
HAL Id: tel-02368597
https://theses.hal.science/tel-02368597v2

Submitted on 17 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Observation missions with UAVs : defining and learning
models for active perception and proposition of an

architecture enabling repeatable distributed simulations
Christophe Reymann

To cite this version:
Christophe Reymann. Observation missions with UAVs : defining and learning models for active
perception and proposition of an architecture enabling repeatable distributed simulations. Automatic.
INSA de Toulouse, 2019. English. �NNT : 2019ISAT0017�. �tel-02368597v2�

https://theses.hal.science/tel-02368597v2
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Institut National des Sciences Appliquées de
Toulouse

Présentée et soutenue par

Christophe REYMANN

Le 8 juillet 2019

Missions d'observations pour des drones : definition et
apprentissage de modèles pour la perception active, et

proposition d'une architecture permettant des simulations
distribuées répétables.

Ecole doctorale : SYSTEMES

Spécialité : Informatique et Robotique

Unité de recherche :
LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes

Thèse dirigée par
Simon LACROIX

Jury
M. Jean-Baptiste MOURET, Rapporteur

M. Olivier SIMONIN, Rapporteur
M. David FILLIAT, Examinateur

Mme Janette CARDOSO, Examinatrice
M. Rachid ALAMI, Examinateur

M. Simon LACROIX, Directeur de thèse

i

Résumé

Cette thèse se focalise sur des tâches de perceptions pour des drones à voilures
fixes (unmanned aircraft vehicles ou UAV en anglais). Lorsque la perception
est la finalité, un bon modèle d’environnement couplé à la capacité de prédire
l’impact de futures observations sur celui-ci est crucial. La perception active traite
de l’intégration forte entre modèles de perception et processus de raisonnement,
permettant au robot d’acquérir des informations pertinentes à propos du statut de
la mission et de replanifier sa trajectoire de mesure en réaction à des évènements
et résultats imprévisibles.

Ce manuscrit décrit deux approches pour des tâches de perception active, dans
deux scénarios radicalement différents.

Le premier est celui de la cartographie des phénomènes météorologiques de pe-
tite échelle et fortement dynamiques, en particulier de nuages de type cumulus. Les
objets à cartographier sont ici de grand volume et fortement dynamiques, alors que
les capteurs récoltent des informations ponctuelles le long de la trajectoire de l’UAV.
Ceci rend construction d’un modèle précis de ces processus particulièrement difficile,
le raisonnement devant être capable de traiter des données très éparses. L’approche
présentée utilise la régression par processus Gaussien pour construire un modèle
d’environnement, les hyper-paramètres étant appris en ligne. Des métriques de
gain d’information sont introduites pour évaluer la qualité de futures trajectoires
d’observation. Un algorithme de planification stochastique est utilisé pour opti-
miser une fonction d’utilité équilibrant maximisation du gain d’information avec
des buts de minimisation du coût énergétique. La dynamique du robot, ainsi que
les contraintes environnementales comme le vent, sont prise en compte et utilisées
pour garantir des trajectoires réalisables.

Dans le second scénario, un UAV cartographie des champs de grandes cul-
tures pour les besoins de l’agriculture de précision. Le phénomène à observer est
maintenant statique et l’environnement est peu ou prou une surface bidimension-
nelle. Utilisant le résultat d’un algorithme de localisation et cartographie simultanée
(SLAM), une approche nouvelle pour la construction d’un modèle d’erreurs relatives
est proposée. Ce modèle est appris à partir d’attributs provenant des structures de
données du SLAM, ainsi que de la topologie sous-jacente du graphe de covisibilité
formé par les observations.

Dans les deux scénarios, des résultats de simulations réalistes sont présentés et
commentés.

Si la référence absolue en robotique est le test sur le terrain en conditions réal-
istes, un tel déploiement est souvent impossible, que ce soit pour des raisons de
temps ou budgétaires, ou encore parce que les robots capables physiquement de
mener à bien la mission sont encore en développement. Ainsi dans cette thèse, tous
les développement ont été testés en simulation. Pour garantir que les résultats pro-
duits en simulation soient aussi précis que possible, des modèles d’environnements

ii

ainsi que modèles dynamiques aussi réalistes que possible doivent être utilisées. La
plupart des simulations effectuées en robotique sont faites en temps réel, en essayant
de faire correspondre l’avancement du temps simulé avec le temps d’horloge réel.
Cependant pour des simulations complexes, des résultats précis ne sont pas possible
à produire en temps réel, et la synchronisation des simulateurs devient une tâche
ardue.

Une analyse des problématiques de simulations en robotique est proposée. Se
focalisant sur la problématique de gestion de l’avancement tu temps et de la synchro-
nisation de simulateurs hétérogènes dans une architecture distribuée, une solution
originale basée sur une architecture décentralisée est proposée.

iii

Abstract

This thesis focuses on perception tasks for an unmanned aerial vehicle (UAV).
When sensing is the finality, having a good environment model as well as being
capable of predicting the impacts of future observations is crucial. Active perception
deals with integrating tightly perception models in the reasoning process, enabling
the robot to gain knowledge about the status of its mission and to replan its
sensing trajectory to react to unforeseen events and results.

This manuscript describes two approaches for active perception tasks, in two
radically different settings.

The first one deals with mapping highly dynamic and small scale meteorolog-
ical phenomena such as cumulus clouds. Here the object to be mapped is three
dimensional and highly dynamic, whereas the sensors gather punctual observations
along the trajectory of the UAV. Building an accurate model of the process is
extremely challenging, and reasoning must be performed on incomplete data. The
presented approach uses Gaussian Process Regression to build environment models,
learning its hyperparameters online. Normalized marginal information metrics are
introduced to compute the quality of future observation trajectories. A stochastic
planning algorithm is used to optimize an utility measure balancing maximization
of theses metrics with energetic minimization goals. The dynamics of the robot as
well as environmental constraints such as wind are taken into account and used to
compute feasible trajectories.

The second setting revolves around mapping crop fields for precision agriculture
purposes. The phenomena to observe is now static, and the environment roughly
a two dimensional surface. Using the output of a monocular graph Simultaneous
Localization and Mapping (SLAM) algorithm, a novel approach to building a rel-
ative error model is proposed. This model is learned both from features extracted
from the SLAM algorithm’s data structures, as well as the underlying topology of
the covisibility graph of the observations.

In both cases, results on realistic simulations are presented and discussed.

If the golden standard of robotics is testing in the field with realistic conditions,
it is often not feasible either due to time or financial constraints, or because robots
capable of sensing and following the produced trajectories are still in development.
In this thesis and for all of these reasons, all developments have been tested in
simulation. Most robotics simulation are done in real time, trying to match sim-
ulator speed with wall clock advancement. However when one deals with complex
simulations, accurate results are not possible in real time, and synchronization of
the simulators becomes a daunting task.

An analysis of the simulation issue in robotics is proposed. Focusing on the
problem of managing time advancement of multiple interconnected simulators, a
novel solution based on a decentralized scheme is presented.

v

Acknowledgments

A warm thank you to all colleagues, friends and family who helped me through my
doctorate and during the writing of this thesis.

To the PhD students of the RIS group for all the wacky conversations and the
hearty laughs,

to Mohammed for his precious collaboration,

to Simon for his exceptional humane qualities,

to all friends who helped me during hard times,

to my parents for their unconditional love and support,

to Samuel, always teeming with joy and mischief.

Contents

Introduction 1
Motivations: active perception . 1
Structure of the manuscript . 3
Bibliography . 4

1 Adaptive sampling of cumulus clouds with UAVs 5
1.1 Introduction . 2
1.2 Mapping Clouds . 6

1.2.1 Gaussian process regression model 6
1.2.2 Learning hyperparameters . 7
1.2.3 Computing information metrics on trajectories 10

1.3 Energy-efficient Data Gathering . 11
1.3.1 Trajectory evaluation . 12
1.3.2 Trajectory optimization . 13
1.3.3 Illustrative examples . 15

1.4 Integrated Simulations . 16
1.4.1 Simulation setup . 16
1.4.2 Results . 22

1.5 Discussion . 37
1.5.1 Summary . 37
1.5.2 Future work . 37

1.A Aircraft Model . 38
1.A.1 Steady Banked Turn Phase 39
1.A.2 Rate of Climb (ROC) and power consumption 40
1.A.3 Pull-up and Pull-down . 41

1.B Trajectory Computation . 42
Bibliography . 43

2 Repeatable decentralised simulations for cyber-physical systems 47
2.1 Motivations . 47

2.1.1 On the need of distributed simulations 47
2.1.2 On repeatability . 48

2.2 Distributed simulations: state of the art 49
2.2.1 Distributed simulation standards 49
2.2.2 Time management in parallel and distributed simulations . . 51
2.2.3 The case of robotics . 54

2.3 DSAAM: a decentralized time management architecture 58
2.4 Formal Model and Proof . 61

2.4.1 Preliminaries . 62
2.4.2 Formalizing DSAAM . 68

viii Contents

2.4.3 Proof of progress . 76
2.5 Implementation . 83

2.5.1 The Precidrone use case . 83
2.6 Discussion . 84

2.6.1 Contributions . 84
2.6.2 Future work . 85

2.A Implementation benchmarking results 86
2.B Listings . 89
Bibliography . 92

3 Learning error models for graph SLAM 95
3.1 Introduction . 95

3.1.1 Context . 95
3.1.2 Problem statement and contribution 97
3.1.3 Outline . 97

3.2 Related work . 98
3.2.1 Relationship between pose graph topology and uncertainty . 101

3.3 Learning the error model from SLAM topology 102
3.3.1 The covisibility pose graph 103
3.3.2 The resistance distance . 103
3.3.3 Learning the relative error through the resistance distance. . 105

3.4 Implementation of the learning architecture 107
3.4.1 Selecting informative features 107
3.4.2 Loss function . 107

3.5 Results . 108
3.5.1 Simulation setup . 109
3.5.2 Learning setup . 110
3.5.3 Qualitative analysis . 111
3.5.4 Quantitative results . 117

3.6 Discussion and future works . 122
Bibliography . 123

Discussion 127

Introduction

Motivations: active perception

Autonomous robotics has been structured since its inception by the sense - plan - act
loop paradigm. The robot gathers data to build a representation of its environment,
then plans its actions in this environment model according to its own dynamics
model and goals, and finally these actions are fed to a controller responsible of
carrying them out in the real world using the robots actuators. Sensory inputs then
allow to monitor the plan execution, to update the environment representation, to
compute updated plans, and so on.

However such a simple view with clearly separated concerns is but an illusion:
it is not possible to develop the solutions to one of these tasks without knowledge
of the others. Indeed the sensing shall build an environment model on which the
planning algorithm can make relevant requests. Conversely the planning algorithm
needs to know what kind of environment model it will be provided with, along with
the expected precision of this model given the robots sensors and the complexity of
the representation. It also needs to incorporate the acting capabilities of the robot
to account for their specificity and imprecision, and in also consider a specific type
of action: perceiving.

Indeed what characterizes a robot is its embodiment in our world, which is too
complex and unpredictable to model perfectly and therefore forces the roboticist to
develop simplified models and account for the associated uncertainties. The quality
of models is therefore central to the success of a robot’s mission: it may achieve its
tasks with bad algorithms but good models, a good algorithm is useless without a
good model and sensory data to populate it.

Hence sensors and perception models are central in the robotic architecture.
Good models not only allow to integrate sensory data to build a faithful map of
the environment and relate the robots action in this map, but are also predictive.
Allowing to infer the future state of the world model given predicted perception
actions can yield the efficient achievement of a series of robot tasks, that can be
set as “which information on the world are required to properly achieve the task?”.
This overal approach is coined as active perception, which encourages even tighter
coupling between sensing, planning and acting by having the building and mainte-
nance of the environment model as one of the primary goals of the robot. It is a
driving force in numerous real world scenarios, especially in interaction scenarios,
any time the information available on the environment, including on interacting
actors, are incomplete or uncertain.

Recently, the success of deep learning end-to-end techniques, taking sensory
data as input of a neural network and producing actions as controller inputs has
shown the power of tight integration of all three concerns. This new techniques
effectively remove an intermediate planning stage, deriving directly actions from

2 Contents

sensory inputs. Despite these successes, deep learning techniques alone have
shown limited success in constructing revisable abstractions during the course
of the mission. Memory cells and recurrent networks have been introduced, but
these networks remain untrainable and error prone except for the simplest usages.
However, these results question the classical separation of concerns of the sense -
plan -act paradigm.

In this thesis, active perception is a direct consequence of the mapping missions
that were the motivations behind the Skyscanner and Precidrone projects, which
objectives are respectively mapping clouds with a fleet of UAVs and mapping crop
field with a UAV. A tighter coupling between sensing and planning through the
development of rich models along with ways to query them is the driving force
behind the developments presented in the first two research contributions of the
thesis developped within the context of these projects.

Repeatable Simulations Field experimentation is the gold standard of valida-
tion in robotics. However as systems and algorithms grow in complexity, it is not
enough anymore. Due to costs and time constraints, deployment of robots - or fleets
of robots - in varied environments and extensive statistical validation through re-
peated experiments becomes hardly possible. Moreover comparisons between field
experiments of different teams is not an easy task, as we try more and more to
deploy our robots in uncontrolled environments exhibiting high variability. This
often prevents to draw meaningful conclusions, whether testing reproducibility or
comparing approaches.

As an intermediate step, validation of algorithms in simulation, especially at
an early stage, is the only answer to this dilemma. Quite a number of dedicated
simulators dedicated to robotics and autonomous vehicles have been developed.
However integrating simulators with distributed, component based architectures,
deploying simulations with multiple robots as well as multiple - possibly heteroge-
neous - simulators is not trivial. For the most part, no thought has been given in
the robotics community on how to ensure the consistency and repeatability of such
simulations.

Arising from the issues faced during the development of the simulations needed
for the first two contributions of this thesis, the third contribution argues for the
need for consistent and repeatable simulations in robotics and proposes a distributed
architecture for time management as a first step towards this goal. It has been in-
spired from the works of the Parallel and Discrete Event Simulation community and
the High Level Architecture (HLA) simulation standard, but its novel, completely
decentralized, architecture as well as its simplicity may make it easier to integrate
in robotics architectures.

Contents 3

Structure of the manuscript

This manuscript consists of a collection of articles, either already published or in
the course of publication. Chapter 2 and 3 contain additional material that was
not included in the submitted articles.

Chapter 1 deals with the problem of mapping atmospheric phenomena using a
fleet of drones, studied in the context of the Skyscanner project. It presents a so-
lution involving the usage of Gaussian Process, for which the hyperparameters are
learned online, in combination with a stochastic sampling exploration technique.
Extensive statistical results from realistic simulations involving large-eddy atmo-
spheric simulations are presented, including an in-depth analysis of the evolution
and learning of the Gaussian Process hyperparameters.

The material of this chapter has been published as is in the journal Au-
tonomous Robots [Reymann 2018] (a preliminary version had been published in
[Renzaglia 2016]) and some of which is the product of collaboration:

• The usage of the stochastic optimization scheme (section 1.3.2.2) has been
developed in collaboration with Alessandro Renzaglia.

• The cloud simulations have been produced by Fayçal Lamraoui (section
1.4.1.1).

• The UAV control model (appendix 1.A) has been developed by Murat Bronz.

The rest is my own contribution, including all software developments.

Chapter 2 argues for the need of repeatable simulations in robotics, proposing a
novel approach for time management in distributed simulation. It also argues for
more vertically modular software architectures, instead on relying on jack-of-all-
trades frameworks. This work has been partly motivated by a participation in the
development of a simulation for the Skyscanner project [Bailon-Ruiz 2017].

The core material of this chapter has been submitted for publication to the
Software Quality, Reliability and Security conference [Reymann 2019a].

The formalization effort (section 2.4) has been contributed by Mohammed
Foughali, the rest of the material including the original idea, developments, proofs
and implementation are my own.

Chapter 3 proposes an architecture mixing neural networks with graph topology
to learn an error model for the monocular Simultaneous Localization and Mapping
problem. This model has the particularity to provide with relative positional errors
between all positions, instead of absolute ones. Illustrative and statistical results
from simulations are discussed. This work has been motivated by the Precidrone
project, which partly financed this thesis and consisted in studying innovative means
to map crop fields with UAVs. Work related to replanning mapping trajectories in
a similar context, to which I partially contributed, can be found in [Pěnička 2017].

4 Bibliography

The core material of this chapter has been submitted to the Robotics: Science
and Systems conference [Reymann 2019b].

All work of this chapter is my own.

Bibliography

[Bailon-Ruiz 2017] R. Bailon-Ruiz, C. Reymann, S. Lacroix, G. Hattenberger,
H. Garcia de Marina and F. Lamraoui. System simulation of a fleet of
drones to probe cumulus clouds. In International Conference on Unmanned
Aircraft Systems, Miami, United States, June 2017.

[Pěnička 2017] R. Pěnička, M. Saska, C. Reymann and S. Lacroix. Reactive Dubins
Traveling Salesman Problem for Replanning of Information Gathering by
UAVs. In The European Conference on Mobile Robotics, Palaiseau, France,
September 2017.

[Renzaglia 2016] A. Renzaglia, C. Reymann and S. Lacroix. Monitoring the Evo-
lution of Clouds with UAVs. In IEEE International Conference on Robotics
and Automation, Stockholm, Sweden, May 2016.

[Reymann 2018] C. Reymann, A. Renzaglia, F. Lamraoui, M. Bronz and S. Lacroix.
Adaptive sampling of cumulus clouds with a fleet of UAVs. Autonomous
robots, vol. 42, no. 2, pages 1–22, 2018.

[Reymann 2019a] C. Reymann, M. Foughali and S. Lacroix. On the need of dis-
tributed simulations. In submitted to the 19th IEEE International Confer-
ence on Software Quality, Reliability and Security conference, Sofia (Bul-
garia), July 2019.

[Reymann 2019b] C. Reymann and S. Lacroix. Learning error models for graph
SLAM. In submitted to the Robotics: Science and Systems conference,
Freiburg (Germany), June 2019.

Chapter 1

Adaptive sampling of cumulus
clouds with UAVs

Contents
1.1 Introduction . 2
1.2 Mapping Clouds . 6

1.2.1 Gaussian process regression model 6
1.2.2 Learning hyperparameters . 7
1.2.3 Computing information metrics on trajectories 10

1.3 Energy-efficient Data Gathering 11
1.3.1 Trajectory evaluation . 12
1.3.2 Trajectory optimization . 13
1.3.3 Illustrative examples . 15

1.4 Integrated Simulations . 16
1.4.1 Simulation setup . 16
1.4.2 Results . 22

1.5 Discussion . 37
1.5.1 Summary . 37
1.5.2 Future work . 37

1.A Aircraft Model . 38
1.A.1 Steady Banked Turn Phase 39
1.A.2 Rate of Climb (ROC) and power consumption 40
1.A.3 Pull-up and Pull-down . 41

1.B Trajectory Computation . 42
Bibliography . 43

Adaptive sampling of cumulus clouds with
UAVs

Alessandro RENZAGLIA1, Fayçal LAMRAOUI2, Murat BRONZ3, and
Simon LACROIX1

1LAAS-CNRS, INSA, Université de Toulouse, CNRS, Toulouse, France
2Météo-France/CNRS, CNRM/GAME, Toulouse, France

3ENAC, 7 avenue Edouard-Belin, F-31055 Toulouse, France

Published in Autonomous Robots, 2018, 42 (2), pp.491-512

2 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

Abstract

This paper presents an approach to guide a fleet of Unmanned Aerial Vehicles to
actively gather data in low-altitude cumulus clouds with the aim of mapping atmo-
spheric variables. Building on-line maps based on very sparse local measurements
is the first challenge to overcome, for which an approach based on Gaussian Pro-
cesses is proposed. A particular attention is given to the on-line hyperparameters
optimization, since atmospheric phenomena are strongly dynamical processes. The
obtained local map is then exploited by a trajectory planner based on a stochastic
optimization algorithm. The goal is to generate feasible trajectories which exploit
air flows to perform energy-efficient flights, while maximizing the information col-
lected along the mission. The system is then tested in simulations carried out using
realistic models of cumulus clouds and of the UAVs flight dynamics. Results on
mapping achieved by multiple UAVs and an extensive analysis on the evolution of
Gaussian Processes hyperparameters is proposed.

1.1 Introduction

Context. Atmospheric models still suffer from a gap between ground-based and
satellite measurements. As a consequence, the impact of clouds remain one of the
largest uncertainties in the climate General Circulation Model (GCM): for instance
the diurnal cycle of continental convection in climate models predicts a maximum
of precipitation at noon local time, which is hours earlier compared to observa-
tions – this discrepancy being related to insufficient entrainment in the cumulus
parameterizations [Del Genio 2010]. Despite the continual efforts of cloud micro-
physics modelers to increase the complexity of cloud parameterization, uncertainties
continue to persist in GCMs and numerical weather prediction [Stevens 2013]. To
alleviate these uncertainties, adequate measurements of cloud dynamics and key
micro-physical parameters are required. The precision of the instruments matters
for this purpose, but it is the way in which samples are collected that has the most
important impact. Fully characterizing the evolution over time of the various pa-
rameters (namely pressure, temperature, radiance, 3D wind, liquid water content
and aerosols) within a cloud volume requires dense spatial sampling for durations of
the order of one hour: a fleet of autonomous lightweight Unmanned Aerial Vehicles
(UAVs) that coordinate themselves in real time could fulfill this purpose.

The objective of the SkyScanner project1, which gathers atmosphere and
drone scientists, is to conceive and develop a fleet of micro UAVs to better assess
the formation and evolution of low-altitude continental cumulus clouds. The
fleet should collect data within and in the close vicinity of the cloud, with a
spatial and temporal resolution of respectively about 10m and 1Hz over the
cloud lifespan. In particular, by reasoning in real time on the data gathered
so far, an adaptive data collection scheme that detects areas where additional

1https://www.laas.fr/projects/skyscanner/

https://www.laas.fr/projects/skyscanner/

1.1. Introduction 3

measures are required can be much more efficient than a predefined acquisition
pattern: this article focuses on the definition of such adaptive acquisition strategies.

Challenges The overall control of the fleet to map the cloud must address the
two following problems:

• It is a poorly informed problem. On the one hand the UAVs perceive the
variables of interest only at the positions they reach (contrary to exterocep-
tive sensors used in robotics, all the atmosphere sensors perform pointwise
measures at their position), and on the other hand these parameters evolve
dynamically. The mapping problem in such conditions consists in estimating
a 4D structure with a series data acquired along 1D manifolds. Further-
more, even though the coarse schema of air currents within cumulus clouds is
known (Fig. 1.1), the definition of laws that relate the cloud dimensions, the
inner wind speeds, and the spatial distribution of the various thermodynamic
variables is still a matter of research – for which UAVs can bring significant
insights.

• It is a highly constrained problem. The mission duration must be of the
order of a cumulus lifespan, that is about 1 hour, and the winds considerably
affect both the possible trajectories of the UAVs and their energy consumption
– all the more since we are considering small sized motor gliders aircrafts
(maximum take off weight of 2.0 kg). Since winds are the most important
variables that influence the definition of the trajectories and are mapped as
the fleet evolves, mapping the cloud is a specific instance of an “explore vs.
exploit” problem.

Exploring cloud with a fleet of UAVs is therefore a particularly complex problem.
The challenge to overcome is to develop non-myopic adaptive strategies using myopic
sensors, that define UAV motions that maximize both the amount of gathered
information and the mission duration.

Related work. Atmospheric scientists have been early users of UAVs2, thanks
to which significant scientific results have rapidly been obtained in various
contexts: volcanic emissions analysis [Diaz 2010], polar research [Holland 2001,
Inoue 2008] and naturally climatic and meteorological sciences [Ramanathan 2007,
Corrigan 2008, Roberts 2008]. UAVs indeed bring forth several advantages over
manned flight to probe atmospheric phenomena: low cost, ease of deployment, pos-
sibility to evolve in high turbulence [Elston 2011], etc. An in-depth overview of the
various fixed-wing airframes, sensor suites and state estimation approaches that
have been used so far in atmospheric science is provided in [Elston 2015].

2Cf the activities of the International Society for Atmospheric Research using Remotely piloted
Aircraft – ISARRA, http://www.isarra.org

http://www.isarra.org

4 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

Figure 1.1: Schematic representation of a cumulus cloud. The arrows represent
wind velocities, the orange blobs denote areas where mixing is occurring between
the cloud and the surrounding atmosphere. This representation is very coarse: for
instance the updrafts in the center of the cloud are known to behave as “bubbles”
when the cloud is young. The cloud dimensions can vary from one to several
hundreds of meters.

In these contexts, UAVs follow pre-planned trajectories to sample the atmo-
sphere. In the robotics literature, some recent works have tackled the problem of
autonomously exploring or exploiting atmospheric phenomena. The possibility of
using dynamic soaring to extend the mission duration for sampling in supercell thun-
derstorms has been presented in [Elston 2014]. In this case, only the energetic con-
sumption is optimized, and the gathered information does not drive the planning. In
[Lawrance 2011a, Lawrance 2011b], Lawrance and Sukkarieh present an approach
where a glider explores a wind field trying to exploit air flows to augment flight du-
ration. The wind field is mapped using a Gaussian Process Regression framework
(GPR), and the wind currents are simulated using combinations of sines and cosines
and a toroidal model for updrafts, and a constant lateral drift is added to introduce
dynamicity. The authors propose a hierarchic approach for the planning, where a
target point is firstly selected and then a trajectory to reach it is generated for every
planning cycle. In a similar scenario, a reinforcement learning algorithm to find a
trade-off between energy harvesting and exploration is proposed in [Chung 2015].
Autonomous soaring has also been studied, as in [Nguyen 2013], where a glider has
to search for a target on the ground. The goal here is to maximize the probability
of detecting the target traveling between thermals with known location. The prob-
lem of tracking and mapping atmospheric phenomena with a UAV is also studied in
[Ravela 2013]. The authors use GPR to map the updraft created by a smoke plume.
Even though the mapped currents are not taken into account for the navigation, it
is worth to remark that contrary to the previous contributions, here experiments
with a real platform are presented. This shows the possibility of online mapping

1.1. Introduction 5

of atmospheric phenomena by a fixed-wing UAV using GPR. An other significant
contribution on wind-field mapping is presented in [Langelaan 2012]: aiming at au-
tonomous dynamic soaring with a small UAV, the authors present and approach in
which the wind field is modelled by polynomials, which parameters are estimated
with a Kalman Filter. Experiments in which the mapped wind-field is compared to
an “air-truth” obtained by tracking lighter than air balloons small are presented.
Finally, autonomous exploration of current fields is not exclusively related to aerial
applications: the use of Autonomous Underwater Vehicles for oceanographic studies
has been recently investigated [Das 2013, Michini 2014].

Besides in [Michini 2014], in all the aforementioned work only the use of a
single vehicle to achieve the mission is considered, and no multi-UAV systems are
proposed.

Contributions and outline. The work presented in this article tackles the fol-
lowing problem: a fleet of a handful of UAVs is tasked to autonomously gather
information in a specified area of the cloud. The UAVs trajectories are optimized
using an on-line updated dense model of the variables of interest. The dense model
is built on the basis of the gathered data with a Gaussian Processes Regression,
and is exploited to generate trajectories that minimize the uncertainty on the re-
quired information, while steering the vehicles within the air flows to save energy.
The results presented here significantly extend the preliminary work depicted in
[Renzaglia 2016]: they use a realistic dynamic aircraft model, and extensive simu-
lation in dynamic clouds models are analyzed. The main contributions of this work
with respect to the state of the art are:

• The mapped phenomenon varies a lot in time and space, and the ability to
build proper wind maps is essential, as it conditions the ability to derive op-
timal adaptive sampling schemes. The hyperparameters of the GP are hence
learned online (section 1.2), and an analysis of their evolution is proposed
(section 1.4).

• An original exploration technique based on a stochastic optimization scheme is
proposed to plan feasible trajectories in the mapped current field (section 1.3).
The approach aims at optimizing possibly contradictory goals: augmenting
the information gathered so far, while minimizing energy consumption.

• Realistic simulations based on a cumulus cloud model produced by realistic
large-eddy simulations and a realistic motor glider flight dynamics model are
presented (section 1.4). Some exploration tasks are depicted, varying the
criteria to optimize, and we show the ability of our approach to perform the
specified mission in a realistic setting.

A discussion concludes the paper and proposes further research and development
directions to explore, so as to effectively deploy adaptive fleets of drones within
atmospheric phenomena.

6 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

1.2 Mapping Clouds

Maintaining a reliable map of the environment is of course of utmost importance
for exploration tasks, as it is necessary to assess both the feasibility of trajectories
and the relevant sampling locations. In the case of atmospheric phenomena, there
are numerous variables of interest to the meteorologist. Of particular interest is the
3D wind vector: it is both one of the most dynamic atmospheric variables and an
essential information for planning feasible and energy efficient paths. We therefore
focused our work on the mapping of dynamic 3D wind currents.

Due to the sparsity of the sampling process in a dynamic 3D environment, the
GPR probabilistic framework is particularly adapted for this mapping problem, as
shown by related work [Lawrance 2011a, Lawrance 2011b, Ravela 2013, Das 2013].
Being statistical in nature, GPR allows to estimate the quality of predictions. This
is naturally exploited in active perception tasks, such as in [Souza 2014], where the
authors derives exploration strategies for outdoor vehicles, and in [Kim 2015], where
a GP framework is used to drive surface reconstruction and occupancy mapping.

The mapping framework used in this paper is similar to the one presented in
[Lawrance 2011b], where three independent GP models are used to map the compo-
nents of the 3D wind vector, but we propose an online hyperparameter optimization,
which is activated between each planning iteration. We have also focused efforts
on deriving interesting and fast to compute information metrics from the model to
drive the exploration strategies.

1.2.1 Gaussian process regression model

We introduce here briefly the usage of Gaussian processes for regression tasks. We
refer the reader to the work of Rasmussen & Williams [Rasmussen 2006] for an
in-depth view of the subject.
Gaussian Process Regression is a very general statistical framework, where an un-
derlying process y = f(x) : Rn → R is modeled as “a collection of random variables,
any finite number of which have a joint Gaussian distribution” [Rasmussen 2006].
One can view this as a way to set a Gaussian prior over the set of all admissible
functions: given a location x ∈ Rn, the values y taken by all admissible functions are
distributed in a Gaussian manner. Under the gaussianity assumption, the process
is fully defined by its mean and covariance:

m(x) = E[f(x)] ,
k(x,x′) = E[(f(x)−m(x)(f(x′)−m(x′))] .

(1.1)

In this model, the mean m and covariance k are not learned directly from the data,
but given as parameters. In most cases, the process is assumed to have zero mean,
so that the only parameter is the covariance function or kernel. We currently do
not use any particular prior information and adopt a zero mean process: this is a
matter of further work, that will explicitly define the relations between the higher
level coarse cloud model and the dense GP-based model, as well as the relations

1.2. Mapping Clouds 7

between the various variables of interest.
The kernel encodes the similarity of the target process f at a pair of given inputs

and so describes the spatial correlations of the process. Given a set of n samples
(X,Y) and assuming zero mean, the GP prior is fully defined by the n × n Gram
matrix ΣX,X = [k(Xi, Xj)] of the covariances between all pairs of sample locations.
Inference of the processes value y? at a new location x? is then done by conditioning
the joint Gaussian prior distribution on the new samples:

ȳ? = Σx?,XΣ−1
X,XY,

V[y?] = k(x?,x?)− Σx?,XΣ−1
X,XΣ>x?,X

(1.2)

The posterior Gaussian distribution at location x? of the values of all admissible
functions in the GP model therefore has mean ȳ? and variance V[y?], which can be
used both to predict the value of the function and to quantify the uncertainty of
the model at this location.

