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Résumé
Nouvelles techniques pour les Contraints Games

Cette thèse présente de nouvelles techniques pour les Constraint Games.
La manière de résoudre un Constraint Game est repensée en terme de
propagation de contraintes. Les préférences des joueurs sont maintenant
considérées comme des contraintes globales permettant une intégration
transparente dans les solveurs de contraintes ainsi que d’améliorer l’efficacité
du framework. Notre nouveau solveur ConGA est diffusé en open source 1.
Celui-ci est plus rapide que les travaux connexes et est capable de trouver
tous les équilibres de Nash, et cela même dans des jeux avec 200 joueurs
voir 2000 pour certains jeux graphiques.

Grâce à cette perspective, le framework a pu être utilisé pour résoudre un
problème de routage dans le domaine des télécommunications. Les aspects
centralisé et décentralisé ont été étudiés. La comparaison de ces derniers
est très importante pour évaluer la qualité de service dans les applications
multi-utilisateurs. L’évaluation de cette dernière peut être très coûteuse,
c’est pourquoi nous proposons plusieurs techniques permettant d’améliorer
la résolution de ce problème et ainsi d’améliorer la résolution du problème.

Constraint Games revisited

This thesis revisits the Constraint games framework by rethinking their
solving technique in terms of constraint propagation. Players preferences
are considered as global constraints making transparently the integration
in constraints solvers. It yields not only a more elegant but also a more
efficient framework. We release our new solver ConGA in open source1. Our
new complete solver is faster than previous state-of-the-art and is able to
find all pure Nash equilibrium for some problems with 200 players or even
with 2000 players in graphical games.

This new perspective enables us to tackle real-worlds Telecommunication
problems. This problem is solved with a centralized perspective and a
decentralized one. The comparison of the two last approaches is really
important to evaluate the quality of service in multi-users application, but
computationally consuming. That is why, we propose new techniques in
order to improve the resolution process.

Mots-clefs— Constraint Programming, Game theory, Nash Equilibrium,
Search strategy

1. https ://github.com/palmieri-a/CONGA
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Chapitre 1

Introduction

1.1 Motivations and context

Artificial intelligence has a long story of modeling and solving problems.
Most of the time, the problems tackled are not easy. Implementing them, cleanly
and efficiently can be challenging. Multiples frameworks having each their own
specificities and domains of applicability facilitating this solving process exist.
Each framework has its own way to express problems. Three of the most important
frameworks are Boolean satisfiability (or SAT), Integer Linear Programming (or
ILP) and Constraint Programming (or CP). SAT and ILP allow expressing
problems in a uniform way using either clauses or linear (in)equations. Their
languages are restricted to a few instructions set. Constraint Programming works
a bit differently. It has an extensible language where a basic element can be any
relation. More generally, Constraint Programming is a successful generic paradigm
to solve combinatorial problems [220]. Through time, Constraint Programming
has shown its ability to solve problems of the frontier with Operational Research.
Especially large-scale problems from industry like scheduling for industrial product
line [186, 16], planning [9], nurse scheduling in hospitals [53, 197], Bin-Packing [198]
and even crew management in transportation [138]. Vehicle Routing Problems
(VRP) [203] is one of the famous applications of CP. In VRP a set of drivers have
to visit a set of customers, while some regulation constraints have to be fulfilled on
vehicles, customers, drivers and so on. The goal of VRP is to find a configuration
which minimizes the cost. The VRP is somehow the same as the problem solved
by GPS navigation softwares such like Waze [224]. A navigation software proposes
routes to users to guide them from a starting point to a destination. The routes are
recommended in real time, taking into account the current roads’ congestion and so
the others users’ routes. A navigation software targets a different kind of solutions
than the ones sought in VRP. While VRP is a mono-objective optimization,
routing applications’ goal is different due to the multiples objectives intrinsically
present through users. Their goal is to make all users satisfied with their routes. A

1



1. Introduction

user is going to be satisfied if he does not see any visible improvement to the route
recommended by the system (i.e. if the system gives his best possible options).
For instance, anyone using this application does not want to follow a route which
is not optimal for himself, even if it is for a common interest.

The need to provide a high quality of service for navigation software companies
is intensified by a competitive environment. Many applications using different
systems are available. For instance, if a user can get a better route from a
competitor, then the next times he will probably use the other application to be
routed. The global problem of such routing application is related to game theory
[217], which is a mathematical field modeling interactions between multiples agents
(also called players). Game theory has found many applications such in scheduling
[65], economics [192] and even biology [89]. A game is the central concept of game
theory. The latter models a situation composed of players having each a possible
set of actions, which, gives a certain level of satisfaction (or utility). Players’
utilities are often expressed with numerical preferences but are not limited to it.

Representing a game is not an easy task. Historically, a game is modeled by
providing a matrix giving a value to all the possible situations for each agent.
This representation requires a lot of memory. Especially, its exponential memory
requirement makes it quickly intractable in practice. For example, given 1000 users
with two routes each, requires 21000 integers which is about 10300. In comparison,
the number of fundamental particles in the observable universe is about 1080.
That is why compact representation like Constraint Games [150], were developed .
Constraint Games is a way to represent games by using Constraint Programming.
Constraint Programming provides a high level language to model problems like
the VRP, or even some other domain problems such data mining[178], model
checking[57] and QCSP[70, 15]. This high level language is an advantage to model
complex problems and to revise the solutions sought when the model changes.
For example, model users’ choices on a dynamic network can be complicated.
And especially when an unexpected event happens. For instance in, the closed
roads have to be removed from the potential solutions. Under the matrix form,
all algorithms need to be revised which is a potential source of errors and can
be tedious. While with Constraint Programming, it is a bit different : only a
constraint forbidding this situation has to be added. The declarative way to
express problems makes the revisions easier.

Routing applications try to propose optimal routes to users in order to provide
a high level of services. Mono-objective optimization is not suited for this kind of
problems. An optimal solution based on one objective may not satisfy the users.
In general users care more about their own preferences than a global one. This
situation corresponds to a game solution concept which is a Nash equilibrium. A
situation is said to be at Nash equilibrium when no player can improve its utility
by changing his strategy alone.

Finding a Nash equilibrium is not easy and belongs to the class of NP-
complete problems [78]. This complexity issue makes the brute force methods

2



1.1. Motivations and context

totally intractable. However, this same brute force method was not improved until
recently in Constraint Games [149] where the authors avoid some re-computation
by maintaining counters. This method uses Constraint Programming to model
players’ preferences. The computation of a Nash equilibrium relies on a ad-hoc
algorithm which is not directly integrated into Constraint Programming solvers.
This is an issue because it cannot benefit from the recent solvers’ advances and
can be difficult to maintain and to handle by users.

Thesis contributions

The main thesis’s contribution is to improve the current Constraint Game
model from users’ experience, by providing a simple and unified representation in
constraint solvers. The state of the art algorithm for finding Nash equilibriums is
also improved in practice. This contribution comes with a solver which has shown
also is applicability to real problem instances in network optimization. In detail,
the following outcomes have been achieved :

— A new view of Constraint Games by transparently embedding it into
Constraint Programming solvers [159, 122]. We propose to construct for
each player a global constraint, which encapsulates its preferences and
removes the states which cannot be a Nash equilibrium. In other hand, this
transparent view eases the solver maintainability and enables to reuse all
recent advances in the field for free. The second contribution is to improve
the algorithm from [149]. The problem’s complexity and more precisely
the arc consistency is characterized. Afterwards, we identify the tractable
approximations of the problem to define an algorithm which helps to the
detection of non solution. The practical interest of such approach has been
shown on some classical game theory benchmarks.

— A problem coming the from telecommunication area has been solved using
the Constraint Games solver. In it, a set of demands (for instance network
packets) has to be routed through a network. The goal was to provide a
routing minimizing the network’s congestion and cost, while each demand
has to be routed to its minimum cost individually. Also, networking problems
are a large playground for game theory. For instance, in modern applications
such the internet, many customers buy bandwidth in the network. The
goal is thus to provide a good service to all the users by giving them a
high level of satisfaction. Nash equilibriums are well suited for this kind
of problems thanks to its stable and its local optimality for all agents. In
addition, game theory allows computing measures evaluating the potential
of decentralized algorithms against a global optimization problem. We used
these measures to evaluate our problems the potential of decentralization.
These contributions were published in [160] and in [122].

— A contribution outside this thesis’s scope which consists of the study of a
heuristic search for constraint optimization problems [161]. In this article,

3



1. Introduction

we have shown that using the objective variable within a decision process
helps to make better choices.

Thesis organization

The thesis organization is quite classical. A background’s overview including
Constraint programming and Game theory is given in the two first chapters.
Afterward, the following chapters constitute the contributions and can all be read
separately. The reader is encouraged to first have a glance at the background
before reading the contributions. Three chapters are composing the contributions.
The first one focuses on Constraint Games and some modelling aspects. The
second contribution presents an elegant way to integrate games in constraint
solvers and a new algorithm avoiding to explore non-solutions and its complexity.
Finally, the last chapter presents an industrial use case in telecommunication
networks. We also provide two appendices. One is presenting the constraint games
solver released in open source. The second appendix contains a work which has
been done during this thesis but outside its scope. It concerns the usage of the
objective variable in constraint optimization problems. The objective variable has
been shown as an advantage to solve problems efficiently.

4
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Chapitre 2

Constraint Programming

Contents
2.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Propagation and filtering algorithms . . . . . . . . . . . 11

2.3 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 15

Systematic search and heuristics . . . . . . . . . . . . . 15

Other backtracking search and methods . . . . . . . . . 20

Local search . . . . . . . . . . . . . . . . . . . . . . . . 21

Our work relies on Constraint Programming, the necessary background with
examples to understand the contributions is provided in this chapter.

Constraint programming is a declarative programmatic paradigm approach,
enabling to solve efficiently problems. A problem is defined by variables and
constraints. Variables are the unknown parameters of the problem. The variables
are each defined by a domain which specifies its possible values. A constraint
stipulates the relationship between a set of variables. A constraint embeds a
filtering algorithm which aims to detect the unfeasible parts of the problem,
and so, to remove inconsistent values from the variables’ domain. Formally a
Constraint Satisfaction Problem (or a CSP) is defined as follows :

Definition 1 (Constraint Satisfaction Problem) A CSP is a pair P =
(X, C) where X = {x1, x2, ..., xn} is a set of variables and C = {C1, C2, ..., Cm} is
a set of constraints. A variable xi is associated with a domain D(xi), representing
all of its possible values. A constraint Ci contains a set of all its allowed tuples
defined over a subset SCi

⊆ X of variables.

A constraint can either be defined explicitly (also called by extension) by
providing all the tuples characterizing the constraint solution, or with a formula

7



2. Constraint Programming

which defines the constraint. A simple example is the difference constraint which
can be expressed in extension with a formula (see Example 1). A solution is a
tuple of values (a1, a2, ..., an) such that the assignments x1 = a1, x2 = a2 ...,
xn = an respect all the constraints.

Example 1 (Constraint example) Suppose you have a problem with 2 va-
riables x1 and x2 having as domain the set {0, 1, 2}. A difference constraint is
set over x1 and x2. Thus x1 and x2 cannot take the same value. Two ways are
possible to specify this constraint :

1. in extension by providing all possibles tuples(i.e. constraint’ solutions) :

{x1, x2} ∈ {{0, 1}, {0, 2}, {1, 0}, {1, 2}, {2, 0}}, {2, 1}

2. by a formula : x1 6= x2

An objective which has to be optimized can be added to a CSP. A CSP with
an objecive is called a Constraint Optimization problem (COP). A COP is useful
to rank the solutions or to add preferences between them. A solution with a
better objective value is going to be preferred against another one which has a
lower objective value.A Constraint Optimization problem (COP) is a pair (P, FO),
where P is a CSP and FO is an objective function that has to be optimized. All
solutions to a COP are not equivalent, as their overall quality is determined by
the objective value FO(sol).

Example 2 (Map coloring) Imagine we wish to color the map shown in Figure
2.1 with 5 colors or less. This map is made up of 9 countries which have to be
colored.

To model this problem we need 9 variables denoted by X{1,2,...,9} to determine
each country’s color. The domain of each X variable is the set {1, 2, 3, 4, 5}.

The maps’ coloration has to respect some constraints : the color of each country
has to be different from its neighbors :

∀i, j, i 6= j ∈ |X|2 : Xi 6= Xj

For example, Italy’s color has to be different from the country where it has a
border such as Switzerland, Austria, and Slovenia.

The problem contains an optimization condition : the number of colors used
has to be minimized :

minimize (max(X))

This problem can be translated into another domain which is graph theory.
This perspective makes the problem easier to understand and to represent. To
transfer the problem into graph domain, an incompatibility graph is built (see
Figure 2.2). The graph is constructed such that a vertex represents a country and
each border between two countries is symbolized by an edge. More precisely, the

8
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Figure 2.1 – A maps and its optimal coloration
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Figure 2.2 – A graph view of the map coloring problem

nodes X1, X2, ..., X9 respectively represent the countries Germany, Czech Republic,
Poland, Switzerland, Austria, Slovakia, Italy, Slovenia, and Hungary. The two
representations in Figure 2.1a and 2.2 are equivalent.

The solving process for a CSP or a COP generally involves two mechanisms :
the filtering and the exploration. The filtering mechanism removes inconsistent
variables’ values while the exploration enumerates by a search tree the remaining
possibilities.
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Figure 2.3 – An optimal solution for the map coloring problem into graph
domain

When a problem is solved with constraint programming three mechanisms
have an effect on the performances : the model which determines the search space
which has to be explored, the way to explore it and how the inconsistent values
are detected by the filtering mechanism. We describe each of these mechanisms
and what has been done to improve the efficiency in the following sections.

2.1 Modeling

Efficient models drastically impact the solving performances by reducing the
search space and also the way to tackle the problem [62, 185, 207]. Building
efficient models is not an exact science but it resembles more to art. In other
words, given two models solving the same problem, it is impossible to determine
which one is going to perform better a priori. The only way to get a comparison
is to obtain it experimentally. Nonetheless some general advice about modelling
can be given : "less variable is better" or "less constraints is better". Reducing the
number of variables is going to curtail the problem size and potentially the search
space to explore, while reducing the number of constraints is going to reduce the
number of required propagation, which slow down the global process.

However while building a model, this one can still be analyzed to improve it.
A way to do that is to capture symmetries.

Symmetries. In mathematics symmetries are part of group theory. A good
analogy between the two fields can be found in [69]. A symmetry corresponds to
identify identical permutation or search state thereafter removing the redundant
part. In other words, a problem P can have variables which express the same
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things or which just corresponds to the same solution or inconsistency, this is
called a symmetry (see Example 3).

Example 3 (difference constraint and symmetries) X and Y are two va-
riables which have to be different and have both as domain the set {0, 1, 2}. The
possibles solutions are the couples :

{{0, 1}, {0, 2}{1, 0}{1, 2}, {2, 0}, {2, 1}}

Suppose now that your variables are interchangeable. Then the order does not
matter. In that case, you can identify a symmetry over the two variables. For
instance the solutions {0, 1}, {1, 0} are symmetric and equivalent. A simple way
to break this symmetry is to force an order among the variables. This order can
be imposed by the constraint : X < Y

Many people have been interested to identify and remove new kinds of sym-
metries. This includes the exposure of new kind of symmetries [206, 72, 171, 125]
and new methods to handle it [179, 223]. Specialization of filtering algorithms
were proposed too, to handle symmetries during the filtering step [184].

Model relaxation Sometimes building an efficient model is not enough.
Constraints can make the problem impossible or too difficult to be satisfiable. It
is said that the problem is over-constrained [104]. A famous application example
is the Radio Link Frequency Assignment problem [34]. From an industrial point
of view, finding the optimal solution may not be the first target. Instead, finding
at least one solution is very important, and even if this solution may do not be
exact, due to the hardness of constraints. Multiples methods have been envisaged
to solve such problems like maximizing the number of satisfied constraints (often
called MaxCSP [63]). This method was refined by associating a weight to each
constraint making the objective to maximize the weighted sum over the satisfied
constraints (also called Weighted CSP [123]). Also, in the literature the problem
can be found as constraint satisfaction with preferences [191]. The violation’s cost
can be also put on the variable assignment itself [14]. Another way to handle this,
is Possibilistic CSP [199]. A possibilistic CSP assigns a possibility degree to each
constraint expressing how desirable its satisfaction is. More information about
these relaxations can be found in [143].

2.2 Propagation and filtering algorithms

The core reasoning of constraint programming is the propagation. It consists
into removing inconsistent values of the problem letting only the feasible part
remaining.

11
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Filtering algorithm. A filtering algorithm is associated with a constraint.
It aims to remove inconsistent values from variables’ domain (see Example 4)
given the constraint relation. A filtering algorithm has to catch the constraint
property, to ensure solution’s coherence. For instance, the difference constraint
in map coloring problem (see Example 4) has to remove the inconsistent value
(i.e. the one already taken) and to ensure that a solution respects the difference
property.

The global problem’s consistency is ensured by the propagation mechanism.
The propagation mechanism ensures no more deduction can be made by reaching
a fixed point. This is ensured by transmitting those domain reductions through
the constraints network. It consists in arranging the propagators’ execution, in
order to find new value to remove. Usually, it corresponds to store events in a
queue in order to check if these newly modifications impact the CSP’s state. This
process is iterated until no new modification arises, then a fix-point is reached.
The propagation mechanism can be variable or constraint oriented. It depends on
which event is triggered by the propagation and thus which need to be revised.
The variable oriented propagation is shown in algorithm 1. In this algorithm, when
a variable is removed from the Queue, all its propagators have to be triggered.
This action is done sequentially by the revise function. Then, the newly modified
variables have to be added to the queue. The process is stopped when no more
variables are in the queue.

Algorithm 1 Variable oriented propagation algorithm
1: Q ← init_queue_with_all_variables()
2: while Q ¬ ∅ do
3: v ← remove(Q)
4: modified_variables← trigger_propagators(v)
5: Q.enqueu(modified_variables)
6: end while

Propagators also known as filters are filtering algorithm implementation.
Propagators have been studied in a formal way to determine what is a correct
behavior and which properties they have to ensure (see definition 2, more details
can be found in [200]).

Example 4 (Example 2 continued : filtering algorithm)
The Figure 2.4 summarizes the filtering of the difference constraint. To begin,

orange color (value 1) was given to the node 5. This modification is propagated to
the other variables through the constraints network in order to remove inconsistent
values. Since the connected vertices have to be different, then the value 1 is removed
from the domain of X1, X2, X4, X6, X7, X8 and X9.

Definition 2 (Propagator properties) In order to make constraints propa-
gation well-behaved propagators are decreasing and monotonic.

12



2.2. Propagation and filtering algorithms

X
1

X
2

X
4

X
5 X

6

X
7

X
8

X
9

X
3

1 2 3 4 5 6 7

1,2,3,

4,5

1,2,3,

4,5

1,2,3,

4,5

1,2,3,

4,5
1

1,2,3,

4,5

1,2,3,

4,5

#var

domain

8 9

1,2,3,

4,5

1,2,3,

4,5

X
5

Figure 2.4 – An example of filtering

— A propagator p must be a decreasing function over all domains D. This
property guarantees that constraint propagation only removes values.

— A propagator p must be a monotonic function : given two domains D1

and D2 : D1 ⊑ D2 then the filtering operation should keep this order :
p(D1) ⊑ p(D2). That is, application of p to stronger domains also yields
stronger domains.

— Propagators must faithfully implement constraints. A propagator p is correct
for a constraint c iff it does not remove any assignment for c. That is, for
all domains D.

Also, different filtering algorithm may have different filtering power. The
filtering algorithm can be simple such as a simple deletion for impossible values or
may be more complex like the AllDiff constraint (also called difference constraint)
[181]. The latter is implemented by a matching algorithm in a bipartite graph.
When the filtering algorithm has been triggered, the cost to run it is a bit more
but it allows to prune sometimes exponential parts of the search space. The Alldiff
constraint [181] was the first global constraint. A constraint is said to be global
if its scope has an unfixed number of variables. The difference constraint has
shown that a global point of view can help to find a stronger algorithm to filter
inconsistent values and thus be more efficient while solving problems. However,
it is not always the case and depends on how the constraint can be decomposed
[145, 19]. Decomposing a global constraint can bring some benefits from multiples
point of view : developer does not need to implement new constraints and can
reuse the previous codes. Also, a decomposition can be more efficient than the
original global constraint because the constraint is going to be awaken fewer
times. All these concepts rely on the filtering power (also called consistency) of
the decomposition which itself depends on the constraint’s decomposability.
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Consistency Filtering algorithms can act differently to provide different
filtering power. This concept is called consistency [139, 18]. The consistency is a
widely studied topic. Most of the time, it is a compromise between exploration’s
speed of new nodes and a stronger but slower filtering algorithm which is going
prune more the search space. Multiples kinds of consistencies exist. The most
known are the bound consistency and arc consistency.

Definition 3 (Arc consistency) A CSP is said to be arc consistent if for all
couple of variables (Xi, Xj), i, j ∈ X, i 6= j, and ∀vi ∈ D(Xi), it exists a value vj ∈
D(Xj) such that the instantiation {(Xi, vi), (Xj , vj)} satisfies all the constraints.

Note that if you consider each constraint alone (i.e you do not intersect
constraint together, or add objective in consideration), then the arc consistency
is the highest reachable consistency.

Definition 4 (Bound consistency) A constraint is said bound consistent iif
∀x ∈ X, the domain’s upper bound x and the domain’s lower bound x are a
support in C(X). A constraint network is said bound consistent if all its constraint
in it are bound consistent.

Higher degree of consistencies have shown promising results to solve some
problems like in graphs [22, 96]. Ones of the most famous are the k-consistency,
Path consistency which is a special case of k-consistency [139] and the Singleton
Arc consistency (SAC) [173]. This last one has received more attention this recent
years by being practically improved by restricting the consistency procedure [221,
163].

Definition 5 (Singleton arc consistency) The value a of a variable xi is sin-
gleton arc consistency if and only if the problem restricted to xi = a is arc
consistent. A CSP is singleton arc consistent if every value of every variable is
singleton arc consistent.

The consistency for satisfaction is not the only topic studied for propagators.
Instead, while solving a COP the objective value can be back-propagated to prune
more the search space. Specialized filtering algorithms taking into account the
objective value have been proposed. For instance the global cardinality constraint
[183], in routing problems [201, 84], in problem where the objective is express
through a sum constraint [187] and for the round robin problem [100]. A more
general approach was proposed in [61] and relies on global constraint linear
relaxation in order to have a bound provided by the dual of linear programming.
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2.3 Exploration

When solving a problem, the propagation mechanism alone maybe not powerful
enough to find a solution or to prove a dead end. In such case, an exploration
of the remaining space has to be done. Many algorithmic techniques and their
variants exists to explore the search space : backtracking search, local search and
dynamic programming. We review here the different main techniques used to
explore the search space.

Systematic search and heuristics

A backtrack search [76] is a search procedure to solve combinatorial problems.
The simplest version of backtracking search builds a search tree associated with a
Dept First Search algorithm (DFS). This search tree begins at the root node with
an empty set of decisions. Then the successors nodes are construct with respect
to the decisions. A decision can be anything which reduces the problem, three
ways are most used :

— enumeration : creates as many branches as the number of possible value
for the selected variable

— binary choice : instantiates a variable to one of its possible value. Then,
when the decision is backtracked, the opposite choice is considered, e.g. if
the decision in an assignment to a value, then the opposite choice is going
to be the current domain without this value.

— domain splitting : separates the variable’s domain into two sets which do
not necessarily instantiate a variable.

Note that a variable which is already instantiated cannot be part of a decision.
A naive way to use backtracking search is just to consider lexicographic order to
select the couple (variable/value). This ordering is called search strategy, heuristic
or even sometimes branching rule. An example of the execution of a backtracking
algorithm is given in Example 5.

Example 5 (Search tree exploration) This example does not show a com-
plete tree but instead how the exploration and propagation work. It is built on
the map coloring example (see example 2). The search tree (see Figure 2.5(g)) is
built by giving the references to the corresponding images. The initial step (Figure
2.5(a)), shows the triggering of the initial propagation which detects no incon-
sistent values. Since a fixed point is reached, and nothing more can be deduced,
an exploration is done in order to solve the problem.

The first strategy’s decision is shown in Figure 2.5(b). It selects the variable
X5 and assigns it a value of 1. Then, this decision is propagated, removing the
impossible values : 1 is removed from all the neighbors of X5. Note that the negated
decision and its propagation corresponds to the Figure 2.5(c). This negated decision
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2. Constraint Programming

is taken into account when the DFS algorithm is going to backtrack from the state
shown in Figure 2.5(b). Again, a fix-point is reached conducting the exploration be
continued since not all variables are instantiated. Afterwards, X1 is instantiated
to the value 2 (see Figure 2.5(d)), and again this decision is propagated through
the neighbourhood of the variable yielding to remove the value 2 from the domain
of the variable X2, X3 and X4. Few steps later (see 2.5(f)) , a solution is found.
This solution corresponds to the optimal one like shown in example 2.

