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Learning methods for digital imaging.

Méthodes d’apprentissage pour l’imagerie numérique.

by

Prakhar AMBA

Abstract
In this work we discuss about shift-invariant problems in digital imaging which could
be solved by learning linear least square solution over exemplars. We focus our re-
search on color demosacing which is one of the famous shift-invariant problem in
digital imaging; the ability to estimate a full resolution color image from a subsam-
pling one, acquired through a matrice of different color filters.

To produce color images we need information of three primary colors (notably Red,
Green and Blue) at each pixel point. To capture this information most digital cameras
utilize a Color Filter Array (CFA); a mosaic arrangement of these primary colors is
overlaid on the sensor such that only a single color is sampled at one pixel. Here
we ask whether the most commonly used CFA called Bayer is the best compromise
between space and color or if we should used larger shift-invariant pattern or different
color filters. Furthermore, we ask what could be the ideal spectral transmittance of
the filters for a given application.

This way of acquiring images is similar to the Human Visual System (HVS)
wherein a mosaic of LMS cones (for sensitivity to Long, Medium and Short wave-
length) forms the surface of the retina. For HVS, the arrangement is random and
differs between individuals, whereas for cameras we use a regular arrangement of
color filters. We show by simulation that there is an advantage of having a random
sampling of colors instead of a regular.

The operation for a digital camera to interpolate the missing colors to recover
the full color image is known as demosaicing. Demosaicing could be simulated on a
subsampled image having a single color per pixel correspondingly to the CFA. Due
to regular or periodic arrangement of color filters the output demosaiced image is
susceptible to false colors and artifacts. In literature, the demosaicing algorithms
proposed so far cater mainly to regular CFAs.

We propose an algorithm for demosaicing which can be used to demosaic any
random as well as regular CFA by learning statistics on an image database. We
show that the solution obtained is unique because it correspond to the linear least
square estimate of a shift-invariant inverse problem. Managing the neighborhood
into the vectors improves redundancy of the estimate and provides a stable solution.
Surprisingly, this solution is close to the state of the art demosaicing. Based on our
method, we optimize and propose new CFAs such that they outperform even the state
of art algorithms on regular (Bayer) CFAs. At the same time the demosaiced images
from proposed CFAs are free from false colors and artifacts.
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We extend our algorithm such that it is not limited to only three colors but can
be used for any number of spectral filters. Having more than three colors allows us to
not only record an image but to record a spectral signature of the scene. We called
Spectral Filter Arrays (SFAs) a mosaic for which we know the transmittance of the
filter and not only their "color" (part of the spectrum with maximum transmittance).
Recent technological advances give us greater flexibility in designing the spectral
filters and open the door to new applications. Because silicon is inherently sensitive
to Near-Infrared (NIR) radiation, both Visible and NIR filters can be combined on
the same mosaic. We show that our method applies very well on RGB-NIR mosaic
as far as we have an accurate database to learn from.

Beyond simulation, we apply our algorithm on several real cameras having SFAs
by using the RAW image extracted. We demonstrate that our method outperforms
the state of art algorithms in image quality and computational efficiency. We propose
a method to optimize filters transmittance and their arrangement such that it gives
best results depending on evaluation metrics and application chosen.

Our method is linear and therefore very fast and suitable for real time applications.
Finally, to challenge the linear nature of LMMSE we propose a demosaicing algorithm
using Neural Networks trained on a small database of images which provides slightly
better reconstruction than the linear demosaicing, however, it is computationally
more expensive.

Keywords: Demosaic, Color Filter Array, Spectral Filter Array, LMMSE,
Neural Network
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Learning methods for digital imaging.

Méthodes d’apprentissage pour l’imagerie numérique.

by

Prakhar AMBA

Abstract
Dans ce travail, nous discutons des problèmes invariants par translation en imagerie
numérique qui peuvent-être résolus par apprentissage sur des exemples de la solution
linéaire aux moindres carrés. Nous concentrons notre recherche sur le démosaïçage
couleur qui est le problème invariant par translation le plus fameux en imagerie
numérique; la possibilité d’estimer une image couleur résolue à partir d’une image
sous-échantillonnée, acquise à travers une matrice de filtres de différentes couleurs.

Pour produire des images couleurs nous devons obtenir l’information relative aux
trois couleurs primaires (généralement Rouge, Vert et Bleu) à chaque pixels de l’image.
Pour capturer cette information la plupart des caméras numériques utilisent une ma-
trice de filtres couleurs (CFA – Color Filter Array en anglais), c’est-à-dire qu’une
mosaïque de couleurs recouvre le capteur de manière à ce qu’une seule couleur soit
mesurée à chaque position dans l’image. On peut se demander si le plus utilisé des
CFA, dit de Bayer, est le meilleur compromis entre espace et couleur ou s’il faut
utiliser un motif invariant par translation plus grand ou différents filtres de couleur.
De plus, on peut demander quels seraient les transmittances idéales des filtres pour
une application donnée.

Cette méthode de mesure à travers une mosaïque est similaire à celle du système
visuel humain (HVS – Human Visual System en anglais) pour lequel les cônes LMS
(sensibles aux longues L, moyenne M et courte S (short en anglais)) forment également
une mosaïque à la surface de la rétine. Pour le système visuel, l’arrangement est
aléatoire et change entre les individus alors que pour les caméras nous utilisons des
arrangements réguliers. Nous montrons par simulation qu’il y a un avantage d’avoir
un échantillonnage aléatoire plutôt que régulier.

L’opération qui consiste à interpoler les couleurs manquantes dans une caméra est
appelé démosaïçage. Le démosaïçage peut-être simulé sur une image sous-échantillonnée
ayant une seule couleur par pixel correspondante à la matrice de filtres (CFA). A cause
de l’arrangement régulier ou périodique des filtres couleurs l’image reconstruite est
susceptible de contenir des fausses couleurs et des artefacts. Dans la littérature, les
algorithmes de démosaïçage proposés s’appliquent principalement aux CFA réguliers.

Nous proposons un algorithme de démosaïçage par apprentissage statistique, qui
peut être utilisé avec n’importe quelle mosaïque régulière ou aléatoire. Nous montrons
que la solution obtenue est unique parce qu’elle correspond à l’estimée au moindre
carré de la solution d’un problème inverse invariant par translation. L’utilisation
d’un voisinage dans le modèle vectoriel améliore la redondance et l’estimation est
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plus robuste. De manière surprenante la solution obtenue est proche de l’état de l’art
en performance. Grâce à cette méthode nous optimisons et proposons de nouvelles
matrices de filtres de couleur (CFA) qui dépasse les meilleurs algorithmes sur le CFA
de Bayer. En même temps, les images démosaïçées avec ces nouveaux arrangements
sont sans fausses couleurs et artefacts.

Nous avons étendu l’algorithme pour qu’il ne soit pas limité à trois couleurs mais
puisse être utilisé pour un arrangement aléatoire d’un nombre quelconque de filtres
spectraux. Avoir plus de trois couleurs permet non seulement de mieux représenter
les images mais aussi de mesurer des signatures spectrales de la scène. Nous ap-
pellerons une mosaïque, matrice de filtres spectraux (SFA – Spectral Filter Array en
anglais) en opposition à matrice de filtres couleurs (CFA) lorsque nous connaissons
les transmittance des filtres et pas seulement leur ”couleur” (partie du spectre de
transmittance maximale). Les technologies récentes nous offrent une grande flexibil-
ité pour définir les filtres spectraux et ouvrent la porte à de nouvelles applications.
Le substrat silicium dans lequel les photodiodes du capteur sont réalisées est sensible
aux radiations proche infra-rouge et donc des filtres visibles et proche infra-rouge
peuvent-être combinés dans la même mosaïque. Nous montrons que notre méthode
s’applique très bien sur les mosaïques RGB-NIR à condition que nous ayons une base
de donnée appropriée pour apprendre.

Plus loin que la simulation nous appliquons notre algorithme sur plusieurs cameras
réelles équipées de SFA en extrayant l’image RAW. Nous démontrons la supériorité
de notre méthode sur les algorithmes de l’état de l’art en terme de qualité d’image et
de vitesse de calcul. Nous proposons une méthode pour optimiser les transmittances
des filtres et leur arrangement de manière à ce qu’ils délivrent les meilleurs résultats
en fonction des métriques d’évaluation et de l’application choisie.

La méthode est linéaire et par conséquent rapide et applicable en temps réel.
Finalement, pour défier la nature linéaire de notre algorithme, nous proposons un
deuxième algorithme de démosaïçage par réseaux de neurones qui à des performances
légèrement meilleures mais pour un coût de calcul supérieur.

Mots clefs: Démosaïçage / Dématriçage, Matrice de filtres couleurs,
Matrice de filtres spectraux, Minimisation linéaire de l’erreur quadratique
moyenne, Résaux de Neurones
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Chapter 1

Introduction

Photography has made immense gains in the last 24 years since the advent of the first

consumer digital cameras. Beginning from a modest 0.3 MP (Megapixels) resolution

of the Apple QuickTake cameras22 (built by Kodak) to today’s 100+ MP medium

format cameras23. One of the reasons that the camera is ubiquitous today is because

of Color Filter Array (CFA) sampling that allow a single shot acquisition of full color

of a scene. Figure 1-1 shows an example of the acquisition of a color image with

a single sensor covered with a CFA. Only a single sensor is needed because each

pixel value correspond to a single color sensitivity obtained from passing through the

matrice of three color filters. So each pixel has a single color but several pixels have

potentially every colors like a mosaic. It is easy to imagine the compromise between

space and color such a spatio-spectral sub-sampling acquisition system implies. If

there is a change in red level at a position not sampled by the sensor, the location of

the red change would be imprecise. In reverse a contour is sampled only for one color

channel and the two others should follow the same slope otherwise false color could

appear. Hopefully, natural images are spatially and chromatically correlated which

allow the learning of a demosaicing solution.

Before the introduction of CFAs, digital cameras required three CCD sensors.

Each one was fully covered by a filter, for instance Red, Green and Blue, such that it

simultaneously captured all the three colors. It is easy to understand that such sys-

tems are expensive, heavy and cumbersome. Having a camera in your mobile phone
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Figure 1-1: A single sensor digital camera uses a color mosaic to acquire a color image.
In this schema only a single sensor is required which is covered with a mosaic of three
different color filters to allow color sensitivity. Shown is the Bayer CFA3.

wouldn’t have been possible without the invention of a single sensor covered by a CFA.

But this way of acquiring color image has its drawbacks. From the sub-sampled im-

ages captured by a camera with CFA, one needs to estimate the missing colors and

this step is known as demosaicing, the problem we tackle in this thesis. Technically,

demosaicing is a difficult problem because it is a spatio-spectral subsampling which

in turn challenges the digital imaging market. First, consumers want images without

false colors and artifacts which are a by product of the demosaicing algorithms. Sec-

ondly, because of the ubiquity of the camera, we want the demosaicing algorithm to

be as power efficient as possible. Another complementary advancement has been our

ability to display a wide gamut of colors on screen size ranging from huge projectors

to a wearable watch. So, we are not only looking for less color noise but also more

accurate colors. The main goal of this thesis is to propose a demosaicing algorithm

which has good performance in terms of accurate color reproduction, less color noise

and is less computationally expensive.

Color as a sense is so natural to a human being, we never consciously reflect on

the fact that color vision of another fellow being could be different from ours. A color-

blind person is not consciously self aware that he/she is missing something. It is a

realization which comes from specially designed tests. Color means different things to

different people. To a physicist, color is defined by the wavelength of electromagnetic
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radiation. To a computer graphics designer, color is the value of Red, Green and Blue

pixel value. To an artist, color has its language, it could be warm or cold, it could

have emotions and other attributes. It is what philosophers call qualia; the subjective

feeling of color. To a psycho-physicist, color is the perception of light in the human

brain. Color is actually sum of all of this and more. Color is defined by the physics of

an object in a particular environment and its perception by the Human Visual System

(HVS). When we talk about color/spectral we are at an intersection of three domains,

namely physics of light, human visual physiology and psychology of perception. Also

this perception varies between individual, my red is not same as your red. This inter

individual difference was classically demonstrated by the image of the blue-black or

white-golden dress24 which people reported seeing in different combinations of colors.

For purposes of this thesis we don’t delve into the psychological aspects and limit

ourselves to physics and two sensory systems, human and a digital camera.

Color vision is trichromatic in nature. In the HVS, the LMS cones, so called

as they are sensitive to the long (L), medium (M) and short (S) wavelength of the

visible light spectrum. They are overlaid in a random arrangement to form the inner

surface of retina. Color capture for digital cameras follows trichromacy, but this is

not enough. A complex regulation of signals is needed to improve the image issue

from a camera. Regulation involves white balancing, gamut mapping and chromatic

adaptation which are fine tuned together.

In the state of art, demosaicing for Bayer CFA is widely studied and several

approaches to estimate the color image have been proposed. However, due to its CFA

being a regular/periodic pattern gives rise to false colors/artifacts/moire specially in

high frequency regions of the image. More complicated algorithms (e.g. compressive

sensing, edge aware demosaicing, etc.) have been proposed in literature which avoid

these issues however they are computationally more expensive, therefore not suitable

for real-time applications. Typically camera manufacturers employ an Optical Low

Pass (OLP) filter on the mosaic to blur the projected image to avoid these false colors.

However, due to race towards increasing Megapixels count and to gain any meaningful

image resolution they are forced to remove these filters making it more relevant today
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to find a real-time and powerful demosaicing algorithm. Another approach to avoid

the false colors/artifacts is to rearrange the filters on the CFA mosaic. Fujifilm in

order to improve image quality proposed its XTRANS sensor25 which is supposed to

avoid the problem of moire and therefore gain resolution. Several authors have also

proposed optimized CFAs and algorithms tuned to their particular arrangement of

color filters.

The new challenge in digital color imaging is to gain more light sensitivity to

allow night vision capabilities and to capture more dynamic range. This is done by

adding a White or a Near-Infrared (NIR) pixel to the CFA mosaic. Due to difference

in sensitivities between the White/NIR and the color filters, this makes demosaicing

for such CFAs more complicated. Also recent technological advances have allowed us

to go beyond three color filters. One can implant any number of spectral filters and

customize their frequency response according to application and lay them in form

of a mosaic to form Spectral Filter Arrays (SFAs). In this thesis, if the spectral

sensitivity of the color filters (transmittance) is known we refer to their mosaics as

SFAs, otherwise as CFAs. SFA is a more generic term. Demosaicing for SFAs is a new

challenge and a subject of active research. Also these SFAs could be used to predict

the spectral signature of the scene from an image capture. It opens new applications

in field of computer vision, robotics, autonomous vehicles and agriculture (chlorophyll

detection or fruit ripeness detection). In the case of RGB CFAs, there were only three

kind of color filters with high inter channel correlation and small distance between

two neighboring pixels of same color filter. For the SFAs the number of spectral filters

are limited only by manufacturing processes, already mosaic having 32 different filters

are in production. The spatio-spectral sampling in this case is very large in scope

and requires defining a general framework for demosaicing.

Physics gives us a spectral model to describe the image formation as product

of illuminant spectral function with that of scene reflectance as modulated by the

spectral response of the color/spectral filters. There is no such model for spatio-

spectral sampling (optics, lens, sampling area, etc. ) by the mosaics.

In state of art demosaicing involves interpolation based on neighboring pixels to
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guess missing pixels for RGB CFAs by implicitly exploiting spatio-spectral correlation.

For SFAs, this is complicated due to less inter channel correlation and increased spatial

distance between same color pixels. Therefore, one needs to better understand spatio-

spectral correlation between color pixels to infer a spatio-spectral model of image

formation. We do so by modeling spatio-spectral statistics of vectors sampled on

a database of true color RGB or hyperspectral image databases. On these vectors,

we learn the transformation between correlation in full resolution color images and

correlation of spatio-spectral sub-sampled image acquired through a CFA. Databases

are representative of natural images and by having sufficient number of images one

ensures generality of the learning. Natural images have very wide spatial correlation,

the mosaicking process tends to limit the correlation within the confines of the shift-

invariant basis block. We will use a large neighborhood around each pixel in the

mosaic block, which allows to extend this correlation and therefore better estimate the

demosaicing operator. We show by experiment that it outperforms other approaches.

We consider demosaicing as an inverse problem. Inverse problems are those in

which we try to estimate the cause by observing its effect. As the mosaicking operation

is a linear process, it is natural to consider a linear inverse solution. For this we

used the linear least square approach to solve the problem of minimizing the mean

square error between the cause and an estimation of cause. This approach utilizes the

correlation between the cause, in our case, natural images, where we know correlation

is high. Therefore it is well suited to this problem. So, we provide a linear solution

by training on an image database and using a large neighborhood to ensure that our

linear system is over determined.

In this thesis we propose to develop a generic demosaicing algorithm for both

color and spectral filter arrays based on statistics of natural images. By generic, we

imply that the algorithm should be applicable for any random or periodic arrange-

ment of color/spectral filters. One of the conditions is that the algorithm should be

fast, therefore applicable for real-time applications which is a requisite for embedded

systems. We know false colors/moire in the case of Bayer CFA are due to regular

nature of the CFA. While in the case of human vision where the mosaic is random1 we
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never experience these false colors. Therefore, we hypothesize that random CFAs

are better than regular ones. The idea being that color noise in a regular pattern

is spatially structured therefore visually more distinct whereas a random mosaic will

tend to randomize the color noise therefore better hiding it in the real signal. In

the literature to overcome the problem of false colors, solutions based on edge di-

rected demosaicing, local-polynomial approximations or compressive sensing26,27 are

provided, but they are non-linear in nature. However, non-linear solutions tend to be

computationally more expensive whereas our requirement is for embedded systems.

Therefore, we wish to remain within confines of a linear solution. Therefore, we hy-

pothesize that by considering a neighborhood of pixels around pixel position

being interpolated and by learning statistics on an image database for ran-

dom CFA patterns using a linear operator, we can achieve performance

metrics similar to existing non-linear solutions.

The solution we consider is block-shift invariant (a block corresponds to the basis

pattern in the CFA), the same demosaicing operator can be applied to each basis

pattern along with its neighborhood pixels. In this thesis we will discuss two different

strategies, sliding vs constant for populating the neighborhood around a pixel in a

block. We show that by enlarging the neighborhood size for the constant, compared

to the sliding ensures equivalence in performance. Then removing the redundant

neighboring pixels in constant neighborhood, reduces the memory footprint and gains

in execution speed.

We prove both our hypothesis by simulation on a database. Doing a systematic

evaluation of all RGB filters arrangement on a 2x2, 3x3 and 4x4 basis pattern and

demonstrating that the best performing CFAs were random and not periodic and

had a quasi-equal distribution of RGB filters. Further, we present a framework for

optimizing ’multicolor CFAs’, CFAs having colors filters which are linear combination

of RGB filters. We demonstrate by simulation that the RGB and multicolor CFAs so

proposed outperform the state of art and are computationally more efficient. We then

demonstrate our algorithm on real SFA sensor having both visible and NIR filters and

show that our algorithm gives sharper result with less color artifacts. We then also

28



propose optimized SFAs based on different evaluation metrics and develop a method

to recover scene reflectance/radiance from RAW images.

Finally, we challenge our solution by considering a non-linear solution, using Neu-

ral Networking to solve the inverse problem. Artificial neural networks (NN) have

been successfully used for solving several fitting and pattern matching problems.

They are inspired by biological neurons in the sense that each neuron outputs a

non-linear function of the sum of its inputs modulated by weights and a bias. In

context of demosaicing, a deep learning based neural network having 15 layers28

has been demonstrated to have good performance. Again we hypothesize that by

considering a large neighborhood around the pixels being interpolated it

maybe possible to achieve similar performance using a simple neural net-

work architecture (less number of layers, neurons, etc.), thereby reducing

computational complexity.

1.1 Thesis Outline

In Chapter 2 we provide the background to the problem. We define the vocabulary

required to follow this thesis. We define the terminology associated with measurement

of light/color. We introduce the digital camera as a capturing instrument of color

and present the image formation pipeline. We briefly introduce the Human visual

system and Colorimetry standards. Finally, we introduce the problem of demosaicing

and the concept of linear inverse.

In Chapter 3, we review the state of art for demosaicing the Bayer CFA. We

present our Linear Minimum Mean Square Error (LMMSE) algorithm for demosaicing

random RGB (Red, Green, Blue) CFAs. We show two possibilities of considering the

neighborhood pixels: ’sliding’ and ’constant’. We perform a systematic evaluation

of all possible arrangement of color filters on a 2x2, 3x3 and 4x4 CFA layout and

provide the best performing CFAs. We also evaluate our algorithm on optimized

CFAs proposed in literature. Further, we compared our algorithm with state of art

demosaicing algorithms. Finally, we provide result for demosaicing for totally random
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CFAs (at the size of image) and compare with compressive sensing approach.

In Chapter 4, we provide a method of optimizing spatio-spectrally the RGB filters

of CFAs, limiting ourselves to considering filters as linear combination of RGB filters.

In state of art, several such CFAs have been proposed (based on optimizing separation

of luminance and chrominance in fourier domain). So this serves to compare our

approach with such CFAs and shows the strength of our linear approach.

In Chapter 5, we extend our algorithm to the spectral domain. We present the

image formation model for a camera with mosaic using spectral data. We present

a way to train our algorithm on a hyperspectral database which can be used to

construct the demosaicing operator for any Spectral Filter Array. We present the

results on a prototype camera having both Visible and Near Infrared Filters. We

present results on both simulated images from hyperspectral image database and

RAW images coming from real camera. We present the use of No-Reference metrics

for evaluating demosaiced RAW images. We compared our method with the Miao’s

Binary Tree algorithm29.

In Chapter 6, we provide a methodology to optimize filter spectral sensitivity based

on different applications, like demosaicing, spectral reflectance recovery, selection of

filters for color-wheel based camera. We present results by considering gaussian filters

as approximation of transmission given Faber-Perot process.

In Chapter 7, we provide a dual layer neural network architecture for demosaicing

using neighborhood. We compare with the state of art for demosaicing CFAs. For

SFAs we consider the 5 channel21 prototype camera from Tokyotech and demonstrate

that we can gain resolution and reduce color noise at the cost of some artifacts using

the neural network or LMMSE approach compared to Monno et al.’s method using

Weighted Guided Filters.

We conclude the thesis in Chapter 8 by summarizing our contributions and give

a perspective on limitations and scope for further improvement.
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Chapter 2

Light and Color

Color vocabulary is very specific and not very clear as its definition changes across

disciplines like physics, pyschophysics, computer graphics, etc. The purpose of this

chapter is to first introduce the vocabulary required to specify the problem of color

mosaicing and its rendering on displays for human observers. Light is electromagnetic

radiation and in context of human vision and color imaging, we are interested in

part of the spectrum where the human vision is sensitive. The term light is also

inclusive of the ultraviolet and the infrared spectrum. One of the seminal works on the

understanding of relationship between light and colors came from Isaac Newton in the

17th century when he demonstrated that passing white sunlight through a prism splits

it into a rainbow of colors. Thus, associating wavelength of monochromatic light with

a certain color. However, this is not strictly true as physics is not color. One can have

different light sources having a similar visual color appearance. For example a halogen

bulb, a fluorescent lamp and an LED might produce the same ’warm white’ we are

used to. However, they have different spectral properties. Therefore, it is important

to distinguish between the physics of light and the perception of color. Colorimetry

has defined metrics from physics which can describe a light source and also define a

color vision space describing how human observer transforms these physical metrics.
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2.1 Physics of light

A light source is an emitter of electromagnetic radiation. One can generally measure

its Spectral Power Distribution (SPD), which describes the power per unit area per

unit wavelength of an illuminant, the spectral irradiance. The same when received

on a unit projected area is the spectral radiance. One can have different light sources

from the sun to the night sky, incandescent, fluorescent or LEDs for visible spectra.

Blacklights can be sources for ultraviolet and sauna lamps can be sources for infra-red

radiation. International Commission on Illumination (CIE) is an organization which

has defined standards for different light sources. For example 𝐷65 describes the av-

erage midday light in West/North Europe, hence known as a daylight illuminant.

Similarly, 𝐴 describes tungsten light source, 𝐹𝑥 series describes the fluorescent light

sources. Any light source can be measured using device known as spectroradiome-

ters. These devices usually employ a diffraction grating which disperses the incident

spectrum linearly which is then measured using a sensor like CCD array, refer to spec-

troradiometer in Figure 2-1. Figure 2-2 shows the spectral radiance measurement for

four different light sources measured using Konica CS2000 spectroradiometer.

When light emitted from any light sources falls on any object, it is either reflected,

absorbed or transmitted. These again can be represented using spectral data. The

ratio of reflected light to the the incident light is known as reflectance. Reflectance

when multiplied with the light irradiance give us the spectral radiance of the object

which is then observed/recorded by human or a camera system. Using a spectrora-

diometer gives us the spectra for radiance of a single point. Using scanning technique

it is possible to record the spectra of large number of pixels. Such a system is called

a hyperspectral camera and outputs a cube with two spatial dimensions and a third

dimension in wavelength. When accounted for illuminant one can have a reflectance

cube for an object. One can use these reflectance images to render images for any

spectral filter response and illuminant combination. For example for a digital camera

having three color filters, Red, Green and Blue, see Figure 2-1. One needs to multiply

scene reflectance with illuminant with the red filter’s and silicon’s combined spectral
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Figure 2-1: From Physics to Vision and Camera capture

response to obtain the pixel values for Red channel. Similarly for the other colors

filters to obtain the green and blue pixel values.

When light falls on an object, there is also possibility of phosphorescence and

fluorescence due to object properties, which is absorption of photon and emission of

another at a different wavelength which we don’t account for in this thesis.

2.2 Human Visual System

The human visual system (HVS) is composed of the eye, optical nerve and the pro-

cessing centers in the brain. The eye is similar to a camera system, wherein we have

a lens to focus, iris and pupil to control aperture and retina which is the sensory

element. The difference between HVS and sensor is that the HVS is dynamic and
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Figure 2-2: Spectral Radiance measurements using Konica CS2000 for different light
sources

can adjust its sensitivity to the incoming light. The retina has two kinds of photore-

ceptors, cones and rods which absorb photons and emit a neural signal. Rods are

more sensitive to light than cones, they are sensitive to low light conditions known

as scotopic vision as they get saturated in normal lighting conditions. Rod vision or

night vision is monochromatic. Cones are sensitive to normal illumination conditions

known as photopic vision. There are three kinds of cones having different spectral

sensitivities, known as LMS cones, because their spectral sensitivities peak in the long

(L), medium (M) and short (S) wavelength of the visibile spectrum which correspond

roughly to red, green and blue light respectively. Figure 2-3-d, shows the normal-

ized relative spectral sensitivities of the cones. There are about 120 million rods

and 8 million cones in the retina which could be understood as the MP (Megapixel)
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count of the HVS. Photoreceptors are connected to several neural cells (like horizon-

tal, bipolar, amacrine and ganglion). Each neural cell like the horizontal is

connected to several photoreceptors, so there is an integration of signal

from neighboring photoreceptors. Moreover the three types of cones are laid in

a random mosaic to form the inner surface of the retina. Another thing to note with

the HVS is that not only the mosaic is random but also that its arrangement varies

from individual to individual1,30. See Figure 2-4 which shows the random mosaics

for ten different individuals. The human brain performs the task of estimating the

full color image from these random mosaics. It is easy to appreciate the complex

color processing that the human brain performs that despite these large difference in

anatomy we all seem to agree well in our perception of colors and we are unaware of

any artifacts/anomalies in our perception due to this mosaicking.

CIE has defined several standards related to human vision. CIE in 1924 defined

the luminous efficiency function 𝑉 (𝜆) to define the average eye spectral sensitivity. It

describes the relative sensitivity across wavelength. One can easily infer from this that

humans are more sensitive to green monochromatic light compared to red or blue light

of same power. In 1931, CIE defined the Color Matching Functions (𝑟(𝜆), 𝑔(𝜆), �̄�(𝜆))

based on tristimulus colorimetry, mixing monochromatic primaries Red, Green and

Blue light in different ratio can produce all possible test colors (Figure 2-3-a). We see

from the figure that 𝑟 has a negative component, meaning that it was added to the test

side. So a linear transform was found which made the RGB color matching functions,

positive therefore transforming it into (�̄�(𝜆), 𝑦(𝜆), 𝑧(𝜆)) space (Figure 2-3-b). This

also ensure that 𝑦(𝜆) is actually same as 𝑉 (𝜆).

Doing an integral of the product of spectral radiance with �̄�, one can find its

corresponding 𝑋 value. Similarly for 𝑌 and 𝑍. Giving us the values of the given

illuminant in the XYZ color space. Two different illuminants having different spectra,

however if they have same XYZ values will be perceptually same. One can normalize

the individual X,Y,Z tristimulus values by 𝑋 + 𝑌 + 𝑍 to give the chromaticity values

𝑥𝑦𝑧. This helps in visualizing on a 2D plane. Figure 2-3-c shows the xy Chromaticity

Diagram for a standard observer. This is known as the gamut of human observer.
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Figure 2-3: Color Matching Functions and LMS response

Any radiance of a visible light can be plotted as a point in this gamut. If one

was to plot all such (x,y) coordinates for a display by varying its digital value for

three phosphors/leds one would obtain a triangle (or polygon if more than three

phosphors are used) within this space which is called the color gamut of that particular

display. Similarly standard colors spaces like sRGB or Adobe RGB are defined which

encompass a triangular region within this gamut. It represents all possible colors

within a particular color space.

The XYZ space is not perceptually uniform, small changes in its values may result

in large perceived changes. Therefore CIE developed the Lab color space by applying a

nonlinear transform on XYZ, modeling for non-linearlity and chromatic adaptation,
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Figure 2-4: Images of cone mosaics of 10 subjects with normal color vision using
adaptive optics imaging and retinal densitometry.1,30 Observe differences in cone pro-
portion and arrangement

and finally normalizing with a white point. What it allows is that for two colors,

difference in Lab values is supposed to be equivalent to the perceived color difference.

Therefore this color space allows us to define a metric Δ𝐸 to measure color differences

as the usual Euclidean distance.

2.3 Digital Camera

A digital camera consists of the optical system which projects scene radiance onto

a sensor. Aperture can be opened/closed to control the amount of light passing

through. Shutter control regulates the amount of time light falls on the sensor. The

sensor may be covered with micro lens to better focus the light on the pixels. Sensor
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is composed of a grid of pixel-elements which convert photons to electrons. Silicon is

sensitive to both the visible and near-infrared (NIR) spectrum of the electromagnetic

radiation. Commercial cameras generally employ a hot-mirror which is an IR cut

filter to block the NIR components as it tends to blur the images. NIR has different

focusing distance compared to visible radiation which leads to blurring. Also, objects

have different reflectance properties to NIR for instance water absorbs NIR, which

can create images different from what we perceive. However, for application involving

night-vision it may be interesting to omit this filter as it allows greater sensitivity.

Further analog signal is converted to digital by using an Analog to Digital Converter

(ADC) which can be then read out as image RAW data.

From the color matching experiments, Figure 2-3 we see that we need information

for three color primaries to produce all possible colors. For this experiment monochro-

matic light of 700nm, 546.1nm and 435.8nm were chosen which correspond to Red,

Green and Blue colors. Similarly, red, green and blue filters are employed in digital

cameras for color capture.

2.3.1 Color Filter Arrays

The most straightforward solution for color capture would be to use a three sensor

system each overlaid with a single color filter, coupled with a beam splitter which

directs the focused light to each sensor simultaneously.

Figure 2-5: (a) Three sensor system, (b) Bayer CFA, (c) Random Human retina
mosaic1–3

Figure 2-5-a shows an example of such a system. As can be clearly seen, such

a system would be heavy, cumbersome and expensive due to use of three sensors.
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Studio video cameras and earlier camcorders did employ such a mechanism having

three CCD or three CMOS sensors. A simpler optical system is to overlay a mosaic of

Color Filter Array (CFA) on a single sensor, for example, Figure 2-5-b shows Bayer

CFA3 and then to recover the missing colors from sampled ones, using an algorithmic

approach. This process is called demosaicing. Such an approach could be compared

to one deployed by the Human Visual System (HVS), wherein a random mosaic of

cones form the inner surface of the retina.

