polytype nanowire are shown in Figure 2 (reproduced
from (Vincent et al. 2014)), showcasing the two phases and their interface. In
addition to the ZT improvement due to the size effect (as in other nanowires),
multiple polytype interfaces could affect strongly the thermal conductivity.
Meanwhile, the electrical conductivity should be less impacted by the change of
phase.

11



Figure 2: Germanium polytype nanowire (Vincent et al. 2014).

1.2 Nanoscale thermal transport

At low dimensions, the distribution of particles can strongly differ from the ther-
mal equilibrium. The classical Fourier’s law of conduction then becomes unable
to describe the thermal transport, and nanoscale models are required. These
models must include the material properties and the effects of nanostructures.
They usually consider the heat either from the trajectories of individual atoms,
or as collective excitations (i.e. phonons).

DFT (Density Functional Theory) simulations have been used to calculate the
thermal properties of bulk materials (Seko et al. 2015) Or small nanostructures
(Markussen, Jauho, and Brandbyge 2008; Li et al. 2012). This ab initio
method can be used to study materials or structures that are not previously
characterized. However, full quantum simulations such as DFT require a lot of
computing resources, and are thus limited to very small systems in the order of
hundreds of atoms.

The Atomistic Green’s Function (AGF) method can solve the transmission
function in a device, but it is generally limited to ballistic transport (N. Mingo
and Yang 2003) but can be extended to include all relevant scattering mechanisms
(Luisier and Klimeck 2009).

Among atomistic simulations, classical Molecular Dynamics (MD) simulation
is a very common method to simulate the heat transfer. In this approach, the

12



trajectories of atoms are numerically solved and analyzed. The materials are
described by using empirical inter-atomic potentials. This classical approach
of transport is accurate only at high temperature, higher than the Debye’s
temperature, that is 640 K in Si (Madelung, Rossler, and Schulz 2002).

MD simulations have been widely applied for modeling nanowires made of
different crystalline structures (Termentzidis et al. 2013) and of diameter up
to 20 nm (Volz and Chen 1999; Donadio and Galli 2009). The effect of rough
interfaces can be modeled directly in real space (Liu and Chen 2010; Qiu,
Sun, and Ruan 2011) as well as the resulting reflections of mechanical waves.
MD simulations can be performed at equilibrium (EMD) or non-equilibrium
(NEMD) conditions. Previous authors have compared them in bulk Si (He et al.
2012; Sellan et al. 2010; Schelling, Phillpot, and Keblinski 2002) and Ge (He
et al. 2012). The conductance of Si/Ge interfaces has also been investigated
(Merabia and Termentzidis 2012) as well as the conductivity of Si/Ge superlattices
(Termentzidis and Merabia 2012). Due their computational consumptions, MD
studies are generally limited to devices that are made of ten thousands of atoms.

Methods based on the resolution of the Boltzmann Transport Equation (BTE)
for phonons are relevant for larger system and can cover the full temperature
range. The linearized BTE can be solved analytically when simple phonon
dispersions and scattering terms are considered as done in pioneering works
of Callaway (Callaway 1959) and Holland (Holland 1963). When considering
simple geometries, it can be solved for instance by a direct approach (Nghiém,
Saint-Martin, and Dollfus 2016), a discrete ordinate method (Yang and Chen
2004) or a finite volume method (Narumanchi, Murthy, and Amon 2005).

But for 3D problems, a stochastic particle Monte Carlo method (Jacoboni and
Lugli 2012) is much more numerically efficient and complex scattering terms
can be implemented (Hamzeh and Aniel 2011). This versatile approach can
solve accurately the BTE much beyond the linear approximation and in complex
geometries. It has been used to study bulk materials (Mazumder and Majumdar
2001; Péraud and Hadjiconstantinou 2011; Klitsner et al. 1988; Peterson 1994),
as well as nanocrystalline materials (Yang and Minnich 2017), porous nanofilms
(Wolf, Neophytou, and Kosina 2014; Maire et al. 2017; Hao, Chen, and Jeng
2009) nanowires (Y. Chen et al. 2005; Lacroix, Joulain, and Lemonnier 2005),
nanoribbons (Mei et al. 2014), etc. An important improvement of the MC
simulations is the introduction of variance reduction methods in (Péraud and
Hadjiconstantinou 2011).

In many MC approaches, simple isotropic phonon dispersions (Mazumder and
Majumdar 2001; Lacroix, Joulain, and Lemonnier 2005) are assumed. Few works
have used a full-band dispersion, i.e. have considered the phonon modes in the
entire 3D Brillouin Zone (Kukita, Adisusilo, and Kamakura 2014; Aksamija
and Knezevic 2010). However, significant deviations from isotropic calculations
can be obtained (Kukita, Adisusilo, and Kamakura 2014). The accuracy of
semi-empirical methods such as BTE or MD is directly related to the choice of
their input parameters (inter-atomic potential, dispersion properties, phonon
lifetimes, etc.). They are thus not convenient to study a new material for which
such parameters are unknown. A methodology for solving the BTE in thin
films without any adjustable parameter has been recently presented in (Chaput
et al. 2018; Yang and Minnich 2017). In this simulation method, the BTE
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parameters, i.e. full-band dispersion and full-band phonon-phonon scatterings
rates, are preliminarily computed by using DFT calculation.

In MC simulation, the reflection at external rough boundaries is usually im-
plemented by considering a specular reflection. Thus, external boundaries are
designed in real space by using a realistic profile, e.g. using a saw-tooth shape
(Moore et al. 2008) or a random surface (Ramayya et al. 2012). Other models
consider a specific scattering term related to a diffusive reflection at the inter-
face that randomizes the propagation direction of diffused phonons. Casimir
has linked the thermal conductivity to the width of structures (Casimir 1938).
More recently, a probability of specular reflection (Berman, Simon, and Ziman
1953; Ziman 2001) using a diffusive characteristic length for ultra-thin wires
(Santamore and Cross 2001) have been defined. In Soffer’s work (Soffer 1967),
this probability depends on the incident wave vector of phonons plus two em-
pirical parameters: the surface roughness standard deviation and its tangential
correlation. This model provides results close to experimental measurements
(Maurer et al. 2015). The interface transmission is described by two common
models: the Acoustic Mismatch Model (AMM) and Diffusive Mismatch Model
(DMM) (Little 1959). AMM considers perfect interfaces that conserve the wave
coherence, while the DMM (Swartz and Pohl 1989) supposes that the interfaces
are completely diffusive. More advanced methods based on MD (Merabia and
Termentzidis 2012), AGF (Tian, Esfarjani, and Chen 2012) and ab initio lattice
dynamics calculations (Alkurdi, Pailhes, and Merabia 2017) have also been used.
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2 Theoretical models

In this chapter, we detail the theoretical basis of our studies. The concepts of
thermal conductivity and interface thermal conductance are presented.

The two first sections of this chapter presents the studied devices and the different
kinds of material modeling used in this work. The next sections focus on the heat
transfer modeling and present relevant semi-analytical approaches. Numerical
methods to solve the heat transfer are presented in details in the next chapter.

2.1 Simulated devices

In this thesis, different types of nanostructures, schematized in Figure 3, are
investigated: nanofilms, nanowires and heterojunctions. In nanofilms, the
external interfaces, separated by a finite distance, are called the top and bottom
interfaces. In nanofilms both the in-plane and cross-plane configurations are
considered, depending on whether the thermal flux is parallel or perpendicular
to the interfaces, respectively.

As schematized in Figure 3, to implement numerically the devices, a cubic mesh
is used. A material (of arbitrary crystal orientation) is assigned to each cell. All
devices are in between a cold thermostat (blue plane) and a hot one (red plane).
A face of a cell can be either transparent (when the adjacent cell is made of the
same material), specular (no adjacent cell) or diffusive (green planes).

The reflected angle of a particle colliding with a specular face is equal to the
incident one. This reflected angle is of course different when a diffusive face is
involved and must be selected carefully, as explained later in this chapter. To
mimic infinite dimensions, as needed for instance in cross-plane configuration for
all directions except the transport one, specular reflections are implemented at
opposite boundaries.

In this study, the heat transport is along the X-axis. The four devices shown in
Figure 3 have different types of boundaries. They are:

(a) cross-plane nanofilm (CPNF), i.e. oriented along the cross-plane direction,
with only specular boundaries;

(b) in-plane nanofilm (IPNF), i.e. oriented along the in-plane direction with a
pair of specular (XZ planes) and diffusive (XY planes) boundaries (colored
in green in Figure 3);

(¢) rough nanowire (NW), with only diffusive boundaries.
(d) heterojunctions (HJ), with only specular boundaries, but composed of two

materials separated in the center by an interface (colored in purple in
Figure 3).

These devices are parametrized by their length L (distance between thermostats
along X axis) and their width W (along the Z axis). In this study, only nanowires
with a square cross section are considered (i.e. with the height along Y direction
also equal to W).
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(a)

(b)

(c)

(d)

i

Y

Figure 3: Schema of the simulated devices: (a) cross-plane nanofilm, (b) in-
plane nanofilm, (c¢) nanowire and (d) heterojunction. Cold (hashed blue) and
hot (hashed red) thermostats. Rough boundaries (green). Solid-solid interface
(hashed purple).

2.2 Models of materials

To solve the heat transport equation in a solid-state system, the prior knowledge
of both the dispersion relation and the scattering rates is required.

The dispersion relation is the relation between the phonon energy and wave
vectors, defined in the entire reciprocal space. In a periodic lattice, the reciprocal
space is periodic and the dispersion relation can be completely defined in a
primitive cell centered on the origin called the Brillouin zone (BZ).

The movement of phonons in a material is perturbed by several scattering
mechanisms, which can be characterized by their scattering rates. Usually, the
main source of thermal resistance is due to the phonon-phonon scatterings.

It is possible to have an analytical representation of the dispersion relation
and the scattering rates by using several approximations. In this thesis, a full
band description of the BZ is mainly used, i.e. both the dispersion relations and
scattering rates are numerically calculated for a large number of wave vectors in
the whole BZ.

2.2.1 Full band models

In order to study the details of thermal transport more accurately than the
previous works, all phonon modes are considered, and the anisotropic effects are
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included in the present work. Thus the energy dispersion, the phonon velocity
as well as the phonon scattering rates in all directions are considered.

Indeed, all phonon states belonging to the Brillouin Zone (BZ) are considered in
our “full-band” description. To determine all these full-band material parameters,
we use two different methods: the Adiabatic Bond Charge Model (ABCM) and
the Density Functional Theory (DFT).

ABCM is a semi-empirical model derived from the Force Constant Model (FCM).
In FCM, the force matrices are defined between every neighboring atoms in the
primitive unit cell of the lattice, ignoring all other interactions. The energy can
thus be calculated for any wave vector from the equation of motion of the phonons.
The ABCM improves its accuracy by accounting for the delocalization of the
electron cloud. The resulting negative charge called ‘bond charge’ accumulates
at the center of the interatomic bond. Using the parameters of Weber (1977) for
Si and Ge, the resulting ABCM dispersions fit experimental measurements with
an error of only 2%. The dispersion relations are calculated in this work for both
the cubic and hexagonal phases of Si and Ge, as detailed in (Larroque 2016).

DFT is an ab initio method which is relevant to investigate the phonon properties
of a large range of materials. It is accurate and does not require any empirical
parameter, but consumes heavy computing power. The dispersion relation and
scattering rates for the cubic and hexagonal phases of Si (called Si3C and Si2H,
respectively) that are used in this thesis have been computed by Chaput et al.
(2018), as explained in Togo, Chaput, and Tanaka (2015).

Since the scattering rates cannot be calculated via the ABCM which considers by
principle only the harmonic part of the potentials, the thermal conductivity can
only be calculated by using DFT. However, the ABCM dispersion is sometimes
used to calculate the interface thermal conductance since we do not have yet
a complete set of DFT data for all Ge phases. For both methods, the first
BZ is discretized in a set of N wave vectors, with V = 31 x 31 x 31 = 29791
and N = 31 x 31 x 19 = 18259 for cubic and hexagonal phases, respectively.
Cubic and hexagonal phases have 6 and 12 phonon modes, respectively. The
angular frequency, the group velocity and the phonon-phonon scattering rates
are calculated for each discrete state characterized by a couple of a wave vector
¢ and a mode m.

The only phonon scattering rates computed here by DFT are those related
to the intrinsic phonon-phonon scattering mechanisms that are dominant in
bulk materials. These phonon-phonon scattering rates A are calculated via
the finite displacement method detailed in supplementary materials of (Chaput
et al. 2018; Togo, Chaput, and Tanaka 2015), for 101 temperatures ranging
between 0 and 1000 K. In brief, DFT calculations have been performed by using
the finite displacement method with PAW pseudopotentials, within the PBE
approximation. This approach allows obtaining the forces on atoms, from which
the harmonic and anharmonic force constants can be extracted. The phonon
frequency and group velocity can then be computed from the dynamic matrix.
During the simulation, the values corresponding to intermediate temperatures
are interpolated by using a cubic spline method. We should note that Normal
and Umklapp scattering mechanisms are not distinguished in our approach.
Thus, our phonon-phonon scattering rates represent actually an average effect
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due to a combination of the two kind of mechanisms.

Due to the discrete nature of our BZ description, the definition of the iso-energy
states that are used for instance to select the final state after any scattering
event leads to a fluctuation of energy inside the discrete states due to their
finite size. Thus, the strict conservation of angular frequency (or energy) is
modulo the frequency discretization step Aw. In our simulation Aw is defined as
AW = Winas /128 where wpq, is the maximum phonon frequency in the material
(this value of Aw leads to negligible average energy loss as shown in §3.1.11).

The resulting iso-energy curves of the first phonon mode from DFT data are
plotted in Figure 4. Parts (a) and (b) represent the BZ in face centered cubic
and hexagonal lattices (for Si3C and Si2H, respectively) and their high symmetry
points (from Setyawan and Curtarolo (2010)). Parts (c), (d), (e), and (f) are
cartographies of the angular frequency in the main cutting planes of the BZ.
In the cutting plane I'X L of cubic silicon in (c), iso-energy curves are far from
being circular (spherical in 3D) as in isotropic materials in the whole frequency
range. In particular, the anisotropy between the L and U points is strong. In
the hexagonal phase in (d), (e), and (f), an isotropic behavior is nearly achieved
in all planes (KT'M, MT A, and KT A, respectively) but only at low frequencies.
In contrast, far from the G point the anisotropy becomes strong, in particular
between the M and K points.

We can also see that the phonon group velocities, which are the derivatives of
the angular frequency with respect to the wave vectors, will not be isotropic.
Furthermore, in the optical modes, some regions of the BZ even show a group
velocity with a direction opposite to the corresponding wave vectors.
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(a)

(d)

0 0
q; q;
Figure 4: Cartography of the angular frequency w in the BZ. Wave vectors g; ;
are in [10'3 27/m]. Schema of the BZ in (a) Si3C, (b) Si2H. Iso-energies in (c)

the (100) plane of Si3C, (d),(e),(f) in the (10-10), (11-20) and (0001) planes of
Si2H, for the first phonon mode.

0
d;

Similarly to the previous figure, the scattering rates in the main planes of Si3C
and Si2H are represented in Figure 5. It shows an even stronger anisotropy in
the dispersion relations. These figures illustrate the necessity of using a full-band
representation of the BZ instead of a simple isotropic analytical formula.
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(b) (c)

0 0
q; q;
Figure 5: Cartography of phonon-phonon scattering rates A in the BZ. Wave

vectors g; ; are in [101° Hz]. Iso-energies in (a) the (100) plane of Si3C, (b),(c),(d)
in the (10-10), (11-20) and (0001) planes of Si2H, for the first phonon mode.

0
d;

2.3 Models of rough boundaries

In nanostructures, the contribution of rough boundaries on the thermal resistance
needs to be considered. Indeed, this contribution can become stronger than
those of phonon-phonon scattering mechanisms.

A first model of the rough boundary contribution in thermal resistance was
introduced by Casimir (1938). He considered all rough boundaries as black
bodies at a constant temperature gradient. This means that all points in a
structure emit as much energy as they absorb, i.e. they are perfectly diffusive
boundaries. An average scattering rate within this model can be defined such as:

v
)\boundary = W (2)

where F' is a form factor related to the shape of the device independent from
the device width W, and v is the phonon group velocity.

This model was improved by the work presented in (Berman, Simon, and Ziman
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1953), by adding a probability pspecular t0 have a specular reflection at the rough
boundary (thus 1 — pspecular is the probability to have a diffusive reflection). This
probability is constant and the rough boundary scattering rates have the form:

v 1+ Pspecular

— 3
Wi1- Pspecular ( )

)\boundary =

Soffer further improved the probability of specular reflection in (Soffer 1967),
making it dependent on the incident angle of the phonon, the rms of the surface
height deviation (called the surface roughness parameter A), and the spatial
correlation of these deviations.

In the case where the spatial correlation of the surface roughness is negligible,
the probability of specular reflection at a rough boundary becomes:

_ 2

DPspecular = € (2cos(0)Ald1) (4)
where ¢ is the incident wave-vector, 6 its angle from the normal vector of the
surface, and A is the surface roughness parameter.

Kazan et al. (2010) were able to fit experimental measurements of the thermal
conductivity of nanowires from Hochbaum et al. (2008) with this model.

Since this model considered isotropic materials, we needed to adapt them to our
full-band dispersion relation (see §2.2.1) in which the velocity and wave-vector
of a given phonon state are not necessarily collinear. For a particle in a state j,
the incident angle 6 is changed to:

cos(0;) UL (5)

G

where v, ; is the component perpendicular to the boundary interface of the
velocity U; of the incident phonon.

q) being the component of the wave vector tangent to the surface, Chen et al.
(2008) set pspecular to 1 when Wqy > 1 or to 0 otherwise. Also, Ramayya et al.
(2012) models rough boundaries in real space using only specular reflections.

2.4 Heat transfer modeling and thermal conductivity

The thermal conductivity of a device is its main thermal property. In a nanos-
tructure heated by two thermostats, it can be defined as:

_ 9@
AT

KR

L (6)

where @ is the net heat flux density (flux per unit of area) from the hot thermostat
to the cold thermostat, AT is the temperature difference between the thermostats
and L the distance between them.
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2.4.1 Isotropic analytical models

In order to calculate bulk thermal conductivity, Callaway (1959) first used an
isotopic and linear phonon dispersion relation, with only one artificial mode
averaging all actual mode properties. The relaxation times were energy and
temperature dependent, fitted from experimental measurements. This simple
model managed to fit correctly the experimental thermal conductivities of Si
and Ge at low temperatures.

Holland (1963) improved this model by separating the transverse and longitudinal
acoustic modes. A frequency threshold was also used to better model the
properties of higher energy phonons. The resulting bulk Si and Ge conductivities
are relevant in the whole temperature range.

For phonon transport, many works assumed such simple dispersion relations
(Mazumder and Majumdar 2001; Klitsner et al. 1988; Peterson 1994; Y. Chen
et al. 2005; Lacroix et al. 2006). However, they require several parameters to fit
on experimental measurements, and thus do not have predictive capabilities to
investigate materials that have not been previously investigated experimentally.
Besides, these approximations cannot reproduce accurately both the heat capacity
and the heat conductivity (cf. the work of Larroque, Dollfus, and Saint-Martin
(2017)) using a single normalization parameter in the whole temperature range.

2.4.2 Full-band semi-analytical models

Using the analytical dispersions relation and scattering rates mentionned in
§2.2.1, the thermal conductivity can also be calculated with analytical formula.
It is usually derived from the linearized BTE (see §3.1.1).

In this thesis, semi-analytical models (SA) as well as numerical approaches (MC
and MD methods presented in the next chapter) are used to estimate the thermal
conductivity. Previous full band models have been developed for instance by
Mingo et al. (2003), and Aksamija and Knezevic (2010) demonstrated predictive
calculations of the thermal conductivity with a full band dispersion relation.
One originality of this work is to directly includes both dispersion relation and
phonon-phonon scattering rates computed by using DFT calculations.

2.4.2.1 SA ballistic model

The ballistic SA model estimates the thermal conductivity in infinitely short cross-
plane nanofilms (CPNF). The resulting thermal conductivity is linearly dependent
on the distance L between thermostats. The heat flux densities involved are
emitted from the hot Qr,., and cold thermostats Qr,,, (at temperatures Thot
and Tio1q respectively). The fluxes are estimated within a ballistic Landauer’s
formalism, without any diffusive mechanism leading to a heat transmission equal
to 1.

The heat flux density injected by a thermostat at the temperature T, normal to
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the vector i is then:

Qr="Ve Y hwld; -7l fae(w;, T) (7)
state j
|’l7j‘ﬁ‘>0

where w; and ¥; are the angular frequency and velocity of the phonons in the
state j, V; is the reciprocal volume of one state in the Brillouin zone, and fgg is
the equilibrium distribution.

The net heat flux density is:

ballisti
Q allistic — QThot - QTcold (8)

The resulting thermal conductivity that it is L-dependent has the following form:

ballistic L V; o 5 L.
k = AT Z hw,] 'Uj n fBE(wjv Thot) + g hw] ’Uj n fBE(wj’ Tcold)
state j state j
U;-1>0 7;-1<0

9)

Usual approximations use the local temperature derivative of the phonon distri-
bution instead of the temperature bias AT at the thermostats, leading to:

O0fBE

phallistic — 1/ Z Fw; | 'ﬁ‘aiT(wj’Teq) (10)

state j

We found that these two approaches are not equivalent at low L. Similar
expressions of the ballistic conductivity have been previously discussed for
instance in Mingo et al. (2003) .

2.4.2.2 SA diffusive model

The SA diffusive model leads to a length-independent conductivity (as in an
infinitely long CPNF) and should provide the bulk thermal conductivity. In this
model, the conductivity is written as:

i i - - 1 6fBE
diffusiv NPT 2
k stve — LS E hUJJ|UJ n| )\j

(wj, Teq) (11)

stateyj

where J; is the phonon-phonon scattering rate for state j.