Thanks to the gaussianity assumption, inference has a closed form solution
involving only linear algebraic equations. Computing the model is done in O(n3),
due to the cost of inversion of the Σ matrix and subsequent computation of the
posterior are done in O(n2). This can be done online using optimized linear algebra
software for models of up to a few hundreds of samples.

1.2.2 Learning hyperparameters

The choice of the expression of the kernel function k is central: it sets a prior
on the properties of f such as its isotropy, stationarity or smoothness. The only
requirement for the kernel function is that it has to be positive semidefinite, which
means the covariance matrix Σ of any set of inputs must be positive semidefinite
and therefore invertible. In practice, one selects a family of kernels, whose so called
hyperparameters are learned to fit the data. We selected the most widely used
squared exponential kernel with additive Gaussian noise:

kSE(xi,xj) = σ2
fe
− 1

2 |xi−xj|M |xi−xj| + δijσ
2
n (1.3)

where δij is the Kronecker delta function, M = l−2I is a diagonal matrix that
defines the characteristic anisotropic length scales l of the process, and σ2

f and
σ2
n are respectively the process variance and the Gaussian noise variance over the

measures. The squared exponential kernel is stationary, anisotropic and infinitely
smooth.

The kernels hyperparameters θ = (σf , l, σn) are chosen by maximizing the
Bayesian log marginal likelihood criterion:

log p(Y|X, θ) = −1
2Y>Σ−1Y− 1

2 log |Σ| − n

2 log 2π (1.4)

This is a non-convex optimization problem: the optimization function may be
subject to local maxima, and therefore may not always converge in finite time.

8 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

Optimizing the kernel hyperparameters is computationally demanding: although
the partial derivative of eq. (1.4) with respect to θ can be computed in O(n3),
convergence to a local optimum may involve a great number of steps. Usually the
optimization of hyperparameters is therefore done offline.

In our context, the input space is the four dimensional space-time location of the
UAVs, and the estimated variables are the three components of the 3D wind vector.
Therefore we train three GP models separately, making the simplifying assumption
that there is no correlation between the three components. The optimization of
hyperparameters is done online: indeed the underlying atmospheric process’s length
scales may vary from one cloud to the other, and the stationarity assumption may
not hold during the course of the mission. To alleviate computational issues we
keep only the most relevant samples. This is done by setting a tolerance value htol,
so that when comparing the newest sample xn to an older one xo, and setting all
spatial coordinates to zero, the older one is discarded if k(xn, xo) < htol. Using
this criteria on the covariance instead of the age of the samples lets the amount of
retained samples adapt to the the temporal length scale of the process. In order to
avoid dropping all data if the optimization produces very short length scale on the
time dimension, we also specify a minimum amount of time it has to stay in the
model, which was set to one minute in our experiments.

Figure 1.2 illustrates the mapping of the wind vertical component, by virtually
gathering wind data in a realistically simulated wind field (see section 1.4.1.1).

1.2. Mapping Clouds 9

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

y
co

or
di

na
te

(k
m

)

Ground truth

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

y
co

or
di

na
te

(k
m

)

Predicted mean y?

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

y
co

or
di

na
te

(k
m

)

Predicted variance V [y?]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

y
co

or
di

na
te

(k
m

)

Ground truth

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

y
co

or
di

na
te

(k
m

)

Predicted mean y?

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

y
co

or
di

na
te

(k
m

)

Predicted variance V [y?]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

y
co

or
di

na
te

(k
m

)

Ground truth

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

3.6

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

y
co

or
di

na
te

(k
m

)

Predicted mean y?

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

3.6

2.10 2.15 2.20 2.25 2.30 2.35 2.40

x coordinate (km)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

y
co

or
di

na
te

(k
m

)

Predicted variance V [y?]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

tim
e

Figure 1.2: Illustration of the GP-based mapping process applied in a realistic wind
field. The left pictures represent the ground truth of the vertical wind velocity,
pictures in the middle show the computed maps on the basis of the measures taken
at the positions denoted by a black dot (the measure standard deviation σn is
equal to 0.25m), and the right images show the predicted variances of the map.
Unit of all depicted values is m.s−1. The sequences of measures are defined by the
planning approach presented in section 1.3. From top to bottom, a time lapse of
20 s separates each line of pictures, the altitude shown is the one of the first UAV,
respectively 800m, 825m and 850m.

10 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

1.2.3 Computing information metrics on trajectories

As the task at hand is an exploration one, it is crucial to be able to properly
evaluate the quantity of information a set of new samples add to the current map,
so as to enable a planning process to select informative trajectories. Since the GP
framework encodes probability distributions, the resulting maps are particularly
well adapted for this purpose: the variance of the GP as defined by eq. (1.2), which
represents the uncertainty of the current model at each point in space, is a natural
candidate to evaluate the utility of new measurements.

The problem of selecting the best possible future measurements to estimate a
statistical model has been extensively studied. The idea is to minimize the variance
of the estimator using a statistical criterion. In [Chung 2015], Chung et al. integrate
the variance of the GP over the region to be mapped and derive a measure of the
quality of the model. Unfortunately, a closed-from expression of this integral does
not exist in general. The integration criterion defined in [Chung 2015] is an instance
of I-optimality. Other classical criteria directly seek to minimize the covariance
matrix:

• D-optimality aims to maximize the differential Shannon entropy of the statis-
tical model, which comes to maximizing the determinant of the information
matrix (the inverse of the covariance matrix).

• T-optimality aims to maximize the trace of the information matrix.

We have found very few differences between these two criteria in previous work
[Renzaglia 2016], so we used the T-optimality criterion in the experiments, which
it is slightly faster to compute.

To efficiently evaluate the information gain of a new set of measurement points,
we define the conditional covariance ΣXnew|X of the set of m new points Xnew

against X, the points already included in the regression model:

ΣXnew|X = ΣXnew,Xnew − ΣXnew,XΣ−1
X,XΣ>Xnew,X (1.5)

The ΣXnew|X matrix is of fixed size m×m, independent of the size of the model,
which yield swift computations. The matrix itself is computed in O(nm2 + mn2),
subsequent inversion or computation of the determinant are performed in O(m3).
The value vT of the T-optimality criterion is thus defined as:

vT (ΣXnew|X) = tr([ΣXnew|X + σ2
nI]−1) (1.6)

This criterion does not yield absolute values, not even positive ones. The scale
will depend on the kernel function and on the number of samples in the model.
Therefore it is only useful for comparing trajectories generated using the same
model (and with the same amount of new samples). To be able to integrate this

1.3. Energy-efficient Data Gathering 11

information measure in a multi-criteria optimization framework, it is necessary to
normalize it. We introduce here an empirical way of normalizing the information
measure.

Assuming a fixed sampling rate, the feasible trajectory maximizing the informa-
tion measure in a completely empty model is a straight line in the spatial direction
where the covariances length scale is the shortest. Computing the utility measure
vTb for such a trajectory gives an upper bound for a best set of samples. Driving
the UAV along a straight line in the direction of the longest length scale would still
provide a passable utility vTp (as the model is still empty). Setting absolute utilities
for vTb and vTp then enables to define a normalization for the information measure.
This normalized value is not relative anymore, it takes into account the current
state of the model: if the model is very dense, with low variances everywhere, then
the normalized utility will be very low (depending on the normalization function)
because we compare it to an ideal empty model. Note that these ideal trajecto-
ries must be feasible for the UAV, at least in a windless environment. As we use
fixed wing UAVs, it is not realistic to drive them along a strictly vertical trajectory.
Therefore when the shortest length scale is the vertical one, we assume a trajectory
at maximum climb rate, with the horizontal component along the second shortest
length scale.

1.3 Energy-efficient Data Gathering

The regression model presented in the previous section is the basis on which the
energy-efficient data gathering strategy is developed. The local map built with the
GPs is indeed the source of two fundamental information to plan the trajectories:
generate feasible trajectories, and predicting the information gain their execution
will bring. The optimization problem to solve can be then formulated as follows:
generating safe and feasible trajectories which minimize the total energy consump-
tion according to the mapped wind field, while maximizing the information collected
along the paths.

Planning in currents fields is a challenging problem even in standard start-to-
goal problems, where a robot moves in a static two-dimensional flow and assuming a
perfect knowledge of the map [Petres 2007], [Soulignac 2011]. Our scenario is deeply
different, since the field is changing over time, is initially unknown and sensed during
the mission and it is not possible to identify an optimal final goal to reach in order to
reduce the problem complexity. Furthermore, even though we do not consider large
swarm of UAVs, the deployement of a small number of aircrafts (typically around
3-4) is crucial for the success of the mission, leading to larger planning spaces. All
these complex issues, combined with strong computational constraints imposed by
the requirements of on-line planning, make this multi-criteria optimization problem
particularly challenging. As a result, obtaining a global optimal solution is not
feasible and we limit our convergence requirements to local optimal solutions.

For the trajectory generation and evaluation, we consider short-time horizons

12 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

(typically in the order of ∼ 20 seconds). This choice is motivated by two main rea-
sons: firstly, the reliability of our local models significantly decreases in time, mak-
ing unrealistic any long-term prediction; secondly, the computational constraints
would be harder to respect with larger optimization spaces. Each planning horizon
∆T is then divided in m sub-intervals of duration dt in which the optimization vari-
ables (controls) are constant. As a result, the trajectory for the UAV j during ∆T
is described by the sequence u(j)

i , with i ∈ {1, ...,m}, and a given initial condition
u

(j)
0 .

1.3.1 Trajectory evaluation

The first criterion to evaluate the trajectories is the energy consumption. Flying
within currents leads indeed to energy costs which strongly depend on the planning:
flying against strong wind can hugely increase the amount of required energy, while
optimally exploiting these currents (and especially ascending air flows) can on the
other hand allow the UAVs to significantly extend their flight duration. To take
into account this phenomenon in the trajectory evaluation, we explicitly consider
the total energy consumed by the fleet over a planning horizon ∆T . This value is
simply represented by the sum over time of the input power Pin(t), which is one
of the controls on which the trajectories are optimized. Introducing normalization
terms, for the aircraft j, we have:

U
(j)
E (t0,∆T) = 1− 1

Pmaxin ∆T

t0+∆T∑
t=t0

P
(j)
in (t)dt . (1.7)

The total fleet energetic utility UE is given by average this value over the UAVs.
Note that this criterion is strictly local and does not take into account the total
amount of energy stored in the batteries: this is rather a concern for the higher-
level decision process, that must for instance make sure every UAV can come back
the ground station. It is also independent of the trajectory of the UAVs. Indeed
exploitation of the wind field is an indirect result of the combination of minimization
of the energetic expense with other goals. For example when trying to reach a higher
altitude, trajectories that traverse updrafts will need less energy for the same climb
rate and therefore will be preferred over trajectories outside the updraft.

The second criterion for the trajectory evaluation is the information gain UI .
To predict the information utility acquired by a given set of trajectories we use the
T-information metric: after sampling the planned trajectories at at fixed sampling
rate, we compute the relative utility of theXnew samples vT (ΣXnew|X) using (1.6). A
linear normalization is obtained using UI(vTb) = 1 and UI(vTp) = 0.5, subsequently
clipping values above one and below zero:

UI(v) = max

(
0, min

(
1, v + vTb − 2vTp

2(vTb − vTp)

))
. (1.8)

1.3. Energy-efficient Data Gathering 13

As discussed in section 1.2.3, vTb and vTp are respectively the best and worst ex-
pected information gains for an ideal rectilinear trajectory that is not influenced
by winds, on an empty model with current hyperparameters. This way we are able
to compute an absolute measure for the information gain, that takes into account
both the current samples in the model and the hyperparameters. As the model
fills up with samples, the information gain lowers in already visited areas. The
choice of UI(vTp) influences what is considered a good sampling: setting it to a low
value degrades the utility of sampling along dimensions with a longer length scale,
whereas setting it to a value close to one would not favor any particular sampling
direction. The values UI(vTb) = 1 and UI(vTp) = 0.5 have been empirically chosen.

The third considered criterion, UG, is strictly dependent on the specific goal
of each mission. The acquisition of information within a given area is one of the
essential task issued by the higher planning level. Formally, defining a rectangular
box b, the utility of a given trajectory for this task is defined as:

U jG(t0,∆T) =
db(Xj

t0+∆T)− db(Xj
t0)

Vzmax∆T , (1.9)

where Xj
t is the position of the j-th UAV at time t and db(X) is the distance

between the UAV and the closest point of the box boundary (db(X) = 0 if the UAV
is inside the box). The total utility for the fleet is the mean value over all UAVs.

To tackle this centralized multi-criteria optimization problem we consider a lin-
ear combination of the three criteria:

Utot = wEUE + wIUI + wGUG . (1.10)

In Section 1.4.2 we analyze in details the effects on the mission of different choices of
the weights wx. In future work it is our intention to explore also different methods
to tackle this multi-criteria optimization problems, e.g using Multi Criteria Decision
Making approaches [Basilico 2011].

1.3.2 Trajectory optimization

For every ∆T , we can now formulate the trajectory optimization problem, which
consists in maximizing a global utility function Utot(u) as a function of the control
variables u, subject to some constraints:

|u(j)
i − u

(j)
i−1| ≤ ∆umax ∀ i, j . (1.11)

As defined in details in Appendix 1.A, our controls inputs are the turn radius R
and the motor power input Pin. To tackle this optimization problem, we propose
a centralized two-step approach3: a first phase based on a blind random search
in order to have a good trajectories initialization, followed by a gradient ascent
algorithm to optimize them.

3Section 1.5 discusses this centralization issue

14 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

1.3.2.1 Trajectory initialization

The first phase of the optimization process, based on a blind random search, is
achieved creating a set of feasible trajectories obtained by a constrained random
sampling of controls ut, and exploiting the approximated field generated by the GP
regression. The trajectories are then evaluated using the utility function Utot and
the best set of Nr trajectories is the initial configuration for the gradient ascent
phase. The presence of the first sampling step is due to the strong dependence of
the gradient-based solution on the initial configuration. In this way, even though
we only have local convergence guarantees, the probability of getting stuck in local
maxima far from the global optimal trajectories is reduced.

1.3.2.2 Stochastic gradient approximation

To perform the gradient ascent we adopt a constrained version of the Simul-
taneous Perturbation Stochastic Approximation (SPSA) algorithm [Spall 2005],
[Sadegh 1997]. This algorithm is based on successive evaluations of the utility
function to obtain a numerical approximation of the gradient. At every algorithm
iteration k, the optimization variables u are hence updated as follows:

uk+1 = Π(uk + akĝ(uk)) , (1.12)

where Π is a projection operator to force u to stay in the feasible space, and ĝ is
the gradient approximation, for which we used the two-sided version:

ĝk(uk) =

U(uk+ck∆k)−U(uk−ck∆k)

2ck∆k1...
U(uk+ck∆k)−U(uk−ck∆k)

2ck∆kN

 , (1.13)

where ∆ is a random vector. Note that, due to the simultaneous perturbation
of all the optimization variables, every iteration requires only two evaluations of
U , regardless of the optimization space dimension. This is in contrast with other
popular stochastic gradient approximation algorithms, such as the Finite Difference
Stochastic Approximation (FDSA), which require 2p evaluations, where p is the
dimension of the vector u. At the same time, under reasonable general conditions,
these algorithms achieve the same level of statistical accuracy for a given number
of iterations [Spall 2005]. This point may be crucial for real-time applications and
when the optimization function evaluation is time consuming, as in our case. To
ensure the convergence of the algorithm, a simple and popular distribution for the
random perturbation vector ∆k is the symmetric Bernoulli ±1 distribution, and the

1.3. Energy-efficient Data Gathering 15

conditions on the gain sequences ak, ck are:

ak > 0, ck > 0, ak → 0, ck → 0,
∞∑
k=0

ak =∞,
∞∑
k=0

a2
k

c2
k

<∞ . (1.14)

A standard choice which satisfies the previous conditions is:

ak = a

(k + 1)α ck = c

(k + 1)γ . (1.15)

Practically effective and theoretically valid values for the decay ratings α and γ

are 0.602 and 0.101 [Spall 1998]. The coefficients a and c are more dependent
on the particular problem and their choice significantly affects the optimization
result. The parameter c represents the initial magnitude of the perturbations on the
optimization variables and, for every variable, we fixed it at ∼ 5% of its maximum
range. Lower values would increase the number of required iterations to converge,
while higher values would result in instability of the algorithm since the perturbation
would not be local anymore. The coefficient a is instead chosen as a function of the
desired variation in these variables after the update at early iterations, which can
be set at same order of the perturbations. To do this reliably, we use few initial
iterations to have a good estimation of the gradient ĝk(u0) and we then exploit
eq. (1.12) to fix a.

1.3.3 Illustrative examples

Figure 1.3 shows the different phases of the trajectory generation for one UAV in one
planning horizon within a realistic wind field. An xy projection of the trajectories
is shown, including the vertical wind prediction at the starting altitude and time.
The random sampled trajectories are shown in black, with the best one in blue.
The SPSA algorithm then locally optimizes the best trajectory, resulting here in a
loop more tightly closed around the center of the updraft (in green). The open-loop
executed trajectory is shown in red, following closely the planned trajectory. Only
a portion of the optimal trajectory is actually executed before the next planning
phase. The utility function in this case is given by Utot, with no information term.
Its maximization as a function of SPSA iterations is shown in Fig. 1.4.

Figure 1.5 shows some trajectories obtained after a few iterations of the tra-
jectory planning process, in an illustrative two-dimensional case where fictitious
current fields and utility maps have been defined so as to ease results visualization
and understanding. Here the utility is defined as a scalar map and the optimiza-
tion function is given by the sum of the utility collected along the trajectory. The
figures show the results for both a single and a multi-UAV case. It is clear how
the algorithm forces the UAVs to spread to avoid visiting the same locations in the
three-UAVs case. When possible, currents are also exploited in order to visit more
locations, and so collect more utility, in the same amount of time.

16 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

2100 2150 2200 2250 2300 2350

x coordinate (m)

2200

2250

2300

2350
y

co
or

di
na

te
(m

)

Random
Best random
SPSA
Executed

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

3.6

Figure 1.3: Illustration of the trajectory generation process in a realistic wind field,
for a planning horizon ∆T = 20 seconds. Projections on the xy plane for the random
sampling initialization, optimized trajectory and final trajectory executed by the
UAV are shown. The red star represents the initial position and the map colors
shows the vertical component of the wind – with no particular units, the redder
being the highest.

1.4 Integrated Simulations

The final objective of the SkyScanner project to experiment the flight of a fleet of
drones within actual cumulus clouds is yet to be achieved. Beforehand, intensive
simulations are required to assess the validity of the proposed solutions. This section
depicts a first integrated simulation architecture, which aims at validating the map-
ping and planning algorithms. Various results are depicted, focusing in particular
on the mapping performance and the learning of the GPR hyperparameters.

1.4.1 Simulation setup

1.4.1.1 Cloud model

To validate the mapping and planning algorithms, realistic cloud simulations are
required: this is provided by atmospheric models, that can simulate the microphys-
ical, dynamical, optical and radiative properties of clouds.

The atmospheric model used for the current study is Meso-NH [Lafore 1998].
This model is the result of the joint collaboration between the national center of
meteorological research (CNRM, Météo-France) and Laboratoire d’Aéorologie (LA,

1.4. Integrated Simulations 17

0 50 100 150 200

SPSA iteration

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

G
lo

ba
lu

til
ity

(n
o

un
it)

Figure 1.4: Behavior of Utot over a planning horizon ∆T as a function of SPSA
iterations.

UPS/CNRS). Meso-NH is a Non-Hydrostatic Model with the flexibility to simulate
atmospheric phenomena at a wide range of resolutions that extends from one meter
up to tens of kilometers. For this work, non-precipitating shallow cumulus clouds
over land are simulated with the LES (Large-eddy simulations) version of Meso-
NH, with resolutions down to ten meters. The simulation was driven by realistic
initial conditions obtained on June 21, 1997 from meteorological measurements at
the Southern Great Plains site in Oklahoma, U.S.A [Brown 2002]. This site is the
first field measurement site established by the Atmospheric Radiation Measurement
(ARM) Program.

To capture more details about clouds and their surroundings, it is preferable
to set the atmospheric model at its highest resolution. The considered simulation
domain is a cube of 400x400x161 grid points representing a volume of 4 km × 4 km
× 4 km with horizontal resolutions of dx = dy = 10m, vertical resolutions from
dz = 10m to 100m and a time-step of 0.2 s. This setup is a compromise between
the desired high resolutions and a reasonable simulation computation time4.

The 161 vertical levels have a high resolution of 10m in both convective cloud
and surface layers; in the upper cloud-free troposphere, the domain has stretched
resolutions from 10m up to 100m. The upper five layers of the simulation domain
act as a sponge layer to prevent wave reflection. In addition, the horizontal bound-
ary conditions are cyclic with a periodicity equal to the horizontal width of the
simulation domain. The simulation estimates the following atmospheric variables:
cloud liquid water content, water vapor, pressure, temperature, and the three com-
ponents of wind. Figure 1.6 illustrates the 3D cloud water content of convective
cumulus clouds at a given time. The overall simulation covers a time period of

4Days of computing on a large cluster are required to produce such simulations.

18 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

2

4

6

8

10

12

14Utility Map
Wind Field
Blind Search
SPSA

(a)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

2

4

6

8

10

12

14Utility Map
Wind Field
SPSA

(b)

Figure 1.5: a) one UAV is moving in a 2D environment where a scalar utility map
and a wind field are defined. The trajectories initialized by a blind search at every
planning-horizon ∆T are shown in magenta, and the final trajectories provided by
the SPSA algorithm are in red. b) 3 UAVs are steered in the same environment to
maximize the total utility (only the final trajectories are shown).

15hours, but variables of interest have been saved every second only during one
hour that corresponds to the maximum of surface fluxes.

1.4.1.2 UAV control

For the trajectory planning we choose a simplified aircraft model which, whilst being
computationally light, captures the essential characteristics of the flight dynamics
necessary to simulate realistic trajectories. The considered UAV is a Mako aircraft,
1.3m wingpsan tail-less fixed wing airframe (figure 1.7), which model is depicted in
Appendix 1.A. The realism of the model relies on two hypotheses. The first one is
that the UAVs evolve in wind fields of moderate strength and turbulence, such as in
the fair weather conditions in which cumulus clouds form. The second hypothesis
is that the trajectories of the UAVs are not overly dynamic, which is consistent
with the general design of the UAVs sent by meteorologist for such missions and the
selected UAV for the project: dynamic maneuvers indeed degrade the measurements
quality, and are not energy efficient.

We assume a constant total airspeed V : the fixed pitch propeller that is used
on the aircraft yields a small flight envelope where it works efficiently, and the
Paparazzi controls are designed for a fixed airspeed. Trajectories consists of a
series of command pairs (R,Pin), which correspond to time slices during which the
commands are constant. Their computation is depicted in Appendix 1.B: R defines
the turn radius and direction of the UAV, and Pin the power drawn by the motor
from the battery. As V is kept constant, all other parameters are bound. To further

1.4. Integrated Simulations 19

Figure 1.6: Meso-NH LES simulation: liquid cloud water content of the cumulus
formed at 1h30 PM (ARM Southern Great Plains, June 21, 1997 conditions)

Figure 1.7: Mako aircraft used as a model for the simulations.

simplify the dynamics, changes in turn radius and direction between planned steps
are assumed to happen instantaneously. Changes in climb rate as a result of a
change of propulsive power Pin are linear. The key parameters and coefficients are
estimated from the analysis of the Mako aircraft selected for field experiments in
the SkyScanner project.

1.4.1.3 Simulation architecture

We tested our planning and mapping framework using a fairly simple simulation
architecture, depicted Figure 1.8. The planning algorithm optimizes the joint tra-
jectory of all UAVs using the predictions of the GP mapping framework. The
resulting control sequences are then sent to the UAVs, which execute them with the
dynamic model used to plan the trajectories in open-loop: no trajectory tracking is
applied, but the wind ground truth influences the UAV actual motions, which then

20 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

differ slightly from the planned motions5.
A wind sampling process is simulated by adding zero mean and fixed variance

Gaussian noise on the wind ground truth. This constant noise model is a simplifica-
tion of the actual errors made by processes that estimate the wind on board micro
UAVs (in [Langelaan 2011, Condomines 2015] the errors are indeed Gaussian, but
depend of the airspeed – yet in our simulations the aispeed is kept constant).

These wind samples are then fed to the three GP models, each modeling one
component of the 3D wind vector. The GP hyperparameter optimization step is
performed before each planning iteration.

The whole simulation loop is not real-time, as all steps happen in sequence and
no particular attention has been paid to optimize the computing time. In fact,
whilst the planning algorithm runs faster than real-time, the hyperparameter op-
timization step can last up to a few minutes. This costly step has not been finely
tuned, and its implementation has not been optimized – all computations were per-
formed using only one core on a i7 3.60GHz CPU. The simulation framework is
implemented in Python, with the exception of the UAV model and the GP map-
ping framework which are implemented in Cython and C++ for speed purposes.
The GP hyperparameter optimization is performed using the basin-hopping algo-
rithm implementation of the SciPy package, with the ’L-BFGS-B’ algorithm for
local bound constrained optimization. Ten local optimization steps are achieved
each time. Bounding the hyperparameters allows avoiding completely incoherent
solutions, particularly in the beginning of the simulations, and quickens the conver-
gence.

1.4.1.4 Scenarios

We conducted three sets of simulations corresponding to three different optimization
scenarios:

All: Utot = 1
3UE + 1

3UI + 1
3UG

No information: Utot = 1
2UE + 1

2UG

No energy: Utot = 1
2UI + 1

2UG

These scenarios have been chosen to show the possibilities and versatility of the
proposed framework, even with simple linear combinations of criteria. For each
scenario, a set of 80 simulations were run, with all other parameters remaining the
same. The task to achieve is the exploration of an area defined as a box, that
spans 400m in the x and y axes, and which is 20m thick along the z axis and
centered at an altitude z = 1.0 km. Three identical UAVs start the mission from
a unique position located under the center of the box, at an altitude of 800m.

5The implementation of a trajectory tracker in the Paparazzi autopilot is under way within the
SkyScanner project

https://wiki.paparazziuav.org/wiki/Main_Page

1.4. Integrated Simulations 21

UAV Model

Atmospheric
Simulation

Wind Sensors
Model

Trajectory
Planner

Wind GP
Regression

Models

Hyperparameter
optimization

Wind prediction

Sequence
of

Commands

UAV Trajectory

3D Wind
Ground Truth

3D Wind
Ground Truth

3D Wind
Samples

@1 Hz

@ 0.1 Hz

Figure 1.8: Simulation architecture.

The total simulation duration is five minutes. Although all simulations share the
same starting point for the UAVs, the initial direction is chosen at random. This,
coupled to the fact that the initial map starts empty, results in completely different
trajectories and maps after a few dozen of seconds of simulation. Also, we picked
a single cloud in the weather simulation to carry our experiments, but the whole
weather simulation shares the same properties, and clouds of similar size are very
similar. To generate cloud with different properties, one would have to run the
weather simulations again with other initial conditions and models, which was not
within our reach.

We choose a planning horizon of ∆T = 20 s with a dt = 1 s resolution, but a
re-planning is done each 10 s, so that only the first half of each planned trajectory is
executed. The UAVs airspeed V is set to 15m.s−1. Planning is done by sampling 200
random perturbations, then performing 400 SPSA algorithm steps. The mapping
algorithm tolerance on the time dimension is set to 0.1 or 60 s, whichever the longest
(see section 1.2.2). Spatio-temporal length scale hyperparameters l = (lx, ly, lz, lt)
are bounded between 1 and e5 ≈ 150m (respectively seconds) and the σf and σn
parameters are bounded between e−10 and e10 m (values are expressed as exponen-
tials because GP library optimizes the logarithm of the hyperparameters). In the

22 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

absence of a precise prior on the σf and σn parameters, we chose an interval wide
enough to let the hyperparameters optimization step scale them as needed.

1.4.2 Results

Figure 1.9 shows typical trajectories for the three UAVs up to 150 s of simulation,
in the ’No Information’ scenario that favors the reduction of energetic expense. A
first interesting result is that the planning algorithm allows the UAVs to benefit
from updrafts by circling in high vertical wind regions, thus climbing with a lesser
energy expense up to the target altitude. The UAVs then manage to stay around
the desired altitude: the trajectories are less characteristic here, as the information
gathering utility is disabled. The planned trajectories seem quite natural, avoiding
unnecessary changes in heading.

1.4. Integrated Simulations 23

x
(km

)

2.0

2.1

2.2

2.3

2.4

2.5 y (km)
2.0

2.1
2.2

2.3 2.4 2.5

z
(k

m
)

0.80

0.85

0.90

0.95

1.00

x
(km

)

2.0

2.1

2.2

2.3

2.4

2.5 y (km)
2.0

2.1
2.2

2.3 2.4 2.5

z
(k

m
)

0.80

0.85

0.90

0.95

1.00

x
(km

)

2.0

2.1

2.2

2.3

2.4

2.5 y (km)
2.0

2.1
2.2

2.3 2.4 2.5

z
(k

m
)

0.80

0.85

0.90

0.95

1.00

−1.6 −0.8 0.0 0.8 1.6 2.4 3.2 4.0

Vertical wind velocity in m.s−1

Figure 1.9: Examples of 3D trajectories of the three UAVs from t = 0 s to t = 150 s
in the ’No information’ scenario. The vertical wind component ground truth is
shown in colors. All UAVs start on the bottom at altitude 0.8 km at the beginning
of the simulation.

24 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

1.4.2.1 Performance of the wind prediction for trajectory planning

We analyze results for the vertical component of the wind, as it is both the most
relevant information for the planning algorithm and the one with the largest ampli-
tude in the Meso-NH simulation. Over all the simulated flights, the sampled values
span from −2.8m.s−1 to 5.0m.s−1. Figure 1.10 shows the RMSE of the wind pre-
diction during the planning iterations as a function of time, computed along all the
executed trajectories. After an initial stabilization period of about five iterations
(50 seconds), the mean error converges towards 0.5m.s−1 (6% relative error), which
is quite a good estimate considering the sensors additive Gaussian noise of stan-
dard deviation 0.25m.s−1 (3% relative error). It is also interesting to note that the
scenario does not impact significantly the mean error of the GP regression, when
considering the mean value over the trajectory. The prediction of the error is also
quite good, the standard deviation estimated by the GPP follows a similar pattern
as the RMSE (Fig. 1.11).

We can further investigate the quality of the prediction by looking at the
standard normal deviate, obtained by dividing the (signed) prediction error by the
predicted standard deviation (Fig. 1.12). Here again there is not much difference
between the three scenarios: the standard deviation remains approximately
constant at ≈ 1.4 σ, meaning the model has a slight tendency to under-estimate
the variance (e.g. the error). In contrast, the mean decreases constantly: at the
beginning of the simulations the GP model has a tendency to under-estimate
the wind and at the end to slightly over-estimate it. If the first behavior is
expected whilst the hyperparameters are being learned with only a few samples,
the over-estimation of the wind at the end of the simulations is not expected. This
bias may be due to the two following factors: first the time and altitude covariance
estimation is relatively poor (see Section 1.4.2.2), and second the vertical wind
values below and at 1 km are very different, as can be seen figure 1.9. Hence
samples gathered at altitudes lower than the final plateau may still influence the
prediction of the GP, resulting in a slight positive bias.

