Arnaud Sors

Deep learning for continuous EEG analysis

Merci tout d'abord à mon directeur de thèse Jean-François et à mon encadrant CEA Stéphane. Jean-François, ta vision applicative et ton ouverture d'esprit pour travailler avec des collaborateurs aux compétences orthogonales ont rendu ce travail possible. Stéphane, tes conseils techniques et réalistes ont permis de lancer le travail puis de cadrer mes idées mêmes quand nous n'étions pas d'accord. Un grand merci à vous deux.

Merci à Laurent de nous avoir rejoint et apporté un regard expert sur l'EEG. Merci à Sébastien, pour nos travaux communs à l'occasion de ta thèse de master et la construction d'un magnifique chariot d'enregistrement ;) Merci à Régis, Eric pour avoir initié le lancement de la thèse et arrangé les quelques mois pré-thèse. Merci à Tristan pour m'avoir mis en contact avec l'équipe du DTBS.

Merci à l'ensemble des collègues du DTBS pour les moments partagés. Merci à Henri pour ton aide pour la plate-forme d'enregistrement. Merci à Michel Durand et à son équipe de m'avoir ouvert les portes de la réa 9 pour les enregistrements.

Merci à mes amis, à commencer par Valentin et Igor la dream team de la colloc Gilot, en passant par les Parisiens ou Londoniens de passage pour une session ride, et en finissant par les montagnards, avec des moments partagés en face Nord de l'Ailefroide, dans le ravin de la Gorgette, sur les réglettes de Siurana ou sur les pieds

ABSTRACT

The objective of this research is to explore and develop machine learning methods for the analysis of continuous electroencephalogram (EEG). Continuous EEG is an interesting modality for functional evaluation of cerebral state in the intensive care unit and beyond. Today its interpretation is still mostly performed by human experts. In this work we develop automated analysis tools based on neural models in order to extend the use of continuous EEG. The subparts of this work hinge around the pilot application of post-anoxic coma prognostication, which was not entirely treated but which the different bricks of our work articulate around.

First, we validate the effectiveness of deep neural networks for EEG analysis from raw samples on a supervised task of sleep stage classification from single-channel EEG. We use a convolutional neural network adapted for EEG and train and evaluate the system on a large-scale sleep dataset. Classification performance reaches or surpasses the state of the art.

Secondly, multichannel EEG signals consist of an instantaneous mixture of the activities of a number of sources. This structure should be accounted for in characterization architectures. Based on this statement we propose an analysis system made of a spatial analysis subsystem followed by a temporal analysis subsystem. The spatial analysis subsystem is an extension of source separation methods implemented with a neural architecture with adaptive recombination weights. We show that this architecture is able to perform Independent Component Analysis if it is trained on a measure of nongaussianity. For temporal analysis, standard (shared) convolutional neural networks applied on separated recomposed channels can be used.

Finally, in real use for most clinical applications, the main challenge is the lack of (and difficulty of establishing) suitable annotations on patterns or short EEG segments. Available annotations are high-level (for example, clinical outcome) and therefore they are few. We search how to learn compact EEG representations in an unsupervised/semisupervised manner. The field of unsupervised learning using deep neural networks is still young. To compare to existing work we start with image data and investigate the use of generative adversarial networks (GANs) for unsupervised adversarial representation learning. The quality and stability of different variants are evaluated. We then apply Gradient-penalized Wasserstein GANs on EEG sequences generation. The system is trained on single channel sequences from post-anoxic coma patients and is able to generate realistic synthetic sequences. We also explore and discuss original ideas for learning representations through matching distributions in the output space of representative networks.

INTRODUCTION AND BACKGROUND

The goal of this thesis is to develop tools for automated analysis of intensive-care electroencephalogram (EEG). The project originates from a clinical demand for such analysis techniques, mostly to open up novel applications requiring high precision EEG pattern recognition in continuous EEG tracings recorded over several hours or days. This introductory chapter exposes the motivations for our work and the applicative background.

Electroencephalograpy: Basics. An electroencephalogram (EEG) is a record obtained by placing a number of electrodes on the scalp of a subject and measuring ongoing fluctuations in electric potential. Depending on the application, between 2 and 512 electrodes can be used. Each electrode records a signal resulting from a large amount of synaptic activities. An EEG is therefore a very high-level view of the electrical activity of the brain. EEG has nevertheless proved very useful as a diagnosis and prognosis tool in various clinical situations: neurology (diagnosis of seizures, detection of sleep disorders), intensive care (detection of non-clinical seizures, diagnosis of brain death, prognostication after cardiac arrest) and anesthesiology (detection of brain ischemia in cardiac surgery). In clinical practice EEGs are reviewed visually by expert neurologists.

Most of the spectral power of a typical EEG signal lies below 40 Hz, because of the spectral power density of the activity of groups of neuron themselves [START_REF] Walter | Simulated power spectral density (psd) of background electrocorticogram (ecog)[END_REF]. Sampling rates used for recording are typically a few hundred Hertz. The main advantages of EEG as a neuromonitoring technique are its very good temporal resolution and low cost. Its main drawback is the relatively low spatial resolution, depending on the number of electrodes.

Continuous EEG. Continuous EEG (cEEG) or long-term EEG refers to installing an EEG system and leaving it on for longer than the typical routine EEG, typically hours to days. For example, long-term video-EEG recordings over days or weeks are performed in presurgery units for localizing seizure onset zone in patients with drugresistant epilepsy amenable to brain surgery. In the ICU, continuous EEG can be used for example to monitor status epilepticus, assess ongoing therapy for treatment 1 Towards automated analysis: existing systems. EEGs recorded in a typical clinical setting today are reviewed 'page by page' by trained neurophysiologists. The review process is tedious, time-consuming and involves expert knowledge. It is thus also expensive, which is the main reason holding back larger adoption of continuous EEG for clinical applications. For scientists working in other subfields of pattern recognition today, it may seem surprising that EEG signals are still analysed by humans. However, practitioners familiar with clinical EEG acknowledge that it is a challenging modality: signal dynamics are non-stationary, artifacts of various origins are common in the signals and finally, making clinical sense of the record is often not conveivable without a multimodal approach and in-depth understanding of other clinical cues. Expert neurophysiologists thus do not incur any short-term risk of being replaced by algorithms! In spite of this, automated approaches and systems for assisting in the interpretation of continuous EEG do exist in the scope of well-defined applications. We briefly review them below:

• The Bispectral index (BIS) is an empirically-derived parameter for monitoring depth of anesthesia [START_REF] Liu | Electroencephalogram bispectral analysis predicts the depth of midazolam-induced sedation[END_REF][LSW97], and it is also the name of the Medtronics device used for EEG recording and calculation of this parameter. The original device was introduced in 1994. The BIS index is a continuous index which takes values between 0 (isoelectric EEG) and 100 (awake subject). This value is calculated with a weighted sum of several indices including time features, spectral features and bispectral features. Recall that the bispectrum [START_REF] Chrysostomos | Bispectrum estimation: A digital signal processing framework[END_REF] of an EEG channel is the two dimensional Fourier transform of its third-order cumulantgenerative function: the result is an amplitude as a function of two frequencies.

It is a measure of nonlinear couplings in the signal. The BIS is an interesting step towards assistance in the interpretation of EEG, however its validity for monitoring depth of anesthesia is questioned, partly because it is not sensitive to all commonly used anaesthetic drugs [START_REF] Barr | Nitrous oxide does not alter bispectral index: study with nitrous oxide as sole agent and as an adjunct to iv anaesthesia[END_REF][HDBB04], remains sensitive to artifacts. Also, the algorithm for calculating features and the BIS index being proprietary, potential for comparison and improvement is limited.

• The Patient State Index (PSI)[DLP + 02] is a another index developed for similar purposes and associated with a Masimo device. It includes similar features, and the algorithm for obtaining the index is partially disclosed, although the data used for fitting is not.

• Amplitude-integrated EEG[THWG + 99] is very simple technique which consists of viewing peak-to-peak amplitude of a standard EEG over a very compressed timescale, displaying hours to days on a single line. Much information about the shape of waveforms is lost, but a general view is obtained, which helps spot longterm trends in electrical activity for example to inform on seizures or suppressed activity, even for non-trained staff[KOW + 11].

• Some EEG review software programs include tools for automatic detection of rather simple items such as spikes, spike-and-waves or bursts of slow-wave activity. However these tools have low specificity and results must be double-checked by the expert. Therefore, little or no time is gained. One notable exception is sleep scoring where automatic interpretation provides reliable help. Through this brief tour of existing systems it appears that systems for automated analysis of continuous EEGs exist but are still very rudimentary. Given their low specifities, they are only able to provide the clinicians with a 'red flag' promoting other diagnosis effort, for example by indicating an EEG recording.

Thesis organization. In summary, several previous works have made clear that cEEG is an rich yet underexploited modality for applications within or beyond the ICU. A goal of this thesis is to improve automated analysis methods for cEEG through the development of more advanced systems which can be taught to 'understand and characterize EEG'. Such improved processing methods an help making better use of cEEG for already-known applications, and hopefully also opening the way to new applications. The remainder of this manuscript is organized as follows:

• In chapter 1 we introduce how to use machine learning approaches for processing EEG signals and present the available data and some initial experiments.

• Artificial neural networks and deep learning are the main tools we use for building pattern recognition architectures and we introduce them in chapter 2. We then formulate the system envisioned for post-anoxic coma prognostication.

• In chapter 3 we explore sleep scoring as a first application to validate deep learning methods for pattern recognition on raw EEG signals with supervised learning.

• A difficulty with the clinical applications envisioned is that the available supervision is scarce and 'high-level'. For example for post-anoxic coma prognostication the only reliable supervisory elements are the outcome and the clinical history, no supervision on patterns is easily available. In chapter 4 we present unsupervised methods for learning pattern detectors with little available supervision.

• In chapter 5 we present our findings relating to neural architectures adapted to multichannel EEG and present different modeling possibilities.

• Finally, in chapter 5.4 we conclude the thesis and expose some perspectives.

CHAPTER 1

EEG AND MACHINE LEARNING

Question: What are the possible machine-learning-based approaches towards automated ICU EEG interpretation ? What data can be available to this end ?

Contents

In the previous chapter we explained that we aim at building tools for automated characterization of continuous EEG. These tools should pre-analyze, select and summarize EEG tracings in a way that simplifies, complements and enhances the job of the specialist. One possible way to build such systems is to use machine learning, i.e. model the statistical regulatities between groups of EEG signals. In this chapter we start by introducing machine learning and present the available data for our problem. We then give an brief overview on the EEG machine learning litterature and relate to them simple initial experiments.

1.1 Background on EEG and machine learning

Machine learning

The general class of methods that we will use for characterizing EEG content is machine learning methods -also called statistical learning methods. In machine learning, scientists try to develop models that fit statistical regularities of some data and apply these models on unseen data. For example in our case, given many examples (many patients), their features (such as patterns detected in the EEG each hour), and the outcomes, learn a model which predicts the outcome of new (unseen) patients. Learning a model means finding a good configuration of its parameters given data and given the prediction task. Machine learning can be broadly categorized into the following subtypes:

Multivariate. An EEG record obviously uses several electrodes spread on the head.

Because each electrode has a given spatial position, analysis methods touching upon multivariate analysis will often be called spatial analysis methods. To design spacial analysis methods it is important to understand how cortical sources project on electrodes through the conductive medium. A classic and useful model is the forward model which we introduce in Appendix B.

Non-stationarity. An modeling hypothesis described in the forward model B is that the total signal recorded at each electrode is a (linear) superposition of the electric potential created at this point of space by all active sources. Importantly, sources are non-stationary[KFF + 05]. Therefore, the total multivariate signal is also non-stationary.

The time during which it is reasonable to assume that the EEG is stationary depends on the application but the order of magnitude is a second.

Consequences for analysis methods

The methods we propose involve detecting or characterizing EEG patterns and then infering something based on these patterns. Since signals are multivariate and non-stationary, methods for detecting all possible patterns are thus spacio-temporal analysis methods. In practice, almost all existing EEG analysis methods include either separate or factorized spacial and temporal analysis -as opposed to hypothetic methods where spacial and temporal analysis would be performed jointly. For instance:

• Spectral or multispectral power in bands are temporal/frequencial features calculated on one channel

• Covariance matrices are spacial features calculated on all channels

• A deep learning pipeline for EEG classification[CGA + 17] typically includes a spacial filtering layer followed by one or more temporal analysis layer

For this thesis we also consider factorized spacial and temporal analysis, i.e. a spacial analysis step followed by a temporal analysis step. This modelisation is probably restrictive though. Extensions of methods from Chapter 5 would be a good starting point for developing methods for joint analysis of spacial and temporal patterns.

Data

When working on machine learning, the nature, quality and quantity of available data strongly influence the choice of the models. Below we briefly present the available data in our case, for the upper-mentioned application of post-anoxic coma prognostication.

Records performed ourselves

Shortly after the beginning of this PhD work and before having precise ideas about EEG processing methods to be used, we recorded a small number of continuous EEGs on ICU patients with post-anoxic encephalopathy at CHU Grenoble in order to get a grasp of practical aspects of how a recording system can be integrated into the ICU environment, and also check for the classic EEG patterns described in C.2. Recording hardware We used a g.tec g.USBamp amplifier, conventional cupule electrodes, and the Natus-EC2 conductive paste for long-term EEG recordings. We note that this paste also has adhesive properties which help maintaining electrodes. For skin preparation we used Nuprep paste. Electrodes are maintained on the head by a disposable elastic cap. We used 16 electrodes at positions shown on Figure 1.2 and a unipolar montage with mastoid reference and frontal ground. Electrode positions are close to the conventional 10-20 setup but leave the occipital space free so that the patient can comfortably lie on the back of his or her head.

Artifact tagging Upon recording the first patients we noticed that EEG tracings are very sensitive to artifacts. Contaminated tracings can be a problem if the subsequent automated processing method is not explicitly designed to handle artifacts.

On comatose patients we also noticed that a majority of artifacts correspond to periods when a caregiver is present near the patient or touches the patient. We therefore added a video processing system to the EEG system to perform real-time background segmentation. Is uses the ViBe algorithm [START_REF] Barnich | Vibe: A universal background subtraction algorithm for video sequences[END_REF] and works real-time on the computer running the recording software. ViBe works by keeping a (memory-efficient) summary of the distribution of previous pixel values, and updating this summary according to an update scheme. Code for compiling this program can be found at https://github.com/drasros/motiondetec_eeg_rea.

Obtained data We obtained 10 records from post-anoxic patients. EEG was starting as soon as possible during therapeutic hypothermia and stopped at 48h or before if the condition of the patient was good. Of course such a number of patients is far too small to conduct any machine learning analysis but the recording sessions helped us to get a sense of practical elements. The initial plan was to launch a clinical study and record all post-anoxic patients admitted at CHU Grenoble but we realized that this was an inefficient use of available time.

Summary

To summarize, it is relatively easy to obtain general ICU EEG tracings, also for tracing from post-anoxic coma patients. We emphasize the fact that most of these records are short-duration and performed after rewarming, because continuous EEG during TH is still not very commonly used. For these records High-level annotations can be gathered by going through the medical file. Finally, because of the massive amount of work it represents it is almost impossible to have access reliable annotations including time tags and labels on patterns. This absence of available labels on patterns is the reason why we initially shift from ICU EEG and focus on sleep scoring in chapter 3, and then work on unsupervised and semi-supervised methods in chapter 4.

Possible analysis method and first experiments

In the existing litterature different approaches exist for detecting patterns for EEG machine learning. We give an overview of them below, and briefly present some initial work.

Classic feature extraction

The classic workflow with machine learning on EEG a two step process: first extract features and then use the desired algorithm, for example an SVM or decision tree for classification or a k-means algorithm for clustering. Choosing appropriate feature extractors is very important for performance and this choice involves domain knowledge. We briefly review classic features for EEG. Discussing the range of possible algorithms is beyond the scope of this section. For now, let us consider an EEG epoch (i.e. window) of given length. Methods for extracting features from it include: Time domain features , for example:

• Statistics of the signal [START_REF] Jenke | Feature extraction and selection for emotion recognition from eeg[END_REF] including mean, standard deviation, higher moments, power.

• Shannon entropy[KCAS05]

• Non-stationary index [START_REF] Jenke | Feature extraction and selection for emotion recognition from eeg[END_REF] • Hjorth parameters (activity, mobility, complexity) [START_REF] Vidaurre | Time domain parameters as a feature for eeg-based brain-computer interfaces[END_REF] Frequency and Time-Frequency features are features obtained by spectral decomposition, usually using Fourier or Wavelet transforms. The power in subbands is calculated either on the whole window (frequency decomposition) or on sub-windows (time frequency decomposition). For time-frequency, a balance must be found between frequency resolution and time resolution. Also, a number of methods for estimating the periodogram exist [START_REF] Babadi | A review of multitaper spectral analysis[END_REF]. From the power in bands or time-frequency decomposition, other subfeatures can be calculated. Ratios between band power values are often used. Another example is Wavelet subband entropy [ANPZ+03], which consists of performing entropy calculation over the coefficients of the discrete wavelet transform.

Nonlinear features can also be used. These include for example complexity measures such as the Kolmogorov-Chaitin complexity[SKEK + 14] and higher-order spectra [START_REF] Chrysostomos | Higher-order spectral analysis[END_REF].

Cross-channel features are used for different applications amongst which Brain-Computer interfaces(BCI). For such applications, the classes to be separated usually have different spacial signatures. For example, in motor imagery the zone of the cortex associated with imagining to move the hand is different than the zone associated with imagining to move the foot. Therefore electrical signatures have different spacial signatures. Cross-channel features are also interesting for ICU EEG. For example in ICU EEG epileptiform patterns often involve synchronized patterns spread over a zone. A typical cross-channel feature is the spacial covariance matrix. Note that the space of covariance matrices is the ensemble of symmetric positive definie matrices. This space has a particular geometry, and it is avantageous to draw the connection to Riemannian geometry [START_REF] Barachant | Classification of covariance matrices using a riemannian-based kernel for bci applications[END_REF].

Design of application-specific pattern detectors

The previous subsection introduced an number of features classically used on EEG for machine learning. For the case of ICU EEG, rather than using such features, another possible approach is to explicitly design detectors for the clinical patterns known to be of interest. The rationale behind such approaches is to take an intermediate step between fully-visual and fully-automated interpretation, and allow simple clinical studies on linking typical patterns to clinical predictions.

