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The ever growing demand for reliable mapping data, especially in urban environments, has motivated the development of close-range Mobile Mapping Systems (MMS). These systems acquire high precision data, and in particular 3D LiDAR point clouds and optical images. The large amount of data, along with their diversity, make MMS data processing a very complex task. This thesis lies in the context of 2D image processing applied to 3D LiDAR point clouds acquired with MMS.

First, we focus on the projection of the LiDAR point clouds onto 2D pixel grids to create images. Such projections are often sparse because some pixels do not carry any information. We use these projections for different applications such as high resolution orthoimage generation, RGB-D imaging and visibility estimation in point clouds.

Moreover, we exploit the topology of LiDAR sensors in order to create low resolution images, named range-images. These images offer an efficient and canonical representation of the point cloud, while being directly accessible from the point cloud. We show how range-images can be used to simplify, and sometimes outperform, methods for multi-modal registration, segmentation, desocclusion and 3D detection.
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Traitement d'image 2D appliqué à des nuages de points LiDAR 3D Résumé L'interêt toujours grandissant pour les données cartographiques fiables, notamment en milieu urbain, a motivé le développement de systèmes de cartographie mobiles terrestres. Ces systèmes sont conçus pour l'acquisition de données de très haute précision, telles que des nuages de points LiDAR 3D et des images optiques. La multitude de données, ainsi que leur diversité, rendent complexe le traitement des données issues de ce type de systèmes. Cette thèse se place dans le contexte du traitement de l'image appliqué au nuages de points LiDAR 3D issus de ce type de système.

Premièrement, nous nous intéressons à des images issues de la projection de nuages de points LiDAR dans des grilles de pixels 2D regulières. Ces projections créent généralement des images éparses, dans lesquelles l'information de certains pixels n'est pas connue. Nous proposons alors différentes méthodes pour des applications telles que la génération d'orthoimages haute résolution, l'imagerie RGB-D et l'estimation de la visibilité des points d'un nuage.

De plus, nous proposons d'exploiter la topologie d'acquisition des capteurs Li-DAR pour produire des images de faible résolution: les range-images. Ces images offrent une réprésentation efficace et canonique du nuage de points, tout en étant directement accessibles à partir du nuage de points. Nous montrons comment ces images peuvent être utilisées pour simplifier, voire améliorer, des méthodes pour le recalage multi-modal, la segmentation, la désoccultation et la détection 3D.
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Introduction

L'intensité historique et technologique du 20 ème siècle a été à l'origine de nombreuses améliorations des techniques de cartographies. Ces innovations ont principalement été motivées par un besoin toujours plus grandissant de données cartographiques précises pouvant répondre aux nouvelles attentes du secteur public, industriel et militaire, et qui ne pouvait pas être satisfaites par les techniques de cartographie manuelle pratiquées à cette époque. Le développement de nouveaux dispositifs d'acquisition pour la photographie, l'inférométrie et la mesure radar ainsi que la démocratisation de nouveaux moyens de transports ferroviaires, aériens et routiers, ont rendu possible la conception de systèmes de cartographie dit "mobiles". Grâce à la multitude de capteurs embarqués, ainsi que la possibilité de se mouvoir, ces systèmes de cartographie mobiles ont permis de pallier les limitations des techniques traditionnelles de cartographie, tant en terme de vitesse d'acquisition qu'en terme de diversité des données récoltées.

Ainsi, des systèmes aéroportés ont pu être utilisés pour photographier tout type territoire depuis le ciel. Les images acquises pouvaient ensuite être combinées pour produire des cartes texturées pouvant couvrir de très grandes superficies pour une durée d'acquisition très courte. Ces systèmes ont rapidement remplacé les techniques traditionnelles basées sur des relevés manuels pour de nombreuses applications, ces derniers étant imprécis et nécessitant des temps d'acquisition conséquents. De plus, les systèmes aéroportés ont ouvert la voie à de nouvelles applications comme l'étude du développement de l'urbanisation. De manière analogue, le développement de satellites d'observation permettant une acquisition plus distante des territoires a aussi rendu possible l'étude des comportements atmosphériques pour la météorologie. Les systèmes d'acquisition mobiles ont donc systématiquement accéléré des processus de cartographie fastidieux tout en offrant de nouvelles applications aux mesures effectuées.

La popularisation récente des smartphones, la prolifération d'applications mobiles exploitant la géolocalisation et la vision, ainsi que l'engouement de ces dernières années pour la conduite autonome, sont à l'origine de nouveaux besoins en terme de données cartographiques. De plus, la densification des populations dans les zones urbaines des pays développés pose de nombreux problèmes pour lesquels une information cartographique précise et fiable est nécessaire afin d'y apporter des solutions viables. Le développement de dispositifs de cartographie mobiles embarqués sur des véhicules terrestres a permis de répondre à ces besoins en offrant des descriptions plus précises des scènes urbaines par rapport aux systèmes plus anciens (aériens, satellites), grâce à une proximité accrue entre le système de cartographie et l'environnement ciblé.

Systèmes de cartographie mobiles terrestres

Les systèmes de cartographie mobiles terrestres ont été développés afin d'effectuer des acquisitions précises depuis le sol. Pour beaucoup d'applications, ces acquisitions doivent pouvoir être géo-référencées avec une précision centimétrique. De ce fait, ces systèmes disposent généralement d'un ensemble de capteurs pour la géolocalisation précise, tels qu'un GPS et une centrale inertielle. Ces capteurs permettent d'accéder à tout moment à la position et l'orientation du véhicule.

Afin d'obtenir la meilleure description de l'environnement urbain possible, les systèmes de cartographie mobiles sont équipés d'une suite de capteurs visuels. Plus précisément, ils disposent généralement de plusieurs caméras optiques de résolutions excédant un mégapixel. Ces caméras sont disposées de sorte à offrir une couverture panoramique complète autour du véhicule d'acquisition. Certains systèmes possèdent aussi plusieurs caméras orientées dans la même direction afin de pouvoir exploiter la redondance de l'information et/ou la vision stéréoscopique. Enfin, certains systèmes disposent aussi de capteurs multi-spectraux, notamment infrarouge, pour permettre des acquisitions dans des milieux faiblement éclairés.

Les systèmes de cartographie mobiles terrestres sont aussi conçus pour faire l'acquisition de l'information géo-spatiale en plus des données visuelles. Ainsi, des capteurs télémétriques, principalement LiDAR, sont aussi embarqués. Les capteurs LiDAR permettent de mesurer la distance entre le capteur et sa cible en mesurant la durée séparant l'émission d'un rayon laser et la réception de sa réflexion sur l'objet ciblé. Souvent, l'intensité de la réflexion est aussi mesurée. Cette information, appelée réflectance, peut servir à mesurer l'indice de réfraction de l'objet visé, permettant ainsi d'avoir une information de texture en plus de la mesure de distance. Les capteurs LiDAR modernes peuvent pivoter de sorte à permettre l'acquisition panoramique de plusieurs milliers de points par secondes, avec une précision millimétrique. L'information de distance ainsi que l'orientation du capteur permettent de déduire la coordonnées 3D de la mesure dans le repère du capteur, produisant ainsi un nuage de point 3D d'une grande précision.

La multitude de données, ainsi que leur diversité, rendent complexe le traitement des données issues de ce type de systèmes. Premièrement, le caractère hétérogène des données acquises par les différents capteurs empêchent une fusion multimodale directe. En effet, bien que ces données représentent toutes le même environnement, un nuage de points 3D et une image optique sont deux modalités exprimées dans des domaines très différents : l'image optique consiste en une matrice 2D à 3 canaux (RVB) de plusieurs milliers de pixels, alors que le capteur LiDAR produit un ensemble de points 3D. De plus, l'information géométrique offerte par le nuage de points LiDAR n'est pas organisée. De ce fait, il est difficile d'accéder au voisinage d'un point. Le traitement des données de ce type de systèmes représente donc un enjeu Résumé en Français majeur dans le contexte actuel.

On se concentre ici sur les données issues de systèmes de cartographie mobiles terrestres, et en particulier sur les nuages de points LiDAR. De ce fait, ne sont considérés que des jeux de données pour lesquels les trajectoires, les nuages de points LiDAR et les images optiques sont disponibles pour chaque scène. De plus, comme ces systèmes de cartographies sont des outils de pointe, nous considérons qu'une bonne approximation de la calibration de chaque système est connue apriori. Les travaux présentés dans cette thèse se concentrent sur trois jeux de données satisfaisant toutes ces caractéristiques: les données Stereopolis-II (Paparoditis et al., 2012), le jeu de données KITTI [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF] et le jeu de données Oxford RobotCar [START_REF] Maddern | 1 Year, 1000km: The Oxford RobotCar Dataset[END_REF].

Applications

Cette thèse se place dans le contexte du traitement de l'image appliqué aux nuages de points LiDAR pour différentes applications, détaillées ci-après. Pour cela, les nuages de points sont représentés sous la forme d'images obtenues selon deux procédés distincts. Dans la première partie de ce travail, on s'intéresse à des applications exploitant des nuages de points projetés dans des grilles de pixels régulières. Dans le seconde partie, la structure d'acquisition des capteurs LiDAR est exploitée pour produire des images.

Orthophotographie de haute résolution

Les orthophotographies sont des images aériennes prises d'un point de vue orthogonal au sol. Ces images sont le plus souvent acquises par des dispositifs aéroportés. Cependant, la distance entre le système d'acquisition et la zone ciblée limite grandement la résolution spatiale des acquisitions, typiquement 1m 2 par pixel, et justifie de la nécessité d'une acquisition rapprochée. On propose dans (Biasutti et al., (a) (b) 2019a) une chaine de traitement complète pour la production d'orthoimages de très haute résolution par projection du nuage de points LiDAR. Cette chaine de traitement permet d'atteindre une résolution de 1cm 2 par pixel, bien supérieure à celles d'orthoimages issues de systèmes aériens, comme illustré Figure 1. De plus, notre méthode permet une reconstruction plus fine des détails de la scène comparée aux autres méthodes de l'état de l'art.

Imagerie RGB-D

Les images RGB-D (couleur et profondeur) sont particulièrement utiles dans de nombreuses applications liées à la vision. Ces images sont le plus souvent obtenues par la combinaison d'une caméra optique et d'un capteur de profondeur (souvent de résolution limitée), ou par stéréovision (dont les mesures ont une précision très limitée au-delà de quelques mètres). Pour pallier les limitations en terme de résolution et de précision des méthodes classiques, on propose une méthode variationnelle pour la production d'image RGB-D à partir d'une image optique et d'un nuage de points LiDAR projeté dans le domaine de cette image. Les résultats quantitatifs et qualitatifs de cette méthode, décrite dans [START_REF] Bevilacqua | Joint inpainting of depth and reflectance with visibility estimation[END_REF], montrent que celle-ci améliore les méthodes existantes. Un exemple de résultat est proposé Figure 2.

Estimation de visibilité

La projection d'un nuage de points LiDAR dans le domaine d'une image optique produit le plus souvent une image éparse (e.g. une image dans laquelle l'information portée par certains pixels n'est pas connue, comme montré Figure 2(a)). Cette image éparse donne lieu à de nombreuses ambiguïtés. En effet, le nuage de points et l'image optique n'étant pas acquis depuis le même point de vue, certains éléments visibles dans une modalité ne le sont pas dans l'autre. On propose dans (Biasutti et al., 2019d) une méthode pour l'estimation de visibilité des points d'un nuage étant donné un point de vue. Contrairement aux autres méthodes de l'état de l'art, cette méthode ne requière pas que le nuage soit échantillonné de manière homogène. Elle est donc particulièrement adaptée à la donnée LiDAR. Nous proposons aussi un jeu de données manuellement annoté qui permet d'évaluer les performances de ces méthodes. L'analyse quantitative démontre que notre méthode donne de meilleures performances que l'état de l'art sur un nuage de points LiDAR, ce qui est confirmé visuellement Figure 3.

Nuage de points et topologie du capteur

Le traitement d'un nuage de points LiDAR est complexe du fait de l'absence de corrélation entre chaque point. La projection du nuage de points dans une grille de pixel 2D, ou la représentation sous la forme de voxels 3D, permettent de corréler (a) (b) spatialement les points, mais produisent des image éparses de très grandes dimensions. Les capteurs LiDAR modernes opèrent de manière structurée. Chaque point est acquis suivant un motif régulier. La structure d'acquisition, appelée topologie du capteur, peut ainsi être utilisée pour en dériver une image dense: la range-image.

Cette range-image donne ainsi une représentation canonique du nuage de points dans laquelle chaque pixel est associé à un point suivant le motif d'acquisition du capteur. Ce principe est illustré Figure 4, et résumé dans [START_REF] Biasutti | Range-Image: Incorporating sensor topology for LiDAR point cloud processing[END_REF]. La range-image est utilisée dans les applications présentées ci-après.

Alignement optique et LIDAR

La fusion multimodale entre image optique et nuage de points LiDAR nécessite le plus souvent d'exprimer une modalité dans le domaine de l'autre; typiquement, en projetant le nuage de points dans le domaine de l'image grâce à la calibration du système. Bien que les systèmes de cartographie mobiles soient des systèmes très haut de gamme, la calibration de ces systèmes peut se dégrader au fur et à mesure d'une campagne d'acquisition. Il est donc souvent nécessaire d'aligner les deux modalités en post-production. A cette fin, nous proposons une chaine de traitement complète permettant d'aligner le rendu 3D d'un nuage de points avec une image optique grâce à une méthode variationnelle. Notre modèle, décrit dans (Biasutti et al., 2019c) et illustré Figure 5, permet de dépasser les limitations des précédentes méthodes.

Segmentation géométrique

La segmentation géométrique d'un nuage de point consiste à regrouper les points entre eux selon des critères géométriques. Cette tâche repose le plus souvent sur une estimation préalable du voisinage de chaque point, qui peut être fastidieuse lorsque le nombre de points est très grand (> 10 6 points). De plus, cette tâche nécessite parfois de connaitre à priori le nombre de groupes à former, ce qui peut s'avérer impraticable dans des cas réels. Dans [START_REF] Biasutti | Range-Image: Incorporating sensor topology for LiDAR point cloud processing[END_REF], nous introduisons un nouveau modèle de segmentation géométrique de nuage de points basé sur une segmentation d'histogramme de profondeur en topologie capteur. Tout en étant agnostique du nombre d'objets à segmenter, cette méthode permet une segmentation très fine de nuages de points de très grandes tailles, comme montré Figure 6(b). De plus, pour certains capteurs, cette segmentation peut être faite directement au fur et à mesure de l'acquisition.

Segmentation sémantique

Contrairement à la segmentation géométrique, la segmentation sémantique cherche à grouper les points en fonction du type d'objet auquel ils appartiennent. Depuis plusieurs années, les méthodes basées sur l'apprentissage profond atteignent des résultats acceptables. Néanmoins, la nature de la donnée LiDAR implique souvent d'utiliser des réseaux de neurones gourmands en mémoire et lents à l'exécution. D'autre part, cette tâche est au centre de beaucoup de travaux dans la communauté du traitement d'image pour la segmentation sémantique d'images. On propose ici une nouvelle méthode de segmentation sémantique de nuage de points directement (a) (b) adaptée d'une méthode de segmentation d'image basée sur des réseaux de neurones convolutifs. Cette méthode est décrite dans (Biasutti et al., 2019e). Nous montrons par cette approche comment la range-image peut faire le pont entre le traitement de données 3D et le traitement d'image. Les résultats, illustrés Figure 7, montrent qu'une architecture simple donne des résultats équivalents aux méthodes de l'état de l'art.

Désoccultation et reconstruction

Dans le but d'obtenir des fonds de carte 3D, il est souvent nécessaire de retirer des objets non-permanents de la scène (voitures, vélos, piétons). La segmentation permet de sélectionner ces objets. Néanmoins, le retrait des points associés à ces objets laisse des trous dans l'acquisition, ce qui rend celle-ci plus difficile à interpréter. Il est donc nécessaire de reconstruire la portion de nuage de points manquante. Dans [START_REF] Biasutti | Range-Image: Incorporating sensor topology for LiDAR point cloud processing[END_REF], nous présentons une méthode pour la désoccultation de nuage de points. Cette méthode s'appuie sur une méthode d'inpainting la reconstruction plausible du nuage de points, tout en réduisant la dimension du problème à un problème d'estimation de profondeur. Les résultats montrent l'efficacité de la méthode, comme on peut le voir Figure 6(c).

Détection et localisation d'objets

Les véhicule autonomes requièrent généralement des systèmes de perceptions avancés.

Plus particulièrement, la capacité de détecter et de localiser les objets environnants est cruciale pour ce genre de systèmes. On propose une chaine de traitement dans Biasutti et al. (2019b) pour la détection et la localisation d'objets en 3D à partir de réseaux de neurones convolutifs. Cette méthode, basée sur les range-images, permet d'effectuer la détection à très haute fréquence, ce qui est particulièrement adapté au contexte des systèmes embarqués. Deux exemples de résultats sont proposés sur la Figure 8.

General introduction

The historical and technological intensity of the 20 th century have led to a significant improvement of mapping technologies. This improvement was largely motivated by the constantly increasing need for better mapping material that could suit the new requirements brought by the public, the industrial and the military domains. Such requirements could not be met by manual measurements in the sense that these techniques could only provide few geospatial information at the cost of very long acquisition campaigns, and they were therefore replaced by novel means of acquisition for many applications. In particular, the development of new remote sensing tools, such as optical cameras, radars or inferometers, in conjunction with the democratization of cars, trains and planes, have lead to the development of the first MMS. These systems typically allow the acquisition of geospatial data from a mobile vehicle using different sensors. Due to the variety of sensors mounted on such systems, as well as the ability to move, MMS have pushed back the limitations of traditional mapping techniques both in terms of acquisition speed and in terms of diversity of the acquired data.

For example, aerial photography has been extensively used to provide accurate textured acquisitions of lands and cities by using airborne optical cameras. The resulting images could then be manually combined to create textured maps that could cover large areas in reasonable times. Therefore, this technique quickly overcame the limitations of traditional methods -namely manual surveying -that often required several months, if not years, to cover a similar area, without being able to access specific terrains and without being able to acquire any details of the landscape. Such MMS could therefore be used to produce maps as well as for novel applications such as urban surveying. A similar case can be found for more distant, where the development of satellites did not only offer the ability to produce maps of wider areas from a farther point of view, but could also be used to gather information for weather forecasting.

Recently, the popularization of smartphones and the proliferation of mobile applications that take advantage of geolocalization and vision, as well as the ongrowing will of building autonomous systems such as autonomous cars, have motivated the development of MMS that could acquire data with a much finer precision (Vallet, 2016). To that extent, a new generation of MMS built on terrestrial vehicles that could navigate on roads and in an urban environment (e.g. cars, trucks) have been proposed. Such systems are also refered to as close-range MMS in constrast with flying systems that operate far from the target area. The proximity of the acquisition system with the observed environment enables the acquisition of much finer details, which can be exploited in numerous applications as detailed hereafter.

General introduction

Close-range MMS

Close-range Mobile Mapping Systems were developped for accurate ground-based acquisition. These systems are often required to provide a centimetric georeferencing precision that cannot be reached using only GPS. To that end, they are equipped with GPS along with Inertial Navigation Systems (INS). The INS integrates measures from a system of sensors (odometer, inertial measurement unit (IMU), compass) to estimate the trajectory of the vehicle along 6 degrees of freedom -3D translation, pitch, roll and yaw -at a very high frequency in order to compensate the low frequency of GPS measurements. Therefore, the accurate position and orientation of the acquisition system is available at any time with a guaranteed precision. Sometimes, a wheel odometer which estimates the distance traveled by the MMS by measuring the number of wheel turns is also added to the georeferencing components in order to increase the georeferencing accuracy. The combination of all of these sensors enables to reach a subcentimetric precision of the georeferencing.

The aim of close-range MMS is to acquire a complete information of the scanned environment. Therefore, most of modern close-range MMS are equiped with a suite of visual sensors, mostly optical cameras with a resolution exceeding one megapixel. These cameras are often arranged such that they cover the whole surroundings of the vehicle they are mounted on. Several cameras can also be oriented in the same direction to provide either redundant information or stereoscopic vision. Finally, some systems embed multi-spectral sensors, such as infrared sensors, to be able to operate without being sensitive to the scene illumination.

As these systems are also meant to acquire geospatial data, the visual sensors are used along with range-measurement sensors, namely LiDAR (Light Detection And Ranging) sensors. A LiDAR sensor is a time-of-flight sensor that measures its distance to a target. It operates by illuminating the target with pulsed laser light and by measuring return times of the reflected pulses to assess the distance. Recent sensors are able to rotate around an axis while acquiring hundred thousands of points each second, providing a representation of higher dimension (typically 2D or 3D). They are used to produce 3D point clouds with milimetric precision, which contributes in the global accuracy of close-range MMS. In the majority of LiDAR devices, the intensities of the reflected pulses are also measured. This measures how much of the laser light is back-scattered by the hit surface. Far from measuring the whole 4D Bidirectional Reflectance Distribution Function (BRDF) over all possible incoming and outgoing angles at the hit 3D point (and not considering any normal vector estimate), this single sample of the BRDF is still valuable. This measure produces a texture-like information, later referred to as intensity. To compensate for systematic biases due to the sensor and to the distance of the target, it is common practice to derive from this intensity a so-called reflectance, which is the albedo of a perfectly diffuse (Lambertian) front-facing target that would yield the same inten-2D Image Processing Applied to 3D LiDAR Point Clouds sity value when placed at the measured distance. This thesis lies in the context of processing LiDAR data coming from close-range MMS. We only consider data in which trajectories, LiDAR point clouds and optical images are all available for each scenes. Moreover, as MMS are extremely high-end systems, we consider that a good approximation of the calibration settings is known a-priori. The works presented in this document rely on the data provided by:

• Stereopolis-II acquisitions [START_REF] Paparoditis | Stereopolis II: A multi-purpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF] • the KITTI vision suite [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF] • the Oxford RobotCar dataset [START_REF] Maddern | 1 Year, 1000km: The Oxford RobotCar Dataset[END_REF] whose basic specifications are summed up Figure 9. These systems were chosen as they all meet the requirements mentionned above, while proposing different combinations of sensor resolutions. Moreover, they provide benchmarks for certain deeplearning applications (e.g. 3D detection or semantic segmentation), which permits to compare our results to state-of-the-art methods. Hereafter in the thesis, the term MMS will relate to close-range MMS if not mentioned otherwise.

Processing MMS data is a very complex task for different reasons. First, the heterogeneous character of the data acquired by the different sensors prevents a direct fusion. Although they are representing complementary aspects of the same environment, a 3D point cloud and an optical image are two data that are expressed in two different domains. Indeed, the optical camera produces 2D images with 3 channels (RGB) of thousands, if not millions, of pixels whereas the LiDAR produces sets of millions of 3D points. Moreover, a point cloud only represents geometrical measurements of independant 3D points. Thus, accessing the neighborhood of a point, which is needed by many methods, is non-trivial and it often requires expensive preprocessings. On the other hand, processing 2D images provides spatial correlation that can be directly exploited in many ways (e.g. gradient computation or feature extraction).

Applications

Many applications benefit from MMS data, such as road and urban inventory, itinerary computation, mapping of road marks, road surface modeling and quality measurements, accessibility checking for soft mobilities, 3D city modeling, image based localization, object detection and segmentation for autonomous mobilities and high resolution orthoimaging. These applications use the multimodal aspect of the acquisition that MMS provide, and/or they rely on the precise georeferencing of the acquired data.

Acquisition systems

Stereopolis-II KITTI Oxford RobotCar [START_REF] Paparoditis | Stereopolis II: A multi-purpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF] [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF]) [START_REF] Maddern | 1 Year, 1000km: The Oxford RobotCar Dataset[END_REF] Optical images

2048 × 2048px 1242 × 375px 1280 × 960px
LiDAR point clouds 300000pts/s 1000000pts/s 27000pts/s For example, the orthoimage production is the task of building a map from aerial images in which the perspective is corrected such that the final map corresponds to a vertical projection of the area on an horizontal plane. These products are usually obtained using airborne cameras or satellite imaging. However, due to the distance between the sensor and the ground, ground structures are likely to be occluded by overhanging objects such as bridges, canopies or tall buildings. Moreover, the resolution of the resulting maps is often limited to 5cm per pixel. Although such resolutions are sufficient to produce road maps, new applications require maps with finer resolution. Indeed, novel european legislations require that buried structures such as gaz pipes have to be registered on maps with a precision of less than 10 cm. As close-range MMS operate at ground level, they provide georeferenced Li-DAR point clouds which are often of centimetric precision. These point clouds can therefore be used to produce orthoimages of higher resolution while respecting new regulations.

3D city modeling is another important application of MMS data as it can be used to conduct many types of surveys as well as being used in order to compute realistic itineraries for various kinds of mobilities. The task of city modeling relies on acquiring as many geometric information as possible of the urban environment, especially using LiDAR sensors. By exploiting the georeferencing information, all LiDAR point clouds are combined together into a single model. The aim is to gather precise 3D information of the permanent structures of the urban environment, such as facades, poles, traffic lights, signs or pavements. These information can be used to automatically perform surveys of the urban environment by using segmentation approaches. Unfortunately, close-range MMS have to operate in road traffic in spaces that are often crowded, as closing specific urban areas during the acquisition would be both expensive and unpracticable. Therefore, non-permanent entities such as cars, pedestrians or cyclists are also acquired by the LiDAR sensor. The 3D model does not only contain non-permanent entities, which is already an issue, but these entities prevent the sensor from acquiring the permanent structure that is located behind. To that end, being able to distinguish these entities and being able to remove them seamlessly from the scene is a major stake of MMS data processing for modeling applications.

Apart from solely exploiting the LiDAR data, the multimodal aspect of MMS acquisition also offers great applications. For example, city models can be colorized by projecting the color information of optical images on the LiDAR points. The colored model provides a material that is easier to understand for operators and it can also be used for augmented reality applications. However, the projection of the optical image colors on the LiDAR points strongly relies on the quality of the calibration. In realistic scenarios, the calibration settings are not perfect as MMS are subject to physical constraints (vibrations, shocks) during the acquisition that might alter the initial settings. This leads to a misalignment of the two modalities which can be confusing in visualization tasks. The interest for automatic alignment between LiDAR data and optical data is therefore a crucial issue for multimodal fusion applications.

Finally, the development of autonomous systems, especially autonomous vehicles that are able to drive in cities, requires to create robust perception systems. The detection of objects in optical images is a now well known subject that has been at the center of the image processing community for the past decades. However, images only provide spatial information in their own 2D domain. Complex perception systems such as autonomous vehicles require much more complex perception systems that are able to efficiently localize and classify objects in their surroundings. This task, usually referred to as 3D detection, can largely take advantage of LiDAR data acquired by MMS as it provides precise geospatial information of the environment around the vehicle.

In this document, we propose to study how image processing methods can be applied to MMS data processing for various applications:

• orthoimage generation.

• LiDAR to image alignment.

• visibility estimation of a point cloud given a viewpoint.

• point cloud semantic segmentation.

• point cloud disocclusion.

• 3D object detection.

Content of the thesis

This thesis focuses on processing MMS data, especially LiDAR data, by operating on 2D pixel representations of the point clouds either by projecting it, or by exploiting the structure that is inherent to the sensor in order to generate a 2D image of the point cloud. Therefore, this document is divided in two parts.

The first part deals with the problem of processing 3D LiDAR point clouds that are being projected in 2D frames. These frames can either be the ground, considered as an horizontal plane, in the case of orthoimage generation (Chapter 1), or in the domain of an optical image for RGB-D imaging (Chapters 2 and 3).

In the second part of this thesis, we show in Chapter 4 how the intrinsic structure of the acquisition -named sensor topology -can be used to represent the point cloud as a 2D image that overcomes the limitations of a 2D projection (namely sparse projections and overlapping information). In particular, we show how it can be used for LiDAR point cloud to optical image alignment by proposing a 2D Image Processing Applied to 3D LiDAR Point Clouds complete framework in Chapter 5. We also show how the sensor topology can be used for semantic segmentation using deep-learning techniques in Chapter 6 and for disocclusion using a PDE-based method in Chapter 7. Finally, we study the problem of 3D object detection by proposing a complete framework that takes advantage of convolutional neural networks in Chapter 8.

Part I

Image processing on sparse projection of 3D LiDAR point clouds

Summary

With the unceasing need of very precise acquisitions of the urban environment, either brought by new government regulations or by modern applications such as autonomous driving and 3D cartography, many traditional acquisition methods have shown their limitations. These limitations arise from different factors. For aerial imagery -and despite the presence of very high resolution imaging sensors -the distance between the sensors and the targeted urban scene limits the final resolution of the acquisition to several centimeters per pixel in the best cases. This type of acquisition is also affected by overhanging structures (e.g. buildings, tunnels, canopies) that might hide areas of the scene. For color and depth acquisitions, also known as RGB-D acquisitions, the available systems are often composed of a depth sensor of smaller resolutions than the associated optical sensors. This is often due to cost constraints, and it implies that we cannot access depth acquisitions at the same resolution as the one from optical images.