Although very little difference can be observed when looking at the average
error over the whole planned trajectory for each iteration (Fig. 1.10), we can see
more differences when zooming in on single planning iterations. Fig. 1.13 shows
how the prediction error evolves in average along a single planned trajectory as the
points are predicted both farther from the current location and, more importantly,
farther in the future. Here we can clearly see that the ’No energy’ scenario comes
ahead of the other, especially in the middle of the simulation. However as we are
replanning every 10 seconds, and as the highest difference is on the points farther
in the future, the effect is minimal when computing the mean over the first half of
the planned trajectories (such as in Figs. 1.10 and 1.14).

Another indirect way to assess the quality of the mapping is to look at the posi-
tion error induced by the wind prediction error at the end of each planning iteration.
Indeed, as we execute the planned trajectories computed over the predicted wind

1.4. Integrated Simulations 25

0 50 100 150 200 250 300

Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
M

S
E

(in
m
.s
−

1
)

All
No information
No energy

Figure 1.10: RMSE of the up wind prediction y? along the executed trajectory at
each iteration, computed over all the iterations of the three scenarios.

in open loop, the wind prediction is the sole source of error in the final position of
the aircraft. The up wind prediction error induces error in predicting the altitude
of the UAV, while the horizontal wind prediction contributes to the horizontal xy
position error (Fig. 1.14). The xy and z position errors are of the same order of
magnitude, with an average around 2.5m in both cases, with a standard deviation
of about 2.5m, over a constant trajectory length of 150m. The key importance
of a good prediction of the up wind is clear: at the start of the simulations, the
mean error in altitude is about ten times more than at the end of the simulation,
whereas the xy error is only about 1.5m. This is due to the nature of our Meso-NH
simulations, which are initialized without advection (that is, no horizontal wind).
In real-life cases, one should also estimate independently the mean horizontal wind,
even if it varies only very slowly across space and time.

26 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

0 50 100 150 200 250 300

Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

P
re

di
ct

ed
M

ea
n

S
ta

nd
ar

d
D

ev
ia

tio
n

(in
m
.s
−

1
)

All
No information
No energy

Figure 1.11: Mean of the standard deviation of the up wind prediction
√

V[y?]
along the executed trajectory at each iteration, computed over all the iterations of
the three scenarios.

0 50 100 150 200 250 300

Time (seconds)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

S
ta

nd
ar

d
no

rm
al

de
vi

at
e

(n
o

un
it)

All
No information
No energy

Figure 1.12: Mean and variance of the standard normal deviate y−y?√
V[y?]

of the up
wind prediction along the executed trajectory at each iteration, computed over all
the iterations of the three scenarios.

1.4. Integrated Simulations 27

100 105 110 115 120

Time (seconds)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

ea
n

pr
ed

ic
tiv

e
S

td
E

rr
or

(m
.s
−

1
)

All
No information
No energy

290 295 300 305 310

Time (seconds)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
ea

n
pr

ed
ic

tiv
e

S
td

E
rr

or
(m
.s
−

1
)

All
No information
No energy

Figure 1.13: Mean of the Standard Error of the up wind prediction along the
planned trajectory from the current planning time up to 20s in the future, computed
over all the instances of the three scenarios. Top: current planning time is t=100s.
Bottom: current planning time is t=290s.

28 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

0 50 100 150 200 250 300

Time (s)

0

5

10

15

20

25

30

A
bs

ol
ut

e
er

ro
r(

m
)

All
No information
No energy

0 50 100 150 200 250 300

Time (s)

0

1

2

3

4

5

6

7

A
bs

ol
ut

e
er

ro
r(

m
)

All
No information
No energy

Figure 1.14: Position error after ten seconds of open-loop following of the planned
trajectory with respect to the planned end position. Top: error on the z axis.
Bottom: error on the xy axis.

1.4. Integrated Simulations 29

1.4.2.2 Hyperparameters optimization

The evolution of the hyperparameter values of the GP model are also an indication
of the quality and stability of the model. Figure 1.15 shows 2D histograms of the
hyperparameter values, for all simulation scenarios combined, during the course of
the simulation. The type of scenario does not impact much the hyperparameter
optimization, but all parameters are not estimated equally well. The estimation
of the parameter σn is particularly good and stable, with a median slightly above
its actual value (set to 0.25m.s−1), and a narrow distribution. It is not surprising
as the additive noise added to the samples is a pure Gaussian one, and modeled
as such. The process variance σf starts quite high at about 4 to end around 0.5,
with the distribution narrowing around the median rapidly as simulation time
passes. Considering the GP posterior variance in eq. (1.2), we see that the maximal
posterior variance is k(x?,x?) = σ2

f . Therefore the process variance indicates the
maximum possible predictive uncertainty of the model. As the amplitude of the
measurements does not decrease so drastically through time, it seems to indicate
that it is not directly the process variance that is optimized. Indeed, as in the
second half of the flights the UAVs gather samples in the same area (the plateau
at 1 km altitude), the type II maximum likelihood (eq. (1.4)) used to optimize
the hyperparameters overfits the data, which leads to the model being overconfident.

The evolution of the spatio-temporal length scales also exhibits some discrepan-
cies. The length scales in the x and y directions are quite precisely estimated, and
seem stable. The lx hyperparameter converges in most cases to a value between 30
and 40 meters, the ly parameter distribution being a bit wider, with the median
around 40 to 50. Both hyperparameters show distributions peeking around the
median and densely packed, indicating convergence towards a common value. On
the other hand the vertical length scale lz and the temporal length scale lt exhibit
a completely different behavior. The distributions remain very spread out in both
cases. For a significant proportion of the simulations, the values are set to the upper
bound given to the optimizer, indicating that the GP model is unable to estimate
them properly. Even after five minutes, about 2% of the simulations still have a
maximum value for the lt parameter, and more than 20% of the simulations exhibit
this behavior for the lz parameter. This failure to estimate properly the time and
altitude correlations is most probably caused by a problem of observability. As a
matter of fact, the UAVs rapidly explore the x and y axis, and change altitude much
slower. In addition, the time correlations are more difficult to estimate because time
is the only dimension upon which the UAVs have no control: good estimation of
this parameter is dependent on the frequency at which UAVs go back to a similar
location in space. It is also possible that temporal correlations cannot be well fitted
with our choice of model.

It should be noted that, as we have seen, the failure to extract some of the
underlying processes parameter does not induce bad prediction performances: on
the contrary, the model adapts the parameters to keep a good predictive accuracy.

30 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

This problem could be mitigated by keeping more samples in the model, or more
interestingly by defining utility measures that lead to a more informative sampling
for the hyperparameter optimization (as opposed to gathering information for map
exploration purpose only). Finally, one could modify the GP model to account
for the particular nature of the temporal dimension, either by developing a more
appropriate kernel or by encoding the temporal dimension within a meta-model.

1.4. Integrated Simulations 31

0 50 100 150 200 250

Time (s)

1

2

3

4

5

6

7

8
G

P
pr

oc
es

s
va

ria
nc

e
(n

o
un

it)

0

8

16

24

32

40

48

56

64

Fr
eq

ue
nc

y
(%

)

(a) σf

0 50 100 150 200 250

Time (s)

0.1

0.2

0.3

0.4

0.5

G
P

pr
oc

es
s

no
is

e
(m

.s
−

1
)

0

3

6

9

12

15

18

21

24

Fr
eq

ue
nc

y
(%

)

(b) σn

0 50 100 150 200 250

Time (s)

20

40

60

80

100

120

140

G
P

le
ng

th
sc

al
e

(m
)

0

3

6

9

12

15

18

21

24

27

Fr
eq

ue
nc

y
(%

)

(c) lx

0 50 100 150 200 250

Time (s)

20

40

60

80

100

120

140

G
P

le
ng

th
sc

al
e

(m
)

0

3

6

9

12

15

18

21

24

27

Fr
eq

ue
nc

y
(%

)

(d) ly

0 50 100 150 200 250

Time (s)

20

40

60

80

100

120

140

G
P

le
ng

th
sc

al
e

(m
)

0

8

16

24

32

40

48

56

Fr
eq

ue
nc

y
(%

)

(e) lz

0 50 100 150 200 250

Time (s)

20

40

60

80

100

120

140

G
P

le
ng

th
sc

al
e

(s
)

0

8

16

24

32

40

48

56

64

Fr
eq

ue
nc

y
(%

)

(f) lt

Figure 1.15: 2D histograms of the values of all GP parameters through time. The
median is plotted as a black line.

1.4.2.3 Impact of weights in the utility function

While the definition of the scenario does not affect much the GP prediction, it
strongly impacts the way the mission is achieved.

32 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

Starting with the “explore-box” objective, the UAVs have no trouble staying
in the xy bounds of the box, but the choice of weights on the combination affects
how they reach and stay in the z bounds (Fig. 1.16). When the optimization of
energy is disabled (’No energy’ scenario), the UAVs go faster to a mean altitude of
1 km (the center of the box), staying until the end of the simulation a bit above.
Standard deviation lies equally on both sides of the 1 km mark. On the contrary
when the information gain utility is disabled (’No information’ scenario), the 1 km
altitude is reached later and the mean altitude then starts to slowly decrease until
the end of the simulation: the UAVs have difficulties maintaining their altitude
because of the associated energy expense. We see the same effect when all utilities
are equally weighted, although the mean altitude is a bit higher, allowing the
UAVs to explore a larger portion of the box. Interestingly, when the energy utility
is turned on, the mean altitude’s variance starts decreasing after the first half of
the simulation. It can be explained by the fact that, once the box is sufficiently
explored, the absolute value of the information gain decreases up to a point where
it does not counterbalance the energetic expense anymore, forcing the UAVs to
lose altitude.

The impact of the energy optimization on the battery level is shown in figure
1.17. Optimizing the energy saves on average 4% percent of the battery level
at the end of the simulation in the ’All’ scenario and 5% in the ’No informa-
tion’ scenario as opposed to the ’No energy’ one. Considering that the ’No
information’ scenario consumes just under 20% of the battery on average, the
relative gain is respectively 20% and 25%. When looking at the progression of
the battery level throughout the simulation, it is clear that even though the
difference in battery savings is higher during the ascension phase (0− 1 min), opti-
mizing energy consumption is helpful throughout the whole mission to save battery.

The information gain is more difficult to assess: we have already seen that
optimizing this utility impacts only a little the predictive power of the GP for the
planning purpose and not at all the quality of the hyperparameter optimization.
Also, as old samples are discarded in the model and the observed process is dynamic,
it is difficult to compute a total amount of gathered information. Nevertheless one
can look at the RMSE of the prediction computed on the whole “mission-box” at the
end of the simulation (Fig. 1.18). Unsurprisingly there is little difference between
the three scenarios: at the end of the mission, they all perform well enough. The
limited temporal validity of the samples (due to the weather dynamics) and the
instability of some hyper-parameters weigh heavily on the results. However the
“No energy” is still indubitably statistically better than the other two scenarios,
even if the absolute difference remains small (under 0.1m.s−1 between medians).

Another way to approach this is to look directly at the covariance matrices.
Figure 1.19 illustrates the differences in density of the covariance matrices of the
GP models by plotting the cumulative distribution of values in the matrices in

1.4. Integrated Simulations 33

0 50 100 150 200 250 300

Time (seconds)

800

850

900

950

1000

1050

A
lti

tu
de

(m
et

er
s)

All
No information
No energy

Figure 1.16: Mean altitude of the UAVs through time for all three scenarios. The
standard deviation is plotted in dashed lines of the same color.

each scenario. The smaller the values, the more information the matrices contain
(the more the samples are considered independent). It is clear that optimizing
the information gain utility has a direct effect on the density of the matrix: when
we plot the distance of the other distributions to the one of the “No information”
scenario, there is up to 10% more values smaller than 10−2 in the “All” scenario,
and 20% for the “No energy” one. In other words, the “No energy” scenario has half
of the values in the covariance matrix under 10−2 whereas the “No information”
one has only thirty percent, which is about a 65% relative increase. This result is
also interesting to speed up the GP regression. Indeed if one were to use compact
support kernels, the resulting matrices would become sparser with the information
gathering utility, thus potentially speeding up the linear algebra computations.

34 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

0 50 100 150 200 250 300

Time (seconds)

75

80

85

90

95

100
B

at
te

ry
le

ve
l(

%
)

All
No information
No energy

All No information No energy
74

76

78

80

82

84

86

88

90

B
at

te
ry

le
ve

l(
%

)

Figure 1.17: Evolution of the battery level. Top: Mean of the battery level through
the simulation, over all instances of the three scenarios. The standard deviation is
plotted in dashed lines of the same color. Bottom: Box and violin of the battery
level at the end of the simulation, for all three scenarios. Whiskers at 9th and 91th
percentiles, the red square mark indicates the mean.

1.4. Integrated Simulations 35

All No information No energy
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

R
M

S
E
 (

m
/s

)

Figure 1.18: Box and violin plot of the RMSE of the prediction over the box defining
the mission, at the end of the simulation (t=300s), over all instances of the three
scenarios. The box is sampled at a spatial resolution of 10m, and the GP predictions
on the samples at t=300s are compared with the ground truth.

36 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101

Covariance value (no unit)

0

20

40

60

80

100

120
C

um
ul

at
iv

e
di

st
rib

ut
io

n
(%

)
All
No information
No energy

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101

Covariance value (no unit)

0.00

0.05

0.10

0.15

0.20

0.25

D
is

ta
nc

e
to

’n
o

in
fo

rm
at

io
n’

sc
en

ar
io

C
D

F
(%

)

All – No information
No energy – No information

Figure 1.19: Top: Cumulative distributions of values in the covariance matrices of
all three scenarios between 50 s and 100 s, in percents. Bottom: Distances between
the cumulative distributions of values in the covariance matrices of the ’no informa-
tion’ and the other scenarios. Values smaller than 10−2 represent respectively 10
and 20 % more space in the covariance matrices of ’All’ and ’No energy’ scenarios
than the in the ’No information’ scenario (note the abscissas have a logarithmic
scale).

1.5. Discussion 37

1.5 Discussion

1.5.1 Summary

We have presented an approach to drive a fleet of information gathering UAVs to
optimize the acquisition of information in a given area, while minimizing the energy
expenses. The approach generates flight patterns that properly exploit the updrafts
and generate accurate wind maps.

In particular, we have shown how a GPR framework can be used online to
faithfully map wind fields corresponding to realistic cloud simulations. The resulting
predictions are accurate enough to drive the team of UAVs during the course of
the mission. A careful inspection of the resulting GP model, in particular of its
hyperparameters, has shown its strengths and weaknesses. The predictive error
of the GP model is quite low during the mission, resulting in negligible positional
errors after the execution of the planned trajectories, and regardless of failures to
estimate properly the underlying hyperparameters of the process. The proposed
simulations exploit realistic wind and aircraft models, address the main task that
atmosphere scientists expect from a fleet of UAVs, and exhibit the properties of the
approach.

1.5.2 Future work

Numerous improvements remain to be addressed in order to define an efficient
operational system.

The mapping framework would certainly benefit from better priors. A prior on
the mean could in particular be provided by a macroscopic model of the cumulus
cloud, which relates high level variables such as mean updraft as a function of the
cloud base diameter for instance. The macroscopic model could also exhibit various
regions in the cloud, within which priors on the hyperparameters could help to learn
them more rapidly and more precisely. Furthermore, one should be able to explicit
and exploit the correlations between the various atmosphere variables that the UAVs
can measure, correlations that are pretty well known by atmosphere scientists (e.g.
between the liquid water content and the vertical wind). One would need to resort
to multi-task GPR for this purpose [Chai 2010]. Finally the temporal dimension
should be more carefully accounted for, either by using a more appropriate kernel
or as a parameter of a separate meta-model.

We have seen that the hyperparameter estimation can suffer from lack of observ-
ability. Deriving a utility measure aiming at maximizing information gain for their
estimation would certainly improve the accuracy of the model. Another way to sta-
bilize the hyperparameters would have the UAVs perform predefined synchronized
measurements, for instance at different altitude levels, when the system detects a
too important variability of the parameters.

As for trajectory planning, using more complex utility measure definition than
a simple linear combination would allow the UAVs to achieve more complex tasks
and to take into account specific preferences defined by the user. Additional criteria

38 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

and constraints (such as anti-collision) should also be considered. Finally, there
remain various free parameters in the system (planning horizon, planning resolution,
sampling rate...), that have been manually set: they could be learned online during
the mission.

Finally, an overall integrated system architecture is yet to be defined. We foresee
an approach that casts the problem in a hierarchy of two modeling and decision
stages. A macroscopic parametrized model of the cloud, updated from the gathered
data, would provide to the ground operator a coarse description akin to figure 1.1.
He would then tasks the fleet with information gathering goals such as “map the top
of the cloud”, “assess updraft currents over the whole cloud height”, “quantify the
convection flux at the cloud base”, “monitor the liquid water content within a given
area and time lapse”, etc. Given the required tasks and the current fleet situation
(the UAVs positions, their on-board energy level, and their sensing capacities), a
high-level decision process allocates UAVs to each task. This two tier approach
would break the overall complexity of the problem, and allows the operator to
task the fleet with high level goals, which are then achieved autonomously and
independently by sub-teams of UAVs, using the mapping and trajectory planning
approaches proposed in this paper.

We believe that deploying such a fleet within a distributed architecture remains
far-fetched, and that a centralized architecture would provide more benefits than
drawbacks. GP regression and hyperparameter learning are intensive computing
tasks, that can for now hardly be embedded on-board lightweight UAVs. An ap-
proach in which all the gathered data are sent down to a powerful ground station
that executes both the mapping and fleet control processes is a realistic option:
only a very low bandwidth data link would be required for both the data reception
and command transmission. Furthermore, the overall system would benefit from
the use of a ground atmosphere radar, that would provide real-time estimations
of some global cloud parameters such as its geometry, which directly conditions
the amplitude of updrafts for instance. Such a system would also allow to update
the position of the cloud: indeed most cumulus clouds develop in conditions with
significant advective (lateral) wind6. The cloud simulations we exploited have been
generated in the absence of such advective wind, and the cloud map is built in a
geo-referenced frame, whereas in real flights one should map the cloud in a cloud
relative reference frame, which evolution would be provided by the radar.

1.A Aircraft Model

In this Appendix, we provide the details of the flight dynamics model adopted
for this work. We consider a simplified aircraft model to enable fast trajectory
computations, but still able to capture the essential characteristics of the flight
mechanics for a realistic trajectory optimization simulation. The key parameters

6except in tropical areas where cumulus can hover over the same position during their whole
lifespan.

1.A. Aircraft Model 39

and coefficients used for the analytical calculations are estimated from a modified
vortex-lattice analysis [Bronz 2013] of the aircraft.

In particular, we consider the Mako aircraft shown in Fig. 1.7, which will be
employed for future experiments within the SkyScanner project. Table 1.1 shows
its general aerodynamic and geometrical specifications.

Table 1.1: General aerodynamic and geometrical specifications of the Mako aircraft.
Description Symbol Value Unit

Wing Span Bref 1.288 [m]
Wing Surface Area Sref 0.27 [m2]
Wing Aspect Ratio AR 6.14 [−]
Cruise Flight Speed Vcruise 15.0 [m/s]
Minimum Flight Speed Vmin 12.0 [m/s]
Maximum Flight Speed Vmax 25.0 [m/s]
Propulsion Efficiency ηp ≈ 0.45 [−]
Max Lift Coefficient CLmax 0.4 [−]
Profile Drag Coefficient CD0 0.0233 [−]
Oswald Efficiency Number e 0.93 [−]
Total Mass m 0.9 [kg]

The trajectory computation is based on two control inputs: the power input
Pin and the turn radius R. The airspeed V is considered constant, therefore the
angle of attack is kept fixed for simplification. The trajectory optimization mainly
requires the drag force evaluation, which has to be compensated by the input power.
Note the air density is kept constant during the simulations, again for the sake of
simplicity.

In order to calculate the performance within the flight envelope, the flight phases
are isolated as steady banked turn and constant climb. The climb calculations de-
rived from energy equations, the pull-up and down transition phases are approxi-
mated according to the maximum lift capability limit.

1.A.1 Steady Banked Turn Phase

During the steady banked turn phase, the vertical component of the lift force Lv is
equal to the weight of the aircraft and its lateral component Lh compensates the
centrifugal force as shown in Figure 1.20.

∑
Fz = 0⇒W = Lv = L cosφ (1.16)

For a given bank angle φ, the load factor n, given by

n = Lv
W

= L

L cosφ = 1
cosφ , (1.17)

40 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

𝜙

W

L

F

Lv

Lh
c

W

L

D
T θ

Figure 1.20: Forces applied during the steady banked turn phase (left) during the
steady climb phase (right).

has to be accounted for in the lift force, which can then be expressed as:

L = 1
2ρV

2Sref (nCL) [CLmax > nCL] , (1.18)

with drag coefficient and resultant drag force being

CD = CD0 + k(nCL)2 where k = 1
πARe

(1.19)

D = 1
2V

2SrefCD (1.20)

in oder to take into account the additional drag contribution coming from the
induced lift force.

1.A.2 Rate of Climb (ROC) and power consumption

To maintain level flight, the required aerodynamic power is

Paero = DV (1.21)

Incorporating the thrust, we can calculate the climb rate of the aircraft as:

ROC = Vclimb = V
(T −D)
W

= Pprop − Paero
W

(1.22)

The maximum propulsive power is limited according to the specifications of the
propulsion system used, whose efficiency ηp results in a higher power drawn from
battery: Pprop = ηpPin, where Pin is the input power drawn from the battery. The
resulting Vclimb is then:

Vclimb = ηp × Pin − Paero
W

. (1.23)

The total propulsion system efficiency varies, as it is related to the flight speed
and generated thrust force: a fine modeling of these variations would be required for
a precise propulsion model. However, comparing electrical power input Pin versus

1.A. Aircraft Model 41

aerodynamic power output Paero shows that a linear relation is a fairly accurate
model for the considered flight speeds range, as shown in Fig. 1.21. This fact is
exploited to define the total propulsion efficiency ηp in our simulation model.

-20

 0

 20

 40

 60

 80

 100

-50 0 50 100 150 200 250

A
er

o
po

w
er

 [W
]

Electrical power [W]

10 m/s
13 m/s
15 m/s

Figure 1.21: Resultant propeller aerodynamic power from battery input power for
three different flight speeds.

1.A.3 Pull-up and Pull-down

The transition from level flight to steady climb is achieved by a short pull-up flight
maneuver. Likewise, a pull-down flight maneuver is used to transition from level
flight to steady descend phase. In our simplified aircraft model, as the flight angle of
attack is assumed constant at all times, the distinction between climb and descent
transitions is defined by the given power input Pin: if Pin × ηp is higher than the
required level flight aerodynamic power Paero, then the aircraft climbs.

The pitch turn radius can be calculated as:

Rup = V 2

g(n− 1) , Rdown = V 2

g(n+ 1) (1.24)

where the contribution of the total aircraft weight is in the (n − 1) and (n + 1)

42 Chapter 1. Adaptive sampling of cumulus clouds with UAVs

terms. As the angle of attack is constant, the pitch rate γ̇ is given by:

γ̇ = ± V

Rup/down
(1.25)

1.B Trajectory Computation

Assuming a fixed airspeed V , a steady turn radius R and input power Pin, the
trajectory can be computed by separating it in a pull-up (or pull-down) phase and
a steady phase. Pull-up and pull-down phases are executed assuming a maximal
allowed bank angle, thus assuring that the maximal allowable load factor will not
be exceeded. First we compute the maximum allowed load factor nmax:

CL = 2 ∗W
ρV 2Sref

(1.26)

nmax = CLmax
CL

(1.27)

Using eq. (1.23), Vclimb can be obtained from Paero and Pin. This value repre-
sents the target value for vertical velocity for given Pin and R. The climb rate γ(t)
can then be computed as:

∆γ = arcsin(Vclimb/V)− γ(0) (1.28)
u = sign(∆γ) (1.29)

Rup/down = V 2

g ∗ (nmax − u) (1.30)

γ̇ = uV

Rup/down
(1.31)

∆tpull(t) = min(t, ∆γ

γ̇
) (1.32)

γ(t) = γ(0) + γ̇∆tpull(t) (1.33)

where ∆tpull(t) represents the duration of the pull up or pull down phase. Finally
we can compute the projection on the z axis of the path on the Rup/down circle
during the pull phase, and assume a constant vertical velocity during the remaining
time:

∆zpull(t) = uRup/down(cos γ(0)− cos γ(∆tpull(t))) (1.34)
z(t) = ∆zpull(t) + Vclimb(t−∆tpull(t)) (1.35)

Knowing the vertical velocity, and assuming a constant total velocity V and
turn radius R, we finally compute x(t) and y(t) using the change in the heading
ψ to project the position on a circle of radius R tangent to the horizontal velocity
vector. We first compute the heading ψ(t):

Bibliography 43

ψ̇(t) = VH(t)
R

(1.36)

= V

R
cos γ(t) (1.37)

∆ψ(t) =
∫ t

0
ψ̇(x)dx (1.38)

= V

R
(sin γ(∆tpull)− sin γ(0)) + γ(∆t)(t−∆tpull) (1.39)

ψ(t) = ψ0 + ∆ψ(t) (1.40)

Using ψ(t) we deduce the xy position of the aircraft:(
x

y

)
(t) =

(
x0
y0

)
+R

(
− sin(ψ0) + sin(ψ(t))
+ cos(ψ0)− cos(ψ(t))

)
(1.41)

Finally, the remaining capacity of the battery J(t) (in joules) is:

J(t) = J(0)−
∫ t

0
Pin(x)dx = J(0)− Pint . (1.42)

Bibliography

[Basilico 2011] Nicola Basilico and Francesco Amigoni. Exploration strategies based
on multi-criteria decision making for searching environments in rescue op-
erations. Autonomous Robots, vol. 31, no. 4, page 401, 2011.

[Bronz 2013] Murat Bronz, Gautier Hattenberger and Jean-Marc Moschetta. Devel-
opment of a Long Endurance Mini-UAV: ETERNITY. International Journal
of Micro Air Vehicles, vol. 5, no. 4, pages 261–272, 2013.

[Brown 2002] A. R. Brown, R. T. Cederwall, A. Chlond, P. G. Duynkerke, J.-C.
Golaz, M. Khairoutdinov, D. C. Lewellen, A. P. Lock, M. K. MacVean, C.-
H. Moeng, R. A. J. Neggers, A. P. Siebesma and B. Stevens. Large-eddy
simulation of the diurnal cycle of shallow cumulus convection over land.
Quarterly Journal of the Royal Meteorological Society, vol. 128, no. 582,
pages 1075–1093, 2002.

[Chai 2010] Kian Ming Chai. Multi-task learning with gaussian processes. PhD
thesis, The University of Edinburgh, 2010.

[Chung 2015] Jen Jen Chung, Nicholas RJ Lawrance and Salah Sukkarieh. Learning
to soar: Resource-constrained exploration in reinforcement learning. The
International Journal of Robotics Research, vol. 34, no. 2, pages 158–172,
2015.

44 Bibliography

[Condomines 2015] Jean-Philippe Condomines, Murat Bronz, Gautier Hatten-
berger and Jean-François Erdelyi. Experimental Wind Field Estimation and
Aircraft Identification. In IMAV 2015: International Micro Air Vehicles
Conference and Flight Competition, Aachen, September 2015.

[Corrigan 2008] C. E. Corrigan, G. C. Roberts, M. V. Ramana, D. Kim and V. Ra-
manathan. Capturing vertical profiles of aerosols and black carbon over the
Indian Ocean using autonomous unmanned aerial vehicles. Atmospheric
Chemistry and Physics, vol. 8, no. 3, pages 737–747, 2008.

[Das 2013] J. Das, J. Harvey, F. Py, H. Vathsangam, R. Graham, K. Rajan and
G.S. Sukhatme. Hierarchical probabilistic regression for AUV-based adap-
tive sampling of marine phenomena. In IEEE International Conference on
Robotics and Automation (ICRA), pages 5571–5578, 2013.

[Del Genio 2010] Anthony D. Del Genio and Jingbo. Wu. The Role of Entrainment
in the Diurnal Cycle of Continental Convection. Journal of Climate, vol. 23,
no. 10, pages 2722–2738, 2010.

[Diaz 2010] J.A. Diaz, D. Pieri, C. R. Arkin, E. Gore, T.P. Griffin, M. Fladeland,
G. Bland, C. Soto, Y. Madrigal, D. Castillo, E. Rojas and S. Achí. Utiliza-
tion of in situ airborne MS-based instrumentation for the study of gaseous
emissions at active volcanoes. International Journal of Mass Spectrometry,
vol. 295, no. 3, pages 105–112, 2010.

[Elston 2011] Jack S Elston, Jason Roadman, Maciej Stachura, Brian Argrow,
Adam Houston and Eric Frew. The tempest unmanned aircraft system for in
situ observations of tornadic supercells: design and VORTEX2 flight results.
Journal of Field Robotics, vol. 28, no. 4, pages 461–483, 2011.

[Elston 2014] J. Elston and B. Argrow. Energy efficient UAS flight planning for
characterizing features of supercell thunderstorms. In IEEE International
Conference on Robotics and Automation (ICRA), pages 6555–6560, 2014.

[Elston 2015] Jack Elston, Brian Argrow, Maciej Stachura, Doug Weibel, Dale
Lawrence and David Pope. Overview of Small Fixed-Wing Unmanned Air-
craft for Meteorological Sampling. Journal of Atmospheric and Oceanic Tech-
nology, vol. 32, pages 97–115, 2015.

[Holland 2001] G. J. Holland, P. J. Webster, J. A. Curry, G. Tyrell, D. Gauntlett,
G. Brett, J. Becker, R. Hoag and W. Vaglienti. The Aerosonde robotic
aircraft: A new paradigm for environmental observations. Bulletin of the
American Meteorological Society, vol. 82, no. 5, pages 889–901, 2001.

[Inoue 2008] J. Inoue, J. A. Curry and J. A. Maslanik. Application of Aerosondes
to Melt-Pond Observations over Arctic Sea Ice. Journal of Atmospheric and
Oceanic Technology, vol. 25, no. 2, pages 327–334, 2008.

Bibliography 45

[Kim 2015] Soohwan Kim and Jonghyuk Kim. GPmap: A Unified Framework for
Robotic Mapping Based on Sparse Gaussian Processes. In Field and Service
Robotics, pages 319–332, 2015.

[Lafore 1998] J. P. Lafore, J. Stein, N. Asencio, P. Bougeault, V. Ducrocq, J. Duron,
C. Fischer, P. Héreil, P. Mascart, V. Masson, J. P. Pinty, J. L. Redelsperger,
E. Richard and J. Vilà-Guerau de Arellano. The Meso-NH Atmospheric
Simulation System. Part I: adiabatic formulation and control simulations.
Annales Geophysicae, vol. 16, no. 1, pages 90–109, 1998.

[Langelaan 2011] Jack W Langelaan, Nicholas Alley and James Neidhoefer. Wind
field estimation for small unmanned aerial vehicles. Journal of Guidance,
Control, and Dynamics, vol. 34, page 1016–1030, 2011.

[Langelaan 2012] Jack W Langelaan, John Spletzer, Corey Montella and Joachim
Grenestedt. Wind field estimation for autonomous dynamic soaring. In
Robotics and Automation (ICRA), 2012 IEEE International Conference on,
2012.