The diffusive model is a solution of the linearized Boltzmann Transport equation
(BTE). The steady-state BTE for each state j has the form:

_ 9

scatt

where f; is the distribution of phonons in the state j.
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The wave vector-dependent relaxation time approximation 1/, is used to simplify
the expression the phonon-phonon scattering rate, as follows:

af

B = —(f; — fee(W;, T))A\;(T) (13)

scatt

By using this approximation, the system tends “naturally” to recover its equilib-
rium distribution.

We define f; as the sum of the Bose-Einstein equilibrium distribution plus a
small deviation 6 f;.
fi = fee(w;, T) +6f; (14)

The deviation from the equilibrium distribution is assumed to be much smaller
than the equilibirum distrubtion and also independent from the temperature at
the first order:

0f; < fBE(OJj,T) (15)
9(8f;) _
or 0 (16)
Besides, as the spatial grandient can be expressed as follows:
. of: -
V= a—{;VT (17)

The left hand side of Eq. 12 can be written as:

L = L e 0 L a0
-V :vj-VTa—J;Z — ;- VT g;E (w;, T) (18)
Eq.12 becomes:
= OfBE 1
5f; =5 VTR (. )= (19)
7 or N

The heat flux density in the transport direction 7 (i.e. colinear with VT is
defined by:

Q=) Q (20)

states j
Qj = Vs hw; 75 -1 0 f; (21)
We then introduce d f;:
. (- <.0fBE 1
Qj = Vs hwj Uj -7 (Uj VT —— (wj,T)/\j> (22)
L Lo 1 OfsE =,
Qj = hw;]7; -nP)\—j a7 WirTeg) VT -7 (23)

The conductivity of Eq. 11 is finally obtained from the definition of the thermal
conductivity.
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2.4.2.3 SA Matthiessen model

In order to model the thermal conductivities in devices with an intermediate
length in which a heat transport regime between ballistic and diffuse limits
occurs, we first mix the previous models by using a Matthiessen’s rule. It means
summing ballistic and diffusive conductivities (of Eq 11 and 9, respectively) as
follows:

1 1 1
— + (24)

RMatthiessen Rballistic Rdiffusive

2.4.2.4 Spectral SA models: CPNF, IPNF and NW

More complex models based on a spectral decomposition of the thermal conduc-
tivities are usually more accurate. Thus, a specific model for each kind of studied
nanostructures have been derived. Then, one model is dedicated to NanoFilms
in Cross-Plane configuration (the CPNF model), another to NanoFilms in In-
Plane configuration (IPNF) and the last one to nanowires (NW). In each case,
the Soffer’s model (see §2.3) is used to model the rough boundary scattering
mechanism. In this approach, ballistic and phonon-phonon scattering rates are
once again summed but their spectral dependences are considered. Indeed, the
average distance over which a phonon moves along the transport direction 77
before colliding with a thermostat is:

L= (25)

2|

with L the distance between thermostats.

Similarly, in IPNF and NW models, the average distance over which a phonon
moves in a transverse direction 7, before colliding with a rough boundary is

W—w (1 _ 1) (26)

1- DPspecular 2
with W the width of these devices, and by considering the probability of specular
reflection pspecular from Eq. 4.

For these three models (NFCP, NFIP and NW), the total spectral scattering
term for a state j is given by:

Vi N
ACPNF,j = Aj +% (27)
-0 T -7
)\IPNF,j —_ )\j + ‘ .77 ‘ + | J 7J~71| (28)
w
U; -1 Ui -1 Ui -1
)\NWJ :)\jJr | g | + | J WL,1| + | J WL? (29)
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Finally, the associated thermal conductivities knrcop, KNFIP, and KNw are calcu-
lated from Eq. 11 by replacing A; by their relevant scattering rates.

2.5 Interface thermal conductance modeling

The interface thermal conductance (ITC) is related to the temperature drop at
an interface between two materials induced by a non-zero heat flux. Thus, the
ITC is defined by:

_ Qinter

G B AT1inter

(30)

where Qinter s the heat flux density flowing though the interface, and ATjyger is
the temperature drop at the interface.

It should be noted that the definition of ATjter is not trivial. The temperature
at one side of the interface should be calculated (or measured) by considering
only the incident phonons and not the total phonon distribution (cf. Swartz and
Pohl (1989)). In the case of devices in (or close to) a diffusive phonon transport
regime, these two different temperature definitions are equivalent, but they differ
significantly in the case of a ballistic regime.

The two models mainly used for ITC investigation are the Diffusive Mismatch
Model (DMM) and the Acoustic Mismatch Model (AMM). The full-band adap-
tations of AMM and DMM are detailed in (Larroque, Dollfus, and Saint-Martin
2018). In this thesis, we only investigate the DMM, which assumes a bad quality
of the interface and leads to a diffusive process for every phonon crossing the
interface. Then, each incident phonon can be either transmitted or reflected
according to a transmission coefficient ¢, but in all cases it will undergo a diffusive
scattering process inducing a memory loss of the incident phonon properties.
Similarly to the SA ballistic model derivation for the thermal conductivity, the
ITC can be theoretically estimated via a Landauer’s approach. The net heat flux
density at the interface between the materials A and B is determined by using a
transmission coefficient ¢4, g(w), which is considered to be only dependent on
the angular frequency of the particles. The spectral impedance of a material A
is defined for a range Aw as:

‘/s . _ Aw
Iz(w) = AL Z hwf U]A -1 8(jw —ij| < 7) (31)
states j

in material A

The transmission coefficient is then calculated by using the impedance of the
two materials (A and B) involved in the interface:

baon(e) = B 32)

The final semi-analytical formula for the ITC can be written as follows:
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DMM _
G (w, T) = 5T

(w, T Ia(w)tasp(w) (33)

where GPMM(y, T') is the spectral decomposition of the ITC at temperature T,
and fpg is the equilibrium Bose-Einstein distribution.
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3 Monte Carlo and Molecular Dynamics simu-
lations

The main concepts related to the nanoheat transfer are reminded in the previous
chapter. This chapter focuses on the numerical methods that have been used
during this thesis to investigate the phonons in nanostructures with a particular
interest for interfaces. First, an original Monte Carlo simulator partially devel-
oped during this thesis is presented, second the Molecular Dynamics simulation
methods are reminded.

3.1 Monte Carlo method

The particle Monte Carlo method is a stochastic approach to solve the Boltzmann
Transport Equation (BTE). In this thesis, we present a new simulator for MC
phonon transport, which solves the BTE in 3D for both the real space and
reciprocal space (full band approach). The required semi-empirical, i.e. the
phonon dispersion and the phonon-phonon scattering rates, are parametrized in
the entire 3D Brillouin zone by using ab initio DFT calculations (see §2.2.1).

After introducing the BTE, the model of the simulated particles is presented and
the studied devices are described. Then, we detail our temperature definition
and our complete algorithm. Our configuration method to adjust simulation
parameters is explicated. Finally, we discuss our two phonon treatment of three
phonon scattering processes, the assumption of the average elastic scatterings at
rough boundaries.

3.1.1 Boltzmann Transport Equation

The Boltzmann Transport Equation (BTE) describes the time evolution of the
phonon distribution function in phase space f;(7,§,t), where j is the phonon
state, 7 the position in real space, ¢ the wave-vector and ¢ the time. Its time-
dependent expression is given by:

Of:
i_&.

5 TUVI= 5 ; (34)

where ¥/} is the phonon group velocity (U; = ﬁq wj, w; is the phonon angular

frequency) and % is the collision term.
scatt

Figure 6: Schema of a possible phonon trajectory.
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3.1.2 Principles of a particle Monte Carlo simulation

In order to solve the BTE, we use the particle Monte Carlo method for phonon
transport (Péraud and Hadjiconstantinou 2011). In this stochastic approach, the
trajectories of a large number of semi-classical particles are randomly selected.
The trajectories for each particle are described as a conituous sequence of free
flights (linear trajectories in real space without any change in the reciprocal
space) and instantaneous scattering events (no change in real space but with
a modification of the state in the reciprocal space). The scattering mechanism
ending a free-flight can be either a phonon-phonon scattering or a collision with
the device boundary. For each particle, the initial state, the duration of each
free flight, the type and the effect of each scattering event are chosen randomly
according to all relevant scattering rates. Figure 6 indicates a schematized particle
trajectory in a device. The particle is first injected from a hot thermostat on
the left contact. Then it undergoes several scattering processes in between its
free flights. It finally exits through the cold thermostat on the right contact. At
the end of a MC simulation, the phonon distribution is computed by summing
over all the particles k belonging to the mode m at a given time:

f@ @ty =Y 8(F— qe(t)d(F — k() (35)

particles k

It should be mentioned that only the trajectories during the steady state regime
are considered here. However, the transient response could be also investigated
by using our MC simulator.

3.1.3 Model of pseudo particles

To reduce the particle number and thus the computational resources, in our
model each simulated particle represents a packet of N, phonons with a frequency
w. Considering phonon bundle with a constant number of phonons N, = N
(and thus particles of different energies £, = Nhw according to w) would make
difficult the treatment of elastic scattering mechanisms (Klitsner et al. 1988).
Thus, the number of phonons in a bundle N, at the frequency w is tuned to
keep constant the total energy E,(= N,hw) carried by each simulated pseudo
particle (i.e. a phonon bundle). This input parameter E, defines the energy
resolution of the simulation.

3.1.4 Variance reduction and reference temperature

Only the deviation of phonon distributions from their equilibrium state are
relevant to investigate heat transfer. We would like to simulate only the excess
or lack of phonons with respect to their equilibrium distribution in order to
limit strongly the number of studied phonons and thus the number of simulated
particles. Hence, a reference temperature T close to and usually below the actual
temperature in the device is defined. Only the phonon bundles (the simulated
particles) differing from the Bose-Enstein distribution at 7° are simulated.
Besides, each simulated particle gets a new parameter s equal to +1 (or -1)
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to represent an excess (or a missing particle, respectively) with respect to the
reference distribution at 7.

For instance, the density of simulated particles in a state j in equilibrium at

temperature T is:

Vs
(2m)?

where fgg is the Bose-Einstein distribution, and V5 the volume of a state in the
reciprocal space.

nS(T) = Ej(fmwz“) ~ fop(w;, T)

(36)

This technique reduces both the simulation time and the numerical noise (see
§3.1.12). All simulations presented in this work are based on this approach called
“energy-based variance-reduced method” and have been developed by Péraud
and co-workers (Péraud and Hadjiconstantinou 2011).

3.1.5 Effective temperature

The temperature in each device cell must be updated during the simulation, as
the phonon-phonon scattering rates are temperature-dependent. The energy
density-temperature relation Ey (T) at equilibrium is computed by using this

formula:
Vs

Ey(T)= Y hw;(fse(w;,T) - feu(w;, T°)) o)

state j

(37)

w

where V; is the reciprocal volume of the state, and 79 is the reference temperature.
This function is plotted in Figure 7. A linear behavior is observed above 200K
(this study is at 300K). The effective local temperature in a device cell is obtained
by computing the phonon energy density. Since every pseudo particle (phonon
bundle) has a constant energy, the local energy density in the device cell ¢ is
proportional to the particle density and it is given by:

E
EV,C = =2 Z Sk (38)
¢ particles k

Where V. being the volume of the cell ¢, and si the sign of the particle k.

Then, the energy-temperature relationship of Eq. 37 is numerically inverted.
Finally, the local temperature is T, = E;l(EV,C).
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Figure 7: Phonon energy density-temperature relation in Si3C.

3.1.6 Monte Carlo Algorithm

The main Monte Carlo algorithm is presented in Figure 8. First, the initial
phonon distributions of the particles are generated (§3.1.7). Two nested loops
are then performed, one over time and the other one over particles. At every
time step, the temperature is updated in each cell (§3.1.5), and particles are
injected from the thermostats (§3.1.8.2). Then, the displacement of each particle
is computed and their coordinates are updated (§3.1.6.1). During a time step, the
events that can interrupt a free flight are either a collision with a cell boundary
(§3.1.8.2) or a phonon-phonon scattering event (§3.1.8). At the end of the
simulation, some post-processing calculations are performed to compute the final
results (§3.1.8.3).
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Figure 8: Main Monte Carlo algorithm.

3.1.6.1 Time of free flight and transport

The free flight corresponds to the movement of a particle between two scattering
events. The scattering events can be separated in standard (bulk material)
scattering mechanisms such as phonon-phonon scattering, and phonon-boundary
scattering mechanisms.

Assuming Poissonian processes (cf. Jacoboni and Lugli (1989)), at the beginning
of the free flight, the time before the next standard scattering event tscattering is
randomly selected according to the following formula:

ln(nrandom)
tbcattermg )\j (Tc) (39)
where 7Nrandom 1S a uniform random number in |0;1] and A;(7T;) is the total
scattering rate from a phonon in a state j at a local temperature T,.. These
scattering rates \;(7.) are assumed to be constant during a time step. In the
general case, \;(T;) is the sum of the scattering rates corresponding to all
relevant scattering mechanisms that are assumed to be independent. In this
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work, only the phonon-phonon scattering rates contribute to A;(7¢). They are
calculated by using an ab initio approach as previously mentioned. This method
was first developed for electron transport modeling (Jacoboni and Lugli 1989).

Besides, the time before the next boundary collision depends on the distance d
between the particle and the boundaries along its transport direction. As the
phonon velocity is constant during a free flight, we have

T gy gz
thoundary = Mmin (d iya d) (40)

x? z
vy vy Y3

The actual free flight duration ¢g for the particle is thus limited by the first event
that occurs, i.e.
tg = min (tremaining; 2‘:boundarya tscattering) (41)

where tremaining 15 the remaining time before the end of the 4-th time step d¢ for
the particle. The interruption of a free flight by the end of a time step has no
impact on the other scattering rates since they are Poissonian processes.

tremaining = (tz + 5t) - tcurrent,k (42)

At the end of the free flight, the position in real space 7} of the particle k with a
velocity ¥; is updated according to:

—

Fk(tcurrent,k + tff) =Tk (tcurrent,k) + 77]' (tcurrent,k)tﬁ (43)

It should be mentioned that the wave vector is not modified during a free flight
(only scattering mechanisms following the free flight have an impact on the wave
vectors). Finally, the time counter of the particle is updated. New sequences of
free flights and scattering events are selected until the end of the timestep.

tcurrent,k = tcurrent,k + tg (44)

3.1.7 Initial conditions

In a cell of volume V¢, the initial number of particles N_ {init,m,c} in a mode m
is numerically calculated by using the equilibrium density n°4(w;, T..) defined in
Eq. 36. Summing over all (m-mode) states, it yields:

Ninit,vmc = ‘/c Z njq (wjv TC) (45)

where F;, and T, are the energy of a simulated particle and the local temperature,
respectively.

For each initial particle, the angular frequency is selected according to a equi-
librium distribution proportional to the volume of each iso-energy state. Then,
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its wave-vector (reciprocal space) is randomly and uniformly selected among
the iso-energy states. Using this method ensures that the repartition of energy
between modes is as exact as possible. The position in the cell (real space) is also
randomly selected according to a uniform distribution. Finally, the parameter s
(sign) of the particle is positive if the local temperature T is higher than the
reference temperature Ty, otherwise the parameter s is negative.

3.1.8 Scattering mechanisms

The two main phonon scattering mechanisms in Si and Ge are phonon-phonon
scattering and impurity scattering. In this thesis, we ignore the impurity
scatterings: the simulated materials are considered isotopically pure. However
this mechanism could be easily included in our code by using for instance the
relaxation time defined in (Holland 1963).

3.1.8.1 Phonon-phonon scattering mechanism

While the phonon-phonon scattering is a three-phonon process (higher orders
being ignored), we approximate them as a two phonon process as proposed in
the work of Lacroix, Joulain, and Lemonnier (2005). This greatly simplifies
the algorithm, and since every particle has a fixed energy the conservation of
energy is exact. This approximation can be considered as an average behavior
of large number of phonons having a large number of collisions. A particle
could undergo a phonon-phonon scattering event at the end of a free flight
(ie. tg = tscattering)- Then, the memory of the initial phonon state is lost
(cf. Mazumder and Majumdar (2001)), the scattered pseudo particle (phonon
bundle) is destroyed and the new one is randomly selected from an equilibrium
distribution.

The probability of selecting a new state j is proportional to the equilibrium
density of particles weighted by the interaction rate of that state (cf. Lacroix,
Joulain, and Lemonnier (2005)):

pj o< Aj(Te)n5(Te) (46)

J

3.1.8.2 Boundary conditions

The faces of each cell in a device can be a thermostat, a specular boundary,
a rough boundary, or a diffusive interface (ignoring the transparent interfaces
between adjacent cells of the same material).

Thermostats

Thermostats inject a constant flux of particles that depends on their temperature.
The number of particles injected during a time step 6t through a surface is:

Nthcrmostat (T) = Z 773' . ﬁl A dt njq(T) (47)
state j
|77 |>0
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where 71 is the unit vector normal to the thermostated face and A is its area.

As each particle keeps track of its own simulated time, we initialize all of them
at the beginning of the time step and make them behave as if they were injected
continuously. In this calculation, it should be emphasized that the displacement
of phonons during the (short) time step are assumed to be smaller than the
mean free path of phonons, i.e. the transport of phonons in the thermostat is
assumed to be ballistic.

Another possible method to simulate thermostats is to add a cell behind the
thermostated face. Every face of that “black body” cell is specular, so that
the phonon distribution inside the cell of the thermostat is constant and is
equal to the equilibrium distribution at the thermostat temperature. In this
“black body” cell, when a particle collides the thermostated face connected
to the device, a standard specular phonon reflection occurs, and its phonon
distribution remains unchanged. In parallel, a duplicated particle with the
same properties as the incident phonon (position and wave vector) is created
and injected (transmitted) inside the device as if the thermostated face were
transparent. This last method is more accurate as it simulates completely
the transport of phonons inside the thermostat but is more computationally
consuming. We have implemented both methods. They all produce the same
heat flux using our common simulation parameters. The direct injection at
surfaces was chosen, as it is less computationally intensive.

Specular boundary

At smooth boundaries, the particle reflection is always specular, i.e. the wave-
vector component normal to the surface boundary of the reflected particle (¢ )
is the reverse of the incident one (¢, = —q.).

As such specular reflections have no impact on the thermal flux parallel to the
interface, they are used in our simulations to emulate semi-infinite boundaries.
It should be mentioned that the implementation of specular reflection is obvious
within a full-band description only if the orientation of the specular boundary
corresponds to a high symmetry plane of the crystal.

Reflection at rough interface

In the case of a collision with a rough boundary, the particle has a given
probability to undergo a diffusive reflection that randomizes the final wave vector
instead of a specular reflection. In this work, we use the probability of specular
reflections derived from the work of Soffer (1967). Its adaptation to our full-band
model in detailed in §2.3

If a diffusive reflection occurs, the final state is selected among the states
belonging to the same iso-energy states and with a relevant orientation of the
final velocity in the case of a reflection (i.e. ¥; -7, < 0 where ¥ and ¢" are the
incident and reflected velocities).

Finally, the probability of each reflected iso-energy state is weighted by two
factors: the complementary probability of a specular reflection for a reflected
state j/ with an angle 6/ (from Soffer’s model) and the related normal component
of group velocity (as in the Lambert’s law) as follows:
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pdiﬂusive,j’ X (1 - pspecular,j’)|6j’ |COS(9j’) (48)

This angular distribution of the final state allows the angular distribution
conservation of the heat flux and leads to a net flux equal to zero at the steady
state along the direction normal to the interfaces. This prevents an unphysical
phonon accumulation near the rough boundary.

Transmission at semi-transparent interface

During a collision with a semi-transparent interface, the particle can be either
reflected or transmitted. In our code, the phonon transmission probability t4_. g
is implemented by using the DMM model (see §2.5) assuming fully diffusive
interfaces. Thus reflected phonons as well as transmitted ones undergo an elastic
diffusion (the memory of the incident phonon is lost). Our implementation
of semi-transparent interface is very similar to those of rough boundaries: a
new state is selected among the iso-energy states with a valid orientation of
the velocity. In order to ensure self-consistency, the transmission probabilities
are calculated for each direction (A — B and B — A), with the same angular
frequency step Aw for the iso-energy states. The probability for selecting a state
is weighted by the probability of the particle being reflected, and the component
of its velocity normal to the interface.

povn, g7 < (1 —tayp(wyr)) |Vj|cos(0;) (49)

3.1.8.3 Post-processings

During the simulation, at each time step and in each cell, the local temperature
T, is calculated as well as the local thermal heat flux density .J, (Wm~2] by
summing over the contribution of all particles. The thermal conductivity of the
simulated device is then calculated from the average heat flux density J, along
the transport direction 7, as defined in Eq. 6.

The confidence interval at 95% calculated for all simulations was found smaller
than 1 Wm ™1 K~! except in long devices (L = 100pm) for which the precision
is reduced to achieve reasonable simulation times.

3.1.9 Criteria for simulation parameters

There are several simulation parameters that must be selected correctly to ensure
convergence and accuracy of the simulation. An automatic process is used to
define these parameters. First, we need to estimate the thermal relaxation time
of the simulated device. The temperature in a cell approximately relaxes to its
equilibrium value according to a negative exponential with a constant thermal
relaxation time 7:

ATL(t) ATC(O)emp(—é) (50)
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AT.(t) = To(t) — To(co) (51)

Since there are two thermostats, the furthest cell is at % . This cell is related to
the relaxation time of the device according to:

OBy

(L)?
a7 D=,

(52)

where Ey is the energy density, L is the length of the device and k is an
estimation of the thermal conductivity.

In Figure 9, the thermal relaxation time given by MC simulations of a CPNF
is plotted as well as the results of equation 52 using the estimated thermal
conductivities obtained via the ballistic, diffusive and CPNF SA formula (from
§2.4).

In order to extract the relaxation time from simulation, an exponential fit is
performed on the temperature of every cell as a function of time. These relaxation
times are then extrapolated to the middle of the device, giving the results shown
in the figure.

We thus confirm that the thermal relaxation time 7 calculated from the SA
CPNF thermal conductivity is a good approximation of the behavior of the MC
simulations.
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Figure 9: Estimation of thermal relaxation time 7 from SA formula and MC
simulations.

