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Abstract
The population growth in urban areas represents an issue for transportation planning. This

overload of urban transportation systems, leading to significant monetary costs and envi-

ronmental issues. Policy measures are then needed to decrease the level of congestion and

increase the efficiency of transportation systems. In a short term, traffic simulators might be a

powerful tool that help to design innovative solutions. But, the classical traffic simulators are

computationally demanding for large scale applications. Moreover, the set up of the simula-

tion scenario is complex. An aggregated traffic modeling might be a good solution (Daganzo

2007; Geroliminis & Daganzo 2008). The city network is divided into regions where a well-

defined Macroscopic Fundamental Diagram (MFD) regulates the traffic conditions inside each

one. The MFD relates the average traffic flow and density inside a region. Despite the idea

of aggregating the city network is simple, it brings several challenges that have not yet been

addressed. Up to today, only Yildirimoglu & Geroliminis (2014) proposed a dynamic traffic

assignment framework for regional networks and MFD models. This framework is based on

the simple Multinomial Logit model and does not explicitly deal with trip length distributions.

Moreover, their framework does not consider that users are different from each other and

have different purposes and preferences for their travels.

The goal of this PhD dissertation is to twofold. First, the influence of the users behavior on

the global network performance is investigated. This analysis focuses on the network mean

speed and its internal and outflow capacities, comparing different models that account for

different kinds of users behavior against the Deterministic and Stochastic User Equilibrium.

Second, an innovative and complete dynamic traffic assignment framework for multi-regional

MFD-based models is proposed. This framework is divided into several milestones and is based

on the connections between the city and regional networks. In a first step, systematic scaling-

up methods are proposed to gather the regional paths. In a second step, four methods are

discussed to calculate the distributions of trip lengths that characterize these regional paths.

In the third step, a network loading model that considers distributions of trip lengths that are

explicitly calculated and the evolution of the regional mean speeds is proposed. Finally, this

dynamic traffic assignment framework is extended to account for bounded rational and regret-

averse users. This PhD is part of a European ERC project entitled MAGnUM: Multiscale and

Multimodal Traffic Modeling Approach for Sustainable Management of Urban Mobility.
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Résumé
La croissance démographique dans les zones urbaines représente un problème pour la plan-

ification des transports. La surcharge des systèmes de transport urbains entraîne des coûts

monétaires importants et des problèmes environnementaux. Des mesures politiques sont alors

nécessaires pour réduire le niveau de congestion et accroître l’efficacité des systèmes de trans-

port. À court terme, les simulateurs de trafic pourraient constituer un outil puissant pour la

conception de solutions innovantes. Mais les simulateurs de trafic classiques sont exigeants

sur le plan informatique pour les applications à grande échelle. De plus, la mise en place du

scénario de simulation est complexe. Une modélisation de trafic agrégée pourrait être une

bonne solution (Daganzo 2007; Geroliminis & Daganzo 2008). Le réseau routier des villes

est divisé en régions, où un diagramme fondamental macroscopique bien défini (MFD) régule

les conditions de circulation à l’intérieur de chacune. Le MFD concerne le débit et la den-

sité de trafic moyens dans une région. Malgré que l’idée d’agréger le réseau de la ville soit

simple, il soulève plusieurs défis qui n’ont pas encore été abordés. Jusqu’à aujourd’hui, seule

Yildirimoglu & Geroliminis (2014) propose un cadre d’affectation dynamique du trafic pour les

réseaux régionaux et les modèles MFD. Ce cadre est basé sur le modèle Logit multinomial et

ne traite pas explicitement des distributions de longueurs de parcours. De plus, leur structure

ne considère pas que les utilisateurs sont différents les uns des autres et ont des objectifs et

des préférences différents pour leurs voyages.

L’objectif de cette thèse est double. Tout d’abord, l’influence du comportement des util-

isateurs sur la performance globale du réseau routier d’une ville est étudiée. Cette analyse se

concentre sur la vitesse moyenne du réseau et ses capacités internes et de sortie, en comparant

différents modèles tenant compte des différents types de comportement des utilisateurs par

rapport à l’équilibre utilisateur déterministe et stochastique. En second lieu, un cadre inno-

vant et complet d’affectation dynamique du trafic pour les modèles multirégionaux basés sur

le MFD est proposé. Ce cadre est divisé en plusieurs étapes et repose sur les connexions

entre la ville et les réseaux régionaux. Dans un premier temps, des méthodes systématiques

de mise à l’échelle sont proposées pour rassembler les voies régionales. Dans un deuxième

temps, quatre méthodes sont discutées pour calculer les distributions de longueurs de parcours

pour caractériser ces chemins régionaux. Dans la troisième étape, un modèle de chargement

de réseau qui considère les distributions de longueurs de parcours explicitement calculées et

l’évolution des vitesses moyennes régionales est proposé. Enfin, ce cadre d’affectation dy-

namique du trafic est étendu pour prendre en compte les usager qui ont une aversion au
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regret ou une rationalité imparfaite. Cette thèse s’inscrit dans le cadre d’un projet européen

ERC intitulé MAGnUM: approche de modélisation du trafic multi-échelle et multimodal pour

la gestion durable de la mobilité urbaine.
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Resumo
O crescimento populacional nas áreas urbanas representa um problema para planificação de

sistemas de transportes. Um forte aumento da procura pode levar à sobrecarga dos sistemas

de transporte e trazer grandes custos económicos e ambientais. Para diminuir o nível de con-

gestionamento e aumentar a eficiência dos sistemas de transporte, são necessárias medidas

politicas adequadas. A curto prazo, os simuladores de tráfego podem ser uma ferramenta

poderosa para ajudar a projetar soluções inovadoras. Contudo, os simuladores de tráfego

convencionais requerem um elevado poder computacional para aplicações a larga escala. Por

outro lado, a configuração do cenário de simulação é complexa. Uma simulação agregada

do tráfego aparenta ser uma boa solução (Daganzo 2007; Geroliminis & Daganzo 2008). A

ideia consiste em dividir a rede urbana em regiões onde as condições de tráfego são aprox-

imadamente homogéneas e reguladas através de um Diagrama Fundamental Macroscópico

(MFD). A função MFD relaciona o fluxo e a densidade de tráfego que circula dentro de uma

região. Apesar da ideia de agregar a rede urbana em regiões ser simples, ela traz vários de-

safios que ainda não foram estudados. Apesar da ideia de agregar a rede urbana ser simples,

ela traz vários desafios que ainda não foram abordados. Até hoje, apenas Yildirimoglu &

Geroliminis (2014) propôs uma metodologia de afetação dinâmica dos utilizadores em redes

regionais e considerando os modelos MFD. Ela é baseada no modelo Logit Multinomial e

não considera distribuições de distâncias de percurso calculadas explicitamente. Além disso,

esta metodologia não considera que os utilizadores são diferentes uns dos outros e possuem

diferentes objetivos e preferências para as suas viagens.

Esta tese de doutoramento visa responder a dois objetivos principais. Numa primeira

parte, pretende-se investigar a influência do comportamento dos utilizadores na performance

global da rede urbana. Esta analise focaliza-se na velocidade media dos veículos assim como

nas capacidades internas e de escoamento da rede. Para tal, as performances dos modelos

que consideram diferentes tipos de comportamento dos utilizadores são comparadas com as

dos Equilíbrio Determinístico e Estocástico do Utilizador. Numa segunda parte, pretende-se

propor um mecanismo completo e inovador de afetação dinâmica dos utilizadores em redes

regionais, considerando os modelos MFD. Esta metodologia divide-se em diversas etapas e

baseia-se na interface entre as redes urbana e regional. Primeiramente, são discutidos méto-

dos sistemáticos para o calculo dos caminho regionais. Segundo, são propostos diversos

métodos para calcular as distribuições de distancias de percurso dentro de cada região de

cada caminho regional. Terceiro, é proposto um modelo de carregamento da rede que con-
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sidera as distribuições de distancias de percurso calculadas explicitamente e a evolução das

velocidades m é dias dentro das regiões. Finalmente, é proposta a extensão desta metodolo-

gia de afetação dinâmica dos utilizadores para incorporar diferentes tipos de comportamentos,

como a racionalidade imperfeita e o arrependimento. Esta tese de doutoramento faz parte

de um projeto europeu ERC intitulado MAGnUM: Modelação a diferentes escalas do Tráfego

Multimodal para a Gestão Sustentável da Mobilidade Urbana.
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1
Introduction

The populations of large urban areas are increasing in many countries around the world. On a

daily life basis, people have to travel in these cities for different purposes (for examples, to go

to work or to do some leisure activity). In many cities around the world, the demand is largely

increasing and the transportation networks are not adapted to adequately respond to these

situations. Thus, understanding urban mobility is becoming a key aspect in infrastructure

planning. On one hand, the city networks are more congested, leading to larger travel delays

and the consequent deterioration of the transportation network efficiency. On the other hand,

the increase of the level of congestion has important environmental issues and brings several

concerns for the public health, due to the pollution. In a short term, one solution is to improve

the road traffic management. Traffic simulators are a key component to help designing and

testing new strategies before being implemented into the field. However, their application to

large cities is computationally demanding and they are often difficult to calibrate. Recently, an

aggregated traffic modeling approach has become more in fashion and caught the attention

from the scientific community after the seminal works of Daganzo (2007) and Geroliminis

& Daganzo (2008). Their idea is to perform an aggregate traffic modeling, dividing the

city network into regions where the traffic conditions are approximately homogeneous. The

traffic states inside each region are regulated by a well-defined Macroscopic Fundamental

Diagram (MFD), that relates the mean traffic flow and density. The concept of the MFD

introduces new insights in modeling urban traffic at the city scale. The idea is to model traffic

as exchange flows between regions instead of the traditional approaches where one needs to

track the users’ trajectory on the city network. This type of modeling offers a much lighter
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computational effort and represents a new trend in the traffic flow theory community.

1.1 Introduction to MFD-based models

The first thoughts about an aggregated network traffic modeling were introduced by Godfrey

(1969) and later revisited by Herman & Prigogine (1979). Several studies used simulations

to relate average speed, flow and density at the network level (Mahmassani et al. 1984, 1987;

Williams et al. 1987). In Fig. 1.1 is shown an example of a city network composed by a set

of links represented by the gray lines. Each link of the city network has a physical length la.

This network is delimited by a solid black line, defining a region r . This region r defines the

regional network. The definitions of an average flow (qr) and an average density (kr), at the

aggregated network level, are possible thanks to the definitions of Edie (1963):

qr =
1

LrnetT

Nv∑
i=1

tdiδi r (1.1)

kr =
1

LrnetT

Nv∑
i=1

ttiδi r (1.2)

where Nv is the number of vehicles circulating in the city network during time period τ ; tdi
is total distance of vehicle i inside the city network r ; tti is the total time spent by vehicle

i inside city network r ; δiv is a dummy variable that equals 1 if vehicle i travels on region r

during time period τ ; and Lrnet is the total region length and is calculated as:

Lrnet =
∑
a

laδar ,∀a ∈ Γa (1.3)

where δar is a dummy variable that equals 1 if link a belongs to region r , or 0 otherwise; and

Γa is the set of all links of the city network.

The traffic states at a given time t are given by the Macroscopic Fundamental Diagram

(MFD). The MFD is a relationship that relates the aggregated flow qr and aggregated density

kr (Fig. 1.1 (a)). Another formalism to describe the MFD is the relation between travel

production Pr and the vehicles accumulation nr (Fig. 1.1 (b)). The accumulation is the total

number of vehicles circulating inside region r at a given time instant t. The travel production

Pr and accumulation nr are defined as:

Pr = qr × Lrnet =
1

T

Nv∑
i=1

tdiδi r (1.4)
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Fig. 1.1 – City network delimited by one region, that defines a regional network. A link length la is highlighted.

nr = kr × Lrnet =
1

T

Nv∑
i=1

tdiδi r (1.5)

There is also a third formalism to describe the MFD, through the relationship between the

average speed vr and the accumulation nr (Fig. 1.1 (c)). The average speed vr is defined as:

vr(nr) =
Pr(nr)

nr
=

Nv∑
i=1

tdiδi r

Nv∑
i=1

tdiδi r

(1.6)

Fig. 1.2 – (a) Mean Flow MFD. (b) Production-MFD. (c) Speed-MFD.

The existence of the MFD relationship is initially proved by Geroliminis & Daganzo (2008),

using traffic data from Yokohama city (Japan), and later by other field experiments (e.g.

Geroliminis & Sun 2011a,b; Ambühl & Menendez 2016; Derrmann et al. 2017; Loder et al.

2017) as well as by simulation data (e.g. Geroliminis & Daganzo 2008; Ji et al. 2010; Gonzales

et al. 2011). The MFD relationship exists for homogeneously congested regions. But, in real
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cities, traffic is often heterogeneously distributed. This is one of the reasons why the MFD

relationship is not always well-defined (see e.g. Buisson & Ladier 2009; Gayah & Daganzo

2011; Leclercq et al. 2015). The location of fixed sensors to measure traffic flow is very

important and methodologies for finding optimal sensor locations have been investigated in

the literature (e.g. Viti & Corman 2012; Viti et al. 2014; Zockaie et al. 2018).

Aggregated traffic models based on MFD have been firstly introduced by the seminal works

of Daganzo (2007) and Geroliminis & Daganzo (2008). Under slowly varying demand and

uniformly distributed congestion, Daganzo (2007) proposes that the traffic dynamics inside a

single region r is governed by the following conservation equation:

dnr(t)

dt
= Qin,r(t)−Qout,r(t), t > 0 (1.7)

where Qin,r(t) is the inflow function; and Qout,r(t) is the outflow function.

Depending on the assumptions made on Qout,r(t), one can distinguish two MFD-models

in the literature: the accumulation-based (Daganzo 2007; Geroliminis & Daganzo 2008); and

the trip-based (Arnott 2013; Fosgerau 2015; Lamotte & Geroliminis 2016; Mariotte et al.

2017; Leclercq et al. 2017; Mariotte & Leclercq 2018).

In the accumulation-based model, the outflow function Qout,r(t) is defined as the ratio

between the production-MFD Pr(nr(t)) and the average trip length Lr :

Qout,r ≈
Pr(nr(t))

Lr
(1.8)

where Lr is the average trip length for all vehicles crossing the same region. This transfor-

mation has been firstly introduced in Daganzo (2007) and comes from the application of

the Little’s formula, which requires steady state conditions. This explains why slow varying

demand and supply is part of this model assumption.

In the trip-based model (Arnott 2013; Fosgerau 2015; Lamotte & Geroliminis 2016; Mar-

iotte et al. 2017; Leclercq et al. 2017; Mariotte & Leclercq 2018), the MFD dynamics is

centered on the vehicle trip length Lvr :

Lvr =

∫ texit

tentry

Vr(n(s))ds (1.9)

where tentry and texit are the entry and exit times of the vehicle v in region r , respectively;

ttravel = texit − tentry is the travel time of vehicle v inside region r ; and Vr(n(s)) is the speed-

MFD. Assuming that the trip length Lvr is independent of t and that both ttravel and n(t)

are continuous functions and differentiable at t, from Eq. 1.9 and under a fluid regime, it
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is possible to obtain a relation for the outflow Qout(t) (Arnott 2013; Mariotte et al. 2017;

Mariotte & Leclercq 2018):

Qout,r(t) = Qin,r(t − ttravel)
Vr(nr(t))

Vr(nr(t − ttravel))
(1.10)

Note that Eq. 1.10 is valid for all vehicles having the same trip length Lvr . The numerical

solution of the trip-based model are discussed in Mariotte et al. (2017).

The MFD-based models have been extended to a multi-region system by Geroliminis

(2009) and Geroliminis (2015). For this, one needs to scale up a city (or microscopic)

network into a regional (or macroscopic) network. In Fig. 1.3 (a) is shown an example of a

city network. The idea is to divide the city network into regions where the traffic conditions

are approximately homogeneous. This set of regions defines the regional network. In Fig. 1.3

(b) is shown the city network divided into seven regions. The corresponding regional network

is shown in Fig. 1.3 (c). Each region has an intrinsic MFD function. These regions should be

connected. For their definition, one can use different techniques described in the literature

(Saeedmanesh & Geroliminis 2016, 2017; Lopez et al. 2017; Casadei et al. 2018). In this

thesis, the city network partitioning (i.e. the definition of the regions’ borders) is assumed to

be well-defined and given as an input parameter.

In the multi-regional system, one models the flow exchanges between regions as indicated

by the gray arrows in Fig. 1.3 (c). For this purpose, one can consider the accumulation-

or trip-based MFD models. To perform the MFD-based simulation, one needs to assign the

aggregated demand on the regional network. It is then essential to develop a regional dynamic

traffic assignment framework for multi-regional systems MFD-based models. The scaling of

city into regional networks plays a central role in this framework. Instead of referring to origin

and destination nodes, one refers to regional Origin and Destination. In Fig. 1.3 (b) is shown

two trips that define a regional path. A regional path is defined as the ordered sequence of

crossed regions from the Origin to the Destination. This notion of regional path is introduced

by Yildirimoglu & Geroliminis (2014). As one can observe in Fig. 1.3 (b), one trip defines only

one regional path. However, a regional path can be defined by several trips (see e.g. the green

trips in Fig. 1.3 (b)). Thus, each regional path is characterized by trip length distributions

inside each region it crosses, instead of a fixed length. As an example, one can observe in

Fig. 1.3 (b) that the lengths of the green trips inside the gray region are different. On the

other hand, in the city network, two trips are correlated if they share links in common. Two

regional paths are correlated if they cross the same region and the correlation is captured

through the MFD dynamics. In Fig. 1.3 (b) is shown an example where both the blue and
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green regional paths cross the gray region. Due to the MFD dynamics, a vehicle that enters

the gray region and travels on the green regional path, will automatically affect all the other

vehicles traveling on all regional paths that cross this same region.

O

D

(a) (b)

o

d

o

d

(c)

O

D

d
o

Fig. 1.3 – (a) City network with three routes. Two of these routes are correlated as shown by the red links.
The city network partition is also represented. (b) Partition of the city network where there are represented the
corresponding blue and green regional paths. (c) MFD multi-regional network that corresponds to the partition
of the city network shown in (b).
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1.2 Traffic assignment framework

The core of the new urban mobility trends is focused on the users and their ability to access

multi-modal networks. Understanding users choices is crucial to comprehend urban mobility

patterns in a city. This is very challenging since each user is different from each other. Users

are heterogeneous and have different types of behavior towards their route choices. Moreover,

users get informed about the network traffic states thanks to the use of new smart-phone

applications and may adapt their choices according to their level of information. For example,

on a rainy day, one can decide to take the subway or public transport instead of the car,

to avoid traffic congestion. But, the comfort of choosing the public transport is inferior to

the one of the private car. On the other hand, different users might value their trip travel

times differently. A user that is going to work in the morning does not want to be late and

gives more importance to the options that give more reliable travel times. On the contrary,

someone that is going for shopping or to do some leisure activity might be more relaxed about

the travel time and might choose options that seem to be more comfortable.

Network equilibrium reached?

Traffic simulator

Route choice model

Choice set generation

Input: Demand and network

No
No

Yes

Fig. 1.4 – Flowchart that summarizes the traffic assignment procedure.
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Traffic assignment algorithms are designed to model users’ choices considering their trip

preferences, purposes and behavior. The term traffic assignment defines the calculation of

path flow distributions for all od pairs depending on the network traffic states. It transforms

the global demand (i.e. the od matrix) into the local demand (i.e. link flow demand) that is

going to trigger the lead of congestion depending on the available capacities and traffic control.

Depending on the model considered to model the users’ choices, one achieves different network

loading equilibrium.

The concept of traffic assignment dates back to the seminal works of Wardrop (1952).

The Deterministic User Equilibrium is based on the 1st principle of Wardrop, where each user

aims to minimize his/her own travel time. Users are assumed to have a perfect information

about the network travel times and traffic states. But, this is not true since travel times

are stochastic by nature, due to the variability of the traffic conditions. For this reason, the

Random Utility models have been used to account for the distributions of travel times. This

leads to the Stochastic User Equilibrium (Daganzo & Sheffi 1977; Daganzo 1982), where

users also aim to minimize their own travel times. But, their perception of travel times is not

perfect. These two network equilibria have been criticized in the literature since they are based

on the strong assumption that users always aim to minimize their own travel times. In fact, as

shown by survey data (Zhu & Levinson 2015), users do not always choose the route with the

minimal travel time. On the other hand, each user is different from each other. That is, each

user has his/her own travel preferences and purposes. In order to take into account these two

factors, several alternative frameworks have been discussed in the literature. Simon (1957,

1966, 1990, 1991) introduced the concept of bounded rationality that was firstly adapted to

departure time choice by Mahmassani & Chang (1987). The authors also discussed the first

ideas of the bounded rational behavior applied to route choice. In this framework, users aim to

choose routes that satisfy their own criterion for the travel time, i.e. routes that have a travel

time below a certain threshold. Prospect Theory introduced by Kahneman & Tversky (1979)

and Tversky & Kahneman (1992) to the economic field, considers that users are risk-averse

or risk-seeking depending on the evaluation of the time prospect against a reference point.

Moreover, users are more sensible to losses than gains (i.e. the loss effect). Avineri (2006)

introduced the network equilibrium considering Prospect Theory. Alternatively, some authors

also consider the application of Regret Theory to route choice (Chorus 2014; Li & Huang

2016), to model the regret-aversion behavior. Other studies also discuss network equilibria

that consider heterogeneous users. That is, each user is a different individual and might value

the travel times differently (Lu et al. 2008) or have different preferences for the reliability of

their travel times (Jackson & Jucker 1982; Jiang et al. 2011).
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In Fig. 1.4 is represented a flowchart that summarizes the most common procedure to

calculate the network equilibrium. The demand level and pattern is given as an input parame-

ter. The first step of the procedure consists in identifying a route choice set for each od pair,

where the users will be assigned according to a route choice model. As previously discussed,

there are different route choice models that account for different types of users’ behavior as

well as heterogeneous demands (i.e. each user is a different individual and has his/her own

preferences and purposes for their travels). In the second step, one proceeds to the network

loading, where users are assigned to the different routes in the choice set, according to the

choice model that is selected. The users travels are modeled through a traffic simulator, that

accounts for dynamic network effects. This allows to update the distribution of route travel

times and to update the users choices accordingly. This process is repeated until the network

loading equilibrium is achieved. In Fig. 1.4, one can directly return to the choice model or

to the choice set generation steps. A network equilibrium is achieved when no user can find

another route different than his/her current one that shows an improvement on his/her own

criterion for the choice. This criterion can be, for example, the route travel time and/or travel

cost. The equilibrium condition is maintained as long as the travel demand does not change.

1.3 Research Objectives

The goals of this thesis are twofold. In the first part of this thesis the influence of different

kinds of the users’ behavior on a city network performance is investigated. For this purpose,

the risk-seeking and risk-aversion behavior (modeled by Prospect Theory), bounded rationality

and regret-aversion (modeled by Regret Theory) users behavior are considered. The Deter-

ministic and Stochastic User Equilibrium are set as reference. The tests are performed on

a Manhattan network and a mesoscopic Lighthill-Whitham-Richards (LWR) traffic model is

used to determine travel times that account for congestion and spillback effects. The net-

work performance is evaluated through the resulting Macroscopic Fundamental Diagram (or

MFD) and network outflow capacity. In the second part of the thesis, a regional dynamic

traffic assignment framework for multi-regional systems MFD-based models is discussed. This

framework consists of: (i) the definition of the regional choice set; (ii) the characterization of

the regional paths through distribution of trip lengths; and (iii) the definition of the regional

network equilibrium that account for distributions of trip lengths that are explicitly calculated.

The extension of this regional dynamic traffic assignment framework for MFD models to

account for different kinds of users behavior is also discussed.
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1.4 Main Contributions

The main contributions of this thesis are summarized in this section. The influence of different

kinds of users behavior in the internal and outflow capacities as well as the mean speed of a

city network is investigated in the first part of the thesis. For this, the risk-aversion and risk-

seeking (modeled by Prospect Theory) as well as regret-aversion (modeled by Regret Theory)

behaviors and bounded rational users are considered. The Deterministic and Stochastic User

Equilibrium are set as the references to evaluate the network performance. A framework

that considers the implementation of Prospect Theory and distributions of travel times has

been implemented. In a network settings with few alternatives, users tend to behave more as

perfect rationalizers and the network performance increases compared to the Stochastic User

Equilibrium. A framework that accounts for bounded rational users with indifferent and strict

preferences as well as the uncertainty of travel times has also been proposed. The increase of

the users’ indifference for their route choice allows them to choose paths with longer travel

times. When users are completely indifferent for their route choice, they are equally assigned

on all routes connecting an od pair. The internal and outflow capacities of the city network

decrease when users have indifferent preferences. The users strict preferences decrease the

internal mean speed of the network, but its internal and outflow capacities increase compared

to the references. The regret-aversion behavior increases the network performance as the

level of users regret increase, compared to the Stochastic User Equilibrium.

In the second part of the thesis, a dynamic traffic assignment framework for MFD-based

models is proposed. It consists of three building blocks. The first step consists in the calcu-

lation of the regional paths based on a set of trips in the city network and on its partitioning.

Three methods are discussed. Two of them are based on exhaustive searches on the city

network and require a sufficient graph coverage for their calibration. These two methods are

computationally expensive for large scale networks. A third method based on shortest-path

calculations directly in the regional network is proposed. It gives regional paths sets with a

very good level of similarity as the other two methods and is computationally lighter. Sec-

ond, four methods are proposed to calculate distributions of trip lengths to characterize the

regional paths. These four methods are based on a set of trips in the city network and on the

definition of its partitioning. The difference between them relies on the level of information

that is considered to filter the trips and aggregate their trip lengths. The method that filters

the trips by the regional path they define is shown to better represent the heterogeneity of

the trip lengths inside the regions that a regional path crosses. The definition of trip lengths

clearly influences the simulated traffic states by the trip-based MFD model. A methodology
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to update the trip lengths for regional Origin-Destination matrices that vary in time is also

proposed. The estimated trip lengths through this methodology shows a good agreement with

the ones that are recalculated based on the new Origin-Destination matrix. Third, based on

distributions of trip lengths and on the evolution of regional mean speeds, four definitions of

the regional network equilibrium are investigated. As demonstrated, these two factors cannot

be neglected in the calculation of the regional network equilibrium. An extension of this re-

gional dynamic traffic assignment framework to account for different kinds of users behavior,

such as bounded rationality and indifferent preferences as well as regret-aversion, is discussed.

The proposed regional dynamic traffic assignment framework in this thesis is the first

one to explore the connections between the city network topology and the aggregation to

the regional network. Systematic scaling-up methods are proposed to gather the regional

paths and calculate the distributions of trip lengths to characterize them. The network

loading model that is proposed accounts for distributions of trip lengths that are explicitly

calculated as well as the evolution of the regional mean speeds. It does not assume any prior

distribution of travel times. Instead, the distributions of trip lengths and evolution of the mean

speeds are considered and Monte Carlo simulations are used to calculate the regional network

equilibrium. The correlation between regional paths is taken into account by the evolution of

the mean speeds that are considered in the network equilibrium calculation. This framework

also accounts for different kinds of users behavior, such utility minimizers, bounded rational

and regret-averse users.

1.5 Thesis outline

This thesis is organized in 8 chapters, where 6 of these chapters are organized into two parts.

In Fig. 1.5 a schematic road map of the thesis is presented.

Chapter 1 is the introduction part of the thesis and includes the background, research

objectives, main contributions and thesis outline.

The goal of Part I of this thesis is to investigate the influence of different kinds of users

behavior on the global network performance, compared against the DUE and SUE. The goal

is to assess the sensibility of the network global functioning to the local users choices. In

this first part, a Manhattan test network is considered and a mesoscopic Lighthill-Whitham-

Richards (LWR) model is used to determine dynamic route travel times. This is addressed in

the following chapters:

• In Chapter 2, a literature review about traffic assignment models is provided. This in-

cludes a literature review about choice set generation models and assignment models.
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Part I: Influence of users’ behavior on 
network performance

Part II: Dynamic Traffic Assignment 
framework for multi-regional MFD-based 

models

Chapter 1 – Introduction

Chapter 8 – Conclusions

Chapter 2 – Traffic Assignment: a literature review

Chapter 3 – Influence of the users risk-aversion and 
risk-seeking behavior on a traffic network 

performance: a simulation study

Chapter 4 – Effects of users' bounded rationality on a 
traffic network performance: a simulation study

Chapter 5 – Introduction of multi-regional MFD-
based models with route choices: the definition of 

regional paths

Chapter 6 – Trip length estimation for the 
aggregated network models: scaling microscopic 

trips into regions

Chapter 7 – A dynamic traffic assignment framework 
for MFD multi-regional models

Overview of Part II: Regional dynamic traffic 
assignment with different behavioral rules

Overview of Part I: Dynamic network loading and 
users behavior

Fig. 1.5 – Thesis Outline.

The latter includes Random Utility models, Fuzzy Logic, Prospect Theory, Bounded

Rationality, Regret Theory, Value of Time and Value of Reliability. Simple static imple-

mentations on toy networks of some Random Utility models are also illustrated.

• In Chapter 3, the influence of the users’ risk-aversion and risk-seeking behavior, modeled

by the implementation of Prospect Theory, on the network performance and individual

route flows is investigated. This chapter represents a stand alone research paper includ-

ing abstract, introduction, methodology, results and conclusions.

Batista, S. F. A. and Leclercq, L. (in prep.), Influence of the users risk-aversion and

risk-seeking behavior on a traffic network performance: a simulation study. Submit-

ted to the Journal Transportation Letters: The International Journal of Transportation

Research.

• In Chapter 4, the influence of the users’ bounded rationality, considering the users’

indifferent and strict preferences for their route choices, on the network performance

and individual route flows is investigated. This chapter represents a stand alone research

paper including abstract, introduction, methodology, results and conclusions.
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Batista, S. F. A., Zhao, C.-L. and Leclercq, L. (2018), Effects of users’ bounded

rationality on a traffic network performance: a simulation study. Journal of Advanced

Transportation, Article ID 9876598, 20 pages.

In Section I the overview of the Part I of the thesis is presented. First, additional results

considering the influence of users regret-aversion behavior on a Manhattan network are dis-

cussed. Second, the influence of the different kinds of users behavior investigated in this Part

I on the network mean speed as well as its internal and outflow capacities are summarized.

The goal of Part II of this thesis is to propose a full Dynamic Traffic Assignment framework

for multi-regional systems MFD-based models. In the following three chapters, the proposed

methods and methodologies are tested on the 6th Lyon (France) district network divided into

eight regions. This framework is addressed in detail in the following chapters:

• In Chapter 5, three approaches to calculate regional paths and define the regional choice

set are investigated. This chapter represents a stand alone conference research paper

including abstract, introduction, methodology, results and conclusions.

Batista, S. F. A. and Leclercq, L. (2018), Introduction of multi-regional MFD-based

models with route choices: the definition of regional paths. Accepted to the PLURIS

2018 - 8th LUSO-BRAZILIAN CONGRESS for Urban, Regional, Integrated and Sus-

tainable Planning.

• In Chapter 6, four approaches to calculate regional trip lengths distributions for the

regional paths, given the definition of the regional network topology and a set of trips

on the city network, are discussed. A framework to update the trip lengths for different

regional OD matrices is introduced. Trip-based MFD simulations are performed to show

the impact of different trip length distributions calculated through the four methods on

the evolution of the traffic states. This chapter represents a stand alone research paper

including abstract, introduction, methodology, results and conclusions.

Batista, S. F. A., Leclercq, L. and Geroliminis, N. (in prep.), Trip length estimation for

the aggregated network models: scaling microscopic trips into regions. Submitted to

Transportation Research Part B: Methodological.

• In Chapter 7, a framework to solve for the network equilibrium, taking into account

distributions of trip lengths that are explicitly calculated, is discussed. Four utility func-

tions are proposed. Each of them yields a different network equilibrium. This chapter

represents a stand alone research paper including abstract, introduction, methodology,

results and conclusions.
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Batista, S. F. A. and Leclercq, L. (in prep.), A dynamic traffic assignment framework

for MFD multi-regional models. Submitted to Transportation Science.

In Section II, the overview of the second part of the thesis is presented. An extension

of the proposed Dynamic Traffic Assignment framework to account for bounded rational as

well as regret-averse users is discussed. Preliminary MFD simulation results are discussed.

The regional network includes the city of Villeurbarnne and the 3rd and 6th districts of Lyon

(France).

Chapter 8 is the conclusion of this thesis, summarizing the main contributions and high-

lighting the future research directions.
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2
Traffic Assignment: a literature review

This chapter introduces a literature review about the traffic assignment components. In
Sect. 2.2, the route choice set generation models are introduced. In Sect. 2.3, the
Deterministic and Stochastic User Equilibrium of the network loading are discussed. To
account for the uncertainty of travel times, two approaches based on Random Utility
models and Fuzzy Logic are discussed. In Sect. 2.4, there are discussed the application
of two examples of some Random Utility models, in two toy networks. In Sect. 2.5, a
literature review about other models that account for different kinds of users’ behavior and
heterogeneity is introduced. In Sect. 2.6, the existence and uniqueness of the Dynamic
User Equilibrium are outlined.
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2.1 Introduction

The city network (see Fig. 2.1 (a)) is composed by a set of directed links. Each user of

the network has a specific origin and target destination as well as different purposes and

preferences for his/her own travels. The origin (o) and destination (d) of users correspond to

nodes in the city network as shown in Fig. 2.1 (a). As the medieval proverb says "All Roads

Lead to Rome", meaning that there are an infinite number of possible routes connecting

one od pair. Fig. 2.1 (b) depicts a simple example of one od pair connected by two routes.

Nevertheless, to assign users on a city network, one needs to identify a plausible number of

routes to define the route choice set Ωod . In Sect. 2.2, a literature review about different

models to calculate Ωod is provided. The next challenge is to model the users’ route choices

according to their different preferences and purposes. A literature review about static traffic

assignment models is discussed in Sect. 2.4 and Sect. 2.5. The extension to the dynamic

context and a statement on how the contributions of this thesis go beyond the literature

review is discussed in Sect. 2.6.

o
o

d

d

Which road
should I take?

Which road
should I take?

o d

(a) (b)

Fig. 2.1 – (a) City network with three routes. (b) Example of a graph that represents two routes connecting
one od pair.
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2.2 Choice set generation

The first step of a traffic assignment framework is the definition of the route choice set. For

notation purposes, let Ωod be the route choice set, for the city network origin-destination

(od) pairs, defined as:

Ωod = {rk},∀k = 1, . . . , S ∧ ∀(o, d) ∈ Ξ (2.1)

where S is total number of feasible routes connecting a given od pair of the city network; and

Ξ is the set of all od pairs of the city network.

To calculate the routes, the Dijkstra algorithm is the most known for shortest-path cal-

culations. But, it requires a large computational time to find shortest-paths in large city

networks. The A∗ algorithm is to be preferred for large scale implementations, since it has an

heuristics that guides the search method towards the destination node. The guidance function

f (n) at node n to go to the next node is:

f (n) = g(n) + h(n) (2.2)

where g(n) is the total path cost from the origin node to n; and h(n) is the heuristics that

estimates the lowest cost path from n to the destination node. Note that if h(n) = 0, the A∗

reduces to the Dijkstra algorithm.

In the literature there are other models discussed to calculate the routes. The K-shortest

path algorithm (Eppstein 1998; Hadjiconstantinou & Christofides 1999; van der Zijpp &

Catalano 2005) computes the K-less expensive routes for one od pair. The link elimination

(Azevedo et al. 1993) consists of two steps: the route search; and the route elimination. The

first computed route corresponds to the shortest-path for the od pair. The links defining this

route are partly or all eliminated from the city network and a new shortest-path is calculated.

The spirit of the link penalty (de la Barra et al. 1993; Rupahil et al. 1995; Park & Rilett 1997)

is similar. The costs of partly or all links that define the calculated routes, are increased instead

of being eliminated from the city network. The labeling approach was introduced by Ben-Akiva

et al. (1984). Labels are set according to the users’ preferences and each one is linked to

a different route. The maximum number of routes that compose the choice set are defined

by the number of labels considered. A branch-and-bound algorithm is discussed by Prato &

Bekhor (2006), to explicitly solve a constrained enumeration problem of routes. It increases

the heterogeneity of the choice set compared to the previously discussed algorithms, while

keeping the computational costs low. This is done during the branching step, where a set
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of logical thresholds are defined. A set of links is sampled and only the ones that satisfy

the set of thresholds are added to the final tree. One should define the following thresholds:

a directional threshold, that excludes the connections between the links that will take the

user closer to the origin rather than the destination; a temporal threshold, that will eliminate

paths with excessive travel time; a loop threshold, to avoid paths containing large detours; a

similarity threshold, to remove highly overlapping paths from the final tree; and a constraint

threshold, that removes unrealistic routes which the users would not consider attractive. The

bounding step will connect the sampled links. The simulation approach consists in sampling

the generalized costs at the link level and perform a shortest path search. The procedure

is repeated until the number of desired routes is reached. The procedure stops when the

number of desired routes is reached. The generalized costs are modeled through probability

distributions. Ramming (2002) and Bliemer et al. (2007) consider a normal distribution.

While, Nielsen et al. (2002), Bierlaire & Frejinger (2005) and Prato & Bekhor (2006) consider

a truncated normal distribution. Sheffi (1985) proposes to truncate the normal distributions

for negative values of the generalized costs. This skews the generalized cost distributions.

Instead, Nielsen (1997) argues that considering a gamma distribution is more adequate. The

spirit of the doubly stochastic approach (Nielsen 2000) is similar, but both link generalized

costs and attributes are simulated. A review about these models is provided by Prato (2009).

More recently, Flötteröd & Bierlaire (2013) discusses an approach to sample paths using the

Metropolis-Hastings algorithm.

In this thesis, the K-shortest path and the A∗ algorithm are considered. It is also assumed

that the path set Ωod is known.

2.3 Static network loading equilibrium: the Deterministic and Stochastic
User Equilibrium

The concept of traffic assignment was introduced by Wardrop (1952). In his paper, he

proposed two equilibrium principles:

• User Equilibrium: each user of the network chooses the route that minimizes his/her

travel time.

• System Optimum: all users of the network will choose the routes that will minimize the

total travel time of the system. In this case, users have to cooperate with each other

to minimize the total travel cost of the network.
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The User Equilibrium is also referred in the literature as the Wardrop first principle. The

latter corresponds to the Deterministic User Equilibrium (DUE). Under DUE conditions, no

user can increase his or her own travel time by unilaterally change routes. Mathematically, this

network loading equilibrium can be calculated by solving the following optimization problem

(Beckmann et al. 1956):

min z(qa) =
∑
a

qa∫
0

ta(xa)dxa,∀a ∈ Γa (2.3)

subject to:

qa =
∑
k

Qkδka,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.4)

∑
k

Qk = Qod ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.5)

qa ≥ 0, a ∈ Γa (2.6)

Qk ≥ 0, k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.7)

where Γa is the set of all a links of the network; qa is the flow of link a; Qk is the flow of

route k ; Qod is the total demand of the od pair; ta(qa) is the travel time of link a; and δka is

a dummy variable that equals 1 if route k travels on link a, or 0 otherwise. Note that Eq. 2.5

ensures the flow conservation; and Eq. 2.6 and Eq. 2.7 ensures the non-negativity of the link

and route flows, respectively.

The system of equations 2.3 to 2.7 is the fixed-point formulation of the DUE (Sheffi

1985). A classical approach to solve this problem is based on the Method of Successive

Averages (Sheffi 1985). To ensure good convergence properties of the MSA, one should

properly define the descent step αj , where j is the descent iteration. For this, the following

two conditions should be satisfied (Sheffi 1985):

∞∑
j=1

αj =∞ (2.8)

lim
j→∞

αj → 0 (2.9)

One definition of αj that satisfies both of the previous conditions is: αj = 1
j
. In the
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literature, there are discussed other definitions of αj (Polyak 1990; Liu et al. 2007; Taale

2008; Chen et al. 2011a).