[Lawrance 2011a] Nicholas RJ Lawrance and Salah Sukkarieh. Autonomous explo-
ration of a wind field with a gliding aircraft. Journal of Guidance, Control,
and Dynamics, vol. 34, no. 3, pages 719–733, 2011.

[Lawrance 2011b] N.R.J. Lawrance and S. Sukkarieh. Path planning for au-
tonomous soaring flight in dynamic wind fields. In 2011 IEEE International
Conference on Robotics and Automation (ICRA), pages 2499–2505, May
2011.

[Michini 2014] Matthew Michini, M Ani Hsieh, Eric Forgoston and Ira B Schwartz.
Robotic tracking of coherent structures in flows. Robotics, IEEE Transac-
tions on, vol. 30, no. 3, pages 593–603, 2014.

[Nguyen 2013] J. Nguyen, N. Lawrance, R. Fitch and S. Sukkarieh. Energy-
constrained motion planning for information gathering with autonomous
aerial soaring. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 3825–3831, 2013.

[Petres 2007] Clement Petres, Yan Pailhas, Pedro Patron, Yvan Petillot, Jonathan
Evans and David Lane. Path planning for autonomous underwater vehicles.
Robotics, IEEE Transactions on, vol. 23, no. 2, pages 331–341, 2007.

[Ramanathan 2007] Veerabhadran Ramanathan, Muvva V Ramana, Gregory
Roberts, Dohyeong Kim, Craig Corrigan, Chul Chung and David Winker.
Warming trends in Asia amplified by brown cloud solar absorption. Nature,
vol. 448, no. 7153, pages 575–578, 2007.

[Rasmussen 2006] Carl Edward Rasmussen and Christopher KI Williams. Gaussian
processes for machine learning. the MIT Press, 2006.

46 Bibliography

[Ravela 2013] S. Ravela, T. Vigil and I. Sleder. Tracking and Mapping Coherent
Structures. In International Conference on Computational Science (ICCS),
2013.

[Renzaglia 2016] A. Renzaglia, C. Reymann and S. Lacroix. Monitoring the Evo-
lution of Clouds with UAVs. In IEEE International Conference on Robotics
and Automation, Stockholm, Sweden, May 2016.

[Roberts 2008] C. G. Roberts, M.V. Ramana, C. Corrigan, D. Kim and V. Ra-
manathan. Simultaneous observations of aerosol–cloud–albedo interactions
with three stacked unmanned aerial vehicles. Proceedings of the National
Academy of Sciences of the United States of America, vol. 105, no. 21, pages
7370–7375, 2008.

[Sadegh 1997] Payman Sadegh. Constrained optimization via stochastic approxima-
tion with a simultaneous perturbation gradient approximation. Automatica,
vol. 33, no. 5, pages 889–892, 1997.

[Soulignac 2011] M. Soulignac. Feasible and Optimal Path Planning in Strong Cur-
rent Fields. Robotics, IEEE Transactions on, vol. 27, no. 1, pages 89–98,
Feb 2011.

[Souza 2014] J.R. Souza, R. Marchant, L. Ott, D.F. Wolf and F. Ramos. Bayesian
optimisation for active perception and smooth navigation. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 4081–
4087, 2014.

[Spall 1998] James C Spall. Implementation of the simultaneous perturbation algo-
rithm for stochastic optimization. Aerospace and Electronic Systems, IEEE
Transactions on, vol. 34, no. 3, pages 817–823, 1998.

[Spall 2005] James C Spall. Introduction to stochastic search and optimization:
estimation, simulation, and control, volume 65. John Wiley & Sons, 2005.

[Stevens 2013] Bjorn Stevens and Sandrine Bony. What Are Climate Models Miss-
ing? Science, vol. 340, no. 6136, pages 1053–1054, 2013.

Chapter 2

Repeatable decentralised
simulations for cyber-physical

systems

Abstract

Simulation is very helpful for the development of cyber-physical systems, as it en-
ables the testing functionalities and their integration without full hardware deploy-
ment. For complex systems, such as fleets of heterogeneous robots, multiple simu-
lators dedicated to particular physical processes must be interconnected through a
middleware, so as to build a wholesome simulation and test the overall system. By
using dedicated time management capabilities of a simulation middleware, repeata-
bility can be achieved. However, simulation middlewares are not widespread in the
robotics and cyber-physical systems community, and most simulations used in these
domains are therefore not repeatable. We propose a new lightweight distributed
architecture for time management, allowing to easily deploy complex simulations
while strictly ensuring repeatability. A formal model of the architecture is provided,
along with a proof of absence of livelocks. An open source implementation, with a
binding to the robotics ROS framework is made available1.

2.1 Motivations

2.1.1 On the need of distributed simulations

Complex cyberphysical systems integrate a large number of software components,
some being close to the hardware such as drivers and controllers, others being more
abstract components performing signal processing, reasoning and supervision tasks.
For the development of such systems, simulation is key, as it allows a wide range of
tests, from individual software components to the whole integrated software system.
However, the interactions of complex cyberphysical systems with the world span
numerous domains of physics. Let’s consider for instance a mobile robot endowed
with a variety of sensors such as cameras, lidars, radars, GPS and of actuators such
as wheels, tracks, or even manipulation arms: its evolution is governed by physical
process that range from electromagnetic wave propagations and interactions with
a rich environment, to dynamics, including wheels/soil interactions.

1https://github.com/crey0/dsaam

https://github.com/crey0/dsaam

48
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

To simulate such complex systems, one could resort to a great simulator (referred
to as multiphysics simulator), capable of handling any number of composite entities,
each composed of small simulated blocks. It would require simulating all the physics
at the requested level for every sensor and actuator whilst managing the consistency
of the whole simulation. However, such a simulator would be very complex, and
each developer would have to integrate it in its development process. On the other
hand, numerous simulators dedicated to a given domain of physics already exist,
some being generic such as dynamic engines or graphics rendering to simulate vision,
others being mode specialised, such as flight simulators or terramechanic simulators
for wheels/soil interactions.

A wholesome multiphysics simulator would also hardly scale up to accommo-
date for cooperating heterogeneous cyberphysical systems, from fleets to swarms, of
possibly heterogeneous robots, developed by different teams. The need for simula-
tion in the integration of multiple actors has long been recognized and investigated,
mostly in the context of battlefield simulations scenarios. This has lead to the devel-
opment of comprehensive international standards such as HLA [HLA 2010] and DIS
[dis 2012], which have been designed to integrate a distributed series of simulators.

2.1.2 On repeatability

In the context of simulation, repeatability can be defined as: the same initial con-
ditions should always produce the same simulation results. One should not mistake
repeatability (or replicability) for reproducibility, which entails the introduction of
variability, such as running on different simulators, independent reimplementation
of algorithms, switching data and initial conditions.

Repeatability cannot be used to prove scientific results and it’s usefulness to
detect scientific fraud is debatable [Drummond 2009]. Nevertheless, repeatability is
a cornerstone of scientific simulation: it is the basic requirement to obtain verifiable
results. If the simulation result depends on system or network latency, it may
produce non-realistic results in unexpected ways, without the user noticing it.

Furthermore, repeatability eases a lot the development process: running the
same simulation twice should produce the exact same results, allowing to easily
reproduce bugs, and perform regression testing. It also enables launching batches
of simulation, without worrying about system load: the simulation should produce
the same results even in resource starvation scenarios where all the simulations
cannot run concurrently in real time.

However such repeatability comes at a price. Indeed cyberphysical systems are
complex, and there may be variability coming from the on-board processor load,
depending on the scheduling protocol. Therefore to have an accurate and fully
repeatable simulation, one would need a precise model of the hardware and run the
software on the simulated hardware, as part of the global simulation in a complete
system simulation.

On non-real time operating systems, the variability is the main issue preventing
repeatability of simulations. It arises from many factors such as networking delays,

2.2. Distributed simulations: state of the art 49

dropped messages (full buffers), hardware load (interrupts, CPU load, IO delays,
...), operating system load (time spent in kernel space is usually dependent on
load from other processes), scheduling policies (other processes preempting on the
simulation)...

An other issue preventing the repeatability of simulations are the non-
deterministic interactions between the simulation environment and the tested soft-
ware components, which can embed non-deterministic algorithms. Out of order
message processing can occur, non-deterministic results can arise from complex
multi-threaded interactions, and the usage of hardware clocks when the component
depends on elapsed time can affect the components behavior If a time-management
library can easily enforce message processing order, all the other issues should be
considered by the developer of the components, so as to ensure deterministic results.

Because of all these issues, none of the two main approaches to simulation
guarantees repeatability. The first approach is to accept having less accuracy in
the simulation, and not model the hardware – it is referred to as Software In The
Loop (SITL) simulation. It does not allow to detect software loops that take too
long to execute, or to prove the consistency of the software in the presence of high
system load or network latency. The second approach, referred to as Hardware In
The Loop (HITL) simulation, is to run the software directly on the target hardware
during the simulation. Yet it forces running the simulation in real time and still
does not guaranty repeatability of the simulation due to system variability.

The time management library is responsible for managing the advancement of
simulation time in each simulator. It should ensure that messages are processed
and sent in timestamp order, and prevent message losses.

2.2 Distributed simulations: state of the art

2.2.1 Distributed simulation standards

We focus on software or standards intended to interconnect heterogeneous simula-
tors to perform large-scale simulations in a distributed fashion. We refer to such
tools as simulation frameworks. Two widely used international standards exist:
High Level Architecture (HLA) [HLA 2010] and Distributed Interactive Simulation
(DIS) [dis 2012].

Both frameworks have originally been developed with the support of public
agencies for battlefield simulations. Monolithic in nature, these standards define
everything from communication to time and simulation management, as well as
domain specific models for objects (planes, ships, etc...) and algorithms (e.g. dead
reckoning). A key difference lies in how messages are dispatched in the system.

HLA is centralized by nature, all messages from individual simulators are ex-
changed through a central process called the RTI (Run Time Infrastructure). On
the other hand, DIS nodes that encapsulate simulators exchange message in a de-
centralized, peer-to-peer fashion. However this decentralized mode is only usable
for real-time simulations. When switching to non real-time simulations, DIS needs

50
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

a central process, which is used to perform time management. In both cases, time
management for non real time simulation is performed in a centralized way.

2.2.1.1 Common distributed simulation architecture

These standards exhibit a structure which is common to every simulation framework
and can be used to compare them. Figure 2.1 shows a very simple abstraction of a
simulation middleware in layers.

• At the core is the capability to exchange messages through a middleware,
which can be centralized (HLA) or not (DIS).

• The time management layer is used to synchronize the simulators and enforce
global coherency of the simulation. In both HLA and DIS, this is done using
a central supervisor node, but other solutions exist (see subsection 2.2.2).

• Simulation management refers to setup, tear-down and monitoring of the sim-
ulation, managing the whole life process of the simulation.

• Simulation components are then built on top of this software stack. Here we
can distinguish between discrete event and continuous simulation components
(see section 2.2.1.3).

Not shown here is the common object models (i.e. data structures with appropriate
semantics), necessary for the intercommunication between components and usually
described using an interface description language (IDL).

2.2.1.2 Time management

There exists multiple time management modes, which can best be described by the
relation between simulated time and physical time.

• Real time: the simulated time flows exactly at the same rate as physical time.

• Linear time: the simulated time flows linearly with respect to real time, using
a speedup coefficient.

• Non-linear time: the simulated time flows non-linearly, it can pause for arbi-
trary periods of time before resuming, and in some situations even go back in
time (see 2.2.2).

Most simulators only support real and linear time, while HLA and DIS both support
non linear (monotonic) time. While real-time simulation is best for validation of
the integration of the software within the tested system (in particular using HITL
simulation), non-linear time can be used (via the time management layer) to perform
repeatable simulations, which is better to validate the result of algorithms.

2.2. Distributed simulations: state of the art 51

2.2.1.3 Simulation models

There exists two main simulation models: discrete event simulation (DES) and
continuous simulation. The former models the system as a discrete sequence of
events, each event marking a change in the system. By contrast, in continuous
simulation, the system is described by a set of partial differential equations which
are integrated to compute the state of the system at any point in time.

Physical processes are obviously continuous in nature. Sensors and actuators,
however, deal with discretized data. Therefore, in a typical simulation, the physical
components of the system are modeled using continuous equations, but all input
and output variables are updated and broadcasted periodically using a fixed time
step for integration. Hence the simulator’s interface could also be described by a
DES model. Only a limited set of interactions between objects are non-periodic
discrete events, such as interactions with third-party systems in the environment.

Middleware

Time Management

Simulation Management Simulation Component

Low level

High level

Figure 2.1: Software layers in a distributed simulation

2.2.2 Time management in parallel and distributed simulations

Besides the HLA and DIS standards, time management is a much researched prob-
lem in parallel discrete event simulation (PDES), which addresses the problem of
the execution of simulations on high performance computing platforms. The out-
put of the simulations must be the same as the sequential version, therefore the
output of the time management scheme should always produce deterministic re-
sults. A number of papers deal with reviewing time management in these fields,
such as [Fujimoto 2015, Jafer 2013]. We only briefly introduce the different meth-
ods that have emerged from these fields, which can be split in two main categories:
conservative and optimistic methods.

2.2.2.1 Conservative methods

Conservative time management enforces that all messages between simulators are
processed in the order of their timestamps, in a deterministic fashion. Moving time
forward (i.e. simulating the next step, or the next event) can only happen if all
preceding events have been processed. This is enforced by blocking simulators until

52
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

all messages have been received, but can lead to deadlocks if the topology contains
circuits.

A number of methods have been developed to address this problem, such as
synchronous operation (all simulator share a global clock) or deadlock detection
and resolution. Other methods, closer to the use case of distributed simulation,
assume that the simulator exchange data through directional links and make use
of null messages, messages containing only a synchronization data but no pay-
load, to entirely avoid deadlocks. The Chandy-Misra-Bryant (CMB) algorithm
[Bryant 1977, Chandy 1979] is based on the declaration of a lookahead value L for
each node, which acts as a promise regarding the timestamp of the next produced
message. If the node’s last message was at time T , then it promises through the
sending of null messages not to send any messages to any other node before T +L.
However this method can suffer from livelock in some topologies, and from small
lookahead values leading to large amount of null messages exchanged.

More recent work focus on methods to minimize the number of synchronization
messages, as well as ensuring that no deadlock may happen. In [Chandy 1989],
the authors make use of “conditional events”: each node sends with each message
the probable timestamp of its next message, which is valid only provided no more
incoming events with smaller timestamp will arrive in the future on the node’s
inputs. This helps reducing the number of null messages, but still requires the
nodes to periodically broadcast some synchronization messages to all other nodes.

2.2.2.2 Optimistic methods

Pioneered by the “Time Warp” algorithm [Jefferson 1982], optimistic methods as-
sume that all messages arrive and are processed in order. If an event is processed
out of order, the entire simulation needs to rollback to a previous state. Thus opti-
mistic methods require substantially more memory resource to maintain snapshots
of previous states of the simulation. This method has lead to the development
of dedicated operating systems such as Time Warp OS [Jefferson 1987], with the
rollback process integrated in the core of the OS.

2.2.2.3 Time management in HLA

We briefly present time management in HLA, as it has a large record of usage,
including in robotics [Gervais 2012, Chaudron 2011, Degroote 2015], and it is
very similar to the modus operandi of DIS when deterministic processing order is
enforced. Both use conservative methods to achieve it, using a central node and
null messages to move time forward. The following is a quick summary of chapter
8 of the HLA standard documentation [HLA 2010].

In HLA a central node called the Run Time Infrastructure (RTI) is responsible
for time management, and acts as a relay for message exchanges. All nodes, called
federates in HLA, communicate only through the RTI during the simulation. The

2.2. Distributed simulations: state of the art 53

standard supports enabling or disabling time management for individual federates
as well as individual messages. Messages can be sent and delivered using two
modalities:

• Receive Order (RO): messages are delivered in received order by the RTI using
a first-in, first-out policy.

• Time Stamp Order (TSO): messages are delivered in strictly increasing times-
tamp order by the RTI.

Depending on its status, the federate can send and receive messages from either
type:

• Time Regulating: can send and receive RO and send TSO messages

• Time Constrained: can send and receive RO and receive TSO messages

Non-regulating, non-constrained federates can only send and receive RO messages.
Additionally, Time Regulating federates must declare a non-negative Lookahead
value L. This lookahead indicates a lower bound on the next outgoing message.
“Specifically, a time-regulating joined federate shall not send a TSO message that
contains a timestamp less than its current logical time plus its current lookahead”
(excerpt from [HLA 2010], ss. 8.1.4, p. 152). A node can be both time-regulating
and time-constrained.

Federates can only advance their logical time (i.e. the simulation time) by
sending request to the RTI, and getting in response a Time Advance Grant (TAG).
There are two, slightly different, methods to achieve this:

• Time Advance Request TAR(t) : indicates that the federate is ready to ad-
vance to time t. RTI sends all TSO messages up to t before sending TAG(t).

• Next Message Request NMR(t) : indicates that the federate is ready to ad-
vance to time t, provided no messages are incoming before t. RTI responds
either by sending a message with smaller timestamp tm, or by directly grant-
ing the time advance. Upon completion, a TAG(tm) or TAG(t) is delivered
by the RTI.

Messages updating the world state at time t are called Reflect Attribute Value (RAV)
messages, and are always timestamped when using TSO. Figure 2.2 illustrates a
typical message exchange between federate and RTI allowing the federate to advance
its logical time using a TAR.

TAR and NMR are almost equivalent, but NMR would be the preferred mode
for discrete event simulators, while TAR would usually be preferred for time stepped
simulators.

The lookahead L is not strictly needed for time management (indeed zero looka-
heads are possible), but allows for quicker simulation. Indeed the RTI can advance
the logical time of other federates further before the time regulating federates send
a TAR or NMR request.

54
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

Federate RTI

LT = 10

LT = 20

TAR(20)

RAV (14)

RAV (17)

TAG(20)

Figure 2.2: Typical HLA message exchange between a federate and the RTI in Time
Stamp Order strategy. Excerpt from [Degroote 2015]

2.2.3 The case of robotics

2.2.3.1 On the lack of repeatability in robotic simulators

Simulation world

RTI

Morse node A Morse node B Morse node C

Robot1 Robot2 Robot3 Robot4

pose robot{1, 2}
pose robot{3, 4}

pose robot3 pose robot{1, 2, 4}

pose robot4
pose robot{1, 2, 3}

Robot1 softwares Robot2 softwares Robot3 softwares Robot4 softwares

ROS messages YARP messages ROS messages Mavlink messages

Figure 2.3: A Morse-HLA simulation with three Morse nodes and four robots.
The HLA middleware is used to exchange message in the red zone (through the
RTI noted RTIG in this figure), other heterogeneous middleware in the green zone.
Excerpt from [Degroote 2015].

.

Simulators for robotic applications have mainly been developed and integrated
in two ways:

• Monolithic, general purpose simulators such as Morse or Gazebo (or even
FlightGear [Perry 2004]) built with at their heart the need to simulate physical
interactions and graphically render the environment, very similarly to a game
engine.

• Specialized simulators that have been integrated in the software stack of
robots control architectures, which is very typical for drone autopilots (such

2.2. Distributed simulations: state of the art 55

as Paparazzi [Brisset 2006]).

By their tight integration in the software stack, or by their monolithic nature,
they lack in flexibility, and have not been constructed to run in a distributed fash-
ion. As a notable exception, the Morse simulator supports the HLA middleware
[Degroote 2015]. Together with the fixed time step mode, it is possible to run prop-
erly time-synchronized distributed simulations. To our knowledge, no further usage
has been made of this capability of Morse outside the proof of concept described
in this paper. Furthermore as depicted in figure 2.3, a typical usage would have
multiple simulators communicating with each other through Morse and other mid-
dleware used to link the functional components to the simulation. Hence, except by
moving all others components to the HLA middleware, those will not be aware of
the time management, and the simulation still may not be repeatable. Even though
there are very few, other case studies involving HLA to deploy robotics simulation
exist. It is used in [Gervais 2012] to simulate embedded systems such as UAVs,
but the paper includes very few details. A more detailed example can be found
in [Brito 2015], here we find the same architecture as the previous Morse example
(fig. 2.3), with HLA used as middleware for the simulation side and the robotics
framework ROS for the functional components side, with a bridge linking the two.
All example found outside Morse have been built ad-hoc, not as part of a reusable
framework available to the general public.

Besides of the Morse simulator’s proof of concept [Degroote 2015], to our knowl-
edge no readily available robotic framework or simulator can properly run time-
synchronized distributed simulations. Indeed, these simulators can only be used in
real time mode and the simulation time advancement can only be slowed down or
accelerated up to a constant factor with respect to the physical time. This corre-
sponds to the way roboticists are used to test their software, not in a systematic
way but as part of the development process to avoid testing it directly on board of
the robot, or to avoid deploying it.

Repeatability of the simulations is not a widespread concern, and validation is
done mostly by sampling a number of simulations until the developers are “confident
enough” in their implementation. Still, we argue that with the growing complexity
of robotic systems, and considering the number of published papers where all the
work is done in simulation, there is a growing need for distributed, repeatable sim-
ulations, and the first requirement for it is to be able to manage time advancement
between the components.

2.2.3.2 From robotic to simulation frameworks

Robotic frameworks Given the complexity of the software stack that needs
to run on a robot and the wide range of abstraction, from low-level drivers for
sensors and actuators to high-level reasoning algorithms, roboticists have long un-
derstood the need for compositionality. Usually, the software is broken in compo-
nents, each responsible for a specific functionality. These components are decoupled
from each other, typically living in different processes, and are interacting through

56
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

a middleware. Numerous frameworks have been developed along this modular-
ity principle, among others YARP [Metta 2006], Orocos [Bruyninckx 2001], MOOS
[Benjamin 2010], Genom3 [Mallet 2010] and ROS [Quigley 2009]. Most of these
provide their own middleware, their ecosystem being tightly coupled with it. Oth-
ers, such as Genom3, are more decoupled. They do not provide a middleware,
allowing the user to choose between several options by the means of automatic
generation of the interface with the selected middleware.

A middleware is a collection of libraries and executables responsible for exchang-
ing data and triggering remote procedure calls between entities such as processes,
living on the same or another computer. The data structures of the messages are
described using an interface description language. The middleware provides an
implementation of the data structures in the target programming languages and
is responsible for the exchange of these between components. A large number of
middleware exists, but can be broken down into two categories according to their
architecture:

• Centralized communication: all messages are collected by a central process,
which is then responsible for dispatching them (e.g. MOOS).

• Decentralized communication: the messages are exchanged in a peer-to-peer
fashion (e.g. ROS, Orocos, YARP)

Building on middleware, a large number of robotic frameworks have emerged.
These provide additional tools and functionality to ease the development process,
such as:

• Standardized messages for common data types (images, poses...)

• Reusable components for common use cases (such as drivers for sensors and
actuators) through common software repositories

• New semantics of communication (e.g. ROS Actions)

• Management of the component’s behavior (e.g. Genom3 description language
exposing Tasks, Activities, Codels and ports)

• Introspection, display and debugging tools

• A common build and deployment process

Simulation frameworks Much on the same way, simulation frameworks, such
as HLA and DIS, are building upon middleware, adding specific capabilities needed
for the simulation process:

• Simulation management: setup, tear-down, joining and leaving of entities,
transfer of ownership of simulated objects between simulators.

2.2. Distributed simulations: state of the art 57

• Time management: running the simulation in real time or non-real time
(slower, faster, or adaptive time flow), making the simulators wait and syn-
chronize with each other.

• Geographic zoning: grouping objects by geographic zones of interaction for
large scale simulations.

• Defining and integrating domain specific standard object types (for example
planes, ships, soldier units for battlefield simulation)

• Integrating domain specific capabilities (such as dead reckoning for fast mov-
ing objects in DIS)

Roboticists have been developing simulators for their needs, and have been
integrating them in their software architecture. This is usually done in two com-
plementary ways. Common simulators are integrated in an ad-hoc way, either as
part of a component (outside the communication framework), or replacing one or
many components with simulated counterparts. The simulated component is then
directly connected through the robotic framework as if it were the real one. But it
does not permit to run distributed simulations, where the simulators are aware of
each other and interconnected. For this purpose, the world is split in two categories:
real components and simulators. Real components live in the robotic framework,
while a simulation framework is used for the simulators. However, the functional
components do not know they are part of a simulation. This has the advantage of
simplicity, but also a few drawbacks:

• The roboticist needs to master two different frameworks, which adds com-
plexity, slowing down the development and leading to mistakes.

• Since components are not aware that they are part of a simulation, it is more
adapted to simulations were time flows in real time, or at least with a constant
time dilation factor. Being unaware of it, one component can not wait for
the completion of a simulation in another one. Therefore, to have proven
consistent simulations, one would need to know the Worst Case Execution
Time (WCET) of all the simulators, and verify that the requested period can
be held. However, the most frequent solution is to perform a trial-and-error
process, where one adjusts the frequency and time factor of the simulation
until it is “accurate enough” in most cases, on a specific machine. The required
level of accuracy is not well defined and deploying the simulation on another
computer may need hand tuning.

• Simulating slower or faster than real time can have unforeseen consequences,
because the developer or integrator of each component is not aware of this
possibility. Some processes may assume that data arrive at a certain real time
frequency, taking the hardware clock as a reference point. Complex multi-
threaded interaction may happen that render the results of the component’s

58
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

computations useless, such as new incoming messages canceling computations
still running on previous data.

• It is not possible to perform simulations where simulated time flows in an
adaptive way, depending and synchronized with the advancement of the sim-
ulators.

2.2.3.3 Towards a thin simulation layer

Therefore, instead of relying on external simulation frameworks, another solution
would be to add a thin simulation layer on top of the robotic one. This would
allow to integrate simulations in a more seamless way with existing code. Reuse of
the same underlying middleware and framework would also ease the cognitive load
of the developer. Furthermore, it would draw its attention to potential problems
coming from the time flow of the simulation, by allowing all components to be aware
of their taking part of a simulation.

One could summarize the requirements of such a satisfying simulation framework
for robotics as follows:

• Compose distributed, modular simulations, interconnect simulators

• Switch between simulated and real components, mix them within the same
simulation

• Synchronize simulations, control time advancement (faster or slower than real
time simulations)

• Run real time simulations

• Run simulations in batches

• Integrate well in existing robotic software

• Produce repeatable simulation results

We present in the rest of this paper an approach to time management in dis-
tributed simulations (as exposed at the end of 2.1.2) that is the keystone towards
repeatable simulations, and we will not consider simulation management.

2.3 DSAAM: a decentralized time management archi-
tecture

Overview We propose a time management framework that can be easily imple-
mented on top of existing robotic frameworks. It manages time in a completely
decentralized manner, without the need for a central node or direct communica-
tion between all simulated components. Most robotic framework share this feature:
communication is performed in a peer to peer fashion, with a supervisor node only

2.3. DSAAM: a decentralized time management architecture 59

responsible for bookkeeping. Some, such as ROS22, are altogether migrating toward
a completely decentralized approach (for the discovery of services as well): the in-
troduction of a central node would thus break the philosophy of the underlying
middleware, and also add a significant overhead.

The proposed solution is close to existing conservative algorithms found in the
PDES literature. In particular, it could be seen as an extension of the “conditional
event” scheme proposed in [Chandy 1989], but additional constraints allow us to
simplify the algorithms and lower the communication between nodes by getting rid
of the broadcasting step. Note though that the concerns of the PDES community
are quite different from distributed simulations in robotics: in PDES, a single sim-
ulation is usually distributed on a computer or a cluster and parallelism is intended
to reduce execution time, whereas our primary objective is the interconnection of
heterogeneous simulators and modularity, while guaranteeing repeatability.

Our framework, named DSAAM for “Decentralized Synchronization Architec-
ture for Asynchronous Middleware”, satisfies the two following essential properties:

• Decentralization: it relies on a peer-to-peer, one to many, communication
model.

• Time consistency: messages are emitted and processed in a deterministic fash-
ion, and components must wait for each others messages in order to advance.
This guarantees repeatability of the simulation if each simulator itself is de-
terministic (see 2.1.2).

Characteristics of a DSAAM System To enforce time consistency, the fol-
lowing constraints are imposed from the underlying simulated components:

• Time-stamped messages: all exchanged messages must be time-stamped in
a meaningful way. Implicitly, the semantics of the timestamp is that each
message represents a piece of the world state at the simulation time indicated
by its timestamp.

• Periodicity: messages are sent with a timestamp period that is known in
advance, so as to know at which simulation time to expect the next message.
This period can vary during the course of the simulation.

The last constraint is a particularly strong one. For example, it forbids request-
response mechanisms that may be triggered at arbitrary points in simulation time.
We will see in detail why this constraint is necessary and discuss how it could be
loosened.

A DSAAM system is made of a collection of nodes that encapsulate the simu-
lators, and that exchange messages through flows. Flows have always one source
(publisher), and any number of sinks (subscribers), as depicted in fig. 2.4. We also
assume that every exchanged message includes a timestamp and a validity period.

2https://index.ros.org/doc/ros2/

60
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

Timestamps and periods can be any kind of variable that all belong to a totally
ordered set endowed with addition. We use the natural integers N.

The introduction of the period represents a contract between sources and sinks:
if a sink receives a message with timestamp t and period δ, then the next message on
this flow will have timestamp t+ δ. Semantically, the message represents the state
of the variables that it contains between simulation time in [t, t+ δ[, t+ δ being the
time at which the next message will carry the updated state of the variables. It is
very similar in nature to the notion of lookahead, but instead of providing a lower
bound it provides the exact timestamp of the next message. The period δ may be
fixed, but it is not a requirement in our architecture, it may change between each
message.

Properties of a DSAAM node To satisfy these constraints, the following four
rules on consumption and emission of messages inside a node must be enforced:

1. Messages are consumed by increasing timestamp order, no matter the source
they are coming from.

2. The emission of a message with timestamp T forbids future consumption of
messages with timestamp T ′ < T .

3. The consumption of a message with timestamp T forbids future emission of
messages with timestamp T ′ ≤ T

4. No incoming message can be lost or discarded before it is consumed by the
simulation.

These rules are necessary to ensure the time consistency of the variables a node uses
as input for the simulation, which is the first pre-requisite to provide a repeatable
simulation.

To ensure time management, DSAAM defines for each simulator it encapsulates
the following three states:

• Wait (Wa): the simulator is computing its next step based on previous inputs
and state.

• Emit (Em): the node is sending the updated state on one of its outgoing
flows (may be blocking if the buffer of one of the sink nodes is full).

• Consume (Co): the node is consuming the next (smallest timestamp) incom-
ing message on one of its inputs (may be blocking if the corresponding message
has not yet arrived).

After each emission or consumption of message, the node returns in the wait state.
Figure 2.5 is an informal graphical description of the transitions between these
states according to the aforementioned rules.

2.4. Formal Model and Proof 61

SF F
tF , δf (tF)

KF,m

...

KF,1

Figure 2.4: A flow F with source node S and sinks KF,1...KF,m, with next emitted
message timestamp tF and period δf (tF). The state of sinks is not represented.

WaCo Em

No future emission
with t′ ≤ t (rule 3)

No future consumption
with t′ < t (rule 2)

t consumed t emitted

Figure 2.5: Informal description of the behavior of a node with transitions between
Wait, Consume and Emit states according to the rules 2 and 3.