To overcome the limitations of classical acquisition systems, we investigate the use of MMS data, especially 3D LiDAR point clouds and optical images, to produce very high resolution products in the urban environment. Indeed, the projection of LiDAR point clouds in 2D-pixel grids or in image domains allows to use 2D image processing methods while preserving the precision of the measurements. It results in products that are easy to manipulate and understand especially for non-expert users.

A complete pipeline is first presented for the generation of very high resolution 2D orthoimages. This pipeline operates by projecting ground points on a 2D pixel grid, producing a sparse orthoimage. A densification step is then done and holes are inpainted to finally obtain a dense orthoimage at subcentimetric resolution.

We also investigate the generation of RGB-D data by projecting the LiDAR point cloud into the domain of an optical image. Again, this projection creates a sparse image, with visual ambiguities as the points and the optical image are not necessarily acquired from the same location. We propose a mutli-modal variational model to densify this projection and to reduce visual ambiguities.

Finally, we explore the problem of visibility estimation of a point cloud given a point of view as it is a key issue for many tasks, such as multi-modal fusion or interactive visualization.

Content

• Chapter 1 presents the problem of the generation of high resolution orthoimages and the related works. It also presents a complete pipeline that enables subcentimetric orthoimage generation from MMS data.

• Chapter 2 presents the problem of high resolution RGB-D imaging and the related state-of-the-art. It then proposes to create high resolution RGB-D images by fusing optical images and projected LiDAR data in a variational model. This fusion raises the problem of visibility estimation in a point cloud.

• Chapter 3 proposes to further investigate the problem of visibility estimation in a LiDAR point cloud given a point of view. Limitations of the state-of-theart methods are shown in the case of point clouds with variable densities. A solution is proposed to leverage the variation of density that is inherent to the LiDAR point cloud in an urban environment.

Chapter 1

Orthoimage generation from onground LiDAR acquisition 

Introduction

Orthophotographies and Digital Surface Models (DSM), defined respectively as the color and ground height orthoimages (i.e. raster maps defined on a regular horizontal grid), are ubiquitous products in modern cartography. They are widely used in many application fields such as remote sensing, geographical information and earth observation, mapping and environmental studies. Such orthoimages are traditionaly computed from an aerial perspective (satellites, planes and more recently unmanned aerial vehicles (UAVs)). Although aerial imagery techniques provide a very well known and common approach to the problem of orthoimage generation, they may be limited in terms of accuracy and resolution and they certainly suffer from occlusions caused by the natural and urban environment such as trees, tunnels, overhangs or tall buildings (Fig. 1.1.a).

These limitations prevent orthoimages generated by above-ground datasets to be used for a whole new set of applications that rely on a precise mapping of the ground and which cannot suffer from such large occlusions. These applications include, mostly in an urban context, accessibility assessment for soft mobilities (disabled, wheelchairs and strollers) and itinerary computations [START_REF] Serna | Urban accessibility diagnosis from mobile laser scanning data[END_REF], precise mapping of road marks [START_REF] Hervieu | Road Marking Extraction Using a Model&Data-driven RJ-MCMC[END_REF], road limits or curbs (Hervieu and Soheilian, 2013b), road inventory [START_REF] Pu | Recognizing basic structures from mobile laser scanning data for road inventory studies[END_REF], road surface modelling and quality measurements (Hervieu and Soheilian, 2013a), mobile mapping registrations on aerial images [START_REF] Tournaire | Towards a subdecimetric georeferencing of groundbased mobile mapping systems in urban areas: Matching ground-based and aerial-based imagery using roadmarks[END_REF] or image based localization using ground landmarks [START_REF] Qu | Vehicle localization using monocamera and geo-referenced traffic signs[END_REF]. Moreover, recent legislations in European countries call for a subdecimetric accuracy mapping of underground networks (water pipes, gaz pipes, internet wires and phone wires) as the lack of accurate data has lead to accidents and delays in many public works. Very high resolution orthoimaging and DSMs generation with limited occlusions could help in meeting the requirements of these legislations as it would provide sub-centimetric accuracy mapping of the ground.

To maximize orthoimage resolution and to minimize occlusions, we propose to [START_REF] Vallet | Road orthophoto/DTM generation from mobile laser scanning[END_REF], we propose to derive a gray image from the reflectance attribute of the LiDAR samples (which measures backscattered energy) instead of relying on optical imagery (which would introduce difficulties in dynamic environments and require precise co-registration) to produce sub-centimetric orthoimages.

(a) (b) (c) (d)

DSM generation from LiDAR data

The projection of a ground-level point cloud at centrimetric resolutions creates a sparse image due to its inhomogeneous sampling density (Figure 1. 1 (b)). This problem is strongly related to DSM generation from LiDAR data, especially airborne LiDAR data which has been widely studied over the past decades as presented in (Chen et al., 2017b).

DSM generation DSMs are mostly represented either by Triangular Irregular Networks (TINs) [START_REF] Zhang | Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification[END_REF][START_REF] Guan | DEM generation from LiDAR data in wooded mountain areas by cross-section-plane analysis[END_REF][START_REF] Chen | A point cloud filtering approach to generating DTMs for steep mountainous areas and adjacent residential areas[END_REF] or by raster images [START_REF] Kraus | Advanced DTM generation from LiDAR data[END_REF][START_REF] Wack | Digital terrain models from airborne laserscanner data-a grid based approach[END_REF][START_REF] Shan | Topographic laser ranging and scanning: principles and processing[END_REF][START_REF] Chen | An iterative terrain recovery approach to automated DTM generation from airborne LiDAR point clouds[END_REF]. A TIN is a mesh that represents a continuous surface entirely using triangles. In the case of airborne LiDAR TINs, the vertices of each triangle directly correspond to the LiDAR measurements. DSMs built from raster images consist in the projection of the LiDAR measurements on an horizontal grid, producing a sparse image in which some pixels do not contain any information. In both cases, the main challenges of DSM generation still remains twofold to create a higher level of representation. First the ground points have to be filtered to isolate ground information from the rest of the acquisition. Second, interpolation needs to be done to connect each LiDAR measurements.

Ground point filtering Ground point filtering aims at isolating points that belong to the ground (e.g. earth surface in case of airborne DSMs) from points that belong to elevated structures (such as buildings, trees, cars, fences or poles). This is especially useful for DSM generation as the final product aims at modeling only ground information of the area. For airborne LiDAR data, ground point filtering is done by defining slope operators in order to follow the ground surface [START_REF] Zakšek | An improved morphological filter for selecting relief points from a LIDAR point cloud in steep areas with dense vegetation[END_REF][START_REF] Shao | Automated searching of ground points from airborne LiDAR data using a climbing and sliding method[END_REF][START_REF] Hu | Semi-global filtering of airborne LiDAR data for fast extraction of digital terrain models[END_REF]. These operators are used to estimate the relative slope of each LiDAR measurement given a set of neighbors. If the estimated slope is too steep, the surface is considered to locally correspond to an elevated structure that does not belong to the ground. However, these methods are developped in order to extract the ground on large scale, for terrain with high relief variation. In the case of urban scenarios, these methods fail to distinguish correctly small objects (such as bikes or pedestrians) from the ground.

Orthoimage generation from onground LiDAR acquisition

Interpolation DSM interpolation approaches depend on the final product representation. For TINs, a common approach for the interpolation is by using Delaunay triangulation. Delaunay Triangulation connects a set of unorganized points with triangles such that the circumcircle of each triangle does not contain any other points. This property ensures to reduce the number of elongated triangles (e.g. triangles that have two very acute angles leading to a thin, elongated shape) and it produces a more homogeneous mesh. TINs interpolation is also done by plane fitting, as proposed in [START_REF] Bitenc | Evaluation of a LiDAR land-based mobile mapping system for monitoring sandy coasts[END_REF]. In this case, the K-nearest neighbors (KNN) are computed for each LiDAR point. After that, a plane is fitted to each point given its set of K-neighboring points to produce a planar local representation of the surface. However, these approaches are not relevant to our problem as we aim at generating orthoimages as well as raster DSMs.

On the other hand, the interpolation of raster images DSMs has already been the object of several works. It has been proposed in [START_REF] Kraus | Advanced DTM generation from LiDAR data[END_REF] where the authors propose to interpolate the raster image by a coarse to fine approach. This approach uses raster image DSMs from low scale to final scale in order to estimate the interpolation. In [START_REF] Shan | Topographic laser ranging and scanning: principles and processing[END_REF], the authors propose to use moving least squares to perform the interpolation directly at final scale. The generation of DSMs does not require to preserve textures as the surface model is textureless. However in our context, we aim at generating orthoimages from the reflectance as well as DSMs from the height. Therefore, the preservation of texture is a key point of our problem, which requires to use other approaches for the raster image interpolation.

Orthophotography from LiDAR data

Although the problem of DSM generation from airborne LiDAR presents similarities with our problem, ground filtering cannot be done in the same way because of the fine scale of the objects in the scene. Moreover in our case, interpolation requires to preserve textures to produce orthophotographies. The method proposed in [START_REF] Vallet | Road orthophoto/DTM generation from mobile laser scanning[END_REF] offers a full pipeline for the production of both orthophotography and DSMs from MMS data. First, ground points are isolated by performing hard thresholding on the elevation of each point in the scene in order to produce a raw ground point estimation. The remaining points are then refined by considering the vertical cylindrical neighborhood of each point, in which only points that are close to the lowest point in terms of elevation are kept. The ground points are then projected on a 2D-grid in a similar way, as it is presented in Section 1.3. The pixels of the 2D-grid are either filled by the reflectance value or by the elevation value of the point that is projected there. Finally, the authors propose to use the Poisson interpolation [START_REF] Pérez | A : Poisson image editing[END_REF] to deal with the high variations of density in the raster images derived from MMS. They advocate that this method can be used for the interpolation of any modality of the point cloud while preserving texture information. This pipeline offers an efficient method for the production of orthophotography and DSMs from MMS data. However, the resulting orthopho- tographies often lack of details and they show oversmoothed textures as explained in the experiments Section 1.6.

Framework description

Orthoimage generation from LiDAR scans aquired at ground level has been scarcely studied in the past. Nevertheless, the relation between LiDAR reflectance and optical acquisition has already been used for different applications such as depth map generation from point cloud [START_REF] Bevilacqua | Joint inpainting of depth and reflectance with visibility estimation[END_REF], which shows the correlation between both modalities, and motivates the use of relfectance as alternative texture information of an orthoimage. This chapter introduces an efficient and fully automatic pipeline to reconstruct an orthoimage from a LiDAR point cloud. The proposed framework is summed up in Figure 1.2.

From the point cloud, we need to extract the ground points (e.g. points that do not belong to a mobile object or to an object that is lying on the ground). This is done by computing an envelop Γ (see section 1.3). The reflectance and height values of these ground points are then projected in two 2D-images respectively: r S and h S . This projection is done by removing the z (height) coordinate and rounding the coordinates to the chosen resolution. We also build a mask M proj of the pixels where at least one point was projected.

At this point, the projections u 0 and h 0 are often sparse as they do not cover all the pixels of the images. Figure 1.3 presents an example of the different kinds of missing pixels that result from the projection. Some parts of the projection correspond to the inside of a building (Figure 1.3 (c) in orange), under sampling holes appear in between lines of acquisition (Figure 1.3 (c) in blue) and an occlusion is caused by a pole blocking the laser beams (Figure 1.3(c) in green). In order to reconstruct the missing information of the orthoimage, we first perform diffusion on both r S and h S by coupling reflectance and height in an anisotropic diffusion algorithm in order to remove holes due to undersampling. The resulting images are respectively called r and h. After this step, there are still some large holes remaining. Their locations are defined by the occlusion mask M occ , which is retrieved through mathematical morphology. Finally, we reconstruct occlusion holes using an examplar-based inpainting method that uses both reflectance and height information, as well as an assumption about the alignment between structures to inpaint.

Projection of LiDAR point cloud

The projection of a point cloud onto a 2D pixel grid is a typical discretization problem. It mostly requires to define a mapping between the point cloud metric frame and the 2D-pixel grid. However, in the case of Digital Terrain Model, it is also 1.3. Projection of LiDAR point cloud needed to filter out off-ground points (trees, urban structures, cars). We introduce a novel approach for ground point filtering in section 1.3.1 and we explain how the projections are done in section 1.3.2. More details about the parametrization of the projection can be found in 1.3.3.

Filtering ground points

The definition of ground-points in a point cloud can be tedious as we have to filter groups of point that represent relatively planar structures and which do not belong to any other objects than the ground itself. Ground filtering is a typical DSM generation problem [START_REF] Meng | Ground filtering algorithms for airborne LiDAR data: A review of critical issues[END_REF]. Traditional aerial DSMs generally model wide scenes of several square kilometers. In order to correctly include details of urban scenes (pavements, steps or any lightly elevated structure that belongs to the ground), it is necessary to model the ground at a finest scale. In urban scenario, plane fitting is often used as primary ground segmentation. Although it allows a fast and simple estimation of ground points, considering horizontal planes relative to the acquisition system can be ambiguous. Indeed, modern MLSs tend to be accurate enough to acquire ceilings through windows, creating false positives. Vertical planes are also relevant (pavements, stairs), but not in every cases (trucks, billboards). This problem has been investigated by considering it as a classification problem [START_REF] Rottensteiner | A new method for building extraction in urban areas from high-resolution LiDAR data[END_REF] or by performing advanced structural analysis [START_REF] Kraus | Advanced DTM generation from LiDAR data[END_REF][START_REF] Brédif | Distributed Dimensionality-Based Rendering of LiDAR Point Clouds[END_REF]. However, these solutions have shown their limitations when the scene presents high diversity of objects. In particular, they lack of precision when aiming at estimating the boundaries of the ground in urban scenes because other objects (cars, ceilings) are often considered as the ground as they share common structural properties.

We propose a novel approach for ground point filtering based on the way the acquisition is done. We aim to filter out hovering object or any point that is above another one. As the points are acquired with a certain uncertainty, we cannot directly compare points coordinates as the likelihood of two points having the exact same (x, y) coordinates is negligible. We first create an empty envelop of the size of the projection where each pixel has an infinite value. This envelop will help defining the boundaries of the 2D region that represents the ground while ensuring that all points that fall into the envelop trully are ground points. We then consider segments made by each point and its relative LiDAR sensor location. Each segment is discretized in the envelop using the Bresenham line algorithm (Bresenham, 1965). As the beam is perfectly straight, we can estimate the height of the segment at any position of the segment. Each pixel is then filled with the lowest height value of segments that cross it. Note that in our case, only points below the sensor are considered. This reduces the amount of data to process while ensuring that none of the ground points are discarded. However, this is only suitable for MLS in urban scenarios. Figure 1.4 shows a slice of the maximal envelop Γ computed on a set of beams that overlaps. We can see that for every overlapping beams, only the portion of the lowest one is kept in the envelop. Finally, we filter the point cloud by taking only points that are under the envelop and the threshold, with an epsilon margin.

Sparse projections

Using the filtered point cloud, we want to produce two sparse images corresponding to the reflectances and the heights in the sensor frame: u 0 and h 0 defined on the mask M proj . The values for each pixel in u 0 is the mean of the reflectances of every points that is being projected in it. The values in h 0 are the same using the height in the sensor frame. Finally, a mask image M proj is produced where pixels are valued 1 where at least one point was projected and 0 elsewhere. Note that at high resolution (1px per square centimeter), the use of the mean is relevant on our data as only few points (less than 5) project in each pixel. However, if the amount of points that projects in each pixel increases a lot (when working at lower resolution for example), one can consider using the median instead of the mean to remove outliers. Note that the computational cost of the median is higher than the cost of the mean. Thus, its use will significantly increase the running time of the projection step.

Parameters

The choice of the mapping between real coordinates and pixels mostly depends on the density of the point cloud. In our case, with an acquisition done using a RIEGL LMS-Q120i which produces 300 000 points per second, an acceptable resolution was 1px = 1cm 2 . The height threshold is arbitrary but in the case of an urban scenario,
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it should be kept under the height of the aquisition vehicle. More details about the parameters are provided in Section 1.6.1.

Dependency to the sensor

It is important to point out that the type of missing data are directly related to the chosen resolution as well as the type of sensor. The holes due to the acquisition sampling are less likely to appear when choosing a lower resolution. Moreover, the missing values in between acquisition lines are specific to the sensor mentioned above. They are quite homogeneous and create a regular pattern. With a panoramic sensor such as the one used in [START_REF] Geiger | Vision meets Robotics: The KITTI Dataset[END_REF], the missing pixels will appear in a random pattern, but will create a more dense image for the same resolution, which makes our pipeline still suitable for this type of data.

Diffusion of sparse images

The two images obtained in the previous section are sparse in the sense that they do not cover every pixels of the DSM. Therefore, we need to interpolate the images in order to get a dense representation of them. The goal is to fill in gaps between relatively close pixels that are due to the acquisition undersampling. In this section, we first explain what are the requirements that the filling method needs to meet. Then we introduce a modification to existing methods in order to enhance the results. Finally we show a comparison of different methods to validate our proposed modification.

Choice of the approach and requirements

A typical approach for filling small holes by interpolation is to use diffusion algorithms. Several diffusion techniques exist such as the total variation [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], the generalized total variation [START_REF] Bredies | Total generalized variation[END_REF], structure tensor diffusion (Weickert, 1998;[START_REF] Bertalmio | Image inpainting[END_REF] or partial differential equation diffusion [START_REF] Aubert | Mathematical problems in image processing: partial differential equations and the calculus of variations[END_REF] and extended to multi-modal data [START_REF] Zhuang | Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations[END_REF].

Here, we focus on iterative methods which are more flexible. A basic diffusion algorithm is the so called Gaussian diffusion which is an isotropic technique that consists in updating the image with its own Laplacian (Koenderink, 1984). However in the case of an urban scenario, an anisotropic diffusion is more relevant as very high gradients appear at the edge of different structures (roads, pavements, stairs) and it needs to be preserved.

The Perona-Malik algorithm [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF]) is a well known algorithm for anisotropic diffusion. It is partially inspired by the Gaussian diffusion and it is defined as follows:

   ∂I ∂t -div(c(|∇I|)∇I) = 0 in Ω × (0, t) ∂I ∂N = 0 in ∂Ω × (0, T ) I(0, x) = I 0 (x) in Ω (1.1)
where I 0 ∈ Ω is the input image, div is the divergence operator, ∇ is the gradient operator, N is the normal vector to the boundary of Ω and c is an increasing function.

A common choice for c is the weighting function c

(|∇I|) = 1 √ 1+(|∇I|/α) 2
, α being a weighting factor that quantifies how much the gradient information needs to be considered. This technique ensures the preservation of edges while ensuring smooth transitions between sampled scan lines. Nevertheless, this technique only takes into account the gradients of a single channel. In our context, the diffusion needs to be blocked in case of a high gradient in the reflectance image as well as in the case of a high gradient in the height image that could correspond to the junction between the road and a pavement, or steps of stairs. Therefore, we need to modify equation (1.1) in order to take both channels into account.
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Proposed algorithm

We propose here a modification to the Perona-Malik equation (1.1) by coupling heights and reflectances as follows, using previously introduced notations:

               ∂r ∂t -div(f (|∇r|, |∇h|)∇r) = 0 in Ω × (0, t) ∂h ∂t -div(f (|∇r|, |∇h|)∇h) = 0 in Ω × (0, t) ∂r ∂N = 0 in ∂Ω × (0, T ) ∂h ∂N = 0 in ∂Ω × (0, T ) r(0, x) = r S (x) in Ω h(0, x) = h S (x) in Ω (1.2)
where we recall that r S is the reflectance image and h S is the height image. We introduce the new weighting function f that emerges from the one used in equation (1.1) as follows:

f (|∇r|, |∇h|) = 1 1 + |∇r| 2 α 2 + |∇h| 2 β 2 (1.3)
having α, β as weighting constants quantifying how gradients of reflectance and height need to be considered. The choice of coupling both reflectance and height information into the same model is motivated by the fact that reflectance and height gradients are not always at the same locations and therefore, are complementary. Note that coupling various modalities in a model has already been proposed in [START_REF] Auclair-Fortier | A global approach for solving evolutive heat transfer for image denoising and inpainting[END_REF] for multi-spectral images, however in that case authors present a model specifically designed for merging multiple images representing the same object at different wavelengths. Using our method, we can now take into account gradients coming from both r S and h S .

Comparison with other diffusion techniques

In this section, we propose an evaluation of the performances of our model against Gaussian diffusion and closest neighbors diffusion. Projecting a point cloud acquired at very low speed provides a dense image locally. Therefore, we can define a ground truth using this region of the projection. We define a set of 20 masks of same dimension as the ground truth and we randomly set 80% of the pixels to 1. For each method and each mask, we recover pixels of the ground truth where the mask is valued 1, using the rest of the image. Note that the percentage of missing pixel (here, 80%) is defined as the average missing pixels ratio of our dataset. Finally, we compute the average of classical similarity metrics (MSSIM and MPSNR, which are respectively the mean of the SSIMs and the mean of the PSNRs) for each methods on the reconstructed images compared to the ground truth. The results are summed up in Table 1.1 in which we can see that our method outperforms the two other diffusion methods. Figure 1.6 presents one set of results. The Gaussian model as well as our model better succeed in recovering the aspect of the original image. Our method outperforms the Gaussian diffusion by recovering sharper edges. 

Parameters

In practice, the proposed diffusion technique was implemented by solving the PDE system with a first order explicit Euler scheme with respect to the time variable.

The number of iterations has to be chosen in order to fill in stripe holes. It depends on the chosen resolution as very sparse images will require more iterations to fully fill the image. Moreover, a good speed-up can be obtained by using the result of the closest neighbors diffusion of both u 0 and h 0 as the initialization for the proposed model as it drastically lowers the number of required iterations. The weighting term for the reflectances α should be higher than the one for the height β in order to completely block the diffusion in case of large height variation while connecting close pixels. Practical details will be given in section 1.6.1. Note that only unknown pixels in M proj should be updated to prevent oversmoothing the final images.

Inpainting of occlusions

After the projection, some holes are not only caused by some undersampling but also by the beam being blocked by an object (cars, poles, lights, pedestrians or 1.5. Inpainting of occlusions bikes) before reaching the ground. This leads to a ground projection with a lot of information at the edge turned toward the sensor, but nothing when going further. As occlusion holes are wider than stripe holes, the diffusion algorithm proposed above is not suitable in order to reach a visually satisfying result. In this section, we first see how occlusion holes are detected in the image. We then present the problem of texture synthesis in our case and we give a first solution. Finally, we introduce an improvement to this solution based on assumptions made on the urban scenario.

Occlusion hole detection

The occlusion detection consists in defining which holes are caused by the sampling rate and which holes are caused by a blocking of the laser beams. This can be done by applying mathematical morphology on the projection mask M proj before diffusion where each known pixel is valued 1 and all other pixels are valued 0. At this point, everything with the 0 value is considered as occlusion holes.

Having M proj , a simple morphological operation known as closing (Serra, 1982) is enough to detect occlusions and build the occlusion mask M occ . The closing consists in applying a dilation of a certain radius to the mask and then to apply an erosion of the same radius. This leads to a closing of small 0-labelled areas surrounded by ones. Choosing wisely the radius of the closing ensures that undersampling holes are eliminated while preserving the shape and the position of the occlusion holes.

Unfortunately, the resulting mask does not consider the boundaries of the scene, and it tends to extend further. We recall that when projecting the point cloud (Section 1.3), a Γ envelop is computed in order to define the boundaries of the scene. Thus, we consider the intersection of the computed mask and the Γ envelop to prevent the mask from expending outside of the ground region, typically inside of buildings or in regions too far from the sensor (Figure 1.3).

Examplar-based inpainting

Among the variety of different inpainting algorithms, examplar-based algorithms are known for being more effective and more reliable in filling large areas (with large internal radius). Examplar-based inpainting consists in trying to find the best candidate in the known region of the image for the patch centered on a pixel lying on the border of the hole. Once found, the candidate is used to fill the unknown part of the image by copying the color in its central pixel [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF] or the full patch [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF]. The operation is repeated until the hole is fully closed. More recent approaches, such as (Daribo and Pesquet-Popescu, 2010) or [START_REF] Wang | Stereoscopic inpainting: Joint color and depth completion from stereo images[END_REF] reconstruct the texture using both color information and depth information. However these algorithms require different acquisitions of the same view, which is not applicable in our case as we aim at performing the reconstruction on a single acquisition pass.

The urban scenario presents a huge variety of structures (roads, pavements, stairs, gutters) as well as many different textures (roads, cobbles, floor tiles). Thus, we decided to base our work on the Criminisi et al. [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF] algorithm that was designed for the good preservation of the structures in the reconstruction. More complex approaches exist that rely on the work presented in [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF] such as (Buyssens et al., 2015b) and [START_REF] Lorenzi | Inpainting strategies for reconstruction of missing data in VHR images[END_REF] however it would have been less intuitive to adapt them to our context. In [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF], authors put forward the idea that the order in which areas are reconstructed have a high impact in the final result. They introduce a priority term that takes into account the strength and the direction of the image's gradient at the border of the unfilled area. A patch that contains a strong gradient in the direction orthogonal to the border of the region to reconstruct is evaluated before more uniform patches.

Modification to the original algorithm

Coupling reflectances and heights The algorithm presented in (Criminisi et al., 2004) offers a very good technique for region filling. However, it can fail when the area to fill is very large. Therefore, we introduce a modification to the algorithm by taking the height information into account as a guide for the reconstruction.

The idea is to use the height information to restrain the selection of best candidate patches to the areas of similar height by computing the Sum of Squared Differences of the candidate patch in both the reflectance and the height images. The Sum of Squared Differences (SSD) is defined as follows:

SSD(P 1 , P 2 ) = i,j∈Ω (P 1 (i, j) -P 2 (i, j)) 2 (1.4)
having P 1 , P 2 the two 2D-patches that are compared and Ω the domain of definition of the image. In our modification, and for each candidate, a score is attributed by combining both channels as follows:

S p (P t , P c ) = SSD(P R t , P R c ) + η × SSD(P H t , P H c ) (1.5)
where P t is the target patch to be filled and P c is a candidate patch. P c can be any patch in the image that has no pixel that belongs to an occlusion hole. However, for speed-up purpose, we can limit the selection of P c to be in a certain radius around P t . η is a regularization parameter and the superscripts R, H denote that the patch is taken in the reflectance image or the height map respectively. The impact of the use of the height map in the synthesis is very noticeable in Figure 1.7. The structure of the road is well preserved using the proposed modification compared to the original algorithm in which artifacts appear after some iterations. These artifacts mislead the reconstruction and the result is visually incoherent.

Taking advantage of urban environment Although the current modification of the algorithm provides a very good solution for filling occlusion holes, the reconstruction can fail sometimes when the hole is very large. This happens for holes that are caused by cars or trucks where the area to reconstruct is significantly larger than regular holes (10 6 pixels at a 1px = 1cm 2 resolution for a standard car and the portion of pavement behind it) and it can become a common issue. Indeed, at the center of the holes the nearest known information is too far away and the error accumulated along the iterations is likely to fail the reconstruction. To improve the results in the concerned areas, we advocate that the structure of a urban environment is very likely to evolve in a similar way to the vehicle path as illustrated in Figure 1.8. Therefore, we can constrain the selection of candidates to patches that are at a similar distance to the sensor than the current patch. The range attribute of the LiDAR image provides this information for each point.

Orthoimage generation from onground LiDAR acquisition

We define the new score equation as follows, using previously introduced notations:

S f (P t , P c ) = 1 + |dist(P t ) -dist(P c )| γ 2 × S p (P t , P c ) (1.6)
having dist(P ) the distance between the sensor and the center of the patch P and γ a regularization parameter that constrains the selection of patch to a range interval around the current range. The range can be accessed everywhere in the image by precomputing a signed distance map of the area to the path of the vehicle (e.g. where the range is the lowest).

Large patches and artifacts When the reconstruction is done at a very high resolution, large patches ( 103 px) are likely to be required in order to correctly represent the structural elements of the image. This might lead to abrupt junctions between reconstructed patches. Therefore, we propose to enhance the copy of the patch by performing the seam carving using graphcuts presented in [START_REF] Rubinstein | [END_REF]. The goal is to compute the optimal cut between P t and P c where they overlap to obtain a seamless result.

Parameters

η should be kept under 1 to ensure the visual coherence of the reconstruction. Parameter γ depends on the size of the occlusion. When γ = 1, the regularization is very strong and the selection of the candidate patch is constrained on a narrow band of same distance to the sensor point. When the value of the parameter is highly increased (γ > 10 4 ), no regularization operates and the algorithm behaves as if the range was not taken into account. Therefore, one can alternate between these two values for γ depending on the internal radius of the occlusion (see next section).