Using this approximation, the time step duration 67 is set to 55, and the
temperature and heat flux are averaged every 57. This allows the temperature

of the cells to relax progressively towards their steady-state values.
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Finally, to choose a relevant particle energy E,, the temperature fluctuation
due to one particle displacement in a volume V. is chosen to remain below §7T
(typically equal to 0.01K) leading to:

OFy
E,=0T — V, 53
p aT c ( )
This requirement on the precision of the temperature in each cell of the device
results in an approximately constant number of simulated particles per cell,
independent from their dimensions. As we modeled every device with 20 cells,
all our simulations contained an average number of 20 000 coexisting particles.

For a typical device of size 1 pm x 100 nm x 100 nm in Si3C, with a 4
K-temperature difference between thermostats and a reference temperature
T9 = 295 K, our selected parameters were E,~4 1078 J and 6t ~ 1 ns, and the
simulation lasted 20 minutes on a single thread. Besides, for devices of length
ranging between 1 nm and 10 pm, the timestep dt was tuned in the interval
between about 0.1 ps and 100 ns.

3.1.10 Validation of two phonon approximation

During the MC simulation, the phonon-phonon scattering mechanism which is
actually a three-phonon process is approximated by a two-phonon process. This
approximation must conserve, at least on average, the frequency distribution of
the phonon gas. By following the frequency change before and after each phonon-
phonon scattering event for each simulated particle, we plot in Figure 10 the time
evolution of these cumulated changes in a nanowire in the quasi-ballistic regime
(L = 1pm, W = 100nm, A = 0.5nm). The two phonon approximation appears
to be consistent as the cumulated change fluctuates and remains negligible
with respect to the total energy in the system (2.6 1078 J vs. 8.1 10~ J,
respectively).
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Figure 10: Time evolution of the cumulated phonon frequency change dur-
ing phonon-phonon scattering events of all simulated particles in a nanowire.
Parameters: L = 1pym, W = 100nm, A = 0.5nm.

3.1.11 Validation of rough boundary scattering

Due to the discretization of the BZ, the elastic scattering due to rough boundaries
cannot exactly conserve the angular frequency of simulated phonons. While the
energy E, of the simulated particles is exactly conserved in our algorithm, a
frequency change equal to the frequency discretization step Aw is possible at
each scattering event. If it is not balanced, this change could impact the final
frequency distribution of phonons.

To check this point, we summed these frequency changes caused by rough
boundary scatterings over a complete simulation of a nanowire working in the
quasi-ballistic regime (i.e. L = lpm, W = 100nm, A = 0.5nm). The time
evolution of this cumulative change plotted in Figure 11, shows a constant
increasing trend. However, the total energy density corresponding to this drift
during a 300 ns long simulation corresponds to an equivalent heat flux of
approximately 666 Wm™2, which is negligible as it is five orders of magnitude
lower than the energy transfer carried by the actual heat flux of 200 MWm 2.
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Figure 11: Time evolution of the cumulated phonon frequency change dur-
ing rough boundary scattering events of all simulted particles in a nanowire.
Parameters: L = 1pym, W = 100nm, A = 0.5nm.

3.1.12 Validation of deviational formulation

For all MC simulations in this study, only phonons that are outside the distribu-
tion at a reference temperature T are simulated in order to optimize simulation
time and accuracy. In order to validate this method, we simulated a CPNF
(L = 1pm, W = 100nm, AT = 4K) with different 7°. The resulting temperature
profiles are plotted in Figure 12. The temperature profile is less noisy when 7°
increases. Moreover, the simulation time typically decreases from 3 hours for
TY = 0K to 10 minutes for 70 = 300K.
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Figure 12: Temperature profiles in cross-plane nanofilms, simulated with varying
reference temperature 79, and other parameters equal.

3.2 Molecular Dynamics method

The Molecular Dynamics methods (MD) involve a classical simulation of atom
trajectories. As each atomic position is given at the initialization, it is possible
to model accurately the interfaces between materials by this technique.

In a MD simulation, each atom has a defined mass, position, and velocity. A
time dependent Newton’s second equation is numerically solved to get the atomic
trajectories. The instantaneous forces of their interactions are calculated from
semi-empirical potentials (depending on atomic positions). Finally, all relevant
thermodynamic properties can be obtained from a statistical analysis of the
system, e.g. the temperature is derived via:

1 ., 3
> 5milTil* = S NkpT (54)

atoms ¢

where m; and ¥; are the mass and velocitiy of the atom 4, N is the number of
atoms and kp is the Boltzmann constant.

This technique is quite versatile but has some limitations. Firstly, these methods
require a lot of computing power and then only small systems of thousands of
atoms are manageable. In order to avoid diffusing phonons at the boundaries,
periodic conditions are generally applied but the value of the phonon mean free
path with respect of the size of the system or the unit cell has to be carefully
considered. Secondly, the number of time steps, i.e. the actual simulation time,
is commensurate and the time scale, or the frequency scale, is restricted by
an empirical cut-off parameter. Finally, we should keep in mind that it is a
classical simulation that cannot account for the energy quantization of phonons.
MD simulations are thus limited to high temperature regimes above the Debye
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temperature of the material that can be relatively high in the case of standard
semiconductors.

In this thesis, the MD simulation software used was LAMMPS (Plimpton 1995).
For interatomic potential for both Si and Ge, the Stillinger-Weber (Stillinger
and Weber 1985) and Tersoff (Tersoff 1989) set of parameters, that includes
phonon anharmonicity and 3-body interactions, have been used.

Several MD methods exist to study the thermal conductivity of materials. We
detail both EMD and NEMD approaches and their advantages and drawbacks
will be discussed in following chapters. The calculation of both the thermal
conductivity of bulk materials, and the interface thermal conductance (ITC) is
detailed.

In every method, periodic boundaries are applied to the system along all dimen-
sions. For simulations with interfaces, this means that two interfaces are present
in the system.

3.2.1 Structure and energy relaxation

At the beginning of the simulation, each atom is at its position of minimal
potential energy and the distribution of their velocity is Gaussian. Therefore,
before any calculation, the system must be relaxed to its equilibrium state.

For both EMD and NEMD, two steps are followed. A first run is performed in
the isothermal-isobaric (NPT) ensemble at zero pressure to relax the structure of
the system. Since the thermal conductivity is calculated in the micro-canonical
(NVE) ensemble, a second run is then performed in this ensemble to ensure that
the energy distribution is at its equilibrium.

The Si/Ge interfaces studied in §6 are perfect interfaces, and have a constant
strain in each material. The lattice parameter in the direction parallel to the
interface is the average of the bulk Si and Ge lattice constants. In the normal
direction, the lattice parameter relaxes in both materials to maintain their
density (Landry and McGaughey 2009). The polytype Ge interfaces are not
strained, as there is no change of lattice parameter.

3.2.2 Bulk thermal conductivity with EMD

In EMD (Sellan et al. 2010; Schelling, Phillpot, and Keblinski 2002; Volz and
Chen 2000), no external perturbations are applied during the simulation, and
the thermal conductivity is calculated from a statistical study of atom properties
with the Green-Kubo formula invoking the fluctuation-dissipation theorem.

During the simulation, the heat flux is calculated from the energy, stress, and
velocity of each atom.

Qt) = % <Z Byt — ) Sil_fi) (55)
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where E; is the potential and kinetic energy of atom 4, U; its velocity, S; its
stress tensor and V' the volume of the system.

The method to obtain the stress tensor of each atom is detailed in (Thompson,
Plimpton, and Mattson 2009).

The average of the autocorrelation of this heat flux is integrated according to
the Green-Kubo formula (Volz and Chen 1999), giving a thermal conductivity
expressed by:

R (tcorr)

v (@) -Gy 56)

T kgl? 3

where T is the equilibrium temperature.

To explore the whole phase space of the system, several independent simulations
are performed (Chen, Zhang, and Li 2010). For each simulation, a black line
in Figure 13 shows the evolution of the thermal conductivity as a function of
the upper bound of the integral tco,,. Finally, an average (red line) is performed
over all simulations. The error bars represent the confidence interval at 95%,
calculated with:

_ [ o
:[095% = | — 2%, x + 2% (57)

where z is average, o the standard deviation and n the number of samples.

The value of the thermal conductivity is the average at tcorr = teutorr- At high
correlation times, the integrals diverge due to the accumulation of numerical
errors (as shown in Figure 13). tcutorr is chosen after the first convergence
(plateau of the red line) (Li, Porter, and Yip 1998) and before the increase of
the standard deviation.
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Figure 13: Evolution of the thermal conductivity as a function of the upper
bound of the integral on correlation time t.,,,. Each black line shows the result
of an independent simulation. The red line shows the average, and the error
bars are confidence interval at 95%.

3.2.3 Interface thermal conductance with EMD
The interface thermal conductance (ITC), instead of the previous bulk thermal
conductivity, can be calculated with a similar method (Chalopin et al. 2012).

The heat flux across the interface between two volumes X and Y is:

]. N — = —
Qinter (1) = 57 S o BY = 6 FY (58)

i€X jey

where v; is the velocity of atom i velocity, ﬁiX the interaction force on atom 1
from atoms in area X, and A the cross-section area of the interface.

This formula requires that the interaction potential can be calculated separately
for each atom pair, and summed accordingly in order to obtain the f’iX . While
this is trivial with the Stillinger-Weber potential which is defined by a two-body
and a three-body components, this is not the case for the Tersoff potential.

As explained in §3.2.1, due to the periodic boundaries of the system, there are
two interfaces. The area A used for the normalization must account for them.

The thermal conductance is then calculated from the Green-Kubo formula, with
a normalization slightly different from Eq. 56:
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A

G(tcorr) == m

/0 o <Qinter(7) . Qinter (O)>d7 (59)

The results are then processed in the same way as the bulk method: the result is
the average of several simulations, and the error is estimated from the confidence
interval at 95%.

3.2.4 Bulk thermal conductivity with NEMD

The second kind of method that we study is NEMD. In opposition to EMD
methods, their procedures are similar to experimental measurements. Perturba-
tions are applied to the system, in our case the temperature in some regions of
the system is controlled by rescaling the kinetic energy of atoms.

These two “external” thermostats induce a temperature gradient in the system
and an internal thermal flux that can be calculated. The thermal conductivity
is then directly obtained from its definition in Eq. 6.

Since the size of the system is small compared to the mean free path of phonons,
the transport is partially ballistic between the thermostats. This means that
there is a direct dependence between the calculated conductivity x and the
distance between thermostats L. In Figure 14, the relation between their

inverses 1 = f(1) is shown in blue. The error bars are the confidence intervals

at 95%. A linear extrapolation (red line) at % = 0 gives the result for bulk
conductivity (Schelling, Phillpot, and Keblinski 2002). The green lines are linear

extrapolations of the maximum and minimum errors.
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Figure 14: Inverse of thermal conductivity as a function of the inverse of the
distance between thermostats, for Si at 1000K. Results from NEMD simulations
(blue line). The red and green lines are the extrapolations at + = 0, for the
average and the maximum and minimum errors, respectively.

3.2.5 Interface thermal conductance with NEMD

To calculate the ITC, each thermostat is placed in a different material as
represented in Figure 15. White and grey volumes describe two different materials,
for instance Silicon and Germanium. The red and blue hashed volume are
respectively the hot and cold thermostats.

Q Q

A/, 4

7
| 7

Figure 15: Diagram of the simulation box for simulating an interface in NEMD.

In addition to the thermal gradient inside the materials, there is a temperature
drop AT at the interfaces due to the Kapitza resistance. In order to estimate
it, we calculate the average temperature in slices of the simulation box, along
the transport direction. The resulting temperature profile is shown in Figure 16
where the white and grey backgrounds represent the different materials, and
the red and blue hashed areas represent the hot and cold thermostats. A linear
interpolation of the temperatures far from the interfaces and thermostat is used
to extrapolate the temperature at both sides of the interface, giving a precise
estimation of AT
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Figure 16: Temperature profile of the simulation box along the transport direction
of a Si/Ge interface with NEMD.

The ITC is then calculated from its definition in Eq. 30.

Only the property of the interface is taken into account by this temperature
drop ATjpier- In contrast to the bulk conductivity calculations in §3.2.4, the
ballistic transport between the thermostats and the interface is not related to
length dependence of the ITC. Thus, the calculated value does not need to be
extrapolated from several sizes of simulation boxes.

An issue with the NEMD methods is that the rescaling of atom kinetic energy
by the thermostats induces an out of equilibrium phonon distribution in the
thermostats. Since at our simulation scales the transport is partly ballistic, the
equilibrium distribution is never recovered between the thermostats, or at the
sides of the interfaces. The definition of temperature is then unclear.
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4 Bulk materials and thin films

This chapter focusses on the thermal properties in both bulk materials and thin
films. Molecular Dynamics (MD) simulations have been performed in order
to test the different methods and benchmark them against previous results.
Meanwhile, our Full Band Monte Carlo (MC) simulator based on ab initio
parameters were used to study the anisotropy of Si and Ge in several crystalline
phases. By using these advanced numerical simulations, several semi-analytical
(SA) models of the thermal conductivity in a quasi-ballistic regime are discussed.

4.1 Bulk thermal conductivities by using MD

This section is dedicated to MD simulations, and bulk thermal conductivities of
Si and Ge are calculated. For Silicon both the cubic and the hexagonal phases
are investigated.

The thermal conductivities are calculated by using both Equilibrium and Non
Equilibrium (EMD and NEMD) methods. Stillinger-Weber (SW) and Tersoff
(Ter) potentials are used and their related results are discussed. The time step is
1 fs. For each simulation, two preliminary relaxation steps (see §3.2.1) during 40
ps (in simulation time) are performed. The heat flux is calculated by averaging
over the next simulated 120 ps. The final thermal conductivity is an average over
20 independent runs. For EMD, we found that a simulation of 8-unit cells along
each dimension is the minimum size to compute size independent conductivities.

The results from Si and Ge at T'= 1000K are presented in Table 1 and Table 2.
As T = 1000K is higher than the Debye temperatures of these materials, that
are equal to 640K and 374K, respectively, a MD approach is relevant. Besides,
in this temperature regime the phonon mean free path is lower than the system
length and the computed thermal conductances are size independent.

For the sake of comparison, previous MD results extracted from (Sellan et al.
2010) and (Schelling, Phillpot, and Keblinski 2002) are also shown. Besides,
experimental values from (Capinski et al. 1997) and (Ruf et al. 2000) for
isotopically pure Si (as considered in our simulations) as well as (Ozhogin et al.
1996) for pure Ge are indicated. These values given at 1000K are derived from
an extrapolation from measurements at lower temperatures.
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Kk Wm K1

Exp. Capinski 44
Exp. Ruf 45.8
NEMD Ter. 49.7+1.2
NEMD SW 52.7+ 1.7
NEMD SW Sellan 40+ 8
NEMD SW Schelling 65 + 16
EMD Ter. 77.24+21.3
EMD SW 60 £ 17
EMD SW Sellan 60 + 12
EMD SW Schelling 62 £ 16

Table 1: Si bulk thermal conductivity at 1000K from EMD and NEMD.

Kk Wm™ 1K1
Exp. Oz 15
NEMD Ter. 19.7+0.5
NEMD SW 285+04
EMD Ter. 32.9+£8.0
EMD SW 82.8 £27.4

Table 2: Ge bulk thermal conductivity at 1000K from EMD and NEMD.

Our MD results are consistent with previous MD simulations. According to our
error estimations, they overestimate the experimental values. Besides, Ge results
within the EMD method using Stillinger Weber potential appear disappointing
and only the Tersoff potential will be used in the following for Ge study.

In Table 3, the thermal conductivity at 7' = 1000K of cubic and hexagonal phases
of Si and Ge are compared by using the EMD method with Tersoff potential.

Si ‘ Ge
Cubic 7T72+£21.3 | 32472
Hexagonal | 72.0 £16.8 | 31.6 +=11.2

Table 3: EMD bulk conductivity at 1000K in cubic and hexagonal phases of Si
and Ge, with Tersoff potential.

Both the hexagonal phases of Si and Ge show a slight reduction in thermal
conductivity with respect to their cubic counterpart. Although the hexagonal
phases are anisotropic (as we will see later), it should be noted that in EMD, a
pseudo isotropic thermal conductivity is calculated because the method averages
the contribution of all directions.

The thermal conductivities are calculated in both cubic and hexagonal Si (resp.
named Si3C and Si2H) with the SA diffusive formula (see Eq. 11), at T' = 1000K
like in MD and T = 300K, in Table 4. The hexagonal phase is studied in two
lattice orientations: [10-10] (Si2Hx) and [0001] (Si2Hz).
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Materials |  at T = 300K | & at T = 1000K

Si3C 138.5 36.9
Si2Hx 100.3 27.2
Si2Hz 74.1 20.6

Table 4: SA bulk conductivities at 1000K and 300K in cubic and hexagonal Si.

At 1000K, we find that the Si3C results with SA underestimate both the experi-
mental thermal conductivities and the MD ones. We confirm that the hexagonal
phases have a reduced conductivity, even more than in MD. A strong anisotropy
between Si2Hx and Si2Hz is also observed. One should keep in mind that these
values are derived without considering any phonon-impurity scattering mecha-
nism (with just phonon-phonon scattering) and thus this value underestimates
the experimental measurements of isotopically pure Silicon (Ruf et al. 2000).
However, it is a good estimation of the thermal conductivity of natural Silicon
at ambient temperature. Hence, no other scattering mechanism is taken into
account in our study of bulk Si.

4.2 Ballistic to diffusive transition in thin films

By using Monte Carlo simulations, this section studies the transition of thermal
properties between bulk material in which the thermal transport is diffusive
and cross-plane nanofilms (CPNF) in which the thermal transport is quasi-
ballistic. Several semi-analytical (SA) models are compared to Monte Carlo
(MC) simulations. Both the cubic and hexagonal phases of Si are investigated.
The angular frequency distribution of both the energy and heat flux are carefully
studied. Finally, in order to explore the anisotropy of thermal transport, the
angular distribution of the heat flux is checked.

All the following calculations are performed at an average temperature of T' =
300K, with a temperature difference between the thermostats of AT = 4K, and
a reference temperature of 70 = 295K for the MC algorithm (see §3.1.4).

4.2.1 Comparison between models in cubic Si

In this section and the following, we investigate the influence of the length L on
the thermal conductivities k of CPNF calculated with several methods:

e MC simulations,

o SA ballistic model (cf. Eq. 9). It is linearly dependent on L and corresponds
to the short film asymptotic behavior,

o SA diffusive model (cf. Eq. 11). Tt is this independent of L and corresponds
to the long film asymptotic behavior,

o SA Matthiessen model (cf. Eq. 24). It is a kind of average between the 2
previous models that is widely used to investigate CPNF,

e SA CPNF model (cf. Eq. 27). This model is a frequency dependent
evolution of the previous model.
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Figure 17 shows for cubic Silicon (Si3C) at 300K the thermal conductivities
along the [100] lattice orientation. At long L, all the models (but the ballistic
one) converge to the diffusive value of thermal conductivity: Kdifusive = 138
Wm ™ K~!, which corresponds to the bulk conductivity. Likewise, except the
diffusive model, they asymptotically converge at short L to the conductance of
the ballistic model. This confirms that the models are equivalent at these limits.

We should note that for device length L shorter than 10nm, i.e. at the atomic
scale, the considered phonon dispersion relation is not relevant and the indicated
MC results are just a guide for the eyes illustrating the asymptotical behavior.

There is a gradual transition between the two asymptotic behaviors. This
transition is often modeled in the literature by using the Matthiessen model.
However, we find that this modeling exhibits a strong discrepancy with MC
results at intermediate length. For instance, at L = 200nm, the SA model
overestimates the conductivity by 60%. Meanwhile, the SA CPNF model is
much more accurate leading to an error lower than 4% for all film lengths. Thus,
the SA CPNF requiring much less computational resources than the complex
MC simulations reproduces the MC results with a very good accuracy. This
shows that a spectral treatment of the heat flux is necessary to correctly model
the transition between ballistic and diffusive regimes.

, DA | SA Ballistic
107 1[--- SA Diffusive
i 1-=SA Matthiessen
- 1|—SA CPNF
| 11 + MC
101

—_

=}
[=)
1

107 107®% 10" 10°% 107° 10*
Device length L [m)]

Thermal conductivity s [Wm 1K 1]

Figure 17: Thermal conductivities in CPNF as function of film length, in Si3C.

4.2.2 Comparison between cubic and hexagonal phases of Si

The evolution of the Si thermal conductivity » in the cubic phase (Si3C, in blue)
is plotted in Figure 18 similarly as in the previous section and this evolution
is compared to those in the hexagonal phase. Two lattice orientations of the
hexagonal phase are considered: [10-10] (Si2Hx, in green) and [0001] (Si2Hz, in
red). While all the curves have the same behaviors, Si2Hx and Si2Hz always
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exhibit lower x than cubic Si. For instance, at the diffusive limit, i.e. in long films,
Kdiffusive = 138, 100 and 74Wm 'K ~! for Si3C, Si2Hx and Si2Hz respectively.
Besides, these results show an anisotropy between the two hexagonal phase
orientations. The anisotropy leads to a Kqifusive 26% higher in the Si2Hx.

We also confirm that the SA CPNF provides impressively accurate results for all
these materials.

+Si3C
Si2Hx
+Si2Hz
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107 107 107" 10°% 10° 1074
Device length L [m]

Thermal conductivity s [Wm 1K 1]

Figure 18: Thermal conductivity in CPNF as function of device length L, in
Si3C (blue), Si2Hx (green) and Si2Hz (red).

4.2.3 Spectral distributions of energy and heat flux

The previous sections show that the SA CPNF model provides good estimates of
the thermal conductivity due to its accurate spectral distribution of the thermal
conductivity and thus of the heat flux. In order to study the spectral thermal
properties, the average spectral energy and heat flux in a MC simulation are
investigated in this section.

In a MC simulation at the steady state, the spectral energy density Fyc(w) of
phonons in the nanofilm is computed. In a device cell (i.e. between 7 and 7+ dr),
the time spent by each particle in all energy states (i.e. between each w and
w + éw) are summed. This average occupation distribution of each state fuc,;
gives the average spectral energy density Eyic(w) as:

BEye(w) = % > fucd <w —wj| < A;) (60)

¢ states 7

where V, is the volume of the considered device cell.
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At equilibrium, the theoretical spectral energy density Fi,(w) is given by the
Bose-Einstein distribution. We should note that the distribution at the reference
temperature 7° = 295K is removed as in the MC simulations. It yields:

Ep(w) = 2n)? Z hw; (fBE(wj,T) — fBE(wj,TO)) 0 <|w —wj| < A;)>

states j

(61)
where V; is the reciprocal volume of a state in the BZ.