Below we describe possible methods for devising such pattern detectors, for the typical ICU EEG patterns introduced in C.2.

Isoelectric or low voltage signals are relatively easy to detect with simple amplitude criteria and thresholds.

Diffuse slowing can be characterized with spectral analysis, for example using ratios of power in slow versus high frequency band. are not an answer per se to the question of how to deal with (the lack of) annotations.

In the following of this thesis we focus on such methods and develop further.

Summary of possible pattern characterization methods

In summary, we exposed three possible approaches for automatically characterizing EEG content. For us focusing on feature engineering makes little sense because no annotations are available and therefore no reliable way of measuring progress stands out.

The second approach of building detectors aimed at detecting standard patterns (as in the standard ICU EEG terminology[HLG + 13]) has the same problem with annotation and additionally, 'real-life' patterns include not only 'textbook' patterns but also many intermediate patterns between which humans are able to subjectively interpolate using experience rather than hard-coded rules. We advocate that training automated algorithms to reproduce such categories is acceptable only for 'proof-of-concept' studies, and that proper automated characterization should leverage the possibilities of machine learning algorithms rather than reproduce (in a worst version) human analysis.

Given the above, we propose to focus our work on the third approach. We propose to develop and evaluate deep learning methods on EEG analysis. We emphasize that such methods are not an answer to a lack of annotations, but we will present ways in which they can be used in semi-supervised settings to try to compensate for this.

Summary of the chapter:

• We formulated how machine learning can be used for EEG characterization.

• We introduced available data. We explained that the envisioned applications are difficult because they are weakly supervised.

• In the rest of the thesis we focus on methodological developments. We are not able to address a full application such as post-anoxic coma prognostication because we do not have labels.

CHAPTER 2 back to the nineties or even before, but practical success of deep learning only took place from 2012 when larger datasets and adequate computational resources became available [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. In the last five years ANNs have brought spectacular advances in processing images and videos, text, speech and audio signals [START_REF] Lecun | Deep learning[END_REF], and also when combined with reinforcement learning[SSS + 17].

ARTIFICIAL NEURAL NETWORKS

Basics

The artificial neuron is the basic building block of ANNs. As shown on Figure 2.1, it uses weights w and a bias b on input x to perform the computation x out = f (w ⊺ x + b).

Why do multiple layers help?

In practice what we want to use ANNs for is approximating complex non-linear mappings, for example to predict the content of an image amongst a number of possible labels, or discriminate epileptiform patterns in EEG. We want do so with systems using as few parameters as possible, in order to require fewer training data and perform better in the bias/variance tradeoff. Multilayer from the previous set of activations x (1) . σ denotes a non-linear function applied element-wise. In fully-connected layers each neuron is connected to all values from the previous layer, as shown with the blue neuron.

systems help because they can fit more more complex functions with fewer parameters.

Appendix E provides an intuitive explanation on why this might be the case. It was shown [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF] in 1989 that multilayer fully-connected neural networks are universal approximators, meaning that in theory any measurable function can be approximated to any desired degree of accuracy by a two-layer neural network with sufficient number of hidden neurons. This, however does not tell how large the number of hidden neurons should be and how to train such a network. In practice, for keeping the total number of parameters reasonable and avoiding overfitting, two things help: more depth, i.e. more (smaller) stacked layer, and different neural architectures to improve on the simple fully-connected layer.

Last layer activation In practice, an ANN is designed to approximate some mapping. Depending on this mapping, is expected to produce outputs of a certain type (for example, binary vs. continous, univariate vs. multivariate) and in a certain range.

For example, a classification task requires categorical outputs. It is thus necessary to adapt the activation function of the last layer to the targeted application: for example for regression with targets in R a linear activation function can be used. For binary classification, sigmoid activations are appropriate for generating outputs in [0, 1] that can be interpreted as the probabilities of each prediction to be true. For classification tasks, the softmax activation function [Dun] is classic. It consists of exponential activations normalized so that output values can be interpreted as class probabilities. With j the class number and z the values of the output layer before the activation function, the output units of the softmax activation x sof tmax take the form:

x sof tmax j = e z j k e z k (2.1)

Standard architectures

We presented neural layers as mathematical operations to transform a set input values into a set of output values. In fully-connected layers each neuron takes all input values of the layer for its own input. In practice, many other layer architectures exist. For a given problem, an optimal architecture is one that is able to fit the desired input-output function while using the least parameters. For example, convolutional architectures are well-suited to the multiscale structure of images, while recurrent architectures are good for sequencial problems such as automatic translation.

Convolutional layers

Convolutional layers were originally introduced for digit recognition[LBD + 90]. Today still, they are mainly used on images. Below we briefly present the different types of convolutional layers. Images involve 2D convolutions whereas EEG involves 1D (temporal) convolution. We believe that it is better to present convolutional layers using 2D convolution (and we do so below) because (1) it better relates to computer vision litterature -from which almost all research originates from -and to practical implementation frameworks (2) it will happen in the chapter on multichannel architectures (5) that we 'hack' a 2d convolution to perform some filtering operation and (3) all of our practical implementations are based on adaptations of 2D convolution layers.

Convolutional layers perform several convolution operations on several sub-parts of the input using several different filters. In computer vision research papers the term 'convolution' is often used interchangeably for a convolution operation, a convolution layer, of even an 'assembled layer' including convolution and subsampling, or more complex things. This can be misleading. Below we describe and distinguish between the convolution operator (and its variants), the various ways in which such operations can be assembled into convolutional layers, and some classical 'higher level' assembled layers.

The convolution operation. Let us consider a 2D input signal X ∈ R h X ×w X and a convolution kernel K ∈ R h K ×w K . Convolving the kernel on the input consists in 'sliding' it onto the input and performing element-wise multiplication and sum for each position (Note: Strictly speaking, this form corresponds to a cross-correlation rather than a convolution, or in other words convolution with a flipped kernel. For deep learning where filters are learned this has no importance). The result of convolving X with K is:

S(i, j) = (X * K)(i, j) = h K l=0 w K m=0 X(i + l, j + m)K(l, m) (2.2)
where h x , w x denote the height and width of the input, h k , w k the height and width of the kernel.

On top of this base definition, a convolution operation as used in ANNs needs other characteristics to be fully defined. We briefly list and illustrate them below. Graphics filters (as the red and orange columns on Figure ??) where each filter is applied on one channel only. The depthwise convolution layer in its original formulation (and also in the reference Tensorflow API for example) actually does not do that and is slightly more general. It simply consists of a standard convolution where depthwise summation is not performed. Using similar notations, where input X has shape [h X , w X , c X], filters K have shape [h K , w K , c X , α c] where α c ∈ N * + is a channel multiplier, and output Xdc has shape [h X , w X , c X α c], we have: Xdc [:, :, αr + q] = X[:, :, q] * K[:, :, q, r]

(2.4)

The term 'depthwise convolution' starts to make sense when each of the α c filters is applied on all c X input channels (or in other words, the filter tensor K contains c X identical replicated filters of shape [h K , w K , α c]). This is usually what is done in papers claiming to use depthwise convolution layers (or depthwise separable convolution layers) [START_REF] Kaiser | Depthwise separable convolutions for neural machine translation[END_REF]. Figure 2.8 shows a depthwise convolution.

• Depthwise separable convolution layers are another type of convolution layer that we use in 5. Also abbreviated separable convolutions, they consist of a depthwise convolution followed by a pointwise convolution. A pointwise convolution is one way to note a linear recombination of output feature maps. Still using the same notations, input X has shape [h X , w X , c X], depthwise filters K have shape convolution operations using same filter on all input feature maps concat. concat. pointwise (=1*1) convolutions Figure 2.9: A depthwise separable convolution layer, here represented with c X = 4 replicated filters, α c = 2 and c X = 3.

[h K , w K , c X , α c], pointwise filters K p have shape [1, 1, c X α c , c X] and output Xdsc has shape [h X , w X , c X]. The expression of the output is:

Xdsc [:, :, s] = q Xdc [:, :, q] * K p [0, 0, q, s]
(2.5) Figure 2.9 shows a depthwise separable convolution. • Residual layers [START_REF] He | Deep residual learning for image recognition[END_REF] were introduced as the solution to the fact that increasing depth of CNNs often helps, until the networks are too deep to optimize using gradient descent due to problems related to gradient flow. In a classical convolutional layer, the layer learns a mapping. In a Residual Network (ResNet), the convolutional part of each layer learns the difference between this mapping and the identity function. This way, if the network is in a configuration where it is too deep, the layer can just remain the identify function and not break gradient flow. Figure 2.11 shows a residual layer. We use residual connections in architectures from 5. RNNs are good on sequences with reasonable length, for example dozen to hundreds of samples. Beyond that, it is difficult to learn long-term dependencies in temporal patterns because backpropagation (see next section) through that many steps becomes computationally costly and less stable. This is why the flagship application for RNN is automatic translation (text to text). On audio signals it is usually suitable to work from time-frequency features or some convolutional features. In terms of how many samples a typical pattern covers, EEG lies somewhat inbetween text and speech. Our work with RNN on EEG has only been preliminary and the best means of using them remain to be developed. Note that of course RNNs can be combined with CNNs in models.

Optimization

So far we have seen how to use different types of architectures to build ANNs. An ANN transforms an input to an output using connections of mathematical layers interspersed with non-linear functions. Each layer has a number of parameter weights. To do anything useful, the network has to have its weights in a good configuration. Starting from random values, optimization consists in finding adequate values for the weights, given a set of training examples and given a task for the network.

Cost functions

The cost function -also called loss function -is a metric used to quantify how close current neural network outputs are from the target values. For example, for a classification task with softmax activation on the last layer (also called softmax regression), cross-entropy is often used as a cost function. Let x in be a training example and t be the one-hot encoded target class (i.e. a vector with zeros everywhere except on the position of the target class) for this training example. Let w the vector of all trainable parameters and x out be the output activation. The cross entropy cost is a multidimensional generalization of the logistic regression cost, and for one example it takes the form:

l(x in , w) = -t log x out (x in , w) (2.6)
Minimizing this cost averaged on test set examples corresponds to maximizing the log probability of the model-predicted class being equal to the true class. Depending on the application other cost functions can also be used, from simple costs such as squared error for regression to more advanced ones such as adversarial losses for unsupervised learning.

Optimization

Gradient descent. Optimization of weight values is done by first or second order stochastic optimization -most of the time gradient-based optimization. The loss l(x, w) can be calculated and averaged on all examples from the training set T . The resulting loss l(w, T) is a differentiable function of weights w. The basic optimization algorithm is iterative. One step of it consists in calculating all derivatives and updating weights in the direction of the 'downhill gradient':

w t = w t-1 -η∇ w l(w t-1 , T) (2.7)
where η is called the learning rate. Gradients are estimated using error backpropagation. Error backpropagation is behind pretty much all optimization algorithms for deep learning today. It is described in further detail in Appendix F. This iterative process is repeated until convergence.

Weight initialization As seen in the above paragraph optimization methods for finding good values for the weights iterative. Therefore, before starting the optimization process weights need to be given initial values. A number of initialization strategies exist. Which one to use is linked to the type of normalization strategies and nonlinearities chosen. The basic principle for designing them is keep the activation of layers (mean and standard deviation of output neuron numerical values) constant within the successive layers. For example, the classic Xavier initialization[GB10] scheme consists in initializing weights of a layer in U [-

√ 6 √ n in +nout , √ 6 √ n in +nout]
where n in an n out are the numbers of input and output neurons. It is adapted for networks with sigmoidal activations. Other techniques exist, such as the He normal initializer [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF] for Rectified linear units (ReLU) or orthogonal random matrix initialization [START_REF] Andrew M Saxe | Exact solutions to the nonlinear dynamics of learning in deep linear neural networks[END_REF] for encouraging uncorrelated activations in a layer.

Stochastic optimization.

Estimating gradients ∇ w l(w, T) on the whole training set is very costly. For each optimization step a forward pass and a backward pass on each training example must be done. For big datasets this quickly becomes unfeasible. Stochastic optimization consists in estimating gradients ∇ w l(w, B) on minibatches B of a small number of examples rather than on the whole training set, and uses such estimates for weight updates. This allows much faster estimates which can be statistically almost as good and also leverage the parralelisation capabilities of modern hardware (GPUs). A whole subfield is concerned with studying such algoritms.

Training algorithms. Simple gradient descent consists of steps in the gradient direction. The multidimensional loss surface can have complex shapes and this simple strategy is not always the most effective.

• Momentum is a first improvement that helps escaping low slope regions and avoiding oscillating gradients in regions where isoenergy surfaces are very 'noncircular'. Momentum consists of updating parameters in the direction of accumulated gradients:

v t = γv t-1 + η∇ w l(w t-1 , B) (2.8)
w t = w (t-1) -v t (2.9)
γ is the momentum and is usually chosen at about 0.9. It can be lower than this at the beginning of optimization to encourage gradient variance, and be decreased after a few sweeps through the training set. Momentum also exists with the Nesterov momentum variant which consists of anticipating energy surface shape change by evaluating the gradient near the 'next position' rather than current position.

• Adaptive learning rate algorithms are another interesting improvement to the learning rule. Such algorithms use adaptive learning rates per parameter. One learning rate per parameter allows to perform larger updates for the most infrequently updated parameters. Adaptive means that a memory of the norms of past gradients is kept for each parameter and used to scale the current learning rate.

Adaptive learning rate algorithms come in several flavors: Adagrad[DHS11], Adadelta [START_REF] Matthew | Adadelta: an adaptive learning rate method[END_REF], RMSProp, Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. The most recently introduced (and widely used) is Adam. It works well on sparse gradients and naturally performs a form of step size annealing during training.

• Finally, some authors have experimented with second order methods [START_REF] Martens | Deep learning via hessian-free optimization[END_REF]. These take into account also cost function curvature. Second order methods are far less explored than first order ones as they are more complex. The difficult question is how to estimate the update step given curvature information. Calculating the full Hessian matrix is generally not feasible. Solutions involve either approximating the Hessian matrix -for example L-BFGS [START_REF] Dong | On the limited memory bfgs method for large scale optimization[END_REF] does this -or avoiding Hessian computation -for example using Hessian Free Optimization [START_REF] Martens | Deep learning via hessian-free optimization[END_REF] or Kronecker-factored approximate curvature [START_REF] Martens | Optimizing neural networks with kronecker-factored approximate curvature[END_REF]. • Getting more data is almost always the best approach if the model overfits. In practice this is not always possible. The other approach consists of limiting model capacity, which can be done in several ways:

Regularization
• Early stopping consists of monitoring performance metrics on a validation set during training, and stoppping training when these validation metrics stop improving.

• Weight decay consists of penalizing large weight values, for example with an L2norm penalty.

• Addition of noise to the weights or the activities also has an important regularization effect. Noise was originally used on the input, as in denoising autoencoders[VLL + 10].

However it can also be used on an entire network: the classic example is Dropout[SHK + 14]. Dropout consists in setting a certain fraction of the activities to zero randomly during each forward pass.

• Batch normalization[IS15] consists of normalizing layer activities for each training mini-batch. This has the effect of stabilizing the distribution of the inputs to the next layer -avoiding the internal covariate shift phenomenon -and allowing higher learning rates. Batch normalization also has the (experimentally confirmed) effect of regularizing the model, although the theoritical reasons behind this are not very well understood.

Algorithm 1: Batch normalizing transform, applied to activation x over a mini-batch. From [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]. Note that in practice a moving average of µ B and σ B is kept. input : values of activation x over a mini-batch:

B = {x 1..m }, Scaling parameters γ, β (learned) output : y i = BN γ,β (x i) µ B ← 1 m m i=1 x i // mini-batch mean σ 2 B ← 1 m m i=1 (x i -µ B) 2 //mini-batch variance xi = x i -µ B √ σ 2 B +ǫ //normalize y i ← γ xi + β ≡ BN γ,β (x i) //

scale and shift

• Layer normalization[BKH16] uses a similar idea but normalization is performed along units of a same layer rather than along examples of a same batch for each unit. It is more straightforward to use because it performs the same computation at training an test times, using no moving average. It is useful for recurrent networks.

• Finally, weight normalization [START_REF] Salimans | Weight normalization: A simple reparameterization to accelerate training of deep neural networks[END_REF] consists of explicitly decoupling the norm and direction of weight vectors in neural layers, using the parameterization w = g ||v|| v. Similarly to layer normalization, weight normalization does not introduce dependencies between the examples in a mini-batch. It allows similar speed-ups to normalization with lower overhead. However, for best performance it requires data-dependent initialization -this is a little tricky and has slowed down its adoption. Weight normalization works best with CNNs.

Practical implementation tools

A number of frameworks exist from implementing ANNs. The most popular ones are Theano, Tensorflow, Torch/pyTorch and Caffe. The main interest of using such frameworks is twofold. First, such libraries allow symbolic differentiation which considerably simplifies training compared to calculating and checking gradients manually. Second, these libraries offer the possibility to run calculations on a Graphical Processing Unit (GPU) in a way that is almost transparent to the user. Parralelization takes effect both at batch level and operator level. This speeds up training notably. In our case, we started our work using Theano [START_REF] Development | A Python framework for fast computation of mathematical expressions[END_REF] and switched to Tensorflow [AAB + 16] afterwards. Both of these libraries use computational graphs defined statically (unlike Torch and Pytorch where graphs are defined dynamically at execution time). They are written with a Python API over a C/C++ and CUDA engine. Most of our models are trained on an Intel workstation equiped with an Nvidia GTX-980Ti GPU.

Brief review: EEG and deep learning

ANNs and deep learning are old techniques whose applicative success is relatively recent (from 2013). Their use on EEG signals is relatively scarce although it seems to have significantly taken off in the last year. To link the afore-presented techniques to EEG, we give a brief tour of the most significant existing work using deep learning on EEG time series, for various applications not limited to ICU.

With preprocessed input

Until approximately late 2016, all existing work on EEG and deep learning was concerned with using neural networks as classifiers on features classically extracted from EEG signals.

• The authors of [START_REF] Mirowski | Comparing svm and convolutional networks for epileptic seizure prediction from intracranial eeg[END_REF] use bivariate features calculated on 5-second windows of EEG from patients prone to epilepsy, aggregate features from 1 to 5 minute

Automated interpretation of ICU EEG: envisioned solution

Question: How to build a method that combines the fine pattern characterization capabilities of ANNs on short patterns with the ability to analyse EEG content evolution over long sequences for leveraging continuous EEG ?