Results

We conclude this chapter by presenting different results obtained using the proposed framework. We first present a general set of parameters for an automatic reconstruction of a set of orthoimages. We then demonstrate the efficiency of the solution by showing various results and comparison to existing methods. After that, we validate the quality of the framework using numerical criterions. Finally, some details about the computation time are drawn.

Parameters

In the same way as other pipelines, this one comes with a set of parameters that was used for producing every images displayed in this chapter.

Results

Projection The objective of this study was to provide very high quality orthoimages. Therefore, all reconstructions were done with a resolution of 1px = 1cm 2 . A threshold of 60cm from the road level was used to filter out points after the computation of the envelop.

Diffusion For the diffusion step, we found the best balance of results by setting α = 5, β = 0.7 with 3 iterations and by first interpolating u 0 and h 0 using the nearest neighbor algorithm.

Mask extraction In this step, a closing radius of 6px was enough to fill stripe holes while leaving occlusions intact.

Inpainting At 1px = 1cm 2 , the chosen patch size was 43x43px to fit the smallest structuring element (cobbles). In all our experiment, η = 0.2 ended up being a very good choice. Finally, we set the value of γ to 0.3 or 10 6 , the choice being made by automatically checking whether the internal radius of the evaluated occlusion was higher than 50cm or not.

Qualitative analysis

A quick glance at the difference between traditional aerial orthophotography and MLS orthoimage using our framework is given in Figure 1.9. The resolution provided by a typical aerial camera is between 5cm 2 and 10cm 2 per pixel (while advanced acquisition systems have reached up to 3cm 2 per pixel), where our reconstruction is done at 1cm 2 per pixel. Fine textures and very precise details are noticeable in the reconstruction whereas only main structures can be seen in the aerial orthophotography. Moreover, the aerial orthophotography presents various occlusions such as trees that do not appear in our result.

In Figure 1.10, we show a visual comparison between the proposed framework and the method introduced in [START_REF] Vallet | Road orthophoto/DTM generation from mobile laser scanning[END_REF]. We can see that both algorithms perform about the same for stripe holes, but our solution gives more satisfying results for large occlusions. The texture is better reconstructed using our method. This will be later discussed in Section 1.6.3.

More reconstruction results are displayed in Figure 1.11. Each step of the pipeline is illustrated. We can see on Figure 1.11 top that the framework performs a very good reconstruction on fine details such as cobbles. In Figure 1.11 bottom, 25% (∼ 5.10 5 px) of the area is occluded, mostly due to the presence of cars and poles. However, our framework delivers a plausible reconstruction of the scene, leading to a result that is much more understandable than without any further processing than projection. Finally, Figure 1.12 shows an extreme scenario where the use of the range is relevant as the structure of the scene follows the same path as the road. The environment is fully reconstructed (16%, ∼ 10 6 px) while preserving the structure of the road. In Figure 1.13, the framework is applied on data provided by the Semantic3D dataset [START_REF] Hackel | Semantic3D.net: A new large-scale point cloud classification benchmark[END_REF]. This dataset is aquired using a static LiDAR sensor. There, we can see that the area under the sensor as well as occlusion on the ground are successfully recovered while preserving the fine cobble texture.

The purpose of this pipeline is to generate both reflectance and height orthoimages. In Figure 1.14, we show how the two outputs can be combined in order to obtain a 3D model of the road. Figure 1.14 (a) and 1.14 (b) are the reflectance and height images of the area that is being modelled in Figure 1.14 (c). The 3D model respects the topography of the scene with the junction of the road and a pavement. 

Quantitative analysis

Apart from the visual results, we also provide a numerical comparison between the proposed framework and the one of [START_REF] Vallet | Road orthophoto/DTM generation from mobile laser scanning[END_REF]. Measuring similarities between two images is a tough task as the plethora of different metrics are all designed for a single aspect of the image (color variation, gradient similarity and correlation). In the case of texture synthesis, the similarity cannot be directly compared as the goal is not to obtain exactly the same result, but to obtain visual coherence in the reconstruction. Thus, we advocate that the measure of the standard deviation and the distance between histograms, also known as Wasserstein metric in [START_REF] Rabin | Wasserstein barycenter and its application to texture mixing[END_REF], provides simple and efficient metric for evaluating the quality of our results. Table 1.2 sums up the comparison of the inpainting step on two examples: an image where the hole has been manually removed and an image where the ground truth is available as the vehicle did a second pass in which the occlusion disappear.

For each example, we compute the standard deviation of the region reconstructed by examplar-based inpainting. We also compute the distance between the normalized Areas that present large occlusions are highlighted in green. (c) the final results of our method. In both results, the orthoimage is successfully reconstructed while improving the understandability of the scene.

Results

Figure 1.12: Example of scene that follows the vehicule path. In this case, the use of the range information is very relevant. The green dashed line denotes the vehicle path.

histrograms of the ground truth and each output. For both examples, our method provides a standard deviation that is very close to the ground truth resulting in visually similar textures.

As the proposed framework also reconstructs the height map of the aquired area, we provide a numerical analysis of this aspect. The choice of the metric in that case is quite easier as the height map is more homogeneous than the reflectance image, especially in a urban scenario as can be seen in Figure 1.15. Therefore, the Normalized Mean Square Error is enough to estimate how good the reconstruction is. We found out that in general the mean square error was below 1cm. This validates the proposed framework for the reconstruction of height map.

Computational speed

The performances of the framework in terms of computational speed are mostly affected by the amount of occlusions and the resolution at which the reconstruction is being made. As the framework is composed of several steps, we present the computation time of each step as well as the total time of processing. All the results are given using MATLAB 2015a on a single thread with an Intel Core i5 CPU at 3.40GHz.

The speed of computation is summed up in Table 1.3. The evaluation is done for the reconstruction of the same point set at different resolutions. The choice of resolution and the amount of stripe holes do not affect much the computation time in proportion. However, the inpainting of large occlusions drastically increases the time of computation in the case of very high resolution. The computation speed of this step might be largely improved by using approaches derivated from Patch-Match [START_REF] Barnes | PatchMatch: A randomized correspondence algorithm for structural image editing[END_REF]. Moreover, the framework can be run in parallel as each step is independent of the next ones. 

Conclusion and future work

In this chapter, we have proposed a complete framework to reconstruct high quality ground orthoimages from a point cloud aquired with LiDAR. This framework consists of several steps, which make use of classical modern imaging techniques. By taking into account the multi-modal nature of the data, we propose several modifications of these methods, leading to significantly better results. The framework is designed to work automatically with a set of parameters that ensures satisfying results on a large variety of input data as demonstrated by the results. Our approach performs at least as well as previous techniques. In case of large occlusions or complex textures, it drastically outperforms earlier works in terms of visual quality. Moreover, robustness towards edge and structure conservation in both reflectance and height domain has been demonstrated. This work has been the subject of two publications: [START_REF] Biasutti | Diffusion anisotrope et inpainting d'orthophotographies LiDAR mobile[END_REF] and Biasutti et al. (2019a).

We have seen that diffusion and inpainting algorithms can be used in order to densify the sparse projection of a LiDAR point cloud in order to produce high resolution dense images. In the next chapter, we show how this type of process can be improved by using an extra modality as the support to the densification. Namely, we propose a coupled inpainting method that uses an optical image as the support of the densification of the projection of a LiDAR point cloud.

Introduction

In the previous chapter, we have proposed to create dense orthoimages from orthogonal projections of LiDAR point clouds on horizontal grids by extracting ground points and performing joint diffusion on both reflectance and elevation without any extra material. Theoretically, the same kind of approach could be used on any type of projection of the point cloud on a 2D pixel grid. In particular, it could be used on a projection of the point cloud in the image domain of an optical image provided by the same MMS as the LiDAR data to create a higher level of representation. However, the case of orthogonal projection of a point cloud on an horizontal grid, as well as the extraction of ground points, relies on many priors that cannot all be assumed when changing the context of application.

On the one hand, orthogonal projection on an horizontal plane allows to compare overlapping points to filter out the wanted slice of information (the ground in the case of the previous chapter). On the other hand, ground points extraction relies on the prior that the ground is locally continuous and relatively planar. As a result the remaining points are all representing the same surface, without any ambiguity.

Recently, RGB-D imaging (i.e. images with color and depth channels) have met a lot of success in various applications such as depth-image rendering [START_REF] Zinger | Free-viewpoint depth image based rendering[END_REF][START_REF] Schmeing | Depth Image Based Rendering[END_REF], gesture recognition [START_REF] Ren | Robust part-based hand gesture recognition using kinect sensor[END_REF] or augmented reality applied to traffic simulation [START_REF] Brédif | Image-Based Rendering of LOD1 3D City Models for trafficaugmented Immersive Street-view Navigation[END_REF]. These RGB-D images are mainly produced by combining optical images with non-visual sensors such as Time-of-Flight cameras [START_REF] Kolb | Time-of-Flight Cameras in Computer Graphics[END_REF] that aquire co-registered depth and color images, or Kinect cameras (Zhang, 2012) that use structural light to retrieve depth information. MMS also allow to build sparse RGB-D images by projecting a LiDAR point cloud in the domain of an optical image, as shown Figure 2.1 (a).

The perspective brought by the projection of the point cloud in the image domain often introduces ambiguities as certain points that were visible from the sensors position are not visible from the optical image point of view, as illustrated Figure on 2.1 (b). Moreover, when considering the projection of the point cloud in an image looking forward for example, many discontinuities arise as moving objects are acquired at different temporalities and do not appear at the same locations in the projection and in the image. Therefore, it is required to reconsider the densification of such projections in order to obtain plausible results. Finally, in the previous chapter, the proposed method only relies on the LiDAR point cloud as no extra structural knowledge was available at this resolution. When projecting the LiDAR point cloud in an optical image domain, it is reasonnable to assume that the image can provide supplementary structural information to improve the reconstruction.

The following work has been done together with Marco Bevilacqua during his post-doctorate. I was in charge of the quantitative analysis of this work, which is detailed in Section 2.3. 
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Addressed problem and related works

The problem of creating dense RGB-D images from a LiDAR projection in an image domain is strongly related to the problem of depth densification, also known as depth upsampling. This problem arises from the fact that most modern ToF sensors acquire depth information at a lower resolution than the associated optical image, due to practical constraints and cost limitations. Therefore, it is often required to upsample the depth image to the resolution of the associated optical image.

Although it can intuitively be done by directly interpolating the depth image to the wanted resolution, this often leads to oversmoothed results. To improve the accuracy of the upsampling, more recent methods use the optical image as a guide for the upsampling.

Multilateral filtering A first type of approaches known as multilateral filtering [START_REF] Chan | A Noise-Aware Filter for Real-Time Depth Upsampling[END_REF][START_REF] Yang | Fusion of median and bilateral filtering for range image upsampling[END_REF][START_REF] Garcia | Pixel weighted average strategy for depth sensor data fusion[END_REF] aims at smoothing the depth image with respect to the optical image edges. This enables the preservation of edges of the depth image. Similar approaches are proposed in [START_REF] Park | High Quality Depth Map Upsampling for 3D-TOF Cameras[END_REF] and [START_REF] Huhle | Fusion of range and color images for denoising and resolution enhancement with a non-local filter[END_REF], but using Non-Local Means. Although these methods offers better results than basic interpolation, they tend to make small details disappear in the upsampled depth image. Variational approaches More recently, variational approaches were proposed to better preserve small details as well as strong edges. In [START_REF] Harrison | Image and Sparse Laser Fusion for Dense Scene Reconstruction[END_REF], a method is proposed to assign pixels of the optical image with a depth value, using both image colors and ToF measurement. The problem is posed as an optimization of a cost function encapsulating a spatially varying smoothness cost and measurement compatibility. In the same spirit, the authors of (Ferstl et al., 2013b) present an optimization-based depth upsampling method, which uses an Anisotropic Total Generalized Variation (ATGV) term to regularize the solution while exploiting the optical image information. Another recent algorithm for the upsampling of sparse depth data is presented in [START_REF] Schneider | Semantically Guided Depth Upsampling[END_REF]. The key idea here is to exploit additional object boundary cues (via structured edge detection and semantic scene labelling) together with usual intensity cues in a unique optimization framework. These methods lead to more accurate results than multilateral filtering approaches and they succeed in good preservation of small details in the upsampled depth image.

Although the problem of depth upsampling has similarities with the problem that we aim at adressing, none of the presented methods consider the problem of visibility mentioned above. Indeed, as the depth sensor is located close to the optical camera,
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there is no need to exclude some depth measurement in the upsampling process.

In this chapter, we present a novel approach for the generation of RGB-D images using LiDAR point cloud projection with visibility estimation. Figure 2.2 depicts the scheme of the proposed approach. Given an MMS data set consisting of a LiDAR point cloud and a set of camera images, we choose among the latter a reference color image (I), and we obtain input depth (ζ S ) and reflectance (r s ) images by re-projecting the LiDAR points according to the image geometry. The two LiDAR-originated images are sparse images with irregular sampling and need to be inpainted. We propose to do that jointly and simultaneously estimate the visibility of the input points, within a variational optimization framework. There are three outputs to the algorithm: the inpainted depth and reflectance (ζ and r, respectively), and a binary image expressing the visibility at each point (v).

Model

Let Ω ⊆ R 2 be the "full" image support, and Ω S ⊆ Ω the sparse image support where the input images are defined (i.e. there is at least one LiDAR point ending up there after projection). Given an input depth image ζ S : Ω S → R, an input reflectance image r S : Ω S → R, and the luminance component of their corresponding color image I : Ω → R (defined in the complete domain), the goal is to fully inpaint the depth and reflectance input images to obtain ζ : Ω → R and r : Ω → R, and concurrently estimate a visibility attribute v : Ω S → R. For each input pixel, v indicates whether it is visible from the image view point and should thus be taken into account in the inpainting process. Figure 2.3 reports an example of three possible input images -depth (ζ S ), reflectance (r S ) and camera images -and their respective gradient images.

We model our joint inpainting problem as an optimization problem with three variables, ζ, r, and v, to be estimated. Lower and upper bounds for the values of ζ and r are considered in the expression. The visibility attribute v takes values in [0, 1], where v = 0 stands for "hidden" and v = 1 means that the point is visible from the considered image view point. The model considered consists of four terms:

min ζ∈[ζm,ζ M ] r∈[rm,r M ] v∈[0,1] F (ζ, v|ζ S ) + G(r, v|r S ) + H(v|ζ S , r S ) + R(ζ, r|I) . (2.1)
F (ζ, v|ζ S ) and G(r, v|r S ) are two data-fidelity terms, for depth and reflectance respectively. In both of them the visibility attribute v intervenes. H(v|ζ S , r S ) is a term depending exclusively on v, which represents the total cost of classifying input pixels as non-visible. Finally, R(ζ, r|I) is a regularization term that penalizes the total variation of ζ and r, by also taking into account the color image w. In next sections we will detail all the terms composing (2.1). 

Model

Visibility-weighted data-fidelity terms

The data-fitting terms in (2.1) are meant to enforce fidelity to the original values of depth and reflectance, ζ S and r S respectively. Deviations from the original values are more penalized if the points are considered "trustful"; conversely, for erroneous original measures (e.g. referring to hidden points) larger deviations are allowed. Therefore we use the visibility attribute v to weight the data terms. For the reflectance data-fidelity term G(r, v|r S ) we have the following expression:

G(r, v|r S ) = η 2 Ω S v|r -r S | dx 1 dx 2 , (2.2)
where η 2 is a coefficient weighting the term within the model, and dx 1 and dx 2 express the differential lengths in the two image directions. Note that in (2.2) a

1 -norm error is used. The 1 norm is considered in substitution of the classical 2 measure of the error for its effectiveness in implicitly removing impulse noise with strong outliers (Nikolova, 2004) and its better contrast preservation [START_REF] Chan | Aspects of Total Variation Regularized L1 Function Approximation[END_REF]. As said, weighting by v relaxes the dependence on the input data for those points classified as hidden. The depth data-fidelity term, weighted by the coefficient η 1 , is further divided into two terms, as follows:

F (ζ, v|ζ S ) = η 1 Ω S max(0, ζ -ζ S ) dx 1 dx 2 + Ω S v(max(0, ζ S -ζ)) dx 1 dx 2 = F 1 (ζ|ζ S ) + F 2 (ζ, v|ζ S ) . (2.3)
The basic idea behind this separation is to treat differently over-and under-estimated depths. Points for which the estimated depth is greater than the original value (ζ > ζ S ) most likely correspond to correct input measures, where the over-estimation would be due to the surrounding presence of larger erroneous depths. The expression max(0, ζ -ζ S ) is meant to select this kind of points (over-estimated depths). As they are considered reliable, an unweighted data-fitting term, F 1 (ζ|ζ S ), is imposed. It is easy to see that for these points the visibility attribute v tends to converge to 1, i.e. they are the best candidates for being classified as visible points. Conversely, the hidden points to remove are sought among depth values which undergo under-estimation (ζ < ζ S ). These points are taken into account in the second term F 2 (ζ, v|ζ S ), where the 1 error is weighted by the visibility attribute. Ideally, a fraction of them, the most "problematic" ones, will be classified as hidden (v = 0) and thus not considered in the data fitting cost. 

Removal cost

The second term of the model (2.1) is meant to penalize the total number of hidden points.

H(v|ζ S , r S ) = Ω S α(ζ S , r S )(1 -v) dx 1 dx 2 .
(2.4)

Model

The cost of a single pixel exclusion is proportional to 1 -v, i.e. we have the highest cost for an input pixel when it is totally excluded in the data-fitting cost (v = 0). We individually weight each removal cost, in order to give different importance to each decision visible/hidden. Individual weighting is given by a coefficient dependent on the original depth and reflectance values, α(ζ S , r S ). We generally choose α =

k 1 ζ S + k 2 r S .
The linear dependence of α on the depth and the reflectance "balances" the three terms of (2.1) depending on v, such that k 1 and k 2 appear to be constants.

Coupled Total Variation

Depth upsampling/inpainting methods that exploit corresponding camera images often relate image edges to depth edges. This has shown to improve the quality of the reconstructed depth images.

To couple two images in a total variation framework, we adopt the coupled total variation (coupled TV) of [START_REF] Pierre | Luminance-Chrominance Model for Image Colorization[END_REF]: 5) where λ is a coupling parameter. When λ = 0 the minimization of TV λ encourages the gradient "jumps" to occur at the same locations in a and b. The coupled TV is then a way to align the edges of an image with those of a given one.

TV λ (a, b) = Ω (∂ x 1 a) 2 + (∂ x 2 a) 2 + λ 2 (∂ x 1 b) 2 + λ 2 (∂ x 2 b) 2 dx 1 dx 2 . (2.
In our problem we have three types of images: a color image I, a depth image ζ, and a reflectance image r. Figure 2.3 reports in the bottom row an example of gradient magnitudes related to three images. The gradients of the input depth and reflectance images have been computed after initial interpolation of the latter. As we can clearly see from the image, the color image gradient particularly matches the reflectance one, while being rather dissimilar to the depth gradient. In turn, the reflectance gradient shares some patterns, yet less prominently, with the depth one (e.g. the area at the base of the column, where multiple layers mix and produce a similar effect in the two gradient images). We therefore propose to match the three gradients two by two: depth with reflectance, and the same reflectance with the fixed color image. By using the previous definition of coupled TV (2.5), we express the regularization term as follows:

R(ζ, r|I) = TV λ 1 (ζ, r) + TV λ 2 (r, I) . (2.6)
After detailing all the terms, our model (2.1) can therefore be rewritten as follows, the four terms being still distinct:

min ζ∈[ζm,ζ M ] r∈[rm,r M ] v∈[0,1] η 1 Ω S max(0, ζ -ζ S ) + Ω S v(max(0, ζ S -ζ)) F : Data-fidelity for Depth + η 2 Ω S v|r -r S | G: Data-fidelity for Reflectance + Ω S α(ζ S , r S ) (1 -v) H: Removal cost + TV λ1 (ζ, r) + TV λ2 (r, I) R: TV regularization .
(2.7)
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This model is solved with a primal-dual algorithm. More details can be found in Appendix A.

Experimental results

The method is evaluated with a dataset acquired by the Stereopolis-II [START_REF] Paparoditis | Stereopolis II: A multi-purpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF] composed of LiDAR measures and camera-originated images. With this data set, we provide a qualitative evaluation of our algorithm in comparison with other methods, by showing the reconstructed depth and reflectance images, and we assess the quality of the visibility estimation task, which is a crucial characteristic of our algorithm. Moreover, we also provide a quantitative analysis on the KTTI dataset [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF]. Before showing results and comparisons, in Section 1 we motivate some critical choices in terms of model and algorithmic parameters. If we observe the input sparse depth image of Figure 2.3, we see that the major problems come from the fact that depth values referring to the building behind the column appear mixed with foreground depths. With our algorithm we are able to resolve these conflicts, as we can see in the inpainted depth image (Figure 2.5a). Part of the input pixels have in fact been removed, i.e. classified as non-visible (v = 0). Figure 2.5c reports the locations of such points in the original depth image. From the histogram of the values of v (Figure 2.5f) it is evident that the algorithm produces a bi-partition of the points according to their visibility attribute. Figure 2.5 shows also the inpainted reflectance and the final depth and reflectance gradients. By comparing the latter to the original gradients (Figure 2.3), we can observe that they end up incorporating elements of the color image gradient, while removing erroneous edges. Moreover, in Figure 2.6, we show the result of the proposed method. There, we can see how precise the resulting depth and reflectance images are. In particular, we can see that the visual ambiguities have completely disappear as no artifact are present in the final image. Further details about parameters as well as more visual results are available in Appendix B. 

Quantitative evaluation with a benchmark data set

As mentioned above, my main contribution to this work was to carry the quantitative analysis of this method. To that end, I used the dataset provided by the KITTI Vision Benchmark Suite [START_REF] Geiger | Vision meets Robotics: The KITTI Dataset[END_REF]. The LiDAR measures are generally used as ground truth for algorithm evaluations. In [START_REF] Menze | Object Scene Flow for Autonomous Vehicles[END_REF] a novel dataset is presented for stereo benchmarking, which considers also moving objects.

By making a special processing on the latter and manually removing erroneous points due to occlusions, ground truth disparity maps are obtained. These maps appear "cleaner" and denser than the input depth images that can be obtained with the raw LiDAR data, and they can therefore be used to evaluate algorithm estimating disparity. To exploit this possibility, as described in (Schneider et al., 2016, Sec. 4.3), we use the ground truth maps of this stereo benchmark data set to have a quantitative evaluation of our depth+reflectance inpainting algorithm. As done by the authors of [START_REF] Schneider | Semantically Guided Depth Upsampling[END_REF], we identify 82 frames (provided ground truth disparity maps) for which we can find correspondences in the raw data set, i.e. a corresponding color image and related LiDAR point cloud. We then use the raw data LiDAR to compute an input depth (e.g. Figure 2.7a) and we use the provided ground truth map to compute a Mean Absolute Error (MAE):

MAE(u 1 , u 2 ) = 1 N i,j∈Ω |u 1 (i, j) -u 2 (i, j)| (2.8)
having u 1 , u 2 are images defined on Ω with N pixels where each pixel intensity represents the depth value. The ground truth maps, although denser than the input maps, are sparse, i.e. they are not defined for all pixels (only about 19% of the pixels have values). Thus, the MAE is computed only for those pixels which are defined in the respective ground truth map. We computed the MAE for all 82 frames of the found correspondences, for our method and the ATGV-based algorithm of (Ferstl et al., 2013b). We also compare with a two-step approach, where AGTV-based inpainting is preceded by a hidden point removal (HPR) operation, performed with the algorithm of [START_REF] Katz | Direct visibility of point sets[END_REF]. The resulting average MAEs, which are measured as the average pixel displacement between two disparity maps, are reported in Table 2.1.

ATGV HPR+ATGV Proposed

Average MAE (px.)

2.13 2.07 1.99 When creating the ground truth maps, the authors of the KITTI benchmark data set have removed objects presenting particular issues in terms of visibility. Other objects are instead manually handled (they are removed from the scene and reinserted after fitting a CAD model). Thus, the ground truth maps basically consist of the latter and fixed parts of the scene (e.g. streets and walls) that do not yield any ambiguity. Due to this relative "simplicity" of the data set, the performance in terms of average MAE are rather similar among the three methods (ATGV, HPR+ATGV, and proposed method), with our method obtaining a slightly lower error. Nevertheless, we can observe that the ATGV method of (Ferstl et al., 2013b) produces more artifacts (see, for example, the reconstructed pole on the left in Figure 2.7c, in comparison to Figure 2.7e). Most of these artifacts can be removed by performing a preliminary HPR step (see, in Figure 2.7b, an example of input depth map cleaned out of ambiguous pixel). The combination of a HPR step and the ATGV-based depth upsampling algorithm of (Ferstl et al., 2013b) yields inpainted depth maps with a visual quality comparable to the one of our approach. However, as stated in Section 3, with our approach we keep the advantage of having an all-inone procedure performing jointly inpainting and "soft" visibility estimation (without the need of setting a per-image global threshold as requested by the algorithm of [START_REF] Katz | Direct visibility of point sets[END_REF]). We also expect for our method a greater improvement of the MAE metric and the visual outcome on more complex scenes.

2. Dense depth map from sparse projection

Conclusion

In this chapter, we have presented a strategy to jointly densify depth and reflectance images with the guidance of a co-registered color image, and by simultaneously estimating a visibility attribute for each pixel. The proposed approach is particularly suited for LiDAR and optical data acquired by MMS. By projecting the 3D LiDAR points in the domain of a chosen image, we obtain depth and reflectance images, which suffer of practical issues due to the big diversity of the LiDAR and optical sensor acquisitions. By estimating visibility, we aim at solving one of these issues (i.e. the appearance (in depth and reflectance) of parts of objects taht are non-visible from the image view point, but captured by the LIDAR sensor). Those points are meant to be detected by our algorithm and thus discarded in the densification process. The proposed approach consists in a variational optimization problem, where three variables (depth, reflectance, and visibility) are simultaneously estimated. The superiority of the proposed method compared to the state-of-the-art proves that the visibility estimation is a necessary step and it also indicates that the joint exploitation of depth and reflectance is a key aspect for the success of the algorithm. The mutual benefit comes from the fact that depth is particularly important for the visibility estimation task; in turn, reflectance is crucial in restoring the correct edges, via coupling with the color image. This work has been the subject of the following publication: [START_REF] Bevilacqua | Joint inpainting of depth and reflectance with visibility estimation[END_REF]. However, such heavy variational model uses a lot of computational time. Moreover, some applications require to project the point cloud in point of views that were not acquired with optical cameras. In this case, the use of the proposed method for visibility estimation is not possible. Thus, developping a faster visibility estimation method that relies only on the point cloud is crucial. This is the subject of the next chapter.

Chapter 3

Visibility estimation of a point cloud from a given point of view 

Introduction

The estimation of the visibility of a point cloud consists in assigning a label to each point of the scene: visible if the point lies on an object that is directly visible from a given viewpoint, non-visible otherwise (Fig. 3.1). This task is a typical step for various applications in computer graphics such as in surface reconstruction [START_REF] Zach | A globally optimal algorithm for robust TV-L 1 range image integration[END_REF][START_REF] Shalom | Cone carving for surface reconstruction[END_REF][START_REF] Berger | A survey of surface reconstruction from point clouds[END_REF] in which estimating and removing points that are not visible from a given point of view improves the interpolation and the approximation of the surface to recover. In point cloud rendering and visualization [START_REF] Pintus | Real-time rendering of massive unstructured raw point clouds using screen-space operators[END_REF][START_REF] Bouchiba | High quality and efficient direct rendering of massive real-world point clouds[END_REF], the estimation of the visibility enables better rendering performances as well as an improvement of the scene understanding.

In the previous chapter, we have shown how the estimation of visibility can be used along with optical image in a variational model to produce a better densification of the projection of a LiDAR point cloud. However, such a model is slow as the proposed energy function contains many terms and it requires several thousands of iterations to converge. Moreover, some of the applications mentioned above require to estimate the visibility in novel points of view, where no optical image is available. In this case, the use of the method proposed in Chapter 2 is not suitable. On the other hand, the existing methods [START_REF] Zach | A globally optimal algorithm for robust TV-L 1 range image integration[END_REF][START_REF] Shalom | Cone carving for surface reconstruction[END_REF][START_REF] Berger | [END_REF][START_REF] Pintus | Real-time rendering of massive unstructured raw point clouds using screen-space operators[END_REF][START_REF] Bouchiba | High quality and efficient direct rendering of massive real-world point clouds[END_REF] strongly rely on strict sampling assumptions [START_REF] Berger | A survey of surface reconstruction from point clouds[END_REF]) (e.g. on point clouds with constant density in terms of number of points per cubic meters).