Similarly, the spectral heat flux density is calculated by summing for each
state the product of their occupation and their related velocity in the transport
direction 7.

E L Aw
Quc(w) = 7;; Z fme,; U -1 0 <|w —wj| < 2) (62)
¢ states j

For the sake of comparisons, in the SA CPNF model, the spectral heat flux
density is given by:

VS
(2m)?

L 1 Ofpe Aw
(.. 7)2 . .
E fuw; (U5 - 1) e, 0T (w;,T)6 <|w w;| < 5 >

states j
(63)

Qcpnr(w) = %

We show in Figure 19 the angular frequency distribution of the phonon energy
in CPNFs with an intermediate length (at L = 1pm) in Si3C and Si2H. The
spectral energy is shown separately for each phonon mode. Crosses represent
the MC values and lines are for the theoretical values from the SA CPNF model.
We can see that there is no discrepancy between Si2Hx and Si2Hz spectra as the
energy is not dependent on the lattice orientation.

We observe that the MC and theoretical approaches give the same result in
terms of energy. This means that the particles in the MC simulation are not
strongly out of equilibrium, as it is expected for these simulation parameters
(length and temperature bias).

In Figure 20, the integral of the angular frequency distribution of the heat flux is
plotted for 1 pm long CPNFs made of Si3C, Si2Hx and Si2Hz. The contributions
of each mode are indicated with different colors. The integral of the distribution
is used here instead of the spectral distribution of the heat flux as it is less noisy
and also indicates directly the total contribution of each mode (at the highest
frequency).

The evolutions of all spectral distributions are similar to the SA CPNF model,
especially in the case of Si3C. However, the total contributions of each mode
differ. Moreover, for some modes at high angular frequency (i.e. in the optical
modes), a negative contribution to heat flux can be observed in MC results that
are not present in the SA model. For instance, in the case of Si2Hz, the 6th
mode has a clear negative contribution. We explain this phenomenon by the
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fact that the diffusive approximation used in SA CNPF model only account
for positive velocities, as only their absolute values are used. These ‘negative’
velocities are particularly present in optical modes at higher angular frequencies
and corresponds to the observed negative contributions. Thus, total heat fluxes
computed by the SA model are higher than these computed by using MC. This
is consistent with the lower SA thermal conductivities previously discussed.
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Figure 19: Spectral distribution of the phonon energy for each mode in a 1pm
long CPNF. (a) Si3C (b) Si2H. Crosses for MC. Lines for SA CPNF.
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Figure 20: Cumulative spectral distribution of the heat flux in a 1pm long CPNF.
(a) Si3C, (b) Si2Hx and (c¢) Si2Hz. Crosses for MC simulations, continuous lines

for SA CPNF model.

The total contributions of each mode to the heat flux are also indicated in
Table 5, (a) for Si3C, (b) for Si2Hx and (c) for Si2Hz. The modes are numbered
by ascending energy values. As expected, the heat flux is mainly carried by
acoustic modes: 96% for Si3C, 61.1% for Si2Hx (with 33.4% in 4th to 6th modes),
66.4% for Si2Hz (with 32.0% in 4th to 6th modes). In Si3C, the 5th and 6th
(TO) modes have a negative net contribution. However, the absolute value of
the contribution is in the order of magnitude of the margin error of the MC
simulation. In Si2H, modes higher than the 8th mode carry a negligible amount

of heat.
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(a)  Mode Heat flux contribution
1 (TA) 20.5%
2 (TA) 41.5%
3 (LA) 25.2%
4 (TO) 4.2%
5 (TO) —0.3%
6 (LO) —0.1%

(b)  Mode | Heat flux contribution (¢) Mode | Heat flux contribution
1 20.0% 1 25.3%
2 23.6% 2 28.4%
3 17.5% 3 12.6%
4 17.8% 4 19.1%
5 14.4% 5 16.6%
6 1.2% 6 —3.8%
7 1.8% 7 2.6%
8 2.8% 8 -0.32%
9 0.22% 9 —0.02%
10 0.22% 10 —0.01%
11 0.27% 11 —-0.33%
12 0.08% 12 —0.28%

Table 5: Heat flux contribution per mode in 1pm long CPNF, (a) in Si3C, (b)
Si2Hx, and (c) in Si2Hz.

4.2.4 Angular distribution of heat flux

Our full band description of the phonon dispersion in each material allows to
account for the anisotropy of the thermal conductivity. In order to estimate it,
the angular distribution of the heat flux is plotted in Figure 22.

)

In Figure 22 (a), (c), and (d), we represented the ‘angular density of state
(aDOS) of Si3C, Si2Hx and Si2Hz, respectively. In our convention, the heat
transport direction in a CPNF is always set towards the positive X axis. It
is important to note that this angular analysis is performed in real space (not
in the wave vector space). We consider a unit sphere, and discretize it along
its spherical coordinates, i.e. the polar and azymuthal angles # and ¢. The
definition of these angles is reminded in Figure 21. For each solid angle (real
space direction), we sum the contribution of all the discrete states in the BZ
(reciprocal space) of the material that have this phonon velocity orientation
i.e. toward that solid angle, around the corresponding 6 and ¢.
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Figure 21: Spherical coordinates, showing the polar angle # and the azymuthal
angle ¢.

To summarize, the aDOS is simply the number of states (per unit volume) in
each solid angle, normalized by their area Sap Ag-

Vs Af A
wD08(0,0) = e 3 o (- <) o (lo-0l < 57)

3
(27T) SA97A¢ states j
(64)
We observe a high aDOS in the main lattice directions of each phase:

o for Si3C, <110> are the highest, followed by <100> and <111>.
e for Si2H, <10-10> and <0001> have high aDOS, followed by <21-30>.

The aDOS in the hexagonal phase is higher along its main orientations than in
its cubic counterpart as there are only 14 main directions in Si2H (6 <10-10>, 6
<21-30> and 2 <0001> directions) lower than the 22 main directions in Si3C (6
<100>, 8 <110> and 8 <111> directions).

In Figure 22 (b), (d), and (f), the angular distribution of the heat flux density
is shown in Si3C, Si2Hx and Si2Hz, respectively. The average occupation of
states during MC simulations fuyc,s is used to calculate the heat flux. Differently
from the process presented for the aDOS, to compute the angular heat flux, the
(negative or positive) contribution of the state will depend on the sign of the X
component of its velocity.

— Ep
Vs Sa6 ae

Onic(6, ) A0

states j

(65)

The figures showing the angular heat fluxes are relatively noisy especially along
the directions in which the aDOS is low, as only few MC particles are present. In
the three cases, as expected, the main contribution is oriented directly towards
the transport direction (f = 0 and ¢ = 0). However, in Si3C, the heat flux along
the <111> directions is higher than along the <110> directions even though
their aDOS is lower. Similarly, in Si2Hx, the <21-30> directions contribute
more than the <10-10> ones.
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Figure 22: Angular density of state and angular heat flux in Si3C, Si2Hx and
Si2Hz, in a 1pm long CPNF. (a), (c), and (e) are the aDOS, (b), (d), and (f) are
the angular heat fluxes, in Si3C, Si2Hx and Si2Hz, respectively

Figure 22 clearly shows the spherical distribution of the heat flux in 2D. In
Figure 23 the angular heat flux dependence over the polar and azymuthal angles
6 and ¢ are plotted independently (i.e. an integration is performed over the
other angle). Parts (a), (b), and (c) correspond to Si3C, Si2Hx, and Si2Hz,

respectively.

In an isotropic system, the angular distribution of the flux is expected to be a
smooth cosine function (as in the Lambert’s distribution). But in both cubic
and hexagonal phases, the angular distributions exhibit peaks revealing that the
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heat flux is mostly transported along specific orientations. Each peak and their
related orientations are labeled in the figures.

()

=]
=
9 T
=
= .
§ 4 [110]
111
= 9 (111]
0 ™ : s
-3 0 3
¢
9 c 9
N 10 | (c) o 10
6 [10-10] : 1.5}
— 41 n — 1+
S U SN [ [ VSR
>~ 0 z T - 0 z T
% 109 0 % 10° 0
éﬁ 4 2130] || éﬁ 2+ [0001] B
2 : 1 :
0 s ‘ s O s ‘ s
—3 0 5 —3 0 3

¢

¢

Figure 23: Angular heat flux as function of the polar # and azymuthal angles ¢
in Si3C, Si2Hx, and Si2Hz.

4.2.5 Angular distribution of heat flux in an isotropic material

In our full band model, state discretization in the reciprocal space that is not very
fine (N = 31 x 31 x 31 for Si3C), in particular near the T" point. In order to check
the impact of our mesh on the computed angular heat flux, we have created an
artificial isotropic material having the same dispersion along all directions. For
this material, the angular frequencies for the wave vectors in the main direction
[100] of Si3C is used as a reference for all the 6 modes. Then for each state in the
BZ, its angular frequency is computed according to its distance from the I" point
(i.e. the norm of their wave vector). The norm of the velocities is calculated
similarly and the direction of the velocity is parallel to the wave vector. Likewise,
the isotropic phonon-phonon scattering rates are interpolated along the [100]
direction.

The angular DOS and the angular distribution of heat flux computed in a 1pm
long CPNF in this isotropic material is shown in Figure 24. The aDOS in
Figure 24 (a) has a slight bias in the main direction [100] and in the planes
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between them, but it is clearly negligible compared to the features visible in the
aDOS in previous materials in Figure 22 (a), (c) and (e). In Figure 24 (b), the
angular heat flux is very diffuse in the whole hemisphere.

We thus confirm that our discretization of the BZ is sufficient to capture the
anistropy of the heat transport in the studied materials.
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Figure 24: (a) Angular density of state and (b) angular heat flux in an artificial
isotropic material, in a 1pm long CPNF.
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5 Rough nanostructures

While the previous chapter details the thermal properties of thin films in the
cross-plane configuration, here we consider thin films in the in-plane configuration
(IPNF) with 2 rough interfaces and nanowires (NW) with 4 rough interfaces (the
surrounding external boundaries), as defined in §2.1. In this chapter, we study the
effect of rough boundaries in nanostructures by using our MC method including
the phonon-rough interface scattering mechanism (cf. §3.1.8.2). As done in §4
for CPNFs, the evolutions of thermal conductivity, and the spectral and angular
distributions of the heat flux are studied. The accuracy of the SA model to
model rough IPNFs and NWs is discussed. By using a fully diffusive model for
rough boundaries in the MC code, the thermal transport along several lattice
orientations is investigated and compared with experimental measurements.

5.1 Effect of rough boundaries in IPNFs and NWs
5.1.1 Device geometry

In IPNFs and NWs, the device geometry is mainly characterized by 2 parameters:

e their length L, or distance between thermostats along the X axis,
o their width W, or distance between the rough boundaries (cf. Figure 3).

This section shows the dependence of the thermal conductivity on these parame-
ters.

In Figure 25, the evolution of the thermal conductivity x with the device length
L is shown for IPNFs and NWs of width W = 100nm and roughness parameter
A = 0.5nm. For the sake of clarity, it should be mentioned that the figure is
a semilog plot that differs from log-log axes used for similar figures presented
in the previous chapter. For L = 100pm, « that is equal to 138 in CPNFs is
reduced down to 87 and 69 Wm 'K ~! in IPNFs and NWs respectively. As
expected, the degradation of the thermal conductivity is directly related to
the number of rough boundaries in long devices in which the heat transport is
diffusive. However, in ultra-short devices in which the heat transport is ballistic,
the thermal conductivity evolutions are the same whatever the number of rough
interfaces (2 in INPF and 4 in NW). More interestingly for devices having rough
boundaries, the semi-analytical models (SA), indicated in solid lines, do not fit
MC results for IPNFs and NWs as well as in the case of CPNFs. For L = 10nm,
the CPNF, IPNF and NW SA results are 2%, 5% and 12% lower than the
corresponding MC result, respectively. And for L = 1pm, the CPNF, IPNF and
NW SA results are 3%, 8% and 14% lower than the corresponding MC result,
respectively.
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Figure 25: Thermal conductivity as function of device length in Si3C for CPNF
+, IPNF O and NW .

For the same 3 different devices with a length L = 1pm and A = 0.5nm, Figure 26
shows the evolution of k as a function of the device width W. As all devices
have a length of L = 1pm, an intermediate heat transport regime occurs mixing
ballistic and diffusive transports. For W = lnm, & is 16 and 6 Wm 'K~}
for IPNF and NW, resp. The increase of k with the increase of W in IPNF
and NW exhibit a similar behavior. For intermediate width of 1um, s reaches
95% and 90% of the CPNF conductivity in IPNF and NW, resp. For devices
wider than 1pm in which W > L, the impact of rough boundaries is weak, and
the cross-plane conductivity is recovered with a difference lower than 5%. For
thinner devices i.e. for W in the range of 10 nm to 200 nm, the width of the
device impacts on the thermal conductance by a factor of about 30 Wm 1K~}
per decade (in W) for both IPNFs and NWs.
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Figure 26: Thermal conductivity as function of device width in Si3C for CPNF
+, IPNF O and NW .

5.1.2 Effect of the surface roughness parameter

Figure 27 shows the evolution of k as a function of the surface roughness
empirical parameter A for a device of length L = 1pm and width W = 100nm.
Two plateaus can be observed. For ultra-small values of A lower than 0.1
nm, the diffusive reflections are negligible and then the cross-plane thermal
conductivity using specular interface reflections for phonons is recovered. For
a value of A higher than 1 nm, the conductivities of NWs and IPNFs reach
their minimum. This minimum is related to a fully diffusive regime in which all
phonon reflections at the external boundaries are diffusive (with a randomized
reflected angle). It should be noticed that the overall trends of these Monte
Carlo results are reproduced by the relevant SA models. Nevertheless, these SA
models systematically underestimate the MC results.
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Figure 27: Thermal conductivity as function of the surface roughness parameter
in Si3C for CPNF +, IPNF O and NW .

5.1.3 Impact on the spectral and angular distributions of the heat
flux

We have performed the same analyses as in §4.2.3 on NWs. The spectral
distribution of the thermal energy in a NW follows the equilibrium distribution
as shown in Figure 19 for CPNFs.

Figure 28 compares the spectral heat flux in NW and CPNF in Si3C devices
with L = 1lpm, W = 100nm and A = 0.5nm. The contribution of each mode is
plotted with a specific color, solid lines show the results in CPNF while dashed
lines stand for NW. We observe a strong reduction of the heat carried via the
acoustic modes of the NW with respect to the case of CPNF in accordance with
the reduction of the thermal conductance. However, the heat contribution of
phonons belonging to the TO mode is higher in NW than in CPNF even if the
absolute value remains weak.
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Figure 28: Cumulative spectral distributions of the heat flux in a 1pm long
CPNF and NW for each phonon mode.

With respect to the CPNF distribution shown in Table 5 (only differing by the
rough boundaries), we observe a heat flux reduction of 49%, 39% and 36% in
NW made of Si3C, Si2Hx and Si2Hz, respectively. Indeed, we can explain this
difference, as the heat flux in CPNF of Si2H is anisotropic and more intense
towards the transport X direction. Besides, the contribution of each mode
to the heat flux is indicated in Table 6 (a), (b) and (c¢) for nanowires made
of Si3C, Si2Hx and Si2Hz, respectively. The heat flux reduction ratio is not
similar for each phonon mode and depends on the material. In Si3C, the most
reduced contribution is related to that of the 2nd and 3rd mode and in Si2Hx
the contribution of the 1st, 2nd and 4th ones.
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(a)  Mode Heat flux contribution
1 (TA) 37.0%
2 (TA) 39.9%
3 (LA) 18.9%
4 (TO) 4.8%
5 (TO) —0.4%
6 (LO) —0.2%

(b)  Mode | Heat flux contribution (¢) Mode | Heat flux contribution
1 18.4% 1 23.5%
2 20.7% 2 24.3%
3 20.0% 3 14.3%
4 15.7% 4 26.9%
5 14.5% 5 17.6%
6 1.9% 6 —7.8%
7 2.7% 7 3.8%
8 4.6% 8 —1.2%
9 0.32% 9 0.01%
10 0.48% 10 —0.09%
11 0.40% 11 —-0.53%
12 0.18% 12 —0.68%

Table 6: Heat flux contribution per phonon mode in NW with L = 1pm and

W = 100nm, (a) in Si3C, (b) Si2Hx, and (c) in Si2Hz.

The angular distribution of heat flux is plotted in Figure 29 for a CPNF and a
NW made of Si2H oriented along the [100] direction with a length L = 1pm and
width W = 100nm. The lateral peaks of the heat flux correspond to directions
having an high angular density of states in bulk materials. These states remain

important in CPNFs and contribute significantly to the heat flux. However, their

impact is strongly reduced in the case of rough NWs where the flux is much
more focused along the transport direction [10-10] which is also a main direction
of the material.
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Figure 29: Heat flux angular distribution in Si2Hx NW vs. CPNF, L = 1pm
and W = 100nm.

5.2 Fully diffusive rough boundaries

Previously in this chapter (cf. Figure 27), we have seen that if the phonon bound-
ary scattering mechanism (Soffer‘s model) is used with a roughness parameter A
higher than 1 nm, a plateau of the thermal conductivity is reached. This limit is
called the fully diffusive limit of the phonon boundary scattering, i.e. for this
high value of A almost all reflections at the interface are diffusive, i.e. all the
reflected angles of reflected phonon are randomized.

In order to mimic such very rough external boundaries, a model called “fully
diffusive” (FD) has been implemented. Thus, the FD model is equivalent to the
previously used Soffer’s model but with a zero probability of having a specular
reflection (Pspecutar). To benchmark Soffer’s model with A = 0.5nm model and
the FD one, the two resulting conductivities in Si3C nanowires are plotted
in Figure 30 as a function of the length L (for W = 100nm). A significant
discrepancy between the two models can be observed only for L higher than 500
nm. This indicates that in the FD, phonons have an average mean free path
around 500nm. The FD model is thus relevant in short NWs.
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5.3 Rough boundaries and crystalline orientations

Our full-band approach for phonon dispersion allows a priori the study of
arbitrary crystalline orientations. Nevertheless, only one crystalline orientation
has been investigated for Si3C (and two for Si2H) in the previous sections.

Indeed, our implementation of a specular reflection (although it is the standard
one) requires the existence of a final state having a wave vector with a negative
perpendicular component with respect of the wave vector of the incident phonon
(gro = —¢',y)- This condition is always fulfilled only if the orientation of the
specular boundary is oriented along a high symmetry plane of the crystal.

This limitation is not present in the fully diffusive (FD) model since the final
state is randomly chosen among all the available final iso-energy states. We are
thus able to study the thermal conductivities of Si3C nanowires for several other
crystal orientations. In Figure 31, the thermal conductivity as a function of
device length is plotted for [100], [110] and [111] lattice orientations by using
the FD model. While the conductivities are similar in all directions for devices
smaller than a few pm, at higher lengths different values are achieved, revealing
some anisotropy in the heat transport. The diffusive limits along the [111] and
[110] directions are 6% and 15% lower than the limit for the [100] direction,
respectively.

Once again, the semi-analytical models appear quantitatively disappointing in
long devices when the fully diffusive approximation is used, nevertheless they
are able to capture the qualitatively the trends of the orientation effects.
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Figure 31: Thermal conductivity x as function of device length L in Si3C for
NW FD in [100], [110] and [111] lattice orientations.

5.4 Comparison with experimental mesurements

Several experimental measurements of thermal conductivity in IPNFs and NWs
have been reported in the literature. In this section, we compare works from
Ju (Ju and Goodson 1999), Liu (Liu and Asheghi 2006), Li (Li et al. 2003)
and Hochbaum (Hochbaum et al. 2008) with results from our Monte Carlo
simulations.

In Figure 32 (a) and (b), we compare the calculated and measured conductivities
in Si3C IPNF and NW, respectively. In all these experiments, the device length
L is about 1 pm. In the case of IPNF, the simulated thermal conductivities fit
the experimental data of Liu and Asheghi (2006) and slightly underestimate
the conductivity from Ju and Goodson (1999). For nanowires, our results are
close to Li et al. (2003) ones and the thermal conductivity relationship with the
width are relatively well reproduced, except for the shortest width W = 22nm.
Hochbaum’s results (Hochbaum et al. 2008) show a conductivity that is an order
of magnitude lower. They explain this difference by the strong roughness on the
NW boundaries due to the fabrication method. However, even our fully diffusive
model fails to reproduce these results.
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Figure 32: Thermal conductivity in Si3C in (a) IPNF and (b) NW, as function
of device width with L = 1pm. Lines are MC simulations, crosses experimental
results from (Liu and Asheghi 2006), (Ju and Goodson 1999), (Li et al. 2003)
and (Hochbaum et al. 2008).

In the case of Li’s measurements on NW (Li et al. 2003), we further compare
the temperature dependence of the thermal conductivity in Figure 33. Only
three widths W are considered: 37nm, 56nm and 115nm, as the 22nm device is
too small to be correctly simulated using the bulk materials parameters. Our
Monte Carlo simulation reproduces correctly the evolution of the conductivity
with the temperature. The differences may be due to other sources of thermal
resistance in the experimental setup, such as contact resistance.
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6 Thermal transport modeling at solid-solid in-
terfaces

This chapter studies the thermal transport at interfaces between semi-conducting
materials. One of the goals of this thesis is to characterize the properties of
polytype interfaces. Another one is to implement an advanced interface model
in a Full-band Monte Carlo simulator (MC) based on data from Molecular
Dynamics (MD) simulations, which accurately model the position of atoms at
the interfaces.

After presenting the studied interfaces, we determine the simulation parameters
in MD to estimate the interface thermal conductance (ITC) at a Si/Ge interface.
The implementation of Diffusive Mismatch Model (DMM) to describe the phonon
transmission at interfaces in the MC simulator is then tested, and the resulting
ITC is compared to the semi-analytical (SA) DMM formula. Using both methods,
we investigate the ITC of several interfaces, and their temperature dependence.
Finally, we study some spectral properties of the heat flux at the interfaces.