The ordering has a huge impact on the resolution time either to find a solution
or to completely explore the search space [209, 162]. Heuristics can be divided into
two categories : dedicated searches which are specialized for one given problem.
Often dedicated searches exploit problems structures and problems’ knowledge
unknown by the solver. This knowledge is required to solve industrial problems.
Dedicated heuristics have been applied to a wide range of problems including
scheduling [216], network design [164], traveling salesman problem [59], software
defined network [160], rectangle packing [204] and many others. However, such
problem’s knowledge, while appealing, is not always available nor possible. That
is one of the main motivations for the development of black-box constraint solvers.
In such solvers, a generic search is provided, letting only as a concern to users
to build an efficient model. The first autonomous search was based on the first
fail principles [90, 208] where the goal is to try to fail as soon as possible in
the exploration in order to reduce the search tree size. Knowing how to fail as
soon as possible cannot be computed efficiently in practice and relies on criterion
like selecting the variable having the smallest domain size. Notwithstanding
the experimental efficiency of such criterion, the complexity of CSP, which are
generally NP-complete makes theses criterion being heuristic. In other words, it
does not exist a unique criterion : some are going to perform well in some kind of
problems while others will have better performances in others. A lot of attention
has been put to find new criterion to solve more efficiently some problems[128, 170,
68, 162, 230, 60, 161]. Notably, in Constraint Programming, activity-based search
(ABS) [144], impact-based search (IBS) [180] and weighted degrees (Wdeg) [27] are
well known state-of-the-art search strategies for combinatorial problems. Three
state-of-the-art Search Strategies are briefly described here. All these strategies
share a common procedure, the value of variable is selected such that a solution
can be quickly found, while the variable selection tries to minimize the search
tree. For a more complete description please refer to their original publications.

Impact Based Search (IBS) [180] selects the variable whose choice
is expected to provide the largest search space reduction. IBS considers the
cardinality ratio reduction of the Cartesian product of the domains (called the
impact). Thus the main feature of this Search Strategy uses variables’ domains.

More formally, let x be a variable, and v be a value belonging to the current
domain D(x). Let Pbefore (resp. Pafter) be the cardinality of the Cartesian product
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of the domains before (resp. after) the application of the decision x = v. The
impact of a decision is :

I(x = v) = 1− Pafter

Pbefore

Let Ī(x = v) be the average impact of the decision x = v. Then, this impact of a
variable x with current domain D(x) is computed by the following formula :

Īx =
∑

v∈Dx

1− Ī(x = v)

At each node, the free variable having the largest impact is assigned to its
value having the smallest impact. Note that this search is an adaptation of
pseudo-cost-based search from mixed integer programming.

Activity Based Search (ABS) [144] selects the most active variable per
domain value. A variable’s activity is measured by counting how often its domain
is reduced during the search. Thus, once again, the feature of this Search Strategy
uses the domains of the variables. More formally, the number of modification
of the variable x is monitored and stored in A(x). A(x) is updated after each
decision with the following rule :

∀x ∈ Xs.t.|D(x)| > 1 : A(x) = A(x)× γ

∀x ∈ X0 : A(x) = A(x) + 1

X0 represents the set of variables reduced by the decision and γ ∈ [0, 1] is the
decay parameter. ABS maintains an exponential moving average of activities by
variables’ value. At each node, ABS selects the variable with the highest activity
and the value with the least activity.

Weighted Degree (WDeg) [27] uses the constraint graph to make de-
cisions. WDeg counts the number of failures ωc for each constraint c . WDeg
features are the constraint graph and the fail counters. WDeg first computes,
for each variable x, the value wdeg(x), which is the weighted (ω) sum of the
constraints involving at least one non-assigned variable. WDeg then, selects the
variable having the highest ratio |D(x)|

wdeg(x) .

Portfolio method. New heuristics’ interest is not limited to only solve more
efficiently some classe of problems. Actually, a practical interest coming from
economics exist. In economics, a portfolio is a financial product which tries to
provide the best and safest investment by betting on multiples stocks option.
Portfolios methods were built because the trading market is not predictable so
it is unknown how to invest money. To mitigate an investment and decrease the
possible losses bet is done on multiples options. In combinatorial optimization,
this kind of reasoning is applied and was first brought in [107].
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Figure 2.6 – Run-time of strategies on multiples problems

Example 6 (Portfolio) Suppose you have a problem to solve. A priori, it is
not possible to determine which strategy performs better. To minimize the risk
(i.e. the possible runtimes), a portfolio method is going to launch many heuristics
in parallel(or by simulating it, e.g. by short runs). This technique allows solving
problems with the minimal run-time of the used strategies. For instance, suppose
that 3 strategies are available to solve a large range of problems. The performances
of the different strategies are reported in the Figure 2.6. The first strategy is drawn
in blue, the second in red and the first one in green.

The strategies have different performances on different problems. The minimal
possible run-time of the three strategies is obtained by taking the minimum run
time of all of them at each time. Basically by running these three strategies in
parallel the run time corresponds to the minimum of all the strategies. What is
important to underline is that no strategy is dominating another one.

The expected speedup can be supra linear [88]. With this method, higher
performances are reaches when the chosen heuristics are orthogonal. This technique
was brought to the fore when SATZilla [226] the first solver adopting a portfolio
approach has won many prices at the SAT competition. An excellent survey about
algorithm selection problem can be found in [121]. Also this variability among
the different method brought different studies, notably one which underlined
the heavy tail phenomena [77]. In fact, some researches have put in evidence
that ideally, it exists a subset of variables to instantiate making the problem
easier to solve [116]. This has motivated the ideas of restarts. A restart consists
in make multiples short runs during the search in order to learn features or
criterion about the problem. This learning step is then useful to consider earlier
the variables making the problem harder [116]. Also nogood can be learned from
failures. During the exploration, the search strategy detects inconsistencies (i.e.
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a set of couples (variable/value)). This chain of affectations is called nogood.
Nogood can help to solve more efficiently a problem by detecting inconsistencies
which have been learned previously. Learning nogoods in general is a difficult
task. The required space is exponential. Researches have been done in that sense
to compress the representation as well as to deduce more thing from conflicts [52,
115, 127]. Coordination between the search, nogoods learning and restart have
been actively studied to improve searches efficiency [129, 75].

Other backtracking search and methods

Since the first backtracking algorithm [76] multiples revisions and possible
improvements of backtracking algorithms were proposed. Dynamic backtracking
[74] is a way to avoid to explore the same dead end in the search tree by using
nogoods. Ginsberg’s dynamic backtracking algorithm (DBT), always puts the
variable that has most recently been assigned a value on the right-hand side of
the implication and only keeps nogoods whose left-hand sides are currently true.
In this method, a nogood is deleted once the left-hand-side implication contains
more than one variable-value pair that does not appear in the current set of
assignment. The required space to implement dynamic backtracking is o(n2d). A
generalization was proposed in [114] to the ith variable. The complexity analysis
states that storing all nogoods is not tractable due to the space requirement.

Limited Discrepancy Search(LDS) [94] is another backtracking search. Given
a heuristic, LDS explores the search tree by considering first the heuristic choices
which are not the negations. LDS explores the search space until the limit of
negation allowed have been explored. For a given binary heuristic, it is assumed
that a left branch is the choice made by the heuristic while the right branch is the
negation and thus a default choice. LDS considers that a heuristic guides well the
exploration and thus explores first the part which is the most promising regarding
the heuristics decisions. In other words, the negation are not the good decisions
to continue. The explored branches are going to be explored by increasing number
of negations. The first branch is the one having only left branches, the seconds
are going to be the ones having chosen exactly one right branch etc. Another
version of LDS but bounded was proposed in [222].

Other backtracking techniques were proposed, notably an Hybrid Best-First
Search [2] which combine Depth first search usually done by simple backtracking
and Best first search.

MDD solvers In recent years, another sub-paradigm of search space explo-
ration was proposed. Multivalued Decision Diagram (MDD) is a compressed data
structure. MDDs are interesting because they provide fast operations [167] which
most of the time are linear. Fast operation, in addition with efficient construction
[168] has shown promising result in solving multiples real-life problems [17, 119,
194].
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Local search

Many world applications cannot be solved by a complete and systematic search.
Local search methods are very famous to solve Constraint Satisfaction Problems,
because of their efficiency and thus despite their incompleteness (see [105, 99] ).
In opposition to a complete and systematic search used by the combination of
a search strategy and a DFS algorithm, a local search is able to explore more
diverse space in a given amount of time. While a complete and systematic search
has to explore an entire sub-tree before exploring another part, a local search is
able to modify at any time, any choice during its decision process. Therefore, a
local search can revise earlier a bad decision compared to a systematic search.

Many applications have been successfully solved with local search methods,
including vehicle routing [203] and job-shop scheduling [12].

Local Search techniques are based on a simple and general idea : For starting,
an initial point which is a complete variables assignment is randomly chosen.
Then it iteratively moves to a neighbor solution. Deciding which neighbor will
be chosen is performed by an evaluation of a heuristic function. The process is
iterated until a termination criterion is reached. It could be the detection of a
solution or user-specific such as the max steps or time exceeded.
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Game theory is a successful paradigm to model interactions between multiples
agents. Originally formalized in [229, 217], game theory has found early some
applications in economy [112], politics [30], wireless network [41]. Even a biologist,
John Maynard Smith was rewarded for his work using game theory [210]. The
central notion in game theory is game in which the strategic behaviors are
represented. Game theory provides an analytic framework to analyze it. The
analysis of strategic behavior(like in games) happens more than it is though. Daily
life choices involve decision making process (like in Example 7). This process
depends on the knowledge about the situation, the possibles cooperation etc. In
this chapter, game theory background is provided to understand our contributions.
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3.1 Taxonomy of game’s Categories

A game is the central notion in game theory. It represents a situation in
which a set of players (also called agents) have to decide an action (or strategy)
among a possible set. When all players have chose their strategy, they are given a
reward (also called utility).

Definition 6 (Game)
A game is a 3-tuple G = (P, A, u) where :

— P is a finite set of players.

— A = (Ai)i∈P where Ai 6= ∅ is the set of actions that can be played by player
i. We call strategy the choice of an action by Player i and strategy profile
a tuple s = (si)i∈P where si ∈ Ai. The set of strategy profiles is denoted by
AP .

— u = (ui)i∈P where ui : AP → R is the utility function of player i.

Example 7 (Introductory example : Battle of the sexes) The Battle of
the sexes[157] is a game composed of two players. A couple has planned to go out
at evening. The wife would like to go to the opera, while the husband wants to
watch soccer on TV. They can go to different places, but they rather prefer to stay
together. They did not choose yet where to go and cannot communicate together.
Knowingly of this situation they have to go somewhere and hopping to find each
other.

Besides the mathematical definition of a game, its nature and how it can be
studied is dependent on multiples concepts. The different point of views such the
interactions and the possible games’ knowledge are described here.

Players interactions : static and dynamic

Games can be played with different interactions modes between players. The
interactions specify how a game is played. Two mains modes exist : static and
dynamic games.

A game is said to be static (also called simultaneous) if the players’ strategies
are played only once, and simultaneously. The Example 8 shows the battle of the
sexes (Example 7 continued) as a static game.

Example 8 (Example 7 continued as a static game)
The battle of the sexes shown previously is traditionally a static game. It is played

once and players chose the actions at the same time. The players’ payoffs and the
possibles actions characterizing the game are described here.

— P = W, M
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Figure 3.1 – Tic tac toe possibilities

— Both player can choose among the following strategy : {O, S} where O
denotes Opera and S Soccer

— The utilities of the game are the following : uW (O, O) = uM (S, S) = 3,
uW (S, S) = uM (O, O) = 2, uW (O, S) = uM (S, 0) = 0

Unlike static games, dynamic games have a sequence of actions, i.e. a player
will chose an action before the other ones choose theirs.

A simple and well know dynamic game is the "Tic Tac Toe". In this game,
two players have to choose a sequence of moves in order to win. The first player
succeeding to align 3 circles or crosses in a row, a column or a diagonal wins. The
game can be finished on a draw, if no player can put 3 elements contiguously. An
example of "Tic Tac Toe" progress is shown in the Figure 3.1. First the player
playing cross begins, then it is the turn to the one playing circle and so on, until
the end of the game is reached.
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Cooperation and selfishness

Game theory focuses on studying problems in which players’ goals depend
on others players’ actions. A crucial characteristic to identify is thus cooperation
between players. Mainly two kinds of behaviors have been studied : cooperation
and selfishness. In cooperative games, several players may collaborate to achieve
their goals together. In opposition, in non-cooperative games, all players are
self-interested and focus only on their goals. Each player just wants to optimize
his own utility no matter what happens with the others Non-cooperative games,
which are a crucial class in game theory, capture many research interests. A simple
example of non-cooperative game has been shown in Example 7.

Cooperative game theory (also called coalition game) provides an approach
to analyze and to describe a structural behavior of players and their payoffs.
Cooperative game theory analyzes the behavior of player when they can build
coalitions. A coalition is simply a subset of the set of players coordinating their
strategies in order to play. In a coalition, the players agree on how the total payoff
is to be divided among the members. A cooperative game [54] consists of a set of
players plus a characteristic function specifying the value created by the different
coalitions in the game.

Example 9 (Battle of the sexes as a collaboration game)

The Battle of the Sexes shown in Example 7 is adapted here as a cooperative
game :

— P = {Husband, Wife}
— There are 3 possible coalitions : C1 = {wife} and C2 = {man} and

C3 = {wife, man}
— the utility function of each coalition is :

— v(C1) = (vW ife) where vW ife = 0 ∨ vW ife = 2 ∨ vHusband = 3

— v(C2) = (vHusband) where vHusband = 0 ∨ vHusband = 2 ∨ vHusband = 3

— v(C3) = (vW ife, vHusband) where vi = 2 ∨ vi = 3 =3

As opposition to the classical battle of the sexes, when a coalition is formed
by the man and the wife, then they do not consider anymore to go somewhere
where the other is not. Going alone somewhere, is dominated by going anywhere
together.

Game’s knowledge

Another important point is how the players know what happens in the game.
In fact, two levels of knowledge exist : the one about the others players and the
knowledge about the game itself.
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In a game with imperfect information, players are simply unaware of the
actions chosen by the other players. However, it is known who is participating
to the game, the possibles strategies and the possible players’ preferences. In
incomplete information games, players may or may no the other players’
strategies and preferences. The Example 10 illustrates these by different situations
based on the Battle of the sexes

Example 10 (Battle of the sexes with different knowledge) Four dif-
ferent situations of the battle of the sexes are given here to understand the impact
of imperfect and incomplete information in games.

— Imperfect and incomplete information : The Wife(resp Husband) does
not know if the Husband(resp Wife) is part of the game and his preferences.

— Perfect and incomplete information : The Wife(resp Husband) is part
of the game but her(resp his) preferences are not known.

— Imperfect and complete information : The Wife(resp Husband) does
not know if the Husband(resp Wife) is part of the game but knows her (resp
his) preferences.

— Perfect and complete information : Everything is known : who is part
of the game and the preferences.

This section has given the different games models and situation which are
well known, in the next section we are going to see how to represent games.

3.2 Games’ representations

Uniform representations are required to use algorithm in games. Until now,
the representation of games was not evoked. In this section, the techniques used
to represent games are listed. Especially the ones which are fully expressive, which
means that any game can be represented in it.

Extensive representations

In this section we list the extensive representation (i.e. where all the possibilities
are listed).

Normal form The standard game representation of a static game is normal
form [64], which is an n-dimensional matrix stating all utilities of all players for all
joint strategy profiles in the game. Also, in a sense, the normal form is the most
fundamental representation in game theory, because of the others representations
of finite games can be encoded in it.
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H

O S

W
O (3, 2) (0, 0)
S (0, 0) (2, 3)

Figure 3.2 – An example of bi-matrix representation, also called normal
form

An example of normal form representation is given in the Figure 3.2. It
corresponds to the Battle of the sexes as shown in Example 7. The possible
actions of the Wife (name W here) are O and S on the columns, while the possible
actions of Husband (named H here) are the ones on the lines. In an informal way,
the player M is going to choose the column, while the W one is choosing the line.
Their decisions are going to characterize their rewards. For instance, when W
and H choose O and P , they are going to be respectively rewarded by 3 and 2.
The Wolf Lamb Cabbage Game is described into numerical preferences in the
Example 11.

Example 11 (Wolf Lamb Cabbage game (WLC)) Three agents, Wolf
(W), Lamb (L) and Cabbage (C) receive an invitation for a party. Each of them
has the choice to come or not at this event. Each agent has his own preferences
about meeting the others participants. Wolf would be happy to see Lamb but is
indifferent about Cabbage’s presence. Lamb would like to see Cabbage but only if
Wolf is not coming. And Cabbage is a plant and is indifferent to everything. The
action of P coming to the party corresponds to p and the reverse to p.

— P ={ W, L, C} where W , L and C represent respectively the Wolf, Lamb
and Cabbage.

— Players can either choose to come to the party which corresponds to p or
the reverse p. For each agent we respectively denote for the Wolf, the Lamb
and the Cabbage their actions by w, l, c.

— uW (w, l, c) = 1, uL(w, l, c) = 0, uC(w, l, c) = 0...

The action of P coming to the party corresponds to p and the reverse to p. For
instance w, l and c represent respectively the action of coming for Wolf, Lamb and
Cabbage. The complete representation of the game requires 3× 23 = 24 integers.
We intentionally do not combine all the players into on big matrix in order have
a better understanding of the example and the required size.

The normal form is fully expressive but not compact. For instance, to represent
a game composed of 100 players and all having only 2 strategies, the normal
form requires to store 1002 numbers. But it is not the only weakness, games
become totally unstructured and flat complicating their modelling especially for
big games.
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l, c l, c l, c l, c

w 1 1 0 0
w 0 0 0 0

Wolf’s payoff

w, c w, c w, c w, c

l 0 0 1 0
l 1 1 0 0

Lamb’s payoff

w, l w, l w, l w, l

c 0 0 0 0
c 0 0 0 0

Cabbage’s payoff

Figure 3.3 – WLC game in normal form

As mentioned earlier, representing a game can be challenging in term of
memory. This need brought people to find new compact representation like
Graphical games [117] or Action Graph Games [113]. These representations
factorize the normal form by catching a property and are able to compact it.

Graphical game : A graphical game only represents the useful interactions
between players. In other words, if two players’ actions are independent, then, in
a graphical game, the action are not directly stored. Graphical games are kind
of reduced normal form embedding a graph indicating how and which players
interact together. The graph which represents the interaction is constructed such
that each vertex is a player and a player is linked into another one if its utility
depends on the action of the other player. Any node of the graph (or player) has
a local matrix which depends on the interactions between the other players (i.e.
its neighbors).

Example 12 (Wolf Lamb Cabbage game as a graphical game) Since
Wolf only depends on Lamb and Lamb on Wolf and Cabbage, the WLC game is
actually a graphical game, as depicted in Figure 3.4. By using this dependency
scheme, we are able to reduce the size of the matrices to one 1× 2, one 2× 2 and
one 2× 2× 2, for a total amount of 14 integers. Also, there is no more need to
store the preferences of the cabbage since it has always the same preference.

The required matrices are now :

The memory consumption of graphical games is reduced only if the largest
neighbors degree d is inferior to the number of players n. Hence, if d ≪ n, then
the graphical representation is significantly more compact than the normal form.
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Wolf Goat Cabbage

Figure 3.4 – Dependency graph of the WLC game.

l l

w 1 0
w 0 0

Wolf’s payoff

w, c w, c w, c w, c

l 0 0 1 0
l 1 1 0 0

Lamb’s payoff

However, it also means that this representation does not fit well to games that
are not separable, i.e. when there exists a full interaction between all players. In
this games, the size would exactly the same as the normal form size.

Action graph game
Action Graph Game (AGG) is a representation fully expressive and at least

as compact as graphical games. AGGs catch symmetries of interactions between
players and compacts their identical strategies. This is useful for specific kind of
game where the players’ utilities do not depend on who is taking the action but
instead on the number of players choosing an action. These kind of games are
called anonymous. AGGs are represented thought a directed graph with a set of
nodes A, a set of edges E, and a set of agents N = {1, ...n}. Identical tokens are
given to each agent i ∈ N . To play a game, each agent i simultaneously places his
token on a node ai ∈ Ai , where Ai ∈ A . Each node in the graph corresponds to
an action available to one or more of the agents. Each agent’s utility is calculated
according to an arbitrary function of the node he chooses and the numbers of
tokens placed on the neighbor’nodes. The WLC game in AGG form is given in
Example 13.

Example 13 (Wolf Lamb Cabbage as an AGG) The Wolf, Lamb, and
Cabbage have to choose among their respective actions on their set of nodes
AW , Al and AC . They can either choose to come (e.g. W ) or not (e.g. ¬W by
placing a token on their corresponding node. Then a function on each node is
going to compute the utility knowing the actions of the neighbors. For instance,
in the figure 3.5 the set of actions for the Wolf denoted by AW are {W,¬W}.
He can either place a token on W or on ¬W to determine if he comes or not.
Afterwards, his reward is going to be computed according to the choices of its
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neighbors nodes. For instance if the Wolf choose W then his rewards depend on l
or ¬l, depending on where the Lamb has put his token.

 ¬w w A
W 

 ¬l l A
L 

 ¬c c A
C 

Figure 3.5 – Wolf Lamb Cabbage Game in AGG

Combinatorial games

In this part, game’s representations coming from combinatorial techniques
are presented. Two main approaches exist : Boolean Games based on Boolean
satisfiability (or SAT) theory and Constraint Games based on constraint program-
ming (see Chapter 2). Only Boolean games are presented, instead, the chapter 4
is dedicated to the Constraint Games which is the approach used in our contribu-
tions. We also refer the Distributed Constraint Optimization Problems(DCOP)
which can sometimes resemble or solve the same problematic as in game theory.
Compactness is one of the main advantages of such approaches. The players’
utilities are not directly stored but instead formulas are provided to compute it
on fly. Also, the resolution system relies on solvers, which are optimized to be
efficient at solving combinatorial problems.

Boolean games
Boolean games were initially proposed in [92]. In such games, each player own

a set of variables and a SAT problem which defines its satisfaction.
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Definition 7 (Boolean games) A boolean game is a 3-tuple (P, V, Σ) where :

— P = {1, ..., n} is a finite set of players

— V = (Vi)i∈P such that i 6= j ↔ Vi∩Vj = ∅ where Vi is a set of propositional
variables controlled by player i

— Σ = {φ1, ..., φn} is the set of goals, where each φi is a satisfiable formula
for player i

The WLC game in a Boolean game form is presented in the Example 14.

Example 14 (Example 11 as Boolean game)
The WLC game can be express by a Boolean Game. First, it can be underlined
that each player has only two strategies and dichotomic preferences, thus making
this problem expressible with boolean games [92, 25]. We name xW , xL and xC

the respective optimization variables of Wolf, Lamb and Cabbage. Then we can
state using boolean algebra notations : xW = wl, xL = wlc + wl and xC = 0.

Logical propositions can sometimes be not enough to properly provide a
compact representation, that’s why boolean games preferences were extended
with CP-net [28, 23]. Boolean games concentrate a lot of attention these last years.
Especially by adapting some well known results of game theory. For instance
dependencies of graphical games to Boolean games [24], cooperative Boolean
games [56], iterative Boolean games [85], incomplete or imperfect information
[80, 46] or even possibilitic games [43]. New concepts were also envisaged. The
structure provided by combinatorial games made people think differently and
that why some concepts emerged like partial cooperation between player [83] or
the concept of variables’ control [73, 13, 103] which is also related to imperfect
information or partial collaboration.

Distributed Constraint Optimization Problem (DCOP). Distri-
buted Constraint Optimization Problem consists of a distributed optimization
problem through agents. The main concern of such approach is to keep privacy of
agents’ preferences (or variable assignment). In such representation, a search is
done by passing message (usually preferences) between agents in order to agree
on a solution.

A Distributed Constraint Optimization Problem is defined by a set of agents
controlling each a set of variables defined over a domain. Each variable assignment
is defined by a cost and an operator that aggregates all of the individual costs for
all possible variable assignments. The objective of a DCOP is to have each agent
assigned values to its associated variables in order to either minimize or maximize
a cost for a given assignment of the variables. Multiples questions related to game
theory were tackle by DCOP and its asymmetric variant like the solution sought :
Nash equilibrium [135, 82, 81, 132]or even mechanism design [132].
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3.3 Solution concept and their algorithms

So far, the solutions in games have not been expressed. In games, solution
concepts (also called equilibrium) have been discussed for decades, resulting
in many solutions concepts with different properties [157]. One of the most
fundamental equilibria is the Nash equilibria [146], which models a situation
where no player has an incentive to change his decision unilaterally. Finding a
Nash equilibrium is a satisfaction problem in which players are in a best response
statement. In other words, it consists in finding a state where no players can
improve its current satisfaction by changing alone its strategy. In this thesis, we
focus only on Pure Nash equilibrium because it has the advantage of giving a
deterministic decision for the players and thus being easily applicable in real
world applications. Various other solution concepts have been proposed in the
literature. Among them the most popular are : the mixed Nash equilibrium [146],
Bayesian Nash equilibrium [93] and correlated equilibrium [5]. However, we do
not detail these concepts since they are not directly related to this thesis.

In this section, classical solution concepts are listed and described.

Pure Nash equilibrium

The basic solution concept for a static game is called Nash equilibrium and
corresponds to a state where each player has no incentive to change his strategy
assuming the other players do not change theirs. A best strategy for a player is
usually called a best response. Given the choice of a strategy by the other players,
a best response for a player is the choice of the (or one of the) strategy which has
the best reward for this player.

Definition 8 (Best Response)
A strategy profile s is a best response for player i if and only if ∀s′

i ∈ Ai, ui(s) ≥
ui((s

′
i, s−i)).

Pure Nash equilibrium (PNE) can be rephrased in term of better response : a
situation is at Nash equilibrium if it does not exist any better response for any
player, in other words it does not exist a strategy giving a better utility.