The DUE assumes that users are perfectly rational, selfish and fully informed about all

possible routes and their travel times. However, routes travel times are not deterministic in

nature since the traffic states change across time. On the other hand, it is not realistic to

assume that users have a perfect rationality. In fact, they perceive route travel times with

uncertainty. To treat the uncertainty of travel times, there are two approaches discussed

in the literature. The most commonly used is based on the Random Utility (RU) models

(McFadden 1978), where the uncertainty is modeled as a distribution of route travel times.

The RU models are introduced in Sect. 2.3.1. On the other hand, Fuzzy Logic (FL) treats

the uncertainty of route travel times as fuzzy numbers and is introduced in Sect. 2.3.2.

2.3.1 Random Utility models

In RU models (McFadden 1978), the uncertainty of route travel times is modeled through a

stochastic term εk ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ. In the literature, this term is also referred to as

error term. The network equilibrium corresponds to the Stochastic User Equilibrium (SUE)

introduced by Daganzo & Sheffi (1977) and Daganzo (1982). The utility function of route k

is:

Uk(
−→
Q) = Vk(

−→
Q) + εk ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.10)

where Uk is the perceived utility of route k ; Vk is the deterministic route utility; and
−→
Q =

(Qod1 , . . . , Q
od
k , . . . , Q

od
N ),∀(o, d) ∈ Ξ is a row vector of all route flows for all od pairs listed

in Ξ. This utility function is valid for an homogeneous demand of users sharing the same od

pair.

A route flow pattern is under SUE conditions if and only if it satisfies the following con-

dition:

Qodk = QodP odk (V od(
−→
Q)),∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.11)

where V od(
−→
Q) is the deterministic route travel time; Qod is the total demand of the od pair;

and P odk (V od(
−→
Q)) is the probability of choosing route k from the route choice set Ωod , that

is calculated as:
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Pk = P odk (V od(
−→
Q)) = P r(Uk < Uj ,∀j ∈ Ωod ∧ j 6= k ∧ ∀(o, d) ∈ Ξ|V od(

−→
Q)),

∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.12)

Considering Eq. 2.11, Daganzo (1982) formulated the unconstrained minimization model

for the SUE:

min z(
−→
Q) = −

∑
o

∑
d

QodSod(V od(
−→
Q)) +

∑
a∈Γa

qata(qa)−
∑
a∈Γa

qa∫
0

ta(xa)dxa (2.13)

where Sod(V od(
−→
Q)) is defined as:

Sod(V od(
−→
Q)) = E

(
min
k∈Ωod

Uk(V od(
−→
Q))

)
,∀(o, d) ∈ Ξ (2.14)

and,

qa =
∑
k

Qkδka,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.15)

Qk =
∑
a

qaδak ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.16)

where δak is a dummy variable that equals 1 if link a belongs to route k ; or, 0 otherwise.

This unconstrained minimization model can also be transformed in a fixed point problem

(Sheffi 1985) and solved using the classical Method of Successive Averages (MSA).

The error terms εk are unobserved. Therefore, the modeler has to make assumptions about

the statistical distributions. The simplest RU model is the Multinomial Logit (Dial 1971). It

assumes that εk are independent and identically distributed (i.i.d.) Gumbel variables, with

a scale parameter θ. The family of Logit models is described in Sect. 2.3.1.1. The Probit

model (Daganzo & Sheffi 1977) assumes that error terms are multi-normal variate distributed

variables. It is presented in Sect. 2.3.1.2. The Mixed Logit model (Bolduc & Ben-Akiva

1991; Bekhor et al. 2002; Frejinger & Bierlaire 2007) makes use of the simple structure of

the Multinomial Logit model. It assumes that the error terms are defined by the sum of

two terms: one that is normally distributed; and another one that is Gumbel distributed. It

is described in Sect. 2.3.1.3. An alternative approach to avoid the computational costs of

computing the Probit model is to use Monte Carlo simulations as discussed in Sheffi (1985).
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This approach is described in Sect. 2.3.1.4.

2.3.1.1 Family of Logit models

The Multinomial Logit (Dial 1971) is the simplest random utility model to implement. It

assumes that the route error terms, εk , are i.i.d. Gumbel distributed with a scale parameter θ.

This model has the advantage of having a closed form and the probability of choosing route

k from the choice set Ωod is:

Pk =
exp(−θUk)∑S
i=1 exp(−θUi)

,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.17)

The application of the Multinomial Logit model has several limitations. First, the Multi-

nomial Logit model lacks the ability to capture the correlation between overlapping routes

(i.e. routes that share a link or a sequence of links in common). Second, it requires a proper

scaling θ parameter, that has to be estimated or manually adjusted. Moreover, the i.i.d.

assumption implies that all routes connecting the same od pair have a similar variance of the

route travel time distributions. Chen et al. (2012) investigated this problem and discussed

that introducing a global θ per each od pair partially solves the problem of dealing with het-

erogeneous variances between the different routes. Thus, the θ parameter is scaled to the od

level (i.e. θod). The ideal scenario would be to have a flexible formulation of the Multinomial

Logit model able to deal with a heterogeneous perception of the variances for all routes. But,

it violates the i.i.d. assumption. The scale parameter θod is calculated as:

θod =

√
π2

6Var(εk)
(2.18)

where Var(εk) represents the variance of route k. Note that, all routes connecting the same

od pair should have the same variance.

To relax the i.i.d. assumption, that leads to the Independent and Irrelevant Alternative

(IIA) property, several alternative models have been discussed. Some authors proposed to

introduce a correction factor within the deterministic part of the utility function (Cascetta

et al. 1996; Ben-Akiva & Bierlaire 1999; Ramming 2002; Bovy et al. 2008). Other approaches

belonging to the Generalized Extreme Value (GEV) family, such as the Nested Logit models,

have also been widely used in the literature as an alternative to the Multinomial Logit model

(Chu 1989; Vovsha 1997; Prashker & Bekhor 1998, 2000). A review about these models is

provided by Prato (2009).
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2.3.1.2 Probit model

The Probit model was introduced to route choice by Daganzo & Sheffi (1977). It assumes

that the error terms εk are multi-normal variate (MNV) distributed, i.e. εk ∼ MNV (0,Σ)

where Σ represents the S × S covariance matrix defined as:

Σ =


σ2

1 σ12 . . . σ1S

σ12 σ2
2 . . . σ2S

...
... . . . ...

σ1S σ2S . . . σ2
S

 (2.19)

where the diagonal elements represent the variances of the S routes listed in Ωod ; and the

other elements represent the covariances between the other routes listed in Ωod . This flexible

definition of the variance-covariance matrix allows the Probit model to capture the correlation

between overlapping routes.

The probability Pk of choosing route k from the route choice set Ωod is:

Pk =

∞∫
Vk−Vj

(2π)−
N−1

2 (detAk)
1
2 exp

[
−

1

2
Y Tkj A

−1
k Ykj

]
d Ykj ,∀j = 1, . . . , S ∧ j 6= k ∧ ∀k ∈ Ωod

∧ ∀(o, d) ∈ Ξ (2.20)

Ykj is a (S − 1) × 1 vector that represents the error differences between the k-route and all

the other S-1 routes listed in Ωod ; and Ak is the (S− 1)× (S− 1) covariance matrix directly

obtained from Σ, using an auxiliary S × (S − 1) Bk matrix:

Ak = BTk ΣBk (2.21)

and,

Bk = [δlm] ,where δlm =


−1, if l = m

1, for l = k

0, otherwise

(2.22)

The Probit model does not have a closed form to calculate the probabilities Pk (Eq. 2.20).

Therefore, one needs to integrate the multi-normal variate distribution over all possible routes

listed in Ωod . This largely increases the computational cost required. Simulation techniques
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have been discussed to estimate these integrals. Daganzo & Sheffi (1977) proposed to use the

Clark’s approximation. Lerman &Manski (1981) proposed the method of Simulated Maximum

Likelihood (SML). McFadden (1989) proposed the Method of Simulated Moments (MSM).

Stern (1992) proposed one of the most famous simulator, that separates the error term into

two components: one that is normally distributed with zero mean and diagonal covariance;

and other that has a covariance matrix as small as possible. The Geweke-Hajivassilou-Keane

(GHK) (Borsch-Supan & Hajivassiliou 1993) makes use of the Monte Carlo simulations to

numerically solve the integrals. Bolduc (1999) discussed the estimation of the Probit model

using a simulated maximum likelihood through the implementation of the GHK simulator

(Borsch-Supan & Hajivassiliou 1993). The reader is reported to the paper of Bolduc (1999)

for the mathematical formulation of this approach. Bhat (2011) discusses an approach based

on a maximum composite marginal likelihood (MACML) to calculate the MNV integrals.

The advantage of the Probit model is that it allows a flexible definition of the variance-

covariance matrix, that is able to capture the correlation between overlapping routes. How-

ever, it has only been applied to small networks (e.g. Yai et al. 1997) due to the computational

power required to solve the MNV integrals.

2.3.1.3 Mixed Logit model

The Mixed Logit (ML) model (Bolduc & Ben-Akiva 1991; Bekhor et al. 2002; Frejinger &

Bierlaire 2007) considers that the error terms εk are defined by the sum of two terms:

εk = FMLTMLζ
k
ML + νkML,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.23)

where FML is a Nl inks × Nl inks link-path incidence matrix and Nl inks the number of links that

define Γa; TML is a Nl inks × Nl inks link variance matrix; ζkML is a Nl inks × 1 vector of variables

that follow a normal distribution of zero mean and unit variance; and νkML is a vector of S×1

of i.i.d. variables that follow a Gumbel distribution.

The link-path incidence and the link variance matrices are obtained, respectively, as

(Bekhor et al. 2002):

FML = δak =

1 if a ∈ k

0 otherwise
,∀a ∈ Γa (2.24)

TML = diag(σ1, . . . , σa, . . . , σNl inks ),∀a ∈ Γa (2.25)

Bekhor et al. (2002) proposed that the link variance is proportional to its length. But, if
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the error distributions at the link level are known, the derivation of the diagonal elements of

TML is directly calculated.

The probability of choosing route k from Ωod is calculated by integrating the density

function of ζkML over all its possible values:

Pk =

∫
ζML

Λ(k\ζML)

MML∏
m=1

ϕ(ζmML)dζmML,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.26)

where ϕ(ζkML) is the normal density function of ζkML. This integration can be solved numerically

as follows (Bekhor et al. 2002):

Pk =
1

MML

MML∑
d=1

Λ
(
k\ζdML

)
,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.27)

where ζdML is a term that represents a draw d from the distribution of ζML; and MML is the

number of draws. As it is exemplified by Ramming (2002) an adequate number of draws

should be considered (∼1000).
This model is also referred in the literature as the Hybrid Logit or Logit Kernel.

2.3.1.4 Probit model solved by Monte Carlo simulations

The Probit model can also be solved through Monte Carlo simulations (Sheffi 1985). The idea

is that instead of keeping track of the analytical tractability of the travel time distributions

at the route level, one considers them at the link level. For this, it is assumed that the link

travel time utilities are additive, to calculate the route travel time. Sheffi (1985) proposes to

discretize the distributions of travel times at the link level into M samples and locally solve

Deterministic User Equilibrium (DUE) problems. Let t ik be a sample i of the travel time of

route k and M be the total number of samples. Let also t ia be a sample i of the travel time

of link a, ∀a ∈ Γa. The sample t ik is calculated as:

Uodki = t ik =
∑
a∈Γa

t iaδak ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ ∧ ∀i = 1, . . . ,M (2.28)

where δak is a dummy variable that equals 1 if link a defines route k, or 0 otherwise.

For each sample i of the route travel times, compute t ik (Eq. 2.28) and assign users based

on an all-or-nothing procedure to the route with the minimal perceived utility (or minimal

travel time). The new temporary route flows for the MSA, Qod,∗k , are updated by averaging

all the local DUE solutions. These route flows, Qod,∗k , are used to update the new route flows,

Qod,j+1
k , at iteration j + 1 as:
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Qod,j+1
k = Qod,jk + αj{Qod,∗k −Qod,jk },∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.29)

where Qod,jk represent the route flows at iteration j of the MSA.

As convergence criteria for the MSA, one can adopt the three formulations discussed in

Sbayti et al. (2007):

• the relative Gap (Sbayti et al. 2007):

Gap =

∑
o

∑
d

∑
k∈Ωod Qodk (V odk − C)∑
o

∑
d Q

odC
(2.30)

where C = min(V odk ),∀k ∈ Ωod . The Gap function represents the difference between

the route travel times and the travel times at equilibrium. Under DUE conditions, the

Gap is equal to 0. The latter means that all users have chosen the routes with the

minimum travel times. Under SUE conditions, the Gap is slightly larger than 0, however

small. This happens due to the uncertainty in the users’ perception of the travel times.

• the number of violations N(λ) (Sbayti et al. 2007), that represent the number of cases

where |Qj+1
k −Qjk | is superior to a pre-defined path threshold Φ, for each od pair. The

convergence is achieved when N(λ) ≤ Φ.

• a maximum number of j iterations Nmax .

Sheffi (1985) proposes that the link travel time distributions are normally distributed and

to truncate the negative link travel times. But, this skews the link travel times distributions

and may lead to erroneous results. Instead, Nielsen (1997) proposes to consider a gamma

distribution. Throughout this thesis, it is assumed that the link travel time distributions follow

a gamma distribution, with scale ηa and shape ζa parameters.

The procedure of the Monte Carlo simulations to solve for the network SUE and considering

the MSA algorithm is summarized in Algorithm 1. Note that, this algorithm is also valid to

solve a DUE assignment, where one just needs to set εa = 0,∀a ∈ Γa. Throughout this thesis,

this is the adopted procedure to model the distributions of travel times, unless explicitly stated

otherwise.

2.3.2 Fuzzy Logic

Fuzzy logic differs from Random Utility (RU) models by the way that it deals with uncer-

tainty in the users’ perception. Fuzzy logic was initially proposed by Zadeh (1965) and later
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Sample M link travel times t ia, considering a scale (ηa) and shape (ζa) parameters of a
gamma distribution.

Initialize the descent step αj = 1. Initialize the route flows Qod,j=1
k = 0.

Set the MSA stopping criterion tol, the maximum number of violations Φ and the
maximum number of descent step iterations Nmax .

Perform a loading of the network ∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
while Gap ≥ tol or N(λ) ≥ Φ or j ≤ Nmax do

Set Qod,jk = Qod,j+1
k .

for l=1 to M do
Compute t ik ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (Eq. 2.28).
For each od pair, assign users based on an all-or-nothing assignment to the
route with the minimal travel time.

end
Update the new route flows Qod,∗k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ, based on an averaging
of the users choices over all samples.
Update the route flows:
Qod,j+1
k = Qod,jk + αj{Qod,∗k −Qod,jk },∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.

Update αj , the Gap values (Eq. 2.30) and the number of violations N(λ).
Set j = j + 1.

end
Save the route flows: Qj+1

k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
Algorithm 1: Pseudo-code algorithm to solve a SUE or DUE assignment, based on Monte
Carlo simulations.

adapted to route choice modeling by Teodorović & Kikuchi (1990). It considers that users

decisions involve imprecision and vagueness and users act as perfect rationalizers. Avineri

(2012) provides a small review about fuzzy logic applied to route choice.

Two classes of fuzzy logic models applied to route choice have been discussed in the

literature: fuzzy-rule based (Teodorović & Kikuchi 1990); and fuzzy-costs based (Henn 2005).

The first class of fuzzy models considers fuzzy rules and fuzzy control tools (Lotan &

Koutsopoulos 1993; Koutsopoulos et al. 1994; Lotan 1997; Peeta & Yu 2002). Fuzzy rules

can be described as linguistic rules, such as for example: "If travel time on route 1 is low

and on route 2 is intermediate, then the user will for sure choose route 1". This approach

can lead to undesirable results as it is stressed out by Henn (2005). In particular, the authors

showed that fuzzy tools should not be handled anyhow.

The second class of fuzzy models (Bierlaire et al. 1993; Henn 2000; Henn & Ottomanelli

2003; Cantarella & Fedele 2003; Dell’Orco & Kikuchi 2004; Henn 2005; Henn & Ottomanelli

2006) considers that users do not have a perfect knowledge about the route travel times.

In this case, some utility attributes are modeled as fuzzy numbers to take into account the

imprecision and uncertainty. In the seminal works of Henn (2000); Henn & Ottomanelli
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(2003); Henn (2005); Henn & Ottomanelli (2006), route choice and flow assignment using

fuzzy-costs are performed on test networks. But, the application of fuzzy logic to route choice

lies in the proper definition of the membership function as it is highlighted by Henn (2005).

The author also criticizes that several authors use a triangular-shape membership function,

without providing a more accurate definition. Henn (2005) further investigated the concept of

fuzzy costs and distinguished three different semantics, namely imprecision, uncertainty and

degree of preference. Henn (2005) and Henn & Ottomanelli (2006) suggested a modeling

approach that considers these three levels of fuzziness. The concept of fuzzy user equilibrium

applied to traffic assignment is discussed by some authors (e.g., Wang & Liao (1999); Chang

& Chen (2000)).

Other authors discuss modeling approaches that couple fuzzy logic with possibility theory

(Dell’Orco & Kikuchi 2004). Possibility theory was introduced by Zadeh (1978) as an alter-

native to probability theory. Kikuchi & Chakroborty (2006) provides a review about the role of

possibility theory in transportation problems. Its concept, computation procedures as well as

utilities are discussed when handling incomplete information (Kikuchi & Chakroborty 2006).

The idea behind this theory is the preservation of uncertainty in the users decision-making

process. While probability theory is based on additivity axioms, possibility theory is based on

max-axioms. Dell’Orco & Kikuchi (2004) discussed an example where possibility theory is

used to infer about users choices and where route travel times are modeled as fuzzy numbers.

The authors also show an application example of their approach on a three route test network.

Quattrone & Vitetta (2011) discusses a fuzzy utility model that can be applied to real

networks. The users choices are evaluated using the concept of possibility instead of prob-

ability. These possibilities are then converted into choice percentages following Klir (1990).

Fuzzy Logit and C-Logit models are discussed and calibrated based on data measurements by

Quattrone & Vitetta (2011).

2.4 Application examples of Random Utility models

In this section, it is analyzed the implementation of the Multinomial Logit, the Mixed Logit,

the Probit and the Probit model solved by Monte Carlo simulations in two toy networks. Two

test scenarios are setup and discussed. The goal is to illustrate the different concepts and

show the similarities and differences between the four models.

Test scenario 1

The goal of this first test is to show the limitations of the Multinomial Logit in dealing

with correlated routes, compared against the other three models. For this, a route flow
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independent utility function is set:

Uk(
−→
Q) =

∑
a∈Γa

(ta + εa)δak ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.31)

where ta is the free-flow travel time of link a; δak is a dummy variable that equals 1 if route

k travels on link a, or 0 otherwise.

A network composed by one od pair and three routes (Fig. 2.2) is considered. Two variants

of this network are considered: one without link overlapping between the routes (variant 1 -

Fig. 2.2, top panel); and one with link overlapping between routes 1 and 2 (variant 2 - Fig. 2.2,

bottom panel). For variant 1, the route choice set is: Ωod = {(1); (2); (3)}. For this variant,
the following set of link travel times, ta, are considered: t1 = 18; t3 = 16; and a variable

link travel time for t2 range between 10 and 22 increasing step size by 1 unit. For variant 2,

the route choice set is Ωod = {(1, 3); (1, 4); (2)}. And, the following set of link travel times

are considered: t1 = 10; t3 = 8; t4 = 7; and a variable travel time for t2 ∈ [10 : 1 : 22]. It

is considered that εa are gamma distributed with a mean equal to ta,∀a ∈ Γa and a similar

variance for σa = 16,∀a ∈ Γa. The parameters of the gamma distribution are updated as

ηa = σa,∀a ∈ Γa for the scale parameter and ζa = ta
σa
,∀a ∈ Γa for the shape parameter. A

total of M = 10000 samples are fixed. For the convergence criteria, the number of violations

is set to 0, the tol = 10−3 and Nmax = 100.

Fig. 2.2 – Network 1. Left: Variant with independent routes. Right: Variant with overlapping between route 1
and 2 (link 1).

The assignment results at equilibrium are shown in Fig. 2.3, for an increasing travel time of

link 2. As one can observe, the Multinomial Logit gives similar assignment results as the other

three models only for variant 1. This is because for the terms εa are sampled independently

and the path utilities are not correlated. The Mixed Logit, Probit and the Probit model solved

by Monte Carlo simulations give similar assignment results for both variants 1 and 2, because

their formulations allow to capture the correlation between overlapping routes. In the case of

the Probit model, the correlation is captured through the flexible definition of the variance-

covariance matrix. The Mixed Logit assumes that one term of εk follows a normal distribution

with zero mean and unitary variance. This term is defined at the link level and converted to
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Fig. 2.3 – Route flows at equilibrium with respect to an increase of the link 2 free-flow travel time. The results
are shown for the Multinomial Logit, Mixed Logit, Probit and Probit model solved by Monte Carlo simulations.
Right: Network 1 - variant 1. Left: Network 1 - variant 2.
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the path level by a path-incidence matrix. The good fitting of the Probit model solved by

Monte Carlo simulations with both the Probit and Mixed Logit validates this approach to

solve for the SUE.

Test scenario 2

The goal of the second test scenario is to compare the assignment results of the Probit

model when solved by directly integrating the MNV travel time distributions and when solved

by Monte Carlo simulations. A flow independent utility function is defined:

Uk(
−→
Q) =

∑
a∈Γa

(ta + qa + εa)δak ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.32)

where qa is the flow of link a that is calculated as follows:

qa =
∑
a∈Γa

Qkδak (2.33)

The Braess network shown in Fig. 2.4 is considered. The route choice set is: Ωod =

{(1, 4); (2, 5); (1, 3, 5)}. The following set of link travel times are considered: t1 = 5; t2 = 50;

t3 = 10; t4 = 50; t5 = 5. All link travel times are normally distributed with zero mean and

variance 2. A total number of M = 10000 samples are considered. For the convergence

criteria, the number of violations is set to 0, the tol = 10−3 and Nmax = 100. Three demand

levels are set up: Qod = 50, 100, 200.

Fig. 2.4 – Braess network.

The assignment results at equilibrium, for both Probit formulations, are listed in Table 2.1.

One can observe that the route flow provided by both Probit formulations are close but not

equal, for the different values of the total demand Qod . The Probit model solved by directly

integrating the MNV distributions gives the mean route flows. While, the Probit solved by

Monte Carlo simulations determines for each link error trial, the related route flow distribution

related to the deterministic utilities (the link error term is fixed) and then the route flow

average. By other words Qk 6= f (Qk),∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
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Probit by direct integration Probit by Monte Carlo simulations
Qod Route 1 Route 2 Route 3 Route 1 Route 2 Route 3
50 17 15 18 18 17 15
100 39 38 23 41 41 18
200 87 86 28 89 89 22

Table 2.1 – Assignment results for both Probit formulations and for the three levels of demand Qod =

50, 100, 200.

2.5 Extensions of the User Equilibrium

The DUE and SUE have been criticized since users do not always choose routes with the

minimal travel times. It is evidenced by survey data (see e.g. Zhu & Levinson 2015) that

users often deviate from optimal choices. This means that they do not always choose routes

with the minimal travel times for their trips. On the other hand, they are different in terms of

socio-demographic characteristics and each user has his/her own purposes (e.g. go to work

or go to do some leisure activity) and preferences for their trip choices. Other frameworks

that consider different types of users’ behavior (Sect. 2.5.1) and heterogeneity (Sect. 2.5.2)

are discussed in the literature. In Sect. 2.5.3, it is summarized the differences between the

different assignment models in terms of the users’ behavior and users’ heterogeneity.

2.5.1 Users’ behavior in traffic assignment models

The assumption of users’ perfect rationality is relaxed to account for a bounded rationality

behavior (Mahmassani & Chang 1987). The concept of bounded rationality was introduced by

the seminal works of Simon (1957, 1966, 1990, 1991) and adapted to departure time choice

by Mahmassani & Chang (1987). The authors also discuss the first ideas to implement the

bounded rational framework for route choices. In the bounded rationality framework, users

choose satisficing routes, i.e. routes with perceived travel times that are inferior to the users’

aspiration levels. The term satisficing stands for the combination of the words suffice and

satisfy. The aspiration levels represent a set of goal variable that should not be surpassed for

the users satisfaction. The most common definition of the aspiration levels, used in traffic

assignment problems, is the indifference band (Mahmassani & Chang 1987).

Regret Theory (Bell 1982; Loomes & Sugden 1982) has also been extensively applied to

traffic assignment problems (Chorus et al. 2006, 2008; Chorus 2010, 2012c,a,b; Chorus et al.

2013; Chorus 2014; Li & Huang 2016). Users aim to minimize their regret with respect to

the unselected routes. They feel joy if they choose the route with the minimum travel time,
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or regret otherwise.

Avineri (2006) implemented the Prospect Theory (Kahneman & Tversky 1979; Tversky &

Kahneman 1992) to traffic assignment. Users evaluate their choices in terms of route travel

times prospects that are framed as gains and losses against a reference point. According to

Prospect Theory, users are: risk-seeking when confronted with prospects of gains; risk-averse

when confronted with prospect of losses; and more sensible to losses and gains (loss effect).

In the literature, there are also other reference dependent models applied to traffic assign-

ment (De Borger & Fosgerau 2008; Delle Site & Filippi 2011, 2012). Delle Site & Filippi

(2011) considered exogenous reference points. While Delle Site & Filippi (2012) discusses

an endogenous reference point Stochastic User Equilibrium. Rank-dependent expected utility

models (Quiggin 1982) have also been adapted to route choice (see e.g. Razo & Gao 2013).

2.5.2 Users’ heterogeneity in traffic assignment models

Each network user is different from each other and has different criteria for their own choices.

These criteria are, for example: the trip purpose; the total travel time; the weather conditions;

the expected travel time; the car occupancy; the car ownership; the time of the day and day

of the week; the trip distance; the comfort and convenience; the personal preferences; or

the travel cost. These criteria lead users to value travel time and/or travel time reliability

differently.

The value of time (VOT) is the marginal cost between the route travel time (TT odk ) and

the travel monetary cost (TCodk ). The first ideas of VOT applied to traffic assignment as

well as the mathematical formulation of the network equilibrium were introduced by Dafermos

(1972, 1980, 1982) and Smith (1979). The perceived utility Uodkm for route k of od pair and

user m is:

Uodkm = TCodk + V OTm × TT odk ,∀m ∧ ∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.34)

where V OTm is the value of time for user m; and TT odk is the distribution of travel times for

route k .

There are discussed two approaches to model the VOT parameter. The first approach

consists in splitting the users demand of each od pair into homogeneous classes of users with

similar average VOT (Dafermos 1972, 1980, 1982; Yang et al. 2002). The second approach

assumes that the VOT is continuously distributed across the demand of each od pair (Dial

1996, 1997; Leurent 1993, 1996, 1998; Lu et al. 2008; Zhang et al. 2013). The statistical

distribution of VOT depends on the users’ socio-demographic features and income. It can be
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derived from survey data (see e.g. Small et al. 2005). Following this second approach, Lu et al.

(2008) introduced the Bi-criterion User Equilibrium applied to dynamic traffic assignment.

Later, considering the Probit model solved through Monte Carlo simulations, Zhang et al.

(2013) extended the framework to include the distributions of the route travel times. Zhang

et al. (2013) considered that V OTm is normally distributed across the population, i.e. V OTm ∼
N(µV OT = 20, σ2

V OT = 10), within a feasible range of V OTm ∈ [αmin = 0.1;αmax = 300].

Another factor that significantly influences the users’ choices is the reliability of travel times

(Bates et al. 2000). A transportation network with large travel times variability increases travel

costs and uncertainty for users. van Lint et al. (2008) identified several sources that cause

variability in the travel times, like special events, weather conditions or traffic conditions to

name a few examples. In the literature, there are several models that account for the the

travel times variability, i.e. the variance of the route travel times distributions. The network

equilibrium corresponds to the Reliability-based User Equilibrium, where users are considered

to have risk preferences. These are incorporated in the cost function through measures of

travel time reliability. The two main approaches to model travel times reliability are: the

mean-variance model (Jackson & Jucker 1982); and the scheduling-delay (Small 1982). In

the case of the mean-variance model (Jackson & Jucker 1982), the perceived utility Uodkm for

route k of od pair and user m is:

Uodkm = TCodk + TT odk + V ORm × σodk ,∀m ∧ ∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.35)

where V ORm is the value of reliability for user m. The value of reliability (VOR) represents the

willingness of users to pay for a reduction in the route travel times variability, i.e. a reduction

in the standard deviation of the route travel times. Carrion & Levinson (2012) present a

review paper about the value of travel time reliability.

The scheduling delay (Small 1982) model considers that arriving at the destination later

than the preferred arrival time will cause disutility. In the same spirit, Watling (2006) proposes

the late-arrival penalized User Equilibrium. Users seek to minimize the route utility, that

includes the generalized cost plus a late arrival penalty.

In the literature, there are other models to solve a Reliability-based User Equilibrium.

The travel time budget (Shao et al. 2006; Shao et al. 2006; Lo et al. 2006; Lam et al.

2008) considers that users seek to minimize their expected travel times plus an extra time

margin with respect to a specified arrival time. In the percentile User Equilibrium (Nie 2011),

the reliability is measure as a percentile of the route travel times. In the bi-criterion User

Equilibrium proposed by Wang et al. (2004), users seek to minimize both the expected and
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variance of route travel times. In the added-variability model (Ordóñez & Stier-Moses 2010),

the users’ risk-aversion is modeled as a safety margin. The mean-excess traffic equilibrium

(Chen & Zhou 2010; Chen et al. 2011b) incorporates two variables, one that measures the

reliability of arriving on time and another one that measures the unreliability of late trips.

Another interesting approach to solve the Reliability-based User Equilibrium is based on a

non-cooperative game where users are pessimistic about their travel times variability and show

a risk-aversion behavior (Bell 2000; Bell & Cassir 2002). In the first proposition of this game

by Bell (2000), there are two players: a user that aims to minimize his/her own travel cost;

and a demon that wants to maximize his trip cost. This game is non-cooperative, meaning

that both players are not aware of the choices of each other. Bell & Cassir (2002) proposes

an extension of this game to multiple players, where several users aim to minimize their own

travel costs in a non-cooperative way.

Jiang et al. (2011) proposes the Multi-criterion Dynamic User Equilibrium that considers

both VOT and VOR in its formulation. The perceived utility Uodkm for route k of od pair and

user m is:

Uodkm = TCodk + V OTm × TT odk + V ORm × σodk ,∀m ∧ ∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2.36)

2.5.3 Summary of traffic assignment models

In Table 2.2, it is summarized the different assignment models described in the previous

sections, in terms of the users’ behavior and target goal for the users’ choices.

2.6 Dynamic traffic assignment and traffic simulation

After the seminal works of Merchant & Nemhauser (1978a) and Merchant & Nemhauser

(1978b), the dynamic traffic assignment has substantially evolved as discussed in the review

paper of Peeta & Ziliaskopoulos (2001) and later updated by Viti & Tampère (2010). How-

ever, its implementation remains quite challenging to represent realistic traffic dynamics and

users behavior. Moreover, the system input parameters might also be time-dependent, adding

additional complexity to the mathematical traceability of the network equilibrium. The dy-

namic traffic assignment can be classified into the analytical approach (Sect. 2.6.1) and the

simulation based approach (Sect. 2.6.2). In Sect. 2.6.3, the next challenges of dynamic

traffic assignment are highlighted, with particular emphasis to the work developed in the next

chapters of this thesis.
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1st Wardrop principle
• users have a perfect information about route travel times and
traffic states.
• users aim to minimize their own perceived travel times.

Random Utility
• users have an imperfect information about route travel times and
traffic states.
• users aim to minimize their perceived own travel times.

Prospect Theory

• users are time prospect maximizers.
• users choose among probabilistic alternatives that involve risk.
• users are risk-seeking and risk-averse depending on the time
prospect.
• users are more sensible to gains than losses (loss-effect).

Bounded Rationality
• users are bounded rational.
• users choose satisficing routes that satisfy their AL.

Regret Theory
• users are regret-averse.
• users choose the route that minimizes their regret compared to
the other routes in Ωod .

VOT
• users are heterogeneous and value their travel time differently.
• users choose the route that minimizes their marginal cost.

VOR
• users are willing to pay to reduce the travel time reliability.
• users choose the route that minimizes their marginal cost.

Table 2.2 – Summary of assignment models discussed in the previous sections.

2.6.1 Analytical approach

The analytical approach is suitable to study the properties of dynamic traffic assignment

frameworks, such as its existence and uniqueness. In this approach, the network equilibrium

is calculated at each time instant. Analytical approaches have been proposed in the literature

via several frameworks: the variational inequality (Friesz et al. 1993; Huang & Lam 2002;

Lo & Szeto 2002; Szeto & Lo 2004, 2006; Han et al. 2013); nonlinear complementary

problem (Wie et al. 2002; Ban et al. 2008; Han et al. 2011); fixed point problem (Szeto

et al. 2011); differential variational inequality (Friesz et al. 2013; Friesz & Meimand 2014);

and differential complementary problem (Ban et al. 2012). Other studies discuss graphical

methods to determine the Dynamic System Optimum (Muñoz & Laval 2006) and the Dynamic

User Equilibrium (Laval 2009).

In the literature, several studies analyzed the unicity and existence of the dynamic user

equilibrium considering several of the previous frameworks (see e.g. Akamatsu 2000; Wie et al.

2002; Huang & Lam 2002; Szeto & Lo 2006; Nie & Zhang 2010; Iryo 2011; Corthout et al.

2012). Wie et al. (2002) investigates the existence and uniqueness of the link-based Dynamic
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User Equilibrium, considering the nonlinear complementary problem formulation. The authors

show that the existence of a solution for the Dynamic User Equilibrium is guaranteed by the

Brouwer’s fixed-point theorem. According to this theorem, the existence of a solution is true

if the solution of fixed point problem is bounded. In this case, the route flows are non-negative

and the sum of all routes flows connecting one od pair is equal to the total demand Qod . Wie

et al. (2002) also show that the uniqueness of the Dynamic User Equilibrium is guaranteed

by imposing strict monotonicity conditions on the link travel cost and demand functions.

Corthout et al. (2012) analyzed the non unique solutions of the dynamic traffic assignment

problem. They show that the multiple, ambiguous priority ratios in the distribution of different

flows in the outgoing links of a node is a source of the non-unicity of the network equilibrium.

2.6.2 Simulation approach

The simulation approach considers traffic simulations to calculate time-dependent path costs

that account for congestion, shock-waves and spillback effects. The assignment is done

through a quasi-static approximation as function of the route travel times. This approach

is able to capture the traffic dynamics and driver’s behavior. However, the existence and

uniqueness of the network equilibrium might not be guaranteed. Several studies consider

this dynamic traffic assignment framework for large scale applications, using different traffic

simulators: DYNASMART applied to the city of Chicago (USA) (Ji & Geroliminis 1994;

Mahmassani et al. 2013); DYNAMIT applied to the city of Beijing (China) (Ben-Akiva et al.

2012); AIMSUN applied to the city of Melbournne (Australia) (Shafiei et al. 2018); Symuvia

(Leclercq 2007; Laval & Leclercq 2008) applied to Villeurbarnne and the 3rd and 6th districts

of Lyon (France) (Ameli et al. 2018).

2.6.3 Statement of contribution beyond the literature

The main focus of this thesis is put on the application of different kinds of the users’ behavior

considering a dynamic implementation with a traffic simulator at different network scales.

Most of the studies in the literature focus in the dynamic implementation of the DUE and SUE

models. Nevertheless, there are a few studies that pay attention to the users’ bounded rational

behavior (e.g. Ji & Geroliminis 1994; Mahmassani & Liu 1999). Up to now, the Prospect and

Regret theories deal with static traffic assignment problems on small city networks. In the

follow-up of this Part I, the influence of the users’ behavior on a city network performance

using a mesoscopic Lighthill-Whitham-Richards (LWR) traffic model is investigated. To this

end, the three models previously mentioned (i.e. Prospect Theory, Bounded Rationality and
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Regret Theory) are considered and the tests performed on a synthetic Manhattan network.

For the first time, the dynamic implementation of Prospect Theory, considering distributions

of travel times, is investigated. The differences between several tunings of Prospect Theory

and the benchmark DUE and SUE are analyzed. A methodological framework considering the

ideas of bounded rationality, the users’ indifferent and strict preferences and distributions of

travel times is proposed. In this framework, users are assigned on different routes according to

a specific rule that depends on their preferences. It generalizes the initial ideas of users strict

preferences proposed by Zhao & Huang (2016). The influence of the users preferences and

level of bounded rationality on the network performance is also investigated. These studies

are the first to infer the role of the users behavior on a city network internal and outflow

capacities as well as its mean speed.

In a second Part II, the work developed in this thesis contributes to the development of

a dynamic traffic assignment framework for multi-regional networks, where the traffic states

are simulated by an MFD model. This includes the definition and characterization of regional

paths as well as the formulation of the regional network equilibrium. For the definition and

characterization of the regional paths, a set of trips and the city network partitioning are

considered. In a first time, three methods are proposed and tested to gather the regional

paths and define the regional choice sets. Two of these methods are based on an extensive

city of trips in the city network and its partitioning. The other method is based on shortest

path calculations directly on the regional network, where a supply-oriented cost function is

proposed. The latter is related with the flow capacity of the incoming links to the nodes

in the city network that allow to travel between adjacent regions. In a second time, four

methods are proposed to calculate distributions of trip lengths to characterize the regional

paths. The important role of the proper trip lengths definition for the MFD-based models

is also highlighted. In a third step, the regional network equilibrium are formulated based on

the distributions of trip lengths and the time evolution of the mean speed inside the regions.

This dynamic traffic assignment framework is further extended to consider bounded rational

and regret-averse users.
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3
Influence of the users risk-aversion and

risk-seeking behavior on a traffic network
performance: a simulation study

Abstract
In this chapter, we investigate the traffic network response to user’s trip choices for proba-
bilistic route solution process under risk. For this, we consider the application of Prospect
Theory for representing the user’s decisions and a mesoscopic Lighthill-Whitham-Richards
(LWR) traffic model for characterizing traffic flow dynamics. We analyze the network per-
formance in terms of its internal and outflow capacities as well as its internal mean speed
compared to more classical route choice models like the Deterministic and Stochastic User
Equilibrium (DUE and SUE). In a network setting with few alternatives, we show that
the network internal and outflow capacities and internal mean speed increase compared to
the SUE. The user’s risk-aversion and risk-seeking behavior in terms of route travel time
prospects is balancing the uncertainties and they are more likely to act with like being
perfectly rational, i.e. optimizing their own route travel times. Moreover, the route flows
at equilibrium for the PT implementations lie in between the SUE and DUE ones.

Keywords: Prospect Theory; User’s risk-aversion and risk-seeking behavior; Network per-
formance; LWR model; Traffic simulation.

This chapter is based on a paper under review for publication on Transportation Letters:
The International Journal of Transportation Research.
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3.1 Introduction

The simulation of traffic networks requires the definition of mathematical models to track

vehicle’s trips. Route choice is a critical component of such models as it describes the

distribution of travel demand over the available routes. The latter directly influences the

network performance and it is then important to study the network response to the loading

process. The concept of route choice modeling is related to the user’s routes selection

between origin and destinations (od) pairs in the city network. It was first introduced by

Wardrop (1952). According to the first Wardrop’s principle, users aim at minimizing their

own travel times. This approach considers that they are selfish, fully informed and have a

perfect perception of the route travel times. This case corresponds to the Deterministic User

Equilibrium (DUE). As an extension to the DUE, Daganzo & Sheffi (1977) introduced the

Stochastic User Equilibrium (SUE) to account for the users’ inaccurate perception of route

travel times. Daganzo & Sheffi (1977) and Daganzo (1982) assumed that route travel times

are normally distributed, introducing the Probit model to route choice modeling. It is able to

capture the correlation between overlapping routes, i.e. routes that share links in common.