Illustration We further illustrate the behavior of DSAAM using a small example
with two nodes and two flows forming a circuit shown figure 2.6. Figure 2.7 depicts
a valid message exchange sequence in this system. In particular, node b must wait
processing of message t = 1 to send its own message at t = 2. However both have to
send their message t = 2 before processing (consuming) the corresponding message
of the other node. Indeed if both were to wait to receive the message before sending
their own, it would result in a deadlock.

An invalid message exchange sequence is shown figure 2.8. In this case node b
fails to wait for the processing of the message emitted by node a at t = 1 before
sending its own message at t = 2, which is prohibited by rule 2, thus potentially
breaking the time consistency of its internal simulation. Such an error is prevented
by the time management layer, which would detect the fault and block the sending
of this message by node b as long as the message of node a emitted at t = 1 is not
processed.

In the following section, we propose a rigorous formal model for DSAAM, on
which we rely to prove crucial properties that hold for any DSAAM system.

2.4 Formal Model and Proof

In this section, we fully formalize DSAAM. We start by presenting transition sys-
tems (Sect. 2.4.1.1), the formalism on which operational semantics of DSAAM
are based. We give syntactical definitions then operational semantics of a generic

62
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

a

fa

fb

b

tb, δb

ta, δa

Figure 2.6: An example with two nodes a and b and two flows with messages
timestamped ta and tb, forming a loop. Each node has only one outgoing flow with
the same name as the node, and each flow has only one sink.

a
δa = 1

b
δb = 2

ta = 0
tb = 0

ta = 1

ta = 2
tb = 2

ta = 3

tb = 4

Figure 2.7: Valid message exchange sequence between nodes a and b from example
depicted in fig. 2.6. Period is constant with δa = 1 and δb = 2. Initial timestamp
is ta0 = tb0 = 0. Physical time elapses along the dashed lines, while message times-
tamps are displayed above the arrows. After reception, messages are assumed to
be processed instantaneously.

DSAAM system. Operational semantics are derived from syntactical elements while
unambiguously specifying the behavior described informally in Sect. 2.3.

2.4.1 Preliminaries

2.4.1.1 Transition Systems

Syntax A Transition System TS is a tuple 〈U,Q, q0,−→〉 where:

• U is a finite set of variables. Each variable is implicitly typed. We use dom(u)
to denote the domain of variable u in U ,

• Q is a set of states. Each state in Q is an interpretation of variables in U ,
that is a mapping from variables u ∈ U to values in dom(u),

• q0 ∈ Q is the initial state that maps each variable to its initial value,

2.4. Formal Model and Proof 63

a
δa = 1

b
δb = 2

ta = 0
tb = 0

ta = 1

ta = 2

tb = 2 STOP!

Figure 2.8: Invalid message exchange between nodes a and b from example depicted
in fig. 2.6. Period is constant with δa = 1 and δb = 2. Initial timestamp is
ta0 = tb0 = 0. Node b sends a message timestamped tb = 2 but did not yet receive
and process the input ta = 1, violating constraint 2.

• −→ is a set of transitions. Each transition t in −→ is a binary relation that
defines for every state q in Q a (possibly empty) set of successors t(q) subset
of Q. We write q t−→ q ′ iff q ′ ∈ t(q).

A TS is deterministic iff there exist not more than one successor of a given state q
over the same transition t. Formally, a deterministic TS must satisfy the following
condition:
∀q ∈ Q, ∀t ∈−→: |t(q)|1 where |s| denote the cardinality of the set s.

Semantics The semantics of a TS is retrieved through the following notions:

• Current state: the current state of the TS is the state q in Q that agrees with
the current valuation of each variable u in U . Initially, the current state is q0,

• Enabled transition: a transition t in −→ is enabled iff q is the current state
of the TS and t(q) 6= ∅.

The evolution of TS is thus subject to taking enabled transitions. After taking an
enabled transition t in −→, the current state of the TS is a state q′ in t(q) (uniquely
defined in the TS is deterministic). The possible evolutions in a TS define the set
of reachable states QR subset of Q. We say that state q is reachable, that is q ∈ QR
iff there exists a (possibly empty) sequence of transitions σ such that q0

σ−→ q.

2.4.1.2 Transition Diagrams

Syntax We define a graphical notation for a TS (called a Transition Diagram,
or TD for short) and a composition operation between TDs. We use a TD to
describe a component of the system. Therefore, the composition of TDs is a way
to build complex systems through synchronization and shared variables. In sum,

64
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

the composition of multiple TDs (viewed as components) results in a TS (viewed
as the system).

A TD C (component) is a finite directed graph where V is the set of vertices
and E the set of edges. C operates on a finite set of variables, X. The vertex v0 in
V is the unique initial vertex of C. Each edge e in E is associated with a guard ge
and a set of operations ope. If r connects vertex va to vertex vb, then we may write
va

e(ge,ope)−−−−−→ vb.

• ge is a boolean expression over X whose truth value denotes the enabledness
of the edge e. That is, e is enabled iff va is the current vertex of C and ge
evaluates to true. In the remainder of this paper, guards that are always true
are not represented,

• ope is an atomic sequence of operations over variables in its scope X. Thus,
ope maps each variable x in X to a value in dom(x), resulting from applying
such operations. If ope maps a variable x in X to its current value (that
is, ope(x) = x), then we say that ope is side-effect free on variable x. In the
remainder of this paper, side-effect free operations are not represented.

We show in Fig. 2.9 a simple TD example with two vertices, v0 and v1, and two
edge e and e′. The initial vertex, in this case v0, is denoted with an incoming edge
without source vertex. Guards are in green and instructions of operations in red.

v0
e’ v1

x2 > x1

x1:=x1+2
e

x1 > x2

x2:=x2+2

Figure 2.9: A TD example

This TD operates over a set of variables X = {x1 , x2}, where
dom(x1) = dom(x2) = N (N is the set of natural numbers). The guard ge (respect.
g′e) evaluates to true iff x2 > x1 (respect. x1 > x2). The set of operations ope
(respect. op′e) maps the variable x1 (respect. x2) to the result of adding 2 to its
current value, and the variable x2 (respect. x1) to its current value (which explains
why the latter operation, side-effect free, is not represented).

Semantics Given a TD C, we associate its meaning, [[C]], that is a TS
〈U,Q, q0,−→〉 that corresponds to C and give thus its semantics (Sect. 2.4.1.1).
We use the following notations:

2.4. Formal Model and Proof 65

• q(g) denotes the truth value of a guard g at the state q,

• q ′|Y = op(q|Y) denotes that the valuation of each variable y in Y at state q′
agrees with the result of op over y from state q (in particular, if op is side-
effect free on some variable y′ in Y then q ′(y′) = q(y′)). Similarly, we write
q ′|Y = q|Y iff the valuations of each y in Y at q and q′ are identical (q(y) = q ′(y)
for each y in Y).

Now, we can define each tuple element of [[C]] as follows:

• U = X ∪ π is the set of variables X and the variable π denoting the current
vertex of C. Therefore, dom(π) = V and the initial value of π is v0,

• Q is the set of states, each state is an interpretation of π and each variable in
X,

• q0 is the initial state, that is the mapping associating π to v0 (initially the
current vertex is v0) and each variable in X to its initial value,

• −→ is the set of transitions resulting from mapping each edge e in E to a tran-
sition te in −→ as follows. If e connects vertice va to vb, that is va

e(ge,ope)−−−−−→ vb,
then:

q ′ ∈ te(q) iff

(1) (q(π) = v ∧ q ′(π) = v′) ∧
(2) q(ge) ∧
(3) (q ′|X = ope(q|X))

Properties Let us get back to the TD in Fig. 2.9. According to the initial values
of x1 and x2, we can reason on properties such as progress. We say that the progress
property is satisfied iff for any reachable state in the corresponding TS there exist
an enabled transition:

∀q ∈ Qr ∃t ∈−→: t(q) 6= ∅

Now, if q0 (x2)− q0 (x1) = 1 , this property is satisfied. Indeed, ope (respect. ope′)
results always in satisfying ge′ (respect. ge). Thus, te (respect. te′) is enabled at
any reachable state q satisfying q(π) = v0 (respect. q(π) = v1), regardless of what
q(x1) and q(x2) evaluate to.
Dually, any initial configuration of x1 and x2 such that q0 (x2)− q0 (x1) 6= 1 results
in violating the progress property and thus the TD is said deadlockable. For instance,
if q0 (x2)− q0 (x1) > 1 , then ge′ is not satisfied when reaching a state q such that
q(π) = v1 and the TD deadlocks at this very state.

This example is useful when we introduce the semantics of DSAAM in 2.4.2.2.
Indeed, progress of TDs is an important property in DSAAM systems, which we
will discuss and prove in Sect. 2.4.3.

2.4.1.3 Composition of Transition Diagrams

Through shared variables Syntax:

66
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

The parallel composition of a finite number of TDs, C1, . . . , Cn, over a set of
shared variables, Us, results in a TS denoted:

{Init}
[
||

i∈1..n
Ci

]

Where Init is the function that defines the initial values of each u in Us. Thus, Init
gives for each variable u in Us its initial value in dom(u).

By means of compositionality, edges of different components are always distinct:
if e is an edge in Ci then it cannot be an edge in Cm with i 6= m.

Each TD Ci operates a set of local variables, denoted Ui, besides the variables
in Us (Ui∩Us = ∅ and Ui∩Um = ∅ for all indexes i,m ∈ 1..n with i 6= m). Besides,
each component Ci has a variable πi to store its current vertex (Sect. 2.4.1.2).
Therefore, the set of variables declared in the TS is:

U = Us ∪
(⋃
i∈1..n

Ui

)
∪
(⋃
i∈1..n

{πi}
)

Semantics:
Given the parallel composition {Init}

[
||

i∈1..n
Ci

]
, we can define a TS with the

set of variables U that will give the semantics of the system. The meaning of

{Init}
[
||

i∈1..n
Ci

]
is the TS 〈U,Q, q0,−→〉 such that:

• U = Us ∪ (
⋃

i∈1..n
Ui) ∪ (

⋃
i∈1..n

{πi}) is the set of variables (see above),

• Q is the set of states, each state is an interpretation of each variable in U ,

• q0 is the initial state, that is the mapping associating (i) πi to vi0 (the initial
vertex of Ci) and each u in Ui to its initial value, for each Ci and (ii) each u
in Us to its initial value Init(u),

• −→ is the set of transitions resulting from mapping each edge e in Ei for each
component Ci to a transition te in −→ as follows. If e connects vertices via
and vib, that is vi

a
e(ge,ope)−−−−−→ vi

b, then:

q ′ ∈ te(q) iff

(1) (q(πi) = vi

a ∧ q ′(πi) = vi
b) ∧

(2) q(ge) ∧
(3) (q ′|Ui∪Us

= ope(q|Ui∪Us)∧
q ′|U\(Ui∪Us∪{πi}) = q|U\(Ui∪Us∪{πi}))

Note that the precise definition of the scope of operations op in Sect. 2.4.1.2 allows
a compact definition of TDs and their compositions as TS. Indeed, ope cannot
operate on any π variable or any variable in Um with m 6= i. Therefore, when a
transition q te−→ q′ is taken, q′ must agree with q on (i) all current locations πm in

2.4. Formal Model and Proof 67

all components Cm with m 6= i and (ii) all variables in Um for all components Cm
with m 6= i. These variables Um and πm are exactly the set U\(Ui ∪ Us ∪ {πi} on
which q and q′ must agree (rule (3) in the transitions definition above).

Adding synchronizations The parallel composition seen until now allows only
asynchronous communication between the TDs participating in it (Sect. 2.4.1.3).
We enrich the notion of composition of TDs with synchronous communication
through edges. Let us consider the same system seen in Sect. 2.4.1.3, resulting
from the parallel composition of n TDs:

{Init}
[
||

i∈1..n
Ci

]

Let E be the set of all edges in the system, that is E =
⋃
i∈1..nE

i. We define a
set of send edges ES and a set of receive edges ER, both disjoint, possibly empty,
subsets of E , and therefore we may write ES ∪ ER ⊆ E and ES ∩ ER = ∅. We
denote by the set EiX (X ∈ {S ,R}) the edges of EX that belong to component
Ci, that is EX ∩ Ei. For instance, E1

S is the set of send edges in component C1.
We define now the matching function M that maps each send edge e to a set of
corresponding receive edges that do not belong to the same component as e. That
is M : ES 7→ P(ER), with P(s) denoting the powerset of set s, such as the following
property is always satisfied for all i ranging from 1 to n:

∀e ∈ E i
S∀e′ ∈ M (e) : e′ /∈ E i

R

Using these definitions and notations, we enrich the composition of TDs with
a strong pairwise send/receive synchronization paradigm. First, an enabled edge
cannot be taken “alone” if it is a send or a receive edge (in ES ∪ ER), that is
the synchronization is done in a rendezvous (strong) fashion. Second, only a send
edge e and a matching receive edge e′ can be taken “together”, in which case
ope,e′ , denoting executing the operations ope then op′e, is performed, that is the
synchronization is send/receive. Finally, the number of synchronized edges taken
“together” is always two, that is the synchronization is pairwise (if a send edge e is
enabled and some of its matching receive edges M (e) are also enabled, only one of
them is taken together with e).

Semantics:

The meaning of {Init}
[
||

i∈1..n
Ci

]
, with ES ∪ ER 6= ∅, is the TS 〈U,Q, q0,−→〉

such that:

• U same as in Sect. 2.4.1.3 (semantics),

• Q same as in Sect. 2.4.1.3 (semantics),

• q0 same as in Sect. 2.4.1.3 (semantics),

68
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

• −→ is the set of transitions −→e ∪ −→s such that:
(i) −→e results from mapping each e in E\(ES ∪ ER) to the transition te in
−→e, according to the same rules given for −→ in Sect. 2.4.1.3.
(ii) −→s maps each pair of edges {e, e′} s.t. e ∈ ES and e′ ∈ M (e) to the
transition te,e′ in −→s as follows. If e connects vertice via to vib and e′ connects

vertice vjk to vjl , that is vi
a

e(ge,ope)−−−−−→ vi
b and vj

k
e′(ge′ ,ope′)−−−−−−−→ vj

l , then:

q ′ ∈ te,e′(q) iff

(1) (q(πi) = vi
a ∧ q ′(πi) = vi

b∧
q(πj) = vj

k ∧ q ′(πj) = vj
l) ∧

(2) (q(ge) ∧ q(g′e)) ∧
(3) (q ′|Ui∪Uj∪Us

= ope,e′(q|Ui∪Uj∪Us)∧
q ′|(⋃

m∈1 ..n
m/∈{i,j}

Um)∪(
⋃

m∈1 ..n
m/∈{i,j}

{πm})
= q|(⋃

m∈1 ..n
m/∈{i,j}

Um)∪(
⋃

m∈1 ..n
m/∈{i,j}

{πm}))

2.4.2 Formalizing DSAAM

2.4.2.1 Syntax

Inputs An input I is a triple I = 〈B,T , IF〉 where B is a buffer and T a times-
tamp variable (see below). IF is an input interface.
Variables B and T : B is a queue of size n of message elements, where each message
mi has a content ci, a timestamp ti ∈ N∗ and a period δi ∈ N∗ (where N∗ is the set
of non-null naturals). The index i (a natural) is an “identifier” of the message that
denotes precedence between them (mi+1 is the message following mi in time, and
thus ti+1 = ti + δi). We use the following functions:

• empty(B) returns a boolean that evaluates to true iff B is empty, that is the
first element of B contains no message,

• full(B) returns a boolean that evaluates to true iff B is full, that is the nth
element of B contains a message,

• enqueue(B,m) (with B |= ¬full(B)) returns the buffer B with message m in-
serted in a FIFO fashion,

• first(B) (with B |= ¬empty(B)) returns the first element of B,

• dequeue(B) (with B |= ¬empty(B)) returns B deprived from its first element.

T stores the timestamp of the message yet to arrive in B (if empty(B)) or con-
tained in first(B) (otherwise). That is, it stores the timestamp of the next message
to consume (possibly not yet received) by input I. Therefore, T is initialized as the
timestamp of the first message m0 expected to be received in B (retrieved from t0)
and updated, each time a message mi (returned by first(B)) is consumed, to the
value ti + δi . Fig. 2.10 shows an example on B (containing one message at some
point in time) and how to update T when dequeueing B. This example is convenient
in showing how T is updated even when the buffer is empty after dequeueing.

2.4. Formal Model and Proof 69

message mi

…
message mi

content ci

timestamp ti

period δi

position 1 position 2 position n

T = ti

After dequeueing B:

Buffer B

message mi

…

position 1 position 2 position n

T = ti + δi

Buffer B

Figure 2.10: Variables B and T (example)

Since the content c relates to the message type and nature, it is implementation
dependent and does not intervene in the semantics. Furthermore, ti (timestamp of
the current message mi) is redundant as long as the initial value of T (t0) is known.
We propose thus a simplified version of B in Fig. 2.11 where each message mi

contains simply the timestamp of the next message to consume, retrieved from the
value ti + δi . Fig. 2.11 shows the same example given in Fig. 2.10 with elements of B
simplified as explained above. In this example, ti (the value of T before dequeueing
B) is retrieved when the message mi−1 was consumed (if i − 1 is defined, that is
the index i − 1 is a natural, i.e. i ∈ N∗) or the initially known t0 (otherwise).

Outputs An output O is a double O = 〈S ,OF〉 where S is the timestamp of the
next message to emit on O and OF is the interface of O.

Nodes A node N is a triple N = 〈I,O,UP〉 where:

• I = {I1 , ..., Ik} is a set of inputs (Sect. 2.4.2.1),

• O = {O1 , ...,Ol} is a set of outputs (Sect. 2.4.2.1),

• UP is a software blackbox that performs some update operations.

70
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

…timestamp
ti+1 = ti +δi

position 1 position 2 position n

T = ti

After dequeueing B:

Buffer B

message mi …
position 1 position 2 position n

T = ti+1

Buffer B

Figure 2.11: Example in Fig.2.10 (simplified syntax)

The operations performed by UP pertain to, for instance, processing the message
content and performing internal computations accordingly. Most of these operations
are thus implementation dependent (relate to the content of the message) and do
not take part in the semantics. However, UP is in charge of other operations that
are relevant to the semantics, mainly the operation that updates the timestamp
variables on outputs (Sect. 2.4.2.2).

DSAAM System A DSAAM system is a network of x nodes N1 ... Nx that
communicate together by exchanging messages.
Notations: Before we give the syntactical definition formally, we precise some no-
tations to enhance the readability of the remainder of this paper. We use the
superscript (i) to denote that an input (or an output) belongs to node Ni. Further-
more, to alleviate notations, the elements of an input (resp. output) are uniquely
defined through the propagation of the subscripts and superscripts of the input
(resp. output) they belong to. That is, 〈S i

j ,OF i
j 〉 are the elements (timestamp

variable and interface) of the output Oij (the j th output of node Ni). Similarly,
〈Bi

j ,T i
j , IF i

j 〉 are the elements (buffer, timestamp variable and interface) of the in-
put Iij (the j th input of node Ni). We omit the subscript/superscript when it is
unimportant. For instance, when we are at the level of one node, the superscript
is irrelevant. Similarly, the subscript does not matter if only the identity of the
node the input/output belongs to is important (e.g. Oi for any output of node Ni).
These notations and simplifications are adopted in the remainder of this paper.
Definition: A DSAAM System S of x nodes is thus a double S = 〈N ,F〉 where:

• N = {N1 , ...,Nx} is a set of nodes (Sect. 2.4.2.1) and

2.4. Formal Model and Proof 71

• F : OF 7→ P(IF) is the flow function where:

– OF =
⋃

i∈1 ..x

(⋃
j∈1 ..|Oi |

OF i
j

)
,

– IF =
⋃

i∈1 ..x

(⋃
j∈1 ..|Ii |

IF i
j

)
.

Therefore, we give the syntax of a DSAAM system as a network of nodes where
the flow function F defines for each output in each node a (possibly empty) set of
inputs on which it may emit messages, through reconfigurable interfacing. We pre-
serve thus the compositionality and reusability of nodes that may be implemented
in different systems (by simply redefining the flow function).

Syntactical restrictions In the rest of this paper, we consider only well-formed
systems. The DSAAM system defined in Sect. 2.4.2.1 is said well formed if and
only if:
(1) All inputs are connected, each to one and only one output. We formalize this
requirement as follows:

(i) IF ⊆
⋃

i∈1 ..x

(⋃
j∈1 ..|Oi |

F(OF i
j)
)

(ii) ∀{OF ,OF ′} ∈ P(OF) : F(OF) ∩ F(OF ′) = ∅
(2) A node does not send messages to itself. Formally:
∀OF i ∈ OF : IF j ∈ F(OF i)⇒ i 6= j

2.4.2.2 Operational Semantics

Nodes The operational semantics of a node N is given over a TD (Sect. 2.4.1.2).
Vertices: V = {Wa,Co,Em} is the set of vertices, with Wa (for waiting) being
the initial vertex. The vertex Co (resp. Em) denotes that the node is currently
consuming (resp. emitting) a message.
Variables: The TD of N accesses the variables given by the syntax of N

(Sect. 2.4.2.1), that is the set of inputs I and the set of outputs O. Consequently,
it accesses the variables in these inputs and outputs, that is for each input Ii in I
(resp. each output Oi in O) the variables Bi and Ti, Sect. 2.4.2.1 (resp. the variable
Si, Sect. 2.4.2.1). Additionally, a local variable m is introduced to restore the index
of the input/output on which the node will receive/send messages (see below).
Edges: E = Sw ∪ Re where Sw is the set of switch edges and Re the set of remain
edges. That it, taking any edges in Sw changes the current vertex of the TD where
taking any edge in Re does not (self-loop).
(1) Sw = {be, ee, bc, ec} such that:

• Wa be(gbe,opbe)−−−−−−−→ Em (begin emitting),

• Em ee(gee,opee)−−−−−−−→Wa (end emitting),

72
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

• Wa bc(gbc,opbc)−−−−−−−→ Co (begin consuming),

• Co ec(gec,opec)−−−−−−−→Wa (end consuming).

(2) Re = snd ∪ recv is retrieved from the syntax of N (Sect. 2.4.2.1) as follows:

• snd =
(⋃

i∈1 ..|O|
sndi

)
such that Em

sndi(gsndi ,opsndi)
−−−−−−−−−−−→ Em (emit message on out-

put Oi) for each i in 1..|O|. This permits emitting messages from the emitting
vertex Em,

• recv =
(⋃

i∈1 ..|I|
recvi

)
such that v

recvi(grecvi ,oprecvi)
−−−−−−−−−−−−→ v for each v in V (receive

message on input Ii) for each i in 1..|I|. This allows receiving a message no
matter what the current vertex is.

To define the guard ge and operations ope on each edge e, we use the function
rand(s) (returns randomly one element of s) and min(s) (returns the smallest ele-
ment of s), with s being a non empty set. We recall that we do not show guards
(resp. operations) that are always true (resp. side-effect free). The guards and
operations are then defined as follows:
Edge be:

• gbe: ∃i ∈ 1 ..|O| | Si ≤ min
(⋃

j∈1 ..|I|
Tj

)
. This is to ensure no emission begins

unless the smallest timestamp (Sect. 2.4.2.1) is of an output.

• opbe: m := rand({i ∈ 1 ..|O| | Si = min
(⋃

j∈1 ..|O|
Sj

)
});. This permits to store

in m the subscript of an output that may emit a message (having the smallest
timestamp).

• opee: Sm := up(Sm). This updates the timestamp of the next message to emit
through the function up, performed by the blackbox UP from the syntactical
definition (Sect. 2.4.2.1).

Edge bc:

• gbc: ∃i ∈ 1 ..|I| | Ti < min
(⋃

j∈1 ..|O|
Sj

)
. This is to ensure consumption does

not begin unless the smallest timestamp (Sect. 2.4.2.1) is of an input. The
strict comparison < is to favor outputs in case of equality,

• opbc: m := rand({i ∈ 1 ..|I| | Ti = min
(⋃

j∈1 ..|I|
Tj

)
}). This permits to store

in m the subscript of an input that may consume a message (having the
smallest timestamp).

2.4. Formal Model and Proof 73

Edge ec:

• gec: ¬empty(Bm). This is to ensure no message is consumed unless buffer Bm
(Sect. 2.4.2.1) is not empty,

• opec: Tm := first(Bm); Bm := dequeue(Bm). This updates Tm and Bm
(Sect. 2.4.2.1) when consuming the message.

Edges snd:
gsndi : m = i. This is to ensure emitting on the right output (computed by opbe).

Edges recv:
grecvi : ¬full(Bi). This is to ensure reception happens only when buffer Bi
(Sect. 2.4.2.1), corresponding to input Ii, is not full.
Example: We give in Fig. 2.12 the TD that gives the operational semantics of a node

Wa EmCo

T1 <min{S1,S2}
m:=1

S1≤ T1 ∨ S2≤ T1

m:=rand {i | Si = min{S1, S2};

Sm := up(Sm)
ee

bebc

ec¬empty(B1)

T1 := first(B1); B1 := dequeue(B1)

recv1recv1

recv1

snd1

snd2

m=1

m=2

¬full(B1)

¬full(B1)

¬full(B1)

Figure 2.12: A node TD example (one input and two outputs)

with one input and two outputs (resulting from applying the rules in Sect. 2.4.2.2).
Guards are in green and operations in red (both simplified when possible, e.g. since
there is only one input, we know that the only possible value to assign to m when
taking bc is 1).

Notice how taking any send or receive edge does not actually correspond to
sending/receiving a message to/from another node. Indeed, with no operations on
any of these edges, taking them is effect-less. This is normal because we are, so far,
only reasoning at a “component” level, where the flow is not defined. In the fol-
lowing, we develop compositionally the operational semantics of a DSAAM system,
made of multiple nodes, where we constrain the composition of nodes TDs with
synchronizations and communication through shared variables, derived exclusively
from the syntactical definition of the flow, to correctly reflect messages exchange
between nodes.

System A DSAAM system is the parallel composition {Init}
[
||

i∈1..x
Ni

]
of x

nodes Ni over shared variables (Sect. 2.4.1.3), constrained with synchronizations
(Sect. 2.4.1.3). We define in the following the set of shared variables and how the
guards and operations are enriched in nodes accordingly, then the synchronizations

74
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

and how we derive them from the syntax.

Synchronizations: We derive the synchronization constraints from the syntax of
the system (Sect. 2.4.2.1) as follows. The set of send edges ES (Sect. 2.4.1.3) is the
set of all snd edges in all nodes Ni, that is ES =

⋃
i∈1 ..x

E i
S with E i

S =
⋃

j∈1 ..|Oi |
snd i

j .

Similarly, the set of receive edges ER is the set of all recv edges in all nodes
Ni, that is ER =

⋃
i∈1 ..x

E i
R with E i

R =
⋃

j∈1 ..|Oi |
snd i

j . Now, the matching function

M (Sect. 2.4.1.3) is simply derived from the flow function F as defined at the
syntactical level (Sect. 2.4.2.1): an edge recvl

k belongs to the set of the matching
edges of an edge snd i

j iff IF l
k ∈ F(OF i

j). Therefore, the matching function is fully
retrieved from the syntactical definition of the system, and outputs/inputs are
prevented from evolving “alone”, that is out of the send/receive context defined by
the system.
Shared variables: We define the set of shared variables Us (Sect. 2.4.1.3) as
follows: Us = {Msg} ∪ {α1 , ..., αi , ..., αx}. Msg is the message passing variable
where each αi is used to store and update the inputs on which Ni is currently
emitting. Accordingly, we enrich some edges in the nodes (Sect. 2.4.2.2). Only the
guards and operations involving shared variables, and the synchronizations imply
knowledge of the system (the glue between nodes), which guarantees preserving
compositionality when mapping syntactical entities to their operational meanings.
- On each edge bei (edge be in each Ni), the operation αi := F(OF im) is added to
opbei . This is to store the inputs on which the selected output, OF i

m (OFm of node
Ni) will emit messages,
- On each edge snd i (each edge in snd in each Ni), the guard is conjuncted with
the expression αi 6= ∅ to disable this edge when all inputs have been served. Each
snd i is enriched with the operation Msg := up(Sm) to emit the timestamp of the
next message to be sent (current time stamp plus its period), through the shared
variable Msg,
- On each edge recvk

l (each edge in recv in each Nk), the guard is conjuncted with
the expression IFk

l ∈ αi where i is defined statically through the node identity
of the only output that serves Ikl (the only output Oij such that IFk

l ∈ F(OF i
j),

Sect. 2.4.2.1 and Sect. 2.4.2.1). This, with some of the operations defined after-
wards, prevents the input from being re-served with the same message. Now, recvk

l
edges are enriched with the operations Bk

l := enqueue(Bk
l ,Msg) (insert the received

message in the buffer) and αi := αi\{IF kl } (I k
l served, prevent it from being served

the same message again),
- Edge eei (edge ee in each Ni) is guarded with the expression αi = ∅ to allow the
end of emission only when all inputs corresponding to the chosen output are served.

Timestamps It is worth mentioning that, to start the system in a time-consistent
state, input timestamp variables are equal to the output timestamp variables ac-
cording to the input-output relation defined by the flow function F . That is,

2.4. Formal Model and Proof 75

if q0 is the initial state of the TTS {Init}
[
||

i∈1..x
Ni

]
, then q0 (T i

j) = q0 (Sk
l) iff

IF i
j ∈ F(OFk

l).
Example: Let us illustrate with an example. We consider the DSAAM system

S = 〈N ,F〉 such that
- N = {N1, N2, N3} with:

• Outputs: |O1 | = 2 and |O2 | = |O3 | = 1 ,

• Inputs: |I3 | = 3 and |I2 | = |I1 | = 1 .

- The flow function F :

• F(OF1
1) = {IF2

1 , IF3
1 },

• F(OF1
2) = {IF3

3 },

• F(OF2
1) = {IF3

2 },

• F(OF3
1) = {IF1

1 }.

Therefore, O1
1 (the first output O1 of node N1) emits on I2

1 (the first and unique
input I1 of node N2) and I3

1 (the first input I1 of node N3). O2
1 (the second output

O2 of node N1) emits on I3
3 (the third input I3 of node N3). O2

1 (the first and
unique output O1 of node N2) emits on I3

2 (the second input I2 of node N3). And
finally, O3

1 (the first and unique output O1 of node N3) emits on I1
1 (the first and

unique input I1 of node N1). We represent these connections in Fig. 2.13.

N1

N3

N2

01

02

01

01

I1

I1
I2
I3

I1

Figure 2.13: DSAAM system example (flow illustration)

Now, using the rules given in Sect. 2.4.2.2 and Sect. 2.4.2.2, we derive the TS
representing the operational semantics of S. We show in Fig. 2.14 this TS (in terms
of its nodes) with some simplifications:

76
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

• Some guards and operations are simplified on an example-dependent basis
(e.g. the operation of be in N2),

• Superscripts are removed for local variables, edges and locations. For instance,
buffer B1 in operations op1 is actually the buffer B1

1 , that is the buffer B1 in
node N1. The superscript here is superfluous since, by means of composition-
ality, we know that the scope of op1 is Us (shared variables) and U1 (local
variables to N1), and thus op1 cannot modify buffers not in N1. Similarly, the
edge snd1 in component N2 in the figure is actually snd2

1 and thus different
from snd1 in N3 (which is snd3

1),

• When a shared variable is not used in guards/operations in a node, then it is
removed from its parameters (e.g. N2 does not need to share α3 since it does
not receive message from N3).