Example 15 (Pure Nash equilibrium in WLC game) In Figure 3.6 a box
is colored in red if it is a best response for the given player. For instance, let’s take
the Lamb’s payoff, and a configuration such that the Wolf and Cabbage are coming
(column w, c in the Lamb’s payoff). The action not coming is a best response in
this situation since it has a better payoff than coming. The intersection of the
sets of best responses gives us the set of PNEs. The WLC game has 3 PNEs. The
first one happens when all players do not come to the party (wlc). The two others
when Wolf chooses to come and Lamb to skip (wlc and wlc).
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l, c l, c l, c l, c

w 1 1 0 0
w 0 0 0 0

Wolf’s payoff

w, c w, c w, c w, c

l 0 0 1 0
l 1 1 0 0

Lamb’s payoff

w, l w, l w, l w, l

c 0 0 0 0
c 0 0 0 0

Cabbage’s payoff

Figure 3.6 – Best response of WLC game in normal form

For finding PNE in games, a generic algorithm is described in Algorithm 2.
The Enum procedure calls for each strategy profile a function isNash which checks
for each player with the function Deviation whether the current strategy is a
best response or not for this player. The main interest of this algorithm is that it
provides a complete search which outputs all equilibria. This naive algorithm has
not been improved until recently by the Conga 1.0 algorithm [149] for Constraint
Games. Conga 1.0 is a tree-search algorithm which memorizes the best responses
already found and uses a counter for pruning some actions that are never best
responses. For reasoning on basic Boolean games, the first methods for computing
all PNE (or core elements) have been proposed by [44] by using disjunctive answer
set programming [31]. Their idea is to transform a Boolean game into an answer
set program. Henceforth, by using the saturation techniques [10], the obtained
answer set will coincide with the set of PNE (or the cores).

A summary of complexities for finding a PNE for different representations is
shown in table 3.1. In this table s corresponds to the number of strategy, n to
the number of players and d to the maximum degree in the graph of graphical
games.

Representation PNE complexity space complexity
normal form game NP-complete [78] sn

graphical game NP-complete [78] sd+1

boolean games ΣP
2 [55] unknown

constraint games ΣP
2 [148] unknown

Table 3.1 – Complexity to find a PNE for different games’ representations
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Algorithm 2 Enum
1: procedure Enum(game : G = (P, A, u))
2: for all s ∈ AP do
3: if isNash(s) then
4: print(s)
5: end if
6: end for
7: end procedure
8: function isNash(strategy profile : s) : boolean
9: for all i ∈ P do

10: if Deviation(s, i) then return false
11: end if
12: end for
13: return true
14: end function
15: function Deviation(strategy profile : s, player : i) : boolean
16: for all s′

i ∈ Ai, s′
i 6= si do

17: if ui(si, s′
−i) > ui(s) then return true

18: end if
19: end for
20: return false
21: end function

Definition 9 (Pareto Efficiency) A strategy profile s ∈ Ai of a game is said to
be weakly Pareto efficient if there does not exist any s′ ∈ Ai such that ui(s) > ui(s

′),
for all i ∈ P.

Note on best response concept : The concept of best response can be
abstracted in multiples ways. The best responses simply state if a player is satisfied
or not. In general, numerical preferences are given, but it can be extended to any
notion. For instance, if a player has multiple objectives, then the best responses
could be the Pareto frontier which corresponds to the states where each objective
alone are not improvable without making another one worse (see definition 9).

Best response dynamic

Best Response Dynamic also called Iterated Best Response (IBR) is an
incomplete method to find a Nash equilibrium, it is analogous to local search in
Constraint programming (see Section 2.3). This algorithm is quite simple (see
Algorithm 3), and is very efficient in practice to find a PNE if it exists. The idea
of this algorithm is to first take a random configuration of players’ strategies
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and then to make randomly deviates a player to its best response until a Nash
Equilibrium is reached.

Algorithm 3 IBR
1: procedure IBR(game : G = (P, A, u))
2: Select a random configuration S
3: while not isNash(S) do
4: S = makeDeviateAPlayerToItsBestResponse(P )
5: end while
6: end procedure

Pareto Nash equilibrium
In a game even if a Nash equilibrium is found, it is not always a desirable

state for the players. Concepts on the top of Nash equilibrium have been studied.
For instance Pareto efficiency (see definition 9), or Pareto optimality, which is a
state of resources allocation in which it is impossible to make any one individual
better off without making at least one individual worse. That is, a Pareto Optimal
outcome cannot be improved upon without damaging at least one player. Pareto
optimality has been widely used as the most fundamental solution concept for
multi-objective optimization problems and has also been applied for games [202].

Definition 10 (Pareto Nash Equilibrium [78]) A Pure Nash Equilibrium is
a Pareto Nash Equilibrium if there does not exist a PNE s′ such that ∀i ∈
P, ui(s

′) > ui(s)

A Pareto Nash Equilibrium is simply a multi-objective optimization problem
on the top of the Nash equilibrium. In other words, the Pareto efficiency is
applied to the players’ objectives at Nash equilibrium. Obviously, if it exists a
Nash Equilibrium then a Pareto Nash exists too. An example of Pareto Nash
equilibrium is given in Example 16. In games it filters the equilibriums which are
dominated according to the Pareto criterion.

Strong Nash equilibrium
A Strong Nash equilibrium (SNE) is a special case of Nash equilibrium. A

strategy profile is a SNE means no coalition (including the grand coalition, i.e.,
all players collectively) can profitably deviate from the prescribed profile. This
immediately implies that any SNE is both Pareto efficient and a Nash equilibrium.
Also, it is stable with regard to the deviation of any coalition. Note that a SNE is
also Pareto Nash. An example of a Strong Nash equilibrium is given in Example
16.
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Example 16 (Pareto Nash and Strong Nash equilibrium) Consider the
toy game in the Normal form, depicted in Figure 3.7. This example shows two
games and aims to underline the differences between Strong Nash Equilibrium
and Pareto Nash Equilibrium. Both situations have 3 PNEs which are on the
diagonal. In the first matrix (see Figure 3.7a) a SNE is reached when both players
are playing s1. This SNE is also a Pareto Nash since it corresponds to the
best possible choice of the players among all possible combinations. The other
equilibriums are only PNEs and not Pareto PNE because the SNE dominates the
other equilibriums.

In the second matrix (see Figure 3.7a) the utility of the SNE has changed.
The 3 PNEs still exist but not the SNE anymore. At the same time, two Pareto-
PNEs (colored in orange) exist and are reached when both players play either
simultaneously s1 or s2.

P1

s1(P1) s2(P1) s3(P1)

P2

s1(P2) (3, 3) (0, 0) (0, 0)
s2(P2) (0, 0) (1, 3) (0, 0)
s3(P2) (0, 0) (0, 0) (0, 0)

(a) Strong Nash equilibrium example

P1

s1(P1) s2(P1) s3(P1)

P2

s1(P2) (3, 1) (0, 0) (0, 0)
s2(P2) (0, 0) (1, 3) (0, 0)
s3(P2) (0, 0) (0, 0) (0, 0)

(b) Pareto Nash equilibrium

Figure 3.7 – A toy example showing a SNE and Pareto efficiency

Nash equilibrium relaxations

In general cases, finding a Pure Nash equilibrium is not an easy task. That
why people try to find relaxations to make the problem more tractable or to
ensure that the problem has a solution.

Mixed Nash equilibrium
In a PNE, players choose a unique strategy. This choice is sometimes a bit

restrictive and especially because it can makes games solutionless. Nonetheless,
PNEs are good since they force players to play in a deterministic way which is easier
to take into consideration to build real applications. A Mixed Nash Equilibrium
is less restrictive than a PNE it allows to put a probability distribution over the
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set of strategies for each player. The relaxation is done over the choices players’
strategies. A player can select multiple strategies if it improves its expected payoff.

A wonderful result which was found by Nash [146] is showing that in any
game it exists a Mixed Nash equilibrium. Latter, it was shown that finding a
Nash equilibrium belongs to PPDA complexity class [50] and even if the game
has only 2 players. PPDA complexity means that in it always exist a solution but
might be hard to find.

Definition 11 (expected utility) The expected utility of player i under the
mixed strategy profile σ, denoted by ui(σ), is
ui(σ) = Πs∈S ui(s) Σj∈P σj(sj) where σj(sj) denotes the probability that j plays
sj

Definition 12 (Mixed Nash Equilibrium) A mixed strategy profile σ is a
Mixed Nash Equilibrium if ∀i ∈ P, σi ∈ argmaxσi

ui(σi, σ
-i), where σ

-i is a tuple
of mixed strategy of the other players, except i.

Example 17 (Battle of the sexes continued) In this game, there are 2
PNEs which are reached when both players are going to the same place, which can
be either Opera or Soccer. Let’s check if it exists another mixed Nash equilibrium.
This method relies on a simple linear algebra. To do so, we are going to solve a

Figure 3.8 – Mixed Nash equilibrium computation

linear system. The unknown part of the problem is going to be the probability
distribution over each strategy. Suppose that column’s mixed strategy assigns
probability weight q to O and (1-q) to S. The figure 3.8 shows how the distribution
of probability is done. Then :

row’s expected payoff from M against (1, 1− q) =

q × 3 + (1− q)× 0 = 3q (3.1)

row’s expected payoff from W against (1, 1− q) =

q × 0 + (1− q)× 2 = 2− 2q (3.2)
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These expected payoff have to be equal, we must have 3q = 2− 2q or q = 2
5 .

The probability distribution over the second player can be obtained in the same
way.

To summarize, if now a Mixed Nash equilibrium is sought, then the probability
distribution over the row is (2

5 , 3
5).

Best responses relaxation. A way to relax Nash equilibrium is to weaken
the best response concept. This relaxation is also known as ǫ−Nash and falls in
the category of approximate Nash equilibrium[32]. It corresponds to a strategy
profile that approximately satisfies the condition of Nash equilibrium.

Definition 13 (ǫ-approximate Nash equilibrium) A strategy profile
(x1, ..., xn is an ǫ-approximate if for every player i and every action a in the
support of xi, E[ui(a, xi)] ≥ E[ui(b, xi)]− ǫ for any action b ∈ Ai

In other words, the concept of best response is relaxed by enlarging the zone of
players’ satisfaction. Many researches have been done to find good algorithms for
this approximations schema using different techniques [8, 97, 45]. The potential of
such method an if the approximation scheme was possible was also studied [133,
51, 195, 205].

Game relaxations Recently another approach was proposed, this one
consists into relax the Nash equilibrium concept by weakening the number of
satisfied players. The authors call it a local equilibrium because it consists into
maximizing the number of satisfied players [87] in a game.

Quantifying the efficiency of equilibrium

Some equilibriums are more desirable than others. In many cases, the efficiency
of a solution can be evaluated by an external measure called social welfare function
which should be optimized. This global function is used to compute the best-
centralized solution (by discarding the players’ objectives). Afterwards, it is
possible to quantify the loss of efficiency induced by the selfish behavior of the
players. These measures are computed by considering the ratio "best-centralized
solution / best equilibrium" for the Price of Stability (PoS) and "best-centralized
solution / worst equilibrium" for the Price of Anarchy (PoA). The best equilibrium
is the one giving the highest value for the social welfare function among all
equilibriums.

PoA =
mins∈equilibriumsWelfare(s)

maxs∈SWelfare(s)

PoS =
maxs∈equilibriumsWelfare(s)

maxs∈SWelfare(s)
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Where s is a state, S the set of all possible states and welfare(s) corresponds
to the social welfare function associated to a state s.

Example 18 (Computation of PoA and PoS) The toy example showed in
Figure 3.7aa is considered again. This example has 3 PNEs and 1 SNE. Suppose
now that the social welfare function is simply the sum of all the players’ utility
over plus one. As recall, the worse equilibrium regarding to the social welfare
function is the oen obtained when the players 1 and 2 play both the strategy s2. In
comparison, according to the social welfare function the best centralized solution
which is also an equilibrium is reached when the players play all s1. Then the PoA
is equal to 1+0+0

1+3+3 = 1
7 and the PoS is equals to 1+3+3

1+3+3 = 1.

3.4 Games example

This section provides few examples of classical games. Most of them are part
of the Gamut library [152]. When a game comes from another source, the original
publications are given as reference. We separate the description of classical games
and the graphical ones. Note that a list of games can be found on Wikipedia 1

Classical games

— Minimum Effort Game (MEG) : is a coordination game which demons-
trates the coordination with multiple equilibrium. The equilibrium will
be reached if all players choose the same strategy. In this game, given an
identical strategy set A for each player, his payoff is determined by the
formula a + b ×M − c × E where E is the player’s effort and M is the
minimum effort of all the players. a,b, c are the parameters of the game.

— Traveler Dilemma (TD) : An airline loses n suitcases belonging to n
different travelers. All the suitcases are identical and contain the same
items. All the travelers are told to claim the value of their suitcase between
2 and 100 (They can not discuss each other). If any travelers write down
the lowest value, he will get an extra value $n, and the remaining travelers
will get an minus value $n. All travelers would like to maximize the value
they would be reimbursed by the airline.

— Collaboration Game (CG) : is a game where players have to collaborate
to get the highest utility. Players have to chose among a set of actions. The
highest payoffs are for all outcomes in which every player chooses the same
action. PNEs are the situations where the players choose the same strategy.

— Dispersion Game (DG) : is a game where players do not want to
collaborate and is the opposite of the Collaboration game. Players have to

1. https ://en.wikipedia.org/wiki/List_of_games_in_game_theory
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chose among a set of actions. In this game the players want as much as
possible to not share a strategy. The highest payoffs are for all outcomes in
which every player chooses a distinct strategy/

— Arm Race (AR) : is a common game in economics literature. An arms
race, in its original usage, is a competition between two or more states to
have the best armed forces. Each party competes to produce more weapons,
larger military, superior military technology. In this game Payoffs in this
game are symmetric and calculated by using the formula -C(x) + B(x-y)
where x is the level of arms the player in question has chosen, y is the level
of arms his opponent has chosen, and C and B are user-specified functions.

— ElFarol Bar Game (EFBG)[4] : is a kind of coordination game. In this
game, there is a particular, finite population of people. Every Thursday
night, all of these people want to go to the El Farol Bar. However, the
El Farol is quite small, and it’s no fun to go there if it’s too crowded. So
much so, in fact, that the preferences of the population can be described as
follows with k an integer with a possible range between 1 and 100 :

— If less than k% of the population go to the bar, they’ll all have a
better time than if they stayed at home

— If more than k% of the population go to the bar, they’ll all have a
worse time than if they stayed at home.

It is necessary for everyone to decide at the same time whether they will
go to the bar or not.

— Colonel Blotto (CB)[188] : is a type of two-person zero-sum game in
which the players are tasked to simultaneously distribute limited resources
over several objects (or battlefields). In the classic version of the game, the
player devoting the most resources to a battlefield wins that battlefield, and
the gain (or payoff) is then equal to the total number of battlefields won.

Graphical games :

— Public Good Game(PGG)[112] :This game is useful to analyze the
behavior of players when they can share a good. For instance, the action
might be learning how to do something, where that information is readily
communicated ; or buying a book or other product that is easily lent from
one player to another. Taking action 1 is costly, and a player would prefer
that a neighbor take the action rather than having to do it himself or
herself ; but taking the action and paying the cost is better than having
nobody take the action.

— Threshold Game of Complement (TGC)[112] :This game is a bit in
opposition with the PGG. In some situations, a player has an increasing
incentive to take a given action as more neighbors take the action. In
particular, consider situations in which the benefit to a player from taking
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action 1 compared to action 0 (weakly) increases with the number of
neighbors who choose action 1.

— Road Game (RG)[215] : A road is being built from north to south
through undeveloped land. n agents have purchased plots of land along the
road. As the road reaches each agent’s plot, the agent needs to choose what
to build on his land. His utility depends on what he builds, on some private
information about the suitability of his land for various purposes, and on
what is built north, south, and across the road from his land. The agent
can observe what has already been built immediately to the north of his
land (on both sides of the road), but he cannot observe further north ; nor
can he observe what will be built across from his land or south of it. Then
he has to chose what to build in order to maximize his utility
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Chapitre 4

Constraint games
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This chapter presents the Constraint Games framework and gives related
extensions. The extensions such as the hard constraints, the shared variables and
the uncontrolled variables are useful to provide a higher power of expressivity in
Constraint games. The new concepts provided concern mainly modelling part of
games. Especially, we study the impact on equilibriums of these new concepts
and how to compute it.

4.1 Constraint Games framework

Constraint Games [149, 148] are a way to give games a compact representation
by using Constraint Programming to represent utility functions.

Definition 14 (Constraint Satisfaction Game)
A Constraint Satisfaction Game (or CSG) is a 4-tuple (P, V, D, G) where P is a

finite set of players, V is a finite set of variables composed of a family of disjoint
non empty sets (Vi)i∈P for each player and a set VE of existential variables disjoint
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of all the players variables, D are the domains’ variable defined as for CSP, and
G = (Gi)i∈P is a family of CSP on V representing the goal of each player.

In Constraint Games, the set of players’ actions are represented by the joint
values of the variables he controls, and its utility by a function valuing players’
actions.

Definition 15 (Strategy) A strategy si for player i is an assignment of the
variables Vi which he is controlling.

Definition 16 (Strategy profile) A strategy profile s = (si)i∈P is the given of
a strategy for each player

In constraint satisfaction games, players’ satisfactions are expressed by Boolean
utility. In other words, the preferences are either "yes" or "no". The Boolean utility
function of player i over a strategy profile s is set to 1 if s satisfies the goal of i
and to 0, otherwise.

Definition 17 (CSG’s utility) Let ui(s) be the utility function of player i over
s, ui(s) = 1↔ s ∈ sol(Gi) and ui(s) = 0↔ s /∈ sol(Gi).

Note that [149] has introduced satisfaction and optimization variants of
Constraint Games. A Constraint Optimization Game (COG) is a variant
(P, V, D, G, opt) where opt = (opti)i∈P and ∀i ∈ P, opti ∈ V is the variable whose
value defines the utility function ui of Player i. In a constraint optimization game,
all players want to maximize their utility.

Definition 18 (COG’s utility) Let ui(s) be the utility function of player i
over s, then ui(s) = −∞ ↔ s /∈ sol(Gi) and ui(s) = s|xi ↔ s ∈ sol(Gi) where
opti = max(xi).

In other words, when a profile s satisfy the goal Gi of Player i, the utility ui of
this player is given by the value of the variable to be maximized : ui(s) = opti. By
changing the definition of utility for COGs, the others notions remain the same
as for CSGs

Example 19 (Location game) This game comes from [148] and is an adap-
tation from [106]. A group of n ice cream vendors would like to choose a location
numbered from 1 to m for their stand in a street. Each vendor i wants to find a
location li. He already has fixed the price of his ice cream to pi and we assume
there is a customer’s house at each location. The customers choose their vendor
by minimizing the sum of the distance between their house and the vendor plus
the price of the ice cream. Note that if two vendors have the same final price then
a customer is going to choose the first one by lexicographic order. This game can
be modeled by the following constraint game model :
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4.1. Constraint Games framework

A set of players :

P = {1, .., n}

For each player i, the location of his stand is determined by a variable li with
a domain the {1, ..., m} :

∀i ∈ P, Vi = {li}, D(li) = {1, ..., m}

A variable costij determines the cost for the customer j to come to the vendor
i. The cost is computed as the addition between the ice cream’s price and the cost
to come to the vendor :

∀c ∈ {1, .., m},∀i ∈ P, costij = pi + dist(li, m),

Each customer selects the vendor with the minimal cost. An indicator boolean
variable minc, for all customer c determines the minimal cost giving all vendors.
The first constraint specifies which cost is minimal, while the second ensures that
the indicator variable is set to 1 if the cost is minimal.

∀c ∈ {1, .., m}, minc = min(cost1c, ..., costnc)

∀c ∈ {1, .., m}, minc = min(costic)← (choiceic = 1)

The customers can go only to one vendor :

∀c ∈ {1, .., m},
∑

i∈P

choiceic = 1

The goal of each vendor is to maximize their utility which is computed as their
price times the number of customers coming :

∀i ∈ P, Gi = max(pi ×
m∑

c=1

choiceic)

We denote by s-i the projection of s on V-i = V \Vi. When a player can improve
his satisfaction by changing the assignment of the variables he can control, then
he has a beneficial deviation.

Definition 19 (Beneficial deviation) Given a strategy profile s, a player i
has a beneficial deviation if ∃s′

i ∈ Si such that ui(s
′
i, s

-i) > ui(s,s-i)

A tuple s is a best response for player i if this player is not able to make any
beneficial deviation. In other words, it corresponds to the tuples which give the
the maximum value to sol(Gi).
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Definition 20 (Best response) A strategy profile s(si, s
-i) is a best response

(abbreviated BR) for player i if and only if ∀s′
i, ui(si, s

-i) ≥ ui(s
′
i, s

-i)

The main solution concept defined for Constraint Games is pure Nash equili-
brium.

Definition 21 (Nash equilibrium) A strategy profile s is a Pure Nash Equili-
brium (abbreviated PNE) of the Constraint games if and only if no player has a
beneficial deviation, i.e. s is a best response of all players.

Example 20 (Example 19 continued) In the Figure 4.1, an instance of Lo-
cation Game with 3 sellers and 14 customers is shown. The sellers are represented
by the triangles, and their price are shown inside it. One customer is located at
each position. Each green arrow represents a customer choice.

Figure 4.1 – Players’ deviations in the location game

In the top figure, the most left player has a deviation. He can shift of 2
positions on the right in order to get a new customer, as shown in the bottom
picture.

A variable x ∈ Vi is said to be controlled by player i. The meaning of a
Constraint Game (P, V, D, G, opt) is a game (P, A, u) in which the set of actions
of a player i is defined by the different assignments of his controlled variables :
Ai = DVi . We denote by VC = V \VE the set of controlled variables and by
A−i = DVC\Vi the set of states of all players but i.
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Constraint games examples

We give briefly here some examples of games expressed with Constraint
games.

Example 21 (Minimum effort game (MEG) [152]) It is a coordination
game which demonstrates the coordination with multiple equilibriums. The
equilibriums are reached when all players choose the same strategy. In this game,
given an identical strategies set A for each player, his payoff is determined by the
formula a + b×M − c×E where E is the player’s effort and M is the minimum
effort of all the players. a, b, c are the parameters of the game.

The following existential variables are used to model this game by constraint
games.

— M stands for the minimum effort of all players.
— ∀i ∈ P, pi stands for the payoff of player i.

MEG can be modeled as follows :

— P = {1, . . . , n}
— ∀i ∈ P, Vi = {ei}
— ∀i ∈ P, D(ei) = A
— ∀i ∈ P, Gi contains the following constraints :

— M = min(e1, . . . , en)
— pi = a + b×M − c× ei

— ∀i ∈ P, the optimization condition opti = max(pi)

Example 22 (Travelers Dilemma (TD)[152] ) An airline loses n suitcases
belonging to n different travelers. All the suitcases are identical and contain the
same items. All the travelers are told to claim the value of their suitcase between 2
and 100 (They can not discuss each other). If any travelers write down the lowest
value, he will get an extra value $n, and the remaining travelers will get an minus
value $n. All travelers would like to maximize the value they would be reimbursed
by the airline. TD has only one PNE when all players take the minimal number
as their strategy.

The following existential variables are used to model this game by constraint
games.

— y stands for the minimal value chosen by all the travelers.
— ∀i ∈ P, choicei is a boolean variable which is set to 1 if the value of player

i is minimal, otherwise, it is set to zero.
— ∀i ∈ P, pi stands for the payoff of player i.

TD can be expressed as follows :

— P = {1, . . . , n}
— ∀i ∈ P, Vi = {xi}
— ∀i ∈ P, D(xi) = {2, . . . , 100}
— ∀i ∈ P, Gi contains the following constraints :

— y = min(x1, . . . , xn)
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— ∀i ∈ P, choicei = 1⇔ xi = y
— choicei = 1→ pi = xi + n
— choicei = 0→ pi = xi − n

— ∀i ∈ P, the optimization condition opti = max(pi)

Example 23 (Collaboration Game (CG) [152]) In a collaboration game,
the highest payoffs are for every player who chooses the same action. Each player
has to choose an action between 1 and m. Then for each player his rewards
corresponds to the number of players having chosen the same strategy as him. CG
has as many PNE as player actions

The following existential variables are used to model this game by constraint
games.

— ∀i ∈ P, ci stands for the action choose by each player. ci is a variable having
a domain the set {1, ..., m}

— ∀i, j ∈ P, eij is a boolean variable which takes the value 1 if ci)cj stands for
the action choose by each player. ci is a variable having a domain the set
{1, ..., m}

— ∀i ∈ P, pi stands for the payoff of player i.
CG can be expressed as follows. In this model, the constraint count specifies

how many times the value of
— ∀i, j ∈ P, eij = 1↔ ci = cj

— ∀i ∈ P, pi =
∑

j∈P eij

— ∀i ∈ P, the optimization condition opti = max(pi)

4.2 Variable control

Uncontrolled variables

So far, the handling of Nash equilibrium in constraint games is related to the
precise definition of the ceteris paribus principle [20] (i.e. games where players’
actions and rewards are clearly defined). However, in full generality, this principle
might be violated. In real-world, often the information available is incomplete
and or imperfect. This arises, as soon as a state is not well defined, because of for
example of unknown parameters in a game. A simple and famous example is the
poker Texas Hold’em. In this game, the information is incomplete and imperfect.
A player does not know opponents’ cards and few others on the table are hidden.
Each player knows only his own cards, the number of tokens he has, the amount
of token of each other player and the two cards on the table. Given that, each
player has to take decisions in order to bet on his possible victory (i.e. the best
card) and win the maximum amount of tokens.

The location game depicted in Example 24 is another game with incomplete
information. Until now, in the location game, if a customer has the choice between
two vendors having the same price, it was settled that he goes to the first one
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by lexicographic order. This assumption simplifies the situation and could be
unrealistic. Especially, in reality, a customer’s choice can be arbitrary and many
possibilities can be considered. If the assumption is no longer considered, then,
he may go to the vendor having the best ice cream or the nicest storefront. This
is associated with customers’ belief but is subject to each player’s interpretation.
As formulated in the game, customers’ choices might be unknown from players.
The variables associated with the customers’ choice remain free and are not
instantiated and that even if all players have chosen their strategies. Most of the
time, to valuate the utility functions, it is required to know everything about
the players’ choices and the environment. An unknown could affect the utility
function making a player uncertain about customers’ choice and thus about his
own choice.