6.1 Simulated interfaces

Several interfaces between Si and Ge in two different phases are considered. As
previously, the cubic phases are refered as ‘3C’ and the hexagonal phases ‘2H". A
lattice orientation of [100] is used when nothing else is specified, ‘2Hx’ and ‘2Hz’
correspond to [10-10] and [0001], respectively.

First the interfaces between cubic Si & Ge in the same lattice orientation are
investigated:

o Si3C/Ge3C (stands for Si3C within a [100] orientation in contact with a
Ge3C within the same orientation)

» Si3C/Ge3C [110]

. Si3C/Ge3C [111]

Then the polytype interfaces:

. Si3C/Si2Hx

. Si3C/Si2Hz

o Ge3C/Ge2Hx, refered as “aligned” polytype interfaces (see Figure 34 (a))

o Ge3C [00-1]/Ge2H [0-110], refered as “mismatched” polytype interfaces
(see Figure 34 (b))

In the case of DMM, pseudo-interfaces between identical materials are also
investigated:

« Si3C/Si3C

» Si3C/Si3C [110]

. Si3C/Si3C [111]
The mismatched polytype Ge interface is the kind of interfaces mainly observed
in the Ge polytype nanowires fabricated by Vincent et al. (2014).
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Figure 34: Diagram showing the position of atoms forming the (a) "aligned" and
(b) "mismatched" Ge polytype interfaces. Blue and red dots are from the cubic
and hexagonal phases respectively.

6.2 Selection of MD simulation parameters

The accuracy of ITC computation by using MD methods relies on a good selection
of the relevant simulation parameters. The following MD simulations uses the
Stillinger-Weber potential. Indeed, the Tersoff potential used for studying bulk
materials (see §4), could not easily be implement by using the spectral analysis
that we have choosen (cf. §6.3, the method distinguishes the contribution of
atoms at the interface that is not directly consistent with the Tersoff approach).
All simulations only consider the steady state.

6.2.1 EMD parameters

The EMD method is reminded in §3.2.3. The main simulation parameters for
EMD and their default values are:

e 10 independent runs,

e a simulated time of 0.5 ns,

« a data collection time (1,000,000 timesteps of 0.5 fs) of 0.5 ns,

e a simulated box width W of 8 unit cells,

e a simulated box length L of 32 unit cells of material on each side of the
interface,

e an equilibrium temperature 7" of 400 K.

In Figure 35, it is presented the ITC values for several deviations of the previous
simulation parameters from their default value.

In Figure 35 (a), the ITC is calculated by averaging over an increasing number
of independent runs. The values reach a plateau after 5 runs.

In Figure 35 (b), an increasing total simulation time is used for averaging each
independent run. At least 400,000 timesteps are required in this case.

In Figure 35 (c), the influence of the width of the simulation box is investigated.
A sudden drop of the ITC is observed in boxes smaller than 6 unit cells. In
such devices smaller than the wavelength of some important phonons, the heat
transfer cannot be simulated correctly.
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In Figure 35 (d), the influence of the length L of the two materials on each
side of the interface is investigated. From 2 to 8 unit cells, the ITC is inversely
propotionnal to the length. This dependence is due to the periodicity of the su-
perlattice, and is related to a significant ballistic transport between the interfaces.
The ITC is almost constant for L higher than 10 cells.
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Figure 35: By using EMD, ITC at the Si3C/Ge3C interface vs. (a) number of
independent runs, (b) simulated time, (¢) width W, and (d) length L.

6.2.2 NEMD parameters

The NEMD method is described in §3.2.5. Our average temperature are higher
in NEMD (T=1000K) than in the EMD (T'=400K) in order to reduce the mean
free path of phonons. This allows to sudy systems with smaller lengths between
the thermostats and interfaces leading to lower computational times.

The default simulation parameters chosen for our NEMD simulations are:

e a relaxation time of 0.5 ns,

e a thermalization time with thermostats of 5 ns,

« a data collection (500,000 timesteps of 0.5fs) time of 1 ns,
e a simulated system width W of 4 unit cells,

« a simulated system length of 32 unit cells,

e an average temperature of 1000K,
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The related temperature profile between thermostats is plotted for T=1000 K
and AT = (a) 10K, (b) 50K and (c) 100K in Figure 36. For AT = 10K, we see
that the temperature fluctuations are so strong with respect to the temperature
gradient at the interface, that it leads to unphysical results. Temperature biases
higher than 50 K are required in this structure. The ITC is extracted by using the
temperature regression shown in red lines to compute the effective temperature
bias at the interface.
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Figure 36: Temperature profiles in the Si3C/Ge3C superlattices along the
direction normal to the interfaces, at three imposed temperature differences AT
(a) 10K, (b) 50K and (c) 100K. White and grey backgrounds represent Si and
Ge, respectively. Hashed areas represent the thermostats. Red bold lines are
linear interpolations used to extrapolate the temperature at the interfaces.

The ITC for several values of the simulation parameters in NEMD are presented
in Figure 37.

In Figure 37 (a), we see the evolution of ITC with the temperature difference
between the thermostats. The results reach a plateau above 100K.

In Figure 37 (b), we see that a simuation time longer than 0.4ns (800,000
timesteps) is required.

In Figure 37 (c), several box widths W are tested. Contrary to the case of EMD
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(ct. Figure 35 (c)), the thermal conductance is higher for small W. For the
following NEMD simulations, a width of 4 unit cells is selected (N.B. 8 unit cells
for EMD).

In Figure 37 (d), the length L of materials on each side is changed. This is
the most important point as it directly impacts the computation time. As
the ballistic transport is important in these nanometer scale devices, a strong
dependence of length L can be observed. At the diffusive limit a plateau appears.
In Landry and McGaughey (2009), the diffusive limit is reached in a structure
with 400 unit cells between thermostats at 500K. As their system is not periodic
in the transport direction, it would correspond in our case to a structure having
800 unit cells for each material. Due to the limitation of our computational
ressources, the longest simulated devices have 512 unit cells. With 512 unit cells
at 1000K, the diffusive limit is not reached in our simulations. This is consistent
with the previously shown MC results of nanofilms (cf. §4).

In bulk NEMD simulations, the thermal conductivy is extrapolated by using
the Mathiessen theoretical model presented in §2. In our NEMD simulation the
ITCs are L-dependent. However, as far as we know, no L-depend model have
been developped for the ITC. This is an open issue as the NEMD method is
used in the next section to estimate the spectral transmission of phonons at
interfaces.
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Figure 37: By using NEMD, Si3C/Ge3C ITC vs. (a) temperature bias AT, (b)
simulated time, (¢) width W, and (d) length L.

6.3 Spectral distribution of the interfacial heat flux

This section studies the spectral distribution of the interfacial heat flux computed
by using NEMD simulations.

The spectral NEMD heat flux is calculated from the forces and velocities of
atoms around the interface. This method is detailed in (S&&skilahti et al. 2014)
in the case of an interface between simple materials (i.e. between Argon and an
artificially heavy Argon). It is applied here to interfaces between Si and Ge.

The spectral interfacial heat flux Q(w) is the sum of the heat fluxes between
every pair of atoms ¢ and j across the interface between the materials A and
B. The cut-off distance of interatomic potentials limits the number of pairs of
atoms included in the calculation.

First, an inter-atomic correlation function Kj; is defined as:

Kijlt — 12) = 3 (Fy(t) - (5(t2) + 5 (12))) (66)
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where Fij is the force applied from atom j on atom 4, and ¥ their velocities. The
averaging is performed over the simulation time.

The spectral heat flux can then be calculated from its Fourier transform f(ij (w)
by using:

Qinsj() = 2 Rel i) (67)

Finally, the spectral conductance can be recovered:

G(w) = % = ﬁ Z Qij(w) (68)

i€A,jEB

Figure 38 shows the resulting normalized spectral heat flux at a Si3C/Ge3C and
a mismatched Ge3C/Ge2H interfaces.

These spectral distributions are significantly different. The polytype Ge interfaces
have two strong peaks due to the acoustic and optical modes. The heat flux is
mainly transmitted via the acoustic modes of phonons. The transmission at the
Si3C/Ge3C interface is more uniform. Nevertheless, the second peak is higher
and the contribution of optical modes are more important that the acoustic ones.

They both have a similar cutoff in angular frequency around 70 rad.THz. The
angular frequency range is limited by the available phonon states in Ge. However,
in the case of Si3C/Ge3C, a small spectral heat flux is observed above the cutoff,
around 85 rad.THz, which is attributed to anharmonic interactions at the
interface.
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Figure 38: Spectral distributions of the interfacial heat flux at Si3C/Ge3C and
Ge3C/Ge2H mismatched interfaces from NEMD simulations.
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In MD simulations, a detailed atomic model of the interfaces is implemented.
The Full Band DMM model (which is used in MC simulations) provides a simpler
physical model of the interface. In Figure 39, we compare the interfacial heat
flux of Si3C/Ge3C interfaces computed by using these two methods. The DMM
result shows three peaks while only two peaks are present in MD. The DMM
spectral flux is higher at lower frequencies. Besides, the DMM cutoff frequency
slightly different than in MD as the phonon dispersion relation in MD is not
exactly the same. As expected, there is no contribution above the cutoff within
the DMM method.
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Figure 39: Spectral distributions of the interfacial heat flux at Si3C/Ge3C
interfaces from NEMD simulations and DMM.

Figure 40 shows the the DMM spectral transmission coefficients in a Si3C/Ge3C
interface, and a polytype Si3C/Si2Hx interface. As in the previous figure, the
frequency cutoff is around 60 rad. THz for Si3C/Ge3C, while the polytype Si
interface cutoff is around 95 rad. THz. Since the transmission coefficients are
calculated by using the DMM impedance of materials, all the simulated polytype
interfaces have their transmission coefficients oscillating around ¢ = % For
Si3C/Ge3C, it is notable that the first and third peaks in the spectral heat flux
correspond to high transmission values, while the middle peak is only related to

a low transmission ¢t = 0.2.
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Figure 40: Spectral transmission coefficients at Si3C/Ge3C and polytype
Si3C/Si2Hx interfaces from DMM.

6.4 ITC by using MC simulations

To study heterojunctions and superlattices by using Full Band Monte Carlo
simulation of phonons, the interface transmission is derived from DMM as
explained in §3.1.8.2. This DMM spectral transmission is used to validate our
implementation of the heterostructure transmission.

The first test is performed with a Si3C/Si3C interface i.e. a constant transmission
of tausp=tpa = %, and a Si3C/Si2Hx interface. An heterojunction without
any thermostat (i.e. without any phonon injection) is simulated with different
initial temperatures on each side of the interface. As expected, after a transient
regime, the temperature profile relaxes to the same equilibrium value, and the
net heat flux at the interface becomes null.

Then thermostats are added to recover the same configuration as those used
in the two previous chapters, i.e. with a hot thermostat and a cold thermostat
along the X axis. The temperature profile at steady-state for a Si3C/Si3C
heterojunction (HJ) is shown in Figure 41. The red and blue diamonds show
the temperature of the thermostats, and the grey vertical line represents the
position of the interface.

For small devices, i.e. L = 100nm, the transport is in the intermediate trans-
port regime between ballistic and diffusive ones. As expected, we observe a
temperature drop at the contacts with the thermostats, and also at the inner
interface.
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Figure 41: Temperature profile in a Si3C/Si3C HJ, with a DMM interface at
z = 50nm.

The ITC is calculated as a first attempt by simply dividing the average heat
flux in the device and the temperature difference between the two sides of the
interface.

In Figure 42, the ITC is calculated in heterojunctions of different lengths L by
the mentioned approach. The ITC is expected to be independent of L. This
occurs in the ballistic regime but the ITC seems to be around twice the values
by using the SA formula. Besides, when L increases, the ITC decreases below
the expected value.
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Figure 42: Evolution of the ITC calculated by using irrelevant temperature drops
with the device length L.

To recover the expected result, the temperature difference to consider must be
different. Only the population of incident phonons on the interface must be
included in the computation of the temperature. Indeed, when a strong out-
of-equilibirum transport regime occurs, this last approach gives a significantly
different temperature drop.

In order to calculate a correct ITC, we simulate very small HJ (L = 1nm) without
any phonon-phonon scattering mechanism. The incident heat flux on each face is
directly the heat flux injected from thermostats in which temperatures are known.
The thermostat temperature can thus be used to calculate the temperature drop
at the interface AT.

The results are given in Table 7 for several interfaces at 300K, and compared to
results from the SA formula. They are mostly equivalent for all studied interfaces
and orientations except for Si3C/Ge3C interfaces where differences up to 10%
are present.

For some interfaces (marked wiht '*’), the specular boundaries on the Y and Z
axes are substituted by fully-diffusive boundaries due to technical limitations.
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Materials SAITC G Wm™2K~! | MC ITC G Wm™2K~!
Si3C/Si3C 536 531
Si3C/Si3C [110] 527 528
Si3C/Si3C [111] 526 524x
Si3C//Si2Hx 512 515
Si3C/Si2Hz 485 480
Si3C/Ge3C 245 266+
Si3C/Ge3C [110] 239 241%
Si3C/CGe3C [111] 249 272+

Table 7: Comparison of ITC at 300K from DMM SA and ballistic MC for several

interfaces.

Besides, increasing AT does not modify significantly the computed ITC. As
permutting the hot and cold thermostats modifies the ITC by about 1%, no
significant rectification of interface is observed.

In order to estimate the ITC in more complex devices, a specific method to
directly calculate the temperature of the incident heat flux at the interfaces
should be implemented in the future.

The thermal conductivity x of HJ is computed as in CPNF. The evolution
of k with the device length L is plotted in Figure 43, with crosses. We find
that it follows closely the results of SA formula for CPNF thermal conductance
(continuous line, see §2.4) by using £ (which is the actual length of the materials
in contact) instead of L.
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Figure 43: Thermal conductivity in Si3C/Si3C HJ as function of device length.
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6.5 Temperature dependence of the interface thermal con-
ductance

We compare in Figure 44 our EMD and NEMD ITC results for several tempera-
tures. The EMD ITC are independant on temperatures. They are on average
equal to G = 650 MWm~2k~1, slightly above the results from Chalopin et al.
(2012).

However, the NEMD ITC increases when the average temperature increases. This
phenomenon was has been previously observed in (Landry and McGaughey 2009).
As NEMD results are performed in short devices (in order to reduce simulation
times), the computed conductances are low. But as seen in Figure 37 (d) the
diffusive limit is higher than our EMD results.

--- EMD (Chalopin 2012)
--- NEMD (Landry 2009)
||+ EMD

—+ NEMD
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Figure 44: Thermal conductances of Si/Ge strained interfaces as a function of
temperature.

After having studied Si/Ge in the [100] lattice orientation, we compare it to the
[110] and [111] orientations. In Figure 45, the temperature dependence of these
three orientations are calculated by using EMD. In these simulations, the sizes
of the simulation box are 8 x 8 x (32 +32), 8 x 6 x (22+22) and 6 x 6 x (18 4 18)
unit cells.

There is almost a 50% increase of ITC between the [100] and [110] orientations.
Only [111] ITC is temperature dependent.
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Figure 45: Interface thermal conductances of Si/Ge strained interfaces for several
lattice orientations at different temperatures using EMD.

In Figure 46, we compare the conductances of the two Ge polytype interfaces
to the Si/Ge [100] one, computed by using EMD. We find that the mismatched
polytype ITC is on the same order of magnitude as Si/Ge interfaces, about 50%
higher. When stacked in the polytype nanowires, this low ITC value should
lead to low a thermal conductivity of the device that could be interesting for
thermoelectric applications. The aligned polytype Ge interface is however about
10 times more conductive.
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Figure 46: Interface thermal conductance of polytype Ge interfaces and Si/Ge
[100] interface as a function of temperature using EMD.

The temperature dependence of the reference Si3C/Ge3C ITC calculated by
using the SA DMM formula is shown in Figure 47 for three lattice orientations.
These results have been presented in Larroque, Dollfus, and Saint-Martin (2018).
As the DMM is a model based on the impedence of the materials, the results are
quite different from those of the atomistic MD methods. While the [110] ITC is
again higher than the [100] and [111] ones, they all have the same temperature
dependence. The ITCs increase when the temperature increases but reach a
plateau above 600K.

86



0 200 400 600 800 1,000
Temperature T' [K]|

T

<

‘T‘E 108

N | — Si3C/Ge3C 100
o —Si3C/Ge3C 110
2 5 ||—si3c/Ge3C 111
5

5

=

]

5 1| .

[}

=

=

O

= of |

[b) L

&

g

E

Figure 47: Si/Ge ITC from SA ABCM.

Since the DMM model for the transmission can be seen as a strong approximation,
our future work will implement the transmission coeflicients computed by using
MD in our Full Band MC simulator.
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Conclusion

Throughout this thesis, several thermal properties of nanostructures are studied.
Two complementary simulation methods are used: Molecular Dynamics, which
considers the position of atoms and interatomic potentials, and Monte Carlo
simulation for phonons. Previous results on bulk thermal conductivity in Si
and Ge are reproduced as well as the thermal conductance of Si/Ge interfaces.
An original MC simulator with a full-band model of the material’s dispersion
relation and scattering rates computed by DFT have been developed during this
thesis. As these parameters are based on ab initio calculations, this code can be
used to study a large class of materials or crystalline phases. Models for rough
boundaries and interface between materials are also implemented.

Both methods give insight on the thermal conductivity of the hexagonal phases of
Si and Ge. The computed thermal properties of both materials are in agreement
with previous theories and measurements. The thermal conductivity is lower for
hexagonal phases as compared to the cubic ones.

It has been shown that even if spectral semi-analytical models can estimate
satisfactorily the cross plane thermal conductivity in quasi-ballistic transport
in nanofilms, they are disappointing when the rough interfaces are dominant as
in the case of nanofilms with in-plane configuration or in nanowires. Besides,
the contribution of each phonon branch to the heat flux is complex and highly
anisotropic. This is also depicted by the polar and azimuthal descriptions of
heat fluxes in nanofilms and nanowires. The introduction of rough boundaries
impacts mostly acoustic modes (transverse acoustic for Si3C) and tends to focus
the heat flux in the main transport direction.

Finally, polytype interfaces can exhibit low thermal conductivities, in the same
order of magnitude as Si/Ge interfaces. The Molecular Dynamics methods
provide a spectral decomposition of the interfacial heat flux, which is compared
to results from the Diffusive Mismatch Model. In future works, more realistic
models of interfaces computed by using MD will be implemented in our Monte
Carlo simulator. This will allow the complete simulation of polytype nanowires
and provide deep insight of the heat transport in these nanodevices.
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A Synthese en francais

A.1 Introduction

La conversion thermoélectrique est un sujet de recherche tres actif. Ses prin-
cipales applications sont liées a la récupération d’énergie pour les systemes
d’alimentation électrique autonomes ainsi qu’au refroidissement des microcon-
troleurs. Actuellement, les systémes thermoélectriques courants reposent sur
des composés rares et toxiques comme le Tellurure de Bismuth, le Tellurure de
Plomb, etc. Leur remplacement par le Silicium et le Germanium, plus abon-
dants et largement utilisés par I'industrie microélectronique, serait intéressant.
Cependant, leurs propriétés thermoélectriques intrinseques sont médiocres, en
particulier pres de la température ambiante.

Afin d’améliorer la conversion thermoélectrique des appareils & base de Si et de
Ge, les nanotechnologies offrent de nouvelles voies d’optimisation. En effet, la
nanostructuration permet d’améliorer les propriétés intrinseques des nanostruc-
tures de plusieurs ordres de grandeur.

Dans ce cadre, cette these étudie les propriétés thermiques des nanofils polyphasés
en Si et Ge récemment fabriqués. Ils sont constitués d’'un empilement quasi
périodique de phases cubiques et hexagonales de Si ou Ge. La présence de
nombreuses interfaces polyphasées devrait étre bénéfique pour les propriétés
thermoélectriques. Les caractérisations expérimentales de ces nanofils étant
encore tres difficiles, le développement en parallele d’outils numériques spécifiques
est d’'une grande importance pour le développement de cette technologie.

Au cours de cette these, un simulateur de Monte Carlo original dédié au transport
des phonons a été développé. 1l s’agit d’un simulateur “full band” et 3D dans
I'espace réel capable de fournir des informations détaillées sur le transport
thermique dans des nanodispositifs complexes. Comme les parameétres “semi-
empiriques” requis sont calculés a ’aide de données ab initio, il est possible de
modéliser une grande classe de matériaux et de phases, méme s’ils n’ont pas
été caractérisés expérimentalement. Par ailleurs, des études réalisées a ’aide de
la Dynamique Moléculaire sont présentées afin de paramétrer la modélisation
d’interface semi-transparente dans le code MC.

Les différents modeles théoriques utilisés sont présentés dans le §A.2. Les
méthodes de simulation Monte Carlo et de Dynamique Moléculaire sont dans
le §A.3. Dans le §A.4, nos méthodes sont validées en étudiant les propriétés
de matériaux massifs et de couches fines. Dans le §A.5, leffet de surfaces
rugueuses sur des nanostructures est présenté. Enfin, dans le §A.6, les propriétés
d’interfaces entre différentes phases de Si et Ge sont étudiées.

A.2 DModeles théoriques

Dans ce chapitre, nous détaillons les bases théoriques utilisées dans cette these.
Les deux premieres sections présentent les dispositifs étudiés et les différents types
de modélisation de matériaux. Les sections suivantes portent sur la modélisation
du transfert thermique et présentent des approches semi-analytiques pertinentes.
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A.2.1 Dispositifs simulés

Dans cette these, différents types de nanostructures sont étudiés : nanofilms,
nanofils (NW) et hétérojonctions (HJ). Les nanofilms sont considérés dans des
configurations ou le flux thermique est perpendiculaire (CPNF) ou transverse
(IPNF) aux interfaces. Des faces spéculaires sont introduites pour simuler les
dimensions supposées infinies (respectivement 2, 1, 0 et 2 dimensions pour CPNF,
IPNF, NW et HJ). Ces dispositifs sont paramétrés par leur longer L (distance
entre les thermostats, alignés selon 'axe de transport thermique X) et leur
largeur W.