Now that we have briefly presented ANNs and most relevant works applying them on EEG, we describe the 'global' solution envisionned for adressing an ICU application.

On applications presented in [ADD CH], the machine learning task requires analysing local patterns and their variations over time -where 'local' represents the typical pattern duration (or basic unit of time), and 'variations' can span anything from a few units of time to several hours.

Such applications are challenging because inputs have very high dimensions and because the number of labels is small in comparison to 'standard' machine learning tasks. For example, a standard image classification problem addressed with neural networks can use 64 × 64 × 3 inputs, i.e. 12288 dimensions, and the models will be trained using at tens of thousands of labels. In our case, a day of 19-channel EEG resampled at 64 Hz represents more than 100 million scalar values -or 4 orders of magnitude higher than the afore-introduced image, and a typical middle-scale clinical study could provide in the order of one thousand labels. Additional labels on short patterns are not easily available. This imbalance hints to the fact that it will probably not be possible to address clinical applications with a unique feedforward model working on the full EEG sequence and trained in a fully supervised manner.

As introduced in 2.4.2, the authors of [START_REF] Michel | Deep learning for outcome prediction of postanoxic coma[END_REF] simply choose to abandon characterizing the temporal dynamics and simply train a classifier to predict the outcome from short windows chosen around a given time in the sequence. This already gives good results, but it is probably possible to go further and better exploit continuous EEG. Figure 2.16 provides a representation of a possible pipeline for predicting the outcome of post-anoxic coma from continuous EEG. We detail it below. Note that by using similar feature extractors but replacing the classifier by something else, other applications could be addressed. Each input signal is a multivariate time series X ∈ R nc×N . Classification happens in two substeps. In the first step, the EEG sequence is transformed in a time series of feature vectors X ∈ ∈R n f ×N , where feature extractors perform pattern characterization. Feature extractors can work on successive EEG epochs (windows) and perform the same operation for each epoch. In the second step, a classifier predicts the outcome from the series of feature vectors. Note that:

• Feature extractors can be fixed in advance (classical features) or learned. As exposed in 1.3.4, we choose to use learned feature detectors based on deep neural networks. The neural networks have shared weights, or in other words, the same network is applied to all epochs. However, for reasons detailed above it will probably not be possible to train this network from scratch using supervised learning on outcome labels only. This is why we propose to use unsupervised learning for pretraining. Chapter 4 presents our work on this topic.

• Which classifier to use to the subsequent applicative step is beyond the scope of this manuscript. Working on this step will necessitate adequate data and labels.

A simple subsampling RNN and softmax regression layer will probably do the job.

• A number of ways to train the full model with semi-supervised learning are possible:

⋆ learn the feature extractor in an unsupervised manner first, then learn the classifier using labels ⋆ learn the feature extractor in an unsupervised manner first, then learn the classifier using labels, while fine-tuning the feature extractor end-to-end at the same time ⋆ learn both at the same time using a multitask-learning scheme with a loss function combining a supervised and an unsupervised loss

• We introduced feature extraction using the notion of successive epochs. It is understood that the extraction can also be 'progressive' , using convolutions or recurrent steps together with subsamping steps.

For the following of the thesis we suppose that the end-problem will be addressed as exposed above, and focus on developing the required elements for such a solution.

Chapter 3 evaluates the possibility of using CNNs as feature extractors on raw EEG, and does so in a supervised manner. In chapter 4 some unsupervised techniques for unsupervised learning using ANNs are developed. Finally, in chapter 5 some architectures for multichannel analysis are devised.

Summary of the chapter:

• We introduced neural layers in various architectures and how to assemble them into multilayer systems (deep networks).

• We introduced basic cost functions, backpropagation and optimization methods for training the networks.

• We envisioned a solution for applying deep neural networks to continuous EEG tasks.

CHAPTER 3

SLEEP SCORING FROM EEG USING CONVOLUTIONAL NEURAL NETWORKS

Question: Can we prove on a simple supervised application that ANNs on raw EEG signals make sense for characterizing EEG patterns ? We stated above why we want to use ANNs for analysing EEG patterns. As briefly reviewed in chapter 2.4, at the time when we started working on deep neural networks for EEG and until quite recently, no work using ANNs on raw EEG had been published. Challenging the classical paradigm of analysing EEG from time-frequency representations was not completely obvious. Before diving into more complex analysis method involving multichannel and unsupervised methods, we deemed it necessary to first evaluate a classical deep learning pipeline on a simple supervised prediction task.

Sleep scoring, as a classic application of automated EEG analysis with multiple open datasets available, seemed a good task for doing so. We adapted a 1D-CNN for sleep stage prediction, providing in the meantime notions on which architectural parameters (kernel size, subsampling...) are adapted for EEG. The rest of this chapter is from the article A convolutional neural network for sleep stage scoring from raw single-channel EEG, accepted for publication in Biosignal Processing and Control.

Abstract

We present a novel method for automatic sleep scoring based on single-channel EEG. We introduce the use of a deep Convolutional Neural Network (CNN) on raw EEG samples for supervised learning of 5-class sleep stage prediction. The network has 14 layers, takes as input the 30-second epoch to be classified as well as two preceding epochs and one following epoch for temporal context, and requires no signal preprocessing or feature extraction phase. We train and evaluate our system using data from the Sleep Heart Health Study (SHHS), a large multi-center cohort study including expert-rated polysomnographic records. Performance metrics reach the state of the art, with accuracy of 0.87 and Cohen kappa of 0.81. The use of a large cohort with multiple expert raters guarantees good generalization. Finally, we present a method for visualizing class-wise patterns learned by the network.

Introduction

Sleep is an essential ingredient for good human health. A number of sleep disorders exist, among which insomnias, hypersomnias, sleep-related breathing disorders, circadian rhythm sleep-wake disorders, parasomnias, sleep movement disorders. Polysomnography (PSG) is the main tool for diagnosing, following, or ruling out sleep disorders. A polysomnogram is a collection of various signals useful for monitoring the sleep of an individual. It uses physiological signals (EEG, EMG) and environmental signals (microphone, accelerometer). Sleep staging consists of dividing a polysomnographic record into short successive epochs of 20 or 30 seconds, and classifying each of these epochs into one sleep stage amongst a number of candidate ones, according to standardized classification rules [START_REF] Kales Rechtschaffen | A Manual of Standardized Terminology Techniques and Scoring System for Sleep Stages of Human Subjects[END_REF][BBG + 12]. Sleep staging can be carried out either on a whole polysomnogram or on a subset of its channels, and either by a trained expert or by an algorithm. In some cases the expert can use an algorithm for pre-scoring. The successive representation of sleep stages over the night is called a hypnogram. It provides a simple representation of the sleep which is useful for suspecting or diagnosing sleep disorders. Sleep staging is a tedious task which requires considerable work by human experts. Also, the quality of the rating depends on the experience and fatigue of the rater and inter-rater agreement is often less than 90%[SLP + 13][WLKK15]. Hence the demand for automated sleep staging algorithms.

In this article, we consider single-channel EEG sleep staging. Whilst it constitutes a first step towards multichannel analysis systems, single-channel sleep staging is also interesting in itself because it allows light, wearable, and unobstrusive systems that can be deployed easily on mobile devices. The lightweight setup with only two or three electrodes and fewer wires also helps ensuring that sleep is not compromised by any incomfort. Most studies on single-channel EEG-based automatic sleep stage scoring adopt a two-step methodology. First, different features are extracted from the time waveforms. Second, a classifier is trained to predict sleep stages based on these extracted features. Most features belong to one of the following three categories [START_REF] Radha | Comparison of feature and classifier algorithms for online automatic sleep staging based on a single EEG signal[END_REF]: (a) Time-domain features, (b) Frequency-domain features, and (c) Non-linear features. For classification, the most common methods include decision trees and random forests[FLK + 12], support vector machines [START_REF] Koley | An ensemble system for automatic sleep stage classification using single channel EEG signal[END_REF], and neural networks [START_REF] Tsinalis | Automatic Sleep Stage Scoring Using Time-Frequency Analysis and Stacked Sparse Autoencoders[END_REF]. The autors of [LKH + 12] use multiscale entropy and autoregressive features along with linear discriminant analysis. The authors of [START_REF] Zhu | Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal[END_REF] use features from a difference visibility graph and classify using a support vector machine. In [FLK + 12], time-frequency features, Renyi's entropy features and a random forest classifier are used. The authors of [START_REF] Rashik | Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating[END_REF] obtain features from an Empirical Mode Decomposition and classify with bootstrap aggregating with decision trees. In [START_REF] Rashik | A decision support system for automatic sleep staging from EEG signals using tunable q-factor wavelet transform and spectral features[END_REF], spectral features from a tunable Q-factor wavelet transform and a random forest classifier are used. [START_REF] Sharma | Automatic sleep stages classification based on iterative filtering of electroencephalogram signals[END_REF] use iterative filtering, a discrete energy separation algorithm and various classifiers. Finally, the authors of [START_REF] Hsu | Automatic sleep stage recurrent neural classifier using energy features of EEG signals[END_REF] use a recurrent neural classifier on energy features.

Recently, some studies adopt the use of neural networks classifiers trained end-to-end and which serve both as feature extractors and classifiers. [START_REF] Tsinalis | Automatic Sleep Stage Scoring Using Time-Frequency Analysis and Stacked Sparse Autoencoders[END_REF] study the use of stacked sparse autoencoders and [START_REF] Tsinalis | Automatic sleep stage scoring with single-channel EEG using convolutional neural networks[END_REF] the use of convolutional neural networks. The authors of [START_REF] Supratak | Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel EEG[END_REF] use a convolutional neural network preprocessor complemented with a bi-directional long short-term memory network (LSTM). Literature results for some of these methods can be found in Table 3.4.

In this article, we introduce a method for single-channel EEG-based sleep staging using a deep supervised convolutional neural network(CNN) on raw signal samples. CNNs have been used in other domains on raw continuous signal with great results, starting with image recognition[LBBH98][KSH12], followed by many other domains such as natural language processing[CW08], recommender systems [START_REF] Van Den Oord | Deep content-based music recommendation[END_REF], and other supervised pattern recognition tasks. Since recently, CNNs have also been used on short EEG time series for various applications such as Brain Computer Interfaces [START_REF] Cecotti | Convolutional neural networks for p300 detection with application to brain-computer interfaces[END_REF][MG15a] including motor imagery [START_REF] Tang | Single-trial eeg classification of motor imagery using deep convolutional neural networks[END_REF] and Steady State Visually Evoked Potentials (SSVEP)[BTB + 14], as well as seizure detection[PSM16], driver's cognitive performance [START_REF] Hajinoroozi | Prediction of driver's drowsy and alert states from eeg signals with deep learning[END_REF], and eye tracking [START_REF] Drouin-Picaro | Using deep neural networks for natural saccade classification from electroencephalograms[END_REF]. Since recently, CNNs are also used for sleep scoring [START_REF] Tsinalis | Automatic sleep stage scoring with single-channel EEG using convolutional neural networks[END_REF][SDWG17]. The goal of our work is to show that CNNs are suitable and offer competitive sleep scoring performance on a large multi-center sleep scoring dataset. Such systems may then be applied in various conditions such as critically ill patients where continuous EEG recording after brain injury is showing a growing interest. The advantage of using an end-to-end approach is that no feature engineering phase is required. The network, described in section G.3, is trained to learn feature detectors that are suited to the classification task at hand and are likely to perform better than hand-engineered features. As discussed in sections 3.4 and 3.5, the method has state-of-the-art performance when applied on a large sleep scoring dataset.

Materials and Methods

Dataset

The

Preprocessing

In such polysomnographic records, for most subjects a long 'wake' period before the patient goes to sleep and another after he or she wakes up is observed. These wake periods are trimmed so that the number of pre-and-post-sleep wake epochs is not larger than the most represented other class.

CNN Classifier

Architecture A complete CNN is usually composed of a number of convolutional layers, followed by one or two fully-connected layers, and a softmax regression layer that Each layer l convolves the set X (l-1) of its input feature maps with a set of learnable kernels (also called filters) W (l) and adds biases b (l) . With n (l-1) the number of input feature maps and n (l) the number of output feature maps, and k (l) the width of the kernel, W (l) has shape (k (l) , n (l-1) , n (l)). Since inputs have one channel only, n (0) equals 1. Let x (l) j denote the j-th feature map in X (l) , and w

(l) ij
the slice of W (l) that applies from input feature map i to output feature map j. With such notation, we have:

x (l) j = σ • g p (l)   n (l-1) i=1 x (l-1) i * w (l) ij + b (l) j   (3.1)
where g represents a p (l) -strided subsampling operator, σ a non-linear activation function (applied element-wise), and * is the 1-D convolution operator. Now we describe the choice of our CNN architecture, shown on Figure 3.2. One 30second epoch at 125Hz has 3750 samples. The input to the CNN consists of the unprocessed EEG signal for the epoch to be classified, concatenated with signal for the two preceding and the following epoch. These preceding and following epochs were included in order to better model scoring rules, which occasionally refer to past and preceding epochs in cases when the current epoch leaves room for uncertainty. We refer to a group of four epochs as an example. We use all possible examples, there-fore examples overlap. No feature extraction is used. We use 12 convolutional layers followed by one fully connected layer of size 256 and one last fully connected layer of size 5 (number of classes) with softmax activations -also known as multinomial logistic regression. The activation function for all layers except the last one is a leaky rectified linear unit [START_REF] Xu | Empirical Evaluation of Rectified Activations in Convolutional Network[END_REF] with a negative slope of 0.1. A view of the architecture is given in Figure 3.2.

Upon using a CNN on a fixed-length time series, the size of the output of the convolutional part is directly linked to the input size, the number of convolutional layers and their strides. If the output of the last convolutional layer is too large, most weights will lie in the fully-connected layer. Here we experimented with 6 to 12 layers with strides 2 to 3. We also experimented with filter sizes 7, 5, and 3 and chose 7, although there was little difference in performance between 5 and 7. We tested various configurations of the numbers of features and kept 128 feature maps for the first six layers and 256 for the following six. Finally, we experimented with numbers of preceding epochs between 1 and 5 and found that 2 preceding epochs is a good compromise given our architecture.

Optimization Multiclass cross-entropy was used as a cost function, and mini-batch training for stochastic optimization of the weights and biases was carried out. Let w denote the set of all learnable parameters, m the minibatch size. Let also B = {x

(0) i , i ∈ 1, m } be a minibatch of training examples, {t i , i ∈ 1, b } the one-hot encoded target classes, and {y i , i ∈ 1, m } the network outputs associated to the x (0) i in B.
The expression of the mini-batch cost l is:

l(w, B) = - m i=1 t T i log y i (w) (3.2)
With the softmax activation function, minimizing cross-entropy corresponds to maximizing the log-likelihood of the model-predicted class being equal to the true class. Classically, gradients are derived using error backpropagation. For optimization, we use Adam [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF], a first-order gradient-based optimization algorithm that uses adaptive estimates of lower-order moments. We used the initialization-bias-corrected version of it, with parameters (lr = 3.10 -5 , β 1 = 0.9, β 2 = 0.999).

Finally, with a large dataset such as SHHS-1, the whole training data does not fit on the memory of a typical workstation and data must be streamed from disk during training (or inference). In order to guarantee the continuity of gradients, it is suitable to introduce randomness in the process of streaming training data. On the other hand, storing all training examples to different files in order to shuffle them is far too slow. We choose the intermediate approach of using 50 reading queues which feed data in random order from individual patients. A batching queue follows, further shuffles training examples and groups them into minibatches of size m=128.

Evaluation criteria

The dataset is split randomly between a training, a validation and a test set, with respective proportions (0.5, 0. Medical studies usually report sensitivity(recall) and specificity. Since in a multiclass setting specificity is not a very informative measure we also add precision. These metrics are reported per-class and total, the total being a prevalence-weighted macroaverage across classes.

Visualizations

We also consider the question of visualizing what our trained convolutional network has learned in the process of classifying sleep stages. There are several methods for imaging what a neural network learned [START_REF] Dumitru Erhan | Visualizing higher-layer features of a deep network[END_REF][ZKTF10]. Here we generate artificial inputs that maximize the output activation of each of the five output neurons, corresponding to the five sleep stages. For this, we initialize an input x with gaussian noise and perform standard gradient ascent on input samples to maximize the activation of the chosen neuron. Since gradient ascent will tend to keep growing signal amplitudes over optimisation steps, we also normalize the input at each step to zero mean and unit variance. Also, to make gradient ascent smoother, we normalize gradients at each step. Algorithm 2 describes this process. We used five hundred steps with step size 0.02. For gradient backpropagation the same method as in the optimization section is used, except that all network parameters are frozen and the input is variable. We note that the generated artificial signals include notable high frequency content. For better readability we filter it out using a Butterworth filter of order 6 between 1 and 30Hz. Note that the same method can also be applied to visualize intermediate filters, where the activation associated to a filter is defined as the mean value of its associated

Results

Performance results

The confusion matrix obtained on the test set is shown in overall kappa is 0.81. Stage N1 is most often confused with stage N2 (31%), Wake (19%), and REM (15%), and almost never with stage N3. Stage N2 is occasionally confused with stage N3 (4%) and rarely with other stages. Conversely, Stage N3 is most often confused with stage N2 (14%) and almost never with other stages. REM is most often confused with stage N2 (9%) and Wake (4%). Wake is occasionally confused with stage N2 (4%). For the purpose of illustration, an example test hypnogram is presented on Figure 3.3. Further analysis is presented in section 3.5.

Visualizations

In Figure 3.4, synthetic inputs that maximize the values of each of the five output neurons (before the softmax non linearity) are presented. Again, it should be emphasized that these generated signals are not meant to be visually similar to real EEG sequences but are only amplifications of which patterns the network considers for classifying a sleep stage. For a given sleep stage not all generated signals are alike. We tried to present representative ones, and code for generating more is available at http://github.com/drasros/sleep_staging_shhs. ization only, it is difficult to point out a single pattern that the algorithm considers most significant for discriminating stage N3. Finally, stage REM also contains a variety of patterns, although all of higher frequency than other sleep stages except Wake. In previous experiments on another dataset using the Fpz-Pz channel, REM visualizations contained clear patterns of eye movement, but with only C4-A1 eye activity does not appear to leak on EEG. We hypothesize that using two derivations would be useful here.