The mutli-modal aspect of MMS data, especially LiDAR and optical, may be leveraged to improve detection, classification and prediction techniques in urban environments [START_REF] Benenson | Ten years of pedestrian detection, what have we learned?[END_REF][START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF]. Therefore, the fusion and the registration of LiDAR and optical data became critical as it is a pres-requisite to increase performances of classification/prediction algorithms. Most of the recent related works strongly rely on good visibility estimates [START_REF] Mastin | Automatic registration of LIDAR and optical images of urban scenes[END_REF][START_REF] Guislain | Fine scale image registration in large-scale urban LIDAR point sets[END_REF].

On the one hand, the majority of actual LiDAR/optical registration techniques that use visibility rely on estimation techniques that were built for point clouds with strict sampling assumptions -meaning that the density of points has to be the same everywhere in the point cloud -that are not met by the LiDAR data on which they operate. On the other hand, point cloud rendering and surface reconstruction methods presented above are not designed to perform on point clouds with variable density. However, the quality of the visibility estimation is a crucial preprocessing step for multi-modal fusion applications as it drastically lowers the ambiguities from one modality to another. 

Related works

There have been many contributions to the state-of-the-art techniques for the estimation of the visibility of a point cloud given a certain viewpoint. In this section, we review the methods that are most relevant to the stated problem.

Surface reconstruction based methods One intuitive way to compute the visibility of a point cloud is to first reconstruct the surface. Indeed, the projection of the surface as a depth map may be used to estimate which points are not visible by simply comparing the depth of each projected point to the observed depth of the surface at the same location. If both measures are similar, the point is visible, otherwise if the points is farther, it is considered as hidden. As some surface reconstruction methods do not require prior knowledge of the visibility, they can be used for visibility estimation. To that end, Surface smoothness approaches [START_REF] Lipman | Parameterization-free projection for geometry reconstruction[END_REF][START_REF] Xiong | Robust surface reconstruction via dictionary learning[END_REF] approximate the surface by locally defining operators that weigh surrounding points in order to estimate the local surface. This constrains the reconstructed surface to fit the point cloud as close as possible while ensuring a certain level of smoothness and preserving sharp features. To deal with large amounts of missing data, Volume smoothness techniques [START_REF] Tagliasacchi | VASE: Volume-Aware Surface Evolution for Surface Reconstruction from Incomplete Point Clouds[END_REF]Huang et al., 2013) exploit the prior of smooth variation of the volume of the reconstructed surface. Unfortunately, these methods are based on strong prior of uniform sampling of the point cloud, which is not suitable for MMS LiDAR point clouds. Primitive based methods [START_REF] Schnabel | Completion and reconstruction with primitive shapes[END_REF][START_REF] Lafarge | Surface reconstruction through point set structuring[END_REF] aim at fitting geometric shapes (i.e. planes, spheres, cylinders, boxes, etc.) in order to reconstruct the scene. However, the complex shapes that can be met in real world scene often jeopardize the results of such methods. Finally, Global regularity approaches (Li et al., 2011a,b;[START_REF] Monszpart | RAPter: rebuilding man-made scenes with regular arrangements of planes[END_REF] take advantage of the repeatability of certain 3. Visibility estimation of a point cloud from a given point of view parts of the scene. These methods have shown great strength for the reconstruction of individual regular shapes such as facades or roads but underperform on realistic complete scenes. Although each technique provides satisfying results on specific scenarios, surface reconstruction is a difficult problem, which often requires additional information, such as normals, sufficiently dense input and uniform sampling.

Convex hull based methods Some methods estimate the visibility based on the local geometry of the 3D point cloud. Based on the raw point cloud (i.e. only 3D positions), [START_REF] Katz | Direct visibility of point sets[END_REF] propose an approach for estimating which part of the point cloud is not self-occluded given a certain viewpoint. This method performs better on closed shapes. First, a spherical inversion is performed on the point cloud.

The goal being to inverse which side of the object is facing the observer. After that, the convex hull of the inverted point cloud augmented by the viewpoint position is computed. The convex hull of a set of points is the smallest convex set that contains all the points, as illustrated in Figure 3.2 (left). Then, points that are lying on the convex hull are considered visible whereas the rest of the point cloud is considered non-visible. This principle is shown in Figure 3.2 (right). The acceptance of concave features is tuned by the sphere radius, which is a global parameter so that this method strongly relies on a uniform sampling of the point cloud. Later, this method was improved to handle small changes in the sampling corresponding to noisy acquisitions in [START_REF] Mehra | Visibility of noisy point cloud data[END_REF]. Here, the authors propose to introduce a threshold that allows to also consider points that are close to the convex-hull. However, this method still relies on constant density in the point cloud. Moreover, the computational cost of the convex hull [START_REF] Barber | The quickhull algorithm for convex hulls[END_REF] can rapidly increase depending on the wanted concavity. Finally, [START_REF] Katz | Direct visibility of point sets[END_REF] and [START_REF] Mehra | Visibility of noisy point cloud data[END_REF] are both designed to perform on point clouds that represent closed shapes, acquired from all directions, which is not realistic in urban scenarios where MMS are not able to scan all surfaces.

Likelihood based methods Different methods aim at estimating the likelihood of a point to be visible, given a point of view, by considering its neighborhood.

The most common methods rely on the estimation of visibility cones in screen-space (e.g. in the domain of a 2D projection) [START_REF] Shalom | Cone carving for surface reconstruction[END_REF], and more recently [START_REF] Pintus | Real-time rendering of massive unstructured raw point clouds using screen-space operators[END_REF]. For each point, a visibility cone is estimated by considering its neighborhood. The aspect of the cone is directly related to the visibility. A point that belongs to a wide cone is more likely to be visible than a point that belongs to a narrow cone. If the line that fits the point of view and the point intersects the cone, and if the cone is wide enough compared to a given threshold, the point is considered visible. This principle is illustrated on Figure 3.3. However, the opening threshold used to consider whether a point is visible or not strongly depends on the point cloud, and can be hard to set. 

Visibility estimation of a point cloud from a given point of view

In the next sections, we propose an automatic screen-space method for estimating the visibility of points in a point cloud given a viewpoint. This method makes no assumptions on the sampling or the density of the point cloud and can therefore performed on any point cloud.

Visibility estimation method

The first contribution of this chapter is a method for estimating visibility in a 3D point cloud that is robust to high sampling variations.

As illustrated in Figure 3.4, points from two objects located at different distances from the given viewpoint overlap in the image plane once projected. In this context, a point is visible only if it lies on the closest object and occluded otherwise. From this observation, we propose an algorithm that considers the neighborhood of a point in screen-space in order to estimate whether this point lies on the closest object or not. The algorithm consists in 4-steps detailed hereafter.

Projection to screen-space Let P be a 3D point cloud, and Φ a viewpoint such that any 3D point Neighbors computation We define N (p) as the set of the N nearest neighbor points of p in the image plane as explained in Figure 3.5(b). The N (p) set can be computed using any K-NN alogrithm with a Euclidean distance. The use of the K-NN algorithm defined in [START_REF] Friedman | An algorithm for finding best matches in logarithmic expected time[END_REF] ensures logarithmic computation time while being parallelizable.

Visibility estimation For each point, we want to determine if it lies on the object in its neighborhood that is the closest to the viewpoint. If so, we can consider it as visible. To that end, we compare its position to the closest and the farthest point of its neighborhood. We define the visibility of each point as follows: (a) (b) The visibility estimation of each point p ∈ P Φ is now given by α p ∈ [0, 1], where α p = 0 means that p is occluded and α p = 1 means that p is surely visible.

α p = e -( dp
Binarization The visibility of a point cloud being a binary notion, we propose the following binarization of α p :

αp = 1 if α p ≥ ᾱ 0 otherwise. (3.2) with ᾱ = 1 Card(P φ ) p∈P φ
α p the mean of the estimated visibilities. Note that various ᾱ values have been tested such as ᾱ = 0.5 or the median value of the estimated visibilities as discussed in Section 3.5. However, in our experiments on LiDAR data, the mean value remains the best threshold. When point clouds have constant densities, ᾱ = 0.99 appears to be more adequate.

3. Visibility estimation of a point cloud from a given point of view

Visibility estimation dataset for LiDAR point clouds

The evaluation of visibility estimation techniques has mostly been done either by visual analysis or by comparison to degradated synthetic models. In [START_REF][END_REF][START_REF] Katz | Direct visibility of point sets[END_REF], visual results are displayed to show the qualitative performances of each algorithm. In [START_REF] Mehra | Visibility of noisy point cloud data[END_REF], small degradations on synthetic model are applied in order to build groundtruths. Although these methods of evaluation provide convincing results, they do not provide complete and objective quantitative measures on real data. Real data, such as LiDAR, differ from synthetic data in two aspects. The first difference is that the point cloud density is highly variable on real data depending on the distance to the sensor, while constant on synthetic data. The second one is that real urban data only acquire partial representations of each object of the scene as the sensor does not see objects from every possible viewpoints. On the other hand, the synthetic data presented in the related works [START_REF] Shalom | Cone carving for surface reconstruction[END_REF][START_REF] Katz | Direct visibility of point sets[END_REF][START_REF] Mehra | Visibility of noisy point cloud data[END_REF] are always complete 3D objects, which can be seen from any viewpoint. To our knowledge, we proposed the first annoted dataset on real urban LiDAR data, which makes the second contribution of this chapter.

Overview of the dataset

We propose a manually annotated dataset containing over a 1 million points with the label 1 or 0 depending on if the points are visible or not. This dataset has been obtained by manually labeling 3 point clouds acquired by the RobotCar system [START_REF] Maddern | 1 Year, 1000km: The Oxford RobotCar Dataset[END_REF] at different locations, in urban environment. Two of these point clouds are acquired several meters from one another in order to test the stability of visibility estimation methods. The third point cloud corresponds to another location and covers a much wider area which enables testing the limit of methods in case of large distances (> 100m).

Annotations were done manually by comparing the projections of the point clouds to the optical images acquired at the same viewpoints. Figure 3.6 presents an overview of the produced dataset. The first row illustrates each scene as acquired from the optical sensor at each viewpoint. The second row shows the projections of each point cloud in the image domain (with the calibration matrices provided by the Robotcar dataset), where occluded points are highlighted in red. Finally, the third row shows a 3D visualization of each point cloud, with same color code than above. It illustrates the amount of points to be processed as well as the size of the scenes. The statistics of the dataset are summed up in Table 3.1. The dataset proposes different levels of visible / occluded points, as well as different size of the scene.

This dataset is publicly available online1 . The archive contains 3 text files in the .xyz format that correspond to each point cloud. In each file, a line corresponds to [x, y, z, x Φ , y Φ , label] where x, y, z are the 3D coordinates of the point, x Φ , y Φ are the 2D coordinates of the point when projected into Φ and label is the visibility label (0 for occluded points, 1 for visible points). To ensure good understanding of each of the 3 scenes, we also provide the optical RGB image of size 1280 × 960px associated to each viewpoint. 

Experiments & Results

In order to evaluate the performances of our visibility estimation method, we first perform a full numerical and visual comparison between our method and other state-of-the-art methods on 1) the proposed visibility dataset, 2) a point cloud with constant density. Next, we show application of our method to data fusion by performing point cloud colorization from RGB images. All the algorithms are run on Matlab 2018a with a 3.5Ghz CPU.

Evaluation on the Visibility Estimation Dataset

Using our new annotated dataset, we propose an evaluation with two state-of-the-art methods, and with our proposed model, against a groundtruth. For each method, we set all the parameters to their optimal values (e.g. the parameters that give best results against the groundtruth). In our case, we set N = 75 and we detail results for different ᾱ values. We measure the efficiency of each method by computing the following metric:

S(P) = 1 Card(P) P ∈P α p × GT p (3.3)
where GT p corresponds to the annotation of the point P (0 or 1, occluded or visible respectively). This metric aims at capturing the percentage of correctly labeled points provided by each method. The results of this evaluation are displayed in Table 3.2. Table 3.2 demonstrates that our algorithm outperforms each compared methods for the 3 scenes. The best scores are obtained by setting the threshold ᾱ equal to the mean of visibility estimations for our method. This observation is explanable. Indeed, as mentionned above, LiDAR aquisitions only capture pieces of the scene. Thus, objects are represented by one of their face only which makes them well separated from one another. In this sense, when an object overlaps another in screen-space, the mean of the visibility estimations usually represents the visibility of a point that would be in between those two objects. If a point has a visibility estimation above this threshold, it is likely to fall on the closest object, otherwise, it is occluded. Therefore, the mean value can be used when working on LiDAR point clouds because of the way objects are separated from one another, making the method fully automatic in this context.

We also demonstrate that our method operates faster than any other tested method with the ability of treating the whole dataset in less than a second. Moreover, the code is run on a single CPU. Among the 4 steps of the algorithm, the computation of the K-NN is the most time consuming (about 86% of the total running time). Therefore, one can expect much faster running times by operating on GPU with parallel implementation of the K-NN algorithm.

The problem of visibility estimation is a classification problem with two classes: visible and occluded points. Therefore, we enrich our evaluation by computing typical classification metrics for each method and we display them in Table 3.3. For each metric, the best scores are obtained using our method. In particular, our method with ᾱ = 0.5 maximizes the true-positives and minimizes the false-negatives. On the opposite, our method with ᾱ as the median of the estimations maximizes the false-positives and true-positives. Once again, using our method with ᾱ as the mean of the estimations provides a good tradeoff between true-positives/truenegatives and false-positives/false-negatives. The methods of [START_REF] Katz | Direct visibility of point sets[END_REF] and [START_REF] Pintus | Real-time rendering of massive unstructured raw point clouds using screen-space operators[END_REF] tend to over-estimate the visibility of each point, resulting in many occluded points being labeled as visible. This is expressed by the very high percentage of false-positives. We computed accuracy and the F1-score of each method against the ground truth. For both criterions, our method with ᾱ as the mean of the estimation achieves, once again, the best results.

For the task of data-fusion, it is often preferable to discard the maximum of occluded points [START_REF] Bevilacqua | Joint inpainting of depth and reflectance with visibility estimation[END_REF]. Therefore, the number of false-positives has to be kept as low as possible. In this sense, our method provides very satisfactory results, especially using the ᾱ as the mean of estimations when working on LiDAR data.

We conclude this evaluation on LiDAR data by a visual analysis of the results of the different methods. Figure 3.7 shows the results of the visibility estimations visualized in 3D. For each result, the dark cone in the bottom left corner represents the viewpoint. Figure 3.7(a) shows the point cloud colorized with the depth toward the viewpoint (cold colors for close points, hot colors for far points). Figure 3.7(b) shows the annotated groundtruth for this scene, where red points are points that are visible from the viewpoint and dark points are supposed to be occluded. Figure 3.7(c) and 3.7(d) are the results of HPR [START_REF] Katz | Direct visibility of point sets[END_REF] and our method (with ᾱ set as the mean of estimations) respectively. We can see that HPR estimates too many points as visible points, especially on the closest points. On the opposite, our method succeeds in discarding occluded points, and provides a result that is very close to the groundruth. We also illustrate these results as seen from the associated viewpoint in Figure 3.8. For better understanding purpose, Figure 3.8(a) shows an image acquired from the same viewpoint. In Figure 3.8(b), we only display visible points of the groundtruth. Figure 3.8(c) and 3.8(d) shows the results of HPR and our method respectively. We can see once again that HPR labels too many occluded points as visible and it fails to distinguish foreground from background objects. This is mostly because this scene presents very high variations of density. In particular, the center of the road concentrates a very high density of points as the sensor is close from the road. Therefore, the convex-hull has to be relaxed enough to fit this region of the point cloud, which leads to visual abberations on regions with lower density. Our method succeeds to obtain better results in this scene, which demonstrates its robustness against high density variations.

Evaluation on constant density point cloud

In previous section, we demonstrated that our method performs better than other methods for point clouds with high density variations. In this section, we aim at showing that our method remains competitive on constant density point clouds. The Stanford Bunny model is a point cloud (from the Stanford University CG Laboratory) that was created by merging 10 depth aquisitions of a real object and equalizing the density of the fused point cloud. The final point cloud is composed of 31655 points. As each depth acquisition only acquires points that are visible from a single viewpoint, we created a groundtruth by comparing the final point cloud to the points that were aquired at a certain viewpoint. Criterion (3.3) and classification metrics have been computed for our method and state-of-the-art methods. Results are displayed in Table 3.4.

Here, the point cloud is of constant density and it represents a very smooth object as illustrated in Figure 3.10. This is a scenario that is perfectly adequate for the HPR algorithm, which shortly outperforms the two other methods. Our method is outperformed only by about 1 percent but it still remains very efficient on these types Rows are respectively: the results in 3D, the results in 2D (seen from the viewpoint), and a zoom of the 2D result focused on the ear region. The 3 methods succeed very well in estimating the visibility. Our method misses some points that are tangent to the viewpoint, as it can be seen on the last row, but still succeeds to correctly estimate the visiblity of the remaining points.

of data. Compared to the two other methods, our method fails on tangential points that are located at the boundaries of the projection of the object as it is presented on the last row of Figure 3.10. This is mostly because on tangential points, the neighborhood covers only a small area, thus the difference between foreground and background is thus hard to set. These artifacts are limited when using the mean of estimation as visibility threshold, but it increases false-positives. Table 3.4 also illustrates the classification metrics. We can see that all tested methods reach very good levels of accuracy and F1-score. Our method succeeds better when ᾱ = 0.99 than when using the mean value. Indeed, for complete objects, there is no separation between foreground object and background object as was the case for LiDAR point clouds. Only points with high likelihood should be kept to improve results, which justifies ᾱ = 0.99.

Finally, Table 3.4 assesses that all methods limit the appearance of false-positives while ensuring to gather as many visible points as possible. To that end, HPR and our method succeed the best true-positive/false-positive ratio, which is ideal for data-fusion purposes, as discussed in next section.

Example of application to data fusion

To conclude our experiments, we show the interest of our visibility estimation for the task of data fusion. Using the KITTI dataset, we aim at colorizing a 3D LiDAR point cloud acquired in a street using only RGB images. Each point is projected in the image domain of the closest image (e.g. the image that was acquired at the closest position from the point). The point then takes the color of the pixel it projects onto only if it is considered visible. Figure 3.9 presents the result of the colorization on a point cloud composed of 3289533 points, and it is colorized using 40 RGB images. Figure 3.9(a) shows the colorization result where all points are considered visible. We can see that artifacts appear as the colors do not match the objects. This is particularly noticeable behind cars where the ground points take the color of the car. Figure 3.9(b) displays the colorization result where the visibility is estimated using HPR. There, some artifacts appear behind cars as the convex-hull go through the glasses of the car. Moreover, this method discards many visible points on the ground and behind cars compared to our method (about 17% less points are colorized). Figure 3.9(c) presents the colorization result using our visibility estimation method. The artifacts behind cars have completely disappeared, while keeping most of the visible points. Finally, due to the number of points, visibility estimation using HPR for each viewpoint takes an average of 10.9 seconds whereas our method processes the point cloud at each viewpoint in about 1.2 seconds.

Conclusion

In this chapter, we have proposed a novel method for visibility estimation in a point cloud. Compared to other methods from the literature, this method is very robust to high variations of density. By considering the closest neighbors of each point in screen-space, we defined a criterion in order to automatically determine the visibility of each point. We have also proposed a new annotated dataset for testing the efficiency of point cloud visibility algorithms on real LiDAR urban data. This dataset is composed of over a million of manually annotated points. Finally we have compared our method to the state-of-the-art. We have validated that our method significantly outperforms existing methods on real urban data. Although our method was specifically designed for the estimation of visibility on point cloud with various density (such as LiDAR point clouds), we have also demonstrated that it still remains competitive on point clouds with constant density. This work was published in (Biasutti et al., 2019d).

Conclusion of the first part

This part of the thesis details how image processing techniques can be used to produce high resolution products using MMS data. To that end, we have proposed to consider a sparse projection of the point cloud onto a 2D pixel grid instead of directly operating on the raw point cloud.

Orthoimages A first method was proposed for the generation of subcentimetric orthoimages from LiDAR point cloud. The proposed method offers to project ground points onto a 2D-pixel grid, producing a sparse orthoimage. Empty pixels that come from the undersampling of the acquisition are then filled using a PDE-based method whereas large holes that correspond to non permanent objects are filled with a patch-based inpainting method. This framework succeeds in the generation of highresolution orthoimages that can be used to satisfy novel European regulations.

This method strongly relies on the estimation of ground points, which assumes that the ground is flat in the area close to the acquisition vehicle. This is relevant as the computation of a large area is often decomposed in the computation of smaller areas, called tiles. However, if a very large area is considered, such assumption might be erroneous. Thus, more complex ground extraction method could be used to increase the robustness of the model, such as the deep-learning approach presented in [START_REF] Velas | Cnn for very fast ground segmentation in velodyne LiDAR data[END_REF]. Moreover, filling large occlusions in a very large orthoimage might drastically increase the computational time. Thus, a good speed-up could be obtained by using the method proposed in [START_REF] Barnes | PatchMatch: A randomized correspondence algorithm for structural image editing[END_REF] with the same metric as presented in Section 1.5.

RGB-D images

The task of RGB-D image generation from MMS data was also investigated. To that end, we proposed a novel variational approach to densify the sparse projection of a LiDAR point cloud in an optical image domain. The proposed energy functional is able to successfully densify the projection while taking visibility ambiguities into account.

However, because de energy functional is composed of many terms, its optimization requires many iterations. We believe that the visibility term could be replaced by a visibility estimation preprocessing step based on the method presented in Chapter 3. Another track of improvement could be about taking moving into account during the diffusion process. Indeed, because of the way LiDAR sensors and optical image perform acquisition, there might be a time delay between the acquisition of the optical image and the acquisition of the LiDAR points. This delay might decorrelate both modalities, leading to artifacts in the output of the method.

Visibility We have concluded this part by presenting a method to estimate visible points of a point cloud with variable density in screen-space. First, the point cloud is projected into an image domain. After that, the 2D K-NN are computed for each projected point. Then, we proposed a criterion that estimates whether a point is visible or not depending on its neighbors in screen-space. The proposed method outperforms existing methods on point clouds with variable density while remaining competitive on synthetic homogeneous point clouds.

The evaluation of this method could be extended to photogrammetric point clouds (i.e. points clouds that are constructed by the analysis of many). Indeed, when building these point clouds, the color of the images is projected onto each point. Therefore, the visibility of such point clouds can be directly estimated by comparing the color carried by each point to the value of the pixel it projects into given a viewpoint. Moreover, we would like to investigate other application of the proposed method, as discussed in Chapter 8.5.

Part II Image processing on 3D LiDAR point clouds in sensor topology

Summary

In the first part, we have shown how image processing methods can be used to process LiDAR point clouds in specific applications by working on projections of the point clouds. However, each proposed model systematically had to deal with the sparsity of the projections, often requiring an expensive densification step before any other treatment. This densification sometimes also requires a coupling with another modality, mostly optical images. In this case, we assume that both the other modality and the projection are perfectly aligned. Although this is a valid assumption if the calibration of the system is precisely known, it is often not the case. Accurate MMS calibration is a very complicated task as the calibration is exposed to external conditions during the acquisition, which might alter the original settings.

To overcome the problem of projection densification, we investigate how the acquisition pattern of common LiDAR sensors can be used to produce a new type of 2D image that represents the point cloud. Indeed, modern LiDAR sensors follow strict and regular sampling patterns that bring structure to the acqusition. This structure can thus be used to automatically derive a 2D image from a 3D point cloud. Such a 2D image, also named range-image, can be used in many applications while simplifying the formulation of each problem.

To that extent, a full framework for 3D LiDAR point cloud to optical image alignment is proposed. This framework uses a range-image to instantly reconstruct the mesh of the point cloud. Then, a rendering of the mesh in the optical image domain is aligned with the optical image itself using a variational approach.

We also offer to investigate point cloud segmentation using a range-image. First, a region segmentation method is proposed. It is based on a-contrario histogram segmentation that enables online segmentation of massive point clouds. After that, we propose a semantic segmentation approach that uses a convolutional neural network on range-images. This method is more specifically designed for autonomous systems.

The segmentation of an object in the point cloud can be used as a mask in the range-image. We propose a method for efficiently removing these objects from the point cloud. The proposed method takes advantage of the extensive literature of image inpainting to propose an efficient variational approach that operates on range-image to remove objects from the point cloud.

Finally, we conclude this part by showing how this representation can also be used to perform 3D detection on a LiDAR scene by extending an existing model originally introduced for 2D detection on RGB images.

Content

• Chapter 4 introduces the range-image.

• Chapter 5 presents the problem of multi-modal alignment and proposes a novel 2D Image Processing Applied to 3D LiDAR Point Clouds framework for LiDAR to optical image alignment. The framework first intends to reconstruct the mesh of the point cloud using the range-image. Then, a rendering of the mesh in the image domain is aligned with the image using a variational approach.

• Chapter 6 details the problem of both point cloud segmentation and point cloud semantic segmentation. A method for each problem that takes advantage of range-images is then presented.

• Chapter 7 investigates the problem of object removal in 3D point clouds and depth reconstruction. A method is proposed that benefits from the 2D image inpainting literature to operate on range-images.

• Chapter 8 demonstrates how a 2D object detection method can be adapted to perform 3D detection in a point cloud by using range-images.
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Chapter 4

Dense 2D representation of a 3D Li-DAR point cloud 

Problem statement

In the first part of this document, we have studied how 2D projections of 3D LiDAR point clouds can be used to create high resolution products, while simplifying the processings.

However, the projection of a point cloud on a high resolution pixel grid produces a sparse image, in which many pixels do not contain any information. Indeed, the 2D projection of the point cloud does not correspond to a bijection from each 3D point to a pixel. Since many image processing methods implicitely assume that the input image is dense, it is frequently needed to densify such projections such as in Chapter 1 and 2 or to retrieve neighbors of each isolated pixels, as in Chapter 3. These preprocessing steps are often not trivial and they often have an impact on the computational time.

In this chapter, we offer to investigate another way to represent 3D LiDAR point clouds by 2D maps that are intrinsically dense. These representations can be directly extracted from most recent LiDAR sensors, at almost no computational cost. Because this data is dense, it can be used to overcome most of the limitations brought by the projection of the 3D point cloud on a 2D pixel grid as illustrated in the next chapters of this part.

Range-images derived from the sensor topology

We aim at demonstrating that a simplified model of the point cloud can be directly derived from it using the intrinsic topology of the sensing pattern during acquisition. This section introduces the sensor topology and how it can be exploited on various kinds of sensors. 

Sensor topology

Most modern LiDAR sensors offer an intrinsic 2D topology that can be accessed in raw acquisitions. However, this feature started to be considered in the literature only recently:

• for surface reconstruction in [START_REF] Guinard | Sensor-topology based simplicial complex reconstruction from mobile laser scanning[END_REF].

• for semantic segmentation in [START_REF] Landrieu | Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning[END_REF], [START_REF] Wu | Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d LiDAR point cloud[END_REF], [START_REF] Bichen | Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud[END_REF] and [START_REF] Yuan | Pointseg: Realtime semantic segmentation based on 3d LiDAR point cloud[END_REF].

• as extra input data for 3D detection in (Chen et al., 2017a).

• for ground extraction in [START_REF] Velas | Cnn for very fast ground segmentation in velodyne LiDAR data[END_REF].

• for graph computation and pointcloud compression [START_REF] Bletterer | Une approche basée graphes pour la modélisation et le traitement de nuages de points massifs issus d'acquisitions de LiDARs terrestres[END_REF].

However, this property of the LiDAR sensors is often only partially presented. Namely, LiDAR points may obviously be ordered along scanlines, yielding the first dimension of the sensor topology, linking each LiDAR pulse to the immediately preceding and succeeding pulses within the same scanline. For most LiDAR devices, one can also order the consecutive scanlines. It amounts to considering a second dimension of the sensor topology across the scanlines as it can be seen in Figure 4.1.

From sensor topology to range-image

The sensor topology often varies with the type of LiDAR sensor that is being used. 2D LiDAR sensors (i.e., featuring a single simultaneous scanline acquisition) such as the one used in [START_REF] Paparoditis | Stereopolis II: A multi-purpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF] generally send an almost constant number H of pulses per scanline (or per turn for 360 degree 2D LiDARs) where each pulse was emitted at a certain θ angle value. Therefore, any measurement of the sensor might be organized in an image of size W ×H, where W is the number of consecutive scanlines and thus a temporal dimension. This is illustrated in Figure 4.2 in which one can see how the 2D image is spanned by the sensor topology. In this thesis, such images are only built using the range measurement as pixel intensity, later refered to as range-images. Note that these range-images differ from typical range-images (Kinect, RGB-D) as the origin of acquisition is not the same for each pixel and the 3D directions of pixels are not regularly spaced along the image, but warped by the orientation changes of the sensor trajectory.