Another approach for capturing three colors at same position was proposed by Foveon4

wherein it exploits the property of silicon to absorb different wavelengths of light at

different depth, see Figure 2-6. However this approach has had limited market accep-

tance due to limited spatial resolution and higher noise in the blue pixels, compared

to the CFA approach and therefore remains a niche product to date.

Figure 2-6: Foveon Sensor4

The Bayer CFA as proposed by Kodak remains the most widely used and therefore

has been studied in detail and several demosaicing algorithms have been proposed.

However, it remains susceptible to color noise and moiré.

In this thesis, we will study demosaicing for CFAs like Bayer, other regular mosaics

and random RGB mosaics. We also discuss demosaicing for CFAs having colors filters

other than red, green and blue.

2.3.2 Spectral Filter Arrays

Recent technological advances have allowed manufacturers to go beyond three color

filters by selecting the spectral response of filters. We term them Spectral Filter Ar-

rays (SFA) in a more generic term. We use the term SFA instead of CFA when we

have data for the filters spectral transmittance available. Several manufacturers have
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proposed mosaics with panchromatic filter, a white filter to improve low light sensi-

tivity. Silicon which is the material used for building photodiodes is sensitive to both

visible and Near-Infrared (NIR) light. Digital cameras usually employ a hot-mirror

which basically cut-offs the NIR radiation from reaching the sensor, this was done to

keep recorded images sharper as NIR tends to focuses at different distance compared

to visible radiation. Complex optics are used to compensate for that and by remov-

ing the hot-mirror one can also have NIR pixels on the mosaic. Figure 2-7 shows

several commercial/academic propositions. For RGB CFAs, generally dyes were used

as constituent of the colors and their spectral response tends to be broadband with

high correlation between filters. Today using Faber-Perot type of interferometers

gives us greater control on designing the spectral response of the filters. They pri-

marily use thin film deposition and control the thickness of deposit which decides the

transmission characteristics of filters. So it is possible to have narrow-band filters.

Figure 2-7: Spectral Filter Arrays. Monno et al21 has 5 color filters. E2V31’s proposed
sparse sensor, Silios32 offers SFAs with 9 or 16 narrow band spectral filters. IMEC33

offers SFAs with upto 32 filters.

SFAs potentially open up new applications for the digital cameras. SFAs proposed

by Monno et al.21 have five color filters, orange and cyan in addition to traditional

RGB. Authors claim that they allow more accurate color reproduction. SFAs having

white or NIR filter are designed for night-vision capabilities. Having several color

filter bands like those proposed by IMEC or Silios33 32, allow us to capture a spectral
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signature of the scene and thus can be used for applications like chlorophyll detection,

fruit ripening, computer vision or object recognition. Demosaicing for SFAs is a new

challenge as it is a recent development and a mere extension of demosaicing algorithms

developed for RGB CFAs is not possible due to differences in spectral correlation

between filters and more complex spatial arrangmenent of filters.

2.4 Analogy between Camera and the Human Vi-

sual System

Both the Digital Camera and the Human Visual System work on the same principle of

trichromacy, modulating the scene radiance by the spectral sensitivities of the color

filter/cones respectively. We saw that the spectral sensitivities for the LMS cones

(Figure 2-1) are very different from the RGB color filters. In case of the HVS the L and

M cone sensitivities are very similar and overlapping whereas for the digital camera

although the RGB filters are overlapping (inter channel correlation allows better

demosaicing as missing colors could be guessed from neighboring pixels), they still

are distinguished. Further, the LMS cones are arranged in a random mosaic whereas

for the RGB camera, the mosaic of choice is the Bayer CFA which is a regular/periodic

pattern. Demosaicing for this regular pattern using simpler algorithms, gives false

colors, artifacts and aliasing in regions of high frequency. However, in the case of the

HVS we are not aware of any such artifacts. A random pattern is less susceptible to

perceived noise as even though an equal amount of color noise might be present it is

better hidden within the mosaic’s random structure. In the case of Bayer it is due to

the regularity of the mosaic’s pattern that the color noise also gets a regular structure

therefore becoming visually disturbing. In the next chapter we demonstrate this by

comparison of demosaicing on Bayer, other regular CFAs, non periodic CFAs and

totally random CFAs. We present results both visually and in terms of performance

metrics.

The HVS employs two types of photoreceptors, cones and rods. Rods are active
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in low-light conditions and color insensitive. This is somewhat analogous to SFAs

being developed today which incorporate both color filters and a panchromatic pixel

which is similar to the rods as it has a higher sensitivity. Sparse sensors (E2V, Figure

2-7) has the goal to imitate the propoportion of the cones and rods in the retina with

White and RGB pixels.

In term of photoreceptors counts, the retina has approximately 108 million while

today sensors are approaching 50 million count. The retina has only 8 million cones

which are only present in the center of the fovea. In the case of the retina there

is a lot of integration of signals from neighboring cones happening at the layer of

horizontal and bipolar cells. By analogy, demosaicing algorithms employ inter chan-

nel correlation between neighboring pixels to improve the estimated image. In this

thesis, we would consider large neighborhood around each pixel and present formally

different strategies useful to populate this neighborhood. An important distinction

to remember is that a camera is basically a recording device while the HVS is for

perception. The eye doesn’t record, it sees.

2.5 Image processing pipeline for a camera

Having the camera producing an image from the sensor is a complex proceedure.

Figure 2-8 shows the image processing pipeline for a standard digital camera5 which

describes the steps performed in processing the RAW data recorded by the sensor

and transforming it into a color image which can be displayed or printed. This chain

is also referred to as RAW conversion. A digital camera’s ADC outputs the RAW

image which first needs to be ’pre-processed’. Pre-processing here involves correcting

for differences in photo diodes sensitivities, dark current shot-noise removal, hot-pixel

correction for pixels permanently stuck have to be discounted. Next would be white-

balancing, although certain workflows do this step after demosaicing. Human vision

has property of color constancy, perceived color of an object is consistent despite

changes in illumination. A white paper under incandescent or daylight always appear
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white. These changes in illumination are not automatically accounted for in a digital

camera. They need to ensure that the white patch is white. Next step would be the

demosaicing, which we discuss in more detail in the next section. The full resolution

color image now obtained, adjusted such that the white is white, is in the camera

filter space, in the color space as defined by the color/spectral filters. One needs to do

a color transform from the camera to the unrendered space like the XYZ space. This

rendering allows further to map it to other color spaces like sRGB, Adobe RGB or

color space for printers. Finally, gamma correction is applied to compensate for non-

linear perception of brightness by human beings. Next, we would have post processing

like sharpening, noise removal, chromatic aberration correction, levels correction or

devignetting. Finally, the image can be displayed and compressed for storage purpose.

In this thesis, we are primarily concerned with the demosaicing aspect and in context

of SFAs, we also look at camera filter space to standard color space conversion as it

helps to visualize the output image and test metrics.

Figure 2-8: Image Processing Pipeline5
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2.5.1 Demosaicing for Bayer CFA

Demosaicing for the Bayer CFA can be easily understood as an interpolation problem.

A quincunx interpolation for the green pixels and a rectangular interpolation for the

red and blue pixels.

Figure 2-9: Bayer CFA3

Bayer proposed having twice the Green than Red or Blue based on the property of

the Human Visual System having higher luminous efficiency in the green part of the

spectrum, therefore allowing better sampling of luminance. However, it has not been

demonstrated that whether in the brain, image formation follows similar approach to

cameras, or if there are some higher level processes which modify the input signal. We

know that there are inter individual differences in arrangement and ratio of cones1

but despite that we seem to agree on perceived colors, which indicate that human

vision is not so simple. Already the spectral sensitivity curves of the color filters on

CFA are very different from those of the LMS cones. Using similar curves to LMS

cones response we cannot get good colors from digital sensors. This is because the 𝐿

and 𝑀 cone response has too much overlap and is almost yellow. Separating these

highly correlated channels results in noise increasing. In the next chapter we show

that it is actually not a good idea to use more green than other colors because we find

that it is the CFAs with quasi-equal distribution of RGB color filters that provide

better reconstruction.

Several demosaicing approaches have been proposed in literature which makes

use of the fact that color channels are heavily correlated and are broadly based on

spatial interpolation, luminance-chrominance decomposition by frequency selection,

graph theory, sparse learning, statistical and probabilistic models among others. To
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provide some guidelines these methods are based on following ideas. 1. Spatial do-

main approaches like bilinear/bicubic/spline interpolation. The simplest demosaicing

algorithm would be a bilinear interpolation. For the Green channel one can average

the four neighboring pixels. For the Red and Blue channel one can average along

the height and width. Also, do the average of four neighbors for the missing central

pixels. Such an algorithm gives rise to false colors and aliasing in the high frequency

areas of the CFA image. More complicated algorithms interpolate the Green chan-

nel first, determine local edge directions to further improve results26. 2. Constant

Hue Assumption34, Hue (color ratio or differences) are constant within an object. So

Green is first interpolated and then the color differences (Red-Green, Blue-Green)

are interpolated. To reduce false colors, edge adaptive techniques are used to inter-

polate along edges and not across edges (where constant hue assumption fails). 3.

Algorithms based on sparse learning utilize the fact that natural images are sparse

when transformed in Discrete Cosine Transform or Wavelet space. This allows using

techniques developed for compresssive sensing27 for demosaicing. 4. Several optimal

CFA arrangements have also been proposed based on frequency representation and

selection13,35. The CFA mosaic can be modeled as a spatial chromatic sampling and

expressed in the Fourier domain36–38. The Fourier representation of the CFA, see

Figure 2-10 allows designing of simple linear filters which are used to select part of

the frequency corresponding to luminance and chromatic components. Despite pro-

posal for optimal arrangement of CFAs and filters, this approach has its drawbacks.

It supposes that every frequency component belongs to either luminance or chromi-

nance and can be easily separated. It is not easy to design filters for random CFAs

as the luminance and chrominance have lot of cross talk, as being assessed with the

frequency approach. However the technique we will develop in this thesis allows us

to demosaic such random CFAs and will be described in next chapter.

It would be correct to say that demosaicing is an extensively studied problem,

a Google scholar search throws up 7,720 papers on ’color demosaicing’ with 2,370

papers being published between 2015-2017, the period of this thesis. Needless to

say, to do an extensive survey/presentation of these methods would be another thesis
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Figure 2-10: Different CFA types and corresponding spatial frequency response: Left
to right: Bayer, Diagonal, Yamanaka, Holladay, CNRS6

altogether and beyond the scope here. As most of these algorithms are optimized for

the Bayer CFA and cannot be easily ported to a random CFA. Whereas in this thesis

we are concerned with demosaicing for random CFAs as it reflects more closely the

mosaic of LMS cones in our eyes and our goal is to propose a generic algorithm for

this.

Demosaicing can be understood as an inverse problem, in which we are trying

to guess the original true color image from the subsampled image recorded by the

camera. However it has no general solution. Let us consider the solution to be a black

box which has the CFA image as the input and the output as the full color image.

We have a database of true color images, so we can simulate a CFA image, pass it

through the black box to get a reconstructed image. The goal in designing the black

box is to minimize the difference between the original and reconstructed image. One

can choose from a family of linear or non linear solutions to design our black box.

It is straightforward to consider linear solution39 considering that demosaicing is

a linear application from mosaicked image to a full color image space. Therefore one

can derive a linear least square approximation of the full color image by minimizing

the expectation of squared error of reconstruction40 over an image database. Fig-

ure 2-11 presents the idea visually over a single image. Linear least square has the

advantage that the solution is unique for a given problem. A given problem for us

is the availability of a mosaic pattern with its color or spectral transmittance and a

database containing exemplars of full resolution images.
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Figure 2-11: LMMSE the idea of minimising the MSE

2.6 Linear solution to the inverse problem

An inverse problem is so called because it attempts to guess the stimuli/physical

properties by observing the effect. The forward problem is the other way around,

when you have a cause and you predict the effect. Imaging problems are often inverse

problems as our camera systems observe photon falling in it sensitive area and we

often attempt to guess the physical properties of light39. For example, the problem

of spectral reconstruction where one wants to retrieve the spectrum of light from

its measurement on responses to few spectral filters. Linear solutions to inverse

problems are preferred because of their simplicity and computational efficiency which

is of importance as we need to process megapixels of data. Linear Least Squares

provides an approach to solve a system of linear equations. Let us consider

𝑥(𝑘) = 𝑀𝑦(𝑘) (2.1)

which describes a linear model where 𝑥(𝑘) = [𝑥(𝑘)
𝑖 ] is the 𝑘𝑡ℎ realization of a random

vector 𝑥(𝑘), with component 𝑥
(𝑘)
𝑖 , of an observation and we are trying to estimate the

vector of the cause 𝑦(𝑘) = [𝑦(𝑘)
𝑖 ]. We call the estimate as 𝑦(𝑘) = [𝑦(𝑘)

𝑖 ].

In most of the case, imaging problems are underdetermined because we want to

retreive properties of the light from few measurements. But, as we will see later, in
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case of shift-invariant problems, we could favorably used the neighboring pixels to

increase the redundancy. So for now we consider overdetermined problems.

Let us consider size of 𝑀 being 𝑒 × 𝑑 (e rows and d columns) with 𝑒 > 𝑑. So, 𝑦(𝑘)

is of size 𝑑 × 1 and 𝑥 of size 𝑒 × 1. In this case, solution can be written as39:

𝑚𝑖𝑛𝑀+‖𝑦(𝑘) − 𝑦(𝑘)‖2

𝑦(𝑘) = 𝑀+𝑥(𝑘) where 𝑀+ = (𝑀 𝑡𝑀)−1𝑀 𝑡

The above equation describes 𝑀+ (also called the pseudo-inverse) being multiplied

by the observations to get an estimate of the cause. In context of demosaicing 𝑀

is the mosaicing operation, 𝑥(𝑘) an exemplar vector taken from the CFA image and

𝑦(𝑘) an exemplar vector taken from the corresponding color image. But this direct

solution using pseudo-inverse unfortunately doesn’t work. The reason belong to 𝑀

which is an idealization of the mosaicing process. In real camera, nothing prevent that

a particular pixel receive light from its closed neighbors which will result in complex

forward model containing complex spatio-spectral functions. Because we don’t know

how to properly describe the spatio-spectral of the optic process of acquiring an image

through a CFA, we usually choose as 𝑀 a selection function which select which pixel

from the color image belong to the mosaic image. In this case, 𝑀 would be solely

filled by zeros and one values and it could be show that the pseudo-inverse result in

a transpose, 𝑀+ = 𝑀 𝑡. With 𝑀 designed as selection operator, the pseudo-inverse

𝑀+ is not useful because it correspond to a copy of the measured pixels into a color

image filled with zero value at positions not measured.

It is more reliable to learn the mosaicing operator statistically from image database

and compute its inverse. Actually, we could directly learn the inverse mosaicing

operator as being an operator that transform a mosaic image into a color image. We

restrict the statistical learning to the second order statistics. In order two, statistic

of random vector is assessed by cross-correlation. For example the cross-correlation

matrix constructed from a single vector 𝑥(𝑘) is given by 𝑅(𝑘)
𝑥 = 𝑥(𝑘)(𝑥(𝑘))𝑡 = [𝑥(𝑘)

𝑖 𝑥
(𝑘)
𝑗 ].

It is a matrix of size 𝑒 × 𝑒 containing the product of two of the components of the
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vector 𝑥(𝑘). For the vector 𝑦(𝑘), cross-correlation is 𝑅(𝑘)
𝑦 = 𝑦(𝑘)(𝑦(𝑘))𝑡.

Considering 𝐾 several exemplars of the random vectors, noting 𝑥 = [𝑥(1), ..., 𝑥(𝐾)]

and 𝑦 = [𝑦(1), ..., 𝑦(𝐾)] the matrices build from concatenation of random vectors, we

can write:

𝑥 = 𝑀𝑦 (2.2)

So, the model apply also for the concatenation of different realization of the random

vectors into matrix. Actually, this means that the relation works for any correspond-

ing couples of vectors taken from CFA and color image. As a consequence, we can

directly compute the expectation of the correlation for 𝑘 several realization of the

random vector using 𝑥 and 𝑦:

𝑅𝑥 = 𝐸𝑘=1..𝐾{𝑅(𝑘)
𝑥 } = 1

𝐾
𝑥𝑥𝑡 (2.3)

𝑅𝑦 = 𝐸𝑘=1..𝐾{𝑅(𝑘)
𝑦 } = 1

𝐾
𝑦𝑦𝑡 (2.4)

This equation shows that expected correlation of vectors build from color images and

CFA images taken from a database could be done by a single matrix product. We

can even relate the correlation based on CFA image 𝑅𝑥 with the correlation based on

color image:

𝑅𝑥 = 𝑀𝑅𝑦𝑀 𝑡 (2.5)

This thesis exploit this property and show how to design the different vectors 𝑥 and 𝑦

depending on the CFA arrangement and colors. But again, 𝑀 is not a good operator

to inverse and it is better to write directly an expression in term of demosaicing

operator 𝐷. Actually, we are looking for a 𝐷 operator that does the inverse of 𝑀 . In

our case of second order statistics, resume to an operator that predict 𝑅𝑦 from 𝑅𝑥:

𝑅𝑦 = 𝐷𝑅𝑥𝐷𝑡 (2.6)

With this framework, demosaicing could be seen as an operator that predict missing

49



value in expected correlation of a color image based on the correlation of a CFA image

that is measured. Wiener already shown in the context of stochastic process that

there is a linear solution to such equation. Demosaicing operator is given by:

𝐷 = 𝑅𝑦𝑥 (𝑅𝑥)−1 = 𝑦𝑥𝑡
(︁
𝑥𝑥𝑡

)︁−1
(2.7)

where 𝑅𝑦𝑥 = 1
𝐾

𝑦𝑥𝑡. Notice that 𝐾 disappear in the equation meaning that the solu-

tion is consistent whatever is the number of realization to learn with. Actually, this

solution is also described as being the indirect reconstruction of an inverse problem

and corresponds to the least square estimate39 that minimized the mean square er-

ror. In the rest of the thesis we will use this notation without explicit construction.

We will detail the content of 𝑥 and 𝑦 matrices of vectors and how 𝐷 is compute.

We will also introduce a 𝑧 variable which is the concatenation of vectors containing

hyperspectral data. Actually, 𝐷 could be written as 𝐷 = 𝑅𝑦𝑀 𝑡 (𝑀𝑅𝑦𝑀 𝑡)−1 which

shows that even 𝑀 is not representative of the real mosaicing process it intervenes in

the computation of the demosaicing operator. But, notice its non trivial utilization.

Equation 2.7 is consistent for any number of realization of the random variable.

When considering a database to learn with several images from which we could extract

several number of random vectors, the parameter 𝐾 will be specified. Because we

will used several sizes for 𝑥 and 𝑦 depending on the neighborhood and other factors,

we are not able to fix it now.
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Chapter 3

Demosaicing for Random RGB

CFAs

3.1 Introduction

In the previous chapter we introduced elements of the human visual system and the

digital camera with its associated image processing workflow. We learnt that both

the human eye and camera capture a sub-sampled color image. The biology does it in

a random manner while our cameras apply a regular sampling like for the Bayer CFA.

Straightforward demosaicing algorithms like those based on spatial interpolation or

frequency selection give false colors and artifacts on demosaicing for the Bayer CFA

which could be due to the regularity of sampling of color filters. The interpolation

algorithms miscalculate in the region of high frequency content and due to regularity

in color arrangement, the miscalculation is also regular and therefore becomes visible

as false colors. It is possible to do more complicated algorithms like edge aware ones

which avoid this problem by interpolating along the edge and not across it. However

they are computationally more expensive.

Our goal here is to propose a demosaicing algorithm which works well with any

random CFA and also to propose an optimal CFA with respect to ability to recover

true color images. We present our method for demosaicing based on LMMSE with

neighborhood, learnt on a database of full resolution images. Further, we use our
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method to do a systematic evaluation of all possible arrangement of colors in a 2x2,

3x3 and 4x4 CFA size. Finally, we compare our method on proposed CFAs with the

state of the art algorithms.

Because most of the CFAs are a replication of a basis pattern, a shift invariant

solution could be found, which simplifies calculation by considering only the basis

pattern (called super-pixel) replicated on the surface of the CFA, a 2x2 for Bayer

pattern41,42. Despite the generality of the method which allows optimizations12,43, the

solution obtained with such a procedure is not good, because the number of unknowns

is larger than the number of inputs. An elegant way for improving the number of

inputs is to consider a closed neighborhood around the position to be interpolated.

Intuitively, this reinforces the statistical learning of the solution with existing data and

provides good reconstruction results44–49. Furthermore, this framework allows the use

of a random pattern inside the super-pixel50. Based on this method we can compare

the performance of several random CFAs in reconstructing the color image from the

CFA image. In the next section we formally describe our method of demosaicing with

linear minimum mean square error by learning over a database with neighborhood.

We then use this method to select optimal spatial arrangement of CFA for higher

image fidelity.

3.2 Matrix model of image formation

Figure 3-1 shows the basic model of image formation of a CFA image from a full color

image. Let us consider 𝑌 to be full color image, which is transformed by a mosaic 𝑀

into a CFA image 𝑋.

The goal of our demosaicing algorithm is to estimate an operator 𝐷 that will

recover color image 𝑌 from the CFA image 𝑋 such that the difference between 𝑌 and

𝑌 is minimized. We train this operator on a database of images as it leads to a more

general and good performing solution. Now let us consider a color image 𝑌 having

𝐻 rows, 𝑊 columns and 𝑃 color channels and the mosaiced image 𝑋 having 𝐻 rows

and 𝑊 columns. Writing a matrix model of image formation requires unfolding the
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Figure 3-1: The image formation model. The color image 𝑌 can be considered to be
composed of 3 separate color channels, here Red, Green and Blue images. Similarly
𝑀 can be decomposed into three channels, for instance for the Red channel, we put
1 where Red is present, 0 otherwise and so on for other channels. These three 𝑀
channels matrices are dot multiplied with three Y color channels, then summed to
obtain CFA image 𝑋. The illustration approximates this procedure visually to allow
easier understanding. The dot multiplication is in context for images, in the matrix
model we are doing a vector-matrix multiplication.

matrix representing images into vectors, then finding a matrix-vector multiplication

that relates the expected image from the acquired one41. In the case of demosaicing

we suppose that the mosaicked image results from a color image multiplied by a

projection matrix45. But there are many ways of unfolding images that results in

different models. Classically an entire image is unfolded into a single, large column

vector. For the demosaicing problem it is expressed as follows: We can construct the

column vector 𝑦 of size 𝑃𝐻𝑊 × 1 corresponding to the color image and 𝑥 of size

𝐻𝑊 × 1 corresponding to the mosaicked image41. In this case the model of image

formation can be expressed as:

𝑥 = 𝑀𝑦 (3.1)

𝑥 =
[︁
𝑥(1), ..., 𝑥(𝐾)

]︁
, 𝑦 =

[︁
𝑦(1), ..., 𝑦(𝐾)

]︁

where 𝑥(𝑘) and 𝑦(𝑘) are exemplars vectors taken from respectively the CFA image

and the color image extracted from a database. 𝑀 is a 𝐻𝑊 × 𝑃𝐻𝑊 matrix that

transforms the matrix 𝑦 corresponding to a color image into a matrix 𝑥 corresponding

to the mosaicked image. As shown in section 2.6 the learned demosaicing operator

taken 𝐾 several exemplars of vectors (here 𝐾 is the number of exemplar vector build
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from images in the database) and the estimated matrice of vectors 𝑦 is expressed as:

𝐷 = 𝑦𝑥𝑡
(︁
𝑥𝑥𝑡

)︁−1
(3.2)

𝑦 = 𝐷𝑥

In this model 𝐷 is of size 𝑃𝐻𝑊 × 𝐻𝑊 . This model implies huge matrices as a

model because the dimension of 𝑀 or 𝐷 is of size of the number of pixels in the

images. This unfolding was one of the earliest works in approaching this problem was

proposed by Trussell et al40. Images obtained from camera can be in order of 10s

of megapixels and doing matrix multiplication and inverse operations on such a data

size is unwieldy, therefore we need to find a way to reduce the size to be manageable.

A better model, Figure 3-2 is given by considering the block shift invariant prop-

erty of the mosaic44. Since the mosaic is composed by a super-pixel of size ℎ × 𝑤

replicated on the whole CFA of size 𝐻 × 𝑊 , we can unfold the image for ℎ𝑤 instead

of 𝐻𝑊 . In this case the model formulation (equation 3.1) remains the same but 𝑦 is

now a 𝑃ℎ𝑤 × 𝐻𝑊/(ℎ𝑤) column wise matrix containing the set of vectors built from

one super-pixel in the color image. There are two ways to unfold 𝑦, either by color

first and then by super-pixel or by super-pixel first and then by color. Now 𝑥 is a

ℎ𝑤 × 𝐻𝑊/(ℎ𝑤) matrix corresponding to the set of vectors built from one super-pixel

of the mosaicked image. For example, in Figure 3-2, we write the first column of 𝑥

and 𝑦 unfolded by color first.

𝑥 =
[︂
𝑅1 𝐺2 𝐺3 𝐵4

]︂𝑡

𝑦𝑐𝑜𝑙𝑜𝑟𝑓𝑖𝑟𝑠𝑡 =
[︂
𝑅1 𝐺1 𝐵1 𝑅2 𝐺2 𝐵2 𝑅3 𝐺3 𝐵3 𝑅4 𝐺4 𝐵4

]︂𝑡

unfolded color first and then super-pixel

(3.3)

There exists another way to unfold 𝑦 by super-pixel first,
[︂
𝑅1 𝑅2 𝑅3 𝑅4 ...

]︂𝑡

.
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In the rest of the document we will used color first unfolding.

For the Bayer CFA, ℎ = 2, 𝑤 = 2, and 𝑃 = 3, the matrix 𝑀 when unfolding is

by color first is:

𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.4)

𝑀 would be different if we unfolded by super-pixel first. We could choose either

procedure for unfolding, however we need to ensure to use the correct 𝑀 accordingly

to the way 𝑥 and 𝑦 were unfolded. Thus, the matrix 𝑀 selects the four pixels out of

twelve pixels from the color image’s 𝑦, to form each column in the CFA image’s 𝑥.

Thus 𝑀 is a ℎ𝑤 × 𝑃ℎ𝑤 matrix (i.e. 4x12 for the 2x2 super-pixel of the Bayer CFA)

and 𝐷 is a 𝑃ℎ𝑤 × ℎ𝑤 matrix. This new formulation reduces the computational need

to calculate 𝐷 and apply the reconstruction to the acquired data. We thus write the

inverse solution given by 𝐷 as given by modifying the matrices sizes in equation 3.1

and 3.2 and accounting for the matrix 𝑀 in equation 3.4 as follows:

𝐷 = 𝑅𝑦𝑀 𝑡
(︁
𝑀𝑅𝑦𝑀 𝑡

)︁−1
(3.5)

𝑅𝑦 = 𝐸𝑘=1..𝐾{𝑅(𝑘)
𝑦 }

= 1
𝐾

𝑦𝑦𝑡

with 𝐾 = 𝑁𝐷𝐵𝐻𝑊/(ℎ𝑤), where 𝑁𝐷𝐵 is the number of images taken in the database.

This matrix model of CFA image formation was proposed by Parmar et al.12 and

used for selection of optimal spectral sensitivities of color filters. But with this model

like the previous ones, the number of values to be retrieved is 𝑃 times larger than

the acquired values making the estimate quite unstable. To reinforce the stability of

the solution, a neighborhood of 𝑥 could be used. Let’s 𝑥1 be a vector built from 𝑥

and its close sliding neighborhood of size 𝑛ℎ × 𝑛𝑤 , 𝑥1 = 𝑁(𝑛ℎ,𝑛𝑤)(𝑋) is a function

that increases the number of rows of a vector by the 𝑛ℎ × 𝑛𝑤 neighbors. By analogy
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Figure 3-2: Matrix unfolding for 𝑌 and 𝑋 into column vectors 𝑦 and 𝑥 by super-pixel
size. 𝑦 is unfolded by color first and then by super-pixel. We show unfolding for a
single super-pixel in 𝑋 to a single column in 𝑥. For populating the second column
we shift the super-pixel across the surface of image first along 𝐻 and then across 𝑊 .
This shifting is done super-pixel by super-pixel, thus making it block-shift invariant
as we have the same 𝑀 .

with convolution, we choose the neighborhood window to slide with the pixel into the

super-pixel. So each of the ℎ𝑤 pixels into the super-pixel has it own neighborhood

window of size 𝑛ℎ × 𝑛𝑤 that is also unfolded into 𝑛ℎ𝑛𝑤. In this case, 𝑥1 is of size

ℎ𝑤𝑛ℎ𝑛𝑤 × 𝐻𝑊/(ℎ𝑤) and the number of rows of 𝑥1 could be easily larger than 𝑃ℎ𝑤.

Similarly, we consider 𝑦1 to be unfolded 𝑌 considering neighborhood of 𝑛ℎ ×𝑛𝑤 pixels

for each pixel in the super-pixel. Figure 3-3 shows this unfolded along with the

neighborhood.

This later formulation allows by analogy to design the demosaicing operator as:

𝑦 = 𝐷𝑥1 (3.6)

𝐷 = 𝑦𝑥𝑡
1

(︁
𝑥1𝑥

𝑡
1

)︁−1
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Figure 3-3: Unfolding for 𝑌 and 𝑋 into column vectors 𝑥1 and 𝑦1 for neighborhood of
size 2 using sliding neighborhood. For 𝑋, the CFA image, in yellow we see one super-
pixel. Above it in the four sub-windows, the black square shows the neighborhood
for each pixel in the super-pixel. The pink shows the extent of the neighborhood for
all pixels in the super-pixel. To the right we see the same operation in 𝑌 , however
it is repeated across the 𝑃 color channels. The unfolding in this example is by color
first, super-pixel second and finally the neighborhood for the 𝑌 .

This formulation using a sliding neighborhood was first proposed by Chaix et al.44.

We extend it further by considering that similarly to the equation 3.2, it is possible

to design a matrix 𝑀1 that transform a neighborhood in the color image (vector 𝑦1)

into a neighborhood of the mosaicked image 𝑥1, where 𝑥1 = 𝑀1𝑦1 (Figure 3-3). As for

𝑦 earlier, equation 3.3, we can choose to unfold our images in many ways. Previously

for 𝑦 we had two options, color and super-pixel. Here we have three choices, color,

super-pixel and neighborhood. The only difference it will make is in our writing of

𝑀1.

It is also possible to design a matrix 𝑆1 that transform the vector 𝑦1 into the
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vector 𝑦, 𝑦 = 𝑆1𝑦1, such that it suppresses the neighborhood and selects the central

pattern. With these two matrices, 𝐷 can be expressed as:

𝑦 = 𝐷𝑥1 (3.7)

𝐷 = 𝑆1𝑅𝑦1𝑀
𝑡
1(𝑀1𝑅𝑦1𝑀

𝑡
1)−1

𝑅𝑦1 = 1
𝐾

𝑦1𝑦
𝑡
1 (3.8)

with 𝐾 = 𝑁𝐷𝐵𝐻𝑊/(ℎ𝑤)

Equation 3.7 implies that we need to calculate the sliding neighborhood correlation

𝑅𝑦1 only once from the color images with their neighborhoods in the database. Then,

for a particular CFA into consideration, we can construct 𝑀1 and 𝑆1 and compute

the optimal demosaicing filter in the least square sense. Thus, with the same 𝑅𝑦1 we

can compare the performance of any CFA by considering its corresponding 𝑀1 and

𝑆1 matrices.

In Lu et al.46 a similar notation to Equation 3.6 is provided, but the neighborhood

size is restricted to an integer number of the size of the super-pixel which becomes

intractable when super-pixel size increases or for extended neighborhood use and is

less flexible. Here, we proposed a generalization for any CFA with any super-pixel size

and any size of neighborhood window and any arrangement of colors inside the super-

pixel. The construction of 𝑀1 and 𝑆1 for a particular arrangement and a particular

neighborhood is not trivial and cannot be described more here.

3.2.1 Sliding vs constant neighborhood

In the previous section we considered the sliding neighborhood method. We have

other possibilities for managing the neighborhood. Figure 3-4 shows two possibilities.