A.2.2 Modéles de matériaux

Pour résoudre 1’équation du transport thermique dans un systéme a 1’état solide,
il faut connaitre au préalable la relation de dispersion et les taux de diffusion.

Le mouvement des phonons dans un matériau est perturbé par plusieurs mécan-
ismes de diffusion, qui peuvent étre caractérisés par leur fréquences d’interactions.
Habituellement, la principale source de résistance thermique est due aux diffu-
sions phonon-phonon.

Il est possible d’avoir une représentation analytique de la relation de dispersion
et des taux de diffusion en utilisant plusieurs approximations. Cependant dans
cette thése, une description compléte (“full band”) de la zone de Brillouin (BZ)
est utilisée, c’est-a-dire que les relations de dispersion et les taux de diffusion
sont calculés numériquement pour un grand nombre de vecteurs d’ondes dans
le volume complet de la BZ. Deux méthodes ont été utilisées pour calculer ces
parameétres: ’ABCM (Larroque 2016) et la DFT (Togo, Chaput, and Tanaka
2015).

La DFT est une méthode ab initio, qui est donc pertinente pour étudier des
matériaux pas encore (ou peu) caractérisés expérimentalement. Les paramétres
que nous avons utilisés ont été calculés par Chaput et al. (2018).

Dans les deux cas, la BZ est discrétisée en N vecteurs d’ondes, avec respective-
ment N =31 x 31 x 31 =29791 et N = 31 x 31 x 19 = 18259 pour les phases
cubiques et hexagonales. La pulsation, la vitesse de groupe et (avec la DFT) le
taux de diffusion phonon-phonon sont calculés pour chaque vecteur d’onde ¢ et
mode m.

En raison de la nature discréte de notre description de la BZ, la définition
des états d’iso-énergie doit étre relachée, entrainant des fluctuations sur la
pulsation des phonons. La conservation de la pulsation est limitée par le pas de
discrétisation sur la pulsation Aw.

A.2.3 Modeles de faces rugueuses
Dans les nanostructures, il faut tenir compte de la contribution des faces

rugueuses sur la résistance thermique. En effet, cette contribution peut de-
venir plus forte que celle des mécanismes de diffusion phonon-phonon.
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Pour cela, le modele de Soffer considere qu'une particule peut subir lors d’une
collision soit une réflexion spéculaire, soit une réflexion diffusive (Soffer 1967).
Cela est déterminé par une probabilité de réflexion spéculaire dépendante de
l’angle d’incidence du phonon, d’un parametre de rugosité de surface A, et d'un
parametre de corrélation spatiale de la rugosité.

Dans le cas ou la corrélation spatiale de la rugosité de surface est négligeable, la
probabilité de réflexion spéculaire a une face rugueuse est :

- 2
Pspecular = € (Zeos(6)Al4]) (Al)
ou ¢ est le vecteur d’onde incident, # ’angle d’incidence, et A le parametre de
rugosité.

Ce modele a permis & Kazan et al. (2010) de reproduire les mesures expérimen-
tales de Hochbaum et al. (2008)

A.2.4 Modeles de transport thermique et conductivité thermique

La conductivité thermique d’un matériau peut étre calculée par une formule
semi-analytique (SA) a partir de la relation de dispersion et des taux de diffusion
“full band” (cf. §A.2.2). Des modeles similaires ont été développés par Mingo
et al. (2003) et Aksamija and Knezevic (2010), l'originalité de cette these est
d’utiliser des taux de dispersion “full band” calculés en DFT.

Le modeéle SA balistique évalue la conductivité thermique dans des nanofilms
(CPNF) infiniment courts, utilisant le formalisme de Landauer.

isti LYV, L L
Patistique TTS Z Two;|V; - 7| feE (W), Tehaua) + Z hw;|V; - ] fBE (W), Tiroid)
état j état j
|’l7j~ﬁ‘>0 "EJT_I:|<O

(A2)

Le modele SA diffusif est dérivé de I’équation de transport de Boltzmann, et
correspond a la conductivité d’un matériau massif.

fFusi - 1 0feE
diffusif __ e 22
k =V Z Tw;|T; - 1] % T

(wj, Teq) (A3)
état j
ou A; est le taux de diffusion phonon-phonon pour I’état j.

Un modele SA Matthiessen est d’abord utilisé pour estimer la conductivité
de dispositifs dans un régime transitif entre les limites balistique et diffusive.

1 1 1
= - (A4)

RMatthiessen Rbalistique Rdiffusif

Des modeles plus complexes basés sur une décomposition spectrale de la conduc-
tivité sont généralement plus fiables. Nous avons défini des modeéles spectraux
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pour trois dispositifs : SA CPNF, SA IPNF et SA N'W, utilisant le modele
de Soffer pour les faces rugueuses (cf. §A.2.3).

Pour ces trois modeles, le taux de diffusion des phonons dans un état j est
modifié tels que:

ACPNF,j = Aj + mi 7 (A5)

AIPNF,j = Aj + Wjiﬁ‘ + % V—Zl’l' (A6)

ANW,j = Aj + 1% 71 + 1% ';L’l' + 1% V;L’Q‘ (A7)
onL=%et W=W (5t - 1),

Leurs conductivités thermiques kcpNF, KIPNF, €t Kxw sont alors calculées avec
la formule diffusive (Eq. A3) en adaptant les taux de diffusions.

A.2.5 Modeéles de conductance thermique d’interface

La conductance thermique d’interface (ITC) est liée a la chute de température
au bord de I'interface entre deux matériaux, quand un flux thermique est imposé.

Le modele utilisé dans cette theése pour définir une interface semi-transparente
est une adaptation du Diffusive Mismatch Model (DMM) pour notre modele de
matériaux “full band” (Larroque, Dollfus, and Saint-Martin 2018). La DMM
considere une interface de mauvaise qualité, de telle sorte que tous les phonons
en collision avec l'interface subissent une diffusion. Les phonons peuvent ensuite
étre soit transmis, soit réfléchit, selon une probabilité de transmission t.

O0fBE
oT

GPMM (¢, T) = (w, T Ia(w)tasp(w) (A8)

ott GPMM( T') est la décomposition spectral de 'ITC & la température T, fpg
est la distribution d’équilibre de Bose Einstein et 14 est le flux de phonons a
Iinterface.

A.3 Simulation Monte Carlo et Dynamique Moléculaire
Ce chapitre présente les méthodes de simulations numérique utilisées dans cette
these pour étudier le transport thermique dans des nanostructures.

D’abord, notre méthode Monte Carlo (MC) originale développée partiellement
lors de cette these est détaillée, puis les méthodes de Dynamique Moléculaire
(MD) sont rappelées.
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A.3.1 Meéthode Monte Carlo

A.3.1.1 Principes

La méthode de Monte Carlo est une approche stochastique pour résoudre
léquation de transport de Boltzmann (BTE). Dans cette thése, nous présentons
un nouveau simulateur pour le transport de phonons en MC, qui résout la
BTE en 3D dans Pespace réel et 'espace réciproque (approche “full band”). La
relation de dispersion des phonons et les taux de diffusion phonon-phonon, sont
paramétrés dans toute la zone Brillouin en utilisant les calculs de DFT ab initio
(cf. §A.2.2).

La BTE décrit ’évolution temporelle de la distribution de phonons f;(7,q,t)
dans ’espace de phase, ou j est I’état des phonons, 7 la position dans ’espace
réel et ¢ leur vecteur d’onde.

of;
ot

+0-Vf= % : (A9)

interactions

N o . = ﬁ‘# ) . . of
oll ¥; est la vitesse de groupe (7; = Vg wj, w; est la pulsation) et Z7| ‘
interactions

est le terme d’interactions (diffusion, collisions, etc.).

Nous résolvons la BTE pour le transport de phonons avec une méthode particu-
laire Monte Carlo (Péraud and Hadjiconstantinou 2011).

Dans cette approche stochastique, les trajectoires d’un grand nombre de particules
semi-classiques sont choisies au hasard. Les trajectoires de chaque particule sont
décrites comme une séquence de vols libres (trajectoires linéaires dans l’espace
réel sans changement dans l'espace réciproque) et d’événements de diffusion
instantanés (pas de changement dans ’espace réel mais avec une modification
de I’état dans 'espace réciproque). Le mécanisme de diffusion qui met fin & un
vol libre peut étre soit une diffusion phonon-phonon, soit une collision avec une
face du dispositif. Pour chaque particule, ’état initial, la durée de chaque vol
libre, ainsi que le type et 'effet de chaque événement de diffusion sont choisis au
hasard en fonction des taux de diffusion appropriés.

A.3.1.2 Techniques d’optimisation

Pour réduire le nombre de particules simulées et donc la puissance de calcul
requise, les particules simulées ne sont pas des phonons mais des paquets de
phonons. Ces paquets ont un nombre de phonons variable, tels que leur énergie
totale E, est toujours constante. Cela permet de simplifier grandement le
traitement des diffusions élastiques et garantit dans tous les cas la conservation
d’énergie (Klitsner et al. 1988). Le parametre E, définit la précision de la
simulation.

Puisque seule la déviation de la distribution de phonons par rapport a la distri-
bution d’équilibre est pertinente pour étudier le transport thermique, seulement
celle-ci est simulée. Une température de référence TO est définie, proche des
températures dans les dispositifs simulés, et la distribution d’équilibre a cette
température est soustraite. Cela permet de réduire de maniére significative le
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nombre de particules & simuler, et de réduire la variance des résultats (Péraud
and Hadjiconstantinou 2011).

A.3.1.3 Température effective

La température de chaque section du dispositif simulé est mise & jour périodique-
ment, puisque les taux de diffusion phonon-phonon dépendent de la température
locale. Pour cela, la relation énergie-température est pré-calculée pour chaque
matériau. L’énergie totale des particules dans une section est sommeée, puis
la relation énergie-température est inversée numériquement pour obtenir la
température locale.

A.3.1.4 Algorithme

En premier lieu, la distribution initiale de particule est générée dans ’ensemble
du dispositif. La simulation entre ensuite dans deux boucles : 'une pour chaque
pas de temps, et la deuxiéme pour chaque particule. A chaque pas de temps,
la température locale est mise a jour dans chaque section du dispositif, et de
nouvelles particules sont injectées par les thermostats. Ensuite, chaque particule
est déplacée pendant son temps de vol libre, qui peut étre est interrompu par
une interaction phonon-phonon ou une collision avec les bords du dispositif.

En considérant que les interactions sont des processus poissoniens (cf. Jacoboni
and Lugli (1989)), au début d’un vol libre, le temps avant la prochaine interraction
tinteraction €St déterminé aléatoirement :

1n(nrandom)
tinteraction = — —anaom. A10
interaction )\J (Tc) ( )
OU Nrandom €St un nombre aléatoire uniforme dans I'intervalle ]0;1] et A;(T) est
le taux d’interaction, dans notre cas le taux de diffusion phonon-phonon d’une
particule dans I’état j a la température 7.

Bien que la diffusion phonon-phonon soit un processus a trois phonons (les
ordres supérieurs étant ignorés), nous la traitons comme un processus a deux
phonons (Lacroix, Joulain, and Lemonnier 2005). Ceci simplifie grandement
l'algorithme, et comme chaque particule a une énergie fixe, la conservation de
I’énergie est exacte. Cette approximation peut étre considérée dans le cas ot un
grand nombre de phonons ont un grand nombre de collisions, ot le comportement
moyen est alors correct. Quand une particule subit une diffusion phonon-phonon
a la fin de son vol libre, son état précédent est perdu (Mazumder and Majumdar
2001) et remplacé par un nouvel état. Cet état est sélectionné aléatoirement
selon la distribution d’équilibre, pondérée par le taux de diffusion de chaque état
(cf. Lacroix, Joulain, and Lemonnier (2005)).

pj o< Aj(Te)nf*(Te) (A11)

Les thermostats injectent un flux de particule constant, dépendant de leur
température.

94



Aux faces lisses, les particules subissent une réflexion spéculaire : la composante
normale & la face du vecteur d’onde est inversée.

Lors d’une collision avec une face rugueuse, la particule a une probabilité de
subir soit une réflexion spéculaire, soit une réflexion diffusive (Soffer 1967). Dans
le cas d’une réflexion diffusive, un nouvel état est sélectionné aléatoirement dans
I'isoénergie concernée, ayant une vitesse positive selon la normale & la face. La
probabilité de sélection de ces états est pondérée par la probabilité de réflexion
spéculaire et la composante normale de la vitesse (conformément & la Loi de
Lambert) :

pdiffusive,j’ X (1 - pspecular,j’)|6j’ |COS(9j’) (A12)

Lors d’une collision avec une face semi-transparente, la particule a une
probabilité de subir soit une transmission diffusive, soit une réflexion diffusive,
selon une probabilité de transmission t 4 _, g calculée par DMM. L’implémentation
est similaire aux faces rugueuses, le nouvel état apres diffusion étant sélectionné
dans l’isoénergie concernée, et ayant une orientation de vitesse cohérente. De
la méme maniere, la probabilité de sélection de ces états est pondérée par la
probabilité de réflexion et la composante normale de la vitesse :

poav,jr o (1= ta— p(wjr)) [T |cos () (A13)

A.3.2 Dynamique Moléculaire

Les méthodes de Dynamique Moléculaire (MD) sont des simulations classiques
des trajectoires d’atomes. Comme chaque position atomique est déterminée lors
de initialisation, il est possible de modéliser avec précision les interfaces entre
matériaux par ces techniques.

Dans une simulation MD, chaque atome a une masse, une position et une vitesse
définies. La deuxiéeme équation de Newton dépendante du temps est résolue
numériquement pour obtenir les trajectoires atomiques. Les forces instantanées
des interactions entre atomes sont calculées a partir de potentiels semi-empiriques.
Enfin, toutes les propriétés thermodynamiques pertinentes peuvent étre obtenues
a partir d’une analyse statistique du systeme.

Ces techniques sont assez polyvalentes mais ont leurs limites. Tout d’abord,
ces méthodes exigent beaucoup de puissance de calcul, donc seuls de petits
systemes de quelques milliers d’atomes sont gérables. Afin d’éviter de diffuser les
phonons aux limites, des conditions périodiques sont généralement appliquées,
mais la taille du systéme par rapport au libre parcours des phonons doit étre
prise en compte. Enfin, nous devons garder a 'esprit qu'il s’agit d’une simulation
classique qui ne peut rendre compte d’effets quantiques. Les simulations MD sont
donc limitées a des régimes de températures élevées supérieures a la température
de Debye du matériau, qui peut étre relativement élevée dans le cas des semi-
conducteurs standards.

Des méthodes a I’équilibre (EMD) et hors équilibre (NEMD) ont été utilisées
dans les travaux suivants, pour étudier des matériaux massifs et des interfaces.
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Les méthodes EMD utilisent un formalisme de Green-Kubo pour déterminer
les propriétés thermiques, alors que les méthodes NEMD sont similaires a des
mesures expérimentales de dispositifs.

Ces méthodes ont été décrites dans des travaux précédents :

o EMD massif (Sellan et al. 2010; Schelling, Phillpot, and Keblinski 2002;
Volz and Chen 2000)

o EMD aux interfaces (Chalopin et al. 2012)

o NEMD massif (Schelling, Phillpot, and Keblinski 2002)

o NEMD aux interfaces (Landry and McGaughey 2009)

A.4 Matériaux massifs et nanofilms
A.4.1 Transition entre régimes balistique et diffusif

Les différents modeles SA ont été comparé dans des dispositifs de différentes
longueurs L. Pour les dispositifs trés longs, tous les modéles (sauf le modeéle
balistique) convergent vers la valeur diffusive de conductivité thermique qui
correspond & la conductivité du matériau massif. De méme, a ’exception
du modele diffusif, ils convergent asymptotiquement vers la conductance du
modele balistique dans les dispositifs courts. Cela confirme que les modeles sont
équivalents a ces limites.

En comparant aux résultats de simulation MC, on trouve que la transition
entre ces limites n’est pas correctement exprimée par le modele Matthiessen
(jusqu'a 60% de différences observées). Cependant, le modele SA CPNF est tres
proche des résultats MC sur toute la gamme de longueurs. Cela indique qu'un
traitement spectral de la conductivité est nécessaire pour représenter de maniere
précise la transition entre ces régimes.

A.4.2 Phases hexagonales de Si et Ge

Dans la Table A1, la conductivité thermique des phases cubiques et hexago-
nales de Si et Ge a T' = 1000K sont calculées par EMD. Dans les deux cas,
les phases hexagonales ont des conductivités inférieures aux phases cubiques
correspondantes.

Si ‘ Ge
Cubique 77.2+£21.3 | 324+7.2
Hexagonale | 72.0+16.8 | 31.6 £ 11.2

Table Al: Conductivité thermique & 1000K par EMD, pour des phases cubiques
et hexagonales de Si et Ge.

Ces matériaux sont ensuite étudiés avec des simulations MC et le modeéle SA
CPNF. La Figure A1l montre I’évolution de la conductivité avec la longueur
du dispositif dans des CPNF en Si cubique (Si3C) et Si hexagonal dans les
orientations cristallines [10-10] (Si2Hx) et [0001] (Si2Hz). Les courbes ont les
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mémes caractéristiques, et confirment que la conductivité des phases hexagonales
est inférieure a celle de la phase cubique pour toutes les longueurs. A la limite
diffusive, Kqgigusit = 138, 100 et 74Wm ™1 K ! respectivement pour Si3C, Si2Hx
et Si2Hz. De plus, on observe une anisotropie entre les deux phases hexagonales,
puisque la conductivité diffusive est supérieure de 26% en Si2Hx comparé a
Si2Hz.
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Figure Al: Conductivité thermique de CPNF en fonction de leur longueur L, en
Si3C (bleu), Si2Hx (vert) et Si2Hz (rouge).

A.4.3 Distribution spectrale du flux thermique

Dans la Figure A2, I'intégrale sur la pulsation de la distribution spectrale du flux
thermique est tracée pour des CPNF de 1pm en Si3C, depuis des simulations
MC et le modére SA CPNF. Les contributions de chaque mode sont séparées par
couleur. Les résultats des deux modeles sont similaires, mais les contributions
totales dans chaque mode different. De plus, pour certains modes & haute
fréquence angulaire, une contribution négative au flux thermique peut étre
observée dans des résultats MC qui ne sont pas présents dans le modele SA.
Nous expliquons ce phénomene par le fait que 'approximation diffusive utilisée
dans le modele SA CNPF ne tient compte que des vitesses positives, puisque
seules leurs valeurs absolues sont utilisées. Ainsi, les flux thermiques totaux
calculés par le modele SA sont plus élevés que ceux calculés en utilisant MC.
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Figure A2: Intégrale de la distribution spectrale du flux thermique pour chaque
mode dans un CPNF de 1pm de long, en Si3C, avec le modele SA CPNF (ligne
continue) et des simulations MC (croix).

A.4.4 Distribution angulaire du flux thermique

Notre modele de matériaux “full band” permet de rendre compte de I’anisotropie
du transport thermique. Pour I'estimer, la distribution angulaire de la densité
d’état (aDOS) et du flux thermique sont représentée dans la Figure A3, pour
un CPNF de 1pm en Si3C, extrait depuis une simulation MC. Nous observons
une aDOS élevée dans les principales directions cristallines. Comme prévu, la
contribution principale du flux est orientée directement vers la direction du
transport. Cependant, le flux thermique le long des directions <111> est plus
élevé que le long des directions <110> méme si leur aDOS est inférieure. Des
phénomenes similaires sont présents en Si2Hx et Si2Hz.
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Figure A3: Distributions angulaires (a) de la densité d’état, (b) du flux thermique,
dans un NW de 1pm de long en Si3C.

A.5 Nanostructures rugueuses

Ce chapitre considere 'effet des faces rugueuses, introduites dans les nanofilms
IPNF, et les nanofils NW.

A.5.1 Effets dus a la géomeétrie des dispositifs

La dégradation de la conductivité thermique dans des dispositifs longs (donc
diffusifs) est liée au nombre de faces rugueuses présentes. Cependant, dans
les appareils ultra-courts dans lesquels le transport thermique est balistique,
I’évolution des conductivités thermiques sont les mémes. Dans le cas de IPNF
et NW de treés grandes largeurs (W > 1pm), ou de parametres de rugosité treés
faibles (A < 0.1nm), la conductivité tend vers la valeur limite des CPNF. Il
est notable que contrairement aux CPNF, les modéles semi-analytiques (SA),
correspondent pas précisément aux simulations MC pour les IPNF et les NW,
bien que les tendances soient les mémes.

A.5.2 Impact sur les distributions spectrales et angulaires du flux
thermique

La Figure A4 (a) compare la distribution spectrale du flux dans un CPNF (ligne
continue) et un NW (pointillés) de méme dimension (L = Ipm et W = 100nm),
en Si3C, avec un parametre de rugosité A = 0.5nm. On observe que la réduction
du flux par les faces rugueuses degrade plus fortement le transport des modes
acoustiques. La proportion de flux transporté par les modes optiques est donc
plus grande dans les NW que dans les CPNF, bien que toujours tres faible.

La Figure A4 (b) compare la distribution angulaire du flux selon I’angle azimutal
¢ dans un CPNF (ligne continue) et un NW (pointillés), en Si2Hx, avec les mémes
parametres que précédemment. Comme vu dans le chapitre précédent, le flux en
CPNF est transporté par les orientations cristallines ayant une grande densité
d’état. Cependant, I'introduction de faces rugueuses réduit principalement le
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flux dans les orientations hors de la direction du transport (par exemple [21-30]).
Il y a donc une concentration du flux thermique.

—
5]
Naig

—TA --- TA NW

1 —TA --- TA NW
—LA---LANW

0.8 TO  TO NW
—TO--- TO NW

0.6 —LO--- LONW

0.4

o
)

e}

Pulsasion w [rad T Hz|

Intégrale du flux thermique spectral Q,, [Wm™2]

—~
=
=

-10°

Flux thermique [A.U.]