But, the implementation of this model in the dynamic context is scarce because it requires to

integrate a density function of a multivariate normal distribution over all possible routes for

one origin-destination (od) pair. One solution is to solve these integrals using a simulation

approach. Of particular interest for this study, we focus on the Monte Carlo simulations

discussed by Sheffi (1985). We also consider that route travel times are gamma distributed

(Nielsen 1997).

The DUE and SUE assume that users are cost minimizers. In this chapter, we aim to test

more advanced descriptions of the user’s behavior and evaluate how it influences the network

performance compared to the DUE and SUE. In the literature, alternative models applied

to route choice have been considered. Regret Theory considers that users aim to minimize

their perceived regret with respect to the other unselected routes (e.g. Chorus 2014; Li &

Huang 2016). The ideas of bounded rationality and satisficing behavior introduced by Simon

(1957, 1966, 1990, 1991) were adapted to departure time modeling (Mahmassani & Chang

1987) and later to route choice (Huang & Lam 2002; Szeto & Lo 2006). Users are driven by

aspiration levels that represent a set of threshold that should be verified for their satisfaction.

This represents the satisficing behavior. It comes from the concatenation between the words

satisfy and suffice. In the route choice context, users are satisfied with any route that has an

inferior travel time to their aspiration level. Prospect Theory (PT) introduced by Kahneman

& Tversky (1979) and Tversky & Kahneman (1992) to the economic field, models user’s
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choices between probabilistic alternatives that involve risk. It was adapted to route choice by

Avineri & Prashker (2004). Avineri (2006) extended the concept of the User Equilibrium to

account for the user’s risk-taking behavior, using PT. He stated that at equilibrium no user

can increase his/her own travel time prospect by unilaterally changing routes. Connors &

Sumalee (2009) generalized the prospect user equilibrium for stochastic networks. After the

seminal works of Avineri & Prashker (2004) and Avineri (2006), PT has also been applied

in the literature to model: departure time choice (Fujii & Kitamura 2004; Jou et al. 2008);

route choice (Avineri & Prashker 2004; Viti et al. 2005; Avineri 2006; Connors & Sumalee

2009; Sumalee et al. 2009; Gao et al. 2010; Xu et al. 2011); or bus lines choice (Avineri

2004).

In the application of PT to route choice, route travel times are evaluated as travel time

prospects in terms of gains and losses against a reference point. These gains and losses are

balanced through separable decision weights. In PT, users are: risk-averse when confronted

with prospects of gains; risk-seeking when confronted with prospects of losses; and more

sensible to losses than gains (i.e. the loss effect). There are two important factors that

influence the route flows at equilibrium calculated through PT: (i) the setting of the reference

point T0 (Avineri 2006; Connors & Sumalee 2009); and the set of the user’s risk-aversion

parameter that measures the user’s sensitivity to gains and losses (Avineri & Bovy 2008; de

Palma et al. 2008).

The application of PT to route choice are based on static implementations and small

networks. To the best of the authors knowledge, there are only two studies (Xu et al. 2011;

Yang & Jiang 2014) that discuss an extension of PT to account for the route travel times

uncertainties. But, these studies are again based on a static setting of PT. The application

of PT has not yet been tested in detail in a dynamic context, i.e. considering a traffic

simulator to calculate time-dependent route costs that account for congestion, shock-waves

and spillback effects. In this study, we revisit the concept of Prospect-based User Equilibrium

to investigate the influence of the user’s choices for probabilistic alternatives under risk, on

the network performance at an aggregated level. We focus our analysis on both internal and

outflow network capacity as well as on the internal mean speed. As a benchmark, we evaluate

the network performance against the DUE and SUE models. We also analyze the sensitivity

of the PT to the setting of the reference point and the user’s risk-aversion parameters. We

consider a dynamic implementation of PT, on a Manhattan network. Time-dependent route

travel times are calculated through a a Lighthill-Whitham-Richards (LWR) mesoscopic traffic

simulator (Leclercq & Becarie 2012).

This chapter is organized as follows. In Sect. 3.2, we discuss the methodological frame-
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work. In Sect. 3.3, we introduce the test scenario and discuss the results of the dynamic

simulation at both the individual route flows and the aggregated network level. In Sect. 3.4,

we outline the conclusions.

3.2 Methodological framework

3.2.1 Prospect Theory: basic formulation

The application of PT consists of two steps: the editing phase, where time prospects are

framed as gains and losses against a reference point T0; and an evaluation phase, where the

maximum route time prospect is chosen. The time prospect Xk(tk) of route k is:

Xk(tk) = vk(tk)ω(pk),∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (3.1)

where vk(tk) is the value function and tk is the deterministic travel time of route k ; ω(pk)

is the weighting function for gains and losses; pk is the probability that the perceived travel

time of route k is a gain or a loss; Ωod is the route choice set; and Ξ is the set of all od pairs

of the city network.

For the definition of vk(tk) and ω(pk), we adopt the definitions of Kahneman & Tversky

(1979) and Tversky & Kahneman (1992).

The value function vk(tk) is defined as:

vk(tk) =

(T0 − tk)α
PT
, if tk ≤ T0

−λPT (tk − T0)β
PT
, if tk > T0

(3.2)

where T0 is the reference point; αPT ≤ 1 and βPT ≤ 1 represent the degrees of diminishing

sensitivity for gains and losses, respectively; and λPT ≥ 1 is the loss-aversion degree. This

definition of vk(tk) is concave for gains and convex for losses. The parameters αPT and βPT

control its concavity and convexity. Note that if αPT = βPT = 1 users are pure loss averse.

In Fig. 3.1, we show the shape of vk(tk).

The weighting function ω(p) is defined as:

ω(pk) =


pγ
PT

k

(pγ
PT

k +(1−pk)γ
PT

)
1

γPT
, if tk ≤ T0

pδ
PT

k

(pδ
PT

k +(1−pk)δ
PT

)
1

δPT
, if tk > T0

(3.3)

where γPT > 0 and δPT > 0 capture the distortion in the perception of the probability pk
for gains or losses, respectively. These parameters also control the curvature of ω(pk) as
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defined in Eq. 3.3. This definition of ω(pk) has some important properties: (i) w(0) = 0;

(ii) w(1) = 1; (iii) is asymmetrical with an inflection point at 0.3 (Prelec 1998); and (iv) it

overweights small probabilities and underweights higher ones. In Fig. 3.1, we show the shape

of ω(pk).

Fig. 3.1 – Left: Value function vk(tk). Right: Probability weighting function ω(pk). These functions are defined
by Kahneman & Tversky (1979) and Tversky & Kahneman (1992).

The application of PT to route choice depends on the definition of the reference point

T0 to evaluate the time prospects as gains or losses and on the calibration of the set of

(αPT , βPT , λPT , γPT , δPT ), that represent the set of the user’s risk-aversion parameters.

The setting of the reference point T0 has not been consensual in the literature (de Palma

et al. 2008). Avineri (2006) and Connors & Sumalee (2009) considered an exogenous defi-

nition of T0. Avineri & Bovy (2008) proposed to consider the mean or median of the route

travel times to define T0. Gao et al. (2010) proposes to consider T0 as a latent variable. The

authors propose to define T0 as: the free-flow travel time; the worst travel time; or the mean

travel time. Ben-Elia & Shiftan (2010) also considers the mean travel times. To determine

T0, Zhou et al. (2014) considered the average travel times calculated from the route travel

time distributions of the different alternatives. Also note that, T0 is context dependent and

may vary across users. For this study, we consider a common reference point T0 for all users

sharing the same od pair (that is T od0 ) and three endogenous definitions:

T od0 = mean(
−→
V od) (3.4)
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T od0 = median(
−→
V od) (3.5)

T od0 = mode(
−→
V od) (3.6)

where
−→
V od is a vector that contains the average route travel times for the od pair.

For the calibration of the user’s risk-aversion parameters, we consider two sets of values

discussed in the literature: (αPT , βPT , λPT , γPT , δPT ) = (0.88, 0.88, 2.25, 0.61, 0.69) (Tver-

sky & Kahneman 1992); and (αPT , βPT , λPT , γPT , δPT ) = (0.37, 0.57, 1.51, 0.74, 0.74) (Xu

et al. 2011). Note that these parameters are also context dependent. So, one should be

careful in drawing conclusions when considering the set of parameters proposed by Tversky &

Kahneman (1992), since they were not calibrated for route choice context. But, the set of

parameters presented in Xu et al. (2011) were calibrated in a route choice experiment.

3.2.2 Prospect Theory Stochastic User Equilibrium: solution framework

Considering the basis of Prospect Theory, users aim to maximize their travel time prospect

Xk(tk),∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ. Then, at the Prospect-based User Equilibrium, the time

prospects of all used routes are equal to the maximum time prospect value for each od pair.

Moreover, under equilibrium conditions, no user can increase his or her own time prospect

Xk(tk) by unilaterally changing routes. This definition of equilibrium was introduced by Avineri

(2006). Our mathematical formulation follows the work of Xu et al. (2011). Mathematically,

the Prospect-based User Equilibrium can be described as (Xu et al. 2011):

Qodk (max(Xod
k (todk ))−Xod

k (todk )) = 0,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (3.7)

Qodk > 0, if Xod
k (todk ) = max(Xod

k (todk ))

Qodk = 0, if Xod
k (todk ) ≤ max(Xod

k (todk ))
(3.8)

∑
k

Qodk = Qod ,∀(o, d) ∈ Ξ (3.9)

qa ≥ 0,∀a ∈ Γa (3.10)

Qodk ≥ 0,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (3.11)
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where Qodk is the flow of route k of the od pair; qa is the flow of link a; Γa is the set of links

of the graph that represents the traffic network; and Qod is the total demand for the od pair.

To determine the Prospect-based User Equilibrium defined by the system of equations

Eq. 3.7 to Eq. 3.11, we consider the Method of Successive Averages (or MSA). Our im-

plementation of the PT considers gamma distributed route travel times (Nielsen 1997), with

scale parameter ηa and shape parameter ζa. To account for the route travel time distributions,

we make use of Monte Carlo simulations (Sheffi 1985). We consider that the distribution

of travel times are defined at the link level and discretize them into M samples. Let t ia be a

sample i of the travel time of link a, ∀a ∈ Γa. We assume that the link utilities are additive,

to calculate the sample i of the travel time of route k , t ik , as:

t ik =
∑
a∈Γa

t iaδak ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ ∧ ∀i = 1, . . . ,M (3.12)

where δak is a dummy variable that equals 1 if route k travels on link a, or 0 otherwise.

For each sample i = 1, . . . ,M, we locally solve the corresponding User Equilibrium problem

considering PT. In more detail, each sample t ik is evaluated in terms of travel time prospects

Xk(t ik) (Eq. 3.1) and framed as a gain or a loss depending on the reference point T od0 . We also

have to calculate the probability pk . For this, we discretize the route travel time distributions

into small bins and we calculate the surface area of each bin. This defines a set of probabilities

for each route k of the od pair. These probabilities are then considered as a probability of

a gain or a loss depending on the value of t ik compared against T od0 . Then, for each od

pair, users choose the route with the highest travel time prospect, based on an all-or-nothing

process. The new temporary route flows, Qod,∗k , correspond to averaging all of the choices

made for each sample set. Qod,∗k is then used to update the new route flows Qod,j+1
k at

iteration j + 1, as:

Qod,j+1
k = Qod,jk + αj{Qod,∗k −Qod,jk },∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (3.13)

where Qod,jk represents the route flows at iteration j of the MSA; and αj is the descent step

of the MSA.

This process is repeated at each iteration j of the MSA. To ensure the good convergence

properties of the MSA, one should properly choose the descent step αj . For the theoretical

convergence of the algorithm, the following two conditions should be satisfied (Sheffi 1985):

∞∑
j=1

αj =∞ (3.14)
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lim
j→∞

αj → 0 (3.15)

In this study, we consider the following definition of αj , that satisfies both Eq. 3.14 and

Eq. 3.15: αj = 1
j
. We consider two stopping criteria for the MSA:

• the number of violations N(λ) (Sbayti et al. 2007), that represent the number of cases

where |Qod,j+1
k − Qod,jk | is superior to a pre-defined path convergence threshold Φ, for

each od pair. The convergence is achieved when N(λ) ≤ Φ, for each od pair.

• a maximum number of j iterations Nmax . That is j ≤ Nmax .

We present the solution algorithm based on the MSA implementation and the previous

description, in Algorithm 2. A mesoscopic LWR traffic simulator is used to update the route

travel times. The network loading is repeated until the equilibrium conditions are reached.

3.3 Dynamic implementation of PT on a Manhattan network

3.3.1 Test scenario definition

For the dynamic implementation, we consider the Manhattan network composed by 134 links

shown in Fig. 3.2. All links have a similar length of 100 meters. Traffic lights control

all intersections. A cycle of 45 seconds is considered and the green light duration for the

horizontal links is 30 seconds.

A triangular fundamental diagram is considered for each lane of the network, with the

following parameters: u = 15 (m/s), for the free-flow speed; w = 5 (m/s) for the wave

speed; and kjam = 0.2 (veh/m/lane) for the jam density. The case study network, has six

entries (identified by o1 to o6 in Fig. 3.2) and exits (identified by d1 to d6 in Fig. 3.2). For

entry, we consider a constant inflow (demand) of 1.0 (veh/s) that is equally assigned to the

six exits during the simulation period. The entry links (i.e., from o1 to 6) have two lanes.

The total link flow is equally assigned on each lane. There is no capacity restriction at the

exits. In total there are 36 possible od pairs. To define the choice set Ωod , we consider the

3 K-shortest paths per od pair. This gives a total of 108 routes. The total simulation period

is T = 3000 seconds. For the MSA convergence, we set Φ = 0 and Nmax = 250. For the

Monte Carlo simulations, a total of M = 5000 samples are considered.
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Input the traffic network, demand scenario and simulation duration T .
Calculate the route choice set Ωod ,∀(o, d) ∈ Ξ.
Initialize j = 1, ηa, ζa, αj=1 = 1.
Initialize the route flows Qod,j=1

k = 0,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
Perform an initial network loading.
while N(λ) ≥ Φ or j ≤ Nmax do

Set Qod,jk = Qod,j+1
k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.

Discretize the link travel time distributions into M samples.
Update the endogenous reference point T od0 .
Calculate the set of probabilities pk for each route k of each od pair.
for i=1 to M do

Update the set of samples t ik ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
Calculate the value function vk(tk) (Eq. 3.2) and the weighting function ω(p)

(Eq. 3.3), ∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
Determine the time prospect Xk(tk),∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (Eq. 3.1).
For each od pair, users are assigned to the route with the maximum travel
prospect based on an all-or-nothing assignment.

end
Update the new route flows Qod,∗k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ, based on an averaging
of the users choices over all M samples.
Update the route flows based on Eq. 3.13.
Run the LWR mesoscopic simulator (Leclercq & Becarie 2012).
Based on the link travel times, fit a gamma distribution to update the set of ηa and
ζa.
Calculate N(λ).
Update αj = 1

j
.

Set j = j + 1.
end
Save the route flows: Qod,j+1

k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
Algorithm 2: Dynamic implementation algorithm of the PT model previously described.



Dynamic traffic assignment for multi-regional transportation systems considering different kinds of
54users’ behavior

3.3. Dynamic implementation of PT on a Manhattan network

Fig. 3.2 – Manhattan network. The origins are shown by the indicators from o1 to o6 and the destinations from
d1 to d6.

3.3.2 Analysis of the individual route flows and their sensitivity to Tod0 and the risk-
aversion parameters

In this section, we first analyze the sensitivity of the PT implementation to the setting of Tod0

and to the set of users’ risk-aversion parameters. Second, we analyze the individual route flows

for the different settings of PT compared to the DUE and SUE. In this study, we consider

three definitions of Tod0 and two sets for the users risk-aversion parameters. Considering the

DUE and SUE cases, we have a total of 8 simulation scenarios. Each simulation scenario is

identified by a model label as listed in Table 3.1. We also list the number of descent iterations

required for each simulation scenario to converge.

To analyze the sensitivity of the PT implementation to the setting of Tod0 and to the set

of users’ risk-aversion parameters, we:

i. fix the set of users’ risk aversion parameters (αPT , βPT , λPT , γPT , δPT ) and change Tod0

as defined by Eq. 3.4 to Eq. 3.6. This allows to investigate the sensitivity of the route

flows to Tod0 , for both sets of users’ risk aversion parameters.

ii. fix Tod0 and change the set of users’ risk aversion parameters (αPT , βPT , λPT , γPT , δPT )
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Model Tod0 Parameters ID Model
MSA

j-th iteration
DUE ∼ ∼ 1 89
SUE ∼ ∼ 2 22
PT Mean KT 3 31
PT Median KT 4 33
PT Mode KT 5 28
PT Mean Xu 6 42
PT Median Xu 7 42
PT Mode Xu 8 36

Table 3.1 – Descent step iterations of the MSA are listed. These values are listed for the eight simulation
scenarios. For the PT, each scenario is identified by a Tod0 and a set of the user’s risk-aversion parameters
(αPT , βPT , λPT , γPT , δPT ). Each of the simulation scenarios is identified by an ID Model as listed in the table.

KT parameters
Median Mode

Mean 0.027 0.017
Median ∼ 0.022

Xu parameters
Median Mode

Mean 0.017 0.023
Median ∼ 0.023

Table 3.2 – sensitivity to Tod0 , for the KT (top) and Xu (bottom) parameters.

Mean Median Mode
0.041 0.035 0.033

Table 3.3 – sensitivity to the user’s risk-aversion parameters (αPT , βPT , λPT , γPT , δPT ).

by considering the parameters defined by KT (Tversky & Kahneman 1992) and Xu (Xu

et al. 2011). This allows to investigate the sensitivity of the route flows to the users’

risk aversion parameters, for the three settings of Tod0 .

For the analysis of both cases i. and ii., we calculate the sum square of the residuals

between the route flows at equilibrium for all possible combinations of the PT simulation

scenarios. The sum square of the residuals for case i. are listed in Table 3.2. While, the

sum square of the residuals for case ii. are listed in Table 3.3. As one can observe, the

implementation of PT is approximately equally sensible to a change in Tod0 rather than on the
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users’ risk-aversion parameters (αPT , βPT , λPT , γPT , δPT ).

We now analyze the route flows calculated through the 6 PT settings compared to the

DUE and SUE. In Fig. 3.3 and Fig. 3.4, we show the different route flows for all the 8

simulation scenarios and all 36 od pairs. We observe that the route flows for the PT settings

do not show significant differences compared to the SUE, for several od pairs. But, for other

od pairs they tend to approach the DUE route flows. This is due to the low number of

prospects (i.e., the low number of routes listed in Ωod) that are evaluated as well as the

definition of T od0 . According to these three definitions of T od0 (Eq. 3.4 to Eq. 3.6), routes

with the lowest travel times per od pair will be mainly evaluated as prospect of gains. While,

routes with longer travel times will be evaluated as prospect of losses and thus not probable

for the user’s choices since they are prospect maximizers. Considering these three definitions

of T od0 , we always have at least one route that is mostly framed as a loss. This is due to the

route travel times distributions and the setting of the Monte Carlo simulations, where not all

the local samples will be framed as a loss, yielding low flows for these routes at equilibrium.

3.3.3 Analysis of the aggregated traffic states

In this section, we analyze the influence of the user’s choices for probabilistic alternatives that

involve risk on the network performance. We investigate changes in the network internal and

outflow capacity as well as on its internal mean speed compared to the DUE and SUE mod-

els. The network performance is evaluated through the Macroscopic Fundamental Diagram

(MFD). We are interested in investigating the critical accumulation of vehicles nc and the

critical production Pc of the MFD obtained for the different settings of the PT, compared

against the values for the reference models. In Fig. 3.5 and Fig. 3.6, we show the evolution

of the total travel distance (TTD) as well as the outgoing flow Qout as function of the total

travel time (TTT), for the DUE, SUE and the 6 settings of the PT. As one can observe,

there is a large points overlap of the MFD functions as well as of the outflow Qout versus

TTT. To better highlight the differences between the models, we define three criteria that

represent:

• the relative difference between the average TTD of the different PT settings (TTD∗)

and of the reference models (TTDref ):

αTTD =
TTD∗ − TTDref

TTDref
× 100 (3.16)

• the relative difference between the average TTT of the different PT settings (TTT ∗)
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Fig. 3.3 – Route flow distributions for the 8 simulation scenarios and for the od pairs: o = 1, . . . , 6; and
d = 1, 2, 3. Each simulation scenario is identified by the Model ID as listed in Table 3.1.
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Fig. 3.4 – Same as in Fig. 3.3, but for the od pairs: o = 1, . . . , 6; and d = 4, 5, 6.
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Fig. 3.5 – (i) Total travel distance (TTD) [in m] as function of the total travel time (TTT) [in s]. (ii) αTTD
versus αTTT for the three PT settings. (iii) Vehicles outflow (Qout) as function of the Total Travel Time
(TTT). (iv) αQout versus αTTT for the three PT settings. In subplots (i) and (iii), the results are shown for the
DUE, SUE and the three settings of PT considering the KT parameters. In subplots (ii) and (iv), the circle dots
represent the relative differences between the three PT settings and the DUE, while the cross dots represent
the relative differences between the three PT settings and the SUE.
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Fig. 3.6 – Same as in Fig. 3.5, but for the Xu parameters.
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and of the reference models (TTT ref ):

αTTT =
TTT ∗ − TTT ref

TTT ref
× 100 (3.17)

• the relative difference between the average Qout of the different PT settings (Q∗out) and

of the reference models (Qrefout):

αQout =
Q∗out −Qrefout

Qrefout
× 100 (3.18)

The average values for TTD, TTT and Qout are calculated for the simulation interval

between 500 and 2500 seconds, for the 8 model settings. Based on this, we calculate αTTD,

αTTT and αQout and we estimate confidence intervals for these three criteria. The results

are shown in Fig. 3.5 for the KT parameters and in Fig. 3.6 for the Xu parameters. The

relative differences between the PT settings and the DUE are represented by the circle dots,

while for the SUE are represented by the cross dots. These three criteria allow us to analyze

the network capacity and performance. If αTTD < 0, the network internal capacity decreases

compared with the reference model. In this case, the accumulation of vehicles inside the

network is higher and congestion might spread backwards, increasing the average waiting

times for vehicles to enter the network. The network inflow capacity is consequently reduced.

If αTTT < 0, the mean speed of vehicles inside the network is higher than the reference model.

If αQout > 0, the outflow capacity of the network is higher compared against the reference

model.

One can observe in Fig. 3.5 and Fig. 3.6 that, in general, there are no significant differences

between the six PT implementations and the DUE. The only exception is model 8, where the

network capacity is reduced by ∼5% compared to the DUE. In this case, the accumulation

increases and the outflow capacity decreases. On the other hand, the network capacity and

mean speed increases for the PT implementations compared to the SUE. The only exception

is model 8, where there are not many significant differences. The increase of the network

capacity means that the network is less congested compared to the SUE case and the outflow

capacity increases.

In summary, in a scenario setting with few alternatives, we show that the user’s risk-

aversion and risk-seeking is balancing the uncertainties of the route travel times and people

are more likely to act as personal optimizers, i.e. they tend to minimize their own travel times.

This means that a route travel time prospect maximization behavior tends to be similar to a
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cost minimization behavior, in terms of individual travel times.

3.4 Conclusions

In this chapter, we analyze the implementation of Prospect Theory considering that users

perceive route travel times with uncertainty in a dynamic context. The latter is modeled

through Monte Carlo simulations. We consider time-dependent cost paths that account for

congestion and spillback effects. For this, we considered a dynamic LWR mesoscopic dynamic

simulator (Leclercq & Becarie 2012). We compare the individual route flows and investigate

the network capacity and performance. The tests are performed on a Manhattan network. We

show that the implementation of PT approximately equally sensible to a change in T odo than

in the set of the user’s risk-aversion parameters. The route flows at the network equilibrium

for the six PT implementations are in between the SUE and the DUE ones. In a network

setting with few alternatives, we show that in terms of the network performance, there are

not significant differences between the six PT implementations and the DUE. However, in

most of the PT implementations, the network internal and outflow capacities and the mean

speed increase compared to the SUE. The time prospect maximization behavior is balancing

the route travel times uncertainties and users tend to act more likely as perfectly rational

beings for their route choices.

As future research, we note that these results should be further investigated considering

a more complex network topology and demand scenarios. This work can also be extended to

account for heterogeneous population of users, for example, with preferences for their trans-

portation mode. The idea is to split the heterogeneous population of users into homogeneous

classes with similar preferences in terms of prospects. Then, for each class, one defines a T od0

and a set of the risk-aversion parameters.
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4
Effects of users’ bounded rationality on a traffic

network performance: a simulation study

Abstract
In this chapter, we revisit the principle of bounded rationality applied to dynamic traffic
assignment to evaluate its influences on network performance. We investigate the influ-
ence of different types of bounded rational user behavior on: (i) route flows at equilibrium;
and (ii) network performance in terms of its internal, inflow and outflow capacities. We
consider the implementation of a bounded rational framework based on Monte Carlo sim-
ulation. A Lighthill-Whitham-Richards (LWR) mesoscopic traffic simulator is considered
to calculate time-dependent route costs that account for congestion, spillback and shock-
wave effects. Network equilibrium is calculated using the Method of Successive Averages.
As a benchmark, the results are compared against both Deterministic and Stochastic User
Equilibrium. To model different types of bounded rational user behavior we consider two
definitions of user search order (stochastic and strict preferences) and two settings of the
indifference band. We also test the framework on a toy Braess network to gain insight into
changes in the route flows at equilibrium for both search orders and increasing values of
aspiration levels.

Keywords: Satisficing behavior; Users preferences; Network performance; LWR model;
Traffic Simulation.

This chapter is based on the paper: Batista et al. (2018), Effects of users’ bounded
rationality on a traffic network performance: a simulation study. Journal of Advanced
Transportation, Article ID 9876598, https://dx.doi.org/10.1155/2018/9876598 .

https://dx.doi.org/10.1155/2018/9876598
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4.1 Introduction

The first notions of traffic assignment were introduced by Wardrop (1952). According to

the first Wardrop principle, users aim to minimize their personal route travel times. This

leads to a network equilibrium called the Deterministic User Equilibrium (DUE) and it is that

most commonly used in dynamic traffic assignment (DTA) problems. Under DUE conditions,

no user can decrease his/her own travel time by unilaterally switching routes. However,

the first Wardrop principle assumes that users are perfectly rational and perceive all routes

and network traffic states perfectly although information on route travel times (i.e., traffic

states) is not necessarily perfect. To overcome this problem, Daganzo & Sheffi (1977) and

Daganzo (1982) introduced the Stochastic User Equilibrium (SUE), to take into account the

uncertainty of route travel times. The Multinomial Logit and C-Logit are the Random Utility

models (RUM) most commonly used in DTA problems. Nonetheless, both these models

present several limitations when dealing with correlations between routes. In this study we

focus in particular on the Probit model solved using Monte Carlo simulations (Sheffi 1985).

Revealed (Zhu 2011) and stated (Avineri & Prashker 2004) preference surveys show that

users tend to choose sub-optimal routes instead of optimal ones (Zhu & Levinson 2015).

We emphasize that a sub-optimal route is understood as a route with a longer travel time

than the minimum one for the origin-destination (od) pair. In the literature on static traffic

assignment, there are other alternative model frameworks that take into account different

types of user behavior. One example is the Prospect Theory (Kahneman & Tversky 1979;

Tversky & Kahneman 1992) which consider the user’s risk-seeking and risk-aversion behavior.

It was adapted to the context of route choice by Avineri (2006). In the Prospect Theory,

users evaluate the different routes in terms of time prospect and choose the route with the

maximum prospect. Users are risk-averse when confronted with prospects of gains and risk-

seekers when confronted with prospects of losses and are more sensitive to losses than gains

(loss effect). Another example is the Regret Theory (Bell 1982; Loomes & Sugden 1982).

The users aim to minimize their regret with respect to the non-selected routes (Chorus 2012b;

Li & Huang 2016). If the users choose the route with the minimum travel time, they will feel

joy or feel regret otherwise. Another example is the notion of bounded rationality introduced

by the seminal works of Simon (1957, 1966, 1990, 1991). He stated that users’ choices are

driven by aspiration levels (AL), which represent a set of goal or target variables that should

be achieved or exceeded for the users’ satisfaction. In his original idea, the user searches

until a satisfactory alternative is found. This term used to describe this process was coined

by Simon as satisficing, which stands for the combination of satisfy and suffice. In this
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study, we focus on the application of the notion of bounded rationality in a dynamic context,

by considering distributions of route travel times and a traffic simulator. The goal of this

study is to investigate the influence of bounded rational user behavior on individual route

flows and network performance. This type of study is very important for decision-making in

transportation planning. As an example, let’s consider that a municipality foresees to increase

a transportation network performance. To this end, the engineers plan to construct a new

road to redistribute the traffic and alleviate the congestion in the network. Through this study,

considering that users are boundedly rational, it is possible to evaluate if the performance of

the network increases and whether or not the construction of the new road is a good planning

decision.

Mahmassani & Chang (1987) discussed the first notion of bounded rationality applied

to traffic assignment, but no mathematical formulation was given. To define users AL,

Mahmassani & Chang (1987) introduced the concept of indifference band (IB), where a

route is satisficing if the difference between its travel cost and that of the best available

route is lower than a given threshold (or IB). The implementation of bounded rationality

in traffic assignment is challenging as: (i) the calibration of the AL is context dependent

(Vreeswijk et al. 2013); and (ii) the BR-UE solutions are not unique (Lou et al. 2010; Di

et al. 2013, 2014). Thus, to analyze the BR-UE solutions, some authors have focused on the

analysis of the best and worst BR-UE flows of the network (Lou et al. 2010; Di et al. 2013;

Eikenbroek et al. 2018). Moreover, the AL can change from user to user. A thorough review

of bounded rationality in traffic assignment was provided in Di & Liu (2016). There are two

main ingredients that dictate bounded rational network equilibrium: (i) the definition of the

AL that dictates whether a route is satisficing or not; and (ii) the user’s search order that

defines how users are guided in their choice of a satisficing route.

For a route to be considered as satisficing, its route utility must satisfy:

Uk ≤ ALod ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (4.1)

where Uk is the perceived route utility; ALod is the aspiration level we consider in this chapter,

to be defined at the od level; Ωod is the route choice set for the od pair; and Ξ is the set of

all od pairs of the network.

The ALod can be calibrated exogenously by route choice surveys or calibrated endogenously

by explicit formulations. The most commonly used definition is based on the concept of

indifference band (Mahmassani & Chang 1987; Huang & Lam 2002; Szeto & Lo 2006):
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ALod = min(~V ) + ∆od ,∀(o, d) ∈ Ξ (4.2)

where ~V is a vector containing all deterministic route utilities Vk ,∀k ∈ Ωod ∧∀(o, d) ∈ Ξ and

Ωod contains N routes. ∆od is the tolerance or IB at the od level.

Ge & Zhou (2012) proposes a variable definition of the IB (∆od):

ALod = min(~V ) + max(|Up − Uq|δpδq),∀p, q ∈ Ωod ∧ p 6= q ∧ ∀(o, d) ∈ Ξ (4.3)

where δp and δq are dummy variables that equal 1 if routes p and q belong to Ωod , respectively.

Ge et al. (2015) analyzed the BR-DUE equilibrium, considering exogenously fixed AL and

fixed and endogenously variable AL. In their model framework, the authors showed that the

DUE is a special case of the BR-DUE and discussed the existence conditions of the BR-DUE.

However, the uncertainty on the travel times was not considered.

Di & Liu (2016) highlighted that a bounded rational behavior can be due to the user’s

habits and inertia, or their cognitive costs or individual preferences. In this chapter, we focus

our attention on the user’s preferences as a bounded rational behavior to define the search

order for the satisficing alternatives. Zhao & Huang (2016) defined a search order based

on a strict preference order for all users sharing the same od pair. This strong assumption

allowed obtaining unique BR-UE solutions. To the authors knowledge, the framework of

Zhao & Huang (2016) has never been tested in a dynamic context, i.e. considering a traffic

simulator and time-dependent path costs. In addition, its dynamic implementation using a

traffic simulator is highly challenging because it requires solving sub-optimization problems to

calibrate the AL of the sub-most preferred routes. Thus, a framework capable of solving the

global optimization problem is required and discussed further on in this chapter. On the other

hand, users may also have an indifferent preference for any of the satisficing routes (i.e., that

satisfy Eq. 4.1). This is adopted from the notions discussed in (Aguiar et al. 2016). In this

case, we consider that all users sharing the same od pair have a similar indifference preference.

The choice is modeled by uniform random sampling of any of the satisficing routes. Users

are then assigned to the satisficing route sampled.

Szeto & Lo (2006)1 discussed an analytical BR-UE dynamic traffic assignment model.

The authors proposed a route swapping algorithm, but no clear definition of the users search

1The BR-UE (Mahmassani & Chang 1987) and Tolerance-based Dynamic User Optimum principle (Szeto
& Lo 2006) have been used interchangeably in the traffic assignment literature. For the sake of simplicity, we
refer to both as BR-UE.
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order was discussed. Instead, the authors targeted certain users on the most congested routes

and switched them to less congested ones for each od pair. Moreover, the BR-UE solutions

were not unique. Han et al. (2015) discussed a dynamic simultaneous departure time and

route choice bounded rational framework. However, neither of these frameworks included

travel time distributions. In this chapter, we revisit the notions of bounded rationality by

considering the distribution of travel times rather than deterministic values.

The literature includes a large number of applications of a bounded rational framework to

static (Di et al. 2013) and dynamic traffic assignment (Szeto & Lo 2006; Han et al. 2015),

transportation planning (Gifford & Checherita 2007), traffic policy making (Marsden et al.

2012), congestion pricing (Lou et al. 2010) and traffic safety (Sivak 2002). However, to the

author’s knowledge, there is no study in the literature that investigates the influence of users’

preferences (indifferent and strict) for a bounded rational behavior on individual route flows

and network performance in terms of the internal level of congestion and inflow and outflow

capacities. The goal of this chapter is to fill this gap. We consider time-dependent path costs

that account for congestion, shock-waves and spillback effects calculated using a mesoscopic

Lighthill-Whitham-Richards (LWR) model (Leclercq & Becarie 2012). A spillback effect is

the reduction of a link capacity that spreads over other connected links in the network. To

model bounded rationality behavior, we relax the definition of the search order of the DUE

and SUE frameworks (Sheffi 1985). In both the DUE and SUE cases, users are assigned to

the routes with the minimum travel times based on an all-or-nothing procedure. The search

order is relaxed to account for the users’ indifferent and strict preferences. In the case of

the indifferent preference search order, users present indifference behavior when choosing any

of the satisficing routes, whereas in the case of the strict preference search order (Zhao &

Huang 2016), users are assigned to the most preferred route if this route is perceived as

satisficing (Eq. 4.1), or to the first sub-most preferred route that satisfies Eq. 4.1. We make

use of Monte Carlo simulations (Sheffi 1985) to account for travel times distribution and

consider the classical Method of Successive Averages to calculate the network equilibrium.

First, we test the bounded rationality methodology in a toy Braess network and consider a

simple linear static and flow dependent utility function. We then consider the two settings

of the search order previously mentioned and the ALod defined exogenously. These initial

tests allow acquiring insight into how the route flows at equilibrium change according to the

two definitions of the search order and increasing values of ALod . Second, for the dynamic

implementation, we also consider the two settings of the users’ search order (i.e. indifferent

and strict preferences) and the concept of the IB (Eq. 4.2 and Eq. 4.3) to define the ALod .

The dynamic tests are performed on a Manhattan network. We investigate the influence
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of the definition of the search order on the individual route flows and analyze the network

performance in terms of the internal, inflow and outflow capacities, given the two search

orders and different values of the ALod . The results are compared against both DUE and

SUE as benchmarks.

This chapter is organized as follows. In Sect. 4.2, we discuss the bounded rational model

framework considered in this chapter. In Sect. 4.3, we discuss a simple static test scenario

on the Braess network, considering both the indifferent and strict preferences search order.

In Sect. 4.4, we discuss the influence of the bounded rationality behavior on the network

performance also considering the two search orders. In Sect. 4.5, we outline the conclusions

of this chapter.

4.2 Bounded rational framework

The analysis of the effect of users’ behavior on network performance in terms of its internal

inflow and outflow capacities is very important for policy makers, in particular when determin-

ing policies aimed at increasing network performance. In this chapter, we focus on two types

of bounded rational user behavior.

We start by introducing the general formulation of the route utilities. The perceived route

utility, Uk , is:

Uk = Vk + εk ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (4.4)

where Vk is the deterministic route utility; and εk is the uncertainty or error term as often

referred to in the literature.

The DUE assumes that users are utility minimizers and the error terms εk are set to

0. Users are assigned based on an all-or-nothing procedure to the route with the minimum

travel time. In the case of the SUE, users are also utility minimizers, but they perceive

travel times with uncertainties, meaning that the error terms εk are not 0. Theoretically, the

Probit model (Daganzo & Sheffi 1977) is the most attractive model for solving the SUE.

However, it requires the computation of a covariance matrix and integrating the multivariate

normal distribution. The complexity of the computation increases with the number of routes

per od pair. An alternative to this is to use Monte Carlo to consider the distributions of

route travel times (Sheffi 1985). We consider that the error terms are defined at the link

level (i.e., εa,∀a ∈ Γ) instead at the route level. This allows capturing existing correlations

between different routes sharing the same links. Sheffi (1985) proposed to consider link travel

times that are normal distributed and to truncate the negative travel times. This skews the
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distributions and a positive defined travel times distribution is to be preferred. In this chapter,

we consider that the terms εa are gamma distributed following Nielsen (1997). The principle

of the Monte Carlo simulations is to discretize the error terms εa into M samples or draws and

locally solve DUE problems. For each error draw, the deterministic utility for route k is defined

as Umk , m = 1, . . . ,M. In short, DUE is solved one for all considering the utility Uk for each

route. The SUE corresponds to the average of M Monte Carlo trials, where the utilities Umk
are adjusted for each trial considering the link error terms values. It is sufficient to explain how

we extend DUE to account for bounded rational (BR-DUE), as the extension of SUE is exactly

similar, i.e. we have to solve a BR-DUE problem for each Monte Carlo trial of link error terms

and then average the results to get the BR-SUE solutions. Mahmassani & Chang (1987)

introduced the first notions of bounded rationality applied to route choice. Lou et al. (2010)

and Di et al. (2013) formulated the BR-DUE mathematically, but without defining preference

rules among satisficing routes. Under BR-DUE, all users are satisfied with their choices and

no longer consider switching routes. It should be noted that the DUE is an extreme case of

the BR-DUE (i.e. when ∆od = 0). The idea is that users are assigned to satisficing routes

instead of optimal routes (i.e., routes with the minimum perceived travel times). A satisficing

route should satisfy Eq. 4.1, i.e. Uk ≤ ALod ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ. Let us define ωod

as the set of satisficing routes. The users are then assigned to one route depending on the

preference rule. In this chapter, we consider that the search order is defined according to the

user’s preferences (indifferent and strict preferences, see below). The previous description of

BR-SUE was given based on Monte Carlo trials as it helps to make the connection with BR-

DUE. We can also provide a formal definition of the BR-SUE independently of the solution

method. Let Pk be the probability that route k is chosen for one od pair:

Pk = P (”Uk ≤ ALod” ∩ choosing route k according to the preference rule)

= P (Uk ≤ ALod)× P (choosing route k according to the preference rule\”Uk ≤ ALod”)

(4.5)

The second part of the equation is the conditional probability of route k being cho-

sen when k is perceived as satisficing. Its value depends on the preference rule. We

consider two behavioral rules to represent the user’s search order. We consider indiffer-

ent preferences, where users are uniformly assigned to satisficing routes. In this case,

P (choosing route k according to the preference rule\”Uk ≤ ALod”) = 1
|ωod | , where |.| is the

number of satisficing routes listed in ωod . This number is at least equal to 1, as route k

is satisficing. A close form for this probability cannot be provided as the number of other
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satisficing routes than k , is a random variable whose distribution is intractable in the gen-

eral case. Interestingly, Monte Carlo trials for link error terms make the calculation of |ωod |
straightforward, for each Monte Carlo iteration step since all satisficing paths are then known.