The yellow color denotes the super-pixel, the pink denotes the spatial extent of neigh-

borhood for all pixels in the super-pixels. The black square shows the neighborhood

for each individual pixel in the super-pixel. To recall, for the sliding neighborhood for

every pixel in the super-pixels (ℎ×𝑤) we consider its neighborhood window (𝑛ℎ×𝑛𝑤),

giving us ℎ𝑤𝑛ℎ𝑛𝑤 values, rows in 𝑥1. The same operation is repeated super-pixel
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wise to populate all the columns in 𝑥1. Let us consider toy-constant neighborhood

Figure 3-4: Illustration of sliding vs toy-constant neighborhood for 2x2 super-pixel,
considering a neighborhood of 2x2.

method where for all the pixels in the super-pixels share the same neighborhood win-

dow (𝑛ℎ × 𝑛𝑤), giving us ℎ𝑤𝑛ℎ𝑛𝑤 values, rows in 𝑥1. We use the notation as before

for writing matrices and not distinguish neighborhood scheme for sake of simplicity.

Depending on the neighborhood scheme one needs to ensure using the corresponding

𝑀1, 𝑆1, 𝐷, 𝑅𝑦1 matrices. Toy constant case has the same computational complexity

with the sliding case because matrices have the same size.

By simulation we show experimentally that the result is not the same for recon-

struction of 𝑦1 as toy-constant provides less quality. From the Figure 3-4, it can be

seen that the spatial extent of neighborhood for all the pixels in the super-pixel (de-

noted by pink) is smaller for toy-constant than for sliding. To ensure the same spatial

extent we consider toy-constant with an expanded neighborhood window (𝑛′
ℎ × 𝑛′

𝑤)

for every pixel in the super-pixel (ℎ×𝑤), giving us ℎ𝑤𝑛′
ℎ𝑛′

𝑤 rows in 𝑥1. Actually, it is

the extent of the neighborhood of all pixels in the super-pixel that count. For having

the same performance in case of expanded toy-constant neighborhood we come to the

following relation between 𝑛′
ℎ𝑛′

𝑤 and 𝑛ℎ𝑛𝑤.

𝑛′
ℎ = 𝑛ℎ + ℎ − 1

𝑛′
𝑤 = 𝑛𝑤 + 𝑤 − 1

59



We confirm experimentally that sliding and expanded toy-constant neighborhood give

the same performance. It can be seen that the expanded toy-constant neighborhood

is redundant in ℎ𝑤, therefore we can remove this redundancy and the number of rows

in 𝑥1 is now 𝑛′
ℎ𝑛′

𝑤. We call it constant neighborhood. Figure 3-5 shows the expanded

toy-constant and the constant neighborhood. It can be written as follows:

𝑦 = 𝐷𝑥1

𝐷 = 𝑆1𝑅𝑦1𝑀
𝑡
1(𝑀1𝑅𝑦1𝑀

𝑡
1)−1 (3.9)

𝑅𝑦1 = 1
𝐾

𝑦1𝑦
𝑡
1

with 𝑦 is of size 𝑃ℎ𝑤×𝐻𝑊/(ℎ𝑤) containing the estimated vectors of the reconstructed

color image, 𝑀1 is a 𝑛′
ℎ𝑛′

𝑤 × 𝑃𝑛′
ℎ𝑛′

𝑤 matrix, 𝐷 is a 𝑃ℎ𝑤 × 𝑛′
ℎ𝑛′

𝑤 matrix, 𝑆1 is a

𝑃ℎ𝑤 × 𝑃𝑛′
ℎ𝑛′

𝑤. 𝑥1 is of size 𝑛′
ℎ𝑛′

𝑤 × 𝐻𝑊/(ℎ𝑤) and 𝑦1 is of size 𝑃𝑛′
ℎ𝑛′

𝑤 × 𝐻𝑊/(ℎ𝑤)

and 𝐾 = 𝑁𝐷𝐵𝐻𝑊/(ℎ𝑤).

Figure 3-5: Illustration of expanded toy-constant and constant neighborhood for 2x2
super-pixel. For expanded toy-constant we consider a neighborhood of 3x3. This
neighborhood was expanded from the sliding case to ensure same spatial extent of
neighborhood for all pixels in the neighborhood. As the expanded-toy constant has
redundancy by ℎ𝑤 we simple reduce it and call it the constant.

In summary, we design a forward and reverse model that uses only neighborhood

window for CFA image and provides reconstructed colors for the whole super-pixel

without having repetition for the super-pixel in the CFA image. It is not trivial to

obtain such a result, but introducing the toy-constant example allows us to show the

different steps needed. Table 3.1 summarizes the various models presented so far.
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Matrix Trussell et al.41 Parmar et al.12 Chaix et al.44 Sliding Ours constant
𝑥 𝐻𝑊 × 1 ℎ𝑤 × 𝐻𝑊/(ℎ𝑤) ℎ𝑤 × 𝐻𝑊/(ℎ𝑤) ℎ𝑤 × 𝐻𝑊/(ℎ𝑤)
𝑦 𝑃𝐻𝑊 × 1 𝑃ℎ𝑤 × 𝐻𝑊/(ℎ𝑤) 𝑃ℎ𝑤 × 𝐻𝑊/(ℎ𝑤) 𝑃ℎ𝑤 × 𝐻𝑊/(ℎ𝑤)
𝑀 𝐻𝑊 × 𝑃𝐻𝑊 ℎ𝑤 × 𝑃ℎ𝑤 ℎ𝑤 × 𝑃ℎ𝑤 ℎ𝑤 × 𝑃ℎ𝑤
𝑥1 ℎ𝑤𝑛ℎ𝑛𝑤 × 𝐻𝑊/(ℎ𝑤) 𝑛′

ℎ𝑛′
𝑤 × 𝐻𝑊/(ℎ𝑤)

𝑦1 𝑃ℎ𝑤𝑛ℎ𝑛𝑤 × 𝐻𝑊/(ℎ𝑤) 𝑃𝑛′
ℎ𝑛′

𝑤 × 𝐻𝑊/(ℎ𝑤)
𝑀1 ℎ𝑤𝑛ℎ𝑛𝑤 × 𝑃𝑛ℎ𝑛𝑤ℎ𝑤 𝑛′

ℎ𝑛′
𝑤 × 𝑃𝑛′

ℎ𝑛′
𝑤

𝑆1 𝑃ℎ𝑤 × 𝑃ℎ𝑤𝑛ℎ𝑛𝑤 𝑃ℎ𝑤 × 𝑃𝑛′
ℎ𝑛′

𝑤

𝐷 𝑦𝑥𝑡(𝑥𝑥𝑡)−1 𝑅𝑦𝑀 𝑡(𝑀𝑅𝑦𝑀 𝑡)−1 𝑆1𝑅𝑦1𝑀
𝑡
1(𝑀1𝑅𝑦1𝑀

𝑡
1)−1 𝑆1𝑅𝑦1𝑀

𝑡
1(𝑀1𝑅𝑦1𝑀

𝑡
1)−1

𝑦 𝐷𝑥 𝐷𝑥 𝐷𝑥1 𝐷𝑥1

Table 3.1: Summary of the various methods to unfold and construct the demosaicing
operator as per Linear Least Square method. 𝑛′

ℎ = 𝑛ℎ + ℎ − 1, 𝑛′
𝑤 = 𝑛𝑤 + 𝑤 − 1.
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3.3 Simulation

With the framework given in the previous section, we can easily compare the perfor-

mance of several CFAs with any super-pixel size and any arrangement of colors inside

the super-pixel as well as any size of the neighborhood used for controlling redun-

dancy. The framework works as follows: for any color image taken from the database,

we compute 𝑦1, composed by the set of vectors constructed for every pixel inside the

super-pixels and theirs neighbors. From all 𝑦1 taken from all images in the database,

we compute 𝑅𝑦1 according to Equation 3.9. Then we design 𝑆1 and 𝑀1 for the CFA

and the neighborhood size. We compute 𝐷 with Equation 3.9. The performance

of the demosaicing is then computed as follows: for each image in the database, we

compute the mosaicked image by sub-sampling the color image according to the CFA.

Then we compute the vector 𝑥1 using the neighborhood. We apply 𝐷 on 𝑥1 as in

Equation 3.9 to reconstruct the estimate 𝑦 and compare it to 𝑦 by calculating 𝑃𝑆𝑁𝑅

(A border equivalent to neighborhood size was removed in the calculation). Because

all our images are normalized between 0 and 1, the PSNR is computed from the mean

square error MSE as follows:

𝑀𝑆𝐸 =
∑︀∑︀ (𝑦 − 𝑦)2

𝐻𝑊𝑃

𝑃𝑆𝑁𝑅 = 10 log10
1

𝑀𝑆𝐸

We compute a PSNR from the whole mean square difference between the original and

reconstructed image for all pixels. We use the average of whole PSNR over all the

images in the database, 𝜇 as an estimator of the overall quality of the reconstruction.

The variance of the whole PSNR along image number, 𝜎 gives an estimate of the

adequacy of the method to encode any particular image from a database. To test

the method to equally encode any colors, we used the average of the PSNR per

channel, 𝜇𝑅, 𝜇𝐺 and 𝜇𝐵 as well as the average of the variance of PSNR per channel,

𝜎𝑟𝑔𝑏. Finally, the SSIM51 is also provided to estimate the quality of the image in

term of visual factors. We perform the analysis on two databases (Kodak15, McM16)
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for comparing the performances. The Kodak database is known to have much higher

frequency compared to the number of pixels and with low colorfulness which favor the

edge directed and post processing methods. The McM database has been proposed as

having more realist images in term of high frequency and colorfulness. We generally

used all the images from the database for learning the demosaicing operator. We also

implement a leave-one-out simulation where the image to reconstruct is not in the set

of images used to learn.

3.4 Results

3.4.1 Systematic evaluation for 2x2 super-pixel size of the

CFA

As a first example of performance comparison, we consider all the different combina-

tion of three colors R, G, B on a 2x2 super-pixel. The number of different possible

arrangements is 34 = 81, the choice of 3 colors over 4 different positions. Notice that

a lot of them are symmetrical than others.

Figure 3-6 shows the performance of all 2x2 CFAs, arranged in decreasing or-

der with respect to average PSNR (𝜇) for learning/reconstructing the entire Kodak

database. From Figure 3-7, histogram of 𝜇 for Kodak and McM database we clearly

see three zones of distinction. Lowest performance is for CFAs with single color, mid-

dle for CFAs with two colors and higher when all three colors are present. When all

three colors are present the performance is pretty similar showing the generality of

our algorithm for any CFA arrangement. For the Kodak database in term of average

PSNR, 𝜇, the best arrangement is not the Bayer RG;GB but slightly modified one

where the arrangement is RG;BG. If we look at the average variance between PSNR

calculated on individual color channels in the reconstructed images over the database,

𝜎𝑟𝑔𝑏 , the best is RB;GB arrangement. Also, if we look at the average variance of

the overall PSNR, 𝜎, along all the images in the database, the BR;GG is the best.

This shows the following criterion that either twice of green or blue is preferred for
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Figure 3-6: All possible CFAs of 2x2 size arranged by decreasing 𝜇 (left to right then
top to bottom) for Kodak database for a neighborhood of 7

variance criteria. (Figure 3-8). For the McM database we see that for lowest 𝜎 the

CFA we found was all red, which is an anomaly. However this metric just denotes the

variance between PSNR for all images in the databases, it is not concerned if they

are equally good or bad. In this case they are equally bad. So we are searching for

CFAs which should have both low 𝜎 and high 𝜇.
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Figure 3-7: Histogram of 𝜇 for Kodak and McM database for all 2x2 CFAs

Figure 3-8: Top Row: Left to Right (Lowest 𝜎𝑟𝑔𝑏, Highest 𝜇, Lowest 𝜎) for Kodak
database. Bottom Row: Left to Right (Lowest 𝜎𝑟𝑔𝑏, Highest 𝜇, Lowest 𝜎) for McM
database
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3.4.2 Systematic evaluation for 3x3 super-pixel size of the

CFA

We consider all the different combinations of colors in the 3x3 super-pixel, there are

39 = 19683 different ones. Figure 3-9 shows the result for evaluating all the different

Figure 3-9: Top 100 CFAs by 𝜇 for Left(Kodak), Right (McM) for neighborhood 7

3x3 CFAs. The top 100 CFAs by average PSNR 𝜇 are shown. For the Kodak the top

7 CFAs are diagonal in nature, whereas for McM, the top 12 CFAs are diagonal. For

the Kodak database each color in order (Red, Green and Blue) occurs a minimum of

(3,2,2) times and maximum of (4,4,4) times. The PSNR ranges between 38.90 and

38.61 for the top hundred for neighborhood of 7 for Kodak database. For the McM

each color (Red, Green, Blue) occurs a minimum of (2,2,3) and maximum of (4,4,4)

times. It can be concluded that a quasi-equal distribution of colors favors ability to

reconstruct image. As shown in Figure 3-9, among the best hundred 3x3 CFAs, some

are symmetrical but none are perfectly periodic. Figure 3-10 shows the distribution of

average PSNR for all possible 3x3 CFAs. From the top row, in each histogram (either

for Kodak or McM), three different regions (single, two color and all three colors)

can be easily visualized. Values less than 30 indicate at least 1 color was missing.

Bottom row shows a zoom when all three colors are present. Again depending on the

criterion (𝜎𝑟𝑔𝑏, 𝜇,𝜎) three different optimal ones are shown (figure 3-11).
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Figure 3-10: Histogram of 𝜇 for Kodak and McM database for all 3x3 CFAs. Left
is Kodak, Right is McM. Top Row shows for cases. Bottom row shows distribution
when all three colors are present

Figure 3-11: Top Row: Left to Right (Lowest 𝜎𝑟𝑔𝑏, Highest 𝜇, Lowest 𝜎) for Kodak
database. Bottom Row: Left to Right (Lowest 𝜎𝑟𝑔𝑏, Highest 𝜇, Lowest 𝜎) for McM
database
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3.4.3 Evaluation of 4x4 super-pixel size of the CFA

There are 316=43046721 possible combinations of three colors on a 4x4 super-pixel,

which is computationally expensive to test systematically. On our machine (Xeon

e5-1603 v3 @ 2.8 GHz, 16 GB RAM) to systematically test each CFA for 24 images

of Kodak database for neighborhood of 7 and evaluate for PSNR would require 17.6

years of computational time with the sliding neighborhood. Therefore we imposed

rules to restrict maximum occurrence of each color to 11, minimum occurrence to 1

and that no color occurs in a cluster of 2x2 anywhere in the CFA, bringing down the

total CFAs to 31483428. Also, we evaluated PSNR for a single image, Lighthouse of

Kodak (half sized) for a neighborhood of 3. It brings down the computational time to

a manageable 9 days. Refer to figure 3-12 for distribution of PSNR. For comparison

PSNR for Bayer CFA for half sized Lighthouse image is 31.22. Only 0.11% of 4x4

CFAs tested performs worse than Bayer. So, it is clear that the majority of 4x4 CFAs

thus selected (i.e. random) perform better than Bayer CFA (periodic).

Figure 3-12: Histogram of PSNR for 4x4 CFAs

From this exercise we narrow down the top 1000 CFAs and then do the complete

evaluation of average PSNR for entire database on them. Figure 3-13 shows the

top 100 CFAs so obtained. Each color (Red, Green, Blue) occurs a minimum of

(6,4,4) and maximum of (7,6,6) so we see a bias towards having more of Red than
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Green or Blue. Again none of these CFAs are periodic in nature and be described as

totally random distribution of colors. In the literature CNRS CFA52 is proposed as

Figure 3-13: Top 100 4x4 CFAs by average PSNR for Kodak database

having good performance. We found a total of 978 CFA with better average PSNR

(𝜇) performance than CNRS. Of these 94 were found to even have a lower average 3

channel variance (𝜎𝑟𝑔𝑏) than the CNRS. In these each color (Red, Green, Blue) occurs

a minimum of (5,4,5) and maximum of (6,5,6) times, i.e. we see again a quasi-equal

distribution of colors.

An evaluation method will be presented in the next chapter that confirms that

the best performance CFA for 𝜇 is same even with evaluation on the whole database.

3.4.4 Comparison of CFAs under LMMSE

We select several CFAs (Figure 3-14) proposed in the literature that we have tested

with LMMSE demosaicing. We also added the Bayer, best 2x2 and best 3x3 selected

69



based on Kodak database. We also selected the best 4x4 for highest PSNR 𝜇, called

4x4#1 based on procedure described above. We have also selected another 4x4 CFA

which not only has a high average PSNR (𝜇) but also a lower 3 channel variance

(𝜎𝑟𝑔𝑏) called 4x4#2.

Figure 3-14: Different CFA patterns used for comparison. (a) Bayer, (b) 2x2#1
(Highest 𝜇), (c) 2x2#2(Lowest 𝜎𝑟𝑔𝑏 (d) 2x2#3 (Lowest 𝜎), (e) 3x3#1(Lowest 𝜎𝑟𝑔𝑏,
(f) 3x3#2 (Highest 𝜇), (g) 3x3#3 (Lowest 𝜎) (h) 4x4#1, (i) 4x4#2, (j) Yamanaka11,
(k) Lukac53, (l) Holladay halftone12, (m) CNRS52, (n) Fuji25, (o) Condat CFA of size
18x1854.

Figure 3-15 shows the performance of CFAs along the neighborhood size, which

clearly favor the best 4x4#2 for a neighborhood of size larger than 3. This CFA is

also performing well with variance estimators showing its ability to equally encode

colors and perform well for any image in the database. In general we observe that

average PSNR improves with increasing the size of neighborhood, with 7-10 being

good criteria.

In the Figure 3-15-d we can see that a spatial neighborhood extent for all pixels

in the super-pixel of 3 (inner black outline) for Bayer, implies that for each missing

color, there are at least 4 pixel in the neighborhood extent where that color is known,

which explain the first great increase in average PSNR when we go from neighborhood

of 1 to 3. For neighborhood extent of 7 for Bayer, for each missing color there are

at least 16 pixels in the neighborhood extent where that color is known therefore

providing an even better estimate of the missing color. Beyond 10 for the average

PSNR there is diminishing rate of return, i.e. a very small gain for a proportionally

greater increase in computational time. Generally, CFAs with higher 𝜇 and lower 𝜎𝑟𝑔𝑏
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Figure 3-15: Evaluation of CFAs with LMMSE with increasing neighborhood (a)
Average PSNR, 𝜇. (b)Variance of PSNR per channel 𝜎𝑟𝑔𝑏. (c) Variance of PSNR for
all images 𝜎. A border equivalent to neighborhood size was considered (d) Spatial
extent of pixels considering neighborhood of 3 (inner outline in black) and 7 (inner
outline in black) on Bayer CFA.

seems to perform well visually, i.e. very less false colors.

Table 3.2 and 3.3 shows the number of the evaluation parameter estimated based

on a neighborhood of 10 for the CFAs. We show the result for the 4x4#1 because

even if it is not the best for average PSNR, it has very good visual performance on

the fence of the lighthouse image. For Condat CFA of size 18x18 we could only test

until a neighborhood of size 7 with sliding neighborhood. For neighborhood of size

10, 70.6GB of memory is required to store the correlation matrix which is not possible

for us to test. For comparison for CFA of size 2x2 we require 4MB, 3x3 its 14Mb,
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Table 3.2: Comparison of CFA for Kodak database, 𝑛ℎ = 𝑛𝑤 = 10 for all CFAs. Refer
to Figure 3-14 for the CFAs

Kodak
CFA 𝜇 𝜇𝑅 𝜇𝐺 𝜇𝐵 𝜎𝑟𝑔𝑏 𝜎 SSIM
Bayer 38.90 38.57 41.53 37.59 4.64 6.57 0.9911
2x2#1 39.51 39.41 40.36 38.99 1.01 7.21 0.9923
2x2#2 39.10 38.71 39.39 39.32 0.53 7.64 0.9917
2x2#3 39.12 38.27 40.27 39.22 1.78 5.01 0.9916
3x3#1 37.16 37.40 37.13 37.02 0.22 6.34 0.9881
3x3#2 38.96 38.70 39.48 38.78 0.39 6.81 0.9913
3x3#3 36.36 37.40 35.81 36.13 1.11 5.41 0.9859
4x4#1 40.26 40.51 40.32 40.05 0.40 6.44 0.9933
4x4#2 40.40 41.00 39.82 40.56 0.76 6.39 0.9936

Yamanaka 38.73 37.82 40.95 38.19 3.46 6.81 0.9910
Lukac 39.35 38.70 41.47 38.57 3.13 6.31 0.9918

Holladay 38.57 39.23 39.62 37.30 1.87 6.05 0.9908
CNRS 39.78 40.01 40.02 39.39 0.40 6.42 0.9927
Fuji 38.83 37.88 41.21 38.20 3.76 6.21 0.9910

Condat 40.05 39.74 40.63 39.86 0.42 4.92 0.9924

4x4 its 41MB. However it is possible to do it with the constant neighborhood, where

the size of correlation matrix is only 33.5MB. This shows the huge advantage gained

from using constant neighborhood even with a large super-pixel size.

For the Kodak database we find the best CFA for 𝜎𝑟𝑔𝑏 is 3x3 #1 and for 𝜎 is 2x2

#3. This is understandable as this was the criteria for selecting these CFAs. We

choose 4x4 #1 as it gives a low 𝜎𝑟𝑔𝑏 along with a high 𝜇. Among other CFAs, CNRS

and Condat were found to have good performance for 𝜎𝑟𝑔𝑏, i.e. all color channels are

equally well reconstructed. We find Condat CFA to be a good performer. In terms of

𝜇, the 4x4 #2 was the best performer. For the McM database, the Condat CFA has

a good performance for several parameters. Although 4x4 #2 has a slightly lower 𝜇

than Condat, it has a better SSIM performance.
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Table 3.3: Comparison of CFA for McM database, 𝑛ℎ = 𝑛𝑤 = 10 for all CFAs. Refer
to Figure 3-14 for the CFAs

McM
CFA 𝜇 𝜇𝑅 𝜇𝐺 𝜇𝐵 𝜎𝑟𝑔𝑏 𝜎 SSIM
Bayer 35.61 35.54 39.13 33.86 8.08 9.19 0.9827
2x2#1 35.13 35.47 36.82 33.81 3.03 9.36 0.9818
2x2#2 34.74 34.49 34.55 35.49 1.40 9.60 0.9818
2x2#3 35.37 35.68 37.38 33.92 3.82 9.54 0.9824
3x3#1 34.58 35.98 34.18 34.02 1.95 9.26 0.9805
3x3#2 35.42 36.18 35.90 34.56 1.63 9.18 0.983
3x3#3 34.08 36.85 33.87 32.72 5.57 9.66 0.9785
4x4#1 35.44 36.96 35.89 34.14 2.83 9.32 0.9832
4x4#2 35.96 37.25 35.55 35.49 1.84 9.33 0.9851

Yamanaka 35.08 35.44 36.75 33.75 3.05 9.40 0.9815
Lukac 35.60 35.81 38.18 33.96 5.24 9.06 0.9828

Holladay 35.27 37.39 37.21 32.96 7.24 9.15 0.9818
CNRS 35.39 36.64 35.46 34.54 1.98 9.15 0.9832
Fuji 35.14 35.11 38.70 33.35 8.39 9.13 0.9809

Condat 36.05 36.90 36.54 35.09 1.57 6.75 0.9833
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3.4.5 Effect of gaussian noise on LMMSE performance

In this section we demonstrate the effect of adding gaussian noise to the CFA images

simulated from the Kodak and McM databases. The 𝐷 operator was trained on noise-

free images and used to demosaic noisy images. For the simulation we add gaussian

noise of standard deviation five. Table 3.4 and 3.5 shows the result for different

metrics tested for different CFAs. For the Kodak database and McM database we see

that 4x4 # 2 has the overall best performance for the various metrics. For comparison

with the state of the art, ACUDE14 compared their approach with other algorithms in

the literature for testing this particular noise and showed favorable results. Therefore

we choose to compare with them.

Table 3.4: Comparison of CFA for Kodak database, 𝑛ℎ = 𝑛𝑤 = 10 for all CFAs, with
additive gaussian noise of standard deviation=5. Refer to Figure 3-14 for the CFAs

Kodak
CFA 𝜇 𝜇𝑅 𝜇𝐺 𝜇𝐵 𝜎𝑟𝑔𝑏 𝜎 SSIM
Bayer 32.14 31.62 33.85 31.35 1.92 0.41 0.9208

2x2 #1 32.05 31.54 33.53 31.41 1.45 0.33 0.9181
2x2 #2 32.06 31.46 31.69 33.25 1.00 0.41 0.9238
2x2 #3 32.00 31.29 33.53 31.51 1.56 0.22 0.9171
3x3 #1 31.51 32.19 31.01 31.41 0.40 0.59 0.9196
3x3 #2 32.20 32.12 32.38 32.11 0.05 0.41 0.9246
3x3 #3 31.31 32.26 31.21 30.63 0.75 0.63 0.9162
4x4 #1 32.30 32.60 32.27 32.06 0.10 0.21 0.9241
4x4 #2 32.38 32.76 31.86 32.58 0.25 0.20 0.9263

yamanaka 32.05 31.36 33.73 31.45 1.86 0.43 0.9198
lukac 32.16 31.57 33.81 31.47 1.78 0.29 0.9199

holladay 32.02 32.59 32.72 30.98 0.98 0.39 0.9214
cnrs 32.23 32.46 32.14 32.10 0.07 0.26 0.9240
fuji 32.02 31.22 34.16 31.29 2.85 0.35 0.9180

condat 31.98 31.12 33.13 31.92 1.06 0.29 0.9183

For instance with LMMSE, for Bayer CFA on the Kodak database we get a 𝜇 of

32.14 dB, while ACUDE reports 33.49 dB. Similarly with McM with LMMSE, for

Bayer CFA we get a 𝜇 of 31.24 dB, while ACUDE reports 32.41 dB. For sure ACUDE

has a higher performance than LMMSE, but one needs to consider that LMMSE take

less than half second for Kodak images while ACUDE requires more than one and a
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Table 3.5: Comparison of CFA for McM database, 𝑛ℎ = 𝑛𝑤 = 10 for all CFAs, with
additive gaussian noise of standard deviation=5. Refer to Figure 3-14 for the CFAs

McM
CFA 𝜇 𝜇𝑅 𝜇𝐺 𝜇𝐵 𝜎𝑟𝑔𝑏 𝜎 SSIM
Bayer 31.24 30.72 33.44 30.24 3.17 1.67 0.9304

2x2 #1 30.99 30.59 32.69 30.12 2.06 1.86 0.9283
2x2 #2 30.91 30.41 30.41 32.22 1.42 2.20 0.9335
2x2 #3 31.03 30.65 32.85 30.10 2.32 1.72 0.9280
3x3 #1 30.57 31.57 29.88 30.47 0.92 1.92 0.9279
3x3 #2 31.31 31.57 31.46 30.98 0.31 1.85 0.9350
3x3 #3 30.39 31.84 30.39 29.37 1.89 2.18 0.9249
4x4 #1 31.16 31.89 31.18 30.57 0.63 1.77 0.9329
4x4 #2 31.41 32.08 30.82 31.48 0.58 1.59 0.9363

yamanaka 31.05 30.73 32.69 30.16 1.97 1.95 0.9294
lukac 31.20 30.78 33.11 30.23 2.49 1.64 0.9297

holladay 30.91 31.95 31.82 29.48 2.16 1.73 0.9276
cnrs 31.18 31.76 31.00 30.87 0.45 1.80 0.9336
fuji 30.97 30.42 33.55 29.83 4.20 1.79 0.9268

condat 31.08 30.69 32.34 30.49 1.21 1.76 0.9299

half hour to process a single image, with the code publicly available. We don’t lose

much 𝜇 compared to ACUDE while being less computationally complex.
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3.4.6 Comparison with other methods on Bayer

We compare the best 4x4 using a neighborhood of 10 with the state of the art methods

applying on the Bayer CFA using both the Kodak and McM database. The following

Table 3.6 and 3.7 shows the evaluation parameters as well as the computation time

on Matlab. The code for the algorithms is found on web site55.

Table 3.6: Comparison between the best 4x4 with LMMSE on Kodak database and
other methods for noiseless case. LPA-ICI56, LIAN57, DA36, HD58, SA59, DFPD60,
DLMMSE61, AP62, LI26, HA34, LLSC27,LDI NAT16, LDI NLM16, WECD63, LU64,
ACUDE14 are tested with a border of 15. 4x4#1 and 4x4#2 reported with a border
of 10.

Kodak
CFA 𝜇 𝜇𝑅 𝜇𝐺 𝜇𝐵 𝜎𝑟𝑔𝑏 𝜎 SSIM Time(s)
4x4#1 40.26 40.51 40.32 40.05 0.40 6.44 0.9933 0.64
4x4#2 40.40 41.00 39.82 40.60 0.76 6.39 0.9936 0.65
LPA-ICI 40.52 39.63 43.00 39.91 4.45 7.08 0.9874 1.15
LIAN 39.53 38.59 42.13 38.86 4.63 7.39 0.9855 0.31
DA 37.82 37.38 40.66 36.54 5.27 5.82 0.9829 0.09
HD 37.72 36.94 39.59 37.26 2.82 8.64 0.9799 28.11
SA 39.01 37.92 41.56 38.53 4.57 6.37 0.985 1.30
DFPD 39.17 38.32 41.23 38.70 3.25 7.83 0.9837 1.55
DLMMSE 40.05 39.12 42.58 39.53 4.79 6.92 0.9866 28.84
AP 39.25 38.29 41.73 38.70 4.40 6.07 0.9849 1.61
LI 35.66 35.16 38.83 34.25 6.05 10.24 0.9729 0.02
HA 36.87 36.75 38.05 36.08 1.20 10.40 0.9769 0.08
Bilinear 30.19 29.25 33.07 29.26 4.94 10.94 0.916 0.04
LLSC 41.46 40.53 44.36 40.67 5.52 6.70 0.9939 336.00
LDI NAT 37.61 36.91 39.37 37.05 2.24 9.75 0.9799 925.61
LDI NLM 37.66 37.09 39.43 36.96 2.27 7.43 0.9727 202.83
WECD 39.16 38.06 41.92 38.69 5.42 6.02 0.9854 1.39
LU 38.93 38.29 40.73 38.39 2.68 8.03 0.9839 980.31
ACUDE 40.71 39.77 43.46 40.02 5.20 6.72 0.9934 5872

All the algorithms other than LLSC27 proposed by Mairal et al. were tested on

a Windows Xeon e5 1603 (4 cores @ 2.8Ghz) with 16GB RAM. Matlab codes or

Matlab executables as provided by authors was used. For LLSC the algorithm was

tested on a Linux Xeon e5 1620 (4 cores @ 3.6GHz) with 8GB RAM, as the source

code used executables compiled for Linux, giving it a potential advantage (as code

is compiled + faster processor). However, this code makes use of a single core only
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Table 3.7: Comparison between the best 4x4 with LMMSE on McM database and
other methods for noiseless case. LPA-ICI56, LIAN57, DA36, HD58, SA59, DFPD60,
DLMMSE61, AP62, LI26, HA34, LLSC27,LDI NAT16, LDI NLM16, WECD63 and
LU64, are tested with a border of 15. 4x4#1 and 4x4#2 reported with a border of
10.

McM
CFA 𝜇 𝜇𝑅 𝜇𝐺 𝜇𝐵 𝜎𝑟𝑔𝑏 𝜎 SSIM Time(s)
4x4#1 35.44 36.96 35.89 34.14 2.83 9.32 0.9832 0.39
4x4#2 35.96 37.30 35.55 35.40 1.84 9.33 0.9851 0.40
LPA-ICI 34.70 34.32 37.88 33.29 6.62 13.20 0.9655 0.64
LIAN 34.91 34.55 37.95 33.52 6.13 10.40 0.9673 0.17
DA 32.22 31.82 34.69 31.07 4.16 13.33 0.9528 0.06
HD 33.46 32.94 36.96 32.15 7.94 11.20 0.9576 18.50
SA 32.69 32.56 34.42 31.70 2.71 17.88 0.9529 0.87
DFPD 34.22 33.74 37.17 32.96 5.64 10.77 0.9624 0.99
DLMMSE 34.43 33.97 37.90 33.02 7.93 11.21 0.9647 18.27
AP 33.14 32.79 35.13 32.17 3.01 12.47 0.9567 1.03
LI 34.39 33.94 37.52 32.97 6.03 8.75 0.9645 0.02
HA 34.79 34.58 37.90 33.27 6.87 9.96 0.9654 0.05
Bilinear 32.29 31.65 35.38 31.20 6.59 11.58 0.9487 0.03
LLSC 36.14 35.99 38.82 34.71 5.02 11.11 0.9858 219.00
LDI NAT 36.19 36.26 39.78 34.39 8.68 9.19 0.9719 549.69
LDI NLM 36.10 36.15 39.52 34.36 8.05 9.26 0.9692 129.10
WECD 32.12 31.57 34.37 31.24 3.78 19.34 0.9477 0.88
LU 35.58 35.13 39.30 34.18 8.99 9.12 0.9695 579.84

as it doesn’t support multi-threading as per author. The execution time are average

for the database and should be taken as a trend and not as absolute indicator of an

algorithm performance as Matlab code is interpreted and not compiled and all the

codes might benefit from optimization. For LMMSE 4x4#1 and 4x4#2 we show the

performance for the sliding neighborhood, with the constant neighborhood we are at

0.3s for the Kodak database.