R
B

Figure A4: (a) Intégrale de la distribution spectrale du flux thermique pour
chaque mode, dans un CPNF (ligne continue) et un NW (pointillés) de 1pm de
long, en Si3C, depuis des simulations MC. (b) Distribution angulaire du flux
selon l'angle azymuthal ¢ dans un CPNF (ligne continue) et un NW (pointillés),
en Si2Hx, depuis des simulations MC
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A.5.3 Comparaison avec des mesures expérimentales

Dans le cas des mesures de Li sur NW (Li et al. 2003), nous comparons
la dépendance en température de la conductivité thermique sur la figure A5.
Seulement trois largeurs W sont considérées : 37nm, 56nm et 115nm, car les
dispositifs de 22nm sont trop fins pour étre simulés correctement en utilisant
les parameétres des matériaux massifs. Notre simulation Monte Carlo reproduit
correctement 1’évolution de la conductivité avec la température. Les différences
peuvent étre dues a d’autres sources de résistance thermique dans les mesures
expérimentales, comme des résistances de contact.
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Figure A5: Conductivité thermique de NW en Si3C en fonction de la température,
comparés aux mesures expérimentales (Li et al. 2003).

A.6 Transport thermique aux interfaces solide-solide

Ce chapitre étudie le transport thermique aux interfaces entre des matériaux
semi-conducteurs.

L’un des objectifs de cette these est de caractériser les propriétés des interfaces
polyphasées. Un autre consiste a mettre en ceuvre un modele d’interface avancé
dans un simulateur de Monte Carlo “full band” basé sur des données issues de
simulations de dynamique moléculaire (MD), qui modélisent avec précision la
position des atomes aux interfaces.

A.6.1 Distribution spectrale du flux thermique aux interfaces

Le flux thermique spectral est calculé en NEMD & partir des forces et des vitesses
des atomes autour de 'interface (Sadskilahti et al. 2014). Dans le cas d’interface
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Si3C/Ge3C, il est comparé dans la Figure A6 avec le flux thermique a une
interface DMM.

Le flux spectral DMM montre trois pics alors que seulement deux pics sont
présents en MD. Il est plus élevé aux basses fréquences en DMM. De plus, la
fréquence de coupure en DMM est 1égerement différente de celle en MD, car la
relation de dispersion des phonons en MD n’est pas exactement la méme. En
MD, certaines contributions sont observées au-dessus de la fréquence de coupure,
dues a des effets anharmoniques.
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Figure A6: Distribution spectrale du flux thermique & une interface Si3C/Ge3C,
par une simulation NEMD et le modele DMM.

A.6.2 Dépendance a la température de la conductance d’interface

Dans la Figure A7, nous comparons les conductances thermiques d’interface
(ITC) de deux interfaces en Ge polyphasées a celle d’une interface Si3C/Ge3C, cal-
culées en EMD. Ces deux interfaces polyphasées correspondent aux orientations
cristallines suivantes :

o interface “alignée” Ge3C [100] // Ge2H [10-10],
o interface “non alignée” Ge3C [00-1] // [0-110], correspondant aux interfaces
observées dans les nanofils polyphasée de Vincent et al. (2014).

Nous constatons que 'ITC de l'interface polyphasée “non alignée” est du méme
ordre de grandeur que 'ITC d’interfaces Si/Ge (supérieure d’environ 50%). Dans
une nanostructure possédant un grand nombre de cette interface, la faible ITC
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Conductance thermique d’interface G [Wm™2K 1]

devrait réduire significativement la conductivité du dispositif, ce qui le rendrait
intéressant pour des applications thermoélectriques. Par contre, l'interface
polyphasée “alignée” a une ITC environ 10 fois plus grande.
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Figure A7: Conductance thermique d’interface Si3C/Ge3C et d’interfaces Ge
polyphasées "alignée" et "non alignée', en fonction de la température, en EMD.

A.7 Conclusion

Dans cette these, plusieurs propriétés thermiques de nanostructures sont étudiées.
Deux méthodes de simulation complémentaires sont utilisées : la Dynamique
Moléculaire, qui prend en compte la position des atomes et des potentiels inter-
atomiques, et des simulation Monte Carlo de phonons. Les résultats précédents
sur la conductivité thermique en Si et Ge massifs sont reproduits ainsi que la
conductivité thermique d’interfaces Si/Ge. Un simulateur Monte Carlo original,
utilisant un modele “full band” de la relation de dispersion et des temps de
relaxation calculés par DFT, a été développé au cours de cette these. Comme
ces parametres sont basés sur des calculs ab initio, ce code peut étre utilisé pour
étudier une grande classe de matériaux ou de phases cristallines. Des modeles
de faces rugueuses et d’interfaces entre matériaux sont également étudiés.

Les deux méthodes de simulation donnent un apercu de la conductivité thermique
des phases hexagonales de Si et Ge. Les propriétés thermiques calculées des
deux matériaux sont en accord avec les théories et mesures précédentes. La
conductivité thermique est plus faible pour les phases hexagonales que pour les
phases cubiques correspondantes.
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Nous avons démontré que méme si les modeles semi-analytiques spectraux
peuvent estimer de maniere satisfaisante la conductivité thermique dans le cas
de transport quasi-balistique dans des nanofilms, elles sont décevantes lorsque
leffet des faces rugueuses est dominant comme dans le cas des nanofils. De plus,
la contribution de chaque mode de phonon au flux thermique est complexe et
hautement anisotrope. Les distributions angulaires du flux thermique dans les
nanofilms et les nanofils le montrent également. L’introduction de faces rugueuses
a un impact principalement sur les modes acoustiques et tend a concentrer le
flux thermique dans la direction principale du transport.

Pour finir, les interfaces polyphasées en Ge peuvent présenter de faibles conduc-
tivités thermiques, du méme ordre de grandeur que les interfaces Si/Ge. Des
méthodes de Dynamique Moléculaire fournissent une décomposition spectrale
du flux thermique aux interfaces, qui est comparée aux résultats du Diffusive
Mismatch Model. Dans des travaux futurs, des modeles plus réalistes d’interfaces
paramétrés a l'aide de simulations de Dynamique Moléculaire seront implémen-
tés dans notre simulateur Monte Carlo. Ceci permettra la simulation complete
des nanofils polyphasés et fournira une connaissance approfondie du transport
thermique dans ces nanodispositifs.

104



Bibliography

Akiyama, Toru, Takato Komoda, Kohji Nakamura, and Tomonori Ito. 2017.
“Effects of Polytypism on the Thermoelectric Properties of Group-IV Semicon-
ductor Nanowires: A Combination of Density Functional Theory and Boltz-
mann Transport Calculations.” Physical Review Applied 8 (2): 024014. https:
//doi.org/10.1103/PhysRevApplied.8.024014.

Aksamija, Z., and I. Knezevic. 2010. “Anisotropy and Boundary Scattering in
the Lattice Thermal Conductivity of Silicon Nanomembranes.” Physical Review
B 82 (4). https://doi.org/10.1103/PhysRevB.82.045319.

Alkurdi, A., S. Pailhes, and S. Merabia. 2017. “Critical Angle for Interfacial
Phonon Scattering: Results from Ab Initio Lattice Dynamics Calculations.”
Applied Physics Letters 111 (9): 093101. https://doi.org/10.1063/1.4997912.

Berman, R., F. E. Simon, and J. M. Ziman. 1953. “The Thermal Con-
ductivity of Diamond at Low Temperatures.” Proceedings of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences 220 (1141): 171-83.
https://doi.org/10.1098 /rspa.1953.0180.

Boukai, Akram I., Yuri Bunimovich, Jamil Tahir-Kheli, Jen-Kan Yu, William
A. Goddard Tii, and James R. Heath. 2008. “Silicon Nanowires as Efficient
Thermoelectric Materials.” Nature 451 (7175): 168-71. https://doi.org/10.1038/
nature06458.

Callaway, Joseph. 1959. “Model for Lattice Thermal Conductivity at Low
Temperatures.” Physical Review 113 (4): 1046-51. https://doi.org/10.1103/
PhysRev.113.1046.

Capinski, W. S., H. J. Maris, E. Bauser, 1. Silier, M. Asen-Palmer, T. Ruf, M.
Cardona, and E. Gmelin. 1997. “Thermal Conductivity of Isotopically Enriched
Si” Applied Physics Letters 71 (15): 2109. https://doi.org/10.1063/1.119384.

Casimir, H. B. G. 1938. “Note on the Conduction of Heat in Crystals.” Physica
5 (6): 495-500. https://doi.org/10.1016/S0031-8914(38)80162-2.

Chalopin, Y., K. Esfarjani, A. Henry, S. Volz, and G. Chen. 2012. “Thermal In-
terface Conductance in Si/Ge Superlattices by Equilibrium Molecular Dynamics.”
Physical Review B 85 (19). https://doi.org/10.1103/PhysRevB.85.195302.

Chaput, Laurent, Jérome Larroque, Philippe Dollfus, Jéréome Saint-Martin,
and David Lacroix. 2018. “Ab Initio Based Calculations of the Thermal
Conductivity at the Micron Scale.” Applied Physics Letters 112 (3): 033104.
https://doi.org/10.1063/1.5010959.

Chen, G. 2005. Nanoscale Energy Transport and Conversion: A Parallel Treat-
ment of Electrons, Molecules, Phonons, and Photons. MIT-Pappalardo Series
in Mechanical Engineering. Oxford University Press. https://books.google.nl/
books?id=M3n3lUJpYDYC.

Chen, G., M. S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, and T. Caillat. 2003.
“Recent Developments in Thermoelectric Materials.” International Materials
Reviews 48 (1): 45-66. https://doi.org/10.1179/095066003225010182.

105


https://doi.org/10.1103/PhysRevApplied.8.024014
https://doi.org/10.1103/PhysRevApplied.8.024014
https://doi.org/10.1103/PhysRevB.82.045319
https://doi.org/10.1063/1.4997912
https://doi.org/10.1098/rspa.1953.0180
https://doi.org/10.1038/nature06458
https://doi.org/10.1038/nature06458
https://doi.org/10.1103/PhysRev.113.1046
https://doi.org/10.1103/PhysRev.113.1046
https://doi.org/10.1063/1.119384
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1103/PhysRevB.85.195302
https://doi.org/10.1063/1.5010959
https://books.google.nl/books?id=M3n3lUJpYDYC
https://books.google.nl/books?id=M3n3lUJpYDYC
https://doi.org/10.1179/095066003225010182

Chen, Jie, Gang Zhang, and Baowen Li. 2010. “How to Improve the Accuracy
of Equilibrium Molecular Dynamics for Computation of Thermal Conductivity?”
Physics Letters A 374 (23): 2392-6. http://www.sciencedirect.com/science/
article/pii/S0375960110004081.

Chen, Renkun, Allon I. Hochbaum, Padraig Murphy, Joel Moore, Peidong Yang,
and Arun Majumdar. 2008. “Thermal Conductance of Thin Silicon Nanowires.”
Physical Review Letters 101 (10). https://doi.org/10.1103/PhysRevLett.101.
105501.

Chen, Yunfei, Deyu Li, Jennifer R. Lukes, and Arun Majumdar. 2005. “Monte
Carlo Simulation of Silicon Nanowire Thermal Conductivity.” Journal of Heat
Transfer 127 (10): 1129. https://doi.org/10.1115/1.2035114.

Donadio, Davide, and Giulia Galli. 2009. “Atomistic Simulations of Heat
Transport in Silicon Nanowires.” Physical Review Letters 102 (19): 195901.
https://doi.org/10.1103/PhysRevLett.102.195901.

Fourier, Joseph. 1822. Theorie Analytique de La Chaleur, Par M. Fourier. chez
Firmin Didot, pere et fils.

Garg, Jivtesh, Nicola Bonini, Boris Kozinsky, and Nicola Marzari. 2011. “Role of
Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium
Alloys: A First-Principles Study.” Physical Review Letters 106 (4). https:
//doi.org/10.1103/PhysRevLett.106.045901.

Hamzeh, Hani, and Frédéric Aniel. 2011. “Monte Carlo Study of Phonon
Dynamics in III-V Compounds.” Journal of Applied Physics 109 (6): 063511.
https://doi.org/10.1063/1.3553409.

Hao, Qing, Gang Chen, and Ming-Shan Jeng. 2009. “Frequency-Dependent
Monte Carlo Simulations of Phonon Transport in Two-Dimensional Porous
Silicon with Aligned Pores.” Journal of Applied Physics 106 (11): 114321.
https://doi.org,/10.1063/1.3266169.

He, Yuping, Ivana Savi¢, Davide Donadio, and Giulia Galli. 2012. “Lattice
Thermal Conductivity of Semiconducting Bulk Materials: Atomistic Simulations.”
Physical Chemistry Chemical Physics 14 (47): 16209. https://doi.org/10.1039/
c2cp42394d.

Heremans, Joseph P., Mildred S. Dresselhaus, Lon E. Bell, and Donald T. Morelli.
2013. “When Thermoelectrics Reached the Nanoscale.” Nature Nanotechnology
8 (7): 471-73. https://doi.org/10.1038 /nnano.2013.129.

Hicks, L. D., and M. S. Dresselhaus. 1993. “Effect of Quantum-Well Structures
on the Thermoelectric Figure of Merit.” Physical Review B 47 (19): 12727-31.
https://doi.org/10.1103/PhysRevB.47.12727.

Hochbaum, Allon I., Renkun Chen, Raul Diaz Delgado, Wenjie Liang, Erik C.
Garnett, Mark Najarian, Arun Majumdar, and Peidong Yang. 2008. “Enhanced
Thermoelectric Performance of Rough Silicon Nanowires.” Nature 451 (7175):
163-67. https://doi.org/10.1038 /nature06381.

Holland, M. G. 1963. “Analysis of Lattice Thermal Conductivity.” Physical
Review 132 (6): 2461. http://journals.aps.org/pr/abstract/10.1103/PhysRev.
132.2461.

106


http://www.sciencedirect.com/science/article/pii/S0375960110004081
http://www.sciencedirect.com/science/article/pii/S0375960110004081
https://doi.org/10.1103/PhysRevLett.101.105501
https://doi.org/10.1103/PhysRevLett.101.105501
https://doi.org/10.1115/1.2035114
https://doi.org/10.1103/PhysRevLett.102.195901
https://doi.org/10.1103/PhysRevLett.106.045901
https://doi.org/10.1103/PhysRevLett.106.045901
https://doi.org/10.1063/1.3553409
https://doi.org/10.1063/1.3266169
https://doi.org/10.1039/c2cp42394d
https://doi.org/10.1039/c2cp42394d
https://doi.org/10.1038/nnano.2013.129
https://doi.org/10.1103/PhysRevB.47.12727
https://doi.org/10.1038/nature06381
http://journals.aps.org/pr/abstract/10.1103/PhysRev.132.2461
http://journals.aps.org/pr/abstract/10.1103/PhysRev.132.2461

Hu, Ming, Konstantinos P. Giapis, Javier V. Goicochea, Xiaoliang Zhang, and
Dimos Poulikakos. 2011. “Significant Reduction of Thermal Conductivity in
Si/Ge Core-Shell Nanowires.” Nano Letters 11 (2): 618-23. https://doi.org/10.
1021/n1103718a.

Hu, Ming, and Dimos Poulikakos. 2012. “Si/Ge Superlattice Nanowires with
Ultralow Thermal Conductivity.” Nano Letters 12 (11): 5487-94. https://doi.
org/10.1021/n1301971k.

Jacoboni, Carlo, and Paolo Lugli. 1989. The Monte Carlo Method for Semicon-
ductor Device Simulation. Edited by S. Selberherr. Computational Microelec-
tronics. Vienna: Springer Vienna. http://link.springer.com/10.1007/978-3-7091-
6963-6.

Jacoboni, C., and P. Lugli. 2012. The Monte Carlo Method for Semiconductor
Device Simulation. Computational Microelectronics. Springer Vienna. https:
//books.google.fr/books?id=_139CAAAQBAJ.

Ju, Y. S., and K. E. Goodson. 1999. “Phonon Scattering in Silicon Films
with Thickness of Order 100 Nm.” Applied Physics Letters 74 (20): 3005-7.
https://doi.org/10.1063/1.123994.

Kazan, M., G. Guisbiers, S. Pereira, M. R. Correia, P. Masri, A. Bruyant, S.
Volz, and P. Royer. 2010. “Thermal Conductivity of Silicon Bulk and Nanowires:
Effects of Isotopic Composition, Phonon Confinement, and Surface Roughness.”
Journal of Applied Physics 107 (8): 083503. https://doi.org/10.1063/1.3340973.

Klitsner, Tom, J. E. VanCleve, Henry E. Fischer, and R. O. Pohl. 1988. “Phonon
Radiative Heat Transfer and Surface Scattering.” Physical Review B 38 (11):
7576-94. https://doi.org/10.1103 /PhysRevB.38.7576.

Kukita, Kentaro, Indra Nur Adisusilo, and Yoshinari Kamakura. 2014. “Monte
Carlo Simulation of Thermal Conduction in Silicon Nanowires Including Realistic
Phonon Dispersion Relation.” Japanese Journal of Applied Physics 53 (1): 015001.
https://doi.org/10.7567/JJAP.53.015001.

Lacroix, David, Karl Joulain, and Denis Lemonnier. 2005. “Monte Carlo
Transient Phonon Transport in Silicon and Germanium at Nanoscales.” Physical
Review B 72 (6): 064305. https://doi.org/10.1103 /PhysRevB.72.064305.

Lacroix, David, Karl Joulain, Damian Terris, and Denis Lemonnier. 2006.
“Monte Carlo Simulation of Phonon Confinement in Silicon Nanostructures: Ap-
plication to the Determination of the Thermal Conductivity of Silicon Nanowires.”
Applied Physics Letters 89 (10): 103104. https://doi.org/10.1063/1.2345598.

Landry, E. S.; and A. J. H. McGaughey. 2009. “Thermal Boundary Resistance
Predictions from Molecular Dynamics Simulations and Theoretical Calculations.”
Physical Review B 80 (16). https://doi.org/10.1103/PhysRevB.80.165304.

Larroque, J. 2016. “Etude Théorique de L’anisotropie Du Transport Thermique
Dans Les Nanostructures a Base de Silicium et de Germanium.” PhD thesis.
https://tel.archives-ouvertes.fr/tel-01298072/document.

Larroque, J., P. Dollfus, and J. Saint-Martin. 2017. “Full-Band Modelling of
Phonons in Polytype Ge and Si.” Journal of Physics: Conference Series 906
(October): 012007. https://doi.org/10.1088/1742-6596/906/1/012007.

107


https://doi.org/10.1021/nl103718a
https://doi.org/10.1021/nl103718a
https://doi.org/10.1021/nl301971k
https://doi.org/10.1021/nl301971k
http://link.springer.com/10.1007/978-3-7091-6963-6
http://link.springer.com/10.1007/978-3-7091-6963-6
https://books.google.fr/books?id=_l39CAAAQBAJ
https://books.google.fr/books?id=_l39CAAAQBAJ
https://doi.org/10.1063/1.123994
https://doi.org/10.1063/1.3340973
https://doi.org/10.1103/PhysRevB.38.7576
https://doi.org/10.7567/JJAP.53.015001
https://doi.org/10.1103/PhysRevB.72.064305
https://doi.org/10.1063/1.2345598
https://doi.org/10.1103/PhysRevB.80.165304
https://tel.archives-ouvertes.fr/tel-01298072/document
https://doi.org/10.1088/1742-6596/906/1/012007

Larroque, Jérome, Philippe Dollfus, and Jéréme Saint-Martin. 2018. “Phonon
Transmission at Si/Ge and Polytypic Ge Interfaces Using Full-Band Mismatch
Based Models” Journal of Applied Physics 123 (2): 025702. https://doi.org/10.
1063/1.5007034.

Li, Deyu, Yiying Wu, Philip Kim, Li Shi, Peidong Yang, and Arun Majumdar.
2003. “Thermal Conductivity of Individual Silicon Nanowires.” Applied Physics
Letters 83 (14): 2934-6. https://doi.org/10.1063/1.1616981.

Li, Ju, Lisa Porter, and Sidney Yip. 1998. “Atomistic Modeling of Finite-
Temperature Properties of Crystalline $\beta$-SiC.” Journal of Nuclear Materials
255 (2-3): 139-52. https://doi.org/10.1016,/S0022-3115(98)00034-8.

Li, Wu, Natalio Mingo, L. Lindsay, D. A. Broido, D. A. Stewart, and N. A. Katcho.
2012. “Thermal Conductivity of Diamond Nanowires from First Principles.”
Physical Review B 85 (19): 195436. https://doi.org/10.1103/PhysRevB.85.
195436.

Little, W. A. 1959. “The Transport of Heat Between Dissimilar Solides at
Low Temperatures.” Canadian Journal of Physics 37 (3): 334-49. https:
//doi.org/10.1139/p59-037.

Liu, Ling, and Xi Chen. 2010. “Effect of Surface Roughness on Thermal
Conductivity of Silicon Nanowires.” Journal of Applied Physics 107 (3): 033501.
https://doi.org/10.1063/1.3298457.

Liu, Wenjun, and Mehdi Asheghi. 2006. “Thermal Conductivity Measurements
of Ultra-Thin Single Crystal Silicon Layers.” Journal of Heat Transfer 128 (1):
75. https://doi.org/10.1115/1.2130403.

Luisier, Mathieu, and Gerhard Klimeck. 2009. “Atomistic Full-Band Simulations
of Silicon Nanowire Transistors: Effects of Electron-Phonon Scattering.” Physical
Review B 80 (15): 155430. https://doi.org/10.1103/PhysRevB.80.155430.

Madelung, O, U Réssler, and M Schulz. 2002. “Landolt-Bérnstein-Group I11
Condensed Matter.” Non-Tetrahedrally Bonded Elements and Binary Compounds
L

Maire, Jeremie, Roman Anufriev, Ryoto Yanagisawa, Aymeric Ramiere, Sebastian
Volz, and Masahiro Nomura. 2017. “Heat Conduction Tuning by Wave Nature
of Phonons.” Science Advances 3 (8): €1700027. https://doi.org/10.1126/sciadv.
1700027.