We also consider a strict preference order (Zhao & Huang 2016), where users are selecting

a satisficing route according to a pre-defined list of preferences Υod . The users are al-

ways choosing the satisficing route of highest rank in this list Υod . Again, the probability

P (choosing route k according to the preference rule\”Uk ≤ ALod”) does not have a closed

form, but Monte Carlo trials permit to determine the unique assignment at each iteration.

The idea of the strict preference order was introduced by Zhao & Huang (2016), to

deal with the non-uniqueness of the equilibrium solution. However, we highlight two main

differences between our methodology and that discussed in Zhao & Huang (2016). First, we

consider that routes are satisficing if and only if their perceived utility satisfies: Uk = Vk ≤
ALod ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ for the BR-DUE; or Umk ≤ ALod ,∀m = 1, . . . ,M ∧ ∀k ∈
Ωod ∧∀(o, d) ∈ Ξ for the BR-SUE. Zhao & Huang (2016) consider that routes are satisficing

according to the strict preference order, i.e. the users are first assigned to the most preferred

route and then consecutively to the sub-preferred routes, until all the users are assigned.

Second, we consider that AL is defined at the od level (i.e., ALod), while Zhao & Huang

(2016) considers its definition at the route level. We also assume that all users sharing

the same od pair have the same ALod . We consider that is more realistic from the user’s

perspective to set a global ALod instead of establishing AL for the sub-preferred routes based

on the most preferred ones.

In this chapter, we consider the two definitions of ALod as defined in Eq. 4.2 and Eq. 4.3.

To reach a solution for the BR-SUE and simulate the probability term

P (route k is satisficing) (see Eq. 4.5), we consider Monte Carlo simulations as dis-

cussed in Sheffi (1985) and the classical Method of Successive Averages (MSA). The MSA

solves a fixed point problem and is commonly used in traffic assignment to solve both

the DUE and SUE (Sheffi 1985). The Monte Carlo simulations consist in discretizing the

distributions of the link travel times into M samples or draws and solving BR-DUE problems

locally. For each discretization, we identify the satisficing routes and assign the users based

on an all-or-nothing assignment following the search order established. If the search order is

considered to be the indifferent preferences, all the users are assigned randomly to any of

the satisficing routes. On the other hand, if the search order follows a strict user preference

order, all users are assigned to the first satisficing route found on this strict sequence of

preferences. The new temporary route flows, Q∗k , correspond to averaging all the local

BR-DUE solutions. This corresponds to the temporary route flows Q∗k , that will be used to
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update the new route flows Qj+1
k at iteration j + 1, as:

Qj+1
k = Qjk + αj{Q∗k −Q

j
k},∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (4.6)

where Qjk represent the route flows at iteration j of the MSA; and αj is the descent step.

This process is repeated at every descent step of the MSA algorithm.

The sequence of descent steps αj guarantees the convergence of the MSA. For the the-

oretical convergence of the algorithm, the following two conditions must be satisfied (Sheffi

1985):

∞∑
j=1

αj =∞ (4.7)

lim
j→∞

αj → 0 (4.8)

One definition of αj that satisfies both of the previous conditions is: αj = 1
j
. We consider

this definition of αj in this chapter. Other definitions of the descent step size are discussed

in the literature (Polyak 1990; Liu et al. 2007; Taale 2008; Chen et al. 2011a).

A commonly used convergence or stopping criterion is based on the comparison between

the current and the previous descent step of the MSA that must be lower to a pre-defined

threshold. Instead we consider the number of violations N(λ) and the relative gap (Sbayti et al.

2007). N(λ) represents the number of cases where |Qj+1
k −Qjk | is higher than a pre-defined

path convergence threshold Φ. Note that Φ represents an upper bound. The convergence of

the algorithm is achieved if N(λ) ≤ Φ. The relative gap for the DUE is (Sbayti et al. 2007):

Gap =

∑
o

∑
d

∑
k∈Ωod Qodk (V odk −min(V od))∑
o

∑
d Q

od min(V od)
(4.9)

where Qod is the total demand for the od pair; and V odk is the average travel time of route k ;

and min(V od) is the minimum route travel time for the od pair.

The Gap function (Eq. 4.9) represents the difference between the travel costs and the

equilibrium travel costs. Thus, under perfect DUE conditions, Gap = 0. This means that all

users choose the routes with the minimum travel times. Under SUE conditions, the Gap is

higher than 0, however small. In this case not all users choose the routes with the minimum

travel times. In the case of bounded rationality, the Gap value increases as ALod increases.

The Gap function is also a measure of how close users are to the equilibrium route travel times

(or T UE). The definition of the GAP as defined in Eq. 4.9 is valid for DUE and SUE and

informs on how far we are from the DUE. For both the BR-DUE and BR-SUE convergence,
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we modify the Gap function as follows:

GapBRUE =

∑
o

∑
d

∑
k∈ωod Q

od
k max(V odk − ALod , 0)∑

o

∑
d Q

odALod
(4.10)

Thus, under BR-DUE or BR-SUE conditions, the Gap is about 0 if min(V od) ≤ V odk ≤
ALod ,∀(o, d) ∈ Ξ and the equilibrium condition is fulfilled. Note that throughout the chapter,

we use the definition of the Gap as in Eq. 4.9 as an indicator that measures how far the

bounded rational equilibria from the DUE; and Eq. 4.10 as the equilibrium convergence

criterion for the MSA.

We present the solution algorithm of this framework in Algorithm 3. Note that the differ-

ence between Algorithm 3 and that proposed by Sheffi (1985) is that we assign the users to

satisficing routes instead of routes with the minimal travel times. They are assigned to these

satisficing routes according to one of the search orders discussed previously (i.e. indifferent or

strict preferences) at every descent step of the MSA. The first step before entering the MSA

loop consists in calculating the route choice set Ωod , for each od pair. It defines the set of

routes for the users’ choices. We then perform an initial loading on these routes and consider

the number of violations, the GAP (Eq. 4.10) and the maximum number of iterations for

the MSA convergence criteria. The corresponding tol , Φ and Nmax are set. It is also nec-

essary to define the input scale (η) and shape (ζ) parameters of the link travel time gamma

distributions for the first Monte Carlo simulations. We then enter in the MSA loop and the

ALod is first updated based on the average route travel times (see Eq. 4.2 or Eq. 4.3). The

next step consists in performing the link error sampling considering the η and ζ parameters.

This is done through Monte Carlo simulations. The algorithm then loops over all the M error

samples and locally solves the BR-DUE problems. For each sample, the route utilities are

computed to identify the satisficing routes based on ALod . This defines the satisficing set

of routes ωod . Users are assigned based on the pre-defined search order (indifferent or strict

preferences) based on an all-or-nothing procedure to one route in ωod . It should be noted

that in the case of solving the BR-SUE and taking the indifferent preferences into account,

it is necessary to repeat the all-or-nothing assignment on the satisficing routes A times. The

users’ choices for the local BR-DUE correspond to averaging the previous choices. By applying

the law of large numbers, when A is large, we converge to the same average values. The new

temporary route flows Q∗k correspond to the average of all the local BR-DUE choices. The

new route flows Qj+1
k are updated according to Eq. 4.6 and the network loading is updated.

To determine time-dependent link costs that consider congestion, shock-waves and spillback

effects, we run an LWR mesoscopic traffic simulator (Leclercq & Becarie 2012). The link
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travel time distributions are obtained based on the simulated vehicle travel times. To update

η and ζ, we fit a gamma distribution to each link travel time distribution. The updated values

of η and ζ will be used to perform the error samplings in the next MSA descent step. The

GapBRUE (Eq. 4.10) and number of violations N(λ) are updated based on the new average

route travel times through the individual vehicles travel times. This process is repeated until

convergence is achieved. Note that Algorithm 3 also allows solving the BR-DUE by setting

η = 0 and ζ = 0.

Input the ALod (if they are set exogenously).
Input the network, demand scenario and simulation duration T .
Calculate the route choice set Ωod for each od pair.
Perform an initial network loading.
Set N(λ) > Φ and GapBRUE > tol . Initialize j = 1, η, ζ, αj = 1 and Qj=1

k = 0.
Set the MSA stopping criterion tol.
while Gap ≥ tol or N(λ) ≥ Φ or j ≤ Nmax do

Set Qjk = Qj+1
k .

If set endogenously, update the ALod based on Eq. 4.2 or Eq. 4.3.
Perform M error samplings at the link level, based on η and ζ.
for m=1 to M do

Compute the route utilities.
Determine the satisficing routes and update ωod ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
Based on the defined search order, perform an all-or-nothing assignment 2. If
ωod = ∅, all users are assigned to the minimum utility route.

end
Update the new route flows Q∗k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ, based on an averaging of
the users choices over all error samples.
Update the route flows according to Eq. 4.6.
Run the LWR mesoscopic simulator (Leclercq & Becarie 2012).
Based on the link travel times, fit a gamma distribution to update η and ζ.
Calculate the Gap (Eq. 4.10) and the number of violations N(λ).
Update αj = 1

j
.

Set j = j + 1.
end
Save the route flows: Qj+1

k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ.
Algorithm 3: Dynamic implementation algorithm of the satisficing model.

4.3 First tests on a toy network

We first test the bounded rational model framework discussed in the previous section, on a toy

Braess network and consider a static flow dependent utility function. The goal of these simple
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Fig. 4.1 – Braess network.

initial tests are to assess and acquire insight into how the route flows at equilibrium change

according to the two definitions of the search order (i.e. indifferent and strict preference

search order) and increasing values of ALod . The ALod are defined exogenously.

4.3.1 Definition of the test network

For the first test, we consider that the perceived travel times (i.e., route utility) depend only

on route flows and route free-flow travel times. We resort to the following definition of the

perceived route utility, Uk(Qk):

Uk(Qk) =
∑
a∈Γa

(Va(qa) + εa)δak ,∀k ∈ Ωod (4.11)

where Va(qa) = θ1ta + θ2qa and qa =
∑
l∈a
δalQl ; ta is the link free-flow travel time of link a; qa

is the flow of link a; δal is a dummy variable that equals 1 if route l uses link a, or 0 otherwise;

Ql is the total flow of route l ; and εa is the error term associated with link a. θ1 and θ2 are

parameters set to 1.

For the static tests, we consider the Braess network (Fig. 4.1). The choice set is:

Ωk={1,4;2,5;1,3,5}, ∀k = 1, 2, 3. The following sets of link free-flow travel times are consid-

ered: t1 = 5, t2 = 45, t3 = 10, t4 = 30, t5 = 5.

For the MSA convergence, we set tol = 10−2, Φ = 0 and Nmax = 10000. A total demand

of Qod = 10 is considered. As a reference of user perfect rationality, we consider the DUE.

Note that the εa terms are set to 0 for both the DUE and the BR-DUE calculations. For

the BR-SUE calculations, we consider a gamma distribution with a shape parameter set to

ηa = 1 and a scale parameter set to ζa = 4; and a total of M = 2000 error samples. The

BR-DUE and BR-SUE are calculated based on Algorithm 3, except that the link travel times

are not updated considering the LWR mesoscopic traffic simulator (Leclercq & Becarie 2012).

Instead, we consider the route utility as defined in Eq. 4.11. The link travel times are only

sampled at the initiation of the MSA descent procedure.
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4.3.2 Indifferent preference search order and exogenous ALod

In this section, we analyze both the BR-DUE and BR-SUE results considering the users’

indifferent preference search order and the ALod defined as in Eq. 4.2. We also analyze

the algorithm’s convergence towards the equilibrium solution through the Gap function. To

define the search order, we consider a uniform distribution to simulate the user’s choices

among the set of satisficing routes ωod . This procedure must be repeated many times to

reach convergence by the Law of large numbers (on average) with the same solution of route

flows. Then, for each value of ALod , we repeat the assignment procedure 1000 times and

calculate the average route flows and corresponding standard deviation. We do so for both

the BR-DUE and BR-SUE calculations. First, under DUE conditions, only routes 1 and 3 are

used. This means that T UE = U1 = U3 < U2 and corresponds to the route flows: Q1 = 1.7,

Q2 = 0 and Q3 = 8.3. Note that T UE is the route travel times at the User Equilibrium.

Under SUE conditions, only routes 1 and 3 are satisficing. But, due to the users’ perception

of travel times, there is a residual flow on route 2. The route flows are Q1 = 3.5, Q2 = 0.3

and Q3 = 6.2.

We first analyze the BR-DUE results, calculated for increasing values of ∆od . These

results are listed in Table 4.1. The first test consists in reproducing the perfect rationality

behavior, by setting ∆od = 0 =⇒ ALod = T UE = 46.7. The route flows under BR-

DUE are similar to the DUE. Then, to analyze the equilibrium results for increasing values

of ∆od ∈ [0,+∞[, we must first identify the critical points for the BR-DUE, that is to say

the utility values of each route when the total demand Qod is assigned to each of the routes.

We first consider Q1 = 10, Q2 = 0 and Q3 = 0, which yields U1 = 55. Similarly for route 2,

U2(Q1 = 0, Q2 = 10, Q3 = 0) = 60, and route 3, U3(Q1 = 0, Q2 = 0, Q3 = 10) = 50. These

critical points play an important role in analyzing the equilibrium solutions. The minimum

of the critical points indicate the value of ALod from which the objective function is no

longer convex. We analyze the BR-DUE route flows for increasing values of ALod in more

detail. For ALod ∈ [T UE, 50[, the users switch from route 3 to 1. Note that the users

switch from the satisficing routes with higher route flows to the ones with lower route flows.

For ALod ∈ [50, 55[, the algorithm does not converge to the same solution as evidenced by

the standard deviation values listed in Table 4.1. For example, for ALod = 50, two feasible

solutions are found: (Q1 = 5, Q2 = 0, Q3 = 5) which yields (U1 = 50, U2 = 55, U3 = 40); and

(Q1 = 0, Q2 = 0, Q3 = 10) that yields (U1 = 45, U2 = 60, U3 = 50). The convergence of the

algorithm to any of these feasible solutions depends on the initial loading of the network for

the MSA algorithm. This explains why we do not converge to the same set of route flows for
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∆od ALod Q1/Qod Q2/Qod Q3/Qod U1 U2 U3 Gap

0 46.6 0.17 ± 0.00 0.00 ± 0.00 0.83 ± 0.00 46.7 58.3 46.7 0.00
1 47.0 0.20 ± 0.00 0.00 ± 0.00 0.80 ± 0.00 47.0 58.0 46.0 0.00
2 47.3 0.23 ± 0.00 0.00 ± 0.00 0.77 ± 0.00 47.3 57.7 45.4 0.01
3 47.7 0.27 ± 0.00 0.00 ± 0.00 0.73 ± 0.00 47.7 57.3 44.7 0.02
4 48.0 0.30 ± 0.00 0.00 ± 0.00 0.70 ± 0.00 48.0 57.0 44.0 0.03
5 50.0 0.22 ± 0.16 0.00 ± 0.00 0.78 ± 0.16 47.2 57.8 45.6 0.06
15 60.0 0.41 ± 0.19 0.01 ± 0.01 0.58 ± 0.19 49.0 56.0 41.6 0.12
20 65.0 0.34 ± 0.14 0.17 ± 0.07 0.49 ± 0.21 46.7 58.3 39.8 0.19
30 66.3 0.37 ± 0.26 0.25 ± 0.15 0.37 ± 0.26 46.2 58.8 37.5 0.34
40 76.3 0.33 ± 0.27 0.35 ± 0.28 0.32 ± 0.26 44.8 60.2 36.5 0.46
50 86.3 0.34 ± 0.27 0.33 ± 0.26 0.33 ± 0.26 45.1 59.9 36.5 0.44
75 105.0 0.33 ± 0.27 0.33 ± 0.27 0.33 ± 0.27 45.0 60.0 36.6 0.45
100 136.5 0.33 ± 0.26 0.33 ± 0.26 0.34 ± 0.27 45.1 59.9 36.8 0.43

Table 4.1 – BR-DUE route flows for different values of the ALod . The Gap values represent average values
based on 1000 repetitions of the BR-DUE calculations.

ALod ≥ 50. For ALod ∈ [55, 60[, route 2 becomes satisficing and users switch from routes 3

and 1 to route 2. For ALod ≥ 60, the route flows will converge to 1/3 as the value of ALod

increases. This represents the users indifference for choosing any of the satisficing routes.

Under SUE conditions

We investigate the algorithm’s convergence for different values of ∆od , that corresponds

to different values of ALod , as shown in Fig. 4.2. To do this, we consider a total of 50 descent

steps j of the MSA algorithm, despite the convergence criterion of Gap ≤ 10−2 being verified

for a lower number of j . This allows observing that the solution no longer changes after the

convergence criterion is satisfied. In Fig. 4.2, we show the evolution of the Gap and route

flows for increasing values of j , for the DUE and ALod = T UE, 48, 53, 100. For all four cases,

the Gap value converges to a constant value for increasing values of j as well as the route

flows.

We analyze the BR-SUE results for increasing values of ∆od . These results are listed in

Table 4.2. We first confirm that the route flows under BR-SUE and SUE are similar, by

setting ∆od = 0. For ALod ∈ [42.6, 55], the users change from route 3 to 1. For ALod ≥ 57,

route 2 becomes satisficing and the users also start choosing this route. The comparison of

the BR-DUE and BR-SUE results for ALod ≥ 65 are of particular interest. In both cases, the

route flows converge to 1/3 when the value of ALod is sufficiently large. This represents the

users’ indifference for choosing any of the satisficing behaviors, since all the routes comply

with the condition defined by Eq. 4.1. The effect of the perception of the route travel times
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Fig. 4.2 – Gap (left) and route flows (right) as a function of the increasing number of MSA descent steps j for
the DUE and several values of ALod = TT UE , 48, 53, 100.
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∆od ALod Q1/Qod Q2/Qod Q3/Qod U1 U2 U3 Gap

0 42.6 0.34 ± 0.00 0.03 ± 0.00 0.63 ± 0.00 48.1 56.9 42.5 0.06
1 43.5 0.34 ± 0.00 0.03 ± 0.00 0.63 ± 0.00 48.1 56.9 42.5 0.06
2 44.6 0.34 ± 0.00 0.03 ± 0.00 0.63 ± 0.00 48.1 56.9 42.5 0.06
3 45.5 0.34 ± 0.00 0.03 ± 0.00 0.63 ± 0.00 48.1 56.9 42.5 0.06
4 46.5 0.34 ± 0.00 0.03 ± 0.00 0.63 ± 0.00 48.1 56.9 42.5 0.06
5 47.6 0.34 ± 0.00 0.03 ± 0.00 0.63 ± 0.00 48.1 56.9 42.5 0.06
15 56.4 0.40 ± 0.00 0.03 ± 0.00 0.57 ± 0.00 48.7 56.3 41.3 0.08
20 59.7 0.42 ± 0.00 0.09 ± 0.00 0.49 ± 0.00 48.3 56.7 39.8 0.13
30 67.7 0.39 ± 0.01 0.23 ± 0.00 0.39 ± 0.00 46.6 58.4 37.7 0.22
40 76.9 0.35 ± 0.00 0.32 ± 0.01 0.35 ± 0.00 45.4 59.6 36.9 0.27
50 86.8 0.33 ± 0.00 0.33 ± 0.00 0.34 ± 0.00 45.1 59.9 36.7 0.29
75 111.9 0.33 ± 0.00 0.33 ± 0.00 0.33 ± 0.00 45.0 60.0 36.7 0.29
100 136.7 0.33 ± 0.00 0.33 ± 0.00 0.33 ± 0.00 45.0 60.0 36.7 0.29

Table 4.2 – BR-SUE route flows for different values of the ALod .

explains the small differences verified in the route flows between the BR-DUE and BR-SUE for

the same value of ALod . For example, it is interesting to consider the case where ∆od = 40.

The BR-DUE route flows are (Q1 = 3.3;Q2 = 3.5;Q3 = 3.2) and the BR-SUE route flows

are (Q1 = 3.5;Q2 = 3.2;Q3 = 3.5). It can also be seen from the BR-SUE results shown

in Table 4.2, that the MSA algorithm converges to the same solution, as evidenced by the

standard deviation of the route flows. To solve the BR-SUE, we solve M BR-DUE problems

locally, and since the search order is the indifference preferences, the users are assigned A

times for each BR-DUE problem. By applying the Law of large numbers, we converge on

average to the same solution when A is sufficiently large.

We also observe that for both the BR-DUE and BR-SUE results, the average Gap values

increase as we increase ALod , as expected. This represents the effect of the satisficing

behavior, where users choose satisficing routes instead of the routes with the shortest travel

times.

4.3.3 Strict preference search order and exogenous ALod

In this section, we analyze the BR-DUE results calculated considering an exogenous definition

of ALod and a strict preference search order (Zhao & Huang 2016). We calculate the BR-

DUE results for the Braess network (Fig. 4.1), considering the six possible strict preference

search orders (Υod ,∀k = 1, 2, 3). For the calculations, we consider our bounded rational

model framework and the model discussed by Zhao & Huang (2016). The mathematical



Dynamic traffic assignment for multi-regional transportation systems considering different kinds of
79users’ behavior

4.3. First tests on a toy network

Our model Zhao & Huang (2016)
ALod Q1/Qod Q2/Qod Q3/Qod U1 U2 U3 Q1/Qod Q2/Qod Q3/Qod U1 U2 U3

Preference order Υod = 1 2 3
46.6 0.17 0.00 0.83 46.7 58.3 46.7 0.17 0.00 0.83 46.7 58.3 46.6
47.5 0.25 0.00 0.75 47.5 57.5 45.0 0.25 0.00 0.75 47.5 57.5 45.0
50.0 0.50 0.00 0.50 50.0 55.0 40.0 0.50 0.00 0.50 50.0 55.0 40.0
52.5 0.87 0.13 0.00 52.5 52.5 30.0 0.75 0.00 0.25 52.5 52.5 35.0
55.0 1.00 0.00 0.00 55.0 50.0 30.0 1.00 0.00 0.00 55.0 50.0 30.0

Preference order Υod = 1 3 2
46.6 0.17 0.00 0.83 46.7 58.3 46.7 0.17 0.00 0.83 46.7 58.3 46.6
47.5 0.25 0.00 0.75 47.5 57.5 45.0 0.25 0.00 0.75 47.5 57.5 45.0
50.0 0.50 0.00 0.50 50.0 55.0 40.0 0.50 0.00 0.50 50.0 55.0 40.0
52.5 0.75 0.00 0.25 52.5 52.5 35.0 0.75 0.00 0.25 52.5 52.5 35.0
55.0 1.00 0.00 0.00 55.0 50.0 30.0 1.00 0.00 0.00 55.0 50.0 30.0

Preference order Υod = 2 1 3
46.6 0.17 0.00 0.83 46.7 58.3 46.7 ∼ ∼ ∼ ∼ ∼ ∼
47.5 0.25 0.00 0.75 47.5 57.5 45.0 ∼ ∼ ∼ ∼ ∼ ∼
50.0 0.50 0.00 0.50 50.0 55.0 40.0 ∼ ∼ ∼ ∼ ∼ ∼
55.0 0.75 0.25 0.00 50.0 55.0 30.0 0.50 0.00 0.50 50.0 55.0 40.0
60.0 0.50 0.50 0.00 45.0 60.0 30.0 0.125 0.125 0.75 45.0 60.0 45.0
65.0 0.25 0.75 0.00 40.0 65.0 30.0 0.00 0.50 0.50 40.0 65.0 40.0
70.0 0.00 1.00 0.00 35.0 70.0 30.0 0.00 1.00 0.00 35.0 70.0 30.0

Preference order Υod = 2 3 1
46.6 0.17 0.00 0.83 46.7 58.3 46.7 ∼ ∼ ∼ ∼ ∼ ∼
47.5 0.13 0.00 0.87 46.3 58.7 47.5 ∼ ∼ ∼ ∼ ∼ ∼
50.0 0.00 0.00 1.00 45.0 60.0 50.0 ∼ ∼ ∼ ∼ ∼ ∼
55.0 0.00 0.00 1.00 45.0 60.0 50.0 0.50 0.00 0.50 50.0 55.0 40.0
60.0 0.00 0.00 1.00 45.0 60.0 49.9 0.125 0.125 0.75 45.0 60.0 45.0
65.0 0.00 0.50 0.50 40.0 65.0 40.0 0.00 0.50 0.50 40.0 65.0 40.0
70.0 0.00 1.00 0.00 35.0 70.0 30.0 0.00 1.00 0.00 35.0 70.0 30.0

Preference order Υod = 3 1 2
46.6 0.17 0.00 0.83 46.7 58.3 46.7 0.17 0.00 0.83 46.7 58.3 46.6
47.0 0.15 0.00 0.85 46.5 58.5 47.0 0.15 0.00 0.85 46.5 58.5 47.0
48.0 0.10 0.00 0.90 46.0 59.0 48.0 0.10 0.00 0.90 46.0 59.0 48.0
49.0 0.05 0.00 0.95 45.5 59.5 49.0 0.05 0.00 0.95 45.5 59.5 49.0
50.0 0.00 0.00 1.00 45.0 60.0 50.0 0.00 0.00 1.00 45.0 60.0 50.0

Preference order Υod = 3 2 1
46.6 0.17 0.00 0.83 46.7 58.3 46.7 0.17 0.00 0.83 46.7 58.3 46.6
47.0 0.15 0.00 0.85 46.5 58.5 47.0 0.15 0.00 0.85 46.5 58.5 47.0
48.0 0.10 0.00 0.90 46.0 59.0 48.0 0.10 0.00 0.90 46.0 59.0 48.0
49.0 0.05 0.00 0.95 45.5 59.5 49.0 0.05 0.00 0.95 45.5 59.5 49.0
50.0 0.00 0.00 1.00 45.0 60.0 50.0 0.00 0.00 1.00 45.0 60.0 50.0

Table 4.3 – Route flow distribution for the Braess network for different values of the AL and under BR-DUE
conditions. A set of strict preferences is considered for the search order.

methodology discussed by Zhao & Huang (2016) is not suitable for a dynamic implementation

considering a traffic simulator. This is because it requires solving sub-optimization problems

to calibrate the AL of the sub-preferred routes. In this section, we compare the route flows

calculated considering the two frameworks and the six preference search orders. The ALod

are set exogenously according to each strict preference order. We apply the model discussed

by Zhao & Huang (2016), considering that the utility of the most preferred route is equal to

the value of the aspiration level ALod ; and the route flows of the remaining routes correspond

to the result obtained by solving the sub-UE problem, as done by Zhao & Huang (2016). The

results are listed in Table 4.3.
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It can be seen that when ALod = TT UE = 46.6, the route flows obtained for both models

are equivalent to the DUE result. Thus, both models are able to reproduce the users’ perfect

rationality whatever the preference order.

Consider the first strict preference order Υod = 1, 2, 3. For 47.5 ≤ ALod < 50, in both

models the users switch directly from route 3 to the most preferred route 1. The flows

on these two routes are equal for both models. But in our model, route 2 is not selected

because it is not considered as satisficing whereas in the model of Zhao & Huang (2016),

the assignment problem solved is: U1 = A1 and U2 = U3. Under sub-User Equilibrium (sub-

UE) conditions, U2 > U3. This means that the remaining users that have not chosen the

most preferred route 1 will choose route 3. In our model, the users are assigned to the most

preferred route until the satisficing condition (Eq. 4.1) is satisfied. Users are then assigned

to the sub-preferred routes if and only if they are satisficing. Since route 2 is not satisficing,

the remaining users choose route 3. Thus, both models yield similar route flows for these two

values of ALod . For ALod = 52.5, route 2 becomes satisficing for our model. Thus the users

will switch according to the strict preference order Υod . Thus, the users will first switch from

route 3 to 2 and then from 2 to 1. In the case of the model of Zhao & Huang (2016), the

sub-UE solution corresponds to U2 > U3. Thus, no user chooses route 2. For ALod ≥ 55, all

the users choose the most preferred route 1 for both models.

Consider the second strict preference order Υod = 1, 3, 2. In this case, the users switch

directly from route 3 to the most preferred route 1 as ALod increases. In the case of our

model, the users are assigned to the most preferred route until it is considered as satisficing.

Then, the remaining users are assigned to the sub-preferred route 3. In the case of the model

of Zhao & Huang (2016), the sub-UE solution also corresponds to U2 > U3 and thus no users

choose route 2. So, for this strict preference order, both models give similar route flows as

ALod increases.

Consider the third strict preference order Υod = 2, 1, 3. Given this preference order and

for ALod ≤ 50, route 2 is not satisficing for our model. Therefore, the users will switch from

route 3 (the less preferred) to the second most preferred route 1. The model of Zhao &

Huang (2016) cannot be applied for ALod < 55, since ALod 6= U2. This would lead to a

violation of the strict preference order assumption. We make this assumption more flexible.

Although route 2 is the most preferred route, it is not considered as satisficing and the users

choose other most preferred routes that are satisficing. This is the case of route 1. In the

case of our model, for ALod ≥ 55, all the users switch from route 1 to 2 (the most preferred

one). In the case of the model of Zhao & Huang (2016), the users will switch from route 1

to routes 2 and 3 (for ALod = 55 and ALod = 60) and then from 3 to 2 (for ALod = 65 and
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ALod = 70). Although route 3 is that least preferred, the users switch from route 1 to 3.

Note that we solve the following assignment problem for the model of Zhao & Huang (2016):

ALod = U2 and U1 = U3.

Consider the fourth strict preference order Υod = 2, 3, 1. In the case of our model, for

ALod ≤ 60, route 2 is not satisficing. Therefore, all the users switch from route 1 to 3 in

accordance with the strict preference order. For ALod ≥ 60, route 2 becomes satisficing and

the users switch from route 3 to 2. In the case of the model of Zhao & Huang (2016), the

condition ALod = U2 is satisfied only for ALod ≥ 55. For ALod ≥ 55, we observe a route flow

pattern similar to that in the previous strict preference order (Υod = 2, 1, 3) for the same

reasons discussed previously.

Consider the fifth and sixth strict preference orders Υod = 3, 1, 2 and Υod = 3, 2, 1. In

the case of our model, route 2 is not satisficing for these two strict preference orders. Thus,

users switch directly from route 1 to 3, as ALod increases. For ALod ≥ 50, all users choose

the most preferred route 3. In the case of the model of Zhao & Huang (2016), we solve the

following assignment problem: ALod = U3 and U1 < U2 (sub-UE problem). Since U1 < U2 for

all the listed values of ALod , the remaining users that have not chosen route 3 choose route 1

for both strict preference orders. This is why we observe similar route flows for both models

and both strict preference orders.

In summary, we validate our bounded rational framework considering a strict user’s pref-

erence search order, by comparing the route flows at equilibrium with the results obtained by

the model of Zhao & Huang (2016). Moreover, our bounded rational framework is suitable

for dynamic implementation with a traffic simulator and will be tested in the next section.

4.4 Dynamic implementation on a Manhattan network

In this section, we investigate the influence of different types of bounded rational user be-

havior on: (i) individual route flows; (ii) network performance in terms of its internal, inflow

and outflow capacities. To do this, we consider the implementation of the bounded rational

framework described in Algorithm 3. To determine the time-dependent cost paths that ac-

count for congestion, shock-waves and spillback effects, we consider a mesoscopic LWR traffic

simulator (Leclercq & Becarie 2012). The tests are performed on a Manhattan network. We

consider the indifferent and strict preference search orders and both definitions of the ALod ,

as in Eq. 4.2 and Eq. 4.3.
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Fig. 4.3 – Manhattan network.

4.4.1 Test scenario definition

For the dynamic implementation, we consider the Manhattan network composed of 134 links,

as shown in Fig. 4.3. All the links have the same length of 100 meters. Traffic lights regulate

all the intersections. A green light duration of 45 seconds is considered for the traffic lights

of the horizontal links whereas a duration of 15 seconds is considered for the traffic lights of

the vertical links. Green times are set in the West-East and in the North-South directions.

The offsets considered are of 10 and 20 seconds.

A triangular fundamental diagram is considered for each lane of the network, with the

following parameters: u = 15 (m/s), for the free-flow speed; w = 5 (m/s) for the wave

speed; and kjam = 0.2 (veh/m/lane) for the jam density. The entry links (i.e., from O1 to 6)

have two lanes. The total link flow is assigned equally on each lane.

The Manhattan network shown in Fig. 4.3, has six entries (identified by O1 to O6 in

Fig. 4.3) and exits (identified by D1 to D6 in Fig. 4.3). For each of the six entries, we

consider a constant inflow (demand) of 0.5 (veh/s). There is no capacity restriction at the

exits. There is a total of 36 possible od pairs. To define the choice set Ωod , we consider 3

paths per od pair. These paths are calculated using a K-shortest path algorithm. This gives

a total of 108 routes, considering the 36 possible od pairs.
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For the dynamic tests and the bounded rational route choice model, we consider the

endogenous definitions of the indifference band for ALod as defined by Eq. 4.2 and Eq. 4.3

and two settings of the search order:

• an indifferent preference search order, where users randomly choose any of the satisficing

alternatives; or, the least worst if there are no satisficing alternatives.

• a strict preference search order, where users have a strict preference for the routes with

the most reliable travel times. We consider the variances of the route travel times as the

time reliability indicator. Then, the set of strict preference is built by ordering the routes

from the lowest to the highest variance value for each od pair. This set of preferences is

updated at every descent step of the MSA, based on the route travel time distributions

of the previous simulation.

Considering this search order, users seek satisficing alternatives based on this set of strict

preferences and on ALod . Similarly, for the strict preference search order discussed in

Sect. 3.3, the users choose only the most preferred route if it is perceived as satisficing,

i.e. that conforms to Eq. 4.1. Then, if the most preferred route is not perceived as

satisficing, the users consider the other most preferred routes until they find one that

is satisficing. If none of the routes are satisficing, the users choose the route with the

minimal travel time.

As a reference, we consider the DUE and SUE. To solve the SUE, we consider the Probit

model with gamma distributed error terms and use Monte Carlo simulations (Sheffi 1985).

For the indifference band defined by Eq. 4.2, we consider three exogenous values for ∆od : 0;

100; and 500. We have a total of 10 simulation scenarios, considering both search orders

defined above. The total simulation period is T = 3000 seconds. For the convergence, we

set tol = 10−2, Φ = 0 and Nmax = 250.

4.4.2 Analysis of the individual route flows

In this section, we analyze the individual route flows for the 10 simulation scenarios. Each

scenario is identified by one ID number, as listed in Table 4.4. We also list the Gap values

in Table 4.4, that are calculated using Eq. 4.9. In Fig. 4.6, we show the distributions of the

average route travel times for the 10 simulation scenarios. Note that, the average travel time

per route for each scenario (i.e., the average of these distributions) is also listed in Table 4.4.

In Fig. 4.4 and Fig. 4.5, we show the route flow distributions for each od pair of the network

and all ten scenarios.
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Fig. 4.4 – Route flow distributions for the 10 simulation scenarios and for the od pairs: o = 1, . . . , 6; and
d = 1, 2, 3. Each simulation scenario is identified by the Model ID equivalent to the ID values listed in Table 4.4.
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Fig. 4.5 – Same as in Fig. 4.4, but for the od pairs: o = 1, . . . , 6; and d = 4, 5, 6.
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Fig. 4.6 – Average route travel time distributions for the DUE, SUE and different settings of the indifference
band.
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Model ID Model Preference Gap
TTk
[s]

DUE 1 ∼ 0.3 315
SUE 2 ∼ 0.3 295

IB (∆od = 0) 3 Indifferent 0.3 294
IB (∆od = 100) 4 Indifferent 7.3 337
IB (∆od = 500) 5 Indifferent 14.7 332

IB (Ge & Zhou 2012) 6 Indifferent 16.2 350
IB (∆od = 0) 7 Strict 68.0 312
IB (∆od = 100) 8 Strict 68.8 297
IB (∆od = 500) 9 Strict 68.8 297

IB (Ge & Zhou 2012) 10 Strict 69.1 297

Table 4.4 – The Gap value and the average travel times per route TTk [in s] calculated from the distributions
shown in Fig. 4.6 are also listed. These values are listed for the DUE, SUE and different settings of the
indifference band.

We analyze the individual route flows shown in Fig. 4.4 and Fig. 4.5. By setting ∆od = 0

(Model 3), we observe that for the indifferent preference search order, we obtain similar route

flows compared to the SUE (Model 2). However, this is not observed for the strict preference

search order, when comparing ∆od = 0 (Model 7) and the SUE (Model 2). This is due to the

specific definition of the search order, where the routes with the most reliable travel times (i.e.

with the lowest variances) may not correspond to the routes with the lowest travel times. This

is also evidenced by the Gap values listed in Table 4.4, for the settings of the strict preference

search order. Also note that in the case of the indifferent preference search order, setting

∆od = 0, only the lowest travel time route per od pair is considered as satisficing at each

descent step of the MSA. For the indifferent preference search order, the users’ indifference

increases as we increase ∆od from 0 to 500,. The route flows will then converge to 1/3 for

all the od pairs (Model 5, in Fig. 4.4 and Fig. 4.5). For ∆od = 500, the indifference band

is sufficiently high with the result that all the routes in Ωod for all od pairs are satisficing.

Thus, the users can choose any of the routes. Since the users’ indifference increases, they

are will choose routes with higher travel times and consequently the Gap value also increases.

Note that here, the Gap indicates how far the simulation results are from the DUE; also it

is calculated as in Eq. 4.9. On the other hand, the distributions of the average route travel

times (Fig. 4.6) also shift towards longer travel times due to an increase in user indifference.

The average travel times per route also increase from 295 seconds for ∆od = 0 to 332 seconds

for ∆od = 500. The strict preference search order reduces the variances of the distributions

of the average route travel times compared to the indifferent preference search order.
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4.4.3 Analysis of the aggregated traffic states of the network

In this section, we analyze the network performance in terms of its inflow and outflow capac-

ities and internal accumulation of vehicles, through the Macroscopic Fundamental Diagram

(MFD). We investigate the critical accumulation of vehicles nc and the critical production Pc
of the MFD obtained for the different settings of bounded rationality, compared against the

values for the DUE and SUE, i.e. the reference models. To better highlight these differences,

we define three criteria that represent:

• the relative difference between the average TTD of the different PT settings (TTD∗)

and of the reference models (TTDref ):

αTTD =
TTD∗ − TTDref

TTDref
× 100 (4.12)

• the relative difference between the average TTT of the different PT settings (TTT ∗)

and of the reference models (TTT ref ):

αTTT =
TTT ∗ − TTT ref

TTT ref
× 100 (4.13)

• the relative difference between the average TTD of the different PT settings (Q∗out)

and of the reference models (Qrefout):

αQout =
Q∗out −Qrefout

Qrefout
× 100 (4.14)

The analysis of the three criteria is simple. If αTTD < 0, the network capacity decreases

compared with the reference model. The vehicles accumulation inside the network is higher

and congestion might spread backwards, increasing the average waiting times for vehicles to

enter the network. The network inflow capacity decreases. Moreover, if the accumulation

inside the network increases, the outflow performance of the network might also decrease. If

αTTT < 0, the mean speed of vehicles inside the network is higher than the reference model.

If αQout > 0, the outflow performance of the network is higher compared against the reference

model.

We show the evolution of the total traveled distance (TTD) as well as the outgoing flow

Qout as a function of the total travel time (TTT) for the indifferent (Fig. 4.7) and strict

(Fig. 4.8) preference orders. The average values for TTD, TTT and Qout are calculated for
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Fig. 4.7 – (i) Total travel distance (TTD) [in m] as function of the total travel time (TTT) [in s]. (ii) αTTD
versus αTTT for the four settings of the indifference band. (iii) Vehicles outflow (Qout) as function of the Total
Travel Time (TTT). (iv) αQout versus αTTT for the four settings of the indifference band. In subplots (i) and
(iii), the results are shown for the DUE, SUE and the four settings of the indifference band. In subplots (ii) and
(iv), the circle dots represent the relative differences between the four settings of the indifference band and the
DUE. The cross dots represent the relative differences between the four settings of the indifference band and
the SUE. These results are for the indifferent preferences search order.
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Fig. 4.8 – Same as in Fig. 4.7, but for the strict preferences search order.
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the simulation interval between 500 and 2500 seconds, for the 10 model settings. We then

calculate αTTD, αTTT and αQout and estimate confidence intervals for these three criteria.