Example 24 (Location games with unknown variables’ values) In the
location game previously exposed, it is supposed that if two vendors’ cost are the
same for a customer, then, the latter is going to the first one by lexicographic
order. However, in this example, this assumption is not true anymore. The
players know the other players strategies but not all the customers choices making
potentially dilemma like in the Figure 4.2.

1         2         3        4         5        

1 1

Figure 4.2 – Location game with undetermined behavior

In this figure, the two players : the orange and the yellow have to choose where
to put their stand. There is a customer at each position and the green arrows
correspond to the customers’ choice. An example of dilemma is exposed in this
Figure : the player orange has the position 1 and the yellow the position 5, then
sellers do not know where the customer at the position 3 wish to go. The cost is
the same and therefore this criterion is not enough to make a decision. As it is,
the players cannot completely compute their best responses. The outcome result
has multiples issues and thus is not determined. The customer can either goes to
the orange’s stand or to the yellow one.
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Given a strategy profile, it is possible that it remains non instantiated variables.
These variables are called free variables. These variable can represent unknown
from the nature or hidden players strategies.

In fact, two kinds of free variables exists :

— unknown players’ strategies e.g. Texas Hold’em. In other words, a player
may not know the variables’ values of the others players.

— unknown environment variables e.g. the location game. This situation
corresponds to an unknown variable which is not controlled by any player
like how the customers behave in the location game.

In constraint games, the unknowns correspond to unknown variables values
during the resolution. In other words, even if all the decision variables have been
instantiated, it remains some variables which are not. Players have to decide their
actions without knowing completely the game’s issue. They give a semantic to
the variables which are not instantiated. Often, the resolution of such problems
relies on prior knowledge like beliefs, if it is available. The beliefs may take
different forms like a probability distribution over the unknown variables values
or a symbolic behavior. For instance, a player may think that another vendor
has better advertising than him or a stand which looks better. Beliefs impact the
utility function’s computation and thus because it decides how to consider the
free variables values which possibly change the objective value.

Symbolic behaviors can be often simulated by computing statistics measures
like average, means, min, max on the player’s utility function. The possibles
statistics are computed on the free variables knowing a strategy profile. For
instance, a pessimistic player would take the minimum reward over all the possibles
values which are not possibly controlled by himself.

Example 25 (Example 24 continued with beliefs) While in the previous
cases, the game was assumed to be totally defined. It can arise that players cannot
decide where a customer goes. Instead, each of them may have beliefs about
customers behaviors. For instance, the yellow player can be optimistic, while the
orange is pessimistic. Therefore, both are believing that if a customer has a choice,
then he would go to the yellow player.

The Figure 4.3 presents some situations where the beliefs modify the utility of
each player. The Figures 4.3a,c and d present how the players are going to interpret
the customers’ behavior. Each player’s belief is symbolized by a colored arrow.
The yellow (resp. orange) player’s belief on customers behavior is symbolized by a
yellow (resp. orange) arrow. In the Figure 4.3a and Figure 4.3c, it is unknown
where the customer in position 3 would go. Instead both players believe that the
customer is going to the yellow vendor located in position 5. That is why, the
orange player deviates (Figure 4.3a) of one position to the left to get another
customer (Figure 4.3b).
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1         2         3        4         5        

1 1

1         2         3        4         5        

1 1

1         2         3        4         5        

1 1

1         2         3        4         5        

1 1

a) b)

c) d)

Figure 4.3 – Location game with beliefs

In the same way, the yellow player is going to deviate to the same position as
the orange player (Figure 4.3c to Figure4.3d). In that case, the yellow player is
going be visited by all the customers according to the players’ beliefs.

Players’ beliefs impact the players’ rewards because free variables may change
the players’ utility making the best responses beliefs dependent, as well as the set
of Nash equilibriums.

More generally, a belief can be abstracted by a function f . f takes as input
a strategy profile, a player plus the existential variables of a games and output
a preference. The f -function is used to evaluate the subspace of the existential
variable plus the strategy profile.

A f -beneficial is a beneficial deviation for games with free variables. Note
that a f -beneficial deviation without free variable is a beneficial deviation and
thus a f -beneficial deviation is a generalization of a beneficial deviation.

Definition 22 (f-beneficial deviation) Let f be a function such that f :
(s, VE) → R. Given a strategy profile s, and VE the set of existential variables,
a player i has a f-beneficial deviation if ∃s′

i ∈ Si, such that f((s′
i, s

-i), VE) >
f((s,s-i), VE)

The other concepts remain the same by changing a deviation by a f -beneficial
deviation. A Nash equilibrium with free variables has to respect the concept of
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f -beneficial deviation. In other words, a situation is at Nash equilibrium if no
player has a f -beneficial deviation.

f-function : The f function is an arbitrary function which can simulate
any kind of behavior from a cautious player by a using a minimum function to
enthusiastic one by using a maximum function. Probabilistic behaviors can also
be includeed within the f function.

Related work The question about knowledge and uncertainty in games has
already been addressed in Boolean games and in different manner. In [80] the
authors Especially by the possibility to manipulate games when the information
in not complete.

In [1], the authors model uncertainty by extending the framework of Boolean
games with a set of observable action variables for every agent (i.e. not all
variables are observable). Possibilistic logic has been also considered in [46]. Or
more recently by considering incomplete information for negotiation between
agents [86, 79, 33].

Shared ownership of variables

Originally in games, players exercise a unique control over a set of variables
(or strategies) in order to achieve a unique goal.

It may happen however that the unique control is too restrictive as for example
in a modified version of the location game (see Example 26). The motivation
in location game to share variable come from the situation in which a shopping
mall is built. The stakeholders represented by each vendor in the project have to
agree on a location. This location is going to depend on the other stores’ location
as well as on the stakeholders’ preferences. The location’s choice is going to be
decided by a consensus (i.e. a group of people). Shared control of variables has
been firstly proposed in boolean games in [73]. In this article, the authors propose
an extension to the CL-PC logic [166] as well as a complete axiomatization of an
extension including the shared control of boolean propositions. This concept has
been also studied and extended in [13] to iterated boolean games.

Example 26 (Location game with shared variables) In this example of
location game, the vendors can have multiple stores and can store can be shared
by multiple players.

When a store is shared, the benefits are redistributed equally among the owners.
Figure 4.4 presents an instance of Location game with one shared store. Two
vendors : the orange and the yellow have each one store and share one. The stores
are still symbolized by the triangle, and fill by the owners’ color. Now a triangle
might have multiple colors. This is the case for a shared store like the one in
position 7 in the Figure 4.4a.
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1         2         3        4         5        6         7         8         9       10       11       12       13       

1 11

a)

1 11

b)

1         2         3        4         5        6         7         8         9       10       11       12       13       

1 11

c)

1         2         3        4         5        6         7         8         9       10       11       12       13       

Figure 4.4 – Location game with a shared stand

Each player chooses the value of the variables he owns, including the shared
variables too. A Nash equilibrium with a shared variable has to respect the
preferences of each player. In the Example 26, there is no Nash equilibrium. Each
player would like to shift closer to the other player’s store in order to increase its
utility. For instance, in Figure 4.4a the yellow players would prefer to shift the
shared store to the left as shown in Figure 4.4b. Whereas, the orange one prefers
to shit on the other side as shown in Figure 4.4c. The players who own a shared
variable need to agree on the value taken by the shared variable. That is why the
concept of partial cooperation or negotiation [103, 83, 228, 231] is related to the
concept of a shared variable. This concept has been mostly studied in DCOP but
it is different since the players cannot share a variable and have privacy concern.

Shared variable implementation
Besides, the fact that this concept has been already proposed, we review here

the possibles implementation of shared variables and its impossibility to translate
into normal form. The concept of shared variable is not easily representable inside
a matrix. For instance, suppose the simplest game, where a binary variable is
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shared by two players. A matrix representing the possible strategies is presented
in Figure 4.5. A single variable which can either take the value symbolized by S1

or S2, is depicted here. Each player can either choose S1 or S2. However, nothing
constraints the players to choose the same strategy at the same time. An implicit
constraint exists : the strategy’s value of P1 has to be the same as P2. This is a
hard constraint and cannot be simply added in the normal form (see section 4.3).
As it is, the matrix does not respect the semantic of a shared variable, since its
value has to be the same for all the players. For instance, players preferences are
different : P1 wishes to play S1 while P2 would prefer S2. In the matrix form, this
impossibilities impact the equilibriums and creates inconsistencies as for example
by the strategy profile (S1,S2) which is inconsistent : the shared variable cannot
take two different values.

P1

S1 S2

P2
S1 (0, 15) (0, 0)
S2 (15, 15) (15, 0)

Figure 4.5 – One shared binary variable under the normal form.

While the normal form cannot represent shared variables, in constraint games
two implementations are considered here : one with duplicated variables and
another one where the variables are not duplicated but shared among players.

Model 1 : duplicating the variables. The first simplest model is to
duplicate the shared variables to retrieve the case of unique control. Then, to
make the agents agree on their choices an equality constraint is added over
the duplicated variables to ensure that it does not exist any inconsistency. An
inconsistency for a shared variable would be to have multiple values (e.g. the
shared store is going to be at two locations at the same time). However, this
model is not valid. It does not compute the Nash equilibriums anymore. When the
check for players’ deviations is computed, the controlled variables which include
the shared one need to be uninstantiated in order to compute valid deviations.
Instead, during the search procedure, if one of the players has a shared variable
instantiated (or a restricted domain), then the equality constraint is going to force
the other variables’ copy to take the same range of values. Therefore, while seeking
the best responses, the search space is constrained by this equality constraint
and not valid anymore because incomplete. The player has to check his deviation
is forced to have the same value for the shared variables and cannot compute
properly his deviations. For instance, let’s take the situation depicted in Figure
4.4a. The orange player wants to check his possible deviation knowing the choices
of the yellow player. With the current model, the yellow variables values are
reported. However, the equality constraint imposes to the shared store to be at
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4.3. Hard constraints

position 7 because of the instantiation of the copy of the variable (own by the
yellow). Instead, the orange player wishes to shift the shared store to the right
like in the position as in Figure 4.4c. The best responses are then only computed
on the non shared variable making the solutions inconsistent. This simple model
does not respect game with the shared variable semantic.

Model 2 : sharing the variables. The second model is to relax the
assumption of unique control and to share the ownership of variable among
multiples players. Now, the shared variables are not duplicated in the model
but remain unique. While the players need to check their deviations, the shared
variable being controlled by the player is relaxed and part of the subspace of
deviations check. The constraint games semantics is kept. For instance, let’s
take the situation depicted in Figure 4.4b. The orange player wants to check his
possible deviation knowing the choices of the yellow player. With the current
model, the variables own by the player are relaxed in order to check the deviations.
Then the player is free to choose the location of the shared store and thus to
compute his best responses correctly.

4.3 Hard constraints

Only fully expressive representations (i.e. which can represent any games)
have been presented until here. However, it is sometimes not enough to model a
problem. For example in the location game, some physical constraints may restrict
the possible players’ positions. Two stores cannot be located exactly at the same
position.

Modeling these physical constraints in games requires to forbid positions by
adding new constraints to the model. Hard constraints define situations which are
globally not possible or forbidden [189]. It is easy to prove that they provide a
large increase in expressivity since it is impossible to find a matrix representation
for a game with hard constraints by giving unsatisfiable profiles any numerical
value for utility as shown in the Example 4.9.

Example 27 (Hard constraints and normal form) This example is taken
and adapted from [148]. We consider the following CG :

— the set of players is P = {X, Y, Z}.
— each player owns one variable : VX = {x},VY = {y} and VZ = {z} with

Dx = Dz = 0, 1, 2, Dy = 0, 1.

— one hard constraint is post : C = {alldiff(x, y, z)}
In this example, the notation xi is used when the variable x takes the value i. To
ease the understanding, the players have not any goal. When a strategy profile is

57
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reachable then their utility is equal to 1. The strategies which are not possible, an
utility of −∞ is given. The normal form associated to this game is as follows :

y0, z0 y1, z0 y0, z1 y1, z1 y0, z2 y1, z2

x0 −∞ −∞ −∞ −∞ −∞ 1
x1 −∞ −∞ −∞ −∞ 1 −∞
x2 −∞ 1 1 −∞ −∞ −∞

Figure 4.6 – X’s payoff

x0, z0 x1, z0 x2, z0 x1, z0 x1, z1 x1, z2 x2, z0 x2, z1 x2, z2

y0 −∞ −∞ −∞ −∞ −∞ 1 −∞ 1 −∞
y1 −∞ −∞ 1 −∞ −∞ −∞ 1 −∞ −∞

Figure 4.7 – Y’s payoff

x0, y0 x0, y1 x1, y0 x1, y1 x2, y0 x2, y1

z0 −∞ −∞ −∞ −∞ −∞ 1
z1 −∞ −∞ −∞ −∞ 1 −∞
z2 −∞ 1 1 −∞ −∞ −∞

Figure 4.8 – Z’s payoff

Figure 4.9 – Hard constraint simulation in normal form

The only possible strategies are when the players have all a different value for
their variables. This happens only for 4 profiles : (x0, y1, z2), (x1, y0, z2), (x2, y0, z1), (x2, y1, z0).
These strategy profiles are the PNEs of the game. However, the hard constraint
encoding creates equilibriums which should not exist. For instance when the
strategy profile (x0, y0, z0) is an equilibrium whereas it should not.

PNEs and best responses are defined in the satisfiable part of the hard
constraints. Hard constraints may change the set of best responses and the set
equilibriums (see Example 28). The two spaces : with and without hard constraints
can be totally different. With and without hard constraints the best responses
are changed.

It is not easy to characterize a priory how the equilibriums are going to be
impacted by hard constraints. Some of them may be forbidden while new ones
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may appear whether the best responses that would have occurred without hard
constraints are actually unsatisfiable.

Example 28 (Example 19 continued : hard constraints’ impacts) In

1         2         3        4         5        

1 1

1         2         3        4         5        

1 1

1         2         3        4         5        

11

a)

b) c)

Figure 4.10 – Location game’s solutions without and with hard constraints

this example, we are considering a simple version of Location game. Instead
of have to choose a vendor, the rewards is going to be share among them. The
figure 4.10 shows the effects of hard constraints on the Nash equilibrium for the
Location Game. In this instance, two vendors : the orange and the yellow choose
a position between 1 and 5. A constraint forbidding the two vendors to have the
same position has been added. The Figure 4.10a shows how the players would
have been at Nash equilibrium without the hard constraints addition. Their best
option is to share the location 3. This is going to ensure them a reward of 2.5. In
this picture their best responses are computed on the entire space. In other words,
the players while computing their possibilities are considering all the positions
from 1 to 5. Hence, their highest utility is reached when they are going to choose
the position 3.

In the Figures 4.10b and 4.10c, it is for the players forbidden to have the same
position. Their best responses space is reduced. For instance in the Figure 4.10b,

59



4. Constraint games

the orange player cannot take the position 3. Instead, when he is computing his
best responses, then the only possible strategy evaluated are going to be {1, 2, 4, 5}.
The position 3 is not anymore considered. Therefore, the best responses are
changed. The best options for the orange player are now the positions 4 and 2.
The equilibriums are this changed with the addition of the hard constraint. While
without hard constraint there is only one equilibrium, with the hard constraint this
one does not exist anymore and 4 new equilibriums appear. Two are shown in the
Figure 4.10b and c. The two other can be obtained by inverting the players.

4.4 Conclusion

In this chapter we have shown the power of constraint games, their power of
modeling. We have shown extensions providing more expressivity to constraint
games such as the hard constraints. Also, we have shown that the uncontrolled
variables are related to incomplete and imperfect information. In addition, we
investigate the concept of shared variables by showing that this concept is not
easily representable by a matrix. Instead this concept can easily integrated into
the framework thanks to the best response computation mechanism.
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In this chapter, we present a new way to see the games. This perspective
consider a Nash equilibrium as a set of global constraints embedding players’
preferences. An efficient method to compute the Nash equilibrium and the cha-
racterization of its complexity is also proposed.

5.1 Preferences as Global Constraints

Although more efficient than the Enum algorithm used in Gambit, the Conga
1.0 algorithm can be still improved by using constraint propagation instead of
an ad-hoc pruning algorithm. We propose a new solver for Constraint Games
also based on a tree search where a player can own multiple variables which are
instantiated separately by a regular Constraint Programming solver. Note that
there is a main search tree which defines the region of the search space where
an equilibrium is sought. Like in Constraint Programming, a search state S is
defined by giving each variable a current domain : S = (Sx)x∈V with Sx ⊆ Dx.
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5. Nash equilibrium as a Global constraint

w c l

0 0 0

0 0 1

0 1 1

1 0 0

1 1 0

(a) Nash Constraint NLamb

w c l utility

0 0 0 0

0 0 1 0

0 1 1 1

1 0 0 1

1 1 0 1

(b) Ext. Nash constraint eNLamb

Figure 5.1 – Nash constraints for Lamb in extension

We use the notations Si = S|Vi
and S−i = S|VC\Vi

. Search consists in a series
of domain reductions with an alternation of deterministic consistency steps and
non-deterministic branching steps [190].

We propose to implement as constraints the preferences of the players. For
this, it is useful to consider how preferences are defined from the goal of the
players. Preferences have been widely studied in the literature from the point
of view of knowledge representation, especially using logic [218, 20]. Generally,
it is widely accepted that a preference is a preorder < on a set of outcomes Ω.
It does not have to be total. We have s < s′ whenever s is preferred to s′. A
utility function Ω → R as defined in games defines a natural preference where
s < s′ ↔ u(s) ≥ u(s′). But games also add a notion of controllability : an outcome
can only be compared to a controllable one, thus making the preorder partial.

For a Constraint Game (P, V, D, G, opt), the set of outcomes is defined by the
search space DV , and the preference associated to a player is induced by the utility
given by the value of his optimization variable. Since Player i only controls the
variables Vi, we can fully describe his preference relation by giving the preferred
outcomes for each uncontrollable situation defined by the other players, i.e. the
set of best responses in Ai of Player i associated to each partial state of A−i.
This relation has been introduced in [78] in the context of graphical games under
the name of Nash constraint. The Nash constraint Ni of Player i is defined by
Ni = (VC , {(si, s−i) | s−i ∈ A−i ∧ ∀s′

i ∈ Ai, u((si, s−i)) ≥ u((s′
i, s−i))}). Theorem

4.3 of [78] adapted to Constraint Games states that NE = sol(
⋃{Ni | i ∈ P}).

We propose to implement players preferences using global constraints and
study filtering algorithms for them. The Nash constraint Ni contains at least
one entry for each partial profile in A−i. This property makes it unsuitable for
filtering values from the other players’ variables. Moreover, its representation in
extension is exponential.

Example 29 (Example 11 continued)
The Nash constraint for Lamb is defined in Figure 5.1(a). Note that if Wolf and
Cabbage are not coming, Lamb is indifferent and thus has both coming and not
coming as best responses.
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5.1. Preferences as Global Constraints

Since the Nash constraints Ni contains all best responses of Player i for all
the uncontrollable situations defined by the other players joint strategies, any
strategy for i that does not belong to the projection Ni|Vi

is called a never best
response. We first state an intractability result :

Proposition 1 In a Constraint Satisfaction Game, deciding whether an assign-
ment nbr ∈ Ai for Player i is a never best response is ΠP

2 -complete.

Proof 1 Membership is immediate.
For hardness, we reduce a QCSP [26] Q = ∀X∃Y C to a 2-players 0-sum CSG

G = ({1, 2}, V1 = X ∪{x, a}, V2 = Y ∪{y, b}, G = (a = b)∨ (C ∧ (Y 6= nbr)∧ (x =
y)) where Y 6= nbr stands for the assignment of Y is different of the tuple nbr and
x, y, a, b are new variables whose domain contains at least two elements. Since the
game is 0-sum, we only need to specify the goal G for Player 1 and take Player
2’s goal as the negation of G.

If Q is valid, then for all sX ∈ DX , there is a sY ∈ DY such that C is true.
Let vx and va be the respective values of x and a set by Player 1. If sY = nbr,
then Player 2 assigns b 6= va. If sY 6= nbr, then Player 2 assigns y = vx. Hence
nbr is a never best response.

Conversely, if Q is not valid, then it does exist a tuple sX ∈ DX such that
forall sY ∈ DY , C is false. If sY = nbr, then Player 2 assigns b = va. If sY 6= nbr,
then Player 2 assigns b 6= va. Hence nbr is a best response.

Arc-consistency filtering amounts to removing all values involved only in tuples
which are never best responses. From Proposition 1 and the exponential represen-
tation argument, we infer that filtering the Nash constraint to arc-consistency
is intractable even for dichotomic preferences. Thus we introduce three approxi-
mations in order to keep the problem tractable. We recall that a propagator for
a constraint is a function that is i) correct, ii) contracting, iii) monotonic, and
iv) singleton complete [3]. The respect of these properties ensures the correct
behavior of the propagator when placed in the solver.

The first approximation consists in using only the objective value. We call ex-
tended Nash Constraint eNi = (VC ∪{opti}, {(s, oi) | s ∈ Ni}) the Nash constraint
Ni augmented with the value of the player’s objective (see Figure 5.1(b)). Ins-
tead of removing exact inconsistent values, we will remove inconsistent objective
values. The actual pruning on decision variables is done by back-propagation
of arc-consistency through the constraints defining the objective. It means that
we can approximate eNi by ooNi (objective optimal Nash constraint) defined
by ooNi = (VC ∪ {opti}, {(s, oi) | ∃(s′, oi) ∈ eNi ∧ oi ∈ eNi|opti

}). However, only
looking at the objective value is not enough. In different regions of the search
space, two tuples s and s′ may have the same objective value oi for Player i despite
s is a not a best response for s−i and s′ is one for s′

−i, hence the approximation.
Still, computing the exact objective values can be difficult because the subspace

generated by the variables Vi of Player i may be huge. In our second approximation,
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5. Nash equilibrium as a Global constraint

we replace the set of exact objective values by the interval where they lie. This is
defined by the constraint mooNi = (VC ∪{opti}, {(s, oi) | ∃(s′, o′

i) ∈ eNi, oi ≥ o′
i}).

Since sol(eNi) ⊆ sol(ooNi) ⊆ sol(mooNi), any filtering of mooNi is correct with
respect to eNi. Note that we only need to update the lower bound because we
have a maximization problem.

Since consistent objective value correspond to one best response, the minimum
bound of the objective should be set to the maximum value of the minimum
bound of the best responses on the current search state S :

Mm(S) = max
si∈Ai

min
s−i∈S−i

(si, s−i)|opti
(1)

Thus we need to find (or approximate) the maximin of the objective on the current
subspace. The exact computation of this maximin on a search state S requires
a traversal of the subspace S−i, and for each tuple, a test for deviation in Ai.
Unfortunately, a traversal of S−i is too costly. The third approximation consists
in using arc-consistency to reject impossible objective values.

To implement this filtering, we use an auxiliary solver with Branch & Bound
on a tree-search limited to Player i’s variables to maximize the minimum value
of the objective on the subspace at a node n of the main search tree. In order
to compute deviations for Player i, all variables of Vi are reset to their original
domain Ai, including those which were assigned before n. The domain of the
variables of the other players are given by S−i (some are already assigned at node
n and some are not). Whenever the minimum bound of the objective is pruned to
a value b, a new constraint opti > b is posted for the rest of the search. For a search
state S, we replace in formula (1) the traversal of the search space S−i by an
arc-consistency check. This amounts to compute MmAC(S), the best estimation
arc-consistency can provide for the maximum value of the minimum bound of
the objective : MmAC(S) = maxsi∈Ai

lb(AC((si, S−i))) where AC denotes arc-
consistency applied to a search state. Formally, the operator BBi : DV → DV

implemented by the global constraint is defined by :

BBi(S) =

{
Sopti

= Sopti
∩ [MmAC(S)..ub(Sopti

)]
Sx = Sx,∀x 6= opti

When all variables are assigned, computing deviations amounts to checking
whether a complete assignment is a best response for Player i.

Proposition 2 BB is a propagator for eNi.

Proof 2 Let S and S′ be two search states. First, because AC is correct, we have
MmAC(S) ≤ Mm(S). Then, if some value is pruned by MmAC , then it has to
be pruned also by Mm.

— correctness : S ∩ NE ⊆ BB(S). Take s ∈ S ∩ NE and suppose s 6∈ BB(S).
Let s|opti

= oi and let αi = MmAC(S). Since s 6∈ BB(S), we have oi < αi.

64



5.2. Nash propagator applicability

Then there exists s′
i ∈ Ai such that (s′

i, s−i)|opti
= o′

i > oi. Hence we have
oi < αi ≤ o′i and (s′

i, s−i) is a deviation for s and s 6∈ NE, contradiction.

— contractness : BB(S) ⊆ S. Since the propagator only remove values,
contractness is always true.

— monotony : S ⊆ S′ → BB(S) ⊆ BB(S′). Take s ∈ BB(S), we have
s ∈ S since BB is contracting and s ∈ S′ by definition. Let s|opti

= oi,
αi = MmAC(S) and βi = MmAC(S′). Since s ∈ BB(S), we have αi ≤ oi.
Since AC is monotonic, we have βi ≤ αi. Thus βi ≤ oi and s ∈ BB(S′).

— singleton completeness : ensured by construction.

Example 30 (Example 11 continued)
Interestingly, the WLC game owns a dynamic dependency : when Wolf is coming,
Lamb does not depend on Cabbage anymore. It is reflected in the Lamb formula
xL = wlc + wl for which l is a best response to w whatever the value of c. By
checking earlier the possible deviation, our propagator is able to find this kind of
dependencies in order to prune the search space.