Markussen, Troels, Antti-Pekka Jauho, and Mads Brandbyge. 2008. “Heat
Conductance Is Strongly Anisotropic for Pristine Silicon Nanowires.” Nano
Letters 8 (11): 3771-5. https://doi.org/10.1021/n18020889.

Maurer, L. N., Z. Aksamija, E. B. Ramayya, A. H. Davoody, and 1. Knezevic.
2015. “Universal Features of Phonon Transport in Nanowires with Correlated
Surface Roughness.” Applied Physics Letters 106 (13): 133108. https://doi.org/
10.1063/1.4916962.

Mazumder, Sandip, and Arunava Majumdar. 2001. “Monte Carlo Study of
Phonon Transport in Solid Thin Films Including Dispersion and Polarization.”
Journal of Heat Transfer 123 (4): 749. https://doi.org/10.1115/1.1377018.

108


https://doi.org/10.1063/1.5007034
https://doi.org/10.1063/1.5007034
https://doi.org/10.1063/1.1616981
https://doi.org/10.1016/S0022-3115(98)00034-8
https://doi.org/10.1103/PhysRevB.85.195436
https://doi.org/10.1103/PhysRevB.85.195436
https://doi.org/10.1139/p59-037
https://doi.org/10.1139/p59-037
https://doi.org/10.1063/1.3298457
https://doi.org/10.1115/1.2130403
https://doi.org/10.1103/PhysRevB.80.155430
https://doi.org/10.1126/sciadv.1700027
https://doi.org/10.1126/sciadv.1700027
https://doi.org/10.1021/nl8020889
https://doi.org/10.1063/1.4916962
https://doi.org/10.1063/1.4916962
https://doi.org/10.1115/1.1377018

Mei, S., L. N. Maurer, Z. Aksamija, and I. Knezevic. 2014. “Full-Dispersion
Monte Carlo Simulation of Phonon Transport in Micron-Sized Graphene Nanorib-
bons” Journal of Applied Physics 116 (16): 164307. https://doi.org/10.1063/1.
4899235.

Merabia, Samy, and Konstantinos Termentzidis. 2012. “Thermal Conductance at
the Interface Between Crystals Using Equilibrium and Nonequilibrium Molecular
Dynamics.” Physical Review B 86 (9). https://doi.org/10.1103/PhysRevB.86.
094303.

Mingo, Natalio, Liu Yang, Deyu Li, and Arun Majumdar. 2003. “Predicting the
Thermal Conductivity of Si and Ge Nanowires.” Nano Letters 3 (12): 1713-6.
https://doi.org/10.1021/nl034721i.

Mingo, N., and Liu Yang. 2003. “Phonon Transport in Nanowires Coated with
an Amorphous Material: An Atomistic Green’s Function Approach.” Physical
Review B 68 (24). https://doi.org/10.1103 /PhysRevB.68.245406.

Moore, Arden L., Sanjoy K. Saha, Ravi S. Prasher, and Li Shi. 2008. “Phonon
Backscattering and Thermal Conductivity Suppression in Sawtooth Nanowires.”
Applied Physics Letters 93 (8): 083112. https://doi.org/10.1063/1.2970044.

Moore, Arden L., and Li Shi. 2014. “Emerging Challenges and Materials
for Thermal Management of Electronics.” Materials Today 17 (4): 163-74.
https://doi.org/10.1016 /j.mattod.2014.04.003.

Mu, Xin, Lili Wang, Xueming Yang, Pu Zhang, Albert C. To, and Tengfei
Luo. 2015. “Ultra-Low Thermal Conductivity in Si/Ge Hierarchical Superlattice
Nanowire.” Scientific Reports 5 (November): 16697. https://doi.org/10.1038/
srepl6697.

Narumanchi, Sreekant V. J., Jayathi Y. Murthy, and Cristina H. Amon. 2005.
“Comparison of Different Phonon Transport Models for Predicting Heat Conduc-
tion in Silicon-on-Insulator Transistors.” Journal of Heat Transfer 127 (7): 713.
https://doi.org/10.1115/1.1924571.

Nghiém, T. T. Trang, J. Saint-Martin, and P. Dollfus. 2016. “Electro-Thermal
Simulation Based on Coupled Boltzmann Transport Equations for Electrons
and Phonons.” Journal of Computational Electronics 15 (1): 3-15. https:
//doi.org/10.1007/s10825-015-0773-2.

Ozhogin, V. 1., A. V. Inyushkin, A. N. Taldenkov, A. V. Tikhomirov, G. E.
Popov, E. Haller, and K. Itoh. 1996. “Isotope Effect in the Thermal Conductivity
of Germanium Single Crystals.” Journal of Experimental and Theoretical Physics
Letters 63 (6): 490-94. http://link.springer.com/article/10.1134/1.567053.

Peierls. 1929. “Zur Kinetischen Theorie Der Warmeleitung in Kristallen.”
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19293950803.

Peterson, R. B. 1994. “Direct Simulation of Phonon-Mediated Heat Transfer in
a Debye Crystal” Journal of Heat Transfer 116 (4): 815-22. https://doi.org/10.
1115/1.2911452.

Péraud, Jean-Philippe M., and Nicolas G. Hadjiconstantinou. 2011. “Efficient
Simulation of Multidimensional Phonon Transport Using Energy-Based Variance-

109


https://doi.org/10.1063/1.4899235
https://doi.org/10.1063/1.4899235
https://doi.org/10.1103/PhysRevB.86.094303
https://doi.org/10.1103/PhysRevB.86.094303
https://doi.org/10.1021/nl034721i
https://doi.org/10.1103/PhysRevB.68.245406
https://doi.org/10.1063/1.2970044
https://doi.org/10.1016/j.mattod.2014.04.003
https://doi.org/10.1038/srep16697
https://doi.org/10.1038/srep16697
https://doi.org/10.1115/1.1924571
https://doi.org/10.1007/s10825-015-0773-2
https://doi.org/10.1007/s10825-015-0773-2
http://link.springer.com/article/10.1134/1.567053
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19293950803
https://doi.org/10.1115/1.2911452
https://doi.org/10.1115/1.2911452

Reduced Monte Carlo Formulations.” Physical Review B 84 (20): 205331.
https://doi.org/10.1103 /PhysRevB.84.205331.

Plimpton, Steve. 1995. “Fast Parallel Algorithms for Short-Range Molecular
Dynamics.” Journal of Computational Physics 117 (1): 1-19. http://www.
sciencedirect.com/science/article/pii/S002199918571039X.

Pop, Eric. 2010. “Energy Dissipation and Transport in Nanoscale Devices.”
Nano Research 3 (3): 147-69. https://doi.org/10.1007/s12274-010-1019-z.

Qiu, Bo, Lin Sun, and Xiulin Ruan. 2011. “Lattice Thermal Conductivity
Reduction in Bi 2 Te 3 Quantum Wires with Smooth and Rough Surfaces:
A Molecular Dynamics Study.” Physical Review B 83 (3): 035312. https:
//doi.org/10.1103 /PhysRevB.83.035312.

Qiu, Bo, Zhiting Tian, Ajit Vallabhaneni, Bolin Liao, Jonathan M. Mendoza,
Oscar D. Restrepo, Xiulin Ruan, and Gang Chen. 2015. “First-Principles
Simulation of Electron Mean-Free-Path Spectra and Thermoelectric Properties
in Silicon.” EPL (Europhysics Letters) 109 (5): 57006. https://doi.org/10.1209/
0295-5075/109/57006.

Ramayya, E. B., L. N. Maurer, A. H. Davoody, and I. Knezevic. 2012. “Thermo-
electric Properties of Ultrathin Silicon Nanowires.” Physical Review B 86 (11):
115328. https://doi.org/10.1103/PhysRevB.86.115328.

Ruf, T., R.W. Henn, M. Asen-Palmer, E. Gmelin, M. Cardona, H.-J. Pohl, G.G.
Devyatych, and P.G. Sennikov. 2000. “Thermal Conductivity of Isotopically
Enriched Silicon.” Solid State Communications 115 (5): 243-47. https://doi.
org/10.1016/S0038-1098(00)00172-1.

Santamore, D. H., and M. C. Cross. 2001. “Effect of Surface Roughness
on the Universal Thermal Conductance.” Physical Review B 63 (18). https:
//doi.org/10.1103 /PhysRevB.63.184306.

Saaskilahti, K., J. Oksanen, J. Tulkki, and S. Volz. 2014. “Role of Anharmonic
Phonon Scattering in the Spectrally Decomposed Thermal Conductance at Planar
Interfaces.” Physical Review B 90 (13). https://doi.org/10.1103/PhysRevB.90.
134312.

Schelling, Patrick K., Simon R. Phillpot, and Pawel Keblinski. 2002. “Compari-
son of Atomic-Level Simulation Methods for Computing Thermal Conductivity.”
Physical Review B 65 (14). https://doi.org/10.1103/PhysRevB.65.144306.

Seko, Atsuto, Atsushi Togo, Hiroyuki Hayashi, Koji Tsuda, Laurent Chaput,
and Isao Tanaka. 2015. “Prediction of Low-Thermal-Conductivity Compounds
with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian
Optimization.” Physical Review Letters 115 (20): 205901. https://doi.org/10.
1103 /PhysRevLett.115.205901.

Sellan, D. P., E. S. Landry, J. E. Turney, A. J. H. McGaughey, and C. H. Amon.
2010. “Size Effects in Molecular Dynamics Thermal Conductivity Predictions.”
Physical Review B 81 (21). https://doi.org/10.1103 /PhysRevB.81.214305.

Setyawan, Wahyu, and Stefano Curtarolo. 2010. “High-Throughput Electronic
Band Structure Calculations: Challenges and Tools.” Computational Materials
Science 49 (2): 299-312. https://doi.org/10.1016/j.commatsci.2010.05.010.

110


https://doi.org/10.1103/PhysRevB.84.205331
http://www.sciencedirect.com/science/article/pii/S002199918571039X
http://www.sciencedirect.com/science/article/pii/S002199918571039X
https://doi.org/10.1007/s12274-010-1019-z
https://doi.org/10.1103/PhysRevB.83.035312
https://doi.org/10.1103/PhysRevB.83.035312
https://doi.org/10.1209/0295-5075/109/57006
https://doi.org/10.1209/0295-5075/109/57006
https://doi.org/10.1103/PhysRevB.86.115328
https://doi.org/10.1016/S0038-1098(00)00172-1
https://doi.org/10.1016/S0038-1098(00)00172-1
https://doi.org/10.1103/PhysRevB.63.184306
https://doi.org/10.1103/PhysRevB.63.184306
https://doi.org/10.1103/PhysRevB.90.134312
https://doi.org/10.1103/PhysRevB.90.134312
https://doi.org/10.1103/PhysRevB.65.144306
https://doi.org/10.1103/PhysRevLett.115.205901
https://doi.org/10.1103/PhysRevLett.115.205901
https://doi.org/10.1103/PhysRevB.81.214305
https://doi.org/10.1016/j.commatsci.2010.05.010

Smith, C A, R D Belles, and A J Simon. 2011. “2007 Estimated International
Energy Flows.” LLNL-TR-473098, 1021561. https://doi.org/10.2172/1021561.

Soffer, Stephen B. 1967. “Statistical Model for the Size Effect in Electrical
Conduction.” Journal of Applied Physics 38 (4): 1710-5. https://doi.org/10.
1063/1.1709746.

Stillinger, Frank H., and Thomas A. Weber. 1985. “Computer Simulation of
Local Order in Condensed Phases of Silicon.” Physical Review B 31 (8): 5262.
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.31.5262.

Swartz, E. T., and R. O. Pohl. 1989. “Thermal Boundary Resistance.” Reviews
of Modern Physics 61 (3): 605-68. https://doi.org/10.1103/RevModPhys.61.605.

Termentzidis, Konstantinos, Thibaut Barreteau, Yuxiang Ni, Samy Merabia,
Xanthippi Zianni, Yann Chalopin, Patrice Chantrenne, and Sebastian Volz.
2013. “Modulated SiC Nanowires: Molecular Dynamics Study of Their Thermal
Properties” Physical Review B 87 (12): 125410. https://doi.org/10.1103/
PhysRevB.87.125410.

Termentzidis, Konstantinos, and Samy Merabia. 2012. Molecular Dynam-
ics Simulations and Thermal Transport at the Nano-Scale. INTECH Open
Access Publisher. http://cdn.intechopen.com/pdfs/34979 /InTech-Molecular__
dynamics_ simulations_and_ thermal transport_at_the_ nano_ scale.pdf.

Tersoff, J. 1989. “Modeling Solid-State Chemistry: Interatomic Potentials for
Multicomponent Systems.” Physical Review B 39 (8): 5566. http://journals.aps.
org/prb/abstract/10.1103/PhysRevB.39.5566.

Thompson, Aidan P., Steven J. Plimpton, and William Mattson. 2009. “General
Formulation of Pressure and Stress Tensor for Arbitrary Many-Body Interaction

Potentials Under Periodic Boundary Conditions.” The Journal of Chemical
Physics 131 (15): 154107. https://doi.org/10.1063/1.3245303.

Tian, Zhiting, Keivan Esfarjani, and Gang Chen. 2012. “Enhancing Phonon
Transmission Across a Si/Ge Interface by Atomic Roughness: First-Principles
Study with the Green’s Function Method.” Physical Review B 86 (23). https:
//doi.org/10.1103 /PhysRevB.86.235304.

Togo, Atsushi, Laurent Chaput, and Isao Tanaka. 2015. “Distributions of
Phonon Lifetimes in Brillouin Zones.” Physical Review B 91 (9): 094306. https:
//doi.org/10.1103 /PhysRevB.91.094306.

Verdier, Maxime, David Lacroix, and Konstantinos Termentzidis. 2018. “Ther-
mal Transport in 2D and 3D Nanowire Networks.” arXiv:1802.05654 [Cond-Mat],
February. http://arxiv.org/abs/1802.05654.

Vincent, Laetitia, Gilles Patriarche, Géraldine Hallais, Charles Renard, Cyrille
Gardes, David Troadec, and Daniel Bouchier. 2014. “Novel Heterostructured Ge
Nanowires Based on Polytype Transformation.” Nano Letters 14 (8): 4828-36.
https://doi.org,/10.1021/n1502049a.

Vining, Cronin B. 2009. “An Inconvenient Truth About Thermoelectrics.” Nature
Materials 8 (2): 83-85. https://doi.org/10.1038 /nmat2361.

111


https://doi.org/10.2172/1021561
https://doi.org/10.1063/1.1709746
https://doi.org/10.1063/1.1709746
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.31.5262
https://doi.org/10.1103/RevModPhys.61.605
https://doi.org/10.1103/PhysRevB.87.125410
https://doi.org/10.1103/PhysRevB.87.125410
http://cdn.intechopen.com/pdfs/34979/InTech-Molecular_dynamics_simulations_and_thermal_transport_at_the_nano_scale.pdf
http://cdn.intechopen.com/pdfs/34979/InTech-Molecular_dynamics_simulations_and_thermal_transport_at_the_nano_scale.pdf
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.39.5566
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.39.5566
https://doi.org/10.1063/1.3245303
https://doi.org/10.1103/PhysRevB.86.235304
https://doi.org/10.1103/PhysRevB.86.235304
https://doi.org/10.1103/PhysRevB.91.094306
https://doi.org/10.1103/PhysRevB.91.094306
http://arxiv.org/abs/1802.05654
https://doi.org/10.1021/nl502049a
https://doi.org/10.1038/nmat2361

Volz, Sebastian G., and Gang Chen. 1999. “Molecular Dynamics Simulation of
Thermal Conductivity of Silicon Nanowires.” Applied Physics Letters 75 (14):
2056. https://doi.org/10.1063,/1.124914.

. 2000. “Molecular-Dynamics Simulation of Thermal Conductivity of
Silicon Crystals.” Physical Review B 61 (4): 2651-6. https://doi.org/10.1103/
PhysRevB.61.2651.

Weber, Werner. 1977. “Adiabatic Bond Charge Model for the Phonons in
Diamond, Si, Ge, and $\alpha$-Sn.” Physical Review B 15 (10): 4789-4803.
https://doi.org/10.1103/PhysRevB.15.4789.

Wolf, Stefanie, Neophytos Neophytou, and Hans Kosina. 2014. “Thermal
Conductivity of Silicon Nanomeshes: Effects of Porosity and Roughness.” Journal
of Applied Physics 115 (20): 204306. https://doi.org/10.1063/1.4879242.

Yang, Lina, and Austin J. Minnich. 2017. “Thermal Transport in Nanocrystalline
Si and SiGe by Ab Initio Based Monte Carlo Simulation.” Scientific Reports 7
(1). https://doi.org/10.1038/srep44254.

Yang, Ronggui, and Gang Chen. 2004. “Thermal Conductivity Modeling
of Periodic Two-Dimensional Nanocomposites.” Physical Review B 69 (19).
https://doi.org/10.1103/PhysRevB.69.195316.

Yu, Jen-Kan, Slobodan Mitrovic, Douglas Tham, Joseph Varghese, and James
R. Heath. 2010. “Reduction of Thermal Conductivity in Phononic Nanomesh
Structures.” Nature Nanotechnology 5 (10): 718-21. https://doi.org/10.1038/
nnano.2010.149.

Ziman, J. M. 2001. Electrons and Phonons: The Theory of Transport Phenomena
in Solids. Oxford Classic Texts in the Physical Sciences. Oxford, New York:
Oxford University Press.

112


https://doi.org/10.1063/1.124914
https://doi.org/10.1103/PhysRevB.61.2651
https://doi.org/10.1103/PhysRevB.61.2651
https://doi.org/10.1103/PhysRevB.15.4789
https://doi.org/10.1063/1.4879242
https://doi.org/10.1038/srep44254
https://doi.org/10.1103/PhysRevB.69.195316
https://doi.org/10.1038/nnano.2010.149
https://doi.org/10.1038/nnano.2010.149

e .
universite

PARIS-SACLAY

ECOLE DOCTORALE

Physique et ingénierie:
électrons, photons,
sciences du vivant (EOBE)

Titre : Etude théorique des propriétés thermoéletriques de nanostructures

Mots clés : thermoelectricité, simulation, Monte Carlo, Dynamique Moleculaire, transport thermique

Résumé Les générateurs thermoélectriques
convertissent directement I'énergie thermique en
énergie électrique. lls pourraient devenir de plus en
plus utiles a des fins de récupération d’énergie et
font I'objet de recherches actives. Cependant, les
meilleurs matériaux thermoélectriques sont rares et
polluants.

Le Silicium et le Germanium seraient des matériaux
intéressants si leur efficacité thermoélectrique était
améliorée. Pour ce faire, la nanostructuration est
une voie possible, par exemple en introduisant des
faces rugueuses ou de nouvelles interfaces semi-
transparentes.

Récemment, des nanofils polyphasés (composés
d'une alternance de phases cubiques et hexago-
nales de Si et Ge) ont été fabriqués, mais la ca-
ractérisation expérimentale de nanostructures aussi
complexes comprenant des matériaux exotiques peut
étre difficile.

Dans cette these, nous étudions en détail le transport
thermique dans des nanostructures avec des simu-
lations numériques. Une méthode Monte Carlo ori-
ginale a été développée, avec une description "full
band” des matériaux. Elle inclut des modeles pour

les faces rugueuses et les interfaces entre matériaux.
Des simulations de Dynamique Moléculaire sont
également effectuées pour caractériser les propriétés
des interfaces.

Nous confirmons que les phases hexagonales de Si
et Ge ont une conductivité thermique inférieure a celle
des phases cubiques correspondantes. Le modéle
“full band” montre que le flux thermique est forte-
ment anisotrope. Des modeles semi-analytiques ha-
bituels nont pas pu reproduire la conductivité ther-
migue des nanostructures simulées avec des faces
rugueuses. De plus, ces faces ont tendance a concen-
trer le flux de chaleur dans la direction principale
de la nanostructure. Enfin, certaines interfaces poly-
phasées peuvent avoir une conductance thermique
presque aussi faible que les interfaces Si/Ge, et
pourrait ainsi améliorer significativement I'efficacité
thermoélectrique des nanofils polyphasés.

La méthode Monte Carlo présentée peut facile-
ment étre utilisée pour étudier une large gamme de
matériaux, et elle est capable de modéliser des nano-
structures arbitrairement complexes. A I'avenir, les si-
mulations en Dynamique Moléculaire seront utilisées
pour paramétrer un modele plus réaliste d’interfaces.

Title : Theoretical study of thermoelectric properties in nanostructures

Keywords : thermoelectricity, simulation, Monte Carlo, Molecular Dynamics, thermal transport

Abstract : Thermoelectric generators are able to di-
rectly convert heat into electrical energy. They could
have a great potential in terms of energy harvesting,
but unfortunately, the best thermoelectric materials
are rare and pollutant.

Silicon and Germanium would be attractive materials
if their thermoelectric efficiency were improved. For
this purpose, nanostructuring is a possible route, for
instance via the introduction of rough boundaries or
interfaces between materials.

Recently, polytype nanowires (composed of a se-
guence of cubic and hexagonal phases of Si and Ge)
have been fabricated, but the experimental characteri-
zation of such complex nanostructures with exotic ma-
terials is challenging.

In this thesis, we study the details of thermal transport
in nanostructures with numerical simulations. An origi-
nal Monte Carlo method is developed, with a full band
ab initio description of materials. It includes models for
the rough boundaries and the solid-solid interfaces.

Molecular Dynamics simulations are also performed
to characterize the properties of interfaces.

We confirm that the hexagonal phases of Si and Ge
have lower thermal conductivity than their cubic coun-
terparts. The full band model shows a strong aniso-
tropy in the heat flux. Usual semi-analytical models
failed to reproduce the thermal conductivity of simu-
lated nanostructures with rough boundaries. Besides,
those boundaries tend to focus the heat flux in the
main direction of the nanostructure. Finally, some po-
lytype interfaces can have an interfacial conductance
almost as low as Si/Ge interfaces, and thus could im-
prove significantly the thermoelectric efficiency of po-
lytype nanowires.

The presented Monte Carlo method could easily be
used with a wide range of materials, and it can mo-
del arbitrarily complex nanostructures. In the future,
the results from Molecular Dynamics simulation will
be used to parametrize a more realistic model of solid-
solid interfaces.
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