The results are shown in Fig. 4.7 for the indifferent preference order and in Fig. 4.8 for

the indifferent preference order. Our results show that the network capacity is higher for

the strict preference search order case. This is observed by comparing the ∆od = 500 for

both search orders, where the TTD is much lower for the indifferent preference search order

compared to the strict preference search order. It can also be seen that the network capacity

is approximately similar for the strict preference search order and the different settings of the

indifference band. While, for the indifferent preference search order, the network capacity

decreases with an increase of the ∆od . This is also evidenced in Fig. 4.7 (ii) by the decrease

of αTTD as ∆od increases. The average waiting time for the vehicles to enter the network

also increase. The average waiting times per vehicle are: 51 s for the DUE; 52 s for the

SUE; 52 s for ∆od = 0; 54 s for ∆od = 100; 61 s for ∆od = 500; and 57 s for the setting

of the indifference band defined by Ge & Zhou (2012). Note that these are the averaging

waiting times for the indifferent preference search order. On the other hand, since the network

capacity is approximately similar for the strict preference search order and the different settings

of ∆od , the average waiting times per vehicle to enter the network are similar. The average

waiting times for the strict preference search order are: 74 s for ∆od = 0; 73 s for ∆od = 100;

75 s for ∆od = 500; and 74 s for the setting of the indifference band defined by Ge & Zhou

(2012). From Fig. 4.7 and Fig. 4.8, we can also observe a clear impact of the users’ search

order on the total travel time spent on the network. For example, for ∆od = 500, the αTTT
is larger for the strict preference compared to the indifferent preference search order. This

induces a lower vehicles mean speed and a lower internal network performance. Also, in the

case of the indifferent preference search order, users will tend to choose routes with higher

travel times as ∆od increases. This leads to an increase of the accumulation of vehicles inside

the network and consequently users spend more time to complete their trips. Also, the outflow

Qout of vehicles decreases as ∆od increases (see Fig. 4.7 and Fig. 4.8). Note that a lower

outflow Qout means lower system efficiency.

In summary, we show that different types of bounded user rationality have different impacts

on the network performance. Considering the indifferent preference search order where users

present an indifference behavior for all of the satisficing routes, as ∆od increases, the internal

and outflow capacities of the network decrease. However, when considering the strict user

preference order, both the internal and outflow capacities of the network are approximately

similar as ∆od increases.
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4.5 Conclusions

Users’ route choices determine the level of congestion on a road network. Thus understanding

the effects of users’ behavior is important for transportation network planning policies. In this

chapter, we investigated the influence of two types of bounded rational behavior, considering

users’ preferences for the search order (i.e. indifferent and strict preferences), on individual

route flows and network performance. To do this, we considered a dynamic implementation of

a bounded rational framework, using a mesoscopic LWR traffic simulator (Leclercq & Becarie

2012). The route costs were time-dependent and accounted for congestion, shock-waves

and spillback effects. To model the bounded rationality behavior, we relaxed the definition of

the search order of the DUE and SUE frameworks (Sheffi 1985). Thus, instead of using an

all-or-nothing procedure to assign the users to the route(s) with the minimum travel time(s),

they were assigned according to a more flexible definition of the search order according to

user preferences. We also considered both definitions of the indifference band (Eq. 4.2 and

Eq. 4.3) for ALod . To account for the distributions of travel times, we used Monte Carlo

simulations (Sheffi 1985) and algorithm based on the Method of Successive Averages was

presented to solve the network equilibria.

This work extended the framework of bounded rationality applied to dynamic traffic as-

signment modeling in some directions. First, it incorporates the stochasticity of route travel

times that are treated through Monte Carlo Simulations. Second, this framework accounts

for indifferent and strict users’ preferences for their route choices. Our framework is reduced

to the DUE or SUE, if the search order is defined for users that are utility minimizers. Third,

this framework extends the work of Zhao & Huang (2016) to a dynamic context and con-

sidering the setting of the indifference band. In our framework, we do not need to solve

sub-optimization problems to calibrate the aspiration levels of the sub-preferred routes.

To first assess and gain insight into the changes of route flows at equilibrium, ALod ,

and for both user search orders, we considered a static implementation on the toy Braess

network. The results obtained with the indifferent preference search order revealed that: (i)

the bounded rational model framework is able to reproduce both DUE and SUE; (ii) when

ALod is sufficiently large, the route flows converge to 1/3, showing the user indifference for

the route choice; (iii) the algorithm discussed converges. Also, based on this simple numerical

test, we showed that we converge towards the same solution of the BR-SUE calculated, based

on averaging over all local BR-DUE problems. In the second test, considering the strict user

preference order, we showed that the route flows calculated between our model and the model

of Zhao & Huang (2016) reach good agreement. This validated our methodology applied to
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determine the search order in a dynamic context.

We also investigated the influence of the two settings of the user’s search order on the

individual route flows and network performance, considering both definitions of ALod as defined

in Eq. 4.2 and Eq. 4.3. These tests were performed in a dynamic context, using the mesoscopic

LWR traffic simulator (Leclercq & Becarie 2012). We first showed that we were able to

reproduce the SUE, by setting ∆od = 0 for the indifferent preference search order. For the

strict preference search order, we did not obtain route flows similar to the SUE when setting

∆od = 0. This is due to the fact that routes with the most reliable travel times did not

necessarily have the minimal travel time per each od pair. We also showed that for the

indifferent preference search order, the route flows also tended to 1/3 as we increased ∆od .

We then showed that bounded user rationality had a significant impact on network perfor-

mance. For the indifferent preference search orders, the network inflow capacity decreased as

∆od increased; and the network performance decreased as ∆od increased. The outflow Qout

also decreased as ∆od increased. For the strict preference search order, the network capacity

was approximately similar for the different settings of the indifference band. However, since

users were allowed to choose routes with longer travel times as ∆od increased, the TTT

increased and the internal performance of the network decreased. In brief, we showed that

different types of bounded rationality have clearly different influences on network performance.

This is very important when guiding policy makers to decide the best measures to implement

in order to increase network performance.

As future work, we can extend this work in many directions. We first plan to extend this

work to the macroscopic fundamental diagram (MFD) simulation. We also plan to extend this

framework to heterogeneous classes of users. The heterogeneity can either be included in the

search order or on the setting of the ALod . And, we also plan to extend this model to a day-

to-day assignment, by considering a learning process (e.g., based on reinforcement learning

models) either on the ALod or the users search order definition. We also emphasize that

further research in the setting of the ALod is required. The setting of the preference orders

in the search process allows to consider heterogeneous classes of users, with a preference for

transportation mode, for example. However, we note that this users heterogeneity can also be

included in the setting of the AL instead of the search order. In this case, the total demand

Q of the od pair should be split into homogeneous groups of users with the same preference.

The AL should then be defined per od and class of users. For each class of users, they are

assigned based on an all-or-nothing assignment to one of the routes listed in ωod .
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Overview of Part I: Dynamic network loading and

users behavior

In the following, the outline of this first part of the thesis is provided, summarizing the

influence of different kinds of users behavior on the network performance. In the previous

Chapter 3 and Chapter 4, the network performance was evaluated considering the dynamic

implementation of Prospect Theory and of a Bounded Rational framework, compared against

the DUE and SUE, i.e. the benchmark models. To finalize the discussion of this first part of

the thesis, the application of Regret Theory is also considered and the results are discussed

in Sect. I.1. As such, the three major behavioral theories identified in the literature review

are covered. In Sect. I.2, the effect of different behavioral rules on a Manhattan network

performance is summarized.

I.1 Influence of the regret-aversion behavior on the network performance

Regret Theory was introduced by Bell (1982) and Loomes & Sugden (1982) and applied to

the route choice modeling by the seminal works of Chorus et al. (2006). The goal of the users

is to minimize their perceived regret with respect to the other unselected routes. If there is

a route that has a lower travel time than the one selected by the users, they will feel regret.

Otherwise, if the chosen route is the one with the minimal travel time, users feel joy. The

Regret Theory framework applied to route choice has been developed by the several works

of Chorus et al. (2008), Chorus (2010), Chorus (2012c), Chorus (2012a), Chorus (2012b),
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Chorus et al. (2013), Chorus (2014) and Li & Huang (2016). The perceived regret Hodk is

(Chorus 2014; Li & Huang 2016):

Hodk = hodk − R(y) + εk ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (I.1)

where hodk is the average regret of route k ; εk is the error term of route k . The regret function

R(y) is calculated as (Chorus 2014; Li & Huang 2016):

R(y) = 1− e−δody ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (4.15)

where y = min(hodk )− hodk and δod ∈ [0,+∞[ is the regret aversion parameter. Note that for

δod = 0, the Regret Theory model reduces to the classical SUE. For δod =∞, users are pure

regret-averse and all choose the route with the minimal travel time for the od pair.

Li & Huang (2016) discuss a static implementation framework of Regret Theory consid-

ering that the error terms εk are i.i.d. Gumbel variables. In this thesis, the travel times are

considered to be gamma distributed (Nielsen 1997) and defined at the link level (εa). Monte

Carlo simulations are used to calculate the network equilibrium. The framework of the Monte

Carlo simulations and the Method of Successive Averages is similar to the one described in

Sect. 2.3.1.4. The difference lies in the definition of the perceived regret function (Eq. I.1).

Considering that t ik ,∀k ∈ Ωod is a sample i of the travel time of route k , Eq. I.1 and Eq. 4.15

have to be modified as:

Hodk = t ik − R(y),∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (4.16)

R(y) = 1− e−δody ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (4.17)

where y = min(t ik)− t ik .
For each set of t ik ,∀k ∈ Ωod , users choose the route with the minimum perceived regret

Hodk , based on an all-or-nothing procedure. For each set of t ik ,∀k ∈ Ωod and the new

temporary route flows for the MSA algorithm are obtained by averaging all the users’ choices

for all samples. This process is repeated at each descent step of the MSA algorithm, until the

network equilibrium is reached. The network equilibrium corresponds to the Regret Theory

Stochastic User Equilibrium (RT-SUE). Under RT-SUE conditions, no user can reduce his/her

own perceived regret Hodk by unilaterally changing routes. Note that, the ηa and ζa parameters

of the gamma distribution, for each link a, are updated according to the simulated link travel

times by the traffic LWR simulator at each descent step. Furthermore, to calculate t ik , link
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additive utility functions are assumed.

The dynamic implementation of Regret Theory is performed on the same Manhattan

network as shown in Fig. 3.2 and Fig. 4.3. The same network settings as described in Eq. 3.3.1

and Eq. 4.4.1 are considered. The route choice set Ωod is calculated using a K-shortest path

algorithm in distance. A maximum of three routes per od pair are considered. To calculate

time-dependent cost paths, a dynamic LWR mesoscopic simulator (Leclercq & Becarie 2012)

is used. A total simulation period T = 3000 seconds is set. For the MSA convergence, the

parameters are set to tol = 10−2, Φ = 0 and Nmax = 250. Three values of δod = 0, 1, 10 are

set.

The network performance considering the Regret Theory, is assessed through the Macro-

scopic Fundamental Diagram (MFD) (see Fig. I.1 (i)) as well as through its outflow function

Qout (see Fig. I.1 (iii)), compared against the DUE and SUE equilibria. To better highlight

the differences between the different models and the benchmark ones, three criteria were

established in the two previous chapters: αTTD (see Eq. 3.16 and Eq. 4.12); αTTT (see

Eq. 3.16 and Eq. 4.13); αQout (see Eq. 3.16 and Eq. 4.14). The average values for TTD,

TTT and Qout are calculated for the simulation interval between 500 and 2500 seconds, for

all five model settings. The αTTD, αTTT and αQout as well as confidence intervals are then

calculated. The results are shown in Fig. I.1 (ii) for the αTTD versus αTTT and in Fig. I.1

(iv) for the αQout versus αTTT . The circle and cross dots represent the relative differences

between the Regret Theory settings and the DUE and SUE, respectively.

First one can observe that as expected, by setting δod = 0, the RT-SUE reduces to the

classical SUE as shown by the MFD in Fig. I.1 (i). Moreover, for δod = 0: αTTD ∼ 0;

αTTT ∼ 0; and αQout ∼ 0. Second, the mean speed of vehicles inside the network is ∼ 4%

lower for the three δod settings than the DUE. Compared to the SUE, the mean speed is

approximately similar. This is evidenced by the αTTT values shown in Fig. I.1 (ii). The

network capacity increases with δod , as evidenced by the αTTD values in Fig. I.1 (ii). For

δod = 0, the network capacity is ∼ 2% inferior than the DUE. But, for δod = 1, 10, the

network capacity is similar as the DUE. For δod = 0, the network capacity is similar to the

SUE. But, it shows an increase of ∼ 3% for δod = 1, 10. The outflow performance is similar

for δod = 0 and both reference models. But, the case for δod = 1 is ∼ 3% larger compared

to the SUE and ∼ 3% inferior for δod = 10 compared to the DUE.

In summary, the users’ regret aversion behavior influences the network mean speed as well

as internal and outflow capacities. But, for this specific network setting, the differences are

inferior to ∼ 5% compared to the reference models. In the next section, these results are

compared against the ones of the Prospect Theory and Bounded Rationality.
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Fig. I.1 – (i) Total travel distance (TTD) [in m] as function of the total travel time (TTT) [in s]. (ii) αTTD
versus αTTT for the three δod values. (iii) Vehicles outflow (Qout) as function of the Total Travel Time (TTT).
(iv) αQout versus αTTT for the three δod values.
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Prospect Theory Mean Speed Internal capacity Outflow capacity
Aversion parameters T od0 DUE SUE DUE SUE DUE SUE

KT mean ↑ ↑ ↓ ↑ ∼ ∼
KT median ∼ ↑ ↓ ↑ ∼ ∼
KT mode ↑ ↑ ↓ ↑ ↓ ↑
Xu mean ↑ ↑ ↓ ↑ ↓ ↑
Xu median ↑ ↑ ↓ ↑ ↓ ↑
Xu mode ↓ ↑ ↓ ↑ ↓ ↑

Bounded Rationality Mean Speed Internal capacity Outflow capacity
Preference order ∆od DUE SUE DUE SUE DUE SUE

Indifferent 0 ↑ ∼ ∼ ∼ ∼ ∼
Indifferent 100 ∼ ↓ ↓ ↓ ↓ ↓
Indifferent 500 ↑ ↓ ↓ ↓ ↓ ↓
Indifferent Ge & Zhou (2012) ∼ ↓ ↓ ↓ ↓ ↓
Strict 0 ↓ ↓ ∼ ↑ ∼ ∼
Strict 100 ↓ ↓ ↑ ↑ ↑ ↑
Strict 500 ↓ ↓ ↑ ↑ ↑ ↑
Strict Ge & Zhou (2012) ↓ ↓ ↑ ↑ ↑ ↑

Regret Theory Mean Speed Internal capacity Outflow capacity
δod DUE SUE DUE SUE DUE SUE
0 ↓ ∼ ↓ ∼ ∼ ∼
1 ↓ ∼ ∼ ↑ ∼ ↑
10 ↓ ↓ ∼ ↑ ↓ ∼

Legend:
↓: superior to 5% ∼: no effect (margin of 2%) ↑: superior to 5%
↓: margin ∈ [2,5]% ↑: margin ∈ [2,5]%

Table I.1 – Summary of the Manhattan network performance, including mean speed, internal and outflow
capacities, considering the: (i) users’ risk-aversion and risk-seeking behavior (Prospect Theory) discussed in
Chapter 3; (ii) users’ bounded rationality discussed in Chapter 4; and (iii) users’ regret-aversion (Regret Theory)
discussed in Sect. I.1.

I.2 Global comparison of behavioral models

In this Part I of this thesis, the influence of different kinds of users behavior on the network

performance is investigated. The latter is evaluated through the analysis of the Macroscopic

Fundamental Diagram and outflow function Qout compared to the DUE and SUE models,

considered as the benchmarks.

The tests are conducted on a Manhattan network and focused on an homogeneous pop-

ulation of users. They have similar decision rules that are set according to the risk-aversion

and risk-seeking (Prospect Theory) and regret-aversion (Regret Theory) users’ behavior, as

well as bounded rational users are considered. The influence of these type of users’ behavior
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on the network mean speed, internal and outflow capacities are summarized in Table I.1. This

table gives an overview about how the network performance is affected by different kinds of

users’ behavior. One can observe that in general, the mean speed increases in comparison to

both benchmark equilibria, when users show a risk-aversion and risk-seeking behavior. The

internal and outflow capacities of the network increase compared to the SUE, but decrease

with respect to the DUE. The users’ indifferent preference behavior decrease both the inter-

nal and outflow capacities, while the users’ strict preferences show an opposite trend. The

users indifference for the route choice decreases the network mean speed compared to the

SUE. Considering the users strict preferences, the network mean speed decreases with respect

to both benchmark equilibria. The users’ regret-aversion behavior decreases, in general, the

network mean speed as well as both internal and outflow capacities compared to the DUE.

For some settings of the regret-aversion model, the internal and outflow capacities increase

compared to the SUE.

The results of the Part I of this thesis were presented at the 7th International Symposium

on Dynamic Traffic Assignment DTA2018.



Part II

Dynamic Traffic Assignment framework
for multi-regional MFD-based models
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5
Introduction of multi-regional MFD-based models

with route choices: the definition of regional
paths

Abstract
Up to now, few attention has been given to build a dynamic traffic assignment framework
for Macroscopic Fundamental Diagram (MFD) based models. The first step consists in
identifying the regional paths to define the regional choice set. The purpose of this chapter
is to propose three methods to gather the regional paths. Two of these methods are based
on a set of trips in the city network and on the city network partitioning. They rely on
an exhaustive search in the city network and are set as the reference methods. The other
method is based on K-shortest paths calculated in the regional network. The three methods
are tested on the 6th district Lyon network (France). We show that the reference methods
require a large size of the trips set. This is highly time consuming for large city network
and we propose an alternative method. We show that this method gives a set of regional
paths with a high level of similarity compared to the reference methods. It is also able to
find in ∼80% of the cases, the most significant regional path for each regional OD pair,
compared to the reference methods. But, it only lists the regional paths in ∼50% of the
cases when considering the strict similarity criterion compared to the reference methods.

Keywords: Regional paths; Regional Choice set; Trips; MFD models.

This chapter is based on paper accepted for the Proceedings of the PLURIS 2018 confer-
ence.
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5.1 Introduction

An aggregated traffic modeling has caught more attention from the scientific community

after the seminal works of Daganzo (2007) and Geroliminis & Daganzo (2008). The city

network (Fig. 5.1 (a)) is partitioned into regions (Fig. 5.1 (b)), where the traffic conditions

are approximately homogeneous. The traffic states inside each region are governed by the

Macroscopic Fundamental Diagram (MFD). It represents the relationship between the average

circulating flow and the accumulation of vehicles inside the region. The partition of the

city network into regions defines the regional network (Fig. 5.1 (c)), where the connections

between regions depend on the directions of the ingoing and outgoing links of their border

nodes in the city network. In Fig. 5.1 (c), these connections are represented by the gray

arrows. Let X be the set of regions that define the regional network. In multi-regional systems,

the MFD dynamics characterizes the exchange flows between regions. For this, the design

of an aggregated dynamic traffic assignment framework is required (see e.g. Yildirimoglu

& Geroliminis 2014; Yildirimoglu et al. 2015). The basis of a dynamic traffic assignment

framework is the definition of paths. In Fig. 5.1 (a), we show three examples of paths (or

trips) in the city network. A trip corresponds to a sequence of traveled links from the origin

(o) to the destination (d) nodes in the city network. As shown in Fig. 5.1 (a), each trip

crosses a specific sequence of regions, defining a regional path. In this chapter, two types of

paths on the regional network are considered:

• regional paths, that represent the ordered sequence of crossed regions from the regional

Origin (O) to the regional Destination (D). In Fig. 5.1 (b), we show the corresponding

regional paths to the blue and green trips.

• internal paths, that represent internal trajectories of vehicles inside one given region. In

this case, the regional O and D correspond to the region that defines the internal path.

In Fig. 5.1 (b), we show an example of an internal path highlighted in purple.

The regional and internal paths, where users will be assigned for their travels on the

regional network, define the regional choice set ΩOD. One solution would be to enumerate

all the possible regional paths for the OD pair. But, not all regional and internal paths have

the same significance level considering the trips on the city network as well as its topology.

A regional path might be associated to one or more trips in the city network, as shown in

Fig. 5.1 (a) by the green trips. This induces the significance level of a regional path. For

example, consider two regional paths that have associated 1 and 100 trips, respectively. The

regional path defined by 100 trips is much more significant than the one defined by only one
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Fig. 5.1 – (a) City network and three trips. The green trips define a different regional path than the blue trip.
(b) Partition of the city network shown in (a) where the corresponding regional paths to the blue and green
trips are shown. (c) Regional network corresponding to the partition of the city network shown in (b), where
the connection between the adjacent regions are represented by the gray arrows.
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trip, because it is more probable to be used by users on the city network. The goal of this work

is to propose three methods to identify the most significant paths to define ΩOD, considering

the topology of the city network and the definition of the regions. In this chapter, we assume

that the partition of the city network is given and the regions are well-defined. The three

methods are implemented on the 6th Lyon (France) district network, that is divided into eight

regions. Based on a static analysis, we analyze the regional choice sets recovered for some

regional OD pairs and discuss the advantages and inconveniences of each one of the three

methods.

The reminder of this chapter is organized as follows. In Sect. 5.2, we introduce the method-

ological framework for the three methods to define the regional choice set. In Sect. 5.3, we

analyze the regional choice sets calculated by the three methods for the 6th Lyon (France)

district network and some regional OD pairs. In Sect. 5.4, we outline the conclusions of this

chapter.

5.2 Methodological framework

In this chapter, we propose three methods to define the set of regional paths. The first two

methods (Method 1 and 2) are based on the calculation of a set of trips in the city network.

For this, we need to sample Nod od pairs in the city network and calculate the trip connecting

each one. Let Γ be the set of calculated trips. The differences between these two methods

are related to the sampling:

• Method 1: the sampling of the Nod od pairs is independent of the partition of the

city network. In Fig. 5.2 (a), we show an example of three trips that represent three

different regional paths. Each of these trips are sampled independently of the city

network partitioning.

• Method 2: for each regional OD pair, the sampling of the Nod od pairs is done inside

these specific O and D regions. In Fig. 5.2 (b), we show an example of three trips where:

their origin nodes are sampled inside the same Origin region; and their destination nodes

are sampled inside the same Destination region.

For both methods, the regional paths are gathered based on the trips listed in Γ and on

the partition of the city network. They are then ordered by their significance level, considering

the number of trips that define each one of them. Let Ψ be the set of regional paths defined

by the trips listed in Γ. The regional choice set ΩOD gathers the K most significant regional

paths for each OD pair. The application of these two methods depends on the number of
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Fig. 5.2 – (a) Application example of Method 1, where the od pairs are sampled independent of the city network
partitioning. Three trips that define three different regional paths are shown. (b) Application example ofMethod
2, where the od pairs are sampled inside the specific Origin and Destination regions. Three examples of trips,
where their od pairs are specifically sampled inside the Origin and Destination regions, as shown. These three
trips define three different regional paths for the same regional OD pair. (c) Application example of Method
3. The gray circles represent the regions of the regional network. The gray arrows represent the connections
between adjacent regions. The gray circles are numbered from 1 to 7 and represent the seven regions of the
city network partition shown in Fig. 5.1 (b).

Nod od pairs that are sampled as well as on the algorithm used to calculate the trips between

each od pair. A proper setting of Nod is then necessary for these two methods. This will be

investigated in more detail in the next section.

Methods 1 and 2 are based on an exhaustive search of the city network topology through

the calculation of a set of trips. These are the reference methods. While they might be

applicable for small city networks, they are time consuming for large scale applications (e.g.

the whole urban area). This is because both of these methods require the computation of a

large number of trips to define Γ. Moreover, the calculation of the trips is insensible to the

definition of the regions borders. Depending on the city network topology, a trip might cross

the same border several times. Consider for example the border between two regions A and

B. If one has a trip that crosses several times this border, by the definition of regional path,

one may end up with a meaningful regional path defined as the sequence ABABABA. This is

another limitation of methods 1 and 2 that might happen when the regional borders are not

well defined. Note that, for example, a border between two regions is not well defined if it is

located in a two-ways main street, where the two street directions are not located in the same

region. Thus, we introduce a third method (Method 3), where the regional paths are directly

calculated on the regional network. It does not require any prior knowledge about the demand

and is only based on network features. In Fig. 5.2 (c), we show an example of a regional

network, where the numbered gray circles from 1 to 7 represent the different regions. The
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gray arrows represent the possible connections between adjacent regions. Note that, these

connections depend on the directions of the incoming and outgoing links of the border nodes

in the city network, between two adjacent regions. For example, in Fig. 5.2 (c), it is possible

to travel from region 1 to 2 and vice-versa. But, it is only possible to travel from region 2 to

4 and not from region 4 to 2.

The connection costs between regions (Cri rj ) are calculated based on the flow capacity

(qcal) for each lane l of link a of the city network (Fig. 5.1 (a)) that allows to travel from

region ri to rj . The link costs of the regional network (Fig. 5.2 (c)) Cri rj are estimated as:

Cri rj =
∑
a

Nlanes∑
l=1

1

qcalδaij
,∀a ∈ Γa ∧ ∀i ∈ X ∧ ∀j ∈ Λ (5.1)

where Nlanes is the total number of lanes of link a; Γa is the set of all links of the city network;

Λ is the set of adjacent regions to region i ; qcal is the flow capacity of lane l of link a; and

δaij is a dummy variable that equals 1 if link a allows to travel from region ri to region rj . We

consider a standard value of qcal = 1800 [veh/h].

For each regional OD pair, where the Origin and Destination regions are different, we

run a K-shortest paths calculation in this graph (Fig. 5.2 (c)), considering the connection

costs calculated through Eq. 5.1. The K regional paths that are found directly define the

regional choice set ΩOD. For the case, where the Origin and Destination regions are the

same, we consider that the regional choice set ΩOD is defined only by internal paths. Method

3 has a light computational cost and avoids meaningful regional paths, when an acyclic search

algorithm to calculate the paths is used.

5.3 Regional paths and choice sets analysis

In this section, we implement the three methods introduced in the previous section. We

consider the 6th Lyon (France) district network, that is divided into eight regions, as shown

in Fig. 5.3. This network has 757 links and 431 nodes.

To calculate the base of trips Γ, for Methods 1 and 2, we consider:

• different values of Nod : 40; 80; 200; 400; 600; 800; 1200; and 1600.

• the K-shortest path (SP) and the A∗ algorithms to calculate the trips for each od pair.
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Fig. 5.3 – 6th Lyon (France) district network divided into 8 regions.

5.3.1 Sensibility of methods 1 and 2 to the set of trips Γ

In this section, we analyze the dependence of Methods 1 and 2 on the number of od pairs

(Nod) considered for the sampling and on the algorithm used to calculate the trips. A proper

setting of Nod should be related with the city network coverage. A lower value of Nod does

not guarantee that all links and nodes of the city network are visited. For low values of Nod ,

the variability of regional paths that are found is larger. If one applies Methods 1 and 2

considering a low value for Nod , different regional paths might be found in different trials. It

is then important for these two methods to ensure a good coverage of the city network by

the set of trips Γ that is initially generated. For this, we define two criteria that estimate the

percentage of the graph nodes (Nnodescov (Nod)) and links (N l inkscov (Nod)) coverage by the set of

trips that are calculated based on Nod :

Nnodescov (Nod) =

Nnodes∑
i=1

Nnodesused (Nod)

Nnodes
(5.2)

N l inkscov (Nod) =

Nl inks∑
i=1

N l inksused (Nod)

Nl inks
(5.3)
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where Nnodesused (Nod) and N l inksused (Nod) represent the total number of nodes and links, respectively,

visited by the trips; and Nnodes and Nl inks represent the total number of nodes and links,

respectively, defining the city network.

For the estimation of Nnodesused (Nod) (Eq. 5.2) and N l inksused (Nod) (Eq. 5.3), we consider the

set of values of Nod previously stated. For each value of Nod , we sample 100 sets of trips

and calculate the average and standard deviations for Nnodesused (Nod) (Eq. 5.2) and N l inksused (Nod)

(Eq. 5.3). In Fig. 5.4, we show the evolution of average values Nnodescov (Nod) (top panel) and

N l inkscov (Nod) (bottom panel), for the different values of Nod considered. The standard deviation

is also shown by the bars. We estimate Nnodesused (Nod) and N l inksused (Nod) for both Method 1 and

Method 2 as well as for the application of the SP and A∗ algorithms to calculate the trips.

As one can observe, larger values of Nod ensure a better coverage of the city network as

expected. This should also reduce the variability of the regional paths that are found for

different regional OD pairs.

5.3.2 Regional paths: a comparative analysis between the three methods

In this section, we compare the set of regional paths Ψ obtained through the application of

the three methods. We first analyze the total number of regional paths that is possible to

obtain from the trips listed in Γ, for Methods 1 and 2. We consider different values of Nod
and both SP and A∗ algorithms. The results are listed in Table 5.1. Method 2 provides a

larger number of regional paths than Method 1. Moreover, similar conclusions can be drawn

for both methods and for the A∗ compared to the SP algorithm. However, not all of these

regional paths are significant to define the regional choice set ΩOD.

Nod
Method 1 Method 2
SP A∗ SP A∗

40 107 113 158 180
80 131 143 210 232
200 150 168 312 336
400 165 187 383 459
600 177 193 445 475
800 191 198 457 509
1200 187 206 489 539
1600 190 207 506 549

Table 5.1 – Number of regional paths found as function of Nod and for both algorithms SP and A∗ to calculate
the trips.

We analyze the regional choice sets calculated for some regional OD pairs. To do this



Dynamic traffic assignment for multi-regional transportation systems considering different kinds of
111users’ behavior

5.3. Regional paths and choice sets analysis

40 80 200 400 600 800 1200 1600
Nod

0.6

0.7

0.8

0.9

1.0

N
co

v
no

de
s (N

od
)

Nodes

M
1
 SP

M
1
 A*

M
2
 SP

M
2
 A*

40 80 200 400 600 800 1200 1600
Nod

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
co

v
no

de
s (N

od
)

Links

Fig. 5.4 – Evolution of average of Nnodescov (Nod) (top panel) and N l inkscov (Nod) (bottom panel) as function of Nod .
To calculate the averages and standard deviations, we consider 100 trials of trips for each value of Nod . The
standard deviations are represented by the vertical bars. The results are shown both Method 1 and Method 2
as well as for the application of the SP and A∗ algorithms to calculate the trips.

analysis, we have to separate the regional paths into two types: (i) regional paths where the

Origin and Destination regions are the same; and (ii) regional paths where the Origin and

Destination regions are different. For case (i), we consider three regional OD pairs: 1-1; 5-5;

and 7-7. For case (ii), we consider the following regional OD pairs: 3-4; 4-3; 1-6; and 6-1.

To define the regional choice set ΩOD for each of these OD pairs, we set a maximum of three

most significant regional paths. For methods 1 and 2, we take into account different values

of Nod and both SP and A∗ algorithms.
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In Table 5.2, we summarize the regional choice sets for case (i). Methods 1 and 3 give

similar ΩOD. For Method 2, we observe that the level of significance of the regional paths

depends on Nod . For low values of Nod , in some cases only one or two regional paths are

found at maximum. For larger values of Nod (i.e. 1200 and 1600), when the graph coverage

is close to 1 (see Fig. 5.4), we obtain similar ΩOD. We now analyze the regional choice sets

for the regional OD pairs considered for case (ii). We list the ΩOD for the four OD pairs in

Table 5.3 for methods 1 and 3 and in Table 5.4 for methods 2 and 3. Similarly to previous

case (i), we can observe that for methods 1 and 2, the significance level of the regional paths

depend on Nod . But, for Nod=1200 and 1600, when we ensure a good graph coverage with

a low standard deviation (Fig. 5.4), the ΩOD are similar for these OD pairs. These results

enhance the importance of ensuring a good graph coverage for the application of methods 1

and 2.

We also investigate the similarities between all OD pairs of the network. In this analysis,

we only consider the ΩOD obtained through methods 1 and 2 when Nod=1600. By the

application of method 3, we find in general the most significant regional path for these OD

pairs, compared to both methods 1 and 2 (see Table 5.3 to Table 5.5). But, in most of the

cases, we do not find the same regional paths for the second and third most significant ones.

We investigate the latter in more detail. For this, we consider the sets of regional paths Ψ

obtained through the three methods, reduced to the three most significant regional paths per

regional OD pair. We compare these sets in terms of their similarity and strict similarity of

the most significant regional paths for each OD pair. Let ΨMi
and ΨMj

be the reduced sets

of regional paths obtained through methods Mi and Mj , respectively. The similarity between

ΨMi
and ΨMj

are evaluated by the criterion αMiMj

similar ity :

α
MiMj

similar ity =

∑
p δ

MiMj
p

NMi

total

,∀p ∈ ΨMi
∧ i 6= j (5.4)

where δMiMj
p is a dummy variable that equals 1 if regional path p that is listed in ΨMi

is also

listed in ΨMj
, or 0 otherwise; and NMi

total is the total number of regional paths that define ΨMi

for method Mi .

The strict similarity criterion between regional paths are evaluated through the criterion

α
MiMj

str ictsimilar ity :

α
MiMj

str ict similar ity =

∑
O

∑
D

∑
p δp

NMi

total

,∀p ∈ ΨMi
∧ i 6= j (5.5)

where δp is a dummy variable that equals 1 if regional path p that is listed in ΨMi
is also listed
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in ΨMj
with the same level of significance, or 0 otherwise.

O D
Method 1: SP & A∗

Method 3Nod
40 80 200 400 600 800 1200 1600

1 1 1 1 1 1 1 1 1 1 1
5 5 5 5 5 5 5 5 5 5 5
7 7 7 7 7 7 7 7 7 7 7

O D
Method 2: SP

Method 3Nod
40 80 200 400 600 800 1200 1600

1 1
1 1 1 1 1 1 1 1 1

1,2,1 1,2,1 1,2,1 1,2,1 1,2,1 1,2,1 1,2,1 1,2,1 ∼
∼ ∼ 1,2,3,1 1,3,1 1,2,3,1 1,2,3,1 1,2,3,1 1,2,3,1 ∼

5 5
5 5 5 5 5 5 5 5 5
∼ 5,4,5 5,2,5 5,4,5 5,2,5 5,2,5 5,2,5 5,2,5 ∼
∼ 5,2,5 5,4,5 5,2,5 5,6,4,5 5,6,5 5,6,5 5,6,5 ∼

7 5
7,3,7 7 7 7 7 7 7 7 7
7,6,8,7 7,8,7 7,3,7 7,8,7 7,3,7 7,8,7 7,8,7 7,8,7 ∼
7,3,5,7 7,3,7 7,5,7,6,8,7 7,3,7 7,8,7 7,3,7 7,3,7 7,3,7 ∼

O D
Method 2: A∗

Method 3Nod
40 80 200 400 600 800 1200 1600

1 1
1 1 1 1 1 1 1 1 1

1,3,1 1,3,1 1,2,1 1,2,1 1,2,1 1,2,1 1,2,1 1,2,1 ∼
∼ 1,2,1 1,3,1 1,3,1 1,3,1 1,3,1 1,3,1 1,3,1 ∼

5 5
5 5 5 5 5 5 5 5 5

5,4,5 5,2,5 5,4,5 5,6,5 5,2,5 5,6,5 5,2,5 5,2,5 ∼
5,6,5 5,7,3,5 5,6,4,5 5,2,5 5,6,5 5,2,5 5,6,4,5 5,6,5 ∼

7 5
7,3,7 7 7 7 7 7 7 7 7
7,5,7 7,3,5,7 7,3,7 7,3,7 7,8,7 7,3,7 7,3,7 7,8,7 ∼
7,3,5,7 7,3,7,6,8,7 7,6,8,7 7,5,7 7,3,7 7,5,7 7,8,7 7,3,7 ∼

Table 5.2 – Regional choice set for three different regional OD pairs: 1-1; 5-5; and 7-7. The regional paths
are listed for the three methods and both SP and A∗ algorithms used to calculate the trips, for Method 1 and
Method 2. The regional choice sets are listed from the first to the third most frequent regional paths for Method
1 and Method 2. For Method 3 the three K-shortest paths are listed.
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5.3. Regional paths and choice sets analysis

Shortest Path A∗

M1 M2 M3 M1 M2 M3

M1 ∼ 0.85 0.74 M1 ∼ 0.84 0.65
M2 0.85 ∼ 0.78 M2 0.84 ∼ 0.59
M3 0.68 0.71 ∼ M3 0.71 0.64 ∼

Table 5.5 – Similarity (αMiMj

similar ity ) between the three methods and considering both the SP and A∗ algorithms
to calculate the set of trips.

Shortest Path A∗

M1 M2 M3 M1 M2 M3

M1 ∼ 0.66 0.47 M1 ∼ 0.70 0.40
M2 0.66 ∼ 0.48 M2 0.70 ∼ 0.37
M3 0.43 0.44 ∼ M3 0.44 0.41 ∼

Table 5.6 – Same as in Table 5.5, but for the strict similarity criterion (αMiMj

str ict similar ity ).

Shortest Path A∗

M2 M3 M2 M3

M1 0.84 0.80 M1 0.94 0.81
M2 ∼ 0.81 M2 ∼ 0.83

Table 5.7 – Same as in Table 5.5, but for the strict similarity criterion (αMiMj

str ict similar ity ) applied for the most
significant regional path of each regional OD pair.

The results are listed in Table 5.5 for the similarity criterion and in Table 5.6 for the strict

similarity criterion. We also apply the strict similarity criterion for the most significant regional

path of each regional OD pair. The results are listed in Table 5.7. Methods 1 and 2 provide

very similar sets of regional paths, with a level of similarity of αM1M2

similar ity ∼ 85%. Moreover,

the regional paths are listed with the same level of significance in ∼70% of the cases. The

most significant regional paths are found in ∼84% of the cases for the SP and ∼94% of the

cases for the A∗ algorithm comparing methods 1 and 2. Method 3 also gives regional path sets

with a good level of significance compared to method 1 (αM1M3

similar ity ∼ 60− 70%) and method

2 (αM2M3

similar ity ∼ 60− 80%). The performance of method 3 is lower to find the regional paths

with the same level of significance as method 1 (αM1M3

str ict similar ity ∼ 40− 50%) and method 2

(αM2M3

str ict similar ity ∼ 60− 80%). Method 3 is able to find the most significant regional path for

each regional OD pair in ∼80% of the cases compared to methods 1 and 2. These results

enhance that the application of method 3 gives similar sets of regional paths as methods 1
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and 2. Method 3 shows a good performance to find the most significant regional path for

each regional OD pair, compared to the reference methods. However, the performance to list

the three most significant regional paths for each OD pair is lower.