5.2 Nash propagator applicability

We discuss here about the Nash constraint. Especially about its filtering
algorithm completeness and validity. It has been said, that hard constraints
modify the search space. Especially, Nash equilibriums can be moved, created, or
even removed (see section 4.3).

Actually, when a game contains hard constraints, those make in general the
Nash constraint no longer valid. The inference made by the Nash constraint, it
is made by supposing that the other players cannot affect a player strategy (i.e.
making it impossible).

The outputted solutions are still Nash equilibrium but the completeness is
not anymore guaranteed.

Example 31 (Nash propagator invalidity) This example shows a game
where the Nash constraint does not guarantee anymore the completeness of the
search. A Nash equilibrium is removed by the constraints. Two players X and Y
respectively own the variables x and y which can either take values 0 or 1. The
goal of player X is to maximize 3X + Y while Y ’s goal is to maximize Y −X. A
hard constraint forbids the players to chose the same value for their variables.
The game is expressed with the following constraints and variables :

— P = {X, Y }
— D(x) = D(y) = {0, 1}
— Gx = Max(3X + Y )

— Gy = Max(Y −X)
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x=0 x=1

y=0 y=1 y=0 y=1

Figure 5.2 – An example of inconsistent filtering of preferences

— sb X 6= Y

The entire search tree is developed in Figure 5.2. When a node is crossed, it
means that it is forbidden by a hard constraint (x=0 ∧ y=0 or x=1 ∧ y=1). The
problem here is the initial propagation deletes a Nash equilibrium. When X tries
different configuration for its variable then he realizes that he has an incentive to
always assign 1 to x (when he plays 1, he has at least 3 while by playing 0 the
minimal utility is going to be 0. Thus the propagator updates the objective’s lower
bound to 1. The problem is that Y does the same reasoning and both consider that
the minimum utility reachable is higher than what they can get. Therefore, both
objectives bounds are updated making all states inconsistent. It also, removes the
two Nash equilibriums.

5.3 Related work

A related scheme is the one of Asynchronous DCOP [219] in which all players
share the same constraints but with different costs. Also, in this work, the authors
propose to work directly on the action themselves, while we restrict the action
based on the objective. Furthermore, we characterize how to reach arc consistency
for the Nash constraint. From this, we propose a tractable and efficient filtering
for the Nash constraint.

Our work can be also seen as an opening of Singleton arc consistency but based
on the objective value. In the original singleton arc consistency, each variable’s
value is checked whether the constraints are still satisfiable. In games, it is a bit
different since without hard constraints all the search space is satisfiable. Instead,
an inference on the objective value is feasible. This method is also valid in single
objective optimization but a strong condition which is to have a problem without
hard constraints.
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5.4 Experiments

We have implemented a new solver for Constraint Games on top of the
constraint solver Choco v4 [174]. This new solver is composed of an interface
to post goals for the different players and the implicit post of the new global
constraints as defined in Section 5.1. An important aspect is that it does not
require a modification of the classical Constraint Programming framework (search
and consistency).

Game Param. #PNE enum Conga 1 Conga 2

MEG

7.7 6 30.60 10.63 0.10

8.8 7 – 169.92 0.13

70.70 70 – – 480.08

TD

6.6 1 5.95 2.80 0.06

7.7 1 105.13 39.80 0.07

300.300 1 – – 514.73

DG

6.6 720 2.46 1.53 2.02

7.7 5040 43.36 21.86 35.42

8.8 40320 – 443.11 –

CG

7.7 7 32.78 11.92 2.08

8.8 8 – 225.31 27.85

9.9 9 – – 469.15

AR

2.250 1 173.68 0.64 1.51

2.2000 1 – 457.42 567.15

2.2500 1 – 596.30 –

EFBG

16.2 12870 116.88 115.44 87.87

17.2 24310 256.77 249.04 188.80

18.2 48620 549.69 539.73 414.38

CB

2.3.32 0 474.86 450.24 54.21

2.3.55 0 – – 564.96

2.4.13 0 388.37 329.25 19.79

2.4.20 0 – – 244.75

2.6.6 0 278.57 240.43 16.89

2.6.10 0 – – 599.01

Table 5.1 – Runtime of the different methods on Gamut games

The scope of the preference constraint for Player i is the set of all controlled
variables VC plus Player i’s optimization variable opti. However, the propagator
is called whenever the objective of the player has been updated. Upon the call, it
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revises opti by launching a new search tree in a distinct solver only on the variables
of Vi, having copied the current state S−i of all the other players’ variables. During
this search, Branch & Bound is applied to the lower bound of the objective and
the approximation of its maximin value on the current subspace S−i is returned.
For all experiments, we have applied a lexicographic heuristics on the choice of
variables and a min value heuristics on the choice of the values.

We have performed experiments on classical games of the Gamut suite [152] :
Minimum Effort Game (MEG), Travelers Dilemma (TD), Dispersion Game (DG),
Collaboration Game (CG), ArmRaces (AR), ElFarol Bar Game (EFBG) [4] and
Colonel Blotto (CB) [188]. We invite the reader to refer to the sections 4.1 and 3.4
and to the original papers to get a full description of the games. They represent a
wide range of games, with many, few or no equilibria. In all games, the parameters
are given by two numbers : the number of players and the number of actions. For
example, "MEG 5.5" denotes the Minimum Effort Game with 5 players, each one
having 5 actions. One exception is the Colonel Blotto game for which the second
number is the number of battlefields and the last one the number of troops each
player can deploy.

We have compared our new approach (called Conga 2 ) to the complete
enumeration of the search space (hereafter called enum) as implemented in the
Gambit solver [141] and to a custom re-implementation of the Conga algorithm
(hereafter called Conga 1 ) as described in [149]. The results are presented in Table
5.1. All times are given in seconds and we applied a maximum run-time of 10
minutes to get the complete set of PNE for each problem. All instances for which
the given solver has reached a timeout are indicated by "–". Experiments have
been run on a Intel Xeon E5-1660 with 32 GB of RAM, Java 8 and Windows 7.

We can see that Conga 2.0 is most of the time better than Conga 1.0, reaching
up to three orders of magnitude on MEG. Exceptions are the Dispersion Game
and Arm Race for which there is little propagation. We have presented the results
in order to show the limits of each technique when staying under the time limit
of 10 minutes.

5.5 Graphical Aspects

When the utility of a player only depends on a subset of the other players, the
game is called graphical [118]. More formally, for a profile s ∈ AP and two players
i and j, we say that ui(s) is independent of j if ∀s′

j ∈ Aj , ui(s) = ui(s−j , s′
j).

If this is not true, then i depends on j for s, denoted by i ⊳s j. We denote by
depi(s) = {j | i ⊳s j} the set of dependencies of Player i for the state s. For
E ⊆ AP , we note depi(E) =

⋃
s∈E depi(s). Finally, Player i statically depends on

Player j, denoted by i ⊳ j if j ∈ depi(A
P). A minimal dependency which occurs

only in a strict subspace of AP is called dynamic.

The main purpose of graphical games is to save space in the matrix repre-
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sentation, and also to speed-up the computation of equilibria [215, 156]. We can
build the oriented graph of dependencies between player D = (P, {(i, j) | i ⊳ j}).
If this graph is not a clique, then the game is graphical. In this case, it is possible
to limit the scope of each global constraint to its associated player and his set of
dependencies. It ensures an increased performance in the checking of deviations
without relying on a specialized algorithm. When checking for deviations, only
the state of the dependent variables is injected in the second solver. In addition,
because our global constraint is triggered on updates of the objective, it is able
to detect on-the-fly dynamic dependencies. Note that this kind of dependencies
may also occur in non-graphical games.

In our implementation, we provide the dependency graph as a part of the
model. We have performed experiments on classical graphical games : Public
Good Game (PGG), Threshold Game of Complement (TGC) [112] and Road
Game (RG) [215]. All games have a fixed number of strategies, which is 2 for
PGG and TGC, and 4 for RG. Each model has been run on different topologies
with different node degrees. In the circle topology (C), each node is of degree
2 and the only parameter is the number of players. For the tree topology (T),
T 21.4.3 means that the game has 21 players connected by a tree of maximal
degree 3 on 4 levels. The last topology is the complete bipartite graph (B) whose
parameter is the number of players. The results are shown in Table 5.2, also with
a timeout of 10 minutes. In all cases but one, adding the graphical information is
highly beneficial. It demonstrate the efficiency of the approach even for graphs of
relative high degrees.

5.6 Conclusion

In this chapter, we have proposed a more elegant and efficient vision of
Constraint Games. We have fully modeled the potential constraint pruning avai-
lable in Game Theory, and proved its intractability. We have proposed an efficient
filtering algorithm in the general and graphical cases and demonstrated expe-
rimentally its efficiency over the state-of-the-art game solver Conga 1.0 [149].
However, the main interest of this new approach is to bring game theory closer to
the elegant framework of Constraint Programming by viewing agent preferences
as constraints.

So far, we limited ourselves to the design of a complete solver because only
this type of solver is able to be used as a basis for computing more specialized
Nash equilibria, like those optimizing a Social Welfare function or Pareto efficient.
Also completeness is required to compute Price of Anarchy and Price of Stability.
Another open question is the extension of our filtering to games with hard
constraints. As is, our filtering is incorrect in presence of hard constraints because
the expected deviation may not be satisfiable. As a consequence, the solver
becomes incomplete.
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5. Nash equilibrium as a Global constraint

Game Topology #PNE enum Conga 1 Conga 2

PGG

C.30 4610 347.60 332.02 15.21

C.40 76725 – – 330.50

T.21.4.3 0 522.65 339.56 2.51

T.91.9.3 512 – – 319.20

B.22 2 73.08 9.17 0.25

B.27 2 – 54.16 0.33

B.250 2 – – 485.85

TGC

C.150 2 460.45 311.54 1.69

C.170 2 – 470.89 2.21

C.2000 2 – – 479.91

T.57.7.3 2 538.98 80.82 1.04

T.1555.7.5 2 – – 182.89

B.22 2 131.68 15.48 2.31

B.27 2 – 91.50 10.23

B.33 2 – – 96.97

RG

C.10 1119 16.20 10.92 3.45

C.13 9230 167.16 142.43 97.95

C.16 76004 – – 519.14

T.31.5.3 244 162.42 50.18 9.49

T.57.7.3 2174 – – 216.60

B.11 96 16.19 8.90 10.11

B.12 3728 140.54 105.18 63.74

B.15 384 – – 266.48

Table 5.2 – Runtime of graphical games on different topologies
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With the internet of things, all kinds of devices are going to communicate, from
washing machines, lightbulbs to autonomous cars. By 2020, the forecasts estimate
the number of connected devices to the internet is growing to over 31 billion [158].
The amount of data transfer increases with the rise in the number of connected
devices. Recently, Software Defined Networking (or SDN) is replacing traditional
network routing because it allows fast and remote network reconfiguration, which
enables a plethora of flexible architectures, like the upcoming network slicing [214].
SDN (see Figure 6.1) allows centralized control over a network of commuters in
order to increase the overall performance. A full SDN controller is a nice source
for many optimization problems [130] including online ones. Due to this dynamic
aspect and the increasing size of the controlled networks, it is very likely that
decentralized algorithms will be mandatory to provide both the expected quality
of service and short time response.

Figure 6.1 – Software Defined Networking

In this paper, we consider the independent routing of multiple demands across
a network, also called the multicommodity flow routing problem. Each demand
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requires to be routed from a source to a destination in a network with limited
capacity (i.e. each link has a limited capacity). The overall goal is to assign a
route to each demand that minimizes the global cost of routing. This problem and
other variants such as robust SDN networks have been studied for a long time
[58, 35] with some computational approaches including linear programming [7].
A survey can be found in [142]. Interesting theoretical results have been found,
like the one which states that when the problem has a sufficient size and capacity,
all flows are actually routed along single-paths [175]. This justifies the modern
interest in unsplittable routing of demands. The demands are routed in a network
with limited capacity constraining the shortest paths computations, which is
known as a NP-complete problem. In our approach, we do not consider other
side constraints such as must-pass/cannot-pass or redundant routing, although
they can be easily introduced in our constraint model. However, we consider a
congestion model increasing the cost of a link according to the traffic routed.

Furthermore, SDN is based on a centralized vision of networking but this
does not mean that all algorithms have to be centralized [154]. Indeed, with the
growth of the size of the controlled zone and the large increase in the volume of
the demands, decentralized algorithms will be necessary to achieve the expected
level of performance for future SDN with millions of demands coming online.
A common way of modeling agreement between a set of agents is to reach a
Nash equilibrium. Also, some instances of the problem correspond to networks of
aggregated traffic for which the users (often network providers) are very sensitive
to the quality of service. This is why an allocation at Nash equilibrium is desirable
as it ensures the user that his quality of service cannot be improved by any selfish
move. While a centralized approach is sure to converge to an optimal solution, it
is not guaranteed for Nash equilibriums. The equilibriums costs can be far from
the global optimum. Braess’s paradox [29] is a good illustration. It states that in
congested roads network, building a new route creates even more congestion due
to the selfishness of agents. This degenerative behavior is one of the motivations
to compute Price of Anarchy [64] which allows to evaluate the potential loss of
efficiency of decentralized algorithms (i.e. the loss of being at Nash equilibrium).

We propose two approaches for the centralized approach : a Constraint Pro-
gramming (or CP) model and an Integer Linear Programming (or ILP) model
using Column Generation. Only the Constraint Programming model is able to
model closely the congestion problem and can be used to solve the problem to
optimally. For this, we use a natural and dedicated heuristic based on increasing
paths and a relaxation based on shortest path to prune efficiently the search space.
Note that increasing path have been introduced as CP heuristics in [164].

The Constraint Programming model is implemented using the Choco constraint
solver [174] and the ILP one with CPLEX [49]. The model computing the Nash
equilibriums uses Constraint Games framework : ConGa which is an extension
of the Choco solver for Constraint Games [159]. In the benchmarks, we show
networks with hundreds or even thousands of commodities solved to optimality
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6. Constraint games application

including the Nash equilibriums computations. These results show that practical
use of game theory is now possible at industrial scale.

The chapter is organizing as follow : first we introduce the problem in Section
6, then in Section 6.1 and 6.2 we present the CP model and the heuristics used
to compute a solution in practice. In section 6.3 we present the ILP model, in
Section 6.4 the Constraint Games framework used to compute selfish routing,
the Section 6.5 gives a literature review, in Section 6.6 the evaluation on a set
of benchmarks on real-world and synthetic instances and lastly we present the
conclusion.

Problem statement

A multicommodity path routing problem (MCPRP) consists of a graph
defining a network and a set of commodities (flow demands) to be routed on this
graph. We consider in this article the problem in which we compute for each
demand a single route from the source to the destination node such that the sum
of bandwidth routed by a link does not exceed its capacity. Congestion occurs
when a link is taken and is reflected by a congestion cost which helps to ensure a
homogeneous distribution of the routes. The overall objective is to minimize the
sum of costs of the routed demands.

We assume we have a network N = (V, E), which is a directed graph composed
of a set of vertices (or nodes) V and a set of edges (or links) E ⊆ V 2. For each
edge e = (x, y) ∈ E, we associate a cost cost(e) ∈ R

+ and a capacity cap(e) ∈ R+.
Let D be the set of demands to be routed. For a demand d ∈ D, we define
src(d) ∈ V and dst(d) ∈ V to be respectively the source and destination node,
and bw(d) ∈ R+ to be the required bandwidth for this demand.

A path is a sequence of nodes p = (vi)i∈[0..n] such that ∀i ∈ 0..n−1, (vi, vi+1) ∈
E. We denote by src(p) the node v0 and by dst(p) the node vn. We consider here
only acyclic paths, i.e. such that i 6= j → vi 6= vj . By a slight abuse of notation,
we write (x, y) ∈ p to denote that the arc (x, y) is taken in the path p.

A solution for the MCPRP is the assignment of a path path(d) to each demand
d such that we ensure correctness :

∀d ∈ D, src(path(d)) = src(d)

∀d ∈ D, dst(path(d)) = dst(d)

and admissibility with respect to the capacity constraints :

∀e ∈ E,


 ∑

{d∈D | e∈path(d)}

bw(d)


 ≤ cap(e)

74



Congestion model

In order to ensure a good balance over the network, we incorporate to the
model a model of congestion. Basically, congestion will increase the cost of a link
when this link is close to saturation. For this, we define the load of an edge e to
be :

load(e) =


 ∑

{d∈D | e∈path(d)}

bw(d)


 / cap(e) (6.1)

Figure 6.2 – A plot of the congestion function for MaxC = 1000 and
cong′(0.2) = 1

The congestion model we use for a given arc e has an exponential increase of
the form :

cong(e) = exp (a× load(e) + b) (6.2)

In order to choose the parameters a and b, we pose some conditions on the
function. First we should have a sufficiently high value of cong(e) when the load is
1. By sufficiently high we mean that a demand should not prefer to take a heavily
congested link while there are some (maybe longer) available paths. It can be
done by fixing this limit to the highest link cost of the network MaxC. We then
have the equation ea+b = MaxC. Then, in order to set when the exponential
starts to overtake on a linear increase, we impose a condition on the derivative
to be 1 at a given point α. The derivative of the congestion function is given by
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6. Constraint games application

cong′(x) = aeax+b. If we impose that the derivative should be 1 for x = α, we
get the equation aeaα+b = 1. By solving numerically these equations we get the
values of a and b for a given problem. For example, in Figure 6.2 is a plot of the
congestion function for MaxC = 1000 and cong′(0.2) = 1. We assume that the
same values of a and b are set for all the links of the network, although this can
be easily changed.

Optimization

Solving a MCPRP P to optimality means finding a solution minimizing the
global cost of the demands. For this, we first define the cost to route a demand.
It is obtained by aggregating the cost of each traversed arc with the cost coming
from congestion :

cost(d) = bw(d)×
∑

e∈path(d)

(cost(e) + cong(e)) (6.3)

Then the cost of the whole problem is given by :

cost(P ) =
∑

d∈D

cost(d) (6.4)

Note that this function is strictly monotonic, resulting in that each addition of
demand increases the edge cost.

6.1 Constraint model

In order to implement this problem as a constraint program, we need to first
represent paths, which will be the solutions of our problem. Then we need to link
the computed paths to the network data : costs, capacity and provide a support
to compute congestion.

Path modelling

A path is represented by an array path of |V | variables which correspond
to the set of arcs in the path. Each variable’s value corresponds to the node’s
successor (i.e. the next node along the path). The initial domain of a variable
associated with a node v is given by the set of neighbors of v in the graph. In
order to ensure the correct representation of a path, we use the global constraint
subPath(path, src, dst) which ensures that the node from src to dst form a valid
subpath of the graph. This constraint is a variant of subCircuit. Unused nodes of
the path point to themselves and an extra variable is appended to the array to
indicate which vertex starts the path.
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6.1. Constraint model

Example 32 (Path model) The figure 6.3 describes the model for finding a
path having the node 2 as a source and the node 5 as the destination. In the
beginning, the variables domains are filled with all the possibles neighbors including
itself. For example, the node 0 can have as successor the nodes : 0, 1or2. Only the
source and the destination are treated differently. Since a path can be seen as a
circuit between the source and the destination nodes. That is why their domains
are adapted : no self-loop for the source node(i.e. a successor is required) and
the destination’s successor is the source. A solution to the problem instance is
depicted in the array line labeled by path. This array encodes the path (2, 1, 4, 3, 5).
It has to be read as follow : the node 0 has 0 as successor (not in the path), the
successor’s of 1 is 4, the successor’s node of 2 is 1 ...

srcdst

2

0

1

2

4

3

5

6

0 1 2 3 4 5 6

0,1
2

0,1
2,3
4

0,1
2,3
4

1,2
3,4,5
6

1,2
3,4
6

7
3,4
5,6

#var

initial
domain

path 0 4 1 5 3 7 6

src

dst

Figure 6.3 – Encoding of a path

For each demand d ∈ D we associate an array pathd = (vd
i )i∈V constrained

by :

subPath([vd
1 , . . . , vd

n], src(d), dst(d))

Graph model

In order to ensure that no link is overloaded and in order to compute congestion,
we need to know which demands are routed by a given arc. In this model, we use
a Boolean variable EdgeIsUsedd

(i,j) which is true if the path [vd
1 , . . . , vd

n] assigned

to demand d uses the arc (i, j). This connection is made with the following
channeling constraints :

∀(i, j) ∈ E,∀d ∈ D, EdgeIsUsedd
(i,j) ↔ vd

i = j

We compute the amount of bandwidth routed by an arc in a variable f(e) with
the constraint :

∀e ∈ E, f(e) =
∑

d∈D

EdgeIsUsedd
e × bw(d)
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We ensure that the capacity of each arc is not exceeded :

∀e ∈ E, f(e) ≤ cap(e)

Then we can compute the congestion of a given edge in a variable cong(e) :

∀e ∈ E, cong(e) = e
a×

f(e)
cap(e)

+b

The cost cost(d) of routing a demand by a given path is given by the constraint :

∀d ∈ D, cost(d) =
∑

e∈E

EdgeIsUsedd
e × bw(d)× (cost(e) + cong(e)) (6.5)

A variable ProblemCost sums the costs to route all demands :

ProblemCost =
∑

d∈D

cost(d) (6.6)

We shall minimize this variable.

This model is quite standard and intuitive. It defines one Boolean variable by
edge and by demand. Since the number of edges is quadratic in the number of
vertices, this number may grow a lot for some large networks.

6.2 Heuristics and problem’s relaxation

We have tried a variety of combinations of search strategy (or SS) and
problem’s relaxation to improve the resolution of this problem. In this chapter, we
will refer to a particular combination by A/B/C where A is the variable selection
strategy, B the value selection strategy and C the type of relaxation to compute
the problem’s bound, as explained below. At a given node of the search tree, some
demands or some partial paths may already be assigned. Apart from classical CP
heuristics, all heuristics and lower bound computations use the residual graph
obtained by considering this part already fixed.

Residual graph

For each demand, a residual graph is maintained all along the search. This
graph is the cornerstone to solve efficiently this problem. It is used by the search
heuristics and the relaxation technique. A residual graph is modified incrementally
at each search tree node. We refer as path the edges belonging to the path as it
is in the current search tree (i.e. the instantiated variables) and as future path

the path’s part which is not instantiated in the search tree but computed by the
Dijkstra algorithm. A residual graph is built such that :

— It exists a directed edge from the node i to j ↔ j ∈ D(Vi)
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6.2. Heuristics and problem’s relaxation

— The cost of an edge is dynamically set and updated by the variables’ values.
When a variable is instantiated(i.e. an edge is added to the path), the
edge’s minimal cost is updated by updating its bandwidth. For instance,
when a demand goes through an edge, its congestion cost is automatically
updated with the current demand’s bandwidth and that for all residual
graphs. However, it is not possible to take into account the congestion in
future path. It means that two demands whose future path would take the
same link act like if they do not create congestion in their future paths.

The residual graphs are constructed with the CP variables, therefore the
graphs are modified at each decision or propagation automatically.

Example 33 (residual graph) Two demands d1 and d2 having each a band-
width of 2, have to be routed in the 4 nodes networks shown in Figure 6.4. In this
network, the cost of each edge is 0 and the congestion parameters are respectively
a = 1 and b = −0.5. At first, the residual graphs are constructed at the root of
the search tree (the edge sets representing the paths are empty). The costs are
initialized only with the bandwidth induced by the demand. For instance in Figure
6.4a, the residual graph costs of d1 are computed only knowing the bandwidth of d1,
no assumption can be done about d2. The costs are thus 2 obtained by :2× e

2
4

−0.5.
In the next step shown in Figure 6.4b, d1’s path is continued with the edge between
the node 0 and 1. This decision updates the cost of the residual graph of d2. The
new cost is 2×e0.5, it corresponds to the cost when the two demands take the same
edge. In Figure 6.4b, d2 is going through the same edge as d2, thus the residual
graph of d1 is updated.

Search strategies

Path-oriented problems are particularly sensitive to SS, and not surprisingly,
a standard dynamic CP SS (denoted by CP in this chapter) like impact or activity
would be of weak efficiency for this type of problem. Indeed, it is likely that this
SS will label any node in the path without knowing if it could be linked to the
source or destination. Therefore, we propose a variable’s value selection strategy
as well as three variable selection strategy, all dedicated to this SDN problem.

Value selection

For each variable, the value SS determines the path’s direction. Since the
goal is to find the best path for each demand, it would be inefficient to start the
path in a wrong direction. We have chosen to label path variables in order of
increasing path cost. In order to start with the most promising path, we maintain
at each node of the search tree the shortest path to the destination in the residual
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Figure 6.4 – Residual graph updates examples

network for each demand in isolation. In other words, given a variable vd
i and the

shortest path SPd for the demand d the variable is going to be instantiated as
follow :

vd
i = SPi(v

d
i ), if vd

i ∈ SPd

vd
i = i, otherwise

80



6.2. Heuristics and problem’s relaxation

Where SPd(vd
i ) gives the successor of the node vd

i for the demand d ’s shortest
path.