3D LiDAR sensors are based on multiple simultaneous scanline acquisitions (e.g. H = 64 fibers) such as in the MMS proposed in [START_REF] Geiger | Vision meets Robotics: The KITTI Dataset[END_REF]. Again, each scanline contains the same number of points and each scanline may be stacked horizontally to form the same type of structure, as illustrated in Figure 4.3. Each point is defined by two angles and a depth, (θ, φ, d) respectively, with steps of (∆θ, ∆φ) between two consecutive positions. Each point p of the LiDAR point cloud can be mapped to the coordinates (x, y) with x = θ ∆θ , y = φ ∆φ of a range-image. Note point clouds is supported by the trajectory-warped geometry of 3D rays. However, it readily provides, with minimal effort, an approximation of the immediate 3D point neighborhoods, especially if the sensor moves or turns slowly compared to its sensing rate. We argue however that this approximation is sufficient for most purposes, as it has the additional advantage of providing pulse neighborhoods that are reasonably local both in terms of space and time. It is thus robust to misregistrations, and very efficient to handle (constant time access to neighbors). Moreover, as LiDAR sensor designs evolve to higher sampling rates within and/or across scanlines, the sensor topology will better approximate spatio-temporal neighborhoods, even in the case of mobile acquisitions. We argue that most raw LiDAR datasets contain all the information (scanline ordering, pulses with no echo, number of points per turn...) to enable the access to a well-defined implicit sensor topology. However it sometimes occurs that the dataset received further processings (points were reordered or filtered, or pulses with no return were discarded) or that the sensor did not acquire neighboring points consecutively. Therefore, the sensor topology may then only be approximated using auxiliary point attributes (time, θ, fiber id...) and guesses about acquisition settings (e.g. guessing approximate ∆time or ∆θ values between successive pulse emissions). Using this information, one can recreate the range-image by stacking points even if some points were discarded. Defining a grid-like topology is a good approximation if the number of pulses per scanline/per turn is close to an integer constant with relatively stable rotation offsets between pulses.

Interest and applications

The use of a range-image as a simplified representation of a point cloud directly brings spatial structure to the point cloud. Therefore, retrieving neighbors of a point, which was formerly done using advanced data structures [START_REF] Muja | Scalable Nearest Neighbor Algorithms for High Dimensional Data[END_REF] or by computing geometrical neighbors in projection (Biasutti et al., 2019d), is now a trivial operation and is given without any ambiguities. Range-images have 4.3. Interest and applications also proved to be a very efficient data structure for simplified 2D representations of point clouds. Indeed, a typical 2D projection of a point cloud produces a sparse image in which most of the pixels are filled with no information. Moreover, to prevent two different pixels from falling in the same pixel when being projected, the dimension of the image is required to be very large. This is often a limitation for many computer vision and deep-learning methods. On the other hand, a rangeimage is a canonical representation of a point cloud in the sense that it only requires as many pixels as there are points in the point cloud to represent all the information. The theory and the interest of the range-image has been the object of a publication [START_REF] Biasutti | Range-Image: Incorporating sensor topology for LiDAR point cloud processing[END_REF].

In the next chapters, we show that considering the range-image that corresponds to a point cloud supported by its implicit sensor topology, rather than the point cloud itself, enables the adaptation of many existing image processing approaches to LiDAR point cloud processing (e.g.: segmentation, semantic segmentation and disocclusion in Chapters 6 and 7) or mutli-modal processing (e.g.: registration and detection in Chapters 5 and 8), without any preprocessing step.

Chapter 5 Point cloud to image registration
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Introduction

As mentioned in previous chapters, Mobile Mapping Systems can be used on wide acquisition campaigns led in cities, on roads, on highways, resulting in the production of very large -multi-modal -datasets, thanks to sensors that acquire different aspects of the scene. However, due to the complexity of such acquisition systems, the calibration from one sensor to the other is often flawed. This can be caused by the instability of the sensors throughout a mobile acquisition, where the calibration slowly deteriorates while the system is being operated. Therefore, the different modalities are slightly misaligned which can compromise further processing requiring mutli-modal data fusion.

For example, point cloud colorization can be achieved by projecting the color information of the optical image on the LiDAR point cloud. However, a slight misalignment can result in colors being projected on points that do not belong to the correct object, which is particularly visible on object's silhouettes. Mutli-modal object detection also requires a good alignment. Indeed, such methods usually feed both optical images and LiDAR point clouds to neural networks, or more generally to classification methods, in order to estimate the location of each object in the scene. Misalignment between both modalities might confuse the network as both data end up indicating different locations, resulting in bad performances.

Although it is possible to interactively reduce this misalignment by visually inspecting both data in the same domain, it is often practically infeasible as the datasets are typically composed of thousands of examples. The automatic alignement of LiDAR data to optical image is therefore a crucial issue.

The problem of LiDAR to image alignment raises several issues. First of all, direct comparison between the two modalities can only be done if they share common attributes (colors or reflectances). However, in many systems, each sensor solely acquires a specific aspect of the scene. For example, LiDAR sensors acquire the geometry of the scene whereas optical cameras acquire the visual information. Moreover, optical sensors and LiDAR sensors are located at different positions on the MMS, and they often operate differently. For example, optical cameras instantly acquire a single point of view, whereas 2D LiDAR sensors require the MMS to move in order to acquire the geometry of the scene. This implies that the different sensors do not acquire the scene from the same point of view, resulting in visual ambiguities. The correlation between both modalities is therefore irrelevant for some parts of each data as they have not been observed by the other sensor. 

Mutli-modal alignment

Multi-modal registration has been a subject of interest over the past decades. In this section, previous works on multi-modal registration as well as previous works on LiDAR to optical image are introduced.

Mutli-modal image registration

In computer vision, registration methods often consist in the detection and the matching of corresponding features from two different modalities. Feature points are extracted using common methods (SIFT (Lowe, 2004) or SURF [START_REF] Bay | SURF: Speeded Up Robust Features[END_REF]), or more specific adaptations [START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF][START_REF] Rublee | ORB: An efficient alternative to SIFT or SURF[END_REF]. These features are then matched using the RANSAC algorithm [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF] to estimate the optimal transformation, as it can be seen in many biomedical imaging works [START_REF] Allaire | Full orientation invariance and improved feature selectivity of 3D SIFT with application to medical image analysis[END_REF][START_REF] Paganelli | Scale Invariant Feature Transform as feature tracking method in 4D imaging: a feasibility study[END_REF][START_REF] Toews | Feature-based alignment of volumetric multi-modal images[END_REF]. However, these methods rely on strong similarities between each modalities which can be limited in a mutli-modal context. This problem can also be solved using variational approaches. In this case, the optimal alignment can be defined as the maximum of a given metric, typically Mutual Information (Viola and Wells III, 1997) or Cross-correlation [START_REF] Roshni | Using mutual information and cross correlation as metrics for registration of images[END_REF], which aim at finding correlations between two distributions of intensities. These methods perform well as long as there exists a bijection between both modalities (e.g. between CT and MR images) which is not the case between 3D points and optical images. Another approach presented in [START_REF] Sutour | Edge-based multi-modal registration and application for night vision devices[END_REF] aligns the gradients of both modalities, thus being agnostic to any correlation between the modalities. To that end, the authors assume that different modalities share some common strong gradients. The problem is formulated with the following energy function:

C(T ) = Ω ∇u 1 (T tx,ty,z (X)) • ∇u 2 (X) dX (5.1)
where u 1 , u 2 are the two modalities and T tx,ty,z is the 2D homogeneous transformation matrix that should best align u 1 over u 2 . The proposed functional is not convex so
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that both modalities are assumed to be intialized close to the optimal alignment. Although this method provides an effective solution to the problem of multi-modal fine alignment, it only estimates translation and scaling without rotation. Moreover, it implies that gradients can be computed on both modalities, which is not trivial when dealing with sparse projections of 3D points.

LiDAR to optical registration

The problem of LiDAR to optical registration can be divided into three main kinds of approaches: 2D feature-based, 3D-based and statistical methods.

2D feature-based methods aim at establishing correspondences between feature points of the optical image and the point cloud projected in the optical image domain.

In [START_REF] Moussa | An automatic procedure for combining digital images and laser scanner data[END_REF], the authors propose a method that uses ASIFT features [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF] to match a colorized point cloud with an optical image. Aberrant correspondences are then filtered out using RANSAC [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF]. The final 3D pose is estimated by solving a Perspective-n-Point problem [START_REF] Lepetit | E-PnP: An accurate o(n) solution to the PnP problem[END_REF] in which the 2D coordinates of feature points in the optical image is associated with the 3D locations of the corresponding feature points in the point cloud. [START_REF] González | An automatic procedure for co-registration of terrestrial laser scanners and digital cameras[END_REF] propose a method for estimating the location of an optical image relatively to a 3D colorized point cloud of the same scene. The image is first enhanced to increase its contrasts. Then, the projection of the point cloud is manually resized in order to fit the optical image as well as possible. After that, correspondences are estimated by averaging cross-correlation and least square metrics. Finally, the 3D pose is retrieved using RANSAC. This method assumes that the original image and the point cloud are acquired at very close location otherwise the distortion brought by the resizing method would affect the correspondence finding step.

Although 2D feature-based methods provided straight forward ways to estimate the optimal alignment between optical image and point cloud, they typically rely on shared information between the two modalities. This can be a major drawback on light acquisition system where the LiDAR sensor only acquires 3D related data.

3D-based methods offer to align the 3D LiDAR point cloud with the 3D reconstruction of a set of optical images. [START_REF] Corsini | Fully automatic registration of image sets on approximate geometry[END_REF] propose a two-step method for 3D-based point cloud to image alignment. First, a 3D sparse point cloud is reconstructed from a set of input optical images by using Structure From Motion (SFM) algorithm. The SFM algorithm is designed to find 2D correspondences in images of an input set of images and to regress the 3D pose of each image as well as the 3D position of each feature point, producing a sparse point cloud. After that, the 4-points congruent set [START_REF] Aiger | 4-points congruent sets for robust pairwise surface registration[END_REF] algorithm is used to align the sparse 3D point cloud with the 3D LiDAR point cloud. Later, [START_REF] Abayowa | Automatic registration of optical aerial imagery to a LiDAR point cloud for generation of city models[END_REF] propose a similar method for aligning a 3D LiDAR point cloud with a set of aerial optical images. A dense 3D point cloud model is built from the set of optical images using the dense 3D reconstruction method described by [START_REF] Furukawa | Accurate, dense, and robust multiview stereopsis[END_REF]. Then, the pose of the dense point cloud is recovered by using Iterative Closest Point (ICP) [START_REF] Besl | Method for registration of 3D shapes[END_REF] algorithm in order to minimize the distance error between the dense point cloud and the LiDAR point cloud. Although these methods achieve high quality results, they require a set of input optical images instead of a single image. Moreover, 3D registration methods are largely sensitive to missing data that often appear in real urban LiDAR data.

Statistical methods for point cloud to image registration try to define metrics that can be used to measure similarities between the two input modalities. Most of the time, the metric is computed in the 2D image domain. The work described in [START_REF] Miled | Hybrid online mobile laser scanner calibration through image alignment by mutual information[END_REF] proposes to align the sparse projection of a LiDAR point cloud with an optical image by comparing both modalities using Mutual Information (MI). This metric is used to find the dependency between the colors carried by the optical images and the reflectances brought by the LiDAR point cloud. The pose between the image and the point cloud is computed using a variational model that maximizes the MI metric between the two modalities. This method achieves very convincing results. However it strongly relies on the quality of the reflectances aquired by the LiDAR sensor. In practical use, only very few high quality LiDAR sensors can reach such levels of accuracy. Most common sensors acquire reflectance with high level of noise. Moreover, the reflectance is only relevant in certain scenarios and it cannot be used on wet surfaces or highly reflective surfaces for example. To overcome the problem of using reflectance, a method for the registration of a raw LiDAR point cloud with a single image is proposed in [START_REF] Castorena | Autocalibration of LiDAR and optical cameras via edge alignment[END_REF]. There, the authors propose to align the edges of the interpolated projection of a LiDAR point cloud with the edges of an optical image. However, the interpolation of the projection is only relevant in the case that the LiDAR sensor and the optical image share a close point of view. Otherwise a lot of ambiguities can arise from the LiDAR projection in the image domain which often leads to large errors in the calibration estimation. Later, [START_REF] Guislain | Fine scale image registration in large-scale urban LIDAR point sets[END_REF] proposed a method that aims at aligning only visible points of the LiDAR point cloud with the optical image. To do so, they first estimate the visible points given the optical image point of view using [START_REF] Rubinstein | Improved seam carving for video retargeting[END_REF], which was introduced in Chapter 3. The remaining points are used to produce a dense image of reflectances by performing bilinear inpainting. This dense reflectance image is aligned with the optical image using a metric that is less sensitive to missing data than Mutual Information. In the case when the reflectance is not available, they offer to compute the same metric on a dense normal map of the visible points. This method achieves very good results when the visibility estimation performs well. This is the case when each different objects of the 3D scene are well separated. However, in the case of urban scenes, the amount of missing data as well as the heterogeneity of the shapes and object is very challenging for visibility estimation methods as shown in (Biasutti et al., 2019d). Therefore, the quality of the results on real urban data often lacks of accuracy.

In this chapter, we propose a novel method for LiDAR point cloud and optical image alignment that uses the topology of the LiDAR sensor to generate a dense image without any visibility ambiguities. This dense image is later aligned with the optical image using a variational model. An overview of the proposed approach is shown in Figure 5.1.

Methodology

In this section, we present each step of the proposed framework for point cloud to image registration. The proposed framework is highlighted in Figure 5.1: first, an image is created by rendering the triangulation based on the sensor topology of the point cloud. Then, this rendering is aligned with the optical image using a variational approach to align the gradients of both modalities.

Fast mesh reconstruction in sensor topology

The first step of the proposed framework consists in the reconstruction of the mesh of the point cloud. The problem of mesh reconstruction consists in linking points of a point cloud with triangles in order to approximate the surface of the objects in the scene. Surface reconstruction is traditionally done by smoothness approaches [START_REF] Lipman | Parameterization-free projection for geometry reconstruction[END_REF][START_REF] Xiong | Robust surface reconstruction via dictionary learning[END_REF], primitive approximation [START_REF] Schnabel | Completion and reconstruction with primitive shapes[END_REF][START_REF] Lafarge | Surface reconstruction through point set structuring[END_REF] or global regularity approaches (Li et al., 2011a,b;[START_REF] Monszpart | RAPter: rebuilding man-made scenes with regular arrangements of planes[END_REF]. However, these methods are often computationally expensive. Moreover, they often require strong assumptions on the homogeneity of the point cloud, which is not suitable in the case of LiDAR acquisitions. To overcome these problems, we propose a very fast approach for mesh reconstruction that exploits sensor topology to instantly create a raw mesh from the point cloud. Note that more precise meshes can be reconstructed using the analogue method proposed in [START_REF] Guinard | Sensor-topology based simplicial complex reconstruction from mobile laser scanning[END_REF] but with a substantive impact on the computational time. However this work focuses on the efficiency and the performance of the final alignment between LiDAR point cloud and optical image. Thus, the use of the method proposed in [START_REF] Guinard | Sensor-topology based simplicial complex reconstruction from mobile laser scanning[END_REF] is out of the scope of this work, although it would be interesting to test.

The range-image representation (introduced Chapter 4) of the point cloud enables direct neighborhood computation: the set of neighbors of a given point can be For each pixel (x, y) of the range-image u, 2 triangles ul , bt are created as follows:

ul = {u(x, y), u(x + 1, y), u(x, y + 1)} br = {u(x + 1, y), u(x + 1, y + 1), u(x, y + 1)}
This principle is illustrated on Figure 5.3. After that, triangles are filtered out by discarding the ones that have at least one edge that is longer than a certain threshold t, typically t = 1.0m. This step prevents separate objects from being connected together which enhances the overall quality of the mesh. An example of reconstructed mesh is showed in Figure 5.2(c). Finally, the mesh is being rendered from the optical camera location, with the same intrinsic parameters. This produces a dense image I mesh of the point cloud. As the mesh is not textured, I mesh is filled by the values of the z-buffer of the rendering (i.e. the depth of each pixel). Figure 5.4 displays an example of a sparse projection of the point cloud (b) in the image domain of (a) compared to texture-less rendering (c) and depth rendering (d). We can see that the renderings are largely denser than the sparse projection, resulting in the appearance of strong depth gradients.

Depth to optical image alignment

As mentioned in Section 5.2, the alignment between a LiDAR point cloud P and an optical image I is non-trivial as both modalities do not share any common attribute. The mesh rendering I mesh provides strong depth gradients in the image domain. These gradients correspond to object contours which can also be met in the optical image. Although strong depth gradients can occur without appearing in the optical image, and vice-versa, it is reasonable to assume that most depth gradients also appear in the optical image in real data. Therefore, aligning P and I in the domain of I can be simplified as the alignment between the gradients of I mesh and I. However, this assertion is only true if the initialization of the alignment between 2D Image Processing Applied to 3D LiDAR Point Clouds I mesh and I is relatively close. Indeed, the perspective induced by the 3D rendering introduces deformations that are proportional to the depth of the scene. Thus, if the initialization is too far from the optimal alignment, the alignment between the gradients of I mesh and I is not possible. The method described in [START_REF] Sutour | Edge-based multi-modal registration and application for night vision devices[END_REF] offers to align gradients of two modalities expressed in the same image domain (Section 5.2.1). To that extent, they define a variational model in which gradient alignment between images u 1 and u 2 is done by maximizing the criterion presented Equation ( 5.1) for a 2D affine transform with 3 degrees of freedom: vertical and horizontal translation t x , t y as well as zooming z:

T tx,ty,z (X) =   1 + z 0 t x 0 1 + z t y 0 0 1   X
where Ω is the domain of definition of I. In the case of LiDAR point cloud to optical image alignment, rotation should also be considered in the transform as we cannot assume that the rotation between both sensors is always null. Therefore, we propose to extend the model presented in [START_REF] Sutour | Edge-based multi-modal registration and application for night vision devices[END_REF] in order to estimate rotation as well as translation and zooming. We define Tz,tx,ty,θ the 4 degrees of freedom (t x , t y translation, z zoom and θ rotation) transformation matrix such that: 

C( T ) = Ω ∇I mesh ( Ttx,ty,z,θ (X)) • ∇I(X) dX.
Using this formulation, an explicit optimization scheme is built to maximize the proposed criterion at each iteration n, by performing a gradient ascent on each parameters of the transformation Tz,tx,ty,θ : ( Ttx,ty,z,θ ) where the partial derivatives of C( Ttx,ty,z,θ ) are defined as follows for each iteration:

       t n+1 x = t n x + λ 1 ∂C ∂tx ( Ttx,ty,z,θ ) t n+1 y = t n y + λ 2 ∂C ∂ty ( Ttx,ty,z,θ ) z n+1 = z n + λ 3 ∂C ∂z ( Ttx,ty,z,θ ) θ n+1 = θ n + λ 4 ∂C ∂θ
∂C ∂t x ( Ttx,ty,z,θ ) = Ω σ∇ 2 Īmesh (X) 1 0 • ∇I(X)dX, ∂C ∂t y ( Ttx,ty,z,θ ) = Ω σ∇ 2 Īmesh (X) 0 1 • ∇I(X)dX, ∂C ∂z ( Ttx,ty,z,θ ) = Ω σ∇ 2 Īmesh (X) x cos θ + y sin θ -x sin θ + y cos θ • ∇I(X)dX, ∂C ∂θ ( Ttx,ty,z,θ ) = Ω σ∇ 2 Īmesh (X) -x • s sin θ -y • s cos θ x • s cos θ -y • s sin θ • ∇I(X)dX
having Īmesh (X) = I mesh ( Ttx,ty,z,θ (X)) and σ = sign(∇I mesh (X) • ∇I(X)). The functional we aim at optimizing is not convex. Therefore, it is highly subject to local maxima. However we consider that the alignment we seek to perform only concerns data provided by calibrated MMS. Therefore, the provided alignment of the LiDAR point cloud and the optical image is assumed to be close to the optimal alignment, as discussed here after in Section 5.4.1.

For the gradient ascent scheme, we set λ 1 = λ 2 = 10 -3 to be larger than λ 3 = λ 4 = 10 -5 as the translation expressed in pixel is likely to be larger than the rotation or the zooming factor. We set the maximum number of iterations to 200. However, most of our experiments have shown that the method converges in less than 30 iterations on the data presented in Section 5. 4.

Finally, we propose to improve the gradient ascent scheme by refining the search steps at each iteration. The search step λ n

x at iteration n is then defined as follows:

λ n x = λ n-1 x if C n ( T ) > ρ C n-1 ( T ) λ n-1 x /2 otherwise (5.2)
with C n ( T ) the energy at iteration n, ρ = 0.99. This improvement prevents the algorithm from being directly stuck in a local maxima, and it provides better results in practice as demonstrated in Section 5.4.1. 

Experiments and results

We conclude this chapter by presenting different results obtained using the proposed framework. The proposed pipeline is evaluated on the RobotCar dataset [START_REF] Maddern | 1 Year, 1000km: The Oxford RobotCar Dataset[END_REF] which provides images of resolution 1280 × 960px as well as point clouds composed of millions of points. We demonstrate the efficiency of the proposed method through a quantitative and qualitative analysis.

Quantitative analysis

The calibration of the RobotCar dataset does not provide a perfect alignment between LiDAR point clouds and optical images. We propose to manually align mesh renderings with optical images to create ground truths. We found out that the original data alignment compared to the ground truth alignment presents a Mean
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Absolute Error (MAE) of about 19px for translation, 0.9 degree for rotation and 0.01 for zooming. We propose to apply comparable transformations onto manually aligned renders to generate evaluation data. The transformations are generated by randomly and uniformly shifting the renders between -20 and 20 pixels on both x and y axis, rotating the renders between -1 and 1 degree and zooming by a uniform random factor between 0.95 and 1.05. We compare our method with and without the refinement of the search steps (Equation (5.2)) to the method proposed in [START_REF] Sutour | Edge-based multi-modal registration and application for night vision devices[END_REF], as this method presents the baseline of gradient alignment without the estimation of the rotation. Moreover, we also compare our method to an exhaustive search of the maximum of the Mutual Information (Viola and Wells III, 1997) as done in recent multi-modal alignment methods, such as [START_REF] Miled | Hybrid online mobile laser scanner calibration through image alignment by mutual information[END_REF]. We compute the MAE between each estimated parameter (t x , t y , z, θ) and the ground truth. The results of this experiment are summarized in Table 5.1. We can see that our method achieves very fine alignment of LiDAR point cloud and optical image. The method with refinement of search steps provides finer results than each other method. The use of the functional defined in [START_REF] Sutour | Edge-based multi-modal registration and application for night vision devices[END_REF] as well as the extension presented in this chapter outperforms the exhaustive search with Mutual Information metric.

Moreover, we can see that extending the original functional by adding the regression of rotation improves the results not only in the estimation of the rotation, but also in the overall alignment. This is due to the fact that limiting the transformations to translation and scaling prevents the algorithm from finding the optimal alignment. Therefore, the baseline algorithm finds another local maxima which does not align well both modalities. This shows the importance of predicting the rotation as well as the baseline parameters of the transformation. Finally, the refinement of the search steps prevents the variational model from being stuck in local maxima, which makes it more robust to largely shifted initialization while keeping the same computational cost compared to the method presented in [START_REF] Sutour | Edge-based multi-modal registration and application for night vision devices[END_REF].

Qualitative analysis

We conclude our experiments with a qualitative analysis. Figure 5.5 presents the results of LiDAR point cloud to optical image alignment using our method. The first row shows the original alignment, the second row shows the results of the alignments using our method, with closeup looks at the original alignments and our results on the last two rows respectively. On each image, the strong gradients of the depth renderings are represented by green lines on the optical images.

The results presented in Figure 5.5 highlight that our model succeeds in aligning gradients of both modalities, producing a very good 2D registration between LiDAR point clouds and optical images. From initialization with shifted alignments (shown in the first row), our method produces results where both modalities are seamlessly aligned (second row). In particular, the last row of Figure 5.5 shows some areas where the variational model perfectly matches the renders and the optical images 2D Image Processing Applied to 3D LiDAR Point Clouds on structures that display strong gradients such as roof lines or windows. Moreover, the method only requires to match a small amount of gradients in order to correctly align both modalities. This property makes it more robust to outliers as some gradients of the depth rendering do not correspond to any gradient in the optical image, and vice-versa, as discussed previously in Section 5.3.2. Finally, our method is able to produce good alignment even when initialized with large shifts between both modalities. This is specially visible in the last column where we can see that in the original alignment, the optical image is shifted from the gradients of the depth render. Despite this initialization, our method succeeds in producing a very fine alignment of the two modalities as it can be seen on the lowest line.

Conclusion

In this chapter, a novel framework for LiDAR point clouds to optical images alignment has been proposed. The first step of this framework offers to reconstruct the mesh from the point cloud by exploiting the topology of the sensor. After that, the mesh is rendered with the same pose as the optical image. Finally, the gradients of the rendering and the optical image are aligned using an adapted variational approach, and an method is proposed to refine the search step during the optimization. The qualitative and quantitative results demonstrate that the framework succeeds in very fine alignment between both modalities. The proposed method has been the object of a publication (Biasutti et al., 2019c), currently under review.

Although this registration method achieves very good results, it relies on the assumption that details (mostly objects) that appear in the LiDAR point cloud also appear in the optical image. However, considering the different temporalities between optical and LiDAR acquisition, this requirement cannot always be met in dynamic scenes (vehicles, pedestrians). In this case, segmenting and removing new objects from the point cloud might be needed to improve the coherence between the modalities. This is the subject of the next two chapters: Chapter 6 and Chapter 7.

Chapter 6

Object segmentation

Table of contents

Introduction

MMS tend to acquire mobile objects that are not persistent to the scene. This often happens in urban environments with objects such as cars, pedestrians, traffic cones, etc. As LiDAR sensors cannot penetrate opaque objects, these mobile objects cast shadows behind them where no point has been acquired (Figure 6.1, top). As a result, merging optical data with the point cloud can be ambiguous as the point cloud might represent objects that are not present in the optical image. Therefore, the ability to segment such objects in the 3D LiDAR scene, as illustrated in the bottom Figure 6.1, is crucial for numerous applications, such as the registration method presented in Chapter 5.

To that extent, we argue that exploiting the sensor topology brings spatial structure into the point cloud that can be used for segmentation. This chapter introduces two methods for point cloud segmentation based on range-images: one for region segmentation and the second for semantic segmentation. 

Point cloud segmentation

The problem of point cloud segmentation has been extensively addressed in the past years. It is often separated in two group of methods: region segmentation methods which aim at clustering the point clouds into regions, and semantic segmentation methods which target to label each point according to the nature of the object to which they belong.

Region segmentation

The segmentation of point clouds in regions is usually done either using geometrybased approaches, which directly operate on the 3D point cloud in order to aggregate points of a same region, or by turning the point cloud into a simpler representation beforehand.

Geometry-based segmentation

The first well-known method in this category is region-growing where the point cloud is segmented into various geometric shapes based on the neighboring area of each point [START_REF] Huang | Automatic data segmentation for geometric feature extraction from unorganized 3D coordinate points[END_REF]. Later, techniques that aim at fitting primitives (cones, spheres, planes, cubes ...) in the point cloud using RANSAC [START_REF] Schnabel | RANSAC based out-of-core pointcloud shape detection for city-modeling[END_REF] have been proposed. Others look for smooth surfaces [START_REF] Rabbani | Segmentation of point clouds using smoothness constraint[END_REF]. Although these methods do not need any prior about the number of objects, they often suffer from over-segmenting the scene resulting in objects segmented in several parts.

Simplified model for segmentation MMS LiDAR point clouds typically represent massive amounts of unorganized data that are difficult to handle. Different segmentation approaches based on a simplified representation of the point cloud have been proposed. [START_REF] Papon | Voxel cloud connectivity segmentation-supervoxels for point clouds[END_REF] propose a method in which the point cloud is first turned into a set of voxels which are then merged using a variant of the SLIC algorithm for super-pixels in 2D images [START_REF] Achanta | SLIC superpixels compared to state-of-the-art superpixel methods[END_REF]. This representation leads to a fast segmentation but it might fail when the scale of the objects in the scene is too different. [START_REF] Gehrung | An approach to extract moving objects from MLS data using a volumetric background representation[END_REF] propose to extract moving objects from MLS data by using a probabilistic volumetric representation of the MLS data in order to cluster points between mobile objects and static objects. However this technique can only be used with 3D sensors. Another simplified model of the point cloud is presented by [START_REF] Zhu | Segmentation and classification of range image from an intelligent vehicle in urban environment[END_REF]. The authors take advantage of the range-image (Chapter 4) to segment it before performing classification. The segmentation is done through a graph-based method as the notion of neighborhood is easily computable on a 2D image. Although the provided segmentation algorithm is fast, it suffers from the same issues as geometry-based algorithms such as oversegmentation or incoherent segmentation. Finally, an approach for urban objects segmentation using elevation images is proposed in [START_REF] Serna | Detection, segmentation and classification of 3D urban objects using mathematical morphology and supervised learning[END_REF]. There, the point cloud is simplified by projecting its statistics onto a horizontal grid. Advanced morphological operators are then applied on the horizontal grid and objects are segmented using a watershed approach. Although this method provides good results, the overall precision of the segmentation is limited by the resolution of the projection grid and it leads to the occurence of artifacts at object borders.