For the Kodak database LLSC has the best performance in 𝜇 of 41.46, while our

proposed 4x4#2 peaks at 40.40. However we are not clipping the values between [0

1] for LMMSE. If we were to do so we are at 40.68dB for 4x4#2. We are comparable

in performance for SSIM. However our algorithm is blazing fast at 0.64s (sliding)

compared to 336s for the LLSC. Our algorithm can be scaled easily, for instance

for implementation on embedded systems where there are timing budgets. For a
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neighborhood of 7, 4x4#2 has a 𝜇 of 40.31, a loss of 0.09db for an execution time

of 0.27s, i.e. twice as fast as earlier. Also our algorithm reconstructs all 3 channels

equally well resulting in a lower 𝜎𝑟𝑔𝑏. Next comparable algorithm is LPA-ICI at

40.52 but again we are almost twice as fast and have a better SSIM. ACUDE at

40.71dB also has a very good performance, however despite having high PSNR, it

still exhibits false colors in the high frequency regions. Also we found it to be very

slow. The authors claim that the code publicly provided is not optimized and they

can do better. Appendix B Figure B-1 shows some examples of reconstruction based

on particular area on images.

For the McM databases, we couldn’t verify the results provided by ACUDE, therefore

we don’t present in the Table 3.7 as we don’t have access to all the metrices from

there paper. Overall for the McM database, the results get little murkier. The best

performing algorithm is LDI NAT (which specifically promoted the database as better

than Kodak) for 𝜇 equal to 36.19. However at 550s it is very slow and it doesn’t have

a good performance for the Kodak database. Despite having a higher PSNR its SSIM

score is lower than others. Visually results are good. Second best algorithm is LLSC

at 36.14, but again it is slow and visually the result is not good (see Appendix B,

Figure B-2). The best compromise is 4x4#2 which has a good 𝜇, good SSIM at a

fast speed with visually pleasing result. Even though Condat CFA with LMMSE has

slightly higher 𝜇, but visually the result is not so good. We also provide results for

another CFA 4x4#1 which despite having lower 𝜇 than 4x4#2 gives visually better

results with less color noise. For sure the extent of the size of the super-pixel provides

a better encoding of the scene as shown by the objective criteria such the PSNR. But

in our simulations, we also see that the random arrangement of colors in the CFA also

reduces the visibility of the noise generated by the mosaicking/demosaicing process

because noise becomes less structured.

3.4.7 Effect of database on learning

The above results are demonstrated for the case when the entire database of Kodak

and McM was used to learn the demosaicing operator 𝐷. Now we test the effect of
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leaving one image out when learning on the database and calculating the difference

with when the same image was also learnt (original case). Figure 3-16 shows then

difference in PSNR when a particular image is not learnt. For 4x4#2 for the Kodak

database for neighborhood of 10 we see an average loss of 0.11dB while it is 0.15dB

for the McM database, therefore the effect of leaving one image out can be considered

negligible. However certain images are more susceptible to loss, notably image number

8 of the McM database, which has very little color compared to other images in the

database. In general we have a smaller loss for Kodak than McM database. One

possible explanation could be that McM has only 18 images of (500 × 500 pixels)

while Kodak has 24 images (512 × 768 pixels), almost 2.1 times more data to learn

from. Therefore there is more data to learn the statistics of images and it is more

resilient. Some examples of the leave one out are presented in the Appendix B, Figure

B-5 and B-6.
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Figure 3-16: Top: Difference in PSNR when a particular image is not learnt. Bottom:
Average of Difference of PSNR (entire database) along with neighborhood
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3.5 Simulating totally random CFAs

We consider a totally random CFA, i.e. CFA with the same size of the image, 𝐻 ×𝑊 .

For example for Kodak images H=512, W =768, (Figure 3-17). Now for demosaicing

for this particular pattern, it is not possible to calculate 𝐷 for such a big size due

to memory limitations. Therefore we first divide the 𝑋 into small ’cfasubsizes’ and

calculate 𝑀1 and 𝑆1 for each cfasubsize and demosaic it separately. Figure 3-18 for

instance shows a cfasubsize of 32 × 32 pixels. We need to rewrite 𝑀1 and 𝑆1 as the

implementation from earlier cannot be reused in this case, as the assumption of block

shift invariance is no longer true. We need to form the neighborhood by considering

pixels from the neighboring cfasubsize block. For calculating 𝐷 for all the blocks,

we are looking at approximately 127s and 2.85s on average for actually demosaicing

an image. We found a cfasubsize of 16 was the best compromise for efficiency. For

1000 random CFAs we got an average PSNR of 38.16 dB for the Kodak database

for a neighborhood of 7. Figure 3-19 shows the histogram of average PSNR for 1000

different random CFA patterns. Equivalent value for Bayer for neighborhood of 7 is

38.62dB. Still, we have less false colors in the high frequency areas of the demosaiced

image with totally random CFA pattern.

In literature, demosaicing using Kronecker Compressive Sensing (KCS) and Group-

sparse reconstruction7 have been proposed where they claim that these two yield good

result for totally random sampling. We found that, using KCS, we found an average

PSNR of 27.69dB in 181s per image. Using Group-sparse method we could get an

average PSNR of 27.95 dB in 199s for a given random CFA sample. This is not good

as be seen in the Figure 3-21 where we see output image is very noisy. They get good

results in their paper because for 3-channel or 4-channel reconstruction they take

the first 3 or 4 images of the Cave hyperspectral database65 where the correlation

between the images is very high (400nm, 410nm, 420nm, 430nm) which is not the

case for RGB filters which are usually broadband and centered apart.
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Figure 3-17: Random CFA super-pixel of size 512 ×768 applied on the Lighthouse
image

Figure 3-18: Crop of CFA super-pixel, showing 32x32 pixels here

82



Figure 3-19: Histogram of average PSNR 𝜇 for Kodak image database for 1000 totally
random CFAs. We consider a neighborhood of 7 with cfasubsize of 16

Figure 3-20: Left: Demosaiced Lighthouse image for the Bayer CFA using bilinear
interpolation. Right: Demosaiced image using our approach considering totally ran-
dom CFA. We see that we have no false colors in the fence region in the random
case.
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Figure 3-21: Left: Demosaiced Lighthouse image using KCS7. Right: Demosaiced
using Group Sparse7
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3.6 Discussion

Evaluating the performance of demosaicing algorithm is not a straightforward task.

There are several issues at large here. First, there is the question of the test database

being used, as can be seen in the results section that all algorithms don’t behave

equally on each database. Even simple bilinear interpolation which is the weakest

contender for average PSNR has visually better result for the McM database (see

Appendix B, Figure B-2) as other sophisticated algorithms create artifacts at the

edges.

Figure 3-22: Left: Spectral Sensitivity Curves of Kodak Film 2273,3273/ESTAR
Base8 Right: Spectral Sensitivity curves of a Nikon D300 camera color filter

Regarding the Kodak database, these images were originally shot on 35mm Kodak

film (different kinds, Ektar 25, VR 100, Gold 100, Ektachrome) and probably scanned

to obtain true color images. Figure 3-22 compares the spectral sensitivity curves of

a Kodak Ektar 100 film with a modern Nikon D300 camera. It is clear that they are

very different. Little is known about the scanning process which was employed in

scanning these images. The scanner lamp will have its own emission spectrum curve

which will finally have an effect on the effective spectral sensitivity of the images

recorded. The demosaicing algorithms have been developed keeping this database in

mind and most of them are optimized for reducing the artifacts for this database.

Which becomes clear when the same algorithms are applied on McM database,

85



they don’t perform very well. SA, DPFD and WECD perform well for the Kodak but

poorly for McM. On the other hand we have LDI NAT, NLM which performs well

for McM but performs poorly for Kodak database. In terms of average PSNR only

our proposed algorithm and LLSC seems to perform equally well for both Kodak and

McM. However, despite LLSC having higher PSNR for McM database, visually its

results are very poor compared to ours (see Appendix B).

In the literature now there is a trend13,66 to recommend new optimal CFAs based

on frequency selection which use more than 3 colors where the new colors are linear

combinations of Red, Green and Blue Filters. However, it has not clear whether

such color filters are physically possible to make. Secondly regarding metrics for

performance evaluation, PSNR is considered the holy grail and there seems to be a

race to reach to the top. However, we found it to be not always true. We have several

examples where an algorithm with lower PSNR has less color noise, visual artifacts

then one with high PSNR. Most glaring example is bilinear with 32.29dB compared to

several others (LPA-ICI, LLSC) which have 36 dB for McM. Even with our proposed

algorithm 4x4#1 despite having lower PSNR than 4x4#2 performs better in visual

terms. Let’s conclude that PSNR is important but it is not everything.

There are hyperspectral databases such as Cave or Finlayson17 which can be used

to generate true color images using any light source and color filters with specified

spectral sensitivity transmittance function. However they generally are photographs

of still subjects, due to high exposure times required and therefore don’t contain high

frequency elements and thus have their own limitations to evaluating demosaicing

algorithms.

Another metric used to compare performance is SSIM which is a measure of struc-

tural similarity and to my understanding was developed for gray-scale images. If we

leave bilinear interpolation out from comparison there is maximum difference of 0.0012

in SSIM, a mere 0.12% difference on average between algorithms. With such a small

difference it is difficult to conclude anything from looking at this metric. The reason

for this small difference is probably because we are averaging across entire images

which tends to equalize the differences in SSIM values. It might be more appropriate
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to test SSIM on small regions of the image where artifacts are more probable. Also it

is difficult to draw any judgments based on visual appearance of false colors. A point

to remember here is that not all monitors are equal and it is important to properly

calibrate monitors when evaluating algorithms for artifacts which touch 40dB for the

Kodak database. There are other algorithms available in state of art which claim

good performance however we couldn’t compare them here because the executable

codes are not available. Comparing directly with the results produced in papers is not

always possible, as sometimes there is lack of clarity regarding images tested. Some

authors choose to only test 23 images from Kodak database, other might chose to do

it on only 12 images. Some mix both the Kodak and McM database and present an

average of some images. We believe there is a need to streamline image databases and

testing methodology so that decisions regarding performance can be made objectively.

3.7 Conclusion

In this chapter we provide a flexible, fast and accurate linear minimum mean squared

error demosaicing using the redundancy given by the neighborhood of the sampled

image. The method is quite fast and allows us to systematically compare the per-

formance of 2x2 and 3x3 CFA’s super-pixels and most of the 4x4 CFAs. Compared

to frequency selection approaches used today for optimizing CFAs, our method does

not guess the frequency spectrum of the sampled image by the CFA. Rather, it uses

a learning procedure that computes optimal reconstruction filters. Even when the

aliasing between luminance and chrominance is strong (as arising for random pat-

tern), the method finds good linear reconstruction filters. In this chapter we showed

that random CFAs performed better than regular ones by doing a systematic evalu-

ation and also evaluating our algorithm on totally random CFAs. We found that the

best CFAs are the ones with non-periodic arrangement of colors (some are symmetric

along the ±45∘ line) and almost equal number of RGB. We demonstrated that for

totally random CFAs the color noise was not present in the higher frequency regions

rather spread out across the entire image, making it visually less disturbing compared
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to what we would have with Bayer CFA. This proves our hypothesis that random-

ness as present in biological systems like the human retina has an advantage on the

regular sampling patterns traditionally used in digital systems. It is a question of de-

veloping algorithms which can account for this randomness which we do by training

on a database of natural images, thereby learning a model of image formation on a

random mosaic. We showed that with our LMMSE algorithm we can get comparable

performance to the state of the art. We also performed an analysis with images cor-

rupted with gaussian noise and showed that our algorithm fares favorably with the

state of the art. The best known methods for demosaicing are thought to be those

with edge directed interpolation and post processing. We show that the 4x4 best

CFAs give reconstruction results equivalent to the best nonlinear algorithms applied

on Bayer. It even provides less variability among colors and particular image in the

database. Moreover it gives better SSIM evaluation for a less computation time. This

result suggest linear demosaicing for being favorably used in the embedded camera

devices. Statistics of natural images are probably random because a contour or a

particular object’s color could potentially appear anywhere on the images. That is

probably why random CFA perform better than periodic one for encoding the spatial

and chromatic structure of natural images.
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Chapter 4

Multicolor CFA’s

4.1 Introduction

Historically, demosaicing methods was designed without any knowledge of the spec-

tral transmittance of the filters. One just considered R,G and B to be independent

to each other and reversed the problem of mosaicing as three interpolation problems.

Nethertheless, correlation between color channel has been shown today as a requisite

for good spatial and color quality of the reconstruction. If we take into considera-

tion color transform from the camera color space to the RGB space we can evaluate

multicolor CFA with RGB CFA. We restrict the study to multicolor being linear

combination matrix 𝐴 of RGB. Since the performance of multicolor CFA is given by

the parameter on 𝐴, we can optimize these parameters for improving the reconstruc-

tion. In the state of art several optimized CFAs have been proposed considering

this method13,14,35,67,68. Therefore, we believe it provides a good comparison of our

demosaicing approach with them. We extend the LMMSE framework presented in

the previous chapter by considering a color mixing matrix 𝐴 in between 𝑀 and 𝑦,

which allows to compare with state of art demosaicing algorithms. We also present

an approach for optimization by evaluating average MSE across an image database

without the need of explicitly demosaicing and evaluating every single image. We

express average MSE in term of correlation matrix 𝑅𝑦 and other matrices (𝑀1, 𝑆1,

𝐷 and others) related to the CFA in question. Therefore we avoid the need for a
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Figure 4-1: CFAs with RGB and multicolor CFAs3,9,10

systematic evaluation of every images in the database.

In the late 1990s and early 2000s cameras did make use of Cyan, Yellow, Magenta

or even Emerald colors (CYME) in the CFAs. Kodak is known for using CYYM3,

Canon and Nikon for CYGM9 and Sony for RGBE10 color filters in their cameras

(Figure 4-1). Recently White (absence of any color filter) has also made its appearance

as it theoretically helps to recover more dynamic range and therefore has applications

in low light photography. Lately, there has been a renewal in designing optimal

CFAs considering more than three primary (RGB) colors. Because in the general

case, multicolor CFA could not be displayed, an additional step after demosaicing is

required to convert the image to RGB format for display.

If we perform a DFT (Discrete Fourier Transform) of a CFA image we see that

the luminance and chrominance components are heavily multiplexed, however for

periodic CFAs like the Bayer they are localized separately. Luminance in the low

frequency regions and chrominance in the higher36,37. To demosaic successfully we

need to design filters to separate them as cleanly as possible38,57. The chrominance

component is sub-sampled, so we need to interpolate it and add back the luminance

to get the final color image. The design philosophy for CFAs is to move the chromi-

nance components away from the horizontal and vertical axis where luminance has its

maximum intensity13,35,66–69. See Figure 4-2 for average of DFT for Kodak database

images15 for several CFAs. We see that CFAs like Yamanaka11, Holladay12, Bai13,

Hao 40 and Hao 50 (to some extent)14 fulfill this criteria. Then, we need to design

demosaicing low pass and high pass filters which can separate luminance and chromi-

nance. Generally this approach works for periodic CFA patterns and cannot work

for random CFAs as chrominance components are present across the entire frequency

band. See Appendix B.4.
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Figure 4-2: Average DFT for Kodak database. First row (LtoR): Bayer3, Ya-
manaka11, Holladay12 Second row(LtoR): Bai13, Hao40, Hao5014

For random or periodic CFAs we can consider demosaicing as an inverse problem

of estimating the missing colors from the sampled ones. In the previous chapter

we described our Linear Minimum Mean Square Error (LMMSE) based approach

for demosaicing any CFA. In the next section we explain the matrix model of our

LMMSE based solution adapted for the ’multicolor CFAs’. Then we use a gradient

descent method to find the optimal CFA pattern which gives the best performance.

4.2 Matrix Model for Demosaicing for multicolor

CFAs

In a vector space model of color vision, any general color can be considered as a

linear combination of three primaries Red, Green and Blue. Let us define 𝐶 to be

an ’artificial color’ image having multicolor channels. 𝐶 = [𝛼𝑖𝑅 + 𝛽𝑖𝐺 + 𝛾𝑖𝐵] is a

𝐻 × 𝑊 × 𝑃𝐶 image containing several color channels build from a linear combination

of R, G and B images of size 𝐻 × 𝑊 . We can consider as many colors 𝑃𝐶 as the size

of basis pattern ℎ × 𝑤, 𝑃𝐶 ≤ ℎ𝑤. Here, white is a case where 𝛼 = 𝛽 = 𝛾 = 1 and

black where 𝛼 = 𝛽 = 𝛾 = 0. We can express 𝑐 of size 𝑃𝐶ℎ𝑤 × 𝐻𝑊/(ℎ𝑤) which is
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unfolded multicolor image 𝐶 of size 𝐻 × 𝑊 × 𝑃𝐶 . As 𝐶 has 𝑃𝐶 color channels.

𝑐 = 𝐴𝑦 (4.1)

where 𝐴 is matrix of [𝛼𝑖, 𝛽𝑖, 𝛾𝑖] of size 𝑃𝐶ℎ𝑤 × 𝑃ℎ𝑤 which apply on each element in

𝑦 . For example, for a RGBW CFA as defined in Figure 4-1, the matrix 𝐴 will be

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where ⊗ is the kron operator

Now 𝑥 is the CFA image’s matrix in multi colors which is 𝑀 projection of 𝑐. 𝑀

is ℎ𝑤 × 𝑃𝐶ℎ𝑤 matrix that transforms 𝑐 full multicolor image vector into 𝑥 mosaicked

image vector by choosing selectively according to spatial arrangement of colors.

𝑥 = 𝑀𝑐

𝑥 = 𝑀𝐴𝑦

See Figure 4-3 for the visual representation of the same. For the purpose of this

study we have access to RGB images (𝑌 ) and not images in the 𝐶 domain. Therefore

we convert RGB images into 𝐶 colors images, sub-sample into CFA image and perform

demosaicing on them.

As discussed in previous chapter, it is straightforward to write the demosaicing in

case of multicolor CFA using the LMMSE approach with neighborhood. Let 𝐴1, be

𝐴 which applies on vectors build on a color image with neighborhood. We can write

our demosaicing operator as follows:
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Figure 4-3: Matrix model of the multicolor CFA image formation without neighbor-
hood

𝑦 = 𝐷𝑥1 (4.2)

𝑥1 = 𝑀1𝐴1𝑦1 and 𝑦 = 𝑆1𝑦1

𝐷 = 𝑆1𝑅𝑦1𝐴
𝑡
1𝑀

𝑡
1(𝑀1𝐴1𝑅𝑦1𝐴

𝑡
1𝑀

𝑡
1)−1

So starting from CFA image 𝑥 in the artificial color domain 𝐶 we can do demosaicing

and directly recover a full RGB image. This is an advantage of considering 𝐶 to be

linear combination of RGB and not an arbitrary color.

4.3 Finding Optimum CFA arrangement

It is easy to imagine that a systematic evaluation70 like in previous chapter is not

possible due to sheer number of possible arrangements and also to evaluate 𝑀𝑆𝐸
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for each image in database is time consuming. However our model being linear we

can express average 𝑀𝑆𝐸 as a trace of matrix multiplication12. Considering 𝑦
(𝑘)
𝑖 the

𝑘𝑡ℎ realization of the random color vector and 𝑦
(𝑘)
𝑖 the corresponding vector in the

reconstructed image, we can write average 𝑀𝑆𝐸 as follows:

𝑀𝑆𝐸 = 1
𝐾𝑃ℎ𝑤

∑︁
𝑖=1..𝑃 ℎ𝑤

∑︁
𝑘=1..𝐾

(︁
𝑦

(𝑘)
𝑖 − 𝑦

(𝑘)
𝑖

)︁2
(4.3)

= 1
𝐾𝑃ℎ𝑤

∑︁
𝑖

∑︁
𝑘

𝑦
(𝑘)
𝑖 (𝑦(𝑘)

𝑖 )𝑡 − 𝑦
(𝑘)
𝑖 (𝑦(𝑘)
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where 𝐾 = 𝐻𝑊
ℎ𝑤

𝑁𝐷𝐵.

The above term is independent of CFA image 𝑥 and gives us an indicator of

the whole performance directly from the cross correlation matrix 𝑅𝑦1. Therefore by

evaluating this equation once we directly compute the 𝑀𝑆𝐸 and therefore it is very

fast compared to averaging explicitly on every images contained in the database. For

reference, in Kodak database there are twenty four images. We used the Matlab’s

fmincon function using ’active-set’ algorithm71–73 to find the matrix 𝐴 which gives

the minimum of Average 𝑀𝑆𝐸 for a given CFA size. One thing to understand is

that unlike a system evaluation, the CFAs we find by using this approach (solving

the optimization problem) are not the best CFAs but rather one of the better CFAs

as the optimization process may converge to a local minima.

The above methodology was also used to validate the systematic evaluation of all

RGB 4×4 CFAs. In previous chapter for 4×4 systematic evaluation only ’half-sized’

Lighthouse image was used, where it took 9 days to compute. Now using the method

of MSE by correlation 𝑅𝑦1, we could evaluate on all full sized 24 images of Kodak

in 4 days computation time. We found the same 4 × 4#2 CFA as from systematic

evaluation as the top performer.

94



Figure 4-4: All CFAs. (a) Bayer, (b) RGBW, (c) Hirakawa35, (d) Condat66, (e)
Bai13, (f) Hao 4a, (g) Hao 4b68, (h) Yamagami74, (i) Kodak 2.0, (j) Sony RGBW,
(k) Hao40, (l) Hao50, (m) Hao6014 , (n) 2x2𝑚, (o) 4x4𝑚1, (p) 4x4𝑚2, (q) 6x6𝑚, (r)
8x8𝑚.

4.3.1 Results

We used the above methodology to find the optimum multicolor CFA, see Figure

4-4 labeled as CFAs ℎ × 𝑤𝑚. We used our algorithm to test some state of the art

multicolor CFAs. We also compared results of our algorithm to those reported by

other authors for their respective CFAs13,35,67,68. The metrics we tested our algorithm

for is Average PSNR 𝜇, defined as

Average PSNR 𝜇 =
∑︀

𝑃𝑆𝑁𝑅

𝑁𝐷𝐵

= (
∑︁

(10 log10 ( 1
𝑀𝑆𝐸

)))/𝑁𝐷𝐵 (4.4)

We use a neighborhood of 10 for evaluating our algorithm. We leave a border

equal to neighborhood size, i.e. 10 here. Also, we clip the images between [0 1].

Clipping has a real effect on PSNR. For instance 𝜇 for Bayer CFA is 38.90dB for

unclipped and 39.13dB clipped. We also tested color SSIM (average SSIM over RGB

channel)51, Δ𝐸, variance of PSNR over RGB channel (lower value indicates all color

channels are well reconstructed) 𝜎𝑟𝑔𝑏 and variance of PSNR across database 𝜎.

In the Table 4.1, the first sub-part shows the comparison of the state of art CFAs

with our LMMSE algorithm compared with the best state of art algorithms. For Hi-
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Table 4.1: LMMSE for Kodak database. Other represents the value from the best
state of the art algorithms known to us. 1 is LLSC27. 2 is LS Condat. 3is Bai13. 4 is
ACUDE14. Refer to Figure 4-4 for the CFAs

LMMSE Other
CFA 𝜇 SSIM Δ𝐸 𝜎𝑟𝑔𝑏 𝜎 time 𝜇

bayer 39.13 0.9913 1.40 4.85 6.22 0.33 41.461

hirakawa 40.45 0.9933 1.49 2.97 5.72 0.14 40.362

condat 40.58 0.9938 1.49 1.18 6.23 0.10 40.112

bai 40.77 0.9939 1.50 1.76 6.11 0.10 40.383

hao4b 40.75 0.9938 1.52 1.47 5.78 0.14 40.734

hao4a 40.49 0.9938 1.50 1.23 5.97 0.14
kodak2.0 38.43 0.9902 1.80 2.21 5.84 0.21 38.704

sonyrgbw 37.38 0.9882 1.95 3.54 5.66 0.13 38.104

hao40 38.66 0.9911 1.71 0.70 5.64 0.11 38.934

hao50 39.07 0.9917 1.69 2.23 5.86 0.33 40.614

hao60 37.45 0.9884 2.17 7.67 5.32 0.10 37.514

RGBW 39.74 0.9926 1.59 1.89 5.69 0.33
yamagami 37.14 0.9874 1.99 3.96 5.93 0.13

2x2𝑚 40.08 0.9930 1.54 1.68 6.40 0.32
4x4𝑚1 41.11 0.9944 1.44 0.72 5.95 0.19
4x4𝑚2 41.12 0.9943 1.44 0.81 5.94 0.19
6x6𝑚 41.09 0.9943 1.44 0.83 5.88 0.27
8x8𝑚 41.09 0.9943 1.46 0.76 5.86 0.41

10x10𝑚 40.51 0.9936 1.46 0.79 5.66 0.61

rakawa, Condat, Bai and Hao 4b CFAs our method outperforms others. This shows

the strength of LMMSE, which despite being generic it outperforms algorithms which

were specificially designed for these CFAs. Then for CFAs with white pixels like

Hao40, Hao50, Hao60, Sony RGBW and Kodak 2.0, ACUDE14 is the best performer.

We earlier mentioned the limitation of Bayer CFAs and requirement of computation-

ally expensive algorithms to overcome that. Therefore we recommend multicolor CFA

in the lower subpart of above table which show the best CFAs we found for size 2 to

10. We are able to achieve 41.12dB for the Kodak database, in less than 0.2s on Intel

i7 6700. In terms of computational time required, 2x2 is slower than bigger CFAs,

this is due to time required to divide the CFA image into more smaller pieces.

Table 4.2 shows the results for our algorithm on the McM database16. Figure

4-5 shows the crop of the fencing region of the Lighthouse image from the Kodak
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Table 4.2: LMMSE for McM database. In Other best results were from the ACUDE14.

LMMSE Other
CFA 𝜇 SSIM Δ𝐸 𝜎𝑟𝑔𝑏 𝜎 time 𝜇

bayer 35.70 0.9830 3.35 7.96 8.99 0.20 36.384

hirakawa 35.22 0.9821 4.19 3.41 9.49 0.08 34.24

condat 36.04 0.9851 3.99 0.94 9.23 0.06 35.424

bai 35.24 0.9831 4.43 0.89 9.62 0.06
hao4b 35.63 0.9838 4.25 0.70 9.62 0.08 35.644

hao4a 35.84 0.9845 4.14 1.36 9.13 0.08
kodak2.0 34.74 0.9803 4.38 1.60 9.27 0.12 35.154

sonyrgbw 34.46 0.9788 4.47 1.84 9.29 0.08 34.874

hao40 35.50 0.9832 3.96 1.40 9.06 0.07 36.214

hao50 35.72 0.9831 4.18 3.81 9.51 0.20 36.714

hao60 34.64 0.9796 4.83 7.00 9.58 0.06 35.314

RGBW 35.86 0.9842 3.76 2.75 9.42 0.21
yamagami 34.55 0.9789 4.32 3.13 9.31 0.08

2x2𝑚 35.91 0.9845 3.77 4.63 9.47 0.20
4x4𝑚1 35.90 0.9849 4.08 1.81 9.46 0.11
4x4𝑚2 36.00 0.9852 4.03 2.27 9.40 0.11
6x6𝑚 35.71 0.9845 4.18 1.65 9.37 0.16
8x8𝑚 35.91 0.9849 4.14 1.86 9.27 0.24

10x10𝑚 35.64 0.9839 4.25 1.20 8.93 0.38

database. For CFA size 4x4 and higher it is color noise free.

4.3.2 DFTs of proposed CFAs

Figure 4-6 shows the DFT (Discrete Fourier Transform) of the CFA image for the

various CFAs proposed. It can be seen from that for CFAs proposed from size 4 to

10, it won’t be possible to use frequency selection method to separate luminance and

chrominance as they are heavily multiplexed. Still LMMSE provides good results

with these CFAs.

4.4 Discussion

Some of the proposed CFAs have something like a dark pixel, a pixel with a very low

sensitivity. Actually, with the LMMSE model the final value of a pixel depends not
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Figure 4-5: Crop of Lighthouse image for proposed 2x2𝑚, 4x4𝑚1, 4x4𝑚2, 6x6𝑚,
8x8𝑚, and 10x10𝑚 CFAs

Figure 4-6: Frequency Response of proposed 2x2𝑚, 4x4𝑚1, 4x4𝑚2, 6x6𝑚, 8x8𝑚, and
10x10𝑚 CFAs calculated using Discrete Fourier Transform

only on its own but also on its neighboring pixel. For instance for 2x2𝑚, the pixel(1,2)

is light blue having 𝛾 of 0.357. We can make it pure blue at 1 and we still get the
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same 𝜇. Similarly for 4x4𝑚2, we have two dark pixels. We can make pixel(2,2) green

and pixel(4,4) as blue and we still have same 𝜇. The proposed CFAs are optimized

ones; they are not necessarily the best ones. We start with a random CFA pattern

and stop after a set number of iterations. We may continue the optimization process

or choose a different random seed and get another random CFA which has equally

good performance.

4.5 Conclusion

We presented a method to evaluate average MSE by directly evaluating correlation

term on the image database along with matrices like 𝑀1, 𝑆1 particular to a given CFA.

This is quite fast as compared to a complete evaluation involving individually demo-

saicing each image. It allows us to find the best filters by solving a gradient-descent

optimization problem thus avoiding the need for a lengthy systematic evaluation. The

proposed algorithm has the best performance to computational complexity of all the

algorithms tested. The algorithm is generic and can be used for any random CFA

unlike algorithms based on frequency selection or edge aware algorithms which are

tuned to particular CFAs. The proposed CFAs have performance higher than 41.1dB

which is amongst the best results in state of art. The proposed CFAs cannot be demo-

saiced by frequency selection method, therefore for random CFAs, LMMSE despite

being linear is a good solution. The neighborhood compensates the sub-sampling by

the mosaic by adding redundancy and improves the color reconstruction. We show

that for CFAs like Hirakawa35, Condat66, Bai13 and Hao4b68 our method performed

better than even frequency selection method which was in the first place used to

propose these CFAs. It shows that LMMSE with neighborhood and learning on an

image database is a powerful and generic tool which outperforms even customized

solutions.
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Chapter 5

Demosaicing for Spectral Filter

Arrays (SFAs)

5.1 Introduction

In previous chapters we demonstrated solutions for demosaicing for color filter ar-

rays (CFAs) and multicolor CFAs. By CFAs we refer to mosaic of Red, Green and

Blue filters only and the term multicolor CFAs refers to color filters which are linear

combination of these Red, Green and Blue filters. However, it is now possible to

have filters with customisable spectral response, one can choose the bandwidth and

peak wavelength according to application. It is also possible to implant these on a

mosaic. We refer to these mosaics as Spectral Filter Arrays (SFAs). It is a more

generic term and would also encompass CFAs. We use the term SFA instead of CFA

when we have data for the filters spectral sensitivity available. CFAs were developed

for retrieving color information from a scene whereas SFAs are no longer limited to

that. For example, we have SFAs with Near-Infrared (NIR) channel.