Discussion

Main findings

This study shows that it is possible to classify sleep stages using a single EEG channel and a convolutional neural network working on raw signal samples without any feature extraction phase and with performance on par with other state-of-the-art methods.

Training is done end-to-end, without requiring any expert knowledge for feature selection or any signal preprocessing. This is an advantage because the network can learn the features that are most suited to the classification task. Note that we tried to preprocess the signal using a band-pass FIR filter but it did not yield better performance as the convolutional layers are already able to learn necessary filters. Another advantage is that the method can easily be adapted either to another application or another modality. Training a large CNN is computionally intensive, however once the network is trained, inference is relatively cheap and can be carried out on a personal computer or a microcontroller on a portable device. Regarding the type of errors that the system makes, we note that they mostly correspond to stages that are contiguous in the sleep cycle. For example, N3 is most often confused with stage N2, almost never with N1. Similarly, stage N1, whilst known as the stage for which inter-human agreement is the lowest, can be misinterpreted as Wake, N2, or REM, which can all contain patterns similar to N1, but almost never with N3. Finally we also note that REM is more confused with N2 than Wake. A possible explanation is that a major similarity between REM and Wake is eye-movement, and very little eye-movement frontal activity leaks on the C4-A1 derivation.

Class imbalance

As any sleep scoring dataset, our dataset has a very imbalanced class distribution.

In order to account for this, we tried to use cost-sensitive learning or oversampling.

Even though N1 and N3 metrics were notably improved, global performance as per evaluated with the Cohen's kappa was not. Results presented afore use a standard cost and sampling. Further research is necessary to address class imbalance. Ensemble learning[D + 00] or CNN-specific methods[HLCLT16] may prove suitable.

Comparison to other methods

Table 3.4 shows some characteristics and performance metrics from recent studies on single-channel EEG sleep scoring. Studies from the sleep scoring litterature can be challenging to compare as they do not all use the same database, number of patients, scoring rules and they do not all balance classes the same way. For example, the Physionet Sleep-EDFx database[GAG + 00] has a much larger number of epochs for Wake than for any other sleep stage, because wake epochs from a number of a hours before and after the night are kept. Some studies rebalance the number of wake epochs, and some others [START_REF] Zhu | Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal[END_REF][FLK + 12][HB16a][SPU17] keep all of the wake epochs in their performance metrics, which strongly biases results favorably. In order to fairly compare the different studies, we start from published confusion matrices, and if wake is the most represented class we rebalance it to make it as large as the second biggest class as in our approach. Also, in one case [START_REF] Rashik | Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting[END_REF] where only the 6-class confusion matrix was available, we merge stages N3 and N4 into a single stage N3. Code used for establishing this comparison is available at http://github.com/drasros/sleep_staging_shhs.

We

Sleep scoring and manual annotation

More generally, performance of such a supervised sleep scoring algorithm is inherently limited by the quality of available annotations. Many raters were involved in scoring records from the SHHS dataset. It was shown that there is often already noticeable disagreement between human experts on epochs ratings (and variability on this measure). For example, Stepnowsky et al.[SLP + 13] found kappas of 0.46 to 0.89 between two human raters, and Wang et al. [START_REF] Wang | Evaluation of an automated single-channel sleep staging algorithm[END_REF] between 0.72 and 0.85 (0.82 to 0.85 between well-performing raters). Inter-human agreement is the lowest for Stage N1.

In the scoring center for the SHHS study, a technician was required to obtain 90% agreement with the Chief Polysomnologist in order to be certified. Whether this agreement remains valid over time was not studied. Even though these values represent good agreement, at 0.87 and cohen's kappa 0.81 our algorithm comes close to them and it is reasonable to assume that the quality of annotations can become a limiting factor for pushing performance further. The most obvious way to increase the quality of a classifier with imperfect ground truth is to gather annotations from multiple raters for each record and build the ground truth with a majority vote (and possibly soft labels or a measure for uncertainty). This was applied in other medical domains using CNN classifiers, for example for skin cancer classification[EKN + 17] and diabetic retinopathy detection[GPC + 16]. We believe that gathering a dataset with multiple raters is the next step for improving automatic sleep scoring algorithms. Finally, it should be noted that human experts usually do not score sleep using only one channel. For example at least three channels are recommended in AASM guidelines, and it is often non-EEG markers such as EOG, EMG or movement which help neurophysiologists discriminate stages N1 or REM. In our case, whilst using a single channel is interesting for light portable devices, it certainly also restrains performance[CGA + 17].

Using multiple channels is an interesting direction for future work.

Conclusion of the paper

In this article we introduced the use of Convolutional Neural Networks for singlechannel EEG sleep scoring using raw signal samples. No domain-specific feature extraction step is required and the network is learned end-to-end. We showed that the method is competitive in terms of performance and we also demonstrated that the network learned sensible pattern detection that can be visualized. A single-channel sleep scoring method is interesting because it allows light, wearable and unobstrusive systems. In the meantime, developing multichannel CNN systems which operate on a low but higher than one number of channels offers interesting perspectives. Other directions for future work include on the one side further refinement of convolutional architectures such as with the use of residual connections [START_REF] He | Deep residual learning for image recognition[END_REF] or depthwise separable convolutions [START_REF] Chollet | Xception: Deep learning with depthwise separable convolutions[END_REF], and on the other side development of multi-rater datasets to increase ground-truth quality.

Conclusion of the chapter

The aim of this work on sleep scoring was to make sure that deep learning, in particular (to start with) in the form of CNNs, makes sense and offers competitive performance for pattern analysis on raw EEG. The achieved performance validates this hypothesis, and we can carry-on with the development of more EEG-specific methods.

Summary of the chapter:

• We proved that CNNs are competitive for EEG pattern characterization (here on single-channel EEG). This paved the way for more EEG-specific deep learning developments such as multichannel systems.

• type 1. methods are good candidates for unsupervised learning of EEG representations. Along with some other ideas we study them further in this chapter.

Note:

The work presented in this chapter has been very exploratory. Unsupervised representation learning methods using deep learning are still not ready at all even on classical image tasks where good datasets exist. The 'right way' of learning unsupervised representations is an open (and difficult) research question, and also most significant work on the subject dates back to less than two years. For example until April 2017 no reliable method existed for training generative adversarial networks on non-standard architectures. Much of our work consisted in trying out methods and evaluating how to adapt them to EEG. The absence of suitably labeled EEG data prevents us from numerically comparing methods on EEG tasks. The reader is advised to consider this chapter as an exploration of unsupervised learning methods that can extend to EEG.

Overview of methods

Unsupervised methods of type 1 (and usable on EEG sequences) exist in several flavors. Figure 4.1 provides an overview of the main classes of methods:

• In Generative models, representation learning is addressed through the associated problem of learning to generate data that is similar to training data. In an autoencoders, an encoding network is used to compress input data into a smaller representation. From this representation, a generative (or 'decoder' network is used to recreate a sample in input space. Several variations exist including Sparse Autoencoders, and Variational Autoencoders [START_REF] Diederik | Auto-encoding variational bayes[END_REF] where a probabilistic framework for inference is used. In all of these variants a cost in data space is used for training, for example a Mean Square Error of Euclidean distances between pixel values of images, or sample values of EEG. However, this direct cost in data space has problems with real data. For example, it will estimate a high distance between an EEG sequence and the same slightly offset sequence. In other-words, autoencoder representations are not shift-invariant. This leads to blurry signals.

Training AEs on raw EEG data did indeed not lead to interesting results for us.

A second type of generative model is generative adversarial networks(GANs). We describe them further in 4.3.

• It can be superfluous to learn generative models if we are only interested in the unsupervised representations. We will see that it is possible to learn representative models directly by using a cost in representation space.

Unsupervised learning through distribution matching

This second idea is the one that we worked on first. The idea is to learn the representation network through contraints in representation space. A representative ANN performs a mapping from a high-dimensional space (input space) to a low-dimensional space (representation space). If all weights of the network are random (as before training) the distribution of the output will be spread on representation space. A (not completely obvious) idea is that forcing representations to be located on a restriction of the output space can be a way to drive the learning of useful representations.

Pairwise interaction costs

We want to match the output distribution of a representative network to a target representation which lives on a restriction of the output space. Matching distributions is a very difficult problem and the topic of a whole field of research called optimal transport [START_REF] Peyré | Computational Optimal Transport[END_REF]. Before we knew about this ongoing research we started from this simple idea: rather than explicitely matching distributions, another possiblity is to consider the set of output representations as a set of points in space and use interactions on and between these points such that the equilibrium of the associated n-body problem is the desired target distribution.

Expression of forces and cost functions. For devising interactions, we propose to use two types of forces:

• individual forces acting on each point separately

• pairwise forces acting between each pair of points

• What is the best choice of distance for an n-dimensional output space ?

• What is an adequate choice for output space dimensionality d? For example for d = 8 the space contains 2 8 = 256 'hypercorners'. For d = 32 the space contains more than 4 trillion 'hypercorners' which is far more than the number of example of even big datasets. In high dimension the notion of distribution matching loses some sense -and becomes computationally more difficult.

• Settings of force parameters that lead to a stable equilibrium depend on batch size. How to adapt these settings to make sure the equilibrium is generically stable ?

• What is the bias and variance of stochastic optimization on mini-batches for such problems ?

Other possible approaches

After this initial work we became aware of similar approaches for matching distributions. As a transition to the following part on generative modeling and for context we briefly cover them below.

Matching distributions via the assignment problem. Shortly after we worked on the problem a paper aiming at exactly the same thing was published [START_REF] Bojanowski | Unsupervised learning by predicting noise[END_REF]. They also match output representations of a CNN to a hyperphere. The matching method, however, is different. Targets points are drawn randomly on the hypersphere. The Hungarian algorithm [START_REF] Harold W Kuhn | The hungarian method for the assignment problem[END_REF] is used for assigning each example to a target, such that the total distance between example representations and targets is minimal. A few steps of minibatch optimization on network parameters is run to bring representation closer to targets. Then assignment and optimization are repeated. State of the art resuts are obtained for similarity search. Figure 4.5 shows a few examples. The method is very interesting but its main drawback is that the resolution of the assignment problem with Hungarian algorithm is very costly.

Other Optimal Transport techniques. Optimal transport (OT) is a mathematical field concerned with methods for estimating the distance between two probability distributions. It is fair to say that until recently the interaction between machine learning and optimal transport was mostly limited to domain adaptation and transfer learning.

In the last year, a number of method based on OT have been proposed for unsupervised learning. The optimal transport problem of estimating the (Wasserstein) distance between distributions A and B can be solved either in the dual space (space of functions from distribution space to R) -as done in Wasserstein GANs (see next section) where said functions happen to take the form of a neural network -or in the primal spacei.e. in this case we look for direct solutions to the Wassertein-Monge problem. Digging deeper into the details goes far beyond the purpose of this short subsection but nevertheless we want to mention that under a (relatively weak) hypothesis of entropic regularization of the Wasserstein search space (space of couplings between the A and B), a simple iterative algorithm exists for solving for the distance between A and B in • a generator network G which generates a synthetic signal x g from a random seed z

• a discriminator network D which takes as input either an example x from the training set or a generated signal x g and tries to classify whether its input is 'real' or 'generated'.

The GAN designates the ensemble of both network trained in an adversarial process: the discriminator is trained to classify correctly while simultaneously the generator is trained to fool the discriminator. By learning to generate samples that the discriminator cannot easily classify, the generator learns to generate better samples.

Seed distribution. The seed can be drawn from a normal distribution or from a uniform distribution over a hypercube or a hypersphere. In connection with 4.2 we think that it would be interesting to try spherical distributions or sparse distributions especially when representations are to be used for inference.

Adversarial loss. The discriminator is a classifier. Therefore a natural choice for loss is simply the binary cross entropy. In other words, using the value function V (D, G) such that:

V (D, G) = E x∼p data (x) [log D(x)] + E z∼pz(z) [log(1 -D(G(z)))] (4.2) D is trained to maximize V (D, G) and G is trained to minimize V (D, G) (which is equal to E z∼pz(z) [log(1 -D(G(z)
) because the first term does not depend on G). Training steps on G and D are done alternatively. Note that a number of other loss expressions are possible. For example:

• In the original article it was found that the term E z∼pz(z) [log(1 -D(G(z))] can have the problem that early in learning when G is not yet able to generate good samples, it is easy for D to reach high classification performance, and therefore the term log(1 -D(G(z)) saturates and provides unreliable gradients. An alternative strategy is to replace this term bylog(D(G(z)) (for G only). The resulting loss has the same fixed points but stronger gradients when the discriminator's output is saturated.

• A square error also works and provides good results such as in LSGANs[MLX + 16].

• Other options based on Wasserstein distance approximation are presented in the next subsection.

GANs for inference and unsupervised/semi-supervised learning. In their original formulation GANs are only generative models and they are not thought for inference or unsupervised learning. However, a generative model is a mapping from a low-dimensional space to data space, and the idea of establishing a reverse mapping from data space to a smaller representation (and using the resulting features) space comes naturally. Different approaches are possible for doing so:

• Use features from the discriminator. The first step in doing so was the DCGANs paper [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF]. In this paper the authors do not even learn a reverse mapping but simply use the deeper discriminator features. The DCGAN is learned on ImageNet and the performance of the learned features is evaluated on CIFAR-10 by retraining an L2-SVM with 400 examples per class on top. They obtain 82.8% accuracy using all labels for training the SVM, or 73.8% using 4000 labels.

• Post-hoc inference. The fact of simply using discriminator features as generic features for a subsequent task can be criticised. Indeed, by definition discriminator features are learned to discriminate between real and generated examples, not to be generically useful. If the GAN is to be used expressedly for unsupervised learning, it is useful to add a third network -the encoder network which is trained to retrieve feature representations in z-space from inputs. As we started working with GANs we initially did this after training -in other words we trained the encoder to retrieve the seeds from synthetic examples. Now some papers call this method post-hoc inference.

• Adversarially learned inference. In post-hoc inference, couples (z, G,E) and E and G are trained (simultaneously, i.e. they share a same loss) to minimize V (D, G, E). Training steps on D and G/E are alternated. As in a standard GAN, a 'reverse' loss for more stable early dynamics can be used. ALI obtains 82.0% accuracy on CIFAR using 4000 labels (also using an L2-SVM for classification from extracted features).

V (D, G, E) = E x∼p data (x) [log D(x, E(x))] + E z∼pz(z) [log(1 -D(G(z), z))] (4.3) D is trained to maximize V (D,
Practical challenges: monitoring and evaluation. In practice, GANs are not easy train. One major challenge with them is the inexistence of a single reliable metric for evaluating the progress in learning. In supervised learning for example, the test loss, accuracy or multiclass cohen's kappa can be monitored for evaluating progress. With GANs (in their standard formulation) the loss has no such meaning. Initial papers on GAN research relied on visual criteria to evaluate methodological advances. Early models were sufficently bad for this to make sense but visual evaluation quickly became misleading and unreliable [START_REF] Holly E Gerhard | How sensitive is the human visual system to the local statistics of natural images[END_REF]

Training stabilization methods

Another main challenge is the stability of training. Successfully training a GAN requires the use of a number of 'tricks' including normalization (of input and layers), the modified loss function, adequate choice of seed-space distribution, an other tricks. On top of this, a large number of papers introduce modified loss functions and variations on the standard GANs to improve stability of training or quality/diversity of samples. Most of these methods were published during the year 2017. In the next subsection we present three of them -the ones that were useful to our work. It should be noted that it is very hard to objectively compare the different papers without re-running a very large number of experiments. To what extent are improved results due only to finer hyperparameter tuning ? Some recent works state that most methods are equivalent[LKM + 17]. The state of research today does not allow a definite answer. For our application of generating ICU EEG (using convolutional architectures that were reasonable even though probably not perfectly tuned), we were not able to stabilize GANs in their standard formulation (normal or reversed cost). Wasserstein GANs (in their improved version) proved experimentally more robust to hyperparameter choice and more stable in their training. Below we briefly present the methods we tried for getting there.

Unrolled GANs. In unrolled GANs [START_REF] Metz | Unrolled generative adversarial networks[END_REF], the generator's objective function is defined not on fooling the current discriminator, but an unrolled version of the discriminator, which corresponds to 'how the discriminator would be after a number of optimization steps on its parameters'. The loss for G becomes V (D K , G) where D K is the discriminator after K updates. Therefore, optimizing for G parameters requires backpropagating through the update rule for D. For a moment we note V K the value function that uses the unrolled discriminator and also denote explicitely the dependence in D and G parameters. Under such notation,

V K (θ D , θ G) = V (θ K D (θ D , θ G), θ G)
, where θ K D is the unrolled expression of D parameters (here noted with standard steepest gradient descent, but in implementations the Adam update rule is used):

θ 0 D = θ D θ k+1 D = θ k D + η dV (θ k D , θ G) dθ k D (4.4)
Gradients with respect to generator parameters can be decomposed as follows:

dV K (θ D , θ G) dθ G = ∂V (θ K D (θ D , θ G), θ G) ∂θ K D (θ D , θ G) dθ K D (θ D , θ G) dθ G + ∂V (θ K D (θ D , θ G), θ G) ∂θ G (4.5)
A standard GAN update on the future version of D corresponds to the second term of this equation. The second term captures to how the (unrolled) discriminator would react to a change in the generator. It helps the generator to not only 'escape the current discriminator' but beyond this, learn to cover modes and avoid collapse. Figure 4.9 shows the reproduction of an experiment where the task is to model a toy 2D mixture of Gaussians.

Note that in unrolled GANs the unroll is performed on D and not on G. This is because when training a GAN it is experimentally more common for the discriminator to overpower the generator than the opposite. Also, note that implementing unrolled GANs in a classic framework such as Tensorflow requires the symbolic expressions of updates. Built-in optimizers to not natively allow this. As a result, it is required to

Target

Step 0

Step 5000

Step 15000

Step 50000 create all optimization variables manually and code symbolic expression of updates.

An example how to do this is provided at https://github.com/drasros/unrolled_ gan_demo. The downside of this it that precompiled cuda kernels for optimization are not used which makes the process slower.

In our experiments unrolled GANs provided a stability advantage on image and using standard architectures but the method remained too hyperparameter-sensitive to allow stable training on EEG generation.