Semantic segmentation

The problem of point cloud semantic segmentation has only been studied recently, contrary to image semantic segmentation which had been a very popular computer vision issue over the past decade. Because of our interest for range-images, as well as the plethora of related works for 2D images, we propose to introduce both image and point cloud semantic segmentation.

Semantic segmentation for images Semantic segmentation of images has been the subject of many works in the past years. Recently, deep-learning methods have

Point cloud segmentation

largely outperformed existing methods. The method presented in [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF] was the first to propose an accurate end-to-end network for semantic segmentation. This method is based on an encoder in which each scale is used to compute the final segmentation. Only a few month later, the U-net architecture [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] (later generalized in [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF]) has been proposed for the semantic segmentation of medical images. This method is an encoder-decoder that is able to reach very fine precision in the segmentation. These two methods have largely influenced recent works such as DeeplabV3+ (Chen et al., 2018b) that uses dilated convolutional layers and spatial pyramid pooling modules in an encoder-decoder structure to improve the quality of the prediction. Other approaches explore multiscale architectures to produce and fuse segmentations performed at different scales (Lin et al., 2017a;[START_REF] Zhao | Icnet for real-time semantic segmentation on high-resolution images[END_REF]. Most of these methods are able to produce very accurate results, on various types of images (medical, outdoor, indoor). The review presented in [START_REF] Briot | Analysis of efficient CNN design techniques for semantic segmentation[END_REF] of CNNs methods for semantic segmentation provides a deep analysis of some recent techniques. This work demonstrates that a combination of various components would most likely improve segmentation results on wider classes of objects.

Semantic segmentation for point clouds

The first approaches for point cloud semantic segmentation were done using heavy pipelines, composed of many successive steps such as: ground removal, point cloud clustering, feature extraction as presented in [START_REF] Himmelsbach | LIDAR-based 3D object perception[END_REF][START_REF] Feng | Fast plane extraction in organized point clouds using agglomerative hierarchical clustering[END_REF].

However, these methods often require many parameters and they are therefore hard to tune. Recently, [START_REF] Landrieu | Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning[END_REF] offers to extract features of the point cloud using a deep-learning approach. Then, the segmentation is done using a variational regularization. Another approach called PointNet presented in [START_REF] Qi | Pointnet: Deep learning on point sets for 3D classification and segmentation[END_REF] proposes to directly input the raw 3D LiDAR point cloud to a network composed of a succession of fully-connected layers to classify or segment the point cloud. However, due to the heavy structure of this architecture, it is only suitable for small point clouds. Moreover, processing 3D data often increases the computational time due to the dimension of the data (number of points, number of voxels), and the absence of spatial correlation. To overcome these limitations, the methods presented in (Li, 2017) and it [START_REF] Zhou | Voxelnet: End-to-end learning for point cloud based 3D object detection[END_REF] propose to represent the point cloud as a voxel-grid which can be used as the input of 3D CNN. These methods achieve satisfying results for 3D detection. However, semantic segmentation would require a voxel-grid of very high resolution, which would increase the computational cost as well as the memory usage.

Recently, Wu et al. proposed SqueezeSeg (Wu et al., 2018), a novel approach for the semantic segmentation of a LiDAR point cloud represented as a spherical range-image (Chapter 4). This representation allows to perform the segmentation by using simple 2D convolutions, which lowers the computational cost while keeping good accuracy. The architecture is derived from the SqueezeNet image segmentation method [START_REF] Iandola | SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[END_REF]. The intermediate layers are "fire layers", i.e. layers made of one squeeze module and one expansion module. Later on, the same authors improved this method in [START_REF] Bichen | Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud[END_REF] by adding a context aggregation module and by considering focal loss and batch normalization to improve the quality of the segmentation. A similar range-image approach was proposed in [START_REF] Yuan | Pointseg: Realtime semantic segmentation based on 3d LiDAR point cloud[END_REF], where a Atrous Spatial Pyramid Pooling (Chen et al., 2018a) and squeeze reweighting layer [START_REF] Hu | Squeeze-and-excitation networks[END_REF] are added. These range-image methods succeed in real-time computation. However, their results often lack of accuracy which limits their usage in real scenarios.

Tradeoff between region and semantic segmentation

Regarding LiDAR point clouds acquired using MMS, the goal of segmentation is often to be able to cluster objects in the scene. To that end, semantic segmentation methods generally offer attracting results. However, as mentionned above, accurate methods rely on neural networks which are often limited when the data to process contains too many samples (e.g. a point cloud with millions of points). Therefore, the need for region segmentation methods that are able to efficiently process large point clouds still remains an open issue. Therefore, in the next Sections of this chapter, we propose very fast region segmentation method based on histograms of depth in range-images as well as a CNN based semantic segmentation method. Note that considering instance segmentation is beyond the scope of this thesis. Therefore, not individualizing each separate object is not considered as an error.

Proposed region segmentation method

In this section, we propose a simple yet efficient region segmentation technique based on range histograms.

Methodology

For the sake of simplicity, we assume that the ground is relatively flat and we remove ground points, which are identified by plane fitting. Note that these points could have also been identified using the method proposed in Chapter 1. Instead of segmenting the whole range-image u directly, we first split this image into S subwindows u s , s = 1 . . . S of size W s × H along the horizontal axis to prevent each sub-window from representing several objects at the same range. For each u s , a depth histogram H s of B bins is built. This histogram is automatically segmented into C s classes using the a-contrario technique presented in [START_REF] Delon | A nonparametric approach for histogram segmentation[END_REF]. This technique presents the advantage of segmenting a 1D-histogram without any prior assumption, e.g. the underlying density function or the number of objects. Moreover, it aims at segmenting the histogram following an accurate definition of an admissible segmentation, preventing over-and under-segmentation. An example of a segmented histogram is given in Figure 6.2. Once the histograms of successive sub-images have been segmented, we merge together the corresponding classes by checking the distance between each of their centroids in order to obtain the final segmentation labels. Let us define the centroid C i s of the i th class C i s in the histogram H s of the sub-image u s as follows:

C i s = b∈C i s b × H s (b) b∈C i s H s (b) (6.1) 
where b are all bins belonging to class C i s . The distance between two classes C i s and C j r of two consecutive windows r and s can be defined as follows:

d(C i s , C j r ) = |C i s -C j r | (6.2)
Finally, we can set a threshold such that if d(C i s , C j r ) ≤ τ , classes C i s and C j r should be merged (e.g. they now share the same label). If two classes of the same window are eligible to be merged with the class of an other window, then only the one with lower depth should be merged. Results of this segmentation procedure can be found in the next subsection. The choice of W s , B and τ mostly depends on the type of data that is being treated (sparse or dense). For sparse point clouds (few thousand points per turn), B has to remain small (e.g. 50) whereas for dense point clouds (> 10 5 points per turn), this value can be increased (e.g. 200). In practice, we found out that good segmentations may be obtained on various kinds of data by setting W s = 0.5 × B and τ = 0.2 × B. Note that the windows are not required to be overlapping in most cases, but for very sparse point clouds, an overlap of 10% is enough to achieve good segmentation. For example in our experiments on the KITTI dataset [START_REF] Geiger | Vision meets Robotics: The KITTI Dataset[END_REF], for range-images of size 2215 × 64px, W s = 50, B = 100, τ = 20 with no overlap. 6.3 shows two examples of segmentations obtained using our method on different point clouds from the KITTI dataset [START_REF] Geiger | Vision meets Robotics: The KITTI Dataset[END_REF]. Each object, of different scale, is correctly distinguished from all others as an individual entity. Moreover, both results appear to be visually plausible.

Results & Analysis

Apart from the visual inspection, we also performed a quantitative analysis on the IQmulus dataset (Vallet et al., 2015). The IQmulus dataset consists of a manually annotated point cloud of 12 million points aquired with the Stereopolis-II MMS, in which points are clustered into several classes corresponding to typical urban entities (cars, walls, pedestrian, etc.). Our aim is to compare the quality of our segmentation on several objects to the ground truth provided by this dataset. First, the point cloud is segmented using our technique, using 100px wide windows with a 10px overlap and a threshold for merging set to 50. After that, we manually select labels that correspond to the wanted object (hereafter: cars). We then compare the result of the segmentation to the ground truth in the same area, and compute the Jaccard distance (Intersection over Union) between our result and the ground truth. Figure 6.4 presents the result of such a comparison. The overall distance shows that the segmentation matches 97.09% of the ground truth, for a total of 59021 points, which is very acceptable for such a number of points. Although the result is very satisfying, our result differs in some ways from the ground truth. Indeed, in the first zoom of Figure 6.4, our model better succeeds in catching the points of the cars that are close to the ground (we remind here that the ground truth on IQmulus was manually labelled and thus subject to errors). In the second zoomed-in part, points belonging to the windows of the car were not correctly retrieved using our model. This is because the measure in areas where the beam was highly deviated (e.g. beams that were not reflected in the same direction as the one they were emitted along) is not reliable as the range estimation is not realistic. Therefore our model fails in areas where the estimated 3D point is not close to the actual 3D surface. Note that a similar case appears for the review mirror (Figure 6.4, on the left) which is made of specular material that leads to bad measurements.

In some extreme cases, the segmentation is not able to separate objects that are too close from the sensor point of view. Figure 6.5.a shows a result of the segmentation in a scene where two cars are segmented with the same label (symbolised by the same color). In order to better distinguish the different objets, one can simply compute the connected components of the points regarding their 3D neighborhood (that can be computed using K-NN for example). 

Proposed semantic segmentation method

In this section, we present RIU-Net, our adaptation of the U-net architecture [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] for the semantic segmentation of LiDAR point clouds, as illustrated in Figure 6.6. The method consists in feeding a U-net architecture with 2-channel images encoding range and elevation.

Input of the network

As mentioned above, processing raw LiDAR point clouds is computationally expensive. Indeed, these 3D point clouds are stored as unorganized lists of (x, y, z) Cartesian coordinates. Processing such data, or turning them into voxels involve heavy memory costs. To overcome such limitations, we propose to use a rangeimage named u with two channels: the depth towards the sensor and the elevation.

In perfect conditions, the resulting image is completely dense, without any missing data. However, due to the nature of the acquisition, some measurements are considered invalid by the sensor and they lead to empty pixels, as discussed in Chapter 4. We propose to identify such pixels using a binary mask m equal to 0 for empty pixels and to 1 otherwise.

Architecture

The U-net architecture [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] is an encoder-decoder. As illustrated in Figure 6.7, the first half consists in the repeated application of two 3 × 3 convolutions followed by a rectified linear unit (ReLU) and a 2 × 2 max-pooling layer that downsamples the input by a factor 2. Each time a downsampling is done, the number of features is doubled. The second half of the network consists in upsampling blocks where the input is upsampled using 2 × 2 up-convolutions. Then, concatenation is done between the upsampled feature map and the corresponding feature map of the first half. This allows the network to capture global details while keeping fine details. After that, two 3 × 3 convolutions are applied followed by a ReLU. This block is repeated until the output of the network matches the dimension of the input. Finally, the last layer consists in a 1x1 convolution that outputs as many features as the wanted number of possible labels K 1-hot encoded.

Loss function

The loss function of the semantic segmentation network is defined as the crossentropy of the softmax of the output of the network. The softmax is defined pixelwise for each label k as follows:

p k (x) = exp(a k (x)) K k =0 exp(a k (x))
where a k (x) is the activation for feature k at pixel position x. Defining l(x) as the groundtruth label of the x pixel, we compute the cross-correlation as follows:

E = x∈Ω 1 {m(x)>0} w(x)log(p l(x) (x))
where Ω is the domain of definition of u, m(x) > 0 are the valid pixels and w(x) is a weighting function introduced to give more importance to pixels that are close to a separation between two labels, as defined in [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF].

Training

We train the network with the Adam stochastic gradient optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]) and a learning rate set to 0.001. We also use batch normalization with a momentum of 0.99 to ensure good convergence of the model. Finally, the batch size is set to 8 and the training is stopped after 10 epochs.

Experiments

To test RIU-Net, we follow the experimental setup of the SqueezeSeg approach [START_REF] Wu | Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d LiDAR point cloud[END_REF] for both training and evaluation. Indeed, they provide range-images with segmentation labels exported from the 3D object detection challenge of the KITTI dataset [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF]. They also provide the training / validation split that they used for their experiments, which contains 8057 samples for training and 2791 for validation. Figure 6.6 shows a segmentation result of RIU-Net and the groundtruth both on the range-image (top) and in 3D (bottom). The segmentation in 3D is obtained by labelling the raw point cloud according to the result on the range-image. More results are shown in Figure 6.8. They all highlight how visually similar the results obtained with RIU-Net and the groundtruth are.

Similarly to [START_REF] Wu | Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d LiDAR point cloud[END_REF] and [START_REF] Bichen | Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud[END_REF], we use the Intersectionover-Union (IoU) metric to evaluate RIU-Net and we compare it with the state-ofthe-art:

IoU l = |ρ l G l | |ρ l G l |
where ρ l and G l denote the predicted and groundtruth sets of points that belongs to label l respectively. Table 6.1 presents the results obtained for the segmentation of cars, cyclists and pedestrians, with SqueezeSeg [START_REF] Wu | Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d LiDAR point cloud[END_REF], SqueezeSegv2 [START_REF] Bichen | Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud[END_REF] and PointSeg [START_REF] Yuan | Pointseg: Realtime semantic segmentation based on 3d LiDAR point cloud[END_REF] compared to RIU-Net. The scores of state-ofthe-art methods are taken from the corresponding papers, using the same training conditions. We can see that the results of RIU-Net are comparable to the one of the state-of-the-art, despite the architecture being very simple. Our method achieves better average IoU scores compared to the PointSeg and the SqueezeSeg architectures. Moreover, it outperforms all the compared methods for cyclists. We believe that the increased number of parameters of our model compensate with the fact that the architecture had not been specifically designed for LiDAR point cloud segmentation in sensor topology, contrary to the other methods. The method SqueezeSegV2 is built on the SqueezeSeg architecture, while proposing several modifications (content aggregation modules and fire layers) driven by the specificity of the data. Therefore, it is reasonable to think that comparable results could be achieved with our model by applying the same modifications, however our goal is to keep the architecture simple and as generic as possible. Visual results of our method against the ground truth are displayed in Figure 6.8. Finally, we advocate that the proposed model can operate with a frame-rate of 90 frames per second on a single GPU, which is comparable, if not faster, to state-of-the-art methods and is largely over the standard requirements of real-time applications. Table 6.1: Comparison (IoUs, %) of our approach with the state-of-the-art for the semantic segmentation of the KITTI dataset.

Cars Pedestrians Cyclists Average

PointSeg [START_REF] Yuan | Pointseg: Realtime semantic segmentation based on 3d LiDAR point cloud[END_REF] 67 

Conclusion

In this chapter, we have presented two methods for 3D point cloud region segmentation and semantic segmentation that both take advantage of the range-image representation.

For region segmentation, the range-image is segmented using an histogram segmentation method. After that, the produced clusters are merged by comparing their centroids in consecutive windows. This produces a very fine segmentation of the point cloud and leads to very good qualitative and quantitative results. Moreover, the segmentation of the point cloud can be done online any time a new window is acquired, leading to great speed improvement, constant memory requirements and the possibility of online processing during the acquisition. This method has been presented in (Biasutti et al., 2017a), (Biasutti et al., 2017b) and [START_REF] Biasutti | Range-Image: Incorporating sensor topology for LiDAR point cloud processing[END_REF].

For the semantic segmentation, the range-image is used as the input to a very common image semantic segmentation architecture. This permits to achieve scores that are comparable with the state of the art, while keeping the architecture very simple and while demonstrating that range-images are a valid bridge between image processing and 3D point cloud processing. This has been the object of a preprint (Biasutti et al., 2019e), and is still under investigation.

Among the many applications of a segmented point cloud, either in regions or with semantic information, disocclusion represents a crucial stake for the production of accurate 3D maps. This is the object of the next chapter.

Chapter 7

Object removal 

Problem statement

Acquisition campaigns are typically done in environments that display car traffic, cyclists and pedestrians. This leads to the acquisition of non-persistent objects as discussed in the previous chapter. In a LiDAR acquisition, this implies that the laser beam is being blocked by these objects which prevents the acquisition of the structures that are situated behind. Therefore, the final point cloud contains holes -also named shadows -that correspond to parts of structures that have not been acquired by the sensor as they were obstructed by another object situated closer to the sensor. These shadows are largely visible when the point cloud is not viewed from the original acquisition point of view, as illustrated in Figure 7.3 (a). As a result, these defaults might end up being distracting and confusing for visualization.

To prevent such artifacts from appearing in the final acqusition, one might consider multiple acquisitions of the same area with temporal spacing or adding more sensors with different orientations. This would theoretically increase the completness of the final acquisition as non-permanent objects are likely to have moved between two passages. However, despite increasing the chance of having a more complete acquisition, it does not guarantee that all the wanted areas of the scene will be acquired, but it does drastically increase the cost and the duration of the acquisition campaign.

As some applications rather focus on the interpretability of the point cloud rather than the precision of the measurements, it might be interesting to be able to automatically reconstruct parts of the point clouds that could not be acquired during the campaign. Such methods would need to provide plausible reconstructions (i.e. reconstruction that are visually pleasing, while helping to understand the scene), and to respect the topology of the scene as accurately as possible.

Object removal methods

The problem of object removal consists in replacing some object in a scene by a plausible approximation of what would have been there if the object to remove was not present in the acquisition.

Image object removal

The problem of object removal in images -also refered to as inpainting -is a well known theme of the image processing community. It can be formulated as filling the pixels that correspond to the object to remove. In many cases, interpolation methods (e.g. linear, bicubic) do not provide satisfying results as they tend to oversmooth the reconstructed areas and they tend to be unable to recreate details. Thus, this problem has been intensively investigated over the past decades, and [START_REF] Tschumperlé | Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE's[END_REF] and using a patch-based method [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF]). many methods were proposed. These methods can be divided into two main groups: geometric approaches and patch-based approaches, as illustrated in Figure 7.1.

Geometric approaches Geometric approaches were naturally proposed to compensate the limitations of interpolation approaches. Indeed, they allow to constrain the reconstruction to respect some properties. In Weickert (1998) and Bertalmio et al. (2000), the authors propose different PDE-based methods that preserve edges in the reconstruction while [START_REF] Tschumperlé | Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE's[END_REF] adopted a model that preserves curvatures in the reconstruction, as shown Figure 7.1 (c). These methods were then improved by using the Total Variation (TV) as proposed in [START_REF] Bredies | Total generalized variation[END_REF] and [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. As mentioned in Chapter 2, they have been also been extended to RGB-D images by taking advantage of the bi-modality of the data in (Ferstl et al., 2013a) and [START_REF] Bevilacqua | Joint inpainting of depth and reflectance with visibility estimation[END_REF]. Although recent approaches achieve very satisfying results, they often rely on energy functions where the constrains are formulated with respect to the color information of the image, which is often not available in a LiDAR point cloud.

Patch-based approaches Patch-based methods were also proposed to overcome the limitations of interpolation methods. In that case, we consider that the information to reconstruct appear elsewhere in the image. This principle, called selfsimilarity, is illustrated in Figure 7.2. These methods were briefly mentioned in Chapter 1, where we proposed to extend the patch-based method suggested in [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF]. This method was also extended in [START_REF] Lorenzi | Inpainting strategies for reconstruction of missing data in VHR images[END_REF] and Buyssens et al. (2015b) which have proven their strengths for image inpainting.

They have been extended for RGB-D images in Buyssens et al. (2015a) and for dense colored LiDAR point clouds with explicit grid topology in [START_REF] Doria | Filling large holes in LiDAR data by inpainting depth gradients[END_REF]. However, patch-based methods extensively rely on texture information as well as the fact that similar objects appear with the same aspect everywhere in the image. Because of the way the sensor operates, similar objects can appear very differently in the range-image. Moreover, the range-image typically lacks of texture. Thus patch-based methods cannot be efficiently used on range-images.

Point cloud object removal

Object removal has only been scarcely investigated for 3D point clouds (Sharf et al., 2004;[START_REF] Park | Shape and appearance repair for incomplete point surfaces[END_REF][START_REF] Becker | LiDAR inpainting from a single image[END_REF]. However, these methods often rely on strong sampling assumptions, especially homogeneity, which is often not suitable for LiDAR point clouds, as discussed in Chapter 3.

In the next Section, we propose a novel approach for removing object in LiDAR point clouds in sensor topology.

Range-image disocclusion technique

The segmentation techniques introduced in Chapter 6 provide labels of objects which can be used to create masks for object removal, either by manual selection for the histogram-based segmentation method, or by selecting which type of object to remove on the semantic segmentation. By considering u the range-image representation of the point cloud rather than the point cloud itself, the problem of disocclusion can be reduced to the estimation of a set of 1D ranges instead of a set of 3D points, where each range is associated with the ray direction of the pulse. The Gaussian diffusion algorithm provides a very simple algorithm for the disocclusion of objects in 2D images by solving partial differential equations. This technique is defined as follows:

∂u ∂t -∆u = 0 in (0, T ) × Ω u(t = 0, x, y) = u(x, y) in Ω (7.1)
having u defined on Ω, t being a time range and ∆ the Laplacian operator. As the diffusion is performed in every direction, the result of this algorithm is often very smooth. Therefore, the result in 3D lacks of coherence as shown in Figure 7.3.b. 

Object removal

In this work, we argue that the structures that require disocclusion are likely to evolve smoothly along the x W and y W axes of the real world as defined in Figure 7.4.a. Therefore, we set η for each pixel to be a unitary vector orthogonal to the projection of z W in the u range-image (Figure 7.4.b). This vector defines the direction in which the diffusion should be done to respect this prior. Note that most MLS systems provide georeferenced coordinates of each point that can be used to define η. For example, using a 2D LiDAR sensor that is orthogonal to the path of the vehicle, one can define η as the projection of the pitch angle of the aquisition vehicle.

We aim at extending the level lines of u along η. We assume the η to be a constant vector field. This can be expressed as ∇u, η = 0. Therefore, we define the energy F (u) = 1 2 ( ∇u, η ) 2 . The disocclusion is then computed as a solution of the minimization problem inf u F (u). As ∇F (u), du = lim α→0 F (u+αdu)-F (u) du , using the Green formula, the gradient of the energy function is given by ∇F (u) = -(∇ 2 u)η, η = -u ηη , where u ηη stands for the second order derivative of u with respect to η and ∇ 2 u for the Hessian matrix. The minimization of F can be done by gradient descent. If we cast it into a continuous framework, we end up with the following equation to solve our disocclusion problem:

∂u ∂t -u ηη = 0 in (0, T ) × Ω u(t = 0, x, y) = u(x, y) in Ω (7.2)
using the notations introduced earlier. We recall that the Laplacian ∆u = u ηη + u η T η T , where η T stands for a unitary vector orthogonal to η. Thus, Equation (7.2) can be seen as an adaptation of the Gaussian diffusion equation ( 7.1) with respect to the diffusion prior in the direction η. 7. Object removal

Results & Analysis

In this part, the results of the disocclusion of their background are detailed.

Sparse point cloud

A first result is shown in Figure 7.5. This result is obtained for a sparse point cloud (≈ 10 5 pts) of the KITTI database. A pedestrian is segmented out of the scene using our proposed region segmentation technique (Section 6.3) and a manual selection of the corresponding label. This is used as a mask for the disocclusion of its background using our modified variational technique for disocclusion. Figure 7.5.a shows the original range-image. In Figure 7.5.b, the dark region corresponds to the result of the segmentation step for the pedestrian. For practical purpose, a very small dilation is applied to the mask (radius of 2px in sensor topology) to ensure that no outlier points (near the occluder's silhouette with low accuracy or on the occluder itself) bias the reconstruction. Finally, Figure 7.5.c shows the range image after reconstruction. We can see that the disocclusion performs very well as the pedestrian has completely disappeared and the result is visually plausible in the range-image. Notice how the implicit sensor topology of the range-image has allowed here to use a standard 2D image processing technique from mathematical morphology to filter mislabelled and inaccurate points near silhouettes. In this scene, η has a direction that is very close to the x axis of the range-image and the 3D point cloud is acquired using a 3D LiDAR sensor. Therefore, the coherence of the reconstruction can be checked by looking how the acquisition lines are connected. Figure 7.6 shows the reconstruction of the same scene in three dimensions. This reconstruction simply consists in the projection of the depth of each pixel along the axis formed by each corresponding point and the sensor origin. We can see that the acquisition lines are properly retrieved after removing the pedestrian. This result was generated in 4.9 seconds using Matlab on a 2.7GHz processor. Note that a similar analysis can be done on the results presented in Figure 7.7.

Dense point cloud

In this work, we aim at presenting a model that performs well on both sparse and dense data. Figure 7.8 shows a result of the disocclusion of a car in a dense point cloud. This point cloud was acquired using the Stereopolis-II system [START_REF] Paparoditis | Stereopolis II: A multi-purpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF] and it contains over 4.9 million points. In Figure 7.8.a, the original point cloud is displayed with the color based on the reflectance of the points for a better understanding of the scene. Figure 7.8.b highlights the segmentation of the car using our model (Section 6.3), dilated to prevent aberrant points. Finally, Figure 7.8.c depicts the result of the disocclusion of the car using our method. The car is perfectly removed from the scene. It is replaced by the ground that could not have been measured during the acquisition. Although the reconstruction is satisfying, some gaps are left in the point cloud. Indeed, in the data used for this example, pulses returned with large deviation values were discarded. Therefore, the windows and the roof of the car are not present in the point cloud before and after the reconstruction as no data is available. We could have added these no-return pulses in the inpainting mask as well to reconstruct these holes.

Quantitative analysis

To conclude this section, we perform a quantitative analysis of our disocclusion model on the KITTI dataset. The experiment consists in removing areas of various point clouds in order to reconstruct them using our model. The original point clouds can serve as ground truth. Note that areas are removed while taking care that no objects are present in those locations. Indeed, this test aims at showing how the disocclusion step behaves when reconstructing backgrounds of objects. The size of the removed areas corresponds to an approximation of a pedestrian's size at 8 meters from the sensor in the range-image (20 × 20px).

The test was done on 20 point clouds in which an area was manually removed and then reconstructed. After that, we computed the MAE between the ground truth and the reconstruction (where the occlusion was simulated) using both Gaussian disocclusion and our model. Table 7.1 sums up the result of our experiment. We can note that our method provides a great improvement compared to the Gaussian disocclusion, with an average MAE lower than 3cm. These results are obtained on scenes where objects are located from 12 to 25 meters away from the sensor. The result obtained using our method is very close to the sensor accuracy as mentionned by the manufacturer ( 2cm). Figure 7.9 shows an example of disocclusion following this protocole. The result of our proposed model is visually very plausible whereas the Gaussian diffusion ends up oversmoothing the reconstructed range-image which increases the MAE.

Overlapping objects

Although the proposed disocclusion method performs well in realistic scenarios as demonstrated above, in some specific contexts, the reconstruction quality can be debatable. Indeed, when two small objects (pedestrians, poles, cars, etc.) overlap in front of the 3D sensor (e.g. one object is in front of the other), the disocclusion of the closest object may not fully recover the farthest object. Figure 7.10.a shows an example of such a scenario where the goal is to remove the cyclist (highlighted in green). In this case, a pole (Figure 7.10.a,in orange) is situated between the cyclist and the background. 7.5. Conclusion

Conclusion

In this section, we have proposed a novel approach to the problem of object removal in 3D LiDAR point clouds. Considering the range-image derived from the sensor topology has enabled a simplified formulation of this problem from having to determine an unknown number of 3D points to estimating only the 1D range in the ray directions of a fixed set of range-image pixels. Beyond simplifying drastically the search space, it also provides directly a reasonable sampling pattern for the reconstructed point set. Moreover, we have also proposed an improvement of a classical imaging technique that takes the nature of the point cloud into account (horizontality prior on the 3D embedding), leading to better results. We have validated the object removal method by visual inspection as well as quantitative analysis against ground truth and we have proved its effectiveness in terms of accuracy. This method has been presented in the following works: (Biasutti et al., 2017a), (Biasutti et al., 2017b) and [START_REF] Biasutti | Range-Image: Incorporating sensor topology for LiDAR point cloud processing[END_REF].

Chapter 8

Object detection 

Introduction

We conclude this part of the thesis by exploring another application of MMS data. With the growing interest for autonomous driving, building onboard perception systems has become a major stake of the computer vision community. In particular, 3D object detection and localization is a crucial step to enable autonomous systems to sense their environment.