SFA75 provides, similarly to color filter arrays (CFA), a spatio-spectral, sparse

description of an image of the scene. Spectral reconstruction addresses the recovery

of the spectral information from multispectral data76, and will be dealt with in the

next chapter. We focus on the reconstruction of the spatial information for each

sensor spectral sensitivity, which is referred to as demosaicing.
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SFA, such as most spectral imaging techniques, may be applied to different prob-

lems: high quality color imaging77, spectral reconstruction imaging76 and generic

computer vision78. Sensor design and data processing may be different depending on

the application. According to our knowledge, the first work on filter array imaging

dedicated to spectral imaging has been conducted by Ramanath et al.79,80. Since

then, several works have been conducted to develop this concept29,81–85. Physical re-

alization of SFA sensors are yet few. Although a limited number of companies started

to commercialize the technology33,86,87, we identify only two prototypes embedded in

actual cameras in the academic: One comes from the Le2i at Université de Bour-

gogne, Franche-Comté88, the other comes from Ukotomi & Tanaka Laboratory at the

Tokyo Institute of Technology21. Interest of these realizations is that each of them

comes with a database freely available online for research, SFA database spanning the

visible and NIR89 and TokyoTech Multispectral Image dataset1. SFA demosaicing is

somewhat a new problem which potentially openned new application for color demo-

saicing such as designing new camera color space depending on the application. The

drawback is that it is more complicated to mannage. Relaxing the constraint of spec-

tral density of the individual pixel increase the dimension of the problem. Hopefully,

because many solution should give the same performance, approximation should be

possible.

Most method of SFA demosaicing are dependent on the SFA pattern, which im-

pairs their generality. Amongst the others, most require heavy processing or iteration,

which breaks the interesting potential of SFA for real-time robotic applications. The

LMMSE formulation provides a potentially very good candidate for real-time appli-

cations since, after training, it could be embedded into the camera hardware and

perform real-time without loosing the generality required by the different layouts

present in the market.

Also, most of the works above have been evaluated on simulation. The challenge

with real data is that there is no available ground truth to compare reconstruction

with. Although in the case of color images, and potentially on spectral images in the

1http://www.ok.sc.e.titech.ac.jp/res/MSI/MSIdata.html
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visible, dedicated to accurate colorimetric rendering, we could consider psycho-visual

ratings and rankings. When near infra-red (NIR) data are present, it is more difficult

to evaluate the result and color images makes no complete sense.

One way to evaluate demosaicing would be to assess the quality of the data in a

general case. We propose to use no-reference image quality metrics to evaluate

the demosaiced image quality, and to couple the analysis with a usual simulation on

hyperspectral radiance reference data set. No-reference image quality metrics have

already been used in this context for color images by Gasparini et al.90, but according

to our knowledge, not on spectral data. As a first step toward this methodology, we

use gray-level, general quality metrics applied by band in this work.

In next Section, we develop the N-LMMSE demosaicing for spectral images. We

then develop our experiment and evaluation procedure, which is based on real SFA

images that span the visible and the NIR coming from prototype camera developed at

University of Bourgogne, see Figure 5-6 which we shall refer as ’JB camera’. Results

demonstrate that the N-LMMSE method permits to reconstruct better fine details and

in particular text and high frequency, however, it exhibits more zipping effect. An-

other observation is that energy balance91 plays a role in the learning/reconstruction

process of the LMMSE, which impairs in particular the NIR channel due to illumina-

tion shift between learning and training. This suggests that a white balance must be

performed before demosaicing. No-reference metrics seems not well adapted for the

NIR information and show different behavior depending on the image content and

demosaicing. Further works are required to evaluate the quality of this evaluation

process.

5.2 Linear model for SFA demosaicing

5.2.1 Model of linear SFA image formation

In the previous chapter the image formation model presented required the availability

of full resolution images for all color filters. However this is generally not true in the
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Figure 5-1: Image formation model from reflectance objects.

case of SFAs and neither is it practical to develop color-wheel kind of camera for

every SFA. Therefore, we need a different model of image formation in the case of

SFAs which model the same but from the physical attributes. A reflectance model of

image formation, see (Figure 5-1) considers a light source that has a spectral power

distribution 𝐿(𝜆), which illuminates a scene that has a spectral reflectance 𝑍(𝜆). The

reflected spectra then passes through a camera lens, is acted upon by the spectral

response 𝐹𝑖(𝜆) of each spectral filter, where 𝑖 = 1..𝑃𝑠 are number of different spectral

filters overlaid on the sensor. The signal is integrated and for a pixel covered by filter

𝐹𝑖(𝜆), gives 𝜌𝑖 =
∫︀

𝐹𝑖(𝜆)𝐿(𝜆)𝑍(𝜆)𝑑𝜆. If each spectral filter covered the entire surface

of the sensor we would get a full resolution filtered image 𝑌 . However, in the case

of SFA, 𝑌 is sampled by the filter mosaic 𝑀 before hitting the silicon sensor to form

the SFA raw image 𝑋. Figure 5-2 shows the entire process in the form of images.

The goal of demosaicing algorithm is to estimate 𝑌 from 𝑋. Demosaicing algorithms

exploit spatial and spectral correlations to guess the missing colors. Algorithms in

the spatial domain adapted to Bayer-like layout estimate the Green channel first

and then interpolate the other channels, by estimating the edges in horizontal or

vertical direction. Alternatively in the frequency domain, luminance and spectral

(alternatively chrominance in CFA) information are localized separately and it is a

question of designing demosaicing filters to separate them37. However, for SFAs we
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need to consider a generic spectral model as the spatial and spectral correlations for

SFAs can be different than those for visible RGB camera. For RGB cameras filters

are generally wideband and overlapping, spatial correlation is present in most of the

bands. The SFAs may have narrow band spectral response and there maybe no overlap

present, therefore the spatial/spectral correlation is different. Also, between visible

and NIR filters, the spatial correlation is quite different due to difference in reflectance

properties of objects for NIR. Therefore, we need a different class of algorithms to

solve this problem.
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Figure 5-2: General image formation model illustrating the steps involved in getting
the SFA image 𝑋 from the reflectance images 𝑍. ⊗ is used to symbolize a mathemat-
ical operation for illustration purpose only. 𝑍 is of size 𝐻 × 𝑊 × 𝑃𝜆, where 𝑃𝜆 varies
along the wavelength 𝜆. Reflectance images don’t have any color, they are artificially
colored here along 𝜆 for comprehension. 𝐿 is a light source; 𝐹 is spectral sensitivity
curves of each color filter. 𝐿 and 𝐹 are defined along wavelength, not necessarily the
same as for 𝑍, so we may need to interpolate them to be of same dimension as 𝑃𝜆,
with same step size. Now 𝐿 is of size 𝑃𝜆 × 1 and 𝐹 is of size 4 × 𝑃𝜆 as we consider
4 color filters (Red, Green, Blue and White here). Now 𝑍 is multiplied by 𝐿 then
by 𝐹𝑟, 𝐹𝑔, 𝐹𝑏, 𝐹𝑤 for filters corresponding to red, green, blue and white respectively,
to obtain 4 rendered images. These 4 channels constitute 𝑌 color image which when
operated upon by the mosaic 𝑀 , gives 𝑋 as SFA image.
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In the previous chapters we showed that demosaicing can be considered as an

inverse problem and we can choose a solution on the criteria of minimizing the mean

square error between the 𝑌 and an estimate 𝑌 derived from 𝑋. We showed that by

considering a linear solution with neighborhood pixels (N-LMMSE) and training on

a database of images one could get result comparable to non-linear solution in a more

efficient manner. However earlier 𝑌 was limited to 𝑃 = 3 color channels but now it is

now 𝑃𝑠 spectral channels. Also, we need to account for the spectral image formation

model described earlier which leads to the spectral N-LMMSE formulation described

below.

5.2.2 N-LMMSE formulation

Previously we showed that one needs to unfold image matrices into column vectors to

allow linear algebraic matrix multiplications. Now, we also need to unfold illuminant

and spectral filter response as they are now part of the spectral image formation

model. As earlier we choose to do so in a block-shift invariant manner as we need the

same demosaicing operation on each basis pattern of filter arrangement. A discrete

physical measurement leads to a discrete representation of image reflectance 𝑍, and

scene illumination 𝐿 over the spatial resolution of the sensor and its spectral sensitivity

𝐹 by bands. This product 𝑌 is then subsampled by the mosaic to simulate the SFA

image 𝑋.

𝑋 which is the SFA image is of size 𝐻 x 𝑊 where 𝐻 and 𝑊 are the number of

rows and columns in the sensor. Similarly 𝑌 which is full resolution spectral image

of size 𝐻𝑊𝑃𝑠 where 𝑃𝑠 is the number of spectral filters present in the mosaic. If

𝑃𝑠 spectral filters form the mosaic basis pattern of size ℎ x 𝑤, we can have utmost

𝑃𝑠 ≤ ℎ𝑤. Now this basis pattern in repeated across the surface of the sensor to form

the SFA.

𝑍 is reflectance data typically defined for several wavelength bands 𝑃𝜆, 𝑍 has a

size of 𝐻𝑊𝑃𝜆. 𝐹 contains the transmittance for the 𝑃𝑠 filters defined over a range of

wavelength, 𝐹 is of size 𝑃𝑠 x 𝑃𝜆. 𝐹 is typically specified by the camera manufacturers

or can be measured using a monochromator and spectro-photometer (Appendix C).
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𝐿 is the SPD of the light source defined for 𝑃𝜆 wavelength bands. We diagonalize

this matrix, make it of size 𝑃𝜆 × 𝑃𝜆 to enable matrix product. See (Figure 5-3).

Figure 5-3: Illustration of image formation model on reflectance images. For sake of
matrix multiplication we express 3D images 𝑌 and 𝑍 by unfolding them along 𝐻𝑊 .
Applying mosaicing projection by SFA to 𝑌 will give us SFA image 𝑋 of size 1 x 𝐻𝑊

.

Figure 5-4: Linear matrix model of the SFA image formation without neighborhood.
Reflectance images are not colored. Here they are artificially done to help the under-
standing of matrix unfolding.

The relation between full resolution 𝑌 and 𝑋 is defined by multiplication by a

projection matrix 𝑀 . We consider the block shift invariant property of the mosaic

and unfold accordingly. See (Figure 5-4).

Since the mosaic is composed of basis pattern of size ℎ𝑤 we can unfold each

basis pattern into a column vector. So 𝑍 can be unfolded into a matrix 𝑧 of size
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Figure 5-5: Illustration of linear matrix model of SFA image formation incorporating
sliding neighborhood.

𝑃𝜆ℎ𝑤 x 𝐻𝑊/(ℎ𝑤). Similarly for 𝑋 which is unfolded to matrix 𝑥 of size ℎ𝑤 x 𝐻𝑊/(ℎ𝑤).

So 𝑦 is unfolded color image in 𝑃𝑠 channels of size 𝑃𝑠ℎ𝑤 x 𝐻𝑊/(ℎ𝑤). 𝐿 is also repli-

cated across ℎ𝑤 to a matrix 𝑙 of size 𝑃𝜆ℎ𝑤 × 𝑃𝜆ℎ𝑤. 𝐹 is replicated to a matrix 𝑓 of

size 𝑃𝑠ℎ𝑤 × 𝑃𝜆ℎ𝑤. Finally 𝑀 is the projection matrix of size ℎ𝑤 × 𝑃𝑠ℎ𝑤.

Then we write:

𝑦 = 𝑓𝑙𝑧 (5.1)

𝑥 = 𝑀𝑦

𝑥 = 𝑀𝑓𝑙𝑧

In the description below we present matrices sizes considering sliding neighbor-

hood. Let 𝑧1 be the matrix 𝑧 considering a neighborhood window of size 𝑛ℎ×𝑛𝑤 pixels

around each pixel in the basis pattern. So 𝑧1 will be of size 𝑃𝜆ℎ𝑤𝑛ℎ𝑛𝑤 × 𝐻𝑊/(ℎ𝑤).

Similarly 𝑥1 is of size ℎ𝑤𝑛ℎ𝑛𝑤 ×𝐻𝑊/(ℎ𝑤) for the sliding neighborhood. We also need

to expand 𝑓1, 𝑙1 and 𝑀1 in similar fashion to incorporate neighborhood. See (Figure

5-5). It is also possible to design a matrix 𝑆1 which selects the central pattern in 𝑧1.

Then,
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𝑦 = 𝐷𝑥1 (5.2)

𝑥1 = 𝑀1𝑓1𝑙1𝑧1

𝑧 = 𝑆1𝑧1

𝐷 = 𝑓𝑙𝑆1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1

(︁
𝑀1𝑓1𝑙1𝑅𝑧1𝑙

𝑡
1𝑓

𝑡
1𝑀 𝑡

1

)︁−1

𝑅𝑧1 = 1
𝐾

𝑧1𝑧
𝑡
1

Above equation implies that for a given database of reflectance images we need

to learn the correlation matrix 𝑅𝑧1 only once. We can then construct 𝑀1 and 𝑆1 for

any given SFA arrangement, construct 𝑓1 for filter SPDs and 𝑙1 for any reference light

to find the corresponding 𝐷 matrix for demosaicing to recover the full resolution 𝑌

image.

In the above description we used the sliding neighborhood to describe the un-

folding. One can also use the constant methodology to achieve the same result by

replacing ℎ𝑤𝑛ℎ𝑛𝑤 with (ℎ + 𝑛ℎ − 1)(𝑤 + 𝑤ℎ − 1) in the sizes of matrix sizes above for

the constant method as described in the previous chapter.

5.3 JB Camera

5.3.1 Quantitative analysis in simulation

We simulate acquisition on the SCIEN2 radiance image database19, following the

model described above. We simulate acquisition by a real sensor, see (Figure 5-6)

that spans visible and NIR88,92, where spatial layout follows Miao binary-tree29,93,94.

The benchmark demosaicing, Miao binary-tree83, is applied on the raw data for re-

construction. Algorithms using guided filter and adaptive kernel21 are tuned to SFAs

having quincunx sampling of green so it would be non-efficient and impossible to com-

pare with our instance of SFA. Also we considered the compressive sensing (Kronecker

2https://scien.stanford.edu/index.php/hyperspectral-image-data/
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and Group-Sparse)7 approach, see Appendix D. The authors themselves state that

this approach is more suited for random sampling of filters and not for uniform ones

so it is not really fair to compare their method with our algorithm. Indeed, in physical

implementations we usually do not have a totally random arrangement (entire sensor

size) of SFAs. In testing on SCIEN images we found the performance of such methods

(sPSNR (𝜇𝑌 )) was worse than Miao binary-tree for our SFA instantiation. Also this

Figure 5-6: Spectral Filter Array(SFA) mosaic arrangement of filters & their spectral
response for the JB camera

algorithm was 1400 times slower than N-LMMSE. For computer vision applications

for which SFAs are particularly well suited and calculations on embedded systems,

real time performance is paramount for which we find sparse based solutions are not

suited. Therefore we choose not to present results from their method.

The N-LMMSE is trained and applied in a leave-one-out (LOO) manner on each of

the images, while trained on the three others sequentially. We used a neighborhood

of size 10 as it gives the best trade off between performance and computational

complexity95. sPSNR (𝜇𝑌 ) and sSSIM96 are used to compare the reconstructed image

to the full resolution image. Results of PSNR and SSIM for the benchmark are

reported on Table 5.1, while results for the N-LMMSE are reported on Table 5.2.

The D operator when applied to SFA images, might give us negative or greater than
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1 output values. We do not apply any non negative constraints as of now and simply

clip output values between 0 and 1. We observe a large gain of quality according to

both PSNR and SSIM using N-LMMSE. We find that with Binary Tree we get an

average sPSNR (𝜇𝑌 ) value of 46.41dB while N-LMMSE gives us 53.74db, a gain of

7.33dB. The output images are also sharper. Similar average sSSIM goes up from

0.9959 to 0.9995.

In anticipation on the evaluation of real data, we also apply no-reference image

quality metrics on each channel, considering that each channel is compliant with gray-

level natural image statistics. The no reference metrics that we use on each band

are supposedly representative of perceived visual quality. This is the most compact

mean to perform the cumbersome task of evaluating perceived image quality on each

channel. We selected arbitrarily (ad hoc choice after discussions with image quality

experts) two metrics that appear to provide reasonably good estimate of quality in

the general cases. The metrics are BRISQUE97,98 and BLIINDS-II99,100. We used

the implementations available at LIVE3. The only no-reference metric dedicated to

demosaicing90 focuses on color images, and thus, unfortunately, was not meeting our

purpose of spectral image evaluation. Results are reported on Table 5.1 and 5.2. Both

metrics show better quality with smaller values. For both BLIIND-II and BRISQUE,

N-LMMSE provides better results with BRISQUE following better the PSNR and

SSIM trend.

If we look at the correlation coefficient for the binary-tree algorithm we see that

both BRISQUE and BLIINDS-II metrics are highly correlated with PSNR and SSIM

for all the spectral channels other than the NIR. This is counter intuitive as in general

we expect a negative correlation, higher PSNR means lower BRISQUE for example.

The NIR channel not following the same trends indicates that these metrics are not

suitable for the same. For the N-LMMSE method the correlation coefficient we see

negative or weak correlation for most of the channels which is more as per expectation.

3http://live.ece.utexas.edu/research/Quality/index.htm
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Table 5.1: Result of PSNR, SSIM, BLIIND-II and BRISQUE for reconstruction based
on the benchmark binary tree demosaicing applied to the simulated images from
SCIEN database. Column 𝑆𝑖, 𝑖 = 1..8 indicates the spectral channels the camera
delivers.

Scene name Average S1 S2 S3 S4 S5 S6 S7 S8
BLIIND-II

SanFrancisco 43.50 42.50 44.50 46.00 32.50 49.00 47.50 48.50 37.50
StanfordDish 38.38 39.50 42.00 40.50 29.00 40.00 36.50 46.50 33.00
StanfordMem. 62.00 73.00 66.50 61.50 49.50 64.00 64.50 84.50 32.50
StanfordTower 33.13 33.00 34.00 39.00 24.50 32.50 31.50 36.00 34.50

Average 44.25 47.00 46.75 46.75 33.88 46.38 45.00 53.88 34.38
BRISQUE

SanFrancisco 74.08 74.95 75.23 71.24 70.51 84.62 82.80 81.11 52.17
StanfordDish 67.04 67.29 67.24 65.55 64.07 73.14 72.63 74.34 52.05
StanfordMem. 83.55 88.45 87.04 84.54 81.39 89.07 87.78 94.58 55.57
StanfordTower 66.91 67.49 67.59 63.32 62.66 74.59 73.73 71.64 54.22

Average 72.89 74.54 74.28 71.16 69.66 80.36 79.23 80.42 53.50
PSNR

SanFrancisco 45.74 54.77 53.75 52.89 51.88 54.64 54.80 57.39 37.31
StanfordDish 44.30 53.75 53.19 52.55 51.97 55.83 55.99 57.88 35.69
StanfordMem. 52.80 58.84 57.36 56.90 55.97 58.65 58.91 61.93 45.09
StanfordTower 42.79 51.87 50.92 49.77 48.71 51.82 52.01 54.28 34.37

Average 46.41 54.81 53.80 53.03 52.13 55.24 55.43 57.87 38.11
SSIM

SanFrancisco 0.9958 0.9970 0.9965 0.9957 0.9950 0.9971 0.9971 0.9981 0.9290
StanfordDish 0.9954 0.9961 0.9959 0.9951 0.9945 0.9976 0.9976 0.9982 0.9229
StanfordMem. 0.9985 0.9991 0.9989 0.9988 0.9985 0.9990 0.9990 0.9994 0.9881
StanfordTower 0.9938 0.9945 0.9940 0.9925 0.9911 0.9950 0.9951 0.9964 0.8932

Average 0.9959 0.9967 0.9963 0.9955 0.9948 0.9972 0.9972 0.9980 0.9333

5.3.2 Analysis on real images

Real raw images from the same sensor are provided by the SFA4 database89. We

applied on the raw data the binary-tree benchmark demosaicing method and the

N-LMMSE method trained, this time, on the four images of the SCIEN database.

Reconstruction example on one image is respectively provided on Figures 5-7 and 5-

8. We observe visually that we gain spatial resolution, images are sharper with

less false colors, text is better reconstructed by the N-LMMSE method as compared

with the binary-tree, however there are some zipper artifacts in visible channels and

NIR channel has lots of artifacts . There we observe one of the limitation of the
4http://chic.u-bourgogne.fr/
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Table 5.2: Result of PSNR, SSIM, BLIIND-II and BRISQUE for reconstruction based
on the N-LMMSE demosaicing applied to the simulated images from SCIEN database.
We used a LOO method.

Scene name Average S1 S2 S3 S4 S5 S6 S7 S8
BLIIND-II

SanFrancisco 40.56 41.00 41.00 43.00 40.50 43.00 43.00 42.50 30.50
StanfordDish 35.00 39.50 37.50 35.00 32.00 35.50 32.50 40.00 28.00
StanfordMem. 51.50 58.50 52.50 50.00 30.50 61.00 59.50 72.00 28.00
StanfordTower 33.75 37.50 35.50 34.00 34.50 31.50 30.50 35.00 31.50

Average 40.20 44.13 41.63 40.50 34.38 42.75 41.38 47.38 29.50
BRISQUE

SanFrancisco 60.70 61.69 60.91 58.17 57.49 69.85 69.92 71.31 36.28
StanfordDish 51.74 54.23 52.26 50.10 47.92 57.78 58.17 61.99 31.46
StanfordMem. 64.84 72.77 68.88 65.72 62.26 70.06 70.20 79.91 28.94
StanfordTower 53.23 53.67 52.55 50.60 49.67 57.62 57.72 60.68 43.35

Average 57.63 60.59 58.65 56.15 54.34 63.83 64.00 68.47 35.01
PSNR

SanFrancisco 55.30 68.43 68.11 67.67 66.01 67.38 66.35 69.96 46.50
StanfordDish 53.08 65.95 64.99 64.95 64.22 66.27 65.27 67.72 44.27
StanfordMem. 54.63 64.71 61.92 62.05 60.40 63.31 64.21 67.56 46.20
StanfordTower 51.96 65.05 64.46 64.22 62.16 64.23 63.13 66.34 43.17

Average 53.74 66.04 64.87 64.72 63.20 65.30 64.74 67.89 45.04
SSIM

SanFrancisco 0.9996 0.9999 0.9999 0.9999 0.9998 0.9998 0.9998 0.9999 0.9915
StanfordDish 0.9995 0.9998 0.9998 0.9998 0.9997 0.9998 0.9997 0.9998 0.9891
StanfordMem. 0.9995 0.9998 0.9997 0.9996 0.9995 0.9997 0.9997 0.9999 0.9925
StanfordTower 0.9994 0.9997 0.9997 0.9997 0.9996 0.9997 0.9996 0.9998 0.9871

Average 0.9995 0.9998 0.9998 0.9997 0.9997 0.9998 0.9997 0.9998 0.9901

methods that needs to learn compared to the interpolation methods in the sense

that the changes of conditions and content between training and application could

impact strongly the results. For purpose of training here we have only 4 images

available, the training would be more general if we have bigger dataset of differing

conditions available. Also, there is a difference in illumination of the test images

(SCIEN Radiance data) which the model learns and the illumination in real images

shot under a D65 simulator. Here, our result suggests that energy balance or spectral

white balance101 should be applied prior to demosaicing in the case of N-LMMSE

method.

Worse results of N-LMMSE to the reconstruction of the NIR for the real images

are due to statistics of real images which are artificial materials shot indoor not being
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Figure 5-7: Binary tree results on the 8 spectral channels.

Figure 5-8: N-LMMSE results on the 8 spectral channels.

similar to those used for learning from the SCIEN database. If we look at the spectral

response curves of the filters it is clear that the NIR filter higher sensitivity compared

to other filters. If we simulate on SCIEN it translates into on average pixel values 10

times more compared to the ’deep red’ filter and similarly for other filters. This is

what the 𝐷 operator learns. Whereas in the real images captured by the camera the

NIR channel is only 5.8 times more sensitive so the demosaiced result is not good.

Other channel maintain similar ratios in the simulated and real data so demosaicing

works well for them.

Also, there is possibly another reason for the degrading NIR performance. Thomas
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et al.88 Appendix A, the authors have provided the spectral response of all the pixels

on the sensor. We see a rather large variance in the NIR channel compared to other

filters. What our model learns is an average response of these pixels, therefore there

is a difference between what the model predicts and actual RAW images from the

camera. For the zipper artifacts we have two issues, one is that the spatial resolution

allowed by the SFA pattern is less which could limit the performance of our demo-

saicing operator. We also see there is variability in spectral response for even the

color filters, which could also create artifacts even in visible channels. Generally for

RGB cameras available commercially we don’t have such intra channel variability and

therefore we do not have such artifacts with N-LMMSE. Again these are hypothetical

explanations.

Other demosaiced images show similar tendency and are available at this link5.

We apply the two no-reference metrics BLIIND-II and BRISQUE on each of the

reconstructed channels, which are considered as gray-level images. Results are shown

in Table 5.3 for the binary-tree and in Table 5.4 for the N-LMMSE. With the N-

LMMSE approach the values for NIR channel are either zero as negative, which it is

not clear how to interpret. However we know that these metrics may not be suitable

for NIR channel. Similarly for the BLIIND-II some of the other spectral channels

report zero value which is again unclear as to the relation with other channels. In

general the values for both the metrics are lower for N-LMMSE compared to binary

tree which implies that it is better at reconstructing the spectral channels. This can

be collaborated with visual inspection of image channels. However at the moment

the relation between reference and no-reference metrics is not so clear with respect to

our evaluation on SCIEN images and more work is required to clearly identify their

relation.

5.3.3 Visualization of color images

In order to visualize images and provide digest qualitative visual results, we visualize

a colorimetric version of the images. Let us denote 𝑄 to be the XYZ color matching
5http://chic.u-bourgogne.fr/
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function. Let us denote XYZ to sRGB transform matrix as 𝑇𝑋 . So

𝑇𝑋 =

⎡⎢⎢⎢⎢⎢⎣
3.2406 −1.5372 −0.4986

−0.9689 1.8758 0.0415

0.0557 −0.2040 1.0570

⎤⎥⎥⎥⎥⎥⎦ (5.3)

Let 𝑇𝐹 be the transform that convert from Filter space to sRGB. The idea is that

first we calculate a transform from FtoXYZ using pseudo inverse as 𝑄𝐹 (𝐹𝐹 𝑡)−1.

This when multiplied with 𝑇𝑋 gives us 𝑇𝐹 . So matrix product of 𝑇𝐹 with 𝑌 gives the

𝑌𝑠𝑅𝐺𝐵. Now gamma has to be applied to accordingly to the sRGB standards.

𝑇𝐹 = 𝑄𝐹 (𝐹𝐹 𝑡)−1𝑇𝑋 (5.4)

Color versions of the database are shown in Figure 5-9 for binary-tree and in

Figure 5-10 for the N-LMMSE. Note also that the color version of these images are

different from89 because a different color transform was used. Lapray et al.89 fitted

a linear transform based on reflectance measurement of the Gretag Macbeth Color

Checker.

On these images, we first observe, that the N-LMMSE exhibits some spectral noise,

graininess, which is more prominent than in the case of the binary-tree, which provides

smoother images. We observe again that high frequencies are better reconstructed

by the N-LMMSE. This is particularly clear on any of the texts and on the the

ruler graduations. Color artifacts are also quite well avoided by the N-LMMSE, but

closer look show zipping effect while binary-tree is preserved thanks to its directional

interpolation aspect. Although the zipping effect is problematic however we have

gained spatial resolution. Still it is important to remember that this is a sensor

with 8 different filters with different relative sensitivities and in addition intra-pixel

variability in spectral response.

Color visualization limits the influence of the NIR component, which is not very

well reconstructed by the N-LMMSE, but still provide a general overview of the

117



performance.

Figure 5-9: Visualization of SFA images demosaiced by the binary-tree and rendered
in sRGB space.

Figure 5-10: Visualization of SFA images demosaiced by N-LMMSE and rendered in
sRGB space.

5.4 Conclusion

In conclusion, we have extended the N-LMMSE framework from the RGB color to

the spectral domain. We found that N-LMMSE provides good results in terms of

PSNR & SSIM for such SFA layout which we demonstrate on image simulated from

SCIEN hyperspectral database and also validated on real RAW images. In particular,
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it provides good reconstruction of text and high frequency components, but shows

limited performance in the object edge, whereas the binary-tree provide a blurred

but unzipped image. Looking at sPSNR (𝜇𝑌 ) and sSSIM numbers of simulated

SCIEN images we find a significant gain compared to binary-tree approach. Also

N-LMMSE being a linear method is computationally simple compared to compres-

sive sensing/sparse solutions and therefore is suitable for real time applications. We

used no-reference metrics on each band which are supposedly representative of per-

ceived visual quality of individual bands. It is yet difficult to understand the results

of the no-reference metrics, which seem to depend greatly on the image content, in

particular BLIIND-II, which may not be suitable for this evaluation.
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Table 5.3: Result of reconstruction for the benchmark binary-tree applied to the real
SFA images.

Scene name Average S1 S2 S3 S4 S5 S6 S7 S8
BLIIND-II

Battery 36.44 39.00 43.00 35.50 37.00 34.50 30.50 29.00 43.00
Black Swimsuit 33.50 36.50 36.00 34.50 32.00 31.50 33.50 20.50 43.50

CD 31.63 33.00 39.50 40.50 34.00 30.00 25.00 13.50 37.50
Kerchief 44.13 44.50 49.50 48.00 50.00 48.00 45.50 31.00 36.50

Kiwi 29.88 26.50 29.50 28.00 30.50 32.50 38.00 15.00 39.00
Knife 33.31 36.00 38.00 40.00 34.00 30.50 26.50 13.50 48.00

Macbeth 32.44 34.00 33.50 34.00 29.50 28.00 32.50 25.00 43.00
Orange 21.00 18.00 18.50 20.50 22.00 27.00 22.00 13.50 26.50
Origan 33.31 31.00 33.00 35.00 32.00 30.00 35.00 31.50 39.00

Painting 25.25 30.00 26.00 26.00 30.50 28.50 24.50 11.00 25.50
Pastel 48.31 42.00 44.00 61.00 60.50 51.50 40.50 34.50 52.50
Pens 50.19 45.50 47.50 50.00 48.00 54.50 51.00 37.50 67.50

Raspberry 36.56 34.00 42.50 30.00 33.50 36.00 40.00 32.50 44.00
Ruler 31.94 29.50 44.00 41.50 35.50 32.50 23.00 13.00 36.50
SD 24.00 22.50 24.50 26.50 27.50 25.00 25.00 15.00 26.00

Train Front 29.69 27.50 28.00 30.50 31.50 30.50 32.00 21.50 36.00
Train Side 24.44 28.50 27.00 27.50 30.50 25.50 21.00 11.00 24.50

Water 37.81 43.50 50.00 43.00 36.00 33.00 26.50 24.50 46.00
Average 33.55 33.42 36.33 36.22 35.25 33.83 31.78 21.83 39.69
Median 32.88 33.50 37.00 34.75 32.75 31.00 31.25 21.00 39.00

BRISQUE
Battery 57.54 59.50 60.29 59.63 56.06 56.22 55.46 61.14 52.06

Black Swimsuit 83.18 84.21 86.31 86.04 86.99 83.33 82.85 79.10 76.64
CD 53.10 55.71 52.87 54.25 51.47 55.12 54.76 55.67 44.93

Kerchief 59.65 45.00 61.96 82.39 76.24 55.49 47.47 64.06 44.56
Kiwi 52.85 62.96 57.56 53.67 51.58 49.90 50.36 60.23 36.53
Knife 45.86 51.43 47.69 46.18 50.95 50.40 38.93 40.29 41.05

Macbeth 65.65 64.84 63.00 63.05 63.29 66.75 68.59 71.92 63.79
Orange 64.00 65.67 67.81 66.51 65.90 64.74 66.33 65.36 49.73
Origan 52.95 54.97 56.21 49.32 55.99 52.16 52.99 56.18 45.78

Painting 46.95 52.76 47.64 50.26 48.71 40.80 48.55 51.72 35.13
Pastel 71.07 70.75 70.64 73.38 71.62 72.65 73.56 68.04 67.94
Pens 66.62 65.28 65.86 63.96 63.56 68.72 71.97 70.27 63.32

Raspberry 60.96 63.29 65.18 61.14 62.82 58.70 57.51 57.30 61.78
Ruler 53.24 52.77 50.07 52.51 52.69 55.08 58.70 61.21 42.85
SD 52.00 52.53 50.04 53.80 52.50 50.88 53.86 57.46 44.92

Train Front 64.58 66.37 62.80 63.65 63.94 66.66 70.23 70.52 52.50
Train Side 70.23 72.06 71.79 69.10 66.36 72.37 73.84 74.01 62.29

Water 57.22 61.28 57.25 58.41 55.92 55.83 59.95 61.15 47.99
Average 59.87 61.19 60.83 61.51 60.92 59.77 60.33 62.53 51.88
Median 58.60 62.12 61.12 60.38 59.44 56.02 58.11 61.18 48.86
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Table 5.4: Result of reconstruction for the N-LMMSE applied to the real SFA images.