We call this value strategy SP (for Shortest_Path). It is done with Dijkstra’s
algorithm, considering the progression of the already assigned part of the other
demands. This information on the best future path is used to choose the next
node of the path when needed(i.e. the variable value). Note that the Dijkstra
algorithm only considers the nodes of the paths already assigned at a given point
of the search tree for computing the congestion. In particular, the congestion is
not cumulative for two demands which share the same future link. The same idea
has been implemented in [40] but with specific path variables.
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Figure 6.5 – Labeling of paths for two demands

Example 34 In Figure 6.5 is represented a small example of two demands being
routed on a 8-nodes network (6.5a) by shortest path heuristic. This example aims
to show the dynamical aspect of the shortest path computation. The demand d1

has to be routed from the nodes 1 to 8 and the demand d2 from the nodes 2 to 8.
The source and destination of d1 (resp. d2) are the nodes labeled by respectively s1

and d1 (resp. s2 and d2). Actual paths taken by the demands are depicted by solid
arrows while shortest paths computed by the SS are with hatched lines. In other
words, the solid lines represent the variables already instantiated in the problem
while the hatched ones are representing the current shortest path computed by
the value search strategy. At first (6.5b), the two demands compute their shortest
paths : (1 − 3 − 6 − 8) for d1 and (2 − 3 − 6 − 8) for d2. The shortest future
paths correspond to hatched lines. In (6.5c), one labeling step is performed for d1.
Since there is no change on d2’s path, no update of d2’s shortest path is necessary.
Hence in (6.5d) one step is performed for d2. In (6.5e), the next move of d1

causes congestion on the link from 3 to 6. Thus d2 updates its shortest path to
(2− 3− 5− 7− 8) in (6.5f) to lower its minimal cost. It yields a next move by d2

in the direction of node 5 in (6.5g). Then the last edge is selected, resulting the
complete paths instantiation(6.5h).
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Variable Selection

Once again, a variable strategy selecting the variables outside a path scope
would be very inefficient, that why we choose to select the variables all along the
paths. In other words, our variable selection respects the path order, it selects
the next uninstantiated successor variable along the path. Note that this is a
partial variable selector since it is only once the demand is chosen that the actual
variable is determined by the next step to be extended. For the variable selection
to be completely defined, we have considered three strategies for choosing the
demand. The first one, called MB (for Max_Bandwidth), consists in routing the
next remaining demand with the maximum bandwidth up to its completion. Then
we have defined two strategies based on conflicts analysis. The strategies react
on a solution (by MB for the first one) or when a fail occurs. For each demand
and each link, we compute the marginal cost (with congestion) induced by the
presence of the demand on this very link. The marginal cost corresponds to the
difference between the cost with and without routing the demand, all being equals.
Then, we sum up all these numbers for each demand along the taken path to
obtain a score. The first one, called CO (for Conflict), chooses the demand of
the highest score and develop its path up to the destination. The second one,
called CO1 (for Conflict_1_Step), also chooses the demand of the highest score
but only develops one step in the path before reconsidering the situation. In CO1,
the conflicts are stored for each path variable for each demand and score are only
computed for the uninstantiated variables.

Example 35 (Strategies in action) In this example, we show the selection
process of the three strategies with SP value SS. Three demands d1, d2 and d3 with
respectively a bandwidth of 4, 3 and 2 have to be routed in the 6-nodes network.
To keep things easy, all edges have a capacity of 7, a cost of 0 and congestion
parameters are set to a = 1 and b = −0.5. The selection process of MB, CO and
CO1 are shown respectively in Figure 6.6, Figure 6.7 and Figure 6.8.

MB Strategy. Given the network in Figure 6.6a), MB selects the demand
having the highest bandwidth to be routed. At first, d1 is chosen and is instantiated
from its source to its destination (see Figure 6.6b). Afterwards, the next demands
to be instantiated are going to be iteratively d2 and d3 (Figure 6.6c and d).

CO strategy. Given the network in Figure 6.7a), where a first solution has
been found. CO analyses the conflicts in the solution to try to redirect the conflicting
demands. In this solution the demands d1 and d2 are in conflict. The marginal
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6.2. Heuristics and problem’s relaxation
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Figure 6.6 – Selection process of MB strategy

costs are computed for the demands as follow :

∆(priced1) = 2× (7× e
3
7

+ 4
7

−0.5 − 3× e
3
7

−0.5) = 20.19

∆(priced2) = 2× (7× e
4
7

+ 3
7

−0.5 − 4× e
4
7

−0.5) = 17.47

The demand d1 is the one having the highest score and thus selected to be
routed (see Figure 6.7c). And then to finish the demand d2 is the last one to be
routed until its destination (see Figure 6.7d).
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Figure 6.7 – Selection process of CO strategy

CO1 strategy. The initial situation of CO1 is the same as CO : a first solution
has been found. CO1 analyses the conflicts as well as CO but instantiates only edge
by edge while selecting the demands with the highest conflict score on the non
instantiated variables. The marginal costs for a demand di, given an edge from
the nodes i to j, named ∆(pricedi

(ni, nj)) are computed as follow :
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∆(priced1(1, 3)) = (7× e
3
7

+ 2
7

−0.5 − 3× e
3
7

−0.5) = 10.09

∆(priced1(3, 6)) = (7× e
3
7

+ 2
7

−0.5 − 3× e
3
7

−0.5) = 10.09

∆(priced2(1, 3)) = (7× e
4
7

+ 3
7

−0.5 − 4× e
4
7

−0.5) = 8.74

∆(priced2(3, 6)) = (7× e
4
7

+ 3
7

−0.5 − 4× e
4
7

−0.5) = 8.74
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Figure 6.8 – Selection process of CO1 strategy

After a solution was found, the solver backtrack until the Figure 6.8b. Then it
selects the demands with the highest score and instantiates its first element on the
path, which corresponds to the edge between the node 1 and 4 (see Figure 6.8c).
Afterwards, d3 has the highest score since the edge between the nodes 1 and 4
is not anymore considered for the demand d1. d3 is routed by the edge between
the nodes 1 and 3 (see see Figure 6.8d). This process is continued until all the
destinations are reached (see Figure 6.8e)

Problem’s relaxation

Relaxation techniques are commonly used in constraint optimization. However, CP
solvers offer a restricted and uninformed version. When minimizing the variable
ProblemCost and after having found a solution of value A, it simply adds to
the remainder of the search the constraint ProblemCost < A. The CP solver
is unaware of the problem structure. While efficient, it requires that the lower
bound of ProblemCost to exceed A to cut the search tree and backtrack. In our
case, the possible values of ProblemCost are strongly constrained by the current
branch of the search tree leading to a node, but very loosely for the remaining
part of the problem. In order to cut earlier, we need a better estimation of the
lower bound of ProblemCost. This is done by adding to the lower bound the cost
of individual routing along the path computed by the Dijkstra algorithm used for
the value SS. We use the previously defined residual graph in which congestion is
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6.2. Heuristics and problem’s relaxation

taken into account to estimate the cost lower bound of the current search tree
state. We need this to provide a better yet safe estimate of the lower bound which
does not exceed the future real cost. We call the classical CP branch & bound CP

and the one which uses the bound provided by the shortest path SP.

Let [ad
1, . . . , ad

i , . . . , ad
nd

] be the path computed by the Dijkstra algorithm for

a demand d from node ad
i . We have ad

1 = src(d) and ad
nd

= dst(d) and ∀j < i, the

value of ad
j is given by the instantiated part of the path in [vd

1 , . . . , vd
n] (up to the

current node of the search tree). The cost contribution of demand d is given by :

cost(d) =
∑

{e=(ad
j
,ad

j+1) | j<i}

bw(d) ∗ (cost(e) + cong(e)) +

∑

{e=(ad
j
,ad

j+1) | i≤j<nd}

bw(d) ∗ cost(e) (6.7)

Proposition 3 Given a monotonic cost function (see equation (6.3)), the bound
given in equation 6.7 is sound.

Proof 3 Suppose by contradiction that the proposition is not correct and the
equation is not sound. This statement implies that it exists at least one node’s
cost which is overestimated by the Dijkstra algorithm. The latter is either located
on the instantiated nodes or on the future path. This is impossible because the
given costs corresponds to the lower bound and are at worst underestimated. That
is why Dijkstra algorithm and thus the computed path is computing correct lower
bound for the shortest path algorithm.

Note that, due to the presence of link capacity constraints, a fail is triggered
when Dijkstra algorithm is unable to find a path from the source to the destination
[201].

Example 36 The example in Figure 6.9 illustrates how the relaxation technique
based on shortest paths works. Two demands : d1 and d2 have to be routed through
a 5 nodes network (see Figure 6.9(a)). Each demand has a bandwidth of 2 and
each arc in the network can transport 4 units of bandwidth. The two demands
d1 and d2 have both the node 0 as source and respectively the nodes 3 and 4
as destination. The parameters of the congestion cost function are a = 1 and
b = −0.5. To simplify the problem, each edge’s cost is 0.

In each subfigure is depicted on the left the state of the current graph with the
decisions already taken and on the right the residual graphs of d1 and d2. The
shortest path algorithm of each demand is computed on its own residual graph.
Because it is implemented on the CP variables, the SP computation is aware of
the current bandwidth and the successor variables in order to consider only feasible
paths.
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Figure 6.9 – Problem’s relaxation example for SDN
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6.3. A ILP model

In beginning of the problem resolution, the initial propagation is triggered
updating the minimal reachable global cost. To do so, the cost of each demand is
evaluated (see Figure 6.9a). The minimal possible cost corresponds to the demand
shortest path without any added congestion due to other demands. For d1 and d2

it is obtained by the following computation : 2× 2× e
2
4

−0.5 = 4. For each demand,
the shortest path’s cost is 4. Then the problem is explored by instantiating a first
edge for d1 (Figure 6.9b). The cost is updated in the residual graphs. Taking the
edge from the nodes 0 and 1 costs now 2× e0.5, this update is done in the residual
graph of d2. In the residual graph of d1 only the possible path are updated : the
node 2 cannot be taken anymore. The same process is repeated when the path of
d1 is continued (Figure 6.9c). Afterwards, it is the second demand which is routed
(Figure 6.9d and Figure 6.9e). While taking these decisions, the residual graph of
d2 is updated by removing some edges. The edges of the residual graph of d1 are
not impacted since d2 does not take the same edges. The solution found has a cost
of 8. The Dijkstra relaxation help to state that it does not exist better solution
since at the beginning the lower bound for the problem was also 8. The problem’s
exploration is thus finished.

6.3 A ILP model

ILP techniques are commonly used to solve multicommodity flow problems
[11], even in the context of SDN [165]. However, the model we presented in
Section 6.1 is not suited to an ILP formulation because it is very difficult to
model paths as in CP. Instead, most formulations either use a flow model or use
a pre-computation of paths for the different demands and associate a Boolean
variable to each possible path. We will use this technique despite it yields an
exponential number of variables because they can be generated on the fly using
column generation.

Master Problem

First we reformulate the multicommodity flow problems with Boolean path
variables in what we call a Master Problem, then we provide a linearization and
the pricing problem used to introduce new columns. For each demand d ∈ D,
we associate the set Pd of all paths from src(d) to dst(d). By a slight abuse of
notation, we also call p a Boolean variable associated to a path p ∈ Pd because
paths are only manipulated through their Boolean variable. Because a path is
statically defined and because we need to sum up the bandwidths associated to
the various arcs of the network in order to enforce the capacity constraints, we
associate to a path variable p and each arc e ∈ E, a variable pe which is true if
the arc e is taken by the path p. Note that this variable pe is used just to simplify
the notation and does not belong to the implemented model. We ensure that
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6. Constraint games application

exactly one path is chosen for each demand :

∀d ∈ D,
∑

p∈Pd

p ≥ 1 (6.8)

The capacity constraints become :

∀e ∈ E,
∑

d∈D

∑

p∈Pd

pe × bw(d) ≤ cap(e) (6.9)

We aggregate all costs in the following expression to be minimized :

min
∑

e∈E

∑

d∈D

∑

p∈Pd

pe × bw(d)× (cost(e) + cong(e)) (6.10)

Where the congestion is defined by equations 6.1 and 6.2. There are two sources
of non-linearity in these formulas. First the load of an arc uses an exponential
function. It yields that it is easier to break up equation 6.10 in two for its
linearization. A first part we call cost with congestion cwc(e) for a given arc e
and a subsequent aggregation on the set of demands :

cwc(e) ≥
∑

d∈D

∑

p∈Pd

pe × bw(d)× (cost(e) + cong(e)) (6.11)

Note that since we deal with a minimization problem, only the ≥ part of the
equation is mandatory to enforce equality. Then the expression to be minimized
is :

min
∑

e∈E

cwc(e) (6.12)

But then a more subtle source of non-linearity is that, since the cost depends
on the load and the load depends on the path chosen for each demand, we have
to consider for the cost the cases where two or more demands are routed by the
same arc. It yields a product between the Boolean variables pd

e and pd′

e for any
pair d, d′ ∈ D. We now address these two relaxations.

Column generation

The problem we get with a model based on paths and its subsequent lineari-
zation involves an exponential number of variables (since there are exponentially
many paths between a source and a destination). Moreover, only one variable for
each demand will be set to 1 because we seek a single path for each demand. It is
impossible to represent all these variables but fortunately they can be generated on
the fly (along with the constraints they are subject to) using Column Generation
(see Figure 6.10).

Column Generation alternates between solving the linear Restricted Master
Problem with a limited number of variables (or columns) and generating new
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6.3. A ILP model

Figure 6.10 – Column generation procedure

variables by solving a sequence of subproblems called Pricing Problems. The
first step before iterating is to initialize the linear Restricted Master Problem (or
RMP) with initial columns. It is then possible to get dual values and to compute
reduced costs. A reduced cost is associated to a dual variable and tells how much
the objective changes if this variable increases by a small amount. In other words,
it is the first derivative from a certain point on the polyhedron that constrains
the problem.

Column generation methods were invented from the observation that often in
problems many variables do not belong to the optimal solution and thus their
values are set 0 and not used. The idea is to try to generate only the columns
useful to solve optimally the problem. For instance in our problem, often only
few paths are needed to find and prove the optimal solution.

A Pricing Problem is used to determine which column should be introduced. It
yields either to add a new variable or to ensure that there are no further variables
with negative dual feasibility i.e. which can potentially improve over the current
solution. When no more columns can be generated, the linear solution is rounded
to give an integer one.

We consider only column generation at the root node. This method can be
incomplete unlike Branch and Price which is a bit different since it considers a
tree obtained by solving the ILP problem for different sets of columns.
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6. Constraint games application

Figure 6.11 – Three pieces linear approximation of the exponential function

Linearisation of the master problem

What we call Linearized Master Problem (or LMP) is essentially a linear
approximation of the Master Problem introduced above. It means that the
solutions we will find with ILP are solutions to the approximate model and not
exactly solutions of the original problem. However, if the linearization is good, it
is likely that the solution paths for the demands will be the same as if the exact
model was solved, although it cannot be ensured in all cases. In practice, we have
not observed any difference.

The first thing to come is to transform the Boolean variables into continuous
ones in the interval [0..1].

Piecewise linear approximation of the exponential function.

The second relaxation concerns the exponential function. We approximate it with
multiples tangents. Let I be a set of numbers in [0..1]. For each point of the
exponential curve (i, cong(i))i∈I , a tangent ti(x) = aix+bi is computed. In Figure
6.11 is depicted a 3-points approximation of an exponential function. The red lines
correspond to the computed tangents approximating the function. The difference
between the approximation and the real function is shown in light gray. In this
zone, the congestion is underestimated and may induces less filtering. For the
sake of simplicity, we use the same set I for all links of the network.

The approximation of the exponential correspond to the maximum value
of these tangents maxi∈I ti(load(e)). In order to get a linear formulation of the
maximum, we can introduce for each arc e and each i ∈ I a variable congi(e)
giving the value of each tangent for a given load and one variable cong(e) for the
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6.3. A ILP model

maximal value. The congi(e) reuses the definition of the load given in equation
6.1 :

∀e ∈ E,∀i ∈ I, congi(e) =


 ai

cap(e)

∑

d∈D

∑

p∈Pd

pe × bw(d)


+ bi

And for each link, the following constraints are added :

∀e ∈ E,∀i ∈ I, cong(e) ≥ congi(e) (6.13)

Linearization of the products.

Unfortunately, when computing the cost with congestion cwc(e) of an arc e with
equation 6.11, all demands crossing this arc actually cause the congestion to
increase. If we develop the formula by mixing equations 6.11 and 6.13 with respect
to each i ∈ I, it yields for a given edge e :

∀i ∈ I, cwci(e) ≥
∑

d∈D

∑

p∈Pd

pe × bw(d)×

cost(e) +


 ai

cap(e)

∑

d′∈D

∑

p′∈Pd′

p′
e × bw(d′)


+ bi




By splitting the linear and non-linear part we get :

∀i ∈ I, cwci(e) ≥
(cost(e) + bi)

∑

d∈D

∑

p∈Pd

pe × bw(d) +

ai

cap(e)

∑

d∈D

∑

p∈Pd

pe × bw(d)×
∑

d′∈D

∑

p′∈Pd′

p′
e × bw(d′)

The last expression is quadratic because it contains a product between pe and p′
e.

To get a linear formulation, we introduce new Boolean variables pp′
e for each arc

e and each path p for d and each path p′ for demand d′ such that pp′
e is true if

and only if p and p′ share e as common arc. Since we model only one simple path
by demand, we can use another trick by summing all the path for each demand.
The meaning of the pp′

e can be reformulated as : pp′
e is true if and only if it exists

p and p′ for respectively d and d′.
We implement the logical AND (see chapter 7 of [21]) by this set of linear

constraints :

pp′
e ≤

∑

p∈Pd

pe, ∀e ∈ E (6.14)

pp′
e ≤

∑

p′∈Pd′

p′
e, ∀e ∈ E (6.15)

pp′
e ≥

∑

p∈Pd

pe +
∑

p′∈Pd′

p′
e − 1, ∀e ∈ E (6.16)
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Then the cost constraints can be reformulated as follows :

∀e ∈ E,∀i ∈ I, cwci(e) ≥
(cost(e) + bi)

∑

d∈D

∑

p∈Pd

pe × bw(d) +

ai

cap(e)

∑

d∈D

∑

p∈Pd

∑

d′∈D

∑

p′∈Pd′

pp′
e × bw(d)× bw(d′)

As in equation 6.13 we aggregate all costs for the different tangents :

∀e ∈ E,∀i ∈ I, cwc(e) ≥ cwci(e)

And thus the expression to be minimized as in equation 6.12 becomes :

min
∑

e∈E

cwc(e)

Pricing problem

The reduced cost for a given variable determines how the objective changes if
the variable increase of one unit. A Linear problem is optimal if its reduced cost
is 0. However, if the reduced cost is negative, the solution can enter the basis as a
new column. If the reduced cost is greater or equal than zero, the lower bound
for the optimal solution has been found, although this may not be an integer
solution. Note that the reduced cost can be computed on each edge individually.
In order to find an improving path for each demand, we could perform a shortest
path computation with Dijkstra’s algorithm on the graph where arcs are labeled
with reduced costs. The new variable of the discovered path already implicitly
exists, and we just compute it on the fly. When it is not possible to improve the
LP solution, it will be also not possible to find a path such that the reduced costs
are negative.

Note that in our problem the decision variables (i.e. the paths) are not directly
present with a coefficient in the objective function but instead appear though pp′

e.
And thus, the coefficients of the decision variable do not appear in the pricing
problem.

In order to formulate the dual, let us give names to the constraints of the
problem. We consider only the constraints that are potentially affected by the
introduction of a new column. Let us call ONEd the constraint given in equation
6.8, CAPe the capacity constraint given in equation 6.9, and AND1e, AND2e,
and AND3e respectively the constraints in equations 6.14, 6.15 and 6.16. By
using these dual values found when solving the RMP, we are able to define the
graph of reduced costs for a given demand d. For each edge e and demand d, we
have :

rcostd(e) = −CAPe × bw(d) + (
∑

d′∈D

AND1e + AND2e −AND3e)
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Then the pricing problem for each demand d become now finding a shortest
path in the graph of reduced costs, i.e. which minimizes the following formula for
a path p defined by its Boolean variables pe :

min

(
ONEd +

∑

e∈E

pe × rcostd(e)

)

Unfortunately, the network labelled with reduced costs has negative cycles and
thus Dijkstra’s algorithm cannot be used to find a shortest path. Since we are
only interested in simple path (i.e. a path without cycle), the pricing problem
can be solved through a new Integer Linear Problem by the following flow model.
Like before, let pe be the (continuous) variable associated to the arc e.

The following constraints ensure that only one unit of flow comes out from the
source of the demand d and nothing enters in, and the reverse for the destination.

∑

e=(src(d),y)∈E

pe = 1
∑

e=(x,src(d))∈E

pe = 0

∑

e=(x,dst(d))∈E

pe = 1
∑

e=(dst(d),y)∈E

pe = 0

Here are the flow conservation constraints :

∀v ∈ V,
∑

e=(x,v)∈E

pe −
∑

e′=(v,y)∈E

pe′ = 0

Then we state non-splittability and no-cycle constraints :

∀v ∈ V,
∑

e=(x,v)∈E

pe ≤ 1 ∀v ∈ V,
∑

e=(v,y)∈E

pe ≤ 1

The objective becomes :

min


ONEd +

∑

v∈V

∑

e=(v,y)∈E

pe × rcost(e)




We extract from this flow the minimum path and introduce the corresponding
variable.

Solution

A solution for the ILP model when using Column Generation is not equivalent
to a solution with the Constraint Programming model. First the approximation
introduced by the linearization of the exponential function tend to underestimate
the congestion. Thus the value of the objective may be lower for the ILP model
even if the solution paths are the same. Second, we solve the ILP problem only
when the Column Generation procedure has ended. It may happen that in some
cases this procedure does not terminate in a reasonable time. Then the integer
solution is not computed and we get no solution.
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6.4 Constraint Games

Constraint games for SDN

The MCPRP defined in section 6 can be simply extended to a game by
considering each demand as a player who wants to find the best route from source
to destination. Then each player wants to minimize her/his own cost as defined
in equation 6.3.

If we denote by S = DV the total search space and by N the set of Nash equi-
libria, we can define formally the welfare of the best centralized solution adapted
to our cost minimization problem by W ∗ = min{w(s) | s ∈ S}. The welfare of
the best Nash equilibrium is defined in a similar way by N∗ = min{w(s) | s ∈ N}
and the one of the worst one by n∗ = max{w(s) | s ∈ N}. Thus the Price of
Stability is simply PoS = W ∗/N∗ and the Price of Arnarchy PoA = W ∗/n∗.
Note that usually the classical definitions of PoS and PoA yield a result greater
than 1, this is not the case here because we have a minimization problem. Note
that, we have used IBR as a heuristic to go from the first solution to the first
equilibrium In our problem, the social welfare function is simply the global cost to
be minimized as defined in equation 6.4. We proceed in two steps. First the best
centralized solution is computed as a Constraint Optimization Problem, then the
Nash equilibria using our Constraint Games solver. We can immediately see that
PoS and PoA are asymetric in term of the relaxation technique we can implement.
For PoS, the problem is still a minimization. Thus we can use the same relaxation
technique as the one we use in the centralized version (equation 6.7).

For the PoA, we have a maximization problem. But each player still wants
to minimize her/his cost. The situation is then to find a set of shortest paths
of maximal global cost. The standard relaxation technique provided by the CP
solver provides a loose upper bound for this problem by summing up all upper
bounds of the costs of the edges. But we know that the upper bound is at most
the cost of the longest path in the residual network. Unfortunately, computing the
longest path is NP-complete in the general case, since it corresponds to determine
if it exists an Hamiltonian cycle, which is NP-complete [66]. This problem has
been already addressed in CP [172] where the authors propose a model and a
local search algorithm to solve this problem. In our case, we are interested in a
polynomial sound algorithm. This is why we propose to approximate the longest
path by a Maximum Spanning Tree (MST) in the residual graph. The MST is
computed by considering the upper bound value of the cost of the edges. The
algorithm is like Prim’s algorithm, we add to all remaining edges the cost of the
demand to compute congestion, then we start by taking the most costly edge and
add edges linking a new node in descending order of cost. It is clear that the cost
of the MST is always greater than the cost of the longest path.
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6.5 Related work

Combinatorial methods. SDN allows fast and remote network reconfigu-
ration and thus is a nice source for many optimization problems [130] including
online ones. Due to this dynamic aspect and the increasing size of the controlled
networks, it is very likely that decentralized algorithms will be mandatory to
provide both the expected quality of service and short time response. A survey of
most techniques can be found in [134]. Since then, many extensions have been
considered like the very important case of demands coming online [91, 165], service
provisioning [108], energy-aware routing [109], controller placement [176, 196],
fault prevention [213, 36] or even congestion-aware algorithm [211].

Concerning the specific CP framework and to our best of our knowledge,
only a few works have been considered : a problem of Service Function Chaining
deployment [136] and a general framework providing through CP a high-level
programming language to model SDN problems [126].

Our article differs from these methods because first, we propose a CP model
taking into account non-linear congestion. Then, we optimize our model by
proposing a relaxation technique based on Dijkstra algorithm as well as fast
heuristics to solve the problem to optimality.

Quality of service and Game theory

Quality of service (or QoS) is an important problem in SDN and has been
addressed in multiples ways. From combinatorial methods with for example
with genetic algorithms [177], or even multiples linear programs [212] optimizing
multiples criteria such as bandwidth or energy consumption. These criteria concern
the whole network which is different from game theory wherein each flow is
considered as a criterion. A mechanism design method for multicommodity flow
games has been proposed [48] . Nonetheless, Game theory studies have been
mainly concentrated with routing games [193] to model uncapacited networks in
order to determine how selfish behaviors impact solutions and to quantify it by
the price of anarchy[48]. Other mathematical studies on more general networks
and solution’s degeneration have been done such as on on capacited network [47],
unsplittable flow [6]. And even on different model based on distributed games
[120, 95].

Our approach is different since we propose a model to compute the PNEs and
POA. The two Relaxations are given to fast the exact computation of the PNEs
and POA giving a more pratical way to this kind of problems.
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6.6 Instances and experimental results

We have tested our framework on a library of instances called SNDlib [155]
and a personal problem generator that is able to generate instances close to real
ones. This problem and other variants such as robust SDN networks have been
studied for a long time [58, 35] with some computational approaches including
linear programming [7]. A survey can be found in [142]. Interesting theoretical
results have been found, like the one which states that when the problem has a
sufficient size and capacity, all flows are actually routed along single-paths [175].