5.4 Conclusions

In this chapter, we discuss three methods to calculate the regional choice set. This corresponds

to the first step to define a regional dynamic traffic assignment framework, for multi-regional

systems MFD-based models. The three methods are tested on the 6th Lyon (France) district

network, that is divided into eight regions. We show that we need to set a sufficiently large

value of Nod to ensure a good city network coverage when applying methods 1 and 2. For

Nod ≥1200, we ensure a good city network coverage (i.e. Nnodescov (Nod) ∼ 1 with a very low

standard deviation, yielding Nod
Nnodes

∼ 3) and we obtain similar regional choice sets, where the

regional paths are listed with the same level of significance. Both of these methods are based

on an exhaustive search of trips in the city network. They can be highly time consuming for

large city networks applications. Method 3 shows to be a good alternative. It gives regional

path sets with a very good level of similarity as the ones of the reference methods. It also

shows a very good performance in finding the most significant regional path for each regional

OD pair compared to reference methods. However, the level of strict similarity is reduced to

∼50% when the three most significant regional paths per OD pair are considered.
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6
Trip length estimation for the aggregated network

models: scaling microscopic trips into regions

Abstract
One of the key ingredients for the Macroscopic Fundamental Diagram based traffic models
is the definition of regional trip lengths inside regions. In this chapter, we propose four
methods to estimate the distributions of regional trip lengths based on a set of trips in
the city network and on the topology of the regional network. These methods differ from
each other depending on the level of detail that we are considering to filter the trips inside
each region of the regional network, i.e.: (i) no information about the regional Origin and
Destination of the trips; (ii) the next region to be traveled by the trips; (iii) the previous
and next regions traveled by the trips; and (iv) the related regional path defined by each
trip. We test the four methods on the 6th district Lyon network. We first show that
considering an average regional trip length for all vehicles traveling on the same region is
not representative of all plausible regional trip lengths calculated by more refined methods.
We propose a procedure to update the regional trip lengths when new regional Origin-
Destination matrices are considered. Regarding the trip-based Macroscopic Fundamental
Diagram model, we show that the regional trip lengths influence the predictions of the
accumulations inside the regions. We also show that the regional trip lengths are influenced
by the traffic states and highlight that they should be updated accordingly.

Keywords: Trip Lengths; Trip-based model; Macroscopic Fundamental Diagram

This chapter is based on a paper under review for publication on Transportation Research
Part B: Methodological.
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6.1 Introduction

The first ideas of a network level aggregated model were introduced by Godfrey (1969) and

later revisited by Herman & Prigogine (1979), Mahmassani et al. (1984) and Daganzo (2007).

For this, one needs to divide the city network (Fig. 6.1 (a)) into regions, where the traffic

conditions are approximately homogeneous (Ji & Geroliminis 2012). In Fig. 6.1 (b), we

show the partition of the city network and the set of regions that define the regional network

(Fig. 6.1 (d)). The system dynamics inside each region is governed by a conservation equation,

where the outflow is given by a well-defined relation between mean flow and accumulation,

called the Macroscopic Fundamental Diagram (MFD) (Daganzo 2007). Using traffic data

from the city of Yokohama (Japan), Geroliminis & Daganzo (2008) provided ground truth

evidence of the MFD existence. Its existence and properties were also confirmed by other

authors (Geroliminis & Sun 2011a; Ambühl & Menendez 2016; Loder et al. 2017). Up to

today, the applications of the MFD in traffic models have mostly been for testing different

control algorithms, see Haddad & Geroliminis (2012); Ekbatani et al. (2015); Ramezani et al.

(2015); Yang et al. (In press); Kouvelas et al. (2017); Haddad (2017) and Zhong et al. (2017)

for some examples.

The mathematical formulation of the MFD was introduced by Daganzo (2007), for a single

region. The traffic dynamics is governed by a state equation that relates the accumulation

of vehicles (nr(t)) with the balance between the inflow (Qin,r(t)) and outflow (Qout,r(t)):

dnr(t)

dt
= Qin,r(t)−Qout,r(t), t > 0 (6.1)

Depending on the assumption made on Qout,r(t), one can distinguish two models in the

literature: the accumulation-based model (Daganzo 2007; Geroliminis & Daganzo 2008); and

the trip-based model (Arnott 2013; Fosgerau 2015; Lamotte & Geroliminis 2016; Mariotte

et al. 2017).

The first implementation of the accumulation-based model assumes a constant mean trip

length (L) for all vehicles traveling inside the same region (Daganzo 2007). This assumption

appears in several studies in the literature (see e.g., Gayah & Daganzo 2011; Haddad 2017).

While empirical results from the Yokohama traffic data showed that this might be a reasonable

assumption, further studies conclude that this might not be a universal law for all networks

since changes in origins and destinations can have a significant influence on the trip lengths

(Leclercq et al. 2015). Yildirimoglu & Geroliminis (2014) introduce the concept of regional

path, that represents an ordered sequence of crossed regions from the regional Origin to

the Destination (Fig. 6.1 (c)). The authors propose to consider different trip lengths for
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Fig. 6.1 – (a) Example of a city network. (b) Partition of the city network where two trips are represented. (c)
Regional path defined by the trips shown in (b). (d) The regional network that corresponds to the city network
partitioning shown in (b).

vehicles traveling on the same regional path and inside the same region. Ramezani et al.

(2015) proposes a more refined approach, where the trip lengths are dynamically calculated

depending on the exchange flows between adjacent regions and the accumulation of vehicles.

Arnott (2013) proposes a definition of the MFD dynamics centered on vehicle trip length

Lr inside region r :
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Lr =

∫ texit

tentry

vr(nr(s))ds (6.2)

where tentry and texit are the entry and exit times of the vehicle from the region; texit − tentry
is the travel time of the vehicle inside the region; and vr(nr(s)) is the speed-MFD of region

r . This is referred to as the trip-based model and has been investigated in detail by several

authors in the literature (Arnott 2013; Fosgerau 2015; Lamotte & Geroliminis 2016; Leclercq

et al. 2017; Mariotte et al. 2017). It allows to keep track of the distance traveled by each

vehicle inside a region, while assuming the vehicle speed to be homogeneous and given by

the MFD. This gives full liberty to define trip lengths from an unique value for all vehicles to

individual values depending for example on the regional paths.

Both accumulation- and trip-based models require a proper estimation of trip lengths within

regions. Yildirimoglu & Geroliminis (2014) mention that considering average trip lengths

within regions are not representative. Instead, trip length distributions should be considered.

In fact, as shown in Fig. 6.1 (b), different trips in the city network have different lengths

inside each region they are crossing in the regional network. Thus, the design of methods

able to define trip length distributions for the MFD-based models is required. The goal of this

chapter is to fill this gap. We discuss four methods to calculate the trip length distributions

inside each region, given a set of trips in the city network and the topology of the regional

network. These methods consist in aggregating the lengths of the part of the trips inside

each region, considering different levels of information about the regional network topology.

They allow to define distributions of trip lengths for each region taking into account:

• (i) no information about the regional Origin and Destination of the trips.

• (ii) the next region to be traveled by the trips.

• (iii) the previous and next regions traveled by the trips.

• (iv) the related regional path defined by each trip.

We first investigate the application of these four aggregation methods on the 6th district of

Lyon network (France), divided into eight regions. We analyze the distributions of trip lengths

for each region, calculated through each of the four methods and discuss their differences. We

discuss the dependence of the distributions of trip lengths on the regional Origin-Destination

(OD1) matrix. We introduce a procedure to update the trip lengths based on a new regional

1Capital letters refer to regional OD’s, while lower case letters refer to city network od’s.
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OD matrix without requiring to re-sample the set of trips in the city network. Secondly, we

investigate the influence of the regional trip length distributions calculated through the four

methods when performing simulation studies with the trip-based MFD model. For this, we

consider the event-based scheme as detailed in Mariotte et al. (2017) and the Determinis-

tic User Equilibrium (DUE) on the regional paths. We analyze the simulated traffic states

considering each of the four methods to calculate the trip lengths. We discuss the impor-

tance of scaling the regional trip lengths, when new regional OD matrices are considered for

the macroscopic traffic models. Finally, we discuss the influence of the traffic states and

re-routing on the regional trip lengths.

The remainder of the chapter is organized as follows. In Sect. 6.2, we introduce the

mathematical formulation of the proposed four methods to calculate the regional distributions

of trips lengths. In Sect. 6.3, we analyze the distributions of trip lengths calculated through

the four methods and for the 6th district of Lyon network (France). We discuss the sensitivity

of the macroscopic trip lengths to the OD matrix and introduce a procedure to calibrate the

trip length distributions based on a new regional OD matrix. In Sect. 6.4, we investigate

the mutual relation between the trip length distributions and the traffic states, using a trip-

based MFD model. We show the importance of updating the regional trip lengths, when new

OD matrices are considered for the MFD-based traffic models. In Sect. 6.5, we outline the

conclusions of this chapter.

6.2 Regional trip length distributions for MFD-based models: method-
ological framework

The MFD-based models for multi-regional systems require a good estimation of the regional

trip lengths. Yildirimoglu & Geroliminis (2014) states that considering average regional trip

lengths is not representative. Instead distributions of regional trip lengths for each region

should be taken into account. In this section, we introduce four methods to calculate these

distributions of regional trip lengths as well as their mathematical formulation.

For the multi-regional MFD-based models, one has to decompose the city network (Fig. 6.1

(a)) into regions with homogeneous traffic conditions. Let X be the set of these regions that

define the regional network (Fig. 6.1 (b)). The regional network is a result of the city network

partitioning (Saeedmanesh & Geroliminis 2016, 2017; Lopez et al. 2017; Casadei et al. 2018).

There are several characteristics of the aggregated network that are different from the city

network. First, in the aggregated network, we have regional Origin and Destination (OD)

that correspond to regions instead of nodes as in the city network. Let W be the set of



Dynamic traffic assignment for multi-regional transportation systems considering different kinds of
124users’ behavior

6.2. Regional trip length distributions for MFD-based models: methodological framework

regional OD regions of the regional paths. Second, a trip in the city network corresponds to

a set of directed links that go from the origin to the destination node. A regional path on

the aggregated network correspond to an ordered sequence of regions that are crossed from

the Origin to the Destination region (Fig. 6.1 (c)). Each trip in the city network only defines

one regional path. But, one regional path can be defined by several trips. As an example,

in Fig. 6.1 (b) we show two trips in the city network that are related to the same regional

path on the aggregated network. Third, a trip in the city network has a well-defined trip

length that corresponds to the sum of the link lengths. But, a regional path is characterized

by a distribution of trip lengths inside each region that it crosses. This is because there are

several trips with different trip lengths in the city network, that can define the same regional

path. These trips also have different lengths inside each region they cross. This is observed

in the example of the two trips in Fig. 6.1 (b) and puts in evidence the need of considering

distributions of regional trip lengths.

Generically, a regional path p is defined by an ordered sequence of regions as:

p = (p1, . . . pm, . . . , pR),∀m = 1, . . . , R ∧m ∈ X (6.3)

where p1 is the Origin region and pR is the Destination region; and R is the number of regions

that define p.

For the methodology introduced in this chapter to calculate the regional distributions of

trip lengths, we assume that the regional network topology is given as an input and we have a

set of trips in the city network. Let Γ be the set of trips. To define Γ, one can consider trips

gathered from GPS traces. However, these trips are endogenous since they depend on the

regional OD matrix and on the congestion patterns in the city network. Instead, we consider a

uniform sampling approach of Nod od pairs in the city network and calculate the shortest-path

in distance for each od pair, using the Dijkstra algorithm. Based on the regional network

topology and the set of trips Γ, we introduce the four methods to calculate the distributions

of regional trip lengths. These methods are:

• Method 1: no information about the regional Origin and Destination of the trips. This

method follows the original idea of Daganzo (2007) and consists on a single average

regional trip length (Li) for all vehicles traveling on region i. The idea is to consider all

trips that cross region i, independent of the previous and the next regions that these

trips travel, to calculate an average regional trip length Li as:

Li =

∑
k lik∑
k δik

,∀k ∈ Γ (6.4)
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Fig. 6.2 – (a) Application example of method 1, where the trips 1 to 4 are aggregated for the green region.
The length of the part of the trip k that occurs in region i is defined by the solid black lines. The black dots
represent the origin nodes and the black arrow indicate the destination nodes of the trips. (b) Application
example of method 2, where the trips 1 to 5 are aggregated to calculate the regional trip length. An example
of a destination region is also shown by the pink region. The length of the part of the trips 1 to 5 that occur
inside the pink region together with the internal trip 6, represented by the dot dashed black line, are aggregated
for the calculation of the regional trip length. (c) Application example of method 3, to calculate the regional
trip length for the green region and following the specific sequence of yellow-green-pink regions. (d) Application
example of method 4, to calculate the regional trip length for the green region. Trips 1 and 2 define a common
regional path as the sequence of regions blue, yellow, green and pink.

where lik is the length of the part of the trip k that occurs in region i ; and δik is a

dummy variable that equals 1 if trip k travels on region i.

The distribution of regional trip lengths of region i is:

Li = {likδrk},∀k ∈ Γ (6.5)
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In Fig. 6.2 (a) we show the application of this aggregation method, for the green

region. This region is highlighted and four trips are shown, where their origin nodes are

represented by the black circles and the destination nodes by the arrow. Each trip is

identified by an identification number. Three of these trips (i.e., trips 1, 2 and 4) are

just crossing the green region, while one has its origin node inside the green region (i.e.,

trip 3). To calculate the distribution of regional trip lengths for the green region, we

aggregate the length of the part of these trips that occur inside it. These lengths are

represented by the solid black lines in Fig. 6.2 (a). Note that, despite internal trips (i.e.,

that have origin and destination nodes inside the green region) are not shown, they are

also considered.

• Method 2: next region to be traveled by the trips. The idea is to consider all trips

that are crossing region i and that go to the same adjacent region, independent of their

previous adjacent region. We filter the trips on Γ that cross region i and that go to the

same adjacent region j. The average regional trip length Li j to go from region i to j is

calculated as:

Li j =

∑
k δi jk lik∑
k δi jk

,∀k ∈ Γ ∧ (∀j ∈ Λ ∨ j = i) (6.6)

where δi jk is a dummy variable that equals 1 if trip k travels on region i and goes to

region j ; and Λ is the set of adjacent regions to i. Note that j = i represents the case

of a destination region of the trips.

The distribution of regional trip lengths of region i that goes to j is:

Li j = {δi jk lik},∀k ∈ Γ (6.7)

In Fig. 6.2 (b) we show the application of this aggregation method. Five examples of

trips are shown for the green region. All of these trips have the same adjacent destination

region (i.e. the pink one). Trip 2 has a destination node that is on the border between

the green and the pink regions. The length of these trips that occur inside the green

region are aggregated. This is represented by the solid black lines. Consider now the

pink region shown in Fig. 6.2 (b), that is a common destination region of the trips

represented on it. Trip 6 represents an example of an internal trip. In this case, the

length of trips 1 to 6 that occur inside the pink region are aggregated to define the

distribution of regional trip lengths for this region.
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• Method 3: the previous and the next regions traveled by the trips. The idea is to

consider all trips that are crossing region i and that are coming from the same previous

adjacent region h and going to the same next adjacent region j . This is a more refined

filtering of the trips compared to Method 2. In this case, we have to consider two

distinct type of trips:

– The first type corresponds to internal trips of region i. In this case, the average

regional trip length Li is:

Li =

∑
k αik lik∑
k αik

,∀k ∈ Γ (6.8)

where lik is trip length of trip k inside region i ; and αik is a dummy variable that

equals 1 if trip k is an internal trip of region i.

The distribution of regional trip lengths of region i is:

Li = {αik lik},∀k ∈ Γ (6.9)

– The second type corresponds to trips that are crossing region i. In this case, all

trips traveling on region i , coming from the same previous adjacent region h and

going to the next adjacent region j are aggregated to define the average regional

trip length Lhij , to go from region h to j and crossing region i :

Lhij =

∑
k δhijk lik∑
k δhijk

,∀k ∈ Γ ∧ ∀(h, j) ∈ Λ ∧ h 6= j (6.10)

where δhijk is a dummy variable that equals 1 if trip k comes from the previous

region h and goes to the next region j, by crossing region i.

The distribution of regional trip lengths of region i, for trips coming from region h

and going to region j is:

Lhij = {δhijk lik},∀k ∈ Γ (6.11)

In Fig. 6.2 (c), we show an example of application of this method 3, for intermediate

regions. For this, we consider the two trips that are coming from the yellow region

(the equivalent to region h) crossing the green region (the equivalent to the region

i) and going to the pink region (the equivalent to region j). The length of the

part of these two trips inside the green region are aggregated together to calculate
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the distribution of regional trip lengths Lhij . This is represented by the solid black

lines.

• Method 4: the related regional path p defined by each trip. The idea of this method

follows the spirit of method 3, where we consider the local sequence of previous (h),

current (i) and next (j) adjacent regions. However, for this method, we filter the trips

by their specific related regional path. That is, we only consider the trips that cross

region i following the same specific sequence hi j of regions and that define the same

regional path p. All trips that cross region i and define the same regional path p, are

considered to calculate the average regional trip length of p on region i (Lpi ):

Lpi =

∑
k δ

p
ik lik∑

k δ
p
ik

,∀k ∈ Γ (6.12)

where δpik is a dummy variable that equals 1 if trip k travels on region i and has associated

the regional path p.

The distribution of regional trip lengths of the regional path p inside region i is:

Lpi = {δpik lik},∀k ∈ Γ (6.13)

In Fig. 6.2 (d), we show the application of this method. Two trips that define the same

regional path, defined by the sequence of the blue-yellow-green-pink regions, are shown.

To determine Lpi for the green region, we aggregate the length of the part of these trips

inside this region. This is represented by the solid black lines.

These four methods allow us to define regional trip length distributions for each region

of R, based on a set of trips Γ. These methods differ from each other based on the level of

information of the regional network used to filter the trips listed in Γ. Method 1 is the most

generic one, where all trips that cross the same region are considered for the aggregation.

While, Method 4 is the more refined one in terms of the filtering. This method allows to

define a specific distribution of regional trip lengths for a specific regional path that crosses

a given region, based on the specific sub-set of trips that define this regional path. Thus

throughout this chapter, we consider Method 4 as the reference. The distribution of trip

lengths calculated through method 4 are independent of the regional OD matrix, since all

trips from the Origin to the Destination are gathered by their related regional path.

The average trip length of regional path p can be directly calculated considering any of

the previously discussed methods as follows:
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1. Method 1 (M1):

LM1
p =

R∑
m=1

Lpm (6.14)

2. Method 2 (M2):

LM2
p = γ

R−1∑
m=1

R∑
l=m+1

Lpmpl + LpRpR (6.15)

where γ = 1 if R ≥ 2.

3. Method 3 (M3):

LM3
p =

LpR if R = 1

Lp1p2
+ γ

∑R−1
m=2 Lpm−1pmpm+1

+ LpR−1pR if R ≥ 2
(6.16)

where γ = 1 if R ≥ 3. Note that: LpR is calculated according to Eq. 6.8; Lp1p2
and

LpR−1pR are calculated according to Eq. 6.6; and Lpm−1pmpm+1
is calculated according to

Eq. 6.10.

4. Method 4 (M4):

LM4
p =

pR∑
m=p1

Lpm (6.17)

While the four methods might give similar estimations of Lp (Eq. 6.14 to Eq. 6.17) for

the mean value when there is symmetry in the shape of the regions and homogeneity in the

distribution of demand and congestion, this might not be the case with the variance. For

accumulation-based MFD model only the average regional trip lengths matter. However,

for the trip-based MFD model, the variance of the regional trip length distributions play an

important role. This is because the trip-based MFD model allow to consider individual vehicle

trip lengths inside the regions and can significantly influence the dynamics of congestion

(Lamotte et al. 2018).

It is important to stress out that these four methods to calculate the distributions of

regional trip lengths strongly depend on the regional network definition (i.e., on the definition

of the borders of regions) and on the set of trip Γ. A change in any of these two inputs will give

different distributions of regional trip lengths. However, this methodology is applicable to any

topology of the regional network and set of trips Γ. The only requirement is that the number

of trips (Nod) should be statistically significant such that all the city network is sufficiently

covered. This analysis is similar to the one discussed in Sect. 5.3.1. To define the set of
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trips Γ, we consider in this chapter shortest-paths in distance. But, one can also consider

more refined approaches to calculate these trips, like Frejinger et al. (2009) and Flötteröd &

Bierlaire (2013). We also note that the calculation of the set of trips Γ is insensible to the

topology of the regional network. These trips represent shortest-paths in distance and are

calculated independently of the regional network topology. Then, scaling these trips to the

aggregated level, they can cross more than one time the same region. One can filter these

trips from the set Γ. However, in this chapter, we arbitrarily assign these trips to a single

region with the largest travel distance. Further research is required to better account for such

specific patterns.

The regional trip lengths are affected by some factors, such as, the traffic conditions (i.e.,

congestion patterns) and the regional OD matrix (Leclercq et al. 2015). In the next sections,

we investigate the influences of these two factors on the regional trip lengths. We analyze

the results calculated for methods 1, 2 and 3 against the reference, i.e. method 4.

6.3 A static analysis of the trip length distributions

In this section, we introduce the 6th district of Lyon network (France) and the MFD functions.

We analyze the regional trip length distributions calculated using the four methods. We then

discuss a procedure that allows to update the regional trip lengths when the OD matrix

changes, without the need to re-sample the set of trips Γ.

6.3.1 Network definition

To test the proposed methods and calculate the trip length distributions, we consider the 6th

district of Lyon network (France) shown in Fig. 6.3 (a). This network has 757 links, 431

nodes and divided into 8 regions. The MFD functions (Fig. 6.3 (b)) have been fitted using

microscopic simulation results (Leclercq 2007) on the same network, with a typical morning

peak of demand pattern. We assume a bi-parabolic shape for the MFD.

We sample Nod = 10000 od pairs and calculate the shortest-path in distance for each od

pair. These trips define the set Γ and yield a total of 205 regional paths. We refer to the set

of these 205 regional paths as Ψ. The set Γ defines a regional OD matrix between regions,

see Table 6.1. We refer to this OD matrix as M. In Sect. 6.3.3, we also discuss a procedure

to update the regional trip lengths for the trip-based MFD model, considering a new regional

OD matrix M∗. For this purpose, we consider another sampling of Nod = 10000 od pairs,

where there are more samples of od pairs on the origin region 1 and destination regions 4,

6 and 8. Then, we are considering more trips that go from the north to the south of the
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Fig. 6.3 – (a) Lyon 6th district network divided into 8 regions. (b) MFD function of each region.

city network (i.e., from region 1 to 4, 6 and 8). For each of the previous regional ODs, we

sample 600 od pairs, out of the 10000. The remaining od pairs are uniformly sampled in the

city network. We refer to this second regional OD matrix as M∗, see Table 6.1. Note that

the regional OD matrix M has more uniform values across OD pairs than matrix M∗.
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Destination region
1 2 3 4 5 6 7 8

O
rig

in
re
gi
on

1 165 258 135 153 96 133 125 171
2 215 298 164 176 147 202 184 282
3 160 188 114 135 97 103 128 185
4 156 247 105 104 96 106 155 175
5 108 139 69 93 43 99 86 138
6 140 159 102 67 85 65 89 162
7 147 227 115 81 75 79 135 152
8 199 272 141 132 103 149 151 175

Destination region
1 2 3 4 5 6 7 8

O
rig

in
re
gi
on

1 127 214 102 632 132 557 139 567
2 182 249 169 190 110 273 179 338
3 143 165 79 114 81 98 99 165
4 125 183 91 92 86 88 96 140
5 83 112 52 73 50 84 67 85
6 100 148 88 54 49 55 102 131
7 125 164 100 92 47 52 99 122
8 178 208 126 127 70 133 146 154

Table 6.1 – Number of trips between each macroscopic origin and destination regions, for the 6th Lyon district
network. Top: Matrix M. Bottom: Matrix M∗.

6.3.2 Analysis of the trip length distributions

In this section, we analyze the average regional trip lengths calculated by the methods 1, 2

and 3 compared against the reference method 4. We show the average regional trip lengths

in Fig. 6.4. The blue crosses represent the average regional trip lengths that are calculated

for each region, considering method 1 (see Eq. 6.4). For this method, we consider all trips

that travel inside each region independently of their previous and next regions crossed. This

gives just one average regional trip length for each region. The green triangles represent the

average regional trip lengths calculated through method 2 (see Eq. 6.6) and for the full set

of Λ as well as the internal trips of each specific region of the regional network. The black

dots represent the regional trip lengths calculated through method 3, considering the specific

sequence of crossed regions (see Eq. 6.10) as well as the internal trips to each specific region

(see Eq. 6.8). The red dots represent the average regional trip length calculated through

method 4 (see Eq. 6.12), considering each regional path that crosses each specific region.
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One can observe from Fig. 6.4 that method 1 gives an average regional trip length for the

regions that is not representative of all average values for all regional paths that are crossing

each region, as evidenced by the red dots (i.e., the reference method 4). As observed in

Fig. 6.4, the diversity of average trip lengths for each region increases from methods 1 to 4.

These four methods provide the regional trip lengths of each regional path that crosses

each region of the regional network. So, it is relevant to estimate the relative differences

between the regional trip lengths calculated through more aggregate methods (1 to 3) and

the reference one, when assigning regional trip lengths to regional paths (p) inside the regions

i . The relative differences βip are calculated as:

βip =
L
Mj

i − L
M4

i

LM4

i

δpi ,∀j = 1, 2, 3 ∧ ∀p ∈ Ψ (6.18)

where δpi is a dummy variable that equals 1 if regional path p crosses region i , or 0 otherwise.

LM4

i is the average regional trip length calculated through Eq. 6.12 (Method 4). For method

1, LMj

i is calculated through Eq. 6.4. For method 2, LMj

i is calculated through Eq. 6.6, where

i = pm is the current region and j = pm+1 is the next region adjacent to i on the sequence

of regional path p. For method 3, LMj

i is calculated through Eq. 6.10, where i = pm is the

current region, h = pm−1 is the previous region and j = pm+1 is the next region adjacent to i

on the sequence of regional path p.

The calculated relative differences βip are shown in Fig. 6.5. As one can observe, the

relative differences βip decrease from methods 1 to 4. This clearly shows how far an average

regional trip length calculated through method 1 is from all possible regional trip lengths

calculated through method 4 (the reference method). The other three methods allow to

obtain different average regional trip lengths for vehicles traveling inside the same region, but

on a different sequence of regions (or regional path). Clearly, considering an average regional

trip length for all vehicles traveling inside the same region is not representative of all possible

regional trip lengths given by method 4 (i.e., the reference method). As shown by Leclercq

et al. (2015), the hypothesis of method 1 is a strong limitation when applying MFD-based

traffic models. This will be further investigated in Sect. 6.4.2.

We have also randomly selected the regional path 4-5-2 and show the trip length dis-

tributions per region for the four aggregation methods (Fig. 6.6). Fig. 6.6 shows the clear

influence of the different filtering levels of the trips (i.e., the different methods 1 to 4) on

the distributions of the regional trip lengths, at the region level. From method 1 to 4, the

number of trips taken into account for the aggregation decreases, the standard deviation of

the regional trip length distributions also decreases. That is, from methods 1 to 4, the diver-
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Fig. 6.4 – Average regional trip lengths [in meters] calculated through the four methods and for the eight
regions. The blue dots represent the average regional trip lengths for method 1 (see Eq. 6.4). The green dots
represent the average regional trip lengths for method 2 (see Eq. 6.6). The black dots represent the average
regional trip lengths for method 3 (see Eq. 6.8 and Eq. 6.10). The red dots represent the average regional trip
lengths for method 4 (see Eq. 6.12).
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Fig. 6.5 – Distribution of the relative differences β, between method l = 1, 2, 3, 4 (from the left to the right)
and the reference method 4.

sity of trips that are considered for the calculation of the regional trip length distributions is

reduced. A second interesting point is to compare methods 3 and 4 that take into account a

more detailed calculation of the regional trip lengths following specific sequences of regions.

We start by analyzing the calculation of the regional trip lengths for the origin (region 4)

and destination (region 2) regions. To obtain the regional trip length distribution for method

3 and region 4, we consider all trips that have an origin node inside region 4 and that go

next to region 5. This also includes trips that define other regional paths. But, in the case

of method 4, we only consider the specific trips that define the regional path 4-5-2. The

analysis for the destination region 2 is analogous. In the case of the intermediate region, the

differences between both methods are smaller. But, in the case of method 3, we also consider

trips that may define other different regional paths but that locally follow the same sequence

of the intermediate regions, i.e. trips that are coming from region 4 and going to region 2

by crossing region 5. While, for method 4, we just consider the trips that specifically define

regional path 4-5-2.

In summary, the diversity of average regional trip lengths that is possible to obtain for

methods 2, 3 and 4 compared to method 1, for vehicles traveling inside the same region. We

also show that the heterogeneity of trips considered by the four methods, at the region level,

play an important role on the shape of the trip length distributions. Clearly methods 3 and 4

(the reference method) represent better the heterogeneity of regional trip lengths inside each

region, than methods 1 and 2. Then, methods 3 and 4 have to be preferred.
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Fig. 6.6 – Regional trip length distribution calculated through the four methods and for each region of the
regional path 4-5-2. The total number of trips that are considered for each distribution is identified on the top
of each subplot. Each row of the subplots represent the results for each method, while each column of subplots
represent the region for each method. The horizontal red dashed lines represent the average of the trip length
distributions.
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6.3.3 Impact of the OD matrix on the trip lengths

In this section, we discuss a procedure to update the regional trip lengths based on the regional

OD matrix (M) defined by the set of trips Γ as well as the trip lengths that are calculated

and the new regional OD matrix M∗. Of course, one solution is to re-sample the trips based

on the new regional OD matrix M∗, but this is time consuming, especially for large networks.

This procedure is very useful as it updates the regional trip lengths considering the current set

of trips Γ when the regional OD matrices changes over time, or when another trip-based MFD

simulation has to be performed considering a different regional OD matrix different from the

original one. The procedure is described below.

The trip lengths for the i−th region and for method 1, are estimated as:

L̂i =

∑
O

∑
D

∑
r

∑
k l
OD
ik αODr∑

O

∑
D

∑
r

∑
k δikα

OD
r

,∀k ∈ Γ (6.19)

where L̂i is the estimated average regional trip length for region i ; lODik is the length of trip

k on region i that has the regional OD pair; δik is a dummy variable that equals 1 if trip k

crosses region i , or 0 otherwise. αODr is a scaling factor based on the demand of regional OD

pair of M weighted by the demand of the same regional OD pair of M∗, that crosses region i :

αODr =


nOD

nOD∗
, if nOD∗ ≥ 1

1, if nOD∗ = 0
(6.20)

where nOD is the demand going from regional origin O to regional destination D of matrix M;

and nOD∗ is similar but for the new regional OD matrix M∗. Such calculations are simple and

allow to update trip lengths to dynamic variations of the regional OD matrix.

For method 2, the regional trip lengths to go from region i to the next adjacent region j

are estimated as:

L̂i j =

∑
O

∑
D

∑
r

∑
k δi jk l

OD
ik αODr∑

O

∑
D

∑
r

∑
k δi jkα

OD
r

,∀k ∈ Γ (6.21)

where L̂i j is the estimated regional trip length to go from the current region i to the adjacent

region j ; δi jk is a dummy variable that equals 1 if trip k , with regional OD pair, crosses region

i and goes to the adjacent j , or 0 otherwise.

For method 3, we have to distinguish three possible cases for the estimation of the regional

trip lengths:

• the case where the regional path is composed by only one region (R = 1). The average
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regional lengths are estimated as:

L̂i =

∑
O

∑
D

∑
r

∑
k δik l

OD
ik αODr∑

O

∑
D

∑
r

∑
k δikα

OD
r

,∀k ∈ Γ (6.22)

where δik is a dummy variable that equals 1 if trip k is an internal trip to region i .

• the case where the regional path is composed by two or more regions (R ≥ 2) and for

the Origin and Destination regions. The average regional lengths are estimated as:

L̂i j =

∑
O

∑
D

∑
r

∑
k δi jk l

OD
ik αODr∑

O

∑
D

∑
r

∑
k δi jkα

OD
r

, if ((i = p1, j = p2) ∨ (i = pR−1, j = pR))∧

∀k ∈ Γ (6.23)

where δi jk is a dummy variable that equals 1 if trip k travels on region i and goes to

j (for the Origin regions) or if trip k travels on region j coming from region i (for the

Destination regions), or 0 otherwise.

• the case where the regional path is composed by two or more regions (R ≥ 2) and for

the intermediate regions. The average regional lengths are estimated as:

L̂hij =

∑
O

∑
D

∑
r

∑
k δhijk l

OD
ik αODr∑

O

∑
D

∑
r

∑
k δhijkα

OD
r

, if (h = pm−1, i = pm, j = pm+1)∧

∀m = 2, . . . , R − 1∀k ∈ Γ ∧ ∀(h, j) ∈ Λ ∧ h 6= j (6.24)

where δhijk is a dummy variable that equals 1 if trip k , with regional OD pair, crosses

the specific sequence of h − i − j regions, or 0 otherwise.

Based on Eq. 6.19 and Eq. 6.24, we investigate if: L̂ ≈ L. We estimate average regional

trip length for all eight regions based on M and M∗. We define θ as the relative difference

between L̂ and L as:

θ =
L̂− L
L

(6.25)

where L̂ is the estimated average trip length trough Eq. 6.19 to Eq. 6.24. As a benchmark

and to validate this procedure, we recalculate the set of trips based on the new regional OD

matrix M∗ and calculate the regional trip lengths through the four methods. This allows to

determine L, to compare against the estimated regional trip lengths. In Table 6.2, we list the

average relative differences θ, for each case (that is Eq. 6.19 to Eq. 6.24). We observe that



Dynamic traffic assignment for multi-regional transportation systems considering different kinds of
139users’ behavior

6.4. Impacts of trip-lengths estimation methods on dynamic models

region M1 M2 M3

1 0.060 -0.028 -0.007
2 -0.047 -0.012 -0.001
3 -0.008 -0.016 -0.024
4 0.013 -0.005 -0.030
5 -0.011 0.002 0.012
6 0.085 0.012 0.030
7 0.017 0.017 -0.008
8 0.017 -0.008 0.003

Table 6.2 – Average θ for methods 1 to 3.

this procedure provides a good estimation of the regional trip lengths for the eight regions

and the methods 1 to 3. This procedure is simple to implement and does not require a new

sampling of trips. Note that, by definition, method 4 does not depend on the OD matrix and

consequently one does not need to scale up the regional trip lengths for new OD matrices.

This is valid when the number of od pairs that are sampled is sufficiently large, such that the

trip ensure a good coverage of the city network. In our case, we made sure that the 10000

od pairs considered, are sufficient to ensure a good coverage of the city network.

6.4 Impacts of trip-lengths estimation methods on dynamic models

In this section, we show the importance of properly estimating distributions of regional trips

lengths for the trip-based MFD model. We investigate how the prediction of accumulations

with time are influenced by the different methods of trip lengths calculation. We also inves-

tigate the effect of traffic states and re-routing on the regional trip lengths.

6.4.1 Simulation settings

For the trip-based MFD traffic model, we consider the network and MFD functions shown in

Fig. 6.3. We also consider a total simulation period of T = 10000 seconds and a demand

scenario composed by 3 regional OD pairs: 1-6; 8-4; and 3-4. The regional choice set is

composed by a maximum of three regional paths per each regional OD pair. The regional

paths are listed in Table 6.3. Note that, the regional paths are directly obtained from Ψ,

where we consider the most sampled regional paths for each regional OD pair. That is, the

regional paths that have a larger number of trips associated. The demand curves for each

regional OD pair are shown in Fig. 6.7. For each OD pair, we consider a demand scenario

that represents a morning peak.
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Fig. 6.7 – Demand scenario.

For the trip-based MFD traffic model, we consider the Deterministic User Equilibrium

(DUE). The DUE is based on the Wardrop first principle (Sheffi 1985). To solve for the DUE

in conjunction with the trip-based traffic simulator (Mariotte et al. 2017), we consider the

Method of Successive Averages (MSA) (Sheffi 1985; Sbayti et al. 2007). The core of the

MSA lies in the proper definition of the descent step αj , where j is the descent iteration, that

guarantees the algorithm convergence. We adopt the following and widely used definition

of αj : αj = 1
j
. To solve the DUE problem, users are assigned based on an all-or-nothing

principle to the least cost regional path at each descent step αj . This allows to calculate the

new temporary regional path flows QOD,∗k , that will be used to update the new regional path

flows QOD,j+1
k at iteration j + 1, as:

QOD,j+1
k = QOD,jk + αj{QOD,∗k −QOD,jk },∀k ∈ ΩOD (6.26)

ΩOD is the choice set of regional paths for the OD pair; and QOD,jk represents the regional

path flows at iteration j of the MSA. This process is repeated at every descent step of the

MSA algorithm.

A commonly used convergence or stopping criterion is based on the comparison between

the current and the previous descent step of the MSA that should be inferior to a given

tolerance tol . This can represent a problem since it ensures that the algorithm terminates

with a stable solution but does not guarantee that it converges to the DUE. Instead, we

consider as a stopping criterion, the relative Gap (Sbayti et al. 2007):

Gap =

∑
O

∑
D

∑
k∈ΩOD QODk (TTODk −min(TTOD))∑
O

∑
DQ

OD min(TTOD))
(6.27)
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O D Regional path

1 6
1-2-5-6
1-2-5-7-6

3 4
3-2-4

3-2-5-6-4

8 4
8-7-6-4

8-7-3-5-2-4

Table 6.3 – List of regional paths considered for the trip-based MFD traffic model and the demand scenario.

where QOD is the total demand for the regional OD pair; and TTODk is the average travel

time of regional path k ; and min(TTOD) is the minimum regional path travel time for the

regional OD pair.

The Gap function (Eq. 6.27) represents the difference between the regional paths travel

times and the equilibrium travel time. Under DUE conditions, Gap = 0 and all users choose

the regional paths with the minimum travel times.

We summarize this implementation of the MSA to solve the DUE and considering a trip-

based simulator in Algorithm 4.

Input the aggregated network, demand scenario and simulation duration T .
Update the regional path choice set based on Γ.
Perform an initial loading of the network.
Set j = 1, N iterationsmax and tol .
while Gap ≥ tol ∧ j ≤ N iterationsmax do

Perform an all-or-nothing assignment based on the Wardrop 1st principle, on the
regional paths for each OD pair.
Do the trip-based MFD simulation.
Obtain the regional path travel times.
Update the regional path flows based on Eq. 6.26.
Calculate the GAP value (Eq. 6.27).
Set j = j + 1.

end
Algorithm 4: Dynamic implementation of the DUE and the trip-based MFD traffic model.

6.4.2 Does trip length definition affect the simulated traffic states?

We investigate the influence of the trip length estimation methods on the traffic states based

on a MFD trip based model. To solve the MFD trip based model, we follow the numerical

scheme as described in Mariotte et al. (2017). The regional trip lengths are updated according
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Method Regional path
Region

1 2 3 4 5 6 7 8
1 1-2-5-6 312 365 ∼ ∼ 284 259 ∼ ∼
2 1-2-5-6 277 373 ∼ ∼ 276 246 ∼ ∼
3 1-2-5-6 253 441 ∼ ∼ 280 258 ∼ ∼
4 1-2-5-6 191 455 ∼ ∼ 285 236 ∼ ∼
1 3-2-4 ∼ 365 346 311 ∼ ∼ ∼ ∼
2 3-2-4 ∼ 387 353 268 ∼ ∼ ∼ ∼
3 3-2-4 ∼ 695 363 243 ∼ ∼ ∼ ∼
4 3-2-4 ∼ 695 370 179 ∼ ∼ ∼ ∼
1 8-7-6-4 ∼ ∼ ∼ 311 ∼ 259 304 299
2 8-7-6-4 ∼ ∼ ∼ 268 ∼ 304 180 290
3 8-7-6-4 ∼ ∼ ∼ 266 ∼ 411 276 269
4 8-7-6-4 ∼ ∼ ∼ 295 ∼ 411 273 267

Table 6.4 – Average regional trip lengths (m) for the four methods and for the three regional paths that are
used under DUE conditions.

to the new OD matrix and following the procedure described in Sect. 3.3. The evolution of

the accumulation n(t) inside each region is shown in Fig. 6.8. One can clearly observe that

all four methods have a clear impact on the traffic states inside the regions. In particular,

methods 1 and 2 that are the most commonly used in the literature to define the regional trip

lengths for the MFD-based traffic models, predict traffic states that are far away from the

reference method 4 (i.e., that follows each specific sequence of crossed regions or regional

path).