Scene name Average S1 S2 S3 S4 S5 S6 S7 S8
BLIIND-II

Battery 16.19 16.00 22.50 21.00 19.50 16.50 15.50 18.50 0.00
Black Swimsuit 20.56 12.50 29.50 17.50 22.50 37.50 27.00 17.50 0.50

CD 17.38 18.50 28.00 25.50 20.50 19.00 15.50 12.00 0.00
Kerchief 25.00 22.50 32.00 27.00 27.50 31.50 30.00 29.50 0.00

Kiwi 14.88 3.00 13.00 8.50 12.50 25.00 28.00 29.00 0.00
Knife 16.25 15.50 23.50 20.00 17.50 26.50 14.00 13.00 0.00

Macbeth 8.00 2.00 11.50 9.00 1.50 13.50 9.50 17.00 0.00
Orange 6.75 0.00 0.00 0.00 0.00 14.50 17.00 22.50 0.00
Origan 11.56 9.00 16.50 14.50 10.50 9.00 13.50 19.50 0.00

Painting 11.88 5.00 12.50 6.50 14.50 18.00 18.00 20.50 0.00
Pastel 18.06 7.00 0.00 27.50 31.00 30.50 22.00 26.50 0.00
Pens 19.00 6.50 24.50 18.00 18.00 29.50 27.00 28.50 0.00

Raspberry 13.00 8.00 14.50 14.50 13.50 23.00 17.00 13.50 0.00
Ruler 15.81 13.50 24.00 21.00 14.50 17.00 15.50 21.00 0.00
SD 8.63 0.00 8.00 1.00 0.00 20.50 20.00 19.50 0.00

Train Front 6.31 0.00 13.00 0.00 0.00 9.50 16.50 11.50 0.00
Train Side 7.38 2.00 10.50 5.00 0.00 9.00 20.50 12.00 0.00

Water 25.06 26.50 36.00 31.50 26.50 30.50 22.50 27.00 0.001
Average 14.54 9.31 17.75 14.89 13.89 21.14 19.39 19.92 0.03
Median 15.34 7.50 15.50 16.00 14.50 19.75 17.50 19.50 0.00

BRISQUE
Battery 12.37 19.42 20.52 16.95 14.89 14.48 10.37 13.86 -11.50

Black Swimsuit 43.26 47.77 47.39 47.09 44.70 50.83 50.58 49.19 8.50
CD 14.06 16.72 18.49 18.00 18.52 15.01 13.64 20.08 -7.97

Kerchief 45.85 44.04 65.06 64.98 73.07 52.84 44.73 43.89 -21.79
Kiwi 17.63 23.47 19.29 18.08 16.78 21.46 23.55 31.67 -13.28
Knife 15.56 17.24 21.29 19.05 16.26 18.35 18.80 18.92 -5.44

Macbeth 40.72 44.98 46.91 47.00 47.15 44.07 43.81 47.01 4.84
Orange 139.23 138.36 156.53 157.11 157.34 157.14 151.30 121.47 74.59
Origan 8.77 11.32 9.37 7.92 6.12 11.11 12.16 20.81 -8.66

Painting 21.43 27.17 32.33 31.29 30.56 26.62 23.03 20.59 -20.13
Pastel 32.97 39.40 43.47 39.19 36.56 33.58 31.91 34.11 5.51
Pens 24.25 28.57 24.46 22.16 19.55 27.29 28.84 43.87 -0.73

Raspberry 14.69 17.63 17.57 17.28 17.61 18.00 18.12 22.56 -11.29
Ruler 14.30 18.15 22.54 23.93 25.07 19.57 16.79 19.08 -30.73
SD 23.09 21.72 29.28 30.45 36.06 30.17 29.09 21.04 -13.09

Train Front 29.61 35.44 35.06 34.82 34.19 31.86 31.45 40.45 -6.39
Train Side 18.18 30.04 26.49 23.06 18.16 12.82 18.41 32.48 -15.99

Water 20.44 22.05 23.15 24.06 24.86 26.76 25.69 27.51 -10.61
Average 29.80 33.53 36.62 35.69 35.41 34.00 32.90 34.92 -4.68
Median 20.93 25.32 25.48 24.00 24.97 26.69 24.62 29.59 -9.63
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Chapter 6

Spatio-Spectral Optimization of

spectral filters transmission in the

SFAs

6.1 Introduction

In the last chapter, we provide the general framework for demosaicing for any spectral

filter array (SFA). We also demonstrated the results with an academic SFA solution.

In this chapter, we will extend the framework by providing a methodology to op-

timize filter spectral sensitivity of transmission based on different applications, like

demosaicing, spectral reflectance recovery, selection of filters for color-wheel, etc. For

the purpose of learning our demosaicing operator we consider hyperspectral image

databases like Finlayson (A-3), Cave (A-4), and SCIEN (A-5). Finlayson and Cave

have data from 400nm to 700nm, visible range. While SCIEN has data in the NIR

range also. Finlayson image database is particularly interesting because it has the

Macbeth ColorChecker Chart in good resolution which is useful to check color ren-

dering. Finlayson and Cave have scenes of mostly objects shot in a studio setting.

SCIEN has both landscape images and studio portraits. We considered only land-

scape images shot without the polarizing filter as they are representative of natural
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scenes. Previously we limited our discussion of demosaicing to recovering the spectral

channels only. Arad et al. presented a method based on sparse dictionary102, used to

estimate hyperspectral images from a single RGB image as input. In this chapter, we

will investigate if we could do the same directly from the SFA image using LMMSE.

First, we will provide trends on various performance metrics based on gaussian

shaped filters and SFA size. Finally, we provide a set of optimized filters.

6.2 Image formation workflow and quality metrics

To define the image quality metrics one needs to first describe the various path-

ways possible to determine sRGB images from hyperspectral images and its rendering

through spectral filters of a camera. Figure 6-1 shows the image formation model from

reflectance images to the final sRGB images. We recall from previous chapter that

a light source 𝐿 illuminates an object of reflectance 𝑍 to give Radiance image 𝑅𝐼.

Now, for the sake of defining the performance metrics we can define three pathways

to obtain final sRGB images. We consider sRGB color space as digital images are

primarily for display purposes and we need to select a particular color space. It could

even be AdobeRGB, ProPhoto RGB or any other however sRGB is most commonly

used. There are three possible pathways.

1. Radiance to sRGB: We need to multiply 𝑅𝐼 radiance image with the XYZ

color matching function defined as 𝑄 to get the corresponding XYZ coordinate image

𝑅𝐼𝑋𝑌 𝑍 . This we transform from XYZ to sRGB by matrix 𝑇𝑋 (equation 5.3) which

gives us the 𝑅𝐼𝑠𝑅𝐺𝐵𝑙𝑖𝑛𝑒𝑎𝑟, i.e. linear sRGB values from Radiance image. We need to

apply gamma to get final sRGB values, i.e. 𝑅𝐼𝑠𝑅𝐺𝐵. The following equation defines

the gamma transformation as specified in the sRGB standard for an image 𝐼𝑠𝑅𝐺𝐵𝑙𝑖𝑛𝑒𝑎𝑟.

𝐼𝑠𝑅𝐺𝐵 = 12.92𝐼𝑠𝑅𝐺𝐵𝑙𝑖𝑛𝑒𝑎𝑟, 𝐼𝑠𝑅𝐺𝐵𝑙𝑖𝑛𝑒𝑎𝑟 ≤ 0.0031308

= (1 + 0.055)𝐼
1

2.4
𝑠𝑅𝐺𝐵𝑙𝑖𝑛𝑒𝑎𝑟 − 0.055, 𝐼𝑠𝑅𝐺𝐵𝑙𝑖𝑛𝑒𝑎𝑟 > 0.0031308

(6.1)

We used the above equation to transform linear values in sRGB to reach final

sRGB values.
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Figure 6-1: Image formation model from reflectance objects with the workflow to get
sRGB images
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2. Fully sampled Filter space to sRGB: Consider an imaging system where

all spectral filters are captured in full resolution, for instance a color wheel arrange-

ment or split prism with several sensors. We can also simulate such a capture from

hyperspectral database. Let 𝐹 be the combined spectral response of imaging pipeline.

This when multiplied with the radiance image gives us the full resolution 𝑌 = 𝐹𝐿𝑍

spectral image. Let 𝑇𝐹 (equation 5.4) be the transform that convert from Filter space

to sRGB color space. Further gamma is applied to get 𝑌𝑠𝑅𝐺𝐵.

3. SFA Raw image to sRGB: This is the RAW image captured by a sensor

overlaid with a mosaic 𝑀 . Subsampling full spectral image 𝑌 with the SFA gives

us the Raw image 𝑋. By multiplying 𝑋 with demosaicing operator 𝐷 as described

in previous chapters we obtain an estimate of 𝑌 as 𝑌 . We can further apply 𝑇𝐹

and gamma to get the sRGB version 𝑌𝑠𝑅𝐺𝐵. Similarly we can also calculate another

operator 𝐷𝑠 described later which can give an estimate of reflectance 𝑍.

We are talking in terms of images here, however to enable matrix multiplication

we need to transform these images into column vectors. Similarly, to ensure good per-

formance of demosaicing we need to incorporate neighborhood in the decomposition

and also to account for neighborhood in the constructing of matrices like 𝑇𝐹 and 𝑄.

𝐹 is usually specified in terms of Transmittance, 𝐿 in relative SPD (spectral power

distribution) which might not be normalized. For sake of calculation we normalize

both between 0 and 1. Now 𝑌𝑋𝑌 𝑍 and 𝑌𝑋𝑌 𝑍 can be transformed into the Lab domain

and to ensure that it matches the range of Lab values from direct transformation of

𝑅𝐼𝑋𝑌 𝑍 we need to normalize the 𝐹𝑡𝑜𝑋𝑌 𝑍 and eventually 𝑇𝐹 . The idea is to calculate

the maximum value of the sum of the 𝑇𝐹 as the factor 𝑓𝑎𝑐. If the values 𝑓𝑎𝑐 is less

than 1, e.g. for white filters, than we make it equal to 1. Now we divide 𝐹𝑡𝑜𝑋𝑌 𝑍

by this 𝑓𝑎𝑐. So simultaneously 𝑇𝐹 is also divided by the same factor.

6.2.1 Note about filter response 𝐹

When we describe 𝐹 above we talked in terms of combined response of the entire imag-

ing pipeline (objective, spectral filters transmittance and silicon response). However,
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we can also break it in terms of its individual components. Let 𝐺 be the spectral

response of the silicon sensor. Now the spectral response depends on the material

(Silicon / InGaAs), thickness of the material, temperature.103. Also the kind of

technology employed, CCD, CMOS, NMOS, backlit, front illuminated, etc. have an

impact on the sensor response. Figure 6-2a, 6-2b shows the sensor response for two

particular silicon sensors91.

(a) Sensor response for Silios sensor (b) Sensor response for Sony IMX174

Figure 6-2: Sensor spectral response for two different Silicon based sensors

These sensors are overlaid with color filters having a transmittance function 𝐹𝑡

which is then modulated by the silicon response. The camera records a value which

is a product 𝐹𝑡 and 𝐺. For the purpose of optimization of filters one has to consider

a particular sensor. Due to variability in the sensor response and for the purpose

of simplicity here we consider an ideal sensor having a flat (=1) spectral response.

The idea is to discuss below the methodology for optimization and not to propose

the ideal filters. From now on, when we write 𝐹 we mean the combined response of

sensor, the filters and also the objective. Utilization of Faber-Perot interferometers91

provides great flexibility in design of spectral filters. Lapray et al.91 demonstrate that

these filters can be approximated by use of a Gaussian model. According to gaussian

model the filter can be defined in terms of three parameters 𝜆𝜇, the wavelength of

peak sensitivity, the standard deviation 𝜆𝜎, i.e. the spread of the filter and finally the

amplitude 𝐴𝑚, the intensity factor.

𝐹 (𝜆) = 𝐴𝑚

𝜆𝜎

√
2𝜋

𝑒
−(𝜆−𝜆𝜇)2

2(𝜆𝜎)2 (6.2)

Before describing the optimization process for filters we will discuss the effect of
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these parameters of the gaussian filters in terms of the image quality and demosaicing

performance.

6.2.2 Performance metrics

According to the description above of the possible pathways to render sRGB images

from the hyperspectral database, directly or rendering through spectral filters or

demosaicing first and then rendering. Let us define the following performance metrics.

All the metrics below except for 𝜇𝑧(𝑐ℎ𝑎𝑟𝑡) are averages across the entire image database.

Figure 6-3 provide a visualization of the key metrics.

1. 𝜇𝑍 : The PSNR between Reflectance image 𝑍 and its estimate 𝑍. We calculate

PSNR by first calculating the MSE between all the pixels for all the wavelengths.

Its helps to deduce which filters layout and spectral response are relevant if the

application is recovery of spectrum.

2. 𝜇𝑍(𝑐ℎ𝑎𝑟𝑡): The PSNR between the reflectance and its estimate of the 24 color

patches in the Macbeth chart image of the Finlayson database. We take a

region of 10x10 pixels on each color patch and average its value. So we get

24 reflectance values and calculate the PSNR for these 24 values. See Figure

6-11 which shows each region of 10x10 pixels on the Macbeth color chart. It is

quicker to estimate and uses Macbeth Colorchecker chart which is a standard.

3. 𝜇𝑌 : The PSNR between fully sampled spectral image 𝑌 and its demosaiced

version 𝑌 . This is relevant for computer vision applications as we can compare

all the recovered channels. In this model, we are not limited to just color

applications. Filters could well be UV (Ultraviolet) or NIR (Near Infrared) in

nature.

4. 𝜇1: The PSNR between the sRGB version derived directly from radiance 𝑅𝐼𝑠𝑅𝐺𝐵

and 𝑌𝑠𝑅𝐺𝐵. Primarily it captures the error due to the limit imposed due to filters

and the 𝑇𝐹 transform. Metric of interest if the end application doesn’t involve

demosaicing, e.g. color wheel camera.
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5. 𝜇2: The PSNR between the sRGB version derived from 𝑌𝑠𝑅𝐺𝐵 and its demo-

saiced version 𝑌𝑠𝑅𝐺𝐵. Primarily it captures the error due to demosaicing. This

metric is also of interest if one was to compare different demosaicing algorithms.

6. 𝜇3: The PSNR between the sRGB version derived from Radiance 𝑅𝐼𝑠𝑅𝐺𝐵 and

demosaiced version 𝑌𝑠𝑅𝐺𝐵. Primarily it captures the error due to both demo-

saicing and the 𝑇𝐹 , Filter space to sRGB color space transform. In a way its a

combination of both 𝜇1 and 𝜇2, however the relation is not simply linear. This

metric is most useful as it tells us which filter layout and spectral properties

gives us the best demosaicing and accurate color rendering.

7. 𝑆𝑆𝐼𝑀1, 𝑆𝑆𝐼𝑀2, 𝑆𝑆𝐼𝑀3: Similarly to the above three 𝜇1,2,3, they defined the

SSIM of the sRGB images 𝑅𝐼𝑠𝑅𝐺𝐵, 𝑌𝑠𝑅𝐺𝐵 and 𝑌𝑠𝑅𝐺𝐵.

8. Δ𝐸1, Δ𝐸2, Δ𝐸3: Similarly to the above three 𝜇1,2,3, they define the Euclidean

distance in Lab version of the sRGB images 𝑅𝐼𝑠𝑅𝐺𝐵, 𝑌𝑠𝑅𝐺𝐵 and 𝑌𝑠𝑅𝐺𝐵. Further

we use them to denote the average across all images in a given database. Where

Δ𝐸 =
√︁

(𝐿2 − 𝐿1)2 + (𝑎2 − 𝑎1)2 + (𝑏2 − 𝑏1)2 (6.3)

where (𝐿1, 𝑎1, 𝑏1) and (𝐿2, 𝑎2, 𝑏2) are CIE Lab coordinates for two colors. Now to get

Lab coordinates one has to first pass through XYZ coordinates as follows

𝐿 = 116𝑓
(︂

𝑌

𝑌𝑛

)︂
− 16

𝑎 = 500
(︂

𝑓
(︂

𝑋

𝑋𝑛

)︂
− 𝑓

(︂
𝑌

𝑌𝑛

)︂)︂
𝑏 = 200

(︃
𝑓( 𝑌

𝑌𝑛

) − 𝑓( 𝑍

𝑍𝑛

)
)︃

where 𝑋𝑛, 𝑌𝑛 and 𝑍𝑛 are XYZ values of reference whitepoint

𝑓(𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3
√

𝑡 if 𝑡 > 𝛿3

𝑡

3𝛿2 +
4
29 otherwise

𝛿 = 6
29

(6.4)
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With reference to above equation 𝑋, 𝑌, 𝑍 refer to 𝑋𝑌 𝑍 color space values, not to

confuse with the image notation used otherwise in this thesis. Similarly for 𝐿.

Ideally, if the application is accurate color imaging, we are looking for high 𝜇3 and

low Δ𝐸3. If the application is less false colors, artifacts and moire we are looking

for higher 𝜇2 with a Δ𝐸3 within tolerance limits. As determination of above metrics

requires an evaluation of each metric individually on each image of the database,

demosaicing and processing it is time consuming. Therefore we define an approx-

imation metrics of above metrics (except SSIM), denoted by prefix ’m’ (e.g. 𝑚𝜇𝑍

for 𝜇𝑍), which can be derived directly from the cross correlation matrix 𝑅𝑧1. In the

next section, we determine these equations which are then used for calculating the

optimized filters.

130



Figure 6-3: Image formation model illustrating the different parameters for optimiza-
tion
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6.2.3 Parameter for Optimization by Correlation matrix

Let us recall from last chapter that 𝑥1 = 𝑀1𝑓1𝑙1𝑧1, 𝑧 = 𝑆1𝑧1, 𝑦 = 𝑓𝑙𝑧 that it can be

rewritten as 𝑦 = 𝑓𝑙𝑆1𝑧1. Also 𝑦 = 𝐷𝑥1 where 𝐷 is defined as below:

𝐷 = 𝑓𝑙𝑆1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1(𝑀1𝑓1𝑙1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1)−1 (6.5)

𝐷 = 𝑓𝑙𝐷𝑠

𝐷𝑠 = 𝑆1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1(𝑀1𝑓1𝑙1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1)−1 (6.6)

where 𝑅𝑧1 is defined as 𝑅𝑧1 = 1
𝐾

𝑧1𝑧
𝑡
1.

MSE or PSNR is parameter of choice for determining the image quality of demo-

saiced image. We consider the average of PSNR for all images in Finlayson database

to ensure our result is robust. As shown in the previous chapter it is more judicious

to used the average MSE because it could be expressed directly from the parameter

of the problem. Following the same procedure as previous chapter we can write:
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𝑚𝜇𝑌 = 1
𝑃𝑠ℎ𝑤

𝑇𝑟(𝐷𝑀1𝑓1𝑙1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1𝐷𝑡 − 𝐷𝑀1𝑓1𝑙1𝑅𝑧1𝑆
𝑡
1𝑙

𝑡𝑓 𝑡) (6.7)

−𝑓𝑙𝑆1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1𝐷𝑡 + 𝑓𝑙𝑆1𝑅𝑧1𝑆
𝑡
1𝑙

𝑡𝑓 𝑡

𝑚𝜇𝑍 = 1
𝑃𝜆ℎ𝑤

𝑇𝑟(𝐷𝑠𝑀1𝑓1𝑙1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1𝐷𝑡
𝑠 − 𝐷𝑠𝑀1𝑓1𝑙1𝑅𝑧1𝑆

𝑡
1 (6.8)

−𝑆1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1𝐷𝑡
𝑠 + 𝑆1𝑅𝑧1𝑆

𝑡
1)

𝑚𝜇3 = 1
3ℎ𝑤

𝑇𝑟(𝑇𝐹 𝑓𝑙𝐷𝑠𝑀1𝑓1𝑙1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1𝐷𝑡
𝑠𝑙

𝑡𝑓 𝑡𝑇 𝑡
𝐹 (6.9)

−𝑇𝐹 𝑓𝑙𝐷𝑠𝑀1𝑓1𝑙1𝑅𝑧1𝑆
𝑡
1𝑙

𝑡𝑄𝑡𝑇 𝑡
𝑋

−𝑇𝑋𝑄𝑙𝑆1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1𝐷𝑡
𝑠𝑙

𝑡𝑓 𝑡𝑇 𝑡
𝐹

+𝑇𝑋𝑄𝑙𝑆1𝑅𝑧1𝑆
𝑡
1𝑙

𝑡𝑄𝑡𝑇 𝑡
𝑋)

𝑚𝜇2 = 1
3ℎ𝑤

𝑇𝑟(𝑇𝐹 𝑓𝑙𝑆1𝑅𝑧1𝑆
𝑡
1𝑙

𝑡𝑓 𝑡𝑇 𝑡
𝐹 − 𝑇𝐹 𝑓𝑙𝑆1𝑅𝑧1𝑆

𝑡
1𝑙

𝑡𝑄𝑡𝑇 𝑡
𝑋 (6.10)

−𝑇𝑋𝑄𝑙𝑆1𝑅𝑧1𝑆
𝑡
1𝑙

𝑡𝑓 𝑡𝑇 𝑡
𝐹 + 𝑇𝑋𝑄𝑙𝑆1𝑅𝑧1𝑆

𝑡
1𝑙

𝑡𝑄𝑡𝑇 𝑡
𝑋)

𝑚𝜇1 = 1
3ℎ𝑤

𝑇𝑟(𝑇𝐹 𝑓𝑙𝐷𝑠𝑀1𝑓1𝑙1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1𝐷𝑡
𝑠𝑙

𝑡𝑓 𝑡𝑇 𝑡
𝐹 (6.11)

−𝑇𝐹 𝑓𝑙𝐷𝑠𝑀1𝑓1𝑙1𝑅𝑧1𝑆
𝑡
1𝑙

𝑡𝑓 𝑡𝑇 𝑡
𝐹

−𝑇𝐹 𝑓𝑙𝑆1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1𝐷𝑡
𝑠𝑙

𝑡𝑓 𝑡𝑇 𝑡
𝐹

+𝑇𝐹 𝑓𝑙𝑆1𝑅𝑧1𝑆
𝑡
1𝑙

𝑡𝑓 𝑡𝑇 𝑡
𝐹 )

where 𝐷𝑠 is defined as in equation 6.6 above, 𝑇𝐹 and 𝑇𝑋 are defined in equation

5.4,5.3, 𝑄 is the CIE-XYZ color matching functions.

Δ𝐸 is defined as the distance between two colors. Parmar et al.12 showed that

for a small color difference in XYZ space, its corresponding difference in Lab could

be approximated by a linear transform 𝐽 . Where 𝐽 is gradient of the XYZ to Lab

transform chosen around a white point. Refer to equation 6.3 for the nonlinear

XYZtoLAB conversion. So we can write it in a linear approximation:

Δ𝐸3 =
(︂∑︀

𝐽(𝑌𝑋𝑌 𝑍 − 𝑅𝐼𝑋𝑌 𝑍)2

3𝑁𝐷𝐵𝐻𝑊

)︂1/2
(6.12)

where Δ𝐸3 is the average across all images in the database. Also, let us consider an

133



average of Δ𝐸2, defined as AvgΔ𝐸2:

𝐴𝑣𝑔Δ𝐸2
3 = 1

3ℎ𝑤
𝑇𝑟(𝐽𝑄𝑙(𝐷𝑠𝑀1𝑓1𝑙1𝑅𝑧1𝑙

𝑡
1𝑓

𝑡
1𝑀 𝑡

1𝐷𝑡
𝑠 − 𝐷𝑠𝑀1𝑓1𝑙1𝑅𝑧1𝑆

𝑡
1 (6.13)

−𝑆1𝑅𝑧1𝑙
𝑡
1𝑓

𝑡
1𝑀 𝑡

1𝐷𝑡
𝑠 + 𝑆1𝑅𝑧1𝑆

𝑡
1)𝑙𝑡𝑄𝑡𝐽 𝑡)

6.3 Evaluation of metrics in terms of Gaussian fil-

ters

We will first evaluate the effect of 𝜆𝜎, whether using narrow band or broad band

filters are beneficial for the demosaicing process. Secondly, we will evaluate the effect

of increasing the number of filters. Figure 6-4 shows the effect of increasing 𝜆𝜎 on

the green filter. Although gaussian filters are continuous in nature, however, the

reflectance databases like Finlayson and Cave are discrete with step size of 10 nm,

therefore we interpolate gaussian filters to be discrete values. One thing to remember

is that, as the 𝜆𝜎 increases we increase the overall sensitivity of the filter, so the

product 𝑓𝑙𝑧, pixel values in 𝑌 also increases. It could lead to saturation, therefore to

ensure equal sensitivity between different comparisons we modify the 𝐹 by dividing

it by the maximum of sum of product of 𝑓 and 𝑙 for different filters in the mosaic.

This is somewhat analogous to having something like an exposure control.

Figure 6-5 shows the filter for 𝜆𝜎 equal to 4 for SFA sizes from 2x2, 3x3, 4x4 and

Bayer layout. We considered as many filters as the super-pixel permits, 𝑃𝑠 = ℎ𝑤. We

positioned the peak wavelength of these filters to ensure equal spacing between them.

The idea being to first identify the trend of the performance metrics with changes in

𝜆𝜎. For the simulations to follow we will use 𝐷65 for training.

Figure 6-6, 6-7 shows the demosaiced rendered sRGB Macbeth chart from Fi-

nalyson database, considering Bayer SFA with gaussian filters for varying 𝜆𝜎 without

white balancing and with white balancing respectively. Purpose of this to show that

additional post-processing like white balancing could be required to get visually cor-

rect color, however it modifies the effect of 𝑇𝐹 . As the sRGB images change with

white balancing, this changes metrics like 𝜇1, 𝜇2 and 𝜇3. Therefore, we do not incor-
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Figure 6-4: With increasing 𝜆𝜎, filter goes from narrow band to wideband. In the
above figure filters with higher 𝜆𝜎 have higher sensitivity than lower ones, therefore
we need to normalise them to ensure equal sensitivity.

porate white-balancing in our evaluation procedure. However white balancing would

have no effect of 𝜇𝑌 or 𝜇𝑍 . Figure 6-8, 6-9 and 6-10 show the 𝑌𝑠𝑅𝐺𝐵, the demosaiced

sRGB rendered Macbeth chart image from the Finlayson database for SFAs 2x2, 3x3,

and 4x4 respectively for 𝜆𝜎 varying as [0.25 0.5 1 2 3 ... 10]. We see that for 3x3 and

4x4 SFAs for higher 𝜆𝜎 some of the images are dark. This is because of demosaicing

error some of the pixels become saturated (see at the edge of yellow and pink patches)

and there is quite a difference in range compared to other pixels. Ideally, in a RAW

workflow a white level is set which is generally not equal to 1 as in this case. One

could calculate it by first calculating a histogram of all pixels and setting white level

equal to say 90% of the cumulative pixel value. This would have allowed us to display

these images at the same brightness level. For the purpose of this simulation we don’t

modify the white level.

If we look at the demosaiced images for 3x3 and 4x4 SFAs we see that there are

artifacts present due to demosaicing. This tend to roughly correspond to the 𝜇𝑌

values. It is only at very high sigma values for SFA sizes 3x3 and 4x4 that artifacts

tend to disappear however at these values the color difference error is very large. It
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Figure 6-5: Filters for SFAs with 𝜆𝜎=4

is not possible to quantify artifacts to the 𝜇3 as this is PSNR in sRGB images and in

this case the source of error is twofold, one from demosaicing and secondly from the

filter space to sRGB color space transform. One would ideally have liked to have a

metric which would correspond to the artifacts due to demosaicing error alone.

Table 6.1 and 6.2 shows the evaluation of the performance metrics for the Fin-

layson and Cave hyperspectral databases respectively. Output images were not white

balanced for this evaluation. If we look at some general trend we see:

𝜇𝑌 in general falls and then increases with increasing 𝜆𝜎 for a given SFA size. The

highest PSNR are for very high 𝜆𝜎 which indicates that broadband filters are better

for demosaicing, which is expected as the correlations between channels will be high.

However this comes at a cost of reduced color accuracy, as Δ𝐸3 is low. 𝜇𝑌 decreases
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if we increase the SFA size, which indicates that increasing number of filter makes

the demosaicing task more complex.

Δ𝐸3 also falls and then increases very rapidly with increasing 𝜆𝜎. Therefore,

broadband filters are recommended if the goal is to demosaic spectral channels how-

ever this comes at the cost decreased color accuracy. So the ideal solution for demo-

saicing would be somewhere in middle, 𝜆𝜎 of 3.

Δ𝐸1 and Δ𝐸2 also follow similar trend to Δ𝐸3 however the point of minima for

Δ𝐸2 tends to be at smaller value of 𝜆𝜎 than for Δ𝐸1. Also, in absolute terms Δ𝐸1 is

bigger pointing that the color difference is largely due to choice of spectral sensitivity

and filter space to sRGB color space transform and less due to demosaicing error.

𝜇3 is more closely aligned to 𝜇1 therefore again pointing to contribution of Filter

space to sRGB color space and filter choice to PSNR error and less contribution of

demosaicing error. 𝑆𝑆𝐼𝑀 follows similar trend to 𝜇1,2,3.

𝜇𝑍 first rises with increasing 𝜆𝜎 and then falls down. Having bigger SFAs with

more filters is beneficial for recovering spectral radiance information. Which is not

the case for demosaicing though.