Over the past decade, 2D object detection on optical images have known great improvements [START_REF] Ren | Faster R-CNN: Towards real-time object detection with region proposal networks[END_REF]Lin et al., 2017b;[START_REF] Liu | SSD: Single shot multibox detector[END_REF][START_REF] Redmon | YOLO9000: Better, Faster, Stronger[END_REF]Lin et al., 2017c). On the other hand, 3D detection systems fail to achieve comparable performances in terms of accuracy or computational time.

3D object detection applied to LiDAR point clouds have recently been the subject of many papers thanks to the ongrowing use of deep-learning. The majority of proposed methods are based on discrete representations of the point cloud. These discrete representations either correspond to a vertical projection of the points on an horizontal pixel grid [START_REF] Luo | Fast and furious: Real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net[END_REF][START_REF] Yan | Second: Sparsely embedded convolutional detection[END_REF], sometimes coupled with extra modalities such as optical images (Chen et al., 2017a;[START_REF] Ku | Joint 3D proposal generation and object detection from view aggregation[END_REF], or they correpond to 3D voxel grids [START_REF] Zhou | Voxelnet: End-to-end learning for point cloud based 3D object detection[END_REF]. This problem has also been adressed by operating the 3D detection on subsets of the input point clouds. These subsets are typically extracted by projecting 2D optical detections in the point cloud to recover regions of interest. Points that fall in the regions of interest are then used as inputs to a neural networks [START_REF] Qi | Frustum pointnets for 3D object detection from RGB-D data[END_REF][START_REF] Shi | PointRCNN: 3D object proposal generation and detection from point cloud[END_REF]. Although most of these methods achieve reasonnable 3D detection scores and good 3D localizations, they often require towering computational power in order to treat the whole point cloud with enough precision -several millions of voxels are needed to represent a 3D LiDAR point cloud of the KITTI dataset [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF]) at a 0.1 cubic meter resolution per voxel.

In the next section, we propose to investigate how the range-image can be used to perform 3D detection and localization while decreasing the computational cost.

To that end, we present a novel -and lightweight -pipeline that exploits the rangeimage representation of the input point cloud to enable the use of 2D convolutional neural network by adapting an existing architecture for 2D detection. The 3D predictions are then refined by automatically merging it with 2D optical detections to avoid ambiguities as it will be discussed hereafter. This way, the proposed model illustrated in Figure 8.1 is able to perform 3D object detection and 3D object localization in real-time, making it very suitable for low power onboard systems. 

2D detection architecture for 3D detection

As mentionned above, the task of 3D detection has already been studied by proposing computationally expensive architectures. Indeed, using the point cloud as the input, either raw or under voxel representation, implies that the network operates on high dimensional data that are often very gready in terms of memory requirements. Therefore, the use of range-images for this task is an intuitive way to lower the memory usage while bringing the problem back to a better known paradigm: 2D Convolutional Neural Networks (CNN).

The task of 2D detection on RGB images is a well-known problem of computer vision that extensively makes use of CNNs. It has been the subject of a very large amount of contributions over the past years, largely encouraged by deep-learning improvements. In (Girshick, 2015), the authors propose a first architecture that aims at classifying windows of a RGB image. A sliding window is fed to a CNN that predicts both class and coordinates of the object in the window. However, the use of a sliding window is computationally expensive as the network has to test a lot of windows, with various dimensions, to efficiently perform the detection.

Region Proposal Networks To overcome the problem of using a sliding window, [START_REF] Ren | Faster R-CNN: Towards real-time object detection with region proposal networks[END_REF] offers to add a first stage to the network that shares the same features as the fast-RCNN stage, but it aims at predicting windows in which an object might appear. This allows to perform the 2D detection in real-time on low resolution images. This type of first stage network are often refered to as Region Proposal Networks. In (Lin et al., 2017b), the authors propose to extend the method presented in [START_REF] Ren | Faster R-CNN: Towards real-time object detection with region proposal networks[END_REF] by successfully using an encoder-decoder architecture to improve the precision of the results. Finally, in (Lin et al., 2017c), the authors investigate the case of learning hard classes that are less represented than others in the dataset by proposing a new exponentional loss. Although these methods achieve very high scores on 2D detection challenges [START_REF] Everingham | The Pascal Visual Object Classes (VOC) challenge[END_REF], they can be hard to train, especially as they require to balance positive and negative samples.

Single Shot Detectors Instead of proposing a preliminary stage that proposes regions of interest, [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF] presents a single stage network that directly estimates if an object is present or not in a set of candidate bounding boxes. The image is fed to an encoder which outputs a feature map of lower scale. Each pixel of the feature map, also refered to as cell, is in charge of the detection in the corresponding area of the input image. To that end, a fixed number of candidate bounding boxes is initialized in each cell. Then, the networks learns to discriminate cells that contains objects from cells that do not, while infering slight offsets for each candidate box in order to refine the detection. The detection can be done in real-time thanks to the lightweight of the architecture. A similar method was proposed in [START_REF] Liu | SSD: Single shot multibox detector[END_REF], but both methods were quickly outperformed by the YOLO9000 architecture, proposed in [START_REF] Redmon | YOLO9000: Better, Faster, Stronger[END_REF]. This method uses a similar backbone as [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF], but it is able to achieve scores that are close to the best RPNs, while being much simpler to train.

In the next section, we propose to adapt the YOLO9000 method [START_REF] Redmon | YOLO9000: Better, Faster, Stronger[END_REF] to perform 3D detection on 2D range-images built from 3D LiDAR point clouds.

Methodology

In this section, each step of the proposed pipeline is being detailed. An illustration of this pipeline can also be seen in Figure 8.1.

3D detection and localization

Input range-image To overcome dimensional limitations of previously mentionned methods, we offer to perform the 3D detection on range-images derived from LiDAR point clouds of the KITTI dataset. These range-images, shown in Figure 8.3, are generated with a fixed size of 416×64 pixels. This horizontal dimension corresponds to an opening of ≈ 80 degrees facing the front direction of the acquisition vehicle. The range-images are composed of two channels: the depth towards the center of acquisition (in logarithmic scale to compensate the increasing spacing between scanlines) and the elevation. 3D detection The first step of the proposed pipeline consists in the prediction of 3D coordinates as well as the dimensions and the orientation of the bounding boxes of each object from a range-image. To that extent, we offer to adapt the YOLO9000 architecture. This model is an encoder that estimates the presence of an object in each cell of the final layer. Each cell is divided into N possible objects, initialized with different dimensions. The objectness o ∈ [0, 1] is computed for each object, indicating the probability that a cell contains an object or not. The strong spatial correlation between the prediction of each cell and the input image leads to a very accurate prediction of the 2D localization of the objects.

The prediction of the 3D position of an object in the range-image is similar to the prediction of the 2D localization, along with the prediction of the depth towards the sensor (Figure 8.2). Indeed, the coordinates of a pixel in the range-image directly correspond to the acquisition angles of the LiDAR sensor's beam. Therefore, we aim at predicting (θ, φ), the horizontal and vertical acquisition angles respectively, as well as d the sensor depth of each object of the scene towards the center of acquisition.

Because of the perspective, the scale of objects in 2D varies proportionnaly to their depth. Thus, in YOLO9000, N possibe objects are initialized with different dimensions to compensate the variation of sizes induced by the perspective. When working in 3D, the dimensions of an object do not change depending on the depth. Thus for each class, we define (H, W, L) the average dimensions of an object. Then, we aim at predicting (h, w, l) such that (h * H, w * W, l * L) are equal to the dimensions of the predicted object.

In order to simplify the prediction of rotation, most of the 3D outdoor detection challenges [START_REF] Everingham | The Pascal Visual Object Classes (VOC) challenge[END_REF][START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF] only consider the orientation of the object along the vertical axis (yaw) and they ignore the two other degrees of freedom (pitch, roll). This is assumed to be true in realisitic scenarios as the ground on which the objects lie tends to be close to an horizontal plane. The range-image representation of the LiDAR point clouds correspond to a 360 degrees projection of the scene. Thus, two objects with similar yaw but different localizations in the 3D scene will have a different aspect in the range-image. Therefore, it is necessary to consider the θ angle of the object when predicting its rotation. We define r y the rotation of an object along the vertical axis in the range-image, as illustrated in Figure 8.4. Training Let us define F = {θ, φ, d, w, h, l, o} the set of attributes that define an object without rotation. For each cell c ∈ H × W × A that contains an object in the groundtruth, the following loss function is optimized:

f ∈F λ f ||f (c) -f (c)|| 2 2 + λ ry [1 -cos(r y (c) -ry (c)]
having x the groundtruth value, λ x the weight of each object attribute. The network is trained using the Adam optimizer with a learning rate set to 0.001. The batch size is set to 64 and the training is stopped after 10 epochs of the KITTI 3D object detection dataset [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF] that contains 7481 training examples.

Ambiguity of far objects Due to the low resolution of the LiDAR sensor, very few points hit the objects that are far from the sensor. Therefore, it is often very hard to distinguish these objects from the background as they are both represented by a couple of pixels only. This leads to ambiguous detections from the network, increasing the amount of false-positives. This is illustrated in Figure 8.5 on which one can see that the visual differences between the car as defined in the groundtruth and the prediction of our network is very small. To overcome this issue, we offer to couple the 3D detection model with a 2D detection method on optical images. Both predictions (highlighted in red) look very much alike. However, only one detection really corresponds to an object in the groundtruth (in green). In this case, the object is a car.

2D detection on optical image

The accuracy of recent 2D optical detection methods [START_REF] Ren | Faster R-CNN: Towards real-time object detection with region proposal networks[END_REF][START_REF] Dai | R-FCN: Object detection via region-based fully convolutional networks[END_REF]Lin et al., 2017b;[START_REF] Redmon | YOLO9000: Better, Faster, Stronger[END_REF][START_REF] Liu | SSD: Single shot multibox detector[END_REF]Lin et al., 2017c) has recently reached stunning scores on reference challenges. Some of these methods were specifically designed for urban 2D detection such as [START_REF] Yang | Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers[END_REF] or [START_REF] Ren | Accurate single stage detector using recurrent rolling convolution[END_REF]. In order to increase the robustness of our 3D detection model to the ambiguities brought by the lack of sampling on distant objects, we offer to perform a 2D detection of the same scene in optical images associated with the input point cloud. To that extent, we use the pre-trained version YOLO9000 trained on the COCO [START_REF] Lin | Microsoft COCO: Common objects in context[END_REF] as both code and weights are publicly available, and their performances are very satisfying as illustrated in Figure 8.6 on a KITTI dataset image.

Projection and fusion of the predictions

For each predicted 3D object, it is possible to compute the 3D coordinates of the 8 corners of the corresponding bounding box. Mobile Mapping Systems often provide accurate calibration settings of the system. Therefore, the coordinates of the corners can be projected in the optical image domain, assuming that the provided calibration is good enough as discussed in Chapter 5. It is then trivial to recover the smallest rectangle b 3D that contains the 8 projected corners. We define b 2D to be the 2D

Results

Figure 8.6: 2D detection on an optical image from the KITTI dataset using the YOLO9000 method trained on the COCO dataset [START_REF] Lin | Microsoft COCO: Common objects in context[END_REF]. We can see how accurate the prediction is (in red) compared to the groundtruth (green).

bounding box predicted by the 2D detector on the optical image. A 3D prediction is then considered valid whenever the intersection between its projection in the image domain and the 2D prediction is high enough. Therefore, a 3D prediction and its projection b 3D are valid if valid(b 3D ) > 0 with:

valid(b 3D ) = b 2D ∈B 2D S(b 3D , b 2D ) S(b 3D , b 2D ) = 1 if |b 3D ∩b 2D | |b 3D ∪b 2D| > t 0 otherwise.
where B 2D is the set of 2D predictions and t the intersection over union threshold above which we consider that a 3D prediction and a 2D prediction corresponds to the same object.

Results

In this section, we propose a qualitative and quantitative analysis of the proposed framework.

Qualitative analysis

Figure 8.7 highlights results of our method applied to the 3D detection of cars in urban scenes. We can see that the 3D detections (in light blue) are well aligned with the groundtruth (in green). Moreover, our method is able to distinguish close objects as well as objects that are far from the sensor, thanks to the coupling with the 2D detector. Finally, we can see that our method is robust to occluded objects, as it can be seen on many scenes where cars in the foreground are occluding the cars that are situated behind. 

Quantitative analysis

Table 8.1 displays several accuracy metrics of the 3D detections against the groundtruth. We can see that for each detected object, the overall precision regarding each metric is very good. The 3D average distance between the center of the predicted bounding box and the center of the groundtruth is less than a meter, which is largely accept-able in an urban scenarios in which a typical scene is spanned over 100 meters. Moreover, the average depth error shows that the localization error mostly comes from the prediction of d. This can be explained by the difficulty for the network to precisely learn the offset depth of the center of an object that is only observed from one side. Despite that, the average Intersection-over-Union in 3D is high. Finally, we can see that the average orientation error is low. The remaining error comes from the fact that it is hard to predict whether a car is facing towards the sensor or not directly from the range-image. Hence, some predictions happened to be rotated by 180 degrees. Nevertheless, as shown in Table 8.2, some objects are not detected by our method whereas some state-of-the-art methods succeed in better detection rates. Here, the evaluation method is the one presented in [START_REF] Everingham | The Pascal Visual Object Classes (VOC) challenge[END_REF]. This is caused by the difficulty of correctly predicting the objectness of all objects in the scene. Moreover, the 2D detector that we use does not reach as good scores as the state of the art [START_REF] Shi | PointRCNN: 3D object proposal generation and detection from point cloud[END_REF], which greatly impacts the performances of our method, as each missing detection drastically lowers the 3D mAP score. Despite that, our pipeline achieves much higher framerate than the state of the art. [START_REF] Shi | PointRCNN: 3D object proposal generation and detection from point cloud[END_REF] on the KITTI 3D detection challenge [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF]. Scores are measured as the mean Average Precision (mAP) with a 0.7 threshold of IoU against the groundtruth.
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Conclusion

This chapter presents a novel approach for the 3D detection and localization of objects in LiDAR point clouds using range-images. The coupling of the 3D detector
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with 2D optical detections lowers the ambiguities of false detections in the back of the scene. Our method succeeds in very fine localization of the objects. The detection of objects is satisfying, but it sometimes suffers in very crowded scenes. It has been the subject of the following publication: (Biasutti et al., 2019b).

2D Image Processing Applied to 3D LiDAR Point Clouds

Conclusion of the second part

In the second part of this document, we demonstrated how the topology of the sensor can be used to produce another type of 2D representation of the 3D LiDAR point cloud, named range-image. Range-images are dense, which implies that they can be employed as is without any preprocessing step. Thus, their use is often less coslty than a 2D projection for many applications.

Range-image methodology We first showed how, depending on the nature of the sensor, the range-image could be generated. We also detailed how this result can be approximated despite the raw LiDAR data being unavailable by considering the local coordinates of the points compared to the acquisition center.

LiDAR to optical image alignment We developped a novel approach for the problem of LiDAR point cloud to optical image alignment. This method takes advantage of the topology of the sensor to reconstruct the mesh of the point cloud.

A rendering of this mesh at optical camera location is then aligned with the optical image using a variational approach. The proposed method has shown its ability to accurately align both data.

Although this method provides very fine estimation of the 2D transformation that best aligns both modalities, certain applications require to estimate a 3D pose to improve the calibration of the system. In this case, our method could be improved by solving the Perspective-n-Points (PnP) problem [START_REF] Lepetit | E-PnP: An accurate o(n) solution to the PnP problem[END_REF] between the registered rendering and the actual 3D point cloud. The estimation could then be iteratively improved by computing the whole pipeline again with the newly estimated pose until some convergence is reached.

Segmentations We studied the problem of point cloud segmentation and semantic segmentation. We proposed a method for online point cloud segmentation that does not require any prior on the number of objects and that can operate on high resolution LiDAR acquisition seen from the topology of the sensor. The experiments conducted on this method have shown that it can perform with very high accuracy on large scenes. We also proposed a deep-learning based semantic segmentation approach for low-resolution LiDAR sensors. This method uses range-images as input of a CNN. The results have shown that this method achieves scores that are comparable with the state of the art, while using a very simple architecture, showing that range-image offer an effective way to treat 3D point clouds as images.

A first track of improvement of this method would be to study the interest of using a loss that can compensate the imbalance between class representation. Indeed, as mentioned in Chapter 6, the dataset on which we trained our model contains an imbalanced number of examples depending on the class, resulting in pedestrians and cylists being under-represented compared to cars. This can cause the network to affect more neurons to this class rather than for the other two. The use of the focal loss (Lin et al., 2017c) might therefore improve the results of the segmentation as it has been specifically designed to that end. We are also interested in the use of geometrical or spatial regularization in the loss in order to improve the spatial coherence of the prediction, either in 2D or in 3D.

Object removal We investigated the problem of object removal in a 3D point cloud by adapting the existing image inpainting literature to propose a variational inpainting method for range-images. This method reduces the dimension of the object removal problem by simply aiming at estimating new depth for each acquisition's ray. The proposed approach has shown its ability to remove and reconstruct accurately objects of the urban environment, while producing visually convincing results.

Due to the simplicity of the variational approach, the method is however unable to correctly reconstruct a strong gradient that would have been occluded by the sensor, as shown Figure 6.5. Although this case did not appear frequently in our experiment, it is theoretically possible and it would lead to unsatisfying reconstruction. Patch-based approaches represent a promising track to solve this problem as they are already widely used for images to preserve strong edges and texture frontiers. However, the lack of available texture in the range-image would require the development of novel patch-based metrics.

3D detection

We also applied the range-image to the 3D detection problem by adapting a 2D detector for 3D detection. The proposed architecture is very lightweight and can easily be brought onboard low computational power systems despite showing interesting results.

However, as discussed in Chapter 8, the 3D detector sometimes misses object in the scene, as the estimation of the bounding boxes as well as the objectness is complicated in crowded environments. We believe that a multi-task version of the network would possibly improve the results while only increasing the memory requirement by a few. Indeed, multi-task architectures allow to create different branches for each wanted output. Thus, it would be possible to separate the objectness prediction from the bounding box prediction, which could leave more room for a better estimation in crowded spaces.

General conlusion

This thesis has explored two ways to use image processing techniques on a 3D Li-DAR point cloud that comes from MMS. The first manner is to project the 3D LiDAR point cloud onto a 2D pixel grid, and the second one is to take advantage of the topology of the sensor to produce a dense 2D image.

In the first part of this thesis, we have investigated how, given a projection model, the 3D LiDAR point cloud could be turned into an image.

We first showed that an orthogonal projection of the point cloud onto an horizontal grid could be used to generate high resolution orthoimages. We then demonstrated that RGB-D imaging could be built by projecting the point cloud into the domain of an optical image. Finally, we dealt with the problem of estimating the visibility of points by projecting the point cloud into the domain of an image.

We observed that the projection of the point cloud on a high resolution pixel grid (> 0.5M pixels) creates a sparse image which cannot be directly used in many image processing methods. To solve this issue, we have shown how diffusion methods -especially variational methods -can be used to form a dense image from the projection. This step can rely on several channels of the LiDAR data, and/or by fusing the LiDAR data with an optical image. The sparsity of the projection also implies that the neighbors of a point cannot be retrieved by looking at adjacent pixels. We have shown how simple clustering methods (namely K-NN) could be used to retrieve the 2D neighbors of a point in the projection. All these steps have enabled the use of the densified projection of 3D LiDAR point clouds in the production of high resolution data.

In the second part of this document, we have explored how the topology of the sensor can be exploited to generate a dense 2D image from the 3D point cloud named range-image.

This type of image directly brings grid-like structure to the LiDAR data. We have shown how this structure can be used to easily create the mesh of the point cloud, which was later used in a LiDAR/optical alignment framework. Then, the problem of point cloud disocclusion was dealt with by using range-images in inpainting methods. Finally, we have investigated how range-images enabled the use of CNNs for deeplearning applications such as 3D detection and semantic segmentation.

Not only do range-images offer a way to avoid the preprocessing steps that are required by projections, they also offer a structured and canonical representation of the point cloud. We found out that in many applications, their use lead to better performances both in terms of accuracy and computational time. In deep-learning applications, range-images allow to benefit from the spatial properties of 2D convolutions of CNN architectures, while drastically reducing the memory usage compared to methods that directly process 3D point clouds. However, range-images provide the spatial structure of the sensors at the cost of loosing the spatial distribution of We found out that there are tendancies regarding the applications for which the range-image should be prefered to the projection, and vice-versa. On the one hand, the projection of a point cloud preserves the spatial distribution of the scene according to the point of view. Therefore, such representation satisfies most of the applications in which the output is a 2D representation of the point cloud, such as orthoimages. Moreover, a projection in the domain of an image offers an intuitive -yet efficient -way to fuse both modalities. Therefore, it seems to be a very good tradeoff for multimodal applications as it can be used to create correspondances between colors and 3D measurements.

On the other hand, a range-image is a very efficient way to represent the point cloud while bringing spatial structure. It is thus very interesting for 3D oriented tasks such as mesh reconstruction, ground filtering or geometric segmentation. The canonical aspect of such an image, along with the spatial structure, is meaningful for various real-time applications. In particular, it has shown promising results for deep-learning applications, such as semantic segmentation.

Although each representation provides separate advantages, they appear to be complementary for some applications. Indeed, we have shown in this thesis that some tasks can benefit from the use of both representations together, such as in LiDAR to optical image alignment or 3D detection.

Further works

Because of the diversity of the works proposed in this PhD thesis, several tracks of further works naturally appear. These tracks are grouped hereafter according to their general idea.

Densification with generative networks

The variational models proposed for the densification of the projection of the point cloud have shown great results for both orthoimage generation and RGB-D imaging (Chapters 1 and 2). Recent works on deep neural networks have led to significant improvements in many similar applications. In particular, generative networks have proven their strength for natural image inpainting [START_REF] Yeh | Semantic image inpainting with deep generative models[END_REF] and for image super resolution [START_REF] Ledig | Photo-realistic single image super-resolution using a generative adversarial network[END_REF]. Thus, we believe that the use of such methods can improve the proposed densification approaches presented in this thesis, while being challenging as it has not yet been done for projected LiDAR data. 

Point cloud colorization

The result presented in Figure 3.9 shows how colors of optical images can be projected onto a point cloud. In this case, each point is associated with the color of the closest image. However, as a point is likely to be visible in many images, each point can be associated with a set of candidate colors. This idea is illustrated in Figure 8.8. Therefore, mixing the candidates is an intuitive extension of the proposed model. This task is related to image colorization methods that merge different candidates to enhance the results, such as in [START_REF] Pierre | Luminance-Chrominance Model for Image Colorization[END_REF].

Point cloud color prediction

MMS systems are built such that most of the points are visible from at least one optical image. To that end, optical cameras are generally placed to ensure maximum coverage of the scene. However, certain MMS such as in [START_REF] Geiger | Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite[END_REF] only present optical cameras turned in the front direction of the vehicle. Therefore, some points are never observed by the cameras. The colorization of such points cannot be done by projecting the color information of an image in the same way as it is done for Figure 3.9. The color of these points can only be predicted based on the information that they carry (coordinates, reflectance) and their neighborhood. Recent works in deep neural networks on the prediction of unobserved modalities, such as depth prediction from monocular images [START_REF] Fu | Deep ordinal regression network for monocular depth estimation[END_REF], offer an interesting starting point for color prediction on a LiDAR point cloud.

Multi-task learning

The tasks of semantic segmentation (Chapter 6) and 3D detection (Chapter 8) in a LiDAR point cloud present many similarities as they are applicable for the same objects. In particular, for non-permanent objects such as cars, the task of 3D detection consists in infering a bounding box that only contains points that belongs to a car. Multitasks architectures for deep-learning approaches have demonstrated how all the tasks can mutually enhance the results, such as in [START_REF] Liang | Multi-Task Multi-Sensor Fusion for 3D Object Detection[END_REF].

To that end, we believe that the strong correlation that exists between semantic segmentation and 3D detection can be exploited to create a more accurate, multitask architecture.

Spatial distribution in sensor topology

As discussed in Chapter 4, and later in Chapter 7, the sensor topology can be used to structure the point cloud in a range-image at the expense of loosing its spatial distribution. As a result, two similar objects in the same scene can appear differently in the sensor topology. This issue leads to several limitations. For example, and as discussed in Chapter 7, patch-based inpainting methods mostly rely on the selfsimilarity principle which requires that objects appear similarly in the image. For convolutional layers in CNNs, the learned kernels relevance largely depends on the redundancy of structures. If the structures that correspond to similar objects always appear differently, the network will have difficulties to learn meaningful features. Thus, the spatial invariance of the range-image is a crucial issue. Such invariance might be obtained by creating range-image where the channels correspond to 3D features extracted for each point.

Multimodal fusion

In Chapter 8, we have presented a method for 3D object detection where a late fusion of an optical image is done to enhance the results. Such fusion could be done earlier in the pipeline by merging optical features with LiDAR features in the 3D detection network. Recent works on 3D detection have showed that early multimodal fusion leads to better results such as in (Chen et al., 2017a) and [START_REF] Ku | Joint 3D proposal generation and object detection from view aggregation[END_REF]. However, early fusion is challenging as optical image and LiDAR point clouds are expressed in different domains. In both (Chen et al., 2017a) and [START_REF] Ku | Joint 3D proposal generation and object detection from view aggregation[END_REF], the authors extract the features of each modality independently. The resulting feature-maps are then resized to a similar shape and concatenated to be later feed to the rest of the network. We believe that a better fusion would be possible by correlating the feature extraction of both modalities in the early layers of the network.

It is a primal-dual problem with three primal variables (ζ, r, and v) and two dual variables (p and q) that evolve independently. Each dual variable is particularly linked to the gradient of a primal variable, i.e. p to ζ, and q to r. D * 1 , D * 2 , A, B, and C are convex functions; a and b are convex w.r.t. each of its respective variables. Globally, the functional is not convex w.r.t. the triplet (ζ, r, v). By relating (2.7) and (A.12), and using the primal-dual expression of the regularization term reported in (A.10), we have the following equivalences:

• K 1 ζ = Kζ;
• K 2 r = Kr; An algorithm to solve (A.12) can be derived within the primal-dual optimization framework of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. It consists in a unique loop, where all variables are alternatively updated via proximal operators (see Algorithm 1). The algorithm takes as inputs the initial estimates of the complete depth and reflectance images (ζ 0 and r 0 , respectively), and the reference intensity image I. It also requires three parameters inherent to the algorithm: σ and τ , which are related to each other by the relation 16τ σ ≤ 1 [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], and ρ, which is a parameter regulating the update speed of v.

Algorithm 1 Primal-dual based algorithm for depth and reflectance joint inpainting.

1: Inputs: ζ 0 , r 0 , I, σ, ρ, τ 2: Initialize: ζ 0 , ζ0 ← ζ 0 , r 0 , r0 ← r 0 , v 0 i,j ← 0.5, p 0 ← (∇ζ 0 , λ 1 ∇r 0 ), q 0 ← (∇r 0 , λ 2 ∇I) 3: for n = 0, 1, . . . q n+1 ← prox σD * 2 (q n + σK 2 rn )

6:

v n+1 ← prox ρa( ζn ,•)+ρb(r n ,•)+ρC (v n ) 7:

ζ n+1 ← prox τ A+τ a(•,v n+1 ) (ζ n -τ K * 1 p n+1 ) 8:
r n+1 ← prox τ B+τ b(•,v n+1 ) (r n -τ K * 2 q n+1 ) 9:

ζn+1 ← 2ζ n+1 -ζ n 10:

rn+1 ← 2r n+1 -r n Algorithm 1 involves the computation of the adjoints to the linear operators K 1 and K 2 (the "zero-padded" gradient operators). It is known that the adjoint
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With the assumptions made we therefore have ∆v ∝ (kζ S -η 1 ∆ζ). The attribute v for a certain pixel increases (it gets a higher confidence as a visible point) if ∆ζ ζ S < k η 1 , i.e. if the relative depth deviation is below a certain threshold. k is an adimensional parameter that contributes determining this threshold. Conversely, v decreases for relative depth deviations exceeding the threshold. As for the update of v for points with over-estimated depths (second case of (A.16)), if we hypothesize that α, adjusted on depth, is large enough w.r.t. the reflectance deviation, we have that v progressively tends to one (unless large absolute reflectance deviations occur).

As for the regularization term R(ζ, r|I), we proposed in Section 2.2.3 to combine two distinct coupled total variation terms: TV λ 1 (ζ, r) (depth is individually coupled with reflectance) and TV λ 2 (r, I) (reflectance is individually coupled with the color image). By having two separate coupled TV terms, each one encoded by a dual variable that evolves independently from the other one, the reflectance gradient is constantly brought back to the reference gradient of the color image. At the same time the "correct" gradient information is transferred to the depth via the second term. Figure 2.5 shows an example of results obtained with the algorithm for the same test case as Figure 2.3.