Added noise. From a theoretical point of view the problems of instability and saturation when training GANs were poorly understood until a paper by Arjowsky and Bottou came out [START_REF] Arjovsky | Towards principled methods for training generative adversarial networks[END_REF]. In this work it is demonstrated that given a fixed generator distribution and a training distribution, if both distributions have disjoint support (which in practice is almost certainly true) there exists a perfect discriminator that provide zero gradients to the generator. Once gradient descent finds such a perfect discriminator, training fails. One proposed solution (also proposed independently by [SCT + 16] under the name of instance noise) to ensure that training and generated distributions always overlap is to add noise to both distributions. For example, gaussian noise on each of the EEG samples or image pixels. As shown on on Figure 4.10, in our experience this technique helps early in the training starting with gaussian noise of high variance, however after the generator has improved noise would need to be structured to distribution shape in order to reduce its variance. This we do not know how to achieve. In summary we were not able to achieve satisfactory results using instance noise.

Wasserstein GANs. Wasserstein GANs[ACB17] (WGANs) take another route in addressing the instability problem in GANs. The idea is to replace the discriminator -which tries to classify 'real' vs 'generated' examples by an estimator network called the critic that directly estimates the distance between the data distribution P r = p data and the distribution of generated samples P g . For this, a good choice of distance is the Wassertein distance (or Earth mover's distance), because it does not have the same fail- Results. Using this method we are able to generate EEG samples. GP-WGANs proved stable and robust to hyperparameter choice. Figure 4.14 shows some of these samples. A brief check with neurophysiologist Laurent Vercueil on a small number of samples showed that he was not able to tell apart real samples from generated samples (or at least, not easily). However, we did not evaluate in greater depth the quality of generated samples. Doing this will require either a larger study involving several neurologists rating a larger number of samples, or an objective evaluation metric (for example, if annotations are available, a distance analogous to the inception distance or Fréchet inception distance can be used). This second possibility would be preferable because the metric can also be used for model optimization and hyperparameter selection. Organizing larger-scale human evaluation before architectural hyperparameters are fine-tuned is probably a waste of time. Testing these generative models in a semisupervised setting on sleep EEG data can however be an interesting way to objectively evaluate them, bearing in mind that sleep annotations are far from perfect and that might hamper proper conclusions.

Discussion. Using a GP-WGAN we were able to successfully train a generative network on EEG sequences. Other methods presented afore were found to not be stable enough. To our knowledge this is the first study showing a successful generative model of EEG using deep learning. Because generative modeling works, ALI will -with high probability -be functional too. This opens the door to EEG applications where not many labels are available.

Conclusion and way forward

Generative models on EEG. In the previous section we showed that it is possible to train generative EEG models just as is done on images. Such generative models can be augmented with an inference part using methods such as ALI. Together, this 1. 20.

16.

15.

14.

13.

12.

11.

10. 9.

8.

7.

6.

5.

4.

3.

2.

19. 17.

26.

25.

24.

23.

22.

21.

18. Each segment either comes from real data recorded at CHU Grenoble (and plotted to mean 0 and variance 1) or is generated by our adversarially trained system. Amplitudes are normalized. Segments are selected randomly (not cherry-picked).

Can you guess whether each segment is 'real' or 'generated' ? provides a method for unsupervised learning of EEG representations. We believe that such an assembly, used either as a first unsupervised feature extraction step before a classifier or directly in a semi-supervised setting using a multitask cost function, is a suitable answer to the the lack of a high number annotations when applying deep learning to EEG.

A unified presentation of unsupervised representation learning methods. In the unsupervised methods presented above we presented generative and representative methods for unsupervised learning of EEG representations. A number of parallels exist between these methods. Figure 4.15 provide a final overview of the presented methods -as well as the (non-detailed) method of Adversarial Generator-Encoder networks[UVL17] as a complement for drawing the parallels.

Amongs generative methods, method a) is the founding method, i.e generative adversarial networks. It let to all the advances that we know but its KL/JS divergence formulation has convergence problems. Method b) is the Wasserstein formulation of GANs, it has better theoretical guarantees on stability of training and is experimentally also more robust.

Amongst representative methods, method c) is our initial 'experimental' proof-ofconcept formulation. d) is another proof-of-concept formulation which strongly demonstrates the interest of learning representations through latent-space-only divergences; it has interesting experimental results but the numerical implementation of the assignment algorithm is very costly and impractical. d) is a novel idea: a neural network approximator (critic) could be used directly in latent space (as is done in Wasserstein GANs in data space) to estimate the divergence between true and target distributions. This has never been published. We tried this approach on a simple semi-supervised MNIST classification (3-layer CNN for feature extraction trained in an unsupervised fashion on MNIST-train with 'sparse distributed' target distribution, linear classifier trained and evaluated on subsets of MNIST-test) and obtained 96% accuracy, which proves the concept. e) is also a new -untried -idea, and consists of re-using the Sinkhorn-autodiff idea from [START_REF] Genevay | Sinkhorn-autodiff: Tractable wasserstein learning of generative models[END_REF] directly in latent space, we think that these approaches are promising.

Method g) is adversarially learned inference, here presented with the standard GAN loss, but it could also be envisioned with a Wasserstein loss. Through ALI we draw the connection between generative and representative models. When actually implementing D, one builds it in two parts: one that applies on the x part of the input and one that applies on the z part of it. Then the 'tail' of D is a common part that does the joint modeling. We note that the x-modeling part of ALI (matching distributions in the latent space) is exactly what representative models do. Finally (and similarly), method h) consists of Adversarial Generator-Encoder networks(AGE). We did not introduce this method before (and will not), suffice it to say that AGE exist in two versions (with and without an autoencoding loss). In their version without autoencoding loss, they perform the same thing as representative-only networks. In the cost function, Y is a target distribution. Notably, the authors show that it is sufficient to estimate the Kullback-leibler divergence terms parametrically if Y has a simple form. Are generative models necessary ? As a conclusion, a good part of the work presented above involves generative model for unsupervised representation learning. GANs are a good starting point for such a task because they are very ubiquitous in deep learning research and have been proven on semi-supervised learning on images. Also, generation obviously allmows visualization and this is helpful. However, it can seem unnecessary of even superfluous to learn a generative model in a case when we are not interested in generation. The extent to which generative models help for representation learning is not closed today -and first answers to it remain too empirical. Some authors[DYY + 17] argue that good semi-supervised learning requires a bad GAN. In sections above we have shown that solutions other than generative models are possible for unsupervised learning, for example costs involving divergences in latent space. This under-explored way of training unsupervised/semi-supervised models is in our opinion very promising.

Summary of the chapter:

• Unsupervised (or semi-supervised) learning is very new in deep learning (even on images) and methods are only starting to mature.

• Unsupervised learning of EEG representations can be carried out through generative models (GANs possibly complemented with a representative part such as in ALI) or straight through representative models.

• We worked on GAN models and applied them to EEG generation.

• For representative models, we introduced an original method based on matching output space representations to a target distribution. We draw the connections to the latest similar research and suggest follow-up work.

CHAPTER 5

NEURAL ARCHITECTURES FOR MULTICHANNEL EEG ANALYSIS

Question: How can neural network architectures be adapted to the specificities of EEG for multichannel analysis ?

Context

In chapter 3 we showed that neural networks made of convolutional architectures are adapted for analysing temporal patterns in one EEG channel. Architectures similar to what is used for image analysis were used, except that 2D convolutions were replaced by 1D convolutions. When transfering to multichannel EEG however, it is not obvious which architecture to use to deal with the multiple channels. An EEG record is the result of the mixing of many cortical sources measured on n c electrodes -Appendix B introduces how a source of given position and direction and modeled as a current dipole projects on an electrode of given position. This is unlike (for example) a color image, where the different input channels (R, G, B) are different optical channels of a same object -in other words, an image has just one source.

Multichannel analysis methods

A number of different architectural choices are possible (for each layer) for using CNNs on multichannel EEG:

• Feed EEG to a standard convolutional layer such that EEG channels corresponds to convolutional channels. We are not aware of studies using this choice. Such a model results in spatio-temporal filters being learned all together -as opposed to spatial filters followed by temporal filters. It may not be the most efficient use of parameters.

• Consider a multichannel EEG segment as the pixels of a black and white image (EEG channels along height) and learn a standard CNN layer. If filter height equals the number of channels, and the type of convolution is 'valid' or 'same', such a layer also performs spatio-temporal filtering. The general case where filter height is smaller than the number of channels is also possible but does not make much sense: the result of the analysis depends on the chosen order of channels.

• Apply (learned) spatial filters to recombine channels and then apply (learned) temporal filters for analysis. This approach is the most common choice. Using learned spatial filters as a first step in the pipeline is classical in EEG analysis.

See for example methods using Common Spatial Pattern [START_REF] Ramoser | Optimal spatial filtering of single trial eeg during imagined hand movement[END_REF]. In the case of neural networks the spatial filtering is learned by backpropagation through the rest of the architecture.

• Recompose EEG channels into new channels (using another method than learned spatial filters) and use independent (replicated) temporal analysis on these channels.

The possibility of using learned spatial filters is already established and used in deep neural networks for EEG analysis. In this chapter we focus on developing the last mentionned method -i.e. adaptive recomposition of channels. Figure 5.2: The envisioned system for spatio-temporal analysis involves first a recomposition network that combines channels and then temporal analysis using CNNs (with shared weights) applied independently on each channel.

Why recomposing channels ? Adaptive channel recomposition can be seen as the next logical development after learned spatial filters. 'Conventional' spatial filters -as used in [CGA + 17] -output spatially filtered channels on which separate (replicated) temporal filters (in the form of CNNs) are usually applied. Intuitively, because the analysis of temporal content of each spatially filtered channel is performed independently, any remaining co-statistics between the channels will be missed. To avoid this, a possibility is to ensure that input channels to the replicated CNNs are maximally independent -in other words, that sources are maximally separated. Starting from the ideas of Independent Component Analysis(ICA) we develop variants which can be integrated in a neural network pipeline. The next step to this work on channel recomposition would be joint spatio-temporal recombination/analysis, i.e. methods where recombination depends not only on spatial statistics but rather on spatio-temporal statistics.

A starting point: ICA

A very classic way to decompose EEG channels and extract the main components of an EEG signal is Independent Component Analysis[HO00] (ICA). ICA consists in looking for the most independent output channels -where output channels are linear or non-linear mixings of input channels. In EEG processing ICA is classic for filtering out artefactual components such as blinks, eye movements and environmental contamination. For example, by decomposing EEG channels into independent components and setting to zero the component that has spatial location near the eyes, one can diminish or suppress from the overall activity the electric (muscular) activity associated to eye blinks.

Independance and non-gaussianity. We consider n components that are statistically independent and each have non-gaussian (unknown) distribution. Statistical independence of two random variables y 1 and y 2 means that their joint probability density function p(y 1 , y 2) can be factorized: p(y 1 , y 2) = p 1 (y 1)p 2 (y 2) where p 1 , p 2 are the marginals. Any mixing of these components has a distribution that is more gaussian than any of the individual components (central limit theorem). Therefore, a good way of undoing the mixture (i.e. extracting the original independant components) is to look for maximally non-gaussian output channels.

uses a fixed-point iteration scheme). Note that ICA in its standard version can retrieve as many sources as measurement channels, and also note that in any case it is to possible retrieve neither variances nor order of the sources.

ICA and neural nets

ICA integration

ICA is not easy to integrate as a first step to a neural net. An ICA decomposition using Infomax typically requires 10 to 100 steps. Performing standard ICA on each example before feeding it to the neural net is not doable in practice (too slow). In this work we aim at integrating ICA (or other decomposition) into a deep neural network. One solution would be to explicitly code some (possibly variable) number of FastICA steps (for example) into the computational graph. Another, which we present below, is to do the decomposition via a small number of adaptive layer learned end to end. We describe this second solution below.

Ideas from time-constrastive learning

The feature extraction part of the method draws inspiration from a paper from Hyvärinen at NIPS2016 [START_REF] Hyvarinen | Unsupervised feature extraction by timecontrastive learning and nonlinear ica[END_REF]. We briefly present it here to understand the rationale behind our method. In Time-constrastive learning (TCL), the non-stationarity of a multivariate signal is used as a means of learning feature extractors. A sequence is cut into short segments on which the signal is considered stationary. Each segment has a numerical label. A multilayer perceptron takes as input one time sample from the sequence and predicts the label of the segment it belongs to. Because the signal is stationary on the segment, it means that (by definition) it has a stable probability distribution. The MLP is supposed to learn to separate the probability density functions of the different segments. In practice the paper shows that these ideas effecticely work.

It it not very surprising that the MLP is able to learn feature vectors from data points. However the authors additionally show that such features vectors include all information for fully unmixing the non-linear mixture, i.e. to perform non-linear ICA. This gives the idea of complementing the feature extraction part with an unmixing part that uses MLP features adaptively to perform the decomposition. This is what we do in the next section.

Idea, implementation and results

The adaptive spatial layer

The adaptive spatial layer draws on the idea presented in the previous section. It takes as input a segment of multichannel data, and is composed of two parts, detailed on Figure 5.5: -First, a fully connected neural layer is applied to each multivariate sample of the segment. Note that the same neural layer is applied to all input samples. In practice, rather than a fully connected operation on a resized batch, it is practical to implement this as a convolution with a kernel of size 1, where EEG channels are placed on convolution channel dimension. Transformed channels are taken as features, and summarized on time axis using first and second order moments (mean and variance). The resulting µ, σ are global features on the multivariate input segment. Here we call them spatial features, because EEG channels correspond to space.

-Then, a fully-connected layer calculates from these features from µ and σ the recomposition weights W ′ and b ′ that will be used for unmixing.

• The second part (rose operator on the figure) applies the unmixing, using weights W ′ and b ′ calculated in the first part. Recomposition weights are applied on input channels of the layer to obtain output channels of the layer. Similarly to the feature extraction layer, a convolution layer with 1×1 kernel can be used. Also note that in practice, the architecture of the adaptive spatial layer implies that each example in a batch is transformed with different weights. Neural network implementation frameworks do not natively allow this. The best trick we found for implementing the recombination part of the adaptive spatial layer is to 'hack' a depthwise convolution layer (in its most general Tensorflow API). Code for reproducing this can be found at https://github.com/drasros/neuralICA.

Note the following technical detail: rather than outputing the W ′ to be used by the recomposition layer, the fully-connected layer outputs W such that W ′ = W + I.

Learning the difference to identity rather than the whole recomposition matrix is the same trick as in residual networks, and offers the same benefits of the network being less sensitive to depth and offering better gradient flow (see ResNet paper [START_REF] He | Deep residual learning for image recognition[END_REF] for more details). This is done only for W, not for b. The main characteristic of an adaptive spatial layer is its size (the number of output units of its feature extraction part). Regarding its number of output channels (width of W ′), in the following experiments we use as many output as input channels. For training, a cost function should be used on the recomposed channel, such as a measure of non-gaussianity. Then the weights are trained by backpropagation.

Multilayer adaptive spatial filter

One adaptive spatial layer on its own is probably not sufficient to perform -all in one step -independent component decomposition of input channels. Adaptive spatial layers are made to be stacked on after the other, resulting in an adaptive network which we call the multilayer adaptive spatial filter and train by backpropagation. With W ′ 0 , W ′ 1 , ..., W ′ n-1 the unmixing filters performed by each adaptive spatial layer and f the unmixing nonlinearity, the total network made of stacked layers performs the equivalent unmixing W ′ eq on input signal X:

W ′ eq = f (W ′ n-1 f (W ′ n f (. . . f (W ′ 0 X)))) (5.5)
(biases omitted here for clarity). Again, we emphasize that weights W ′ i are not learned but depend on X. If we want the network to perform ICA we can use a non-gaussianity cost on the output, as explained before. However, if spatial recombination is followed by temporal analysis layers it is also possible to just train the spatial layers end-to-end through the following layers and the end cost (such as a classification cost). In this latter case, the multilayer adaptive spatial filter will learn to recompose channels in the way that is the best for the subsequent temporal analysis. Figure 5.5 shows a spatial recombination network. The different layers can be thought of as optimization steps of an algorithm searching for a decomposition according to some criteria defined on the output.

Note that a nonlinearity can be used or not after each recomposition step in each sublayer. In the following experiments we only study linear recombination but are positive that nonlinear recomposition is possible too. Also note that while in the architecture presented above the same unmixing weights are applied to all samples of the input segment, it would also be possible to unmix segments in a way that unmixing weights vary (smoothly) with time. A line of approach for doing this is to use (possibly dilated) convolutions with kernels larger than one, and remove moment calculation and replace it by some local smoothing kernel. This remains to be explored.

Proof of concept on ICA

Before using our system on EEG we wanted to validate it on a very simple decomposition task. We propose to start from two simple waveforms, mix them in random proportions (one different mixing matrix for each example) and train a multilayer adaptive spatial network to retrieve the sources from any mixed example. This would prove that our architecture is able to perform ICA.

We chose an ICA task with two sources. One component is a sawtooth wave, the other is a sine wave. Both are centered and have unit variance. Periods are different. In this experiment they are fixed to respectively 20 and 16 samples. The length of each component is 512 samples. The resulting source matrix is S ∈ R 2×512 . Phases are drawn uniformly in [0, 2π]. Mixing matrices M ∈ R 2×2 are sampled using coefficients drawn in [-1., -0.1] ∪ [0.1, 1.]. The 0.1 threshold is there to make sure that both components are present in mixed channels. Similarly, we also make sure that at least an angle of π/8 is present between the vectors of M (otherwise we are in the regime where the two mixed channels are almost the same and ICA will not succeed). The mixing is linear, so that the mixture X verifies X = MS. Finally, channels of the mixture (lines of X) are normalized individually (contrary to normal ICA where whitening is performed).

We found this to be sufficient. Figure ?? shows an example of mixed signals.

Network and training. We use 8 adaptive spatial layers performing linear decomposition. The feature extraction part of each layer has size 8 only. We also experimented with larger (32) but 8 hidden units prove sufficient. We denote X the output of the network. The loss l to be minimized is minus the measure of non-gaussianity introduced in 5.1.2 (summed for the two channels). We also add a second term for promoting assymetry by penalizing the norm of off-diagonal terms of the covariance matrix of the output. In the absence of this second term, optimization usually results in two identical output channels.

Possible extensions. This experiment could be extended to variable periods, and to mixtures of more than two channels. Also, non-linear unmixing could be explored. It would probably work best with a smooth non-linearity after each unmixing step.