Figure 6-12 shows the reflectance spectra of the 24 colors in the Macbeth chart

image from Finlayson database. Each spectrum is the average of 100 pixels in each

color patch. To the left is measurement as recorded by the hyperspectral image

capture. In the middle is 𝑍, demosaiced reflectance for Bayer SFA for 𝜆𝜎 =4 and

to the right for SFA of size 3x3 for𝜆𝜎=0.25. We choose to present results for such

varying 𝜆𝜎 for highlighting the difference in spectral recovery. We see that we are

able to recover spectral signature from SFAs to a large extent.
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Figure 6-6: Effect of 𝜆𝜎 on demosaicing for the Macbeth chart in Finlayson database
for Bayer SFA. Left to Right, then Top to Bottom 𝜆𝜎 goes [0.25, 0.5, 1,2,3,...10]
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Figure 6-7: ]
Effect of 𝜆𝜎 on demosaicing for the Macbeth chart in Finlayson database for Bayer
SFA. Output images are white-balanced by ratio of average Red, Green and Blue
pixel values. Left to Right, then Top to Bottom 𝜆𝜎 goes [0.25, 0.5, 1,2,3,...10]
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Figure 6-8: Effect of 𝜆𝜎 on demosaicing for the Macbeth chart in Finlayson database
for 2x2 SFA size, 4 filters. Left to Right, then Top to Bottom 𝜆𝜎 goes [0.25, 0.5,
1,2,3,...10]
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Figure 6-9: Effect of 𝜆𝜎 on demosaicing for the Macbeth chart in Finlayson database
for 3x3 SFA size, 9 filters. Left to Right, then Top to Bottom 𝜆𝜎 goes [0.25, 0.5,
1,2,3,...10]
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Figure 6-10: Effect of 𝜆𝜎 on demosaicing for the Macbeth chart in Finlayson database
for 4x4 SFA size, 16 filters. Left to Right, then Top to Bottom 𝜆𝜎 goes [0.25, 0.5,
1,2,3,...10]
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Figure 6-11: Macbeth chart image from the Finlayson database is overlaid with white
patches of 10 × 10 pixels. We average pixels from each patch to get an average
reflectance value for each color. This average reflectance value is used to determine the
PSNR of reflectance 𝜇𝑧(𝑐ℎ𝑎𝑟𝑡) between measured (in Finlayson database) and estimated
from demosaicing operator 𝐷𝑠

Figure 6-12: Reflectance values for the 24 colors in the Macbeth chart image from the
Finlayson database. (a) Reflectance as measured by Finlayson image. (b) Estimated
reflectance 𝑍 from the 𝑋 SFA image for 2x2 Bayer layout of 3 gaussian filters with
𝜆𝜎 =4. (c) Estimated reflectance 𝑍 from the 𝑋 SFA image for 3x3 Bayer layout of 9
gaussian filters with 𝜆𝜎 = 0.25.
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Table 6.1: Result of varying 𝜆𝜎 for different SFA size. All values are averages across
images of the Finlayson database, except 𝜇𝑍(𝑐ℎ𝑎𝑟𝑡) which is average across 24 colors
in the Macbeth chart

𝜆𝜎 𝜇1 𝜇2 𝜇3 Δ𝐸1 Δ𝐸2 Δ𝐸3 𝜇𝑌 𝜇𝑍(𝑐ℎ𝑎𝑟𝑡) 𝜇𝑍 𝑆𝑆𝐼𝑀1 𝑆𝑆𝐼𝑀2 𝑆𝑆𝐼𝑀3

2x2 gaussian

0.25 26.83 32.59 26.08 9.33 3.72 10.04 39.54 26.45 31.38 0.9180 0.9576 0.8960
0.5 26.96 32.99 26.17 8.92 3.45 9.67 39.98 26.28 31.34 0.9206 0.9628 0.8968
1 29.22 33.48 27.85 5.44 3.08 6.57 39.86 26.83 31.49 0.9669 0.9675 0.9394
2 28.29 34.13 27.12 5.31 2.81 6.56 40.37 27.46 31.73 0.9747 0.9725 0.9460
3 28.39 33.43 27.10 4.33 3.32 5.99 40.81 27.73 31.86 0.9844 0.9700 0.9541
4 27.51 32.57 26.26 5.56 4.00 7.31 41.60 27.78 31.80 0.9764 0.9647 0.9439
5 27.33 31.79 25.88 6.17 4.59 8.14 42.54 27.03 31.56 0.9733 0.9579 0.9361
6 27.78 31.57 26.06 6.30 4.84 8.38 43.42 26.28 31.18 0.9730 0.9539 0.9313
7 26.29 31.83 25.02 7.30 4.83 9.23 44.13 26.03 30.86 0.9653 0.9524 0.9216
8 23.86 32.19 23.11 9.07 4.77 10.80 44.71 26.04 30.62 0.9486 0.9513 0.9038
9 22.09 32.37 21.57 10.72 4.80 12.38 45.20 26.14 30.36 0.9288 0.9493 0.8822
10 20.72 32.37 20.30 12.23 4.91 13.93 45.63 26.29 30.02 0.9072 0.9460 0.8577

3x3 gaussian

0.25 19.03 33.29 18.84 13.80 3.54 14.62 40.29 35.32 31.74 0.8187 0.9620 0.7847
0.5 22.89 32.44 22.35 8.52 3.74 9.84 38.51 35.16 31.77 0.9258 0.9576 0.8850
1 28.57 31.74 26.64 4.10 4.01 6.35 37.33 35.09 31.86 0.9901 0.9548 0.9442
2 29.18 31.84 27.10 4.01 4.08 6.29 38.17 33.68 31.98 0.9911 0.9571 0.9477
3 29.12 31.89 27.09 3.81 4.28 6.40 39.10 31.50 31.84 0.9920 0.9581 0.9495
4 30.01 31.44 27.50 3.34 4.95 6.62 39.88 29.88 31.61 0.9937 0.9536 0.9476
5 40.75 30.14 29.76 0.98 6.31 6.51 40.50 29.09 31.38 0.9993 0.9428 0.9427
6 30.14 28.87 26.35 3.23 7.89 9.31 41.18 28.28 30.99 0.9939 0.9286 0.9239
7 23.88 27.42 22.18 6.72 14.61 18.56 41.75 27.36 30.54 0.9725 0.9130 0.8899
8 12.65 29.22 12.56 26.01 15.59 38.73 42.24 26.58 30.13 0.5355 0.9223 0.5028
9 8.76 32.00 8.73 42.18 6.14 47.75 42.66 26.12 29.73 0.0517 0.9499 0.0494
10 9.79 32.19 9.76 37.68 5.52 41.65 43.02 25.79 29.28 0.1702 0.9385 0.1610

4x4 gaussian

0.25 20.89 31.62 20.45 11.30 4.36 12.67 38.98 34.24 31.78 0.8995 0.9444 0.8450
0.5 21.53 31.57 21.01 9.23 4.23 10.93 38.13 34.26 31.79 0.9431 0.9434 0.8861
1 25.45 30.87 24.17 5.67 4.48 8.06 36.96 34.23 32.05 0.9811 0.9421 0.9226
2 28.42 30.56 26.13 4.00 4.71 6.95 37.18 34.85 32.05 0.9908 0.9428 0.9331
3 29.93 29.61 26.55 3.37 5.81 7.55 37.81 33.11 31.78 0.9936 0.9352 0.9287
4 29.02 23.81 22.46 3.74 83.09 85.06 38.53 31.06 31.36 0.9920 0.8891 0.8826
5 10.49 27.75 10.42 34.40 10.60 43.43 39.23 29.58 30.88 0.2628 0.9019 0.2451
6 15.56 25.61 15.09 18.20 59.53 74.56 39.90 28.25 30.40 0.7713 0.8935 0.6972
7 11.82 26.29 11.66 28.96 45.74 72.09 40.60 27.19 29.97 0.4369 0.8966 0.4012
8 13.80 26.64 13.55 22.54 68.76 87.79 41.25 26.53 29.60 0.6454 0.8933 0.5840
9 11.20 27.75 11.09 31.36 18.83 47.54 41.83 26.03 29.22 0.3579 0.9040 0.3280
10 8.32 31.08 8.29 43.64 3.99 47.31 42.35 25.46 28.83 0.0158 0.9498 0.0147

2x2 bayer

0.25 17.60 36.65 17.55 27.69 2.34 27.82 43.74 23.21 30.02 0.5913 0.9874 0.5810
0.5 21.71 35.60 21.54 14.75 2.53 15.10 42.10 23.34 30.10 0.7965 0.9797 0.7811
1 25.52 35.24 25.05 10.57 2.48 11.10 40.84 23.60 30.22 0.8705 0.9787 0.8523
2 25.22 36.15 24.78 10.58 2.10 11.11 41.36 24.54 30.53 0.8701 0.9822 0.8509
3 25.46 35.77 24.98 8.99 2.27 9.68 41.80 25.08 30.78 0.9032 0.9808 0.8823
4 25.84 35.19 25.30 7.75 2.60 8.62 42.26 25.24 30.86 0.9388 0.9779 0.9165
5 26.15 34.64 25.53 8.04 2.98 8.95 42.71 25.43 30.82 0.9460 0.9753 0.9231
6 26.14 34.14 25.44 8.47 3.34 9.44 43.32 25.59 30.64 0.9411 0.9724 0.9172
7 26.04 33.66 25.26 8.56 3.70 9.69 43.97 25.77 30.42 0.9360 0.9687 0.9101
8 24.77 33.37 24.08 9.31 3.98 10.59 44.52 25.95 30.17 0.9248 0.9646 0.8962
9 22.86 33.26 22.35 10.76 4.21 12.15 44.98 26.14 29.83 0.9046 0.9604 0.8722
10 21.40 33.07 20.97 12.16 4.50 13.73 45.40 26.33 29.45 0.8809 0.9553 0.8435
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Table 6.2: Result of varying 𝜆𝜎 for different SFA size. All values are averages across
images of the Cave database.

𝜆𝜎 𝜇1 𝜇2 𝜇3 Δ𝐸1 Δ𝐸2 Δ𝐸3 𝜇𝑌 𝜇𝑍 𝑆𝑆𝐼𝑀1 𝑆𝑆𝐼𝑀2 𝑆𝑆𝐼𝑀3

2x2 gaussian

0.25 27.50 37.50 27.08 9.35 2.26 9.75 43.68 29.61 0.8747 0.9726 0.8545
0.5 27.63 37.78 27.22 9.20 2.14 9.59 44.14 29.60 0.8745 0.9751 0.8545
1 29.77 38.16 29.08 5.98 1.99 6.55 43.92 29.73 0.9398 0.9768 0.9193
2 29.40 38.81 28.78 5.11 1.88 5.80 44.45 29.93 0.9565 0.9789 0.9360
3 30.02 38.28 29.25 3.60 2.18 4.69 45.00 29.99 0.9798 0.9790 0.9587
4 29.20 37.36 28.42 5.74 2.58 6.63 45.83 29.79 0.9576 0.9784 0.9371
5 28.70 35.93 27.80 7.36 3.21 8.23 46.73 29.40 0.9343 0.9744 0.9177
6 28.68 34.46 27.63 8.22 3.98 8.96 47.68 29.15 0.9199 0.9644 0.9105
7 27.44 33.79 26.56 8.91 4.39 9.43 48.59 29.20 0.9124 0.9506 0.9037
8 25.45 33.69 24.81 9.64 4.44 10.07 49.32 29.19 0.9061 0.9393 0.8897
9 23.88 33.62 23.37 10.30 4.44 10.76 49.90 29.05 0.8979 0.9308 0.8717
10 22.61 33.56 22.17 10.93 4.48 11.52 50.38 28.80 0.8869 0.9242 0.8517

3x3 gaussian

0.25 20.97 37.30 20.83 11.61 2.33 12.16 43.68 31.13 0.7795 0.9674 0.7516
0.5 24.79 36.42 24.38 7.36 2.53 8.22 41.78 31.18 0.9028 0.9635 0.8693
1 30.59 35.83 29.09 3.29 2.74 4.81 40.53 31.31 0.9885 0.9643 0.9525
2 31.35 35.92 29.70 3.37 2.88 4.81 41.60 31.47 0.9903 0.9653 0.9550
3 31.25 35.73 29.65 3.04 3.27 5.06 42.88 31.23 0.9918 0.9601 0.9522
4 32.04 34.28 29.90 2.70 4.77 5.87 43.80 30.71 0.9922 0.9397 0.9414
5 42.57 31.64 31.37 0.84 7.68 7.67 44.53 30.23 0.9990 0.8959 0.9027
6 32.16 29.40 27.39 2.63 11.30 11.99 45.34 29.74 0.9923 0.8480 0.8590
7 25.93 28.22 23.75 5.40 22.21 24.42 46.02 29.24 0.9671 0.8282 0.8355
8 14.76 31.17 14.69 20.13 23.53 39.85 46.55 28.84 0.4873 0.8940 0.5140
9 11.00 34.37 10.98 31.63 9.82 40.85 46.98 28.54 0.0540 0.9596 0.0574
10 11.98 34.84 11.96 28.39 6.45 33.28 47.33 28.22 0.1495 0.9466 0.1611

4x4 gaussian

0.25 22.88 35.30 22.55 8.61 2.95 9.59 41.97 31.63 0.9018 0.9596 0.8623
0.5 23.57 35.29 23.17 7.31 2.91 8.39 41.15 31.99 0.9373 0.9574 0.8965
1 27.53 34.75 26.53 4.52 3.10 6.08 40.13 32.05 0.9784 0.9544 0.9338
2 30.47 34.52 28.71 3.23 3.35 5.17 40.64 31.39 0.9889 0.9527 0.9438
3 32.01 32.91 29.03 2.69 5.00 6.31 41.44 30.99 0.9926 0.9412 0.9373
4 31.10 26.02 24.33 2.99 130.11 131.46 42.30 30.55 0.9909 0.8968 0.8950
5 12.66 30.52 12.57 26.07 12.51 37.35 43.11 30.04 0.2286 0.9276 0.2295
6 17.65 28.24 17.16 14.34 78.94 89.77 43.82 29.38 0.7400 0.8932 0.7134
7 13.95 29.21 13.79 22.22 64.83 84.19 44.52 28.75 0.3901 0.9038 0.4054
8 15.90 28.88 15.66 17.59 107.61 120.79 45.15 28.43 0.6027 0.8739 0.6036
9 13.34 30.22 13.24 23.92 31.61 52.64 45.71 28.30 0.3140 0.9081 0.3338
10 10.58 33.90 10.54 32.69 8.12 40.51 46.18 28.05 0.0241 0.9605 0.0246

2x2 bayer

0.25 19.52 41.57 19.49 23.15 1.42 23.23 48.40 28.55 0.4939 0.9897 0.4843
0.5 23.34 40.27 23.24 13.51 1.57 13.71 46.57 28.63 0.7189 0.9822 0.7044
1 26.70 39.72 26.45 10.42 1.62 10.71 45.17 28.69 0.8037 0.9802 0.7871
2 26.72 40.46 26.46 9.77 1.43 10.08 45.70 28.89 0.8164 0.9829 0.8002
3 27.24 40.33 26.93 7.69 1.54 8.12 46.28 29.12 0.8786 0.9824 0.8616
4 27.82 39.99 27.47 5.96 1.76 6.62 46.91 29.29 0.9438 0.9826 0.9264
5 27.99 39.63 27.60 6.76 1.99 7.43 47.54 29.34 0.9530 0.9837 0.9361
6 27.71 39.22 27.31 8.08 2.20 8.70 48.31 29.31 0.9368 0.9843 0.9203
7 27.49 38.79 27.06 8.67 2.39 9.32 49.10 29.22 0.9229 0.9841 0.9064
8 26.35 38.52 25.99 9.14 2.53 9.83 49.76 29.03 0.9116 0.9834 0.8951
9 24.61 38.35 24.34 9.83 2.64 10.54 50.32 28.78 0.8978 0.9821 0.8813
10 23.24 38.07 23.02 10.53 2.83 11.28 50.81 28.46 0.8818 0.9797 0.8650

145



6.4 Design of optimal spectral transmission sensi-

tivity of filters

With respect to the optimization metrics as defined earlier we searched for the optimal

gaussian shaped filters for different SFA sizes. We used Matlab’s fmincon to minimize

a cost function. The cost function was set to the performance metric in question (for

example 𝜇𝑌 ) while modifying all the parameters of the gaussian filter. Table 6.3 shows

the various metrics evaluated for the optimized filters. Figure 6-13 , 6-14 and 6-15

shows the filters obtained from the optimization procedure applied on the Finlayson

database.

Figure 6-13: Optimized filters with Δ𝐸3 as the criteria for Bayer SFA. Optimized
filters for neighborhood of 7, optimized on the Finlayson database.

Figure 6-13 shows the optimized filters for Δ𝐸3, optimized for Bayer CFA. We

obtain an average Δ𝐸3 of 3.28 for all images in the Finlayson database. Correspond-

ingly we get Δ𝐸3 of 2.24 for the Cave database. Parmar et al. report 3.2724 for the

Cave database12 using their optimized filters for the Bayer pattern.

Figure 6-14, (a) shows the optimized filter for 𝜇𝑌 , filter most suited for less de-

mosaicing errors. The optimized filter give us PSNR in range of 51-56 dB which is

considerably higher than we got from the systematic gaussian evaluation, where the
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maximum was 45.63 dB. However, the filters so obtained have very low 𝜇1 and 𝜇3.

Δ𝐸3 is also very high, therefore they are not suitable for color applications.

Figure 6-14, (b) shows the optimized filter for 𝜇𝑍 , filters most suited for recovering

reflectance. The highest PSNR obtained is 32.70 dB which is higher then what was

obtained earlier using a systematic evaluation with 𝜆𝜎 which was 32.05. What is

interesting here is for the 4x4 SFA, the 𝜇1 is only 8.21 and Δ𝐸1 is 44, so the Filter

space to sRGB color space transform totally fails. Even though 𝜇𝑌 at 39.25 is decent

for demosaicing, this particular filter combination will not produce good color images.

The 2x2 and 3x3 SFA filters are suitable for both color demosaicing and reflectance

recovery.

Figure 6-14, (c) shows optimized filters for Δ𝐸3, less color errors in demosaiced

images. The best combination give an error of only 3.11 for 2x2 SFA which is coming

mainly from demosaicing and not from filter space to sRGB color space transform.

These filters are suitable for color demosaicing applications.

Figure 6-14, (d) shows optimized filters for 𝜇1, for applications like color wheel

camera where the purpose is to get best possible colors in the sRGB domain. We

have a very high PSNR of 71.92 for 16 filters with a very small Δ𝐸3.

Figure 6-15 shows the optimized filters for 𝜇3. We present two cases for the 2x2

SFA, in one case the filters converged to a Bayer arrangement. They have good

demosaicing performance with less color errors.
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Figure 6-14: Optimized filters for neighborhood of 7, optimized on the Finlayson
database. First row: 𝜇𝑌 as the criteria. Here the goal is to minimize demosaicing
error in PSNR. Although demosaicing performance is very good however Filter space
to sRGB color space transform is very bad and corresponding color difference errors
are large. So these filters are not very useful. Second row: 𝜇𝑍 as criteria. Third row:
Δ𝐸3 as criteria. The most useful filters we obtained, simultaneously other parameters
like 𝜇𝑌 and 𝜇𝑍 are also good. Fourth row: 𝜇1 as criteria.
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Figure 6-15: Optimized filters with 𝜇3 as the criteria. We present two cases for the 2x2
filters obtained using different initialisation. In the second case the filter converged to
a Bayer pattern. optimized filters for neighborhood of 7, optimized on the Finlayson
database.
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Table 6.3: Result of optimized filters for different SFA size for the Finlayson database,
neighborhood size 7.

Optim. SFA 𝜇1 𝜇2 𝜇3 Δ𝐸1 Δ𝐸2 Δ𝐸3 𝜇𝑌 𝜇𝑍(𝑐ℎ𝑎𝑟𝑡) 𝜇𝑍 𝑆𝑆𝐼𝑀1 𝑆𝑆𝐼𝑀2 𝑆𝑆𝐼𝑀3

𝜇𝑌

2x2 8.75 51.13 8.74 42.26 0.51 42.44 55.96 20.61 27.46 0.0464 0.9923 0.0445
3x3 9.25 48.03 9.25 40.13 0.57 40.20 51.11 30.86 31.72 0.1046 0.9913 0.1022
4x4 8.58 49.63 8.58 42.76 0.26 42.80 52.37 31.99 32.21 0.0351 0.9906 0.0350

𝜇𝑍

2x2 29.26 33.66 27.83 5.24 3.13 6.38 40.47 28.30 31.93 0.9639 0.9687 0.9357
3x3 26.81 32.94 25.70 5.40 3.47 6.98 39.09 34.21 32.54 0.9840 0.9587 0.9423
4x4 8.21 63.63 8.21 44.00 0.07 44.01 39.25 34.23 32.70 0.0095 0.9994 0.0095

Δ𝐸3

2x2 55.60 33.22 33.18 0.25 3.10 3.11 40.49 25.04 30.73 0.9998 0.9708 0.9708
3x3 56.05 31.88 31.86 0.33 3.75 3.78 39.57 29.29 31.56 0.9998 0.9642 0.9640
4x4 59.93 30.86 30.84 0.21 5.03 5.05 41.96 34.48 32.43 0.9999 0.9478 0.9476

bayer 51.61 32.99 32.84 0.34 3.24 3.28 41.58 22.67 29.81 0.9997 0.9690 0.9686

𝜇1

2x2 57.91 31.36 31.37 0.24 4.29 4.28 40.52 27.79 31.71 0.9999 0.9579 0.9577
3x3 61.22 30.94 30.95 0.21 4.92 4.92 39.53 31.46 31.76 0.9999 0.9535 0.9536
4x4 71.92 23.68 23.69 0.05 98.37 98.36 38.58 31.14 31.36 1.0000 0.8908 0.8909

𝜇3

2x2 51.55 33.13 33.12 0.46 3.24 3.27 42.14 22.77 29.88 0.9998 0.9707 0.9706
3x3 53.10 32.10 32.07 0.42 3.90 3.96 43.81 29.93 31.67 0.9996 0.9638 0.9635
4x4 58.77 28.95 28.95 0.15 6.29 6.30 37.88 33.11 31.78 1.0000 0.9327 0.9327
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6.5 Effect on demosaicing performance due to il-

luminant

The 𝐷 operator we defined depends on the illuminant 𝑙 matrix (equation 6.6). There-

fore it is important to characterize the role of illuminant difference in terms of de-

mosaicing performance. Let us consider 𝐷65 to be the illuminant used for training

𝐷. We use this 𝐷 to reconstruct SFA images rendered under different standard

illumination conditions (𝐷65, 𝐷50, 𝐴, 𝐹2).

Table 6.4: Result of 𝜇𝑌 for demosaicing operator trained on 𝐷65 and used to demosaic
SFA images rendered for different standard illuminants, for different SFA sizes and
𝜆𝜇 = 3 .

Illuminant 2x2 3x3 4x4

Finlayson

D65 40.81 39.10 37.81
D50 39.74 38.00 36.71
A 42.33 39.65 38.26
F2 39.90 40.70 37.76

Cave

D65 45.00 42.88 41.44
D50 43.67 41.64 40.16
A 45.50 43.41 41.60
F2 45.05 44.85 42.97

Table 6.4 shows the 𝜇𝑌 obtained for the Finalyson and Cave database for gaussian

shaped filters having 𝜆𝜇 = 3 for different SFA sizes. It can be seen that despite changes

in illumination the differences in 𝜇𝑌 is not high. Thus we can can conclude that

LMMSE is quite robust to illumination changes between learning and reconstruction.

6.6 Radiance recovery for Visible+NIR filter ar-

ray

Let us consider SFA having gaussian shaped spectral filters spanning both visible

and NIR wavelength. For purpose of testing we consider the SCIEN database. The

images provided are in Radiance and not Reflectance, therefore we attempt to recover

radiance. The procedure we follow is as described earlier, we simply replace 𝐿𝑍 by
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the radiance values provided in the images. This can be done by considering 𝐿 to

be 1 and 𝑍 to be Radiance (instead of reflectance). We keep this consideration only

for this section. Otherwise one can also write another matrix model between 𝑋 and

𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 and determine the LMMSE solution for it and come to the same conclusion.

We simulated gaussian shaped filter across wavelength range of 414.7 to 950.5nm.

Figure 6-16 shows the simulated filters for a 𝜎 of 6. Figure 6-17 and 6-18 shows the

recovered radiances for 4 different pixels points in the StandfordDish image for SFAs

of 3x3 and Bayer type. We see that for the 3x3 SFA, the recovered radiance follows

the measured (from original test images) more closely than the Bayer SFA. Table

6.5 shows the evaluation of performance metrics for variation in 𝜆𝜎 for different SFA

type. We find that a SFA size of 3x3 is more appropriate compared to a Bayer kind

of an arrangement. Even though a 2x2 SFA has similar performance for 𝜇𝑍 compared

to 3x3 SFA, the color difference Δ𝐸3 are very high so it won’t be suitable for mixed

applications involving both color demosaicing and spectral recovery.

Figure 6-16: Simulated Gaussian Filters on the Visible+NIR wavelength
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Figure 6-17: Recovered Radiance from 4 different pixel points on the StandfordDish
image from SCIEN for SFA 3x3 𝜆𝜎=6

Figure 6-18: Recovered Radiance from 4 different pixel points on the StandfordDish
image from SCIEN for SFA Bayer 𝜆𝜎=0.25. We choose to present this to purposefully
highlight a bad case.
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Table 6.5: Result of varying 𝜆𝜎 for different SFA sizes for Visible+NIR filters. All
values are averages across images of the SCIEN database.

SFA 𝜆𝜎 𝜇1 𝜇2 𝜇3 Δ𝐸1 Δ𝐸2 Δ𝐸3 𝜇𝑌 𝜇𝑍

2x2

0.25 11.11 39.65 11.12 54.72 1.58 54.70 45.69 36.89
0.5 11.87 40.02 11.87 52.33 1.60 52.33 46.12 36.99
1 12.58 40.41 12.57 48.86 1.58 48.87 46.00 36.83
2 12.70 40.80 12.70 47.13 1.54 47.14 46.28 36.55
3 12.83 41.05 12.83 45.71 1.50 45.73 46.39 36.07
4 12.94 41.35 12.93 43.82 1.45 43.86 46.47 35.69
5 13.02 41.76 13.02 41.31 1.37 41.35 46.58 35.56
6 13.29 42.18 13.29 38.32 1.29 38.37 46.72 35.56
7 14.86 42.39 14.85 35.13 1.23 35.19 46.87 35.62
8 16.06 42.42 16.05 32.01 1.19 32.07 47.03 35.70
9 17.10 42.27 17.08 29.16 1.18 29.20 47.20 35.70
10 18.00 41.98 17.99 26.67 1.20 26.70 47.38 35.73
12 19.51 41.33 19.50 22.62 1.26 22.63 47.80 35.85
15 21.46 40.70 21.45 17.75 1.35 17.73 48.54 35.88
18 23.21 40.18 23.19 13.97 1.47 13.94 49.28 35.82

3x3

0.25 20.55 42.53 20.51 19.43 1.12 19.51 44.39 35.84
0.5 22.09 42.66 22.04 14.17 1.08 14.26 44.95 35.70
1 24.38 42.58 24.30 9.28 1.06 9.43 44.73 35.72
2 24.61 42.69 24.52 8.95 1.02 9.10 44.92 36.11
3 24.55 42.87 24.47 8.91 0.99 9.05 45.02 36.16
4 24.75 42.97 24.66 8.59 0.99 8.74 45.15 36.07
5 25.37 42.85 25.27 7.69 1.03 7.85 45.33 36.08
6 26.07 42.66 25.95 6.56 1.10 6.74 45.57 36.15
7 26.55 42.50 26.43 5.61 1.17 5.82 45.85 36.13
8 26.79 42.35 26.67 5.03 1.24 5.27 46.14 35.95
9 26.83 42.18 26.73 4.81 1.32 5.07 46.45 35.77
10 26.72 41.97 26.65 4.85 1.40 5.11 46.75 35.61
12 26.12 41.44 26.15 5.29 1.60 5.55 47.32 35.30
15 24.77 40.36 24.98 6.24 1.95 6.42 48.01 34.82
18 21.97 40.10 22.18 8.42 2.04 8.57 48.57 34.48

bayer

0.25 9.08 47.84 9.08 74.77 0.79 74.77 44.93 31.08
0.5 9.08 47.99 9.08 74.44 0.76 74.44 45.29 31.33
1 9.09 48.17 9.09 73.64 0.73 73.64 45.71 31.67
2 9.15 48.05 9.14 72.11 0.70 72.11 45.80 32.64
3 9.62 48.19 9.62 70.12 0.68 70.12 45.77 33.50
4 10.45 48.63 10.45 67.47 0.66 67.47 45.81 34.10
5 11.06 48.69 11.06 64.28 0.65 64.28 45.90 34.53
6 11.59 48.61 11.59 60.63 0.63 60.63 46.01 34.76
7 12.04 48.46 12.04 56.59 0.62 56.59 46.16 34.81
8 12.41 48.28 12.41 52.32 0.61 52.32 46.33 34.89
9 12.70 48.07 12.70 48.00 0.59 48.00 46.52 34.97
10 12.90 47.82 12.90 43.78 0.58 43.78 46.72 35.08
12 14.55 47.14 14.55 36.16 0.57 36.17 47.15 35.31
15 17.58 46.22 17.57 26.44 0.56 26.47 47.82 35.52
18 19.74 45.44 19.72 20.00 0.58 20.04 48.51 35.53
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6.7 Conclusion

In this chapter we introduced the framework for optimization of filters for color de-

mosaicing and spectral reflectance recovery purposes. We presented a method to

approximate lengthy evaluation metrics calculations over a database of images by

approximating it using the correlation matrix on the image database in reflectance.

Then, we proposed SFAs with optimized spectral sensitivities of filters for various

applications. However, we have artifacts in demosaiced images for SFAs having large

number of filters with small correlation between them. We couldn’t find a metric

which correspond to these artifacts. More work needs to be done to understand the

nature of these artifacts so that a cost function could be developed and filters opti-

mized which avoid these artifacts. The optimized filters proposed are not absolute

or the best filters as the solutions obtained are not unique in nature. The purpose

was to develop a workflow to optimize filters as ultimately the manufacturer of filters

would have their own physicals models which determine the shape of the spectral

sensitivities. Using the framework proposed it could be possible to incorporate such

physical models into the design process. Also, in the evaluation of metrics we saw

that a major reason for color errors for small SFA sizes is not due to demosaicing but

rather due to the filter space to sRGB color space transform. The proposed transform

is just a linear pseudo inverse and most complicated solutions exist in the state of the

art. The advantage of the linear transform is that it can be incorporated in our linear

demosaicing model which allows faster optimization. However, it would be interesting

to evaluate other solutions for this color transformation in the future.
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Chapter 7

Demosaicing using Dual Layer

Feedforward Neural Network

7.1 Introduction

In previous chapters, LMMSE (linear minimum mean square error) based algorithm

was proposed which can be used to demosaic random CFAs44,95. We considered de-

mosaicing to be an inverse problem of estimating a linear operator which inverses the

effect of mosaic by learning its weights on an image database. The linear operator

was further stabilized by considering neighboring pixel. The same paradigm can be

extended by considering a non linear solution. A non linear solution extends the

degree of freedom for the weights and therefore can give better results. Neural Net-

works have been shown to be good candidate for such problems and machine learning

based solutions are already used extensively for image classification/recognition, pat-

tern matching, etc104. The common idea here is that the neural network learns to

recognize patterns on a huge image database.

Recently, a three layer neural network using deep learning for demosaicing105 was

proposed. They trained their network on 2992 downsampled images from Flickr.

Gharbi et al.28 have proposed a neural network based on convolutional neural net-

works having 15 layers training them on more than a million images. They use sRGB

images which are downsampled using bicubic interpolation to avoid incorporating the
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distortions caused by the image processing pipeline. They demonstrate that their

network generalizes well to linear data also. By linear data they imply the RAW

image. They need to make this distinction because they train on sRGB images which

have been post processed, for e.g. they have gamma (which is non linear) applied.

This creates a difference because they train on non-linear images however; in reality

we demosaic linear RAW images. Probably, their network is able to generalize as

the network trains on millions of images; the network is very generic and therefore

has averaged out the differences in image processing pipeline, sRGB transform, noise

removal, sharpening, jpg compression. Both these approaches train their network on

already demosaiced images.

Recently there is a growing interest in development of Spectral Filter Arrays

(SFAs), going beyond three color filters and even adding NIR filter on the same

mosaic. IMEC has proposed SFAs with 32 color channel33, Silios32 with 9, are com-

mercial propositions. Image databases which provide ground truth images for such

filters may not be available. We have image databases in reflectance domains like

Finlayson17, Cave65 and SCIEN19 which can be used to render color images for any

filter sensitivity. These databases are usually small in size, therefore it is important

to consider possibility of a neural network approach which doesn’t need large number

of training images. Ideally, one would prefer to have large database of ground truth

images available, however this is not the case for hyperspectral databases.

In this chapter, we propose a simple dual layer neural network for demosaicing

which can be trained for demosaicing any random CFA. We train this network on the

Kodak database15 and compare results with the state of art. Also, we train a neural

network on 5-band TokyoTech multispectral image database 5-BAND Tokyo1 and use

it to demosaic a 5 color SFA (see Figure 7-3-h, Monno5ch SFA)20. This database is

a true-color image database like the Kodak database, but instead of 3 it has 5 color

channels. Further, we train a neural network on images from TokyoTech 31 band

Multispectral database 31-BAND Tokyo2. This is a hyperspectral image database

1http://www.ok.sc.e.titech.ac.jp/res/MSI/MSIdata.html
2http://www.ok.sc.e.titech.ac.jp/res/MSI/MSIdata31.html
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with images from 420nm to 720nm with images every 10nm, therefore we need to

first render images using filter spectral sensitivity of prototype camera21 and use it to

demosaic RAW images from their cameras and compare it to state of art. Similarly, we

could also train our neural network on Finlayson or Cave hyperspectral database and

use this to demosaic RAW images. To note the filter sensitivities here are not same

as those for the 5-Band dataset, therefore it cannot be directly used. Demosaicing

exercise on the 5-Band dataset serves more to compare demosaicing algorithms as

ground-truth image (like Kodak) are available. The authors have already shown

their approach using Weighted Guided Filter21 to be better than Binary-Tree Edge

Sensing algorithm29,83,84 therefore we choose not to repeat results for Binary Tree.