For the demand scenario shown in Fig. 6.7 and under DUE conditions, only one regional

path for each regional OD pair is used for the four methods. This gives a total of three

regional paths that are used.

The average regional trip lengths for the four methods and for these three regional paths

are listed in Table 6.4. We focus our attention on the evolution of n(t) inside the origin

regions 1 and 3 of regional paths 1-2-5-6 and 3-2-4, respectively. For these two regions,

the maximum peak of n(t) are higher for methods 3 and 4, compared to methods 1 and

2. In fact, a larger trip length means a potential bottleneck (i.e., a reduction of the inflow

capacity for this region and specific regional path) of the regional paths. But, this is not

the case, as observed from the listed average regional trip lengths in Table 6.4, for regional

paths 1-2-5-6 and 3-2-4. We have then to consider the next region of these two regional

paths. That is region 2. Inside this region, methods 3 and 4 give larger average regional trip

lengths than methods 1 and 2. Then, vehicles will take more time to cross it due to the larger
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average regional trip lengths. Consequently, n(t) increases inside region 2 and it becomes a

bottleneck for regional paths 1-2-5-6 and 3-2-4. This will lead to an increase of the number

of vehicles that are blocked at the entries from region 1 to 2 and 3 to 2, increasing n(t)

inside regions 1 and 3. This explains why the accumulation peak is larger for methods 3 and

4 despite the lower regional trip lengths compared to methods 1 and 2, inside regions 1 and

3. Also note that the propagation of congestion on regional path 1-2-5-6 inside region 2,

affects the passing flow of regional path 3-2-4 inside region 2. The peak of n(t) inside region

3 appears after the peak of the accumulation n(t) inside region 1. In fact, this is observed in

Fig. 6.8, where the peak of accumulation n(t) inside region 2 lasts longer for methods 3 and

4 compared to methods 1 and 2. This originates a capacity reduction from region 2 to 1 (for

regional path 1-2-5-6) and from region 2 to 3 (for regional path 3-2-4). The latter explains

the larger peaks of the accumulation n(t) inside regions 1 and 3, despite the lower average

regional trip lengths for methods 3 and 4 compared to methods 1 and 2.

Different trip lengths at the region level means completely different traffic states. This

highlights the importance of properly calculate the regional trip lengths inside the regions.

6.4.3 Are the trip length distributions congestion dependent?

In this section, we investigate the impact of the traffic states on the regional trip lengths

calculated through the four methods. For now, the regional trip lengths are calculated based

on shortest-paths in distance in the city network, without considering the influence of traffic

states. Hereby, we investigate the dependence of the regional trip lengths on the traffic states.

For this purpose, we replace the shortest-paths in distance by shortest-paths in time when

pairing city od pairs and defining trips. The goal is to see if our initial estimation of Γ based

on shortest-paths in distance is stable to the evolution of traffic states or not. We consider

the evolution of the mean speed as function of time, for Method 4 (Fig. 6.8), between 2000

and 5600 seconds. This interval covers the congestion period, see Fig. 6.8. Based on this,

we estimate an average mean speed for each region. We refer to the set of the calculated

shortest-paths in time as Υ. For the tests of this section, we only consider regional paths

that are defined by more than 50 trips. This allows to eliminate dependences of the regional

trip lengths calculation on the geometry of the regional (i.e., regions) network. To better

explain this, we can look at regions 1, 2 and 3 (Fig. 6.3). In fact, when performing the static

sampling of Nod pairs, the calculated trips are independent of the regional network definition

(i.e., to the definition of the borders of regions). This means that, when we scale these trips

from the city to the regional network, trips that departure from nodes close to the border

between regions 1 and 3 are more probable to cross to region 3 rather than 2. However,
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Fig. 6.8 – Evolution of n(t) during the simulation period, considering the four methods to calculate the regional
trip lengths.
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for the shortest-paths calculations in time, we consider the mean speed obtained from the

trip-based MFD traffic model, to calculate the travel times of the links belonging to each

respective region. This induces a dependence of the calculated shortest paths in time on the

regional network definition. Consider that, for example, region 2 is congested. In this case,

its link travel times increase and consequently trips that begin in nodes that are more far

away from the border between regions 1 and 3, will more probably cross it. Thus, we might

have longer trips and more importantly, some trips can switch to different regional paths.

This may lead to sampling issues when the initial regional paths were defined by only a few

trips. The filtering allows to avoid the comparison of regional paths with trip sets that are not

statistically significant. After the filtering, we search on Γ and Υ for the common regional

paths to compare the average regional trip lengths. We refer to the regional trip lengths

calculated based on the trips listed in Γ as static regional trip lengths. While, for the regional

trip lengths calculated based on trips listed in Υ as dynamic regional trip lengths.

We first investigate the sensitivity of regional trip lengths to the traffic states, at the region

level. We define a parameter α that defines the relative difference between the dynamic (Ld)

and static (Ls) average regional trip lengths, as:

α =
Ld − Ls
Ls

(6.28)

The relative differences α for the four methods to calculate the regional trip lengths and

for the 8 regions are shown in Fig. 6.9. We clearly observe a non negligible impact of the

traffic states on the regional trip lengths calculated at the region level and considering the

four methods. We can observe that the relative differences α for M3 and M4 are on average

closer to 0 than in the case of M1. The range of α values for M2 is also quite large, evidencing

that it is also highly affected by the traffic states. The only exception is region 1, where the

relative differences α are close to 0. One can also observe that the regions that are more

impacted by congestion show the largest values of α, like regions 2, 4 and 5.

In summary, despite the effects of the traffic states and re-routing on the regional trip

lengths are predictable, their quantification on the different aggregation methods that are

discussed in this chapter is not. We observe a non-negligible influence highlighted by the

relative differences α, that in some cases can go up to ∼0.5. Also note that, M4 is the

one with the lower variation of α. These results show the importance of updating the trip

lengths according to the traffic states. One solution is to re-calculate the shortest paths in

time to define the set of trips and consequently gather the regional trip lengths. But, this

is computationally expensive. Further methodologies that are computationally lighter will be
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Fig. 6.9 – Relative difference α between the regional trip lengths calculated based on the time-dependent trips
listed in Υ and the trips listed on Ξ. The results are listed for the four methods.
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investigated in future research.

6.5 Conclusions

In this chapter, we discuss four methods to calculate distributions of regional trip lengths at

the region and the regional path levels. These methods are based on the aggregation of trips

in the city network and the regional network definition. We analyze the application of these

methods on the 6th Lyon district network that is divided into eight regions. The analysis of

the distributions of regional trip lengths are done at the region level.

First, we analyze the application of the different methods to calculate the distributions of

regional trip lengths, based on a static analysis of the city and equivalent regional networks.

We show that methods 3 and 4 represent better the heterogeneity of regional trip lengths

inside each region, compared to methods 1 and 2. This shows that methods 3 and 4 are to be

preferred to calculate the regional trip lengths for the MFD-based models. In particular, we

show that the average regional trip length calculated through method 1 is not representative

of all possible trip lengths of different regional paths crossing that same region calculated

by method 4 (the reference method). Since the regional trip lengths depend on the regional

OD matrix, we discuss a procedure to update the regional trip lengths for new regional OD

matrices that does not require to re-calculate a set of trips. We show that the procedure

provides good estimation results.

Second, we analyze the influence of the regional trip lengths calculated through the four

methods on the traffic states. We show that methods 1 and 2, that are the most commonly

used in the literature for the MFD-based models, yield evolutions of the accumulation n(t)

inside the regions that are completely different than methods 3 and 4 (the reference method).

We also discuss the effects of the traffic states and re-routing on the regional trip lengths.

Despite these effects are predictable, their clear impact is not evident. We show that at the

region level, the relative differences α are non negligible and can go up to values of ∼0.5, in
some cases. Thus, the regional trip lengths should be updated according to the traffic states.

As future research, we plan to extend this study in several directions. We plan to analyze

the regional trip length distributions at the regional path level. More importantly, robust

and computationally light methodologies to update the regional trip lengths according to the

traffic states are required.
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7
A dynamic traffic assignment framework for MFD

multi-regional models

Abstract
In this chapter, we propose a regional dynamic traffic assignment for Macroscopic Funda-
mental Diagram (MFD) based models that explicitly accounts for trip length distributions.
The proposed framework considers stochasticity on both the trip lengths and the regional
mean speed. Consequently, we set four definitions of network equilibrium, depending on
which terms are considered stochastic. We propose a numerical resolution scheme based
on Monte Carlo simulations and the Method of Successive Averages is used to solve the
network equilibrium. Based on our test scenarios, we show that the variability of trip
lengths inside the regions cannot be neglected. Moreover, it is also important to con-
sider the stochasticity on the regional mean speeds to account for correlation between
regional paths. The proposed regional dynamic traffic assignment is an extension of that
discussed by Yildirimoglu & Geroliminis (2014). We also discuss an implementation of the
proposed dynamic traffic assignment framework on the 6th district of the Lyon network,
where trip lengths are explicitly calculated. The traffic states are modeled by considering
the accumulation-based MFD model. The results highlight the influence of the variability
of trip lengths on the traffic states modeled.

Keywords: Regional trip lengths; Regional dynamic traffic assignment; Regional network;
Macroscopic Fundamental Diagram; MFD models.

This chapter is based on a paper under review for publication on Transportation Science.
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7.1 Introduction

Aggregated traffic models were first introduced by Godfrey (1969), Herman & Prigogine

(1979) and Mahmassani et al. (1984). This approach was later revisited by the seminal works

of Daganzo (2007) and Geroliminis & Daganzo (2008). The concept relies on partitioning

the city network into a set of regions and then to represent flow exchanges. In Fig. 7.1 (a),

we show an example of a city network. To divide the city network into regions, clustering

techniques discussed in the literature can be used (e.g. Saeedmanesh & Geroliminis 2016;

Lopez et al. 2017; Saeedmanesh & Geroliminis 2017; Casadei et al. 2018). The city network

has to be transformed into a regional network, as shown in Fig. 7.1 (b) and Fig. 7.1 (c), to

define routing options inside the regions. Let X be the set of regions. Inside each region,

the traffic conditions are characterized by a well-defined Macroscopic Fundamental Diagram

(MFD). An MFD is a relationship between the average circulating flow qr ([veh/s]) and the

accumulation nr ([veh]) inside region r . The existence of this relationship was initially proved

by Geroliminis & Daganzo (2008) using experimental data from Yokohama city (in Japan)

and later confirmed by other authors (Geroliminis & Sun 2011a; Ambühl & Menendez 2016;

Loder et al. 2017). The traffic dynamics is defined by the following conservation equation for

one region r :

dnr(t)

dt
= Qin,r(t)−Qout,r(t), t > 0 (7.1)

where nr(t) is the accumulation of vehicles inside region r at a given instant t; Qin,r(t) and

Qout,r(t) are the inflow and outflow functions, respectively.

Depending on the assumptions made on the outflow function Qout,r , two MFD-based

models can be distinguished in the literature: the accumulation-based model (Daganzo 2007;

Geroliminis & Daganzo 2008); and the trip-based (Arnott 2013; Fosgerau 2015; Lamotte &

Geroliminis 2016; Mariotte et al. 2017).

The literature on dynamic traffic assignment applied to regional networks and MFD based

models is recent and not yet extensive. The first efforts to combine a dynamic traffic as-

signment framework with an MFD model were discussed by Leclercq & Geroliminis (2013)

in the simplest case of parallel networks without route overlapping. Laval et al. (2017) ana-

lyzed the analytical solutions of the Dynamic User Equilibrium for a network composed of one

Origin-Destination and two alternatives: one free-way with a fixed capacity; and a city street

modeled by MFD dynamics. For this simple network, the authors were able to determine

analytical solutions for a non-overlapping network with constant trip lengths. Yildirimoglu &

Geroliminis (2014) were certainly the first to propose a framework that can be applied to
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Fig. 7.1 – (a) City network with three trips represented. The partition of the city network is also shown. (b)
Regional network where the gray circles represent the regions and the gray arrows represent the connections
between the different regions. (c) Partition of the city network with the respective green and blue regional paths
associated with the three trips. (d) Zoom of the gray region with a well-defined MFD function and crossed by
the green and blue regional paths, each with a corresponding trip length L1 and L2.

multi-regional MFD models. However, their framework did not have an explicit description

of trip lengths in the regional network as trip lengths were updated at each iteration of the

network loading. Furthermore, the authors considered a Multinomial Logit formulation that

did not account of correlations between regional paths. Yildirimoglu & Geroliminis (2014)

also stressed that distributions of regional trip lengths should be considered to characterize

regional paths inside each of the regions crossed.

In this chapter, we formulate a dynamic traffic assignment framework for MFD models that

(i) is based on the explicit description of regional trip length distributions and (ii) accounts

for the correlation between regional paths and traffic dynamics inside the regions. For point
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(i), we need to introduce a scaling process between the real city network and the regional one

that is further described in Chapter 6. The city network (Fig. 7.1 (a)) includes all connected

links corresponding to the existing roads. Local trips are defined by the sequence of links from

the origin (o) to the destination (d) nodes inside the city network. The regional network is

shown in Fig. 7.1 (b). A regional path is defined as the ordered sequence of regions that are

crossed from the regional Origin (O) to Destination (D). Generically, a regional path p can

be defined as:

p = (p1, . . . , pm, . . . , pR),∀m = 1, . . . , R ∧m ∈ X (7.2)

where R is the number of regions that define p; p1 and pR are the Origin (O) and Destination

(D) regions, respectively.

In Fig. 7.1 (a), we show three examples of trips highlighted in green and blue. The

corresponding regional paths are shown in Fig. 7.1 (c). As highlighted by the green trips,

several trips may exist in the city network that cross the same sequence of regions and

consequently define the same regional path. The latter gives an interesting property to the

regional paths. As can be observed in Fig. 7.1 (a), the green trips travel different distances

inside each region they cross. The green regional path is then characterized by distributions

of trip lengths inside each region. Let Lrp be the set of trip lengths of regional path p

(∀p ∈ ΩOD ∧ ∀(O,D) ∈ W ) inside region r (∀r ∈ p). ΩOD is the regional choice set for

the OD pair and W is the set of all OD pairs of the regional network. In Chapter 6, we

discuss several methods to characterize the trip length distributions of each regional path for

a region, given the topology and partition of the city network. The methods differ from each

other as a function of the level of aggregation of the trip length information inside regions,

when scaling up the city into the regional network. As discussed in Chapter 6, a similar

distribution of trip lengths can be considered for all the regional paths that cross the same

region. However, the description of regional trip lengths can be refined by considering the

trip length of a regional path inside a region and taking into account the successive and/or

previous regions, or even the specific regional path itself. In this chapter, we will consider only

the most detailed description, i.e. all regional paths have a specific trip length distribution

inside each region.

An important aspect in dynamic network loading models is the correlation between paths.

This dictates the sharing of information between different paths and how the path choices

of different users will affect each other. In the city network, two trips are correlated if they

share links in common (see for example the red links in Fig. 7.1 (a) that are shared by green



Dynamic traffic assignment for multi-regional transportation systems considering different kinds of
153users’ behavior

7.2. Regional dynamic traffic assignment: methodological framework

and blue trips). The correlation between regional paths is different. To better emphasize

this, we zoom on the gray region crossed by the blue and green regional paths (Fig. 7.1 (d)).

The traffic states inside this region are described by a single MFD, e.g. in Fig. 7.1 (d). The

correlation between the blue and green regional paths occurs due to the MFD assumption

of homogeneous traffic conditions inside the gray region, i.e. all vehicles traveling inside this

region have the same speed. In fact, due to the MFD dynamics, a vehicle that enters the

gray region will increase its accumulation nr . This will automatically affect the region speed

vr(nr) and the travel times of all the vehicles already traveling inside this region, whatever

their regional paths are.

In short, two important variables influence vehicles’ travel times in the regional network:

the trip length distributions of regional paths and the evolution of mean speed inside each

region. The first element stems from the spatial distribution of local trips that are gathered

to form a single regional path inside each region. The second element is related to the

temporal distribution of regional speed over the assignment period, i.e. the period of time

when regional path flow distributions are maintained constant. The framework proposed in

this chapter explicitly accounts for these two factors by defining different utility functions.

In practice, only the more detailed utility function accounts for both factors simultaneously.

The other definitions are set for the purposes of comparison and precisely assess the influence

of these two factors. Network equilibrium is calculated through the Method of Successive

Averages. Monte Carlo simulations are used to accommodate the regional path trip length

distributions and the regional mean speed evolution over time. The methodology is described

in more detail in Sect. 7.2. In Sect. 7.3, two simple test cases with one and two regions are

presented to analyze in detail the components of the utility function definitions and to assess

the importance of considering trip length and mean speed distributions. In Sect. 7.4, we then

investigate the application of the proposed regional dynamic traffic assignment framework on

the 6th district of the Lyon network (France), where the trip lengths are explicitly scaled from

the city network in accordance with the methodology discussed in Chapter 6. In Sect. 7.5,

we outline the conclusions of this chapter.

7.2 Regional dynamic traffic assignment: methodological framework

In this section, we describe the methodological framework of the dynamic traffic assignment

for multi-regional MFD models.

In the city network, users classically evaluate their trip choices based on the perceived

travel times Uodk :
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Uodk = TT odk + εodk ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (7.3)

where TT odk is the average travel time over the assignment period on the local trip k for od

pair; Ωod is the route choice set for the od pair; Ξ is the set of all od pairs; and εodk is the

error term that accounts for the travel time uncertainty.

The travel times evolve with the changes of the traffic conditions in each link of the city

network. In regional networks, travel times are not only influenced by changes of the traffic

conditions inside regions, but also by the trip length distributions. We notice here a clear

difference with the city network, where link lengths are constant and similar for all paths that

take the same link. Not only do the regional paths that cross the same region have different

mean trip lengths, they also have different trip length distributions. Therefore, the travel time

of a p of regional OD pair, TTODp , can be calculated as:

TTODp =
∑
r∈X

(
Lrp
vr(nr)

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (7.4)

where δrp is a dummy variable that equals 1 if regional path p crosses region r , or 0 otherwise.

We consider that the following two terms can be distributed:

• the empirical set of trip lengths {Lrp}, for each region r that defines p.

• the time varying speed-MFD set vr(nr) of each region r that defines p.

Depending on which distributions are considered, four utility functions can be defined to

describe all regional path alternatives for each OD pair. In this chapter, we target the User

Equilibrium, considering different formulations of the utility function. They are defined based

on a first order Taylor expansion of Eq. 7.4 around the mean values of Lrp and vr as well

as on which terms we consider to be distributed. Then, we define the four following utility

functions:

• Utility 1: neither the set of trip lengths Lrp nor the set of mean speeds vr(nr) are

considered distributed. The perceived cost UODp is:

UODp =
∑
r∈X

(
Lrp
vr

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (7.5)

where Lrp is the average trip length of regional path p inside region r ; and vr is the

mean speed of region r .
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• Utility 2: only the set of trip lengths Lrp is considered distributed. The perceived cost

UODp is:

UODp =
∑
r∈X

(
Lrp
vr

+
1

vr
(Lrp − Lrp)

)
δrp

=
∑
r∈X

(
Lrp
vr

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (7.6)

• Utility 3: only the set of mean speed vr(nr) is considered distributed. The perceived

cost UODp is:

UODp =
∑
r∈X

(
Lrp
vr

+
Lrp

vr
2 (vr − vr)

)
δrp

=
∑
r∈X

(
Lrpvr

vr
2

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (7.7)

• Utility 4: both the sets of trip lengths Lrp and mean speeds vr(nr) are considered

distributed. The perceived cost UODp is:

UODp =
∑
r∈X

(
Lrp
vr

+
1

vr
(Lrp − Lrp) +

Lrp

vr
2 (vr − vr)

)
δrp

=
∑
r∈X

(
Lrp
vr

+
Lrpvr

vr
2 −

Lrp
vr

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (7.8)

where vr is a conditional distribution of Lrp during the simulation period. Nevertheless,

after the simulation period the variance of vr should be independent of the one of Lrp.

This is assumption is investigated in more detail in Sect. 7.3.5.

These four utility function definitions, defined by Eq. 7.5 to Eq. 7.8, allow calculating

different network equilibria. Hereafter, we refer to the network equilibrium related to the

utility definitions from Eq. 7.5 to Eq. 7.8 as Equilibrium 1 to Equilibrium 4, respectively. In

this chapter, we consider Equilibrium 4 as the reference because it accounts for distributions

of the two key elements mentioned in the introduction.

To calculate the regional network equilibrium defined by any of the utility functions Eq. 7.5

to Eq. 7.8, we consider the Method of Successive Averages (MSA). The MSA is based on a

descent step finding procedure. The new regional path flows QOD,j+1
p , at descent step j + 1,



Dynamic traffic assignment for multi-regional transportation systems considering different kinds of
156users’ behavior

7.2. Regional dynamic traffic assignment: methodological framework

are updated according to the regional path flows QOD,jp , at descent step j , and to the new

temporary regional path flows QOD,∗p ,∀(O,D) ∈ W , as:

QOD,j+1
p = QOD,jp + αj{QOD,∗p −QOD,jp },∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (7.9)

The question is how to determine the new temporary regional path flowsQOD,∗p , considering

the utility functions defined in Eq. 7.5 to Eq. 7.8. This is done by performing Monte Carlo

simulations. From the sets {Lrp} and vr(nr), we gather samples Llrp and v hr , respectively,

depending on the specificities of each utility function definition. Note that vr(nr) time series

is given considering the simulation time-step of 1 second. Moreover, vr(nr) is a conditional

distribution given the distribution of trip lengths {Lrp} throughout the simulation period. The

dynamic network loading is performed given trip length distributions for regional paths, directly

influencing vr(nr). For each Monte Carlo trial and each OD pair, we calculate the regional

path utilities and assign users based on an all-or-nothing procedure to the regional path with

the minimal utility. Let Llrp be a trip length sample l gathered from the set {Lrp} and v hr be a

mean speed sample h gathered from the set vr(nr). The new temporary regional path flows

QOD,∗p are updated by averaging all the users’ choices over all Monte Carlo samples. In more

detail for each regional network equilibrium:

• Equilibrium 1: For each regional OD pair, we calculate the mean speed vr and mean

trip length Lrp and then the regional path utilities following Eq. 7.5. The temporary

regional path flows, QOD,∗p , are updated as QOD,∗p = 1, if V ODp = min(
−−→
V OD)),∀p ∈

ΩOD ∧ ∀(O,D) ∈ W .

• Equilibrium 2: For each regional path, we uniformly draw trip length samples Llrp from

{Lrp}. Let NMCLrp be the total number of samples considered for the trip lengths. We

also calculate the mean speed vr for each region. The trip length distribution Lrp in Eq.

7.6 is discretized into the Llrp samples. From Eq. 7.6, the regional path utility U lp is

calculated as:

U lp =
∑
r∈X

(
Llrp
vr

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (7.10)

• Equilibrium 3: For each regional path, we uniformly draw mean speed samples v hr from

vr(nr) time series. Let NMCvr be the total number of samples for the mean speed vr(nr)

set. We calculate the mean speed vr for each region and the average trip lengths of

each regional path p inside region r . The mean speed distribution vr(nr) in Eq. 7.7 is
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discretized into the v hr samples. From Eq. 7.7, the regional path utility Uhp is calculated

as:

Uhp =
∑
r∈X

(
Lrpv

h
r

vr
2

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (7.11)

• Equilibrium 4: For each regional path, we independently draw uniform trip length samples

Llrp from {Lrp} and mean speed samples v hr from vr(nr). The mean speed vr for each

region and the average trip lengths of each regional path p inside region r are also

calculated. In Eq. 7.8, both the Lrp and vr(nr) distributions are discretized into the Llrp
and v hr samples, respectively. From Eq. 7.8, the regional path utility U lhp is calculated

as:

U lhp =
∑
r∈X

(
Llrp
vr

+
Lrpv

h
r

vr
2 −

Lrp
vr

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (7.12)

For the MSA implementation, we also have to define the descent step αj , where j is

the descent iteration, to ensure good convergence properties. In this chapter, we consider

that αj = 1
j
. On the other hand, we must also define the convergence criteria of the MSA

algorithm. To do this, we follow the work of Sbayti et al. (2007) and consider:

• the relative Gap:

Gap =

∑
O

∑
D

∑
p∈ΩOD QODp (V ODp −min(

−−→
V OD))∑

O

∑
DQ

OD min(
−−→
V OD))

(7.13)

where
−−→
V OD = {V ODp },∀p ∈ ΩOD∧∀(O,D) ∈ W . The Gap function is also an indicator of

the network equilibrium quality that indicates how far we are from the User Equilibrium.

We consider that the network equilibrium is achieved if Gap ≤ tol , where tol is a

pre-defined tolerance.

• the number of violations N(λ). It consists in comparing the regional path flows at

descent iteration j+1, QOD,j+1
p , with those at descent iteration j , QOD,jp . N(λ) represents

the number of cases where |QOD,j+1
p − QOD,jp | is higher than a pre-defined threshold Φ

(Sbayti et al. 2007), where Φ is an upper bound. Convergence is achieved if N(λ) ≤ Φ.

• a maximum number of iterations Nmax .
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Input the regional choice set ΩOD,∀(O,D) ∈ W , the set of trip lengths Lrp,∀p ∈ Ψ ∧ ∀r ∈ X.
Input the demand scenario and simulation duration T .
Initialize j = 1, αj=1 = 1, tol , φ and Nmax .
if Equilibrium 2, 3 or 4 then

Initialize NMCLrp and NMCvr .

end
Initialize the route flows QOD,j=1

o = 0,∀k ∈ ΩOD ∧ ∀(O,D) ∈ W .
Perform an initial network loading.
while Gap ≥ tol and/or N(λ) ≥ Φ and j ≤ Nmax do

Set QOD,jp = QOD,j+1
p ,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W .

if j=1 then
For all regions r ∈ X, the mean speed vr corresponds to the free-flow speed.

else
For all regions r ∈ X, calculate the average mean speed vr based on vr .

end
if Equilibrium 1 then

Calculate UODp ,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W according to Eq. 7.5.
For each (O,D) ∈ W , users are assigned based on an all-or-nothing procedure to the regional route p with the
minimal UODp .

Update the new route QOD,∗p ,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W .
end
if Equilibrium 2 then

for l=1 to NMCLrp do
For each region r ∈ p ∧ ∀p ∈ ΩOD, draw one trip length sample Llpr from
Lrp,∀r ∈ p ∧ ∀p ∈ ΩOD ∧ ∀(O,D) ∈ W .

Calculate U lp according to Eq. 7.10 ∀p ∈ ΩOD ∧ ∀(O,D) ∈ W .
For each (O,D) ∈ W , assign users based on an all-or-nothing procedure to the regional path p with the
minimal perceived utility.

end
end
if Equilibrium 3 then

for h=1 to NMCvr do
For each region r ∈ p ∧ ∀p ∈ ΩOD, draw one a mean speed sample vhr from
vr ,∀r ∈ p ∧ ∀p ∈ ΩOD ∧ ∀(O,D) ∈ W .

Calculate Uhp according to Eq. 7.11 ∀p ∈ ΩOD ∧ ∀(O,D) ∈ W .
For each (O,D) ∈ W , assign users based on an all-or-nothing procedure to the regional path p with the
minimal perceived utility.

end
end
if Equilibrium 4 then

for l=1 to NMCLrp do
for h=1 to NMCvr do

For each region r ∈ p ∧ ∀p ∈ ΩOD, draw one trip length sample Llpr from Lrp and one mean speed
sample vhr from vr , ∀r ∈ p ∧ ∀p ∈ ΩOD ∧ ∀(O,D) ∈ W .

Calculate U lhp according to Eq. 7.12 ∀p ∈ ΩOD ∧ ∀(O,D) ∈ W .
For each (O,D) ∈ W , assign users based on an all-or-nothing procedure to the regional path p with
the minimal perceived utility.

end
end
Update the new temporary regional path flows QOD,∗p by averaging all the users’ choices over all Monte Carlo
samples.

end
Update the route flows based on QOD,j+1

p based on Eq. 7.9.
Run the MFD-based model (either the accumulation- or trip-based MFD model).
Update vr ,∀r ∈ X, based on the traffic states resulting from the MFD-based model.
Calculate Gap (Eq. 7.13) and N(λ).
Update αj = 1

j
.

Set j = j + 1.
end
Save the route flows: QOD,j+1

p ,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W .
Algorithm 5: Regional dynamic traffic assignment framework for MFD-based models.
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The MSA loop is repeated until the convergence criteria are satisfied. Algorithm 5 sum-

marizes the MSA loop and Monte Carlo implementations for the four utility functions.

7.3 Analysis of the regional dynamic traffic assignment framework on sim-
ple regional networks

In this section, we analyze the implementation of the regional dynamic traffic assignment

framework discussed in the previous section, in two simple regional networks: one region and

one regional OD pair (Sect. 7.3.2); and two regions and two regional OD pairs (Sect. 7.3.3).

In Sect. 7.3.4, we investigate if the proposed framework handles the correlation between

regional paths. In Sect. 7.3.5, we verify that the variance of the regional mean speed σvr does

not depend on the variance of the trip length distributions σL in our simulations.

7.3.1 Test scenarios definition

For the first test scenario, we consider a regional network consisting of one region and one

regional OD pair connected by two regional paths. We show the regional network in Fig. 7.2,

where the two regional paths are highlighted in orange. Let L1 and L2 be the distributions

of trip lengths inside the region. We consider a bi-parabolic MFD function with: critical jam

accumulation njam = 1000 veh; critical production Pcr itical = 3000 veh.m/s; and free-flow

speed u = 15 m/s.

0 100 200 300 400 500 600 700 800
t [s]

0

0.5

1

1.5

D
em

an
d 

[v
eh

/s
]

Demand OD1

Fig. 7.2 – Left: Regional network. One regional OD pair is shown, with two regional paths with distributions of
regional trip lengths L1 and L2. Right: The demand scenario for the OD pair and for the tests of Sect. 7.3.2
and Sect. 7.3.4.

For the second test scenario, we consider a regional network consisting of two regions and

two regional OD pairs connected by two regional paths each. We show the regional network

in Fig. 7.3. Let: L1 and L2 be the regional trip length distributions for the orange regional

paths; and L3 and L4 be the regional trip length distributions for the green regional paths.

The traffic states inside each of the two regions are defined by a parabolic MFD function
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Fig. 7.3 – Left: Regional network consisting of two regions labeled R1 and R2. Two DO pairs are shown with
two regional paths connecting each one. Right: Demand scenarios for the two OD pairs and for the tests of:
(a) Sect. 7.3.3 and Sect. 7.3.4; (b) Sect. 7.3.5.

with: critical jam accumulation njam = 1000 veh; critical production Pcr itical = 2000 veh.m/s;

and free-flow speed u = 15 m/s.

For all the MFD simulations performed in this section, we consider a simulation period

of T = 800 seconds. For the network equilibrium convergence, we set a maximum number

of violations of Φ = 0 and/or a Gap tolerance tol ≤ 0.01 and a maximum of descent step

iterations of Nmax = 100. For the Monte Carlo simulations, we consider NMCLrp = NMCvr = 10000

samples.

7.3.2 Analysis of the regional path flows at equilibrium: 1-region test case

We analyze the regional path flows calculated for the four network equilibrium definitions

(i.e. defined Eq. 7.5 and Eq. 7.8). We investigate how different the regional path flows for

the reference Equilibrium 4 are in comparison to the other three network equilibria. The trip

lengths for the two regional paths are sampled according to a normal distribution with: a

fixed mean L2 = 1500 [m] for regional path 2; and a varying mean values between 1300 to

1700 [m] increasing step size by 25 [m] for regional path 1. We consider three values of the

standard deviation σL = 50, 100, 200 [m], similar for both regional paths.

In Fig. 7.4, we show the regional path flows for the four network equilibria as a function

of L1 and the three values of σL.

Equilibrium 1 is purely deterministic since we consider that neither the Lrp nor vr are

distributed. For this equilibrium, since the MFD dynamics is the same for both regional paths,
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Fig. 7.4 – Regional path flows for the four network equilibria as function of L1 and for the 1 region network
(Fig. 7.2). For Equilibrium 2 and 4, three values of σL are considered.
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Fig. 7.5 – Evolution of the speed vr [m/s] as a function of the simulation time t [s] for Equilibrium 3 and four
values of L1 = 1300, 1400, 1500, 1600 [m].
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Fig. 7.6 – Evolution of the mean speed v1 [m/s] (left panel) and of the standard deviation σv1 [m] (right panel)
as a function of the average trip length L1 [m], for Equilibrium 3.
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only the average trip lengths L1 and L2 modify the perceived utility functions. When L1 < L2,

implying U1 < U2, all vehicles choose the minimum utility that corresponds to regional path

1. For L1 = L2 = 1500 [m], implying U1 = U2, vehicles equally choose regional paths 1 and

2. For L1 > L2, implying U1 > U2, all vehicles choose regional path 2. The evolution of

the regional path flows as a function of the increase of L1 is completely different to those

obtained by our reference, i.e. Equilibrium 4.

For Equilibrium 3, the regional path flows at equilibrium depend on the average trip lengths

L1 and L2 and on the mean speed distribution vr(nr) (see Eq. 7.7). This definition of the

network equilibrium is independent of σL. Consequently, only one evolution of the regional

path flows is shown by the dashed black line in Fig. 7.4. In Fig. 7.5, we show the evolution

of the speed vr [m/s] for Equilibrium 3 and four values of L1 [m]. In Fig. 7.6, we show the

evolution of the mean speed v1 and of the standard deviation σv1
as a function of the L1

increase. In Fig. 7.7, we show the distributions of the regional path utilities UOD1
1 and UOD1

2 .

We also set a criterion α that defines the normalized difference between the regional path

utilities:

α =
UOD1

2 − UOD1
1

UOD1
2

(7.14)

The α criterion allows predicting the route flow distributions. If α > 0, the vehicles choose

regional path 2 for these Monte Carlo trials. The distributions of α directly gives an immediate

overview of the flow distribution between the two regional paths. The distributions of the α

criterion are also shown in Fig. 7.7, for four values of L1 [m]. In Fig. 7.7, we observe the

presence of two peaks for the regional path utilities UOD1
1 and UOD1

2 . These peaks correspond

to the fluid and congested regimes of the traffic states inside the region. This is also observed

in the evolution of the speed v1 in Fig. 7.5. In Fig. 7.6, we observe that both the mean speed

v1 and the standard deviation σv1
do not vary greatly as L1 increases. Moreover, σv1

is small.

The regional path flows at equilibrium will then be more dependent on how close the average

trip lengths are L1 and L2. We depict this in more detail, analyzing the regional path utility

distributions shown in Fig. 7.7. For L1 = 1300 [m], σv1
is not sufficiently large to compensate

the distance between L1 and L2. From the Monte Carlo trials, we obtain UOD1
2 > UOD1

1 for

all the samples, as shown by the α distribution in Fig. 7.7. Thus, all vehicles choose regional

path 1, since α < 0. The average trip length for L1 = 1400 [m] is closer to L2 = 1500

[m] and the effect of σv1
has an impact on the regional path flows. UOD1

2 is perceived as

the minimal one for several Monte Carlo samples, as evidenced by the overlap between the

regional path utility distributions and the α criterion. Hence, some vehicles choose regional
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Fig. 7.7 – Left: Distributions of the regional path utilities UOD1

1 and UOD1

2 . Right: α criterion distribution. The
results are shown for Equilibrium 3 and four values of L1 [m]. The vertical red dashed line represents the value
at α = 0.
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[m]. The results are shown for the three values of σL.
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path 2 (see Fig. 7.4). For L1 ∈ [1375, 1475] [m], the regional paths are approximately similar

because the intersection between the regional path utilities is relatively small. This is due

to the fact that σv1
is approximately constant as a function of L1 (see Fig. 7.6). Since all

the demand of the OD pair can cross only this region, the evolutions of the traffic states

are approximately similar. As L1 increases, vehicles switch from regional path 1 to 2. This

offsets the evolution of the speed v1 inside the region. For L1 = L2 = 1500 [m], both regional

path utility distributions are equal and vehicles choose both regional paths equally as shown

in Fig. 7.4. For L1 = 1600 [m], the distribution of UOD1
1 is shifted towards larger values

compared to UOD1
2 due to the increase of L1. As L1 increases, vehicles that choose regional

path 1 need more time to complete their trips inside the region, reducing the speed v1. This

shifts the distribution of UOD1
1 towards higher values compared to the distribution of UOD1

2 .

Thus, around 80% of the vehicles choose regional path 2. For larger values of L1 ≥ 1700 [m]

all vehicles choose regional path 2 since UOD1
1 > UOD1

2 . The evolution of the regional path

flows as L1 increases for Equilibrium 3 is completely different from that of Equilibrium 4 for

the three σL values considered (see Fig. 7.4). This enhances the importance of taking into

account the trip length distributions, when calculating the regional path flows distributions.

Equilibrium 2 considers that only the trip lengths Lrp are distributed. Equilibrium 2 and 4

give similar regional path flows for larger values of σL = 200. This is because the influence

of σv1
becomes less significant for large σL values. For the three σL values and for L1 =

L2 = 1500 [m], the regional path utilities of Equilibrium 2 and 4 are similar. Consequently,

vehicles choose both regional paths equally. To investigate the similarities and differences

between Equilibrium 2 and 4 in more detail, we fix L1 = 1600 [m] and analyze the regional

path utility distributions (Fig. 7.8) for the three values of σL. We also consider the respective

distributions of α (Fig. 7.9). The similarities between both network equilibria depend on the

standard deviation σL and on the position of the two peaks of the regional path utilities for

Equilibrium 3 compared to those of Equilibrium 2 (see e.g. Fig. 7.8). This is because the

reference Equilibrium 4 is a convolution of Equilibrium 2 and 3 regional path utilities (see

Eq. 7.8). For σL = 50 [m], the convolution between the regional path utilities of Equilibria

2 and 3, leads to a bi-variate shape for the regional path utilities of Equilibrium 4 (Fig. 7.8).

The latter occurs since the σL value is not sufficiently large to offset the distance between the

two peaks of the regional path utilities of Equilibrium 3, i.e. the effect due to σv1
. For larger

σL = 200 [m] values, the σL offsets the influence of σv1
and the regional path flows between

Equilibrium 2 and 4 are similar. These two effects offset each other and lead to a similar

regional path flows between Equilibria 2 and 4, as also shown by the α criterion. For larger

σL = 100, 200 [m] values, these two peaks vanish from the regional path utilities as observed
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in Fig. 7.8. Nevertheless, after convolution, they still control where the largest fraction of the

regional path utilities for Equilibrium 4 will be located. For the case shown in Fig. 7.8, the

overlap between UOD1
1 and UOD1

2 is similar for both Equilibrium 2 and the reference Equilibrium

4. Therefore, as also evidenced by the α criterion, the regional path flows are similar between

both regional paths.

Equilibrium 2 gives the regional path flow distributions closest to those of Equilibrium 4,

but the differences become more significant for lower values of σL, showing the importance

of also considering that vr is distributed. Despite the regional path flows between Equilibrium

2 and 4 are similar for this test case and larger values of σL = 200 [m], this might not be true

when there are also interactions between different regional OD pairs. This is investigated in

the next section. In brief, we cannot neglect the variability of trip lengths and traffic states

inside the region. If we do so, we may obtain regional path flows that are very different from

those given by the reference Equilibrium 4.

7.3.3 Analysis of the regional path flows at equilibrium: the 2-region test case

In this section, we investigate how different the regional path flows calculated for the reference

Equilibrium 4 are compared to the other three network equilibria for a more complex two-region

test case. The trip lengths for the four regional paths are also sampled according to a normal

distribution with: fixed mean lengths L1 = 1400, L2 = 1500 and L4 = 1700 [m] for regional

paths 1, 2 and 4, respectively; and an increasing mean trip length L3 between 1200 and

2200 [m] varying stepwise by 25 [m]. We also consider three values of the standard deviation

σL = 50, 100, 200 [m].

We focus our analysis on the regional OD2 pair since it is the most interesting one. In this

test setting, all the demand of the regional OD1 passes through region R1. This influences

the regional path flows of OD2, since regional path 3 passes through region R1.