Conclusion of the proof of concept. In our case this proof of concept constitutes satisfactory evidence that the model is able to decompose sources. The steps performed by adaptive layers can be viewed as equivalent to the steps of the optimization process in an ICA algorithm. The difference is that in our case the layers must be learned, because the feature extraction part of each adaptive spatial layer needs to be adapted to the distribution of the input signals. To what extend the feature extractors could be generic is a ongoing question. The key to our method is the use of adaptive weights -making possible the fact that a different decomposition is applied to each example in the batch. To our knowledge, this work is the first proof that the process of performing adaptive decomposition such as ICA can be learned by a deep neural network.

Application on EEG decomposition

After demonstrating the architecture on simple ICA, the next step was to evaluate it on EEG signals. For a reminder, as shown on Figure 5.8 the goal is to use the spatial recomposition sub-network as a first step before temporal analysis with CNNs. Before doing this we deemed it necessary to evaluate the spatial recombination part alone first.

For this, we propose to use a classification task. Classes should be distinguishable based solely on their spatial characteristics. This work is unfortunately unfinished but we present the beginning of it below.

Data. We started by searching for an EEG dataset that has labels and where each class has particular spatial characteristics. Unfortunately we could not set hand on such a dataset. The best datasets we could find were BCI datasets, in particular motor imagery tasks. In motor imagery, the different classes (for example, imagining to move the hand vs imaging to move the foot) have different spatial signatures because actions associated to different limbs originate from different places in the motor cortex (this is why BCI method often use spatial filtering as a first step). However, the amount of data on such BCI datasets does not really justify the use of deep learning methods. Also, each BCI dataset has only a limited number of classes in it, generally two to four, and therefore for such a task learned spatial filters are sufficient and there is no need for the system to use adaptive decomposition. In ICU EEG on the contrary, an epileptiform pattern for instance can have several different spatial distributions: it can originate from a single focus, or result from synchronous activity of a spread-out area or even the whole brain. The TUG EEG dataset has subsets with annotations, such as the TUH EEG seizure corpus. But the quantity of data is limited and the quality of annotations is far from guaranteed on such a difficult application.

Given the difficulty to set hand on adequate real EEG data we decided to generate synthetic data for the experimental paradigm. This is a good way of testing the system with data with completely controled spatial distribution. For synthesizing the data we use the forward model described in B. We use radial dipoles only because this simulates Classes. We started with a classification task with two classes.

• The first class corresponds to background EEG. Examples are synthesized as described above.

• Examples for the second class are synthesized according the the following paradigm: for each example, a central source is chosen. All sources within a radius r zone of this source are given the same temporal activity, a sine wave drawn as above.

Activities for other sources are also drawn randomly.

Thus, the only thing that differentiates the two classes is that one class includes a zone where all sources have the same (radial) activity. Note that for data generation on-the-fly during training, all is done in the computational graph.

Task, network and training. Endowed with such data, we tested whether an adaptive spatial network was able to separate the two classes based on their spatial characteristics. The intuition is that electrodes close to the zone should have activities (and distributions) slightly closer to a sine wave, and distinguishable from a mixture of more sine waves. Output channels are summarized with moments (mean and variance) and the resulting characteristics are fed to a last fully-connected layer with softmax activation for classification. We tried different configurations of adaptive spatial network with 2 to 10 layers of size 19 to 512 and learning rates 5e -5 and 1e -4. For optimization we still use Adam, with batch size 128 and 40000 training steps.

Protocol and results

For each configuration we measured maximum classification accuracy for a range Note that since here again data is generated on the fly -corresponding to 'infinite data' -there is no notion of training/testing or overfitting. We simply aimed at validating the architecture. For each configuration we measured training classification accuracy as a function of r zone . We compared against standard spatial filters with the same number of units (19 to 512). We found that the performance of both methods is almost equal. For the zone to be visible (in the sense: detected with accuracy larger than 90%) by any of the two methods it needs to be very large (diameter 7cm which is on the order of the average distance between two electrodes). We hypothesize that the: experimental paradigm was not the best:

• The use of simple moments to summarize output channels after the adaptive spatial net might be too limited. A measure of non-gaussianity or a CNN may help.

• The use of a spread zone might not be the best choice. In the second class, the 'zone' could be replaced by a single electrode (focus) of higher amplitude. Classification accuracy would then be measured as a function of amplitude of the focus. Also, this focus could be given a distribution different than the sine distribution.

Conclusion of the application on synthetic EEG. We were not able to finish the work. Three weeks only were spent on this whole chapter so the number of experiments was limited and the experimental paradigm can probably be improved. Because the proof of concept of ICA-like decomposition with adaptive networks worked very well, we believe that it could help improve the EEG analysis pipeline as a first step before independant replicated CNNs on separated channels. Further experimental work is required.

Conclusion and perspectives.

In this chapter we worked on the development of adaptive neural layers for analysis of spatial distributions and for channel recombination in EEG. We carried out what we believe is the first proof of concept of ICA decomposition integrated in the first layers of a deep neural network. In the meantime, our adaptive spatial networks do not have to be trained using an ICA cost, and can simply be trained by backpropagation through subsequent layers and a classification cost, for example. First experiments for validating the method on synthetic data did not show a performance advantage over classical spatial filters, but we believe that the experimental paradigm might be the cause for this. Further experimentations are needed for validation on synthetic EEG and also for joint use of spatial and temporal analysis on real EEG tasks.

Summary of the chapter:

• We developed a novel neural architecture that uses adaptive weights. Adaptive weights mean that the network performs mappings that depend on (spatial) features of its input.

• We showed that this network is able to learn to perform ICA. We explained how this is interesting for EEG.

• We initiated the validation on synthetic EEG signals with controlled spatial characteristics but were out of time to finish the work.

Conclusion.

This PhD work started from the observation that continuous EEG is a particularly interesting yet underexploited modality for cerebral state evaluation in the ICU and beyond. So far EEG interpretation has mostly remained visual and performed by trained experts. Appart from some rudimentary indicators and appart for the particular case of sleep EEG, no reliable tools for precise automated interpretation of EEG content exist. This limits the usability of EEG because visual interpretation is very timeconsuming (and expensive). The aim of this work was to devise tools for automated EEG interpretation.

Post-anoxic coma prognostication was chosen as a first exploratory application. We performed a small number of long-duration records and also gathered existing data from CHU Grenoble. We chose to address the problem using machine learning techniques and more specifically artificial neural networks, because they offer remarkable modeling possibilities on digital samples coming from continuous modalities. Upon the development of such techniques we were confronted to a lack of suitable annotations on ICU EEG and thus the impossiblity to train predictive systems in a fully supervised setting. More precisely, a small number of high level clinical annotations on full sequences can be available but proper labeling on EEG patterns themselves is too complicated to establish. Based on these constraints we imagined an architecture for EEG sequence analysis that works in a semi-supervised setting (described in 2.5).

We then evaluated the feasability of each of the subparts of this proposed solution.

The first question was whether deep neural networks were suitable for EEG characterization from raw samples, which was not obvious at the time. To this end (and for addressing only one question at a time) we needed a fully supervised task. We chose to work on sleep stage classification from single channel EEG. We devised a convolutional neural network and evaluated the system on a large dataset including more than 5000 patients. We obtained performance reaching or surpassing the state of the art, validating the fact that deep neural networks are effective for EEG analysis.

The next topic of research was how to learn compact EEG representations in an unsupervised/semi-supervised manner. The field of unsupervised learning is still far from mature especially when using features from deep neural networks, and as a result this part was very exploratory and we had to resort to applying most developments to more classical modalities (images) using more classical architectures before transfering to EEG. Most existing work on unsupervised learning of deep neural networks applied on raw signal samples uses generative adversarial networks -and their variants for explicit representation learning such as Adversarially Learned Inference. We tested a number of variants of these methods and searched for the conditions under which stable learning can be obtained, especially for non fully optimized network architectures. Using gradient-penalized Wasserstein Generative Adversarial Networks we were able to successfully train a generative model of ICU EEG. This validates the unsupervised learning part of the envisoned applicative solution.

The last part of the thesis was to design adapted architectures to deal with multiple channels in EEG records. Each EEG sample is a record at several electrode positions of the potential created by a high number of cortical sources. When designing EEG analysis systems it is useful to account for this forward model and use adapted architectures. Knowing that the forward model consists of an instantaneous spatial mixture of sources, we proposed an EEG characterization system made of a spatial analysis subsystem followed by a temporal analysis subsystem. For the spatial analysis part we highlighted the interest of source-separation methods, which are already classic in EEG analysis but not easy to integrate into neural networks. We proposed a multilayer architecture that performs adaptive unmixing. This means that recomposition weights depend on the spatial features of each example. Using simple signals we showed that this architecture is able to perform ICA if it is trained on a measure of non-gaussianity on recomposed signals. For the temporal analysis subsystem networks similar to those use in Chapter 3 can be used. In the total system the spatial subnetwork is trained end-to-end through the temporal subnetwork.

Overall, we demonstrated that all the different elements needed for the envisioned applicative solution are viable. This opens the door to the use of deep learning for characterization of EEG sequences.

Perspectives.

The work performed in these three years has aimed at designing and investigating several new EEG analysis methods. Further work can be envisioned to continue systems development and transform our results into actual clinical applications in the ICU. To start with, one of the main challenges we faced was the absence of adequately labeled ICU data for establishing objective comparison metrics and compare models (this is why we had to work on alternative modalities or surrogate applications). Labeling data as such will necessitate to choose an application and establish 'gold standard' labels against which predictive systems can be compared. Initiatives in this direction existsuch as the Temple University Hospital dataset -but the available labels remain either relatively scarce or hard to exploit.

When it comes to models and methods, single-channel analysis could be improved using more advanced architectures and normalization schemes. For example, modern layers convolutional architectures such as residual nets, inception/Xception, squeeze and excitation layers could probably improve parameter efficiency of the networks.

Mixed recurrent-convolutional architectures could be tried out. However, these topics are probably not a top priority for further developments because our convolutional architectures already work well.

On the other hand, models for unsupervised EEG representation learning, while already functional, are still in their infancy. In particular, only representative models learned through joint generative learning are truly operational today, and training them in a stable way has only been possible since mid-2017. Purely representative models are far less explored, even though we posit that they are at least as interesting because they are based on simpler concepts and lighter to train. We exposed original ideas consisting of matching distributions in output space for driving unsupervised or semisupervised learning. We also drew the connection to Optimal Transport and how the different methods for estimating the distance between two distributions can be applied to matching output space distributions. In particular, we believe that further work on using Sinkhorn autodifferenciation and (separately) neural network-based dual approximations of Wasserstein distances are very promising work directions.

Finally, our work on multichannel analysis is mostly unfinished and has many possible extentions. The envisioned system has a spatial analysis part followed by a temporal analysis part. Adaptive spatial recomposition worked very well on a simple separation task but time was lacking for a proper application of the spatial recomposition network to EEG signals. Tools for synthesis of EEG signals with known spatial characteristics were developed for validation of the spatial part but the chosen testing paradigm can be improved. Use of the spatial analysis layers and the temporal network in a same system also remains to be tested. To finish, architectures here could also be refined into versions where spatial and temporal analysis are not factorized but joint.

Generating synthetic signals. Once numerical values of the lead field matrices are known, the amplitude of source moments can be given temporal activities, and synthetic signals X = LS are obtained. In the experiments on multichannel systems in 5.3.4, do this in the Tensorflow computational graph. An example implementation can be found at https://github.com/drasros/synthetic_eeg/blob/master/synth_eeg_graph. py.

C.1.2 Management of cardiac arrest

Cardiopulmonary resuscitation is the first step of the management of cardiac arrest. Well and early dispensed cardiopulmonary resuscitation is an essential component of treating a cardiac arrest and makes a very large difference on survival chances of the victim. It may be complemented with defibrillation before or upon arrival of emergency medical staff. Medication can also be administered. Depending on the severity of the arrest and the management of it, the victim will or will not show a return to spontaneous circulation. If so, a return to consciousness may be observed. When the victim remains unconscious, he or she is brought to the intensive care unit (ICU) and taken care of according to a specific and standardized procedure, whose main components are targeted temperature management and sedation. Targeted temperature management (or therapeutic hypothermia) consists of cooling the patient down to 32 to 36 The CPC score is a metric based on clinical indices and ranging from 1 (good performance) to 5 (brain death). For studies on post-anoxic coma the CPC score is often dichotomized into good (CPC 1 and 2) and bad (CPC 3 to 5). Following is an outlook on the useful indicators for prognosis evaluation:

-Clinical examination includes the assessment of motor response to pain, as well as pupillary light reflex and corneal reflex.

-Somatosensory-evoked potentials (SSEP) are peripheral, spinal and cortical responses to somatosensorial stimuli in the peripheral region such as elbow or wrist. The bilateral absence of a particular type of SSEP, the N20 (meaning negative response expected to appear 20 milliseconds after median nerve stimulation) 72 hours after cardiac arrest has been shown to reliably predict poor outcome [SCC + 14]. A notable fact is that N20 response is not (or little) influenced by sedation [TCF + 14].

-The levels of biomarkers such as Neuron Specific Enolase (NSE) can also be measured but the validity of such indicators for estimating prognosis is controversial [TCF + 14].

-Quantitative pupillometry consists of measuring the contraction percentage of the pupil as a response to a light stimulus. The mechanism is also pupillary light reflex but the response is quantified instead of binary. Quantitative pupillometry is being studied as an early prognosis tool and has shown promising results [SBMV + 14][HDGC + 16].

-EEG and particularly continuous EEG is recommended on post-anoxic patients for detecting seizures and post-anoxic status epilepticus in order to administrate antiepileptic drugs if necessary [CTH + 13], and for identifying a number of patterns that are significant for prognosis prediction [SGW + 15]. EEG can be recorded either passively or as a indicator of patient reactivity to a stimulus.

• Most studies call EEG reactivity test the binary test of evaluating whether there is any significant change in EEG as response to a sensory or nociceptive stimulus, the 'EEG change' evaluator being so far the eye of a trained caregiver.

• Up to now, studies considering the use of passively-recorded EEG for post-anoxic pronosis estimation [CvME + 12] [WRvR + 16b] follow the approach of categorizing the EEG into one or more of a number of predefined patterns at different times [START_REF] Alvarez | Yield of intermittent versus continuous EEG in comatose survivors of cardiac arrest treated with hypothermia[END_REF] after cardiac arrest, and then linking the presence of these patterns to coma prognosis. Such approaches already show that some patterns provide valid information for early prognosis estimation. These patterns are described in more details in the next subsection.

Apart from quantitative pupillometry, most of the aforementioned techniques are valid later than 72 hours after cardiac arrest. Quantitative MRI also appears interesting for prognostication but the technique becomes accessible even later after coma onset [LGP + 12]. Despite the demonstrated results with quantitative pupillometry, its specificity for predicting poor outcome patients is only acceptable for quite conservative pupillary light response thresholds, and sensitivity with such threshold is limited. For example at day 2 after CA, a pupillary light response of <7% predicts 3-month poor outcome with a specificity of 100% and a sensitivity of 42% [HDGC + 16]. This all makes for the need for a more advanced prognosis method available earlyespecially during targeted temperature managementand EEG appears to be a good candidate[RUD + 10] especially if its analysis is automated and goes beyond mere raw pattern categorization. Existing studies already show that EEG of patients with good neurological outcome regain favorable content faster than those of patients with poor outcome, and that the predictive value of EEG is the highest in the window from 12 to 24 hours [CTH + 13][HvP16]. Such elements point to the fact that there is short time window during which neurophysiology tools anticipate clinical evaluation in terms of prognosis.

C.2 EEG patterns for prognostication

A standard terminology for describing critical care EEGs is provided by the American Clinical Neurophysiology Society [HLG + 13]. This terminology shows how a human neurophysiologist can describe the content of a portion of EEG record. It suggests the description of A/ Rhythmic and periodic patterns B/ Sporadic epileptiform discharges and C/ Background EEG. Based on this terminology, most studies on estimating prognosis with EEG consider the presence and evolution of the following groups of patterns:

-Isoelectric or low-voltage (<20 µV peak to peak) EEG is when the EEG signal is completely or strongly suppressed -Epileptiform patterns are a whole range of patterns that include periodic discharges, rhythmic delta activity, spike-and-wave or sharp-and-wave, and also a whole continuum of situations between these patterns. They are very common yet difficult to characterize.

-Diffuse slowing is when the overall frequency content of EEG is shifted to slower frequencies, the dominant frequency being under 8 Hz.

-Normal background EEG is when EEG is continuous with no malignant pattern.

Except normal background EEG all of these patterns are malignant. To which extent they are malignant is still a subject of investigation. In practice, in many records a mix of patterns is observed[WRvR + 16a]. The significance of epileptiform patterns [START_REF] Michel | Generalized periodic discharges: pathophysiology and clinical considerations[END_REF] is not very well understood and remains a subject of investigation [START_REF] Barry J Ruijter | Generalized epileptiform discharges in postanoxic encephalopathy: quantitative characterization in relation to outcome[END_REF]. It is also unclear which of these patterns should be treated with antiepileptic drugs.

Beyond simply considering the presence, absence or amount of certain patterns in EEG, it was shown more informative to consider the dynamics of EEG recovery over the beginning of the coma[CvME + 12][HBB + 15]. For example, rapid recovery of continuous patterns within the first 12 hours after coma onset predicts good outcome. On the opposite, persistance of isoelectric activity, low voltage activity, or burst-suppression with identical bursts is invariably associated with poor outcome . Predictive values of different patterns are highest before 24 hours, in spite of the use of mild sedation [START_REF] Hofmeijer | Eeg in postanoxic coma: prognostic and diagnostic value[END_REF].

For intermediate cases, reliable prognostication remains difficult and would require further studies with finer pattern characterization. We posit that automated analysis will make this possible. First, we have z j = i x i w ij , therefore:

∂E ∂w ij = ∂E ∂z j ∂z j ∂w ij = ∂E ∂z j x i (F.3)
Now we want to express ∂E ∂z j , and we know that x j = f (z j):

∂E ∂z j = ∂E ∂x j ∂x j ∂z j = ∂E ∂x j f ′ (z j) (F.4)
This yields:

∂E ∂w ij = ∂E ∂x j f ′ (z j)x i (F.5)
and we have the expression of weight derivatives. Finally, to be able to repeat the process for layer l-1 we need cost function derivatives with respect to output activities x j of layer l-1 (or input activities x i of this layer).