For the example test of Figure 2.5, as well as for all the results reported hereinafter, the following parameters, found with multiple tests, have been used to characterize the model (2.7): η 1 = 1.7, η 2 = 50, k = 0.05 (the coefficient determining α according to (B.1)), λ 1 = 0.5, λ 2 = 1. These values have been found empirically by letting them vary one by one and observing the obtained visual results. The two data terms F (u, v|u S ) and G(r, v|r S ) are attributed different weights. The larger coefficient assigned to the reflectance data term (η 2 > η 1 ) means that a greater data fidelity is imposed on reflectance. Depth values have instead a greater "freedom" in deviating from their original values. The two coupling parameters λ 1 and λ 2 being in the same order of magnitude, it shows that the two coupling terms have a similar importance. As for the parameters, inherent to the primal-dual optimization scheme (Algorithm 1), the following values have been set after testing: ρ = 10, τ = 0.004, σ = 14.

Results with urban data

We consider a data set acquired by a MMS system [START_REF] Paparoditis | Stereopolis II: A multi-purpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF] at Place de la Bastille, Paris, consisting of one LiDAR point cloud in the order of one billion of points and hundreds of optical images simultaneously acquired by 5 cameras mounted on the vehicle. Given a reference optical image, we project onto it the available LiDAR points to form the initial depth and reflectance incomplete images. Note that not all the points are effectively visible from the image view point. The incomplete depth and reflectance images, along with the reference color image chosen, represent the input of the algorithm (ζ S , r S , and I respectively). where the coordinates of the points are retrieved thanks to the computed depths and color texture is applied to enrich the points. A color box is overlaid to the first of these 3-D views to highlight areas where the comparison between the different methods is particularly significant.

Our algorithm, presented in Section A, gives as output the two inpainted images ζ and r. As for the produced depth image, our algorithm is visually compared with nearest neighbor (NN) interpolation, the anisotropic total generalized variation (ATGV ) method of (Ferstl et al., 2013b), and our previous depth inpainting method [START_REF] Bevilacqua | Visibility Estimation and Joint Inpainting of Lidar Depth Maps[END_REF], which does not rely on reflectance information. We refer to the latter as Depth Inpainting with Visibility Estimation (DIVE ). The optimization problem of DIVE is the following: The DIVE problem can be related to our proposed model (2.7), if we consider in the latter η 1 = η, η 2 = 0, λ 1 = λ, and we suppress the coupled TV term related to the reflectance (depth is instead coupled directly with the color image). Moreover, in (B.2) we have a 2 -norm data fidelity term; as a consequence of that, the coefficient of the removal cost term follows a quadratic law (we have α = (ku S ) 2 , instead of α = ku S , as in (2.7)).

As for the produced reflectance image, our algorithm is compared with nearest neighbor (NN) interpolation, the ATGV method of (Ferstl et al., 2013b) applied to reflectance, and a reduced version of our model (2.7) limited to reflectance. We refer to this method as Reflectance Inpainting with Visibility Estimation (RIVE ). The RIVE method is derived from the solution of the following optimization problem: (B.3) Also in this case we can derive the considered problem (RIVE) as a simplified version of our proposed model (2.7), where η 1 = 0, η 2 = η, λ 2 = λ, and the coupled TV term related to depth is suppressed. Moreover, the coefficient of the removal cost, while still following a linear law, here depends on the input reflectance r S . The four examples reported show the better performance of our algorithm in generating complete depth and reflectance images from real LiDAR measures. Results with the image Column1, reported in Figure B.1, particularly prove the effectiveness of our algorithm in detecting and removing hidden points appearing in the front, thus producing inpainted images correct from the image view point. These points, in yellow/orange according to the color code used for depth, appear mixed to visible points belonging to the column and the fence. By looking at the depth images generated (row (b)), our algorithm is the only one which is able to remove the misleading points and correctly reconstruct the foreground depth plane. This is even more visible by observing the main marble pole highlighted in the 3-D views (row (c)).

well as the inpainting of depth and reflectance, is performed more efficiently by our method. Figures B.3 and B.4 show results w.r.t. two other images taken peripherally to the scene. For the image Buildings1, we can observe that with our algorithm the inpainted depth and reflectance images look more satisfactory, the pole on the left being completely unveiled as a foreground element. The box overlaid on the 3-D views highlights a part of the scene where the depth values of two trees interfere. Our proposed algorithm (as well as the DIVE method [START_REF] Bevilacqua | Visibility Estimation and Joint Inpainting of Lidar Depth Maps[END_REF]) makes a correct distinction between the two depth layers. Figure B.4, reporting results related to the image Buildings2, presents the problem of wrong LiDAR measures appearing in the front. Our method turns out to be the most effective one in clearing out these points, as also shown in the area highlighted by the box.

Performance on visibility estimation

While in the previous section we evaluated the performance of the algorithm in terms of produced inpainted images ζ and r, we now want to assess the quality of the third output of the algorithm, i.e. v, the visibility attribute.

As visibility is estimated while performing the depth and reflectance estimation, we can say that our algorithm fuses two problems: hidden point removal (HPR) and inpainting. Typically HPR is, instead, possibly performed as a preliminary operation. For HPR "stand-alone" the state of the art is represented by variations of [START_REF] Katz | Direct visibility of point sets[END_REF] that relate the visible point set to the convex hull of a viewpointdependent transformation of it, discarding points based on a concavity threshold as seen from the view point. While this approach is effective, there is in general no globally satisfactory concavity threshold that would both correctly detect hidden surfaces and keep background points close to foreground silhouettes. To compare the two strategies for estimating visibility (the dedicated operation of [START_REF] Katz | Direct visibility of point sets[END_REF] and our "soft" estimation), we show an example in Figure B.5, related to the image Column1. In our case, we consider as hidden points those depth values that are assigned v = 0 at the end of the algorithm. As for [START_REF] Katz | Direct visibility of point sets[END_REF], a concavity parameter equal to 4 has been chosen after tuning.

The images obtained show that the "quality" of the visibility estimation process is comparable, if not higher with our method. If we observe closely the zoomed-in areas in Figure B.5, in fact, we can see that the HPR method wrongly selects points around the silhouettes (see first patch), while sometimes missing the detection of actual hidden points (see last two patches).

As a further test, we also compare our method (which jointly performs visibility estimation and inpainting), with a two-step approach, where visibility estimation (hidden point removal) is performed as a preliminary operation by the algorithm of [START_REF] Katz | Direct visibility of point sets[END_REF]. Depth is subsequently inpainted with the ATGV-based algorithm of (Ferstl et al., 2013b) images, the two-step approach being denoted as "HPR + ATGV". In the two cases of Figure B.6, we can observe a better outcome with our algorithm. For the image Column1, the preliminary point removal operation is not able to remove all the ambiguities in the central part of the image, where the depth values of the fence and the column are confused. For the image Buildings2, the HPR method of [START_REF] Katz | Direct visibility of point sets[END_REF] exceeds in removing several points along the upper board of the image, causing blurred edges in the final reconstructed depth image. Besides the benefits observable in the qualitative assessment, the joint approach of our method has the advantage of not requiring an explicit parameter to be globally set (the concavity threshold in the case of [START_REF] Katz | Direct visibility of point sets[END_REF]) to perform HPR. This is instead done in a "soft" way that adapts to the input image. 
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  can be projected as a point p = x y ∈ P Φ in the image plane of the viewpoint Φ. The relation between P and p is illustrated on Figure 3.4. We also define d p as the depth of the point p. It corresponds to the 3D Euclidean distance between P and the center of the viewpoint as illustrated Figure 3.4(a).
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  Figure 3.10: Visual comparison of the visibility estimation from different methods on a point cloud with constant and high density. Each column corresponds to one method.Rows are respectively: the results in 3D, the results in 2D (seen from the viewpoint), and a zoom of the 2D result focused on the ear region. The 3 methods succeed very well in estimating the visibility. Our method misses some points that are tangent to the viewpoint, as it can be seen on the last row, but still succeeds to correctly estimate the visiblity of the remaining points.
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  1 + z to simplify notations. Similarly to[START_REF] Sutour | Edge-based multi-modal registration and application for night vision devices[END_REF], the gradients of I mesh and I are aligned by maximizing the following criterion:
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 61 Figure 6.1: Result of the segmentation of a pedestrian in a point cloud using range-images. (left) original point cloud, (right) segmentation using range-image. The pedestrian is correctly segmented.
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Figure 6 . 2 :

 62 Figure 6.2: Result of the histogram segmentation using the approach of (Delon et al., 2007). (a) segmented histogram (bins of 50cm), (b) result in the range-image using the same colors. We can see how well the segmentation follows the different modes of the histogram.

Figure 6 . 3 :

 63 Figure 6.3: Example of point cloud segmentation using our model on various scenes. We can note how each label stricly corresponds to a single object (pedestrian, poles, walls).

Figure

  Figure 6.3 shows two examples of segmentations obtained using our method on different point clouds from the KITTI dataset[START_REF] Geiger | Vision meets Robotics: The KITTI Dataset[END_REF]. Each object, of different scale, is correctly distinguished from all others as an individual entity. Moreover, both results appear to be visually plausible.Apart from the visual inspection, we also performed a quantitative analysis on the IQmulus dataset(Vallet et al., 2015). The IQmulus dataset consists of a manually annotated point cloud of 12 million points aquired with the Stereopolis-II MMS, in which points are clustered into several classes corresponding to typical urban entities (cars, walls, pedestrian, etc.). Our aim is to compare the quality of our segmentation on several objects to the ground truth provided by this dataset. First, the point cloud is segmented using our technique, using 100px wide windows with a 10px overlap and a threshold for merging set to 50. After that, we manually select labels that correspond to the wanted object (hereafter: cars). We then compare the result of the segmentation to the ground truth in the same area, and compute the

Figure 6 . 4 :

 64 Figure 6.4: Quantitative analysis of the segmentation of cars. Our segmentation result only slighly differs from the ground truth in areas close to the ground or for points that were largely deviated such as points through windows.

  Figure 6.5.b shows the result of such post-processing on the same two cars. We can notice how both cars are distinguished from one other.

Figure 6 . 5 :

 65 Figure 6.5: Result of the segmentation of a point cloud where two objects end up with the same label (a), and the labeling after considering the connected components (b).

Figure 6 . 6 :

 66 Figure 6.6: Result of the range-image semantic segmentation produced by the proposed method. The first two results show the prediction of the proposed model and the groundtruth respectively, seen in the sensor topology. The last two results show the same prediction and groundtruth in 3D.

Figure 6 . 7 :

 67 Figure 6.7: RIU-Net: U-Net architecture adapted to point cloud semantic segmentation with the depth and elevation channels input (top) and the output segmented image (bottom).

Figure 6 . 8 :

 68 Figure 6.8: Results of the semantic segmentation of the proposed method (top) and groundtruth (bottom). Labels are associated to colors as follows: blue for cars, red for cyclists and lime for pedestrians.

Figure 7 . 1 :

 71 Figure 7.1: Inpainting of the image (a) in the masked area in black (b) using a geometric method (c)[START_REF] Tschumperlé | Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE's[END_REF] and using a patch-based method[START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF].

Figure 7 . 2 :

 72 Figure 7.2: Illustration of the self-similarity principle. This image contains many repetition of local information.

Figure 7 . 3 :

 73 Figure 7.3: Comparison between disocclusion algorithms. (a) is the original point cloud (white points belong to the object to be disoccluded), (b) the result after Gaussian diffusion and (c) the result with our proposed algorithm (1500 iterations). Note that the Gaussian diffusion oversmoothes the background of the object whereas our proposed model respects the coherence of the scene.

Figure 7 .Figure 7 . 4 :

 774 Figure 7.4: (a) is the definition of the different frames between the LiDAR sensor (x L , y L , z L ) and the real world (x W , y W , z W ), (b) is the definition and the visualization of η.
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Figure 7 . 5 :

 75 Figure 7.5: Result of disocclusion on a pedestrian on the KITTI database[START_REF] Geiger | Vision meets Robotics: The KITTI Dataset[END_REF]. (a) is the original range image, (b) the segmented pedestrian (dark), (c) the final disocclusion. Depth scale is given in meters. After disocclusion, the pedestrian completely disappears from the image, and its background is reconstructed accordingly to the rest of the scene.

Figure 7 . 6 :

 76 Figure 7.6: 3D representation of the disocclusion of the pedestrian presented in Figure 7.5. (a) is the original mask highlighted in 3D, (b) is the final reconstruction.

Figure 7 . 7 :

 77 Figure 7.7: Result of the disocclusion of a pedestrian in a point cloud using range-images. (top) segmented point cloud, (bottom) disocclusion result.

Figure 7 . 8 :

 78 Figure 7.8: Result of the disocclusion on a car in a dense point cloud. (a) is the original point cloud colorized with the reflectance, (b) is the segmentation of the car highlighted in orange, (c) is the result of the disocclusion. The car is entirely removed and the road is correctly reconstructed.

Figure 7 .

 7 10.b presents the disocclusion of the cyclist. The background is reconstructed in a plausible way, however, details of the occluded part of the pole are not recovered.

Figure 7 . 9 :Figure 7 . 10 :

 79710 Figure 7.9: Example of results obtained for the quantitative experiment. (a) is the original point cloud (ground truth), (b) the artificial occlusion in dark, (c) the disocclusion result with the Gaussian diffusion, (d) the disocclusion using our method, (e) the Absolute Difference of the ground truth against the Gaussian diffusion, (f) the Absolute Difference of the ground truth against our method. Scales are given in meters.

Figure 8 . 1 :

 81 Figure 8.1: Proposed pipeline.

Figure 8 . 2 :

 82 Figure 8.2: 3D detection and localization architecture.

Figure 8 . 3 :

 83 Figure 8.3: 3D LiDAR point cloud (top) and corresponding 2-channels range-image.

Figure 8 . 4 :

 84 Figure 8.4: Example of r y for two objects of similar yaw and different θ angles.

Figure 8 . 5 :

 85 Figure 8.5: Example of ambiguous detections in the back of the scene. Both predictions (highlighted in red) look very much alike. However, only one detection really corresponds to an object in the groundtruth (in green). In this case, the object is a car.

Figure 8 . 7 :

 87 Figure 8.7: 3D detection produced by our pipeline (in blue) on scenes from the KITTI dataset and groundtruth (in green).
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  Image Processing Applied to 3D LiDAR Point Clouds the scenes. While the projection of a LiDAR point cloud and its associated range-image present different advantages for representing the point cloud, they are equally interesting for LiDAR point cloud processing.

Figure 8 . 8 :

 88 Figure 8.8: Example of multiple color candidates from different optical image for a same point in a LiDAR point clou.ds

• D * 1

 1 (p) = -β λ 1 (r), p Y + δ P (p); • D * 2 (q) = -β λ 2 (I), q Y + δ Q (q); • A(ζ) = F 1 (ζ|ζ S ) + δ [ζm,ζ M ] (ζ); • B(r) = δ [rm,r M ] (r); • a(ζ, v) = F 2 (ζ, v|ζ S ); • b(r, v) = G(r, v|r S ); • C(v) = H(v|ζ S , r S ) + δ [0,1] (v).

  do

   present results for four images (cropped w.r.t. the full size) of the data set: Column1, Column2, Buildings1, Buildings2. For each reference image, the input sparse depth and reflectance images, obtained via projection, are shown, as well as the inpainted depth and reflectance images, obtained with four different methods. For the output depth images ofFigure B.3 and B.4 we added some shading by modulating the color intensity of each pixel based on the zenith angle of the normal vector, to emphasize high-frequency changes. Moreover, for the inpainted depths, an alternative view of the resulting 3-D point cloud is proposed,

  ζ -y)) 2 dx 1 dx 2 + η Ω S v(max(0, y -ζ)) 2 dx 1 dx 2 + Ω S (kζ S ) 2 (1 -v) dx 1 dx 2 + TV λ (ζ, I) . (B.2)

  -r S | dx 1 dx 2 + Ω S (kr S )(1 -v) dx 1 dx 2 + TV λ (r, I) .

Figure B. 1 :

 1 Figure B.1: Visual results for the image Column1. Row (a) shows the related input images: depth (with a 3-D zoom), reflectance, and reference color image. Rows (b) and (c) report the results obtained in terms of inpainted depth images (with related 3-D zoomed-in view) with the algorithms indicated below. Row (d) shows the inpainted reflectance images obtained with different methods, our proposed method always reported as last.

Figure B. 2 :

 2 Figure B.2: Visual results for the image Column2. Row (a) shows the related input images: depth (with a 3-D zoom), reflectance, and reference color image. Rows (b) and (c) report the results obtained in terms of inpainted depth images (with related 3-D zoomed-in view) with the algorithms indicated below. Row (d) shows the inpainted reflectance images obtained with different methods, our proposed method always reported as last.

  Figure B.6 reports results for such comparison with two

Figure B. 5 :

 5 Figure B.5: Detected hidden points in the case of the image Column1, by the state-of-theart method of[START_REF] Katz | Direct visibility of point sets[END_REF] and our method. The three patches below each image represent zoomed-in areas of the images themselves at same locations.

Figure B. 6 :

 6 Figure B.6: Comparison between our joint approach and a two-step approach, where visibility estimation and inpainting are performed separately, on the images Column1 (a) and Buldings2 (b).
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  1.1. Introduction leverage ground-level LiDAR scans acquired by MMS or from fixed stations. The proximity of the acquisition ensures a high resolution as well as a diminution of occluded areas. As in
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		1: Evaluation of different diffusion algorithms
	Metric	Closest Neighbors Gaussian Proposed Model
	MSSIM	0.8056	0.8550	0.8591
	MPSNR (dB)	33.21	34.59	35.08
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	Image	Artificial occlusion Real occlusion STD Hist. dist. STD Hist. dist
	Ground truth	4.51	-	4.79	-
	Proposed framework	4.56	0.14	4.29	0.19
	Vallet and Papelard (2015) 1.87	0.78	2.05	0.80

2: Numerical comparison between reconstructions
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	Image size	600x550px 2400x2200px
	Image resolution	1px = 4cm 2	1px = 1cm 2
	Percentage of stripe holes	13%	61%
	Percentage of occlusion holes	22%	25%
	2D Projection	2.13s	3.78s
	Diffusion	1.54s	3.27s
	Mask extraction	0.18s	0.91s
	Examplar-based inpainting	23.81s	6.31min
	Total	27.66s	6min38s

3: Comparison of computation speed compared to the resolution
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	1: Average Mean Absolute Error (MAE), i.e. average pixel displacement between
	ground truth and reconstructed disparity maps, obtained by averaging the results of 82
	frames of the 2015 KITTI stereo benchmark data set.
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 3 1: Content of the visiblity estimation dataset

		Points Visibility Farthest point	Size
	Scene #1 337384	55.5%	75.8m	20.6Mb
	Scene #2 247682	57.0%	54.3m	15.1Mb
	Scene #3 463531	65.9%	179.2m	28.3Mb
	Total	1048597	59.46%	-	64Mb
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 32 Comparison of the scores of two state-of-the-art and our visibility estimation methods on our visibility estimation dataset

		HPR	Cone	Ours	Ours	Ours
		Katz et al. (2007) Pintus et al. (2011)			
	Threshold	optimal	optimal	ᾱ = 0.5 α p median α p mean
	POV #1	74.09%	68.76%	90.15%	86.35%	90.96%
	POV #2	69.09%	61.68%	86.95%	86.78%	88.39%
	POV #3	81.55%	75.58%	82.21%	76.35%	83.75%
	Average	74.91%	68.67%	86.43%	83.16%	87.70%
	Total time	7.82s	1.53s	0.91s	1.03s	0.91s
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 33 Comparison of the different methods for point cloud visibility classification

		HPR	Cone	Ours	Ours	Ours
		Katz et al. (2007) Pintus et al. (2011)			
	Threshold	optimal	optimal	ᾱ = 0.5 α p median α p mean
	True-positive	89.54%	85.16%	95.45%	78.31%	88.23%
	False-positive	18.84%	17.78%	10.78%	3.66%	5.15%
	False-negative	6.26%	8.61%	2.79%	13.18%	7.14%
	True-negative	54.47%	56.24%	72.45%	90.80%	86.93%
	Accuracy	85.16%	84.27%	92.52%	90.94%	93.44%
	F1-score	87.71%	86.59%	93.37%	90.29%	93.49%

Table 3 .

 3 4: Comparison of the scores of the different methods on constant density point cloud

		HPR	Cone	Ours	Ours
	Threshold	optimal optimal ᾱ = 0.99 α p mean
	Score (Eq. (3.3)) 96.57% 93.75%	95.23%	93.02%
	True-positive	95.17%	88.63%	94.44%	98.07%
	False-positive	1.15%	0.88%	2.14%	6.07%
	False-negative	2.28%	5.37%	2.63%	0.91%
	True-negative	97.82% 98.33%	95.95%	88.50%
	Accuracy	98.25% 96.76%	97.56%	96.40%
	F1-score	98.23% 96.59%	97.54%	96.57%
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 5 1: MAE of each method compared to the manually aligned data for each parameter on 50 randomly generated transformations.

	Method	Mean Absolute Error t x t y z θ
	Mutual Information	16.3 11.9	0.05	0.46
	Sutour et al. (2015) (baseline) 2.91 6.76 0.006 0.57
	baseline + rotation	2.96 6.29 0.004 0.04
	baseline + rotation + refined 1.93 3.31 0.005 0.03
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		Gaussian Proposed model
	Average MAE (meters)	0.591	0.0279
	Standard deviation of MAEs	0.143	0.0232
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 8 1: Mean average precision metrics of the 3D detection against groundtruth.

	Mean average 3D distance 0.53m
	Mean average depth	0.51m
	Mean 3D IoU	63%
	Mean angular error	9.13 deg
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Remerciements

Range-images derived from the sensor topology

4.3 are simplified for better understanding, but that realistic cases can be more chaotic as discussed later in this section.

Whereas LiDAR pulses are emitted somewhat regularly, many pulses yield no range measurements due, for instance, to reflective surfaces, absorption or absence of target objects (e.g. in the sky direction) or an ignored measurement whenever the measure is too uncertain. Therefore the sensor topology is only a relevant approximation for emitted pulses but not for echo returns, such that the rangeimage is sparse with undefined values where the sensor measured no echoes (or when further processing was performed on the acquisition, leading to the removal of points having a too incertain measurement). This is illustrated in Figure 4.4.b in which pulses with no echoes appear in dark. Note that considering multi-echo datasets as a multilayer depth image is beyond the scope of this thesis, which only considers first returns. This 2D sensor topology encodes an implicit neighborhood between LiDAR measurement pulses. Whereas the implicit topology of pixels in optical images is supported by a regular geometry of rays (shared origin and regular grid of directions if geometric distortion is neglected), the proposed 2D sensor topology for LiDAR

General conclusion and perspectives

Appendix A Primal-dual algorithm for solving Equation (2.7) In order to provide a self-contained document, we include in this appendix the details the primal-dual algorithm used to solve Equation (2.7). This proof is the result of the work of Marco Bevilacqua.

The optimization problem (2.7) turns out to be convex, but not smooth, due to 1 -type data-fidelity terms, F (ζ, v|ζ S ) and G(r, v|r S ), and the total variation regularization term R(ζ, r|I). Recently, in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] a primaldual first-order algorithm has been proposed to solve such problems. In Section 1 we provide the necessary definitions for the algorithm, which is subsequently described in Section 2.

Discrete setting and definitions

Images, considered in Section 2.2 as continuous functions in R 2 , are here converted into real finite-dimensional vectors. Let M and N be the image dimensions in this discrete setting, and (i, j) the indices denoting all possible discrete locations in the Cartesian grid of size M × N (1 ≤ i ≤ M , 1 ≤ j ≤ N ). We then have ζ, ζ S , r, r S , v, I, and α ∈ X = R M N , where X is a finite dimensional vector space equipped with a standard scalar product:

The gradient of an image ζ ∈ X, ∇ζ, is a vector in the vector space X 2 with two components per pixel:

We compute the gradient components via standard finite differences with Neumann boundary conditions, i.e.:

From the definition of gradient, it follows the expression of discrete coupled total variation, which matches the continuous one (2.5):

As first suggested by [START_REF] Chan | A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration[END_REF], a total variation optimization problem can be recast into a primal-dual form that makes its solution easier, by rewriting the gradient norm by means of a vector-valued dual variable. To this end, in our case we first define a "coupled gradient" operator K λb : X → Y (Y = X 4 ), which, applied to an image a ∈ X, expands its gradient to include the one of a reference image b according to a coupling parameter λ. I.e., we have the following element-wise definition:

The coupled gradient operator K λb can be further decomposed as K λb = K+β λ (b), according to the following element-wise definition:

K is the usual gradient operator "padded" with two zero components and it is linear in a; β λ (b) is a bias term, depending on the gradient of the fixed variable b, which determines the last two components of the global coupled gradient operator. Thanks to the definitions above, we can express alternatively the coupled total variation (A.4), by introducing the dual variable p ∈ Y :

where the scalar product in Y is defined as

p 1 i,j q 1 i,j + p 2 i,j q 2 i,j + p 3 i,j q 3 i,j + p 4 i,j q 4 i,j p = (p 1 , p 2 , p 3 , p 4 ), q = (q 1 , q 2 , q 3 , q and the feasibility set P for the dual variable p, is defined as

We can now finally express the regularization term of our model R(ζ, r|I) (2.6) as the maximization over two dual variables. We then have:

(A.10) This will let us formulate a discrete version of our joint inpainting problem (2.7), which falls into the primal-dual optimization framework. As for the other terms in (2.7), rewritten in discrete notation, we have:

where Φ is a binary mask indicating the initial known pixels, i.e. belonging to the sparse image support Ω S .

A primal-dual algorithm

Thanks to the previous definitions, we can express our model (2.7) in the form of the following saddle-point problem, which is an extension (including two extra variables) of the one presented in [START_REF] Pierre | Luminance-Chrominance Model for Image Colorization[END_REF]:

of the gradient operator is the negative divergence operator (∇ * = -div). In our case, the adjoint to the operator K 1 : X → Y is a linear operator K * 1 : Y → X consisting in the negative divergence computed only on the two first components of a four-component dual variable p ∈ Y , and by taking finite differences in the opposite direction than the gradient operator (A.3). These components are in fact the ones related to the primal variable to which the coupled gradient operator has been applied. We then have the following element-wise definition for K * 1 p (the same definition stands for K * 2 q):

(A.13) Closed-form expressions for the update rules in Algorithm 1 can be easily computed by applying the definition of proximal operator. The resulting expressions are reported here below, where P denotes the projection operation over a given real interval, i.e. values are clipped if exceeding the interval limits.

A. Primal-dual algorithm for solving Equation (2.7)

18) The operations indicated in the proximal operators are pixel-wise, although the pixel coordinates have not been made explicit for clearer reading.
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Appendix B

Supplementary experiments of Chapter 2

In order to provide a self-contained document, we include in this appendix further experiments related to Chapter 2. This proof is the result of the work of Marco Bevilacqua.

Parameters of the algorithm and model choices

Our finally resulting joint inpainting model (2.7) consists of four terms: two datafidelity terms, F (ζ, v|ζ S ) and G(r, v|r S ), a "removal" cost depending solely on the variable v, H(v|ζ S , r S ), and the two-fold regularization term R(ζ, r|I). As discussed in Section 2.2.1, for the data-fidelity terms we opt for a 1 measure of the error, in order to promote more contrasted solutions [START_REF] Chan | Aspects of Total Variation Regularized L1 Function Approximation[END_REF]. The visibility attribute v weights the data matching cost of each single pixel (data matching is more and more relaxed, as v tends to zero, i.e. when that particular point is considered to be excluded). However, over-estimated depths (ζ > ζ S ) are not weighted by v but are fully penalized. These values relate to pixels where either there is noise on a visible point that is slightly corrected (ζ -ζ S is small), or the value u S represents an outlier (e.g. it is due to a mobile object). At present, we do not have a way to handle the latter case.

In H(v|ζ S , r S ) (2.4), each point removal cost is the product between (1 -v) (the level of "invisibility" of the point) and a coefficient α depending on the local input depth and reflectance: α = k 1 ζ S + k 2 r S . This choice has been made in order to balance all terms in (2.7) where v appears. Let us now observe the "complete" update rule for v (last case of (A.16), i.e. for points with under-estimated depth). According to it, we have that at each iteration v is incremented/decremented by a quantity ∆v = ρ (α -η 1 ∆ζ -η 2 ∆r). Let us suppose that the fluctuations on depth are significantly larger than the fluctuations on reflectance (the appearance of a hidden point can cause a big "jump" in depth, while the reflectance values might still be similar. For the sake of simplicity we can then adjust the value of α only on the basis of the depth input value. The proposed simplified expression for α is then: While other methods are not able to reconstruct the pole, since "distracted" by the interfering background depths, the reconstruction is better performed in our case.

Results on the reflectance image confirm the trend. By observing again the main marble pole, we clearly see that the reflectance is better inpainted. This is possible thanks to the joint use of depth information, which helps detecting hidden points