Generator

We have designed a generator to create synthetic problems that allow to
test the algorithms against the different hypothesis. Several parameters allow
obtaining a great variety of graphs. The generation process is mainly constituted
of two phases :

— Generation of the topology, that is nodes as well as arcs and their respective
costs ;

— Generation of demands, along with their bandwidth requests, which also
determines the capacities of the arcs.

During the generation of the topology, Nnodes nodes are created. Each of these
nodes ni with i ∈ [1, Nnodes] is assigned to random coordinates in a fixed size
space of topologyDimension dimensions. In case the boolean topologicalCost is
set to true, the cost of an arc is given by the distance between the source and
destination node. Note that for dimension 2, this is not sufficient to ensure that
the resulting graph is planar. The size of the space in one given dimension is
irrelevant, as we refer to it only with percentage. Each node is also assigned to a
degree, randomly chosen in an interval [degmin, degmax]. To obtain graphs similar
to actual networks, we introduce hubs which are nodes of higher degree than
regular nodes. Each node has a probability Phub of being a hub. If a node is a
hub, then its degree is randomly chosen in a different interval [deghmin, deghmax].

We first build a spanning tree over all nodes to ensure that the graph is fully
connected, then we create the remaining links in the graph. For each node, we
look for candidates, so the desired degree is reached. For a link to be created, we
ensure that a) the other node is not already connected with this edge and b) its
distance in the space is not greater than maxDistance, expressed as a percentage
of the space size (

√
topologyDimension is the maximum). Using this process, it

is possible that certain nodes do not reach the desired degree, but as the network
grow larger, this situation becomes less and less likely to happen.

Once the topology is generated, Ndemands are generated. For each of these, a
starting node is randomly selected, as well as a bandwidth in a [bwmin, bwmax]
interval. We then generate what we refer to as an "initial path". For that purpose,
different strategies are available. The first strategy, called random generation,

96



6.6. Instances and experimental results

Parameter Type Range used in the bench-
marks

Nnodes integer 50, 75, 100, 120, 140, 160, 180, 200, 500

topologyDimension integer 2

topologicalCost boolean true, false

degmin, degmax integer [1, 2, 4, 8], [2, 5, 7, 10]

Phub integer 0, 1, 5, 10, 20

deghmin, deghmax integer [25, 50, 75, 100], [25, 50, 75, 100]

initbwmin, initbwmax integer [50, 100, 200], [50, 100, 200]

initcostmin, initcostmax integer [100, 200], [200, 500]

maxDistance integer 25, 50, 100

Ndemands integer 30, 50, 100, 120, 130, 150, 200

bwmin, bwmax integer [50, 100, 200], [50, 100, 200]

hopmin, hopmax integer [0], [10]

Pbw integer [10, 30, 50, 70, 90, 100]

Table 6.1 – Parameters of the generator

consists in selecting a random number of hop h in the [hopmin, hopmax] interval,
and randomly navigating in the graph for h hops, starting from the initial node.
The last node is then considered to be the destination node of the request. During
the navigation, we only make sure to never reach a node that is already in the
initial path. The second strategy consists in randomly selecting a destination
node, and applying a shortest path algorithm to find the path from the source
node to the destination node with the least number of hops. The path yielded by
the algorithm is considered to be the initial path. Regardless of how the initial
path is constructed, for each of its arc, there is a probability Pbw that we increase
its capacity of the amount of bandwidth of the request. The list of all generation
parameters, as well as short description can be found in Table 6.1.

Settings and implementation issues

Experimentation settings

Due to the large number of parameters of the generator, we have applied a
benchmark method called combinatorial testing [151, 102] using the ACTS software
[227]. This technique allows for p parameters and a size c to generate a set of
instances where all possibilities of combinations of parameters of cardinality c
are inside the set. For example, if we have 3 Boolean parameters a, b and c, a
complete test of all possibilities would require 23 = 8 tests. But if we decide to
test only all combinations of pairs, we can achieve this with only 4 instances (see
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Figure 6.12). With our generator, by choosing an appropriate sampling of the

Figure 6.12 – All pairs of parameters are covered by 4 tests

intervals described in 6.1, we get roughly 500 instances to get a covering of all
3-sets of parameters. From these 500 instances, we have discarded those whose
resolution lead to a timeout for all techniques. This gives a total of 123 instances
which give a meaningful picture of the range of problems that can be solved.

The tests have been performed on a cluster of Intel Xeon E5-2690, each having
10 cores sequenced at 3GHz and 256 GB of RAM. We have computed experimental
results for the CP approach described in Section 6.1 and the Constraint Game
model of Section 6.4 with a timeout fixed at 1 hour.

A note on implementations

The CP model has been implemented using the Choco solver [174], including the
Constraint Game through our Choco extension called Conga [159]. Besides the
search techniques and different heuristics and the relaxation technique described
in Section 6.2, our first implementation was using the Ibex solver [38, 39] in
association with Choco. Real variables linked to Ibex were used to model the
computation of the load, congestion and costs while discrete decision variables
remained in Choco. However, this was not efficient because the two solvers need
to communicate through Java Native Interface. In addition, many auxiliary real
variables and constraints(e.g. constraint for the congestion cost and auxiliary
variable for the sum) were used to compute intermediate values through constraint
propagation despite this part is purely functional. In addition, the cost is also
obtained as a by-product of the shortest path algorithm since at the end of the
search tree the sum over the demands costs computed by the Dijkstra algorithm is
the real cost. Therefore, we have replaced all the auxiliary variables and constraints
computing the objective value by a single global constraint which also encapsulates
the Dijkstra algorithm. At the end, the model only contains path and capacity
constraints and the global constraint computing the objective.

The Column Generation model has been implemented using CPLEX [49]
version 12 with its Python interface. At first we tried to post all constraints at
the problem initialization for all possible paths. However, it was not efficient since
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6.6. Instances and experimental results

it takes a lot of time to initialize. Since most of the constraints (i.e. consider all
the edges in the graph) are useless to solve the problem, we instead choose to
post the constraints on the fly along each path when it was required after having
generated the columns.

Once again, in the following, when we are saying that an instance is solved it
has different meaning when we are talking about CP or CG. For CP, an instance
is solved when the optimal solution has been found and proved. For CG, the
instance is considered as solved when the generation procedure is finished and
the ILP problem solved within the generated columns. Because of that, Column
Generation does not prove optimality. Because of the linearization, the objective
values are most of the time different between the two techniques.

Experimental results

Constraint programming model

For the synthetic benchmarks, we have displayed the results in Figure 6.13. As
a preliminary test, we have tried the pure CP heuristic based on impact [180] to
measure the gap with the SP value heuristics. A problem which should be easy
(13 nodes and 9 demands) is solved in less than 1 second by using the shortest
path strategy, whereas the impact strategy took 878.969 seconds. Due to this,
we have not displayed this CP/CP/CP heuristics in the figure and we only present
results for the SP strategy.

For each instance, we have run the combinations MB/SP/CP and MB/SP/SP,
and the two conflict variants CO/SP/SP and CO1/SP/SP. The plot in Figure 6.13
shows how many instances are solved in a specific delay. Clearly, the MB/SP/SP
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Figure 6.13 – Comparison of different CP heuristics on synthetic bench-
marks
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instance #Demands #Nodes #Edges MB/SP/CP MB/SP/SP

SAT

dfn-bwin 90 10 45 TO 0.670

dfn-gwin 110 11 47 TO 0.746

di-yuan 22 11 42 TO 0.472

giul39 1471 39 172 TO 26.554

india35 595 35 80 TO 8.739

newyork 240 16 49 TO 3.486

nobel-eu 378 28 41 TO 4.919

norway 702 27 51 TO 7.962

pdh 24 11 34 TO 0.553

UNSAT

geant 462 22 36 2.729 2.550

germany 662 50 88 6.489 6.241

janos-us 650 26 84 3.508 3.605

janos-us-ca 1482 39 122 25.926 25.926

UNKNOWN

france 300 25 15 TO TO

pioro40 780 40 89 TO TO

polska 66 12 18 TO TO

Table 6.2 – Results of the Constraint Programming model on real-world
instances from SNDlib

heuristics outperform the other ones. This is not surprising compared with the
CP-style B&B, but it shows that a more dynamic heuristic based on conflicts
is not effective on this type of problems. We also compared the performances of
the different strategies on the unsolved instances. Since, the solver did not finish
either because it did not prove the solution’s optimality, or because it did not
find any solution, the only valuable comparison is the current solution and the
time to find a first solution.

The performances for finding a first solution of the different strategies are
shown in Figure 6.14. This figure presents the time required to find a first solution
for all instances and given the three CP strategies. The instances are sorted by
increasing time. As we can see, the strategies are very good at finding a first
solution and on most of the instances. The strategies provide comparable perfor-
mances when the goal is to find a first solution. Another interesting comparison
is about the performances of the strategies on unsolved instances for getting the
best solution. The table 6.3 presents how many times a strategy has found the
best current solution while it timeout. MB is the strategy finding most of the time
the best solution after a timeout.
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Figure 6.14 – Comparison of the strategies for finding the first solution

MB/SP/SP CO/SP/SP CO1/SP/SP
# best sol 340 321 303

Table 6.3 – Comparison of solutions on the unsolved instances

It appears that these instances are hard for multiples reasons. First it not a
simple parameter which makes those harder. An instance can be hard even with 30
nodes and 30 demands. A problem become hard when the back-propagation of the
relaxation is not enough and requires a lot of search. This effect is visible in the
Figure 6.13, while comparing the instance which benefit from the SP relaxation
against the one using the CP one. Most of the time the strategies take time to
prove the optimality of a solution.

In the following, we only compare with the MB/SP/SP heuristic. The time in
seconds for real instances from the SNDlib are shown in Table 6.2 only for two
heuristic combinations. The improved relaxation technique allows to solve many
instances to optimality. Each instance is described by its name (which corresponds
usually to a network in a particular country), then the number of demands, nodes
and links of the network. The SAT and UNSAT instances are the one for which
we can find the optimal solution or prove unsatisfiability. For some instances
depicted as UNKOWN, our method was unable to find the optimal routing. But
still the best solution can be reported.

ILP model with Column Generation
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Figure 6.15 – Comparison of different initialization of the Column Genera-
tion model

Instance #Demands #Nodes #Edges CG MB/SP/SP Obj CP
CG

SAT

dfn-bwin 90 10 45 456.742 0.670 1,000067618

dfn-gwin 110 11 47 TO 0.746 N/A

di-yuan 22 11 42 TO 0.472 N/A

giul39 1471 39 172 TO 26.554 N/A

india35 595 35 80 TO 8.739 N/A

newyork 240 16 49 TO 3.486 N/A

nobel-eu 378 28 41 TO 4.919 N/A

norway 702 27 51 TO 7.962 N/A

pdh 24 11 34 108.3804 0.553 1

UNSAT

geant 462 22 36 TO 2.550 N/A

germany 662 50 88 TO 6.241 N/A

janos-us 650 26 84 TO 3.605 N/A

janos-us-ca 1482 39 122 TO 25.926 N/A

Table 6.4 – Column Generation results on real-world instances from SNDlib

We have run the ILP model on the same synthetic instances as the CP model.
In our model, the number of initial columns can be parametrized. We show in
Figure 6.15 a cumulative plot comparing the number of instances solved with
different initializations. Each method starts with a different number of path from
1 to 15. It appears that starting with an unique path gives better performances.
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A reason which can explain this behavior it that if too many path are generated
at start, many constraints have to be added and it slows down the initial simplex
iterations and the next ones for each demands.

The real instances from SNDlib are shown in Table 6.4 along with the ratio of
objective value between CG and CP. Due to many timeouts, there is no meaningful
conclusion to be analyzed.

Constraint programming against Column Generation

To get a very synthetic insight of the respective strengths of the two approaches,
we have depicted a set of comparisons in Table 6.5. It simply shows how many
times each method has found a better solution or finished the resolution before
the other. From this table, we can see that in general the CP model performs
better, but not all the time.

#better run-time #better solution #better run-time and s
Column generation 11 17 0

Constraint Programming 124 382 11

Table 6.5 – Comparison between Column Generation and CP

#Node #demands time CP time CG solution CP solution CG
120 80 TO 1906.63 707329 704229
180 90 TO 2245.03 956690 897772
180 50 TO 2095.51 708083 683188
100 30 2.29 TO 4564010 TO

500 10 3.812 547.638 131182 133039
40 20 1.87 208.979 84291.7 86397.5
75 200 TO 182.183 914526 TO

200 40 TO 1651.83 707515 713809

Table 6.6 – Comparison between Column Generation and CP

Furthermore, we extracted some meaningful synthetic instances presented in
Table 6.6. These instances present different kinds of behavior. In a few instances,
the CG approach is able to find a better solution in shorter time. Sometimes the
CG generation procedure times out and we are not able to find an integer solution
in the given time. But interestingly, even if the CG has finished his generation
procedure and the CP model times out and fails to prove optimality, it happens
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that the integer solution found by CG is still worse than the one returned at the
end by CP.

We can see that very often CP performs better. One possible explanation
about the bad result of Column Generation is how the RMP is linearized. When a
new variable is entering the problem, the objective constraint is not modified. And
thus the computed reduced cost are less efficient to improve the linear solution.
This in turn slows down the global resolution by forcing the generation procedure
while it is not required. In addition, the generation of one column needs to solve
a NP-complete problem and it has to be embedded in ILP since no shortest path
algorithm is applicable due to the negative cycles (see section 6.3). In contrast,
the CP model benefits from a good heuristic which guides well the search space
exploration, and moreover it has a good relaxation to bound the objective value
when the search tree is explored in order to close the nodes.

Constraint games

For the Constraint Game model, we have only used the combination MB/SP/SP,
with and without improvement of the first solution by IBR. Results show that
IBR improves relaxation technique by giving quickly a good first solution which
is also an equilibrium.

instance #Demands #Nodes #Edges MB/SP/SP [NASH] MB/SP/SP

SAT

dfn-bwin 90 10 45 0.670 3.871

dfn-gwin 110 11 47 0.746 5.681

di-yuan 22 11 42 0.472 2.012

giul39 1471 39 172 26.554 1571.197

india35 595 35 80 8.739 215.716

newyork 240 16 49 3.486 18.173

nobel-eu 378 28 41 4.919 41.861

norway 702 27 51 7.962 154.520

pdh 24 11 34 0.553 2.016

UNSAT

geant 462 22 36 2.550 2.92

germany 662 50 88 6.241 6.783

janos-us 650 26 84 3.605 5.174

janos-us-ca 1482 39 122 25.926 50.486

Table 6.7 – Constraint Games results on real-world instances from SNDlib

We present in Table 6.7 the run-time in second of the different strategies on
the SNDlib instances. It is interesting to see that games of unprecedented size
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Figure 6.16 – Comparison Nash and and the different heuristics on synthetic
benchmarks

(up to 1482 players in the janos-us-ca instance) can be solved to optimality by
Conga [159]. Interestingly and in contrast with the synthetic instances, we have
observed that IBR slightly degrades the computation time, this is why we did
not include the column in the table. We believe that in these problems, most first
solutions computed by the MB heuristics were already at equilibrium, and thus
adding IBR only adds another check.

0,8

0,85

0,9

0,95

1

POA POS

Figure 6.17 – Price of Anarchy and Price of Stability for small synthetic
instances

We report the results for the computation of PoA and PoS for small synthetic
instances in Figure 6.17. In most instances, we observe that the PoA and PoS are
very close, and also very close to the centralized optimum. It means that on these
problems, a decentralized algorithm would be very interesting to implement if
we assume it scales up to larger problems. We have used much smaller instances
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because the PoA is very difficult to reach. The upper bound computed for the
Maximal Spanning Tree overestimates the longest path which also overestimates
the longest shortest path. We pay these two approximations by a limited pruning
of the search tree which has a major impact on the computation time.

6.7 Conclusion

This chapter includes two practical contributions. First we have modeled and
solved efficiently the unsplittable multi-commodity flow routing problem with
congestion in Constraint Programming and in ILP with Column Generation.
We have provided an accurate branch and bound technique that allows to solve
real-world size instances up to optimality. Our third contribution is a Constraint
Game model that allows to evaluate the potential of decentralized routing in this
context. We have found all Nash equilibria for problems with thousands of player
thanks to the Constraint Game solver Conga. This is the first time that such large
instances are solved up to optimality by a general-purpose Game Theory solver.
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Conclusion and perspectives
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In this chapter, we summarize the contents and the contributions of the thesis
by discussing the results along with some possible directions for the future work.

7.1 Conclusion

This thesis revisits the constraint game framework which was firstly studied
in [148]. The baseline formalism of constraint games was provided through this
previous work. In this thesis we are going further by studding two axes of work :
the computation of Nash equilibrium and the resolution of real world application.
This thesis provides a more practical interest in multiples points :

— Modelling and solving games. Many frameworks have been proposed
to solve games. From Dedicated approaches like Action-Graph Games [113],
or more recently others paradigms like Boolean games [92] or Constraints
Games [150] based on combinatorial methods have been proposed. Besides
a concentration of interest into these approaches, modeling and solving
games is not an easy task. All the cited methods rely on ad-hoc algorithms.
They do not benefit from the recent advances of solvers. The way to see
Constraint Games as a global constraint presented in this thesis(see chapter
5) allows modeling transparently games into solvers. In addition, to this
new view, we have characterized the complexity of the arc consistency
for the Nash constraint, and we have proposed an improvement to the
algorithm for finding Nash equilibriums in a game. This new incremental
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algorithm infers never best responses as soon as possible in the search tree
by back-propagating the objective value of each player.

— Applications. Constraint games solver : ConGa has been used to solve
real networking problem (see chapter 6). Especially, in such applications, a
Nash equilibrium solution is really desirable. Its properties make the users
satisfied with their situation, hence seen as a high quality of service for
multi-user applications. In order to speed the resolution, we have proposed
dedicated techniques such as a specialized branch and bound and two
heuristics based on the problem’s structure. These techniques have helped
us to solve games with many players and strategies by improving the solving
process’s efficiency.

— Solver release 1. A solver for constraint games with its manual has been
released. It includes explanations to use it and how to extend it. This is
the first release of such solver in the community.

Several parts of the work in this thesis have been validated by accepted papers
in proceedings of international peer-reviewed conferences :

— Palmieri, Anthony, and Arnaud Lallouet. "Constraint games revisited."
International Joint Conference on Artificial Intelligence, IJCAI 2017. 2017.

— Lallouet, Arnaud, and Anthony Palmieri. "Constraint Games for Mo-
deling and Solving Pure Nash Equilibria, Price of Anarchy and
Pareto Efficient Equilibria." 13th European Meeting on Game Theory,
SING 2017. 2017 .

— Palmieri, Anthony, and Guillaume Perez. "Objective as a Feature for
Robust Search Strategies." International Conference on Principles and
Practice of Constraint Programming. Springer, Cham, 2018.

— Palmieri, Anthony, Arnaud Lallouet and Luc Pons. "Constraint Games
for stable and optimal allocation of demands in SDN." International
Conference on Principles and Practice of Constraint Programming. Springer,
Cham, 2018.

— Palmieri, Anthony, Arnaud Lallouet and Luc Pons. "Constraint Games
for stable and optimal allocation of demands in SDN." Constraints
Journal 2019, to appear.

In conclusion, our contributions are first to give a new view of constraint games
and in a second hand to prove the solver’s efficiency by tackling a networking
problem.

7.2 Perspectives

This thesis thesis has been guided by practical aspects yielding to the solver’s
implementation and multiples improvements to model and to solve games. During

1. https ://github.com/palmieri-a/CONGA
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this work, we had think about multiples future work. For instance, in the Location
Game (see Example 19), what happen if two vendors have to share a stand. This
can arise if a conglomerate decide to build a shopping mall. The location of
both store have to be decided conjointly. The computation of one equilibrium,
emphasizing the role of a good heuristics and opening comparisons with best
response dynamics [37]. Dedicated heuristics taking advantage of games structure
is still an open question and belongs to the perspectives of this thesis. Also, the
extension to new solution concepts like the mixed version of the Nash equilibrium
is an important step for the solver adoption and for Constraint games.

Mixed Nash equilibrium. Finding a mixed Nash equilibrium is a hard task
and has been shown recently NEXP-hard [111]. Like underlined in [153] computing
a Mixed Nash equilibrium requires to have all the valuation of each action in
order to apply well-known methods. However, it requires an exponential memory
space which is intractable for large games that why constraint games are a new
way to think about that. The Mixed Nash equilibrium can be an extension of the
solver. A mixed Nash equilibrium is simply a maximization of the expectation for
all players separately. A way to do that would be to estimate the expectation, by
sampling for instance (as in [8]). A challenge could be the complete enumeration
of the mixed Nash equilibrium with this technique which has to be complete for
this purpose. Also, a good compromise between the accuracy of the estimation
and the time spent has to be found in order to propose a competitive method.
Additionally, the other solution concepts could be investigated, like the one for
Cooperation or Strong Nash equilibrium.

Shared variables. Originally in games, players exercise unique control over
a set of variables (or strategies) in order to achieve a unique goal. It may happen
however that the unique control is too restrictive as in the meeting scheduling
game (see Example 37).

Example 37 (Meeting scheduling) This problem is an adaptation from [140]
A set of agents want to schedule a set of meetings. Each has a set of compulsory
attendees while a set of other participants are encouraged to assist. Each meeting
has a starting time and a fixed duration. The starting time of each meeting is
defined by the agents participating in it. The meetings have to respect some ordering
constraints. For instance, a meeting has to start before noon due to participants
in other time zones. A natural way is to let the attendees of a meeting control
a unique decision variable. The variable ownership is going to be shared. Each
agent is part of the decision process to specify the starting time of each meeting
where he is involved. But many agents can be required for the same meeting and
thus have to share the same variable.
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However, a model expressed with a shared variable has no solution most of
the time. The problem is that players sharing a variable have to agree completely
on a solution. Which is very rare in practice.

M
1

M
2

M
3

M
4

planification

Figure 7.1 – An instance of the meeting scheduling

For example, the simple instance of meeting scheduling shown in Figure
7.1 does not have a Nash equilibrium. In this situation, if the players do not
compromise together then the meeting M2 is problematic. The black player would
like to put it just after M1, while the blue one wishes to put it next to M4.
Relaxation such as voting systems, partial cooperation can be studied in order
be able to provide a solution. The challenge of this new concept is not limited
to only the solution concept since it requires to be computed as fast as possible
because of the potential large instances. The propagators can be studied in order
to prune the search space and give better performances.

In summary, we are confident that an efficient solver as much as possible com-
plete, open source, would be very appreciated in practice and by the community.

110



Annexe A

Objective criteria for robust
search strategies

In this section we give the work done in this thesis but not directly related to
the subject.

A.1 Objective Function and Search

Strategy

Search strategies aim to reduce the search space, but additionally aim to find
good solutions as quickly as possible. Most SSs choose the hardest variables to
satisfy first, the main challenge being to find such variables. While most SSs
decisions were based on variables domains, the constraint graph, etc, objective-
value based decisions are rarely done in CP. One of the reasons is that, in CP,
we cannot easily back-propagate the objective to the variables to make decisions
as done in Mixed Integer Programming. But even if we can not have such exact
information, not taking into account the variables impacting the objective value
can lead to an exponential loss in time. This is shown by the following synthetic
example.

Example Consider a COP having n + m variables and whose objective is the
sum of the last m variables. This problem has an AllDifferent constraint [182] over
all the variables. Ignoring the objective value can lead to the search tree shown
in Figure A.1 (left). In this example, the strategy focuses only on other features,
without taking the objective into account. Whereas a strategy that considers the
objective detects variables having high impact on the objective, and consider
them earlier enabling a potential reduction of the search tree.

Moreover, we can find high quality solutions earlier and these solutions prune
the search space more efficiently. As we can see, the processing of the m variables
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Figure A.1 – (left) A search failing to consider the objective value. (right)
An objective based search.

is repeated an exponential number of times (dn). This is because the variables
that impact the objective are chosen too late leading to a bigger search tree.

The search tree using the objective value as a feature is shown in Figure A.1
(right). The last m variables are selected higher in the search tree, yielding better
solutions faster and allowing to close the search using the objective sooner. Finally,
by using the objective value, we obtain a smaller search tree.

This simple example shows that the objective value allows to assign variables
having high influence on the objective earlier and thus can help the solver to avoid
considering useless parts of the tree. The idea is to consider as soon as possible
the variables impacting the objective. We now define a new feature based on the
objective, which we will use to define an objective-based search strategy.

Objective modifications as a feature

The proposed feature focuses on the objective bounds modifications by using
a function ∆O. The upper and lower bounds are separately considered as two
different pieces of information. Let O be the objective variable to optimize. Let s
and s− 1 be respectively the current and the previous node of the search tree.
Let ∆O (resp. ∆O) be the upper (resp. lower) bounds difference between its value
before and after the decision propagation. The function is defined as follows :

∆O(s) = a×∆O + b×∆O

We choose to consider the upper and lower bounds separately. The choice of
the parameters a and b defines the function behavior. The coefficients can take
any value and correspond to the importance (positive or negative) given to each
bound. For instance, in minimization problems, the coefficient a of lower bound
modification corresponds to the weight for the consideration of removing the best
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A.1. Objective Function and Search Strategy

potential solutions. While, the upper bound modification coefficient b, represents
the weight to consider the deletion of the worst potential solutions.

Note that this function has a more fine-grained description of the objective than
usual measures used in search strategies. Classic SSs monitor the modifications
of the decision variables, but in general, treating differently the lower and upper
bounds, has no meaning for such variables.

Objective-Based Selector (OBS)

We propose a new variable selector based on the ∆O function : OBS. OBS first
selects the variables having the highest impact on the objective with regard to
the ∆O function. To do so, the weighted sum of the ∆O function values for each
x ∈ X is monitored through ∆̃O(x), and updated after each decision involving the
variable x. The parameter γ is the degree of weighting decrease of the exponential

moving average. The updated value ∆̃O

′
(x) is processed as follow :

∆̃O

′
(x) =

∆̃O(x) ∗ (1− γ) + γ ∗∆O(x)

γ

At each decision, OBS selects the variable x ∈ X such that ∀y ∈ X, ∆̃O(x) ≥
∆̃O(y).