Matching edges are represented using the same colors (we keep the same color code
used in Fig. 2.13).
Let us now explain how this works through an emission scenario, by taking the
transition tbe1

1
(see mapping edges to transitions in Sect. 2.4.1.3), and assuming the

chosen output is O1
1 (m = 1 after taking tbe1

1
). In this case, the message should

be sent to both inputs I2
1 and I3

1 (α1 = {IF2
1 , IF3

1 }). Now, the enabled transitions
in the system involving N1 depend on the status of buffers B2

1 and B3
1 . If none of

them is full, one of the transition tsnd1
1 ,recv2

1
or tsnd1

1 ,recv3
1
is taken. In the former

(resp. latter) case, Msg is emitted on input I2
1 (resp. I3

1) and IF2
1 (resp. IF3

1) is
removed from α1. Subsequently, tsnd1

1 ,recv2
1
(resp. tsnd1

1 ,recv3
1
) is no longer enabled

and the only possible transition involving N1 is tsnd1
1 ,recv3

1
(resp. tsnd1

1 ,recv2
1
) be-

cause all other transitions involving N1 are disabled (transitions involving snd2
1 are

disabled because m 6= 2 and tee1
1
is disabled because α1 6= ∅). Consequently, the

remaining input to serve is delivered Msg by taking tsnd1
1 ,recv3

1
(resp. tsnd1

1 ,recv2
1
) and

α1 becomes empty, which enables ending the emission by taking tee1
1
.

Notice how, since operations in a synchronization transition are executed se-
quentially and atomically (Sect. 2.4.1.3), Msg is always guaranteed to deliver the
correct message. Indeed, it is assigned a message and enqueued to the buffer within
the same atomic (uninterruptible) sequence of operations (see e.g. tsnd1

1 ,recv3
1
), so

its value may not be modified by another snd edge in between.

2.4.3 Proof of progress

In section 2.3, we laid out a set of properties to ensure the time consistency of the
system by forcing nodes to emit and consume messages sequentially with monotoni-
cally increasing timestamps and preventing the loss of undelivered messages. These
properties hold by construction of the system: guards and operations on edges bc
and be enforce the monotonicity of timestamps, whereas guard on snd edge ensures
that no message is lost by preventing the emission of messages on an input the
buffer of which is full.

2.4. Formal Model and Proof 77

Wa EmCo

T1 < S1
m:=1

S1≤ T1

m:=1;
α2 := F(OF2

1)

ee

bebc

ec¬empty(B1)

T1 := first(B1); B1 := dequeue(B1)

recv1recv1

recv1

snd1

Wa EmCo

T1 <min{S1,S2}
m:=1

S1≤ T1 ∨ S2≤ T1

m:=rand {i | Si = min{S1, S2}};
 α1 := F(OF1

m)

ee

bebc

ec¬empty(B1)

T1 := first(B1); B1 := dequeue(B1)

recv1recv1

recv1

snd1

snd2

α1 ≠ ∅ ∧ m=1
Msg:= up(Sm)

g1: IF1
1 ∈ α3 ∧ ¬full(B1)

Wa EmCo

m:=rand {i | Ti = min{T1, T2,T3}}

S1≤ min{T1,T2,T3}

m:=1;
α3 := F(OF3

1)

ee

bebc

ec¬empty(B1)

Tm := first(Bm); Bm := dequeue(Bm)

recv2recv2

recv2

snd1

recv3

N3(Msg,α1,α2,α3)

N1(Msg,α1,α3)

N2(Msg,α1,α2)

α1 ≠ ∅ ∧ m=2
Msg:= up(Sm)

α1 = ∅

op1: α3 := α3\{IF1
1};

B1:= enqueue(B1,Msg)

recv1

recv1

recv3recv1

recv3

T1< S1 ∨T2< S1 ∨T3< S1

g1

g1
g1

g31
g33

g32

g31

g32

g33g31

g32

g33

g2

g2
g2

op1

op1
op1

op2

op2
op2

op31

op31

op31

op32
op32

op32

op33
op33

op33

g2: IF2
1 ∈ α1 ∧ ¬full(B1)

op2: α1:= α1\{IF2
1};

B1:= enqueue(B1,Msg)

g31: IF3
1 ∈ α1 ∧ ¬full(B1)

op31: α1 := α1\{IF3
1};

B1:= enqueue(B1,Msg)

g32: IF3
2 ∈ α2 ∧ ¬full(B2)

op32: α2 := α2\{IF3
2};

B2:= enqueue(B2,Msg)

g33: IF3
3 ∈ α1 ∧ ¬full(B3)

op33: α1 := α1\{IF3
3};

B3:= enqueue(B3,Msg)

Key

α3 = ∅

α3 ≠ ∅ ∧ m=1
Msg:= up(Sm)

 α2 ≠ ∅ ∧ m=1
Msg:= up(Sm)

α2 = ∅

Sm := up(Sm);

Sm := up(Sm);

Sm := up(Sm);

Figure 2.14: DSAAM system example (operational semantics)

Still in such a distributed system with many synchronizations that can form
dependency loops, progress (Sect. 2.4.1.2) is a very important property to verify.

78
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

We will prove that the progress property holds for all nodes in the system, regardless
of the actual topology, the initial valuation of variables and the implementation of
the UP blackbox.

Before we go further, we need to emphasize that we prove progress for all nodes
in the system, which is a stricter property than progress of the system. Indeed,
a system may be deadlock free while one of its components is deadlockable (it is
sufficient for the system to progress if one of its components does). We start by
proving the progress of the system, then derive the progress of each of its nodes
accordingly.

2.4.3.1 Progress (system)

In a TS, there is no deadlock if it is always true that the system can take a transition
and change state, in other words there is at least one enabled transition in −→ for
each reachable state q ∈ QR.

Theorem 1. Progress property in a DSAAM system

∀q ∈ QR, ∃t ∈−→ ∧ t(q) 6= ∅

Proof. We will prove the progress property by contradiction. Let us assume that
theorem 1 is false, therefore:

∃q ∈ QR,∀t ∈−→, t(q) = ∅ (2.1)

From the definition of −→ in the DSAAM system (semantics in section 2.4.1.3) we
see that only (1) and (2) are relevant for the enabling of the transition, as a suitable
q′ can always be constructed from the relevant op to satisfy (3). Therefore in state q,
for all non-synchronizing transitions te ∈−→e mapping edge via

e(ge,ope)−−−−−→ vib, either:

¬(1) The corresponding node Ni is in vertex πi 6= vib or

¬(2) The guard ge is false: ¬q(ge).

For the send and receive edges, either ¬(1) or ¬(2) must hold for the pair of edges
that are synchronized.

Let us exhibit a specific node Ni which has the output OF i
j with minimum Sij .

Let S =
⋃

i∈1..x

(⋃
j∈1..|Oi|

Sij

)
:

Sij = min(S) (2.2)

We will prove the following:

(a) Ni is not in vertex Wa (πi 6= Wa)

2.4. Formal Model and Proof 79

(b) Ni is not in vertex Co (πi 6= Co)

(c) Ni is not in vertex Em (πi 6= Em)

which results in a contradiction with dom(π) = {Wa,Co,Em} and therefore hy-
pothesis 2.1 is false and theorem 1 holds.

(a) πi 6= Wa Let us assume πi = Wa, from hypothesis 2.1 we have:

¬q(gbei) ∧ ¬q(gbci) (2.3)

However from the well-ordering principle, the following is a tautology:

q(gbei) ∨ q(gbci) := ∃k ∈ 1 ..|Oi | | S i
k ≤ min

 ⋃
l∈1 ..|Ii |

T i
l

∨
∃k ∈ 1 ..|I i | | T i

k < min

 ⋃
l∈1 ..|Oi |

S i
l

 (2.4)

Combining 2.3 and 2.4 we get:

¬q(gbei) ∧ ¬q(gbci) ∧ (q(gbei) ∨ q(gbci)) =⇒ ⊥ (2.5)

Therefore πi 6= Wa. �

(b) πi 6= Co Let us assume πi = Co, from hypothesis 2.1 we have:

¬q(geci) := ¬¬empty(Bi
m) ⇐⇒ empty(Bi

m) (2.6)

Let us define the timestamp Sj
′

i′ of the next message that will be emitted on the
flow which links output OF j′

i′ to the input IF i
m corresponding to the buffer Bi

m:

IF i
m ∈ F(OF i′

j′) (2.7)

Because the buffer Bi
m is empty, variable T im holding the timestamp of the next

message that will be consumed on this input is equal to the timestamp of the next
message that will be emitted on the corresponding output. More precisely, we have:

• T im = Si
′
j′ if node N i′ is not in vertex Em or if it is in vertex Em but input

IF i
j was not served yet (IF i

j ∈ αi
′).

• T im = up(Si′j′) if N i′ is in vertex Em but the input has already been served
(IF i

j /∈ αi
′)

Indeed Si′j′ is updated only in the operation of edge ee, but the message enqueued has
timestamp Msg := up(Si′j′) from the definition of opsndi′ . And using the definition

80
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

of Sij = min(S) from equation 2.2 we get:

Sij ≤ Si
′
j′ ∧ (T im = Si

′
j′ ∨ T im = up(Si′j′)) =⇒ Sij ≤ T im (2.8)

In addition, Ni being in vertex Co, it must have taken the edge bci with guard:

gbci := ∃k ∈ 1 ..|I i |,T i
k < min

 ⋃
l∈1 ..|Oi |

S i
l

 (2.9)

and operation opbci :

m := rand

k ∈ 1 ..|I i | | T i
k = min

 ⋃
l∈1 ..|Ii |

T i
l

 (2.10)

Equations 2.9 and 2.10 still hold because edge recvim has not been taken since bci,
otherwise Bi

m would not be empty, as dequeue(Bi
m) is present only on edge eci.

Combining equations 2.9 and 2.10 we get:

Sij > T im = min

 ⋃
l∈1..|Ii|

T il

 (2.11)

And finally combining 2.8 and 2.11:

Sij ≤ T im ∧ Sij > T im =⇒ ⊥ (2.12)

By contradiction, πi 6= Co �

(c) πi 6= Em Let us assume πi = Em. From hypothesis 2.1:

¬q(geei) =⇒ αi 6= ∅ (2.13)

That is there remains at least an input IF i′
j′ ∈ αi which has not been served with

the message currently being emitted by node Ni. However hypothesis 2.1 holds
for the synchronized snd/rcv pair which have to be taken together. Therefore the
guard for the corresponding edge recvi′j′ in node Ni′ must be inactive:

¬q(grecvi′
j′

) =⇒ full(Bi′
j′) (2.14)

Receiving is not enabled on this input because the buffer is full. Therefore there it
at least one message in Bi′

j′ . By construction of the up function ensuring that the
timestamps of consecutive messages are strictly monotonic increasing, we can state
the following about the timestamp variable T i′j′ associated to this buffer:

T i
′
j′ < Sim = Sij (2.15)

2.4. Formal Model and Proof 81

Remember that by definition Sij = min(S) and the op of edge eei assures that
Sim = mink∈1..|Oi|(Sik) and therefore opeei =⇒ Sim = Sij .

Let us now consider the vertex of Ni′ :

(a’) πi′ 6= Wa as (a) holds for any node.

(b’) πi′ 6= Em as assuming πi′ = Em implies Si′m′ ≤ T i
′
j′ < Sij from the guard of bei′

and by definition of Sij as the minimum of S (eq. 2.2). This is in contradiction
with 2.15 and therefore Ni′ is not in vertex Em.

(c’) From (a’) and (b’), πi′ = Co. However from hypothesis 2.1:

¬q(geci′) =⇒ empty(Bi′
m′) (2.16)

From equation 2.14 we deduce m 6= j′, that is node Ni′ is blocked consuming
a message on another input m. Let us define the timestamp Skl of the next
message that will be emitted on the flow which links output OFk

l to the input
IF i′

m corresponding to the buffer Bi
m:

Skl ∈ S, IF i′
m′ ∈ F(OFk

l) (2.17)

Because the buffer Bi′
m′ is empty we have, following the same logic as in

equation 2.8:
T i

′
m′ = Skl ≥ Sij (2.18)

From the operation on the transition bci′ we have:

opbci′ =⇒ T i
′
m′ ≤ T i

′
j′ (2.19)

which still holds, as the T variables change value only from opeci′ when leaving
vertex Co. Combining 2.15 and 2.19 and considering with equation 2.18 we
obtain:

Skl = T i
′
m′ ≤ T i

′
j′ < Sim ∧ Skl ≥ Sij =⇒ ⊥ (2.20)

Therefore πi′ 6= Co

From (a’), (b’), (c’) and by definition of the domain of πi we can deduce:

πi′ /∈ {Co,Wa,Em} ∧ πi′ ∈ {Co,Wa,Em} =⇒ ⊥ (2.21)

And by contradiction πi 6= Em. �

(a) ∧ (b) ∧ (c) =⇒ ⊥ From (a), (b) and (c) and the definition of the domain
of πi we deduce:

πi /∈ {Co,Wa,Em} ∧ πi ∈ {Co,Wa,Em} =⇒ ⊥ (2.22)

By contradiction, hypothesis 2.1 is false and therefore theorem 1 holds.

82
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

2.4.3.2 Progress (node)

We have proven the progress of the DSAAM System as a whole, therefore there it
always at least a transition, or a synchronized pair of transitions, that have their
guard active in the system. We will now prove succinctly that the progress of the
system in implies the absence of livelock, in the sense that each individual node
will eventually progress. For this we will assume that there is at least a node that
is unable to progress (all guards are and remain inactive forever), and prove that
it will result in the deadlock of the entire system. We present here a schematic
version of the proof, in order to avoid describing explicitly the temporal evolution
of the system in details.

Let {N ,F} be a DSAAM system and:

• dead(N) ⊂ N be the subset of node that are dead, i.e. will never again have
transitions with active guards in their vertex.

• alive(N) ⊂ N \ dead(N) be the set of nodes that are alive and never will be
dead.

Theorem 2. Progress of all nodes in a DSAAM system:

alive(N) = N

Proof. Let us make the hypothesis:

∃Ni ∈ dead(N) (2.23)

A DSAAM system, {N ,F} forms a graph that is always connected, that is there is
a path through flows between all pair of nodes. Hence without loss of generality we
may pick a dead node Ni ∈ such that it is connected through an input or outpout
flow to another node which is alive:

∃Nj ∈ alive(N), (∃ IF ik ∈ F(OF jl)) ∨ (∃ IF jl ∈ F(OF ik)) (2.24)

Because self loops are prohibited, Ni 6= Nj , and from the proof of progress of the
system we know that alive(N) 6= ∅. Let us inspect both cases:

∃ IF ik ∈ F(OF jl) Because Ni may not progress, the recvi transitions never will
be enabled. Eventually node Nj will be in vertex Em with IF i

k ∈ αj . Indeed in each
node the input or output with smallest timestamp is selected when leaving vertex
Wa. Upon reentering this vertex again the timestamp of the corresponding input or
output will have been strictly incremented. This means that eventually each input
and output will be selected in turn. Because snd j must be synchronized with recvi

which will never be enabled, it will never be enabled and Nj is dead at this point
and is therefore not alive.

2.5. Implementation 83

∃ IF jl ∈ F(OF ik) Because Ni is blocked, the snd i transition never will be enabled
or the node is not in vertex Em. With the same argument as for the output case,
eventually node Nj will be in vertex Co waiting on the input IF j

l = IF j
m with an

empty buffer empty(Bj
l). Therefore guard gjec is not enabled. Because Transition

recvj
l cannot be taken, Nj is dead at this point and is therefore not alive.

By contradiction, hypothesis 2.23 is false and therefore alive(N) = N .

2.5 Implementation

A proof of concept of the DSAAM library has been implemented 3 and tested
on a toy example (see Appendix 2.A) and a simple UAV simulation scenario. The
core implementation is middleware agnostic. An implementation using bare threads
communicating in the same process using shared memory allows for testing the core
principles of the library without bothering with the complexity of a middleware, as
well as benchmarking without the overhead of it. An implementation for the ROS
middleware is also provided. In both cases, both the Python and C++ languages
have been targeted (see listings in Appendix 2.B for examples of C++ and Python
usage).

At the heart of the core library, messages are pushed and popped on thread safe
queues, utilizing locks for synchronization. In the bare thread implementation, it
allows to directly block on full queues. However for the ROS implementation, mes-
sage sending is done asynchronously and therefore additional messages are needed in
order to deduce the remaining size of the queue. Each time a message is consumed
on an input flow, an acknowledgment is sent back to the source node.

2.5.1 The Precidrone use case

The Precidrone project aims at investigating active perception algorithms to en-
hance UAV autonomy when mapping a mostly planar environment such as crop
fields. The simulation architecture is illustrated in figure 2.15. Two simulators
are integrated in a simulation loop, one responsible of simulating the dynamics of
the UAV with respect to the environment and control inputs, the other simulat-
ing a camera taking pictures of the ground. All nodes interconnect through ROS
with DSAAM responsible for time management. The software to be tested is fully
integrated in the simulation.

Simulation management is performed using an ad-hoc script, the ROS parameter
server and the roslaunch utility.

As in this case the processes to be simulated as well as the mapping and planning
software perform heavy computations, the overhead of the time management is
negligible, and much better parallelism speedup is achieved than in the toy example.

3https://redmine.laas.fr/projects/dsaam

84
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

Integration of this simulation on a single machine without dedicated time man-
agement would have been more difficult but feasible by using the ROS “/time” topic
to tune the time advancement to the slowest node, but running multiple simulations
concurrently on the same machine would have been impossible. With DSAAM we
can run up to three simulations concurrently on an eight core machine to maximize
usage of resources when performing batches of simulations.

SLAM Planning

UAV simulator

Camera simulator

flight plan

camera poses

images

map
goals

MORSE

wind
turbulence...

Environment simulator

IGN
HR orthoimages

Time managmement
layer (DSAAM)

Figure 2.15: Software architecture of an UAV simulation in the context of the Pre-
cidrone project, using the DSAAM proof of concept for time management. The
MORSE and UAV simulator are written in Python, whereas the SLAM and Plan-
ning software are written in C++.

2.6 Discussion

2.6.1 Contributions

We proposed a novel decentralized approach for a time management scheme to
perform distributed simulations. Based on a set of rules and constraints, it is easy
to implement on top of any middleware with a very limited computational overhead,
as shown in the proof of concept. Relying on the fact that most simulators are step-
based in nature, it only requires each simulator to know precisely, when emitting
a message, the timestamp of the next message it will emit. This constraint allows
to minimize the number of synchronization messages, while guaranteeing that the
system will not encounter any deadlock. However it prevents the integration of
event-based simulators.

We emphasized the need of repeatable simulations, even for complex, distributed
simulation infrastructures. Repeatability is beneficial from both an engineering
point of view to validate algorithms, perform regression testing and speed up the

2.6. Discussion 85

development process, and a scientific point of view, to ensure repeatability and
validity of simulation results irrespective of the computing platform used.

A formal model is proposed, which allows to prove the absence of livelocks and
deadlocks in the defined distributed system and associated scheme of synchroniza-
tion between components. Such a model also defines a clear specification of the
behavior of the system, and can thus be used to check the conformity of a specific
implementation, even across programming languages.

The proposed implementation is easy to use and generic with respect to the
communication middleware used, keeping it very lightweight. It is built upon the
ROS middleware, but it can very easily be adapted to any other middleware. It
respects a clear separation of concerns, which allows to integrate directly simulation
layers in an existing ecosystem and lowers the developer’s efforts when switching
from simulation to deployment.

2.6.2 Future work

The proposed solution is a basis upon which a full-fledged integrated simulation
architecture could be built. The following enhancements are in particular relevant:

• Addition of an “observation” flow type in the formal model. For the sake of
simplicity, the presented formal model misses the capability of the proof of
concept implementation to specify an “observation” flow type. Such a flow
type changes the behavior of the system: an output of this type must wait
for messages up to and including timestamp T being consumed before emit-
ting a message with timestamp T . Indeed DSAAM flows describe variables
that are computed from the past state of the world. This maps well with the
simulation of actuators: from the past state and control input, a new state
is predicted. However most sensors csn be modeled as instantaneous: e.g.
a camera takes a snapshot of the current state of the world. Using “obser-
vation” flows, sensors could be modeled in a more natural way in DSAAM.
Relaxing this constraint comes to a cost: the absence of deadlock can not be
assessed for any topology, yet it can be proven that as long as there exists no
directed circuit of “observation” type flows, progress is guaranteed. Future
works include an extended version of the DSAAM formal model with multiple
flow types and additional proofs.

• Event-based support. The principal disadvantage of the approach over other
time-management solutions is the lack of support for event based simulators,
for which there is no guaranty of the time at which the next event will be
generated. Support for event-based simulation could however be added with
small efforts:

– Add a new event flow type , which will have δ = 0
– Add a request for such flows from sink to source to deliver the next mes-

sage or guaranty that no message will arrive before a given timestamp,

86
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

as in the NMR request in HLA.
– Forbid directed circuits of event flow types.

Such flow types resemble to observation flow types, and the same no-circuit
constraint would be needed in the absence of a central node to prevent dead-
locks whilst keeping the synchronization protocol simple. Requirements and
proof of progress would be very similar to the one for observation flow types
(no circuits).

• Real time support. An important feature would be a real time mode support.
Having the time management layer switch in a soft constraint mode, the
timestamps of the message would be linearly related to the wall clock time, and
messages arriving too late discarded – issuing a warning, but without blocking
the node blocking on missing messages. Besides, a non trivial issue for real
time support is the initialisation of a simulation scenario, which would require
all nodes to wait for the readiness of each other and start synchronously. The
decentralized implementation of a global barrier of this sort is not trivial.

Finally, our work only pertains to the time management, whereas a wholesome
simulation infrastructure would call for simulation management services, which we
argued should be part of an independent module. Managing simulations life cycle
is not an easy architectural task. It should support configuration, deployment and
monitoring of the simulation, and even dynamic reconfigurations, e.g. to allow
joining and leaving of nodes in the midst of a simulation run, and zoning, i.e. the
automatic subscription to flows of specific types that are close enough according to
some metric (geographic, on the same robot, etc...), and unsubscribing when the
node leaves the zone.

2.A Implementation benchmarking results

The toy example involves simulation of 2D colored balls or “planets” in a square,
closed universe with wrapped coordinates (exiting on one side of the square, an
object appears on the other side). Each color of ball has a mass and attracts a
restricted set of other balls using a set of rules:

• red attracts red, green and yellow

• green attracts green, blue and yellow

• blue attracts blue and yellow

• yellow attracts red

Position and speed are sent in separate flows. Each node performs the computations
for one planet, having all its effectors position and speeds as input (even if only the
position is needed for the computations). In the python example, a drawer node is

2.A. Implementation benchmarking results 87

also available to display the position of the planets, as can be seen in fig. 2.16. An
idea of the added complexity of dealing with DSAAM over ROS in the code can
be seen in listings 2.1 for Python and 2.2 for C++.

We run the simulation with one planet of each color, four nodes and twelve
flows in total (each flow having one flow for position and one for speed). Red
updates every four ticks, green every three, blue every two and yellow every tick.
Simulation is tested with the bare threads implementation as well as the ROS
framework. The bare threads implementation allows to compute the overhead that
is due solely to the time management code, and to compare it to the overhead of the
ROS middleware, where serialization is needed and communication is performed
through sockets. The ROS version simulates only one tenth of the bare threads
simulation. There is only one thread processing and emitting messages as well as
performing the simulation computations for each node (not counting ROS threads).

Each test is run five times on a computer with an Intel(R) Core(TM) i7-7700
CPU @ 3.60GHz CPU, and timing results are compiled in table 2.1. From these
results, the overhead due to time management can be computed as shown in table
2.2. In particular in this scenario, the overhead due to time management is very
low. Adding user space overhead to the time spent in the kernel, it is approximately
one second per million message exchanged or 0.7 second per million queue entries.
In our test case, the time spent in the kernel – essentially time spent in the synchro-
nization code taking and releasing locks – is higher than the user space overhead.
However the time spent in locks is constant (per queue entry), but computation of
the timestamp of the next message to be consumed (or sent) grows logarithmically
with the number of in- (or out-) flows.

Using the ROS middleware results, userspace overhead is 95 times higher and
kernel overhead is 60 times higher, therefore the overhead due to time management
is negligible in this case.

This test case has been devised to maximize resource contention: time spent in
the simulation loop is very low, and therefore gains due to parallelism are negligible
with respect to a sequential execution, because time management and synchroniza-
tion code overhead are on par with simulation time, and a lot of time is spent
waiting for messages to arrive w.r.t. processing time.

88
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

wall (s) user (s) sys(s) sim (s) #m #m/s #q #q/s

Threads
mean 33.0 50.4 27.8 33.4 41.7M 1.26M 63.3M 1.92M
std .105 .350 .475 .128 - 4.04k - 6.15k
ROS
mean 83.9 165. 169. 3.34 4.17M 49.6k 6.33M 75.5k
std .758 .722 .388 1.29e-2 - .450k - .683k

Table 2.1: Timing of the planet test with one planet of each color. ’wall’ indicates
wall clock time, ’user’, ’sys’ and ’sim’ respectively CPU time spent in user space,
in the kernel and in the simulation code. #m the number of unique exchanged
messages, and #q the number of queued messages (i.e. counting each message
twice if there is two sinks on a flow).

o.%user o./M#m o./M#q sys/M#m sys/M#q

Threads
mean 33.8% .409s .269s .668s .469s
std .525% 6.96e-3s 5.16e-3s 1e14e-2s 7.51e-3s
ROS
mean 98.0% 39.0s 25.6s 40.6s 26.7s
std 1.17e-2% .170s .161s 9.31e-2s 6.13e-2s
ROS/Thr. 95.2× 60.8×

Table 2.2: Further statistics computed from results shown on table 2.1. ’o.’ indicates
user space overhead of the time management code, o.=user-sim.

Figure 2.16: A screenshot of the display of the drawer node during a run of the
planet toy example using the ROS middleware and a mix of python and C++ nodes.
Counting the drawer node, the simulation is composed of eleven nodes and twenty
flows.

2.B. Listings 89

2.B Listings

90
Chapter 2. Repeatable decentralised simulations for cyber-physical

systems

1 from geometry_msgs .msg import PointStamped
2 from dsaam.ros import RosNode , Time
3
4 def process_pos (name , message , next_message_time):
5 # process message
6 pass
7
8
9 node = RosNode (’B’, start_time =Time (0) ,
10 default_qsize =3)
11
12 my_period =Time (4)
13 node. setup_publisher (’/B/ position ’, PointStamped ,
14 dt=my_period ,
15 subscribers =[’C’])
16
17 node. setup_subscriber (’/A/ position ’, PointStamped ,
18 callback = process_pos ,
19 dt=Time (2))
20 (...)
21
22 node. init_ros ()
23 while true:
24 nextAt = node.next ()
25 while nextAt >= node.t + my_period :
26 m = simulation_step ()
27 node.send(’/C/ position ’, m, node.t + my_period)
28 node.step(node.t + my_period)
29 .

Listing 2.1: Example showing the DSAAM API using the ROS middleware in
Python. In addition to usual ROS parameters such as topic name and message
type, it requires the period of each flow as well as the list of subscribers for the
publisher. This last parameter is used to make the node wait for all subscribers to
subscribe before starting the simulation (in the node.init_ros() call).

2.B. Listings 91

1 #include <dsaam/ros/ ros_node .hpp >
2 #include < geometry_msgs / PointStamped .h>
3
4 using shared_cptr_t = dsaam :: ros :: shared_cptr_t ;
5 using PointStamped = ros :: geometry_msgs :: PointStamped
6 void process (const shared_cptr_t < PointStamped > &m,
7 const ros :: Time &next)
8 {
9 // (...)
10 }
11 using point_callback_t = \
12 dsaam :: ros :: function_type < decltype (& process) >;
13
14 using RosNode = dsaam ::Node <dsaam :: ros :: RosTransport >;
15
16 node = RosNode ("B", ros :: Time (0) , default_qsize =3);
17
18 my_period = ros :: Time (4)
19 node. setup_publisher < PointStamped >(
20 "/B/ position ",
21 ros :: Time (0) , // timestamp of the first message
22 my_period ,
23 {’A’}); // subscribers
24
25 node. setup_subscriber < PointStamped >(
26 "A", "/A/ position ", "B", //A --/A/position --> B
27 ros :: Time (0) , ros :: Time (2) , // start time and period
28 point_callback_t (& process)); // callback
29
30 auto send_B_pos = node. send_callback ("/B/ position ");
31
32 // (...)
33
34 node. init_ros ()
35 while (true)
36 {
37 node.next ();
38 while (node. nextAt () <= node.time () + my_period)
39 {
40 m = simulation_step ();
41 send_B_pos (m);
42 node. stepTime (node.time () + my_period)
43 }
44 }

Listing 2.2: Example showing the DSAAM API using the ROS middleware in C++.
Except from the declaration of types and a few C++ quirks, it is very similar to
the Python API.

92 Bibliography

Bibliography

[Benjamin 2010] Michael R Benjamin, Henrik Schmidt, Paul M Newman and
John J Leonard. Nested autonomy for unmanned marine vehicles with
MOOS-IvP. Journal of Field Robotics, vol. 27, no. 6, pages 834–875, 2010.

[Brisset 2006] Pascal Brisset, Antoine Drouin, Michel Gorraz, Pierre-Selim Huard
and Jeremy Tyler. The paparazzi solution. In MAV 2006, 2nd US-European
competition and workshop on micro air vehicles, pages pp–xxxx, 2006.

[Brito 2015] Alisson V. Brito, Harald Bucher, Helder Oliveira, Luis Feliphe S.
Costa, Oliver Sander, Elmar U.K. Melcher and Juergen Becker. A Dis-
tributed Simulation Platform Using HLA for Complex Embedded Systems
Design. In 2015 IEEE/ACM 19th International Symposium on Distributed
Simulation and Real Time Applications (DS-RT), pages 195–202, Chengdu,
October 2015. IEEE.

[Bruyninckx 2001] Herman Bruyninckx. Open robot control software: the OROCOS
project. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, volume 3, pages 2523–2528. IEEE, 2001.

[Bryant 1977] Randal Everitt Bryant. Simulation of Packet Communication Ar-
chitecture Computer Systems. Technical Report, MASSACHUSETTS INST
OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE, 1977.

[Chandy 1979] K. Mani Chandy and Jayadev Misra. Distributed simulation: A case
study in design and verification of distributed programs. IEEE Transactions
on software engineering, no. 5, pages 440–452, 1979.

[Chandy 1989] K Chandy and R Sherman. The Conditional-Event Approach to
Distributed Simulation. July 1989.

[Chaudron 2011] Jean-Baptiste Chaudron, Martin Adelantado, Eric Noulard and
Pierre Siron. HLA High Performance and Real-Time Simulation Studies
with CERTI. 2011.

[Degroote 2015] Arnaud Degroote, Pierrick Koch and Simon Lacroix. Integrating
Realistic Simulation Engines within the MORSE Framework. In Workshop
on Rapid and Repeatable Robot Simulation (R4 SIM), at Robotics: Science
and Systems, 2015.

[dis 2012] IEEE Standard for Distributed Interactive Simulation–Application Pro-
tocols. IEEE Std 1278.1-2012 (Revision of IEEE Std 1278.1-1995), pages
1–747, Dec 2012.

[Drummond 2009] Dr Chris Drummond. Replicability Is Not Reproducibility: Nor
Is It Good Science. In Proc. of the Evaluation Methods for Machine Learning
Workshop, 26th ICML, Montreal (Canada), June 2009.