For this camera we present results both on rendered images from Hyperspectral image

databases like Finlayson, Cave and TokyoTech 31-band and also on real RAW images

captured with our camera. Simulations on rendered images allow us to measure

metrics like PSNR as ground truth is available which allows quantitative comparison.

7.2 Neural Network Configuration

We previously defined a ’super-pixel’ to be the basis pattern, the most basic pattern

of mosaic of filters which when repeated across the surface of the sensor forming the

Color Filter Array. For the Bayer the super-pixel [R G; G B] is of size 2x2. For Fujifilm

XTrans CFA the super-pixel is of size 6x6. We consider demosaicing problem to be of

block shift invariant, i.e. same solution is proposed for each super-pixel pattern. Now

for ℎ×𝑤 pixels in ’super-pixel’, the goal of demosaicing is to estimate 𝑃ℎ𝑤 pixels, full

color image, where 𝑃 is number of color channels. 𝑃 is three for RGB CFAs. When

dealing with SFAs we want to estimate 𝑃𝑠ℎ𝑤 pixels, where 𝑃𝑠 is number of spectral

channels.. We do this by training a neural network on a database of true color and

simulated CFA images, where we fine tune the weights and bias of connecting neurons

with the target of reducing the Mean Square Error. We consider a constant window

of neighborhood pixels of 𝑛
′
ℎ vertical and 𝑛

′
𝑤 horizontal pixels to increase the size of

input. We earlier defined 𝑛
′
ℎ = ℎ + 𝑛ℎ − 1 and 𝑛

′
𝑤 = 𝑤 + 𝑛𝑤 − 1 to ensure equivalence
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between constant and sliding neighborhood. Unlike the implementation for LMMSE

we don’t have anything like the 𝑆1 matrix as we directly reconstruct 𝑦.

Figure 7-1: Neural Network model. For RGB CFAs, 𝑃 = 3. In case of 𝑆𝐹𝐴𝑠, we
need to replace 𝑃 by 𝑃𝑠 which is number of spectral filters.

We used a two layer feed-forward neural network (see Figure 7-1) of fitting type to

solve the demosaicing problem. The first layer is composed of 𝑛 sigmoid neurons and

the second layer of 𝑃ℎ𝑤 linear neurons. We choose this particular configuration as

we consider demosaicing to be a data fitting problem and not a pattern matching or

classification problem. A radial basis configuration was also considered but rejected

as it required lot of memory for training purpose.

We trained the neural network using Matlab neural networking toolbox, Matlab3.

Training data was simulated over the Kodak image database for RGB CFAs for the

sake of comparison with other state of art demosaicing algorithms. Similarly, for the

Monno5ch SFA we trained on the 5-Band Multispectral dataset for comparing with

state of art algorithm. For the prototype camera we trained on rendered images from

hyperspectral databases. In general we used 70% of data for training of network, 15%

was used for validation and 15% for testing. Data was divided randomly. This is the

protocol used by default by Matlab for deciding when to stop the training. However

when we present result for average PSNR and other metrics we consider 100% of the

pixels for testing. We trained the network using scaled conjugate gradient method
3https://www.mathworks.com/products/neural-network.html
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with back-propagation.

7.3 Results

7.3.1 Testing for Color Filter Arrays

We trained the neural network by paralleling the task on both CPU and GPU. The

system consisted of Intel i7 6700K with Nvidia GTX 1080. After training the net-

work based on procedure described earlier we tested the network for the entire Kodak

image database. For achieving a good PSNR we found there are two factors, having

a big neighborhood window size and more neurons in layer number one. The training

time also depends on the number of neurons. However, increasing the number of

neurons greater than the size of input gives diminishing result in performance with

regard to computational time increases and memory requirement. Table 7.1 shows

the result for testing our Neural Network approach on the Kodak image database. All

the values reported are averages across the image database. As expected for CNRS

and 4x4 #2, we have a lower 𝜎𝑟𝑔𝑏 as the CFAs have quasi-equal distribution of color

filters unlike Bayer or Fuji where green channel is better reconstructed compared to

other two. 𝜎 denotes the variance of PSNR across all the images across the database,

therefore a lower value indicates that all the images are well reconstructed. Figure

7-2 shows the fence region of the Lighthouse image demosaiced using our algorithm

on the different CFAs. CFAs like CNRS, 4x4 #2 to some extent avoid false colors

and moire due to random arrangement in the mosaic compared to the Bayer CFA.

Execution times reported are for execution on CPU only.

In Table 7.1, the Bayer CFA, a neighborhood window size (𝑛′
ℎ, 𝑛

′
𝑤) of 10 was used

with 100 neurons, the training took 20.6 hours giving a performance of 40.71dB. Using

only 40 neurons with (𝑛′
ℎ, 𝑛

′
𝑤) of 11 gave us 40.19dB in training time of 7.6 hours.

For Fuji, we used (𝑛′
ℎ, 𝑛

′
𝑤) of 15 with 225 neurons. For 4x4 #2, (𝑛′

ℎ, 𝑛
′
𝑤) of 13, with

40 neurons we have 40.32dB, 100 neurons 40.70dB, 169 neurons 41dB. The training
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Table 7.1: Performance of Neural Network, expressed as averages across images in
Kodak database

CFA 𝜇 SSIM Δ𝐸 𝜎𝑟𝑔𝑏 𝜎 time(s)
Bayer 40.71 0.9930 1.25 4.39 5.17 0.15
Fuji 39.10 0.9912 1.53 3.42 5.61 0.15

CNRS 40.01 0.9928 1.41 0.58 5.85 0.15
4x4 #2 41.00 0.9940 1.31 0.77 5.47 0.22
RGBW 40.54 0.9932 1.47 1.25 5.20 0.20

Kodak 2.0 38.82 0.9905 1.76 2.05 5.46 0.20
SonyRGBW 38.11 0.9891 1.86 2.80 5.20 0.20

Table 7.2: Result of Average PSNR for Kodak database for our method compared with
state of art. In Chapter 3, LMMSE which were not clipped between [0 1], here we clip
all results. Gharbi28 is a Neural Networking approach using deep learning. Another
Neural Network based approach105 reports RMSE values for Kodak equivalent value
for Average PSNR is 37.18 for 19 images only. For ACUDE we test Bayer our-self,
while for other CFAs values reported as per their paper14.

CFA Average PSNR 𝜇

Ours LMMSE95 ACUDE14 Gharbi28

Bayer 40.71 39.13 40.71 41.2
Fuji 39.10 39.03 39.54

CNRS 40.01 40.03
4x4 #2 41.00 40.68
RGBW 40.54 39.74

Kodak 2.0 38.82 38.43 38.70
SonyRGBW 38.11 37.38 38.10

time varies from 3.7 hours to 16.9 hours. As the training time is quite long, it is not

possible to do a complete leave one out testing.

Depending on application we can reduce the number of neurons / neighborhood

to slightly reduce Average PSNR in order to gain computational speed.

Table 7.2 shows the result for average PSNR (𝜇) for our method compared with

the state of art. Our Neural Network gives a peak performance of 40.71dB using

2 layers only compared to 41.2 dB for the 15 layer Gharbi’s Neural Network. It

outperforms LMMSE in 𝜇 however it is slower than it in execution speed. Compared

to ACUDE it is slightly better for RGB plus panchromatic (White pixel) CFAs. Here

the white pixel is simulated as the linear combination of RGB pixels.

LMMSE is a linear solution and it takes 0.10s/image using constant neighborhood.
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Gharbi NN28 report 2.9s per Mpixel which corresponds to roughly 1.14s for a Kodak

image. However, they use a slower processor which has 14% lower clock speed, so

we extrapolate to 0.98s per image. For sure they use 15 layers while we use only

2 layers, so ours will be faster. For ACUDE, with the code publicly available it

takes approximately 1.6 hour to process a single image with Bayer CFA, however the

authors claim on their website that they can process in under 1s per image ACUDE4.

For Bayer despite having PSNR higher than 40dB, both ours Neural Network

and ACUDE exhibit false colors in the fence part of Lighthouse image. Gharbi et

al. don’t present the result. Only LLSC27 avoids that, it has an average PSNR of

41.46dB, however, it takes approximately 6 minutes per image (on Xeon e5 1620, note

the compiled code is single threaded so potential to improve the timing). We do not

know how to adapt their algorithm for CFAs other than Bayer; therefore we do not

present the result in the Table 7.2.

Figure 7-2: Lighthouse Image crop. Demosaiced using Neural Network method. (Top
Row: Left to Right) Original, Bayer, Fuji, CNRS. (Bottom Row: Left to Right) 4x4
# 2, RGBW, Kodak 2.0, Sony RGBW.

4http://www.eecs.qmul.ac.uk/~phao/CFA/acude/
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Figure 7-3: CFAs and SFA tested. (a) Bayer, (b) RGBW, (c) 4x4 # 2, (d) Kodak
2.0106, (e) Sony RGBW107, (f) CNRS52, (g) Fuji25, (h) Monno 5ch SFA21

7.3.2 Testing for Spectral Filter Arrays

We consider the Monno5ch SFA20, see Figure 7-3-h as proposed by Monno et al. We

consider two cases, first with training and simulation on the 5-band multispectral

dataset as provided by the authors. This is similar to the training in the chapter on

Random RGB CFAs as all the color channels are present and the mosaiced image

can be directly simulated. So, this is training using the color spatial image formation

model. Secondly, we consider the real camera as developed by the authors where we

demosaic RAW images. For this we consider the spectral image formation model and

we train on the Finlayson image database (we also trained on Cave or the TokyoTech-

31 database). We present results on the RAW images and also on rendered images

from these databases.

7.3.3 Monno5ch SFA with images from 5-band multispectral

dataset

For the Monno5ch SFA, we trained the Neural Network on the 5-band multispectral

dataset.20 We have about 147 million pixels of color data available. Training on the

entire dataset would be very long. Therefore, we selected the first 6.25% of pixels

from the database for training purpose. Of this again there was (70%, 15%, 15%)

re-partition between training, validation and testing. Finally, we report results for

averaging the PSNR for all the images for the 5 bands, see Table 7.3 using 100% of

pixels. We achieved an average PSNR of 44.72dB for a neighborhood window size

of 10, using 100 neurons. It took 1.77 hours to train this network. Increasing the
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number of neurons or window size didn’t yield better results. Training over entire

database might give better results, however we are limited by memory considerations

as of now. We found that LMMSE has the best performance for this dataset in terms

of Average PSNR. Figure 7-4 and 7-5 show crops of demosaiced images converted

from 5 channels to sRGB for the proposed Neural Network method, LMMSE and

WGF method. The demosaiced images are 5 channels, for displaying them we first

need to convert them to sRGB domain for which we used the transform as provided

by Monno et al. It is difficult to visually make out much difference between the three.

However it seems MSRI has a slight advantage, less false colors in reflection of light

in the toy car for instance.

Table 7.3: Result of Average PSNR across 5 channel and time for our method com-
pared with state of art for Monno5ch SFA for 5 channel multispectral Tokyo dataset.

Monno5ch SFA TokyoTech 5-band
Ours LMMSE95 MSRI108 WGF21

PNSR 44.72 45.16 44.45 43.11
SSIM 0.9946 0.9945 0.9942 0.9923
𝜎5𝑐ℎ 9.74 12.91 9.74 8.50

𝜎 9.40 12.40 17.50 16.30
Time(s) 0.78 0.46 14.63 31.21

Figure 7-4: Demosaiced Image from 5-band TokyoTech set data. Left to Right: Ours
NN, LMMSE, MSRI
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Figure 7-5: Demosaiced Image from 5-band TokyoTech set data. Left to Right: Ours
NN, LMMSE, MSRI

7.3.4 Monno5ch SFA with RAW images captured from ac-

tual camera

Further Monno et al. implemented the SFA physically and they have provided the

spectral sensitivity of the realized filters and RAW images obtained from this camera

system21. The sensitivities of these physical filters differ from 5-band multispectral

database which was used earlier; therefore Neural Network trained on this dataset

is no longer useful. They have also shared a 31-band Multispectral image database.

Similar hyperspectral image databases like Finlayson17 and Cave65 are available. We

can render full resolution 5 channel images using filter sensitivities for this camera us-

ing the image formation model described in previous chapter. To recall, the full color

image 𝑌 is the product of illuminant 𝐿 multiplied by scene reflectance 𝑍, rendered by

the filter sensitivities 𝐹𝑃 𝑠, i.e. 𝑌 = 𝐹𝑃 𝑠𝐿𝑍, where 𝑃𝑠 is number of spectral channels.

This full color image is subsampled by the mosaic 𝑀 to give the SFA image 𝑋. For

the Neural Network training 𝑋 is used as input and 𝑌 as output. We generate 𝑋

and 𝑌 from a hyperspectral image database.

Table 7.4 shows the evaluation of metrics on rendered images from the Finlayson,

Cave and TokyoTech 31-band hyperspectral database. We use only WGF method for

evaluation as this is what the authors use to present results from RAW camera and

not MSRI. The values are for 5 channel demosaiced images, no post processing like

gamma is applied here. We find that Neural Network outperforms the rest in 2 out

of 3 image databases. Also, the WGF method has very high 𝜎, i.e. variance of PSNR
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across all images, which implies that some of the images are very well reconstructed

while other not so much.

Figure 7-6, 7-7 and 7-8 shows the comparison of three approaches on RAW image

captured by this camera. With Ours and LMMSE although the output image is

sharper with less false colors but artifacts are present. A textured pattern is present

in flat regions of the scene. These artifacts can be removed by application of a small

median filter, see figure 7-9. This is a simple solution just for illustration, using more

complicated algorithms may preserve edges. A filter to sRGB space transform as used

by Monno et al. was applied for displaying images.

To demonstrate generality of our training and method we show results of demosaic-

ing RAW images where learning was performed on Finlayson hyperspectral database.

We have similar results if training is done on Cave or TokyoTech-31 dataset.

Figure 7-6: Demosaiced RAW Image from Monno5ch SFA. Left to Right: Ours NN,
LMMSE, WGF. Notice Text is sharper with NN and LMMSE, there are less false
colors however there are artifacts in flat regions.

Figure 7-7: Demosaiced RAW Image from Monno5ch SFA camera. Left to Right:
Ours NN, LMMSE, WGF. Notice less false colors with NN and LMMSE, however
there are artifacts in flat regions.
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Figure 7-8: Demosaiced RAW Image from Monno5ch SFA camera. Left to Right:
Ours NN, LMMSE, WGF. Notice Text is sharper with NN and LMMSE, there are
less false colors however there are artifacts in flat regions.

Figure 7-9: Demosaiced RAW Image from Monno5ch SFA camera. Left to Right:
Ours NN with 3x3 Median filter applied to remove artifacts, WGF

7.4 Discussion

For the Kodak image database, our neural network is mostly better than LMMSE

approach. This is probably because being non linear it had more degree of freedom

to adapt to the training data. However, this come at the cost of being slightly slower.

It is still several magnitudes faster than other state of art algorithms like ACUDE14

or the Neural Network approach by Gharbi28. Unlike Gharbi which gains 0.5dB on

PSNR, our approach doesn’t need to train on millions of images while being twice as

fast in demosaicing. Both still have false colors in high frequency areas. Compared

to other state of art algorithms it is generally better, especially for CFAs with white

pixels.

Comparing for the Monno 5 channel SFA, with images coming from 5-band multi-

spectral dataset, in terms of PSNR, LMMSE gives the best performance. Visually it

is difficult to evaluate, however it appears than MSRI109 has a very slight advantage
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Table 7.4: Result of Average PSNR across 5 channel and time for our method com-
pared with state of art for Monno5ch SFA with filter sensitivities as implemented
simulated on Finlayson, Cave and TokyoTech 31 database. Illuminant is emuda5 as
measured.

Monno5ch SFA RAW camera
Ours LMMSE95 WGF21

Finlayson

PNSR 41.63 41.42 39.90
SSIM 0.9919 0.9918 0.9902
𝜎5𝑐ℎ 6.10 6.27 1.98

𝜎 4.36 4.19 10.31
Time(s) 0.09 0.004 1.34

Cave

PNSR 47.68 48.20 45.32
SSIM 0.9964 0.9967 0.9942
𝜎5𝑐ℎ 4.23 4.73 1.57

𝜎 15.20 15.80 21.40
Time(s) 0.12 0.01 3.40

TokyoTech 31

PNSR 45.78 45.17 44.70
SSIM 0.9956 0.9950 0.9948
𝜎5𝑐ℎ 4.29 4.26 4.11

𝜎 27.80 20.60 40.06
Time(s) 0.17 0.01 4.93

over false colors. However this comes at a cost of execution time, MSRI being consid-

erably slower. One of the limitation with this study was for Neural Network training

only 6.25% of image database was used for training, while 100% is used for LMMSE,

due to memory constraints. Probably there is potential with Neural Network to do

better.

For the RAW images from the 5 channel SFA camera, both Neural Network and

LMMSE gives artifacts in flat regions of the image. However, compared to the algo-

rithm proposed by Monno et al. the output image is sharper with less false colors.

Especially if we note the text in the images, we see it is more readable. The artifacts

are problematic, by using simple post processing one can remove them at cost of im-

age sharpness. This shows that there is still potential to do better image demosaicing

for such SFAs, as information is present in the RAW image. One thing to remember is

that the algorithm Weighted Guided Filter proposed by Monno et al. was jointly de-

veloped for this SFA arrangement while the LMMSE and Neural Network approach is

generic in nature. Further, LMMSE has an advantage over Neural Network approach,
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that it is twice as fast. However, for demanding applications where image quality is

paramount Neural Network affords more flexibility as by increasing the number of

neurons and layers we can further improve the result.

7.5 Conclusion

We presented a dual-layer Neural Networking approach to demosaicing. We presented

demosaicing results for both RGB Color Filter Arrays and Spectral Filter Array hav-

ing five channels. We showed that our approach gives competitive results compared

to state of art for RGB and RGB with panchromatic filters. For Monno5ch SFA the

output image is sharper but with artifacts, although we can post-process out these

artifacts. Therefore we have demonstrated that there is potential to do better as

information is present in the RAW image and demosaicing for SFAs is still an inter-

esting problem. The solution proposed by us is a relatively simple Neural Network

and probably by considering more neurons or adding layers, considering different

topologies may give better result which is a work to be pursued in future.
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Chapter 8

Conclusion

8.1 Summary

Industrial implementations for capturing color images favor utilizing regular Color

Filter Arrays (CFA) like Bayer as they are apparently easy to demosaic. The prob-

lem of false color and artifacts is overcome by use of increasing complex algorithms.

However, nature favors randomness and the HVS is composed of random mosaic

of cones1. In this thesis, we developed a demosaicing algorithm based on LMMSE

which works with any random arrangement of color filters. This solution is based

on defining the inverse problem as linear in nature and using correlation matrices to

estimate the demosaicing operator which minimizes the MSE between the original

and the estimated full color image. We stabilized the linear solution by considering a

large neighborhood to ensure that the linear system is over determined and trained

the spatio-spectral model on an image database. Our method is so fast that we can

demonstrate through systematic evaluation of all arrangements of colors in a super-

pixel of sizes 2,3 and 4, that random CFAs performed better than regular CFAs. Our

algorithm is computationally simple and compares well with state of art solutions.

We also proposed optimized CFAs namely 4x4 #1 and 4x4 #2 which are optimized

for LMMSE (Figure 8-1).

We demonstrated that using a linear solution considering neighborhood pixels im-

proves the performance and makes it comparable to non-linear solutions. We proposed
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Figure 8-1: Proposed 4x4 CFA

two methods sliding and constant for forming the neighborhood matrices and showed

them to be equivalent when the same spatial extent of pixels are considered. The pro-

posed constant method reduces the memory footprint and the computational require-

ment considerably which is beneficial especially when considering large neighborhood

and big super-pixel sizes. LMMSE method is generic and fast, suitable for real-time

operations like those required by embedded systems. Our study on comparison with

several state of art algorithm showed that PSNR is not satisfactory in determining

the usability/performance of an algorithm. We found that artifacts/false colors may

be present in images reporting higher PSNR and vice-versa which is counter-intuitive.

Also SSIM differences are very small for good performing algorithm to be of much

use in differentiation. Therefore we feel the need of searching a metric which is more

representative of color noise and artifacts.

Further we developed a method of estimating the MSE by correlation matrix

which enabled us to quickly evaluate any CFA arrangement for performance metrics.

This formulation was used to propose CFAs considering new colors filter which are

linear combination of RGB filters by solving an optimization problem for finding the

best mixing matrix. In the state of art the method of designing optimized CFAs is by

frequency selection wherein the position of luminance and chrominance is played with

to easily separate the two. Our proposed CFAs cannot be demosaiced by frequency

selection method as for them frequency separation by filtering is not at all possible.

We then considered a more general image formation model in the spectral domain

and developed our demosaicing methodology to be able to demosaic any spatial-

spectral sampling of Spectral Filter Arrays (SFAs). SFAs due to having more inde-

pendence in the number and choice of filter spectral sensitivities present an interesting
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challenge for demosaicing algorithms. Although demosaicing algorithms in state of

art have been extended from the RGB domain, more effort has been towards SFAs

which respect the Binary-Tree condition29 of filter arrangement. In this thesis, the al-

gorithm we proposed is generic so it works for any kind of SFA and we demonstrated

that results are better for several different SFAs. Even for SFAs having Visible +

NIR filter our algorithm gives results which are sharper with less false colors how-

ever with some block artifacts. We also proposed usage of no-reference metrics like

BLIIND-II and BRISQUE for evaluating demosaiced RAW images. This is in re-

sponse to our study on RGB CFAs which showed the limitations of PSNR and SSIM.

Even BLIIND-II and BRISQUE was not found appropriate in this case, especially for

the NIR channel. For the moment PSNR along with visual inspections remains the

metric of choice.

Further, we developed the workflow for optimizing spectral filter sensitivities for

different requirements, sRGB color reconstruction, demosaicing performance or spec-

tral signature reconstruction. We defined performance metrics estimation by evaluat-

ing the correlation matrix directly on a given hyperspectral database. For simulation

purposes we consider gaussian shaped filters as approximation of Faber-perot pro-

cess and proposed optimized filters for different super-pixel sizes for different metrics

chosen.

Finally, we developed a neural networking approach for demosaicing by considering

a simple two layer feed-forward network which evaluates the super-pixel with neigh-

boring pixels and gives results better than LMMSE. For sure a non-linear solution

will provide a better solution to the problem of inverting the mosaicking operation.

We demonstrated results both for RGB CFAs and also 5 color SFA as proposed by

Monno et al21. We showed that our method gives higher PSNR and gain resolution

at the cost of artifacts.
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8.2 Future Work

Although LMMSE outperforms other state of art algorithms for the different SFAs we

tested, however we still have block/zipper artifacts. These artifacts tend to appear

when the number of filters is large. The presence/absence of these artifacts couldn’t

be correlated with PSNR. Therefore it would be interesting to find a metric which

could quantify these artifacts. Secondly one needs to think of a way to compensate

for them. The straightforward solution is to do a median filtering however this tends

to negate the resolution gain due to LMMSE demosaicing. In the literature, for linear

inverse problems, Tikhonov regularization is proposed to smoothen the results. We

considered this by incorporating it into our demosaicing operator 𝐷. Although the

results we got were artifact free but they also got de-saturated. This could be due

to mixing of spatial-spectral sampling due to neighborhood consideration in our 𝐷.

Therefore the regularization operation needs to be further researched.

For the LMMSE solution we proposed it could be interesting to propose an edge

aware demosaicing operation, i.e. to have two demosaicing matrices 𝐷𝐻 and 𝐷𝑊 ,

along height and width, which are employed according to presence of an edge which

could further improve the results.

For filter space to sRGB color space conversion for the moment we consider a sim-

ple linear pseudo-inverse operation. The advantage of this is that being linear it can

be incorporated into our demosaicing chain and used for optimization procedure also.

However non-linear solutions for this do exist and need to be evaluated, especially

for the consideration of filter optimization where the final goal is color reproduction.

Further white-balancing is actually shifting the relative response of the filters for the

𝑠𝑅𝐺𝐵 rendering. One needs to research the effect of white-balancing in the filter

optimization workflow for the 𝑠𝑅𝐺𝐵 images.

The Neural Networking solution we presented was trained using the constant

neighborhood. For the moment we are limited by the large number of neurons required

to test sliding neighborhood however in future it could be an interesting exercise. Also

the neural networking solution needs to be exhaustively studied as the relation been
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the number of layers, neurons, neighborhood size, etc. is not clear unlike LMMSE.

At the moment it is also not possible to propose optimized filter arrangement for

the Neural Networking approach as the training is depending on the mosaic and not

directly on the true-color database like for LMMSE. If possible to find something

similar to 𝑀1 and 𝑆1 for Neural Networking workflow it would make the solution

more universal. Finally the demosaicing model we presented in this thesis, assumes

that the spatial modeling, like the Point Spread Function (PSF) between the training

database and RAW images from a camera is the same. However in reality it is not

the case. Therefore it would be interesting to model this spatial sampling area and

incorporate into our image formation model.
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Appendix A

Image databases used for training

Throughout the thesis several standard image databases are used for either training,

rendering or testing, etc. Below you will find the images from the databases as small

thumbnails to illustrate the data used. We would like to thank all the authors who

have provided these images.
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Figure A-1: Kodak15 image database
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Figure A-2: McM16 image database
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Figure A-3: Finlyason17 hyperspectral database images 400nm to 700nm, every 10nm
rendered for Nikon D300 using D65 illuminant. At the time of testing Image no 4
(goaheadbars) and 11(twinings) couldn’t be downloaded or wasn’t readable.

180



Figure A-4: Cave18 hyperspectral database images 400nm to 700nm, every 10nm
rendered for Nikon D300 using D65 illuminant.
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Figure A-5: SCIEN19 hyperspectral database without polarising filter images from
414.72nm to 950.49nm, every 3.64nm rendered for Fuji XPro using D65 illuminant.

Figure A-6: TokyoTech 5-band multispectral database20 images rendered for Nikon
D300 using D65 illuminant.
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Figure A-7: TokyoTech 31-band hyperspectral database 420nm to 720nm, every
10nm21 images rendered for Nikon D300 using D65 illuminant.
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Appendix B

Demosaicing comparison on CFAs

B.1 LMMSE on Different CFAs

Table B.1: Ordering of images B-1 B-2

Original Bayer 2x2#1 2x2#2 2x2#3
3x3#1 3x3#2 3x3#3 4x4#1 4x4#2

Yamanaka Lukac Holladay halftone CNRS Condat

B.2 Comparison of LMMSE with other Demosaic-

ing algorithms

Table B.2: Ordering of images B-3 B-4

Original LPAici Lian DA
HD SA DFPD DLMSSE
AP LI HA Bilinear

LLSC LDI NAT NLM WECD
LU 4x4#1 4x4#2 ACUDE
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Figure B-1: LMMSE on Different CFAs for Kodak

Figure B-2: LMMSE on Different CFAs for McM
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Figure B-3: Comparison of LMMSE with other Demosaicing algorithms for Kodak
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Figure B-4: Comparison of LMMSE with other Demosaicing algorithms for McM
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B.3 Effect of Leave one out

Left to Right Bayer, 3x3#2, 4x4#1, 4x4#2: Top row: when learning entire database;

Bottom row: without learning Lighthouse image. See figure B-5 and B-6

Figure B-5: Effect of Leave one out

Figure B-6: Effect of Leave one out
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B.4 DFTs on Different CFAs

Discrete Fourier Transform (DFT) on images is used to transform an image from

spatial domain to frequency domain. It is calculated by multiplying each spatial

point in the image by the basis functions (which are sine and cosine waves) and

summing the result.

Table B.3: Ordering of images B-7

Bayer 2x2#1 2x2#2 2x2#3
3x3#1 3x3#2 3x3#3 4x4#1
4x4#2 Yamanaka Lukac Holladay halftone
CNRS Fuji Condat Totally Random

Figure B-7: FFT on different CFAs. Refer to table B.3 for ordering
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Appendix C

Spectral Filter Arrays

C.1 Estimating Sensor Spectral Sensitivity

Let us consider 𝐼 to be an image recorded by a sensor of filter sensitivity 𝐹 when

illuminated with a light source of 𝐿. Then 𝐹 can be estimated as follows.

𝐼 = 𝐹𝐿 (C.1)

𝐼𝐿𝑡 = 𝐹𝐿𝐿𝑡 (C.2)

𝐹 = (𝐼𝐿𝑡)(𝐿𝐿𝑡)−1 (C.3)

(C.4)

So the idea is to use a monochromator to display light of single wavelength step-

wise and to use a spectrophotometer to measure 𝐿 for each step size. At the same

time photograph the said light at different exposure times. One needs to verify than

I varies linearly with exposure time. If true, find the exposure time when the sensor

is not saturated and complete the exercise. 𝐹 is now calculated as per equation

above. Check for Linearity for different exposure time. We used a Flame

spectrophotometer with Ocean Optics monochromator to measure Filter response of

a Nikon D300 camera.
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Figure C-1: Check for Linearity in data from RAW file

Figure C-2: Photographing different wavelengths with a Nikon D300 camera for ex-
posure time 1/5000s
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Figure C-3: Estimated Filter response for the Nikon D300
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Appendix D

Comparison with Compressive

Sensing demosaicing for SFAs

D.1 Testing

Agarwal et al.7 were kind enough to share their code for demosaicing based on Com-

pressive Sensing with us. We could more or less reproduce the results (other than

GroupSparse) they quote in their paper. One of issues with their methodology is that

they provide results for demosaicing for Cave Hyperspectral database. They take the

first 3/4 bands (400:10:440nm) images and consider them to be the true color, full

resolution images on which they apply their SFA and then demosaic. For Balloon

image they report 39.04dB for 3 color diagonal uniform pattern. Using their code

we obtain CPSNR of 43.46 in 130s. The difference is probably because I believe for

CMSE they do 𝑀𝑆𝐸 =
∑︀∑︀

(𝑦−𝑦)2

𝐻𝑊
where 𝐻 and 𝑊 are image 𝑌 sizes, however for us

it should be 𝑀𝑆𝐸 =
∑︀∑︀

(𝑦−𝑦)2

3𝐻𝑊
. Using LMMSE we get 50.92dB in about 0.2s. We

are definitely better, for both PSNR and computation time which is critical in em-

bedded systems. Now you will appreciate that these 3/4 bands are highly correlated.

However the correlation with filters like in our camera is different so the performance

is even worse. Using Uniform KCS we get an average sPSNR of 39.24dB for SCIEN

images, compared to 46.41dB for BST and 53.74dB for LMMSE. Also their method

takes on average 502s for each SCIEN image compared to 0.36s for LMMSE. Figure
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D-1a, D-1b, D-1c and D-1d shows the comparison of different demosaicing method on

one of the SCIEN image. Another issue is that before demosaicing for uniform SFA

pattern, they demosaic on a random pattern, get a parameter alphaRecon which is a

function of RAW image (of random pattern). And this parameter is then passed as

initialization to the basis pursuit solver for uniform SFA. If we omit this step we see

a loss of 19dB for the Cave image (balloon) as that reported in their paper. Similarly

for the SCIEN simulated images for our sensor we lose 17dB for SanFrancisco image.

Earlier figure of average sPSNR 39.24dB was including this step of demosaicing first a

random pattern. Now the issue is for real RAW images, like for our sensor, how do we

learn the alphaRecon when I don’t have access to RAW image coming from random

sampling for our filters. Without this step the demosaiced images are not so good,

therefore it is not interesting to compare them. It would be incorrect in main chapter

to only provide results for SCIEN images and not RAW images. We would normally

expect Compressive Sensing approach to have worked better than this, maybe there

is some issue in their protocol of initialization parameters. Hemant et al., themselves

state in their paper, "In theory such uniform sampling patterns are not conducive to

CS recovery". Now in terms of physical feasibility we can have random arrangement

within the SFA basis pattern. However for the entire sensor this pattern needs to be

repeated.
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Figure D-1: Comparison of demosaicing for the JB Sensor simulated on SCIEN
database image

(a) Original

(b) Binary-Tree demosaicing
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(c) LMMSE demosaicing.

(d) KCS demosaicing
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