In Fig. 7.10, we show the path flows as a function of L3, for regional paths 3 and 4 and

the four network equilibria. First, it can be observed that the flows of regional paths 3 and 4

are not equally distributed when L3 = L4 = 1700 [m], due to the interaction with the OD1.

The regional path flows are equally distributed for different values of L3, depending on the

network equilibrium. Second, the regional path flows for Equilibria 1 and 3 are those that

differ most in comparison to the reference Equilibrium 4. We start by analyzing Equilibrium

1 in more detail. Vehicles switch from regional path 3 to 4 as L3 increases, such that the

condition UOD2
3 = UOD2

4 ⇒ L3

L4
= v1

v2
is satisfied. To analyze the differences and similarities

between Equilibria 2 and 3 compared to the reference Equilibrium 4, we analyze the regional

path flows for a fixed value of L3 = 1850 [m]. To do this, we consider the distributions of the
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Fig. 7.10 – Path flows as function of L3, for regional paths 3 and 4 that connect the OD2 pair. For Equilibria
2 and 4, three values of σL are considered.
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Fig. 7.11 – Distributions of the regional path utilities UOD2

3 and UOD2

4 for Equilibrium 2 to 4. The results are
shown for L3 = 1850 [m]. For Equilibrium 2 and 4, two values of σL = 50, 100 [m] are considered.

regional path utilities UOD2
3 and UOD2

4 for L3 = 1850 [m]. The results are shown in Fig. 7.11.

As with the analysis of the previous section test case, the shape and overlap between

UOD2
3 and UOD2

4 for the reference Equilibrium 4 depend on the position of the distribution

peaks for Equilibrium 3 compared to the positions of the distributions for Equilibrium 2, and

on the standard deviation σL. We first consider the case of σL = 50 [m], in Fig. 7.11. The

convolution between the regional path utility distributions of Equilibria 2 and 3 leads to a

bivariate distribution for Equilibrium 4. The closeness between the two peaks of different

regional path utility distributions for Equilibrium 3, induces a large overlap between UOD2
3 and

UOD2
4 for Equilibrium 4. Since this overlap is larger for the reference Equilibrium 4 compared
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to Equilibrium 2, the regional path utility UOD2
3 might be perceived as the minimal one for

a larger number of Monte Carlo trials. Consequently, for L3 = 1850 [m], the path flow of

regional path 3 is slightly larger for the reference Equilibrium 4 than for Equilibrium 2. But the

effects of the convolution between the regional paths utility distributions of Equilibria 2 and 3

are offset for larger values of σL. For Equilibrium 3, the regional path utility distributions are

similar for σL = 50 and σL = 100, since they do not depend on σL. But for larger values of

σL and for Equilibrium 2, the intersection between UOD2
3 and UOD2

4 increases. This increases

the chance that UOD2
3 is perceived as the minimal utility for a larger number of Monte Carlo

trials. In this case, it leads to an approach between the regional path flows calculated for

Equilibria 2 and 4. In brief, Equilibrium 2 is that which gives the regional path flows closest to

the reference Equilibrium 4. However, it is difficult to predict in which circumstances this will

occur. This backs the conclusion of the previous section, where we should take into account

the effects of the trip length variability as well as the time-evolution of regional traffic states.

7.3.4 The effect of the correlation between regional paths on the network equilibrium

In this section, we show that the framework proposed takes into account the correlation

between regional paths, thanks to the Monte Carlo trials performed at the region level. To this

end, we compare the regional path flows calculated for Equilibria 2 and 4 with the Multinomial

Logit (MNL) model. The MNL assumes that the distribution of travel times over paths are

independent and identically Gumbel distributed, with a scale parameter θ. Following Chen

et al. (2012), the scale parameter is defined at the origin-destination od level, in city networks.

In this chapter, use the regional OD level as baseline, i.e. θOD. The MNL model has the

advantage of having a closed form for the calculation of the regional paths’ choice probability.

However, the MNL is not able to handle the correlation between regional paths due to the

θOD assumption.

We consider two test scenarios. The first test scenario corresponds to the 1-region network

and demand scenario shown in Fig. 7.2. The trip lengths are sampled according to a normal

distribution with a fixed mean L2 = 1500 [m] for regional path 2; and a mean value varying

between 1300 to 1700 [m], increasing the step size by 25 [m] for regional path 1. The

standard deviations for both regional paths are fixed at σL = 50, 100, 200 [m]. The second

test scenario corresponds to the 2-region network and demand scenario shown in Fig. 7.3

(a). The trip lengths are sampled according to a normal distribution with: fixed mean lengths

L1 = 1400, L2 = 1500 and L4 = 1700 [m] for regional paths 1, 2 and 4, respectively; and an

increasing mean trip length L3 between 1200 and 2200 [m] varying stepwise by 25 [m]. The

standard deviations for the four regional paths are fixed at σL = 50, 100, 200 [m].



Dynamic traffic assignment for multi-regional transportation systems considering different kinds of
172users’ behavior

7.3. Analysis of the regional dynamic traffic assignment framework on simple regional networks

1200 1300 1400 1500 1600 1700 1800
0

0.2

0.4

0.6

0.8

1
F

lo
w

Equilibrium 2 ( L=50)

Equilibrium 2 ( L=100)

Equilibrium 2 ( L=200)

Equilibrium 4 ( L=50)

Equilibrium 4 ( L=100)

Equilibrium 4 ( L=200)

MNL ( L=50)

MNL ( L=100)

MNL ( L=200)

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200
0

0.2

0.4

0.6

0.8

1

F
lo

w

Fig. 7.12 – Top: Regional path flows at equilibrium as a function of L1, for the first test scenario. Bottom:
Regional path flows at equilibrium as a function of L3, for the second test scenario.

The scale parameter of the MNL, θOD, is calibrated according to the previous values of

σL [m], as:

θOD =

√
π2v 2

r

6σ2
L

(7.15)

In Fig. 7.12, we show the regional path flows for both test scenarios, for Equilibria 2 and

4, and for the MNL. For the first test scenario, we observe that the regional path flows for

Equilibrium 2 are similar to those of the MNL. This occurs because we consider an independent

sampling of trip lengths, with a similar σL value for both regional paths. Moreover, the utility

function defined in Eq. 7.6 to calculate Equilibrium 2 does not consider that the regional

mean speed set vr(nr) is distributed and that the average mean speed v r is the same for

both regional paths. On the other hand, the calculation of Equilibrium 4 considers that both
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the mean speed and trip lengths are distributed, capturing the correlation between the two

regional paths. This is demonstrated by the different regional path flows for Equilibrium 4

and the MNL shown in Fig. 7.12. For large σL values, the influence of σv is offset. Therefore,

the regional path flows are similar for Equilibrium 2 and 4 and the MNL. Whilst, for low σL

values, σv plays an important role and the regional path flows for Equilibrium 2 and the MNL

are different than those of the reference Equilibrium 4. For the second test scenario, it can

be seen that Equilibrium 2 gives regional path flows different from those of the MNL. This

occurs because in this test scenario, we have a correlation between regional paths connecting

different regional OD pairs. The latter influences the calculation of the mean speed v r for

this region and directly influences the utility function defined in Eq. 7.6. On the other hand,

the scaling of the θOD of the MNL is not sensitive to the mean speed v r ,∀r = 1, 2.

In brief, we show the importance of considering the effect of the traffic states in the

calculation of the network equilibrium, to capture the correlation between regional paths.

Moreover, we show that the reference Equilibrium 4 represents an extension of the dynamic

traffic assignment framework for regional networks proposed by Yildirimoglu & Geroliminis

(2014). First, our framework accounts for distributions of trip lengths that are explicitly

calculated, while Yildirimoglu & Geroliminis (2014) calculated them in an iterative process, as

discussed in the introduction. Second, we do not assume any prior statistical distribution for

the regional path travel times. Yildirimoglu & Geroliminis (2014) assumed that these terms

are identically and independently distributed Gumbel variables and made use of the MNL

formulation. Third, our framework captures the correlation between regional paths, while the

MNL formulation does not.

7.3.5 Investigating the independence between σvr and σL

The mean speed distribution vr(nr) is a conditional distribution of σL, as explained when

describing the utility functions in the methodology section (Sect. 7.2). The framework is

conditioning the mean speed time series to the trip length distributions. But, after the

simulation the variance of the mean speed should be independent of the variance of the

trip length distributions. This is investigated in this section and to this end we analyze the

standard deviation of the mean speed, σvr , for different values of the mean trip length L3, σL
and demand peak for regional OD1 pair. We consider the regional network shown in Fig. 7.3

and focus on σv1
for region R1. The trip lengths for the four regional paths are sampled

according to a normal distribution. For regional paths 1, 2 and 4, we consider fixed mean

trip lengths L1 = 1400, L2 = 1600 and L4 = 1700 [m], respectively. For regional path 3, we

consider four values for the mean trip length L3 = 1500, 1600, 1700, 1800 [m]. We consider
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the demand scenario shown in Fig. 7.3 (b), where the peak for the OD2 is increased from 0.4

to 1.5. We vary σL between 0 and 100 [m] increasing step size by 10 [m].

In Fig. 7.13, we show the contour plots of σv1
for region R1, for the four values of L3.

We observe that for a fixed value of the demand peak, σv1
does not significantly vary across

the different values of σL. This shows that σv1
is independent of σL after the simulation. Not

considering joint correlations when performing the trials of σL and σv1
for Equilibrium 4 is

justified because σv1
is clearly a condition observation since σL is known during the simulation

period.

7.4 Application to a real test case: the 6th district of the Lyon network

In this section, we demonstrate the importance of considering σL and σvr in the definition

of the utility function for a real setting related to a real city network. The traffic states

are simulated through an accumulation-based MFD model (Daganzo 2007; Geroliminis &

Daganzo 2008) for the 6th district of the Lyon network (Fig. 7.14 (a)). This network has

757 links and 431 nodes and is divided into 8 regions. The MFD functions (Fig. 7.14 (b))

have been fitted considering microscopic simulations from Symuvia (Leclercq 2007) on the

same network, where the demand scenario mimics a morning peak. We further assume a

bi-parabolic shape to fit the simulated data.

To explicitly calculate the regional choice set ΩOD and the sets of trip lengths Lrp, we

consider the formulation discussed in Chapter 6. This framework is based on a set of trips

Γ and on the border definition of the regions composing the regional network. We obtain

Γ, by sampling Nod = 10000 od pairs on the 6th district Lyon network and calculating the

shortest-paths in distance for each pair. These trips define a total of 205 regional paths. The

regional paths are listed with different levels of significance, i.e. different regional paths are

defined by a different number of aggregated trips. We define the most significant regional

paths for one OD pair as those that are defined by the largest number of trips. In this test

scenario, we consider 6 regional OD pairs. To define the regional choice set ΩOD, we consider

the three most significant regional paths per each OD pair. This yields a total of 17 regional

paths. We explicitly calculate the trip length distributions based on Γ and follow the method

discussed in Chapter 6, which considers the related regional path p. It consists in filtering the

trips by their regional associated path. The set of trip lengths of regional path p inside region

r is calculated as:

Lrp = {δprk lrk},∀k ∈ Γ (7.16)
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Fig. 7.13 – Contour plots of the σv1 as a function of the demand peak for regional OD1 pair and σL. The
results are shown for four mean trip lengths L3 = 1500, 16001700, 1800 [m].
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where lrk is the length of trip k inside region r ; and δprk is a dummy variable that equals 1 if

trip k crosses region r and is associated to regional path p, or 0 otherwise.

We also consider the demand scenario as shown in Fig. 7.14 (c) for the six regional OD

pairs. The total simulation period is set to T = 8000 seconds and is divided into 32 assignment

periods of 250 seconds each. The network equilibrium is calculated for each period. For the

convergence criteria, we consider a maximum number of violations of Φ = 0 and/or a Gap

tolerance tol ≤ 0.01 and a maximum of descent step iterations of Nmax = 100. For the

Monte Carlo simulations, we consider NMCLrp = NMCvr = 10000 samples.

In Fig. 7.15, we show the evolution of the mean speed v(t) as a function of the simulation

time t for the eight regions and the four network equilibria. To investigate the influence of

σvr on the network equilibrium, we compare the evolution of v(t) between Equilibria 1 and 3

as well as of Equilibria 2 and 4. It can be seen that for regions 1 to 3, the evolution of v(t)

does not show significant differences between the four network equilibria. In fact, the demand

scenario is set such that the accumulation of vehicles inside these three regions is low. But for

the other five regions, significant differences can be seen between the four network equilibria.

A similar evolution trend of v(t) for both Equilibria 1 and 3 for regions 4 to 8 can be discerned.

Some differences are observed due to the system’s dynamics. In general, Equilibrium 3 gives

an evolution of v(t) similar to that of Equilibrium 1 because σvr is small over the period of

250 seconds. Note that for low values of σvr , the values in the set {vr(nr)} are close to v r .

Therefore Eq. 7.7 is similar to Eq. 7.5, i.e. UODp ∼
∑

r∈X

(
Lrp
v r

)
δrp. The effect of σvr is more

significant for the charging and discharging periods of the regions, where it has a larger value.

This induces differences in the evolution of v(t) that can be observed in regions 6 to 8. On

the other hand, for low σvr values, Eq. 7.8 reduces to UODp ∼
∑

r∈X
∑

r∈X

(
Lrp
v r

)
δrp, which

is similar to the regional path cost defined for Equilibrium 2, i.e. Eq. 7.6. This also explains

the similar evolution trends of v(t) for Equilibria 2 and 4 and all eight regions. Differences

between these two network equilibria can be observed in the charging and discharging periods

of the regions, where σvr is more significant. To investigate the influence of σL on the network

equilibrium, we compare the evolution of v(t) between Equilibrium 3 and 4. One can observe

that the introduction of σL completely changes the dynamics of the system. This can be

observed in particular for the evolutions of v(t) between ∼ 3000 and ∼ 5000 seconds, for

Equilibria 3 and 4 inside regions 4, 6, 7 and 8. These results also highlight the importance of

considering that both the trip lengths {Lrp} and regional mean speeds vr(nr) are distributed.
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scenario.



Dynamic traffic assignment for multi-regional transportation systems considering different kinds of
178users’ behavior

7.4. Application to a real test case: the 6th district of the Lyon network

0 2000 4000 6000 8000
t [s]

0

2

4

6

8

v(
t)

 [
ve

h/
s]

Region 1

Equilibrium 1
Equilibrium 2
Equilibrium 3
Equilibrium 4

0 2000 4000 6000 8000
t [s]

0

2

4

6

8

v(
t)

 [
ve

h/
s]

Region 2

0 2000 4000 6000 8000
t [s]

0

2

4

6

8

v(
t)

 [
ve

h/
s]

Region 3

0 2000 4000 6000 8000
t [s]

0

2

4

6

8

m
ea

n 
sp

ee
d 

v(
t)

 [
ve

h/
s]

Region 4

0 2000 4000 6000 8000
t [s]

0

2

4

6

8

v(
t)

 [
ve

h/
s]

Region 5

0 2000 4000 6000 8000
t [s]

0

2

4

6

8

v(
t)

 [
ve

h/
s]

Region 6

0 2000 4000 6000 8000
t [s]

0

2

4

6

8

v(
t)

 [
ve

h/
s]

Region 7

0 2000 4000 6000 8000
t [s]

0

2

4

6

8

v(
t)

 [
ve

h/
s]

Region 8

Fig. 7.15 – Evolution of the mean speed v(t) as a function of the simulation time t for the eight regions and
the four network equilibria.
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7.5 Conclusions

In this chapter, we propose a regional dynamic traffic assignment framework for MFD-based

models that explicitly account for trip length distributions Lrp and the evolution of the re-

gional mean speed vr(nr). We set four formulations of the network equilibrium, based on

which terms are considered distributed. We show that Equilibrium 4, which considers that

both trip lengths and regional mean speed are distributed, should be preferred. The results

shown in this chapter confirm that we cannot neglect the variability of trip lengths inside

the regions. In addition, we showed the importance of considering that the regional mean

speed is also distributed, in order to account for the correlation between regional paths. The

proposed regional dynamic traffic assignment in the MFD context is an extension of the

framework discussed by Yildirimoglu & Geroliminis (2014). First, our framework explicitly

accounts for multiple trip lengths inside the regions that are explicitly calculated. Second,

we do not assume any prior statistical distribution for the regional path travel times, whereas

Yildirimoglu & Geroliminis (2014) considered that they are independent and identically dis-

tributed variables. Moreover, the authors used the MNL formulation to calculate the network

equilibrium. Instead, we considered the distributions of trip lengths and regional mean speed

and used Monte Carlo simulations to calculate the network equilibrium. Contrary to the MNL

formulation, our framework was able to capture the correlation between regional paths. We

also analyzed the implementation of our framework on the 6th district of the Lyon network,

where the trip lengths are explicitly calculated following the specific regional path, as proposed

in the previous Chapter 6. Since we calculated the network equilibrium for small simulation

periods, the mean speed did not vary greatly and σvr was low. In this case, σL dominated

in the calculation of the utility functions and was responsible for the changes in the system

dynamics observed.

In the next Section 7, this regional traffic assignment framework is extended to account

for different kinds of users’ behavior. In particular, we aim to introduce bounded rational and

regret-averse users.
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II
Overview of Part II: Regional dynamic traffic

assignment with different behavioral rules

In the following, the outline of this second part of the thesis is provided, summarizing

the proposed dynamic traffic assignment framework for multi-regional MFD systems that is

discussed in the three previous chapters. To finalize the discussion of this second part, the

extension of Equilibrium 4 to different kinds of users behavior is discussed in Sect. II.1. For

this purpose, the bounded rational and regret-aversion behavior discussed in the first part of

the thesis are considered. In Sect. II.2, a schematic overview of the full regional dynamic

traffic assignment framework is given.

II.1 Extension of the regional network equilibrium to different kinds of
user’s behavior

In this section, the extension of Equilibrium 4 to different kinds of users behavior is discussed.

In Part I of the thesis, the influence of different kinds of the users’ behavior on the traf-

fic city network performance is investigated. The latter includes the (i) risk-aversion and

risk-seeking users’ behavior modeled by Prospect Theory (Chapter 3); (ii) users’ bounded

rationality (Chapter 4); and (iii) regret-averse users (Sect. I.1). The extension of Equilib-

rium 4 discussed hereafter takes into account bounded rational and regret-averse users. The

users risk-aversion and risk-seeking behavior modeled by Prospect Theory is not considered,

since they are more likely to behave with a perfect rationality in a choice scenario with few

alternatives, as shown in Chapter 3.
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For this extension, the numerical resolution scheme is in all similar to the one discussed for

Equilibrium 4 in Chapter 7. Monte Carlo simulations are used to model the distributions of trip

lengths Lrp and mean speeds vr(nr). The method of Successive Averages is used to calculate

the regional network equilibrium. The only difference between the calculation of Equilibrium

4 and the extensions discussed hereafter is that users are assigned based on different rules to

the regional paths.

As discussed in Chapter 4, bounded rational users have a satisficing behavior and an

indifference preference for their regional path choice. Following the methodological framework

proposed in that chapter, it is necessary to identify the set of satisficing paths ωOD. For a

regional path p to be satisficing, its utility Up needs to satisfy the following condition:

Up ≤ ALOD,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (II.1)

where Up is given by Eq. 7.8; and the aspiration level ALOD depends on the indifference band

∆OD:

ALOD = (1 + ∆OD)min(
∑
r∈X

(
Lrp
vr

)
δrp,∀p ∈ ΩOD),∀(O,D) ∈ W (II.2)

The probability of choosing a regional path p given that it is perceived as satisficing, is

defined by Eq. 4.5. One needs now to calculate the two terms of this equation. First, following

the indifference preference rule discussed in Chapter 4:

P (choosing regional path p\”Up ≤ ALOD”) =
1

|ωOD| ,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (II.3)

where |.| is the number of satisficing regional paths listed in ωOD.

The other probability term P (Up ≤ ALOD) is solved by Monte Carlo simulations following

the same resolution scheme as discussed for Equilibrium 4 in Chapter 7.

In the case of regret-averse users, they aim to minimize their own regret with respect to

the unselected regional paths, as discussed in Sect. I.1. Considering that both the trip lengths

Lrp and mean speeds vr(nr) are distributed, the perceived regret HODp of regional path p is:

HODp =
∑
r∈X

(
Llrp
vr

+
Lrpv

h
r

vr
2 −

Lrp
vr

)
δrp−R(y) = U lhp −R(y),∀p ∈ ΩOD ∧∀(O,D) ∈ W (II.4)

The regret-aversion function R(y) is:
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R(y) = 1− e−δODy ,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (II.5)

where y = min(U lhp ,∀p ∈ ΩOD)− U lhp ,∀(O,D) ∈ W .

The methodology adopted to calculate the network equilibrium, considering regret-averse

users is in all similar to the one discussed for Equilibrium 4 in Chapter 7. There are only two

differences. First, one needs to consider the perceived regret as defined in Eq. II.4 instead

of the perceived utility as defined in Eq. 7.8. Second, for each Monte Carlo trial, users are

assigned based on an all-or-nothing procedure to the minimal regret regional path instead of

the minimal travel time one.

The influence of the users bounded rational and regret-aversion behavior on the evolution

of the traffic states, compared against Equilibrium 4 is now investigated. The traffic states

are simulated through an accumulation-based MFD model (Daganzo 2007; Geroliminis &

Daganzo 2008) for the Villeurbarnne and the 3rd and 6th districts of Lyon network (Fig. II.1

(a)). This network is composed by 3127 nodes and 3363 links and is divided into seven

regions. The MFD functions are shown in Fig. II.1 (b) and have been fitted considering

microscopic simulations from Symuvia (Leclercq 2007) on the same network. A bi-parabolic

shape is further assumed to fit the simulated data. A total of seven OD pairs are considered:

1 to 5; 2 to 7; 4 to 2; 4 to 6; 5 to 2; 6 to 1; and 7 to 3. The regional paths are calculated

based on Method 1 discussed in Chapter 5, for all models. A total of 3000000 trips in the

city network are calculated to define Γ and ensure a good graph coverage. A maximum of

three regional paths per OD pair are considered. The latter yields a total of 21 regional paths

that are considered for all the assignment scenarios, including Equilibrium 4 and the different

bounded rationality and regret-aversion models settings. Based on the set of trips Γ previously

defined, the distributions trip lengths for these regional paths are calculated through Method

4, discussed in Chapter 6. The regional paths and calculated trip lengths Lrp are listed in

Table II.1. The demand scenario considered is shown in Fig. II.1 (c) for the seven OD pairs.

The total simulation period is set to T = 10000 seconds. The latter is divided into 40

assignment periods of 250 seconds each. For the MSA convergence, the tol = 10−2, Φ = 0

and Nmax = 100 are set. For the Monte Carlo simulations, NMCLrp = NMCvr = 10000 samples are

fixed. Three values of the indifference band ∆OD = 0, 1, 100 and regret-aversion parameter

δOD = 0, 1, 10 are set.

Fig. II.2 shows the evolution of the vehicles accumulation n(t) for Equilibrium 4 as well as

for the three settings of the indifference band (∆OD) and regret-aversion (δOD) parameters.

One can observe that setting ∆OD = 0, the bounded rational framework reduces to the
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Fig. II.1 – (a) Villeurbarnne and the 3rd and 6th districts of Lyon (France) traffic network, divided into seven
regions. (b) MFD function of each region. (c) Demand scenario.
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O D Reg. Path Path ID
Trip lengths Lrp [m]

Region
1 2 3 4 5 6 7

1 5 [1,2,3,5] 1 442 958 715 0 1351 0 0
1 5 [1,2,6,7,5] 2 566 1118 0 0 211 1403 1229
1 5 [1,3,5] 3 933 0 1194 0 1096 0 0
2 7 [2,3,5,7] 4 0 525 733 0 1032 0 1139
2 7 [2,6,3,5,7] 5 0 105 603 0 1032 257 1050
2 7 [2,6,7] 6 0 751 0 0 0 1418 798
4 2 [4,1,2] 7 2761 335 0 2227 0 0 0
4 2 [4,3,2] 8 0 708 1049 1191 0 0 0
4 2 [4,3,6,2] 9 0 333 1160 791 0 340 0
4 6 [4,3,5,6] 10 0 0 1121 768 358 679 0
4 6 [4,5,6] 11 0 0 0 778 1026 620 0
4 6 [4,5,7,6] 12 0 0 0 2226 2011 301 1301
5 2 [5,3,2] 13 0 637 765 0 1309 0 0
5 2 [5,4,3,2] 14 0 650 984 1391 444 0 0
5 2 [5,4,1,2] 15 2778 368 0 2924 594 0 0
6 1 [6,5,3,1] 16 924 0 1655 0 461 603 0
6 1 [6,5,3,2,1] 17 952 452 789 0 465 604 0
6 1 [6,3,2,1] 18 963 450 739 0 0 532 0
7 3 [7,5,3] 19 0 0 763 0 1249 0 955
7 3 [7,6,5,3] 20 0 0 708 0 965 1094 90
7 3 [7,5,4,3] 21 0 0 313 3285 2731 0 585

Table II.1 – Regional paths for the seven OD pairs and their respective trip lengths Lrp listed in meters [m].
Each regional path has an associated identification number as listed in the table.

Equilibrium 4 as evidenced by the similar evolution of n(t) shown in Fig. II.2. Similarly for

the Regret Theory implementation when δOD = 0. Let’s first focus on the analysis on how

the increase of the users indifference, i.e. increase of ∆OD, influences the traffic states inside

the regions. The evolution of the accumulation n(t) shows, in general, a similar trend when

comparing the settings of ∆OD = 1, 100 against Equilibrium 4. However, the accumulation

peaks increase in general, as observed in Fig. II.2 for regions 1, 4 and 7. The increase of ∆OD,

increases the users indifference for their regional path choice. As discussed in Chapter 4,

when ∆OD →∞ =⇒ QODp → 1
|ΩOD| , where |.| represents the number of regional paths listed

in the regional choice set ΩOD. The increase of ∆OD allows users to choose regional paths

with higher travel times, explaining the increase of the accumulation n(t) verified for regions

1, 4, 5 and 7 (see Fig. II.2).

To better understand how the bounded rational behavior affects the traffic states inside
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Fig. II.2 – Evolution of the accumulation n(t) of vehicles in each region during the simulation period, for
Equilibrium 4 and the three settings of the indifference band ∆OD and of the regret-aversion parameter δOD.

the regions, let’s investigate the evolution of the accumulation np(t) for all regional paths p

that are crossing regions 1, 4 and 6. Fig. II.5 shows the evolution of the accumulation of all

regional paths p, that cross the previously mentioned regions. Note that, the labeling of the

regional paths follows Table II.1.
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Fig. II.3 – Evolution of the accumulation np(t) of all regional paths p that cross regions 1, 4, 6 and 7, respectively.
The results are shown for Equilibrium 4 and the two settings of the indifference band ∆OD = 1, 100.

One can observe that for region 1, as ∆OD increases other regional paths like 2, 7 and 15

start to be chosen (see Fig. II.5). The increase of the accumulation on these regional paths

explain why the total accumulation inside region 1 also increases with ∆OD. In particular, the

peak in np(t) that is observed for regional path 7 around ∼ 4000 seconds explains the one

observed around the same simulation time in region 1 (see Fig. II.2). In the case of region

4, the accumulation of regional paths 9 and 11 decreases while for regional paths 7 and 12
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increases, as ∆OD increases. Regional paths 7 and 9 connect the regional OD pair 4-2 (see

Table II.1). For ∆OD = 100, the total demand of this regional OD pair will be equally assigned

on the three regional paths. Since the average trip length inside region 4 for the regional path

7 is higher than the one of regional path 9, users take more time to complete their travel

inside this region. This increases the accumulation np(t) of regional path 7. Regional paths

11 and 12 connect the regional OD pair 4-6. The average trip length inside region 4 is higher

for regional path 12 compared to 11. Then, vehicles need more time to complete their trips

inside region 4, when traveling on regional path 12. This increases the accumulation np(t)

of this regional path, as observed in Fig. II.5. Consequently, the total accumulation n(t)

inside region 4 increases as ∆OD also does. In the case of region 6, the accumulation n(t)

decreases as ∆OD increases. For ∆OD = 100, users are equally assigned on all regional paths

that connect all the seven regional OD pairs considered. In the case of Equilibrium 4 (or

∆OD = 0), the regional paths 6, 11 and 21 have the larger accumulations np(t). Regional

path 2 starts to be chosen when ∆OD = 1, showing a significant accumulation peak. Note

that regional paths 2, 6 and 20 have the largest average trip lengths inside region 6. Since less

users choose regional paths 2, 6 and 20 as ∆OD increases, the accumulation np(t) of these

regional paths decreases. The total accumulation n(t) of region 6 consequently decreases,

as the other regional paths crossing this region do not show a significant increase of np(t).

Let’s focus now on the analysis on how the increase of the users regret, i.e. δOD, influences

the traffic states inside the regions. Note that, as δOD increases, users switch to the regional

paths with the minimal travel times (i.e. when δOD → ∞ in Eq. II.4). As one can observe

in Fig. II.2, the evolution of the traffic states for the two settings of δOD = 1, 100 show, in

general, a similar evolution trend as Equilibrium 4. In some regions, the accumulation peaks

increase as δOD also does. For example, the case the accumulation peaks inside regions 1

and 3 that occur around 2000 and 3000 seconds, respectively. The two main differences in

the evolution of the traffic states are verified inside regions 2 and 7. To better analyze these

differences, let’s investigate the evolution of the accumulation np(t) for all regional paths p

that cross region 7. Fig. II.4 shows the evolution of the accumulation np(t) of all regional

paths that cross this region. As one can observe, the accumulation peaks that appear around

∼ 3000 and 4000 seconds for regional paths 19 and 6, respectively, decrease as δOD increases.

On the other hand, the other regional paths crossing this region 7 become more congested

around ∼ 3000 seconds when δOD = 100, because users switched to the regional paths with

minimal travel times. This increases the total accumulation inside region 7 for δOD = 100 as

observed in Fig. II.2.

In this section, the extension of the regional dynamic traffic assignment framework to
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Fig. II.4 – Same as in Fig. II.5, but for regions 1, 2, 6 and 7 as well as the two settings of the regret-aversion
parameter δOD = 1, 100.

account for bounded rational and regret-averse users is discussed and tested. The results

show that the increase of the users indifference for their regional path choice, increases in

general the accumulation inside the regions. The latter is because users are allowed to choose

longer regional paths as their indifference level increases. The increase of the users regret for

their route choice can change the traffic conditions inside the regions, as observed in this test

case for regions 2 and 7. The increase the regret level, leads users to switch to the regional

paths with the minimal travel times and this might increase the congestion level inside some

regions (e.g., region 7).

II.2 Synthesis of Part II

In this Part II of this thesis, a dynamic traffic assignment framework for multi-regional MFD

based models is proposed. A flowchart that summarizes this framework, with the connection

to the different chapters in this Part II, is presented in Fig. II.5. This DTA framework is

flexible for both accumulation- and trip-based MFD models and both of them are considered

in the tests discussed in this Part. In Chapter 5 to Chapter 7, the test network is the 6th

district Lyon (France) network, that is divided into eight regions. In the previous Sect. II.1,

the extension of the proposed DTA framework to bounded rational and regret-averse users

is discussed. The test network includes the city of Villeurbarnne as well as the 3rd and 6th

districts of Lyon network (France).

The core of this DTA framework is the definition of regional and internal paths as high-

lighted in Chapter 5. Moreover, note that in this thesis the partitioning of the city network

is assumed to be well defined and given as an input. In Chapter 5, three methods are pro-
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Fig. II.5 – Flowchart that summarizes the dynamic traffic assignment framework for multi-regional systems
MFD based models.

posed to gather the regional paths based on the trips in the city network as well as on its

partitioning. In this thesis, the Method 1 proposed in this chapter is used to calculate the

regional paths and define the regional choice sets for the regional OD pairs. The regional

paths are characterized by distributions of trip lengths inside each region they cross as shown

in Chapter 6. Four methods are then proposed to calculate these distributions of trip lengths,

also based on a set of trips and on the city network partitioning. The most detailed method,

i.e. that filters the trips by their related regional path, is the one that yields the largest hetero-

geneity of trip length distributions. This method is then used in the follow-up of this thesis.

In Chapter 7, four different regional network equilibrium definitions are discussed, given the

distributions of trips lengths and the evolution of the traffic states in the regions modeled by

the MFD. The definition of Equilibrium 4, that considers both trip lengths Lrp and regional

mean speeds vr(nr) to be distributed, is to be preferred. The definition of Equilibrium 4 in

Chapter 7, assumes that users are utility minimizers. In the previous Sect. II.1, the extension

of this framework to account for bounded rational and regret-averse users is discussed.

The DTA framework proposed in this second part of the thesis, is the first that inves-

tigates the connections between the city and regional networks for a multi-regional traffic
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assignment. First, it considers dedicated methods to calculate the regional paths and trip

length distributions, based on the scale-up of the city network. Second, the dynamic network

loading model accounts for explicitly calculated trip length distributions and evolution of the

regional mean speeds. Third, it is able to account for different kinds of the users behavior.
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8
Conclusions

This thesis focused on the (i) investigation of the influence of users behavior on the traffic city

network performance and (ii) on the development of a dynamic traffic assignment for multi-

regional MFD based models considering different kinds of users behavior. This is addressed

in different papers that are part of several chapters of this thesis. In this chapter, an overview

of the main contributions and some future research directions are also outlined. In Fig. 8.1, a

schematic overview of the connections between the different parts and chapters of the thesis

as well as the future perspectives is presented.

This thesis starts with a literature review (Chapter 2) about traffic assignment models.

This allows to identify different model frameworks that account for different kinds of users

behavior as well as users heterogeneity. The different kinds of users behavior include risk-

seeking and risk-aversion, bounded rationality and regret-aversion. In terms of the users

heterogeneity, two model frameworks that include the Value of Time (VOT) and Value of

Reliability (VOR) are identified. The follow-up of the thesis focuses on the investigation

of the users behavior influence on the city network performance. The latter is evaluated

with reference to the DUE and SUE models (i.e. the benchmark models). In Chapter 3,

a framework considering the risk-seeking and risk-aversion behavior modeled by Prospect

Theory and distribution of route travel times is designed. The users risk-seeking and risk-

aversion behavior is also balancing the uncertainties of the travel times and they are more

likely to behave as perfect rationalizers. In Chapter 4, a new bounded rational framework

that considers indifferent and strict users preferences as well as distributions of travel times

is introduced. This framework reduces to the DUE or SUE when users have indifferent
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Fig. 8.1 – Schematic overview of the connections between the different components of this thesis and perspec-
tives.
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preferences and the indifference band is set to ∆od = 0. It also extends the work of Zhao

& Huang (2016) to a dynamic context considering the setting of ∆od . The users indifferent

preference clearly influences the network internal and outflow capacities, that are reduced

as the level of bounded rationality increases (i.e. as ∆od increases). While, for the users

strict preferences, the network internal and outflow capacities are similar for the different ∆od

settings. To finalize the discussion of Part I of the thesis, the influence of the regret-aversion

behavior on the network performance is also investigated (Sect. I.1). The network internal

capacity increases with the increase of the users regret-aversion (i.e. δod) compared to the

SUE. The mean speed is inferior to the DUE, independent of the level of regret-aversion.

In the second part of the thesis, an innovative dynamic traffic assignment framework for

multi-regional systems MFD-based models is proposed. It is flexible for both accumulation-

and trip-based MFD models and both are considered in the tests. In this thesis, the city

network partitioning is assumed to be well-defined and given as an input. This dynamic traffic

assignment framework is tested on the 6th Lyon (France) district network, divided into eight

regions. It considers the concept of regional path as introduced by Yildirimoglu & Geroliminis

(2014). The first step consists in identifying these regional paths based on information of the

city network. In Chapter 5, three methods are proposed to gather the regional paths based on

trips in the city network and its partitioning. Two of the methods are based on an exhaustive

search on the city network. A third method based on shortest-paths calculations directly on

the regional network is also discussed. The first two methods require a good city network

coverage (i.e. related to the setting of Nod). These two methods require a large computational

for large city networks. The third method shows to be a good alternative as evidenced by

the similarity and strict similarity criteria. Regional paths are characterized by distributions of

trip lengths inside each region they cross as shown in Chapter 6. Four methods are proposed

to calculate these trip length distributions based on a set of trip in the city network and its

partitioning. These methods are: (i) no prior information regarding the regional Origin and

Destination of the trips; (ii) the next adjacent region to be traveled by the trips; (iii) the

previous and next adjacent regions to be traveled by the trips; and (iv) the related regional

path to each trip, that is set as the reference. The reference method represents better

the heterogeneity of trip lengths inside a region than the method that considers no prior

information about the trips. A procedure to update the trip lengths when the OD matrix

changes is discussed and tested. One solution is the recalculation of the trips set, but this

is time consuming especially for large city networks. The new estimated trip lengths show a

good agreement with the ground truth (i.e. when a new set of trips is recalculated). The

importance of properly estimating the trip lengths is highlighted since they clearly influence
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the simulated traffic states by an MFD model. The distributions of trip lengths depend on

the traffic states inside the regions as shown at the end of this chapter. They should then

be updated accordingly. In Chapter 7, taking into account the distributions of trip lengths

and evolution of the regional mean speeds, four regional network equilibria are formulated.

The difference between these network equilibrium definition rely on which of the two previous

terms are considered to be distributed. The variability of trip lengths inside the regions of the

regional network cannot be neglected for the regional dynamic traffic assignment in the MFD

context. The correlation between regional paths is captured by considering the variability of

the regional mean speeds in the dynamic network loading.

In summary, the proposed dynamic traffic assignment in this Part II of the thesis, is the

first that investigates the connections between the city and regional networks and proposes

systematic scaling-up methods to define regional paths and calculate distributions of trip

lengths. Moreover, this framework accounts for trip length distributions that are explicitly

calculated and it does not assume any prior distribution for the regional path travel times.

Instead, the distributions of trip lengths explicitly calculated and the evolution of regional

mean speeds are considered and Monte Carlo simulations are used to calculate the regional

network equilibrium. This framework is flexible to account for different kinds of users behavior,

such as bounded rational and regret-aversion that were investigated in the first Part I of the

thesis, as discussed in Sect. II.1.

The dynamic traffic assignment framework for multi-regional MFD-based models proposed

in this thesis is tested using synthetic benchmark data. A validation with real data is currently

under research as it is one of the tasks of the ERC MAGnUM project.

The research presented in this thesis can be extended in several directions, as indicated

in Fig. 8.1. First, the dynamic traffic assignment for multi-regional MFD models proposed in

this thesis is foreseen to be extended to heterogeneous users that value the travel time and

reliability differently. This includes the VOT and VOR models discussed in the literature review

in Part I. This extension includes different transportation modes such as buses and a metro

system. While, the extension to consider the metro in this DTA framework and MFD model is

straightforward. The other one that accounts for buses requires the inclusion of the 3D MFD

(Geroliminis et al. 2014; Castrillon & Laval 2017; Loder et al. 2017) in the simulator. Second,

the study presented in Chapter 5 is planned to be investigated on the whole Lyon network

(France) and further testing the proposed method that directly calculates the regional paths

in the regional network. Third, as highlighted in Chapter 6, light methodologies to update the

distributions of trip lengths according to congestion should be further investigated. Fourth,

the extension of the proposed DTA framework to a re-assignment procedure where both
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regional paths and distribution of trip lengths can be updated with a light computational cost

is required. In line with this, the third method proposed in Chapter 5 to calculate the regional

paths directly in the regional network might be a good starting point to update the set of

regional paths with a light computational power required. As also previously mentioned, in

this thesis, the city network partition is assumed to be well-defined and given as an input

parameter. As shown by Saeedmanesh & Geroliminis (2016), Saeedmanesh & Geroliminis

(2017), Lopez et al. (2017) and Casadei et al. (2018), this also represent a stand alone

research subject. Further research in the partitioning of a city network into regions as well as

the optimal number of regions to be considered for an MFD simulation is also required.
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