Bibliography 93

[Fujimoto 2015] R. Fujimoto. Parallel and Distributed Simulation. In 2015 Winter
Simulation Conference (WSC), pages 45–59, December 2015.

[Gervais 2012] C. Gervais, J. B. Chaudron, P. Siron, R. Leconte and D. Saus-
sié. Real-Time Distributed Aircraft Simulation through HLA. In 2012
IEEE/ACM 16th International Symposium on Distributed Simulation and
Real Time Applications (DS-RT), pages 251–254, October 2012.

[HLA 2010] IEEE Std 1516.1TM-2010, IEEE Standard for Modeling and Simula-
tion (M&S) High Level Architecture (HLA)—Federate Interface Specifica-
tion. page 378, 2010.

[Jafer 2013] Shafagh Jafer, Qi Liu and Gabriel Wainer. Synchronization Methods in
Parallel and Distributed Discrete-Event Simulation. Simulation Modelling
Practice and Theory, vol. 30, pages 54–73, January 2013.

[Jefferson 1982] David Jefferson and Henry Sowizral. Fast Concurrent Simulation
Using the Time Warp Mechanism. Part I. Local Control. Technical Report,
RAND CORP SANTA MONICA CA, 1982.

[Jefferson 1987] D. Jefferson, B. Beckman, F. Wieland, L. Blume, M. Diloreto,
D. Jefferson, B. Beckman, F. Wieland, L. Blume and M. Diloreto. Time
Warp Operating System. In ACM SIGOPS Operating Systems Review, vol-
ume 21, pages 77–93. ACM, January 1987.

[Mallet 2010] Anthony Mallet, Cédric Pasteur, Matthieu Herrb, Séverin Lemaig-
nan and Félix Ingrand. GenoM3: Building middleware-independent robotic
components. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 4627–4632. IEEE, 2010.

[Metta 2006] Giorgio Metta, Paul Fitzpatrick and Lorenzo Natale. YARP: yet
another robot platform. International Journal of Advanced Robotic Systems,
vol. 3, no. 1, page 8, 2006.

[Perry 2004] Alexander R Perry. The flightgear flight simulator. In Proceedings of
the USENIX Annual Technical Conference, 2004.

[Quigley 2009] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully
Foote, Jeremy Leibs, Rob Wheeler and Andrew Y Ng. ROS: an open-source
Robot Operating System. In ICRA workshop on open source software, vol-
ume 3, page 5. Kobe, Japan, 2009.

Chapter 3

Learning error models for graph
SLAM

Contents
3.1 Introduction . 95

3.1.1 Context . 95
3.1.2 Problem statement and contribution 97
3.1.3 Outline . 97

3.2 Related work . 98
3.2.1 Relationship between pose graph topology and uncertainty . 101

3.3 Learning the error model from SLAM topology 102
3.3.1 The covisibility pose graph 103
3.3.2 The resistance distance . 103
3.3.3 Learning the relative error through the resistance distance. . 105

3.4 Implementation of the learning architecture 107
3.4.1 Selecting informative features 107
3.4.2 Loss function . 107

3.5 Results . 108
3.5.1 Simulation setup . 109
3.5.2 Learning setup . 110
3.5.3 Qualitative analysis . 111
3.5.4 Quantitative results . 117

3.6 Discussion and future works 122
Bibliography . 123

3.1 Introduction

3.1.1 Context

The use of UAVs for observation purposes has pervaded a large number of applica-
tion contexts, from core mapping use cases to archaeology or atmosphere sciences.
Most of the observation applications for UAVs share the common need to map as
well as possible a predefined area or volume with on-board sensors, and can be
broken down into three stages:

96 Chapter 3. Learning error models for graph SLAM

• A sensor coverage pattern or flight plan is defined on the basis of the area to
be mapped,

• The UAV automatically follows the defined flight plan, using GPS as the
primary localization mean,

• Upon flight completion, the collected data is post-processed to produce the
map.

In such a scheme, the data acquisition process is passive, the UAV adaptation
consisting only in adapting the flight control to track the planned trajectories. As
a consequence, there is no insurance of exhaustivity nor quality of the collected
data. Indeed, during the flight, wind gusts may significantly perturb the trajectory
execution, cloud casting shadows, fog or motion blur may degrade the quality of
sensor data: all these events may yield maps of low quality, or even with un-mapped
areas, which can only be clearly assessed after the data post-processing stage. To
prevent such failures, the usual approach is to define very conservative coverage
patterns, e.g. to ensure that small deviations of the trajectory will have a minimal
impact on the map quality, or that observed areas are perceived several times. This
comes at the cost of gathering redundant data and prolonging mission duration. In
addition, this restricts the UAVs to fly only under optimal weather conditions, so
as to make sure trajectory control will perform well.

A natural evolution is to deploy an active perception scheme, that is using
the sensory outputs of the UAV as inputs to drive the flight so as to optimize
mission time while ensuring adequate coverage and mapping of the area – in other
words, turning the automatic execution of pre-defined mapping missions into an
autonomous instance of the sense / plan / act paradigm, in which planning is driven
by perception objectives. This implies requirements on two different concerns:

• perception: not only the map building must run on-line, but it should allow a
precise assessment of the map quality,

• planning: one should be able to replan online the coverage of the area, which
involves a predictive model of the mapping process that explicits the infor-
mation content brought by new observations.

Of course numerous instances of such active schemes have been proposed in
the robotics community. For instance, they are required by definition for ex-
ploration tasks where the structure of the environment is not a priori known.
For tasks which consists in mapping or observing continuous surfaces or volumes,
the main contributions relate to adaptive sampling [Rahimi 2004, Hollinger 2014],
which consists in optimizing the number of measurements to assess a spatially
continuous processes (e.g. marine processes [Das 2015] or atmosphere phenomena
[Reymann 2018, Lawrance 2011]).

However, there are few contributions on the development of adaptive schemes in
the context of precision agriculture, where using UAVs to monitor large crop fields

3.1. Introduction 97

has become a viable commercial application1. Here the application of a passive
scheme forces the operator to define redundant coverage patterns with large lon-
gitudinal and lateral ground overlaps of the camera footprint, which yields longer
missions and larger datasets to post-process. No adaptive sampling scheme can be
applied in this context, as the missions require a full coverage of the surfaces of
interest.

3.1.2 Problem statement and contribution

We are aiming at developing an active mapping scheme in the context of large
crop monitoring missions, or more generally for surface coverage missions with
UAVs. Planning observation trajectories that balance map quality with mission
time requires both the ability to compute a world model online and to estimate an
associated error model from which the information content of future trajectories
can be assessed.

The solution of choice for mapping crops is to feed a bundle adjustment
(BA) technique with images acquired by an on-board multi-spectral camera: this
generates very high precision maps, but requires heavy post-processing. Pro-
gresses in visual SLAM, and in particular in monocular graph SLAM approaches
[Younes 2017, Mur-Artal 2015], let seriously consider the possibility to achieve on-
line mapping with a precision comparable to off-line BA techniques. Relying on
such a mapping technique, the problem at hand becomes an active SLAM prob-
lem, for which both an estimation and predictive error models are keys. Yet, the
definition of such models remains a difficult problem, especially for graph SLAM
approaches, where the extraction of a precise information matrix from the result of
the optimization process is not straightforward.

This chapter introduces an approach to learn a full SLAM error model. Building
on the seminal work of Kasra Khossousi [Khosoussi 2017], exploiting the graphical
nature of SLAM and spectral decomposition, we propose an architecture to learn
relative error metrics between any pair keyframes – hence the adjective “full” of the
error model. The input of the learning architecture is not directly the data itself,
as is usual with deep learning techniques, but instead signatures of the structure
of the covisibility graph maintained by the SLAM algorithm, as well as features
computed from statistics on each edge of the current graph. This error model also
yields a prediction ability: new observations features are inferred by a regression
technique, from which the new covariance matrices can be predicted.

3.1.3 Outline

After a brief state of the art, section 3.2 introduces the work of K. Khossoussi. The
proposed approach is introduced in section 3.3, and its implementation is depicted
in section 3.4. Results are analyzed in section 3.5, and a discussion concludes the
chapter.

1A noticeable exception is the work of Lliam Paul [Paull 2014]

98 Chapter 3. Learning error models for graph SLAM

3.2 Related work

There are a great number of formulations of the SLAM problem, depending on the
sensors and measurements available (single camera, stereoscopic cameras, LIDAR,
odometry, IMU), on the family of techniques used to solve it (filtering, MAP es-
timation, deep learning), and on the data association technique used to compare
measurements (landmark based, dense methods).

The original focus of SLAM techniques is to provide the robot with an online
reconstruction of the robots trajectory along with a map of the environment, which
structure is in most cases devoted to localization. While SLAM solutions based
on Bayesian filtering explicitly manage the pose and map errors, the more recent
(and more robust) approaches that exploit optimization techniques have dimmed
the need for an accurate uncertainty model, aiming at solutions that are real time,
avoid catastrophic failure as much as possible, and with as low error as possible on
the trajectory reconstruction. A recent focus is the production of denser maps for
navigation and planning [Whelan 2016, Gao 2018]. In these schemes the quality
of the reconstruction is not available, and the only queries one can make on the
produced maps are binary (is this location mapped or not?).

In active SLAM, being able to quantify robot and map uncertainties and predict
the utility of new observation sequences is central. In the recent and comprehensive
survey of SLAM [Cadena 2016], section VIII. introduces and discusses briefly active
SLAM, which serves as the basis of our analysis. Active SLAM is a decision making
problem where one tries to balance exploration of unmapped areas with exploitation,
i.e. revisiting locations to improve map quality and robot pose precision. A number
of classical techniques have been applied to this problem, the most common being
Theory of Optimal Experimental Design (TOED) [Carrillo 2012] and information
theoretic approaches [Carrillo 2015].

Note that most contributions to active SLAM stem from the ground robotics
community, where the robot usually evolves in a structured environment, often in-
doors. Closer to our concern of coverage path planning, [Kim 2015] develop an
active SLAM algorithm for coverage path planning applied to an underwater au-
tonomous vehicle. Navigation uncertainty is computed using the existing map, the
planning algorithm proposing new links. Gaussian Process regression is used to
infer the visual saliency of unexplored locations which in turn is used to estimate
the probability of making successful landmark observations. This enables to esti-
mate the pose uncertainty along the path using the information matrix of the poses,
odometry constraints and expected camera measurements. The objective function
balances pose uncertainty along the path with a term dependent of area coverage.
Thus the robot is able to cover the area while keeping the pose uncertainty un-
der a predefined threshold, however reducing the map uncertainty is not an direct
objective of the algorithm.

All active SLAM approaches have in common the need to compute the util-
ity of an action, which has to rely on an uncertainty model of the robot pose
and of the environment. Fortunately, both Kalman filter and graph optimization

3.2. Related work 99

based approaches share the property of being probabilistic frameworks and therefore
maintain a representation of uncertainty, in the form of a covariance or information
matrix. Computing the utility of new observations is done by using the current
model as prior, and predicting the effect on the model by computing the posterior
distribution after the integration of the new observations. In general, this is an
intractable problem and therefore several approximations have to be made, such
as assuming isotropic Gaussian noise and using a simple fixed-variance model for
unknown locations.

Even if computing the posterior would be an easy problem, there would remain
numerous issues that hinder the precise computation of uncertainties. Indeed the
uncertainties produced by the SLAM algorithms in real world scenarios are often
optimistic (over confident): this is due to imprecision and simplifications used in
the observation models, such as:

• Correlations between observations of the same landmark. Consecutive obser-
vations are almost always assumed independent, it is however a classical result
that this is not the case (e.g. due to sensor calibration biases), the posterior
mean of repeated observations converging to a fixed bias.

• Wrong matches (outliers) in landmark-based SLAM. If recent developments
seem to indicate that graph optimization based techniques are quite robust
to a small amount of outliers for estimating the posterior mean, outliers nec-
essarily introduce overconfidence in the variance.

Some of these issues have been addressed in the literature, such as in [Zhu 2017]
for EKF, where adaptively “inflating” the prior uncertainty matrices (which re-
quires hand-tuning of some parameters) as well as replacing EKF updates with a
covariance intersection technique that can take as input a correlation factor between
measurements leads to more conservative estimates. Accounting for the presence
of outliers remains however unsolved, and most authors assume that an adequate
detection and removal of outliers process ensures that very few remain in the model.

Lastly it is worth to mention recent developments in deep learning, such as
[Kendall 2016] where the authors do deep regression of camera pose for relocaliza-
tion using Bayesian convolutional networks. Uncertainty is estimated using Monte
Carlo sampling. In [Wang 2018], probabilistic visual odometry is performed using
deep neural networks, the network producing both the mean and the variance of the
estimate. In both works uncertainty estimate seem to be less overconfident than
traditional Bayesian inference techniques. If deep learning has been successfully
applied to relocalization and visual odometry and is able to produce conservative
uncertainty estimates, such works are not straightforwardly transferable to SLAM
where one has to be able to close loops, i.e. reuse old data and revise estimates,
propagating the information across the whole observation graph.

There is a more subtle issue, arising from the nature of SLAM. In absence of
fusion with global positioning, localization is done in a local frame. Essentially
the position of each element is optimized relatively to that of the other ones.

100 Chapter 3. Learning error models for graph SLAM

Figure 3.1: A pose graph of the robot’s path, edges representing relative motion
measurements between poses. marks the reference frame, SLAM estimated poses
and the pose ground truth. In the absence of large loop closing with the reference
frame, the SLAM estimate accumulates drift. The square’s shape at the end of the
path remains locally consistent.

And because error accumulates, it can lead to scenarios such as described in
figure 3.1, where the robot has described a path resembling a barbell. Two areas
are very well connected (i.e. the graph contains many local cycles), but there
is only one path between these two areas. In the absence of loop closing, their
position relative to each other exhibits a large drift. In this instance, adding
a single observation is not enough to lower the pose uncertainty significantly,
large loops have to be closed to minimize drift. Being far apart, a long path
has to be planned, with very little gain until the loop finally closes. Because the
planning algorithm needs to sample in the observation space, and because the
complexity of the planning problem grows exponentially with the number of future
observations planned, heuristics are needed to guide the planning so as to cope
with such situations. It is evident that by closing a loop between high and a low
covariance locations will lower the drift and greatly improve the SLAM estimate.
This could be used as such an heuristic. It has to be noted that there is no rea-
son to give preference to one local frame or the other, this choice is purely arbitrary.

Another scenario, described in figure 3.2, clearly exhibits the limits of an
absolute uncertainty measure for SLAM. Here the robot’s path has described a Y
shape, with the reference frame being at the bottom of the Y. The covariance is
highest at the top of the branches. Therefore an active SLAM algorithm seeking to
reduce this covariance and guided by the aforementioned heuristic would propose
paths closing the loop between the top and the bottom of the Y. However as
previously stated, the choice of reference is arbitrary: choosing as anchor the
middle of the Y exhibits another equivalent potential loop closure, by linking the
two branches. Therefore the choice of anchor is very important and will greatly
impact the covariance of each robot pose, as well as hide information in the
covariance matrix. One possibility to avoid this is to estimate relative covariance
between each pair of nodes, thus exposing the full information to the planning

3.2. Related work 101

B

C D

AA

C D

B

Figure 3.2: The Y example, illustrating the effect of the choice of reference frame,
marked , on the covariance estimate. Closing loops between B-C or C-D does not
yield the same information gain in the left case, whereas it does in the right case

algorithm. To our knowledge, this is a costly operation and would need O(n)
matrix inversions, for a total cost in O(n4) using the straightforward solution
of updating the information matrix and performing the inversion for each anchoring.

These figures illustrate the strong influence of the topology of the observa-
tion graph on the quality of the SLAM estimate. The usage of purely topolog-
ical information to perform active SLAM has also been explored: in [Kim 2013]
the authors use topological information on frontier-based exploration algorithms
to efficiently guide a group of robots. Probabilistic reasoning on topologi-
cal maps has been introduced in [Ranganathan 2004] and shown to be help-
ful to maintain the global consistency of the graph and close loops (see also
[Ranganathan 2011]). Active SLAM planning on topological maps has been devel-
oped [Mu 2016], reasoning on the entropy of the produced topological graph. More
recently, [Kitanov 2018] proposes to plan on reasoning on the topological properties
of the factor graph produced by the SLAM algorithm. It exploits the recent find-
ings of [Khosoussi 2014, Khosoussi 2015], that state that the topological properties
of the factor graph is determinant of the accuracy of the estimation. It therefore
completely avoids any Bayesian reasoning, the developed criteria depending only of
the degree of the nodes is very easy to compute.

3.2.1 Relationship between pose graph topology and uncertainty

The seminal work of [Khosoussi 2014, Khosoussi 2015] explores the relationship
between pose graph topology and the uncertainty estimate recovered from the in-
formation matrix of the maximum likelihood estimate in the 2D pose graph SLAM
problem. The first paper [Khosoussi 2014] proposes three indicators relating these
two concerns, which we briefly outline here. The author reasons on the pose graph,
with weight on edges taken as the measurement translational and rotational covari-
ance.

102 Chapter 3. Learning error models for graph SLAM

Ratio of Costs ⇔ Average Node Degree A function of the average node
degree of the pose graph can be used to estimate the ratio between the value of
the cost function at the SLAM estimate and the value of the same function at the
ground truth.

Diameter of Confidence Ellipsoid⇔Algebraic Connectivity The algebraic
connectivity, which is the second-largest eigenvalue of the weighted Laplacian matrix
of the graph is a lower bound of the diameter of the largest confidence ellipsoid.

Volume of Confidence Ellipsoid ⇔ Number of Spanning Trees The
weighted number of spanning trees is linked to the volume of confidence ellip-
soids through the determinant of the Fisher information matrix. In particular,
it is shown in [Khosoussi 2015] that the determinant converges to a pure function
of the weighted number of spanning trees when a parameter δ converges to zero.
This parameter depends only on the degree of the nodes, the sensing range and
the precision of translational measurements. These results are proven in the case
of planar SLAM, and empirical evidence on publicly available datasets seem to in-
dicate a linear relationship between the log determinant of the fisher information
matrix and the tree connectivity for 3D pose graph SLAM.

Chapter 5 of [Khosoussi 2017] exploits the “tree connectivity” criterion as
defined as the normalized weighted number of spanning trees to solve the edge
selection problem: adding (or removing) edges so as to maximize tree connectivity
of the resulting graph. The optimal selection of the 1-edge selection problem,
is shown to be selecting the edge between nodes exhibiting the highest effective
resistance between them.

The results of this work are highly effective when dealing with pose graph SLAM
with an accurate error model on the relative error measurements. However in the
case of feature based SLAM with indirect measurements, such as in monocular
SLAM, this information is not directly available. One could work with the full
graph incorporating both robot poses and landmarks, but this would result in graphs
several orders of magnitude larger. Furthermore, uncertainty estimates are often
heavily biased as discussed previously.

3.3 Learning the error model from SLAM topology

In our surface mapping context, we exploit the monocular camera SLAM problem
defined as a landmark-based graphical model formulation solved by MAP estima-
tion. The field is now mature enough that there exists open sources implementa-
tions that perform fairly well in a variety of situations – we rely on the work of
[Mur-Artal 2017].

In this SLAM formulation, landmarks are key points features that are extracted
and tracked in the images, and a keyframe selection process select the images which

3.3. Learning the error model from SLAM topology 103

position constitute nodes in the factor graph. The estimation of the locations of
landmarks and keyframes is posed as a non-linear least square problem, solved using
Gauss-Newton or similar methods. Note that the Hessian of the constraint graph at
the optimum is also (an approximation) of the information matrix of the problem.

3.3.1 The covisibility pose graph

The graph-based optimization formulation of SLAM builds a factor graph that
encodes the constraints imposed by observations on hidden variables. Each node
represents a hidden variable, edges are called factors, and encode an error function
between a measurement and the expected observation given the estimated values
of the hidden variables. The formulation assumes a Gaussian error model, each
measurement (and therefore factor) has an associated covariance, which, along with
the error function, allows to compute the joint likelihood of the hidden variables
and the observations. The optimization process then maximizes the product of all
joint likelihoods.

In the monocular SLAM problem, and in the absence of odometry measure-
ments, there is no direct observation of the relative pose of two robot locations.
The landmark based graphical model formulation of monocular SLAM builds a bi-
partite factor graph. Nodes either represent keyframe poses or landmark positions
(figure 3.3), and factors encode the reprojection error on the image of landmarks,
given the detected position of the landmark in the image, the estimated pose of the
camera and the estimated position of the landmark.

We call covisibility graph the undirected graph Gα derived from the factor graph,
keeping only the camera pose nodes and adding edges between two nodes if they
share covisible landmarks (figure 3.3). Each edge (i, j) has a weight αij , which
represents the tightness of the constraints linking i and j camera poses, imposed
by the common landmark observations.

Such a covisibility graph is for example introduced in [Mur-Artal 2015], with
weights simply being the number of covisible landmarks. It is used in order to reason
on the topology of the model and prune redundant observations, while keeping the
global topology intact. The authors also use it to select edges involved in local
optimizations when adding a new keyframe, and to define the “essential graph” on
which optimization is performed when closing loops.

3.3.2 The resistance distance

Relying on and expanding Khossoussi’s work, we aim at instantiating the covisibility
graph Gα so as to derive uncertainty estimates between camera poses. In order to
exploit this graph to plan further observations, the uncertainty estimates must be
as close as possible to the actual error2, and the graph must yield the possibility to
assess the impact of future observations.

2As discussed above, the covariance matrix recovered from monocular SLAM may not be a good
estimate of the ground truth error.

104 Chapter 3. Learning error models for graph SLAM

i j

l1 l2

αij

Figure 3.3: A factor graph and the associated covisibility graph. correspond
to camera poses, and to landmark positions. All edges define the factor graph,
whereas only solid edges define the covisibility graph (landmarks are not part of
the covisibility graph). The relative pose constraints between i and j are defined by
the factors linking covisible landmarks l1 and l2 with i and j: they are abstracted
by the weight αij encoding the tightness of the constraints on the ij edge.

The challenge is to generate meaningful α weights. Instead on relying on an
error model of the sensors to derive the αij weights, we propose an architecture
that enables the learning of these weights from errors measured with respect to the
ground truth positions.

The work of Khossoussi shows that the structure of the covisibility graph is
correlated to the volume of the uncertainty ellipsoids through the (weighted) num-
ber of spanning trees in the graph. Furthermore the optimal solution to the 1-
edge selection problem is the edge between the nodes with maximum resistance
distance between them. Although the resistance distance measure is quite new
in the field of active perception, it is a well researched notion and arises in a
number of fields outside such as Markov chains and networking problems. For
a primer on resistance distance and its optimization depending on graph topology
see [Ghosh 2008, Ellens 2011].

We postulate that the resistance distance between two nodes in the covisibility
graph Gα is correlated to the relative error between the estimate of the correspond-
ing keyframes.

The resistance distance of two nodes in a graph G is equal to the resistance
between the same two nodes in an electrical resistor network of the same topology
as G, in which resistance values between vertices correspond to the edge weights of
G.

Unsurprisingly, the resistance distance may be expressed as a function of the set
of spanning trees in a graph. Let G = (V,E) be a graph with unit edge weights and
T the set of spanning trees of G, then the resistance distance Rij between vertices
i and j can be computed with the formula:

Rij =

|{t | t∈T, (i,j)∈T}|

|T | if (i, j) ∈ E
|T ′−T |
|T | if (i, j) /∈ E

(3.1)

where T ′ is the set of spanning trees of G′ = (V,E + (i, j)). This formula can be

3.3. Learning the error model from SLAM topology 105

extended for a graph with non unit edge weights using the weighted number of
spanning trees.

The resistance can also be computed directly from the Laplacian matrix. Let
Lα be the weighted Laplacian, or conductance matrix, of the graph Gα:

Lα = A diag(α)AT (3.2)

where A ∈ Rn×m is the incidence matrix of G and diag(α) ∈ Rm×m is the diagonal
matrix composed from the edges weights, also called conductances.

Let L̃kα be the matrix derived from Lα by removing the k-th row and column.
Let Γα be the Moore-Penrose pseudoinverse of Lα. The effective resistance distance
between nodes i and j can be computed using:

Rkl =

(L̃kα)−1
ii + (L̃kα)−1

jj − 2(L̃kα)−1
ij i, j 6= k

(L̃kα)−1
ii j = k

(3.3)

= (Γα)ii + (Γα)jj − 2(Γα)ij (3.4)

As its name denotes, the resistance distance is a distance function:

• Rij ≥ 0 (positive)

• Rij = Rji (symmetry)

• Rij ≤ Rik +Rkj (satisfies the triangle inequality)

Therefore R is a metric on Gα. Intuitively, Rij is small when there are many
paths between nodes i and j with high conductance, and high when there are few
paths with low conductance. Adding a new edge, i.e. a new path always lowers the
resistance distance between nodes. Thus it behaves as is expected of a relative error
measure in SLAM: adding new measurements linking robot poses always lowers
their relative localization error. Increasing the uncertainty of relative measures,
thus decreasing the amount of information it encodes, increases the error.

3.3.3 Learning the relative error through the resistance distance.

We have seen that the resistance distance seems an interesting proxy for the relative
error between nodes. To exploit this distance to precisely estimate errors, two
problems must be solved:

• How to compute the weights α?

• How to derive the relative error from the resistance distance?

We propose an architecture that combines neural networks with the resistance
distance in a semi-deep fashion to estimate the relative errors from the full graphical

106 Chapter 3. Learning error models for graph SLAM

representation of SLAM and the current solution. The overall process consists of
the following four steps:

1. From two keyframes i, j that share covisible landmarks (i.e. an edge of the
covisibility graph Gα), we extract a feature vector Xij that encodes how well
the two keyframes would be colocalized from the matched landmarks.

2. We learn a function f mapping features to the weight edges of Gα.

3. From Gα we can compute the resistance distance Rkl between any pair of
nodes (k, l) ∈ V (be they connected by edges in Gα or not).

4. Then a second learned function g maps the resistance distance Rkl to the
relative error metric êkl.

If needed w independent metrics can be learned in parallel by using w outputs
for f and inputs for g, thus computing the resistance distance on independent
Gα0 · · ·Gαw graphs. Figure 3.4 illustrates the proposed architecture with two
learned metrics.

f

R

R

g
Xij

Gα0

Gα1

(Rkl)0

(Rkl)1
êkl

ij ∈ E kl ∈ V 2

Figure 3.4: Architecture of the function computing the SLAM error estimate êkl
for k, l ∈ V 2. G = (V,E) is the covisibility graph without weight on edges, Gα is
G augmented with weights αij , with (i, j) ∈ E. Xij ∈ Rk is a feature vector. The
function f computes weights of the covisibility graph from features, Rkl computes
a scalar value for any two nodes in Gα, and g transforms the output of Rkl in
a relative error metric between nodes k and l. In this example two independent
metrics are learned through f computing two weighted covisibility graphs Gα0 and
Gα1 .

Because the resistance distance is differentiable, we can learn f and g together
using neural networks. We simply need to define a cost function relating the esti-
mated relative error êkl to the ground truth error ēkl, and use backpropagation to
compute the gradients on the neural network parameters of f and g. The following
section depicts the details of the implementation of this learning architecture.

3.4. Implementation of the learning architecture 107

3.4 Implementation of the learning architecture

3.4.1 Selecting informative features

Although the choice of features to feed to the neural network is crucial to its abil-
ity to learn the graph weights, choosing the best features is not the focus of this
work. Hence we handpicked features capturing as best as we thought the nature
of the constraints between keyframes, while remaining easy to compute. The fol-
lowing features are defined on the basis of the covisible landmarks between the two
keyframes:

• the number of covisible landmarks

• the total number of additional observations per landmark (i.e. the number of
other keyframes in which they are visible)

• the parallax defined by the camera poses associated to the keyframes

• the average distance between the landmark and the keyframes positions

• the global saliency of the landmarks (defined in the dictionary used for the
bag of words place recognition)

Histograms are computed with the parallax, distance, number of observations
and global saliency features associated to all covisible landmarks of an image pair.
These histograms, the number of covisible landmarks and the ground area of the
overlap between the two considered images are aggregated in the feature vector Xij .

3.4.2 Loss function

The definition of an appropriate loss function for the optimization is conditioned
by the definition of the error model for ēkl that we are trying to learn. Ideally, one
would want to produce a full six dimensional error model for the poses. However,
our learning architecture rather explicits synthetic topological information than
metric information and relationships between the variables estimated by the
SLAM. It is therefore impossible with this model to predict the full error model
defined by the covariances between the 6 pose parameters. Following the results
and observations of [Khosoussi 2017], we can however hope to learn synthetic
information about the pose uncertainty ellipsoids.

Because we can not differentiate the dimensions, we aim at learning the norm
of the position error, not modeling the rotational error. Let p̄k be the ground truth
position for node k, and p̂k the SLAM position estimate for the same node. We
define the relative positional error norm as:

ēkl = ‖ (p̂k − p̂l)− (p̄k − p̄l) ‖ (3.5)

108 Chapter 3. Learning error models for graph SLAM

The probabilities of the relative errors are supposed independent of each other
given the model, therefore for n graph samples with m nodes, we can write the joint
probability of the concatenated error vector ē given the model:

p(ē | θ,X) =
n∏
i=1

mi∏
k=1

mi∏
l=i+1

p(ēikl | θ,Xi) (3.6)

with θ the model parameters and X the feature vector corresponding to ē.

The objective of the optimization is to find the parameters θ maximizing the
joint probability of the data given the model:

arg max
θ

p(ē | θ,X) (3.7)

Maximizing the log probabilities, this simplifies to:

arg max
θ

p(ē | θ,X) = arg max
θ

log
n∏
i=1

mi−1∏
k=1

mi∏
l=i+1

p(ēikl | θ,Xi) (3.8)

= arg max
θ

n∑
i=1

mi−1∑
k=1

mi∑
l=i+1

log p(ēikl | θ,Xi) (3.9)

Assuming a Gaussian error model on the SLAM poses, we can compute the prob-
ability of observing an error as ēikl given the learned error model σikl = êkl(θ,Xi):

p(ēkl | θ,X) = N (0, σikl = êikl(θ,Xi)) (3.10)

= 1√
2πσ2

ikl

e
− 1

2

(
ēikl
σikl

)2

(3.11)

After simplification of all terms not affecting the maximum, and switching to
minimizing the negative log probability:

arg min
θ

− log p(ē | θ,X) = arg min
θ

n∑
i=1

mi−1∑
k=1

mi∑
l=i+1

log(σ2
ikl) +

(
ēikl
σikl

)2
(3.12)

with predicted standard deviations σikl = êkl(θ,Xi).

We use equation 3.12 to compute the loss function for the neural network ar-
chitecture.

3.5 Results

We present here results from applying the learning architecture on a simulated
dataset relating to coverage path planning of crop fields. The simulation setup

3.5. Results 109

allows to generate at will datasets with precise ground truth position of the ob-
servations, while being faithful enough to evaluate the SLAM and error prediction
architecture. An alternate to runs on simulated environments would be to exploit
real datasets, resorting to the application of full Bundle Adjustment to define the
keyframe pose ground truth.

3.5.1 Simulation setup

The architecture of the simulation setup is showed in figure 3.5, it instantiates a
plan / execute / perceive loop in the context of UAV coverage.

SLAM Planning

UAV simulator

Camera simulator

flight plan

camera poses

images

map
goals

MORSE

wind
turbulence...