∂E ∂x i = j ∂E ∂z j ∂z j ∂x i = j w ij ∂E ∂z j = j w ij ∂E ∂x j f ′ (z j) (F.6)
We have shown that knowing cost function derivatives with respect to output activities of one layer, we can derive analytical expressions for weight gradients for this layer and cost function derivatives with respect to output activities of the layer below. For the last layer, derivatives are simply calculated by differentiation of the chosen cost function. For preceding layers, the process that we just described is repeated iteratively and we obtain analytical expressions for all weight gradients. This is called error backpropagation. The analytical expressions of weight gradients can then be applied to data for updating weights according to a chosen optimization method.

W (P r , P g) = sup

f ∈F E xr∼Pr [f (x r)] -E xg∼Pg [f (x g)] (G.2)
where F denotes the set of all 1-Lipschitz functions from data space to R. The idea of Wasserstein GANs is to use a critic deep neural network C to approximate f and train it by gradient descent to estimate the supremum. Different methods exist for constraining C to be 1-Lipschitz. The original method of clipping its weights [START_REF] Arjovsky | Wasserstein gan[END_REF] has caveats, and it was very recently proposed that penalizing the squared distance to unity of the gradient of the critic with respect to its input is a more desirable constraint [GAA + 17]. The objective for the critic now takes the form:

min C E xg∼Pg [C(x g)] -E xr∼Pr [C(x r)] + λ E x∼P x [(∇ xC (x) 2 -1) 2] (G.3) = min C L 1 + λL 2
where the x used for evaluating gradients of the critic with respect to its input are sampled along straight lines between data samples and generated samples:

ǫ ∼ U [0, 1], x r ∼ P r , x g ∼ P g

x = ǫx r + (1ǫ)x g

The minimization in equation G.3 has the effect that the 'difference' part L 1 becomes an estimate of the Wasserstein distance between P r and the current P g . This estimate is differentiable with respect to neural network parameters. Therefore, it can be used for training the generator: G is trained to generate samples that are close in terms of Wasserstein distance to data samples. In other words, G is trained to maximize L 1 in equation G.3 -or maximize E z∼p(z) [C(G(z)].

The generator and critic are trained jointly, but for the validity of the Wasserstein distance estimate it is important that the critic remains optimal at all times. In practice this is achieved by training the critic more steps between each generator step. While originating from a different theoretical grounding, a WGAN is very similar in form and training procedure to an original GAN. The only difference is the absence of a sigmoid squashing function at the output of the critic, and the 1-Lispschitz penalization term.

Finally, a property of Wasserstein GANs that original GANs do not have is that the critic loss is a measure of quality of the generation process, as long as the critic is kept optimal. Using the same critic architecture, we exploit this property for comparing different choices of generator seeds.

G.5. Conclusion

123 that there is no activation function on the output. For GP-WGAN we use λ = 10 and 6 critic iterations per generator iteration, and occasionally run 100 critic iterations to make sure the critic has remained optimal. Also, in all experiments we use the Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] optimizer with learning rate 1e -3 and a batch size of 128.

G.4.1 Hyperparameter search

The first experiment is a hyperparameter search over different combinations (n c , n b), where n c and n b take all values among (0, 2, 4, 7, 12,21,36,64,112,196) Because the same critic architecture is used for all generators and because the critic remains optimal, the critic loss can be used as a measure of generation performance. The absence of overfitting was monitored on the test set using the same critic loss.

We note that all configurations roughly follow the same training dynamics, except the configuration n c = 4, n b = 0 which trains slowlier. We hypothesize that in with smaller z c dimensions and continuous seeds, the units of z are used in a less independent way, i.e. each unit can 'encode for more than one variation of the data'. This behavior is not observed for larger seed continuous seeds, and impossible with binary seeds.

Figure G.3 shows a graphical summary of the critic loss -averaged over the last 200 batches -for the different seed configurations after 9 epochs of training. We observe that the best critic loss for all-binary configurations is obtained for a same seed dimension as the best critic loss for all-continuous configurations: n c = n b = 12. Also, the associated all-binary critic loss is comparable or slightly better than the all-continuous one. Finally, combining a binary part and a continuous part in the seed yields the best samples, increasing sample quality by a small margin compared to the the best all-binary or the best all-continuous configurations.

G.4.2 Visualizations

As a second exploratory experiment we choose a mixed configuration where z has a continuous and a binary part. We choose a configuration that has good generation performance according to the hyperparameter search described in G.4.1n c = 7 and n b = 12 -and generate samples. Figure G.4 shows generations from all-random seeds, generations with fixed binary and variable continuous seeds, and generation with fixed continuous and variable binary seeds. For this configuration of seed dimensions, we observe that the network learns that the most efficient way to generate faithful data is to have the binary seed encode shape diversity and the continuous seed encode style diversity. This result compares to the results of InfoGAN [CDH + 16] except that no prior on the number of classes was used, and no reconstruction cost in latent space or mutual information measure between seed and data was used.

G.5 Conclusion

In this short paper we explored the use of binary variables instead of or additionally to continuous variables for GAN seeds. We showed that binary variables can yield

 Sedline device, by Masimo

Figure 2 :

 2 Figure 2: Systems using automated interpretation of cEEG for monitoring depth of sedation

Figure 1 . 2 :

 12 Figure 1.2: Electrode setup used for recordings at CHU Grenoble

Figure 1 . 6 :

 16 Figure 1.4: Examples of spectral analysis on an EEG channel from a record showing generalized periodic epileptiform discharges. Here periodograms are calculated using the multitaper method[BB14].

Figure 2 . 1 :

 21 Figure 2.1: A single artificial neuron, represented with input values, weights, bias and activation function.

Figure 2 . 2 :

 22 Figure 2.2: Diagram showing a network with 3 stacked layers. Units (or neurons) are circles. A layer represents the operation to obtain a set of activations x (l+1)from the previous set of activations x (1) . σ denotes a non-linear function applied element-wise. In fully-connected layers each neuron is connected to all values from the previous layer, as shown with the blue neuron.

Figure 2

 2 Figure 2.7: A standard convolution layer with four input feature maps (c X = 2) and two output feature maps (c X = 2).

Figure 2 . 12 :

 212 Figure 2.12: An RNN consists of recurrently applying an RNN cell to the values in a sequencial input

Figure 2 . 16 :

 216 Figure 2.16: A representation of the envisioned contruction for estimating the outcome of post-anoxic coma from continuous EEG.

Contents 2 . 1

 21 Basics . 20 2.2 Standard architectures . 22 2.2.1 Convolutional layers . 22 2.2.2 Recurrent networks . 27 2.3 Optimization . 29 2.3.1 Cost functions . 30 2.3.2 Optimization . 30 2.3.3 Practical implementation tools 33 2.4 Brief review: EEG and deep learning 33 2.4.1 With preprocessed input . 33 2.4.2 On raw EEG signal . 34 2.5 Automated interpretation of ICU EEG: envisioned solution 36

Figure 3 . 1 :

 31 Figure 3.1: Composition of a 1D convolution layer, including convolution and subsampling. The nonlinearity is not represented.

Figure 3 . 2 :

 32 Figure 3.2: Architecture of our 1D convolutional neural network

Figure 3 . 3 :

 33 Figure 3.3: Example target and predicted hypnograms from a patient in the test set

Figure 3 . 4 :

 34 Figure3.4: Visualization of synthetic inputs that maximize the activation of each of the five output neurons, corresponding to the five sleep stages. Amplitude units are arbitrary. For better readability, only 10-second subintervals of the 120 second inputs are displayed. These 10 seconds are taken from the main epoch. See section 3.4.2 for a description of the method used to obtain these graphs.

 Generative adversarial networkEncoder(c) Discriminative (or representative) model

Figure 4 . 1 :

 41 Figure 4.1: Two main classes of methods for unsupervised learning of representations: generative models (on top) and discriminative models.

 x g) are used for training the encoder. As a result after training the encoder has seen no 'real data' examples after training (we would not know to which z to map them!). Therefore the fact that the mapping learned by the encoder is valid on real examples relies on the fact that the distributions of generated and real examples overlap. To what extend this holds in practice is an ongoing question. To more nicely integrate an encoder network in the GAN frameworks, two groups of authors concurrently proposed the same model called Adversarially Learned Inference (ALI) or Bidirectional GAN (BiGAN).

Figure 4 . 8 :

 48 Figure 4.8: Adversarially learned inference

Figure 4 . 9 :

 49 Figure 4.9: GANs trained to generated samples from a toy 2D mixture of Gaussians (Experiment reproduced from [MPPSD16]). Each sample is one 2D point (and therefore the output dimension of G is 2). Each image shows a distribution of samples. Columns show heatmaps of generated samples distribution after different numbers of training steps. A standard GAN is able to capture only one mode (the captured mode rotates along training). An unrolled GAN captures all modes. Unlike the experiment in the original paper we use only one unroll step and find that this is sufficient. Step number is the number of minibatch updates done.

Figure 4 . 13 :

 413 Figure 4.13: Generator architecture, showing the numbers of feature maps (on top) and the sizes of layers. All filters have size 5 and all layers have strides 2.

Figure 4 . 14 :

 414 Figure 4.14: These samples are 8-second segments of single-channel EEG data.Each segment either comes from real data recorded at CHU Grenoble (and plotted to mean 0 and variance 1) or is generated by our adversarially trained system. Amplitudes are normalized. Segments are selected randomly (not cherry-picked). Can you guess whether each segment is 'real' or 'generated' ?

Figure 4 . 15 :

 415 Figure 4.15: A summary of three classes of methods for unsupervised learning of representations.

Contents 4. 1

 1 Overview of methods . 57 4.2 Unsupervised learning through distribution matching . 58 4.2.1 Pairwise interaction costs . 58 4.2.2 Other possible approaches . 61 4.3 Unsupervised learning using generative models 62 4.3.1 Generative adversarial networks 63 4.3.2 Training stabilization methods 65 4.3.3 Application on EEG data . 70 4.4 Conclusion and way forward 71

?

Figure 5 . 1 :

 51 Figure 5.1: RGB channels of a color image result from a same object sensed in different wavelengths. Unlike this, EEG channels are mixings of several sources.

Figure 5 . 4 :

 54 Figure 5.4: Time-contrastive learning. Figure from [HM16].

 Figure 5.5: The adaptive spatial layer. The main characteristic of this layer is that recomposition weights are not learned but determined on the fly -and therefore they depend on the input. For clarity, biases are not represented.

 Figure 5.6: A multilayer adaptive spatial filter is composed of stacked adaptive spatial layers. If it is trained to minimize a measure of gaussianity on its output, it can learn to perform ICA.

Figure 5 . 10 :

 510 Figure 5.10: Synthesized EEG example.

Figure C. 2 :Figure E. 1 :Figure

 21 Figure C.2: Examples of short segments of 10 second EEGs from post-anoxic coma patients recorded at CHU Grenoble. For brevity only one channel per record is shown here. The first record shows a burst-suppression pattern. The second record shows a periodic epileptiform pattern at approximately 3 Hz. The other 5 records show a diversity of patterns that are closer to background EEG but can also include epileptiform content.

 layer indices. Implicitly, i indices correspond to input neurons and j indices correspond to output neurons.

 Figure G.2 shows the evolution of the critic loss over training, for a few seed configurations.

3

 Sleep scoring from EEG using convolutional neural networks 3.1 Abstract . 3.2 Introduction . 3.3 Materials and Methods . 3.3.1 Dataset . 3.3.2 Preprocessing . 3.3.3 CNN Classifier . 3.3.4 Evaluation criteria . 3.3.5 Visualizations . 3.4 Results . 3.4.1 Performance results . 3.4.2 Visualizations . 3.5 Discussion . 3.5.1 Main findings . 3.5.2 Class imbalance . 3.5.3 Comparison to other methods 3.5.4 Sleep scoring and manual annotation 3.6 Conclusion of the paper . 3.7 Conclusion of the chapter .

4 Unsupervised learning of EEG representations 4.1 Overview of methods . 4.2 Unsupervised learning through distribution matching . 4.2.1 Pairwise interaction costs .

 Datasets for sleep scoring usually include two channels of raw EEG, along with annotation for sleep stages every 20 to 30 seconds. A very classic dataset is Physionet Sleep-EDFx[GAG+ 00]. With 61 nights it is rather small. More recently the Sleep Heart Health Study (SHHS) dataset[QHI + 97] became available, including more than 9000 polysomnographic records (although not all use the same setup).

1.2.2 Records mined from the EEG database at CHU Grenoble

At CHU Grenoble EEGs are recorded routinely on post-anoxic patients as part of standard patient care. These records are almost all short-duration, and performed after methods have already proven truly successful.

 An LSTM cell. x t denotes the input vector at step t, c t the cell internal state at step t, and h t the output for step t.

	OUTPUT GATE
	(sigm)
	FORGET GATE
	(sigm)
	(tanh)
	INPUT GATE
	(sigm)
	CANDIDATE GATE
	(tanh)
	Figure 2.13: and next state are obtained by simple matrix multiplication from the current input
	and previous state. A much more used cell is the Long Short-Term Memory (LSTM)
	cell[HS97]. It addresses the main weakness of the simple RNN cell, which is to kill
	gradient flow on long sequences. It does so by adding some gates that allow the
	propagation of 'memories' over longer ranges. Figure ?? shows an LSTM cell. A
	number of other types of RNN cells and architectural developments exist. Two classic
	other developments are attention[BCB14][VSP + 17] and explicit memory[SWF + 15].

 A well-trained model should generalize well, i.e. perform well on test examples that it has not been trained on. Poor generalization occurs when the model overfits the training set. Overfitting occurs in cases when the model has too many parameters for the number of training examples and complexity of the data. For a given model, Regularization methods help avoiding overfitting:

 Sleep Heart Health Study (SHHS)[QHI + 97] is a multi-center cohort study, initiated by the American National Heart Lung and Blood institute to determine whether sleepdisordered breathing is associated with a higher risk of various cardiovascular diseases.

The study includes two rounds of polysomnographic recordings. We use only the first round (SHHS-1) because it includes almost all patients and because all records have the same sampling rate (125Hz), contrary to the second round where records can be sampled at 125 or 128Hz. Dataset SHHS-1 contains 5793 polysomnographic records. Recorded channels include two bipolar EEG channels (C4-A1 and C3-A2), two EOG channels, one EMG channel, one ECG channel, two inductance plethysmography channels (thoracic and abdominal), a position sensor, a light sensor, a pulse oxymeter, and an airflow sensor. Each record was manually scored for sleep stages by a single technician on 30-second epochs according to Rechtschaffen and Kales scoring rules

[START_REF] Kales Rechtschaffen | A Manual of Standardized Terminology Techniques and Scoring System for Sleep Stages of Human Subjects[END_REF]

, resulting in several sleep stages: Wake, N1, N2, N3, N4 (non-REM), and REM. The total number of technicians involved is not reported. More details about montages and scoring modalities are provided in

[shh]

.

 Since available EEG channels are symmetrical, they yield comparable performance. In the following we use C4-A1. As suggested in recent recommendations[BBG + 12], stages N3 and N4 are merged into a single stage N3. The very few patients containing no epoch for a given sleep stage are excluded because they might be outliers. The resulting number of epochs (resp. relative importance) per stage and total number of epochs are shown in Table 3.1. As in any PSG study, classes are very unbalanced. Stage N1 is particularly under-represented. No preprocessing is done on the EEG signals themselves.

 2, 0.3). Validation cost is monitored during training and a full pass on the validation set is done every 20000 training batches. The model with lowest validation cost is kept for testing. Performance of the model is evaluated in terms of the following test criteria: confusion matrix, classication accuracy, Cohen's kappa, F1 score with 'micro' / 'macro' averaging. Cohen's kappa κ measures the agreement between the technician and the algorithm, correcting for chance agreement: is the observed agreement ratio, and p e is the chance agreement probability. The multiclass F1 score is the weighted average of the F1 score of individual classes. For a macro F1 score, the weighting is uniform. For a micro F1 score, metrics are computed globally by counting the total number of true positives(TP), false negatives(FN) and false positives(FP). The F1 score for an individual class is expressed in terms of precision (or positive predictive value, PPV) and recall (true positive rate, TPR):

			κ =	p o -p e 1 -p e			(3.3)
	where p o F 1 = 2.	PPV.TPR PPV + TPR	with PPV =	TP TP + FP	and TPR =	TP TP + FN	(3.4)

Table 3 .

 3 2: Unnormalized and normalized confusion matrices evaluated on the test set. Normalization is performed class-wise on ground-truth (technician) classes, i.e. line percentages sum to one.Implementation details Models are implemented in Tensorflow[AAB+ 16] and trained on an Nvidia GTX980Ti Graphical Processing Unit for 300 000 minibatches. Training the full model requires approximately two days. Inference is done at approximately three hundred epochs per second. Code is available at https://github.com/drasros/ sleep_staging_shhs for reproducing the results.

	feature map.	
	Algorithm 2: Visualization algorithm
	Input	: neural network input x, function a(x) representing the neural network
			function leading to the desired class activation
	Parameters	learning rate α, number of steps n iter
	: x ← N (0, I); k ← 1; while k ≤ n iter do g ← ∂a ∂x (x); x ← x + α. g ||g|| 2 ; x ← z_score(x); k ← k + 1; end

 Table 3.3. Table 3.2 shows multiclass and total precision, recall and specificity. The most misclassified stage was Stage N1 with 35% of correct classifications. The most correctly classified stage was Wake, with 91% of classifications correct. Stages N2, REM and N3 follow, with 89%, 86%, and 85%. The overall multiclass classification accuracy is 87% and the

	Pre Rec Spe Support
	Wake 0.91 0.91 0.97	447 335
	N1 0.55 0.35 0.99	59 029
	N2 0.87 0.89 0.91	653 195
	N3 0.85 0.85 0.98	215 840
	REM 0.85 0.86 0.97	235 353
	Total 0.86 0.87 0.95 1 610 752

Table 3 .

 3 3: Classwise performance criteria evaluated on the test set, showing precision, recall (sensitivity) and specificity. The total precision, recall and specificity are prevalence-weighted macro averages across classes.