Example
Consider the didactic COP defined by the variables (x1, x2, x3, x4) having

each as domain D = [1, 4] and an AllDifferent constraint on the 4 variables. The
COP’s objective is min x3 + x4. We use the parameters (a = −1,b = 1) for the
∆O function, in order to penalize lower bound modifications and reward upper
bound modification.

The tree search from Figure A.2 shows the application of the objective based
search strategy versus a lexicographic search. In this example, when a variable
is selected, it is assigned to its minimum value. The lexicographic search on the
left has more decisions than OBS on the right because it cannot identify which
variable are important to satisfy the constraints and improve the objective.

At the beginning of the exploration, in the right tree showing OBS search, the
variables x1, x2 and x3 are selected and set to their minimum values. Each of these
assignments has an effect on the objective’s bounds and thus modifies ∆O. When
the decision x1 = 1 is propagated, ∆O(x1) is set to −2 because of the changes of
the objective domain from [2, 8] to [4, 8]. The propagation of x2 = 2 reduces the
objective’s domain from [4, 8] to [6, 8] implying ∆O(x2) = −2. When the variable
x3 is selected, the objective is instantiated to 7. This implies a ∆O(x3) = 0. A
solution is found with the value 7, so the next solution has to be smaller than
7. Afterwards the decision x3 = 3 is refuted and the search tree is backtracked
to the decision x2 = 2 which is refuted, implying x2 6= 2. Then x3 which has the
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Figure A.2 – Comparison of the search tree by a lexicographic search (top)
and an objective based search (bottom)

highest ∆O value is selected and instantiated to its domain’s minimal value : 2.
Then x4 is the next free variable with the highest ∆O value, 0. We thus select
x4 and assign it to its smallest value, 3. We find a solution equal to 5. Finally,
when this branch is closed, the decision x1 = 1 is refuted and by applying the
OBS selection, the branch leading to the best solution is explored. An important
aspect of this search is that it is close to human intuition to choose first variables
x3 and x4 since they belong to the objective.

Note that the maintenance of ∆̃O values and the selection process are simple
and not intrusive in solvers. Moreover, OBS does not need to change the constraints
implementations.

Hybridization of search strategies

In this section we show how the objective and classical features can be
combined together, to benefit from both. But most strategies should not be
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A.2. Experiments

directly combined due to the range differences of their feature. For example, the
IBS strategy has a value range between [0, 1], while ABS one is between [0, n].
We propose to normalize all these values to fit in the interval [0, 1] in order to
combine them. Note that this applies to the ∆O function as well.

Let S̃n(x) be the normalized value of a search strategy S based on a classical

feature. And let ∆̃n
O(x) be the normalized values for OBS. We combine the two

pieces of information with the following formula :

SO(x) = α ∗ S̃n(x) + (1− α) ∗ ∆̃n
O(x)

The hybrid search strategy selects the variable maximizing SO. The values α and
(1− α) represent the importance given to each feature. Note that α is in [0, 1].

Example with ABSO : While the ABS strategy uses the Ã values, storing
the activities involved by the variables, our modification of the value associated
with each variable is the sum :

ABSO(x) = α ∗ Ãn(x) + (1− α) ∗ ∆̃n
O(x)

This ABSO(x) value contains both pieces of information : the activity and the
objective modifications.

Remarks : The hybridization of many others strategies is as simple as for
ABS. For the following sections, we respectively denote the hybridized versions
of ABS, IBS and WDeg by ABSO, IBSO and WDegO.

A.2 Experiments

The Experimental Setting

Configurations All experiments were done on a Dell machine having four
Intel E7-4870 Intel processors and 256 GB of memory, running Scientific Linux.
We implemented these new strategies in the Choco 4 CP solver [174]. Each run
used a time limit of 30 minutes. The strategies were warmed up with a diving
step, using up to 1000 restarts, or by ensuring a certain number of decisions. The
same warm up (method and seed) was used for all the methods, in order to avoid
any bias.

Benchmarks The experimental evaluation used on the MiniZinc Benchmark
library[147], with benchmarks that have been widely studied, often by different
communities, including template design, still life, RCPSP, golomb ruler, etc. Many
problem specifications can be found in [71]. Every class of optimization problems
from the MiniZinc library has been considered. Since the number of instances
per family is huge, and has a large variance between families, we have randomly
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A. Objective criteria for robust search strategies

selected up to 10 instances per family. Such subset selection preserves the diversity
of instances, and do not favor a specific kind of family in plots. The problems have
been translated into the FlatZinc format, using the MiniZinc global constraints
library provided by Choco-solver, which preserves the global constraints.

Plots The scatters and curves presented in this section are in log scale. A
scatter plot shows the comparison of two strategies instance by instance. The
diagonal separates the instances where each method has performed better than
the other. The points above (resp under) the line correspond to the instances
where the ordinate (resp the abscissa ) strategy is less efficient. Larger is the gap
between the axis line and the point, bigger is the difference between the strategies.
Extreme points above and on the right correspond to the timeouts.

Terminology An instance is said to be solved, when the best solution has
been found and its value proved to be optimal. The term solution quality is used
when the search is incomplete, and only the best found solution can be judged.

OBS evaluation

Once again, the OBS selector is highly configurable : each bound can have
its own coefficient impacting the selection process. The running time of several
configurations with different bounds importance have been profiled. The values
−1, 1 and 0 have been tested to respectively give : negative, positive, or no
importance to the considered bound. All possible pairs of (a,b) from (−1, 0, 1)×
(−1, 0, 1)\{(0, 0)} have been tested.

The performance of different OBS parameters are shown in Figure A.3. This
cumulative plot shows how many instances can be solved by each method, for
a given time limit. This plot shows that a negative cost to the lower bound
outperforms zero or positive cost, regardless of the upper bound.

Configurations weighting the lower bound negatively solve approximately 50
more instances than the alternatives. The solution quality has been compared
as well : Figure A.4 shows how many time a search has found the best solution
(not necessarily optimal) compared to its alternatives. Once again, the searches
weighting the lower bound negatively show better results. One intuitive explanation
is that choosing the variables impacting the less the bound which has to be
optimized, concentrates the search into the most promising parts and like shown
in Example A.2 helps to back-propagate the objective to prune the tree search.
Furthermore, the upper bound in optimization problems (here minimization,
without loss of generality) does not have a big impact on resolution time. In
addition to our previous intuitions, the upper bound seems to be very sensitive
to initialization and to propagation. For instance in some constraints such as
sum, which often determines the objective value, no arc consistency can be
achieved in polynomial time. But, often, only the bounds are filtered, making less
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Figure A.3 – Comparison of the number of solved instances for different
OBS configuration.
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Figure A.4 – Comparison of the objective quality between different OBS
configurations.

consistent the variations of this variable. Based on different OBS experiments,
the configurations (a=-1,b=0) and (a=-1,b=-1) seem to be the most promising.

Evaluation of Hybrid Strategies

We tried the hybridization with all the OBS configurations in order to select
the most promising one. The configuration (a = −1, b = 0) got better results
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Figure A.5 – Running time comparisons of the hybrid strategies, with
respect to the hybridization parameters. From left to right and the top to
the bottom, the configurations of ABS with (0.25), (0.5), (0.75) and (0).
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Figure A.7 – Comparison of the objective quality between search strategies
and their hybridized versions.

within the hybridization, both in run-times and best objectives, which confirms
our previous results. In the following, when no configuration is specified for
OBS, then it means that the configuration (a = −1, b = 0) has been used. Like
OBS, the hybridization method is configurable in different ways. More or less
importance can be given to the objective, or to the classical feature. In order
to find the best parameter α, different experiments have been done. Figure A.5
shows the comparison of different values of α on ABS. When OBS and ABS
are not hybridized (α = 1 and α = 0), they clearly show orthogonal behaviors :
the timeout are observed on different instances. By looking at the Figure A.5,
it can be seen that ABSO(0.5) dominates the others : less timeout and better
run-times are observed. Only a full comparison of ABS is presented here. We
intentionally omit the remaining combinations to preserve clarity, but similar
results are observed with the others hybridized strategies. The best combinations
are reached when α = 0.5. Thus in the following, when we are going to talk about
a hybridized version, it will be always with α = 0.5.

The run-time and timeout comparisons between the others searches and their
hybridized version are shown in Figure A.6. It is import to remark that WDegO

seems to outperform its original version, unlike IBSO which has an orthogonal
behavior. The figure A.7 shows how the objective feature impacts the search
to find good solutions. It compares the number of times a search against its
hybridized version has found a better solution. Unlike IBS, ABS and WDeg seem
to benefit from the objective features, since their hybridized versions often find
better solution than the original ones. For instance, the classical ABS find less
than 10 better solution compared to its hybridized version which find more than
100 times.

To support again the interest of the hybridization method, we have extracted
some interesting problem families in the Table A.1. In this Table, even if OBS is
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Family OBS ABS WDeg IBS ABSO WDegO IBSO

tdtsp 2 5 5 5 5 5 5
prize-collecting 2 7 7 7 7 2 8
2DBinPacking 7 8 8 8 6 8 8

mrcpspmm 0 3 1 1 0 0 0
mario 0 4 2 0 4 0 3
tpp 7 7 10 10 5 10 10

depot placement 3 7 7 1 4 6 4
p1f 2 1 7 1 2 7 3

table-layout 0 0 10 4 0 3 5
filters 2 1 5 1 1 5 1
amaze 4 3 5 4 3 5 4

open stack 8 5 10 7 4 9 6
talent scheduling 8 7 8 7 4 8 7

Table A.1 – Number of timeout in some families of instances.

not the best strategy, it is often able to solve problems where classical strategies
do not. Furthermore, this table shows the interest of the hybridization, which
most of the time takes advantage and improve the search considering only one
feature. A good example is talent scheduling problem, OBS has 8 timeouts and
ABS 7, but the hybridized version have only 4.

From the different plots and table presented, we remark that IBS is an
exception because neither the original nor the hybridized version dominates
each other and thus does not benefit as much as other search strategies from the
hybridization. Actually, IBS contains already some information about the objective
bounds modifications. The impact is computed over all variables including the
objective. This is why the combination of the two features does not lead to a
domination, but only an improvement in several problems and a decrease in some
others. The resulting search is an orthogonal search to IBS.

Overall evaluation

Figure A.9 shows how many instances were solved as a function of time over
all strategies. Without any hybridization IBS is the best strategy. However, with
the hybridization, ABS shows the best improvements and so ABSO become the
best strategy. ABSO has the largest number of solved instances under the allotted
time. Furthermore, the hybridized versions are very competitive and improve the
number of solved instances. Such a result confirms that using the objective as
feature leads to strong improvement in solving time.

Most of the time, in real life problems, the optimal solution cannot be found

120



A.2. Experiments

ABS ABSO IBS IBSO WDeg WDegO OBS
0

5

10

15

20

25

30

#
o
f
b
es
t
o
b
je
ct
iv
e

Figure A.8 – Number of instances where each search strategy has found a
strictly better objective compared to all the other.

or proved due to time limits. That is why we now compare the capabilities of OBS
and the hybridized versions to find good solutions under an allotted time. The
new hybrid strategies are very competitive in finding good solutions under a given
amount of time as well. Figure A.8 shows how many times a search strategy has
found a strictly better solution than all the others. Searches using the objective
feature are depicted in yellow and the others in blue.

ABSO surpass the others and was able to find 30 times a strictly better
objective than the others, while its original version ABS never finds a better
solution. IBS and OBS seem to be the second best search strategies in terms of
score. The hybridization shows again its advantages since ABSO is strictly better
than ABS. WDegO slightly dominates WDeg and OBS has a good rank.

Miscellaneous discussions The objective can be monitor in many different
ways. The ∆O(t) was not our only trial, we tried to monitor the changes through
a qualitative function counting how many times a variable modifies either the
lower or the upper bounds. On the Minizinc Library, the qualitative function was
dominated by the quantitative one.

Furthermore the ∆O(t) function was used to designed a value selector. Different
variants have been tried : first to select the value minimizing ∆O(t), with possibly
different values for a and b. Second to select the value using the new value heuristic
from [60]. However, even if on some instances such as ghoulomb or openstack these
selector showed a real improvement, they seem to globally be dominated in the
Minizinc problems set by minVal. The definition of a good value heuristic seems
to still be a challenge to solve.

Our experimental section shows that combining classic search strategies with
our objective-based feature leads to better performances and the ability to solve

121



A. Objective criteria for robust search strategies

101 102 103

Time (s)

2× 102

3× 102

4× 102

#
o
f
in
st
a
n
ce
s
so
lv
ed

ABS

ABSO

IBS

IBSO

OBS

WDeg

WDegO

Figure A.9 – Comparison of the number of instances solved by the different
strategies as a function of time.

new problems. It shows that for ABS and WDeg adding an objective-based feature
seems to dominate their performance. Finally it shows that the objective as a
feature can play an important role in finding a good solution faster, as already
claimed [60].

A.3 Related Work

The objective variable in COPs has already been considered in other fields
such as max-SAT [101] to choose which literal to select, or in Soft-CSP for the
decision value [124]. Large Neighborhood Search (LNS) framework also consider
the objective : for example by changing the term of the weighted sum to minimize
[137]. In constraint programming, the objective information is not yet well used. In
[131], the authors propose a heuristic for weighted constraint satisfaction problems
based on the solution quality to guide the value selection during the search. In
[42], the authors propose a machine learning approach to learn the objective
function from the variables’ values, but not directly on the variables themselves.

More recently, counting based search has been adapted for optimization
problems [169], the main idea being to consider objective-based solution density
instead of a simple solution density. This is done by adding to each objective-based
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constraint an additional algorithm processing these values. Also, in MIP, the
objective is widely used in the heuristic [67] : the variables having the best impact
on the objective value of the relaxed problem are selected first. This approach
differs from our, since CP does not have good relaxation as MIP and we consider
the hybridization of the search strategies. A recent work [60] uses the objective
information in order to select the variable value, leaving the variable selection
to another strategy. Our method differs from [60] since we propose a variables
selector, while [60] proposed a value selector. Secondly, we are trying to learn
on-the-fly all along the search tree which variable seems to be the most promising,
unlike [60]. In [60] the value is selected by testing all the possible assignments
of the variable’s domains to determine after the propagation which value is the
best. Moreover, our feature is more fine-grained because it can be determined how
strongly to emphasize bound modifications, using positive or negative parameters.
In addition, in this appendix we propose an hybridization of existing searches
with the objective feature. More particularly our new strategies can be added
into the set of available strategies to choose to solve a problem, even in online
fashion [225].

A.4 Conclusion

We have demonstrated the need for using the objective variable as a feature
for decisions within search strategies in constraint programming. We have defined
a fine grain feature based on objective bound modifications. By using this new
feature, we have designed a new variable selector named OBS. This new variable
selector is not the most efficient, but it is able to overpass the existing ones on
some class of problems. Moreover, we have proposed a hybridization method to
combine our proposed objective-based feature with many existing search strategies.
Our evaluation has shown that the hybridized searches give great results and are
better than the original strategy in term of run time and solution quality. Some
searches are dominated by their hybrid versions. Through this new perspective,
we have shown that using the objective as a feature to make decisions can lead to
strong results. In addition, further work can be done, for example, with non valued
SSs like the ones using a ranking criteria such as COS [68]. Directly applying this
work on such SSs is not trivial, and should be a next step.

For both the ∆O(t) function and the hybridization, we consider here only
a linear combination of the values. More complex combination scheme can be
considered. For example, non linear function or ranking function could be studied.

Finally, parameter optimization methods [110] could be used in order to find
the best values of a, b and α for a given family of problem while solving it.
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Annexe B

ConGa : Constraint Game
solver

This project is a minimal working version of Constraint Game solver (or
Conga). Conga is used to model games and especially to find Pure Nash equilibrium
in it. The project can be found at https://github.com/palmieri-a/CONGA. Conga
is based on Choco Solver which is a Constraint programming solver.

Using Conga should be easy for the ones who have already used a constraint
solver. For the readers who have never used a Constraint solver, it is encouraged
to read the Choco solver’s documentation and its tutorial.

In the following, an example is provided to illustrate the new internal functions
and behaviors in Conga. In this tutorial, the basic notions of constraint program-
ming and game theory are supposed to be known. The tutorial is organized as
follow, we first describe the general principles of the solver, then we show how to
model a game, afterwards the possible customization and to finally present how
to extend the solver.

Requirements

Tools :

— JDK8+

— Maven 3+

Libraries :

— Choco Solver

— JUnit (tests only)

— Gambit (tests only)
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B. ConGa : Constraint Game solver

Installation

To use Conga a jar including all the dependencies is provided on this repository.
Otherwise the sources can be compiled directly with the following instructions.

Compiling from sources

After having downloaded the sources, the project can be compiled by launching
the following command at the root of the project :

mvn clean install -DskipTests

The above command compiles the sources and creates a jar including the
dependencies. This jar can either be imported into another maven project, in
your favorite IDE...

Functioning principles

Conga Solver is not a solver itself, but instead, it is an interface to create a
model in Choco solver for games. Games or multi-agents systems are generally
composed of two sides : the global situation and the agents’ situation. That is why
Conga is built around two solver instances. One is used to compute the players’
deviations, while the second one explores all the possible global situations. A
model is created in both solvers. To create and solve a game, two classes are
crucial : AbstractGameModel* and CongaSolver .

— CongaSolver is an interface to solve and to manage the solving process
of games. It is used to customize games’ model, but only the game part.
Further information are provided in the solver extensions.

— AbstractGameModel is the interface to implement games. It contains
the necessary routines to create games’ semantic.

Modeling your first game

This section presents how to model a simple game with Conga. The Wolf
Lamb Cabbage (WLC) game is a simple game (see description above) used to
illustrate the internal functions and how to find the Pure Nash Equilibriums.

Modeling

To model a game, the class AbstractGameModel has to be overridden. It
imposes to implement the buildModel and to call to the super constructor which
takes as parameter the number of players.
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buildModel method is the internal way to construct a game. This method
provides as a parameter a model object in order to build the variables and the
constraints. Also, when a game model is built, it has to call the super constructor.
This call defines the number of players in the game. Then, when it associated
with an instance of CongaSolver, it builds the players data-structures and then
create the players objects. These players instances are used to define players
behaviors, specify the players search strategies, their goals...

Note that to build a game you need absolutely to use these functions. Conga
builds the constraints, data-structures, and players through it.

An optional method defineObjective can be overridden. This function enables
to define a function which has to be optimized, while seeking for Nash Equilibriums.
Note also that the players are indexed from 1 to n in an array provided by the
AbstractGameModel. The player 0 is a flag for the data structures or can be used
to put any new behavior which cannot enter in the current framework (like a new
player with a different behavior).

Wolf Lamb Cabbage Game (WLC)

Three agents, Wolf (W), Lamb (L) and Cabbage (C) receive an invitation for
a party. Each of them has the choice to come or not at this event. Each agent has
his own preferences about meeting the others participants. Wolf would be happy
to see Lamb but is indifferent about Cabbage’s presence. Lamb would like to see
Cabbage but only if Wolf is not coming. And Cabbage is a plant and is indifferent
to everything.

The game ’s model code is provided in the following and can be found in the
examples folder of the project.

public class WolfLambCabbage extends AbstractGameModel {

private final Short WOLF = 1, LAMB = 2, CABBAGE = 3;

public WolfLambCabbage() {

super(3);

}

@Override

public void buildModel(Model s) {

BoolVar[] isComing = s.boolVarArray("coming", players.length - 1);

IntVar[] utilities = s.intVarArray(players.length - 2, 0, 2);

for (int i = 0; i < isComing.length; i++) {

players[i + 1].own(isComing[i]);
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}

players[WOLF].setObjective(

ResolutionPolicy.MAXIMIZE,utilities[WOLF - 1]);

players[LAMB].setObjective(

ResolutionPolicy.MAXIMIZE,utilities[LAMB - 1]);

Constraint lamb_s = s.arithm(isComing[LAMB - 1], "=", 1);

Constraint cabbage_s = s.arithm(isComing[CABBAGE - 1],

"=", 1);

Constraint wolf_s = s.arithm(isComing[WOLF - 1], "=", 1);

s.arithm(s.and(wolf_s, lamb_s).reify(),

"=", utilities[WOLF - 1]).post();

s.sum(new BoolVar[] { s.and(

wolf_s.getOpposite(), lamb_s, cabbage_s).reify(),

s.and(wolf_s, lamb_s.getOpposite()).reify() },

"=", utilities[LAMB -1]).post();

}

}

The code above shows the basic routines to model a game. The Choco’s API
is used to build the variables and the constraints. Then the game semantic is
given by the function own(Variable...) which is callable from a player. The
players are a protected field in the class AbstractGameModel. For instance
the line above specifies that the player i own the variable isComing[i].

players[i + 1].own(isComing[i]);

In the same way, for each player, an objective can be added by using the
function setObjective(ResolutionPolicy, Variable). For instance the follo-
wing code specifies that the WOLF wants to maximize the value of the variable
utilities[WOLF-1].

players[WOLF].setObjective(

ResolutionPolicy.MAXIMIZE,utilities[WOLF - 1]);

Solving

We show here how to solve a game. The basic idea is to provide to an instance
of the class CongaSolver a model to then compute the Nash equilibriums in it.
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This last instruction is done by the function prepareAndGetSolver() which
return a solver in the Choco sense.

Most of the time, to ease the modelization part, factories are provided. These
factories can be found in the folder src/factories

The following example shows how to find the Pure Nash Equilibrium in the
WolfLambCabbage game using the LAST_LEVEL constraint. This last one
is a version of the propagator proposed in [131]. Another propagator named
BOUND_CONSTRAINT can be used. This propagator is the new algorithm
proposed in [142]. Also a possibility which can be helpful while debugging is to
specify that the game has no constraints with NO_CONSTRAINT .

Finally, the function solve from the solver to find the Nash equilibriums of
the game can be called.

public static void main(String[] args) {

CongaSolver cg = new CongaSolver(new WolfLambCabbage());

cg.setConstraintBuilder(ConstraintFactory.LAST_LEVEL);

Solver s =cg.prepareAndGetSolver();

s.solve();

}

Multiples interfaces can be redefined to customize the solver behavior. A non
exhaustive list is given here :

— ConstraintBuilder : defines how to build for instance a Nash constraint
(see ConstraintFactory for multiples examples)

— IEquilibriumConcept : defines the concept which has to be computed.
Most of the time it is the Nash equilibrium. It can be useful to extend the
solver to other multi agent problems.

— ISearchPolicy : defines the search policy : how the exploration is made in
the players’ deviations search space. This Interface can be useful to define
incomplete search or any new kind of search like Pareto Best response.

— PlayerDependenciesUpdater : this interface allows to create a graphical
game and limit the number of time a player’s constraint is awakened.

Going further

We list here some important class which may be useful to modify the solver
behavior.

— VarHelperImpl is the implementation of the interface Varhelper which
provides data structures to retrieves the variables and objectives of the
different players. It can be useful to know if a variable or an objective is
shared. You can then ask within this class if such case happens in the game.
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— Executable is the interface to implement more general algorithms. You can
find the examples in the enum AlgorithmFactory with for instance the
algorithms NASH, IBR, PARETO_NASH, and the pricing function
such POA or POS.

Gambit reader

If you are really attached to gambit solver, we provide a way to solve gambit
representation through our solver. To use gambit you first have to define the
global variable GAMBIT_PATH to specify where gambit executable is located.
More information of this interface can be found in the class GambitNFGParser
which take as input a normal form game as defined in gambit, and output a
model in constraint game. The transformation used is quite simple, the matrix is
transformed into table constraints.
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Résumé
Nouvelles techniques pour les Contraints Games

Cette thèse présente de nouvelles techniques pour les Constraint Games. La
manière de résoudre un Constraint Game est repensée en terme de propagation de
contraintes. Les préférences des joueurs sont maintenant considérées comme des
contraintes globales permettant une intégration transparente dans les solveurs de
contraintes ainsi que d’améliorer l’efficacité du framework. Notre nouveau solveur
ConGA est diffusé en open source 1. Celui-ci est plus rapide que les travaux
connexes et est capable de trouver tous les équilibres de Nash, et cela même dans
des jeux avec 200 joueurs voir 2000 pour certains jeux graphiques.

Grâce à cette perspective, le framework a pu être utilisé pour résoudre un pro-
blème de routage dans le domaine des télécommunications. Les aspects centralisé
et décentralisé ont été étudiés. La comparaison de ces derniers est très importante
pour évaluer la qualité de service dans les applications multi-utilisateurs. L’éva-
luation de cette dernière peut être très coûteuse, c’est pourquoi nous proposons
plusieurs techniques permettant d’améliorer la résolution de ce problème et ainsi
d’améliorer la résolution du problème.

Constraint Games revisited

This thesis revisits the Constraint games framework by rethinking their solving
technique in terms of constraint propagation. Players preferences are considered
as global constraints making transparently the integration in constraints solvers.
It yields not only a more elegant but also a more efficient framework. We release
our new solver ConGA in open source1. Our new complete solver is faster than
previous state-of-the-art and is able to find all pure Nash equilibrium for some
problems with 200 players or even with 2000 players in graphical games.

This new perspective enables us to tackle real-worlds Telecommunication
problems. This problem is solved with a centralized perspective and a decentralized
one. The comparison of the two last approaches is really important to evaluate the
quality of service in multi-users application, but computationally consuming. That
is why, we propose new techniques in order to improve the resolution process.

Mots-clefs— Constraint Programming, Game theory, Nash Equilibrium,
Search strategy

1. https ://github.com/palmieri-a/CONGA
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