Environment simulator

IGN
HR orthoimages

Time managmement
layer (DSAAM)

Figure 3.5: Simulation software architecture

The environment is simulated with high resolution 25 cm orthorectified image
data from the french National Geographic Institut (IGN) 3, projected on a ground
plane. The scenes are rural plains, with numerous crop parcels, roads, sparse trees
and bushes... Three 12× 12 kilometer tiles define three different environments.

A planning algorithm generates a Dubins trajectory covering the area to be
mapped [Holvoet 2018]. It decomposes the area in cells, which are then covered in
a boustrophedon manner. A value for the overlap of images on the ground is set:
it defines the distance between parallel trajectory legs over a cell. The algorithm
allows for skipping legs to optimize the trajectory length and to cope for radius
of curvature constraints, so that there may be no side overlap between images at
first, until the UAV circles back to complete the observation legs that were skipped
during the first pass over the cell.

The plan is fed to a UAV flight simulator following the Dubins trajectory per-
fectly, but with added noise from perturbations, using the von Kármán wind gust
model. The camera is simulated as if stabilized in roll and pitch, barring small

3http://ign.fr

110 Chapter 3. Learning error models for graph SLAM

perturbations of a few degrees. If this model is not perfectly realistic, it is good
enough to evaluate the SLAM algorithm performances in the presence of moderate
perturbations to the trajectory. The UAV flies at a constant altitude of 150m, and
a constant 15m.s−1 airspeed.

During flight, the position of the UAV is transmitted to the Morse4 simulator,
where a camera observes the overflown scene. The camera has an horizontal field of
view of 61 degrees and generate 800×600 pixels images at 32 hertz. These images are
then processed by a monocular SLAM implementation, forked from ORB_SLAM2
[Mur-Artal 2017]5.

All processes communicate with each other using the ROS framework and the
DSAAM library is used for time management, ensuring the global consistency of
the simulation.

The dataset comprises of fives areas to be mapped, with very distinct shapes
(see section 3.5.3). Every hundred new generated keyframes, the covisibility graph
with computed features as well as the SLAM and ground truth poses are dumped.
The overflown areas range from about a half to a few km in length and width.
Eighty runs were performed with a ground image overlap varying from 30 to 90%,
and a turn radius between 35 and 50 meters. A handful simulations were rejected
due to unrecoverable failures of the SLAM algorithm leading to inconsistent data.

3.5.2 Learning setup

Simulation results were aggregated and the dataset used to test the learning
architecture, adding up to about four thousand samples. Even if the same five
missions are used for all the dataset, varying the overlap and turn radius produces
very different trajectories and SLAM results. In addition, taking samples every
hundred new keyframes assures diversity in the sizes of the graphs, even more
so that ORB_SLAM2 has a keyframe culling routine and therefore old parts
of the graph may change when closing loops, especially with back and forth
boustrophedon trajectories.

Fully connected neural network layers with rectified linear units were used
for the f and g functions. A manual trial and error process was used to set the
hyperparameters of the network, number of layers and units per layers. Function
f has four hidden layers with 700, 100, 100 and 10 units respectively, and the
g function has two hidden layers of 10 units each. Three different weighted
covisibility graphs Gα0..2 are learned in parallel and the three resistance distance
computed for each pair of nodes kl are combined by g to produce the σkl output.
In order to ensure that no arcs disappear in the covisibility graph, a minimum
threshold is used on the weights. This threshold is learned along with the other

4https://morse-simulator.github.io/
5This fork deviates mainly in bug fixes pertaining to multi-threading and in allowing a closer

external usage from the data structure in order to produce the features necessary for our learning
architecture

3.5. Results 111

parameters of the network. Finally another fixed minimum threshold on the out-
put σkl is set to 1e95 to avoid division by zero in the loss function (see equation 3.12).

Although the gradients were computed on batches of 50 samples, we observed
a quite noisy loss function during the learning process. One caveat is that the
computation of the resistance distance relies on matrix inversion, and therefore
is prone to fail in case of ill conditioned matrices. A few simulations had to be
removed from the dataset, some samples producing Laplacian matrices with very
high condition numbers, resulting in unusable outputs. All such instances were
from quite large samples, with especially sparse covisibility graphs. Even without
those instances, the architecture is quite susceptible to bad initialization leading
to ill-conditioned matrices and very high losses, and the optimization algorithm
being unable to recover. To circumvent this, we restarted the learning process with
new random weights until the loss of the first batch crossed a certain maximum
threshold.

Results shown are produced using models learned on the whole dataset excluding
trajectories from the same mission as the example.

3.5.3 Qualitative analysis

Example A First we analyze the output of the learning on a simple boustrophe-
don trajectory. Figure 3.6 shows the covisibility graph. In this case there are many
loop closures between the boustrophedon tracks at the start of the trajectory, with
a larger gap towards the end.

Errors relative to the first keyframe are shown in figure 3.7, alongside with
the 1σ predicted uncertainty. One has to keep in mind that the observed error is
only one realization of the predicted probability distribution and thus it is difficult
do evaluate the quality of the prediction on specific examples. One can however
already see interesting topological results. As expected, the error grows with the
distance to the reference keyframe. However loop closures (around keyframe 75 and
again 150) bring the predicted error down. We can also observe the growth of the
predicted uncertainty in the last (index > 175), weakly connected to the other part,
as well as an observed error peak in the same region. In this instance the true error
also follows globally the same pattern as the prediction – note however that the
predictions being probabilistic in nature, there may be deviations with the actual
error, as we will see in following examples.

Figure 3.8 shows the whole relative error matrices, measured and predicted
(figure 3.7 actually plots the first line of these 2 matrices). We find the same
global structure in the uncertainty estimate as in the ground truth error, with the
prediction seemingly being more conservative in the error estimate. We find again
the error peak in the band around index 215, which correspond to the last turn of
the trajectory (x = −0.7, y = −0.3) that is topologically the farthest away from
very well connected region in the beginning. Local maximums and minimums seem

112 Chapter 3. Learning error models for graph SLAM

−2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Figure 3.6: Covisibility graph for example A (coordinates in km). Every keyframe
is marked with , while marks the reference keyframe and marks every hun-
dredth keyframe. Covisibility edges showing the learned weights are drawn in shades
ranging from solid blue (highest weights) to pale grey (lowest weights).

0 50 100 150 200 250
key frame index l

0.0

0.5

1.0

1.5

2.0

2.5

re
la

ti
ve

er
ro

r
to

ke
y

fr
am

e
0

in
m

et
er

s

σ0l

ē0l

Figure 3.7: Relative errors with respect to keyframe 0 for example A. Ground truth
ē0l is drawn in black, while the shaded orange area covers the predicted one sigma
standard deviation σ0l.

3.5. Results 113

0 50 100 150 200

0

50

100

150

200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Normalized ēkl

0 50 100 150 200

0

50

100

150

200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Normalized σkl

Figure 3.8: Relative error matrices for example A. Relative error between keyframe
k and l is indicated by the shade of the cell (k, l). (a) Shows the normalized ground
truth relative error ēkl and (b) the normalized predicted standard deviation σkl.

to correlate well with the back and forth motions closing numerous local loops.
Finally we can observe the intermediate weights Gα0 and Gα1 : figure 3.9 shows

the learned weighted adjacency matrices of the covisibility graph for this exam-
ple. Here we can make a few observations, that apply to all other samples we have
explored. In (a), we can clearly see that a variety of weights have been learned, how-
ever (b) shows for the second learned weight matrix a purely topological adjacency
(all weights have the same value), and in practice this corresponds to the lowest
possible value given the threshold. Adding more intermediate Gα seem to always
produce only one informative weight matrix, the other being (or very close to) a
simple adjacency matrix multiplied by the value of the threshold. We conjecture
that it seems to indicate that the structure of the problem as posed need only one
distance metric to perform the prediction without adding redundant information,
at least given the input features that were used in our implementation. Indeed,
using only one intermediate Gα produced very similar results in the values of the
loss function.

Example B This sample exhibits a single, long back and forth trajectory that
links to a well connected rectangle, resembling the shape a hammer, as can be seen
in figure 3.10. Here we expect the largest relative errors between the hammer head
and the base of the shaft.

In this instance, the errors relative to the starting keyframe barely fit in the
predicted 1-σ envelope, as shown in figure 3.11. The predicted uncertainty is as
expected at its maximum at the base of the shaft, around index 100. However, due
to the random walk nature of the error, it exhibits two peaks corresponding to a
maximum error in the middle of the shaft.

This structure can be found again in the relative error and uncertainty prediction

114 Chapter 3. Learning error models for graph SLAM

0 50 100 150 200

0

50

100

150

200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Normalized Gα0

0 50 100 150 200

0

50

100

150

200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Normalized Gα1

Figure 3.9: Weighted adjacency matrices Gα0..1 for example A, with normalized
weight of the (k, l) indicated by the shade of the corresponding cell.

−1.0 −0.5 0.0 0.5 1.0 1.5

−0.6

−0.4

−0.2

0.0

0.2

Figure 3.10: Covisibility graph for example B (coordinates in km). The trajectory
starts at the meeting point of the shaft and the head of the hammer, descends into
the shaft, then back up again and finally the head is mapped with back and forth
motions.

3.5. Results 115

0 100 200 300 400 500 600 700
key frame index l

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

re
la

ti
ve

er
ro

r
to

ke
y

fr
am

e
0

in
m

et
er

s

σ0l

ē0l

Figure 3.11: Relative errors with respect to keyframe 0 for example B. We see the
expected peak of the uncertainty prediction at the base of the shaft around index
100. However due to the random walk nature of the error, it exhibits two peaks
corresponding to the maximum error in the middle of the shaft.

matrices (figure 3.12). We clearly see the bands corresponding to the shaft, as well
as the dual peaks in the ground truth error.

Example C Here we are interested in observing the results of a very large loop
closure in the graph’s topology. The trajectory follows an “O” shape four kilometers
across, with enough width so that back and forth boustrophedon motions locally
maintain a good local connectivity of the graph so as to avoid too large drifts. The
covisibility graphs before and after loop closure are shown in figure 3.13.

Relative errors to the starting keyframe (figure 3.14) exhibit two interesting
results. First the loop closure is well taken into account by the model, the uncer-
tainty prediction dropping radically from a maximum σ0l around 5m dropping to
3m. Another interesting result is the peak of the error before loop closure around
index 400. If the model predicts a small peak at this location, as its maximum
the error is above the 2.5σ mark, which is quite unlikely. Furthermore, looking at
other samples these high errors where the prediction does not keep up are far more
common than the Gaussian model would assume, as will be shown in the statistical
results (section 3.5.4).

Again in the relative error matrices (figure 3.15), we can observe that if small
structural details are smoothed out, the dramatic effect of the loop closing is evident
in the prediction as well as in the ground truth error. Smaller loop closures can

116 Chapter 3. Learning error models for graph SLAM

0 100 200 300 400 500 600

0

100

200

300

400

500

600 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Normalized ēkl

0 100 200 300 400 500 600

0

100

200

300

400

500

600 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Normalized σkl

Figure 3.12: Relative error matrices for example B.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(a) Before loop closure

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(b) After loop closure

Figure 3.13: Covisibility graph for example C, before and after loop closure. Coor-
dinates in kilometers.

3.5. Results 117

0 200 400 600 800 1000 1200 1400 1600
key frame index l

0

1

2

3

4

5

6

7

8
re

la
ti

ve
er

ro
r

to
ke

y
fr

am
e

0
in

m
et

er
s

σ0l

ē0l

(a) Before loop closure
0 200 400 600 800 1000 1200 1400 1600

key frame index l

0

1

2

3

4

5

6

re
la

ti
ve

er
ro

r
to

ke
y

fr
am

e
0

in
m

et
er

s

σ0l

ē0l

(b) After loop closure

Figure 3.14: Relative error between keyframe 0 and keyframe l for example C,
before and after loop closure. The loop closure in (b) makes both the predicted
uncertainty as well as the realized error drop consequently.

also be observed quite well in the predicted σ matrices, less so in the ground truth
error, particularly after loop closure. For such large graphs, the error prediction
is seemingly more often overconfident, failing to identify potential large deviations
from accumulated errors and particularly the lever effect of rotational errors. It is
not clear if the finer structure of the error is always due random walk noise, or if a
more complete error model could capture it.

Example D This example shows a case with very high errors, accumulated quite
quickly resulting in the prediction failing to produce probable results. The executed
trajectory can be guessed in figure 3.16, which shows the covisibility graph. In this
case the relative errors to the first keyframe attain higher than average values, with
peaks around 10m, furthermore these errors vary very rapidly (figure 3.17). In con-
trast, the prediction never rises much above 2m, which results in errors deviating
by more than 5σ from the model. Such events are not rare, more so in less extreme
cases. The model seems to be unable to cope with very high error levels, espe-
cially accumulating very rapidly. The source is unclear, but the problem persists
even when optimizing the model on the whole dataset: the model fails to fit these
instances.

3.5.4 Quantitative results

We now examine statistical results computed on 400 trajectory samples, or about
10% of the dataset, for a total of about 59 millions data points. Three histograms
of the ground truth error values ē, of the predicted standard deviation σ, and of the
deviations of the error from the predicted standard deviation ē/σ are respectively
shown in figures 3.18, 3.19 and 3.20.

As can be seen in figure 3.18 the maximum error lies at 22 meters, while the

118 Chapter 3. Learning error models for graph SLAM

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Error, before loop closure
0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Error, after loop closure

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Prediction, before loop closure
0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Prediction, after loop closure

Figure 3.15: Normalized relative error matrices for example C, before and after loop
closure. Some of the structure of the error matrix can be found in the uncertainty
prediction, but most of the high frequency variations are smoothed out by the
prediction, as if they corresponded to noise.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−0.3

0.0

Figure 3.16: Covisibility graph for example D (coordinates in km).

3.5. Results 119

0 100 200 300 400 500
key frame index l

0

2

4

6

8

10

12

re
la

ti
ve

er
ro

r
to

ke
y

fr
am

e
0

in
m

et
er

s

σ0l

ē0l

Figure 3.17: Relative error between keyframe 0 and keyframe l for example D.
Deviations of the maximum ground truth error from uncertainty prediction attains
up to 5σ.

maximum predicted standard deviation is under 8 meters (3.19). The peak of stan-
dard deviation prediction is around 1.5 meters and almost no predicted standard
deviations lie under 1m. Looking at the deviation of the error from the standard
deviation 3.20, we begin to clearly see a slight bias: the peak is shifted between 0.25
and 0.5σ, whereas in the absence of bias the peak should be at zero in a normal
distribution. Figure 3.21 shows the histogram of the same deviations as a function
of distance. Even though it does not account for topology, nodes farther away in
the euclidean space are also in average topologically farther away than closer nodes.
The same bias can be found again, also it is increasing with the relative distance
and much less drastic for short distances, under 500 meters.
The maximum event is over five but under six sigma. Events over 5σ are expected
(approximately 1 every 1.7 millions), but events over 6σ would not be (approx-
imately 1 every 506 millions). Fractions of the population lying inside the n9σ
range, as well as the expected fraction value in a normal distribution are compiled
in table 3.22. These indicate a slight overconfidence tendency of the uncertainty
model, as well as a distribution with heavier tails. Possible explanations include the
aforementioned bias, as well as the failure to predict very large and rapid deviations,
such as shown in example D of the previous subsection 3.5.3.

120 Chapter 3. Learning error models for graph SLAM

0 5 10 15 20
ground truth error ē

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 3.18: Histogram of the ground truth error ē (in meters) across 400 random
samples, or about 10% of the dataset.

0 1 2 3 4 5 6 7 8
predicted standard deviation σ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.19: Histogram of the predicted standard deviation of the error σ (in meters)
across 400 random samples, or about 10% of the dataset.

3.5. Results 121

0 1 2 3 4 5 6

deviation from the prediction ē/σ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.20: Histogram of the deviation of the ground truth error from the predicted
standard deviation ē/σ across 400 random samples, or about 10% of the dataset.

0 1 2 3 4 5

deviation from the prediction ē/σ

0

500

1000

1500

2000

2500

3000

3500

re
la

ti
ve

d
is

ta
n

ce
in

m
et

er
s

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

Figure 3.21: 2D histogram of the deviation of the ground truth error from the
predicted standard deviation and relative keyframe distance in meters, across 400
random samples, or about 10% of the dataset.

122 Chapter 3. Learning error models for graph SLAM

Range Realized fraction Expected fraction
1σ 0.57 0.68
2σ 0.86 0.95
3σ 0.96 0.997
4σ 0.992 0.99993
5σ 0.9995 0.9999994
6σ 1 0.999999998

Figure 3.22: Fraction of the errors lying in the n9σ range of the predicted dis-
tribution and expected fraction according to the normal distribution. Statistics
computed across 400 samples, or about 10% of the dataset. Total number of data
points is just above 59 millions, so the maximum expected sigma event is under 6σ
(approximate frequency for 6σ event is 1 in 506 millions).

3.6 Discussion and future works

We have presented a novel approach to learn a relative error model for a monocular
SLAM algorithm, using mostly topological information from the weighted covis-
ibility graph through the resistance distance. Weights are learned using features
extracted from the data structures and the current state of the SLAM process. The
learning architecture was tested in simulation using varied trajectories and shows
promising results. Although there is a statistical slight tendency of overconfidence,
the learned model captures well the error variations caused by the inherent graph
topology, especially large scale topological features. Finer variations seem less
precisely modeled, but it remains unclear what part of these is random walk noise.

We have argued how learning a relative error model benefits the planning
process in the context of active SLAM, by exposing useful information that would
otherwise remains hidden in the covariance matrix and partially erased by the
anchoring process of the optimization. Furthermore a learned model allows for
predictions of future observations, provided expected features can be computed.
But a stronger argument for learning the error model from ground truth values
is that it is less susceptible to outliers, as well as being less impacted by model
inaccuracies such as missing biases and correlations. Therefore it has a far smaller
tendency to overconfidence as opposed to the uncertainty recovered from the
hessian matrix of the optimization process.

Nevertheless, this work is only the first step in the direction of mixing
topological and metric information to predict SLAM uncertainties. Even on our
simplified (no harsh rotations, flat ground) simulated environment, predictions are
not perfect. We have seen that the model fails to capture the bigger uncertainties,
especially with rapidly occurring variations, as well as in some instances smoothing
too much the structure of the error in the graph. As proven in [Khosoussi 2017] in
the case of 2D SLAM, topological information and sensor precision alone are not

Bibliography 123

sufficient to completely explain the volume of the uncertainty ellipsoids, metric
information (i.e. the distance between keyframes) is also necessary. In our case,
even though some metric information is included in the features, it is probably too
rudimentary, and the reliance on the SLAM solution for the computations of these
features introduces bias.

Although the lack of feature engineering is certainly a factor, there are certainly
other factors. In particular the observed bias of the ground truth error seem to
indicate a deviation from the zero-mean Gaussian distributed error that we use as
hypothesis for the prediction. This deviation seems in particular to grow with the
relative distance: it may be related to the lever effect of angular errors in the pose
on positional error – which our model does not account for.

Certainly an interesting direction for future works would be produce richer mod-
els, with more complex architectures, integrating more metric information to predict
a full error model (on each coordinate), as well as predicting rotational errors. One
of the difficulties is to engineer a loss function that enables to mix positional and
rotational errors with widely different scales. One direction might be to focus on
minimizing the projection of the error on the landmarks. However the errors in
rotation have a strong non linear effect, integrating the error projection in the loss
function is therefore far from trivial.

Bibliography

[Cadena 2016] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide
Scaramuzza, Jose Neira, Ian Reid and John J. Leonard. Past, Present,
and Future of Simultaneous Localization And Mapping: Towards the Robust-
Perception Age. IEEE Transactions on Robotics, vol. 32, no. 6, pages 1309–
1332, December 2016.

[Carrillo 2012] Henry Carrillo, Ian Reid and Jose A. Castellanos. On the Compar-
ison of Uncertainty Criteria for Active SLAM. In 2012 IEEE International
Conference on Robotics and Automation, pages 2080–2087, St Paul, MN,
USA, May 2012. IEEE.

[Carrillo 2015] Henry Carrillo, Philip Dames, Vijay Kumar and Jose A. Castellanos.
Autonomous Robotic Exploration Using Occupancy Grid Maps and Graph
SLAM Based on Shannon and Rényi Entropy. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 487–494, Seattle,
WA, USA, May 2015. IEEE.

[Das 2015] Jnaneshwar Das, Frédéric Py, Julio B.J. Harvey, John P. Ryan, Alyssa
Gellene, Rishi Graham, David A. Caron, Kanna Rajan and Gaurav S.
Sukhatme. Data-driven robotic sampling for marine ecosystem monitor-

124 Bibliography

ing. The International Journal of Robotics Research, vol. 34, no. 12, pages
1435–1452, 2015.

[Ellens 2011] W. Ellens, F.M. Spieksma, P. Van Mieghem, A. Jamakovic and R.E.
Kooij. Effective Graph Resistance. Linear Algebra and its Applications,
vol. 435, no. 10, pages 2491–2506, November 2011.

[Gao 2018] X. Gao, R. Wang, N. Demmel and D. Cremers. LDSO: Direct Sparse
Odometry with Loop Closure. In International Conference on Intelligent
Robots and Systems (IROS), October 2018.

[Ghosh 2008] Arpita Ghosh, Stephen Boyd and Amin Saberi. Minimizing Effective
Resistance of a Graph. SIAM Review, vol. 50, no. 1, pages 37–66, January
2008.

[Hollinger 2014] Geoffrey A. Hollinger and Gaurav S. Sukhatme. Sampling-based
robotic information gathering algorithms. The International Journal of
Robotics Research, vol. 33, no. 9, pages 1271–1287, 2014.

[Holvoet 2018] Nicolas Holvoet. Planning for active mapping of crop fields using
UAVs. Master’s thesis, ENAC, September 2018.

[Kendall 2016] Alex Kendall and Roberto Cipolla. Modelling Uncertainty in Deep
Learning for Camera Relocalization. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 4762–4769, Stockholm, Sweden,
May 2016. IEEE.

[Khosoussi 2014] Kasra Khosoussi, Shoudong Huang and Gamini Dissanayake.
Novel Insights into the Impact of Graph Structure on SLAM. In Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
On, pages 2707–2714. IEEE, 2014.

[Khosoussi 2015] Kasra Khosoussi, Shoudong Huang and Gamini Dissanayake.
Good, Bad and Ugly Graphs for SLAM. In RSS Workshop on the Prob-
lem of Mobile Sensors, 2015.

[Khosoussi 2017] Kasra Khosoussi. Exploiting the Intrinsic Structures of Simulta-
neous Localization and Mapping. PhD thesis, UTS, 2017.

[Kim 2013] Soonkyum Kim, Subhrajit Bhattacharya, Robert Ghrist and Vijay Ku-
mar. Topological Exploration of Unknown and Partially Known Environ-
ments. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3851–3858, Tokyo, November 2013. IEEE.

[Kim 2015] Ayoung Kim and Ryan M. Eustice. Active Visual SLAM for Robotic
Area Coverage: Theory and Experiment. The International Journal of
Robotics Research, vol. 34, no. 4-5, pages 457–475, 2015.

Bibliography 125

[Kitanov 2018] Andrej Kitanov and Vadim Indelman. Topological Multi-Robot Be-
lief Space Planning in Unknown Environments. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 1–7, Brisbane, QLD,
May 2018. IEEE.

[Lawrance 2011] Nicholas RJ Lawrance and Salah Sukkarieh. Autonomous explo-
ration of a wind field with a gliding aircraft. Journal of Guidance, Control,
and Dynamics, vol. 34, no. 3, pages 719–733, 2011.

[Mu 2016] Beipeng Mu, Matthew Giamou, Liam Paull, Ali-akbar Agha-
mohammadi, John Leonard and Jonathan How. Information-Based Active
SLAM via Topological Feature Graphs. In Decision and Control (CDC), 2016
IEEE 55th Conference On, pages 5583–5590. IEEE, 2016.

[Mur-Artal 2015] R. Mur-Artal, J. M. M. Montiel and J. D. Tardós. ORB-SLAM:
A Versatile and Accurate Monocular SLAM System. IEEE Transactions on
Robotics, vol. 31, no. 5, pages 1147–1163, October 2015.

[Mur-Artal 2017] Raul Mur-Artal and Juan D. Tardos. ORB-SLAM2: An Open-
Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE
Transactions on Robotics, vol. 33, no. 5, pages 1255–1262, 2017.

[Paull 2014] L. Paull, C. Thibault, A. Nagaty, M. Seto and H. Li. Sensor-Driven
Area Coverage for an Autonomous Fixed-Wing Unmanned Aerial Vehicle.
IEEE Transactions on Cybernetics, vol. 44, no. 9, pages 1605–1618, Septem-
ber 2014.

[Rahimi 2004] M. Rahimi, R. Pon, W. J. Kaiser, G. S. Sukhatme, D. Estrin and
M. Srivastava. Adaptive sampling for environmental robotics. In IEEE Inter-
national Conference on Robotics and Automation, 2004. Proceedings. ICRA
’04. 2004, volume 4, pages 3537–3544 Vol.4, April 2004.

[Ranganathan 2004] A. Ranganathan and F. Dellaert. Inference in the Space of
Topological Maps: An MCMC-Based Approach. In 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), volume 2, pages 1518–1523, Sendai, Japan, 2004. IEEE.

[Ranganathan 2011] Ananth Ranganathan and Frank Dellaert. Online Probabilis-
tic Topological Mapping. The International Journal of Robotics Research,
vol. 30, no. 6, pages 755–771, May 2011.

[Reymann 2018] C. Reymann, A. Renzaglia, F. Lamraoui, M. Bronz and S. Lacroix.
Adaptive sampling of cumulus clouds with a fleet of UAVs. Autonomous
robots, vol. 42, no. 2, pages 1–22, 2018.

[Wang 2018] Sen Wang, Ronald Clark, Hongkai Wen and Niki Trigoni. End-to-End,
Sequence-to-Sequence Probabilistic Visual Odometry through Deep Neural

126 Bibliography

Networks. The International Journal of Robotics Research, vol. 37, no. 4-5,
pages 513–542, 2018.

[Whelan 2016] Thomas Whelan, Renato F Salas-Moreno, Ben Glocker, Andrew J
Davison and Stefan Leutenegger. ElasticFusion: Real-Time Dense SLAM
and Light Source Estimation. The International Journal of Robotics Re-
search, vol. 35, no. 14, pages 1697–1716, December 2016.

[Younes 2017] Georges Younes, Daniel Asmar, Elie Shammas and John Zelek.
Keyframe-based monocular SLAM: design, survey, and future directions.
Robotics and Autonomous Systems, vol. 98, 2017.

[Zhu 2017] Zhen Zhu and Clark Taylor. Conservative Uncertainty Estimation in
Map-Based Vision-Aided Navigation. IEEE Transactions on Aerospace and
Electronic Systems, vol. 53, no. 2, pages 941–949, April 2017.

Discussion

Summary Chapter 1 presents an approach to drive a fleet of information gather-
ing UAVs to optimize the acquisition of information in a given area, while minimiz-
ing the energy expenses. The approach generates flight trajectories that properly
exploit updrafts and generate accurate wind maps. Strengths and weaknesses of
the Gaussian Process model are discussed. The lack of informative prior about the
structure of the process, combined with the sparse sampling resolution is exposed
as the principal hurdle to the predictive power of the model.

Chapter 3 presents a novel approach to learn a relative error model for the
monocular SLAM problem. It exploits the relationship between the topology of the
underlying graph representation of the problem with the precision of the solution.
This relationship is not new, but it has been for the first time integrated in a
learning architecture. Preliminary results obtained in simulation are promising,
further widening the way towards interesting usage of topology and learning in
SLAM.

Chapter 2 presents a decentralized architecture for simulation time manage-
ment. It allows to synchronize multiple simulators to perform non-realtime, but
repeatable, simulations. This work, although it may seem off topic compared to
the other two contributions, has been inspired by the difficulties encountered while
building the simulations necessary for the first contribution (Chapter 1). Subse-
quently it was used for the simulations performed in Chapter 3. Hence, along with
the formal work, a major effort of this contribution is trying to convince for the
pertinence of testing robotics software using repeatable simulations.

Concluding remarks Besides the technical contributions, more general concepts
emerge from this work. Even though they might not be novel, we feel that they are
important to state and conclude on.

First, incorporating the structure of the problem as a prior in the learning al-
gorithm through careful architecture of the solution is paramount. It is the key to
breaking the curse of dimensionality and enabling the network to learn interesting
models, even when learning on small datasets. Indeed a large portion of the success
of deep learning can be attributed to the introduction of convolutional layers, incor-
porating the specificity of the structure of images into neural networks. The work
of Chapter 1 suffered from a lack of structure, while Chapter 3 shows promising
result in trying to include graph topology into the learning architecture to enable
learning of properties on graphs.

Second, the idea of building repeatable simulation diffusing through the robotics
community more widely would certainly benefit it greatly. With recent computer
graphics advancements such as real time ray tracing, fast photorealistic simulations
will become a solid alternative to real world datasets as input of learning algorithms.
Because it is artificially created, labeling of the dataset as well as exact ground

128 Bibliography

truth values come for free with it. Thanks to solid fundations on which to ensure
repeatability, simulations become a valid solution to alleviate the ever increasing
thirst for data of learning algorithms.

Finally, just as functional modularity - through the breaking of software into
reusable components - has been a driving force of the expansion of the robotics
community, software layer modularity inside components can be as structuring and
greatly improve reusability. Instead of relying on swiss-knife frameworks and soft-
ware that quickly become complex and hard to maintain, the software glue that we
use should be broken down into thin libraries that handle specific concerns and can
be combined together to build more complex software. This idea may be starting
to germinate in the community: the Genom3 framework already allowed to tar-
get multiple middleware and recently the second iteration of the ROS framework,
ROS2, relies on DDS as its middleware. We argue that the same principle should
be used to incorporate simulation abilities within robotics frameworks.

	Introduction
	Motivations: active perception
	Structure of the manuscript
	 Bibliography

	Adaptive sampling of cumulus clouds with UAVs
	Introduction
	Mapping Clouds
	Gaussian process regression model
	Learning hyperparameters
	Computing information metrics on trajectories

	Energy-efficient Data Gathering
	Trajectory evaluation
	Trajectory optimization
	Illustrative examples

	Integrated Simulations
	Simulation setup
	Results

	Discussion
	Summary
	Future work

	Aircraft Model
	Steady Banked Turn Phase
	Rate of Climb (ROC) and power consumption
	Pull-up and Pull-down

	Trajectory Computation
	Bibliography

	Repeatable decentralised simulations for cyber-physical systems
	Motivations
	On the need of distributed simulations
	On repeatability

	Distributed simulations: state of the art
	Distributed simulation standards
	Time management in parallel and distributed simulations
	The case of robotics

	DSAAM: a decentralized time management architecture
	Formal Model and Proof
	Preliminaries
	Formalizing DSAAM
	Proof of progress

	Implementation
	The Precidrone use case

	Discussion
	Contributions
	Future work

	Implementation benchmarking results
	Listings
	 Bibliography

	Learning error models for graph SLAM
	Introduction
	Context
	Problem statement and contribution
	Outline

	Related work
	Relationship between pose graph topology and uncertainty

	Learning the error model from SLAM topology
	The covisibility pose graph
	The resistance distance
	Learning the relative error through the resistance distance.

	Implementation of the learning architecture
	Selecting informative features
	Loss function

	Results
	Simulation setup
	Learning setup
	Qualitative analysis
	Quantitative results

	Discussion and future works
	 Bibliography

	Discussion