 Stage Wake includes the highest frequency content. Stage N1 shows theta waves of frequency 6 Hz. Stage N2 shows patterns that are very similar to sleep spindles (frequency 11-16Hz). Stage N3 shows theta content but also sleep spindles and higher frequency content. From this visual-

	article	dataset channel patients raters	scoring	model			split	cross-	accuracy kappa	f1-	f1-
					per	rule				type	valida-		micro	macro
					record						tion	
	Tsinalis[TMGZ16] Sleep-	Fpz-Cz	20	1	R&K	CNN			record	20-fold	0.75	0.65	0.75	0.70
		EDF									CV	
	Supratak[SDWG17] MASS F4-EOG	32	1	AASM CNN-LSTM		record	31-fold	0.86	0.80	0.86	0.82
											CV	
	Liang[LKH + 12] Custom	C3-A2	20	2	R&K	Multiscale	en-	example 0.5/0.5	0.88	0.82	0.88	0.77
							tropy, AR fea-			
							tures, smoothing			
							rules					
	Zhu[ZLW14] Sleep-	Pz-Oz	20	1	R&K	Difference visibil-	example 10-fold	0.85	0.79	0.85	0.73
		EDF					ity graph, SVM		CV	
	Fraiwan[FLK + 12] Custom	C3-A1	16	3	AASM Time-frequency	example	67/33	0.83	0.77	0.83	0.76
							feat.,	random			
							forest					
	Hassan[HB16a] Sleep-	Pz-Oz	20	1	R&K	EMD domain, en-	example 0.6/0.05/0.35 0.87	0.82	0.87	0.80
		EDF					semble					
	Hassan[HB16b] Sleep-	Pz-Oz	20	1	R&K	EMD, bootstrap	example 0.5/0.5	0.89	0.85	0.89	0.83
		EDF					aggregating				
	Hassan[HB16c] Sleep-	Pz-Oz	20	1	R&K	Wavelet	trans-	example 0.5/0.5,	0.88	0.84	0.88	0.80
		EDF					form,	spectral		20-fold	
							features, random		average	
							forest					
	Hassan[HB17] Sleep-	Pz-Oz	20	1	R&K	EMD,	random	example 0.5/0.5,	0.83	0.76	0.83	0.74
		EDF					undersampling			20-fold	
							boosting				average	
	Sharma[SPU17] Sleep-	Pz-Oz	20	1	R&K	Iterative filtering example 10-fold	0.88	0.83	0.88	0.77
		EDF									CV	
	Hsu[HYWH13] Sleep-	Fpz-Cz	8	1	R&K	Energy features,	example 10-fold	0.90	0.82	0.90	0.77
		EDF					recurrent neural		CV	
							classifier					
	This	SHHS-1	C4-A1	5728	1	R&K	CNN			record 0.5/0.2/0.3 0.87	0.81	0.87	0.78
	study											

Table

3

.4: A comparison of single-channel sleep staging methods in the litterature. Performance criteria were recalculated from published confusion matrices. To ensure a fair comparison, stage wake was adjusted to the second largest other class in case of overrepresentation.

 obtain classification performance in line with the state of the art, with accuracy 0.87 and Cohen's kappa 0.81. The comparison table 3.4 shows some other characteristics of the studies considered, in particular the database, number of patients, number of raters per record, and split type. The split type (per-record per-example) denotes whether the training/validation/test sets were obtained by splitting over records or over total examples. We note that appart from two of them[START_REF] Tsinalis | Automatic sleep stage scoring with single-channel EEG using convolutional neural networks[END_REF][SDWG17], all studies use an example split. We deem this practice undesireable as it means that examples from the same record are present in both the training set and the test set and therefore the training algorithm is able to learn per-record characteristics. It is very likely that this hampers generalization performance when evaluating on new, unseen patients. Our study uses a per-record split. Finally, several recent studies[TMGZ16][ZLW14][HB16a][HB16b][HB16c][HB17][SPU17][HYWH13] use the Sleep-EDF database even though the extended database Sleep-EDFx had long been available. This grabbed our attention and we evaluated a simplified shallower version of our CNN on Sleep-EDF and Sleep-EDFx, using 10-fold cross validation. Against expectations, we obtained better results on the smaller dataset Sleep-EDF. We suspect that the reason is human raters are not perfect, and since fewer technicians participated in scoring Sleep-EDF than the extended Sleep-EDFx, algorithms evaluated on Sleep-EDF only can more easily learn the classification style of the rater(s). This is also bad for generalization. In contrast, our algorithm is evaluated at test time on 1698 records scored by a larger number of different technicians. This guarantees that the system does not overfit the rating style of one or a small number of technicians.

 We reached or beat the state of the art in sleep stage classification. .5 we introduced a solution envisioned for characterizing continuous EEG. The first subpart of this solution consists of a deep neural network extracting representations from successive EEG segments. The weights of this network should be learned in an unsupervised setting. In this chapter we present possible methods for doing so.What are good representations? Good representations are compact representations that retain (from the data) the information that is useful for the subsequent task. For example, good representations for classification are compact representations which retain discriminative features of the image. Generically good representations are equivalent to compressed data. Unsupervised learning methods using deep learning can be viewed as learned dimensionality reduction methods. We can see that for evaluating the quality of an unsupervised learning scheme, we will need to measure something based on the representations. Most of the time, this measurement can take the form of an external classifier (labels are used only for end classification, not unsupervised representation learning).

	CHAPTER 4 Encoder	Decoder
		UNSUPERVISED LEARNING OF EEG
		REPRESENTATIONS
	Unsupervised 2. Create surrogate classes and train the network to predict them[DSRB14]. Surro-
	gate classes can be obtained for example by applying several different transfor-
	mations to each example. This gives as many classes as examples.
	3. Use temporal information[SMS15]. For example, shuffling frames from short
	video segments and getting a model to predict the order of frames[MZH16][LHSY17] . 49 3.5.2 Class imbalance . 49 requires the model to learn useful representations from single frames.
	3.5.3 Comparison to other methods 49 4. Use other hypotheses such as non-stationarity[HM16] or time-dependency[HM17].
	3.5.4 Sleep scoring and manual annotation 51
	3.6 Conclusion of the paper . 52 Amongst these methods, type 2. methods beat the 2015 state of the art on small

Question: How can we learn representative networks in the absence of annotations ? Contents 3.1 Abstract . 40 3.2 Introduction . 40 3.3 Materials and Methods . 42 3.3.1 Dataset . 42 3.3.2 Preprocessing . 42 3.3.3 CNN Classifier . 43 3.3.4 Evaluation criteria . 45 3.3.5 Visualizations . 45 3.4 Results . 46 3.4.1 Performance results . 46 3.4.2 Visualizations . 47 3.5 Discussion . 49 3.5.1 Main findings . 3.7 Conclusion of the chapter 52

53

In section 2learning. First of all, we note that 'unsupervised learning' as understood in machine learning and particularly deep learning is a terminology for training a model on a task which does not intrinsically contain labels. The training itself remains supervised (as always) and still involves differentiation and backpropagation (unlike other methods such as self-organizing maps, for example). Different tricks exist for devising a training cost out of 'no labels':

1. Compress input though a representative network, recreate synthetic signal from representation using a generative network. If synthetic outputs are close enough (to the sense of a metric to be defined) to the input data, then the representations have kept most information in the data. This strategy is used in autoencoders (AEs)

[START_REF] Diederik | Auto-encoding variational bayes[END_REF]

and generative adversarial networks (GANs)[GPAM

+ 14]

. datasets such as CIFAR-10 but do not scale very well to large datasets because the number of output classes becomes too high. Type 3. methods are interesting for video, but on EEG no obvious such temporal decomposition can be made. Type 4. methods are limited by the fact that these techniques require a new learning step for each sequence to be decomposed, but give us ideas for chapter 5. Finally, techniques from

 We consider a training set of unlabeled examples, for example short EEG sequences. A generative model aims at generating synthetic examples whose distribution follows the training set distribution. Informally, generated signals should 'look like training set examples'. Generative adversarial networks (GANs)[GPAM + 14] are models which allow to avoid the pitfalls of autoencoders, i.e. problems due to the loss in data space and generation of blurry signals. As shown on figure 4.7, a GAN is made of two subnetworks:

	Generator	
	or	Discriminator
	Figure 4.7: Generative adversarial network
	4.3.1 Generative adversarial networks

 . Surrogate metrics exist for trying to monitoring the training of models and comparing models together. The inception score consists of passing a set of generated examples through an Inception model [SVI + 16] (this is a common CNN architecture for image classification) and evaluate the quality and diversity of generated examples throught a measure of entropy. The Fréchet Inception distance considers not only generated examples but also training examples. It consists of estimating the distance between the distributions of generated and real examples in embedding space, where said embeddings are the output of the last coding layer of an Inception net. Distributions are summarized with moments, only the first two moments (mean and covariance) are considered, therefore the Fréchet distance between them can be used.

 • C for 24 hours. It has the effect of limiting brain metabolism and has a neuroprotecting effect [Gro02][START_REF]Subcommittees and Task Forces of the American Heart Association. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care[END_REF]. Targeted temperature management is associated with sedation and myorelaxant drugs to avoid shivering. After 24 hours, the patient is passively rewarmed which takes several hours.

C.1.3 Prognosis evaluation

Prognosis after cardiac arrest is evaluated using a combination of different indicators[ROLK09][ROLK10]

summarized in Table

C

.1. The performance of indicators is usually evaluated against the CPC (Cerebral Performance Categories) score at 6 months, serving as ground truth.

 TableC.1: Indicators used for predicting post-anoxic coma prognosis -Burst suppression or burst attenuation are common patterns where short periods of EEG suppression or attenuation alternate with periods of normal EEG in a pseudoperiodic way. The relative time spent in each state can vary. A particular subclass of this pattern is burst-suppression with identical bursts[START_REF] Hofmeijer | Burst-suppression with identical bursts: a distinct eeg pattern with poor outcome in postanoxic coma[END_REF].

	Method	Time after which method is recommended	Criteria and performance for predicting outcome
	Clinical exam	48-72h	Absence of ocular reflexes predicts poor outcome with
			100% specificity but mediocre sensitivity. Motor re-
			sponse to pain is not very reliable[SCC + 14].
	SSEP (N20)	48h	Absent N20 predict poor outcome with sensitivity 50
			to 75% at 100% specificity[RSS + 11]
	Biomarkers	48-72h	sensitivity 30-60% at 100% specificity[RSS + 11]
	Quantitative pupillometry	during TH	Quantitative PLR < 13% predicts poor outcome with 67% sensitivity at 90% specificity[SBMV + 14].
	MRI	72h or later	Reliability for outcome prediction is still
			uncertain[SCC + 14]

APPENDIX B THE FORWARD MODEL

B.1 Basics

EEG sources and the forward problem. EEG patterns result from the added activities of billions of neurons. A very classical hypothesis for analyzing EEG activity is that it could be equivalently generated by n s electrical sources, where n s is 'small' (one to a few times the number of channels) and the activity of each source summarizes the activity of a large group of neurons around it. The validity of this model is rarely justified. The biological justification for it is that short-range connections between cortical neurons are vastly more dense than longer-range connections[DPO + 12]. The forward problem in EEG aims at calculating the scalp electric at electrode positions created by a neural source of given position. The most common way to represent a cortical source is the equivalent current dipole [START_REF] Paul | Electric fields of the brain: the neurophysics of EEG[END_REF]. It has a position, an amplitude and a direction. A simple and classic forward model is the four-sphere model[NCN + 17], where the brain is assumed to be constituted of four concentric spheres for the brain, cerebro-spinal fluid, skull and scalp, with different conductivities. A classic assumption [START_REF] Paul | Electric fields of the brain: the neurophysics of EEG[END_REF] that is made is the quasi-static approximation in Maxwell's equation, equivalent to neglecting capacitance and inductance in the spheres, which is legitimate at the low frequencies involved in EEG.

Solving for the surface potential at given coordinates in the four-sphere model is done by solving the Poisson equation:

where Φ is the electric potential, σ(r) is the conductivity and C(r, t) is the density of current sources, and using the continuity of the potential for boundary conditions. Further details are given in the next section. Under the forward model and for n s sources of given positions, directions, and temporal activities and with fixed electrodes of known positions, the electrode measurements over N time samples are denoted X ∈ R nc×N and a measurement sample at time sample n takes the form:

APPENDIX C

POST-ANOXIC COMA

C.1 Post-anoxic coma

We develop and present our work through the lens of one particular application: postanoxic coma prognostication. This application is interesting to start with because the post-anoxic encephalopathy is a relatively common condition and because the care to such patients upon admission to hospital is very standardized. An outlook on postanoxic encephalopathy is provided on Figure C.1.

C.1.1 Context and figures

Post-anoxic coma is a type of coma that results from oxygen deprivation in the brain.

It is generally caused by cardiac arrest (CA). With an occurrence of 55 cases per 100,000 people and per year, CA is a very prevalent cause of coma. The survival rate to out-of-hospital CAs is less than 50%[WRvR + 16a]. Post-anoxic coma is a growing condition due to progress in access to treatment and improved resuscitation including hypothermia.

WHY DO MULTIPLE LAYERS HELP IN ANNS ?

In this short appendix we try to provide simple intuition on how multiple layers of neurons with non-linear activation functions might help for approximating complex mappings. The question of why deep neural networks work so well in practice still remains largely unanswered but simple setups such as introduced below help grasping some intuitions. Reading this is not required for the rest of the thesis however.

• First, two stacked layers with weight matrices W 1 and W 2 and linear activation functions perform the same operation as just one layer with weight matrix W 1 W 2 . So if we are to stack layers usefully a non-linearity is required.

• Let us consider the example of approximating the XNOR function of two binary unidimensional variables x 1 and x 2 . XNOR is the logical complement of the exclusive OR and its truth table is shown in Table E.1. Figure E.1 shows that the XNOR function cannot be approximated by one neuron because the two classes are not linearly separable. However, Figure E.2 shows that using an intermediate layer of two neurons with appropriate weights and biases allows the output neuron to work in an adapted space where data is separable. In the end, this simple ANN made of three neurons spread over two layers fits the XNOR function. We hope that this this simple example emphasizes the interest if stacking multiple layers with nonlinearities in-between.

x 1 0 1 0 1 x 2 0 0 1 1 XNOR(x 1 , x 2) 1 0 0 1

BACKPROPAGATION FOR WEIGHT LEARNING

Artificial neural networks are usually trained by stochastic gradient descent or variants of it. Gradient descent involves being able to estimate derivatives of the cost function with respect to parameters, evaluated on a set of examples. This is done by error backpropagation. Implementation frameworks offering automatic differentiation featuressuch as Theano, Tensorflow, or PyTorch -have somewhat hidden the necessity of understanding backpropagation for implementing and training ANNs but we believe that this understanding is still suitable.

We consider a neural network made of L stacked layers. We consider layer number l and denote x (l) j the activation of output neuron j of layer l, z (l) j the value of the same neuron before applying the non linear activation function, and w (l) ij the weight that applies from input neuron i of layer l to output neuron j of layer l. Input values to layer l are output activations of layer l-1, i.e. the x (l-1) i , and we have:

with f (l) the non-linear activation function for layer l. In vectorial notation:

For training the network, we have a scalar cost function E on how the activations x of the last layer fit the desired output. For updating weights with gradient descent towards minimizing E we want to compute ∂E ∂w (l) ij for all weights w (l) ij of all layers.

We now consider consider layer l. Suppose we have already computed the ∂E ∂x j at layer l, and that we know activity values from forward propagation. We show how to calculate weight gradients for layer l, and the ∂E ∂x i at layer l-1 to be able to repeat the process recursively. For this derivation of the backpropagation algorithm, for clarity we omit APPENDIX G

BINARY SEEDS FOR GENERATIVE ADVERSARIAL NETWORKS

This appendix is the paper Binary seeds for generative adversarial networks, A. Sors, S. Bonnet, L. Vercueil, J.F. Payen, in CAp 2017.

Abstract: Generative Adversarial Networks (GANs) are recent models for learning mappings between continuous data and latent variable representations of this data. GAN models typically use continuous distributions in the latent space. In this work we investigate the use of binary variables in the latent space in place or in addition to continuous variables, and show that they yield comparable or slightly better samples. We evaluate different combinations of binary and continuous variables for the generator seed using gradient-penalized Wasserstein GANs.

G.1 Introduction

Generative models are models for generating unseen data that is similar to observed data. They are in contrast to discriminative models where the aim is to model target predictions given observed data. Generative modeling is studied from the perspective that a model that generates realistic data is a model that understands the properties of this data. In practice, generative models map samples from an imposed latent distribution to samples in the data space. Aside generation, an associated inference model can be used for recovering a latent space value from an observed data sample. Even for applications which involve making predictions, learning a unsupervised generation and inference model on data can be helpful, for example in the context of semi-supervised learning.

Generative Adversarial Networks (GANs) are a class of generative models that involve using two competing neural networks trained jointly in a minimax game. Contrary to other generative models such as Boltzmann machines [START_REF] Hinton | A practical guide to training restricted boltzmann machines[END_REF], GAN training does not require any sampling-based estimation of a partition function and can be trained by backpropagation only. GANs have received a great deal of attention recently.

GAN models typically use continuous distributions in the latent space, such as a multivariate normal or uniform distribution. In this paper we study the use of binary variables in the latent space, instead of continuous variables. Informally, the intuition behind this idea is that with latent space dimensions commonly used in GANs, a multivariate binary distribution may already have enough 'possible combinations' to map data diversity, and finer-grained distributions such as a continuous distribution may not be needed. Here we test this hypothesis using the converged critic loss of a Wasserstein GAN (WGAN) [START_REF] Arjovsky | Wasserstein gan[END_REF] as a measure of generated samples quality. Our contribution is to show experimentally that binary seeds yield as good samples as continuous seeds, and propose a short examplification of how using a seed with both a binary and a continuous part can help generate data in semantically significant groups. A measure of mutual information between a subset of the latent variables and the generated samples -in the form of a reconstruction cost in latent space formulated with variational inference -is maximized during training.

G.2 Related work

G.3 Methods

G.3.1 Gradient-penalized Wasserstein GANs

We consider the problem of training a generator model G that takes samples from a latent space distribution and maps them to the data space, so that the distribution of generations of comparable quality to continuous variables for a similar seed dimension, and that combining continuous and binary variables can provide an original way of unentangling style and shape for MNIST digit generations. As a perspective, the use of multistep discrete variables could also be explored. Also, although we only studied generation here, we also conjecture that such binary representations can be useful when an encoder is used for semi-supervised learning, or as compact representations for data compression.